

June 13, 2012

Henry Wilkie, Environmental Engineer I New York State Department of Environmental Conservation Bureau of Hazardous Waste and Radiation Management Division of Solid and Hazardous Materials 625 Broadway Albany, New York 12233-7258

Re: International Business Machines Corporation

East Fishkill Facility - B/304 Dock Apron Replacement Pre-construction Soil Sampling and Analysis Program

Contained-In Demonstration

Dear Mr. Wilkie:

The purpose of this letter is to present a plan for the management of soil to be excavated as part of the proposed construction activities to be undertaken at the International Business Machines Corporation (IBM) East Fishkill facility. In order to further quantify the chemical composition of the soil in the vicinity of the proposed construction activities, screening, characterization and sampling of the subsurface soil was conducted by D&B Architects and Engineers (D&B) on April 30 and May 1, 2012 at Building 304 (B/304), at the IBM East Fishkill facility/Hudson Valley Research Park (HVRP) in Hopewell Junction, New York.

#### **Background**

A construction project has been initiated at the IBM East Fishkill facility associated with the Building 304 Dock Apron Replacement Project. The construction activity will be conducted by Fluor Construction Company (Fluor) and will require the excavation of soil along the dock apron area of B/304. The Preconstruction Soil Sampling and Analysis Program, which was undertaken in order to determine the appropriate management procedure for the excavated soil from the project is described below.

#### **Technical Approach**

The objective of the Pre-construction Soil Sampling and Analysis Program was to collect representative soil samples at appropriate depths from within the area proposed for construction, analyze the soil samples for appropriate constituents of concern and compare the results of the analytical testing to the Contained-In Action Levels presented in TAGM 3028 with an effective date of March 14, 1997. Based on that comparison, IBM will properly classify the soil as either hazardous or non-hazardous waste and develop an appropriate soil management protocol for off-site transportation and disposal, on-site backfilling or other on-site reuse of the excavated soil.

#### **Field Investigation**

As part of the field program, D&B observed Soil Testing Inc. utilizing hollow-stem augers and split-spoon samplers to complete seven borings to various depths along the dock apron area of B/304. Under

June 13, 2012

this task, D&B initiated and completed the field program in accordance with the NYSDEC-approved work plan. All field investigation work including soil sampling and analytical testing were conducted in accordance with the NYSDEC-approved protocols and in accordance with the IBM East Fishkill Quality Assurance/Quality Control Procedures included in its Part 373 Permit. Soil samples were collected for laboratory analysis under the supervision of a geologist, and analyzed for volatile organic compounds (VOCs) utilizing EPA Method 8260B and priority pollutant (PP) metals utilizing EPA Method 6010. Analytical results for the soil samples were compared to the groundwater pollution standards listed in 6 NYCRR 375-6.8(b) Restricted Use Soil Cleanup Objectives (SCOs) for Industrial Use, and the "Contained-In" Action Levels listed in NYSDEC's TAGM No. 3028.

After utility clearance was complete, Soil Testing Inc. collected concrete core samples. Following the concrete coring, Soil Testing Inc. advanced soil borings and D&B collected soil samples from depths of approximately 2 feet, 4 feet, 6 feet and 8 feet below ground surface at six locations within the proposed excavation area. At times, limited soil recovery or refusal determined the exact soil interval which could be collected. Soil Testing Inc. conducted a seventh boring location utilizing Shelby tubes instead of split spoons for geotechnical purposes. The approximate positions of the seven boring locations are depicted on Figure 1 provided as **Attachment 1** to this letter. As part of the field program, D&B screened the sample locations for VOCs with a photoionization detector (PID) and conducted a visual inspection and classification of the soil. No staining or odors were present and all PID readings were non-detect throughout the borings. Soil boring logs are provided as **Attachment 2** to this letter.

#### **Analytical Results**

Laboratory analysis performed on the collected soil samples included VOCs, utilizing EPA Method 8260B, and PP metals, utilizing EPA Method 6010. EPA Method 8260B includes, but is not limited to, the following seven compounds listed on Table 1 of Appendix B in Module III of the East Fishkill Part 373 Permit:

- cis-1,2-dichloroethene (DCE)
- 1,1,1-trichloroethane (TCA)
- trichloroethene (TCE)
- tetrachloroethene
- benzene
- ethylbenzene
- xylene

The soil samples collected for laboratory analysis were submitted under chain-of-custody to Chemtech Laboratories. A copy of the chain-of-custody forms for the soil samples are provided as **Attachment 3**.

The analytical results of the soil sample were compared to the Contained-In Action Levels for soil/sediment provided in the NYSDEC's TAGM 3028 – "Contained-in Criteria' for Environmental Media," dated November 30, 1992. It should be noted that the Soil/Sediment Contained-In Action Levels listed in TAGM 3028 have an effective date of March 14, 1997. In addition, analytical results of the soil samples were compared to 6 NYCCR Part 375-6.8(b): Restricted Use Soil Cleanup Objectives for Industrial Use, effective December 14, 2006.

As previously discussed the soil samples were submitted to Chemtech for VOC and PP metal analyses. The tabulated analytical results are presented as **Attachment 4**. The laboratory data package is presented as **Attachment 5**, with quality assurance/quality control documentation presented as **Attachment 6**.

As shown in Table 1 of **Attachment 4**, VOCs were not detected at concentrations exceeding the TAGM 3028 "Contained-in" Action Levels or 6 NYCCR Part 375-6.8(b): Restricted Use Soil Cleanup Objectives for Industrial Use.

As shown in Table 2 of **Attachment 4**, Priority Pollutant Metals were not detected at concentrations that exceeded the NYCRR Part 375-6.8(b): Restricted Use Soil Cleanup Objectives for Industrial Use, but all samples did exceed the TAGM 3028 "Contained-in" Action Levels for arsenic and beryllium. Arsenic and beryllium are commonly detected in soil and do not necessarily indicate point source contamination. The mean Eastern U.S. Background concentration for arsenic is 4.8 mg/kg. While slightly above this level, all samples were within two standard deviations of the mean (4.8 mg/kg + 2 x 2.56 mg/kg = 9.92 mg/kg), which is a strong indicator that arsenic is within normal background ranges. The mean Eastern U.S. Background concentration for beryllium is 0.55 mg/kg. All samples were below this level for beryllium.

#### **Discussion**

The purpose of the Pre-construction Soil Sampling and Analysis Program is to determine how to manage on-site soil excavated as part of proposed construction activities.

In order to determine whether the soil located within these areas would be considered a listed hazardous waste as a result of mixing with a particular known listed waste, the contained-in policy was used since soil is an environmental media. The seven listing constituents (VOCs identified above) were not detected at concentrations exceeding the "Contained-in" Action Levels.

To determine if the soil located in the vicinity can be reused on site, the sample results were compared to 6 NYCRR Part 375-6 8(b) Restricted Use SCOs for Industrial Use. No VOCs or PP metals were detected at concentrations above Restricted Use SCOs for Industrial Use.

Therefore, based on the analytical results of the soil sampling conducted as a part of the Pre-construction Soil Sampling and Analysis Program, none of the soil located within the areas of proposed excavation would be classified as either a listed or characteristic hazardous waste. Based on the comparison to Restricted Use SCOs for Industrial Use, the soil in the vicinity of the boring location is suitable for reuse (i.e., regrading) on-site.

#### **Conclusions**

Based upon the results of the supplemental Pre-construction Soil Sampling and Analysis Program, IBM is requesting that the NYSDEC approve the classification of soil proposed for excavation during the construction activities within the vicinity of the B/304 dock apron as non-hazardous waste. IBM is also requesting approval to utilize the soil to backfill the excavations or as regrading material in the general vicinity of the excavations. Furthermore, any excess soil from the excavations and regrading would be used as fill in selected areas of the IBM East Fishkill facility. In the event the excavated soil will be disposed of off-site, the material will be transported off-site as a non-hazardous industrial solid waste to a permitted Part 360 land disposal facility or a permitted hazardous waste landfill.

IBM also does not consider the proposed construction activities to constitute a "substantial change of use" of the site as defined in 6 NYCRR 375-1.3(v) because the proposed construction activities will not disrupt or expose hazardous waste or increase direct human exposure. As a result, the notification requirements of 6 NYCRR 375-1.6 are not applicable.

It should be noted that during the excavation activities, monitoring will be conducted for Health and Safety purposes. If this monitoring indicates consistent elevated readings, then the soil will be segregated, sampled and analyzed to confirm that it is below the Contained-In Action Levels. If the soil does not meet the contained-in criteria, the soil will be managed as a hazardous waste.

After reviewing the attached information, should you have any questions, please do not hesitate to contact Ms. Jackie Braungart at (845) 892-1672.

Sincerely,

June 13, 2012

INTERNATIONAL BUSINESS MACHINES CORPORATION

Steve Hawkins, Manager

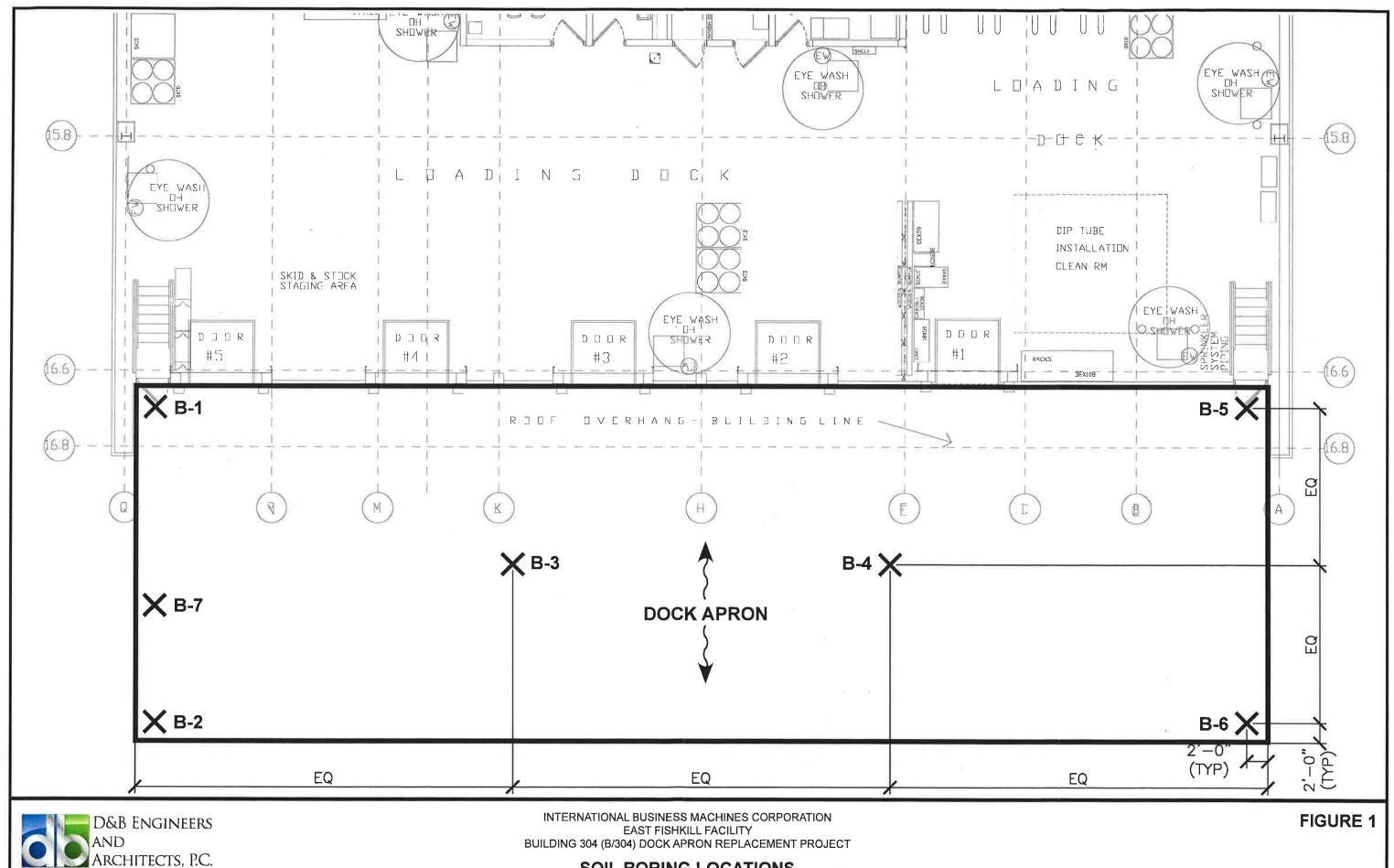
**Environmental Regulatory Engineering** 

#### Enclosure

cc:

M. O'Connor (NYSDEC – New Paltz)

R. Pergadia (NYSDEC – New Paltz)


J. Braungart (IBM)

R. Walka (D&B)

B. Veith (D&B)

#### ATTACHMENT 1

#### FIGURE 1 – SOIL BORING LOCATIONS



**SOIL BORING LOCATIONS** 

3155-03 - Soil Boring Locations indd (05/30/12 - 4:23 PM)

#### **ATTACHMENT 2**

**BORING LOGS** 



Date Started: 4/30/12

**Project No.:** 3155-03

Project Name: IBM East Fishkill - B304

Boring No.: B-1 Sheet \_1 of \_1 . By: Paul Barusich

Geologist: Paul Barusich Boring

Driller: Brian / Tyrone Drilling Method: HSA
Drill Rig: Diedrich D-50 Turbo Drive Hammer Weight:

Drive Hammer Weight: 140 lbs
Date Completed: 4/30/12

Boring Completion Depth: 8'
Ground Surface Elevation: ---

**Boring Diameter: 3**"

| Date 3  | tarteu | : 4/30/ |                      |      |        | leted: 4/30/12                                                                                                             |
|---------|--------|---------|----------------------|------|--------|----------------------------------------------------------------------------------------------------------------------------|
|         |        | Soi     | Sample               |      | PID    |                                                                                                                            |
| Depth   |        |         | Blows                | Rec. | Per 6" | Sample Description                                                                                                         |
| (ft.)   | No.    | Type    | Per 6"               | "    | (ppm)  |                                                                                                                            |
| 0 - 9"  | 1      | CC      | NA                   | 9"   | 0.0    | Concrete core.                                                                                                             |
| 9" - 2' | 2      | SS      | 11<br>17<br>13<br>12 | 15"  | 0.0    | Brown, fine to medium subangular SAND, some silt, trace fine subangular gravel, dense, moist, no staining, no odor.        |
| 2' - 4' | 3      | SS      | 2<br>4<br>5<br>7     | 18"  | 0.0    | Light brown, fine to medium subangular SAND and SILT, dense, moist, no staining, no odor.                                  |
| 4' - 6' | 4      | SS      | 6<br>8<br>10<br>14   | 18"  | 0.0    | Light brown, fine to medium subangular SAND and SILT, dense, moist, no staining, no odor.                                  |
| 6' – 8' | 5      | SS      | 3<br>5<br>9<br>9     | 18"  | 0.0    | Brown, fine to medium subangular SAND and SILT, some fine to coarse subangular gravel, loose, moist, no staining, no odor. |
|         |        |         |                      |      |        |                                                                                                                            |

Sample Types:

CC = Concrete Core

SS = Split Spoon

NOTES:

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 9"-2', 2'-3.5', 4'-5.5' and 6'-7.5'.



Project Name: IBM East Fishkill - B304

Boring No.: B-2 Sheet <u>1</u> of <u>1</u>.

By: Paul Barusich

**Drilling Contractor:** Soil Test. Inc.

Driller: Brian / Tyrone

**Drill Rig:** Diedrich D-50 Turbo

Date Started: 4/30/12

Geologist: Paul Barusich
Drilling Method: HSA

**Drive Hammer Weight:** 140 lbs **Date Completed:** 4/30/12

Boring Completion Depth: 8'
Ground Surface Elevation: ---

Boring Diameter: 3"

| Soil Sample PID |     |      |                      |      |                           |                                                                                                                                           |  |  |  |  |  |
|-----------------|-----|------|----------------------|------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Depth           |     |      | Blows                | Rec. | Per 6" Sample Description |                                                                                                                                           |  |  |  |  |  |
| (ft.)           | No. | Type | Per 6"               | 66   | (ppm)                     |                                                                                                                                           |  |  |  |  |  |
| 0 - 8"          | 1   | CC   | NA                   | 8"   | 0.0                       | Concrete core.                                                                                                                            |  |  |  |  |  |
| 8" - 2'         | 2   | SS   | 7<br>12<br>10<br>16  | 16"  | 0.0                       | Brown, fine to medium subangular SAND and SILT, some fine to medium subangular gravel, dense, moist, no staining, no odor.                |  |  |  |  |  |
| 2' - 4'         | 3   | SS   | 2<br>3<br>2<br>10    | 18"  | 0.0                       | Brown-olive green, SILT, some fine to medium subangular sand, trace fine to medium subrounded gravel, loose, moist, no staining, no odor. |  |  |  |  |  |
| 4'-6'           | 4   | SS   | 13<br>19<br>20<br>10 | 12"  | 0.0                       | Brown-olive green, SILT, some fine to medium subangular sand and fine subangular gravel, loose, moist, no staining, no odor.              |  |  |  |  |  |
| 6' - 8'         | 5   | SS   | 16<br>12<br>6<br>7   | 24"  | 0.0                       | Brown, fine to medium subangular SAND and SILT, some fine to coarse subangular gravel, loose, moist, no staining, no odor.                |  |  |  |  |  |
|                 |     |      |                      |      |                           |                                                                                                                                           |  |  |  |  |  |

Sample Types:

CC = Concrete Core

SS = Split Spoon

NOTES:

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 8"-2', 2'-3.5', 4'-5' and 6'-8'.



Project Name: IBM East Fishkill – B304

Boring No.: B-3
Sheet \_ 1 of \_ 1
By: Paul Barusich

Drilling Contractor: Soil Test. Inc.

**Driller:** Brian / Tyrone

**Drill Rig:** Diedrich D-50 Turbo

Date Started: 4/30/12

**Geologist:** Paul Barusich **Drilling Method:** HSA

Drive Hammer Weight: 140 lbs

Date Completed: 5/1/12

Boring Completion Depth: 14'
Ground Surface Elevation: ---

**Boring Diameter: 3"** 

|         |     | Soi  | Sample               |      | PID    |                                                                                                                                                                                                                 |
|---------|-----|------|----------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth   |     |      | Blows                | Rec. | Per 6" | Sample Description                                                                                                                                                                                              |
| (ft.)   | No. | Туре | Per 6"               | "    | (ppm)  |                                                                                                                                                                                                                 |
| 0 – 9"  | 1   | СС   | NA                   | 9"   | 0.0    | Concrete core.                                                                                                                                                                                                  |
| 9" - 2" | 2   | SS   | 11<br>60<br>46<br>28 | 15"  | 0.0    | Brown, fine to medium subangular SAND and SILT, some fine to medium subrounded gravel, dense, moist, no staining, no odor.                                                                                      |
| 2' – 4' | 3   | SS   | 11<br>13<br>12<br>11 | 18"  | 0.0    | Brown, fine to medium subangular SAND and SILT, some fine to medium subrounded gravel, dense, moist, no staining, no odor.                                                                                      |
| 4' – 6' | 4   | SS   | 12<br>11<br>12<br>8  | 0"   | 0.0    | No soil recovery.                                                                                                                                                                                               |
| 6' – 8' | 5   | SS   | 8<br>24<br>54        | 12"  | 0.0    | Brown, fine to medium subangular SAND and SILT, some fine to medium subrounded gravel, dense, moist, no staining, no odor.  Boring continued past 8' for geotechnical purposes.  Split spoon refusal at 7' bgs. |
| 8 - 10' | 6   | SS   | 32<br>53             | 12"  | 0.0    | Brown to dark brown, fine to medium subangular SAND and SILT, some fine to medium subangular gravel, dense, moist, no staining, no odor.  Split spoon refusal at 9' bgs.                                        |
| 10-12'  | 7   | SS   | 39<br>72<br>31<br>50 | 12"  | 0.0    | Brown, fine to coarse subangular GRAVEL and fine to medium subangular SAND, some silt, loose, wet, no staining, no odor.  Refusal at 14' bgs.                                                                   |
|         |     |      |                      |      |        |                                                                                                                                                                                                                 |

**Sample Types:** 

CC = Concrete Core SS = Split Spoon NOTES:

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 9"-2', 2'-3.5' and 6'-7'.



Project Name: IBM East Fishkill - B304

Boring No.: B-4
Sheet <u>1</u> of <u>1</u>.

By: Paul Barusich

**Drilling Contractor:** Soil Test. Inc.

Driller: Brian / Tyrone

Drill Rig: Diedrich D-50 Turbo

Date Started: 4/30/12

Geologist: Paul Barusich
Drilling Method: HSA

Drive Hammer Weight: 140 lbs

Date Completed: 4/30/12

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: 3"** 

|                 |    | Soi        | Sample               |      | PID    |                                                                                                                                         |
|-----------------|----|------------|----------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Depth           | Ma | Tuna       | Blows<br>Per 6"      | Rec. | Per 6" | Sample Description                                                                                                                      |
| (ft.)<br>0 - 9" |    | Type<br>CC |                      | 8"   | (ppm)  | Concrete core                                                                                                                           |
|                 | 1  |            | NA                   |      | 0.0    | Concrete core.                                                                                                                          |
| 9" - 2'         | 2  | SS         | 4<br>37<br>35<br>42  | 15"  | 0.0    | Brown, fine to medium subangular SAND and SILT, some fine to coarse subangular gravel, dense, moist, no staining, no odor.              |
| 2' - 4'         | 3  | SS         | 24<br>26<br>50<br>55 | 12"  | 0.0    | Brown, fine to medium subangular SAND, some silt, trace fine subangular gravel, dense, moist, no staining, no odor.  Refusal at 4' bgs. |
|                 |    | #C         |                      |      | (*)    |                                                                                                                                         |

Sample Types:

CC = Concrete Core SS = Split Spoon **NOTES:** 

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 9"-2' and 2'-3'.



Project Name: IBM East Fishkill - B304

Boring No.: B-5
Sheet 1 of 1.

By: Paul Barusich

Drilling Contractor: Soil Test. Inc.

Driller: Brian / Tyrone

**Drill Rig:** Diedrich D-50 Turbo

Date Started: 5/1/12

**Geologist:** Paul Barusich **Drilling Method:** HSA

Drive Hammer Weight: 140 lbs

Date Completed: 5/1/12

Boring Completion Depth: 10' Ground Surface Elevation: ---

**Boring Diameter: 3"** 

| Date 0  | tarted | Soi      |          |      | PID    | Citati Office                                                                                                                                                                          |
|---------|--------|----------|----------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |        | 501      | Sample   |      | ı      | Comple Description                                                                                                                                                                     |
| Depth   | N1.    | <b>-</b> | Blows    | Rec. | Per 6" | Sample Description                                                                                                                                                                     |
| (ft.)   |        | Type     | Per 6"   |      | (ppm)  |                                                                                                                                                                                        |
| 0- 13"  | 1      | СС       | NA       | 13"  | 0.0    | Concrete core.                                                                                                                                                                         |
| 13"- 2' | 2      | SS       | 50<br>50 | 12"  | 0.0    | Tan, fine to coarse subangular SAND and fine to medium gravel, some silt, loose, moist, no staining, no odor.                                                                          |
| 2' - 4' | 3      | SS       | N/A      | 0"   | 0.0    | Split spoon refusal, no soil recovery.                                                                                                                                                 |
| 4' 6'   | 4      | SS       | N/A      | 0"   | 0.0    | Split spoon refusal, no soil recovery.                                                                                                                                                 |
| 6' - 8' | 5      | SS       | 27<br>52 | 12"  | 0.0    | Tan-gray, fine to coarse subangular SAND and SILT, some fine to coarse subangular gravel, dense, moist, no staining, no odor.  Split spoon refusal at 7' bgs.                          |
| 8'- 10' | 6      | SS       | 29<br>37 | 12"  | 0.0    | Gray-brown, fine to medium subangular SAND and SILT, some fine to coarse subangular gravel, loose, wet, no staining, no odor.  Boring continued past 8' bgs for geotechnical purposes. |
|         |        |          |          |      |        |                                                                                                                                                                                        |

Sample Types:

CC = Concrete Core SS = Split Spoon **NOTES:** 

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 13"-2' and 6'-7'



Project Name: IBM East Fishkill - B304

Boring No.: B6
Sheet 1 of 1
By: Paul Barusich

**Drilling Contractor:** Soil Test. Inc.

Driller: Brian / Tyrone

**Drill Rig:** Diedrich D-50 Turbo

Date Started: 5/1/12

Geologist: Paul Barusich
Drilling Method: HSA

Drive Hammer Weight: 140 lbs

Date Completed: 5/1/12

Boring Completion Depth: 3'
Ground Surface Elevation: ---

Boring Diameter: 3"

| Date 3          | larted     | Soi   | l Sample              |      | PID          | eteu. 5/1/12                                                                                                                                        |
|-----------------|------------|-------|-----------------------|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth           | Na         |       | Blows<br>Per 6"       | Rec. | Per 6"       | Sample Description                                                                                                                                  |
| (ft.)<br>0- 10" | <b>No.</b> | CC CC | NA NA                 | 10"  | (ppm)<br>0.0 | Concrete core.                                                                                                                                      |
| 10"- 2'         | 2          | SS    | 16<br>30<br>69<br>100 | 14"  | 0.0          | Brown, fine to medium subangular SAND and SILT, some fine to coarse gravel and bluestone, dense, moist, no staining, no odor.                       |
| 2' - 4'         | 3          | SS    | 85<br>150             | 12"  | 0.0          | Brown-gray, fine to medium subangular SAND and SILT, some fine to medium subangular gravel, dense, moist, no staining, no odor.  Refusal at 3' bgs. |
|                 |            |       |                       |      |              |                                                                                                                                                     |

Sample Types:

CC = Concrete Core

SS = Split Spoon

NOTES:

Analysis: VOCs, EPA Method 8260B

PP Metals, EPA Method 6010

Intervals: 10"-2' and 2'-3'.



Project Name: IBM East Fishkill - B304

Boring No.: B-7
Sheet <u>1</u> of <u>1</u>.

By: Paul Barusich

Drilling Contractor: Soil Test. Inc.

Driller: Brian / Tyrone

Drill Rig: Diedrich D-50 Turbo

Date Started: 5/2/12

Sample Types:

CC = Concrete Core

ST = Shelby Tube

Geologist: Paul Barusich
Drilling Method: HSA

Drive Hammer Weight: N/A Date Completed: 5/2/12

Boring Completion Depth: 6' Ground Surface Elevation: ---

Boring Diameter: 4"

|                 |     | Soi | I Sample |      | PID    |                               |
|-----------------|-----|-----|----------|------|--------|-------------------------------|
| Depth           |     |     | Blows    | Rec. | Per 6" | Sample Description            |
| (ft.)<br>0-7.5" | No. |     | Per 6"   | "    | (ppm)  |                               |
| 0-7.5"          | 1   | CC  | NA       | 7.5" | 0.0    | Concrete core.                |
| 2' - 4'         | 2   | ST  | N/A      | N/A  | N/A    | Shelby Tube sampler utilized. |
| 4' - 6'         | 3   | ST  | N/A      | N/A  | N/A    | Shelby Tube sampler utilized. |
|                 |     |     |          | ×.   |        |                               |

NOTES:

No samples submitted from B-7.

Shelby Tube Intervals: 2'-4' and 4'-6'.

#### **ATTACHMENT 3**

#### LABORATORY CHAIN OF CUSTODY FORMS



### 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| CHEMTECH PROJECT NO. |  |
|----------------------|--|
| QUOTE NO.            |  |
| coc Number 026504    |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT I                    | NFORMATION        | 8 45 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | CLIENT PF                                                                                                                                       | OJECT IN       | FORMA   | TION                                                                        |                   |          | CLIENT BILLING INFORMATION |        |       |         |         |                 |                      |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-----------------------------------------------------------------------------|-------------------|----------|----------------------------|--------|-------|---------|---------|-----------------|----------------------|-------------------------|
| The state of the s | N LO REPORT                 | TO BE SENT TO:    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | FB/M                                                                                                                                            | Build          | netr    | 204                                                                         |                   | I        | BILL TO                    | ٠.     |       |         |         |                 | PO#:                 |                         |
| COMPANY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270 (                       | . A.1             | 1             | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 7155                                                                                                                                            |                | - 4     | FE                                                                          | dk:               |          |                            |        | Α.    | M/      | IE      |                 | 10#.                 |                         |
| ADDRESS: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 30 (possu                 | vays park 1       | Jr            | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO.:                 | 2122                                                                                                                                            |                |         | E.F.                                                                        | Sh 1111           | -1       | ADDRE                      | SS:    | c P   | 111     |         | _               |                      |                         |
| CITY: WOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lary                        | STATE: NY         | ZIP: 11797    | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                    |                                                                                                                                                 | 11.55          | VIS     | 7                                                                           |                   | _        | CITY:                      |        | ٧/    |         |         | STATI           | E: ZIP               |                         |
| ATTENTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ellen Ne O                  | say               |               | e-mail: [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Edpor                | ay 80                                                                                                                                           | 7-PM1          | . (OV)  | <u> </u>                                                                    |                   |          | ATTENTION: PHONE:          |        |       |         |         |                 |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364-9840                    | FAX: 516-31       | 54-9045       | PHONE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sar                  | e                                                                                                                                               | FA             | x: S    | ive                                                                         |                   |          | ANALYSIS                   |        |       |         |         |                 |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | OUND INFORMATIO   | N BEE         | DATA DELIVERABLE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                                                 |                |         |                                                                             |                   |          | 83                         | N Mel  | 7     | //      | / /     | //              | ///                  | //                      |
| FAX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | □ LEVEL 1: Results only □ LEVEL 2: Results + QC □ LEVEL 3: Results (plus results raw data) + QC □ LEVEL 3: Results (plus results raw data) + QC |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HARD COPY: DAYS.  DD: DAYS. |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                 | sults raw o    | data) + | QC _                                                                        | 1                 | OF SO    | ST                         | /      | /     | /       | /       | /               | //                   |                         |
| PREAPPROV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ED TAT: 🗅 YES               |                   | □ LEVEL 4     | : Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                                                                                                 |                | - 4     | 10/2 9                                                                      | J Mi              | /        | 5                          | 6      | /1    | /8      | /9      |                 |                      |                         |
| * STANDARD T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | URNAROUND TI                | IME IS 10 BUSINES | S DAYS        | □ EDD For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                    |                                                                                                                                                 |                |         |                                                                             |                   |          | PRES                       | ERVA   | TIVES |         |         |                 | COM                  | MENTS                   |
| CHEMTECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | PROJECT           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMPLE<br>TYPE        | COLLE                                                                                                                                           | IPLE<br>ECTION | BOTTLES |                                                                             |                   |          |                            |        |       |         |         |                 | ← Specify<br>A – HCI | Preservatives<br>B-HNO₃ |
| SAMPLE<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAI                         | TION              |               | GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE                 | TIME                                                                                                                                            | # OF BC        |         | 2                                                                           | 3                 | 4        | 5                          | 6      | 7     | 8       | 9       | C-HSO.<br>E-ICE | D-NaOH<br>F-Other    |                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DICALL                      | V)                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Uhah                                                                                                                                            | 1150           | ~       | Ż                                                                           |                   | <u> </u> |                            |        | Ť     |         |         | Ť               |                      |                         |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D-1 ( 9"-                   | 2 54              |               | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Rightarrow$        | 1212                                                                                                                                            |                | 7       | $(\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\Diamond$        |          |                            |        |       |         |         |                 |                      |                         |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-11-                      | 3,3 )             |               | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $+\!\!\!>$           | 4/2/1                                                                                                                                           | 1153           | 9       |                                                                             | $\langle \rangle$ |          |                            |        |       |         |         |                 |                      |                         |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-114                      | 5.5)              |               | Dar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\rightarrow$        | 4/34/1                                                                                                                                          | 155            | 9       | X                                                                           |                   |          |                            |        |       |         |         |                 | <u></u>              |                         |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-1 (61-                    | 7.5')             |               | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                    | 4/39/2                                                                                                                                          | 1134           | 7       | X                                                                           | X,                |          |                            |        |       |         |         |                 |                      |                         |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-2(811-                    | 2')               |               | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                    | 4/20/2                                                                                                                                          | 1993           | 2       | $\times$                                                                    | X                 |          |                            |        |       |         |         |                 |                      |                         |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-2(2'-3                    | 3,51)             |               | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                    | 4/3/12                                                                                                                                          | 1227           | 2       | $\boxtimes$                                                                 | $\times$          |          |                            |        |       |         |         |                 |                      |                         |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B-2(4'-                     | 5')               |               | Sull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                    | 4/20/2                                                                                                                                          | 1230           | 9       | $\boxtimes$                                                                 | $\propto$         |          |                            |        |       |         |         |                 |                      |                         |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R-1661-                     | 8')               |               | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                    | 4/30/2                                                                                                                                          | 132            | a       | $ \times $                                                                  | $\bowtie$         |          |                            |        |       |         |         |                 |                      |                         |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 26 5                     | <i>(//</i>        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                 |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | <del></del>       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                 |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | SAMPLE CUSTOD     | Y MUST BE DOC | UMENTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BELOW                | EACH TI                                                                                                                                         | ME SAMP        | LES C   | HANGE                                                                       | POSS              | ESSIO    | N INCL                     | UDING  | COUR  | IER DE  | LIVER   | Υ               | 置表的                  |                         |
| RELINGUISHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AMPLER:                     | 5/3/12            | RECEIVED BY:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                 | ions of bott   |         |                                                                             |                   |          | Compl                      |        |       | lon Con | npliant | Co              | oler Temp            |                         |
| 1. PL DATE/TIME: RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                   |               | MeOH extraction requires an additional 4 oz jar for percent solid.  Comments:    Comments   Comment |                      |                                                                                                                                                 |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                 |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
| RELINQUISHED BY: DATE/TIME: RECEIVED FOR LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                   |               | BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SHIPPED VIA: CLIENT: |                                                                                                                                                 |                |         |                                                                             |                   |          |                            |        |       |         |         |                 |                      |                         |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.                          |                   |               | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | of                                                                                                                                              | 8              | _       | E-01                                                                        | CH                | EM (EC   | 1: UF                      | TICKED | טר 📙  | OVEHN   | uni, LI | E9 LINU         |                      |                         |



### 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| CHEMTECH PROJECT NO. |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|--|--|--|--|
| QUOTE NO.            |  |  |  |  |  |  |  |  |  |  |  |
| coc Number 026505    |  |  |  |  |  |  |  |  |  |  |  |

|                                         | CLIENT II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FORMATION         |                  |                    | ýō E.¶        | CLIENT P                                                               | ROJECT INF    | ORMA         | TION                    |                         | W.      |            | Ü firi  |            | CLIENT        | BILLIN | G INFO | RMATION                               |            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------------------|---------------|------------------------------------------------------------------------|---------------|--------------|-------------------------|-------------------------|---------|------------|---------|------------|---------------|--------|--------|---------------------------------------|------------|
| COMPANY:                                | 1) the REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O BE SENT TO:     |                  | PROJEC             | T NAME:       | IR/                                                                    | 7- Buil       | dina         | 301                     | 1                       |         | BILL TO    | D:      |            |               |        |        | PO#:                                  |            |
| ***                                     | 30 (10554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are Dach De       |                  | PROJEC             | -             | 155                                                                    | LOCAT         | ION:         | F.F                     | ishtil                  |         | ADDRE      | SS:     |            | NW            | IF     |        |                                       |            |
| ADDRESS: 3                              | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / AN              | ZIP: 11797       | PROJEC             |               | SER. E                                                                 | Ilen Di       | 001          | all                     | 2-1111                  |         | CITY:      |         | 51         | 111           |        | STATE  | : ZIP:                                |            |
| CITY: W JOU                             | 11/20 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATE: IV         | ZIF. 11117       | e-mail:            | _             | /                                                                      | 7 16          | PAD          | con                     | R                       |         | ATTENTION: |         |            |               |        | PHONE: |                                       |            |
| ATTENTION:                              | FIM itel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Irsay             | 71100 111        |                    |               |                                                                        |               |              |                         |                         |         | ANALYSIS   |         |            |               |        |        |                                       |            |
| PHONE: 5/6-                             | 364 9890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAX: 516-36       |                  |                    |               |                                                                        |               |              |                         |                         |         |            | 00      | OU         | $\overline{}$ | 7      | /      | 777                                   | $\nearrow$ |
|                                         | DATA TURNAROUND INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                  |                    |               | DATA DELIVERABLE INFORMATION  LEVEL 1: Results only  Others My (pt 18) |               |              |                         |                         |         |            |         |            | //            |        | //     |                                       |            |
| FAX:<br>HARD COPY: _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                    |               | ts only<br>ts + QC                                                     | <b>/</b> 3 0  | thers        | rys ca                  | LIB                     | Mel     | AL TO      | THE /   | //         | //            | //     | //     |                                       |            |
| EDD:                                    | John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 03              | DAYS *           | □ LEVEL            | . 3: Resul    | ts (plus re                                                            | sults raw c   |              | QC                      | 48                      | W. W.   | X,         | /,      | /,         | /,            | /,     | /,     | //                                    |            |
|                                         | ED TAT: Q YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6               | 2 DAVE           | □ LEVEL<br>□ EDD F |               | ts + QC (a                                                             | II raw data)  |              | 1                       | D 2                     | 3       | /4         | /5      | 6          | /7            | /8     | /9     | /                                     |            |
| * STANDARD T                            | URNAROUND II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ME IS 10 BUSINESS | DATO             |                    | SAMPLI        | I SAI                                                                  | MPLE          | SS           |                         |                         |         | PRES       | ERVA    | rives      | 18.           |        | Sylve  | COMMENTS                              |            |
| CHEMTECH                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT           |                  | SAMPLE             | TYPE          |                                                                        | ECTION        | THO<br>THE   |                         |                         |         |            |         |            |               |        |        | Specify Preservative A – HCI B – HNO. | )          |
| SAMPLE<br>ID                            | SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MPLE IDENTIFICAT  | ION              | MATRIX             | COMP          | DATE                                                                   | TIME          | P OF BOTTLES | 1                       | 2                       | 3       | 4          | 5       | 6          | 7             | 8      | 9      | C−H₂SO₄ D−NaOl<br>E−ICE F−Othe        | H<br>ir    |
| 100                                     | D-U/ 9/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1/)              |                  | Sail               | V             | 4/2/                                                                   | 1345          | 2            | V                       | X                       |         |            |         |            |               |        |        |                                       |            |
| 2.                                      | D-4/()-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/5               |                  | Soil               |               | 4/30/                                                                  | 1348          | 2            |                         | $\langle \cdot \rangle$ |         |            |         |            |               |        |        |                                       |            |
| 3.                                      | D-2(11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11)               |                  | 501                |               | 4/20/12                                                                | רוועו         | 7            |                         |                         |         | =======    |         |            |               |        |        |                                       |            |
| 4.                                      | R-21 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3.51             |                  | Soil               |               | 4/2/1                                                                  | 14150         | 2            |                         |                         |         |            |         |            |               |        |        |                                       |            |
| 5.                                      | 12-3/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71)               |                  | Cal                | 1             | 4/2/12                                                                 | 1455          | 2            |                         | $\langle \cdot \rangle$ |         |            |         |            |               |        |        |                                       |            |
| 6.                                      | 12-5 (17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/2/             |                  | Soil               |               | 5/1/6                                                                  | 1030          | 7            |                         | $\langle z \rangle$     |         |            |         |            |               |        |        |                                       |            |
| 7.                                      | D C (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-5-5             |                  | Spil               | $\Rightarrow$ | 5/1/2                                                                  | 1126          | 1            |                         | $\langle z \rangle$     |         |            |         |            |               |        |        |                                       |            |
|                                         | D ( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 421               |                  |                    |               | clih                                                                   | 1100          | 7            | $\langle \cdot \rangle$ | $\bigcirc$              |         |            |         |            |               |        |        |                                       |            |
| 8.                                      | 13-6 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/                |                  | 2011               | +             | 2/1/2                                                                  | 1710          | 7            |                         | $\Diamond$              |         |            |         |            |               |        |        |                                       |            |
| 9.                                      | 15-0 ( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 - 3 )           |                  | 0011               | 1             | 7116                                                                   | DIL           | O.           |                         | $\wedge$                |         |            |         |            |               |        |        |                                       |            |
| 10.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE CUSTODY    | / MUST RE DO     | CUMENTE            | DBELOV        | V EACH T                                                               | ME SAMP       | LES C        | HANGE                   | POSS                    | ESSIO   | N INCL     | UDING   | COUR       | IER DE        | LIVER  | Υ Υ    |                                       |            |
| RELINGUISHED BY                         | A STATE OF THE PARTY OF THE PAR | DATE/TIME: /      | RECEIVED BY:     | JOINETT -          |               | Condi                                                                  | tions of bott | es or c      | oolers at               | receipt:                |         | Comp       | liant   | <b>□</b> 1 | Non Con       |        |        | oler Temp.                            |            |
| 1. //h//k                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/3/K             | 1.               |                    |               |                                                                        | H extraction  | n requ       | ires an a               | addition                | al 4 oz | jar for p  | percent | solid.     |               |        | Ice    | in Cooler?:                           | _          |
| RECEIVED BY: DATE/TIME: RECEIVED BY: 2. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |                    |               |                                                                        |               |              |                         |                         |         |            |         |            |               |        |        |                                       |            |
| 2. RELINQUISHED BY:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE/TIME:        | RECEIVED FOR LAS | BBY:               |               | 1                                                                      | ^             |              | ^                       | SH                      | IPPED \ | /IA: CL    | ENT:    | ☐ HAN      | DELIVI        | ERED_  | OVER   | RNIGHT Shipment Comple                |            |
| 3.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Page             | d                  | of_           | 9                                                                      |               |              | СН                      | EMTEC                   | H:   F  | PICKED     | UP 🗆    | OVERNI     | GHT. YES NO   | )      |        |                                       |            |

#### **ATTACHMENT 4**

TABULATED ANALYTICAL RESULTS

### TABLE 1 INTERNATIONAL BUSINESS MACHINES CORPORATION

#### EAST FISHKILL FACILITY

#### PRE-CONSTRUCTION SOIL SAMPLING AND ANALYSIS B/304 DOCK APRON REPLACEMENT

### SOIL SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

|                                         |           |           |           | VOLAT     | ILE ORGANIC ( | 30IIII 00IID0 |           |           |           |                         |                               |
|-----------------------------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------|-----------|-----------|-------------------------|-------------------------------|
| Sample Location                         | B-1       | B-1       | B-1       | B-1       | B-2           | B-2           | B-2       | B-2       | B-4       | 6 NYCRR 375-6.8(b)      | TAGM 3028                     |
| Sample Depth                            | 9"-2'     | 2'-3.5'   | 4'-5.5'   | 6'-7.5'   | 8"-2'         | 2'-3.5'       | 4'-5'     | 6'-8'     | 9"-2'     | RESTRICTED USE          | SOIL/SEDIMENT                 |
| Date of Collection                      | 4/30/2012 | 4/30/2012 | 4/30/2012 | 4/30/2012 | 4/30/2012     | 4/30/2012     | 4/30/2012 | 4/30/2012 | 4/30/2012 | SOIL CLEANUP OBJECTIVES | CONTAINED-IN<br>ACTION LEVELS |
| Dilution Factor                         | 1.0       | 1.0       | 1.0       | 1.0       | 1.0           | 1.0           | 1.0       | 1.0       | 1         | INDUSTRIAL              | ACTION LEVELS                 |
| Units                                   | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)       | (ug/kg)       | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)                 | (ug/kg)                       |
| Office                                  | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)       | (ug/kg)       | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)                 | (ug/kg)                       |
| 1,1,1-Trichloroethane                   | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 7,000,000                     |
| 1,1,2,2-Tetrachloroethane               | U         | Ū         | Ü         | U         | U             | U             | U         | UJ        | U         |                         | 3,200                         |
| 1,1,2-Trichloroethane                   | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         | 11,000                        |
| 1,1,2-Trichlorotrifluoroethane          | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         |                               |
| 1,1-Dichloroethane                      | U         | U         | U         | U         | U             | U             | U         | U         | U         | 480,000                 | 7,800,000                     |
| 1,1-Dichloroethene                      | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 1,100                         |
| 1,2,3-Trichlorobenzene                  | UR        | U         | U         | U         | UR            | UJ            | UJ        | UJ        | UJ        |                         |                               |
| 1,2,4-Trichlorobenzene                  | UR        | U         | U         | U         | UR            | U             | UJ        | U         | UJ        |                         | 780,000                       |
| 1,2-Dibromo-3-Chloropropane             | UR        | U         | U         | U         | UR<br>U       | U             | U         | UJ        | U         |                         | 29                            |
| 1,2-Dibromoethane                       | U<br>UR   | U         | U         | U         | UR            | U             | U         | U<br>U    | U         |                         |                               |
| 1,2-Dichlorobenzene                     | _         | U         | U         | U         | UK            | U             | U         | U         | U         | 1,000,000               | 7,800,000                     |
| 1,2-Dichloroethane 1,2-Dichloropropane  | U         | U         | U         | U         | U             | U             | U         | U         | U         | 60,000                  | 7,000<br>9,400                |
| 1,3-Dichlorobenzene                     | UR        | U         | U         | U         | UR            | U             | Ü         | U         | U         | 560,000                 | 3, <del>4</del> 00            |
| 1,4-Dichlorobenzene                     | UR        | Ü         | l ii      | Ü         | UR            | Ü             | Ü         | Ü         | Ü         | 250,000                 | 27,000                        |
| 1,4-Dioxane                             | U         | Ü         | Ü         | Ŭ         | U             | Ü             | Ü         | ÜJ        | Ü         | 250,000                 | 58,000                        |
| 2-Butanone                              | Ü         | Ü         | Ü         | Ü         | Ü             | Ü             | Ü         | Ü         | Ü         | 1,000,000               | 47,000,000                    |
| 2-Hexanone                              | Ü         | Ü         | Ü         | Ü         | Ü             | Ü             | Ü         | ÜJ        | Ü         |                         |                               |
| 4-Methyl-2-Pentanone                    | Ü         | Ü         | Ü         | Ü         | Ü             | Ü             | Ü         | Ü         | Ü         |                         | 6,300,000                     |
| Acetone                                 | 37 J      | 26 J      | 25 J      | 62 J      | 74 J          | 50            | U         | 13 J      | 28 J      | 1,000,000               | 7,800,000                     |
| Benzene                                 | U         | U         | U         | U         | U             | U             | U         | U         | U         | 89,000                  | 22,000                        |
| Bromochloromethane                      | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         |                               |
| Bromodichloromethane                    | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         | 10,000                        |
| Bromoform                               | U         | U         | U         | U         | U             | UJ            | UJ        | UJ        | UJ        |                         | 81,000                        |
| Bromomethane                            | U         | U         | U         | U         | U             | U             | UJ        | UJ        | UJ        |                         | 110,000                       |
| Carbon Disulfide                        | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         | 7,800,000                     |
| Carbon Tetrachloride                    | U         | U         | U         | U         | U             | U             | U         | U         | U         | 44,000                  | 4,900                         |
| Chlorobenzene<br>Chloroethane           | U         | U         | U         | U         | U             | U<br>UJ       | U         | U<br>U    | U         | 1,000,000               | 1,600,000                     |
| Chloroform                              | U         | Ü         | U         | Ü         | Ü             | U             | U         | Ü         | U         | 700,000                 | 49,000<br>100,000             |
| Chloromethane                           | U         | Ü         | l ii      | Ü         | Ŭ             | Ü             | Ü         | Ü         | Ü         | 700,000                 | 49,000                        |
| cis-1,2-Dichloroethene                  | U         | Ü         | Ü         | Ü         | Ü             | Ü             | Ü         | Ü         | U         | 1,000,000               | 780,000                       |
| cis-1,3-Dichloropropene                 | Ü         | Ü         | Ü         | Ŭ         | Ŭ             | Ü             | Ü         | Ŭ         | Ü         |                         |                               |
| Cyclohexane                             | Ü         | Ü         | Ü         | Ü         | Ŭ             | Ü             | Ü         | Ü         | Ü         |                         |                               |
| Dibromochloromethane                    | U         | Ū         | Ü         | Ū         | Ū             | Ü             | UJ        | Ū         | UJ        |                         | 7,600                         |
| Dichlorodifluoromethane                 | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         | 16,000,000                    |
| Ethyl Benzene                           | U         | U         | U         | U         | U             | U             | U         | U         | U         | 780,000                 | 7,800,000                     |
| Isopropylbenzene                        | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         | 3,100,000                     |
| m/p-Xylenes                             | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 160,000,000                   |
| Methyl Acetate                          | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         |                               |
| Methyl tert-butyl Ether                 | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               |                               |
| Methylcyclohexane                       | U         | U         | U         | U         | U             | U             | U         | U         | U         |                         |                               |
| Methylene Chloride                      | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 85,000                        |
| o-Xylene                                | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 160,000,000                   |
| Styrene                                 | _         | U         | _         | U         | _             | U             | U         | _         | U         |                         | 21,000                        |
| t-1,3-Dichloropropene Tetrachloroethene | U         | U         | U         | U         | U             | U             | U         | UJ<br>UJ  | U         | 300,000                 | <br>12,000                    |
| Toluene                                 | U         | U         | U         | U         | U             | U             | U         | U         | U         | 1,000,000               | 16,000,000                    |
| trans-1,2-Dichloroethene                | U         | U         | U         | U         | Ü             | U             | U         | U         | U         | 1,000,000               | 1,600,000                     |
| Trichloroethene                         | U         | Ü         | U         | Ü         | Ü             | Ü             | l ü       | Ü         | Ü         | 400,000                 | 58,000                        |
| Trichlorofluoromethane                  | U         | Ü         | Ü         | Ü         | Ü             | Ü             | Ü         | Ü         | Ü         |                         | 23,000,000                    |
| Vinyl Chloride                          | Ü         | Ü         | Ü         | Ŭ         | Ŭ             | ÜJ            | ÜJ        | Ŭ         | ÜJ        | 27,000                  | 340                           |
|                                         |           |           | ŭ         | _         | _             |               |           |           |           |                         |                               |
| Total Volatile Organic Compounds        | 37        | 26        | 25        | 62        | 74            | 130           | 0         | 36        | 28        |                         |                               |
|                                         | 1         | 1         |           |           |               |               |           |           |           | 1                       |                               |

Notes:

U: Compound analyzed for but not detected

J: Estimated value

R: Unusable value UJ: Estimated detection limit

3155-03/B304 VOCs.xls/kb

# TABLE 1 (continued) INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY

#### PRE-CONSTRUCTION SOIL SAMPLING AND ANALYSIS B/304 DOCK APRON REPLACEMENT

### SOIL SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

| Comple Leastion                        | B-4       | B-3       | B-3       | B-3       | B-5      | B-5      | B-6      | B-6      | 1 | 6 NVCDD 275 6 0/h)                   | TAGM 3028            |
|----------------------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|---|--------------------------------------|----------------------|
| Sample Location Sample Depth           | 2'-3'     | 9"-2'     | 2'-3.5'   | 6'-7'     | 13"-2'   | 6'-7'    | 10"-2'   | 2'-3'    |   | 6 NYCRR 375-6.8(b)<br>RESTRICTED USE | SOIL/SEDIMENT        |
| Date of Collection                     | 4/30/2012 | 4/30/2012 | 4/30/2012 | 4/30/2012 | 5/1/2012 | 5/1/2012 | 5/1/2012 | 5/1/2012 |   |                                      | CONTAINED-IN         |
| Dilution Factor                        | 4/30/2012 | 1         | 1         | 1         | 3/1/2012 | 3/1/2012 | 3/1/2012 | 3/1/2012 |   | SOIL CLEANUP<br>OBJECTIVES           | ACTION LEVELS        |
| Units                                  | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  |   | (ug/kg)                              | (ug/kg)              |
| Office                                 | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  |   | (ug/kg)                              | (ug/kg)              |
| 1,1,1-Trichloroethane                  | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 7,000,000            |
| 1,1,2,2-Tetrachloroethane              | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   | 1,000,000                            | 3,200                |
| 1,1,2-Trichloroethane                  | Ü         | Ŭ         | Ŭ         | Ü         | Ŭ        | Ü        | Ü        | Ŭ        |   |                                      | 11,000               |
| 1,1,2-Trichlorotrifluoroethane         | Ü         | ŭ         | Ü         | Ü         | ŭ        | Ü        | Ü        | Ŭ        |   |                                      |                      |
| 1,1-Dichloroethane                     | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   | 480,000                              | 7,800,000            |
| 1,1-Dichloroethene                     | Ü         | Ü         | Ü         | Ü         | Ŭ        | Ü        | Ü        | Ü        |   | 1,000,000                            | 1,100                |
| 1.2.3-Trichlorobenzene                 | ÜJ        | ÜJ        | ÜJ        | ÜJ        | ÜJ       | Ü        | ÜJ       | ÜJ       |   |                                      |                      |
| 1,2,4-Trichlorobenzene                 | UJ        | ÜJ        | UJ        | ÜJ        | UJ       | Ü        | UJ       | ÜJ       |   |                                      | 780,000              |
| 1,2-Dibromo-3-Chloropropane            | U         | Ü         | U         | Ü         | Ü        | Ü        | U        | U        |   |                                      | 29                   |
| 1,2-Dibromoethane                      | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   |                                      |                      |
| 1,2-Dichlorobenzene                    | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   | 1,000,000                            | 7,800,000            |
| 1,2-Dichloroethane                     | U         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   | 60,000                               | 7,000                |
| 1,2-Dichloropropane                    | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   |                                      | 9,400                |
| 1,3-Dichlorobenzene                    | Ü         | Ü         | Ü         | Ü         | Ü        | Ü        | Ü        | Ü        |   | 560,000                              |                      |
| 1,4-Dichlorobenzene                    | U         | Ū         | Ü         | Ū         | Ū        | Ü        | Ü        | Ū        |   | 250,000                              | 27,000               |
| 1,4-Dioxane                            | U         | U         | U         | U         | U        | U        | U        | U        |   | 250,000                              | 58,000               |
| 2-Butanone                             | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 47,000,000           |
| 2-Hexanone                             | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| 4-Methyl-2-Pentanone                   | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 6,300,000            |
| Acetone                                | 18 J      | 25 J      | 15 J      | 17 J      | 56       | Ü        | 40       | 20 J     |   | 1,000,000                            | 7,800,000            |
| Benzene                                | U         | U         | U         | U         | U        | U        | U        | U        |   | 89,000                               | 22,000               |
| Bromochloromethane                     | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| Bromodichloromethane                   | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 10,000               |
| Bromoform                              | UJ        | UJ        | UJ        | UJ        | U        | U        | UJ       | UJ       |   |                                      | 81,000               |
| Bromomethane                           | UJ        | UJ        | UJ        | UJ        | U        | U        | UJ       | UJ       |   |                                      | 110,000              |
| Carbon Disulfide                       | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 7,800,000            |
| Carbon Tetrachloride                   | U         | U         | U         | U         | U        | U        | U        | U        |   | 44,000                               | 4,900                |
| Chlorobenzene                          | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 1,600,000            |
| Chloroethane                           | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 49,000               |
| Chloroform                             | U         | U         | U         | U         | U        | U        | U        | U        |   | 700,000                              | 100,000              |
| Chloromethane                          | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 49,000               |
| cis-1,2-Dichloroethene                 | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 780,000              |
| cis-1,3-Dichloropropene                | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| Cyclohexane                            | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| Dibromochloromethane                   | UJ        | UJ        | UJ        | UJ        | UJ       | U        | UJ       | UJ       |   |                                      | 7,600                |
| Dichlorodifluoromethane                | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 16,000,000           |
| Ethyl Benzene                          | U         | U         | U         | U         | 9.3      | U        | U        | U        |   | 780,000                              | 7,800,000            |
| Isopropylbenzene                       | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      | 3,100,000            |
| m/p-Xylenes                            | U         | U         | U         | U         | 34       | U        | U        | U        |   | 1,000,000                            | 160,000,000          |
| Methyl Acetate                         | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| Methyl tert-butyl Ether                | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            |                      |
| Methylcyclohexane                      | U         | U         | U         | U         | U        | U        | U        | U        |   |                                      |                      |
| Methylene Chloride                     | U         | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 85,000               |
| o-Xylene                               | U         | U         | U         | U         | 11       | U        | U        | U        |   | 1,000,000                            | 160,000,000          |
| Styrene                                | U<br>U    | U         | U         | U         | U        | U        | U        | U        |   |                                      | 21,000               |
| t-1,3-Dichloropropene                  | _         | U         | U         | _         | U        | U        | U        | U        |   |                                      | <br>12.000           |
| Tetrachloroethene                      | U<br>U    | U         | U         | U         | _        | U        | U        | _        |   | 300,000                              | 12,000               |
| Toluene                                | _         | U         | Ü         | U         | 19       | U        | _        | U        |   | 1,000,000                            | 16,000,000           |
| trans-1,2-Dichloroethene               | U<br>U    | U         | U         | U         | U        | U        | U        | U        |   | 1,000,000                            | 1,600,000            |
| Trichloroethene Trichlorofluoromethane | U         | U         | U         | U         | U        | U        | U        | U        |   | 400,000                              | 58,000<br>23,000,000 |
|                                        | UJ        | UJ        | UJ        | UJ        | UJ       | U        | UJ       | UJ       |   |                                      |                      |
| Vinyl Chloride                         |           |           |           |           |          |          |          |          |   | 27,000                               | 340                  |
| Total Volatile Organic Compounds       | 18        | 25        | 15        | 17        | 129.3    | 0        | 40       | 20       |   |                                      |                      |
|                                        |           |           |           |           |          |          |          |          |   |                                      |                      |

Notes:

U: Compound analyzed for but not detected

J: Estimated value

UJ: Estimated detection limit

3155-03/B304 VOCs.xls/kb

# TABLE 2 INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY

# PRE-CONSTRUCTION SOIL SAMPLING AND ANALYSIS B/304 DOCK APRON REPLACEMENT SOIL SAMPLING RESULTS PRIORITY POLLUTANT METALS

| Sample Location    | B-1            | B-1                   | B-1                   | B-1                  | B-2                    | B-2            | B-2                   | B-2                   | B-4                    | 6 NYCRR 375-6.8(b)      |                               |
|--------------------|----------------|-----------------------|-----------------------|----------------------|------------------------|----------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------------|
| Sample Depth       | 9"-2'          | 2'-3.5'               | 4'-5.5'               | 6'-7.5'              | 8"-2'                  | 2'-3.5'        | 4'-5'                 | 6'-8'                 | 9"-2'                  | RESTRICTED USE          | SOIL/SEDIMENT<br>CONTAINED-IN |
| Date of Collection | 4/30/2012      | 4/30/2012             | 4/30/2012             | 4/30/2012            | 4/30/2012              | 4/30/2012      | 4/30/2012             | 4/30/2012             | 4/30/2012              | SOIL CLEANUP OBJECTIVES | ACTION LEVELS                 |
| Dilution Factor    | 1.0            | 1.0                   | 1.0                   | 1.0                  | 1.0                    | 1.0            | 1.0                   | 1.0                   | 1.0                    | INDUSTRIAL              | 7.01.01.22.7220               |
| Units              | (mg/kg)        | (mg/kg)               | (mg/kg)               | (mg/kg)              | (mg/kg)                | (mg/kg)        | (mg/kg)               | (mg/kg)               | (mg/kg)                | (mg/kg)                 | (mg/kg)                       |
| Antimony           | UJ             | UJ                    | UJ                    | UJ                   | UJ                     | UJ             | UJ                    | UJ                    | UJ                     |                         | 31.0                          |
| Arsenic            | <u>4.98</u>    | <u>10.4</u>           | <u>8.38</u>           | <u>9.71</u>          | <u>7.46</u>            | <u>4.91</u>    | <u>9.59</u>           | <u>6.11</u>           | <u>7.72</u>            | 16                      | 0.4                           |
| Beryllium          | 0.48 <u>J-</u> | <u>0.24</u> <u>J-</u> | <u>0.24</u> <u>J-</u> | <u>0.4</u> <u>J-</u> | <u>0.37</u> <u>J</u> - | 0.49 <u>J-</u> | <u>0.33</u> <u>J-</u> | <u>0.36</u> <u>J-</u> | <u>0.31</u> <u>J</u> - | 2,700                   | 0.15                          |
| Cadmium            | 1.03 J         | 0.58 J                | 0.49 J                | 1.93 J               | 1.17 J                 | 0.94 J         | 1.22 J                | 0.64 J                | 0.98 J                 | 60                      | 78.0                          |
| Chromium           | 10.2 J         | 11.8 J                | 8.55 J                | 15.3 J               | 10.6 J                 | 9.58 J         | 11 J                  | 9.19 J                | 9.27 J                 | 6,800                   |                               |
| Copper             | 8.1            | 19.7                  | 23.3                  | 27.4                 | 13.2                   | 9.2            | 27.4                  | 10.6                  | 17.4                   | 10,000                  |                               |
| Lead               | 10.5           | 12.3                  | 11.3                  | 12.8                 | 14.9                   | 14.4           | 13.6                  | 13.9                  | 14.4                   | 3,900                   | 400                           |
| Mercury            | 0.017          | 0.045                 | 0.023                 | 0.017                | 0.049                  | 0.027          | 0.022                 | 0.047                 | 0.041                  | 5.7                     | 23                            |
| Nickel             | 15.4           | 16.4                  | 20.8                  | 29                   | 17.3                   | 15             | 25.7                  | 14.8                  | 17.9                   | 10,000                  | 1,600                         |
| Selenium           | UJ             | UJ                    | UJ                    | UJ                   | UJ                     | UJ             | UJ                    | UJ                    | UJ                     | 6,800                   | 390                           |
| Silver             | U              | U                     | U                     | U                    | U                      | U              | U                     | U                     | U                      | 6,800                   | 390                           |
| Thallium           | U              | U                     | U                     | U                    | U                      | U              | U                     | U                     | U                      |                         | 7.8                           |
| Zinc               | 36.3 J+        | 34.7 J+               | 46.7 J+               | 58.8 J+              | 44.1 J+                | 36.9 J+        | 58.7 J+               | 38.9 J+               | 44.2 J+                | 10,000                  | 23,000                        |

#### Notes:

U: Compound analyzed for but not detected

:Exceeds TAGM 3028 Contained-in Action Level

J: Estimated value

J-: Estimated low

: Estimated low UJ: E

J+: Estiamted high

UJ: Estimated detection limit

3155-03/B304 pp Metals.xls/kb 6/18/2012

#### TABLE 2 INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY

#### PRE-CONSTRUCTION SOIL SAMPLING AND ANALYSIS B/304 DOCK APRON REPLACEMENT SOIL SAMPLING RESULTS PRIORITY POLLUTANT METALS

| Sample Location    | B-4       | B-3         | B-3         | B-3           | B-5         | B-5         | B-6         | B-6         | 6 NYCRR 375-6.8(b) | TAGM 3028     |
|--------------------|-----------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|--------------------|---------------|
| Sample Depth       | 2'-3'     | 9"-2'       | 2'-3.5'     | 6'-7'         | 13"-2'      | 6'-7'       | 10"-2'      | 2'-3'       | RESTRICTED USE   S | SOIL/SEDIMENT |
| Date of Collection | 4/30/2012 | 4/30/2012   | 4/30/2012   | 4/30/2012     | 5/1/2012    | 5/1/2012    | 5/1/2012    | 5/1/2012    | SOIL CLEANUP       | CONTAINED-IN  |
| Dilution Factor    | 1.0       | 1.0         | 1.0         | 1.0           | 1.0         | 1.0         | 1.0         | 1.0         | OBJECTIVES A       | ACTION LEVELS |
| Units              | (mg/kg)   | (mg/kg)     | (mg/kg)     | (mg/kg)       | (mg/kg)     | (mg/kg)     | (mg/kg)     | (mg/kg)     | (mg/kg)            | (mg/kg)       |
| Antimony           | UJ        | UJ          | UJ          | UJ            | 0.68 J      | 1.11 J      | UJ          | 0.92 J      |                    | 31.0          |
| Arsenic            | 9.74      | <u>8.16</u> | <u>7.81</u> | <u>8.56</u>   | <u>7.83</u> | <u>4.06</u> | <u>11.6</u> | <u>15.5</u> | 16                 | 0.4           |
| Beryllium          | 0.26 J-   | 0.44 J-     | 0.38 J-     | <u>0.3 J-</u> | 0.24 J-     | 0.23 J-     | 0.8 J-      | 0.37 J-     | 2,700              | 0.15          |
| Cadmium            | 1.41 J    | 1.64 J      | 1.05 J      | 1.53 J        | 1.69 J      | 0.66 J      | 2.39 J      | 1.05 J      | 60                 | 78.0          |
| Chromium           | 12.8 J    | 12.5 J      | 11.1 J      | 10.9 J        | 27.1 J      | UJ          | 12.4 J      | 2.29 J      | 6,800              |               |
| Copper             | 29.5      | 17          | 16.5        | 21.3          | 410         | 6.59        | 21.7        | 15.5        | 10,000             |               |
| Lead               | 16        | 18.1        | 15.6        | 14            | 15.7        | 3.67        | 17.3        | 9.51        | 3,900              | 400           |
| Mercury            | 0.032     | 0.039       | 0.041       | 0.03          | 0.018       | 0.003 J     | 0.081       | 0.013       | 5.7                | 23            |
| Nickel             | 26        | 22          | 18.5        | 21.8          | 72.5        | 5.39        | 22.9        | 14.9        | 10,000             | 1,600         |
| Selenium           | UJ        | UJ          | UJ          | UJ            | UJ          | UJ          | UJ          | UJ          | 6,800              | 390           |
| Silver             | U         | U           | U           | U             | U           | U           | U           | U           | 6,800              | 390           |
| Thallium           | U         | U           | U           | U             | U           | U           | U           | U           |                    | 7.8           |
| Zinc               | 61.9 J+   | 51 J+       | 45.8 J+     | 51.5 J+       | 298 J+      | 12.1 J+     | 38.6 J+     | 10.8 J+     | 10,000             | 23,000        |

#### Notes:

U: Compound analyzed for but not detected

:Exceeds TAGM 3028 Contained-in Action Level

J: Estimated value J+: Estimated high

J-: Estimated low

UJ: Estimated detection limit

3155-03/B304 pp Metals.xls/kb 6/18/2012

#### **ATTACHMENT 5**

LABORATORY DATA PACKAGE



# ANALYTICAL RESULTS SUMMARY

PROJECT NAME: PV6256, IBM EAST FISHKILL

**DVIRKA & BARTILUCCI**330 Crossways Park Drive

**Woodbury** , **NY** - **11797** 

Phone No: 516-364-9890

ORDER ID:

D2546

ATTENTION:

**Ellen DeOrsay** 







### **Cover Page**

Order ID:

D2546

Project ID:

PV6256, IBM East Fishkill

Client:

Dvirka & Bartilucci

#### **Lab Sample Number**

#### **Client Sample Number**

| D2546-01 | B-1(9-2)   |
|----------|------------|
| D2546-02 | B-1(2-3.5) |
| D2546-03 | B-1(4-5.5) |
| D2546-04 | B-1(6-7.5) |
| D2546-05 | B-2(8-2)   |
| D2546-06 | B-2(2-3.5) |
| D2546-07 | B-2(4-5)   |
| D2546-08 | B-2(6-8)   |
| D2546-09 | B-4(9-2)   |
| D2546-10 | B-4(2-3)   |
| D2546-11 | B-3(9-2)   |
| D2546-12 | B-3(2-3.5) |
| D2546-13 | B-3(6-7)   |
| D2546-14 | B-5(13-2)  |
| D2546-15 | B-5(6-7)   |
| D2546-16 | B-6(10-2)  |
| D2546-17 | B-6(2-3)   |
|          |            |

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following Wildred V Reyes signature.

Signature:

Mildred V. Reyes, QA/QC Supervisor 2012.06.01 16:40:46 -05'00'

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION FORM S-I SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

| NYSDEC<br>Sample<br>ID/Code | Laboratory<br>Sample<br>ID/Code | VOA<br>GC/MS<br>(Method #) | BNA GC/MS<br>(Method #) | VOA GC<br>(Method<br>#) | Pest PCBs<br>(Method<br>#) | Metals<br>(Method<br>#) | Other<br>(Method<br>#) |
|-----------------------------|---------------------------------|----------------------------|-------------------------|-------------------------|----------------------------|-------------------------|------------------------|
| B-1(9-2)                    | D2546-01                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-1(2-3.5)                  | D2546-02                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-1(4-5.5)                  | D2546-03                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-1(6-7.5)                  | D2546-04                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-2(8-2)                    | D2546-05                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-2(2-3.5)                  | D2546-06                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-2(4-5)                    | D2546-07                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-2(6-8)                    | D2546-08                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech<br>-SOP       |
| B-4(9-2)                    | D2546-09                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech<br>-SOP       |
| B-4(2-3)                    | D2546-10                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-3(9-2)                    | D2546-11                        | 8260C                      |                         | E.                      |                            | 6010B,<br>7471A         | Chemtech<br>-SOP       |
| B-3(2-3.5)                  | D2546-12                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-3(6-7)                    | D2546-13                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-5(13-2)                   | D2546-14                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-5(6-7)                    | D2546-15                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech -SOP          |
| B-6(10-2)                   | D2546-16                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech<br>-SOP       |
| B-6(2-3)                    | D2546-17                        | 8260C                      |                         |                         |                            | 6010B,<br>7471A         | Chemtech<br>-SOP       |

#### FORM S-IIa

# SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSES

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-IIb

# SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

| Laboratory<br>Sample ID | Matrix   | Date<br>Collected | Date Rec'd<br>at Lab | Date<br>Extracted | Date<br>Analyzed |
|-------------------------|----------|-------------------|----------------------|-------------------|------------------|
| D2546-01                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-02                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-03                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-04                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-05                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-06                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/12/12         |
| D2546-07                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-08                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-09                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-10                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-11                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-12                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-13                | SOIL     | 04/30/12          | 05/03/12             |                   | 05/13/12         |
| D2546-14                | SOIL     | 05/01/12          | 05/03/12             |                   | 05/13/12         |
| D2546-15                | SOIL     | 05/01/12          | 05/03/12             |                   | 05/13/12         |
| D2546-16                | SOIL     | 05/01/12          | 05/03/12             |                   | 05/13/12         |
| D2546-17                | SOIL     | 05/01/12          | 05/03/12             |                   | 05/13/12         |
| * Details For Tes       | t :VOC-T | CLVOA-10          |                      |                   |                  |

#### **FORM S-III**

## SAMPLE PREPARATION AND ANALYSIS SUMMARY MISCELLANEOUS ORGANIC ANALYSES

| Laboratory<br>Sample ID | Matrix | Analytical<br>Protocol | Extraction<br>Method | Auxiliary<br>Cleanup | Dil/Conc<br>Factor |
|-------------------------|--------|------------------------|----------------------|----------------------|--------------------|
| D2546-01                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-02                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-03                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-04                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-05                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-06                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-07                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-08                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-09                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-10                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-11                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-12                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-13                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-14                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-15                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-16                | Solid  | 8260C                  | 5035                 |                      |                    |
| D2546-17                | Solid  | 8260C                  | 5035                 |                      |                    |

#### FORM S-IV

## SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

| Laboratory<br>Sample ID | Matrix   | Metals<br>Requested | Date Rec'd<br>at Lab | Date<br>Digested | Date<br>Analyzed |
|-------------------------|----------|---------------------|----------------------|------------------|------------------|
| D2546-01                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-02                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-03                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-04                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-05                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-06                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-07                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-08                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-09                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-10                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-11                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-12                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-13                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-14                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-15                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-16                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| D2546-17                | SOIL     | Mercury             | 05/03/12             | 05/14/12         | 05/15/12         |
| * Details For Tor       | + .Mass. | M. 4                |                      |                  |                  |

\* Details For Test :Mercury

#### **FORM S-IV**

# SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

| Laboratory<br>Sample ID | Matrix | Metals<br>Requested | Date Rec'd<br>at Lab | Date<br>Digested | Date<br>Analyzed |
|-------------------------|--------|---------------------|----------------------|------------------|------------------|
| D2546-01                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-02                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-03                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-04                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-05                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-06                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-07                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-08                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-09                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-10                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-11                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-12                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-13                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-14                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-15                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-16                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |
| D2546-17                | SOIL   | Metals ICP-<br>PP   | 05/03/12             | 05/09/12         | 05/14/12         |



284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number 026504

 Specify Preservatives Shigment Complete: B – HNO<sub>3</sub> D – NaOH F – Other **№** COMMENTS ZYES A-HCI C-H,SQ, E-ICE ZIP: Ice in Cooler?; Cooler Temp. CLIENT BILLING INFORMATION SHIPPED VIA: CLIENT: HAND BELIVERED DOVERNIGHT CHEMTECH: DAYICKED UP DOVERNIGHT STATE: ANALYSIS o SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY MeOH extraction requires an additional 4 oz jar for percent solid.

Comments: œ **PRESERVATIVES** 9 ATTENTION: വ ADDRESS CITY: PROJECT NO. 3 55 LOCATION: E. FISH KILL X Others MIS (ut B PROJECT NAME: FBM-BUILDING 304 DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION □ LEVEL 3: Results (plus results raw data) + QC □ LEVEL 4: Results + QC (all raw data) □ EDD Format: PROJECT MANAGER: Ellen De Urxiv SETTLES SAMPLE COLLECTION TIME 1153 3 5 e-mail: Editorias @ d DATE ☐ LEVEL 1: Results only ☐ LEVEL 2: Results + QC SAR SAMPLE BARD TYPE COMP RECEIVED FOR UP IN NOW SAMPLE PHONE: ō \<u>Z</u> S Ö FAX: 516-364-9045 S. W RECEIVED RECEIVED DAYS: DAYS. DAYS. \* STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS PROJECT SAMPLE IDENTIFICATION 330 (rossways fank Dr DATA TURNAROUND INFORMATION DATE/TIME, 2005 5.3.12 REPORT TO BE SENT TO: CLIENT INFORMATION 9 PHONE: 516-364-9890 PREAPPROVED TAT: CL YES ATTENTION: FIM A SAMPLER on Worlding HARD COPY CHEMTECH SAMPLE COMPANY



284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

I CHEMTECH PROJECT PO 25 L

coc Number 026505

Shipment Complete: Specify Preservatives B-HNO<sub>3</sub> D-NaOH F-Other COMMENTS A-HCI C-HSO, E-ICE ce in Cooler?:\_ Cooler Temp. CLIENT BILLING INFORMATION SHIPPED VIA: CLIENT: CHAND DELIVERED COVERNIGHT CHEMTECH: QPPICKED UP COVERNIGHT ₽Q# STATE: PHONE ANALYSIS 6 SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY MeOH extraction requires an additional 4 oz lar for percent solid. 00 **PRESERVATIVES** ဖ ATTENTION 2 ADDRESS CITY: Conditions of bottles or coolers at receipt: LOCATION F. FISH X Others My Cut. B SUM b eng con DATA DELIVERABLE INFORMATION 0 CLIENT PROJECT INFORMATION U LEVEL 1: Results only X Others WU
U LEVEL 2: Results + QC
U LEVEL 3: Results (plus results raw data) + QC
U LEVEL 4: Results + QC (all raw data) TEM Buldus OF BOTTLES 1/30 1254/12/04/J 1)26 S//12/1030 1 0/3 SAMPLE COLLECTION TIME PROJECT MANAGER: FIM e-mail: Edaysay@ DATE PROJECT NO. 315 SAMPLE PROJECT NAME: 8AR2 4MOC SAMPLE PHONE: K Soi Soi Š Ž, ď Þ - RECEIVED FOR LAB BY 9045 1540 RECEIVED BY DAYS. DAYS. \* STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS ZIP: FAX: 516-364 PROJECT PROJECT SAMPLE IDENTIFICATION DATA TURNAROUND INFORMATION DATE/TIME/2005 STATE: N 10554015 Yark CLIENT INFORMATION REPORT TO BE SENT TO: 20 911-11 PREAPPROVED TAT: U YES PHONE 516-364 9890 12-51 7-2 R3( ATTENTION: FIRM city: Mrsodbuil HARD COPY: CHEMTECH SAMPLE ADDRESS: COMPANY: 0 a

### CHEMITECH

#### **CASE NARRATIVE**

Dvirka & Bartilucci

Project Name: PV6256, IBM East Fishkill

Project # N/A

Chemtech Project # D2546 Test Name: VOC-TCLVOA-10

#### A. Number of Samples and Date of Receipt:

17 Solid samples were received on 05/03/2012.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: Mercury, Metals ICP-PP, METALS-PP and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

#### C. Analytical Techniques:

The analysis performed on instrument MSVOA\_F were done using GC column RTX-VMS, which is 20 meters, 0.18 mm id, 1.0 um df, Restek Cat. #49914. The Trap was supplied by Supelco, VOCARB 3000, Tekmar 2000 Concentrator. The analysis performed on instrument MSVOA\_K were done using GC column RXI-624SIL MS 30m 0.25mm 1.4um 872456The analysis of VOC-TCLVOA-10 was based on method 8260C.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for SEC-SB-08(6-8)MS [1,2-Dichloroethane-d4 - 121%], SEC-SB-08(6-8)MSD [1,2-Dichloroethane-d4 - 122%], B-1(9-2) [1,2-Dichloroethane-d4 - 125%], B-1(9-2)RE [1,2-Dichloroethane-d4 - 132%], B-1(2-3.5) [1,2-Dichloroethane-d4 - 126%], B-1(2-3.5)RE [1,2-Dichloroethane-d4 - 134%], B-1(4-5.5) [1,2-Dichloroethane-d4 - 123%], B-1(4-5.5)RE [1,2-Dichloroethane-d4 - 135%], B-1(6-7.5) [1,2-Dichloroethane-d4 - 122%], B-1(6-7.5)RE [1,2-Dichloroethane-d4 - 135%], B-2(8-2) [1,2-Dichloroethane-d4 - 128%], B-2(8-2)RE [1,2-Dichloroethane-d4 - 136%], B-2(2-3.5) [1,2-Dichloroethane-d4 - 133%], B-2(4-5)RE [1,2-Dichloroethane-d4 - 128%], B-4(9-2)RE [1,2-Dichloroethane-d4 - 129%], B-4(2-3)RE [1,2-Dichloroethane-d4 - 125%], B-3(9-2)RE [1,2-Dichloroethane-d4 - 128%], B-3(2-3.5)RE [1,2-Dichloroethane-d4 - 133%], B-3(6-7)RE [1,2-Dichloroethane-d4 - 128%], B-5(13-2)RE [1,2-Dichloroethane-d4 - 141%, Dibromofluoromethane - 44%], B-6(10-2)RE [1,2-Dichloroethane-d4 - 141%], B-6(2-3)RE [1 and2-Dichloroethane-d4 - 138%].

The Internal Standards Areas met the acceptable requirements except for B-1(9-2)RE, B-1(6-7.5)RE, B-2(8-2)RE, B-2(6-8), B-3(9-2)RE, B-3(2-3.5)RE, B-5(6-7), B-5(6-7)RE, B-1(9-2), B-2(8-2) and B-2(2-3.5).

The Retention Times were acceptable for all samples.

### **CHEMIECH**

The MS {D2513-11MS} with File ID: VF033266.D recoveries met the requirements for all compounds except for Bromomethane[191%], Chloroethane[221%] and Vinyl chloride[191%].

The MSD {D2513-12MSD} with File ID: VF033267.D recoveries met the acceptable requirements except for Bromomethane[206%], Chloroethane[206%] and Vinyl chloride[191%].

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except Chloroethane[55%] and 1,2,3-Trichlorobenzene [125%].

The Blank Spike for {BSF0514S1} with File ID: VF033215.D met requirements for all samples except for Chloroethane[60%], Vinyl chloride[65%].

The Blank Spike for {BSF0515S1} with File ID: VF033250.D met requirements for all samples except for 1,1,2-Trichloroethane[140%], 1,2-Dibromo-3-Chloropropane[135%], 1,2-Dibromoethane[135%], 2-Butanone[140%], 2-Hexanone[170%], 4-Methyl-2-Pentanone[160%], Benzene[125%], Dibromochloromethane[130%], Methyl tert-butyl Ether[125%] and t-1,3-Dichloropropene[135%].

The Blank Spike Duplicate met requirements for all samples .The Blank Spike for {BSK0513S1} with File ID: VK048308.D met requirements for all samples except for 1,2,3-Trichlorobenzene[70%], 1,2-Dibromo-3-Chloropropane[65%], 2-Hexanone[67%] and Tetrachloroethene[140%].

The %RSD is greater than 15% in the Initial Calibration (Method 82F051012S.M) for Bromochloromethane, Methylene Chloride, Chloroethane and Bromomethane are passing on Quadratic regression.

The %RSD is greater than 15% in the Initial Calibration (Method 82F051512S.M) for Bromochloromethane is passing on linear regression and Bromomethane is passing on Ouadratic regression.

The %RSD is greater than 15% in the Initial Calibration (Method 82K051112S.M) for Acetone,Bromomethane,Carbon TetrachlorideMethylene Chloride, t-1,3-

Dichloropropene and cis-1,3-Dichloropropene compounds are passing on Quadratic regression and ,2-Hexanone & Bromoform compounds are passing on linear regression. The Initial Calibration verfiction for file ID: VF033248.D met the requirements except for Bromomethane .

The Continuous Calibration File ID VF033157.D met the requirements except for 1,2,3-Trichlorobenzene,1,2,4-

Trichlorobenzene, Bromoform, Bromochloromethane, Chloromethane, Dibromochloromethane and Vinyl Chloride .

The Continuous Calibration File ID VF033213.D met the requirements except for Bromoform, Bromochloromethane, Chloromethane, Vinyl Chloride and 1,2,3-Trichlorobenzene.

The Continuous Calibration File ID VK048306.D met the requirements except for 1,1,2,2-Tetrachloroethane,1,2-Dibromo-3-Chloropropane,1,4-Dioxane,2-Hexanone,1,2,3-Trichlorobenzene,Chloroethane and Tetrachloroethene.

The Tuning criteria met requirements.

#### E. Additional Comments:

### **CHEMIECH**

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

Compounds #3,4,28 (Chloromethane, Vinyl Chloride & Bromochloromethane) failing low in CCC(VF033157.D) which is associated with D2546.

Compounds #3,4,28 (Chloromethane, Vinyl Chloride & Bromochloromethane) failing low in CCC(VF033213.D) which is associated with D2546

Compounds #58,74,91,95(2-Hexanone, 1,1,2,2-Tetrachloroethane, 1,2-Dibromo-3-Chloropropan & 1,2,3-Trichlorobenzene) failing low in CCC(VK048306.D) which is associated with D2546.but samples are being analysed for surrogate failure.

#### F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

| s, QA/QC Supervisc<br>0:34 -05'00' |
|------------------------------------|
|                                    |

### CHEMIECH

#### CASE NARRATIVE

Dvirka & Bartilucci

Project Name: PV6256, IBM East Fishkill

Project # N/A

**Chemtech Project # D2546** 

Test Name: Mercury, Metals ICP-PP

#### A. Number of Samples and Date of Receipt:

17 Solid samples were received on 05/03/2012.

#### **B. Parameters:**

According to the Chain of Custody document, the following analyses were requested: Mercury, Metals ICP-PP, METALS-PP and VOC-TCLVOA-10. This data package contains results for Mercury, Metals ICP-PP.

#### C. Analytical Techniques:

The analysis of Metals ICP-PP was based on method 6010B, digestion based on method 3050 (soils). The analysis of Mercury was based on method 7471A and digestion was based on method 7471B (soils).

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples except for Cadmium.

The Matrix Spike analysis met criteria for all samples except for Antimony, Beryllium & Selenium.

The Matrix Spike Duplicate analysis met criteria for all samples except for Zinc,

Antimony, Beryllium & Selenium.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met criteria for all samples except for Chromium and Zinc.

#### E. Additional Comments:

CRI01 is failing for Arsenic

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Mildred V. Reyes, QA/QC Supervisor 2012.06.01 16:39:58 -05'00' Signature



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample 1D:  | B-1(9-2)                  | SDG No.:        | D2546         |
| Lab Sample 1D:     | D2546-01                  | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 21            |
| Sample Wt/Vol:     | 5 Units: g                | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | $\overline{u}L$           | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0.25          | Level:          | LOW           |
|                    |                           |                 |               |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048299.D ! 05/12/12 VK051112

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.15  | U         | 0.82 | 3.15 | 6.3        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3.15  | U         | 1.6  | 3.15 | 6.3        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.15  | U         | 3.1  | 3.15 | 6.3        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.15  | U         | 1.8  | 3.15 | 6.3        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.15  | U         | 1.7  | 3.15 | 6.3        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3.15  | U         | 1.7  | 3.15 | 6.3        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.15  | U         | 1.9  | 3.15 | 6.3        | ug/Kg |
| 67-64-1    | Acetone                        | 37    |           | 3.8  | 16   | 32         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.15  | U         | 1.2  | 3.15 | 6.3        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3.15  | U         | 1.9  | 3.15 | 6.3        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.15  | U         | 1.8  | 3.15 | 6.3        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.15  | U         | 0.87 | 3.15 | 6.3        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.15  | U         | 1.2  | 3.15 | 6.3        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 16    | U         | 3.9  | 16   | 32         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.15  | U         | 1    | 3.15 | 6.3        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.15  | U         | 0.94 | 3.15 | 6.3        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 71-43-2    | Benzene                        | 3.15  | U         | 0.48 | 3.15 | 6.3        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.15  | U         | 0.81 | 3.15 | 6.3        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.15  | U         | 0.33 | 3.15 | 6.3        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.15  | U         | 0.78 | 3.15 | 6.3        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 16    | U         | 3.7  | 16   | 32         | ug/Kg |
| 108-88-3   | Toluene                        | 3.15  | U         | 0.81 | 3.15 | 6.3        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.15  | U         | 1    | 3.15 | 6.3        | ug/Kg |



Date Collected: Client: Dvirka & Bartilucci 04/30/12 PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample 1D: B-1(9-2) SOIL Matrix: Lab Sample ID: D2546-01 % Moisture: 21 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: Test: VOC-TCLVOA-10 Soil Aliquot Vol: иL Level: LOW GC Column: ID: 0.25 RX1-624

Date Analyzed Prep Batch ID Dilution: Prep Date File ID/Qc Batch: 05/12/12 VK051112 VK048299.D

| V KU40299.D | I                           |        | 03/12/    | 12      |      | 71051112   |         |
|-------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 3.15   | U         | 0.91    | 3.15 | 6.3        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 3.15   | U         | 1.1     | 3.15 | 6.3        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 16     | U         | 5       | 16   | 32         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 3.15   | U         | 0.68    | 3.15 | 6.3        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 3.15   | U         | 0.81    | 3.15 | 6.3        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 3.15   | U         | 1.3     | 3.15 | 6.3        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 3.15   | U         | 0.63    | 3.15 | 6.3        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 3.15   | U         | 0.78    | 3.15 | 6.3        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 6.5    | U         | 0.91    | 6.5  | 13         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 3.15   | U         | 0.86    | 3.15 | 6.3        | ug/Kg   |
| 100-42-5    | Styrene                     | 3.15   | U         | 0.57    | 3.15 | 6.3        | ug/Kg   |
| 75-25-2     | Bromoform                   | 3.15   | U         | 0.94    | 3.15 | 6.3        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 3.15   | U         | 0.61    | 3.15 | 6.3        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 3.15   | U         | 0.58    | 3.15 | 6.3        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 3.15   | U         | 0.47    | 3.15 | 6.3        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 3.15   | U         | 0.52    | 3.15 | 6.3        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 3.15   | U         | 0.78    | 3.15 | 6.3        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 3.15   | U         | 1.1     | 3.15 | 6.3        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 3.15   | U         | 0.89    | 3.15 | 6.3        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 3.15   | U         | 0.63    | 3.15 | 6.3        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 65     | U         | 65      | 65   | 130        | ug/Kg   |
| SURROGATES  | 8                           |        |           |         |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 62.7   | *         | 56 - 12 |      | 125%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 51.8   |           | 57 - 13 |      | 104%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 50.1   |           | 67 - 12 |      | 100%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 48     |           | 33 - 14 | I    | 96%        | SPK: 50 |
| INTERNAL ST |                             |        |           |         |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 144438 | 6.54      |         |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 297107 | 7.69      |         |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 255848 | 10.74     |         |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 78429  | 12.68     |         |      |            |         |
|             |                             |        |           |         |      |            |         |



### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(9-2)

SDG No.:

D2546

Lab Sample ID:

D2546-01

Matrix:

Analytical Method:

SW8260C

% Moisture:

SOIL

Sample Wt/Vol:

Units:

1000 000000000

21

ent estimate — vivines

....

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048299.D

3

05/12/12

VK051112

uL

**CAS Number** 

Parameter

Conc.

Qualifier

MDL

LOD 1

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Dvirka & Bartilucci Date Collected: 04/30/12 Client: PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample 1D: B-1(9-2)RE SOIL Matrix: Lab Sample ID: D2546-01RE % Moisture: 21 SW8260C Analytical Method: Final Vol: 5000 uLSample Wt/Vol: 5.03 Units: g VOC-TCLVOA-10 Test: Soil Aliquot Vol: иL Level: LOW ID: 0.25 GC Column: RX1-624

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048321.D

]

05/13/12

VK051312

| AS Number        | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3.15  | U         | 0.82 | 3.15 | 6.3        | ug/Kg |
| 74-87-3          | Chloromethane                  | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3.15  | U         | 1.5  | 3.15 | 6.3        | ug/Kg |
| 74-83-9          | Bromomethane                   | 3.15  | U         | 3.1  | 3.15 | 6.3        | ug/Kg |
| 75-00-3          | Chloroethane                   | 3.15  | U         | 1.8  | 3.15 | 6.3        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 3.15  | U         | 1.7  | 3.15 | 6.3        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3.15  | U         | 1.7  | 3.15 | 6.3        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3.15  | U         | 1.8  | 3.15 | 6.3        | ug/Kg |
| 67 <b>-</b> 64-1 | Acetone                        | 29    | J         | 3.8  | 15.5 | 31         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3.15  | U         | 1.2  | 3.15 | 6.3        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3.15  | U         | 1.9  | 3.15 | 6.3        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3.15  | U         | 1.8  | 3.15 | 6.3        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3.15  | U         | 0.87 | 3.15 | 6.3        | ug/Kg |
| 75 <b>-</b> 34-3 | 1,1-Dichloroethane             | 3.15  | U         | 1.2  | 3.15 | 6.3        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 15.5  | U         | 3.9  | 15.5 | 31         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3.15  | U         | 1.2  | 3.15 | 6.3        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 3.15  | U         | 0.99 | 3.15 | 6.3        | ug/Kg |
| 67-66-3          | Chloroform                     | 3.15  | U         | 0.93 | 3.15 | 6.3        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3.15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3.15  | U         | 1.3  | 3.15 | 6.3        | ug/Kg |
| 71-43-2          | Benzene                        | 3.15  | U         | 0.48 | 3.15 | 6.3        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3.15  | U         | 0.81 | 3.15 | 6.3        | ug/Kg |
| 79-01-6          | Trichloroethene                | 3:15  | U         | 1.1  | 3.15 | 6.3        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3.15  | U         | 0.33 | 3.15 | 6.3        | ug/Kg |
| 75-27 <b>-</b> 4 | Bromodichloromethane           | 3.15  | U         | 0.78 | 3.15 | 6.3        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15.5  | U         | 3.7  | 15.5 | 31         | ug/Kg |
| 108-88-3         | Toluene                        | 3.15  | U         | 0.81 | 3.15 | 6.3        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3.15  | U         | 0.99 | 3.15 | 6.3        | ug/Kg |

# **CHEMITECH**

## Report of Analysis

| Client:            | Dvirka & Bartilucci        | Date Collected: | 04/30/12      |
|--------------------|----------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill  | Date Received:  | 05/03/12      |
| Client Sample ID:  | B-1(9-2)RE                 | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-01RE                 | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                    | % Moisture:     | 21            |
| Sample Wt/Vol:     | 5 <sub>e</sub> 03 Units: g | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                         | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0.25           | Level:          | LOW           |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048321.D I 05/13/12 VK051312

| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|------------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5       | cis-1,3-Dichloropropene     | 3.15   | U         | 0.91     | 3.15 | 6.3        | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 3.15   | U         | 1.1      | 3.15 | 6.3        | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 15.5   | UQ        | 4.9      | 15.5 | 31         | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 3.15   | U         | 0.68     | 3.15 | 6.3        | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 3.15   | U         | 0.81     | 3.15 | 6.3        | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 3.15   | UQ        | 1.3      | 3.15 | 6.3        | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 3.15   | U         | 0.63     | 3.15 | 6.3        | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 3.15   | U         | 0.78     | 3.15 | 6.3        | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 6.5    | U         | 0.91     | 6.5  | 13         | ug/Kg   |
| 95-47-6          | o-Xylene                    | 3.15   | U         | 0.86     | 3.15 | 6.3        | ug/Kg   |
| 100-42-5         | Styrene                     | 3.15   | U         | 0.57     | 3.15 | 6.3        | ug/Kg   |
| 75-25-2          | Bromoform                   | 3.15   | U         | 0.93     | 3.15 | 6.3        | ug/Kg   |
| 98-82 <b>-</b> 8 | Isopropylbenzene            | 3.15   | U         | 0.6      | 3.15 | 6.3        | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 3.15   | U         | 0.58     | 3.15 | 6.3        | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 3.15   | U         | 0.47     | 3.15 | 6.3        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 3.15   | U         | 0.52     | 3.15 | 6.3        | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 3.15   | U         | 0.78     | 3.15 | 6.3        | ug/Kg   |
| 96-12-8          | 1,2-Dibromo-3-Chloropropane | 3.15   | UQ        | 1.1      | 3.15 | 6.3        | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 3.15   | U         | 0.88     | 3.15 | 6.3        | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 3.15   | UQ        | 0.63     | 3.15 | 6.3        | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 65     | U         | 65       | 65   | 130        | ug/Kg   |
| SURROGATES       |                             |        |           |          |      |            |         |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 66.1   | *         | 56 - 120 | )    | 132%       | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 54.2   |           | 57 - 133 | 5    | 108%       | SPK: 50 |
| 2037-26-5        | Toluene-d8                  | 48.6   |           | 67 - 123 | 3    | 97%        | SPK: 50 |
| 460-00-4         | 4-Bromofluorobenzene        | 43.2   |           | 33 - 14  | l    | 86%        | SPK: 50 |
| INTERNAL STA     |                             |        |           |          |      |            |         |
| 363-72-4         | Pentafluorobenzene          | 165324 | 6.55      |          |      |            |         |
| 540-36-3         | 1,4-Difluorobenzene         | 299146 | 7.71      |          |      |            |         |
| 3114-55-4        | Chlorobenzene-d5            | 233315 | 10.74     |          |      |            |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 72535  | 12.68     |          |      |            |         |
|                  |                             |        |           |          |      |            |         |



## Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-1(9-2)RE

Lab Sample ID:

D2546-01RE

Analytical Method:

Sample Wt/Vol:

SW8260C 5.03

Units:

Soil Aliquot Vol: GC Column:

RXI-624

uL.

ID: 0.25

Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

Final Vol:

21 5000

uL

Test: Level:

VOC-TCLVOA-10

04/30/12

05/03/12

D2546

SOIL

LOW

File ID/Qc Batch:

VK048321.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VK051312

**CAS Number** 

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample ID: B-1(2-3,5) SDG No.: D2546 Lab Sample ID: D2546-02 Matrix: SOIL Analytical Method: SW8260C % Moisture: 17 Sample Wt/Vol: 5.03 Units: Final Vol: 5000 uL Soil Aliquot Vol: Test: VOC-TCLVOA-10 иL GC Column: ID: 0.25 Level: LOW RXI-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048300.D 1 05/12/12 VK051112

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3    | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9    | Bromomethane                   | 3     | U         | 2.9  | 3   | 6          | ug/Kg |
| 75-00-3    | Chloroethane                   | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | - 3   | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1    | Acetone                        | 26    | J         | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3     | U         | 0.83 | 3   | 6          | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3     | U         | 0.95 | 3   | 6          | ug/Kg |
| 67-66-3    | Chloroform                     | 3     | U         | 0.89 | 3   | 6          | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2    | Benzene                        | 3     | U         | 0.46 | 3   | 6          | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 79-01-6    | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3     | U         | 0.74 | 3   | 6          | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3   | Toluene                        | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3     | U         | 0.95 | 3   | 6          | ug/Kg |



Client: Dvírka & Bartilucci Date Collected: 04/30/12 PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-1(2-3.5) SOIL Lab Sample ID: D2546-02 Matrix: Analytical Method: SW8260C % Moisture: 17 Final Vol: Sample Wt/Vol: 5000 иL 5.03 Units: VOC-TCLVOA-10 Soil Aliquot Vol: иL Test: GC Column: ID: 0.25 Level: LOW RX1-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048300.D 1 05/12/12 VK051112

| CAS Number         | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------------|-----------------------------|--------|-----------|----------|-----|------------|---------|
| 10061-01-5         | cis-1,3-Dichloropropene     | 3      | U         | 0.86     | 3   | 6          | ug/Kg   |
| 79-00-5            | 1,1,2-Trichloroethane       | 3      | U         | 1.1      | 3   | 6          | ug/Kg   |
| 591-78-6           | 2-Hexanone                  | 15     | U         | 4.7      | 15  | 30         | ug/Kg   |
| 124-48-1           | Dibromochloromethane        | 3      | U         | 0.65     | 3   | 6          | ug/Kg   |
| 106-93-4           | 1,2-Dibromoethane           | 3      | U         | 0.77     | 3   | 6          | ug/Kg   |
| 127-18-4           | Tetrachloroethene           | 3      | U         | 1.2      | 3   | 6          | ug/Kg   |
| 108-90-7           | Chlorobenzene               | 3      | U         | 0.6      | 3   | 6          | ug/Kg   |
| 100-41-4           | Ethyl Benzene               | 3      | U         | 0.74     | 3   | 6          | ug/Kg   |
| 179601-23-1        | m/p-Xylenes                 | 6      | U         | 0.86     | 6   | 12         | ug/Kg   |
| 95-47 <b>-</b> 6   | o-Xylene                    | 3      | U         | 0.81     | . 3 | 6          | ug/Kg   |
| 100-42-5           | Styrene                     | 3      | U         | 0.54     | 3   | 6          | ug/Kg   |
| 75-25-2            | Bromoform                   | 3      | U         | 0.89     | 3   | 6          | ug/Kg   |
| 98-82-8            | Isopropylbenzene            | 3      | U         | 0.57     | 3   | 6          | ug/Kg   |
| 79-34-5            | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55     | 3   | 6          | ug/Kg   |
| 541-73-1           | 1,3-Dichlorobenzene         | 3      | U         | 0.44     | 3   | 6          | ug/Kg   |
| 106-46-7           | 1,4-Dichlorobenzene         | 3      | U         | 0.49     | 3   | 6          | ug/Kg   |
| 95-50-1            | 1,2-Dichlorobenzene         | 3      | U         | 0.74     | 3   | 6          | ug/Kg   |
| 96-12-8            | 1,2-Dibromo-3-Chloropropane | 3      | U         | 1        | 3   | 6          | ug/Kg   |
| 120-82-1           | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84     | 3   | 6          | ug/Kg   |
| 87-61-6            | 1,2,3-Trichlorobenzene      | 3      | U         | 0.6      | 3   | 6          | ug/Kg   |
| 123-91-I           | 1,4-Dioxane                 | 60     | U         | 60       | 60  | 120        | ug/Kg   |
| SURROGATES         |                             |        |           |          |     |            |         |
| 17060-07-0         | 1,2-Dichloroethane-d4       | 63     | *         | 56 - 12  |     | 126%       | SPK: 50 |
| 1868-53-7          | Dibromofluoromethane        | 50.7   |           | 57 - 13. | 5   | 101%       | SPK: 50 |
| 2037-26-5          | Toluene-d8                  | 49.7   |           | 67 - 12  |     | 99%        | SPK: 50 |
| 460-00-4           | 4-Bromofluorobenzene        | 55.3   |           | 33 - 14  | j   | 111%       | SPK: 50 |
| INTERNAL ST.       |                             |        |           |          |     |            |         |
| 363-72-4           | Pentafluorobenzene          | 154867 | 6.54      |          |     |            |         |
| 540-36-3           | 1,4-Difluorobenzene         | 322639 | 7.69      |          |     |            |         |
| 3114-55-4          | Chlorobenzene-d5            | 297144 | 10.74     |          |     |            |         |
| 3855-82 <b>-</b> 1 | 1,4-Dichlorobenzene-d4      | 107404 | 12.68     |          |     |            |         |
|                    |                             |        |           |          |     |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(2-3.5)

SDG No.:

D2546

Lab Sample ID:

D2546-02

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

17

Sample Wt/Vol:

5.03

Final Vol:

Units:

5000

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

uL. ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048300.D

05/12/12

VK051112

**CAS Number** 

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

## CHEMITECH

## Report of Analysis

Client: Dvirka & Bartilucci Date Collected: 04/30/12 PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-1(2-3.5)RE Matrix: SOIL Lab Sample ID: D2546-02RE Analytical Method: SW8260C % Moisture: 17 Final Vol: 5000 Sample Wt/Vol: 5.05 иL Units: Soil Aliquot Vol: VOC-TCLVOA-10 uL Test: LOW GC Column: ID: 0.25 Level: RXI-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048322.D 1 05/14/12 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3    | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9    | Bromomethane                   | 3     | U         | 2.9  | 3   | 6          | ug/Kg |
| 75-00-3    | Chloroethane                   | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1    | Acetone                        | 27    | J         | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3     | U         | 0.82 | 3   | 6          | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3     | U         | 0.94 | 3   | 6          | ug/Kg |
| 67-66-3    | Chloroform                     | 3     | U         | 0.88 | 3   | 6          | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3     | U         | 1.3  | 3 = | 6          | ug/Kg |
| 71-43-2    | Benzene                        | 3     | U         | 0.45 | 3   | 6          | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 79-01-6    | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3     | U         | 0.74 | _ 3 | 6          | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3   | Toluene                        | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3     | U         | 0.94 | 3   | 6          | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample 1D:  | B-1(2-3.5)RE              | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-02RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 17            |
| Sample Wt/Vol:     | 5.05 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0.25          | Level:          | LOW           |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048322,D I 05/14/12 VK051312

| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ/CRQL | Units   |
|------------------|-----------------------------|--------|-----------|----------|-----|----------|---------|
| 10061-01-5       | cis-1,3-Dichloropropene     | 3      | U         | 0.86     | 3   | 6        | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 3      | U         | 1.1      | 3   | 6        | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 15     | UQ        | 4.7      | 15  | 30       | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 3      | U         | 0.64     | 3   | 6        | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 3      | U         | 0.76     | 3   | 6        | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 3      | UQ        | 1.2      | 3   | 6        | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 3      | U         | 0.6      | 3   | 6        | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 3      | U         | 0.74     | 3   | 6        | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 6      | U         | 0.86     | 6   | 12       | ug/Kg   |
| 95-47 <b>-</b> 6 | o-Xylene                    | 3      | U         | 0.81     | 3   | 6        | ug/Kg   |
| 100-42-5         | Styrene                     | 3      | U         | 0.54     | 3   | 6        | ug/Kg   |
| 75-25-2          | Bromoform                   | 3      | U         | 0.88     | 3   | 6        | ug/Kg   |
| 98-82-8          | Isopropylbenzene            | 3      | U         | 0.57     | 3   | 6        | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55     | 3   | 6        | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 3      | U         | 0.44     | 3   | 6        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 3      | U         | 0.49     | 3   | 6        | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 3      | U         | 0.74     | 3   | 6        | ug/Kg   |
| 96-12-8          | 1,2-Dibromo-3-Chloropropane | 3      | UQ        | 1        | 3   | 6        | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84     | 3   | 6        | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6      | 3   | 6        | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 60     | U         | 60       | 60  | 120      | ug/Kg   |
| SURROGATES       |                             |        |           |          |     |          |         |
| 17060-07-0       | 1.2-Dichloroethane-d4       | 67.1   | *         | 56 - 12  |     | 134%     | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 53.2   |           | 57 - 13: | 5   | 106%     | SPK: 50 |
| 2037-26-5        | Toluene-d8                  | 48.4   |           | 67 - 12  | 3   | 97%      | SPK: 50 |
| 460-00-4         | 4-Bromofluorobenzene        | 49.2   |           | 33 - 14  | 1   | 98%      | SPK: 50 |
| INTERNAL ST      |                             |        |           |          |     |          |         |
| 363-72-4         | Pentafluorobenzene          | 160127 | 6.55      |          |     |          |         |
| 540-36-3         | 1.4-Difluorobenzene         | 293133 | 7.7       |          |     |          |         |
| 3114-55-4        | Chlorobenzene-d5            | 236125 | 10.75     |          |     |          |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 91681  | 12.68     | ×        |     |          |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected: Date Received:

04/30/12

Project:

PV6256, IBM East Fishkill

05/03/12

Client Sample ID:

B-1(2-3.5)RE

SDG No.:

D2546

Lab Sample ID:

D2546-02RE

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

17

Sample Wt/Vol:

5.05

Units: g Final Vol:

5000

ul.

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RX1-624

uL. ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch 1D

VK048322.D

05/14/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

Units

MDL

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMITECH

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample 1D: B-I(4-5.5) SDG No.: D2546 Lab Sample ID: D2546-03 Matrix: SOIL Analytical Method: SW8260C % Moisture: 19 Sample Wt/Vol: Units: Final Vol: 5000 иL Soil Aliquot Vol: Test: VOC-TCLVOA-10 uL

GC Column: RX1-624 ID: 0,25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048301 D I 05/12/12 VK051112

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.1   | U         | 0.8  | 3.1  | 6.2        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3.1   | U         | 1.5  | 3.1  | 6.2        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.1   | U         | 3    | 3.1  | 6.2        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.1   | U         | 1.7  | 3.1  | 6.2        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.1   | U         | 1.6  | 3.1  | 6.2        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3.1   | U         | 1.6  | 3.1  | 6.2        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 67-64-1    | Acetone                        | 25    | J         | 3.7  | 15.5 | 31         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3.1   | U         | 1.9  | 3.1  | 6.2        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.1   | U         | 0.85 | 3.1  | 6.2        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15.5  | U         | 3.8  | 15.5 | 31         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.1   | U         | 0.91 | 3.1  | 6.2        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 71-43-2    | Benzene                        | 3.1   | U         | 0.47 | 3.1  | 6.2        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.1   | U         | 0.79 | 3.1  | 6.2        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.1   | U         | 0.32 | 3.1  | 6.2        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.1   | U         | 0.77 | 3.1  | 6.2        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15.5  | U         | 3.6  | 15.5 | 31         | ug/Kg |
| 108-88-3   | Toluene                        | 3.1   | U         | 0.79 | 3.1  | 6.2        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |



Date Collected: 04/30/12 Dvirka & Bartilucci Client: Date Received: 05/03/12 Project: PV6256, IBM East Fishkill D2546 Client Sample ID: SDG No.: B-1(4-5.5) Matrix: SOIL Lab Sample ID: D2546-03 % Moisture: 19 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: VOC-TCLVOA-10 Test: Soil Aliquot Vol: uL GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048301.D 1 05/12/12 VK051112

| CAS Number        | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5        | cis-1,3-Dichloropropene     | 3.1    | U         | 0.89     | 3.1  | 6.2        | ug/Kg   |
| 79-00-5           | 1,1,2-Trichloroethane       | 3.1    | U         | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 591-78-6          | 2-Hexanone                  | 15.5   | U         | 4.8      | 15.5 | 31         | ug/Kg   |
| 124-48-1          | Dibromochloromethane        | 3.1    | U         | 0.67     | 3.1  | 6.2        | ug/Kg   |
| 106-93-4          | 1,2-Dibromoethane           | 3.1    | U         | 0.79     | 3.1  | 6.2        | ug/Kg   |
| 127-18-4          | Tetrachloroethene           | 3.1    | U         | 1.2      | 3.1  | 6.2        | ug/Kg   |
| 108-90-7          | Chlorobenzene               | 3.1    | U         | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 100-41-4          | Ethyl Benzene               | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 179601-23-1       | m/p-Xylenes                 | 6      | U         | 0.89     | 6    | 12         | ug/Kg   |
| 95-47-6           | o-Xylene                    | 3.1    | U         | 0.84     | 3.1  | 6.2        | ug/Kg   |
| 100-42-5          | Styrene                     | 3.1    | U         | 0.56     | 3.1  | 6.2        | ug/Kg   |
| 75-25-2           | Bromoform                   | 3.1    | U         | 0.91     | 3.1  | 6.2        | ug/Kg   |
| 98-82-8           | Isopropylbenzene            | 3.1    | U         | 0.59     | 3.1  | 6.2        | ug/Kg   |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | 3.1    | U         | 0.57     | 3.1  | 6.2        | ug/Kg   |
| 541 <b>-7</b> 3-1 | 1,3-Dichlorobenzene         | 3.1    | U         | 0.46     | 3.1  | 6.2        | ug/Kg   |
| 106-46-7          | 1,4-Dichlorobenzene         | 3.1    | U         | 0.51     | 3.1  | 6.2        | ug/Kg   |
| 95-50-1           | 1,2-Dichlorobenzene         | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 96-12-8           | 1,2-Dibromo-3-Chloropropane | 3.1    | ·U        | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | 3.1    | U         | 0.86     | 3.1  | 6.2        | ug/Kg   |
| 87-61-6           | 1,2,3-Trichlorobenzene      | 3.1    | U         | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 123-91-1          | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES        |                             |        |           |          |      |            |         |
| 17060-07-0        | 1,2-Dichloroethane-d4       | 61.6   | *         | 56 - 12  |      | 123%       | SPK: 50 |
| 1868-53-7         | Dibromofluoromethane        | 49.5   |           | 57 - 13: |      | 99%        | SPK: 50 |
| 2037-26-5         | Toluene-d8                  | 49.4   |           | 67 - 12: | 3    | 99%        | SPK: 50 |
| 460-00-4          | 4-Bromofluorobenzene        | 52.3   |           | 33 - 14  | 1    | 105%       | SPK: 50 |
| INTERNAL ST       |                             |        |           |          |      |            |         |
| 363-72-4          | Pentafluorobenzene          | 152687 | 6.54      |          |      |            |         |
| 540-36-3          | 1,4-Difluorobenzene         | 320583 | 7.7       |          |      |            |         |
| 3114-55-4         | Chlorobenzene-d5            | 286071 | 10.73     |          |      |            |         |
| 3855-82-1         | 1,4-Dichlorobenzene-d4      | 102067 | 12.68     |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(4-5.5)

SDG No.:

D2546

Lab Sample ID:

D2546-03

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

19

Sample Wt/Vol:

Units:

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

uL VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048301.D

1

05/12/12

VK051112

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Dvirka & Bartilucci Client: Date Received: 05/03/12 PV6256, IBM East Fishkill Project: SDG No.: D2546 Client Sample ID: B-1(4-5.5)RE SOIL Matrix: Lab Sample 1D: D2546-03RE % Moisture: 19 Analytical Method: SW8260C 5000 Final Vol: Sample Wt/Vol: uL 5.02 Units: g VOC-TCLVOA-10 Soil Aliquot Vol: Test: uL LOW GC Column: Level: RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048323.D I 05/14/12 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.05  | U         | 0.8  | 3.05 | 6.1        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.05  | U         | 1.1  | 3.05 | 6.1        | ug/Kg |
| 75-01-4    | Viny! Chloride                 | 3.05  | U         | 1.5  | 3.05 | 6.1        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.05  | U         | 3    | 3.05 | 6.1        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.05  | U         | 1.7  | 3.05 | 6.1        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.05  | U         | 1.6  | 3.05 | 6.1        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3.05  | U         | 1.6  | 3.05 | 6.1        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.05  | U         | 1.8  | 3.05 | 6.1        | ug/Kg |
| 67-64-1    | Acetone                        | 20    | J         | 3.7  | 15.5 | 31         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.05  | U         | 1.3  | 3.05 | 6.1        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.05  | U         | 1.2  | 3.05 | 6.1        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3.05  | U         | 1.9  | 3.05 | 6.1        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.05  | U         | 1.7  | 3.05 | 6.1        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.05  | U         | 0.85 | 3.05 | 6.1        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.05  | U         | 1.2  | 3.05 | 6.1        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.05  | U         | 1.2  | 3.05 | 6.1        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15.5  | U         | 3.8  | 15.5 | 31         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.05  | U         | 1.2  | 3.05 | 6.1        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.05  | U         | 1.1  | 3.05 | 6.1        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.05  | U         | 0.97 | 3.05 | 6.1        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.05  | U         | 0.91 | 3.05 | 6.1        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.05  | U         | 1.1  | 3.05 | 6.1        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.05  | U         | 1.3  | 3.05 | 6.1        | ug/Kg |
| 71-43-2    | Benzene                        | 3.05  | U         | 0.47 | 3.05 | 6.1        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.05  | U         | 0.79 | 3.05 | 6.1        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.05  | U         | 1.1  | 3.05 | 6.1        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.05  | U         | 0.32 | 3.05 | 6.1        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.05  | U         | 0.76 | 3.05 | 6.1        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15.5  | U         | 3.6  | 15.5 | 31         | ug/Kg |
| 108-88-3   | Toluene                        | 3.05  | U         | 0.79 | 3.05 | 6.1        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.05  | U         | 0.97 | 3.05 | 6.1        | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample 1D:  | B-1(4-5,5)RE              | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-03RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 19            |
| Sample Wt/Vol:     | 5.02 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0,25          | Level:          | LOW           |

| File ID/Qc Batch | Dilution: | Prep Date | Date Analyzed | Prep Batch ID |
|------------------|-----------|-----------|---------------|---------------|
| VK048323.D       | T.        |           | 05/14/12      | VK051312      |

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 3.05   | U         | 0.89     | 3.05 | 6.1        | ug/Kg   |
| 79-00-5      | I,1,2-Trichloroethane       | 3.05   | U         | 1.1      | 3.05 | 6.1        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 15.5   | UQ        | 4.8      | 15.5 | 31         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 3.05   | U         | 0.66     | 3.05 | 6.1        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 3.05   | U         | 0.79     | 3.05 | 6.1        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 3.05   | UQ        | 1.2      | 3.05 | 6.1        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 3.05   | U         | 0.61     | 3.05 | 6.1        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 3.05   | U         | 0.76     | 3.05 | 6.1        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.89     | 6    | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 3.05   | U         | 0.84     | 3.05 | 6.1        | ug/Kg   |
| 100-42-5     | Styrene                     | 3.05   | U         | 0.55     | 3.05 | 6.1        | ug/Kg   |
| 75-25-2      | Bromoform                   | 3.05   | U         | 0.91     | 3.05 | 6.1        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 3.05   | U         | 0.59     | 3.05 | 6.1        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 3.05   | U         | 0.57     | 3.05 | 6.1        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 3.05   | U         | 0.45     | 3.05 | 6.1        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 3.05   | U         | 0.5      | 3.05 | 6.1        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 3.05   | U         | 0.76     | 3.05 | 6.1        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 3.05   | UQ        | 1.1      | 3.05 | 6.1        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 3.05   | U         | 0.86     | 3.05 | 6.1        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 3.05   | UQ        | 0.61     | 3.05 | 6.1        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 67.3   | *         | 56 - 120 | )    | 135%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 53.1   |           | 57 - 13: | 5    | 106%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47.6   |           | 67 - 123 | 3    | 95%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 48     |           | 33 - 14  | 1    | 96%        | SPK: 50 |
| INTERNAL STA | ANDARDS                     |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 155175 | 6.55      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 294378 | 7.7       |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 233736 | 10.74     |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 86270  | 12.68     |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-1(4-5.5)RE

SDG No.:

D2546

Lab Sample ID:

D2546-03RE

Matrix:

Analytical Method:

SW8260C

% Moisture:

SOIL 19

Sample Wt/Vol:

5.02

Units: g Final Vol:

5000

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

uL. ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048323.D

05/14/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample 1D: B-1(6-7.5) SDG No.: D2546 Lab Sample ID: D2546-04 Matrix: SOIL Analytical Method: SW8260C % Moisture: 15 Sample Wt/Vol: 5.04 Units: Final Vol: 5000 uL Soil Aliquot Vol: Test: uL VOC-TCLVOA-10 GC Column: ID: 0.25 RX1-624 Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048302.D

1

05/12/12

vk051112

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.9   | U         | 0.76 | 2.9  | 5.8        | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.9   | U         | 1.4  | 2.9  | 5.8        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.9   | U         | 2.9  | 2.9  | 5.8        | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.9   | U         | 1.6  | 2.9  | 5.8        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.9   | U         | 1.5  | 2.9  | 5.8        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.9   | U         | 1.6  | 2.9  | 5.8        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 67-64-1          | Acetone                        | 62    |           | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 79 <b>-</b> 20-9 | Methyl Acetate                 | 2.9   | U         | 1.8  | 2.9  | 5.8        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.9   | U         | 0.81 | 2.9  | 5.8        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.9   | U         | 0.92 | 2.9  | 5.8        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.9   | U         | 0.86 | 2.9  | 5.8        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 71-43-2          | Benzene                        | 2.9   | U         | 0.44 | 2.9  | 5.8        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.9   | U         | 0.75 | 2.9  | 5.8        | ug/Kg |
| 79-01 <b>-</b> 6 | Trichloroethene                | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.9   | U         | 0.3  | 2.9  | 5.8        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.9   | U         | 0.72 | 2.9  | 5.8        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3         | Toluene                        | 2.9   | U         | 0.75 | 2.9  | 5.8        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.9   | U         | 0.92 | 2.9  | 5.8        | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample ID:  | B-1(6-7 <sub>-</sub> 5)   | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-04                  | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 15            |
| Sample Wt/Vol:     | 5.04 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0.25          | Level:          | LOW           |
|                    |                           |                 |               |

| File ID/Qc Batch: | Dilution: | Prep Date | Date Analyzed | Prep Batch ID |
|-------------------|-----------|-----------|---------------|---------------|
| VK048302.D        | 1         |           | 05/12/12      | vk051112      |

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.9    | U         | 0.84     | 2.9  | 5.8        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.9    | U         | 1.1      | 2.9  | 5.8        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14.5   | U         | 4.6      | 14.5 | 29         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.9    | U         | 0.63     | 2.9  | 5.8        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.9    | U         | 0.75     | 2.9  | 5.8        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.9    | U         | 1.2      | 2.9  | 5.8        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.9    | U         | 0.58     | 2.9  | 5.8        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.9    | U         | 0.72     | 2.9  | 5.8        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.84     | 6    | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.9    | U         | 0.79     | 2.9  | 5.8        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.9    | U         | 0.53     | 2.9  | 5.8        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.9    | U         | 0.86     | 2.9  | 5.8        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.9    | U         | 0.56     | 2.9  | 5.8        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.9    | U         | 0.54     | 2.9  | 5.8        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.9    | U         | 0.43     | 2.9  | 5.8        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.9    | U         | 0.48     | 2.9  | 5.8        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.9    | U         | 0.72     | 2.9  | 5.8        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.9    | U         | 1        | 2.9  | 5.8        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.9    | U         | 0.82     | 2.9  | 5.8        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.9    | U         | 0.58     | 2.9  | 5.8        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 60.8   | *         | 56 - 120 | )    | 122%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 49.6   |           | 57 - 135 | 5    | 99%        | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 50.5   |           | 67 - 123 | 3    | 101%       | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 51.8   |           | 33 - 141 |      | 104%       | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 158112 | 6.54      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 325034 | 7.69      |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 290459 | 10.74     |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 102348 | 12.68     |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(6-7.5)

SDG No.:

D2546

Lab Sample ID:

D2546-04

Matrix:

SOIL

Analytical Method:

SW8260C

15

Sample Wt/Vol:

Units:

% Moisture: Final Vol:

5000

Soil Aliquot Vol:

5.04

uL.

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

vk051112

VK048302.D

05/12/12

uL

CAS Number

Parameter

Conc.

Qualifier

MDL

Units

LOD

LOQ/CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

## **CHEMIECH**

## Report of Analysis

Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample 1D: B-1(6-7.5)RE SDG No.: D2546 Lab Sample ID: D2546-04RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 15 Sample Wt/Vol: 5.08 Units: Final Vol: 5000 uL Soil Aliquot Vol: иL Test: VOC-TCLVOA-10 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048324\_D I 05/14/12 VK051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.9   | U         | 0.75 | 2.9  | 5.8        | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.9   | U         | 1.4  | 2.9  | 5.8        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.9   | U         | 2.8  | 2.9  | 5.8        | ug/Kg |
| 75-00-3          | Chloroethane .                 | 2.9   | U         | 1.6  | 2.9  | 5.8        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.9   | U         | 1.5  | 2.9  | 5.8        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.9   | U         | 1.5  | 2.9  | 5.8        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 67-64 <b>-</b> I | Acetone                        | 52    |           | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.9   | U         | 1.6  | 2.9  | 5.8        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.9   | U         | 0.8  | 2.9  | 5.8        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.9   | U         | 0.91 | 2.9  | 5.8        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.9   | U         | 0.86 | 2.9  | 5.8        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 71-43-2          | Benzene                        | 2.9   | U         | 0.44 | 2.9  | 5.8        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.9   | U         | 0.74 | 2.9  | 5.8        | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.9   | U         | 0.3  | 2.9  | 5.8        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.9   | U         | 0.72 | 2.9  | 5.8        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3         | Toluene                        | 2.9   | U         | 0.74 | 2.9  | 5.8        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.9   | U         | 0.91 | 2.9  | 5.8        | ug/Kg |



04/30/12 Date Collected: Dvirka & Bartilucci Client: PV6256, IBM East Fishkill Date Received: 05/03/12 Project: D2546 SDG No.: Client Sample ID: B-1(6-7.5)RE Matrix: SOIL Lab Sample ID: D2546-04RE

Lab Sample ID: D2546-04RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 15

Sample Wt/Vol: 5.08 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048324.D I 05/14/12 VK051312

| Y 10040324.D     |                             |        | 05/11/12  |          |      | 711031312  |         |
|------------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5       | cis-1,3-Dichloropropene     | 2.9    | U         | 0.83     | 2.9  | 5.8        | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 2.9    | U         | 1        | 2.9  | 5.8        | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 14.5   | UQ        | 4.5      | 14.5 | 29         | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 2.9    | U         | 0.63     | 2.9  | 5.8        | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 2.9    | U         | 0.74     | 2.9  | 5.8        | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 2.9    | UQ        | 1.2      | 2.9  | 5.8        | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 2.9    | U         | 0.58     | 2.9  | 5.8        | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 2.9    | U         | 0.72     | 2.9  | 5.8        | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 6      | U         | 0.83     | 6    | 12         | ug/Kg   |
| 95-47 <b>-</b> 6 | o-Xylene                    | 2.9    | U         | 0.79     | 2.9  | 5.8        | ug/Kg   |
| 100-42-5         | Styrene                     | 2.9    | U         | 0.52     | 2.9  | 5.8        | ug/Kg   |
| 75-25-2          | Bromoform                   | 2.9    | U         | 0.86     | 2.9  | 5.8        | ug/Kg   |
| 98-82-8          | Isopropylbenzene            | 2.9    | U         | 0.56     | 2.9  | 5.8        | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 2.9    | U         | 0.53     | 2.9  | 5.8        | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 2.9    | U         | 0.43     | 2.9  | 5.8        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 2.9    | U         | 0.47     | 2.9  | 5.8        | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 2.9    | U         | 0.72     | 2.9  | 5.8        | ug/Kg   |
| 96-12-8          | 1,2-Dibromo-3-Chloropropane | 2.9    | UQ        | 1        | 2.9  | 5.8        | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 2.9    | U         | 0.81     | 2.9  | 5.8        | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 2.9    | UQ        | 0.58     | 2.9  | 5.8        | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES       |                             |        |           |          |      |            |         |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 71.4   | *         | 56 - 120 | )    | 143%       | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 53.1   |           | 57 - 13: | 5    | 106%       | SPK: 50 |
| 2037-26-5        | Toluene-d8                  | 46.8   |           | 67 - 12: | 3    | 94%        | SPK: 50 |
| 460-00-4         | 4-Bromofluorobenzene        | 46.1   |           | 33 - 14  |      | 92%        | SPK: 50 |
| INTERNAL ST      |                             |        |           |          |      |            |         |
| 363-72-4         | Pentafluorobenzene          | 129175 | 6.55      |          |      |            |         |
| 540-36-3         | 1,4-Difluorobenzene         | 242189 | 7.7       |          |      |            |         |
| 3114-55-4        | Chlorobenzene-d5            | 194759 | 10.74     |          |      |            |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 73452  | 12.67     |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-1(6-7.5)RE

Lab Sample ID:

D2546-04RE SW8260C

Analytical Method:

Sample Wt/Vol:

GC Column:

5.08

Units:

Soil Aliquot Vol:

RXI-624

uL

ID: 0.25

Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

Final Vol:

15 5000

uL

Test:

Level:

VOC-TCLVOA-10

04/30/12

05/03/12

D2546

SOIL

LOW

File ID/Qc Batch: VK048324.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/14/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Dvirka & Bartilucci Client: Date Received: 05/03/12 PV6256, IBM East Fishkill Project: D2546 SDG No.: Client Sample ID: B-2(8-2) SOIL Matrix: Lab Sample 1D: D2546-05 % Moisture: 20 Analytical Method: SW8260C Final Vol: Sample Wt/Vol: 5000 uL 5.06 Units: VOC-TCLVOA-10 Soil Aliquot Vol: uL Test: GC Column: RX1-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048303,D 1 05/12/12 vk051112

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.1   | U         | 0.8  | 3.1  | 6.2        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3.1   | U         | 1.5  | 3.1  | 6.2        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.1   | U         | 3    | 3.1  | 6.2        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.1   | U         | 1.7  | 3.1  | 6.2        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.1   | U         | 1.6  | 3.1  | 6.2        | ug/Kg |
| 76-13-I    | 1,1,2-Trichlorotrifluoroethane | 3.1   | U         | 1.6  | 3.1  | 6.2        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 67-64-1    | Acetone                        | 74    |           | 3.7  | 15.5 | 31         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3.1   | U         | 1.9  | 3.1  | 6.2        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.1   | U         | 0.85 | 3.1  | 6.2        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15.5  | U         | 3.8  | 15.5 | 31         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.1   | U         | 0.91 | 3.1  | 6.2        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 71-43-2    | Benzene                        | 3.1   | U         | 0.47 | 3.1  | 6.2        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.1   | U         | 0.79 | 3.1  | 6.2        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.1   | U         | 0.32 | 3.1  | 6.2        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.1   | U         | 0.77 | 3.1  | 6.2        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15.5  | U         | 3.6  | 15.5 | 31         | ug/Kg |
| 108-88-3   | Toluene                        | 3.1   | U         | 0.79 | 3.1  | 6.2        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |
|            |                                |       |           |      |      |            |       |



Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(8-2)

Lab Sample ID:

D2546-05 SW8260C

Analytical Method Sample Wt/Vol:

5.06

Units:

Soil Aliquot Vol:

uL

% Moisture: Final Vol:

SDG No.:

Matrix:

Date Collected:

Date Received:

VOC-TCLVOA-10

04/30/12

05/03/12

D2546

SOIL

20

иL

GC Column:

RX1-624

ID: 0.25

Test: Level:

LOW

5000

File ID/Qc Batch: VK048303.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/12/12

vk051112

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 3.1    | U         | 0.89     | 3.1  | 6.2        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 3.1    | U         | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 15.5   | U         | 4.8      | 15.5 | 31         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 3.1    | U         | 0.67     | 3.1  | 6.2        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 3.1    | U         | 0.79     | 3.1  | 6.2        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 3.1    | U         | 1.2      | 3.1  | 6.2        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 3.1    | U         | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.89     | 6    | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 3.1    | U         | 0.84     | 3.1  | 6.2        | ug/Kg   |
| 100-42-5     | Styrene                     | 3.1    | U         | 0.56     | 3.1  | 6.2        | ug/Kg   |
| 75-25-2      | Bromoform                   | 3.1    | U         | 0.91     | 3.1  | 6.2        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 3.1    | U         | 0.59     | 3.1  | 6.2        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 3.1    | U         | 0.57     | 3.1  | 6.2        | ug/Kg   |
| 541-73-I     | 1,3-Dichlorobenzene         | 3.1    | U         | 0.46     | 3.1  | 6.2        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 3.1    | U         | 0.51     | 3.1  | 6.2        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 3.1    | U         | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 3.1    | U         | 0.86     | 3.1  | 6.2        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 3.1    | U         | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 64     | *         | 56 - 120 | )    | 128%       | SPK: 5  |
| 1868-53-7    | Dibromofluoromethane        | 53.9   |           | 57 - 135 | 5    | 108%       | SPK: 5  |
| 2037-26-5    | Toluene-d8                  | 49.6   |           | 67 - 123 |      | 99%        | SPK: 5  |
| 460-00-4     | 4-Bromofluorobenzene        | 50.8   |           | 33 - 14  | l    | 102%       | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 153361 | 6.54      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 294734 | 7.69      |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 261220 | 10.74     |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 78292  | 12.68     |          |      |            |         |
|              |                             |        |           |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(8-2)

Lab Sample ID:

D2546-05 SW8260C

Analytical Method: Sample Wt/Vol:

Soil Aliquot Vol:

5.06

Units:

GC Column:

RX1-624

ID: 0.25

uL

Date Collected:

Date Received:

05/03/12

SDG No.:

D2546 SOIL

04/30/12

Matrix:

Final Vol:

% Moisture:

20 5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VK048303.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/12/12

vk051112

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

## CHEMITECH

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, 1BM East Fishkill Date Received: 05/03/12 Client Sample 1D: B-2(8-2)RE SDG No.: D2546 Lab Sample ID: D2546-05RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 20 Sample Wt/Vol: 5,02 Final Vol: Units: 5000 uL g Soil Aliquot Vol: Test: VOC-TCLVOA-10 uL GC Column: RX1-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution Prep Date Date Analyzed Prep Batch ID VK048325.D 1 05/14/12 VK051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3.1   | U         | 0.81 | 3.1  | 6.2        | ug/Kg |
| 74-87-3          | Chloromethane                  | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3.1   | U         | 1.5  | 3.1  | 6.2        | ug/Kg |
| 74-83-9          | Bromomethane                   | 3.1   | U         | 3.1  | 3.1  | 6.2        | ug/Kg |
| 75-00-3          | Chloroethane                   | 3.1   | U         | 1.7  | 3.1  | 6.2        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 3.1   | U         | 1.6  | 3.1  | 6.2        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3.1   | U         | 1.7  | 3.1  | 6.2        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 67-64-1          | Acetone                        | 46    |           | 3.8  | 15.5 | 31         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3.1   | U         | 1.9  | 3.1  | 6.2        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3.1   | U         | 1.8  | 3.1  | 6.2        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3.1   | U         | 0.86 | 3.1  | 6.2        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 15.5  | U         | 3.9  | 15.5 | 31         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3.1   | U         | 1.2  | 3.1  | 6.2        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |
| 67-66-3          | Chloroform                     | 3.1   | U         | 0.92 | 3.1  | 6.2        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3.1   | U         | 1.3  | 3.1  | 6.2        | ug/Kg |
| 71-43-2          | Benzene                        | 3.1   | U         | 0.47 | 3.1  | 6.2        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3.1   | U         | 0.8  | 3.1  | 6.2        | ug/Kg |
| 79-01-6          | Trichloroethene                | 3.1   | U         | 1.1  | 3.1  | 6.2        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3.1   | U         | 0.32 | 3.1  | 6.2        | ug/Kg |
| 75-27 <b>-</b> 4 | Bromodichloromethane           | 3.1   | U         | 0.77 | 3.1  | 6.2        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15.5  | U         | 3.6  | 15.5 | 31         | ug/Kg |
| 108-88-3         | Toluene                        | 3.1   | U         | 0.8  | 3.1  | 6.2        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3.1   | U         | 0.98 | 3.1  | 6.2        | ug/Kg |



Client: Date Collected: 04/30/12 Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample 1D: B-2(8-2)RE SDG No.: D2546 Lab Sample ID: D2546-05RE SOIL Matrix: Analytical Method: SW8260C % Moisture: 20 Sample Wt/Vol: 5.02 Units: Final Vol: 5000 uL Soil Aliquot Vol: Test: VOC-TCLVOA-10 uL GC Column: RXI-624 Level: ID: 0.25 LOW

File ID/Qc Batch:

VK048325.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/14/12

VK051312

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 3.1    | U         | 0.9      | 3.1  | 6.2        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 3.1    | U         | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 15.5   | UQ        | 4.9      | 15.5 | 31         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 3.1    | U         | 0.67     | 3.1  | 6.2        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 3.1    | U         | 0.8      | 3.1  | 6.2        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 3.1    | UQ        | 1.3      | 3.1  | 6.2        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 3.1    | U         | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 6      | U         | 0.9      | 6    | 12         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 3.1    | U         | 0.85     | 3.1  | 6.2        | ug/Kg   |
| 100-42-5    | Styrene                     | 3.1    | U         | 0.56     | 3.1  | 6.2        | ug/Kg   |
| 75-25-2     | Bromoform                   | 3.1    | U         | 0.92     | 3.1  | 6.2        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 3.1    | U         | 0.6      | 3.1  | 6.2        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 3.1    | U         | 0.57     | 3.1  | 6.2        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 3.1    | U         | 0.46     | 3.1  | 6.2        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 3.1    | U         | 0.51     | 3.1  | 6.2        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 3.1    | U         | 0.77     | 3.1  | 6.2        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 3.1    | UQ        | 1.1      | 3.1  | 6.2        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 3.1    | U         | 0.87     | 3.1  | 6.2        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 3.1    | UQ        | 0.62     | 3.1  | 6.2        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES  | 3                           |        |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 67.9   | *         | 56 - 120 | 0    | 136%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 53.2   |           | 57 - 13: | 5    | 106%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 47.9   |           | 67 - 12: | 3    | 96%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 43.8   |           | 33 - 14  | 1    | 88%        | SPK: 50 |
| INTERNAL ST |                             |        |           |          |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 153665 | 6.56      |          |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 283396 | 7.7       |          |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 216176 | 10.74     |          |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 65491  | 12.67     |          |      |            |         |
|             |                             |        |           |          |      |            |         |



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(8-2)RE

Lab Sample ID:

D2546-05RE SW8260C

Analytical Method: Sample Wt/Vol:

5.02

Units:

Soil Aliquot Vol:

GC Column:

RXI-624

uL ID: 0.25 Date Collected:

Date Received:

05/03/12

04/30/12

D2546 SOIL

SDG No .: Matrix:

% Moisture:

Final Vol:

20

5000

ul.

Test:

Level:

VOC-TCLVOA-10

LOW

File ID/Qc Batch: VK048325.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/14/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 D2546 SDG No.: Client Sample ID: B-2(2-3.5) SOIL Lab Sample ID: D2546-06 Matrix: SW8260C % Moisture: 23 Analytical Method Sample Wt/Vol: Final Vol: 5000 uL Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW GC Column: RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048304.D 1 05/12/12 vk051112

| AS Number  | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.25  | U         | 0.84 | 3.25 | 6.5        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.25  | U         | 1.1  | 3.25 | 6.5        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3.25  | U         | 1.6  | 3.25 | 6.5        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.25  | U         | 3.2  | 3.25 | 6.5        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.25  | U         | 1.8  | 3.25 | 6.5        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.25  | U         | 1.7  | 3.25 | 6.5        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3.25  | U         | 1.7  | 3.25 | 6.5        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.25  | U         | 1.9  | 3.25 | 6.5        | ug/Kg |
| 67-64-1    | Acetone                        | 130   |           | 3.9  | 16   | 32         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.25  | U         | 1.4  | 3.25 | 6.5        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.25  | U         | 1.2  | 3.25 | 6.5        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3,25  | U         | 2    | 3.25 | 6.5        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.25  | U         | 1.8  | 3.25 | 6.5        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.25  | U         | 0.9  | 3.25 | 6.5        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.25  | U         | 1.2  | 3.25 | 6.5        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.25  | U         | 1.3  | 3.25 | 6.5        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 16    | U         | 4    | 16   | 32         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.25  | U         | 1.3  | 3.25 | 6.5        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.25  | U         | 1.2  | 3.25 | 6.5        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.25  | U         | 1    | 3.25 | 6.5        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.25  | U         | 0.96 | 3.25 | 6.5        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.25  | U         | 1.1  | 3.25 | 6.5        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.25  | U         | 1.4  | 3.25 | 6.5        | ug/Kg |
| 71-43-2    | Benzene                        | 3.25  | U         | 0.49 | 3.25 | 6.5        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.25  | U         | 0.83 | 3.25 | 6.5        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.25  | U         | 1.1  | 3.25 | 6.5        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.25  | U         | 0.34 | 3.25 | 6.5        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.25  | U         | 0.81 | 3.25 | 6.5        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 16    | U         | 3.8  | 16   | 32         | ug/Kg |
| 108-88-3   | Toluene                        | 3.25  | U         | 0.83 | 3.25 | 6.5        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.25  | U         | 1    | 3.25 | 6.5        | ug/Kg |

## CHEMIECH

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample 1D:

B-2(2-3.5)

Lab Sample ID:

D2546-06 SW8260C

Analytical Method: Sample Wt/Vol:

Units:

Soil Aliquot Vol:

GC Column:

RXI-624

uL ID: 0.25 Date Collected:

Date Received:

SDG No.:

Matrix:

SOIL

% Moisture:

23 5000

uL

Test:

Final Vol:

VOC-TCLVOA-10

Level:

LOW

04/30/12

05/03/12

D2546

File ID/Qc Batch:

VK048304.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/12/12

vk051112

| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|------------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5       | cis-1,3-Dichloropropene     | 3.25   | U         | 0.94     | 3.25 | 6.5        | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 3.25   | U         | 1.2      | 3.25 | 6.5        | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 16     | U         | 5.1      | 16   | 32         | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 3.25   | U         | 0.7      | 3.25 | 6.5        | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 3.25   | U         | 0.83     | 3.25 | 6.5        | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 3.25   | U         | 1.3      | 3.25 | 6.5        | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 3.25   | U         | 0.65     | 3.25 | 6.5        | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 3.25   | U         | 0.81     | 3.25 | 6.5        | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 6.5    | U         | 0.94     | 6.5  | 13         | ug/Kg   |
| 95-47-6          | o-Xylene                    | 3.25   | U         | 0.88     | 3.25 | 6.5        | ug/Kg   |
| 100-42-5         | Styrene                     | 3.25   | U         | 0.58     | 3.25 | 6.5        | ug/Kg   |
| 75-25 <b>-</b> 2 | Bromoform                   | 3.25   | U         | 0.96     | 3.25 | 6.5        | ug/Kg   |
| 98-82-8          | Isopropylbenzene            | 3.25   | U         | 0.62     | 3.25 | 6.5        | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 3.25   | U         | 0.6      | 3.25 | 6.5        | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 3.25   | U         | 0.48     | 3.25 | 6.5        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 3.25   | U         | 0.53     | 3.25 | 6.5        | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 3.25   | U         | 0.81     | 3.25 | 6.5        | ug/Kg   |
| 96-12-8          | 1,2-Dibromo-3-Chloropropane | 3.25   | U         | 1.1      | 3.25 | 6.5        | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 3.25   | U         | 0.91     | 3.25 | 6.5        | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 3.25   | U         | 0.65     | 3.25 | 6.5        | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 65     | U         | 65       | 65   | 130        | ug/Kg   |
| SURROGATES       |                             |        |           |          |      |            |         |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 66.3   | *         | 56 - 120 | )    | 133%       | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 56.2   |           | 57 - 135 | 5    | 112%       | SPK: 50 |
| 2037-26-5        | Toluene-d8                  | 48.7   |           | 67 - 123 | }    | 97%        | SPK: 50 |
| 460-00-4         | 4-Bromofluorobenzene        | 44.4   |           | 33 - 141 |      | 89%        | SPK: 50 |
| NTERNAL STA      |                             |        |           |          |      |            |         |
| 363-72-4         | Pentafluorobenzene          | 110447 | 6.54      |          |      |            |         |
| 540-36-3         | 1,4-Difluorobenzene         | 214286 | 7.69      |          |      |            |         |
| 3114-55-4        | Chlorobenzene-d5            | 179124 | 10.74     |          |      |            |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 50129  | 12.68     |          |      |            |         |



#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-2(2-3.5)

SDG No.:

D2546

Lab Sample 1D:

D2546-06

Matrix:

Analytical Method:

SW8260C

SOIL

% Moisture:

23

Sample Wt/Vol:

Units:

Final Vol:

5000 uL

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048304.D

1

05/12/12

vk051112

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample ID: B-2(2-3,5)RE SDG No.: D2546 Lab Sample ID: D2546-06RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 23 Sample Wt/Vol: 5.07 Units: Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033217.D 1 05/14/12 VF051412

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3.2   | U         | 0.83 | 3.2 | 6.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 3.2   | U         | 1.1  | 3.2 | 6.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3,2   | UQ        | 1.6  | 3.2 | 6.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 3.2   | U         | 3.1  | 3.2 | 6.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 3.2   | UQ        | 1.8  | 3.2 | 6.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3.2   | U         | 1.7  | 3.2 | 6.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3.2   | U         | 1.7  | 3.2 | 6.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3.2   | U         | 1.9  | 3.2 | 6.4        | ug/Kg |
| 67-64-1    | Acetone                        | 50    |           | 3.9  | 16  | 32         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3.2   | U         | 1.4  | 3.2 | 6.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3.2   | U         | 1.2  | 3.2 | 6.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3.2   | U         | 1.9  | 3.2 | 6.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3.2   | U         | 1.8  | 3.2 | 6.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3.2   | U         | 0.88 | 3.2 | 6.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3.2   | U         | 1.2  | 3.2 | 6.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3.2   | U         | 1.3  | 3.2 | 6.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 16    | U         | 4    | 16  | 32         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3.2   | U         | 1.3  | 3.2 | 6.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3.2   | U         | 1.1  | 3.2 | 6.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3.2   | U         | 1    | 3.2 | 6.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 3.2   | U         | 0.95 | 3.2 | 6.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3.2   | U         | 1.1  | 3.2 | 6.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3.2   | U         | 1.4  | 3.2 | 6.4        | ug/Kg |
| 71-43-2    | Benzene                        | 3.2   | U         | 0.49 | 3.2 | 6.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3.2   | U         | 0.82 | 3.2 | 6.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 3.2   | U         | 1.1  | 3.2 | 6.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3.2   | U         | 0.33 | 3.2 | 6.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3.2   | U         | 0.79 | 3.2 | 6.4        | ug/Kg |
| 08-10-1    | 4-Methyl-2-Pentanone           | 16    | U         | 3.7  | 16  | 32         | ug/Kg |
| 108-88-3   | Toluene                        | 3.2   | U         | 0.82 | 3.2 | 6.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3.2   | U         | 1    | 3.2 | 6.4        | ug/Kg |



Date Collected: 04/30/12 Dvirka & Bartilucci Client: Project: PV6256, IBM East Fishkill Date Received: 05/03/12 D2546 SDG No.: Client Sample ID: B-2(2-3.5)RE Matrix: SOIL Lab Sample ID: D2546-06RE % Moisture: 23 Analytical Method: SW8260C Final Vol: Sample Wt/Vol: 5000 uL 5.07 Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033217.D I 05/14/12 VF051412

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|-----|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 3.2    | U         | 0.92    | 3.2 | 6.4        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 3.2    | U         | 1.2     | 3.2 | 6.4        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 16     | U         | 5       | 16  | 32         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 3.2    | U         | 0.69    | 3.2 | 6.4        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 3.2    | U         | 0.82    | 3.2 | 6.4        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 3.2    | U         | 1.3     | 3.2 | 6.4        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 3.2    | U         | 0.64    | 3.2 | 6.4        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 3.2    | U         | 0.79    | 3.2 | 6.4        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6.5    | U         | 0.92    | 6.5 | 13         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 3.2    | U         | 0.87    | 3.2 | 6.4        | ug/Kg   |
| 100-42-5     | Styrene                     | 3.2    | U         | 0.58    | 3.2 | 6.4        | ug/Kg   |
| 75-25-2      | Bromoform                   | 3.2    | U         | 0.95    | 3.2 | 6.4        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 3.2    | U         | 0.61    | 3.2 | 6.4        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 3.2    | U         | 0.59    | 3.2 | 6.4        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 3.2    | U         | 0.47    | 3.2 | 6.4        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 3.2    | U         | 0.53    | 3.2 | 6.4        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 3.2    | U         | 0.79    | 3.2 | 6.4        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 3.2    | U         | 1.1     | 3.2 | 6.4        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 3.2    | U         | 0.9     | 3.2 | 6.4        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 3.2    | U         | 0.64    | 3.2 | 6.4        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 65     | U         | 65      | 65  | 130        | ug/Kg   |
| SURROGATES   |                             |        |           |         |     |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 48.1   |           | 56 - 12 |     | 96%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 49.8   |           | 57 - 13 |     | 100%       | SPK: 5  |
| 2037-26-5    | Toluene-d8                  | 48.6   |           | 67 - 12 | 3   | 97%        | SPK: 5  |
| 460-00-4     | 4-Bromofluorobenzene        | 47.1   |           | 33 - 14 | 1   | 94%        | SPK: 5  |
| INTERNAL ST. |                             |        |           |         |     |            |         |
| 363-72-4     | Pentafluorobenzene          | 192655 | 4.38      |         |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 259387 | 5.12      |         |     |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 256875 | 9.32      |         |     |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 116955 | 12.24     |         |     |            |         |
|              |                             |        |           |         |     |            |         |



## Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(2-3.5)RE

Lab Sample ID:

D2546-06RE SW8260C

Analytical Method: Sample Wt/Vol:

5.07

Units:

Soil Aliquot Vol:

8.75140

nits: g uL

GC Column:

RTX-VMS

ID: 0.18

Date Collected:

Date Received:

05/03/12

04/30/12

SDG No.:

...

D2546 SOIL

Matrix: % Moisture:

23

Final Vol:

5000

uL

Test: Level: VOC-TCLVOA-10

LOW

File ID/Qc Batch:

VF033217.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/14/12

VF051412

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD 1

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 D2546 Client Sample 1D: SDG No.: B-2(4-5) Matrix: SOIL Lab Sample ID: D2546-07 % Moisture: 9 Analytical Method: SW8260C Final Vol: Sample Wt/Vol: 5000 uL 5.07 Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033160.D

1

05/13/12

VF051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.7   | U         | 0.7  | 2.7  | 5.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.7   | U         | 1.3  | 2.7  | 5.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.7   | U         | 2.7  | 2.7  | 5.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.7   | UQ        | 1.5  | 2.7  | 5.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.7   | U         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 67-64-1    | Acetone                        | 13.5  | U         | 3.3  | 13.5 | 27         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.7   | U         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.7   | U         | 1.5  | 2.7  | 5.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.7   | U         | 0.75 | 2.7  | 5.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 13.5  | U         | 3.4  | 13.5 | 27         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.7   | U         | 0.96 | 2.7  | 5.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.7   | U         | 0.86 | 2.7  | 5.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.7   | U         | 0.8  | 2.7  | 5.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.7   | U         | 0.95 | 2.7  | 5.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 71-43-2    | Benzene                        | 2.7   | U         | 0.41 | 2.7  | 5.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.7   | U         | 0.28 | 2.7  | 5.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.7   | U         | 0.67 | 2.7  | 5.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 13.5  | U         | 3.2  | 13.5 | 27         | ug/Kg |
| 108-88-3   | Toluene                        | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.7   | U         | 0.86 | 2.7  | 5.4        | ug/Kg |



Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(4-5)

Lab Sample ID:

D2546-07 SW8260C

Analytical Method Sample Wt/Vol:

5.07

Units:

Soil Aliquot Vol:

GC Column:

VF033160.D

RTX-VMS

ID: 0.18

uL

Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

5000

uL

Final Vol: Test:

Level:

04/30/12

05/03/12

D2546

SOIL

LOW

9

VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.7    | U         | 0.78     | 2.7  | 5.4        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.7    | U         | 0.98     | 2.7  | 5.4        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 13.5   | U         | 4.2      | 13.5 | 27         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.7    | U         | 0.59     | 2.7  | 5.4        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.7    | U         | 0.69     | 2.7  | 5.4        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.7    | U         | 1.1      | 2.7  | 5.4        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.7    | U         | 0.54     | 2.7  | 5.4        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.7    | U         | 0.67     | 2.7  | 5.4        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.78     | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.7    | U         | 0.74     | 2.7  | 5.4        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.7    | U         | 0.49     | 2.7  | 5.4        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.7    | U         | 0.8      | 2.7  | 5.4        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.7    | U         | 0.52     | 2.7  | 5.4        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.7    | U         | 0.5      | 2.7  | 5.4        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.7    | U         | 0.4      | 2.7  | 5.4        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.7    | U         | 0.44     | 2.7  | 5.4        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.7    | U         | 0.67     | 2.7  | 5.4        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.7    | U         | 0.94     | 2.7  | 5.4        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.7    | U         | 0.76     | 2.7  | 5.4        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.7    | UQ        | 0.54     | 2.7  | 5.4        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            | ., .,   |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 47.6   |           | 56 - 120 | )    | 95%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 50.4   |           | 57 - 135 | 5    | 101%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 48.9   |           | 67 - 123 | 3    | 98%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 55.2   |           | 33 - 143 |      | 110%       | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 197099 | 4.38      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 269148 | 5.12      |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 283857 | 9.32      |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 159203 | 12.24     |          |      |            |         |
|              |                             |        |           |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-2(4-5)

Lab Sample ID:

D2546-07

Analytical Method: Sample Wt/Vol:

Soil Aliquot Vol:

GC Column:

SW8260C 5.07

Units:

RTX-VMS

uL

ID: 0.18

Date Collected:

Date Received:

05/03/12 D2546

04/30/12

SDG No.:

Matrix:

SOIL

% Moisture:

Final Vol:

9 5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033160.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

CAS Number

Parameter

Cone.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Date Received: 05/03/12 Project: PV6256, IBM East Fishkill D2546 Client Sample ID: SDG No.: B-2(4-5)RE Lab Sample 1D: D2546-07RE Matrix: SOIL SW8260C % Moisture: 9 Analytical Method: Sample Wt/Vol: 5.04 Units: Final Vol: 5000 uL g Soil Aliquot Vol: Test: VOC-TCLVOA-10 uL GC Column: Level: LOW RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048310.D I 05/13/12 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.75  | U         | 0.71 | 2.75 | 5.5        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.75  | U         | 0.94 | 2.75 | 5.5        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.75  | U         | 1.3  | 2.75 | 5.5        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.75  | U         | 2.7  | 2.75 | 5.5        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.75  | U         | 1.5  | 2.75 | 5.5        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.75  | U         | 1.4  | 2.75 | 5.5        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.75  | U         | 1.4  | 2.75 | 5.5        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.75  | U         | 1.6  | 2.75 | 5.5        | ug/Kg |
| 67-64-1    | Acetone                        | 15    | J         | 3.3  | 13.5 | 27         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.75  | U         | 1.2  | 2.75 | 5.5        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.75  | U         | 1    | 2.75 | 5.5        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.75  | U         | 1.6  | 2.75 | 5.5        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.75  | U         | 1.5  | 2.75 | 5.5        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.75  | U         | 0.75 | 2.75 | 5.5        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.75  | U         | 1    | 2.75 | 5.5        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.75  | U         | 1.1  | 2.75 | 5.5        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 13.5  | U         | 3.4  | 13.5 | 27         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.75  | U         | 1.1  | 2.75 | 5.5        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.75  | U         | 0.97 | 2.75 | 5.5        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.75  | U         | 0.86 | 2.75 | 5.5        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.75  | U         | 0.81 | 2.75 | 5.5        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.75  | U         | 0.96 | 2.75 | 5.5        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.75  | U         | 1.2  | 2.75 | 5.5        | ug/Kg |
| 71-43-2    | Benzene                        | 2.75  | U         | 0.41 | 2.75 | 5.5        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.75  | U         | 0.7  | 2.75 | 5.5        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.75  | U         | 0.94 | 2.75 | 5.5        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.75  | U         | 0.28 | 2.75 | 5.5        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.75  | U         | 0.68 | 2.75 | 5.5        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 13.5  | U         | 3.2  | 13.5 | 27         | ug/Kg |
| 108-88-3   | Toluene                        | 2.75  | U         | 0.7  | 2.75 | 5.5        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.75  | U         | 0.86 | 2.75 | 5.5        | ug/Kg |



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 SDG No.: D2546 Client Sample ID: B-2(4-5)RE Lab Sample ID: D2546-07RE Matrix: SOIL Analytical Method: SW8260C % Moisture: Sample Wt/Vol: Final Vol: 5000 uL 5.04 Units: Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL GC Column:

Level: LOW RX1-624 ID: 0.25

File ID/Qc Batch: Prep Date Date Analyzed Prep Batch 1D Dilution: 05/13/12 VK051312 VK048310.D

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.75   | U         | 0.78     | 2.75 | 5.5        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.75   | U         | 0.98     | 2.75 | 5.5        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 13.5   | UQ        | 4.3      | 13.5 | 27         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.75   | U         | 0.59     | 2.75 | 5.5        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.75   | U         | 0.7      | 2.75 | 5.5        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.75   | UQ        | 1.1      | 2.75 | 5.5        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.75   | U         | 0.55     | 2.75 | 5.5        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.75   | U         | 0.68     | 2.75 | 5.5        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.78     | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.75   | U         | 0.74     | 2.75 | 5.5        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.75   | U         | 0.49     | 2.75 | 5.5        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.75   | U         | 0.81     | 2.75 | 5.5        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.75   | U         | 0.52     | 2.75 | 5.5        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.75   | U         | 0.5      | 2.75 | 5.5        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.75   | U         | 0.4      | 2.75 | 5.5        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.75   | U         | 0.45     | 2.75 | 5.5        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.75   | U         | 0.68     | 2.75 | 5.5        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.75   | UQ        | 0.95     | 2.75 | 5.5        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.75   | U         | 0.76     | 2.75 | 5.5        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.75   | UQ        | 0.55     | 2.75 | 5.5        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 61.5   | *         | 56 - 120 | 0    | 123%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 52.1   |           | 57 - 13: |      | 104%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47     |           | 67 - 12: |      | 94%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 48.7   |           | 33 - 14  | 1    | 97%        | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 200847 | 6.56      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 347687 | 7.7       |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 274292 | 10.74     |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 109513 | 12.68     |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-2(4-5)RE

SDG No.:

D2546

Lab Sample ID:

D2546-07RE

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

Sample Wt/Vol:

Units:

Final Vol:

5000

uL

Soil Aliquot Vol:

5.04

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048310.D

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL.

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 SDG No.: D2546 Client Sample 1D: B-2(6-8) Lab Sample ID: D2546-08 Matrix: SOIL % Moisture: 17 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: VOC-TCLVOA-10 Soil Aliquot Vol: Test: uL Level: LOW GC Column: ID: 0.18 RTX-VMS

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033161.D 1 05/13/12 VF051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS          |                                |       |           |      |     |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3          | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9          | Bromomethane                   | 3     | U         | 3    | 3   | 6          | ug/Kg |
| 75-00-3          | Chloroethane                   | 3     | UQ        | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | *3    | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1          | Acetone                        | 36    |           | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3     | U         | 0.83 | 3   | 6          | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3          | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5          | Bromochloromethane             | 3     | U         | 0.95 | 3   | 6          | ug/Kg |
| 67-66-3          | Chloroform                     | 3     | U         | 0.89 | 3   | 6          | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2          | Benzene                        | 3     | U         | 0.46 | 3   | 6          | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 79-01-6          | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27 <b>-</b> 4 | Bromodichloromethane           | 3     | U         | 0.75 | 3   | 6          | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3         | Toluene                        | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3     | U         | 0.95 | 3   | 6          | ug/Kg |



Client: Project:

PV6256, IBM East Fishkill

Dvirka & Bartilucci

Date Collected: Date Received:

04/30/12 05/03/12

Client Sample 1D:

B-2(6-8)

SDG No.:

Lab Sample ID:

D2546-08

Matrix:

D2546 SOIL

Analytical Method:

SW8260C

% Moisture:

17

Sample Wt/Vol:

Units: g Final Vol:

5000

uL

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033161.D

05/13/12

VF051312

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|---------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 3      | U         | 0.87    | 3   | 6          | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 3      | U         | 1.1     | 3   | 6          | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 15     | U         | 4.7     | 15  | 30         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 3      | U         | 0.65    | 3   | 6          | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 3      | U         | 0.77    | 3   | 6          | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 3      | U         | 1.2     | 3   | 6          | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 3      | U         | 0.6     | 3   | 6          | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 3      | U         | 0.75    | 3   | 6          | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 6      | U         | 0.87    | 6   | 12         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 3      | U         | 0.82    | 3   | 6          | ug/Kg   |
| 100-42-5    | Styrene                     | 3      | U         | 0.54    | 3   | 6          | ug/Kg   |
| 75-25-2     | Bromoform                   | 3      | U         | 0.89    | 3   | 6          | ug/Kg   |
| 98-82-8     | lsopropylbenzene            | 3      | U         | 0.58    | 3   | 6          | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55    | 3   | 6          | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 3      | U         | 0.45    | 3   | 6          | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 3      | U         | 0.49    | 3   | 6          | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 3      | U         | 0.75    | 3   | 6          | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 3      | U         | 1       | 3   | 6          | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84    | 3   | 6          | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6     | 3   | 6          | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 60     | U         | 60      | 60  | 120        | ug/Kg   |
| SURROGATES  |                             |        |           |         |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 48.8   |           | 56 - 12 | 0   | 98%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 51     |           | 57 - 13 |     | 102%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 50.5   |           | 67 - 12 | 3   | 101%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 54.3   |           | 33 - 14 | 1   | 109%       | SPK: 50 |
| INTERNAL ST |                             |        |           |         |     |            |         |
| 363-72-4    | Pentafluorobenzene          | 144587 | 4.38      |         |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 192980 | 5.12      |         |     |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 209840 | 9.32      |         |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 104501 | 12.24     |         |     |            |         |
| TENTATIVE I | DENTIFIED COMPOUNDS         |        |           |         |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

## Report of Analysis

| S Number Paran<br>00071-36-3 1-Bi | utanol              | Conc.<br>6.8 | Qualifier | MDL        | LOD   | LOQ / CRQL<br>5.77 | Units<br>ug/Kg |
|-----------------------------------|---------------------|--------------|-----------|------------|-------|--------------------|----------------|
| C Name have Danier                |                     | C            | Oliften   | MDI        | LON   | LOO / CROL         | 11-14-         |
| VF033161.D                        | 1                   |              | 05/13/    | 12         |       | VF051312           |                |
| File ID/Qc Batch:                 | Dilution:           | Prep Date    | Date /    | Analyzed   |       | Prep Batch ID      |                |
| GC Column:                        | RTX-VMS II          | D: 0.18      |           | Level:     |       | LOW                |                |
| Soil Aliquot Vol:                 |                     | ŭL           |           | Test:      |       | VOC-TCLVO          | A-10           |
| Sample Wt/Vol:                    | 5 Units:            | g            | -         | Final Vol: |       | 5000               | uL             |
| Analytical Method:                | SW8260C             |              |           | % Moisture | 2     | 17                 |                |
| Lab Sample ID:                    | D2546-08            |              |           | Matrix:    |       | SOIL               |                |
| Client Sample 1D:                 | B-2(6-8)            |              |           | SDG No.:   |       | D2546              |                |
| Project:                          | PV6256, IBM East    | Fishkill     |           | Date Recei | ved:  | 05/03/12           |                |
| Client:                           | Dvirka & Bartilucci |              |           | Date Colle | cted: | 04/30/12           |                |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# **CHEMIECH**

## Report of Analysis

Client: Dvirka & Bartilucci Date Collected: 04/30/12 05/03/12 Project: PV6256, IBM East Fishkill Date Received: Client Sample ID: SDG No.: D2546 B-2(6-8)RE Lab Sample ID: D2546-08RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 17 Sample Wt/Vol: 5.03 Units: Final Vol: 5000 uL g Soil Aliquot Vol: Test: VOC-TCLVOA-10 uL GC Column: ID: 0.25 Level: RXI-624 LOW

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 VK048311.D
 I
 05/13/12
 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3    | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9    | Bromomethane                   | 3     | U         | 2.9  | 3   | 6          | ug/Kg |
| 75-00-3    | Chloroethane                   | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1    | Acetone                        | 13    | J         | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3     | U         | 0.83 | 3   | 6          | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3     | U         | 0.95 | 3   | 6          | ug/Kg |
| 67-66-3    | Chloroform                     | 3     | U         | 0.89 | 3   | 6          | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2    | Benzene                        | 3     | U         | 0.46 | 3   | 6          | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 79-01-6    | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3     | U         | 0.74 | 3   | 6          | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3   | Toluene                        | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3     | U         | 0.95 | 3   | 6          | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample 1D:  | B-2(6-8)RE                | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-08RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 17            |
| Sample Wt/Vol:     | 5,03 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RX1-624 ID: 0.25          | Level:          | LOW           |
|                    |                           |                 |               |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048311.D 1 05/13/12 VK051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|-----|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 3      | U         | 0.86     | 3   | 6          | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 3      | U         | 1.1      | 3   | 6          | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 15     | UQ        | 4.7      | 15  | 30         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 3      | U         | 0.65     | 3   | 6          | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 3      | U         | 0.77     | 3   | 6          | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 3      | UQ        | 1.2      | 3   | 6          | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 3      | U         | 0.6      | 3   | 6          | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 3      | U         | 0.74     | 3   | 6          | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.86     | 6   | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 3      | U         | 0.81     | 3   | 6          | ug/Kg   |
| 100-42-5     | Styrene                     | 3      | U         | 0.54     | 3   | 6          | ug/Kg   |
| 75-25-2      | Bromoform                   | 3      | U         | 0.89     | 3   | 6          | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 3      | U         | 0.57     | 3   | 6          | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55     | 3   | 6          | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 3      | U         | 0.44     | 3   | 6          | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 3      | U         | 0.49     | 3   | 6          | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 3      | U         | 0.74     | 3   | 6          | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 3      | UQ        | 1        | 3   | 6          | ug/Kg   |
| 120-82-1     | 1,2.4-Trichlorobenzene      | 3      | U         | 0.84     | 3   | 6          | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6      | 3   | 6          | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60       | 60  | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |          |     |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 64.2   | *         | 56 - 120 | )   | 128%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 54.7   |           | 57 - 135 | 5   | 109%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 45.6   |           | 67 - 123 | 3   | 91%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 46.3   |           | 33 - 141 | l   | 93%        | SPK: 50 |
| INTERNAL STA |                             |        |           |          |     |            |         |
| 363-72-4     | Pentafluorobenzene          | 187328 | 6.55      |          |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 332183 | 7.71      |          |     |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 261210 | 10.75     |          |     |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 91854  | 12.68     |          |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client: Project: Dvirka & Bartilucci

PV6256, IBM East Fishkill

Client Sample ID:

B-2(6-8)RE

Lab Sample ID:

D2546-08RE

Analytical Method:

SW8260C

Sample Wt/Vol: Soil Aliquot Vol: 5.03

Units: g

GC Column:

RXI-624

uL ID: 0.25 Date Collected:

Date Received:

05/03/12

04/30/12

SDG No .:

D2546 SOIL

Matrix:

Final Vol:

% Moisture:

17

5000

uL

Test: Level: VOC-TCLVOA-10

LOW

File ID/Qc Batch:

VK048311.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 SDG No.: D2546 Client Sample 1D: B-4(9-2) Lab Sample ID: D2546-09 Matrix: SOIL Analytical Method: SW8260C % Moisture: 13 Final Vol: 5000 иL Sample Wt/Vol: 5.06 Units: g VOC-TCLVOA-10 Soil Aliquot Vol: Test: uL Level: LOW GC Column: ID: 0.18 RTX-VMS

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033162.D 1 05/13/12 VF051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.85  | U         | 0.74 | 2.85 | 5.7        | ug/Kg |
| 74 <b>-</b> 87-3 | Chloromethane                  | 2.85  | U         | 0.98 | 2.85 | 5.7        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.85  | U         | 1.4  | 2.85 | 5.7        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.85  | U         | 2.8  | 2.85 | 5.7        | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.85  | UQ        | 1.6  | 2.85 | 5.7        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 67-64-1          | Acetone                        | 28    | J         | 3.4  | 14   | 28         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.85  | U         | 0.78 | 2.85 | 5.7        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14    | U         | 3.5  | 14   | 28         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.85  | U         | 0.9  | 2.85 | 5.7        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.85  | U         | 0.84 | 2.85 | 5.7        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 71-43-2          | Benzene                        | 2.85  | U         | 0.43 | 2.85 | 5.7        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.85  | U         | 0.73 | 2.85 | 5.7        | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.85  | U         | 0.98 | 2.85 | 5.7        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.85  | U         | 0.3  | 2.85 | 5.7        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.85  | U         | 0.7  | 2.85 | 5.7        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14    | U         | 3.3  | 14   | 28         | ug/Kg |
| 108-88-3         | Toluene                        | 2.85  | U         | 0.73 | 2.85 | 5.7        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.85  | U         | 0.9  | 2.85 | 5.7        | ug/Kg |

## CHEMIECH

## Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-4(9-2)

SDG No.:

Lab Sample 1D:

D2546-09

Matrix:

D2546

Analytical Method:

SW8260C

% Moisture:

SOIL 13

Sample Wt/Vol:

5,06

Units: g Final Vol:

5000

Soil Aliquot Vol:

иL

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

ID: 0,18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033162.D

05/13/12

VF051312

|              | 71                          |        |           |          |      |            |         |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.85   | U         | 0.82     | 2.85 | 5.7        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.85   | U         | 1        | 2.85 | 5.7        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14     | U         | 4.5      | 14   | 28         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.85   | U         | 0.61     | 2.85 | 5.7        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.85   | U         | 0.73     | 2.85 | 5.7        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.85   | U         | 1.1      | 2.85 | 5.7        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.85   | U         | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.85   | U         | 0.7      | 2.85 | 5.7        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.82     | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.85   | U         | 0.77     | 2.85 | 5.7        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.85   | U         | 0.51     | 2.85 | 5.7        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.85   | U         | 0.84     | 2.85 | 5.7        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.85   | U         | 0.55     | 2.85 | 5.7        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.85   | U         | 0.52     | 2.85 | 5.7        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.85   | U         | 0.42     | 2.85 | 5.7        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.85   | U         | 0.47     | 2.85 | 5.7        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.85   | U         | 0.7      | 2.85 | 5.7        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.85   | U         | 0.99     | 2.85 | 5.7        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.85   | U         | 0.8      | 2.85 | 5.7        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.85   | UQ        | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 50.7   |           | 56 - 120 | )    | 101%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 49.6   |           | 57 - 13: | 5    | 99%        | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49     |           | 67 - 123 | 3    | 98%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 53.1   |           | 33 - 14  | 1    | 106%       | SPK: 50 |
| INTERNAL ST. |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 191352 | 4.37      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 263726 | 5.12      |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 280464 | 9.31      |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 145521 | 12.24     |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample 1D:

B-4(9-2)

Lab Sample ID:

D2546-09

Analytical Method: Sample Wt/Vol:

Soil Aliquot Vol:

SW8260C 5.06

Units:

uL

GC Column:

RTX-VMS

ID: 0.18

Date Collected:

Date Received:

SDG No .:

05/03/12 D2546 SOIL

04/30/12

Matrix:

% Moisture:

Final Vol:

13 5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033162.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMITECH

## **Report of Analysis**

Date Collected: 04/30/12 Client: Dvirka & Bartilucci 05/03/12 PV6256, IBM East Fishkill Date Received: Project: SDG No.: D2546 Client Sample ID: B-4(9-2)RE Lab Sample ID: D2546-09RE Matrix: SOIL SW8260C % Moisture: 13 Analytical Method: Final Vol: Sample Wt/Vol: 5.01 5000 uL Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: иL LOW Level: GC Column: RX1-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048312.D 1 05/13/12 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.85  | U         | 0.75 | 2.85 | 5.7        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.85  | U         | 0.99 | 2.85 | 5.7        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.85  | U         | 1.4  | 2.85 | 5.7        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.85  | U         | 2.8  | 2.85 | 5.7        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 67-64-1    | Acetone                        | 21    | J         | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.85  | U         | 0.79 | 2.85 | 5.7        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.85  | U         | 0.91 | 2.85 | 5.7        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.85  | U         | 0.85 | 2.85 | 5.7        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 71-43-2    | Benzene                        | 2.85  | U         | 0.44 | 2.85 | 5.7        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.85  | U         | 0.73 | 2.85 | 5.7        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.85  | U         | 0.99 | 2.85 | 5.7        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.85  | U         | 0.3  | 2.85 | 5.7        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.85  | U         | 0.71 | 2.85 | 5.7        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.3  | 14.5 | 29         | ug/Kg |
| 108-88-3   | Toluene                        | 2.85  | U         | 0.73 | 2.85 | 5.7        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.85  | U         | 0.91 | 2.85 | 5.7        | ug/Kg |



Dvirka & Bartilucci Client:

PV6256, IBM East Fishkill

Client Sample 1D:

B-4(9-2)RE

Lab Sample ID:

Project:

D2546-09RE SW8260C

Analytical Method: Sample Wt/Vol:

5.01

Units:

uL

ID: 0.25

Soil Aliquot Vol:

GC Column:

Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

Final Vol:

Test:

13 5000

SOIL

04/30/12

05/03/12 D2546

uL

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch: VK048312.D

Dilution:

RXI-624

Prep Date

Date Analyzed

05/13/12

Prep Batch ID

VK051312

| CAS Number   | Parameter                   | Cone.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.85   | U         | 0.83    | 2.85 | 5.7        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.85   | U         | 1       | 2.85 | 5.7        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14.5   | UQ        | 4.5     | 14.5 | 29         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.85   | U         | 0.62    | 2.85 | 5.7        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.85   | U         | 0.73    | 2.85 | 5.7        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.85   | UQ        | 1.2     | 2.85 | 5.7        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.85   | U         | 0.57    | 2.85 | 5.7        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.85   | U         | 0.71    | 2.85 | 5.7        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.83    | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.85   | U         | 0.78    | 2.85 | 5.7        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.85   | U         | 0.52    | 2.85 | 5.7        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.85   | U         | 0.85    | 2.85 | 5.7        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.85   | U         | 0.55    | 2.85 | 5.7        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.85   | U         | 0.53    | 2.85 | 5.7        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.85   | U         | 0.42    | 2.85 | 5.7        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.85   | U         | 0.47    | 2.85 | 5.7        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.85   | U         | 0.71    | 2.85 | 5.7        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.85   | UQ        | 1       | 2.85 | 5.7        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.85   | U         | 0.8     | 2.85 | 5.7        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.85   | UQ        | 0.57    | 2.85 | 5.7        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55      | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |         |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 64.5   | *         | 56 - 12 | O    | 129%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 54     |           | 57 - 13 | 5    | 108%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47.1   |           | 67 - 12 | 3    | 94%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 44     |           | 33 - 14 | 1    | 88%        | SPK: 50 |
| INTERNAL STA |                             |        |           |         |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 204007 | 6.55      |         |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 358708 | 7.71      |         |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 285656 | 10.75     |         |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 88235  | 12.68     |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-4(9-2)RE

Lab Sample ID:

D2546-09RE

SW8260C

Analytical Method:

Sample Wt/Vol:

5.01

Units:

Soil Aliquot Vol:

GC Column:

RXI-624

uL ID: 0.25 Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

Final Vol:

Test:

Level:

5000

LOW

13

04/30/12

05/03/12

D2546

SOIL

ul.

VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch 1D

VK048312.D

05/13/12

VK051312

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Dvirka & Bartilucci Date Collected: 04/30/12 Client: Project: PV6256, IBM East Fishkill Date Received: 05/03/12 SDG No.: D2546 Client Sample ID: B-4(2-3)SOIL Matrix: Lab Sample ID: D2546-10 % Moisture: 11 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: 5.05 VOC-TCLVOA-10 Soil Aliquot Vol: Test: uL Level: LOW GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033163,D

1

05/13/12

VF051312

Units MDL LOD Qualifier LOQ/CRQL CAS Number Parameter Conc. **TARGETS** Dichlorodifluoromethane 2.8 U 0.72 2.8 5.6 ug/Kg 75-71-8 U 0.96 2.8 5.6 ug/Kg 74-87-3 Chloromethane 2.8 75-01-4 Vinyl Chloride 2.8 U 1.4 2.8 5.6 ug/Kg 2.8 U 2.7 2.8 5.6 Bromomethane ug/Kg 74-83-9 UQ 1.6 2.8 5.6 ug/Kg 75-00-3 Chloroethane 2.8 2.8 U 1.5 2.8 5.6 75-69-4 Trichlorofluoromethane ug/Kg U 1.5 2.8 5.6 76-13-1 1,1,2-Trichlorotrifluoroethane 2.8 ug/Kg U 1.6 2.8 5.6 ug/Kg 75-35-4 1,1-Dichloroethene 2.8 18 J 3.4 14 28 ug/Kg Acetone 67-64-1 Carbon Disulfide 75-15-0 2.8 U 1.2 2.8 5.6 ug/Kg U 5.6 ug/Kg 1634-04-4 Methyl tert-butyl Ether 2.8 1.1 2.8 2.8 U 1.7 2.8 5.6 ug/Kg 79-20-9 Methyl Acetate 2.8 U 1.6 2.8 5.6 ug/Kg 75-09-2 Methylene Chloride trans-1,2-Dichloroethene 2.8 U 0.77 2.8 5.6 ug/Kg 156-60-5 U 1 2.8 5.6 ug/Kg 75-34-3 1,1-Dichloroethane 2.8 U 2.8 2.8 1.1 5.6 ug/Kg 110-82-7 Cyclohexane IJ 28 78-93-3 2-Butanone 14 3.5 14 ug/Kg Carbon Tetrachloride 2.8 U 1.1 2.8 5.6 ug/Kg 56-23-5 U 0.99 2.8 2.8 5.6 ug/Kg 156-59-2 cis-1,2-Dichloroethene U 0.88 2.8 ug/Kg 74-97-5 Bromochloromethane 2.8 5.6 U 67-66-3 Chloroform 2.8 0.82 2.8 5.6 ug/Kg U 1,1,1-Trichloroethane 2.8 0.98 2.8 5.6 ug/Kg 71-55-6 U 2.8 5.6 108-87-2 Methylcyclohexane 2.8 1.2 ug/Kg U 0.42 2.8 5.6 ug/Kg Benzene 2.8 71-43-2 1,2-Dichloroethane 2.8 U 0.71 2.8 5.6 ug/Kg 107-06-2 U 79-01-6 Trichloroethene 2.8 0.96 2.8 5.6 ug/Kg U 0.29 2.8 5.6 ug/Kg 78-87-5 1,2-Dichloropropane 2.8 U 0.69 2.8 5.6 75-27-4 Bromodichloromethane 2.8 ug/Kg 14 28 108-10-1 4-Methyl-2-Pentanone 14 U 3.2 ug/Kg U 0.71 2.8 5.6 ug/Kg 108-88-3 Toluene 2.8 U 0.88 2.8 ug/Kg 10061-02-6 t-1,3-Dichloropropene 2.8 5.6



Dvirka & Bartilucci Date Collected: 04/30/12 Client: Date Received: 05/03/12 Project: PV6256, IBM East Fishkill Client Sample ID: SDG No.: D2546 B-4(2-3) Matrix: SOIL Lab Sample ID: D2546-10 % Moisture: 11 Analytical Method: SW8260C Final Vol: Sample Wt/Vol: 5.05 Units: 5000 uL Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033163.D 1 05/13/12 VF051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ/CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|-----|----------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.8    | U         | 0.8     | 2.8 | 5.6      | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.8    | U         | 1       | 2.8 | 5.6      | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14     | U         | 4.4     | 14  | 28       | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.8    | U         | 0.6     | 2.8 | 5.6      | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.8    | U         | 0.71    | 2.8 | 5.6      | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.8    | U         | 1.1     | 2.8 | 5.6      | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.8    | U         | 0.56    | 2.8 | 5.6      | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.8    | U         | 0.69    | 2.8 | 5.6      | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.8     | 5.5 | 11       | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.8    | == U      | 0.76    | 2.8 | 5.6      | ug/Kg   |
| 100-42-5     | Styrene                     | 2.8    | U         | 0.5     | 2.8 | 5.6      | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.8    | U         | 0.82    | 2.8 | 5.6      | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.8    | U         | 0.53    | 2.8 | 5.6      | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.8    | U         | 0.51    | 2.8 | 5.6      | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.8    | U         | 0.41    | 2.8 | 5.6      | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.8    | U         | 0.46    | 2.8 | 5.6      | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.8    | U         | 0.69    | 2.8 | 5.6      | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.8    | U         | 0.97    | 2.8 | 5.6      | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.8    | U         | 0.78    | 2.8 | 5.6      | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.8    | UQ        | 0.56    | 2.8 | 5.6      | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55      | 55  | 110      | ug/Kg   |
| SURROGATES   |                             |        |           |         |     |          |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 51.1   |           | 56 - 12 |     | 102%     | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 51.6   |           | 57 - 13 |     | 103%     | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49.9   |           | 67 - 12 | 3   | 100%     | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 56.4   |           | 33 - 14 | 1   | 113%     | SPK: 50 |
| INTERNAL STA |                             |        |           |         |     |          |         |
| 363-72-4     | Pentafluorobenzene          | 189767 | 4.38      |         |     |          |         |
| 540-36-3     | 1,4-Difluorobenzene         | 264184 | 5.12      |         |     |          |         |
| 3114-55-4    | Chlorobenzene-d5            | 284490 | 9.32      |         |     |          |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 163710 | 12.23     |         |     |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-4(2-3)

SDG No.:

D2546

Lab Sample ID:

D2546-10

Matrix:

SW8260C

SOIL. 11

Analytical Method: Sample Wt/Vol:

5.05

Units:

Final Vol:

% Moisture:

5000

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

uL. ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033163.D

05/13/12

VF051312

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMITECH

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 04/30/12 Date Received: 05/03/12 Project: PV6256, IBM East Fishkill Client Sample 1D: B-4(2-3)RE SDG No.: D2546 Lab Sample 1D: D2546-10RE Matrix: SOIL % Moisture: SW8260C 11 Analytical Method: Final Vol: 5000 Sample Wt/Vol: 5.01 Units: uL Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048313.D

1

05/13/12

VK051312

| V1040515.D       |                                | V07.13.12 |           |      |     |            |       |  |
|------------------|--------------------------------|-----------|-----------|------|-----|------------|-------|--|
| CAS Number       | Parameter                      | Conc.     | Qualifier | MDL  | LOD | LOQ / CRQL | Units |  |
| TARGETS          |                                |           |           |      |     |            |       |  |
| 75-71-8          | Dichlorodifluoromethane        | 2.8       | U         | 0.73 | 2.8 | 5.6        | ug/Kg |  |
| 74-87-3          | Chloromethane                  | 2.8       | U         | 0.96 | 2.8 | 5.6        | ug/Kg |  |
| 75-01-4          | Vinyl Chloride                 | 2.8       | U         | 1.4  | 2.8 | 5.6        | ug/Kg |  |
| 74-83-9          | Bromomethane                   | 2.8       | U         | 2.7  | 2.8 | 5.6        | ug/Kg |  |
| 75-00-3          | Chloroethane                   | 2.8       | U         | 1.6  | 2.8 | 5.6        | ug/Kg |  |
| 75-69-4          | Trichlorofluoromethane         | 2.8       | U         | 1.5  | 2.8 | 5.6        | ug/Kg |  |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.8       | U         | 1.5  | 2.8 | 5.6        | ug/Kg |  |
| 75-35-4          | 1,1-Dichloroethene             | 2.8       | U         | 1.6  | 2.8 | 5.6        | ug/Kg |  |
| 67-64-1          | Acetone                        | 13        | J         | 3.4  | 14  | 28         | ug/Kg |  |
| 75-15-0          | Carbon Disulfide               | 2.8       | U         | 1.2  | 2.8 | 5.6        | ug/Kg |  |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.8       | U         | 1.1  | 2.8 | 5.6        | ug/Kg |  |
| 79-20-9          | Methyl Acetate                 | 2.8       | U         | 1.7  | 2.8 | 5.6        | ug/Kg |  |
| 75-09-2          | Methylene Chloride             | 2.8       | U         | 1.6  | 2.8 | 5.6        | ug/Kg |  |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.8       | U         | 0.77 | 2.8 | 5.6        | ug/Kg |  |
| 75-34-3          | 1,1-Dichloroethane             | 2.8       | U         | 1.1  | 2.8 | 5.6        | ug/Kg |  |
| 110-82-7         | Cyclohexane                    | 2.8       | U         | 1.1  | 2.8 | 5.6        | ug/Kg |  |
| 78-93-3          | 2-Butanone                     | 14        | U         | 3.5  | 14  | 28         | ug/Kg |  |
| 56-23-5          | Carbon Tetrachloride           | 2.8       | U         | 1.1  | 2.8 | 5.6        | ug/Kg |  |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.8       | U         | 1    | 2.8 | 5.6        | ug/Kg |  |
| 74-97-5          | Bromochloromethane             | 2.8       | U         | 0.89 | 2.8 | 5.6        | ug/Kg |  |
| 67-66-3          | Chloroform                     | 2.8       | U         | 0.83 | 2.8 | 5.6        | ug/Kg |  |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.8       | U         | 0.99 | 2.8 | 5.6        | ug/Kg |  |
| 108-87-2         | Methylcyclohexane              | 2.8       | U         | 1.2  | 2.8 | 5.6        | ug/Kg |  |
| 71-43-2          | Benzene                        | 2.8       | U         | 0.43 | 2.8 | 5.6        | ug/Kg |  |
| 107-06-2         | 1,2-Dichloroethane             | 2.8       | U         | 0.72 | 2.8 | 5.6        | ug/Kg |  |
| 79-01 <b>-</b> 6 | Trichloroethene                | 2.8       | U         | 0.96 | 2.8 | 5.6        | ug/Kg |  |
| 78-87 <b>-</b> 5 | 1,2-Dichloropropane            | 2.8       | U         | 0.29 | 2.8 | 5.6        | ug/Kg |  |
| 75-27-4          | Bromodichloromethane           | 2.8       | U         | 0.7  | 2.8 | 5.6        | ug/Kg |  |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14        | U         | 3.3  | 14  | 28         | ug/Kg |  |
| 108-88-3         | Toluene                        | 2.8       | U         | 0.72 | 2.8 | 5.6        | ug/Kg |  |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.8       | U         | 0.89 | 2.8 | 5.6        | ug/Kg |  |



Date Collected: 04/30/12 Client: Dvirka & Bartilucci PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-4(2-3)RE SOIL Lab Sample ID: D2546-10RE Matrix: % Moisture: 11 Analytical Method: SW8260C Final Vol: 5000 иL Sample Wt/Vol: 5.01 Units: VOC-TCLVOA-10 Soil Aliquot Vol: иL Test: Level: LOW GC Column: RX1-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048313.D 1 05/13/12 VK051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ/CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|-----|----------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.8    | U         | 0.81    | 2.8 | 5.6      | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.8    | U         | 1       | 2.8 | 5.6      | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14     | UQ        | 4.4     | 14  | 28       | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.8    | U         | 0.61    | 2.8 | 5.6      | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.8    | U         | 0.72    | 2.8 | 5.6      | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.8    | UQ        | 1.1     | 2.8 | 5.6      | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.8    | U         | 0.56    | 2.8 | 5.6      | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.8    | U         | 0.7     | 2.8 | 5.6      | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.81    | 5.5 | 11       | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.8    | U         | 0.76    | 2.8 | 5.6      | ug/Kg   |
| 100-42-5     | Styrene                     | 2.8    | U         | 0.5     | 2.8 | 5.6      | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.8    | U         | 0.83    | 2.8 | 5.6      | ug/Kg   |
| 98-82-8      | lsopropylbenzene            | 2.8    | U         | 0.54    | 2.8 | 5.6      | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.8    | U         | 0.52    | 2.8 | 5.6      | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.8    | U         | 0.41    | 2.8 | 5.6      | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.8    | U         | 0.46    | 2.8 | 5.6      | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.8    | U         | 0.7     | 2.8 | 5.6      | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.8    | UQ        | 0.98    | 2.8 | 5.6      | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.8    | U         | 0.78    | 2.8 | 5.6      | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.8    | UQ        | 0.56    | 2.8 | 5.6      | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55      | 55  | 110      | ug/Kg   |
| SURROGATES   |                             |        |           |         |     |          |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 62.7   | *         | 56 - 12 | 0   | 125%     | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 54.1   |           | 57 - 13 | 5   | 108%     | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47.2   |           | 67 - 12 | 3   | 94%      | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 48.2   |           | 33 - 14 | 1   | 96%      | SPK: 50 |
| INTERNAL STA |                             |        |           |         |     |          |         |
| 363-72-4     | Pentafluorobenzene          | 178689 | 6.56      |         |     |          |         |
| 540-36-3     | 1,4-Difluorobenzene         | 311919 | 7.7       |         |     |          |         |
| 3114-55-4    | Chlorobenzene-d5            | 248305 | 10.74     |         |     |          |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 94926  | 12.68     |         |     |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

## Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

SDG No.:

D2546

B-4(2-3)RE

Lab Sample 1D:

D2546-10RE SW8260C

Matrix:

Final Vol:

SOIL 11

Analytical Method:

5.01 Units: % Moisture:

5000

uL

Sample Wt/Vol: Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

uL ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048313.D

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Client: Dvirka & Bartilucci PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-3(9-2) SOIL Lab Sample 1D: D2546-11 Matrix: % Moisture: Analytical Method: SW8260C 14 Final Vol: Sample Wt/Vol: Units: 5000 uL VOC-TCLVOA-10 Soil Aliquot Vol: uLTest: GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033164.D 1 05/13/12 VF051312

| CAS Number | Parameter                      |    | Conc. | Qualifier | MDL  | LOD  | LOQ/CRQL | Units |
|------------|--------------------------------|----|-------|-----------|------|------|----------|-------|
| TARGETS    |                                |    |       |           |      |      |          |       |
| 75-71-8    | Dichlorodifluoromethane        | -  | 2.9   | U         | 0.76 | 2.9  | 5.8      | ug/Kg |
| 74-87-3    | Chloromethane                  |    | 2.9   | U         | 1    | 2.9  | 5.8      | ug/Kg |
| 75-01-4    | Vinyl Chloride                 |    | 2.9   | U         | 1.4  | 2.9  | 5.8      | ug/Kg |
| 74-83-9    | Bromomethane                   |    | 2.9   | U         | 2.8  | 2.9  | 5.8      | ug/Kg |
| 75-00-3    | Chloroethane                   |    | 2.9   | UQ        | 1.6  | 2.9  | 5.8      | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         |    | 2.9   | U         | 1.5  | 2.9  | 5.8      | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane |    | 2.9   | U         | 1.5  | 2.9  | 5.8      | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             |    | 2.9   | U         | 1.7  | 2.9  | 5.8      | ug/Kg |
| 67-64-1    | Acetone                        |    | 25    | J         | 3.5  | 14.5 | 29       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 20 | 2.9   | U         | 1.2  | 2.9  | 5.8      | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        |    | 2.9   | U         | 1.1  | 2.9  | 5.8      | ug/Kg |
| 79-20-9    | Methyl Acetate                 |    | 2.9   | U         | 1.8  | 2.9  | 5.8      | ug/Kg |
| 75-09-2    | Methylene Chloride             |    | 2.9   | U         | 1.7  | 2.9  | 5.8      | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       |    | 2.9   | U         | 0.8  | 2.9  | 5.8      | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             |    | 2.9   | U         | 1.1  | 2.9  | 5.8      | ug/Kg |
| 110-82-7   | Cyclohexane                    |    | 2.9   | U         | 1.2  | 2.9  | 5.8      | ug/Kg |
| 78-93-3    | 2-Butanone                     |    | 14.5  | U         | 3.6  | 14.5 | 29       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           |    | 2.9   | U         | 1.2  | 2.9  | 5.8      | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         |    | 2.9   | U         | 1    | 2.9  | 5.8      | ug/Kg |
| 74-97-5    | Bromochloromethane             |    | 2.9   | U         | 0.92 | 2.9  | 5.8      | ug/Kg |
| 67-66-3    | Chloroform                     |    | 2.9   | U         | 0.86 | 2.9  | 5.8      | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          |    | 2.9   | U         | 1    | 2.9  | 5.8      | ug/Kg |
| 108-87-2   | Methylcyclohexane              |    | 2.9   | U         | 1.2  | 2.9  | 5.8      | ug/Kg |
| 71-43-2    | Benzene                        |    | 2.9   | U         | 0.44 | 2.9  | 5.8      | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             |    | 2.9   | U         | 0.74 | 2.9  | 5.8      | ug/Kg |
| 79-01-6    | Trichloroethene                |    | 2.9   | U         | 1    | 2.9  | 5.8      | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            |    | 2.9   | U         | 0.3  | 2.9  | 5.8      | ug/Kg |
| 75-27-4    | Bromodichloromethane           |    | 2.9   | U         | 0.72 | 2.9  | 5.8      | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           |    | 14.5  | U         | 3.4  | 14.5 | 29       | ug/Kg |
| 108-88-3   | Toluene                        |    | 2.9   | U         | 0.74 | 2.9  | 5.8      | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          |    | 2.9   | U         | 0.92 | 2.9  | 5.8      | ug/Kg |

## **CHEMIECH**

## Report of Analysis

Date Collected: 04/30/12 Client: Dvirka & Bartilucci Date Received: 05/03/12 Project: PV6256, IBM East Fishkill SDG No.: D2546 Client Sample 1D: B-3(9-2) Lab Sample ID: D2546-11 Matrix: SOIL % Moisture: 14 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: g VOC-TCLVOA-10 Test: Soil Aliquot Vol: uL GC Column: RTX-VMS 1D: 0,18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033164,D UF051312 VF051312

|                   |                             | Conc.  | Qualifier | MDL      | LOD  | LOQ/CRQL | Units   |
|-------------------|-----------------------------|--------|-----------|----------|------|----------|---------|
| 10061-01-5        | cis-1,3-Dichloropropene     | 2:9    | U         | 0.84     | 2.9  | 5.8      | ug/Kg   |
| 79-00-5           | 1,1,2-Trichloroethane       | 2.9    | U         | 1        | 2.9  | 5.8      | ug/Kg   |
| 591-78-6          | 2-Hexanone                  | 14.5   | U         | 4.6      | 14.5 | 29       | ug/Kg   |
| 124-48-1          | Dibromochloromethane        | 2.9    | U         | 0.63     | 2.9  | 5.8      | ug/Kg   |
| 106-93-4          | 1,2-Dibromoethane           | 2.9    | U         | 0.74     | 2.9  | 5.8      | ug/Kg   |
| 127-18-4          | Tetrachloroethene           | 2.9    | U         | 1.2      | 2.9  | 5.8      | ug/Kg   |
| 108-90-7          | Chlorobenzene               | 2.9    | U         | 0.58     | 2.9  | 5.8      | ug/Kg   |
| 100-41-4          | Ethyl Benzene               | 2.9    | U         | 0.72     | 2.9  | 5.8      | ug/Kg   |
| 179601-23-1       | m/p-Xylenes                 | 6      | U         | 0.84     | 6    | 12       | ug/Kg   |
| 95-47-6           | o-Xylene                    | 2.9    | U         | 0.79     | 2.9  | 5.8      | ug/Kg   |
| 100-42-5          | Styrene                     | 2.9    | U         | 0.52     | 2.9  | 5.8      | ug/Kg   |
| 75-25-2           | Bromoform                   | 2,9    | U         | 0.86     | 2.9  | 5.8      | ug/Kg   |
| 98-82-8           | Isopropylbenzene            | 2.9    | U         | 0.56     | 2.9  | 5.8      | ug/Kg   |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | 2.9    | U         | 0.53     | 2.9  | 5.8      | ug/Kg   |
| 541-73-1          | 1,3-Dichlorobenzene         | 2.9    | U         | 0.43     | 2.9  | 5.8      | ug/Kg   |
| 106-46-7          | 1,4-Dichlorobenzene         | 2.9    | U         | 0.48     | 2.9  | 5.8      | ug/Kg   |
| 95-50-1           | 1,2-Dichlorobenzene         | 2.9    | U         | 0.72     | 2.9  | 5.8      | ug/Kg   |
| 96-12-8           | 1,2-Dibromo-3-Chloropropane | 2.9    | U         | 1        | 2.9  | 5.8      | ug/Kg   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | 2.9    | U         | 0.81     | 2.9  | 5.8      | ug/Kg   |
| 87-61-6           | 1,2,3-Trichlorobenzene      | 2.9    | UQ        | 0.58     | 2.9  | 5.8      | ug/Kg   |
| 123-91-1          | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120      | ug/Kg   |
| SURROGATES        |                             |        |           |          |      |          |         |
| 17060-07-0        | 1,2-Dichloroethane-d4       | 47     |           | 56 - 120 | 0    | 94%      | SPK: 50 |
| 1868-53-7         | Dibromofluoromethane        | 50.8   |           | 57 - 13: |      | 102%     | SPK: 50 |
| 2037-26-5         | Toluene-d8                  | 49.4   |           | 67 - 123 | 3    | 99%      | SPK: 50 |
| 460-00-4          | 4-Bromofluorobenzene        | 54.5   |           | 33 - 14  | 1    | 109%     | SPK: 50 |
| INTERNAL STA      |                             |        |           |          |      |          |         |
| 363-72-4          | Pentafluorobenzene          | 191645 | 4.38      |          |      |          |         |
| 540-36 <b>-</b> 3 | 1,4-Difluorobenzene         | 259367 | 5.12      |          |      |          |         |
| 3114-55-4         | Chlorobenzene-d5            | 275933 | 9.32      |          |      |          |         |
| 3855-82-1         | 1,4-Dichlorobenzene-d4      | 146107 | 12.24     |          |      |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-3(9-2)

SDG No.:

D2546

Lab Sample 1D:

D2546-11

Matrix:

Analytical Method:

SW8260C

SOIL

Sample Wt/Vol:

% Moisture:

14

Units: g Final Vol:

5000

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

uL

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033164.D

1

05/13/12

VF051312

Units

CAS Number

**Parameter** 

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Project: Dvirka & Bartilucci

PV6256, IBM East Fishkill

Client Sample 1D:

B-3(9-2)RE

Lab Sample ID:

D2546-11RE SW8260C

Analytical Method: Sample Wt/Vol:

5.06

Units:

Soil Aliquot Vol:

g uL

GC Column:

RXI-624

ID: 0.25

Date Collected;

Date Received:

05/03/12

SDG No.:

D2546 SOIL

04/30/12

Matrix:

% Moisture:

17

14

5000

uL

Test:

VOC-TCLVOA-10

Level:

Final Vol:

LOW

File ID/Qc Batch:

VK048314.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    | -                              |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.85  | U         | 0.75 | 2.85 | 5.7        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.85  | U         | 0.99 | 2.85 | 5.7        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.85  | U         | 1.4  | 2.85 | 5.7        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.85  | U         | 2.8  | 2.85 | 5.7        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 67-64-1    | Acetone                        | 20    | J         | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.85  | U         | 0.79 | 2.85 | 5.7        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.85  | U         | 0.91 | 2.85 | 5.7        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.85  | U         | 0.85 | 2.85 | 5.7        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 71-43-2    | Benzene                        | 2.85  | U         | 0.44 | 2.85 | 5.7        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.85  | U         | 0.74 | 2.85 | 5.7        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.85  | U         | 0.99 | 2.85 | 5.7        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.85  | U         | 0.3  | 2.85 | 5.7        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.85  | U         | 0.71 | 2.85 | 5.7        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3   | Toluene                        | 2.85  | U         | 0.74 | 2.85 | 5.7        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.85  | U         | 0.91 | 2.85 | 5.7        | ug/Kg |



Date Collected: 04/30/12 Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: 05/03/12 SDG No.: D2546 Client Sample ID: B-3(9-2)RE Lab Sample ID: D2546-11RE Matrix: SOIL % Moisture: 14 Analytical Method: SW8260C Final Vol: Sample Wt/Vol: 5.06 Units: 5000 uL Soil Aliquot Vol: Test: VOC-TCLVOA-10 иL Level: LOW GC Column: ID: 0.25 RXI-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VK048314.D 05/13/12 VK051312

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 2.85   | U         | 0.83     | 2.85 | 5.7        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 2.85   | U         | 1        | 2.85 | 5.7        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 14.5   | UQ        | 4.5      | 14.5 | 29         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 2.85   | U         | 0.62     | 2.85 | 5.7        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 2.85   | U         | 0.74     | 2.85 | 5.7        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 2.85   | UQ        | 1.2      | 2.85 | 5.7        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 2.85   | U         | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 2.85   | U         | 0.71     | 2.85 | 5.7        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 5.5    | U         | 0.83     | 5.5  | 11         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 2.85   | U         | 0.78     | 2.85 | 5.7        | ug/Kg   |
| 100-42-5    | Styrene                     | 2.85   | U         | 0.52     | 2.85 | 5.7        | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.85   | U         | 0.85     | 2.85 | 5.7        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 2.85   | U         | 0.55     | 2.85 | 5.7        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 2.85   | U         | 0.53     | 2.85 | 5.7        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 2.85   | U         | 0.43     | 2.85 | 5.7        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 2.85   | U         | 0.47     | 2.85 | 5.7        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2.85   | U         | 0.71     | 2.85 | 5.7        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.85   | UQ        | 1        | 2.85 | 5.7        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 2.85   | U         | 0.8      | 2.85 | 5.7        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 2.85   | UQ        | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES  |                             |        |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 64.2   | *         | 56 - 12  |      | 128%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 53.9   |           | 57 - 13. |      | 108%       | SPK: 5  |
| 2037-26-5   | Toluene-d8                  | 47.9   |           | 67 - 12: | 3    | 96%        | SPK: 5  |
| 460-00-4    | 4-Bromofluorobenzene        | 41.7   |           | 33 - 14  | ]    | 83%        | SPK: 5  |
| INTERNAL ST |                             |        |           |          |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 171730 | 6.55      |          |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 305502 | 7.7       |          |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 230536 | 10.74     |          |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 74998  | 12.68     |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-3(9-2)RE

Lab Sample 1D:

GC Column:

File ID/Qc Batch:

VK048314.D

D2546-11RE

Analytical Method:

5.06

Sample Wt/Vol: Soil Aliquot Vol:

SW8260C

Units:

RXI-624

uL

ID: 0.25

Date Collected:

Date Received:

05/03/12

SDG No.:

D2546 SOIL

04/30/12

Matrix:

% Moisture:

Final Vol:

14

5000

uL

Test:

Level:

VOC-TCLVOA-10

LOW

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VK051312

**CAS Number** 

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Date Collected: 04/30/12 Dvirka & Bartilucci PV6256, IBM East Fishkill Project: Date Received: 05/03/12 Client Sample 1D: SDG No.: D2546 B-3(2-3.5) Lab Sample 1D: SOIL D2546-12 Matrix: Analytical Method: SW8260C % Moisture: 15 Sample Wt/Vol: Units: Final Vol: 5000 uL VOC-TCLVOA-10 Soil Aliquot Vol: иL Test: GC Column: RTX-VMS Level: ID: 0.18 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033165.D I 05/13/12 VF051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.95  | U         | 0.76 | 2.95 | 5.9        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.95  | U         | 1.4  | 2.95 | 5.9        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.95  | U         | 2.9  | 2.95 | 5.9        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.95  | UQ        | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.95  | * U       | 1.6  | 2.95 | 5.9        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.95  | U         | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 67-64-1    | Acetone                        | 15    | J         | 3.6  | 14.5 | 29         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.95  | U         | 1.1  | 2.95 | 5.9        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.95  | U         | 1.8  | 2.95 | 5.9        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.95  | U         | 0.81 | 2.95 | 5.9        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.95  | U         | 1.1  | 2.95 | 5.9        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 14.5  | U         | 3.7  | 14.5 | 29         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.95  | U         | 0.87 | 2.95 | 5.9        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 71-43-2    | Benzene                        | 2.95  | U         | 0.45 | 2.95 | 5.9        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.95  | U         | 0.31 | 2.95 | 5.9        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.95  | U         | 0.73 | 2.95 | 5.9        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3   | Toluene                        | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 04/30/12      |  |
|--------------------|---------------------------|-----------------|---------------|--|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |  |
| Client Sample ID:  | B-3(2-3.5)                | SDG No.:        | D2546         |  |
| Lab Sample ID:     | D2546-12                  | Matrix:         | SOIL          |  |
| Analytical Method: | SW8260C                   | % Moisture:     | 15            |  |
| Sample Wt/Vol:     | 5 Units: g                | Final Vol:      | 5000 uL       |  |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |  |
| GC Column:         | RTX-VMS 1D: 0.18          | Level:          | LOW           |  |

| File ID/Qc Batch: | Dilution: | Prep Date | Date Analyzed | Prep Batch ID |
|-------------------|-----------|-----------|---------------|---------------|
| VF033165,D        | I         |           | 05/13/12      | VF051312      |

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.95   | Ū         | 0.85    | 2.95 | 5.9        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.95   | U         | 1.1     | 2.95 | 5.9        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14.5   | U         | 4.6     | 14.5 | 29         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.95   | U         | 0.64    | 2.95 | 5.9        | ug/Kg   |
| 106-93-4     | 1.2-Dibromoethane           | 2.95   | U         | 0.75    | 2.95 | 5.9        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.95   | U         | 1.2     | 2.95 | 5.9        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.95   | U         | 0.59    | 2.95 | 5.9        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.95   | U         | 0.73    | 2.95 | 5.9        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.85    | 6    | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.95   | U         | 0.8     | 2.95 | 5.9        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.95   | U         | 0.53    | 2.95 | 5.9        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.95   | U         | 0.87    | 2.95 | 5.9        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.95   | U         | 0.56    | 2.95 | 5.9        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.95   | U         | 0.54    | 2.95 | 5.9        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.95   | U         | 0.44    | 2.95 | 5.9        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.95   | U         | 0.48    | 2.95 | 5.9        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.95   | U         | 0.73    | 2.95 | 5.9        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.95   | U         | 1       | 2.95 | 5.9        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.95   | U         | 0.82    | 2.95 | 5.9        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.95   | UQ        | 0.59    | 2.95 | 5.9        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60      | 60   | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |         |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 48.5   |           | 56 - 12 | 0    | 97%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 49.9   |           | 57 - 13 |      | 100%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49.2   |           | 67 - 12 | 3    | 98%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 56.3   |           | 33 - 14 | 1    | 113%       | SPK: 50 |
| INTERNAL STA |                             |        |           |         |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 188262 | 4.38      |         |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 263658 | 5.12      |         |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 286787 | 9.32      |         |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 164285 | 12.23     |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-3(2-3.5)

Lab Sample ID:

D2546-12

Analytical Method:

SW8260C

Units: g

Sample Wt/Vol: Soil Aliquot Vol:

- 2

uL

GC Column:

RTX-VMS

ID: 0.18

Date Collected:

ness or play - ness

Date Received:

05/03/12

04/30/12

SDG No.:

D2546 SOIL

Matrix:

% Moisture:

Final Vol:

15 5000

ul.

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033165.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client:

Dvirka & Bartilucci

Date Collected: Date Received:

04/30/12

Project:

PV6256, IBM East Fishkill

Client Sample 1D:

B-3(2-3.5)RE

05/03/12

Lab Sample ID:

D2546-12RE

SDG No.: Matrix:

D2546

Analytical Method:

SW8260C

SOIL

Sample Wt/Vol:

Units:

% Moisture: Final Vol:

5000

15

uL

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048315.D

05/13/12

VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.95  | U         | 0.76 | 2.95 | 5.9        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.95  | U         | 1.4  | 2.95 | 5.9        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.95  | U         | 2.9  | 2.95 | 5.9        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.95  | U         | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.95  | U         | 1.6  | 2.95 | 5.9        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.95  | U ®       | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 67-64-1    | Acetone                        | 22    | J         | 3.6  | 14.5 | 29         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.95  | U         | 1.1  | 2.95 | 5.9        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.95  | U         | 1.8  | 2.95 | 5.9        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.95  | U         | 0.81 | 2.95 | 5.9        | ug/Kg |
| 75-34-3    | I, I-Dichloroethane            | 2.95  | U         | I.1  | 2.95 | 5.9        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 14.5  | U         | 3.7  | 14.5 | 29         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 156-59-2   | cis-1.2-Dichloroethene         | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.95  | U         | 0.87 | 2.95 | 5.9        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 71-43-2    | Benzene                        | 2.95  | U         | 0.45 | 2.95 | 5.9        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.95  | U         | 0.31 | 2.95 | 5.9        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.95  | U         | 0.73 | 2.95 | 5.9        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3   | Toluene                        | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected; 04/30/12 Project: PV6256, IBM East Fishkill Date Received: 05/03/12 Client Sample ID: SDG No.: D2546 B-3(2-3.5)RE Lab Sample ID: D2546-12RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 15 Sample Wt/Vol: Units: Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: Level: ID: 0.25 LOW RXI-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VK048315.D | 05/13/12 VK051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.95   | U         | 0.85     | 2.95 | 5.9        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.95   | U         | 1.1      | 2.95 | 5.9        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14.5   | UQ        | 4.6      | 14.5 | 29         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.95   | U         | 0.64     | 2.95 | 5.9        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.95   | U         | 0.75     | 2.95 | 5.9        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.95   | UQ        | 1.2      | 2.95 | 5.9        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.95   | U         | 0.59     | 2.95 | 5.9        | ug/Kg   |
| 100-41-4     | Ethył Benzene               | 2.95   | U         | 0.73     | 2.95 | 5.9        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.85     | 6    | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.95   | U         | 0.8      | 2.95 | 5.9        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.95   | U         | 0.53     | 2.95 | 5.9        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.95   | U         | 0.87     | 2.95 | 5.9        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.95   | U         | 0.56     | 2.95 | 5.9        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.95   | U         | 0.54     | 2.95 | 5.9        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.95   | U         | 0.44     | 2.95 | 5.9        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.95   | U         | 0.48     | 2.95 | 5.9        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.95   | U         | 0.73     | 2.95 | 5.9        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.95   | UQ        | 1        | 2.95 | 5.9        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.95   | U         | 0.82     | 2.95 | 5.9        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.95   | UQ        | 0.59     | 2.95 | 5.9        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60       | 60   | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 66.5   | *         | 56 - 120 | _    | 133%       | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 55.1   |           | 57 - 13: | 5    | 110%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49.1   |           | 67 - 123 | 3    | 98%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 43.9   |           | 33 - 14  | 1    | 88%        | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 158886 | 6.55      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 286050 | 7.7       |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 215846 | 10.75     |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 69066  | 12.68     |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-3(2-3.5)RE

SDG No.:

D2546

Lab Sample ID:

D2546-12RE

Matrix:

COIL

Analytical Method:

SW8260C

% Moisture:

SOIL 15

Sample Wt/Vol:

5

Units: g

Final Vol:

5000

uL

Soil Aliquot Vol:

27.77070

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

uL ID: 0.25

Level:

MDL

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048315.D

1

05/13/12

VK051312

**CAS Number** 

Parameter

Conc.

Qualifier

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 04/30/12 Dvirka & Bartilucci Client: Project: PV6256, 1BM East Fishkill Date Received: 05/03/12 D2546 SDG No.: Client Sample 1D: B-3(6-7) Matrix: SOIL Lab Sample 1D: D2546-13 % Moisture: 8 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: 5.01 Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch 1D

VF033166.D

1

05/13/12

VF051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      | <u></u>    |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.7   | U         | 0.71 | 2.7  | 5.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.7   | U         | 1.3  | 2.7  | 5.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.7   | U         | 2.7  | 2.7  | 5.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.7   | UQ        | 1.5  | 2.7  | 5.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.7   | U         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 67-64-1    | Acetone                        | 17    | J         | 3.3  | 13.5 | 27         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.7   | Ū         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.7   | U         | 1.5  | 2.7  | 5.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.7   | U         | 0.75 | 2.7  | 5.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 13.5  | U         | 3.4  | 13.5 | 27         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.7   | U         | 0.97 | 2.7  | 5.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.7   | U         | 0.86 | 2.7  | 5.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.7   | U         | 0.8  | 2.7  | 5.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.7   | U         | 0.95 | 2.7  | 5.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 71-43-2    | Benzene                        | 2.7   | U         | 0.41 | 2.7  | 5.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.7   | U         | 0.28 | 2.7  | 5.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.7   | U         | 0.67 | 2.7  | 5.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 13.5  | U         | 3.2  | 13.5 | 27         | ug/Kg |
| 108-88-3   | Toluene                        | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.7   | U         | 0.86 | 2.7  | 5.4        | ug/Kg |

# CHEMIECH

# Report of Analysis

Client: Project:

PV6256, IBM East Fishkill

Dvirka & Bartilucci

B-3(6-7)

Lab Sample 1D: Analytical Method:

Client Sample ID:

SW8260C

5.01

D2546-13

Units: g

Sample Wt/Vol: Soil Aliquot Vol:

GC Column:

RTX-VMS

uL ID: 0.18 Date Collected:

Date Received:

SDG No.:

05/03/12 D2546 SOIL

04/30/12

Matrix:

% Moisture:

Final Vol:

8 5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033166.D

Dilution:

1

Prep Date

Date Analyzed

05/13/12

Prep Batch 1D

VF051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.7    | U         | 0.78    | 2,7  | 5,4        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.7    | U         | 0.98    | 2.7  | 5.4        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 13.5   | U         | 4.3     | 13.5 | 27         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.7    | U         | 0.59    | 2.7  | 5.4        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.7    | U         | 0.69    | 2.7  | 5.4        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.7    | U         | 1.1     | 2.7  | 5.4        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.7    | U         | 0.54    | 2.7  | 5.4        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.7    | U         | 0.67    | 2.7  | 5.4        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5.5    | U         | 0.78    | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.7    | U         | 0.74    | 2.7  | 5.4        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.7    | U         | 0.49    | 2.7  | 5.4        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.7    | U         | 0.8     | 2.7  | 5.4        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.7    | U         | 0.52    | 2.7  | 5.4        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.7    | U         | 0.5     | 2.7  | 5.4        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.7    | U         | 0.4     | 2.7  | 5.4        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.7    | U         | 0.44    | 2.7  | 5.4        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.7    | U         | 0.67    | 2.7  | 5.4        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.7    | U         | 0.94    | 2.7  | 5.4        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.7    | U         | 0.76    | 2.7  | 5.4        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.7    | UQ        | 0.54    | 2.7  | 5.4        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55      | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |         |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 47.6   |           | 56 - 12 |      | 95%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 50.4   |           | 57 - 13 |      | 101%       | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49.6   |           | 67 - 12 |      | 99%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 55.2   |           | 33 - 14 | 1    | 110%       | SPK: 50 |
| INTERNAL STA |                             |        |           |         |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 183455 | 4.36      |         |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 252128 | 5.11      |         |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 278051 | 9.32      |         |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 154484 | 12.24     |         |      |            |         |
|              |                             |        |           |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-3(6-7)

SDG No.:

D2546

Lab Sample ID:

D2546-13

Matrix:

COH

Analytical Method:

SW8260C

iviaurix.

SOIL

8

Amarytical Method

W 8200C

% Moisture:

Sample Wt/Vol:

5.01

Units: g

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033166.D

1

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ/CRQL

Units

ul.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMITECH

# Report of Analysis

Date Collected: 04/30/12 Client: Dvirka & Bartilucci 05/03/12 Date Received: PV6256, IBM East Fishkill Project: SDG No.: D2546 Client Sample ID: B-3(6-7)RE SOIL Lab Sample ID: D2546-13RE Matrix: SW8260C % Moisture: Analytical Method: Final Vol: 5000 uL Sample Wt/Vol: 5.04 Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW ID: 0.25 GC Column: RXI-624

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048316.D

1

05/13/12

VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.7   | U         | 0.7  | 2.7  | 5.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.7   | U         | 1.3  | 2.7  | 5.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.7   | U         | 2.6  | 2.7  | 5.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.7   | U         | 1.5  | 2.7  | 5.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.7   | U         | 1.4  | 2.7  | 5.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.7   | U         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 67-64-1    | Acetone                        | 11    | J         | 3.3  | 13.5 | 27         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.7   | U         | 1.6  | 2.7  | 5.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.7   | U         | 1.5  | 2.7  | 5.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.7   | U         | 0.74 | 2.7  | 5.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.7   | U         | 1    | 2.7  | 5.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 13.5  | U         | 3.4  | 13.5 | 27         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.7   | U         | 0.96 | 2.7  | 5.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.7   | U         | 0.85 | 2.7  | 5.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.7   | U         | 0.8  | 2.7  | 5.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.7   | U         | 0.95 | 2.7  | 5.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.7   | U         | 1.1  | 2.7  | 5.4        | ug/Kg |
| 71-43-2    | Benzene                        | 2.7   | U         | 0.41 | 2.7  | 5.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.7   | U         | 0.93 | 2.7  | 5.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.7   | U         | 0.28 | 2.7  | 5.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.7   | U         | 0.67 | 2.7  | 5.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 13.5  | U         | 3.1  | 13.5 | 27         | ug/Kg |
| 108-88-3   | Toluene                        | 2.7   | U         | 0.69 | 2.7  | 5.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.7   | U         | 0.85 | 2.7  | 5.4        | ug/Kg |

04/30/12



### Report of Analysis

Client: Dvirka & Bartilucci Date Collected:

Project: PV6256, IBM East Fishkill Date Received: 05/03/12

SDG No.: D2546 Client Sample ID: B-3(6-7)RE SOIL Lab Sample ID: D2546-13RE Matrix:

Analytical Method: SW8260C % Moisture: 8 Sample Wt/Vol: Final Vol: 5000 5.04 Units:

VOC-TCLVOA-10 Soil Aliquot Vol: иL Test:

GC Column: RXI-624 ID: 0.25 Level: LOW

File 1D/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048316.D 05/13/12 VK051312

| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|------------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| 10061-01-5       | cis-1,3-Dichloropropene     | 2.7    | U         | 0.78     | 2:.7 | 5.4        | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 2.7    | U         | 0.97     | 2.7  | 5.4        | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 13.5   | UQ        | 4.2      | 13.5 | 27         | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 2.7    | U         | 0.58     | 2.7  | 5.4        | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 2.7    | U         | 0.69     | 2.7  | 5.4        | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 2.7    | UQ        | 1.1      | 2.7  | 5.4        | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 2.7    | U         | 0.54     | 2.7  | 5.4        | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 2.7    | U         | 0.67     | 2.7  | 5.4        | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 5.5    | U         | 0.78     | 5.5  | 11         | ug/Kg   |
| 95-47-6          | o-Xylene                    | 2.7    | U         | 0.73     | 2.7  | 5.4        | ug/Kg   |
| 100-42-5         | Styrene                     | 2.7    | U         | 0.49     | 2.7  | 5.4        | ug/Kg   |
| 75-25-2          | Bromoform                   | 2.7    | U         | 0.8      | 2.7  | 5.4        | ug/Kg   |
| 98-82 <b>-</b> 8 | Isopropylbenzene            | 2.7    | U         | 0.52     | 2.7  | 5.4        | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 2.7    | U         | 0.5      | 2.7  | 5.4        | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 2.7    | U         | 0.4      | 2.7  | 5.4        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 2.7    | U         | 0.44     | 2.7  | 5.4        | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 2.7    | U         | 0.67     | 2.7  | 5.4        | ug/Kg   |
| 96-12-8          | 1,2-Dibromo-3-Chloropropane | 2.7    | UQ        | 0.94     | 2.7  | 5.4        | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 2.7    | U         | 0.75     | 2.7  | 5.4        | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 2.7    | UQ        | 0.54     | 2.7  | 5.4        | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES       |                             |        |           |          |      |            |         |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 64.1   | *         | 56 - 120 |      | 128%       | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 54     |           | 57 - 13: |      | 108%       | SPK: 50 |
| 2037-26-5        | Toluene-d8                  | 46.4   |           | 67 - 123 |      | 93%        | SPK: 50 |
| 460-00-4         | 4-Bromofluorobenzene        | 44.4   |           | 33 - 14  | 1    | 89%        | SPK: 50 |
| INTERNAL STA     | · -                         |        |           |          |      |            |         |
| 363-72-4         | Pentafluorobenzene          | 167108 | 6.55      |          |      |            |         |
| 540-36-3         | 1,4-Difluorobenzene         | 301567 | 7.7       |          |      |            |         |
| 3114-55-4        | Chlorobenzene-d5            | 235025 | 10.74     |          |      |            |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 84054  | 12.68     |          |      |            |         |



284 ShefTield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-3(6-7)RE

SDG No .:

D2546

Lab Sample ID:

D2546-13RE

Matrix:

Analytical Method:

SW8260C

% Moisture:

SOIL 8

Sample Wt/Vol:

5.04

Units: g Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048316.D

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 05/01/12 Client: Dvirka & Bartilucci Date Received: 05/03/12 Project: PV6256, IBM East Fishkill D2546 SDG No.: Client Sample 1D: B-5(13-2) Lab Sample ID: D2546-14 Matrix: SOIL SW8260C % Moisture: 12 Analytical Method: Final Vol: uL Sample Wt/Vol: 5.01 Units: 5000 2 Test: VOC-TCLVOA-10 Soil Aliquot Vol: иL LOW GC Column: RTX-VMS ID: 0.18 Level:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033167.D

1

05/13/12

VF051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.85  | U         | 0.74 | 2.85 | 5.7        | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.85  | U         | 0.98 | 2.85 | 5.7        | ug/Kg |
| 75-01-4          | Viny! Chloride                 | 2.85  | U         | 1.4  | 2.85 | 5.7        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.85  | U         | 2.8  | 2.85 | 5.7        | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.85  | UQ        | 1.6  | 2.85 | 5.7        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.85  | Ü         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.85  | U         | 1.5  | 2.85 | 5.7        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 67-64-1          | Acetone                        | 56    |           | 3.4  | 14   | 28         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 2.85  | U         | 1.7  | 2.85 | 5.7        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.85  | U         | 1.6  | 2.85 | 5.7        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.85  | U         | 0.78 | 2.85 | 5.7        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14    | U         | 3.5  | 14   | 28         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.85  | U         | 1.1  | 2.85 | 5.7        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 74-97 <b>-</b> 5 | Bromochloromethane             | 2.85  | U         | 0.9  | 2.85 | 5.7        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.85  | U         | 0.84 | 2.85 | 5.7        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.85  | U         | 1    | 2.85 | 5.7        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.85  | U         | 1.2  | 2.85 | 5.7        | ug/Kg |
| 71-43-2          | Benzene                        | 2.85  | U         | 0.43 | 2.85 | 5.7        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.85  | U         | 0.73 | 2.85 | 5.7        | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.85  | U         | 0.98 | 2.85 | 5.7        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.85  | U         | 0.29 | 2.85 | 5.7        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.85  | U         | 0.7  | 2.85 | 5.7        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14    | U         | 3.3  | 14   | 28         | ug/Kg |
| 108-88-3         | Toluene                        | 19    |           | 0.73 | 2.85 | 5.7        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.85  | U         | 0.9  | 2.85 | 5.7        | ug/Kg |



File ID/Qc Batch:

Dilution:

# Report of Analysis

| Client:           | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |
|-------------------|---------------------------|-----------------|---------------|
| Project:          | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample ID: | B-5(13-2)                 | SDG No.:        | D2546         |
| Lab Sample ID:    | D2546-14                  | Matrix:         | SOIL          |
| Analytical Method | SW8260C                   | % Moisture:     | 12            |
| Sample Wt/Vol:    | 5.01 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol: | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:        | RTX-VMS ID: 0.18          | Level:          | LOW           |
|                   |                           |                 |               |

Date Analyzed

Prep Batch ID

Prep Date

| VF033167.D   | Ï                           |        | 05/13/    | 12       |      | VF051312   |         |
|--------------|-----------------------------|--------|-----------|----------|------|------------|---------|
| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.85   | U         | 0.82     | 2.85 | 5.7        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.85   | U         | 1        | 2.85 | 5.7        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14     | U         | 4.4      | 14   | 28         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.85   | U         | 0.61     | 2.85 | 5.7        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.85   | U         | 0.73     | 2.85 | 5.7        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.85   | U         | 1.1      | 2.85 | 5.7        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.85   | U         | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 9.3    |           | 0.7      | 2.85 | 5.7        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 34     |           | 0.82     | 5.5  | 11         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 11     |           | 0.77     | 2.85 | 5.7        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.85   | U         | 0.51     | 2.85 | 5.7        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.85   | U         | 0.84     | 2.85 | 5.7        | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.85   | U         | 0.54     | 2.85 | 5.7        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.85   | U         | 0.52     | 2.85 | 5.7        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.85   | U         | 0.42     | 2.85 | 5.7        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.85   | U         | 0.46     | 2.85 | 5.7        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.85   | U         | 0.7      | 2.85 | 5.7        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.85   | U         | 0.99     | 2.85 | 5.7        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.85   | U         | 0.79     | 2.85 | 5.7        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.85   | UQ        | 0.57     | 2.85 | 5.7        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55       | 55   | 110        | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 47.2   |           | 56 - 120 |      | 94%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 35     |           | 57 - 135 |      | 70%        | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 51.2   |           | 67 - 123 |      | 103%       | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 56.9   |           | 33 - 141 |      | 114%       | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |            |         |
| 363-72-4     | Pentafluorobenzene          | 183573 | 4.36      |          |      |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 250982 | 5.11      |          |      |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 278021 | 9.31      |          |      |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 150655 | 12.24     |          |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

### Report of Analysis

| S Number Paran     | neter               | Conc.     | Qualifier | MDL         | LOD  | LOQ / CRQL    | Units |
|--------------------|---------------------|-----------|-----------|-------------|------|---------------|-------|
| VF033167.D         | 1                   |           | 05/13/    | /12         |      | VF051312      |       |
| File ID/Qc Batch:  | Dilution:           | Prep Date | Date /    | Analyzed    |      | Prep Batch ID |       |
| GC Column:         | RTX-VMS ID          | : 0.18    |           | Level:      |      | LOW           |       |
| Soil Aliquot Vol:  |                     | úL        |           | Test:       |      | VOC-TCLVOA    | A-10  |
| Sample Wt/Vol:     | 5.01 Units:         | g         |           | Final Vol:  |      | 5000          | uL.   |
| Analytical Method: | SW8260C             |           |           | % Moisture  | 1    | 12            |       |
| Lab Sample ID:     | D2546-14            |           |           | Matrix:     |      | SOIL          |       |
| Client Sample ID:  | B-5(13-2)           |           |           | SDG No.:    |      | D2546         |       |
| Project:           | PV6256, IBM East F  | ishkill   |           | Date Receiv | ved: | 05/03/12      |       |
| Client:            | Dvirka & Bartilucci |           |           | Date Collec | ted: | 05/01/12      |       |

13

J

5.76

ug/Kg

U = Not Detected

000071-36-3

I-Butanol

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMIECH

#### Report of Analysis

Date Collected: 05/01/12 Client: Dvirka & Bartilucci 05/03/12 Date Received: Project: PV6256, IBM East Fishkill Client Sample 1D: B-5(13-2)RE SDG No.: D2546 Lab Sample ID: Matrix: SOIL D2546-14RE % Moisture: 12 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: 5.03 Units: VOC-TCLVOA-10 Soil Aliquot Vol: Test: иL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048317.D 1 05/13/12 VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.8   | U         | 0.73 | 2.8 | 5.6        | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.8   | U         | 0.97 | 2.8 | 5.6        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.8   | U         | 1.4  | 2.8 | 5.6        | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.8   | U         | 2.8  | 2.8 | 5.6        | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.8   | U         | 1.6  | 2.8 | 5.6        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.8   | U         | 1.5  | 2.8 | 5.6        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.8   | U         | 1.5  | 2.8 | 5.6        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.8   | U         | 1.7  | 2.8 | 5.6        | ug/Kg |
| 67-64-1    | Acetone                        | 110   |           | 3.4  | 14  | 28         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.8   | U         | 1.2  | 2.8 | 5.6        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.8   | U         | 1.1  | 2.8 | 5.6        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.8   | U         | 1.7  | 2.8 | 5.6        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.8   | U         | 1.6  | 2.8 | 5.6        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.8   | U         | 0.78 | 2.8 | 5.6        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.8   | U         | 1.1  | 2.8 | 5.6        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.8   | U         | 1.1  | 2.8 | 5.6        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 9.6   | J         | 3.5  | 14  | 28         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.8   | U         | 1.1  | 2.8 | 5.6        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.8   | U         | 1    | 2.8 | 5.6        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.8   | U         | 0.89 | 2.8 | 5.6        | ug/Kg |
| 67-66-3    | Chloroform                     | 2.8   | U         | 0.84 | 2.8 | 5.6        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.8   | U         | 0.99 | 2.8 | 5.6        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.8   | U         | 1.2  | 2.8 | 5.6        | ug/Kg |
| 71-43-2    | Benzene                        | 2.8   | U         | 0.43 | 2.8 | 5.6        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.8   | U         | 0.72 | 2.8 | 5.6        | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.8   | U         | 0.97 | 2.8 | 5.6        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.8   | U         | 0.29 | 2.8 | 5.6        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.8   | U         | 0.7  | 2.8 | 5.6        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 14    | U         | 3.3  | 14  | 28         | ug/Kg |
| 108-88-3   | Toluene                        | 21    |           | 0.72 | 2.8 | 5.6        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.8   | U         | 0.89 | 2.8 | 5.6        | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |  |
|--------------------|---------------------------|-----------------|---------------|--|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |  |
| Client Sample ID:  | B-5(13-2)RE               | SDG No.:        | D2546         |  |
| Lab Sample ID:     | D2546-14RE                | Matrix:         | SOIL          |  |
| Analytical Method: | SW8260C                   | % Moisture:     | 12            |  |
| Sample Wt/Vol:     | 5.03 Units: g             | Final Vol:      | 5000 uL       |  |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |  |
| GC Column:         | RXI-624 ID: 0,25          | Level:          | LOW           |  |
|                    |                           |                 |               |  |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VK048317.D 1 05/13/12 VK051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ/CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|-----|----------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.8    | U         | 0.81     | 2.8 | 5.6      | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.8    | U         | 1        | 2.8 | 5.6      | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14     | UQ        | 4.4      | 14  | 28       | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.8    | U         | 0.61     | 2.8 | 5.6      | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.8    | U         | 0.72     | 2.8 | 5.6      | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.8    | UQ        | 1.1      | 2.8 | 5.6      | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.8    | U         | 0.56     | 2.8 | 5.6      | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 9.7    |           | 0.7      | 2.8 | 5.6      | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 34     |           | 0.81     | 5.5 | 11       | ug/Kg   |
| 95-47-6      | o-Xylene                    | 12     |           | 0.77     | 2.8 | 5.6      | ug/Kg   |
| 100-42-5     | Styrene                     | 2.8    | U         | 0.51     | 2.8 | 5.6      | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.8    | U         | 0.84     | 2.8 | 5.6      | ug/Kg   |
| 98-82-8      | lsopropylbenzene            | 2.8    | U         | 0.54     | 2.8 | 5.6      | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.8    | U         | 0.52     | 2.8 | 5.6      | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.8    | U         | 0.42     | 2.8 | = 5.6    | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.8    | U         | 0.46     | 2.8 | 5.6      | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.8    | U         | 0.7      | 2.8 | 5.6      | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.8    | UQ        | 0.98     | 2.8 | 5.6      | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.8    | U         | 0.79     | 2.8 | 5.6      | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.8    | UQ        | 0.56     | 2.8 | 5.6      | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 55     | U         | 55       | 55  | 110      | ug/Kg   |
| SURROGATES   |                             |        |           |          |     |          |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 70.4   | *         | 56 - 120 | C   | 141%     | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 22.2   | *         | 57 - 13: | 5   | 44%      | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 49.2   |           | 67 - 123 | 3   | 98%      | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 52.7   |           | 33 - 14  | ]   | 105%     | SPK: 50 |
| INTERNAL STA |                             |        |           |          |     |          |         |
| 363-72-4     | Pentafluorobenzene          | 159185 | 6.55      |          |     |          |         |
| 540-36-3     | 1,4-Difluorobenzene         | 304799 | 7.7       |          |     |          |         |
| 3114-55-4    | Chlorobenzene-d5            | 251999 | 10.74     |          |     |          |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 98135  | 12.68     |          |     |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-5(13-2)RE

SDG No.:

D2546

Lab Sample ID:

D2546-14RE

Matrix:

SOIL.

Analytical Method:

SW8260C

% Moisture:

12

Sample Wt/Vol:

Units:

Final Vol:

5000 uL

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RX1-624

5.03

uL ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048317.D

I

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL LOD LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Soil Aliquot Vol:

# Report of Analysis

Date Collected: 05/01/12 Dvirka & Bartilucci Client: PV6256, IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-5(6-7) Lab Sample ID: D2546-15 Matrix: SOIL Analytical Method: SW8260C % Moisture: 17 Final Vol: 5000 иL Sample Wt/Vol: Units:

Test:

VOC-TCLVOA-10

LOW GC Column: ID: 0.18 Level: RTX-VMS

иL

File ID/Qc Batch: Prep Date Prep Batch 1D Dilution: Date Analyzed 05/13/12 VF051312 VF033168.D 1

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3    | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9    | Bromomethane                   | 3     | U         | 3    | 3   | 6          | ug/Kg |
| 75-00-3    | Chloroethane                   | 3     | UQ        | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1    | Acetone                        | 15    | U         | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2    | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 3     | U         | 0.83 | 3   | 6          | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7   | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3    | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5    | Bromochloromethane             | 3     | U         | 0.95 | 3   | 6          | ug/Kg |
| 67-66-3    | Chloroform                     | 3     | U         | 0.89 | 3   | 6          | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2    | Benzene                        | 3     | U         | 0.46 | 3   | 6          | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 79-01-6    | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 3     | U         | 0.75 | 3   | 6          | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3   | Toluene                        | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 3     | U         | 0.95 | 3   | 6          | ug/Kg |

# **CHEMIECH**

# Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-5(6-7)

SDG No.:

D2546

Lab Sample ID:

D2546-15

Analytical Method:

SW8260C

Matrix:

SOIL

Sample Wt/Vol:

% Moisture: Final Vol:

17 5000

Soil Aliquot Vol:

Units: g

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

иL ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033168.D

05/13/12

VF051312

| CAS Number        | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
|-------------------|-----------------------------|--------|-----------|---------|-----|------------|---------|
| 10061-01-5        | cis-1,3-Dichloropropene     | 3      | U         | 0.87    | 3   | 6          | ug/Kg   |
| 79-00-5           | 1,1,2-Trichloroethane       | 3      | U         | 1.1     | 3   | 6          | ug/Kg   |
| 591-78-6          | 2-Hexanone                  | 15     | U         | 4.7     | 15  | 30         | ug/Kg   |
| 124-48-1          | Dibromochloromethane        | 3      | U         | 0.65    | 3   | 6          | ug/Kg   |
| 106-93-4          | 1,2-Dibromoethane           | 3      | U         | 0.77    | 3   | 6          | ug/Kg   |
| 127-18-4          | Tetrachloroethene           | 3      | U         | 1.2     | 3   | 6          | ug/Kg   |
| 108-90-7          | Chlorobenzene               | 3      | U         | 0.6     | 3   | 6          | ug/Kg   |
| 100-41-4          | Ethyl Benzene               | 3      | U         | 0.75    | 3   | 6          | ug/Kg   |
| 179601-23-1       | m/p-Xylenes                 | 6      | U         | 0.87    | 6   | 12         | ug/Kg   |
| 95-47-6           | o-Xylene                    | 3      | U         | 0.82    | 3   | 6          | ug/Kg   |
| 100-42-5          | Styrene                     | 3      | U         | 0.54    | 3   | 6          | ug/Kg   |
| 75-25-2           | Bromoform                   | 3      | U         | 0.89    | 3   | 6          | ug/Kg   |
| 98-82-8           | Isopropylbenzene            | 3      | U         | 0.58    | 3   | 6          | ug/Kg   |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55    | 3   | 6          | ug/Kg   |
| 541-73-1          | 1,3-Dichlorobenzene         | 3      | U         | 0.45    | 3   | 6          | ug/Kg   |
| 106-46-7          | 1,4-Dichlorobenzene         | 3      | U         | 0.49    | 3   | 6          | ug/Kg   |
| 95-50-1           | 1,2-Dichlorobenzene         | 3      | U         | 0.75    | 3   | 6          | ug/Kg   |
| 96-12-8           | 1,2-Dibromo-3-Chloropropane | 3      | U         | 1       | 3   | 6          | ug/Kg   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84    | 3   | 6          | ug/Kg   |
| 87-61-6           | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6     | 3   | 6          | ug/Kg   |
| 123-91-1          | 1,4-Dioxane                 | 60     | U         | 60      | 60  | 120        | ug/Kg   |
| SURROGATES        |                             |        |           |         |     |            |         |
| 17060-07-0        | 1,2-Dichloroethane-d4       | 54.1   |           | 56 - 12 | 0   | 108%       | SPK: 50 |
| 1868-53-7         | Dibromofluoromethane        | 53.4   |           | 57 - 13 |     | 107%       | SPK: 50 |
| 2037-26-5         | Toluene-d8                  | 50.9   |           | 67 - 12 | 3   | 102%       | SPK: 50 |
| 460-00-4          | 4-Bromofluorobenzene        | 60.2   |           | 33 - 14 | 1   | 120%       | SPK: 50 |
| INTERNAL STA      |                             |        |           |         |     |            |         |
| 363-72-4          | Pentafluorobenzene          | 121231 | 4.38      |         |     |            |         |
| 540-36 <b>-</b> 3 | 1,4-Difluorobenzene         | 166688 | 5.12      |         |     |            |         |
| 3114-55-4         | Chlorobenzene-d5            | 195063 | 9.32      |         |     |            |         |
| 3855-82-1         | 1,4-Dichlorobenzene-d4      | 109089 | 12.23     |         |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-5(6-7)

Lab Sample ID:

D2546-15

Analytical Method:

SW8260C

Units:

Sample Wt/Vol: Soil Aliquot Vol:

GC Column:

RTX-VMS

uL ID: 0.18 Date Collected:

Date Received:

05/03/12 D2546

05/01/12

SDG No .: Matrix:

SOIL

% Moisture:

Final Vol:

17

uL

Test:

5000

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033168.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



05/01/12 Date Collected: Dvirka & Bartilucci Client: Date Received: 05/03/12 PV6256, IBM East Fishkill Project: D2546 SDG No.: Client Sample ID: B-5(6-7)RE Matrix: SOIL Lab Sample ID: D2546-15RE % Moisture: 17 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: 5.04 Units: g Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL Level: LOW ID: 0.18 GC Column: RTX-VMS

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033252.D 1 05/15/12 VF051512

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS          |                                |       |           |      |     |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3     | U         | 0.78 | 3   | 6          | ug/Kg |
| 74-87-3          | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9          | Bromomethane                   | 3     | U         | 2.9  | 3   | 6          | ug/Kg |
| 75-00-3          | Chloroethane                   | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 6 <b>7-</b> 64-1 | Acetone                        | 15    | U         | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3     | U         | 1.3  | 3   | - 6        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3     | UQ        | 1.1  | 3   | 6          | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3 =   | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3     | U         | 0.82 | 3   | 6          | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93 <b>-</b> 3 | 2-Butanone                     | 15    | UQ        | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97-5          | Bromochloromethane             | 3     | U         | 0.94 | 3   | 6          | ug/Kg |
| 67-66-3          | Chloroform                     | 3     | U         | 0.88 | 3   | 6          | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2          | Benzene                        | 3     | UQ        | 0.45 | 3   | 6          | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 79-01 <b>-</b> 6 | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 3     | U         | 0.74 | 3   | 6          | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15    | UQ        | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3         | Toluene                        | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3     | UQ        | 0.94 | 3   | 6          | ug/Kg |



| Client:            | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, 1BM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample ID:  | B-5(6-7)RE                | SDG No.:        | D2546         |
| Lab Sample 1D:     | D2546-15RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 17            |
| Sample Wt/Vol:     | 5,04 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RTX-VMS ID: 0,18          | Level:          | LOW           |
|                    |                           |                 |               |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033252.D I 05/15/12 VF051512

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|---------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 3      | U         | 0.86    | 3   | 6          | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 3      | UQ        | 1.1     | 3   | 6          | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 15     | UQ        | 4.7     | 15  | 30         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 3      | UQ        | 0.65    | 3   | 6          | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 3      | UQ        | 0.76    | 3   | 6          | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 3      | U         | 1.2     | 3   | 6          | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 3      | U         | 0.6     | 3   | 6          | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 3      | U         | 0.74    | 3   | 6          | ug/Kg   |
| 179601-23-I | m/p-Xylenes                 | 6      | U         | 0.86    | 6   | 12         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 3      | U         | 0.81    | 3   | 6          | ug/Kg   |
| 100-42-5    | Styrene                     | 3      | U         | 0.54    | 3   | 6          | ug/Kg   |
| 75-25-2     | Bromoform                   | 3      | U         | 0.88    | 3   | 6          | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 3      | U         | 0.57    | 3   | 6          | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55    | 3   | 6          | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 3      | U         | 0.44    | 3   | 6          | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 3      | U         | 0.49    | 3   | 6          | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 3      | U         | 0.74    | 3   | 6          | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 3      | UQ        | 1       | 3   | 6          | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84    | 3   | 6          | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 3      | U         | 0.6     | 3   | 6          | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 60     | U         | 60      | 60  | 120        | ug/Kg   |
| SURROGATES  |                             |        |           |         |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 51     |           | 56 - 12 | 0   | 102%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 47.3   |           | 57 - 13 | 5   | 95%        | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 49.2   |           | 67 - 12 | 3   | 98%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 42.5   |           | 33 - 14 | 1   | 85%        | SPK: 50 |
| INTERNAL ST |                             |        |           |         |     |            |         |
| 363-72-4    | Pentafluorobenzene          | 131166 | 4.38      |         |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 227900 | 5.13      |         |     |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 211703 | 9.33      |         |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 105744 | 12.24     |         |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-5(6-7)RE

SDG No.:

D2546

Lab Sample ID:

D2546-15RE

Matrix:

SW8260C

5.04

SOIL

Analytical Method:

% Moisture:

17

Sample Wt/Vol:

Units:

Final Vol:

uL

Test:

VOC-TCLVOA-10

Soil Aliquot Vol: GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

MDL

Prep Batch ID

VF033252.D

1

05/15/12

VF051512

**CAS Number** 

Parameter

Conc.

Qualifier

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



| Client:            | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received   | 05/03/12      |
| Client Sample 1D:  | B-6(10-2)                 | SDG No.:        | D2546         |
| Lab Sample 1D:     | D2546-16                  | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 17            |
| Sample Wt/Vol:     | 5,06 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RTX-VMS ID: 0,18          | Level:          | LOW           |
|                    |                           |                 |               |

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033169.D 1 05/13/12 VF051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS          |                                |       |           |      |     |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3     | U         | 0.77 | 3   | 6          | ug/Kg |
| 74-87-3          | Chloromethane                  | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3     | U         | 1.5  | 3   | 6          | ug/Kg |
| 74-83-9          | Bromomethane                   | 3     | U         | 2.9  | 3   | 6          | ug/Kg |
| 75-00-3          | Chloroethane                   | 3     | UQ        | 1.7  | 3   | 6          | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 3     | Ū         | 1.6  | 3   | 6          | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6  | 3   | 6          | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 67-64-1          | Acetone                        | 40    |           | 3.6  | 15  | 30         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3     | U         | 1.8  | 3   | 6          | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3     | U         | 1.7  | 3   | 6          | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3     | U         | 0.82 | 3   | 6          | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 78-93-3          | 2-Butanone                     | 15    | U         | 3.7  | 15  | 30         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3     | U         | 1.2  | 3   | 6          | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3     | U         | 1.1  | 3   | 6          | ug/Kg |
| 74-97 <b>-</b> 5 | Bromochloromethane             | 3     | U         | 0.94 | 3   | 6          | ug/Kg |
| 67-66-3          | Chloroform                     | 3     | U         | 0.88 | 3   | 6          | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3     | U         | 1.3  | 3   | 6          | ug/Kg |
| 71-43-2          | Benzene                        | 3     | U         | 0.45 | 3   | 6          | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 79-01-6          | Trichloroethene                | 3     | U         | 1    | 3   | 6          | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3     | U         | 0.31 | 3   | 6          | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 3     | U         | 0.74 | 3   | 6          | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15    | U         | 3.5  | 15  | 30         | ug/Kg |
| 108-88-3         | Toluene                        | 3     | U         | 0.76 | 3   | 6          | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3     | U         | 0.94 | 3   | 6          | ug/Kg |

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-6(10-2)

SDG No.:

D2546

Lab Sample ID:

D2546-16

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

17

Sample Wt/Vol:

5.06

Units:

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033169.D

05/13/12

VF051312

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|-----|------------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 3      | U         | 0.86    | 3   | 6          | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 3      | U         | 1.1     | 3   | 6          | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 15     | U         | 4.7     | 15  | 30         | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 3      | U         | 0.64    | 3   | 6          | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 3      | U         | 0.76    | 3   | 6          | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 3      | U         | 1.2     | 3   | 6          | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 3      | U         | 0.6     | 3   | 6          | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 3      | U         | 0.74    | 3   | 6          | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.86    | 6   | 12         | ug/Kg   |
| 95-47-6      | o-Xylene                    | 3      | U         | 0.81    | 3   | 6          | ug/Kg   |
| 100-42-5     | Styrene                     | 3      | U         | 0.54    | 3   | 6          | ug/Kg   |
| 75-25-2      | Bromoform                   | 3      | U         | 0.88    | 3   | 6          | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 3      | U         | 0.57    | 3   | 6          | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55    | 3   | 6          | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 3      | U         | 0.44    | 3   | 6          | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 3      | U         | 0.49    | 3   | 6          | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 3      | U         | 0.74    | 3   | 6          | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 3      | U         | 1       | 3   | 6          | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 3      | U         | 0.83    | 3   | 6          | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6     | 3   | 6          | ug/Kg   |
| 123-91-1     | I,4-Dioxane                 | 60     | U         | 60      | 60  | 120        | ug/Kg   |
| SURROGATES   |                             |        |           |         |     |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 48.4   |           | 56 - 12 |     | 97%        | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 48.9   |           | 57 - 13 |     | 98%        | SPK: 5  |
| 2037-26-5    | Toluene-d8                  | 48.9   |           | 67 - 12 | 3   | 98%        | SPK: 5  |
| 460-00-4     | 4-Bromofluorobenzene        | 54.6   |           | 33 - 14 | 1   | 109%       | SPK: 5  |
| INTERNAL STA |                             |        |           |         |     |            |         |
| 363-72-4     | Pentafluorobenzene          | 187280 | 4.38      |         |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 267068 | 5.12      |         |     |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 281114 | 9.32      |         |     |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 157197 | 12.24     |         |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID;

B-6(10-2)

Lab Sample ID:

D2546-16 SW8260C

Analytical Method: Sample Wt/Vol:

5.06

Units:

Soil Aliquot Vol:

GC Column:

RTX-VMS

uL ID: 0.18 Date Collected:

Date Received:

05/03/12 D2546

SOIL

05/01/12

SDG No.: Matrix:

17

% Moisture: Final Vol:

5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033169.D

Dilution:

Prep Date

Date Analyzed

05/13/12

Prep Batch ID

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

# CHEMIECH

#### Report of Analysis

Date Collected: 05/01/12 Client: Dvirka & Bartilucci Date Received: 05/03/12 PV6256, IBM East Fishkill Project: SDG No.: D2546 Client Sample 1D: B-6(10-2)RE SOIL Matrix: Lab Sample ID: D2546-16RE % Moisture: 17 SW8260C Analytical Method: Final Vol: 5000 uL Sample Wt/Vol: 5.01 Units: Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL LOW Level: GC Column: ID: 0.25 RXI-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048319.D 1 05/13/12 VK051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL   | LOD | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|-------|-----|------------|-------|
| TARGETS          |                                |       |           |       |     |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 3     | U         | 0.78  | 3   | 6          | ug/Kg |
| 74-87-3          | Chloromethane                  | 3     | U         | 1     | 3   | 6          | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 3     | U         | 1.5   | 3   | 6          | ug/Kg |
| 74-83-9          | Bromomethane                   | 3     | U         | 2.9   | 3   | 6          | ug/Kg |
| 75-00-3          | Chloroethane                   | SE 3  | U         | 1.7   | 3   | 6          | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 3     | U         | 1.6   | 3   | 6          | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 3     | U         | 1.6   | 3   | 6          | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 3     | U         | 1.8   | 3   | 6          | ug/Kg |
| 67-64-1          | Acetone                        | 45    |           | 3.6   | 15  | 30         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 3     | U         | £ 1.3 | 3   | 6          | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 3     | U         | 1.2   | 3   | 6          | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 3     | U         | 1.8   | 3   | 6          | ug/Kg |
| 75-09-2          | Methylene Chloride             | 3     | U         | 1.7   | 3   | 6          | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 3     | U         | 0.83  | 3   | 6          | ug/Kg |
| 75-34 <b>-</b> 3 | 1,1-Dichloroethane             | 3     | U         | 1.1   | 3   | 6          | ug/Kg |
| 110-82-7         | Cyclohexane                    | 3     | U         | 1.2   | 3   | 6          | ug/Kg |
| 78-93-3          | 2-Butanone                     | 15    | U         | 3.7   | 15  | 30         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 3     | U         | 1.2   | 3   | 6          | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 3     | U         | 1.1   | 3   | 6          | ug/Kg |
| 74-97-5          | Bromochloromethane             | 3     | U         | 0.95  | 3   | 6          | ug/Kg |
| 67-66-3          | Chloroform                     | 3     | U         | 0.89  | 3   | 6          | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 3     | U         | 1.1   | 3   | 6          | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 3     | U         | 1.3   | 3   | 6          | ug/Kg |
| 71-43-2          | Benzene                        | 3     | U         | 0.46  | 3   | 6          | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 3     | U         | 0.77  | 3   | 6          | ug/Kg |
| 79-01-6          | Trichloroethene                | 3     | U         | 1     | 3   | 6          | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 3     | U         | 0.31  | 3   | 6          | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 3     | U         | 0.75  | 3   | 6          | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 15    | U         | 3.5   | 15  | 30         | ug/Kg |
| 108-88-3         | Toluene                        | 3     | U         | 0.77  | 3   | 6          | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 3     | U         | 0.95  | 3   | 6          | ug/Kg |

# CHEMITECH

#### Report of Analysis

Client: Dvirka & Bartilucci Date Collected: 05/01/12 PV6256, IBM East Fishkill Date Received: 05/03/12 Project: Client Sample 1D: B-6(10-2)RE SDG No.: D2546 Lab Sample ID: D2546-16RE Matrix: SOIL % Moisture: 17 Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: 5.01 Units: VOC-TCLVOA-10 Soil Aliquot Vol: Test: uL LOW GC Column: Level: RXI-624 1D: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VK048319.D I 05/13/12 VK051312

| CAS Number       | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|------------------|-----------------------------|--------|-----------|----------|-----|------------|---------|
| 10061-01-5       | cis-1,3-Dichloropropene     | 3      | U         | 0.87     | 3   | 6          | ug/Kg   |
| 79-00-5          | 1,1,2-Trichloroethane       | 3      | U         | 1.1      | 3   | 6          | ug/Kg   |
| 591-78-6         | 2-Hexanone                  | 15     | UQ        | 4.7      | 15  | 30         | ug/Kg   |
| 124-48-1         | Dibromochloromethane        | 3      | U         | 0.65     | 3   | 6          | ug/Kg   |
| 106-93-4         | 1,2-Dibromoethane           | 3      | U         | 0.77     | 3   | 6          | ug/Kg   |
| 127-18-4         | Tetrachloroethene           | 3      | UQ        | 1.2      | 3   | 6          | ug/Kg   |
| 108-90-7         | Chlorobenzene               | 3      | U         | 0.6      | 3   | 6          | ug/Kg   |
| 100-41-4         | Ethyl Benzene               | 3      | U         | 0.75     | 3   | 6          | ug/Kg   |
| 179601-23-1      | m/p-Xylenes                 | 6      | U         | 0.87     | 6   | 12         | ug/Kg   |
| 95-47-6          | o-Xylene                    | 3      | U         | 0.82     | 3   | 6          | ug/Kg   |
| 100-42-5         | Styrene -                   | 3      | U         | 0.54     | 3   | 6          | ug/Kg   |
| 75-25-2          | Bromoform                   | 3      | U         | 0.89     | 3   | 6.         | ug/Kg   |
| 98-82-8          | Isopropylbenzene            | 3      | U         | 0.58     | 3   | 6          | ug/Kg   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 3      | U         | 0.55     | 3   | 6          | ug/Kg   |
| 541-73-1         | 1,3-Dichlorobenzene         | 3      | U         | 0.44     | 3   | 6 =        | ug/Kg   |
| 106-46-7         | 1,4-Dichlorobenzene         | 3      | U         | 0.49     | 3   | 6          | ug/Kg   |
| 95-50-1          | 1,2-Dichlorobenzene         | 3      | U         | 0.75     | 3   | 6          | ug/Kg   |
| 96-12 <b>-</b> 8 | 1,2-Dibromo-3-Chloropropane | 3      | UQ        | 1        | 3   | 6          | ug/Kg   |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 3      | U         | 0.84     | 3   | 6          | ug/Kg   |
| 87-61-6          | 1,2,3-Trichlorobenzene      | 3      | UQ        | 0.6      | 3   | 6          | ug/Kg   |
| 123-91-1         | 1,4-Dioxane                 | 60     | U         | 60       | 60  | 120        | ug/Kg   |
| SURROGATES       |                             |        |           |          |     |            |         |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 70.4   | *         | 56 - 12  |     | 141%       | SPK: 50 |
| 1868-53-7        | Dibromofluoromethane        | 55.3   |           | 57 - 13  | 5   | 111%       | SPK: 5  |
| 2037-26-5        | Toluene-d8                  | 48.8   |           | 67 - 12: |     | 98%        | SPK: 5  |
| 460-00-4         | 4-Bromofluorobenzene        | 47.2   |           | 33 - 14  | 1   | 95%        | SPK: 5  |
| INTERNAL STA     |                             |        |           |          |     |            |         |
| 363-72-4         | Pentafluorobenzene          | 152541 | 6.55      |          |     |            |         |
| 540-36-3         | 1,4-Difluorobenzene         | 276503 | 7.71      |          |     |            |         |
| 3114-55-4        | Chlorobenzene-d5            | 225955 | 10.74     |          |     |            |         |
| 3855-82-1        | 1,4-Dichlorobenzene-d4      | 83326  | 12.68     |          |     |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-6(10-2)RE

SDG No.:

D2546

Lab Sample ID:

D2546-16RE

Matrix:

SOIL

Analytical Method:

SW8260C

watta.

17

5000

Sample Wt/Vol:

V=0000

% Moisture: Final Vol:

CONTRACTOR NAME

5.01

Units: g

Test:

VOC-TCLVOA-10

Soil Aliquot Vol:

GC Column:

RX1-624

uL ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

MDL

Prep Batch ID

VK048319.D

1

05/13/12

VK051312

Market Committee

ul.

CAS Number

Parameter

Conc.

Qualifier

LOD

DD LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Date Collected: 05/01/12 Dvirka & Bartilucci Client: PV6256. IBM East Fishkill Date Received: 05/03/12 Project: SDG No.: D2546 Client Sample ID: B-6(2-3)SOIL Lab Sample 1D: D2546-17 Matrix: Analytical Method: SW8260C % Moisture: 15 Units: Final Vol: 5000 uL Sample Wt/Vol: 5.04 VOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033170.D 1 05/13/12 VF051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.9   | U         | 0.76 | 2.9  | 5.8        | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.9   | U         | 1.4  | 2.9  | 5.8        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.9   | U         | 2.9  | 2.9  | 5.8        | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.9   | UQ        | 1.6  | 2.9  | 5.8        | ug/Kg |
| 75-69 <b>-</b> 4 | Trichlorofluoromethane         | 2.9   | U         | 1.5  | 2.9  | 5.8        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.9   | U         | 1.6  | 2.9  | 5.8        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 67-64-1          | Acetone                        | 20    | J         | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 2.9   | U         | 1.8  | 2.9  | 5.8        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.9   | U         | 1.7  | 2.9  | 5.8        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.9   | U         | 0.81 | 2.9  | 5.8        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.9   | U         | 1.1  | 2.9  | 5.8        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.9   | U         | 0.92 | 2.9  | 5.8        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.9   | U         | 0.86 | 2.9  | 5.8        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.9   | U         | 1.2  | 2.9  | 5.8        | ug/Kg |
| 71-43-2          | Benzene                        | 2.9   | U         | 0.44 | 2.9  | 5.8        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.9   | U         | 0.75 | 2.9  | 5.8        | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.9   | U         | 1    | 2.9  | 5.8        | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.9   | U         | 0.3  | 2.9  | 5.8        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.9   | U         | 0.72 | 2.9  | 5.8        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3         | Toluene                        | 2.9   | U         | 0.75 | 2.9  | 5.8        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.9   | U         | 0.92 | 2.9  | 5.8        | ug/Kg |

# **CHEMIECH**

# Report of Analysis

Client: Dvirka & Bartilucci Project: B-6(2-3)

PV6256, IBM East Fishkill

Units:

Client Sample ID: Lab Sample 1D:

D2546-17 Analytical Method: SW8260C

Sample Wt/Vol: Soil Aliquot Vol:

GC Column:

5.04

RTX-VMS

иL ID: 0.18

g

Date Collected:

Date Received:

SDG No.:

Matrix:

% Moisture:

Final Vol: Test:

5000

05/01/12

05/03/12

D2546

SOIL

15

VOC-TCLVOA-10

uL

Level:

LOW

File ID/Qc Batch:

VF033170.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 2.9    | U         | 0.84    | 2.9  | 5.8        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 2.9    | U         | 1.1     | 2.9  | 5.8        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 14.5   | U         | 4.6     | 14.5 | 29         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 2.9    | U         | 0.63    | 2.9  | 5.8        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 2.9    | U         | 0.75    | 2.9  | 5.8        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 2.9    | U         | 1.2     | 2.9  | 5.8        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 2.9    | U         | 0.58    | 2.9  | 5.8        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 2.9    | U         | 0.72    | 2.9  | 5.8        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 6      | U         | 0.84    | 6    | 12         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 2.9    | U         | 0.79    | 2.9  | 5.8        | ug/Kg   |
| 100-42-5    | Styrene                     | 2.9    | U         | 0.53    | 2.9  | 5.8        | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.9    | U         | 0.86    | 2.9  | 5.8        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 2.9    | U         | 0.56    | 2.9  | 5.8        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 2.9    | U         | 0.54    | 2.9  | 5.8        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 2.9    | U         | 0.43    | 2.9  | 5.8        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 2.9    | U         | 0.48    | 2.9  | 5.8        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2.9    | U         | 0.72    | 2.9  | 5.8        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.9    | U         | 1       | 2.9  | 5.8        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 2.9    | U         | 0.82    | 2.9  | 5.8        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 2.9    | UQ        | 0.58    | 2.9  | 5.8        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 60     | U         | 60      | 60   | 120        | ug/Kg   |
| SURROGATES  |                             |        |           |         |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 52.5   |           | 56 - 12 |      | 105%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 51.6   |           | 57 - 13 |      | 103%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 49.9   |           | 67 - 12 |      | 100%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 59.3   |           | 33 - 14 | 1    | 119%       | SPK: 50 |
| INTERNAL ST |                             |        |           |         |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 143312 | 4.38      |         |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 202450 | 5.12      |         |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 225981 | 9.32      |         |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 132487 | 12.24     |         |      |            |         |
|             |                             |        |           |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Project:

PV6256, IBM East Fishkill

Client Sample ID:

B-6(2-3)

Lab Sample ID:

D2546-17 SW8260C

Analytical Method:

Sample Wt/Vol:

5.04

Units:

g

Soil Aliquot Vol:

GC Column:

RTX-VMS

uL ID: 0.18 Date Collected:

Date Received:

05/03/12 D2546

05/01/12

SDG No.:

Matrix:

% Moisture:

Final Vol:

15

SOIL

5000

uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VF033170.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



| Client:            | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, 1BM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample ID:  | B-6(2-3)RE                | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-17RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 15            |
| Sample Wt/Vol:     | 5.02 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0,25          | Level:          | LOW           |
|                    |                           |                 |               |

File 1D/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch 1D VK048320.D 15 05/13/12 VK051312

| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.95  | U         | 0.76 | 2.95 | 5.9        | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.95  | U         | 1.4  | 2.95 | 5.9        | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.95  | U         | 2.9  | 2.95 | 5.9        | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.95  | U         | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.95  | U         | 1.5  | 2.95 | 5.9        | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.95  | U         | 1.6  | 2.95 | 5.9        | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 67-64-1          | Acetone                        | 16    | J         | 3.5  | 14.5 | 29         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.95  | U         | 1.1  | 2.95 | 5.9        | ug/Kg |
| 79-20 <b>-</b> 9 | Methyl Acetate                 | 2.95  | U         | 1.8  | 2.95 | 5.9        | ug/Kg |
| 75-09-2          | Methylene Chloride             | 2.95  | U         | 1.7  | 2.95 | 5.9        | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.95  | U         | 0.81 | 2.95 | 5.9        | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.95  | U         | 1.1  | 2.95 | 5.9        | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 78-93-3          | 2-Butanone                     | 14.5  | U         | 3.6  | 14.5 | 29         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |
| 67-66-3          | Chloroform                     | 2.95  | U         | 0.87 | 2.95 | 5.9        | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.95  | U         | 1.2  | 2.95 | 5.9        | ug/Kg |
| 71-43-2          | Benzene                        | 2.95  | U         | 0.45 | 2.95 | 5.9        | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.95  | U         | 1    | 2.95 | 5.9        | ug/Kg |
| 78-8 <b>7-</b> 5 | 1,2-Dichloropropane            | 2.95  | U         | 0.3  | 2.95 | 5.9        | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.95  | U         | 0.73 | 2.95 | 5.9        | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 14.5  | U         | 3.4  | 14.5 | 29         | ug/Kg |
| 108-88-3         | Toluene                        | 2.95  | U         | 0.75 | 2.95 | 5.9        | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.95  | U         | 0.93 | 2.95 | 5.9        | ug/Kg |





| Client:            | Dvirka & Bartilucci       | Date Collected: | 05/01/12      |
|--------------------|---------------------------|-----------------|---------------|
| Project:           | PV6256, IBM East Fishkill | Date Received:  | 05/03/12      |
| Client Sample 1D:  | B-6(2-3)RE                | SDG No.:        | D2546         |
| Lab Sample ID:     | D2546-17RE                | Matrix:         | SOIL          |
| Analytical Method: | SW8260C                   | % Moisture:     | 15            |
| Sample Wt/Vol:     | 5.02 Units: g             | Final Vol:      | 5000 uL       |
| Soil Aliquot Vol:  | uL                        | Test:           | VOC-TCLVOA-10 |
| GC Column:         | RXI-624 ID: 0.25          | Level:          | LOW           |
|                    |                           |                 |               |

| File ID/Qc Batch | Dilution: | Prep Date | Date Analyzed | Prep Batch ID |  |
|------------------|-----------|-----------|---------------|---------------|--|
| VK048320.D       | ï         |           | 05/13/12      | VK051312      |  |
|                  |           |           |               |               |  |

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ/CRQL | Units   |
|--------------|-----------------------------|--------|-----------|---------|------|----------|---------|
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.95   | U         | 0.84    | 2.95 | 5.9      | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.95   | U         | 1.1     | 2.95 | 5.9      | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 14.5   | UQ        | 4.6     | 14.5 | 29       | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.95   | U         | 0.63    | 2.95 | 5.9      | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.95   | U         | 0.75    | 2.95 | 5.9      | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.95   | UQ        | 1.2     | 2.95 | 5.9      | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.95   | U         | 0.59    | 2.95 | 5.9      | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.95   | U         | 0.73    | 2.95 | 5.9      | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 6      | U         | 0.84    | 6    | 12       | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.95   | U         | 0.8     | 2.95 | 5.9      | ug/Kg   |
| 100-42-5     | Styrene                     | 2.95   | U         | 0.53    | 2.95 | 5.9      | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.95   | U         | 0.87    | 2.95 | 5.9      | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.95   | U         | 0.56    | 2.95 | 5.9      | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.95   | U         | 0.54    | 2.95 | 5.9      | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.95   | U         | 0.43    | 2.95 | 5.9      | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.95   | U         | 0.48    | 2.95 | 5.9      | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.95   | U         | 0.73    | 2.95 | 5.9      | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.95   | UQ        | 1       | 2.95 | 5.9      | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.95   | U         | 0.82    | 2.95 | 5.9      | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.95   | UQ        | 0.59    | 2.95 | 5.9      | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 60     | U         | 60      | 60   | 120      | ug/Kg   |
| SURROGATES   |                             |        |           |         |      |          |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 68.9   | *         | 56 - 12 | 0    | 138%     | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 53     |           | 57 - 13 | 5    | 106%     | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47.4   |           | 67 - 12 | 3    | 95%      | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 48.6   |           | 33 - 14 | 1    | 97%      | SPK: 50 |
| INTERNAL STA |                             |        |           |         |      |          |         |
| 363-72-4     | Pentafluorobenzene          | 161626 | 6.55      |         |      |          |         |
| 540-36-3     | 1,4-Difluorobenzene         | 303839 | 7.7       |         |      |          |         |
| 3114-55-4    | Chlorobenzene-d5            | 241049 | 10.75     |         |      |          |         |
| 3855-82-1    | I,4-Dichlorobenzene-d4      | 92595  | 12.68     |         |      |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Units:

Date Received:

05/03/12

Client Sample ID:

B-6(2-3)RE

SDG No.:

D2546

Lab Sample ID:

D2546-17RE

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

15

5000

Sample Wt/Vol:

W 0200C

Final Vol:

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

5.02

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

MDL

Prep Batch ID

VK048320.D

1

05/13/12

VK051312

**CAS Number** 

**Parameter** 

Conc.

Qualifier

LOD

LOQ / CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



SDG No.: D2546

Client:

Dvirka & Bartilucci

Analytical Method:

| BSF051831   BSF051831   1,2 Dichlorochane-44   50   49,95   100   61   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141   141                                                                                                                                                                                                                                                                               |               |                   |                                       |       |        |          |      | Li       | Limits                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------------------|-------|--------|----------|------|----------|--------------------------|--|
| DirromePlucromethane   So   S2.61   105   69   133   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126   126                                                                                                                                                                                                                                                                               | Lab Sample 1D | Client ID         | Parameter                             | Spike | Result | Recovery | Qual | Low      | High                     |  |
| Discrime fluore necks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BSF0513S1     | BSF0513S1         | 1,2-Dichloroethane-d4                 | 50    | 49.95  | 100      |      | 61       | 141                      |  |
| BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0514S1   BSF0515S1   BSF0                                                                                                                                                                                                                                                                             |               |                   | Dibromofluoromethane                  | 50    | 52.61  | 105      |      | 69       | 133                      |  |
| BSF0514S1         BSF0514S1         L2-Dichloroethane-4B bit bomoluromethane         50   \$2.89   106   \$7   \$13   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$15   \$10   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$13   \$16   \$16   \$17   \$18   \$16   \$17   \$18   \$16   \$17   \$18   \$18   \$16   \$17   \$18   \$18   \$16   \$17   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$18   \$1 |               |                   | Toluene-d8                            | 50    | 50.33  | 101      |      | 65       | 126                      |  |
| Dibromofluoromethane   So   \$2,89   106   67   135     Tolucine-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                   | 4-Bromofluorobenzene                  | 50    | 55.34  | 111      |      | 58       | 135                      |  |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BSF0514S1     | BSF0514S1         | 1.2-Dichloroethane-d4                 | 50    | 51.96  | 104      |      | 56       | 120                      |  |
| BSF051SS1   BSF051SS1   BSF051SS1   1,2-Dichloroethane-d4   50   5.5.39   111   56   120   123   135   135   135   135   136   120   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135                                                                                                                                                                                                                                                                             |               |                   | Dibromofluoromethane                  | 50    | 52.89  | 106      |      | 57       | 135                      |  |
| BSF051SS1   BSF051SS1   1.2 - Dichlorochlame-d4   50   5.5.39   111   56   120   123   135   135   135   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136                                                                                                                                                                                                                                                                                 |               |                   | Toluene-d8                            | 50    | 49.87  | 100      |      | 67       | 123                      |  |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | 4-Bromofluorobenzene                  | 50    | 53.34  | 107      |      | 33       | 141                      |  |
| No.   Property   Pro                                                                                                                                                                                                                                                                             | BSF0515S1     | BSF0515S1         | 1,2-Dichloroethane-d4                 | 50    | 55.39  | 1]]      |      |          |                          |  |
| BSK051ISI   BSK051ISI   BSK051ISI   1,2-Dichloroethane-44   50   57.55   115   55   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158                                                                                                                                                                                                                                                                              |               |                   | Dibromofluoromethane                  | 50    | 61.49  |          |      |          |                          |  |
| BSK051IS1         BSK051IS1         1,2-Dichloroethane-dd politoroethane         50         \$7.55         115         \$5         1.88 to 15 to                                                                                                                                                                                                                                                                                                                                                               |               |                   | Toluene-d8                            | 50    | 54.49  | 109      |      | 67       | 123                      |  |
| Dibromofluoromethane   50   \$2.93   106   \$3   156   151   152   162   162   163   155   152   163   155   152   163   155   152   163   155   152   163   155   152   163   163   155   152   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163   163                                                                                                                                                                                                                                                                             |               |                   | 4-Bromofluorobenzene                  | 50    | 60.91  | 122      |      | 33       | 141                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BSK0511S1     | BSK0511S1         | 1,2-Dichloroethane-d4                 | 50    | 57,55  | 115      |      |          | 158                      |  |
| BSK0513S1   BSK0513S1   BSK0513S1   1,2-Dichlorocchane-d4   50   54,89   110   8.5   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120                                                                                                                                                                                                                                                                             |               |                   | Dibromofluoromethane                  | 50    | 52.93  | 106      |      |          | 156                      |  |
| BSK0513S1         BSK0513S1         1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 S0 S6.17 112 S7 135 Toluene-d8 S0 S2.74 105 G7 123 4-Bromofluorobenzene S0 S8.78 118 33 141 S6 120 D2513-11MS         SEC-SB-08(6-8)MS         1,2-Dichloroethane-d4 S0 S6.16 S7 118 S7 135 S6 120 Dibromofluoromethane S0 S6.16 S7 111 S7 123 S6 S6.70 S7 S6.70                                                                                                                                                                                                                                                                                                                                         |               |                   | Toluene-d8                            |       |        |          |      |          |                          |  |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | 4-Bromofluorobenzene                  | 50    | 54.89  | 110      |      |          | 120                      |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BSK0513S1     | BSK0513S1         | 1,2-Dichloroethane-d4                 | 50    |        |          |      |          | 120                      |  |
| D2513-11MS   SEC-SB-08(6-8)MS   A-Bromofluorobenzene   50   58.87   118   33   141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                   | Dibromofluoromethane                  | 50    | 56,17  | 112      |      | 57       | 135                      |  |
| D2513-11MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   |                                       |       | 52.74  | 105      |      | 67       | 123                      |  |
| D2513-11MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   | 4-Bromofluorobenzene                  | 50    |        |          |      | 33       |                          |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2513-11MS    | SEC-SB-08(6-8)MS  | 1,2-Dichloroethane-d4                 | 50    | 60.35  | 121      | *    | 56       | 120                      |  |
| D2513-12MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   | Dibromofluoromethane                  | 50    | 56.16  | 112      |      | 57       | 135                      |  |
| D2513-12MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   | Toluene-d8                            | 50    | 55.47  | 111      |      | 67       | 123                      |  |
| Dibromofluoromethane   50   56.56   113   57   135   135   136   136   146   67   123   146   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148   148                                                                                                                                                                                                                                                                                |               |                   | 4-Bromofluorobenzene                  | 50    | 50,56  | 101      |      | 33       | 141                      |  |
| D2546-01   B-1(9-2)   B-1(9-2)   B-1(9-2)   D2546-01   B-1(9-2)   D2546-01                                                                                                                                                                                                                                                                              | D2513-12MSD   | SEC-SB-08(6-8)MSD | 1,2-Dichloroethane-d4                 | 50    | 60.77  | 122      | *    | 56       | 120                      |  |
| D2546-01   B-1(9-2)   B-1(9-2)   1,2-Dichlorochtane-d4   50   62.7z   125   56   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   1                                                                                                                                                                                                                                                                             |               |                   | Dibromofluoromethane                  | 50    | 56.56  | 113      |      | 57       | 135                      |  |
| D2546-01   D2546-01   B-1(9-2)   D15   D                                                                                                                                                                                                                                                                             |               |                   | Toluene-d8                            | 50    | 56,83  | 114      |      | 67       | 123                      |  |
| Dibromofluoromethane   S0   S1,81   104   S7   135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                   | 4-Bromofluorobenzene                  | 50    | 51.45  | 103      |      | 33       | 141                      |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2546-01      | B-1(9-2)          | 1,2-Dichloroethane-d4                 | 50    |        |          |      | 56       |                          |  |
| D2546-01RE   B-1(9-2)RE   B-1(9-2)RE   I,2-Dichloroethane-d4   50   66.14   132   * 56   120   Dibromofluoromethane   50   54.2   108   57   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   1                                                                                                                                                                                                                                                                             |               |                   | Dibromofluoromethane                  | 50    | 51.81  | 104      |      | 57       | 135                      |  |
| D2546-01RE   B-1(9-2)RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                   | Toluene-d8                            |       |        |          |      |          |                          |  |
| Dibromofluoromethane   50   54,2   108   57   135     Toluene-d8   50   48,58   97   67   123     4-Bromofluorobenzene   50   43,19   86   33   141     D2546-02   B-1(2-3,5)   1,2-Dichloroethane-d4   50   62,99   126   * 56   120     Dibromofluoromethane   50   50,71   101   57   135     Toluene-d8   50   49,74   99   67   123     4-Bromofluorobenzene   50   55,32   111   33   141     D2546-02RE   B-1(2-3,5)RE   1,2-Dichloroethane-d4   50   67,14   134   * 56   120     Dibromofluoromethane   50   53,23   106   57   135     Toluene-d8   50   48,38   97   67   123     D2546-03   B-1(4-5,5)   1,2-Dichloroethane-d4   50   61,6   123   * 56   120     Dibromofluoromethane   50   49,24   98   33   141     D2546-03   B-1(4-5,5)   1,2-Dichloroethane-d4   50   61,6   123   * 56   120     Dibromofluoromethane   50   49,53   99   57   135     Toluene-d8   50   49,41   99   67   123     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67,29   135   * 56   120     Dibromofluoromethane   50   52,28   105   33   141     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67,29   135   * 56   120     Dibromofluoromethane   50   53,1   106   57   135     Toluene-d8   50   47,57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                   |                                       | 50    |        | 96       |      |          |                          |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2546-01RE    | B-1(9-2)RE        | 1,2-Dichloroethane-d4                 | 50    |        |          | *    |          |                          |  |
| D2546-02   B-1(2-3,5)   B-1(2-3,5)   1,2-Dichloroethane-d4   50   62.99   126   * 56   120     Dibromofluoromethane   50   50.71   101   57   135     Toluene-d8   50   49.74   99   67   123     4-Bromofluorobenzene   50   55.32   111   33   141     D2546-02RE   B-1(2-3,5)RE   1,2-Dichloroethane-d4   50   67.14   134   * 56   120     Dibromofluoromethane   50   53.23   106   57   135     Toluene-d8   50   48.38   97   67   123     D2546-03   B-1(4-5,5)   1,2-Dichloroethane-d4   50   61.6   123   * 56   120     Dibromofluoromethane   50   49.53   99   57   135     Toluene-d8   50   49.53   99   57   135     Toluene-d8   50   49.41   99   67   123     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   52.28   105   33   141     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   53.1   106   57   135     D2546-03RE   Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123     D2546-03RE   Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   | Dibromofluoromethane                  |       |        |          |      |          |                          |  |
| D2546-02   B-1(2-3,5)   1,2-Dichloroethane-d4   50   62.99   126   * 56   120     Dibromofluoromethane   50   50.71   101   57   135     Toluene-d8   50   49.74   99   67   123     4-Bromofluorobenzene   50   55.32   111   33   141     D2546-02RE   B-1(2-3,5)RE   1,2-Dichloroethane-d4   50   67.14   134   * 56   120     Dibromofluoromethane   50   53.23   106   57   135     Toluene-d8   50   48.38   97   67   123     4-Bromofluorobenzene   50   49.2   98   33   141     D2546-03   B-1(4-5,5)   1,2-Dichloroethane-d4   50   61.6   123   * 56   120     Dibromofluoromethane   50   49.53   99   57   135     Toluene-d8   50   49.41   99   67   123     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   52.28   105   33   141     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   | Toluene-d8                            | 50    |        |          |      |          |                          |  |
| Dibromofluoromethane   50   50.71   101   57   135     Toluene-d8   50   49.74   99   67   123     4-Bromofluorobenzene   50   55.32   111   33   141     D2546-02RE   B-1(2-3.5)RE   1,2-Dichloroethane-d4   50   67.14   134   * 56   120     Dibromofluoromethane   50   53.23   106   57   135     Toluene-d8   50   48.38   97   67   123     4-Bromofluorobenzene   50   49.2   98   33   141     D2546-03   B-1(4-5.5)   1,2-Dichloroethane-d4   50   61.6   123   * 56   120     Dibromofluoromethane   50   49.53   99   57   135     Toluene-d8   50   49.41   99   67   123     D2546-03RE   B-1(4-5.5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123     D2546-03RE   B-1(4-5.5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                   |                                       |       |        | 86       |      |          |                          |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D2546-02      | B-1(2-3.5)        |                                       |       |        |          | 冰    |          |                          |  |
| D2546-02RE   B-1(2-3,5)RE   I,2-Dichloroethane-d4   50   67,14   134   * 56   120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                   |                                       |       |        |          |      |          |                          |  |
| D2546-02RE       B-1(2-3,5)RE       1,2-Dichloroethane-d4 Dibromofluoromethane       50       67.14 134 * 56       120         Dibromofluoromethane       50       53,23       106       57       135         Toluene-d8       50       48,38       97       67       123         4-Bromofluorobenzene       50       49.2       98       33       141         D2546-03       B-1(4-5,5)       1,2-Dichloroethane-d4       50       61.6       123 * 56       120         Dibromofluoromethane       50       49.53       99       57       135         Toluene-d8       50       49.41       99       67       123         4-Bromofluorobenzene       50       52.28       105       33       141         D2546-03RE       B-1(4-5.5)RE       1,2-Dichloroethane-d4       50       67.29       135 * 56       120         Dibromofluoromethane       50       53.1       106       57       135         Toluene-d8       50       47.57       95       67       123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | Toluene-d8                            |       |        |          |      |          |                          |  |
| Dibromofluoromethane   50   53,23   106   57   135     Toluene-d8   50   48,38   97   67   123     4-Bromofluorobenzene   50   49,2   98   33   141     D2546-03   B-1(4-5,5)   1,2-Dichloroethane-d4   50   61,6   123   * 56   120     Dibromofluoromethane   50   49,53   99   57   135     Toluene-d8   50   49,41   99   67   123     4-Bromofluorobenzene   50   52,28   105   33   141     D2546-03RE   B-1(4-5,5)RE   1,2-Dichloroethane-d4   50   67,29   135   * 56   120     Dibromofluoromethane   50   53,1   106   57   135     Toluene-d8   50   47,57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   | 4-Bromofluorobenzene                  | 50    | 55.32  |          |      |          |                          |  |
| Toluene-d8   50   48,38   97   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D2546-02RE    | B-1(2-3.5)RE      |                                       |       |        |          | *    |          |                          |  |
| D2546-03   B-1(4-5.5)   H-1(4-5.5)   Dibromofluorobenzene   50   49.2   98   33   141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   | Dibromofluoromethane                  | 50    |        |          |      |          |                          |  |
| D2546-03       B-1(4-5.5)       1,2-Dichloroethane-d4 Dibromofluoromethane       50       61.6 displayed 123       * 56 displayed 120         Dibromofluoromethane       50       49.53 displayed 199 displayed 135       57 displayed 135         Toluene-d8       50       49.41 displayed 199 displayed 123         4-Bromofluorobenzene       50       52.28 displayed 105 displayed 135 displa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                                       | 50    |        |          |      |          | 123                      |  |
| Dibromofluoromethane   50   49.53   99   57   135     Toluene-d8   50   49.41   99   67   123     A-Bromofluorobenzene   50   52.28   105   33   141     D2546-03RE   B-1(4-5.5)RE   1,2-Dichloroethane-d4   50   67.29   135   * 56   120     Dibromofluoromethane   50   53.1   106   57   135     Toluene-d8   50   47.57   95   67   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                   |                                       | 50    |        |          |      |          |                          |  |
| Toluene-d8 50 49.41 99 67 123 4-Bromofluorobenzene 50 52.28 105 33 141  D2546-03RE B-1(4-5.5)RE 1,2-Dichloroethane-d4 50 67.29 135 * 56 120 Dibromofluoromethane 50 53.1 106 57 135 Toluene-d8 50 47.57 95 67 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D2546-03      | B-1(4-5.5)        | · · · · · · · · · · · · · · · · · · · |       |        |          | *    |          |                          |  |
| 4-Bromofluorobenzene 50 52.28 105 33 141<br>D2546-03RE B-1(4-5.5)RE 1,2-Dichloroethane-d4 50 67.29 135 * 56 120<br>Dibromofluoromethane 50 53.1 106 57 135<br>Toluene-d8 50 47.57 95 67 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   |                                       |       |        |          |      |          |                          |  |
| D2546-03RE       B-1(4-5.5)RE       1,2-Dichloroethane-d4       50       67.29       135       *       56       120         Dibromofluoromethane       50       53.1       106       57       135         Toluene-d8       50       47.57       95       67       123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                                       |       |        | 99       |      | 67       |                          |  |
| Dibromofluoromethane         50         53.1         106         57         135           Toluene-d8         50         47.57         95         67         123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8             |                   | 4-Bromofluorobenzene                  | 50    | 52.28  | 105      |      | 33       | 141                      |  |
| Toluene-d8 50 47.57 95 67 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2546-03RE    | B-1(4-5.5)RE      | 1,2-Dichloroethane-d4                 | 50    |        | 135      | *    |          | 120                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                   |                                       | 50    | 53.1   | 106      |      |          | 135                      |  |
| 4. Rromofluorobenzene 50 47 07 06 04 28 00 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                   | Toluene-d8                            | 50    | 47.57  | 95       |      |          |                          |  |
| 4-DIGITION TO THE STATE OF THE                                                                                                                                                                                                                                                                            |               |                   | 4-Bromofluorobenzene                  | 50    | 47.97  | 96       |      | 21 o¥326 | <b>72</b> <sup>141</sup> |  |



SDG No.: <u>D2546</u>

Client:

Dvirka & Bartilucci

Analytical Method:

|               |                   |                                            |       |        |          |      | Limits   |       |
|---------------|-------------------|--------------------------------------------|-------|--------|----------|------|----------|-------|
| Lab Sample 1D | Client ID         | Parameter                                  | Spike | Result | Recovery | Qual | Low      | High  |
| 02546-04      | B-1(6-7.5)        | 1,2-Dichloroethane-d4                      | 50    | 60.8   | 122      | *    | 56       | 120   |
|               |                   | Dibromofluoromethane                       | 50    | 49.56  | 99       |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 50.47  | 101      |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 51.76  | 104      |      | 33       | 141   |
| 2546-04RE     | B-1(6-7.5)RE      | 1,2-Dichloroethane-d4                      | 50    | 71.38  | 143      | *    | 56       | 120   |
|               |                   | Dibromofluoromethane                       | 50    | 53.13  | 106      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 46.79  | 94       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 46.14  | 92       |      | 33       | 141   |
| 2546-05       | B-2(8-2)          | 1,2-Dichloroethane-d4                      | 50    | 63.99  | 128      | 30   | 56       | 120   |
|               | ,                 | Dibromofluoromethane                       | 50    | 53.9   | 108      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 49.62  | 99       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 50.77  | 102      |      | 33       | 141   |
| 2546-05RE     | B-2(8-2)RE        | 1,2-Dichloroethane-d4                      | 50    | 67.91  | 136      | *    | 56       | 120   |
|               | (/-               | Dibromofluoromethane                       | 50    | 53.19  | 106      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 47.93  | 96       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 43.76  | 88       |      | 33       | 141   |
| 2546-06       | B-2(2-3,5)        | 1,2-Dichloroethane-d4                      | 50    | 66.29  | 133      |      | 56       | 120   |
|               | ,                 | Dibromofluoromethane                       | 50    | 56.19  | 112      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 48.7   | 97       |      | 67       | 123   |
|               | ₩*                | 4-Bromofluorobenzene                       | 50    | 44.36  | 89       |      | 33       | 141   |
| 2546-06RE     | B-2(2-3.5)RE      | 1,2-Dichloroethane-d4                      | 50    | 48.13  | 96       |      | 56       | 120   |
| 2010 00112    | 2 -(- 212 /112    | Dibromofluoromethane                       | 50    | 49.79  | 100      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 48.58  | 97       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 47.08  | 94       |      | 33       | 141   |
| 2546-07       | B-2(4-5)          | 1,2-Dichloroethane-d4                      | 50    | 47.58  | 95       |      | 56       | 120   |
| 25 70 07      | 2 2(. 5)          | Dibromofluoromethane                       | 50    | 50.44  | 101      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 48.87  | 98       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 55.18  | 110      |      | 33       | 141   |
| 02546-07RE    | B-2(4-5)RE        | 1,2-Dichloroethane-d4                      | 50    | 61.49  | 123      | *    | 56       | 120   |
| 25 10 07112   | B Z(1 3)RE        | Dibromofluoromethane                       | 50    | 52.07  | 104      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 46.98  | 94       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 48.68  | 97       |      | 33       | 141   |
| 2546-08       | B-2(6-8)          | 1,2-Dichloroethane-d4                      | 50    | 48.75  | 98       |      | 56       | 120   |
| 725-10 00     | D 2(0 0)          | Dibromofluoromethane                       | 50    | 50.95  | 102      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 50.52  | 101      |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 54,31  | 109      |      | 33       | 141   |
| 2546-08RE     | B-2(6-8)RE        | 1,2-Dichloroethane-d4                      | 50    | 64.21  | 128      |      | 56       | 120   |
| 2340-00KL     | D-2(0-0)/CE       | Dibromofluoromethane                       | 50    | 54.74  | 109      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 45.59  | 91       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 46.32  | 93       |      | 33       | 141   |
| 2546-09       | B-4(9-2)          | 1,2-Dichloroethane-d4                      | 50    | 50.67  | 101      |      | 56       | 120   |
| 72540-09      | B-4( <i>)</i> -2) | Dibromofluoromethane                       | 50    | 49.61  | 99       |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 48.99  | 98       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 53.11  | 106      |      | 33       | 141   |
| 2546-09RE     | B-4(9-2)RE        | 1,2-Dichloroethane-d4                      | 50    | 64.48  | 129      | *    | 56       | 120   |
| 14340-071115  | D-+(7-2)NL        | Dibromofluoromethane                       | 50    | 53.99  | 108      |      | 57       | 135   |
|               |                   | Toluene-d8                                 | 50    | 47.08  | 94       |      | 67       | 123   |
|               |                   | 4-Bromofluorobenzene                       | 50    | 44.05  | 88       |      | 33       | 141   |
| 2546 10       | D 4/2 2)          |                                            | 50    | 51.13  | 102      |      | 56       | 120   |
| 2546-10       | B-4(2-3)          | 1,2-Dichloroethane-d4 Dibromofluoromethane |       | 51.13  | 102      |      | 57       | 135   |
|               |                   |                                            | 50    |        | 100      |      | 67       | 123   |
|               |                   | Toluene-d8                                 | 50    | 49.92  |          |      |          |       |
|               |                   | 4-Bromofluorobenzene                       | 50    | 56.41  | 113      | 2    | 22 of 26 | 72141 |



SDG No.: D2546

Client:

Dvirka & Bartilucci

Analytical Method:

|               |                 |                       |       |        |          |      | Limits   |       |
|---------------|-----------------|-----------------------|-------|--------|----------|------|----------|-------|
| Lab Sample ID | Client ID       | Parameter             | Spike | Result | Recovery | Qual | Low      | High  |
| 2546-10RE     | B-4(2-3)RE      | 1,2-Dichloroethane-d4 | 50    | 62.74  | 125      | *    | 56       | 120   |
| 20.010.02     | 5 (5 5)112      | Dibromofluoromethane  | 50    | 54.1   | 108      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 47.18  | 94       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 48.15  | 96       |      | 33       | 141   |
| 2546-11       | B-3(9-2)        | 1,2-Dichloroethane-d4 | 50    | 46.98  | 94       |      | 56       | 120   |
| 231011        | <i>D</i> 3(7 2) | Dibromofluoromethane  | 50    | 50.8   | 102      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 49.35  | 99       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 54.52  | 109      |      | 33       | 141   |
| 2546-11RE     | B-3(9-2)RE      | 1,2-Dichloroethane-d4 | 50    | 64.23  | 128      |      | 56       | 120   |
| 23 10 TIRE    | D 3(7 2)KL      | Dibromofluoromethane  | 50    | 53.89  | 108      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 47.9   | 96       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 41.72  | 83       |      | 33       | 141   |
| 2546-12       | B-3(2-3.5)      |                       | 50    | 48.53  | 97       |      | 56       | 120   |
| 2340-12       | D-3(2-3.3)      | 1,2-Dichloroethane-d4 |       | 49.89  | 100      |      | 57       |       |
|               |                 | Dibromofluoromethane  | 50    |        |          |      |          | 135   |
|               |                 | Toluene-d8            | 50    | 49.23  | 98       |      | 67       | 123   |
| N516 10DE     | D 4/4 2 5) D E  | 4-Bromofluorobenzene  | 50    | 56.31  | 113      | 100  | 33       | 141   |
| 2546-12RE     | B-3(2-3.5)RE    | 1,2-Dichloroethane-d4 | 50    | 66.47  | 133      | .00  | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 55.1   | 110      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 49.06  | 98       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 43.87  | 88       |      | 33       | 141   |
| 2546-13       | B-3(6-7)        | 1,2-Dichloroethane-d4 | 50    | 47.56  | 95       |      | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 50.42  | 101      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 49.62  | 99       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 55.18  | 110      |      | 33       | 141   |
| 2546-13RE     | B-3(6-7)RE      | 1,2-Dichloroethane-d4 | 50    | 64.11  | 128      | *    | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 54.01  | 108      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 46.4   | 93       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 44.36  | 89       |      | 33       | 141   |
| 2546-14       | B-5(13-2)       | 1,2-Dichloroethane-d4 | 50    | 47,18  | 94       |      | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 35     | 70       |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 51.25  | 103      |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 56.94  | 114      |      | 33       | 141   |
| 2546-14RE     | B-5(13-2)RE     | 1,2-Dichloroethane-d4 | 50    | 70.36  | 141      | *    | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 22.16  | 44       | *    | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 49.18  | 98       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 52.72  | 105      |      | 33       | 141   |
| 2546-15       | B-5(6-7)        | 1,2-Dichloroethane-d4 | 50    | 54.11  | 108      |      | 56       | 120   |
|               | (- 1)           | Dibromofluoromethane  | 50    | 53.37  | 107      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 50.87  | 102      |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 60.2   | 120      |      | 33       | 141   |
| 2546-15RE     | B-5(6-7)RE      | 1,2-Dichloroethane-d4 | 50    | 50.99  | 102      |      | 56       | 120   |
|               | (0 / // 10      | Dibromofluoromethane  | 50    | 47.26  | 95       |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 49.24  | 98       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 42.46  | 85       |      | 33       | 141   |
| 546-16        | B-6(10-2)       | 1,2-Dichloroethane-d4 | 50    | 48.45  | 97       |      | 56       | 120   |
| D-10-10       | D-0(10-2)       | Dibromofluoromethane  |       | 48.43  | 98       |      | 56<br>57 |       |
|               |                 |                       | 50    |        |          |      |          | 135   |
|               |                 | Toluene-d8            | 50    | 48.89  | 98       |      | 67       | 123   |
| 546 16BE      | D ((10 0)DE     | 4-Bromofluorobenzene  | 50    | 54.65  | 109      |      | 33       | 141   |
| 2546-16RE     | B-6(10-2)RE     | 1,2-Dichloroethane-d4 | 50    | 70.42  | 141      |      | 56       | 120   |
|               |                 | Dibromofluoromethane  | 50    | 55.32  | 111      |      | 57       | 135   |
|               |                 | Toluene-d8            | 50    | 48.85  | 98       |      | 67       | 123   |
|               |                 | 4-Bromofluorobenzene  | 50    | 47.25  | 95       |      | 23 of 26 | 72141 |



SDG No.: D2546

Client:

Dvirka & Bartilucci

Analytical Method:

|               |            |                       |       |        |          |      | Lin | mits |
|---------------|------------|-----------------------|-------|--------|----------|------|-----|------|
| Lab Sample ID | Client 1D  | Parameter             | Spike | Result | Recovery | Qual | Low | High |
| 02546-17      | B-6(2-3)   | 1,2-Dichloroethane-d4 | 50    | 52.5   | 105      |      | 56  | 120  |
|               | ,          | Dibromofluoromethane  | 50    | 51.6   | 103      |      | 57  | 135  |
|               |            | Toluene-d8            | 50    | 49.86  | 100      |      | 67  | 123  |
|               |            | 4-Bromofluorobenzene  | 50    | 59.33  | 119      |      | 33  | 141  |
| 2546-17RE     | B-6(2-3)RE | 1,2-Dichloroethane-d4 | 50    | 68.89  | 138      | *    | 56  | 120  |
|               |            | Dibromofluoromethane  | 50    | 53.02  | 106      |      | 57  | 135  |
|               |            | Toluene-d8            | 50    | 47.42  | 95       |      | 67  | 123  |
|               |            | 4-Bromofluorobenzene  | 50    | 48.58  | 97       |      | 33  | 141  |
| BF0513S1      | VBF0513S1  | 1,2-Dichloroethane-d4 | 50    | 50.64  | 101      |      | 61  | 141  |
|               |            | Dibromofluoromethane  | 50    | 50.36  | 101      |      | 69  | 133  |
|               |            | Toluene-d8            | 50    | 46.92  | 94       |      | 65  | 126  |
|               |            | 4-Bromofluorobenzene  | 50    | 52.49  | 105      |      | 58  | 135  |
| BF0514S1      | VBF0514S1  | 1,2-Dichloroethane-d4 | 50    | 53.87  | 108      |      | 56  | 120  |
|               |            | Dibromofluoromethane  | 50    | 54.95  | 110      |      | 57  | 135  |
|               |            | Toluene-d8            | 50    | 51.34  | 103      |      | 67  | 123  |
|               |            | 4-Bromofluorobenzene  | 50    | 54.91  | 110      |      | 33  | 141  |
| /BF0515S1     | VBF0515S1  | 1,2-Dichloroethane-d4 | 50    | 53.83  | 108      |      | 56  | 120  |
|               |            | Dibromofluoromethane  | 50    | 53.82  | 108      |      | 57  | 135  |
|               |            | Toluene-d8            | 50    | 51.21  | 102      |      | 67  | 123  |
|               |            | 4-Bromofluorobenzene  | 50    | 50.8   | 102      |      | 33  | 141  |
| 'BK0511S1     | VBK0511S1  | 1,2-Dichloroethane-d4 | 50    | 51.63  | 103      |      | 55  | 158  |
|               |            | Dibromofluoromethane  | 50    | 50.94  | 102      |      | 53  | 156  |
|               |            | Toluene-d8            | 50    | 49.52  | 99       |      | 85  | 115  |
|               |            | 4-Bromofluorobenzene  | 50    | 46.11  | 92       |      | 85  | 120  |
| BK0513S1      | VBK0513S1  | 1,2-Dichloroethane-d4 | 50    | 58.65  | 117      |      | 56  | 120  |
|               |            | Dibromofluoromethane  | 50    | 51.65  | 103      |      | 57  | 135  |
|               |            | Toluene-d8            | 50    | 47.59  | 95       |      | 67  | 123  |
|               |            | 4-Bromofluorobenzene  | 50    | 49.44  | 99       |      | 33  | 141  |



Lab Name:

CHEMTECH

#### SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Code:
 CHEM
 Cas No:
 D2546
 SAS No:
 D2546
 SDG No:
 D2546

Client: Dvirka & Bartilucci

Client SampleID: SEC-SB-08(6-8)MS Analytical Method: EPA SW846 8260 Datafile: VF033266.D

| COMPOUND                       | SPIKE<br>ADDED<br>(ug/Kg) | SAMPLE<br>CONCENTRATION<br>(ug/Kg) | MS<br>CONCENTRATION<br>(ug/Kg) | MS<br>%<br>REC# | QC<br>LIMITS<br>REC |
|--------------------------------|---------------------------|------------------------------------|--------------------------------|-----------------|---------------------|
| Dichlorodifluoromethane        | 68                        | 0                                  | 70                             | 103             | (44-157)            |
| Chloromethane                  | 68                        | 0                                  | 89                             | 131             | (51-144)            |
| Vinyl Chloride                 | 68                        | 0                                  | 130                            | 191*            | (56-145)            |
| Bromomethane                   | 68                        | 0                                  | 130                            | 191*            | (47-151)            |
| Chloroethane                   | 68                        | 0                                  | 150                            | 221*            | (55-158)            |
| Trichlorofluoromethane         | 68                        | 0                                  | 78                             | 115             | (63-145)            |
| 1,1,2-Trichlorotrifluoroethane | 68                        | 0                                  | 68                             | 100             | (63-141)            |
| 1,1-Dichloroethene             | 68                        | 0                                  | 69                             | 101             | (64-140)            |
| Acetone                        | 342                       | 27                                 | 310                            | 83              | (41-145)            |
| Carbon Disulfide               | 68                        | 0                                  | 73                             | 107             | (56-139)            |
| Methyl tert-butyl Ether        | 68                        | 0                                  | 78                             | 115             | (64-132)            |
| Methyl Acetate                 | 68                        | 0                                  | 83                             | 122             | (21-221)            |
| Methylene Chloride             | 68                        | 1.5                                | 77                             | 111             | (59-133)            |
| trans-1,2-Dichloroethene       | 68                        | 0                                  | 75                             | 110             | (64-135)            |
| 1,1-Dichloroethane             | 68                        | 0                                  | 79                             | 116             | (66-135)            |
| Cyclohexane                    | 68                        | 0                                  | 70                             | 103             | (59-140)            |
| 2-Butanone                     | 342                       | 0                                  | 350                            | 102             | (54-137)            |
| Carbon Tetrachloride           | 68                        | 0                                  | 60                             | 88              | (66-137)            |
| cis-1,2-Dichloroethene         | 68                        | 0                                  | 72                             | 106             | (65-132)            |
| Bromochloromethane             | 68                        | 0                                  | 81                             | 119             | (62-125)            |
| Chloroform                     | 68                        | 0                                  | 75                             | 110             | (68-132)            |
| 1,1,1-Trichloroethane          | 68                        | 0                                  | 70                             | 103             | (69-138)            |
| Methylcyclohexane              | 68                        | 0                                  | 58                             | 85              | (54-134)            |
| Benzene                        | 68                        | 0                                  | 72                             | 106             | (68-130)            |
| 1,2-Dichloroethane             | 68                        | 0                                  | 66                             | 97              | (68-130)            |
| Trichloroethene                | 68                        | 0                                  | 64                             | 94              | (54-149)            |
| 1,2-Dichloropropane            | 68                        | 0                                  | 76                             | 112             | (65-136)            |
| Bromodichloromethane           | 68                        | 0                                  | 69                             | 101             | (68-132)            |
| 4-Methyl-2-Pentanone           | 342                       | 0                                  | 350                            | 102             | (59-137)            |
| Toluene                        | 68                        | 0                                  | 67                             | 99              | (65-133)            |
| t-1,3-Dichloropropene          | 68                        | 0                                  | 67                             | 99              | (64-129)            |
| cis-1,3-Dichloropropene        | 68                        | 0                                  | 69                             | 101             | (65-129)            |
| 1,1,2-Trichloroethane          | 68                        | 0                                  | 69                             | 101             | (66-131)            |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

<sup>\*</sup> Values outside of QC limits

# CHEMITECH

Lab Name:

Client SampleID:

CHEMTECH

SEC-SB-08(6-8)MS

#### SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

| Lab Code: | CHEM | Cas No: | D2546 | SAS No: | D2546 | SDG No: | D2546 |
|-----------|------|---------|-------|---------|-------|---------|-------|
|           |      |         |       |         |       |         |       |

Analytical Method:

Client: Dvirka & Bartilucci

EPA SW846 8260

Datafile:

VF033266.D

SPIKE MS QC SAMPLE MS ADDED CONCENTRATION CONCENTRATION % LIMITS COMPOUND (ug/Kg) REC# (ug/Kg) (ug/Kg) REC 390 114 (58-133)342 0 2-Hexanone 0 68 100 (67-131)68 Dibromochloromethane 0 65 96 (65-130)1,2-Dibromoethane 68 61 90 (37-161)0 68 Tetrachloroethene 97 68 0 66 (66-128)Chlorobenzene 0 67 99 (65-133)Ethyl Benzene 0 130 95 (62-134)m/p-Xylenes 137 63 93 0 (65-133)o-Xylene 68 63 93 0 (66-127)68 Styrene 60 88 (68-131)Bromoform 68 0 71 104 (64-139)68 0 lsopropylbenzene 1,1,2,2-Tetrachloroethane 68 0 74 109 (48-150)0 67 (60-129)68 1,3-Dichlorobenzene 0 68 100 1,4-Dichlorobenzene 68 (59-128)0 68 100 (63-127)1,2-Dichlorobenzene 68 64 94 0 (65-137)1,2-Dibromo-3-Chloropropane 68 0 57 84 (38-131)68 1,2,4-Trichlorobenzene 0 56 82 (26-131)68 1,2,3-Trichlorobenzene 1370 0 1100 80 (50-150)1,4-Dioxane

RPD: 0 Out of 52 outside limits

Spike Recovery: 3 Out of 52 outside limits

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

<sup>\*</sup> Values outside of QC limits

#### SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CHEMTECH
 Client:
 Dvirka & Bartilucci

 Lab Code:
 CHEM
 Cas No:
 D2546
 SAS No:
 D2546
 SDG No:
 D2546

Client SampleID: SEC-SB-08(6-8)MSD Analytical Method: EPA SW846 8260 Datafile: VF033267.D

| COMPOUND                       | SPIKE<br>ADDED<br>(ug/Kg) | MSD<br>CONCENTRATION<br>(ug/Kg) | MSD<br>% %<br>(ug/Kg) | QC LIMITS<br>RPD REC |
|--------------------------------|---------------------------|---------------------------------|-----------------------|----------------------|
| Dichlorodifluoromethane        | 68                        | 73                              | 107   4               | 20 (44-157)          |
| Chloromethane                  | 68                        | 92                              | 135   3               | 20 (51-144)          |
| Vinyl Chloride                 | 68                        | 130                             | 191*   0              | 20 (56-145)          |
| Bromomethane                   | 68                        | 140                             | 206*   8              | 20 (47-151)          |
| Chloroethane                   | 68                        | 140                             | 206*   7              | 20 (55-158)          |
| Trichlorofluoromethane         | 68                        | 78                              | 115   0               | 20 (63-145)          |
| 1,1,2-Trichlorotrifluoroethane | 68                        | 71                              | 104   4               | 20 (63-141)          |
| 1,1-Dichloroethene             | 68                        | 73                              | 107   6               | 20 (64-140)          |
| Acetone                        | 342                       | 300                             | 80   4                | 20 (41-145)          |
| Carbon Disulfide               | 68                        | 76                              | 112   5               | 20 (56-139)          |
| Methyl tert-butyl Ether        | 68                        | 80                              | 118   3               | 20 (64-132)          |
| Methyl Acetate                 | 68                        | 85                              | 125   2               | 20 (21-221)          |
| Methylene Chloride             | 68                        | 79                              | 114   3               | 20 (59-133)          |
| trans-1,2-Dichloroethene       | 68                        | 78                              | 115   4               | 20 (64-135)          |
| 1,1-Dichloroethane             | 68                        | 79                              | 116   0               | 20 (66-135)          |
| Cyclohexane                    | 68                        | 73                              | 107   4               | 20 (59-140)          |
| 2-Butanone                     | 342                       | 390                             | 114   11              | 20 (54-137)          |
| Carbon Tetrachloride           | 68                        | 65                              | 96 ] 9                | 20 (66-137)          |
| cis-1,2-Dichloroethene         | 68                        | 72                              | 106 ] 0               | 20 (65-132)          |
| Bromochloromethane             | 68                        | 85                              | 125   5               | 20 (62-125)          |
| Chloroform                     | 68                        | 72                              | 106   4               | 20 (68-132)          |
| 1,1,1-Trichloroethane          | 68                        | 71                              | 104   I               | 20 (69-138)          |
| Methylcyclohexane              | 68                        | 64                              | 94   10               | 20 (54-134)          |
| Benzene                        | 68                        | 74                              | 109   3               | 20 (68-130)          |
| 1,2-Dichloroethane             | 68                        | 70                              | 103   6               | 20 (68-130)          |
| Trichloroethene                | 68                        | 65                              | 96   2                | 20 (54-149)          |
| 1,2-Dichloropropane            | 68                        | 77                              | 113   1               | 20 (65-136)          |
| Bromodichloromethane           | 68                        | 71                              | 104   3               | 20 (68-132)          |
| 4-Methyl-2-Pentanone           | 342                       | 400                             | 117   14              | 20 (59-137)          |
| Toluene                        | 68                        | 70                              | 103   4               | 20 (65-133)          |
| t-1,3-Dichloropropene          | 68                        | 70                              | 103   4               | 20 (64-129)          |
| cis-1,3-Dichloropropene        | 68                        | 72                              | 106   5               | 20 (65-129)          |
| 1,1,2-Trichloroethane          | 68                        | 72                              | 106   5               | 20 (66-131)          |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

<sup>\*</sup> Values outside of QC limits

#### SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: Dvirka & Bartilucci

Lab Code: CHEM Cas No: D2546 SAS No: D2546 SDG No: D2546

Client SampleID: SEC-SB-08(6-8)MSD Analytical Method: EPA SW846 8260 Datafile: VF033267.D

| COMPOUND                    | SPIKE<br>ADDED<br>(ug/Kg) | MSD<br>CONCENTRATION<br>(ug/Kg) | MSD<br>% %<br>(ug/Kg) | QC LI<br>RPD | MITS<br>REC |
|-----------------------------|---------------------------|---------------------------------|-----------------------|--------------|-------------|
| 2-Hexanone                  | 342                       | 370                             | 108   5               | 20           | (58-133)    |
| Dibromochloromethane        | 68                        | 71                              | 104   4               | 20           | (67-131)    |
| 1,2-Dibromoethane           | 68                        | 69                              | 101   5               | 20           | (65-130)    |
| Tetrachloroethene           | 68                        | 63                              | 93   3                | 20           | (37-161)    |
| Chlorobenzene               | 68                        | 67                              | 99   2                | 20           | (66-128)    |
| Ethyl Benzene               | 68                        | 69                              | 101   2               | 20           | (65-133)    |
| m/p-Xylenes                 | 137                       | 130                             | 95   0                | 20           | (62-134)    |
| o-Xylene                    | 68                        | 66                              | 97   4                | 20           | (65-133)    |
| Styrene                     | 68                        | 65                              | 96 ] 3                | 20           | (66-127)    |
| Bromoform                   | 68                        | 64                              | 94 ] 7                | 20           | (68-131)    |
| lsopropylbenzene            | 68                        | 72                              | 106   2               | 20           | (64-139)    |
| 1,1,2,2-Tetrachloroethane   | 68                        | 78                              | 115   5               | 20           | (48-150)    |
| 1,3-Dichlorobenzene         | 68                        | 68                              | 100   1               | 20           | (60-129)    |
| 1,4-Dichlorobenzene         | 68                        | 70                              | 103   3               | . 20         | (59-128)    |
| 1,2-Dichlorobenzene         | 68                        | 70                              | 103   3               | 20           | (63-127)    |
| 1,2-Dibromo-3-Chloropropane | 68                        | 78                              | 115   20              | 20           | (65-137)    |
| 1,2,4-Trichlorobenzene      | 68                        | 62                              | 91   8                | 20           | (38-131)    |
| 1,2,3-Trichlorobenzene      | 68                        | 63                              | 93   13               | 20           | (26-131)    |
| 1.4-Dioxane                 | 1370                      | 1300                            | 95   17               | 20           | (50-150)    |

RPD: 0 Out of 52 outside limits

Spike Recovery: 3 Out of 52 outside limits

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk

<sup>\*</sup> Values outside of QC limits

### WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:    | СНЕМТЕСН          |           |          | _ Client:      | Dvirka & Barti | lucei   | icei   |            |
|--------------|-------------------|-----------|----------|----------------|----------------|---------|--------|------------|
| Lab Code:    | CHEM              | Cas No:   | D2546    | SAS No:        | D2546          | SDG No: | D254   | 16         |
| Matrix Spike | - EPA Sample No : | BSF0513S1 | Analytic | cal Method: El | PA SW846 8260  | Data    | file : | VF033159.D |

|                                | SPIKE  |               | LCS           | LCS  | QC       |
|--------------------------------|--------|---------------|---------------|------|----------|
| COMPOUND                       | ADDED  | CONCENTRATION | CONCENTRATION | %    | LIMITS   |
| COM COND                       | (ug/L) | (ug/L)        | (ug/L)        | REC# | REC      |
| Dichlorodifluoromethane        | 20     |               | 20            | 100  | (46-139) |
| Chloromethane                  | 20     |               | 17            | 85   | (58-139) |
| Vinyl Chloride                 | 20     |               | 14            | 70   | (65-137) |
| Bromomethane                   | 20     |               | 16            | 80   | (50-162) |
| Chloroethane                   | 20     |               | 11            | 55   | (54-160) |
| Trichlorofluoromethane         | 20     |               | 20            | 100  | (67-143) |
| 1,1,2-Trichlorotrifluoroethane | 20     |               | 20            | 100  | (71-136) |
| 1,1-Dichloroethene             | 20     |               | 19            | 95   | (69-134) |
| Acetone                        | 100    |               | 83            | 83   | (41-181) |
| Carbon Disulfide               | 20     |               | 17            | 85   | (63-138) |
| Methyl tert-butyl Ether        | 20     |               | 19            | 95   | (72-136) |
| Methyl Acetate                 | 20     |               | 18            | 90   | (51-158) |
| Methylene Chloride             | 20     |               | 16            | 80   | (67-138) |
| trans-1,2-Dichloroethene       | 20     |               | 20            | 100  | (72-132) |
| 1,1-Dichloroethane             | 20     |               | 19            | 95   | (74-135) |
| Cyclohexane                    | 20     |               | 17            | 85   | (67-132) |
| 2-Butanone                     | 100    |               | 75            | 75   | (64-146) |
| Carbon Tetrachloride           | 20     |               | 24            | 120  | (71-134) |
| cis-1,2-Dichloroethene         | 20     |               | 19            | 95   | (74-130) |
| Bromochloromethane             | 20     |               | 18            | 90   | (71-136) |
| Chloroform                     | 20     |               | 20            | 100  | (74-134) |
| 1,1,1-Trichloroethane          | 20     |               | 21            | 105  | (74-133) |
| Methylcyclohexane              | 20     |               | 20            | 100  | (71-125) |
| Benzene                        | 20     |               | 20            | 100  | (75-125) |
| 1,2-Dichloroethane             | 20     |               | 22            | 110  | (76-130) |
| Trichloroethene                | 20     |               | 23            | 115  | (73-127) |
| 1,2-Dichloropropane            | 20     |               | 19            | 95   | (76-125) |
| Bromodichloromethane           | 20     |               | 21            | 105  | (78-127) |
| 4-Methyl-2-Pentanone           | 100    |               | 97            | 97   | (71-140) |
| Toluene                        | 20     |               | 21            | 105  | (74-125) |
| t-1,3-Dichloropropene          | 20     |               | 20            | 100  | (74-131) |
| cis-1,3-Dichloropropene        | 20     |               | 20            | 100  | (74-128) |
| 1,1,2-Trichloroethane          | 20     |               | 21            | 105  | (75-129) |
| 2-Hexanone                     | 100    |               | 98            | 98   | (62-153) |

| # Column to be u | ised to flag recovery and RPD values with an asterisk |
|------------------|-------------------------------------------------------|
| * Values outside | of QC limits                                          |
| Comments:        |                                                       |
|                  |                                                       |

## WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name: CHEMTECII            | CHEMTECII Client: Dvirka & Bartilucci |                      |               |                  |            |
|--------------------------------|---------------------------------------|----------------------|---------------|------------------|------------|
| Lab Code: CHEM                 | Cas No:                               | D2546 SAS No :       | SDG N         | lo: <u>D2546</u> |            |
| Matrix Spike - EPA Sample No : | BSF0513S1                             | Analytical Method: E | PA SW846 8260 | Datafile :       | VF033159.D |
|                                | SPIKE                                 |                      | LCS           | LCS              | QC         |
| COMPOUND                       | ADDED                                 | CONCENTRATION        | CONCENTRATION |                  | LIMITS     |
| COMI COND                      | (ug/L)                                | (ug/L)               | (ug/L)        | REC#             | REC        |
| Dibromochloromethane           | 20                                    |                      | 22            | 110              | (74-131)   |
| 1,2-Dibromoethane              | 20                                    |                      | 21            | 105              | (74-129)   |
| Tetrachloroethene              | 20                                    |                      | 23            | 115              | (46-157)   |
| Chlorobenzene                  | 20                                    |                      | 22            | 110              | (76-123)   |
| Ethyl Benzene                  | 20                                    |                      | 21            | 105              | (75-126)   |
| m/p-Xylenes                    | 40                                    |                      | 44            | 110              | (74-126)   |
| o-Xylene                       | 20                                    |                      | 22            | 110              | (73-127)   |
| Styrene                        | 20                                    |                      | 22            | 110              | (75-126)   |
| Bromoform                      | 20                                    |                      | 22            | 110              | (66-130)   |
| Isopropylbenzene               | 20                                    |                      | 19            | 95               | (70-127)   |
| 1,1,2,2-Tetrachloroethane      | 20                                    |                      | 18            | 90               | (66-131)   |
| 1,3-Dichlorobenzene            | 20                                    |                      | 22            | 110              | (70-125)   |
| 1,4-Dichlorobenzene            | 20                                    |                      | 21            | 105              | (71-124)   |
| 1,2-Dichlorobenzene            | 20                                    |                      | 22            | 110              | (71-126)   |
| 1,2-Dibromo-3-Chloropropane    | 20                                    |                      | 18            | 90               | (62-134)   |
| 1,2,4-Trichlorobenzene         | 20                                    |                      | 24            | 120              | (62-129)   |
| 1,2,3-Trichlorobenzene         | 20                                    |                      | 25            | 125              | (58-130)   |
| 1,4-Dioxane                    | 400                                   |                      | 350           | 88               | (50-150)   |

RPD: 0 Out of 52 outside limits

Spike Recovery: 0 Out of 52 outside limits

| # Column to be used to flag recor | very and RPD values with an asterisk |
|-----------------------------------|--------------------------------------|
|-----------------------------------|--------------------------------------|

\* Values outside of QC limits

| Comments: |  |
|-----------|--|
| OU        |  |

#### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:      | Name: CHEMTECH    |           |          | _ Clien    | t: Dvirka & Bart | Dvirka & Bartilucci |         |            |
|----------------|-------------------|-----------|----------|------------|------------------|---------------------|---------|------------|
| Lab Code:      | СНЕМ              | Cas No:   | D2546    | SAS No:    | D2546            | SDG No:             | D254    | 6          |
| Matrix Spike - | - EPA Sample No : | BSF0514S1 | Analytic | al Method: | EPA SW846 8260   | Data                | ıfile : | VF033215.D |

|                                | <u> </u>       |               |                      | - R  |              |
|--------------------------------|----------------|---------------|----------------------|------|--------------|
| COMPOUND                       | SPIKE<br>ADDED | CONCENTRATION | LCS<br>CONCENTRATION |      | QC<br>LIMITS |
| D' 11 l'O l                    | (ug/Kg)        | (ug/Kg)       | (ug/Kg)<br>20        | REC# | (50-142)     |
| Dichlorodifluoromethane        | 20             |               |                      | 100  |              |
| Chloromethane                  | 20             |               | 17                   | 85   | (65-131)     |
| Vinyl Chloride                 | 20             |               | 13                   | 65*  | (67-130)     |
| Bromomethane                   | 20             |               | 17                   | 85   | (64-136)     |
| Chloroethane                   | 20             |               | 12                   | 60*  | (66-146)     |
| Trichlorofluoromethane         | 20             |               | 20                   | 100  | (72-134)     |
| 1,1,2-Trichlorotrifluoroethane | 20             |               | 19                   | 95   | (73-133)     |
| 1,1-Dichloroethene             | 20             |               | 18                   | 90   | (74-130)     |
| Acetone                        | 100            |               | 79                   | 79   | (57-135)     |
| Carbon Disulfide               | 20             |               | 17                   | 85   | (71-130)     |
| Methyl tert-butyl Ether        | 20             |               | 19                   | 95   | (76-123)     |
| Methyl Acetate                 | 20             |               | 18                   | 90   | (62-146)     |
| Methylene Chloride             | 20             |               | 16                   | 80   | (73-134)     |
| trans-1,2-Dichloroethene       | 20             |               | 19                   | 95   | (76-125)     |
| 1,1-Dichloroethane             | 20             |               | 19                   | 95   | (78-124)     |
| Cyclohexane                    | 20             |               | 17                   | 85   | (72-130)     |
| 2-Butanone                     | 100            |               | 82                   | 82   | (68-132)     |
| Carbon Tetrachloride           | 20             |               | 23                   | 115  | (76-127)     |
| cis-1,2-Dichloroethene         | 20             |               | 19                   | 95   | (78-122)     |
| Bromochloromethane             | 20             |               | 15                   | 75   | (66-133)     |
| Chloroform                     | 20             |               | 20                   | 100  | (79-122)     |
| 1,1,1-Trichloroethane          | 20             |               | 21                   | 105  | (76-126)     |
| Methylcyclohexane              | 20             |               | 20                   | 100  | (75-127)     |
| Benzene                        | 20             |               | 20                   | 100  | (79-124)     |
| 1,2-Dichloroethane             | 20             |               | 22                   | 110  | (78-124)     |
| Trichloroethene                | 20             |               | 22                   | 110  | (78-124)     |
| 1,2-Dichloropropane            | 20             |               | 18                   | 90   | (76-124)     |
| Bromodichloromethane           | 20             |               | 21                   | 105  | (78-122)     |
| 4-Methyl-2-Pentanone           | 100            |               | 94                   | 94   | (73-135)     |
| Toluene                        | 20             |               | 20                   | 100  | (78-124)     |
| t-1,3-Dichloropropene          | 20             |               | 20                   | 100  | (77-123)     |
| cis-1,3-Dichloropropene        | 20             |               | 20                   | 100  | (79-120)     |
| 1,1,2-Trichloroethane          | 20             |               | 20                   | 100  | (78-123)     |
| 2-Hexanone                     | 100            |               | 86                   | 86   | (71-134)     |

| # Column to be u | used to flag recovery and RPD values with an asterisk |   |
|------------------|-------------------------------------------------------|---|
| * Values outside | e of QC limits                                        |   |
|                  |                                                       |   |
| Comments:        |                                                       |   |
|                  |                                                       | _ |
|                  |                                                       |   |

### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name: CHEMTECH |                   |           | Client:              | Client: Dvirka & Bartilucci |                  |            |  |  |
|--------------------|-------------------|-----------|----------------------|-----------------------------|------------------|------------|--|--|
| Lab Code:          | СНЕМ              | Cas No:   | D2546 SAS No:        | D2546 SDG N                 | No: <u>D2546</u> |            |  |  |
| Matrix Spike -     | - EPA Sample No : | BSF0514S1 | Analytical Method: E | PA SW846 8260               | Datafile :       | VF033215.D |  |  |
|                    |                   | SPIKE     |                      | LCS                         | LCS              | QC         |  |  |
|                    |                   | ADDED     | CONCENTRATION        | CONCENTRATION               | %                | LIMITS     |  |  |
| СОМР               | POUND             | (ug/Kg)   | (ug/Kg)              | (ug/Kg)                     | REC#             | REC        |  |  |
| Dibromochlo        | oromethane        | 20        |                      | 21                          | 105              | (77-121)   |  |  |
| 1,2-Dibromo        | ethane            | 20        |                      | 20                          | 100              | (78-123)   |  |  |
| Tetrachloroe       | ethene            | 20        |                      | 22                          | 110              | (67-134)   |  |  |
| Chlorobenze        | ene               | 20        |                      | 21                          | 105              | (80-121)   |  |  |
| Ethyl Benzer       | ne                | 20        |                      | 20                          | 100              | (80-123)   |  |  |
| m/p-Xylenes        |                   | 40        |                      | 43                          | 108              | (79-126)   |  |  |
| o-Xylene           |                   | 20        |                      | 22                          | 110              | (80-122)   |  |  |
| Styrene            |                   | 20        |                      | 21                          | 105              | (81-121)   |  |  |
| Bromoform          |                   | 20        |                      | 21                          | 105              | (73-124)   |  |  |
| Isopropylber       | nzene             | 20        |                      | 19                          | 95               | (79-123)   |  |  |
|                    | chloroethane      | 20        |                      | 18                          | 90               | (79-124)   |  |  |
| 1,3-Dichloro       |                   | 20        |                      | 22                          | 110              | (82-120)   |  |  |
| 1,4-Dichloro       |                   | 20        |                      | 22                          | 110              | (81-120)   |  |  |
| 1,2-Dichloro       |                   | 20        |                      | 22                          | 110              | (82-118)   |  |  |
|                    | -3-Chloropropane  | 20        |                      | 16                          | 80               | (72-127)   |  |  |
| 1,2,4-Trichlo      |                   | 20        |                      | 24                          | 120              | (75-125)   |  |  |
| 1,2,3-Trichlo      |                   | 20        |                      | 24                          | 120              | (79-123)   |  |  |
| 1 4-Dioxane        |                   | 400       |                      | 330                         | 83               | (50-150)   |  |  |

RPD: 0 Out of 52 outside limits

Spike Recovery: 2 Out of 52 outside limits

| # Column to be used to flag recover | y and RPD values with an asterisk |
|-------------------------------------|-----------------------------------|
|-------------------------------------|-----------------------------------|

\* Values outside of QC limits

| Comments: |  |
|-----------|--|
|           |  |

### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:      | СНЕМТЕСН        |           |          | - Client:     | Dvirka & Barti | lucci   |        |            |
|----------------|-----------------|-----------|----------|---------------|----------------|---------|--------|------------|
| Lab Code:      | СНЕМ            | Cas No:   | D2546    | SAS No:       | D2546          | SDG No: | D254   | 6          |
| Matrix Spike - | EPA Sample No : | BSF0515S1 | Analytic | al Method: EI | PA SW846 8260  | Data    | file : | VF033250.D |

|                                |                | \ <del>-</del> |                      |      |              |
|--------------------------------|----------------|----------------|----------------------|------|--------------|
| COMPOUND                       | SPIKE<br>ADDED | CONCENTRATION  | LCS<br>CONCENTRATION | LCS  | QC<br>LIMITS |
| COM COM                        | (ug/Kg)        | (ug/Kg)        | (ug/Kg)              | REC# | REC          |
| Dichlorodifluoromethane        | 20             |                | 21                   | 105  | (50-142)     |
| Chloromethane                  | 20             |                | 22                   | 110  | (65-131)     |
| Vinyl Chloride                 | 20             |                | 20                   | 100  | (67-130)     |
| Bromomethane                   | 20             |                | 23                   | 115  | (64-136)     |
| Chloroethane                   | 20             |                | 24                   | 120  | (66-146)     |
| Trichlorofluoromethane         | 20             |                | 21                   | 105  | (72-134)     |
| 1,1,2-Trichlorotrifluoroethane | 20             |                | 22                   | 110  | (73-133)     |
| 1,1-Dichloroethene             | 20             |                | 21                   | 105  | (74-130)     |
| Acetone                        | 100            |                | 120                  | 120  | (57-135)     |
| Carbon Disulfide               | 20             |                | 23                   | 115  | (71-130)     |
| Methyl tert-butyl Ether        | 20             |                | 25                   | 125* | (76-123)     |
| Methyl Acetate                 | 20             |                | 29                   | 145  | (62-146)     |
| Methylene Chloride             | 20             |                | 24                   | 120  | (73-134)     |
| trans-1,2-Dichloroethene       | 20             |                | 23                   | 115  | (76-125)     |
| 1,1-Dichloroethane             | 20             |                | 23                   | 115  | (78-124)     |
| Cyclohexane                    | 20             |                | 22                   | 110  | (72-130)     |
| 2-Butanone                     | 100            |                | 140                  | 140* | (68-132)     |
| Carbon Tetrachloride           | 20             |                | 24                   | 120  | (76-127)     |
| cis-1,2-Dichloroethene         | 20             |                | 22                   | 110  | (78-122)     |
| Bromochloromethane             | 20             |                | 22                   | 110  | (66-133)     |
| Chloroform                     | 20             |                | 22                   | 110  | (79-122)     |
| 1,1,1-Trichloroethane          | 20             |                | 21                   | 105  | (76-126)     |
| Methylcyclohexane              | 20             |                | 20                   | 100  | (75-127)     |
| Benzene                        | 20             |                | 25                   | 125* | (79-124)     |
| 1,2-Dichloroethane             | 20             |                | 24                   | 120  | (78-124)     |
| Trichloroethene                | 20             |                | 21                   | 105  | (78-124)     |
| 1,2-Dichloropropane            | 20             |                | 20                   | 100  | (76-124)     |
| Bromodichloromethane           | 20             |                | 22                   | 110  | (78-122)     |
| 4-Methyl-2-Pentanone           | 100            |                | 160                  | 160* | (73-135)     |
| Toluenc                        | 20             |                | 22                   | 110  | (78-124)     |
| t-1,3-Dichloropropene          | 20             |                | 27                   | 135* | (77-123)     |
| cis-1,3-Dichloropropene        | 20             |                | 23                   | 115  | (79-120)     |
| 1,1,2-Trichloroethane          | 20             |                | 28                   | 140* | (78-123)     |
| 2-Hexanone                     | 100            |                | 170                  | 170* | (71-134)     |

| # Column to be used to flag recovery and RPD values with an asterisk |  |
|----------------------------------------------------------------------|--|
| * Values outside of QC limits                                        |  |
| Comments:                                                            |  |



### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:      | СНЕМТЕСН         |           | Client:              | Dvirka & Bartilucci |                  |            |
|----------------|------------------|-----------|----------------------|---------------------|------------------|------------|
| Lab Code:      | СНЕМ             | Cas No:   | D2546 SAS No :       | SDG N               | No: <u>D2546</u> |            |
| Matrix Spike - | EPA Sample No:   | BSF0515S1 | Analytical Method: E | PA SW846 8260       | Datafile :       | VF033250,D |
|                |                  | SPIKE     |                      | LCS                 | LCS              | QC         |
| 00148          | 1011315          | ADDED     | CONCENTRATION        | CONCENTRATION       | %                | LIMITS     |
| СОМР           | OUND             | (ug/Kg)   | (ug/Kg)              | (ug/Kg)             | REC#             | REC        |
| Dibromochlo    | romethane        | 20        |                      | 26                  | 130*             | (77-121)   |
| 1,2-Dibromo    | ethane           | 20        |                      | 27                  | 135*             | (78-123)   |
| Tetrachloroe   | ethene           | 20        |                      | 20                  | 100              | (67-134)   |
| Chlorobenze    | ne               | 20        |                      | 21                  | 105              | (80-121)   |
| Ethyl Benzer   | ne               | 20        |                      | 21                  | 105              | (80-123)   |
| m/p-Xylenes    |                  | 40        |                      | 41                  | 103              | (79-126)   |
| o-Xylene       |                  | 20        |                      | 20                  | 100              | (80-122)   |
| Styrene        |                  | 20        |                      | 20                  | 100              | (81-121)   |
| Bromoform      |                  | 20        |                      | 20                  | 100              | (73-124)   |
| Isopropylber   | nzene            | 20        |                      | 21                  | 105              | (79-123)   |
| 1,1,2,2-Tetra  | chloroethane     | 20        |                      | 24                  | 120              | (79-124)   |
| 1,3-Dichloro   | benzene          | 20        |                      | 22                  | 110              | (82-120)   |
| 1,4-Dichloro   | benzene          | 20        |                      | 22                  | 110              | (81-120)   |
| 1,2-Dichloro   | benzene          | 20        |                      | 22                  | 110              | (82-118)   |
| 1,2-Dibromo    | -3-Chloropropane | 20        |                      | 27                  | 135*             | (72-127)   |
| 1,2,4-Trichlo  |                  | 20        |                      | 23                  | 115              | (75-125)   |
| 1,2,3-Trichlo  | robenzene        | 20        |                      | 24                  | 120              | (79-123)   |
| 1,4-Dioxane    |                  | 400       | +                    | 470                 | 118              | (50-150)   |

RPD: 0 Out of 52 outside limits

Spike Recovery: 10 Out of 52 outside limits

| # Column to be   | used to flag recovery and RPD values with an asterisk |
|------------------|-------------------------------------------------------|
| * Values outside | e of QC limits                                        |
| Comments:        |                                                       |

### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:      | СНЕМТЕСН        |           |          | - Client:      | Dvirka & Barti | ilucci  |       |            |
|----------------|-----------------|-----------|----------|----------------|----------------|---------|-------|------------|
| Lab Code:      | СНЕМ            | Cas No:   | D2546    | SAS No:        | D2546          | SDG No: | D254  | 5          |
| Matrix Spike - | EPA Sample No : | BSK0511S1 | Analytic | eal Method: EP | A SW846 8260   | Data    | file: | VK048291.D |

|                                | `              |               |                      |     |              |
|--------------------------------|----------------|---------------|----------------------|-----|--------------|
| COMPOUND                       | SPIKE<br>ADDED | CONCENTRATION | LCS<br>CONCENTRATION |     | QC<br>LIMITS |
| Dishlauadifluoremethore        | (ug/Kg)        | (ug/Kg)       | (ug/Kg)<br>20        | 100 | REC          |
| Dichlorodifluoromethane        | 20             |               |                      |     | (35-135)     |
| Chloromethane                  | 20             |               | 21                   | 105 | (50-130)     |
| Vinyl Chloride                 | 20             |               | 20                   | 100 | (60-125)     |
| Bromomethane                   | 20             |               | 19                   | 95  | (30-160)     |
| Chloroethane                   | 20             |               | 20                   | 100 | (40-155)     |
| Trichlorofluoromethane         | 20             |               | 20                   | 100 | (25-185)     |
| 1,1,2-Trichlorotrifluorocthane | 20             |               | 20                   | 100 | (73-133)     |
| 1,1-Dichloroethene             | 20             |               | 20                   | 100 | (65-135)     |
| Acetone                        | 100            |               | 110                  | 110 | (20-160)     |
| Carbon Disulfide               | 20             |               | 20                   | 100 | (45-160)     |
| Methyl tert-butyl Ether        | 20             |               | 22                   | 110 | (70-131)     |
| Methyl Acetate                 | 20             |               | 24                   | 120 | (44-187)     |
| Methylene Chloride             | 20             |               | 18                   | 90  | (55-140)     |
| trans-1,2-Dichloroethene       | 20             |               | 21                   | 105 | (65-135)     |
| 1,1-Dichloroethane             | 20             |               | 21                   | 105 | (75-125)     |
| Cyclohexane                    | 20             |               | 21                   | 105 | (66-132)     |
| 2-Butanone                     | 100            |               | 120                  | 120 | (30-160)     |
| Carbon Tetrachloride           | 20             |               | 19                   | 95  | (65-135)     |
| cis-1,2-Dichloroethene         | 20             |               | 21                   | 105 | (65-125)     |
| Bromochloromethane             | 20             |               | 20                   | 100 | (70-125)     |
| Chloroform                     | 20             |               | 21                   | 105 | (70-125)     |
| 1,1,1-Trichloroethane          | 20             |               | 21                   | 105 | (70-135)     |
| Methylcyclohexane              | 20             |               | 20                   | 100 | (71-124)     |
| Benzene                        | 20             |               | 20                   | 100 | (75-125)     |
| 1,2-Dichloroethane             | 20             |               | 21                   | 105 | (70-135)     |
| Trichloroethene                | 20             |               | 20                   | 100 | (75-125)     |
| 1,2-Dichloropropane            | 20             |               | 19                   | 95  | (70-120)     |
| Bromodichloromethane           | 20             |               | 21                   | 105 | (70-130)     |
| 4-Methyl-2-Pentanone           | 100            |               | 120                  | 120 | (45-145)     |
| Toluene                        | 20             |               | 20                   | 100 | (70-125)     |
| t-1,3-Dichloropropene          | 20             |               | 17                   | 85  | (65-125)     |
| cis-1,3-Dichloropropene        | 20             |               | 17                   | 85  | (70-125)     |
| 1,1,2-Trichloroethane          | 20             |               | 20                   | 100 | (60-125)     |
| 2-Hexanone                     | 100            |               | 100                  | 100 | (45-145)     |

| # Column to be us  | sed to flag recovery and RPD values with an asterisk |  |
|--------------------|------------------------------------------------------|--|
| * Values outside o | of QC limits                                         |  |
| Comments:          |                                                      |  |



## SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name:      | СНЕМТЕСН         |           | Client             | t: Dvirka & Bartilucci |                  |            |
|----------------|------------------|-----------|--------------------|------------------------|------------------|------------|
| Lab Code:      | СНЕМ             | Cas No:   | SAS No :           | D2546 SDG N            | No: <u>D2546</u> |            |
| Matrix Spike - | EPA Sample No:   | BSK0511S1 | Analytical Method: | EPA SW846 8260         | Datafile:        | 'K048291.D |
|                |                  | SPIKE     |                    | LCS                    | LCS              | QC         |
| 60140          | OUND             | ADDED     | CONCENTRATION      | CONCENTRATION          | % I              | LIMITS     |
| COMP           | OUND             | (ug/Kg)   | (ug/Kg)            | (ug/Kg)                | REC#             | REC        |
| Dibromochlo    | romethane        | 20        |                    | 20                     | 100              | (65-130)   |
| 1,2-Dibromo    | ethane           | 20        |                    | 20                     | 100              | (70-125)   |
| Tetrachloroe   | thene            | 20        |                    | 19                     | 95               | (65-140)   |
| Chlorobenze    | ne               | 20        |                    | 20                     | 100              | (75-125)   |
| Ethyl Benzen   | ie               | 20        |                    | 21                     | 105              | (75-125)   |
| m/p-Xylenes    |                  | 40        |                    | 40                     | 100              | (80-125)   |
| o-Xylene       |                  | 20        |                    | 21                     | 105              | (75-125)   |
| Styrene        |                  | 20        |                    | 21                     | 105              | (75-125)   |
| Bromoform      |                  | 20        |                    | 20                     | 100              | (55-135)   |
| Isopropylben   | zene             | 20        |                    | 21                     | 105              | (75-130)   |
| 1,1,2,2-Tetra  |                  | 20        |                    | 22                     | 110              | (55-130)   |
| 1,3-Dichlorol  | benzene          | 20        |                    | 20                     | 100              | (70-125)   |
| 1,4-Dichlorol  | benzene          | 20        |                    | 20                     | 100              | (70-125)   |
| 1,2-Dichlorol  | benzene          | 20        |                    | 20                     | 100              | (75-120)   |
| 1,2-Dibromo-   | -3-Chloropropane | 20        |                    | 21                     | 105              | (40-135)   |
| 1,2,4-Trichlo  | robenzene        | 20        |                    | 20                     | 100              | (65-130)   |
| 1,2,3-Trichlo  | robenzene        | 20        |                    | 21                     | 105              | (60-135)   |
| 1,4-Dioxane    |                  | 400       |                    | 390                    | 98               | (50-150)   |

RPD: 0 Out of 52 outside limits

Spike Recovery: 0 Out of 52 outside limits

| # Column to be used to flag recover; | and RPD values with an asterisk |
|--------------------------------------|---------------------------------|
|--------------------------------------|---------------------------------|

\* Values outside of QC limits

| Comments: |  |
|-----------|--|
|           |  |
|           |  |



#### SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name: CHEMTECH |                  |           | Client:  | Client: Dvirka & Bartilucci |              |         | _           |         |
|--------------------|------------------|-----------|----------|-----------------------------|--------------|---------|-------------|---------|
| Lab Code:          | СНЕМ             | Cas No:   | D2546    | SAS No:                     | D2546        | SDG No: | D2546       |         |
| Matrix Snike       | - FPA Sample No. | RSK0513S1 | Analytic | al Method: EP               | A SW846 8260 | Dats    | ifile · VK0 | 48308 D |

|                                | SPIKE   |               | LCS           | LCS  | QC       |
|--------------------------------|---------|---------------|---------------|------|----------|
| COMPOUND                       | ADDED   | CONCENTRATION | CONCENTRATION |      | LIMITS   |
| D. II. Va                      | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC# | REC      |
| Dichlorodifluoromethane        | 20      |               | 23            | 115  | (50-142) |
| Chloromethane                  | 20      |               | 22            | 110  | (65-131) |
| Vinyl Chloride                 | 20      |               | 22            | 110  | (67-130) |
| Bromomethane                   | 20      |               | 22            | 110  | (64-136) |
| Chloroethane                   | 20      |               | 23            | 115  | (66-146) |
| Trichlorofluoromethane         | 20      |               | 23            | 115  | (72-134) |
| 1,1,2-Trichlorotrifluoroethane | 20      |               | 23            | 115  | (73-133) |
| 1,1-Dichloroethene             | 20      |               | 22            | 110  | (74-130) |
| Acetone                        | 100     |               | 98            | 98   | (57-135) |
| Carbon Disulfide               | 20      |               | 22            | 110  | (71-130) |
| Methyl tert-butyl Ether        | 20      |               | 22            | 110  | (76-123) |
| Methyl Acetate                 | 20      |               | 23            | 115  | (62-146) |
| Methylene Chloride             | 20      |               | 19            | 95   | (73-134) |
| trans-1,2-Dichloroethene       | 20      |               | 22            | 110  | (76-125) |
| 1,1-Dichloroethane             | 20      |               | 20            | 100  | (78-124) |
| Cyclohexane                    | 20      |               | 17            | 85   | (72-130) |
| 2-Butanone                     | 100     |               | 89            | 89   | (68-132) |
| Carbon Tetrachloride           | 20      |               | 23            | 115  | (76-127) |
| cis-1,2-Dichloroethene         | 20      |               | 19            | 95   | (78-122) |
| Bromochloromethane             | 20      |               | 17            | 85   | (66-133) |
| Chloroform                     | 20      |               | 21            | 105  | (79-122) |
| 1,1,1-Trichloroethane          | 20      |               | 22            | 110  | (76-126) |
| Methylcyclohexane              | 20      |               | 20            | 100  | (75-127) |
| Benzene                        | 20      |               | 20            | 100  | (79-124) |
| 1,2-Dichloroethane             | 20      |               | 24            | 120  | (78-124) |
| Trichloroethene                | 20      |               | 23            | 115  | (78-124) |
| 1,2-Dichloropropane            | 20      |               | 20            | 100  | (76-124) |
| Bromodichloromethane           | 20      |               | 22            | 110  | (78-122) |
| 4-Methyl-2-Pentanone           | 100     |               | 91            | 91   | (73-135) |
| Toluene                        | 20      |               | 20            | 100  | (78-124) |
| t-1,3-Dichloropropene          | 20      |               | 21            | 105  | (77-123) |
| cis-1,3-Dichloropropene        | 20      |               | 20            | 100  | (79-120) |
| 1,1,2-Trichloroethane          | 20      |               | 22            | 110  | (78-123) |
| 2-Hexanone                     | 100     |               | 67            | 67*  | (71-134) |

| # Column to be a<br>* Values outside | used to flag recovery and RPD values with an asterisk e of QC limits |
|--------------------------------------|----------------------------------------------------------------------|
| Comments:                            |                                                                      |
|                                      |                                                                      |

## SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

| Lab Name: CHEMTECH             |                | Client:              | Dvirka & Bartilucci  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|--------------------------------|----------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Lab Code: CHEM                 | Cas No:        | D2546 SAS No :       | SDG N                | No: <u>D2546</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Matrix Spike - EPA Sample No : | BSK0513S1      | Analytical Method: E | PA SW846 8260        | Datafile: \(\sum_{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | /K048308.D   |
|                                | SPIKE<br>ADDED | CONCENTRATION        | LCS<br>CONCENTRATION | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC<br>LIMITS |
| COMPOUND                       | (ug/Kg)        | (ug/Kg)              | (ug/Kg)              | REC#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REC          |
| Dibromochloromethane           | 20             |                      | 22                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (77-121)     |
| 1,2-Dibromoethane              | 20             |                      | 22                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (78-123)     |
| Tetrachloroethene              | 20             |                      | 28                   | 140*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (67-134)     |
| Chlorobenzene                  | 20             |                      | 20                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (80-121)     |
| Ethyl Benzene                  | 20             |                      | 22                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (80-123)     |
| m/p-Xylenes                    | 40             |                      | 42                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (79-126)     |
| o-Xylene                       | 20             |                      | 21                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (80-122)     |
| Styrene                        | 20             |                      | 21                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (81-121)     |
| Bromoform                      | 20             |                      | 22                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (73-124)     |
| Isopropylbenzene               | 20             |                      | 21                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (79-123)     |
| 1,1,2,2-Tetrachloroethane      | 20             |                      | 16                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (79-124)     |
| 1,3-Dichlorobenzene            | 20             |                      | 21                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (82-120)     |
| 1,4-Dichlorobenzene            | 20             |                      | 20                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (81-120)     |
| 1.2 Diable vehengene           | 20             |                      | 20                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (82-118)     |

20

20

20

400

RPD: 0 Out of 52 outside limits

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,4-Dioxane

Spike Recovery: 4 Out of 52 outside limits

| # Column to be used to flag recovery | and RPD values with an asterisk |
|--------------------------------------|---------------------------------|
|--------------------------------------|---------------------------------|

\* Values outside of QC limits

| Comments: |               |  |
|-----------|---------------|--|
|           | · <del></del> |  |

13

17

14

330

65\*

85

70\*

(72-127)

(75-125)

(79-123)

(50-150)

#### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code: CHEM

Date Analyzed: 05/13/2012

Case No.: D2546

SAS No.: D2546 SDG NO.: D2546

Lab File ID: VF033150.D

Lab Sample ID: VBF0513S1

Time Analyzed: 17:14

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

Instrument ID: MSVOA F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA<br>SAMPLE NO, | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED |
|-------------------|------------------|----------------|------------------|
| BSF0513S1         | BSF0513S1        | VF033159.D     | 05/13/2012       |
| B-2 (4-5)         | D2546-07         | VF033160.D     | 05/13/2012       |
| B-2 (6-8)         | D2546-08         | VF033161.D     | 05/13/2012       |
| B-4 (9-2)         | D2546-09         | VF033162.D     | 05/13/2012       |
| B-4 (2-3)         | D2546-10         | VF033163.D     | 05/13/2012       |
| B-3 (9-2)         | D2546-11         | VF033164.D     | 05/13/2012       |
| B-3(2-3.5)        | D2546-12         | VF033165.D     | 05/13/2012       |
| B-3(6-7)          | D2546-13         | VF033166.D     | 05/13/2012       |
| B-5 (13-2)        | D2546-14         | VF033167.D     | 05/13/2012       |
| B-5(6-7)          | D2546-15         | VF033168.D     | 05/13/2012       |
| B-6(10-2)         | D2546-16         | VF033169.D     | 05/13/2012       |
| B-6(2-3)          | D2546-17         | VF033170.D     | 05/13/2012       |

| COMMENTS: |  |  |
|-----------|--|--|
|           |  |  |

## **Report of Analysis**

Date Collected: Client: Dvirka & Bartilucci Date Received: PV6256, IBM East Fishkill Project: d2546 SDG No.: VBF0513S1 Client Sample ID: SOIL Matrix: Lab Sample ID: VBF0513S1 % Moisture: 0 SW8260C Analytical Method: Final Vol: 5000 uL Sample Wt/Vol: Units: g VOC-TCLVOA-10 Test: Soil Aliquot Vol: uL LOW Level: GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033158.D 1 05/13/12 VF051312

| V1 033130.D      | 15/                            |       |           |      |      |            |            |  |
|------------------|--------------------------------|-------|-----------|------|------|------------|------------|--|
| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units      |  |
| TARGETS          |                                |       |           |      |      |            |            |  |
| 75-71-8          | Dichlorodifluoromethane        | 2.5   | U         | 0.65 | 2.5  | 5          | ug/Kg      |  |
| 74-87-3          | Chloromethane                  | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg      |  |
| 75-01-4          | Vinyl Chloride                 | 2.5   | U         | 1.2  | 2.5  | 5          | ug/Kg      |  |
| 74-83-9          | Bromomethane                   | 2.5   | U         | 2.4  | 2.5  | 5          | ug/Kg      |  |
| 75-00 <b>-</b> 3 | Chloroethane                   | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg      |  |
| 75-69-4          | Trichlorofluoromethane         | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg      |  |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg      |  |
| 75-35-4          | 1,1-Dichloroethene             | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg      |  |
| 67-64-1          | Acetone                        | 12.5  | U         | 3    | 12.5 | 25         | ug/Kg      |  |
| 75-15-0          | Carbon Disulfide               | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg      |  |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.5   | U         | 0.96 | 2.5  | 5          | ug/Kg      |  |
| 79-20-9          | Methyl Acetate                 | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg      |  |
| 75-09-2          | Methylene Chloride             | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg      |  |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.5   | U         | 0.69 | 2.5  | 5          | ug/Kg      |  |
| 75-34-3          | 1,1-Dichloroethane             | 2.5   | U         | 0.94 | 2.5  | 5          | ug/Kg      |  |
| 110-82-7         | Cyclohexane                    | 2.5   | U         | 1    | 2.5  | 5          | ug/Kg      |  |
| 78-93-3          | 2-Butanone                     | 12.5  | U         | 3.1  | 12.5 | 25         | ug/Kg      |  |
| 56-23-5          | Carbon Tetrachloride           | 2.5   | U         | 0.99 | 2.5  | 5          | ug/Kg      |  |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.5   | U         | 0.89 | 2.5  | 5          | ug/Kg      |  |
| 74 <b>-</b> 97-5 | Bromochloromethane             | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg      |  |
| 67-66-3          | Chloroform                     | 2.5   | U         | 0.74 | 2.5  | 5          | ug/Kg      |  |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.5   | U         | 0.88 | 2.5  | 5          | ug/Kg      |  |
| 108-87-2         | Methylcyclohexane              | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg      |  |
| 71-43-2          | Benzene                        | 2.5   | U         | 0.38 | 2.5  | 5          | ug/Kg      |  |
| 107-06-2         | 1,2-Dichloroethane             | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg      |  |
| 79-01-6          | Trichloroethene                | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg      |  |
| 78-87-5          | 1,2-Dichloropropane            | 2.5   | U         | 0.26 | 2.5  | 5          | ug/Kg      |  |
| 75-27-4          | Bromodichloromethane           | 2.5   | U         | 0.62 | 2.5  | 5          | ug/Kg      |  |
| 108-10-1         | 4-Methyl-2-Pentanone           | 12.5  | U         | 2.9  | 12.5 | 25         | ug/Kg      |  |
| 108-88-3         | Toluene                        | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg      |  |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg      |  |
|                  |                                |       |           |      |      | 198        | 31 of 2672 |  |



### Report of Analysis

Date Collected: Client: Dvirka & Bartilucci Project: PV6256, IBM East Fishkill Date Received: Client Sample ID: VBF0513S1 SDG No.: d2546 Lab Sample ID: VBF0513S1 Matrix: SOIL Analytical Method: SW8260C % Moisture: 0 Sample Wt/Vol: Final Vol: 5000 uL Units: VOC-TCLVOA-10 Test: Soil Aliquot Vol: uL LOW GC Column: RTX-VMS ID: 0.18 Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF033158.D 1 05/13/12 VF051312

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 2.5    | U         | 0.72    | 2.5  | 5          | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 2.5    | U         | 0.9     | 2.5  | 5          | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 12.5   | U         | 3.9     | 12.5 | 25         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 2.5    | U         | 0.54    | 2.5  | 5          | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 2.5    | U         | 0.64    | 2.5  | 5          | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 2.5    | U         | 1       | 2.5  | 5          | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 2.5    | U         | 0.5     | 2.5  | 5          | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 2.5    | U         | 0.62    | 2.5  | 5          | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 5      | U         | 0.72    | 5    | 10         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 2.5    | U         | 0.68    | 2.5  | 5          | ug/Kg   |
| 100-42-5    | Styrene                     | 2.5    | U         | 0.45    | 2.5  | 5          | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.5    | U         | 0.74    | 2.5  | 5          | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 2.5    | U         | 0.48    | 2.5  | 5          | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 2.5    | U         | 0.46    | 2.5  | 5          | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 2.5    | U         | 0.37    | 2.5  | 5          | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 2.5    | U         | 0.41    | 2.5  | 5          | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2.5    | U         | 0.62    | 2.5  | 5          | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.5    | U         | 0.87    | 2.5  | 5          | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 2.5    | U         | 0.7     | 2.5  | 5          | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 2.5    | U         | 0.5     | 2.5  | 5          | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 50     | U         | 50      | 50   | 100        | ug/Kg   |
| SURROGATES  |                             |        |           |         |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 50.6   |           | 56 - 12 |      | 101%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 50.4   |           | 57 - 13 | 5    | 101%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 46.9   |           | 67 - 12 | 3    | 94%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 52.5   |           | 33 - 14 | 1    | 105%       | SPK: 50 |
| INTERNAL ST |                             |        |           |         |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 274646 | 4.38      |         |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 365883 | 5.12      |         |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 374884 | 9.32      |         |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 216185 | 12.24     |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample ID:

VBF0513S1

d2546

Lab Sample ID:

0

VBF0513S1

Analytical Method:

SW8260C

% Moisture:

SOIL

Sample Wt/Vol:

5

Units:

Final Vol:

SDG No.:

Matrix:

5000 uL

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033158.D

05/13/12

VF051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

U = Not Detected

LOO = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

#### VOLATILE METHOD BLANK SUMMARY

| FDA | CAMDIE | NO. |
|-----|--------|-----|
| EPA | SAMPLE | NO. |

| VBF0514S1 |  |
|-----------|--|
|           |  |

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code: CHEM Case No.: D2546

SAS No.: D2546 SDG NO.: D2546

Lab File ID: VF033214.D

Lab Sample ID: VBF0514S1

Date Analyzed: 05/14/2012

Time Analyzed: 18:41

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) Y

Instrument ID: MSVOA F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA<br>SAMPLE NO, | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED |
|-------------------|------------------|----------------|------------------|
| BSF0514S1         | BSF0514S1        | VF033215.D     | 05/14/2012       |
| B-2 (2-3.5) RE    | D2546-06RE       | VF033217.D     | 05/14/2012       |

| COMMENTS: |   |  |  |  |  |  |
|-----------|---|--|--|--|--|--|
|           | - |  |  |  |  |  |

## Report of Analysis

Dvirka & Bartilucci Date Collected: Client: Date Received: Project: PV6256, IBM East Fishkill SDG No.: d2546 Client Sample 1D: VBF0514S1 SOIL Matrix: Lab Sample ID: VBF0514S1 0 % Moisture: Analytical Method: SW8260C Final Vol: 5000 uL Sample Wt/Vol: Units: VOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033214,D 1 05/14/12 VF051412

| 71 03321 112     | *1                             |       |           |      |      |            |       |
|------------------|--------------------------------|-------|-----------|------|------|------------|-------|
| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
| TARGETS          |                                |       |           |      |      |            |       |
| 75-71-8          | Dichlorodifluoromethane        | 2.5   | U         | 0.65 | 2.5  | 5          | ug/Kg |
| 74-87-3          | Chloromethane                  | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg |
| 75-01-4          | Vinyl Chloride                 | 2.5   | U         | 1.2  | 2.5  | 5          | ug/Kg |
| 74-83-9          | Bromomethane                   | 2.5   | U         | 2.4  | 2.5  | 5          | ug/Kg |
| 75-00-3          | Chloroethane                   | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg |
| 75-69-4          | Trichlorofluoromethane         | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg |
| 75-35-4          | 1,1-Dichloroethene             | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg |
| 67 <b>-</b> 64-1 | Acetone                        | 12.5  | U         | 3    | 12.5 | 25         | ug/Kg |
| 75-15-0          | Carbon Disulfide               | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.5   | U         | 0.96 | 2.5  | 5          | ug/Kg |
| 79-20-9          | Methyl Acetate                 | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg |
| 75 <b>-</b> 09-2 | Methylene Chloride             | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.5   | U         | 0.69 | 2.5  | 5          | ug/Kg |
| 75-34-3          | 1,1-Dichloroethane             | 2.5   | U         | 0.94 | 2.5  | 5          | ug/Kg |
| 110-82-7         | Cyclohexane                    | 2.5   | U         | 1    | 2.5  | 5          | ug/Kg |
| 78-93 <b>-</b> 3 | 2-Butanone                     | 12.5  | U         | 3.1  | 12.5 | 25         | ug/Kg |
| 56-23-5          | Carbon Tetrachloride           | 2.5   | U         | 0.99 | 2.5  | 5          | ug/Kg |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.5   | U         | 0.89 | 2.5  | 5          | ug/Kg |
| 74-97-5          | Bromochloromethane             | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg |
| 67-66-3          | Chloroform                     | 2.5   | U         | 0.74 | 2.5  | 5          | ug/Kg |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.5   | U         | 0.88 | 2.5  | 5          | ug/Kg |
| 108-87-2         | Methylcyclohexane              | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg |
| 71-43-2          | Benzene                        | 2.5   | U         | 0.38 | 2.5  | 5          | ug/Kg |
| 107-06-2         | 1,2-Dichloroethane             | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg |
| 79-01-6          | Trichloroethene                | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg |
| 78-87-5          | 1,2-Dichloropropane            | 2.5   | U         | 0.26 | 2.5  | 5          | ug/Kg |
| 75-27-4          | Bromodichloromethane           | 2.5   | U         | 0.62 | 2.5  | 5          | ug/Kg |
| 108-10-1         | 4-Methyl-2-Pentanone           | 12.5  | U         | 2.9  | 12.5 | 25         | ug/Kg |
| 108-88-3         | Toluene                        | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg |



## Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

SDG No.:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample 1D:

VBF0514S1

d2546

0

5000

Lab Sample ID:

VBF0514S1

Analytical Method:

SW8260C

Matrix:

SOIL

Sample Wt/Vol:

% Moisture:

uL

Soil Aliquot Vol:

Units:

Final Vol: Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

uL ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033214.D

05/14/12

VF051412

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|---------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 2.5    | U         | 0.72    | 2.5  | 5          | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 2.5    | U         | 0.9     | 2.5  | 5          | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 12.5   | U         | 3.9     | 12.5 | 25         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 2.5    | U         | 0.54    | 2.5  | 5          | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 2.5    | U         | 0.64    | 2.5  | 5          | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 2.5    | U         | 1       | 2.5  | 5          | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 2.5    | U         | 0.5     | 2.5  | 5          | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 2.5    | U         | 0.62    | 2.5  | 5          | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 5      | U         | 0.72    | 5    | 10         | ug/Kg   |
| 95-47-6     | o-Xylene                    | 2.5    | U         | 0.68    | 2.5  | 5          | ug/Kg   |
| 100-42-5    | Styrene                     | 2.5    | U         | 0.45    | 2.5  | 5          | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.5    | U         | 0.74    | 2.5  | 5          | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 2.5    | U         | 0.48    | 2.5  | 5          | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 2.5    | U         | 0.46    | 2.5  | 5          | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 2.5    | U         | 0.37    | 2.5  | 5          | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 2.5    | U         | 0.41    | 2.5  | 5          | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2.5    | U         | 0.62    | 2.5  | 5          | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.5    | U         | 0.87    | 2.5  | 5          | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 2.5    | U         | 0.7     | 2.5  | 5          | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 2.5    | U         | 0.5     | 2.5  | 5          | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 50     | U         | 50      | 50   | 100        | ug/Kg   |
| SURROGATES  | 3                           |        |           |         |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 53.9   |           | 56 - 12 | C    | 108%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 55     |           | 57 - 13 | 5    | 110%       | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 51.3   |           | 67 - 12 | 3    | 103%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 54.9   |           | 33 - 14 | 1    | 110%       | SPK: 5  |
| INTERNAL ST |                             |        |           |         |      |            |         |
| 363-72-4    | Pentafluorobenzene          | 254691 | 4.38      |         |      |            |         |
| 540-36-3    | 1,4-Difluorobenzene         | 333945 | 5.12      |         |      |            |         |
| 3114-55-4   | Chlorobenzene-d5            | 330921 | 9.32      |         |      |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 194074 | 12.24     |         |      |            |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample ID:

VBF0514S1

Lab Sample 1D:

d2546

VBF0514S1

Analytical Method:

SW8260C

% Moisture:

SOIL 0

Sample Wt/Vol:

Units:

Final Vol:

SDG No.:

Matrix:

uL

Soil Aliquot Vol:

Test:

VOC-TCL/VOA-10

GC Column:

RTX-VMS

uL ID: 0.18

Level:

LOW

5000

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033214.D

05/14/12

VF051412

**CAS Number** 

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

#### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

| VBF0515S1 |  |
|-----------|--|
|           |  |

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code: CHEM

Case No.: D2546

SAS No.: D2546 SDG NO.: D2546

Lab File ID: VF033249.D

Lab Sample ID: VBF0515S1

Date Analyzed: 05/15/2012

Time Analyzed: 21:36

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) Y

Instrument ID: MSVOA\_F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA                 | LAB         | LAB        | DATE       |
|---------------------|-------------|------------|------------|
| SAMPLE NO.          | SAMPLE ID   | FILE ID    | ANALYZED   |
| BSF0515S1           | BSF0515S1   | VF033250.D | 05/15/2012 |
| B-5 (6-7) RE        | D2546-15RE  | VF033252.D | 05/15/2012 |
| SEC-SB-08 (6-8) MS  | D2513-11MS  | VF033266.D | 05/16/2012 |
| SEC-SB-08 (6-8) MSD | D2513-12MSD | VF033267.D | 05/16/2012 |

| COMMENTS: |  |  |  |  |
|-----------|--|--|--|--|
|           |  |  |  |  |

GC Column:

## Report of Analysis

Date Collected: Dvirka & Bartilucci Client: Date Received: Project: PV6256, IBM East Fishkill d2546 SDG No.: VBF0515S1 Client Sample ID: SOIL VBF0515S1 Matrix: Lab Sample ID: % Moisture: SW8260C Analytical Method Final Vol: Sample Wt/Vol: Units: 5000 uLTest: VOC-TCLVOA-10 Soil Aliquot Vol: uL

Level:

LOW

ID: 0.18

RTX-VMS

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF033249.D I 05/15/12 VF051512

| V1 033247.D      | *.                             |       | 00,70,    | . –  |      |            |           |
|------------------|--------------------------------|-------|-----------|------|------|------------|-----------|
| CAS Number       | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units     |
| TARGETS          |                                |       |           |      |      |            |           |
| 75-71-8          | Dichlorodifluoromethane        | 2.5   | U         | 0.65 | 2.5  | 5          | ug/Kg     |
| 74-87-3          | Chloromethane                  | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg     |
| 75-01-4          | Vinyl Chloride                 | 2.5   | U         | 1.2  | 2.5  | 5          | ug/Kg     |
| 74-83-9          | Bromomethane                   | 2.5   | U         | 2.4  | 2.5  | 5          | ug/Kg     |
| 75-00-3          | Chloroethane                   | 2.5   | U (*)     | 1.4  | 2.5  | 5          | ug/Kg     |
| 75-69-4          | Trichlorofluoromethane         | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg     |
| 76-13-1          | 1,1,2-Trichlorotrifluoroethane | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg     |
| 75-35-4          | 1,1-Dichloroethene             | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg     |
| 67-64-1          | Acetone                        | 12.5  | U         | 3    | 12.5 | 25         | ug/Kg     |
| 75-15-0          | Carbon Disulfide               | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg     |
| 1634-04-4        | Methyl tert-butyl Ether        | 2.5   | U         | 0.96 | 2.5  | 5          | ug/Kg     |
| 79-20-9          | Methyl Acetate                 | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg     |
| 75-09-2          | Methylene Chloride             | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg     |
| 156-60-5         | trans-1,2-Dichloroethene       | 2.5   | U         | 0.69 | 2.5  | 5          | ug/Kg     |
| 75-34-3          | 1,1-Dichloroethane             | 2.5   | U         | 0.94 | 2.5  | 5          | ug/Kg     |
| 110-82-7         | Cyclohexane                    | 2.5   | U         | 1    | 2.5  | 5          | ug/Kg     |
| 78-93 <b>-</b> 3 | 2-Butanone                     | 12.5  | U         | 3.1  | 12.5 | 25         | ug/Kg     |
| 56-23-5          | Carbon Tetrachloride           | 2.5   | U         | 0.99 | 2.5  | 5          | ug/Kg     |
| 156-59-2         | cis-1,2-Dichloroethene         | 2.5   | U         | 0.89 | 2.5  | 5          | ug/Kg     |
| 74-97-5          | Bromochloromethane             | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg     |
| 67-66-3          | Chloroform                     | 2.5   | U         | 0.74 | 2.5  | 5          | ug/Kg     |
| 71-55-6          | 1,1,1-Trichloroethane          | 2.5   | U         | 0.88 | 2.5  | 5          | ug/Kg     |
| 108-87-2         | Methylcyclohexane              | 2.5   | U         | 1.1  | 2.5  | -5         | ug/Kg     |
| 71-43-2          | Benzene                        | 2.5   | U         | 0.38 | 2.5  | 5          | ug/Kg     |
| 107-06-2         | 1,2-Dichloroethane             | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg     |
| 79-01 <b>-</b> 6 | Trichloroethene                | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg     |
| 78-87-5          | 1,2-Dichloropropane            | 2.5   | U         | 0.26 | 2.5  | 5          | ug/Kg     |
| 75-27-4          | Bromodichloromethane           | 2.5   | U         | 0.62 | 2.5  | 5          | ug/Kg     |
| 108-10-1         | 4-Methyl-2-Pentanone           | 12.5  | U         | 2.9  | 12.5 | 25         | ug/Kg     |
| 108-88-3         | Toluene                        | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg     |
| 10061-02-6       | t-1,3-Dichloropropene          | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg     |
|                  |                                |       |           |      |      | 300.       | 7 of 2672 |



## Report of Analysis

Client: Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample ID:

VBF0515S1

d2546

Lab Sample 1D:

VBF0515S1

Analytical Method:

SW8260C

Matrix:

SOIL

Sample Wt/Vol:

5

% Moisture:

0

Sample wi/voi:

Units: g

Final Vol:

SDG No.:

5000 uL

Soil Aliquot Vol:

5

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033249.D

- 1

05/15/12

VF051512

| VF033249.D  | 1                           |        | 05/15/    | /12      |      | VF051512 |         |
|-------------|-----------------------------|--------|-----------|----------|------|----------|---------|
| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ/CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 2.5    | U         | 0.72     | 2.5  | 5        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 2.5    | U         | 0.9      | 2.5  | 5        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 12.5   | U         | 3.9      | 12.5 | 25       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 2.5    | U         | 0.54     | 2.5  | 5        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 2.5    | U         | 0.64     | 2.5  | 5        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 2.5    | U         | 1        | 2.5  | 5        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 2.5    | U         | 0.5      | 2.5  | 5        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 2.5    | U         | 0.62     | 2.5  | 5        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 5      | U         | 0.72     | 5    | 10       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 2.5    | U         | 0.68     | 2.5  | 5        | ug/Kg   |
| 100-42-5    | Styrene                     | 2.5    | U         | 0.45     | 2.5  | 5        | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.5    | U         | 0.74     | 2.5  | 5        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 2.5    | U         | 0.48     | 2.5  | 5        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 2.5    | U         | 0.46     | 2.5  | 5        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 2.5    | U         | 0.37     | 2.5  | 5        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 2.5    | U         | 0.41     | 2.5  | 5        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2.5    | U         | 0.62     | 2.5  | 5        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.5    | U         | 0.87     | 2.5  | 5        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 2.5    | U         | 0.7      | 2.5  | 5        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 2.5    | U         | 0.5      | 2.5  | 5        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 50     | U         | 50       | 50   | 100      | ug/Kg   |
| SURROGATES  |                             |        |           |          |      |          |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 53.8   |           | 56 - 120 |      | 108%     | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 53.8   |           | 57 - 13: | 5    | 108%     | SPK: 50 |
| 2037-26-5   | Toluene-d8                  | 51.2   |           | 67 - 123 |      | 102%     | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene        | 50.8   |           | 33 - 14  | 1    | 102%     | SPK: 50 |
| INTERNAL ST |                             |        |           |          |      |          |         |
| 363-72-4    | Pentafluorobenzene          | 279859 | 4.38      |          |      |          |         |
| 540-36-3    | 1,4-Difluorobenzene         | 455445 | 5.12      |          |      |          |         |
| 3114-55-4   | Chlorobenzene-d5            | 433060 | 9.33      |          |      |          |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4      | 232721 | 12.24     |          |      |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected: Date Received:

Project:

PV6256, IBM East Fishkill

Client Sample 1D:

VBF0515S1

0

Lab Sample ID:

d2546

VBF0515S1

Analytical Method:

SW8260C

Matrix: % Moisture:

SDG No.:

SOIL

Sample Wt/Vol:

Units: g Final Vol:

5000 uL

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

uL ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF033249.D

1

05/15/12

VF051512

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

#### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

| VBK0511S1 |  |  |
|-----------|--|--|
|           |  |  |

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code: CHEM Case No.: D2546

SAS No.: D2546 SDG NO.: D2546

Lab File ID: VK048290.D

Lab Sample ID: VBK0511S1

Date Analyzed: 05/12/2012

Time Analyzed: 01:16

GC Column: RXI-624 ID: 0.25 (mm)

Heated Purge: (Y/N) Y

Instrument ID: MSVOA\_K

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED |
|-------------------|------------------|----------------|------------------|
| BSK0511S1         | BSK0511S1        | VK048291.D     | 05/12/2012       |
| B-1 (9-2)         | D2546-01         | VK048299.D     | 05/12/2012       |
| B-1(2-3.5)        | D2546-02         | VK048300.D     | 05/12/2012       |
| B-1(4-5.5)        | D2546-03         | VK048301.D     | 05/12/2012       |
| B-1(6-7.5)        | D2546-04         | VK048302.D     | 05/12/2012       |
| B-2 (8-2)         | D2546-05         | VK048303.D     | 05/12/2012       |
| B-2(2-3.5)        | D2546-06         | VK048304.D     | 05/12/2012       |

| COMMENTS: |  |  |  |  |
|-----------|--|--|--|--|
|           |  |  |  |  |

### Report of Analysis

Client: Dvirka & Bartilucci PV6256, IBM East Fishkill

Project: Client Sample ID: VBK0511S1

VBK0511S1 Lab Sample ID:

Analytical Method: SW8260C Units:

Sample Wt/Vol: Soil Aliquot Vol:

GC Column: RX1-624 Date Collected:

Date Received:

SDG No.:

SOIL Matrix:

% Moisture:

Final Vol:

Test:

uL

VOC-TCLVOA-10

Level:

LOW

5000

d2546

0

File ID/Qc Batch:

VK048290.D

Dilution:

1

Prep Date

g

иL

ID: 0.25

Date Analyzed

Prep Batch ID

05/12/12

VK051112

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 2.5   | U         | 0.65 | 2.5  | 5          | ug/Kg |
| 74-87-3    | Chloromethane                  | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 2.5   | U         | 1.2  | 2.5  | 5          | ug/Kg |
| 74-83-9    | Bromomethane                   | 2.5   | U         | 2.4  | 2.5  | 5          | ug/Kg |
| 75-00-3    | Chloroethane                   | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg |
| 67-64-1    | Acetone                        | 12.5  | U         | 3    | 12.5 | 25         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.5   | U         | 0.96 | 2.5  | 5          | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.5   | U         | 0.69 | 2.5  | 5          | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 2.5   | U         | 0.94 | 2.5  | 5          | ug/Kg |
| 110-82-7   | Cyclohexane                    | 2.5   | U         | 1    | 2.5  | 5          | ug/Kg |
| 78-93-3    | 2-Butanone                     | 12.5  | U         | 3.1  | 12.5 | 25         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 2.5   | U         | 0.99 | 2.5  | 5          | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.5   | U         | 0.89 | 2.5  | 5          | ug/Kg |
| 74-97-5    | Bromochloromethane             | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg |
| 67-66-3    | Chloroform                     | 2.5   | U         | 0.74 | 2.5  | 5          | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.5   | U         | 0.88 | 2.5  | 5          | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg |
| 71-43-2    | Benzene                        | 2.5   | U         | 0.38 | 2.5  | 5          | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg |
| 79-01-6    | Trichloroethene                | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 2.5   | U         | 0.26 | 2.5  | 5          | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 2.5   | U         | 0.62 | 2.5  | 5          | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 12.5  | U         | 2.9  | 12.5 | 25         | ug/Kg |
| 108-88-3   | Toluene                        | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg |



## Report of Analysis

Date Collected: Client: Dvirka & Bartilucci Date Received: Project: PV6256, 1BM East Fishkill SDG No.: d2546 Client Sample ID: VBK0511S1 Lab Sample ID: VBK0511S1 Matrix: SOIL 0 % Moisture: Analytical Method: SW8260C Final Vol: Sample Wt/Vol: Units: 5000 uL VOC-TCLVOA-10 Soil Aliquot Vol: иL Test: GC Column: RX1-624 ID: 0.25 Level: LOW

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 VK048290.D
 1
 05/12/12
 VK051112

| VK048290.D   | <u>l</u>                    |        | 05/12/    | 12       |      | VK051112 |         |
|--------------|-----------------------------|--------|-----------|----------|------|----------|---------|
| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ/CRQL | Units   |
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.5    | U         | 0.72     | 2.5  | 5        | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.5    | U         | 0.9      | 2.5  | 5        | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 12.5   | U         | 3.9      | 12.5 | 25       | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.5    | U         | 0.54     | 2.5  | 5        | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.5    | U         | 0.64     | 2.5  | 5        | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.5    | U         | 1        | 2.5  | 5        | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.5    | U         | 0.5      | 2.5  | 5        | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.5    | U         | 0.62     | 2.5  | 5        | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5      | U         | 0.72     | 5    | 10       | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.5    | U         | 0.68     | 2.5  | 5        | ug/Kg   |
| 100-42-5     | Styrene                     | 2.5    | U         | 0.45     | 2.5  | 5        | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.5    | U         | 0.74     | 2.5  | 5        | ug/Kg   |
| 98-82-8      | lsopropylbenzene            | 2.5    | U         | 0.48     | 2.5  | 5        | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.5    | U         | 0.46     | 2.5  | 5        | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.5    | U         | 0.37     | 2.5  | 5        | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.5    | U         | 0.41     | 2.5  | 5        | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.5    | U         | 0.62     | 2.5  | 5        | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.5    | U         | 0.87     | 2.5  | 5        | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.5    | U         | 0.7      | 2.5  | 5        | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.5    | U         | 0.5      | 2.5  | 5        | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 50     | U         | 50       | 50   | 100      | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |          |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 51.6   |           | 55 - 158 |      | 103%     | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 50.9   |           | 53 - 150 |      | 102%     | SPK: 50 |
| 2037-26-5    | Totalie-do                  | 49.5   |           | 85 - 11: |      | 99%      | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 46.1   |           | 85 - 120 | O    | 92%      | SPK: 50 |
| INTERNAL STA |                             |        |           |          |      |          |         |
| 363-72-4     | Pentafluorobenzene          | 251904 | 6.54      |          |      |          |         |
| 540-36-3     | 1,4-Difluorobenzene         | 460298 | 7.69      |          |      |          |         |
| 3114-55-4    | Chlorobenzene-d5            | 359323 | 10.74     |          |      |          |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 129077 | 12.68     |          |      |          |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample ID:

VBK0511S1

d2546

Lab Sample ID:

VBK0511S1

SOIL

5000

Analytical Method:

SW8260C

Matrix: % Moisture:

SDG No.:

Sample Wt/Vol:

Final Vol:

uL

Units:

Test:

VOC-TCLVOA-10

Soil Aliquot Vol:

GC Column:

RX1-624

иL ID: 0.25

g

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

MDL

Prep Batch ID

VK048290.D

I

05/12/12

VK051112

**CAS Number** 

**Parameter** 

Conc.

Qualifier

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBK0513S1

Lab Name: CHEMTECH Contract: DVIR01

Lab Code: CHEM Case No.: D2546 SAS No.: D2546 SDG NO.: D2546

Lab File ID: VK048307.D Lab Sample ID: VBK0513S1

Date Analyzed: 05/13/2012 Time Analyzed: 17:05

GC Column: RXI-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: MSVOA\_K

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

| EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED |
|-------------------|------------------|----------------|------------------|
| BSK0513S1         | BSK0513S1        | VK048308.D     | 05/13/2012       |
| B-2 (4-5) RE      | D2546-07RE       | VK048310.D     | 05/13/2012       |
| B-2(6-8)RE        | D2546-08RE       | VK048311.D     | 05/13/2012       |
| B-4 (9-2) RE      | D2546-09RE       | VK048312.D     | 05/13/2012       |
| B-4 (2-3) RE      | D2546-10RE       | VK048313.D     | 05/13/2012       |
| B-3 (9-2) RE      | D2546-11RE       | VK048314.D     | 05/13/2012       |
| B-3(2-3.5)RE      | D2546-12RE       | VK048315.D     | 05/13/2012       |
| B-3 (6-7) RE      | D2546-13RE       | 'VK048316.D    | 05/13/2012       |
| B-5 (13-2) RE     | D2546-14RE       | VK048317.D     | 05/13/2012       |
| B-6 (10-2) RE     | D2546-16RE       | VK048319.D     | 05/13/2012       |
| B-6 (2-3) RE      | D2546-17RE       | VK048320.D     | 05/13/2012       |
| B-1 (9-2) RE      | D2546-01RE       | VK048321.D     | 05/13/2012       |
| B-1 (2-3.5) RE    | D2546-02RE       | VK048322.D     | 05/14/2012       |
| B-1 (4-5.5) RE    | D2546-03RE       | VK048323.D     | 05/14/2012       |
| B-1 (6-7.5) RE    | D2546-04RE       | VK048324.D     | 05/14/2012       |
| B-2(8-2)RE        | D2546-05RE       | VK048325.D     | 05/14/2012       |

| COMMENTS: |  |  |  |  |
|-----------|--|--|--|--|
|           |  |  |  |  |

## **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

Date Received:

Project:

PV6256, IBM East Fishkill

Client Sample 1D:

VBK0513S1

d2546

Lab Sample ID:

VBK0513S1

SOIL

Analytical Method:

SW8260C

0

Sample Wt/Vol:

Units: g

% Moisture: Final Vol:

SDG No.:

Matrix:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

uL

GC Column:

RX1-624

ID: 0.25

Level:

LOW

File ID/Qc Batch;

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048307.D

1

05/13/12

VK051312

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units  |
|------------|--------------------------------|-------|-----------|------|------|------------|--------|
| TARGETS    |                                |       |           |      |      |            |        |
| 75-71-8    | Dichlorodifluoromethane        | 2.5   | U         | 0.65 | 2.5  | 5          | ug/Kg  |
| 74-87-3    | Chloromethane                  | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg  |
| 75-01-4    | Vinyl Chloride                 | 2.5   | U         | 1.2  | 2.5  | 5          | ug/Kg  |
| 74-83-9    | Bromomethane                   | 2.5   | U         | 2.4  | 2.5  | 5          | ug/Kg  |
| 75-00-3    | Chloroethane                   | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg  |
| 75-69-4    | Trichlorofluoromethane         | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 2.5   | U         | 1.3  | 2.5  | 5          | ug/Kg  |
| 75-35-4    | 1,1-Dichloroethene             | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg  |
| 67-64-1    | Acetone                        | 12.5  | U         | 3    | 12.5 | 25         | ug/Kg  |
| 75-15-0    | Carbon Disulfide               | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg  |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.5   | U         | 0.96 | 2.5  | 5          | ug/Kg  |
| 79-20-9    | Methyl Acetate                 | 2.5   | U         | 1.5  | 2.5  | 5          | ug/Kg  |
| 75-09-2    | Methylene Chloride             | 2.5   | U         | 1.4  | 2.5  | 5          | ug/Kg  |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.5   | U         | 0.69 | 2.5  | 5          | ug/Kg  |
| 75-34-3    | 1,1-Dichloroethane             | 2.5   | U         | 0.94 | 2.5  | 5          | ug/Kg  |
| 110-82-7   | Cyclohexane                    | 2.5   | U         | 1    | 2.5  | 5          | ug/Kg  |
| 78-93-3    | 2-Butanone                     | 12.5  | U         | 3.1  | 12.5 | 25         | ug/Kg  |
| 56-23-5    | Carbon Tetrachloride           | 2.5   | U         | 0.99 | 2.5  | 5          | ug/Kg  |
| 156-59-2   | cis-1,2-Dichloroethene         | 2.5   | U         | 0.89 | 2.5  | 5          | ug/Kg  |
| 74-97-5    | Bromochloromethane             | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg  |
| 67-66-3    | Chloroform                     | 2.5   | U         | 0.74 | 2.5  | 5          | ug/Kg  |
| 71-55-6    | 1,1,1-Trichloroethane          | 2.5   | U         | 0.88 | 2.5  | 5          | ug/Kg  |
| 108-87-2   | Methylcyclohexane              | 2.5   | U         | 1.1  | 2.5  | 5          | ug/Kg  |
| 71-43-2    | Benzene                        | 2.5   | U         | 0.38 | 2.5  | 5          | ug/Kg  |
| 107-06-2   | 1,2-Dichloroethane             | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg  |
| 79-01-6    | Trichloroethene                | 2.5   | U         | 0.86 | 2.5  | 5          | ug/Kg  |
| 78-87-5    | 1,2-Dichloropropane            | 2.5   | U         | 0.26 | 2.5  | 5          | ug/Kg  |
| 75-27-4    | Bromodichloromethane           | 2.5   | U         | 0.62 | 2.5  | 5          | ug/Kg  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 12.5  | U         | 2.9  | 12.5 | 25         | ug/Kg  |
| 108-88-3   | Toluene                        | 2.5   | U         | 0.64 | 2.5  | 5          | ug/Kg  |
| 10061-02-6 | t-1,3-Dichloropropene          | 2.5   | U         | 0.79 | 2.5  | 5          | ug/Kg  |
|            |                                |       |           |      |      | 2022       | of 267 |

## Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

Client Sample ID:

VBK0513S1

d2546

Lab Sample ID:

VBK0513S1

Analytical Method:

SW8260C

SOIL

0

Sample Wt/Vol:

% Moisture:

Soil Aliquot Vol:

Units:

Final Vol:

SDG No.:

Matrix:

5000 uL

GC Column:

RXI-624

uL ID: 0.25 Test: Level:

VOC-TCLVOA-10 LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VK048307.D

05/13/12

VK051312

| V K 048307.D | 1                           |        | 03/13/    | 12       |      | V K 0 3 1 3 1 2 |         |
|--------------|-----------------------------|--------|-----------|----------|------|-----------------|---------|
| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL      | Units   |
| 10061-01-5   | cis-1,3-Dichloropropene     | 2.5    | U         | 0.72     | 2.5  | 5               | ug/Kg   |
| 79-00-5      | 1,1,2-Trichloroethane       | 2.5    | U         | 0.9      | 2.5  | 5               | ug/Kg   |
| 591-78-6     | 2-Hexanone                  | 12.5   | U         | 3.9      | 12.5 | 25              | ug/Kg   |
| 124-48-1     | Dibromochloromethane        | 2.5    | U         | 0.54     | 2.5  | 5               | ug/Kg   |
| 106-93-4     | 1,2-Dibromoethane           | 2.5    | U         | 0.64     | 2.5  | 5               | ug/Kg   |
| 127-18-4     | Tetrachloroethene           | 2.5    | U         | 1        | 2.5  | 5               | ug/Kg   |
| 108-90-7     | Chlorobenzene               | 2.5    | U         | 0.5      | 2.5  | 5               | ug/Kg   |
| 100-41-4     | Ethyl Benzene               | 2.5    | U         | 0.62     | 2.5  | 5               | ug/Kg   |
| 179601-23-1  | m/p-Xylenes                 | 5      | U         | 0.72     | 5    | 10              | ug/Kg   |
| 95-47-6      | o-Xylene                    | 2.5    | U         | 0.68     | 2.5  | 5               | ug/Kg   |
| 100-42-5     | Styrene                     | 2.5    | U         | 0.45     | 2.5  | 5               | ug/Kg   |
| 75-25-2      | Bromoform                   | 2.5    | U         | 0.74     | 2.5  | 5               | ug/Kg   |
| 98-82-8      | Isopropylbenzene            | 2.5    | U         | 0.48     | 2.5  | 5               | ug/Kg   |
| 79-34-5      | 1,1,2,2-Tetrachloroethane   | 2.5    | U         | 0.46     | 2.5  | 5               | ug/Kg   |
| 541-73-1     | 1,3-Dichlorobenzene         | 2.5    | U         | 0.37     | 2.5  | 5               | ug/Kg   |
| 106-46-7     | 1,4-Dichlorobenzene         | 2.5    | U         | 0.41     | 2.5  | 5               | ug/Kg   |
| 95-50-1      | 1,2-Dichlorobenzene         | 2.5    | U         | 0.62     | 2.5  | 5               | ug/Kg   |
| 96-12-8      | 1,2-Dibromo-3-Chloropropane | 2.5    | U         | 0.87     | 2.5  | 5               | ug/Kg   |
| 120-82-1     | 1,2,4-Trichlorobenzene      | 2.5    | U         | 0.7      | 2.5  | 5               | ug/Kg   |
| 87-61-6      | 1,2,3-Trichlorobenzene      | 2.5    | U         | 0.5      | 2.5  | 5               | ug/Kg   |
| 123-91-1     | 1,4-Dioxane                 | 50     | U         | 50       | 50   | 100             | ug/Kg   |
| SURROGATES   |                             |        |           |          |      |                 |         |
| 17060-07-0   | 1,2-Dichloroethane-d4       | 58.6   |           | 56 - 120 | )    | 117%            | SPK: 50 |
| 1868-53-7    | Dibromofluoromethane        | 51.6   |           | 57 - 13: | 5    | 103%            | SPK: 50 |
| 2037-26-5    | Toluene-d8                  | 47.6   |           | 67 - 123 | 3    | 95%             | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 49.4   |           | 33 - 14  | 1    | 99%             | SPK: 50 |
| INTERNAL ST  |                             |        |           |          |      |                 |         |
| 363-72-4     | Pentafluorobenzene          | 208608 | 6.55      |          |      |                 |         |
| 540-36-3     | 1,4-Difluorobenzene         | 357196 | 7.69      |          |      |                 |         |
| 3114-55-4    | Chlorobenzene-d5            | 293139 | 10.74     |          |      |                 |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 114270 | 12.68     |          |      |                 |         |



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

### Report of Analysis

Client:

Dvirka & Bartilucci

Date Collected:

Project:

PV6256, IBM East Fishkill

Date Received:

d2546

Client Sample ID:

VBK0513S1

SDG No.:

Lab Sample ID:

VBK0513S1

Matrix:

SOIL

Analytical Method:

SW8260C

% Moisture:

0

Sample Wt/Vol:

Units:

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RXI-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Date Analyzed

Prep Batch ID

VK048307.D

1

Prep Date

05/13/12

VK051312

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ/CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name: _    | СНЕМТЕСН       |           | ÷     | Contract:     | DVIR01  |            |       |
|----------------|----------------|-----------|-------|---------------|---------|------------|-------|
| Lab Code:      | СНЕМ           | Case No.: | D2546 | SAS No.:      | D2546   | SDG NO.:   | D2546 |
| Lab File ID:   | VF033049.D     |           |       | BFB Injection | n Date: | 05/10/2012 |       |
| Instrument ID: | MSVOA_F        |           |       | BFB Injection | n Time: | 10:05      |       |
| GC Column: R   | TX-VMS ID: 0.1 | 8 (mm)    |       | Heated Purge  | : Y/N   | Y          |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0% of mass 95            | 19.9                    |
| 75  | 30.0 - 60.0% of mass 95            | 41                      |
| 95  | Base Peak, 100% relative abundance | 100                     |
| 96  | 5.0 - 9.0% of mass 95              | 6.7                     |
| 173 | Less than 2.0% of mass 174         | 0.2 ( 0.2 ) 1           |
| 174 | 50.0 = 100.0% of mass 95           | 90.3                    |
| 175 | 5.0 - 9.0% of mass 174             | 6.8 ( 7.5 ) 1           |
| 176 | 95.0 - 101.0% of mass 174          | 87.1 ( 96.5 ) 1         |
| 177 | 5.0 = 9.0% of mass 176             | 6.4 ( 7.4 ) 2           |
|     |                                    |                         |

1-Value is % mass 69

2-Value is % mass 442

| EPA<br>SAMPLE NO | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|------------------|----------------|------------------|------------------|
| VSTD005          | 5 PPB ICC        | VF033050.D     | 05/10/2012       | 11:07            |
| VSTD020          | 20 PPB ICC       | VF033051.D     | 05/10/2012       | 11:30            |
| VSTD050          | 50 PPB ICC       | VF033052.D     | 05/10/2012       | 11:52            |
| VSTD100          | 100 PPB ICC      | VF033053.D     | 05/10/2012       | 12:15            |
| VSTD150          | 150 PPB ICC      | VF033054.D     | 05/10/2012       | 12:45            |
| VSTD200          | 200 PPB ICC      | VF033055.D     | 05/10/2012       | 13:07            |



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name:     | CHEMTECH       |           |       | Contract: _   | DVIR01  | -          |       |
|---------------|----------------|-----------|-------|---------------|---------|------------|-------|
| Lab Code:     | CHEM           | Case No.: | D2546 | SAS No.:      | D2546   | SDG NO.:   | D2546 |
| Lab File ID:  | VF033156.D     |           |       | BFB Injection | n Date: | 05/13/2012 |       |
| Instrument ID | MSVOA_F        |           |       | BFB Injection | n Time: | 15:17      |       |
| GC Column: R  | TX-VMS ID: 0.1 | 8 (mm)    |       | Heated Purge  | : Y/N   | Y          |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0% of mass 95            | 18.5                    |
| 75  | 30.0 - 60.0% of mass 95            | 38.3                    |
| 95  | Base Peak, 100% relative abundance | 100                     |
| 96  | 5.0 - 9.0% of mass 95              | 6.1                     |
| 173 | Less than 2.0% of mass 174         | 0.1 ( 0.1 ) 1           |
| 174 | 50.0 - 100.0% of mass 95           | 94.6                    |
| 175 | 5.0 - 9.0% of mass 174             | 6.8 ( 7.2 ) 1           |
| 176 | 95.0 - 101.0% of mass 174          | 92.7 ( 98.1 ) 1         |
| 177 | 5.0 - 9.0% of mass 176             | 5.8 ( 6.3 ) 2           |
|     |                                    |                         |

1-Value is % mass 69

2-Value is % mass 442

| EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|-------------------|------------------|----------------|------------------|------------------|
| VSTD050           | 50 PPB CCC       | VF033157.D     | 05/13/2012       | 16:33            |
| VBF0513S1         | VBF0513S1        | VF033158.D     | 05/13/2012       | 17:14            |
| BSF0513S1         | BSF0513S1        | VF033159.D     | 05/13/2012       | 17:52            |
| B-2(4-5)          | D2546-07         | VF033160.D     | 05/13/2012       | 18:26            |
| B-2 (6-8)         | D2546-08         | VF033161.D     | 05/13/2012       | 18:50            |
| B-4 (9-2)         | D2546-09         | VF033162.D     | 05/13/2012       | 19:13            |
| B-4 (2-3)         | D2546-10         | VF033163.D     | 05/13/2012       | 19:37            |
| B-3 (9-2)         | D2546-11         | VF033164.D     | 05/13/2012       | 20:00            |
| B-3 (2-3.5)       | D2546-12         | VF033165.D     | 05/13/2012       | 20:24            |
| B-3 (6-7)         | D2546-13         | VF033166.D     | 05/13/2012       | 20:48            |
| B-5 (13-2)        | D2546-14         | VF033167.D     | 05/13/2012       | 21:11            |
| B-5 (6-7)         | D2546-15         | VF033168.D     | 05/13/2012       | 21:34            |
| B-6(10-2)         | D2546-16         | VF033169.D     | 05/13/2012       | 21:57            |
| B-6(2-3)          | D2546-17         | VF033170.D     | 05/13/2012       | 22:20            |



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name:     | CHEMTECH   |           |       | Contract:     | DVIR01   |            |       |
|---------------|------------|-----------|-------|---------------|----------|------------|-------|
| Lab Code:     | CHEM       | Case No.: | D2546 | SAS No.:      | D2546    | SDG NO.:   | D2546 |
| Lab File ID:  | VF033212.D |           |       | BFB Injection | on Date: | 05/14/2012 |       |
| Instrument ID | MSVOA_F    |           |       | BFB Injection | on Time: | 17:22      |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0% of mass 95            | 18.6                    |
| 75  | 30.0 - 60.0% of mass 95            | 41.1                    |
| 95  | Base Peak, 100% relative abundance | 100                     |
| 96  | 5.0 = 9.0% of mass 95              | 6.8                     |
| 173 | Less than 2.0% of mass 174         | 0.1 ( 0.1 ) 1           |
| 174 | 50.0 - 100.0% of mass 95           | 98.1                    |
| 175 | 5.0 - 9.0% of mass 174             | 7.2 ( 7.3 ) 1           |
| 176 | 95.0 - 101.0% of mass 174          | 97.5 ( 99.4 ) 1         |
| 177 | 5.0 - 9.0% of mass 176             | 7.7 ( 7.9 ) 2           |
|     |                                    |                         |

Heated Purge: Y/N

1-Value is % mass 69

GC Column: RTX-VMS ID: 0.18 (mm)

2-Value is % mass 442

Y

| EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|-------------------|------------------|----------------|------------------|------------------|
| VSTD050           | 50 PPB CCC       | VF033213.D     | 05/14/2012       | 18:02            |
| VBF0514S1         | VBF0514S1        | VF033214.D     | 05/14/2012       | 18:41            |
| BSF0514S1         | BSF0514S1        | VF033215.D     | 05/14/2012       | 19:19            |
| B-2(2-3.5)RE      | D2546-06RE       | VF033217.D     | 05/14/2012       | 20:05            |



#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name:      | CHEMTECH        |           |       | Contract:     | DVIR01 |            |       |
|----------------|-----------------|-----------|-------|---------------|--------|------------|-------|
| Lab Code:      | СНЕМ            | Case No.: | D2546 | SAS No.:      | D2546  | SDG NO.:   | D2546 |
| Lab File ID:   | VF033241.D      | _         |       | BFB Injection | Date:  | 05/15/2012 |       |
| Instrument ID: | MSVOA_F         |           |       | BFB Injection | Time:  | 17:33      |       |
| GC Column: R   | TX-VMS ID: 0.18 | (mm)      |       | Heated Purge: | Y/N    | Y          |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |  |
|-----|------------------------------------|-------------------------|--|
| 50  | 15.0 - 40.0% of mass 95            | 19.9                    |  |
| 75  | 30.0 - 60.0% of mass 95            | 37.6                    |  |
| 95  | Base Peak, 100% relative abundance | 100                     |  |
| 96  | 5.0 - 9.0% of mass 95              | 6.1                     |  |
| 173 | Less than 2.0% of mass 174         | 0.5 ( 0.6 ) 1           |  |
| 174 | 50.0 - 100.0% of mass 95           | 77.4                    |  |
| 175 | 5.0 - 9.0% of mass 174             | 6.7 ( 8.7 ) 1           |  |
| 176 | 95.0 - 101.0% of mass 174          | 78 (100.8) 1            |  |
| 177 | 5.0 - 9.0% of mass 176             | 5 ( 6.4 ) 2             |  |
|     |                                    |                         |  |

1-Value is % mass 69

2-Value is % mass 442

|                     |                  |                | r                | 1                |
|---------------------|------------------|----------------|------------------|------------------|
| EPA<br>SAMPLE NO.   | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
| VSTD005             | 5 PPB ICC        | VF033242.D     | 05/15/2012       | 18:17            |
| VSTD020             | 20 PPB ICC       | VF033243.D     | 05/15/2012       | 18:40            |
| VSTD050             | 50 PPB ICC       | VF033244.D     | 05/15/2012       | 19:03            |
| VSTD100             | 100 PPB ICC      | VF033245.D     | 05/15/2012       | 19:26            |
| VSTD150             | 150 PPB ICC      | VF033246.D     | 05/15/2012       | 19:49            |
| VSTD200             | 200 PPB ICC      | VF033247.D     | 05/15/2012       | 20:12            |
| VBF0515S1           | VBF0515S1        | VF033249.D     | 05/15/2012       | 21:36            |
| BSF0515S1           | BSF0515S1        | VF033250.D     | 05/15/2012       | 22:09            |
| B-5 (6-7) RE        | D2546-15RE       | VF033252.D     | 05/15/2012       | 22:55            |
| SEC-SB-08 (6-8) MS  | D2513-11MS       | VF033266.D     | 05/16/2012       | 04:47            |
| SEC-SB-08 (6-8) MSD | D2513-12MSD      | VF033267.D     | 05/16/2012       | 05:10            |



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name: _    | СНЕМТЕСН       |           |       | Contract:     | DVIR01   |            |       |
|----------------|----------------|-----------|-------|---------------|----------|------------|-------|
| Lab Code:      | CHEM           | Case No.: | D2546 | SAS No.:      | D2546    | SDG NO.:   | D2546 |
| Lab File ID:   | VK048272.D     |           |       | BFB Injection | on Date: | 05/11/2012 |       |
| Instrument ID: | MSVOA_K        |           |       | BFB Injection | on Time: | 13:13      |       |
| GC Column: R   | XI-624 ID: 0.2 | 5 (mm)    |       | Heated Purg   | e: Y/N   | Y          |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0% of mass 95            | 34.2                    |
| 75  | 30.0 - 60.0% of mass 95            | 58.3                    |
| 95  | Base Peak, 100% relative abundance | 100                     |
| 96  | 5.0 - 9.0% of mass 95              | 6.3                     |
| 173 | Less than 2.0% of mass 174         | 0.0 ( 0.0 ) 1           |
| 174 | 50.0 - 100.0% of mass 95           | 51.8                    |
| 175 | 5.0 - 9.0% of mass 174             | 3.8 ( 7.2 ) 1           |
| 176 | 95.0 - 101.0% of mass 174          | 50.8 ( 97.9 ) 1         |
| 177 | 5.0 - 9.0% of mass 176             | 3.1 ( 6.1 ) 2           |
|     |                                    |                         |

1-Value is % mass 69

2-Value is % mass 442

#### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|-------------------|------------------|----------------|------------------|------------------|
| VSTD005           | 5 PPB ICC        | VK048279.D     | 05/11/2012       | 17:55            |
| VSTD020           | 20 PPB ICC       | VK048280.D     | 05/11/2012       | 18:23            |
| VSTD050           | 50 PPB ICC       | VK048281.D     | 05/11/2012       | 18:50            |
| VSTD100           | 100 PPB ICC      | VK048282.D     | 05/11/2012       | 19:17            |
| VSTD200           | 200 PPB ICC      | VK048284.D     | 05/11/2012       | 20:11            |
| VSTD010           | 10 PPB ICC       | VK048286.D     | 05/11/2012       | 22:10            |



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

| Lab Name:     | CHEMTECH        |           |       | Contract: _   | DVIR01  |            |       |
|---------------|-----------------|-----------|-------|---------------|---------|------------|-------|
| Lab Code:     | СНЕМ            | Case No.: | D2546 | SAS No.:      | D2546   | SDG NO.:   | D2546 |
| Lab File ID:  | VK048305.D      |           |       | BFB Injection | Date:   | 05/13/2012 |       |
| Instrument ID | MSVOA_K         |           |       | BFB Injection | n Time: | 13:46      |       |
| GC Column: R  | XI-624 ID: 0.2! | 5 (mm)    |       | Heated Purge: | Y/N     | Y          |       |

| m/e | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0% of mass 95            | 32                      |
| 75  | 30.0 - 60.0% of mass 95            | 59.9                    |
| 95  | Base Peak, 100% relative abundance | 100                     |
| 96  | 5.0 - 9.0% of mass 95              | 6.2                     |
| 173 | Less than 2.0% of mass 174         | 0.6 ( 1 ) 1             |
| 174 | 50.0 - 100.0% of mass 95           | 57.8                    |
| 175 | 5.0 - 9.0% of mass 174             | 3.9 ( 6.7 ) 1           |
| 176 | 95.0 - 101.0% of mass 174          | 56.7 ( 98.1 ) 1         |
| 177 | 5.0 - 9.0% of mass 176             | 3.6 ( 6.3 ) 2           |
|     |                                    | (Company)               |

1-Value is % mass 69

2-Value is % mass 442

#### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| EPA<br>SAMPLE NO | LAB<br>SAMPLE ID | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|------------------|----------------|------------------|------------------|
| VSTD050          | 50 PPB CCC       | VK048306.D     | 05/13/2012       | 15:54            |
| VBK0513S1        | VBK0513S1        | VK048307.D     | 05/13/2012       | 17:05            |
| BSK0513S1        | BSK0513S1        | VK048308.D     | 05/13/2012       | 17:45            |
| B-2 (4-5) RE     | D2546-07RE       | VK048310.D     | 05/13/2012       | 18:39            |
| B-2(6-8)RE       | D2546-08RE       | VK048311.D     | 05/13/2012       | 19:06            |
| B-4 (9-2) RE     | D2546-09RE       | VK048312.D     | 05/13/2012       | 19:33            |
| B-4 (2-3) RE     | D2546-10RE       | VK048313.D     | 05/13/2012       | 20:01            |
| B-3 (9-2) RE     | D2546-11RE       | VK048314.D     | 05/13/2012       | 20:28            |
| B-3(2-3.5)RE     | D2546-12RE       | VK048315.D     | 05/13/2012       | 20:55            |
| B-3(6-7)RE       | D2546-13RE       | VK048316.D     | 05/13/2012       | 21:22            |
| B-5 (13-2) RE    | D2546-14RE       | VK048317.D     | 05/13/2012       | 21:49            |
| B-6 (10-2) RE    | D2546-16RE       | VK048319.D     | 05/13/2012       | 22:43            |
| B-6 (2-3) RE     | D2546-17RE       | VK048320.D     | 05/13/2012       | 23:10            |
| B-1 (9-2) RE     | D2546-01RE       | VK048321.D     | 05/13/2012       | 23:37            |
| B-1 (2-3.5) RE   | D2546-02RE       | VK048322.D     | 05/14/2012       | 00:04            |
| B-1 (4-5.5) RE   | D2546-03RE       | VK048323.D     | 05/14/2012       | 00:32            |
| B-1 (6-7.5) RE   | D2546-04RE       | VK048324.D     | 05/14/2012       | 00:59            |
| B-2 (8-2) RE     | D2546-05RE       | VK048325.D     | 05/14/2012       | 01:26            |

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: DVIR01

Lab File ID: VF033157.D Date Analyzed: 05/13/2012

Instrument ID: MSVOA\_F Time Analyzed: 16:33

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N)

|                | IS4<br>AREA # | RT #  |  |   |
|----------------|---------------|-------|--|---|
| 12 HOUR STD    | 213770        | 12.24 |  |   |
| UPPER LIMIT    | 427540        | 12.74 |  |   |
| LOWER LIMIT    | 106885        | 11.74 |  |   |
| EPA SAMPLE NO. |               |       |  |   |
| B-2 (4-5)      | 159203        | 12.24 |  |   |
| B-2(6-8)       | 104501 *      | 12.24 |  |   |
| B-4 (9-2)      | 145521        | 12.24 |  |   |
| B-4 (2-3)      | 163710        | 12.23 |  |   |
| B-3 (9-2)      | 146107        | 12.24 |  |   |
| B-3(2-3.5)     | 164285        | 12.23 |  |   |
| B-3(6-7)       | 154484        | 12.24 |  |   |
| B-5 (13-2)     | 150655        | 12.24 |  | 7 |
| B-5(6-7)       | 109089        | 12.23 |  |   |
| B-6(10-2)      | 157197        | 12.24 |  |   |
| B-6 (2-3)      | 132487        | 12.24 |  |   |
| BSF0513S1      | 202507        | 12.24 |  |   |
| VBF0513S1      | 216185        | 12.24 |  |   |

IS4 = 1,4-Dichlorobenzene-d4

<sup>#</sup> Column used to flag values outside QC limits with an asterisk.

<sup>\*</sup> Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

EM Case No.:

D2546 SAS No.:

D2546

SDG NO.: D2546

Lab File ID:

VF033157.D

Date Analyzed:

05/13/2012

Instrument ID:

MSVOA F

Time Analyzed:

16:33

GC Column:

RTX-VMS

ID: 0.18

(mm)

Heated Purge: (Y/N)

Y

|                | IS1<br>AREA # | RT # | IS2<br>AREA # | RT # | IS3<br>AREA # | RT # |
|----------------|---------------|------|---------------|------|---------------|------|
| 12 HOUR STD    | 257616        | 4.38 | 344342        | 5.12 | 354473        | 9.33 |
| UPPER LIMIT    | 515232        | 4.88 | 688684        | 5.62 | 708946        | 9.83 |
| LOWER, LIMIT   | 128808        | 3.88 | 172171        | 4.62 | 177236.5      | 8.83 |
| EPA SAMPLE NO. |               |      |               |      |               |      |
| B-2(4-5)       | 197099        | 4.38 | 269148        | 5.12 | 283857        | 9.32 |
| B-2 (6-8)      | 144587        | 4.38 | 192980        | 5.12 | 209840        | 9.32 |
| B-4 (9-2)      | 191352        | 4.37 | 263726        | 5.12 | 280464        | 9.31 |
| B-4 (2-3)      | 189767        | 4.38 | 264184        | 5.12 | 284490        | 9.32 |
| B-3 (9-2)      | 191645        | 4.38 | 259367        | 5.12 | 275933        | 9.32 |
| B-3 (2-3.5)    | 188262        | 4.38 | 263658        | 5.12 | 286787        | 9.32 |
| B-3 (6-7)      | 183455        | 4.36 | 252128        | 5.11 | 278051        | 9.32 |
| B-5 (13-2)     | 183573        | 4.36 | 250982        | 5.11 | 278021        | 9.31 |
| B-5 (6-7)      | 121231 *      | 4.38 | 166688 *      | 5.12 | 195063        | 9.32 |
| B-6(10-2)      | 187280        | 4.38 | 267068        | 5.12 | 281114        | 9.32 |
| B-6(2-3)       | 143312        | 4.38 | 202450        | 5.12 | 225981        | 9.32 |
| BSF0513S1      | 250395        | 4.38 | 325482        | 5.11 | 331327        | 9.32 |
| VBF0513S1      | 274646        | 4.38 | 365883        | 5.12 | 374884        | 9.32 |

IS1 = Pentafluorobenzene

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

<sup>#</sup> Column used to flag values outside QC limits with an asterisk.

<sup>\*</sup> Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

D2546 Case No.:

SAS No.:

D2546 SDG NO.: D2546

Lab File ID:

VF033213.D

Date Analyzed:

05/14/2012

Instrument ID:

MSVOA F

Time Analyzed:

18:02

GC Column:

RTX-VMS

ID: 0.18 (mm) Heated Purge: (Y/N)

Y

|                | IS1<br>AREA # | RT # | IS2<br>AREA # | RT # | IS3<br>AREA # | RT # |
|----------------|---------------|------|---------------|------|---------------|------|
| 12 HOUR STD    | 263955        | 4.38 | 342407        | 5.13 | 338222        | 9.32 |
| UPPER LIMIT    | 527910        | 4.88 | 684814        | 5.63 | 676444        | 9.82 |
| LOWER LIMIT    | 131977.5      | 3.88 | 171203.5      | 4.63 | 169111        | 8.82 |
| EPA SAMPLE NO. |               |      |               |      |               |      |
| BSF0514S1      | 254752        | 4.39 | 336309        | 5.12 | 326172        | 9.32 |
| B-2 (2-3.5) RE | 192655        | 4.38 | 259387        | 5.12 | 256875        | 9.32 |
| VBF0514S1      | 254691        | 4.38 | 333945        | 5.12 | 330921        | 9.32 |

IS1 = Pentafluorobenzene

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

<sup>#</sup> Column used to flag values outside QC limits with an asterisk.

<sup>\*</sup> Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

RTX-VMS

Case No.: D2546

SAS No.: D2546

SDG NO.: D2546

Lab File ID:

VF033213.D

Date Analyzed:

05/14/2012

Instrument ID:

\_\_\_\_

Time Analyzed:

18:02

GC Column:

MSVOA F

ID: 0.18 (mm)

Heated Purge: (Y/N)

Y

|                | IS4<br>AREA # | RT #  |  |
|----------------|---------------|-------|--|
| 12 HOUR STD    | 199234        | 12.24 |  |
| UPPER LIMIT    | 398468        | 12.74 |  |
| LOWER LIMIT    | 99617         | 11.74 |  |
| EPA SAMPLE NO. |               |       |  |
| BSF0514S1      | 191592        | 12.24 |  |
| B-2(2-3.5)RE   | 116955        | 12.24 |  |
| VBF0514S1      | 194074        | 12.24 |  |

IS4 = 1,4-Dichlorobenzene-d4

- # Column used to flag values outside QC limits with an asterisk.
- \* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: DVIR01

Lab Code: CHEM Case No.: D2546 SAS No.: D2546 SDG NO.: D2546

Lab File ID: VK048289.D

TK048289.D Date Analyzed: 05/12/2012

Instrument ID: MSVOA K Time Analyzed: 00:35

GC Column: RXI-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

|                | IS1<br>AREA # | RT # | IS2<br>AREA # | RT #   | IS3<br>AREA # | RT #  |
|----------------|---------------|------|---------------|--------|---------------|-------|
| 12 HOUR STD    | 276193        | 6.55 | 470685        | 7.69   | 399627        | 10.74 |
| UPPER LIMIT    | 552386        | 7.05 | 941370        | 8.1900 | 799254        | 11.24 |
| LOWER LIMIT    | 138096.5      | 6.05 | 235342.5      | 7.19   | 199813.5      | 10.24 |
| EPA SAMPLE NO. |               |      |               |        |               |       |
| BSK0511S1      | 257217        | 6.54 | 471335        | 7.69   | 387254        | 10.74 |
| B-1 (9-2)      | 144438        | 6.54 | 297107        | 7.69   | 255848        | 10.74 |
| B-1 (2-3.5)    | 154867        | 6.54 | 322639        | 7.69   | 297144        | 10.74 |
| B-1(4-5.5)     | 152687        | 6.54 | 320583        | 7.70   | 286071        | 10.73 |
| B-1(6-7.5)     | 158112        | 6.54 | 325034        | 7.69   | 290459        | 10.74 |
| B-2 (8-2)      | 153361        | 6.54 | 294734        | 7.69   | 261220        | 10.74 |
| B-2(2-3,5)     | 110447 *      | 6.54 | 214286 *      | 7.69   | 179124 *      | 10.74 |
| VBK0511S1      | 251904        | 6.54 | 460298        | 7.69   | 359323        | 10.74 |

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

- # Column used to flag values outside QC limits with an asterisk.
- \* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

Case No.: D2546

SAS No.:

D2546 S

SDG NO.: D2546

Lab File ID:

VK048289.D

Date Analyzed:

05/12/2012

Instrument ID:

MSVOA K

Time Analyzed:

00:35

GC Column:

RXI-624

ID: 0.25 (mm)

Heated Purge: (Y/N)

\_\_Y

|                | IS4<br>AREA # | RT #  |  |  |
|----------------|---------------|-------|--|--|
| 12 HOUR STD    | 170273        | 12.68 |  |  |
| UPPER LIMIT    | 340546        | 13.18 |  |  |
| LOWER LIMIT    | 85136.5       | 12.18 |  |  |
| EPA SAMPLE NO. |               |       |  |  |
| BSK0511S1      | 167320        | 12.68 |  |  |
| B-1 (9-2)      | 78429 *       | 12.68 |  |  |
| B-1 (2-3.5)    | 107404        | 12.68 |  |  |
| B-1 (4-5.5)    | 102067        | 12.68 |  |  |
| B-1 (6-7.5)    | 102348        | 12.68 |  |  |
| B-2 (8-2)      | 78292 *       | 12.68 |  |  |
| B-2(2-3.5)     | 50129 *       | 12.68 |  |  |
| VBK0511S1      | 129077        | 12.68 |  |  |

IS4 = 1,4-Dichlorobenzene-d4

- # Column used to flag values outside QC limits with an asterisk.
- \* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

Case No.: D2546

SAS No.:

D2546

SDG NO.:

D2546

Lab File ID:

VK048306.D

Date Analyzed:

05/13/2012

Instrument ID:

MSVOA K

Time Analyzed:

15:54

GC Column:

RXI-624 ID: 0.25

(mm)

Heated Purge: (Y/N)

Y

|                | IS1<br>AREA # | RT # | IS2<br>AREA # | RT #   | IS3<br>AREA # | RT #  |
|----------------|---------------|------|---------------|--------|---------------|-------|
| 12 HOUR STD    | 240435        | 6.54 | 390628        | 7.69   | 328961        | 10.74 |
| UPPER LIMIT    | 480870        | 7.04 | 781256        | 8.1900 | 657922        | 11.24 |
| LOWER LIMIT    | 120217.5      | 6.04 | 195314        | 7.19   | 164480.5      | 10.24 |
| EPA SAMPLE NO. |               |      |               |        |               |       |
| BSK0513S1      | 230440        | 6.54 | 372828        | 7.69   | 313031        | 10.74 |
| B-1 (9-2) RE   | 165324        | 6.55 | 299146        | 7.71   | 233315        | 10.74 |
| B-1 (2-3.5) RE | 160127        | 6.55 | 293133        | 7.70   | 236125        | 10.75 |
| B-1 (4-5.5) RE | 155175        | 6.55 | 294378        | 7.70   | 233736        | 10.74 |
| B-1 (6-7.5) RE | 129175        | 6.55 | 242189        | 7.70   | 194759        | 10.74 |
| B-2 (8-2) RE   | 153665        | 6.56 | 283396        | 7.70   | 216176        | 10.74 |
| B-2 (4-5) RE   | 200847        | 6.56 | 347687        | 7.70   | 274292        | 10.74 |
| B-2 (6-8) RE   | 187328        | 6.55 | 332183        | 7.71   | 261210        | 10.75 |
| B-4 (9-2) RE   | 204007        | 6.55 | 358708        | 7.71   | 285656        | 10.75 |
| B-4 (2-3) RE   | 178689        | 6.56 | 311919        | 7.70   | 248305        | 10.74 |
| B-3 (9-2) RE   | 171730        | 6.55 | 305502        | 7.70   | 230536        | 10.74 |
| B-3 (2-3.5) RE | 158886        | 6.55 | 286050        | 7.70   | 215846        | 10.75 |
| B-3(6-7)RE     | 167108        | 6.55 | 301567        | 7.70   | 235025        | 10.74 |
| B-5 (13-2) RE  | 159185        | 6.55 | 304799        | 7.70   | 251999        | 10.74 |
| B-6 (10-2) RE  | 152541        | 6.55 | 276503        | 7.71   | 225955        | 10.74 |
| B-6(2-3)RE     | 161626        | 6.55 | 303839        | 7.70   | 241049        | 10.75 |
| VBK0513S1      | 208608        | 6.55 | 357196        | 7.69   | 293139        | 10.74 |

IS1 = Pentafluorobenzene

AREA LOWER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

<sup>#</sup> Column used to flag values outside QC limits with an asterisk.

<sup>\*</sup> Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

Case No.: D2546

SAS No.: D2546 SDG NO.: D2546

Lab File ID:

VK048306.D

Date Analyzed:

05/13/2012

Instrument ID: MSVOA\_K

Time Analyzed:

15:54

GC Column: RXI-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

|                | IS4<br>AREA # | RT #  |       |   |  |
|----------------|---------------|-------|-------|---|--|
| 12 HOUR STD    | 154574        | 12.67 |       |   |  |
| UPPER LIMIT    | 309148        | 13.17 |       |   |  |
| LOWER LIMIT    | 77287         | 12.17 |       |   |  |
| EPA SAMPLE NO  |               |       |       |   |  |
| BSK0513S1      | 141729        | 12.68 |       |   |  |
| B-1 (9-2) RE   | 72535 *       | 12.68 |       |   |  |
| B-1 (2-3.5) RE | 91681         | 12.68 |       |   |  |
| B-1 (4-5.5) RE | 86270         | 12.68 |       |   |  |
| B-1(6-7.5)RE   | 73452 *       | 12.67 | (les) |   |  |
| B-2 (8-2) RE   | 65491 *       | 12.67 |       |   |  |
| B-2 (4-5) RE   | 109513        | 12.68 |       |   |  |
| B-2(6-8)RE     | 91854         | 12.68 |       |   |  |
| B-4(9-2)RE     | 88235         | 12.68 |       |   |  |
| B-4 (2-3) RE   | 94926         | 12.68 |       |   |  |
| B-3 (9-2) RE   | 74998 *       | 12.68 |       |   |  |
| B-3 (2-3.5) RE | 69066 *       | 12.68 |       |   |  |
| B-3 (6-7) RE   | 84054         | 12.68 |       |   |  |
| B-5 (13-2) RE  | 98135         | 12.68 |       |   |  |
| B-6 (10-2) RE  | 83326         | 12.68 |       |   |  |
| B-6 (2-3) RE   | 92595         | 12.68 |       |   |  |
| VBK0513S1      | 114270        | 12.68 |       | 8 |  |

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: C

CHEMTECH

Contract: DVIR01

Lab Code:

CHEM

Case No.:

SAS No.:

D2546

SDG NO.:

D2546

Lab File ID:

VF033244.D

Date Analyzed:

05/15/2012

Instrument ID:

MSVOA F

Time Analyzed:

19:03

GC Column:

RTX-VMS

ID: 0.18 (mm)

D2546

Heated Purge: (Y/N)

Y

|                     | IS1<br>AREA # | RT # | IS2<br>AREA # | RT # | IS3<br>AREA # | RT # |
|---------------------|---------------|------|---------------|------|---------------|------|
| 12 HOUR STD         | 263201        | 4.39 | 437894        | 5.13 | 378484        | 9.33 |
| UPPER LIMIT         | 526402        | 4.89 | 875788        | 5.63 | 756968        | 9.83 |
| LOWER LIMIT         | 131600.5      | 3.89 | 218947        | 4.63 | 189242        | 8.83 |
| EPA SAMPLE NO.      |               |      |               |      |               |      |
| BSF0515S1           | 248622        | 4.38 | 371166        | 5.13 | 411387        | 9.33 |
| SEC-SB-08 (6-8) MS  | 211437        | 4.40 | 384236        | 5.13 | 354340        | 9.33 |
| SEC-SB-08 (6-8) MSD | 223691        | 4.39 | 393058        | 5.13 | 361180        | 9.34 |
| B-5(6-7)RE          | 131166 *      | 4.38 | 227900        | 5.13 | 211703        | 9.33 |
| VBF0515S1           | 279859        | 4.38 | 455445        | 5.12 | 433060        | 9.33 |

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

<sup>#</sup> Column used to flag values outside QC limits with an asterisk.

<sup>\*</sup> Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: DVIR01

SDG NO.: D2546 D2546 Lab Code: CHEM Case No.: SAS No.: D2546

Lab File ID:

VF033244.D

Date Analyzed:

05/15/2012

Instrument ID:

MSVOA F

Time Analyzed:

19:03

GC Column:

RTX-VMS

ID: 0.18 (mm)

Heated Purge: (Y/N)

Y

|                     | IS4<br>AREA # | RT #  |  |   |
|---------------------|---------------|-------|--|---|
| 12 HOUR STD         | 223515        | 12.24 |  |   |
| UPPER LIMIT         | 447030        | 12.74 |  |   |
| LOWER LIMIT         | 111757.5      | 11.74 |  | - |
| EPA SAMPLE NO.      |               |       |  |   |
| BSF0515S1           | 222413        | 12.24 |  |   |
| SEC-SB-08 (6-8) MS  | 169342        | 12.25 |  |   |
| SEC-SB-08 (6-8) MSD | 179960        | 12.24 |  |   |
| B-5 (6-7) RE        | 105744 *      | 12.24 |  |   |
| VBF0515S1           | 232721        | 12.24 |  | 8 |

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk,

\* Values outside of QC limits.



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(9-2)

SDG No.:

D2546

Lab Sample ID:

D2546-01

Matrix:

SOIL

Level (low/med):

low

% Solid:

79.4

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.27  | UN   | 1  | 0.57  | 1.27   | 2.54     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 4.98  |      | 1  | 0.34  | 0.51   | 1.02     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.48  | N    | 1  | 0.06  | 0.15   | 0.3      | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.03  | *    | 1  | 0,06  | 0.15   | 0.3      | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 10.2  |      | i  | 0.13  | 0.255  | 0.51     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 8.1   |      | 1  | 0.33  | 0.51   | 1.02     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 10.5  |      | 1  | 0.12  | 0.305  | 0.61     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Мегсигу   | 0.017 |      | Ĭ  | 0.002 | 0.0055 | 0.011    | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 15.4  |      | 1  | 0.47  | 1.015  | 2.03     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0,51  | UN   | 1  | 0.42  | 0.51   | 1.02     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-22-4 | Silver    | 0.255 | U    | 1  | 0.15  | 0.255  | 0.51     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.015 | U    | 1  | 0.27  | 1.015  | 2.03     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 36.3  | N    | 1  | 0.71  | 1.015  | 2.03     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts: No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-1(2-3,5)

SDG No.:

D2546

Lab Sample ID:

D2546-02

Matrix:

SOIL

Level (low/med):

low

% Solid:

82.6

| Cas       | Parameter | Sin . | Conc. | Qua. | DF | MDL   | LOD    | LOQ/0 | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|-------|------|----|-------|--------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  |       | 1.28  | UN   | ĩ  | 0.57  | 1.28   | 2.56  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   |       | 10.4  |      | 1  | 0.34  | 0.515  | 1.03  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium |       | 0.24  | JN   | 1  | 0.06  | 0.155  | 0.31  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   |       | 0.58  | *    | 1  | 0,06  | 0,155  | 0.31  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  |       | 11.8  |      | 1  | 0.13  | 0.255  | 0.51  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    |       | 19.7  |      | 1  | 0.33  | 0,515  | 1.03  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      |       | 12.3  |      | Ĩ  | 0.12  | 0.31   | 0.62  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   |       | 0.045 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    |       | 16.4  |      | 1  | 0.47  | 1.025  | 2.05  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  |       | 0.515 | UN   | I  | 0.42  | 0.515  | 1.03  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-22-4 | Silver    |       | 0.255 | U    | 1  | 0.15  | 0,255  | 0.51  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  |       | 1.025 | U    | 1  | 0.28  | 1.025  | 2.05  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      |       | 34.7  | N    | 1  | 0.72  | 1.025  | 2.05  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-1(4-5.5)

SDG No.:

D2546

Lab Sample ID:

D2546-03

Matrix:

SOIL

Level (low/med):

low

% Solid:

80.6

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRO          | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|--------------------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.385 | UN   | 1  | 0.62  | 1.385 | 2.77               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 8.38  |      | 1  | 0.37  | 0.555 | 1,11               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.24  | JN   | 1  | 0.07  | 0.165 | 0.33               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 0.49  |      | 1  | 0.07  | 0.165 | 0.33               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 8.55  |      | 1  | 0.14  | 0.275 | 0.55               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 23.3  |      | 1  | 0.35  | 0.555 | 1.11               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 11.3  |      | 1  | 0.13  | 0.33  | 0.66               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0,023 |      | 1  | 0.002 | 0.006 | 0.012              | mg/Kg 05/14/12     | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 20.8  |      | 1  | 0.51  | 1.11  | 2.22               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.555 | UN   | 1  | 0.45  | 0.555 | I <sub>2</sub> 1.1 | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-22-4 | Silver    | 0.275 | U    | 1  | 0.17  | 0.275 | 0.55               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.11  | U    | 1  | 0.3   | 1.11  | 2.22               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 46.7  | Ν    | I  | 0.78  | 1.11  | 2.22               | mg/Kg 05/09/12     | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-1(6-7.5)

SDG No.:

D2546

Lab Sample ID:

D2546-04

Matrix:

SOIL

Level (low/med):

low

% Solid:

84.5

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1,13  | UN   | 1  | 0.51  | 1.13   | 2.26  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 9.71  |      | 1  | 0.3   | 0.45   | 0.9   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.4   | N    | 1  | 0.05  | 0.135  | 0.27  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.93  | *    | 1  | 0.05  | 0.135  | 0.27  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 15.3  |      | 1  | 0.12  | 0.225  | 0.45  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 27.4  |      | 1  | 0.29  | 0.45   | 0.9   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 12.8  |      | 1  | 0.11  | 0.27   | 0.54  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.017 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 29    |      | Ì  | 0.42  | 0.905  | 1.81  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.45  | UN   | 1  | 0.37  | 0.45   | 0.9   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-22-4 | Silver    | 0.225 | U    | 1  | 0.14  | 0.225  | 0.45  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.905 | U    | 1  | 0.24  | 0.905  | 1.81  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 58.8  | N    | 1  | 0.63  | 0.905  | 1.81  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-2(8-2)

SDG No.:

D2546

Lab Sample ID:

D2546-05

Matrix:

SOIL

Level (low/med):

low

% Solid:

79.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.215 | UN   | Ĭ  | 0.54  | 1.215  | 2.43  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 7.46  |      | 1  | 0.32  | 0.485  | 0.97  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.37  | N    | 1  | 0.06  | 0.145  | 0.29  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.17  | *    | 1  | 0.06  | 0.145  | 0.29  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 10.6  |      | 1  | 0.13  | 0.245  | 0.49  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Соррег    | 13.2  |      | 1  | 0.31  | 0.485  | 0.97  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 14.9  |      | 1  | 0.12  | 0.29   | 0.58  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.049 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 17.3  |      | 1  | 0.45  | 0.97   | 1.94  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.485 | UN   | I  | 0.4   | 0.485  | 0.97  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-22-4 | Silver    | 0.245 | U    | 1  | 0.15  | 0.245  | 0.49  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.97  | U    | 1  | 0.26  | 0.97   | 1.94  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 44.1  | N    | 1  | 0.68  | 0.97   | 1.94  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-2(2-3.5)

SDG No.:

D2546

Lab Sample ID:

D2546-06

Matrix:

SOIL

Level (low/med):

low

% Solid:

76.8

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.52  | UN   | 1  | 0.68  | 1.52   | 3,04  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 4.91  |      | 1  | 0.4   | 0.61   | 1.22  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.49  | Ν    | 1  | 0.07  | 0.185  | 0.37  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 0.94  | *    | 1  | 0.07  | 0.185  | 0.37  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 9.58  |      | 1  | 0.16  | 0.305  | 0.61  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 9.2   |      | 1  | 0.39  | 0.61   | 1.22  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 14.4  |      | 1  | 0.15  | 0.365  | 0.73  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.027 |      | 1  | 0.003 | 0.0065 | 0.013 | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 15    |      | 1  | 0.56  | 1.215  | 2.43  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.61  | UN   | 1  | 0.5   | 0.61   | 1.22  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.215 | U    | 1  | 0,33  | 1.215  | 2,43  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 36.9  | N    | 1  | 0.85  | 1.215  | 2.43  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After: Comments: Yellow

Clarity After:

Artifacts:

No

\_\_\_\_

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-2(4-5)

SDG No.:

D2546

Lab Sample ID:

D2546-07

Matrix:

SOIL

Level (low/med):

low

% Solid:

91

| Cas       | Parameter | Conc. | Qua. | DF | MÐL   | LOD    | LOQ/CE | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|--------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | Is1   | UN   | 1  | 0.49  | 1.1    | 2.2    | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 9.59  |      | 1  | 0.29  | 0.44   | 0.88   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.33  | N    | 1  | 0.05  | 0.13   | 0.26   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.22  | *    | 1  | 0.05  | 0.13   | 0.26   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 11    |      | 1  | 0.11  | 0.22   | 0.44   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 27.4  |      | I  | 0.28  | 0.44   | 0.88   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 13.6  |      | Ī  | 0.11  | 0.265  | 0.53   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.022 |      | 1  | 0.002 | 0.0055 | 0.011  | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 25.7  |      | 1  | 0.4   | 0.88   | 1.76   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.44  | UN   | 1  | 0.36  | 0.44   | 0.88   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.88  | U    | 1  | 0.24  | 0.88   | 1.76   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 58.7  | N    | 1  | 0.62  | 0.88   | 1.76   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID;

B-2(6-8)

SDG No.:

D2546

Lab Sample ID:

D2546-08

Matrix:

SOIL

Level (low/med):

low

% Solid:

82.8

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1,335 | UN   | 1  | 0.6   | 1,335  | 2.67  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 6.11  |      | 1  | 0.35  | 0.535  | 1.07  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.36  | N    | 1  | 0.06  | 0.16   | 0.32  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 0.64  | *    | 1  | 0.06  | 0.16   | 0.32  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 9.19  |      | 1  | 0.14  | 0.265  | 0.53  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 10.6  |      | 1  | 0.34  | 0.535  | 1.07  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 13.9  |      | 1  | 0.13  | 0.32   | 0.64  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.047 |      | Ī  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 14.8  |      | 1  | 0.49  | 1.07   | 2.14  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.535 | UN   | 1  | 0.44  | 0,535  | 1.07  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.07  | U    | 1  | 0.29  | 1.07   | 2.14  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 38.9  | N    | 1  | 0.75  | 1.07   | 2.14  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-4(9-2)

SDG No.:

D2546

Lab Sample ID:

D2546-09

Matrix:

SOIL

Level (low/med):

low

% Solid:

86.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.14  | UN   | 1  | 0,51  | 1:14   | 2.28  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 7.72  |      | 1  | 0.3   | 0.455  | 0.91  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.31  | N    | 1  | 0.05  | 0.135  | 0.27  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 0.98  | *    | 1  | 0.05  | 0.135  | 0.27  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 9.27  |      | 1  | 0.12  | 0.23   | 0.46  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 17.4  |      | 1  | 0.29  | 0.455  | 0.91  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 14.4  |      | 1  | 0.11  | 0.275  | 0.55  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.041 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 17.9  |      | 1  | 0.42  | 0.915  | 1.83  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.455 | UN   | 1  | 0.37  | 0.455  | 0.91  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.915 | U    | 1  | 0.25  | 0.915  | 1.83  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 44.2  | N    | 1  | 0.64  | 0.915  | 1.83  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-4(2-3)

SDG No.:

D2546

Lab Sample ID:

D2546-10

Matrix:

SOIL

Level (low/med):

low

% Solid:

88.7

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ/C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.305 | UN   | i  | 0.58  | 1.305 | 2.61  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 9.74  |      | 1  | 0.34  | 0.52  | 1.04  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.26  | JN   | 1  | 0.06  | 0.155 | 0.31  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.41  | *    | 1  | 0.06  | 0.155 | 0.31  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 12.8  |      | 1  | 0.14  | 0.26  | 0.52  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 29.5  |      | 1  | 0.33  | 0.52  | 1.04  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 16    |      | 1  | 0.13  | 0.315 | 0.63  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.032 |      | 1  | 0.002 | 0.005 | 0.01  | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 26    |      | 1  | 0.48  | 1.045 | 2.09  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.52  | UN   | 1  | 0.43  | 0.52  | 1.04  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.045 | U    | 1  | 0.28  | 1.045 | 2.09  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 61.9  | N    | 1  | 0.73  | 1.045 | 2.09  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-3(9-2)

SDG No.:

D2546

Lab Sample ID:

D2546-11

Matrix:

SOIL

Level (low/med):

low

% Solid:

86.1

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ / CI | RQL Units Prep Da | te Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|----------|-------------------|--------------|----------|
| 7440-36-0 | Antimony  | 1.17  | UN   | 1  | 0.52  | 1.17   | 2.34     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-38-2 | Arsenic   | 8.16  |      | 1  | 0.31  | 0.47   | 0.94     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-41-7 | Beryllium | 0.44  | N    | 1  | 0.06  | 0.14   | 0.28     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-43-9 | Cadmium   | 1.64  | *    | 1  | 0.06  | 0.14   | 0.28     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-47-3 | Chromium  | 12,5  |      | 1  | 0.12  | 0.235  | 0.47     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-50-8 | Copper    | 17    |      | 1  | 0.3   | 0.47   | 0.94     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7439-92-1 | Lead      | 18.1  |      | 1  | 0.11  | 0.28   | 0.56     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7439-97-6 | Mercury   | 0.039 |      | 1  | 0.002 | 0.0055 | 0.011    | mg/Kg 05/14/12    | 05/15/12     | SW7471A  |
| 7440-02-0 | Nickel    | 22    |      | 1  | 0.43  | 0.935  | 1.87     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7782-49-2 | Selenium  | 0.47  | UN   | 1  | 0.38  | 0.47   | 0.94     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-28-0 | Thallium  | 0.935 | U    | 1  | 0.25  | 0.935  | 1.87     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |
| 7440-66-6 | Zinc      | 51    | Ν    | 1  | 0.66  | 0.935  | 1.87     | mg/Kg 05/09/12    | 05/14/12     | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-3(2-3.5)

SDG No.:

D2546

Lab Sample ID:

D2546-12

Matrix:

SOIL

Level (low/med):

low

% Solid:

85.1

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.41  | UN   | 1  | 0.63  | 1.41   | 2.82  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 7.81  |      | 1  | 0.37  | 0.565  | 1.13  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.38  | N    | 1  | 0.07  | 0.17   | 0.34  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.05  | *    | 1  | 0.07  | 0.17   | 0.34  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 11.1  |      | I  | 0.15  | 0.28   | 0.56  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 16.5  |      | 1  | 0.36  | 0.565  | 1.13  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 15.6  |      | 1  | 0.14  | 0.34   | 0.68  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.041 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 18.5  |      | 1  | 0.52  | 1.13   | 2.26  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.565 | UN   | Ĭ  | 0.46  | 0.565  | 1.13  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1.13  | U    | 1  | 0.31  | 1.13   | 2.26  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 45.8  | N    | 1  | 0.79  | 1.13   | 2.26  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D254i6dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

04/30/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-3(6-7)

SDG No.:

D2546

Lab Sample ID:

D2546-13

Matrix:

SOIL

Level (low/med):

low

% Solid:

92

| Cas       | Parameter | Сопс. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.08  | UN   | 1  | 0.48  | 1.08   | 2.16  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 8.56  |      | 1  | 0.28  | 0.43   | 0.86  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0,3   | N    | 1  | 0.05  | 0.13   | 0.26  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.53  | *    | 1  | 0.05  | 0.13   | 0.26  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 10.9  |      | 1  | 0.11  | 0,215  | 0.43  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 21.3  |      | 1  | 0.28  | 0.43   | 0.86  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 14    |      | 1  | 0.1   | 0.26   | 0.52  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.03  |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 21.8  |      | 1  | 0.4   | 0.865  | 1.73  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.43  | UN   | 1  | 0.35  | 0.43   | 0.86  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.865 | U    | i  | 0.23  | 0.865  | 1.73  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 51.5  | N    | 1  | 0.6   | 0.865  | 1.73  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
|           |           |       |      |    |       |        |       |                     |           |          |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-5(13-2)

SDG No.:

D2546

Lab Sample ID:

D2546-14

Matrix:

SOIL

Level (low/med):

low

% Solid:

87.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.68  | JN   | 1  | 0.45  | 1      | 2     | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 7.83  |      | 1  | 0.26  | 0.4    | 0.8   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.24  | N    | 1  | 0.05  | 0.12   | 0.24  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.69  | *    | L  | 0.05  | 0.12   | 0.24  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 27.1  |      | 1  | 0.1   | 0.2    | 0.4   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 410   |      | 1  | 0.26  | 0.4    | 0.8   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 15.7  |      | 1  | 0.1   | 0.24   | 0.48  | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.018 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg 05/14/12      | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 72.5  |      | 1  | 0.37  | 0.8    | 1.6   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.4   | UN   | 1  | 0.33  | 0.4    | 0.8   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.8   | U    | 1  | 0.22  | 0.8    | 1.6   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 298   | N    | 1  | 0.56  | 0.8    | 1.6   | mg/Kg 05/09/12      | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-5(6-7)

SDG No.:

D2546

Lab Sample ID:

D2546-15

Matrix:

SOIL

Level (low/med):

low

% Solid:

82.8

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Unit | s Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|----------|-------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.11  | JN   | I  | 0.55  | 1,215  | 2.43  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 4.06  |      | 1  | 0.32  | 0.485  | 0.97  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.23  | JN   | 1  | 0.06  | 0.145  | 0.29  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 0.66  | *    | 1  | 0.06  | 0.145  | 0.29  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 0.245 | U    | 1  | 0.13  | 0.245  | 0.49  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 6.59  |      | 1  | 0.31  | 0.485  | 0.97  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 3.67  |      | 1  | 0.12  | 0.29   | 0.58  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.003 | J    | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg    | 05/14/12    | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 5.39  |      | 1  | 0.45  | 0.975  | 1.95  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.485 | UN   | 1  | 0.4   | 0.485  | 0.97  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.975 | Ū    | 1  | 0.26  | 0.975  | 1.95  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 12.1  | N    | 1  | 0.68  | 0.975  | 1,95  | mg/Kg    | 05/09/12    | 05/14/12  | SW6010B  |

Color Before:

Gray

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

1 No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample ID:

B-6(10-2)

SDG No.:

D2546

Lab Sample ID:

D2546-16

Matrix:

SOIL

Level (low/med):

low

% Solid:

83.2

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ/C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.38  | UN   | I  | 0.62  | 1.38  | 2.76  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 11.6  |      | 1  | 0.36  | 0.55  | 1.1   | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.8   | N    | 1  | 0.07  | 0.165 | 0.33  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 2,39  | *    | 1  | 0.07  | 0.165 | 0,33  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 12.4  |      | 1  | 0.14  | 0.275 | 0.55  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 21.7  |      | 1  | 0.35  | 0.55  | 1.1   | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 17.3  |      | 1  | 0.13  | 0.33  | 0.66  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.081 |      | 1  | 0,002 | 0.006 | 0.012 | mg/Kg 05/14/12       | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 22.9  |      | 1  | 0.51  | 1.105 | 2.21  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.55  | UN   | 1  | 0.45  | 0.55  | 1,1   | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 1,105 | U    | 1  | 0.3   | 1.105 | 2.21  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 38.6  | N    | Î  | 0.77  | 1.105 | 2.21  | mg/Kg 05/09/12       | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

**METALS-PP** 

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546 dicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range



#### **Report of Analysis**

Client:

Dvirka & Bartilucci

Date Collected:

05/01/12

Project:

PV6256, IBM East Fishkill

Date Received:

05/03/12

Client Sample 1D:

B-6(2-3)

SDG No.:

D2546

Lab Sample ID:

D2546-17

Matrix:

SOIL

Level (low/med):

low

% Solid:

84.5

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD    | LOQ/C | RQL Units | Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|--------|-------|-----------|-----------|-----------|----------|
| 7440-36-0 | Antimony  | 0.92  | ЛV   | 1  | 0.54  | 1.205  | 2.41  | mg/Kg(    | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-38-2 | Arsenic   | 15.5  |      | 1  | 0.32  | 0.48   | 0.96  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-41-7 | Beryllium | 0.37  | N    | 1  | 0.06  | 0.145  | 0.29  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-43-9 | Cadmium   | 1.05  | *    | 1  | 0.06  | 0.145  | 0.29  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-47-3 | Chromium  | 2,29  |      | 1  | 0.13  | 0.24   | 0.48  | mg/Kg(    | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-50-8 | Copper    | 15.5  |      | 1  | 0.31  | 0.48   | 0.96  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7439-92-1 | Lead      | 9.51  |      | 1  | 0.12  | 0.29   | 0.58  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7439-97-6 | Mercury   | 0.013 |      | 1  | 0.002 | 0.0055 | 0.011 | mg/Kg (   | 05/14/12  | 05/15/12  | SW7471A  |
| 7440-02-0 | Nickel    | 14.9  |      | 1  | 0.44  | 0.96   | 1.92  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7782-49-2 | Selenium  | 0.48  | UN   | 1  | 0.39  | 0.48   | 0.96  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-28-0 | Thallium  | 0.96  | U    | 1  | 0.26  | 0.96   | 1.92  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |
| 7440-66-6 | Zinc      | 10.8  | N    | 1  | 0.67  | 0.96   | 1.92  | mg/Kg (   | 05/09/12  | 05/14/12  | SW6010B  |

Color Before:

Brown

Clarity Before:

Texture:

Medium

Color After:

Yellow

Clarity After:

Artifacts:

: No

Comments:

METALS-PP

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

D2546licates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

#### Hit Summary Sheet SW-846

SDG No.: D2546

Order ID: D2546

Client: Dvirka & Bartilucci

Project ID: PV6256, IBM East Fishkill

| Client:     | Dvirka & Bartilucci |        |           | Projec        | t ID: P | V 6256, IBM | East Fishkill |       |       |
|-------------|---------------------|--------|-----------|---------------|---------|-------------|---------------|-------|-------|
| Sample 1D   | Client ID           | Matrix | Parameter | Concentration | С       | MDL         | LOD           | RDL   | Units |
| Client ID:  | B-1(9-2)            |        |           |               |         |             |               |       |       |
| D2546-01    | B-1(9-2)            | SOIL   | Arsenic   | 4.980         |         | 0.34        | 0.51          | 1.020 | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Beryllium | 0.480         |         | 0.06        | 0.15          | 0.30  | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Cadmium   | 1.030         |         | 0,06        | 0.15          | 0.30  | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Chromium  | 10.200        |         | 0.13        | 0.255         | 0.51  | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Copper    | 8.100         |         | 0.33        | 0,51          | 1.020 | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Lead      | 10.500        |         | 0,12        | 0.305         | 0.61  | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Mercury   | 0.017         |         | 0.002       | 0.0055        | 0.011 | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Nickel    | 15.400        |         | 0.47        | 1.015         | 2.030 | mg/Kg |
| D2546-01    | B-1(9-2)            | SOIL   | Zinc      | 36.300        |         | 0.71        | 1:015         | 2.030 | mg/Kg |
| Client ID:  | B-1(2-3.5)          |        |           |               |         |             |               |       |       |
| D2546-02    | B-1(2-3.5)          | SOIL   | Arsenic   | 10.400        |         | 0.34        | 0.515         | 1.030 | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Beryllium | 0.240         | J       | 0.06        | 0,155         | 0.31  | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Cadmium   | 0.580         |         | 0.06        | 0.155         | 0.31  | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Chromium  | 11,800        |         | 0.13        | 0.255         | 0.51  | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Copper    | 19.700        |         | 0.33        | 0,515         | 1.030 | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Lead      | 12.300        |         | 0,12        | 0.31          | 0.62  | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Mercury   | 0.045         |         | 0.002       | 0.0055        | 0.011 | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Nickel    | 16.400        |         | 0.47        | 1.025         | 2.050 | mg/Kg |
| D2546-02    | B-1(2-3.5)          | SOIL   | Zinc      | 34.700        |         | 0.72        | 1.025         | 2.050 | mg/Kg |
| Client ID : | B-1(4-5.5)          |        |           |               |         |             |               |       |       |
| D2546-03    | B-1(4-5.5)          | SOIL   | Arsenic   | 8.380         |         | 0.37        | 0.555         | 1-110 | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Beryllium | 0.240         | J       | 0.07        | 0.165         | 0.33  | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Cadmium   | 0.490         |         | 0.07        | 0.165         | 0.33  | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Chromium  | 8.550         |         | 0.14        | 0.275         | 0.55  | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Copper    | 23,300        |         | 0.35        | 0.555         | 1,110 | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Lead      | 11:300        |         | 0.13        | 0.33          | 0.66  | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Mercury   | 0.023         |         | 0.002       | 0.006         | 0.012 | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Nickel    | 20.800        |         | 0.51        | 1,11          | 2.220 | mg/Kg |
| D2546-03    | B-1(4-5.5)          | SOIL   | Zinc      | 46.700        |         | 0.78        | 1.11          | 2.220 | mg/Kg |
| Client ID:  | B-1(6-7.5)          |        |           |               |         |             |               |       |       |
| D2546-04    | B-1(6-7.5)          | SOIL   | Arsenic   | 9.710         |         | 0.30        | 0.45          | 0.90  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Beryllium | 0.400         |         | 0.05        | 0.135         | 0.27  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Cadmium   | 1.930         |         | 0.05        | 0.135         | 0.27  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Chromium  | 15.300        |         | 0.12        | 0.225         | 0.45  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Copper    | 27.400        |         | 0.29        | 0.45          | 0.90  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Lead      | 12.800        |         | 0.11        | 0.27          | 0.54  | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Mercury   | 0.017         |         | 0.002       | 0.0055        | 0.011 | mg/Kg |
| D2546-04    | B-1(6-7.5)          | SOIL   | Nickel    | 29.000        |         | 0.42        | 0.905         | 1.810 | mg/Kg |



# Hit Summary Sheet SW-846

SDG No.:

D2546

Order ID:

Client:

Dvirka & Bartilucci

Project ID: PV6256, IBM East Fishkill

D2546

| Client:     | Dvirka & Bartilucci |        |           | Project       |   | V0250, IBM |        |       |       |
|-------------|---------------------|--------|-----------|---------------|---|------------|--------|-------|-------|
| Sample ID   | Client ID           | Matrix | Parameter | Concentration | С | MDL        | LOD    | RDL   | Units |
| D2546-04    | B-1(6-7.5)          | SOIL   | Zinc      | 58.800        |   | 0.63       | 0.905  | 1.810 | mg/Kg |
|             |                     |        |           |               |   |            |        |       |       |
| Client ID : | B-2(8-2)            | 0.0    |           |               |   |            |        |       |       |
| D2546-05    | B-2(8-2)            | SOIL   | Arsenic   | 7.460         |   | 0,32       | 0.485  | 0.97  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Beryllium | 0.370         |   | 0.06       | 0.145  | 0.29  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Cadmium   | 1.170         |   | 0.06       | 0.145  | 0.29  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Chromium  | 10.600        |   | 0.13       | 0.245  | 0.49  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Copper    | 13,200        |   | 0.31       | 0.485  | 0.97  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Lead      | 14,900        |   | 0.12       | 0.29   | 0.58  | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Mercury   | 0.049         |   | 0_002      | 0.0055 | 0.011 | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Nickel    | 17.300        |   | 0.45       | 0.97   | 1.940 | mg/Kg |
| D2546-05    | B-2(8-2)            | SOIL   | Zinc      | 44.100        |   | 0.68       | 0.97   | 1.940 | mg/Kg |
| Client ID ; | B-2(2-3.5)          |        |           |               |   |            |        |       |       |
| D2546-06    | B-2(2-3.5)          | SOIL   | Arsenic   | 4.910         |   | 0.40       | 0.61   | 1,220 | mg/Kg |
| D2546-06    | B-2(2-3,5)          | SOIL   | Beryllium | 0.490         |   | 0.07       | 0.185  | 0.37  | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Cadmium   | 0.940         |   | 0.07       | 0.185  | 0.37  | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Chromium  | 9,580         |   | 0.16       | 0.305  | 0.61  | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Copper    | 9.200         |   | 0.39       | 0.61   | 1,220 | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Lead      | 14,400        |   | 0.15       | 0.365  | 0.73  | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Мегсигу   | 0.027         |   | 0.003      | 0.0065 | 0.013 | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Nickel    | 15.000        |   | 0.56       | 1.215  | 2.430 | mg/Kg |
| D2546-06    | B-2(2-3.5)          | SOIL   | Zinc      | 36.900        |   | 0.85       | 1.215  | 2.430 | mg/Kg |
| Client ID : | B-2(4-5)            |        |           |               |   |            |        |       |       |
| D2546-07    | B-2(4 <b>-</b> 5)   | SOIL   | Arsenic   | 9.590         |   | 0.29       | 0.44   | 0.88  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Beryllium | 0.330         |   | 0.05       | 0.13   | 0.26  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Cadmium   | 1.220         |   | 0.05       | 0.13   | 0.26  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Chromium  | 11,000        |   | 0.11       | 0.22   | 0.44  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Copper    | _ 27.400      |   | 0.28       | 0.44   | 0.88  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Lead      | 13.600        |   | 0.11       | 0.265  | 0.53  | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Mercury   | 0.022         |   | 0.002      | 0.0055 | 0.011 | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Nickel    | 25.700        |   | 0.40       | 0.88   | 1.760 | mg/Kg |
| D2546-07    | B-2(4-5)            | SOIL   | Zinc      | 58.700        |   | 0.62       | 0.88   | 1.760 | mg/Kg |
| Client ID:  | B-2(6-8)            |        |           |               |   |            |        |       |       |
| D2546-08    | B-2(6-8)            | SOIL   | Arsenic   | 6.110         |   | 0.35       | 0.535  | 1.070 | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Beryllium | 0.360         |   | 0.06       | 0.16   | 0.32  | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Cadmium   | 0.640         |   | 0.06       | 0.16   | 0.32  | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Chromium  | 9.190         |   | 0.14       | 0.265  | 0.53  | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Copper    | 10.600        |   | 0.34       | 0.535  | 1.070 | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Lead      | 13.900        |   | 0.13       | 0.32   | 0.64  | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Mercury   | 0.047         |   | 0.002      | 0.0055 | 0.011 | mg/Kg |
| D2546-08    | B-2(6-8)            | SOIL   | Nickel    | 14.800        |   | 0.49       | 1.07   | 2.140 | mg/Kg |



#### Hit Summary Sheet SW-846

SDG No.: D2546

Order ID: D2546

Client:

Dvirka & Bartilucci

Project ID: PV6256, IBM East Fishkill

| Client:     | Dvirka & Bartilucci |        |           | Pro <u>j</u> ec | et ID: P | V6256, IBM | East Fishkill |       |       |
|-------------|---------------------|--------|-----------|-----------------|----------|------------|---------------|-------|-------|
| Sample ID   | Client ID           | Matrix | Parameter | Concentration   | С        | MDL        | LOD           | RDL   | Units |
| D2546-08    | B-2(6-8)            | SOIL   | Zinc      | 38.900          |          | 0.75       | 1.07          | 2.140 | mg/Kg |
| Client ID:  | B-4(9-2)            |        |           |                 |          |            |               |       |       |
| D2546-09    | B-4(9-2)            | SOIL   | Arsenic   | 7.720           |          | 0.30       | 0.455         | 0.91  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Beryllium | 0.310           |          | 0.05       | 0.135         | 0.27  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Cadmium   | 0.980           |          | 0.05       | 0.135         | 0.27  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Chromium  | 9.270           |          | 0,12       | 0.23          | 0.46  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Соррег    | 17.400          |          | 0.29       | 0.455         | 0.91  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Lead      | 14.400          |          | 0.11       | 0.275         | 0.55  | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Метсигу   | 0.041           |          | 0,002      | 0.0055        | 0.011 | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Nickel    | 17.900          |          | 0.42       | 0.915         | 1.830 | mg/Kg |
| D2546-09    | B-4(9-2)            | SOIL   | Zinc      | 44.200          |          | 0.64       | 0.915         | 1.830 | mg/Kg |
| Client ID ; | B-4(2-3)            |        |           |                 |          |            |               |       |       |
| D2546-10    | B-4(2-3)            | SOIL   | Arsenic   | 9.740           |          | 0.34       | 0.52          | 1.040 | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Beryllium | 0.260           | J        | 0.06       | 0.155         | 0.31  | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Cadmium   | 1.410           |          | 0.06       | 0.155         | 0.31  | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Chromium  | 12.800          |          | 0.14       | 0.26          | 0,52  | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Copper    | 29.500          |          | 0.33       | 0.52          | 1.040 | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Lead      | 16.000          |          | 0.13       | 0.315         | 0.63  | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Mercury   | 0.032           |          | 0.002      | 0.005         | 0.010 | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Nickel    | 26.000          |          | 0.48       | 1.045         | 2.090 | mg/Kg |
| D2546-10    | B-4(2-3)            | SOIL   | Zinc      | 61.900          |          | 0.73       | 1,045         | 2.090 | mg/Kg |
| Client ID:  | B-3(9-2)            |        |           |                 |          |            |               |       |       |
| D2546-11    | B-3(9-2)            | SOIL   | Arsenic   | 8.160           |          | 0.31       | 0.47          | 0.94  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Beryllium | 0.440           |          | 0.06       | 0.14          | 0.28  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Cadmium   | 1.640           |          | 0.06       | 0.14          | 0.28  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Chromium  | 12.500          |          | 0.12       | 0.235         | 0.47  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Copper    | 17,000          |          | 0.30       | 0.47          | 0.94  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Lead      | 18.100          |          | 0.11       | 0.28          | 0.56  | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Mercury   | 0.039           |          | 0.002      | 0.0055        | 0.011 | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Nickel    | 22.000          |          | 0.43       | 0.935         | 1.870 | mg/Kg |
| D2546-11    | B-3(9-2)            | SOIL   | Zinc      | 51.000          |          | 0.66       | 0.935         | 1.870 |       |
| Client ID:  | B-3(2-3.5)          |        |           |                 |          |            |               |       |       |
| D2546-12    | B-3(2-3.5)          | SOIL   | Arsenic   | 7.810           |          | 0.37       | 0.565         | 1.130 | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Beryllium | 0.380           |          | 0.07       | 0.17          | 0.34  | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Cadmium   | 1.050           |          | 0.07       | 0.17          | 0.34  | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Chromium  | 11.100          |          | 0.15       | 0.28          | 0.56  | mg/Kg |
| D2546-12    | B-3(2-3,5)          | SOIL   | Copper    | 16.500          |          | 0.36       | 0.565         | 1.130 | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Lead      | 15.600          |          | 0.14       | 0.34          | 0.68  | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Mercury   | 0.041           |          | 0.002      | 0.0055        | 0.011 | mg/Kg |
| D2546-12    | B-3(2-3.5)          | SOIL   | Nickel    | 18.500          |          | 0.52       | 1.13          | 2.260 | mg/Kg |
| D25-10-12   | 0 7(2 3,3)          | COIL   | Money     | 10.000          |          | 0.52       | 1,13          | 2.200 | 6/176 |



#### Hit Summary Sheet SW-846

SDG No.: D2546

Order ID: D2546

Client:

Dvirka & Bartilucci

Project ID: PV6256, IBM East Fishkill

| Sample 1D D2546-12  Client 1D: D2546-13 D2546-13 D2546-13 | Client ID<br>B-3(2-3.5)<br>B-3(6-7)<br>B-3(6-7)<br>B-3(6-7) | 5   | Matrix<br>SOIL | Parameter<br>Zinc | Concentration | C | MDL   | LOD    | RDL   | Units |
|-----------------------------------------------------------|-------------------------------------------------------------|-----|----------------|-------------------|---------------|---|-------|--------|-------|-------|
| Client ID: D2546-13 D2546-13 D2546-13                     | B-3(6-7)<br>B-3(6-7)                                        |     | SOIL           |                   | 45.000        |   | 0 -0  |        |       |       |
| D2546-13<br>D2546-13<br>D2546-13                          | B-3(6-7)<br>B-3(6-7)                                        |     |                |                   | 45.800        |   | 0.79  | 1.13   | 2,260 | mg/Kg |
| D2546-13<br>D2546-13<br>D2546-13                          | B-3(6-7)                                                    |     |                |                   |               |   |       |        |       |       |
| D2546-13<br>D2546-13                                      |                                                             |     |                |                   |               |   |       |        |       |       |
| D2546-13                                                  | B-3(6-7)                                                    |     | SOIL           | Arsenic           | 8.560         |   | 0.28  | 0.43   | 0.86  | mg/Kg |
|                                                           |                                                             |     | SOIL           | Beryllium         | 0.300         |   | 0.05  | 0.13   | 0.26  | mg/Kg |
| DACIC 12                                                  | B-3(6-7)                                                    |     | SOIL           | Cadmium           | 1.530         |   | 0.05  | 0,13   | 0.26  | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    |     | SOIL           | Chromium          | 10.900        |   | 0.11  | 0.215  | 0.43  | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    |     | SOIL           | Copper            | 21.300        |   | 0.28  | 0.43   | 0.86  | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    |     | SOIL           | Lead              | 14.000        |   | 0,10  | 0.26   | 0.52  | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    | 5   | SOIL           | Mercury           | 0.030         |   | 0.002 | 0.0055 | 0.011 | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    | 5   | SOIL           | Nickel            | 21.800        |   | 0.40  | 0.865  | 1.730 | mg/Kg |
| D2546-13                                                  | B-3(6-7)                                                    | 5   | SOIL           | Zinc              | 51.500        |   | 0.60  | 0.865  | 1,730 | mg/Kg |
| Client ID :                                               | B-5(13-2)                                                   |     |                |                   |               |   |       |        |       |       |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Antimony          | 0.680         | J | 0.45  | 1      | 2.000 | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Arsenic           | 7.830         |   | 0.26  | 0.4    | 0.80  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Beryllium         | 0.240         |   | 0.05  | 0.12   | 0.24  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Cadmium           | 1.690         |   | 0.05  | 0.12   | 0.24  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Chromium          | 27.100        |   | 0.10  | 0.2    | 0.40  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Copper            | 410.000       |   | 0.26  | 0.4    | 0.80  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Lead              | 15,700        |   | 0.10  | 0.24   | 0.48  | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Mercury           | 0.018         |   | 0.002 | 0.0055 | 0.011 | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Nickel            | 72,500        |   | 0.37  | 0.8    | 1,600 | mg/Kg |
| D2546-14                                                  | B-5(13-2)                                                   | 5   | SOIL           | Zinc              | 298.000       |   | 0.56  | 0.8    | 1.600 | mg/Kg |
| Client ID :                                               | B-5(6-7)                                                    |     |                |                   |               |   |       |        |       |       |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Antimony          | 1.110         | J | 0.55  | 1.215  | 2.430 | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Arsenic           | 4.060         |   | 0.32  | 0.485  | 0.97  | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Beryllium         | 0.230         | J | 0.06  | 0.145  | 0.29  | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Cadmium           | 0,660         |   | 0.06  | 0.145  | 0.29  | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | S   | SOIL           | Copper            | 6.590         |   | 0.31  | 0.485  | 0.97  | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | ¥ 8 | SOIL           | Lead              | 3.670         |   | 0.12  | 0.29   | 0.58  | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Mercury           | 0.003         | J | 0.002 | 0.0055 | 0.011 | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | 5   | SOIL           | Nickel            | 5.390         |   | 0.45  | 0.975  | 1.950 | mg/Kg |
| D2546-15                                                  | B-5(6-7)                                                    | S   | SOIL           | Zinc              | 12,100        |   | 0.68  | 0.975  | 1.950 | mg/Kg |
| Client ID :                                               | B-6(10-2)                                                   |     |                |                   |               |   |       |        |       |       |
| D2546-16                                                  | B-6(10-2)                                                   | 5   | SOIL           | Arsenic           | 11.600        |   | 0.36  | 0,55   | 1.100 | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   | 5   | SOIL           | Beryllium         | 0.800         |   | 0.07  | 0.165  | 0.33  | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   | S   | SOIL           | Cadmium           | 2.390         |   | 0.07  | 0.165  | 0.33  | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   | 5   | SOIL           | Chromium          | 12.400        |   | 0.14  | 0.275  | 0.55  | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   |     | SOIL           | Copper            | 21.700        |   | 0.35  | 0.55   | 1.100 | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   |     | SOIL           | Lead              | 17.300        |   | 0.13  | 0.33   | 0.66  | mg/Kg |
| D2546-16                                                  | B-6(10-2)                                                   |     | SOIL           | Mercury           | 0.081         |   | 0.002 | 0.006  | 0.012 | mg/Kg |



D2546-17

D2546-17

D2546-17

B-6(2-3)

B-6(2-3)

B-6(2-3)

#### Hit Summary Sheet SW-846

| SDG No.:    | D2546               |        |           | Order         | Order ID: D2546 |      |       |       |       |
|-------------|---------------------|--------|-----------|---------------|-----------------|------|-------|-------|-------|
| Client:     | Dvirka & Bartilucci | Projec | t ID:     | PV6256, IBM   |                 |      |       |       |       |
| Sample ID   | Client ID           | Matrix | Parameter | Concentration | С               | MDL  | LOD   | RDL   | Units |
| D2546-16    | B-6(10-2)           | SOIL   | Nickel    | 22.900        |                 | 0.51 | 1.105 | 2.210 | mg/Kg |
| D2546-16    | B-6(10-2)           | SOIL   | Zinc      | 38.600        |                 | 0.77 | 1.105 | 2.210 | mg/Kg |
| Client ID : | B-6(2-3)            |        |           |               |                 |      |       |       |       |
| D2546-17    | B-6(2-3)            | SOIL   | Antimony  | 0.920         | J               | 0.54 | 1.205 | 2.410 | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Arsenic   | 15.500        |                 | 0.32 | 0.48  | 0.96  | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Beryllium | 0.370         |                 | 0.06 | 0.145 | 0.29  | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Cadmium   | 1.050         |                 | 0.06 | 0.145 | 0.29  | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Chromium  | 2.290         |                 | 0.13 | 0.24  | 0.48  | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Copper    | 15.500        |                 | 0.31 | 0.48  | 0.96  | mg/Kg |
| D2546-17    | B-6(2-3)            | SOIL   | Lead      | 9.510         |                 | 0.12 | 0.29  | 0.58  | mg/Kg |
|             |                     |        |           |               |                 |      |       |       |       |

0.013

14.900

10.800

0.002

0.44

0.67

0.0055

0.96

0.96

0.011 mg/Kg

mg/Kg

mg/Kg

1.920

1.920

SOIL

SOIL

SOIL

Mercury

Nickel

Zinc



#### Metals

- 2a - INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC-VENTURES

| Sample ID | Analyte   | Result<br>ug/L | True Value | %<br>Recovery | Acceptance Window (%R) | М | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|-----------|-----------|----------------|------------|---------------|------------------------|---|------------------|------------------|---------------|
| Sample 1D | Annyte    | ug/D           |            | Recovery      | villaon (7019          |   | 2                | 711110           | 7 (411100)    |
| ICV01     | Antimony  | 977.49         | 994.0      | 98.3          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Arsenic   | 980.03         | 999.0      | 98.1          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Beryllium | 481.01         | 495.0      | 97.2          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Cadmium   | 507.17         | 496.0      | 102.3         | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Chromium  | 494.75         | 490.0      | 101.0         | 90 - 110               | Р | 05/14/2012       | 12:26            | LB60659       |
|           | Соррег    | 504.63         | 492.0      | 102.6         | 90 - 110               | Р | 05/14/2012       | 12:26            | LB60659       |
|           | Lead      | 1007.50        | 1002.0     | 100,5         | 90 - 110               | Р | 05/14/2012       | 12:26            | LB60659       |
|           | Nickel    | 502.42         | 503.0      | 99.9          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Selenium  | 938.11         | 1003.0     | 93 5          | 90 - 110               | Р | 05/14/2012       | 12:26            | LB60659       |
|           | Silver    | 508.68         | 501.0      | 101.5         | 90 - 110               | Р | 05/14/2012       | 12:26            | LB60659       |
|           | Thallium  | 1001.70        | 1003.0     | 99.9          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
|           | Zinc      | 994.47         | 1025.0     | 97.0          | 90 - 110               | P | 05/14/2012       | 12:26            | LB60659       |
| CCV01     | Antimony  | 5049.10        | 5000.0     | 101,0         | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
| cevor     | Arsenic   | 4919.00        | 5000.0     | 98.4          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
|           | Beryllium | 234.79         | 250.0      | 93.9          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
|           | Cadmium   | 2481.10        | 2500.0     | 99.2          | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
|           | Chromium  | 965.78         | 1000.0     | 96.6          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
|           | Соррег    | 1187.00        | 1250.0     | 95.0          | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
|           | Lead      | 4958.30        | 5000.0     | 99.2          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
|           | Nickel    | 2462,20        | 2500.0     | 98.5          | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
|           | Selenium  | 4786.90        | 5000 0     | 95.7          | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
|           | Silver    | 1200.20        | 1250.0     | 96.0          | 90 - 110               | Р | 05/14/2012       | 13:16            | LB60659       |
|           | Thallium  | 4931-70        | 5000.0     | 98.6          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
|           | Zinc      | 2421.00        | 2500.0     | 96.8          | 90 - 110               | P | 05/14/2012       | 13:16            | LB60659       |
| CCV02     | Antimony  | 5099.20        | 5000.0     | 102.0         | 90 - 110               | P | 05/14/2012       | 14:06            | LB60659       |
| 20102     | Arsenic   | 4913.40        | 5000.0     | 98.3          | 90 - 110               | Р | 05/14/2012       | 14:06            | LB60659       |
|           | Beryllium | 231.81         | 250.0      | 92.7          | 90 - 110               | Р | 05/14/2012       | 14:06            | LB60659       |
|           | Cadmium   | 2487.80        | 2500.0     | 99.5          | 90 - 110               | Р | 05/14/2012       | 14:06            | LB60659       |
|           | Chromium  | 977.08         | 1000.0     | 97.7          | 90 - 110               | Р | 05/14/2012       | 14:06            | LB60659       |
|           | Copper    | 1177.80        | 1250.0     | 94.2          | 90 - 110               | P | 05/14/2012       | 14:06            | LB60659       |
|           | Lead      | 4981.20        | 5000.0     | 99.6          | 90 - 110               | P | 05/14/2012       | 14:06            | LB60659       |
|           | Nickel    | 2461.30        | 2500.0     | 98.5          | 90 - 110               | P | 05/14/2012       | 14:06            | LB60659       |



#### Metals

# - 2a - INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci SDG No.: D2546

 Contract:
 DVIR01
 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC-VENTURES

\_\_\_\_\_

|           | A 1 4     | Result  | True Value | %        | Acceptance  |   | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|---|------------|----------|---------|
| Sample 1D | Analyte   | ug/L    |            | Recovery | Window (%R) | M | Date       | Time     | Number  |
|           |           |         |            |          |             |   |            |          |         |
| CCV02     | Selenium  | 4760_10 | 5000 0     | 95 2     | 90 - 110    | P | 05/14/2012 | 14:06    | LB60659 |
|           | Silver    | 1196.10 | 1250.0     | 95.7     | 90 - 110    | P | 05/14/2012 | 14:06    | LB60659 |
|           | Thallium  | 4938.60 | 5000_0     | 98.8     | 90 - 110    | Р | 05/14/2012 | 14:06    | LB60659 |
|           | Zinc      | 2419.80 | 2500.0     | 96.8     | 90 - 110    | P | 05/14/2012 | 14:06    | LB60659 |
| CCV03     | Antimony  | 4885.80 | 5000.0     | 97.7     | 90 - 110    | P | 05/14/2012 | 14:57    | LB60659 |
|           | Arsenic   | 4907.10 | 5000,0     | 98.1     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Beryllium | 239 89  | 250.0      | 96.0     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Cadmium   | 2385.70 | 2500.0     | 95.4     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Chromium  | 962.87  | 1000.0     | 96.3     | 90 - 110    | P | 05/14/2012 | 14:57    | LB60659 |
|           | Соррег    | 1213,90 | 1250.0     | 97.1     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Lead      | 4754.80 | 5000.0     | 95_1     | 90 - 110    | P | 05/14/2012 | 14.57    | LB60659 |
|           | Nickel    | 2401.20 | 2500.0     | 96.0     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Selenium  | 4746.40 | 5000.0     | 94.9     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Silver    | 1173.10 | 1250.0     | 93.8     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
|           | Thallium  | 4822.10 | 5000.0     | 96.4     | 90 - 110    | P | 05/14/2012 | 14:57    | LB60659 |
|           | Zinc      | 2384.60 | 2500 0     | 95.4     | 90 - 110    | Р | 05/14/2012 | 14:57    | LB60659 |
| CCV04     | Antimony  | 4960.40 | 5000.0     | 99.2     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Arsenic   | 4852.30 | 5000.0     | 97.0     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Beryllium | 232.64  | 250.0      | 93.1     | 90 - 110    | P | 05/14/2012 | 15:47    | LB60659 |
|           | Cadmium   | 2474.50 | 2500.0     | 99.0     | 90 - H0     | P | 05/14/2012 | 15:47    | LB60659 |
|           | Chromium  | 958.38  | 1000.0     | 95.8     | 90 - 110    | P | 05/14/2012 | 15:47    | LB60659 |
|           | Copper    | 1177.30 | 1250.0     | 94_2     | 90 - 110    | P | 05/14/2012 | 15:47    | LB60659 |
|           | Lead      | 4937.80 | 5000.0     | 98.8     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Nickel    | 2446.70 | 2500.0     | 97.9     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Selenium  | 4758.90 | 5000.0     | 95.2     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Silver    | 1188.80 | 1250.0     | 95.1     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
|           | Thallium  | 4878.90 | 5000.0     | 97.6     | 90 - 110    | P | 05/14/2012 | 15:47    | LB60659 |
|           | Zinc      | 2414.20 | 2500.0     | 96.6     | 90 - 110    | Р | 05/14/2012 | 15:47    | LB60659 |
| CCV05     | Antimony  | 5040.00 | 5000 0     | 100.8    | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Arsenic   | 4860.30 | 5000.0     | 97.2     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Beryllium | 232.54  | 250.0      | 93.0     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Cadmium   | 2503.60 | 2500.0     | 100.1    | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Chromium  | 970.32  | 1000.0     | 97.0     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Соррег    | 1174.90 | 1250 0     | 94.0     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Lead      | 4999.10 | 5000.0     | 100.0    | 90 - 110    | P | 05/14/2012 | 16:38    | LB60659 |



- 2a -

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci

SDG No.:

D2546

Contract:

DVIR01

Lab Code: CHEM

Case No.:

D2546

SAS No.: D2546

Initial Calibration Source:

EPA

Continuing Calibration Source:

INORGANIC-VENTURES

|           |           | Result  | True Value | 0/0      | Acceptance  |   | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|---|------------|----------|---------|
| Sample ID | Analyte   | ug/L    |            | Recovery | Window (%R) | M | Date       | Time     | Number  |
|           |           |         |            |          |             |   |            |          |         |
| CCV05     | Nickel    | 2465.80 | 2500 0     | 98,6     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Selenium  | 4792,90 | 5000.0     | 95,9     | 90 - 110    | P | 05/14/2012 | 16:38    | LB60659 |
|           | Silver    | 1191.40 | 1250.0     | 95,3     | 90 - 110    | P | 05/14/2012 | 16:38    | LB60659 |
|           | Thallium  | 4925.40 | 5000.0     | 98,5     | 90 - 110    | Р | 05/14/2012 | 16:38    | LB60659 |
|           | Zinc      | 2464.80 | 2500.0     | 98.6     | 90 - 110    | P | 05/14/2012 | 16:38    | LB60659 |
| CCV06     | Antimony  | 4999.90 | 5000.0     | 100.0    | 90 - 110    | Р | 05/14/2012 | 17:28    | LB60659 |
|           | Arsenic   | 4773.30 | 5000.0     | 95.5     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Beryllium | 229.12  | 250.0      | 91.6     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Cadmium   | 2520.20 | 2500.0     | 100.8    | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Chromium  | 979.80  | 1000.0     | 98.0     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Copper    | 1166.80 | 1250.0     | 93,3     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Lead      | 5000.40 | 5000.0     | 100.0    | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Nickel    | 2469.30 | 2500.0     | 98.8     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Selenium  | 4696.50 | 5000.0     | 93.9     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Silver    | 1196.20 | 1250.0     | 95.7     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Thallium  | 4913.70 | 5000.0     | 98.3     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
|           | Zinc      | 2418.20 | 2500_0     | 96.7     | 90 - 110    | P | 05/14/2012 | 17:28    | LB60659 |
| CCV07     | Antimony  | 4951.80 | 5000.0     | 99.0     | 90 - 110    | Р | 05/14/2012 | 18:19    | LB60659 |
|           | Arsenic   | 4750,50 | 5000.0     | 95.0     | 90 - 110    | Р | 05/14/2012 | 18:19    | LB60659 |
|           | Beryllium | 232.16  | 250.0      | 92.9     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Cadmium   | 2549.60 | 2500.0     | 102.0    | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Chromium  | 981.20  | 1000.0     | 98.1     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Copper    | 1168.40 | 1250.0     | 93.5     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Lead      | 5056.30 | 5000.0     | 101.1    | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Nickel    | 2494.70 | 2500.0     | 99.8     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Selenium  | 4673.10 | 5000.0     | 93.5     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Silver    | 1199.40 | 1250.0     | 96.0     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Thallium  | 4952.10 | 5000.0     | 99.0     | 90 - 110    | P | 05/14/2012 | 18:19    | LB60659 |
|           | Zinc      | 2462,60 | 2500.0     | 98.5     | 90 - 110    | Р | 05/14/2012 | 18:19    | LB60659 |
| CCV08     | Antimony  | 5149.00 | 5000.0     | 103.0    | 90 - 110    | P | 05/14/2012 | 19:23    | LB60659 |
|           | Arsenic   | 5003,70 | 5000.0     | 100.1    | 90 - 110    | P | 05/14/2012 | 19:23    | LB60659 |
|           | Beryllium | 244.12  | 250.0      | 97.6     | 90 - 110    | P | 05/14/2012 | 19:23    | LB60659 |
|           | Cadmium   | 2629.00 | 2500.0     | 105.2    | 90 - 110    | Р | 05/14/2012 | 19:23    | LB60659 |
|           | Chromium  | 1028,80 | 1000,0     | 102.9    | 90 - 110    | P | 05/14/2012 | 19:23    | LB60659 |
|           | Copper    | 1230.50 | 1250.0     | 98.4     | 90 - 110    | P | 05/14/2012 | 19:23    | LB60659 |



#### - 2a -

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC-VENTURES

| C 1D      | A 1.4     | Result  | True Value | %        | Acceptance  | <b>M</b> | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|----------|------------|----------|---------|
| Sample 1D | Analyte   | ug/L    |            | Recovery | Window (%R) | М        | Date       | Time     | Number  |
|           |           |         |            |          |             |          |            |          |         |
| CCV08     | Lead      | 5225.90 | 5000.0     | 104.5    | 90 - 110    | P        | 05/14/2012 | 19:23    | LB60659 |
|           | Nickel    | 2587 10 | 2500_0     | 103.5    | 90 - 110    | P        | 05/14/2012 | 19:23    | LB60659 |
|           | Selenium  | 4872.90 | 5000_0     | 97.5     | 90 - 110    | P        | 05/14/2012 | 19:23    | LB60659 |
|           | Silver    | 1242.00 | 1250.0     | 99.4     | 90 - 110    | Р        | 05/14/2012 | 19:23    | LB60659 |
|           | Thallium  | 5118.40 | 5000.0     | 102.4    | 90 - 110    | P        | 05/14/2012 | 19:23    | LB60659 |
|           | Zinc      | 2572.10 | 2500.0     | 102.9    | 90 - 110    | P        | 05/14/2012 | 19:23    | LB60659 |
| CCV09     | Antimony  | 4904.50 | 5000 0     | 98.1     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Arsenic   | 4764_40 | 5000.0     | 95,3     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Beryllium | 233.91  | 250 0      | 93 6     | 90 - 110    | Р        | 05/14/2012 | 20:14    | LB60659 |
|           | Cadmium   | 2521_80 | 2500 0     | 100.9    | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Chromium  | 980.60  | 1000.0     | 98.1     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Copper    | 1178.50 | 1250.0     | 94.3     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Lead      | 4977.50 | 5000.0     | 99 6     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Nickel    | 2468_10 | 2500_0     | 98.7     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Selenium  | 4538.70 | 5000.0     | 90.8     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Silver    | 1197_10 | 1250 0     | 95 8     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
|           | Thallium  | 4903.20 | 5000.0     | 98.1     | 90 - 110    | Р        | 05/14/2012 | 20:14    | LB60659 |
|           | Zinc      | 2400.60 | 2500.0     | 96_0     | 90 - 110    | P        | 05/14/2012 | 20:14    | LB60659 |
| CCV10     | Antimony  | 5224_50 | 5000.0     | 104.5    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Arsenic   | 5004.20 | 5000.0     | 100.1    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Beryllium | 238,95  | 250.0      | 95 6     | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Cadmium   | 2663.00 | 2500.0     | 106.5    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Chromium  | 1041_50 | 1000.0     | 104.2    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Copper    | 1194.00 | 1250.0     | 95.5     | 90 - 110    | Р        | 05/14/2012 | 21:05    | LB60659 |
|           | Lead      | 5278.60 | 5000.0     | 105.6    | 90 - 110    | Р        | 05/14/2012 | 21:05    | LB60659 |
|           | Nickel    | 2604.00 | 2500.0     | 104.2    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Selenium  | 4816_10 | 5000.0     | 96.3     | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Silver    | 1236.10 | 1250.0     | 98.9     | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Thallium  | 5166.00 | 5000.0     | 103.3    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
|           | Zinc      | 2595.80 | 2500.0     | 103.8    | 90 - 110    | P        | 05/14/2012 | 21:05    | LB60659 |
| CCV11     | Antimony  | 5096_80 | 5000_0     | 101.9    | 90 - 110    | P        | 05/14/2012 | 21:57    | LB60659 |
| 55,11     | Arsenic   | 4898.30 | 5000.0     | 98.0     | 90 - 110    | Р        | 05/14/2012 | 21:57    | LB60659 |
|           | Beryllium | 238.07  | 250.0      | 95.2     | 90 - 110    | P        | 05/14/2012 | 21:57    | LB60659 |
|           | Cadmium   | 2584.00 | 2500.0     | 103.4    | 011 - 09    | P        | 05/14/2012 | 21:57    | LB60659 |
|           | Chromium  | 1013.40 | 1000.0     | 101.3    | 90 - 110    | P        | 05/14/2012 | 21:57    | LB60659 |
|           |           |         |            |          |             |          |            |          |         |



#### - 2a -

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:

Dvirka & Bartilucci

SDG No.:

D2546

Contract:

DVIR01

Lab Code:

CHEM

D2546 Case No.:

SAS No.: <u>D2546</u>

Initial Calibration Source:

EPA

**Continuing Calibration Source:** 

INORGANIC-VENTURES

|           |           | Result  | True Value | %        | Acceptance  |   | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|---|------------|----------|---------|
| Sample ID | Analyte   | ug/L    |            | Recovery | Window (%R) | M | Date       | Time     | Number  |
|           |           |         |            |          |             |   |            |          |         |
| CCV11     | Copper    | 1203.70 | 1250.0     | 96.3     | 90 - 110    | P | 05/14/2012 | 21:57    | LB60659 |
| CCTII     | Lead      | 5142.10 | 5000.0     | 102.8    | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
|           | Nickel    | 2537.40 | 2500.0     | 101.5    | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
|           | Selenium  | 4850.40 | 5000.0     | 97.0     | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
|           | Silver    | 1227.50 | 1250.0     | 98.2     | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
|           | Thallium  | 5057.40 | 5000.0     | 101_1    | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
|           | Zinc      | 2518.20 | 2500.0     | 100.7    | 90 - 110    | Р | 05/14/2012 | 21:57    | LB60659 |
| CCV12     | Antimony  | 5142.40 | 5000.0     | 102.8    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
| 20112     | Arsenic   | 4904.30 | 5000.0     | 98_1     | 90 - 110    | Р | 05/14/2012 | 22:51    | LB60659 |
|           | Beryllium | 237.45  | 250.0      | 95.0     | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Cadmium   | 2642,20 | 2500.0     | 105.7    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Chromium  | 1030.20 | 1000.0     | 103.0    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Copper    | 1192.20 | 1250.0     | 95.4     | 90 - 110    | Р | 05/14/2012 | 22:51    | LB60659 |
|           | Lead      | 5231.70 | 5000.0     | 104.6    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Nickel    | 2573.50 | 2500.0     | 102 9    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Selenium  | 4718.00 | 5000.0     | 94.4     | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Silver    | 1237.60 | 1250.0     | 99.0     | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Thallium  | 5113.30 | 5000.0     | 102.3    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
|           | Zinc      | 2526.60 | 2500.0     | 101.1    | 90 - 110    | P | 05/14/2012 | 22:51    | LB60659 |
| CCV13     | Antimony  | 5092.60 | 5000.0     | 101.9    | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Arsenic   | 4880.50 | 5000.0     | 97.6     | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
|           | Beryllium | 233.97  | 250.0      | 93.6     | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Cadmium   | 2594.10 | 2500.0     | 103.8    | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Chromium  | 1015.90 | 1000.0     | 101.6    | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Copper    | 1196.00 | 1250.0     | 95.7     | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Lead      | 5164.60 | 5000.0     | 103.3    | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
|           | Nickel    | 2549.00 | 2500.0     | 102.0    | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
|           | Selenium  | 4790.70 | 5000.0     | 95.8     | 90 - 110    | P | 05/14/2012 | 23:42    | LB60659 |
|           | Silver    | 1213.90 | 1250.0     | 97.1     | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
|           | Thallium  | 5037.00 | 5000.0     | 100.7    | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
|           | Zinc      | 2511.60 | 2500.0     | 100.5    | 90 - 110    | Р | 05/14/2012 | 23:42    | LB60659 |
| CV01      | Antimony  | 965.15  | 994.0      | 97.1     | 90 - 110    | P | 05/15/2012 | 15:39    | LB60693 |
|           | Arsenic   | 986 78  | 999.0      | 98.8     | 90 - 110    | P | 05/15/2012 | 15:39    | LB60693 |
|           | Beryllium | 493.92  | 495.0      | 99.8     | 90 - 110    | Р | 05/15/2012 | 15:39    | LB60693 |
|           | Cadmium   | 508.58  | 496.0      | 102.5    | 90 - 110    | Р | 05/15/2012 | 15:39    | LB60693 |



- 2a - INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

Initial Calibration Source: EPA

Continuing Calibration Source: <u>INORGANIC-VENTURES</u>

|           |           | Result  | True Value | %        | Acceptance  |    | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|----|------------|----------|---------|
| Sample ID | Analyte   | ug/L    |            | Recovery | Window (%R) | _M | Date       | Time     | Number  |
|           |           |         |            |          |             |    |            |          |         |
| ICV01     | Chromium  | 507.61  | 490.0      | 103.6    | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
| -0.01     | Copper    | 516.56  | 492.0      | 105.0    | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
|           | Lead      | 1001 40 | 1002.0     | 99.9     | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
|           | Nickel    | 503.60  | 503.0      | 100.1    | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
|           | Selenium  | 1002 00 | 1003.0     | 99.9     | 90 - 110    | P  | 05/15/2012 | 15:39    | LB60693 |
|           | Silver    | 497.04  | 501.0      | 99.2     | 90 - 110    | P  | 05/15/2012 | 15:39    | LB60693 |
|           | Thallium  | 1002.80 | 1003.0     | 100.0    | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
|           | Zinc      | 1034.60 | 1025.0     | 100.9    | 90 - 110    | Р  | 05/15/2012 | 15:39    | LB60693 |
| CCV01     | Antimony  | 4822.20 | 5000.0     | 96.4     | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
| 33        | Arsenic   | 4879 00 | 5000.0     | 97.6     | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Beryllium | 258 95  | 250.0      | 103.6    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Cadmium   | 2521.80 | 2500.0     | 100.9    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Chromium  | 1023.70 | 1000.0     | 102.4    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Copper    | 1287.60 | 1250.0     | 103.0    | 90 - 110    | Р  | 05/15/2012 | 16:05    | LB60693 |
|           | Lead      | 4992,90 | 5000.0     | 99.9     | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Nickel    | 2508.90 | 2500.0     | 100.4    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Selenium  | 5042,50 | 5000.0     | 100.8    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Silver    | 1263,40 | 1250.0     | 101.1    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Thallium  | 4978,40 | 5000.0     | 99.6     | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
|           | Zinc      | 2600,40 | 2500.0     | 104.0    | 90 - 110    | P  | 05/15/2012 | 16:05    | LB60693 |
| CCV02     | Antimony  | 4777,00 | 5000.0     | 95,5     | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Arsenic   | 4884,60 | 5000.0     | 97.7     | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Beryllium | 260.24  | 250.0      | 104.1    | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Cadmium   | 2483.80 | 2500.0     | 99.4     | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Chromium  | 1032.10 | 1000.0     | 103.2    | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Copper    | 1303,50 | 1250.0     | 104.3    | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Lead      | 4914.70 | 5000.0     | 98.3     | 90 - 110    | Р  | 05/15/2012 | 16:56    | LB60693 |
|           | Nickel    | 2483.30 | 2500.0     | 99.3     | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Selenium  | 5050.20 | 5000.0     | 101.0    | 90 - 110    | P  | 05/15/2012 | 16:56    | LB60693 |
|           | Silver    | 1266.20 | 1250.0     | 101.3    | 90 - 110    | Р  | 05/15/2012 | 16:56    | LB60693 |
|           | Thallium  | 4927.10 | 5000.0     | 98.5     | 90 - 110    | Р  | 05/15/2012 | 16:56    | LB60693 |
|           | Zinc      | 2575.40 | 2500.0     | 103,0    | 90 - 110    | Р  | 05/15/2012 | 16:56    | LB60693 |
| CCV03     | Antimony  | 4778.90 | 5000.0     | 95.6     | 90 - 110    | P  | 05/15/2012 | 17:47    | LB60693 |
|           | Arsenic   | 4874.10 | 5000.0     | 97,5     | 90 - 110    | P  | 05/15/2012 | 17:47    | LB60693 |
|           | Beryllium | 268.67  | 250.0      | 107.5    | 90 - 110    | P  | 05/15/2012 | 17:47    | LB60693 |
|           |           |         |            |          |             |    |            |          |         |



## - 2a -

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci

**SDG No.:** D2546

Contract:

DVIR01

Lab Code:

CHEM Case No.:

D2546

SAS No.: D2546

**Initial Calibration Source:** 

EPA

Continuing Calibration Source;

INORGANIC-VENTURES

|           |           | Result  | True Value | %        | Acceptance  |   | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|---|------------|----------|---------|
| Sample ID | Analyte   | ug/L    |            | Recovery | Window (%R) | M | Date       | Time     | Number  |
|           |           |         |            |          |             |   |            |          |         |
| CCV03     | Cadmium   | 2542_90 | 2500.0     | 101.7    | 90 - 110    | Р | 05/15/2012 | 17:47    | LB60693 |
|           | Chromium  | 1069_50 | 1000 0     | 107.0    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Copper    | 1328 20 | 1250.0     | 106,3    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Lead      | 5009.00 | 5000 0     | 100.2    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Nickel    | 2525_60 | 2500.0     | 101.0    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Selenium  | 5102.90 | 5000 0     | 102.1    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Silver    | 1307.00 | 1250_0     | 104.6    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
|           | Thallium  | 4976.00 | 5000.0     | 99.5     | 90 - 110    | Р | 05/15/2012 | 17:47    | LB60693 |
|           | Zinc      | 2645 90 | 2500 0     | 105.8    | 90 - 110    | P | 05/15/2012 | 17:47    | LB60693 |
| CCV04     | Antimony  | 4709,20 | 5000.0     | 94.2     | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Arsenic   | 4787_40 | 5000.0     | 95.7     | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
|           | Beryllium | 263.07  | 250.0      | 105_2    | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
|           | Cadmium   | 2511.20 | 2500.0     | 100.4    | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
|           | Chromium  | 1059.80 | 1000.0     | 106.0    | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Copper    | 1301-80 | 1250.0     | 104_1    | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
|           | Lead      | 4946.70 | 5000.0     | 98.9     | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Nickel    | 2491.60 | 2500.0     | 99.7     | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Selenium  | 5013_10 | 5000.0     | 100.3    | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Silver    | 1289_10 | 1250.0     | 103_1    | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
|           | Thallium  | 4924.60 | 5000.0     | 98.5     | 90 - 110    | Р | 05/15/2012 | 18:38    | LB60693 |
|           | Zinc      | 2617.10 | 2500 0     | 104.7    | 90 - 110    | P | 05/15/2012 | 18:38    | LB60693 |
| CCV05     | Antimony  | 4735.30 | 5000.0     | 94.7     | 90 - 110    | P | 05/15/2012 | 19:29    | LB60693 |
| 00.00     | Arsenic   | 4826.50 | 5000.0     | 96.5     | 90 - 110    | P | 05/15/2012 | 19:29    | LB60693 |
|           | Beryllium | 271.33  | 250.0      | 108.5    | 90 - 110    | P | 05/15/2012 | 19:29    | LB60693 |
|           | Cadmium   | 2561.40 | 2500.0     | 102.5    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Chromium  | 1085.90 | 1000.0     | 108.6    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Copper    | 1337-70 | 1250.0     | 107.0    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Lead      | 5022.20 | 5000.0     | 100.4    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Nickel    | 2534.10 | 2500.0     | 101.4    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Selenium  | 4984.30 | 5000.0     | 99.7     | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Silver    | 1306-90 | 1250.0     | 104.6    | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Thallium  | 4968.20 | 5000.0     | 99.4     | 90 - 110    | Р | 05/15/2012 | 19:29    | LB60693 |
|           | Zinc      | 2612.30 | 2500.0     | 104.5    | 90 - 110    | P | 05/15/2012 | 19:29    | LB60693 |
| CCV06     | Antimony  | 4781.80 | 5000.0     | 95.6     | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
| CCTOO     | Arsenic   | 4837.80 | 5000.0     | 96.8     | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |



#### - 2a -

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci

**SDG No.:** D2546

Contract:

DVIR01

Lab Code:

СНЕМ

Case No.:

D2546

SAS No.: <u>D2546</u>

**Initial Calibration Source:** 

EPA

Continuing Calibration Source:

INORGANIC-VENTURES

|           |           | Result  | True Value | %        | Acceptance  |   | Analysis   | Analysis | Run     |
|-----------|-----------|---------|------------|----------|-------------|---|------------|----------|---------|
| Sample 1D | Analyte   | ug/L    |            | Recovery | Window (%R) | M | Date       | Time     | Number  |
|           |           |         |            |          |             |   |            |          |         |
| CCV06     | Beryllium | 269_44  | 250.0      | 107.8    | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
|           | Cadmium   | 2614.00 | 2500.0     | 104.6    | 90 - 110    | Р | 05/15/2012 | 20:20    | LB60693 |
|           | Chromium  | 1090.20 | 1000.0     | 109.0    | 90 - 110    | Р | 05/15/2012 | 20:20    | LB60693 |
|           | Copper    | 1337.90 | 1250_0     | 107.0    | 90 - 110    | Р | 05/15/2012 | 20:20    | LB60693 |
|           | Lead      | 5129.80 | 5000.0     | 102,6    | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
|           | Nickel    | 2585.20 | 2500.0     | 103.4    | 90 - 110    | Р | 05/15/2012 | 20:20    | LB60693 |
|           | Selenium  | 4959.80 | 5000 0     | 99.2     | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
|           | Silver    | 1303.70 | 1250.0     | 104.3    | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
|           | Thallium  | 5029.60 | 5000 0     | 100.6    | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
|           | Zinc      | 2604.80 | 2500 0     | 104.2    | 90 - 110    | P | 05/15/2012 | 20:20    | LB60693 |
| CCV07     | Antimony  | 4776.40 | 5000.0     | 95.5     | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Arsenic   | 4745.00 | 5000.0     | 94.9     | 90 - 110    | Р | 05/15/2012 | 21:11    | LB60693 |
|           | Beryllium | 264.75  | 250.0      | 105.9    | 90 - 110    | Р | 05/15/2012 | 21:11    | LB60693 |
|           | Cadmium   | 2574.30 | 2500.0     | 103.0    | 90 - 110    | Р | 05/15/2012 | 21:11    | LB60693 |
|           | Chromium  | 1082.60 | 1000 0     | 108.3    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Соррег    | 1316.60 | 1250.0     | 105.3    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Lead      | 5049.40 | 5000.0     | 101.0    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Nickel    | 2527.40 | 2500.0     | 101.1    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Selenium  | 5103.80 | 5000.0     | 102.1    | 90 - 110    | Р | 05/15/2012 | 21:11    | LB60693 |
|           | Silver    | 1307.60 | 1250.0     | 104.6    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Thallium  | 4954.00 | 5000.0     | 99.1     | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           | Zinc      | 2623.90 | 2500.0     | 105.0    | 90 - 110    | P | 05/15/2012 | 21:11    | LB60693 |
|           |           |         |            |          |             |   |            |          |         |



- 2a -

CHEM

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Dvirka & Bartilucci

SDG No.:

D2546

Contract:

DVIR01

Lab Code:

Case No.:

D2546

SAS No.: D2546

Initial Calibration Source:

EPA

**Continuing Calibration Source:** 

PLASMA-PURE

| Sample ID | Analyte | Result<br>ug/L | True Value | %<br>Recovery | Acceptance<br>Window (%R) | М  | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|-----------|---------|----------------|------------|---------------|---------------------------|----|------------------|------------------|---------------|
|           |         |                |            |               |                           |    |                  |                  |               |
| ICV01     | Mercury | 3.86           | 4.0        | 96.5          | 90 - 110                  | CV | 05/15/2012       | 13:16            | LB60687       |
| CCV01     | Mercury | 5.10           | 5.0        | 102.0         | 90 - 110                  | CV | 05/15/2012       | 13:20            | LB60687       |
| CCV02     | Mercury | 5.17           | 5.0        | 103.4         | 90 - 110                  | CV | 05/15/2012       | 13:43            | LB60687       |
| CCV03     | Mercury | 5.19           | 5.0        | 103.8         | 90 - 110                  | CV | 05/15/2012       | 14:06            | LB60687       |
| CCV04     | Mercury | 5.25           | 5.0        | 105.0         | 90 - 110                  | CV | 05/15/2012       | 14:29            | LB60687       |
| CCV05     | Mercury | 5.23           | 5.0        | 104.6         | 90 - 110                  | CV | 05/15/2012       | 14:52            | LB60687       |
| CCV06     | Mercury | 5.19           | 5.0        | 103.8         | 90 - 110                  | CV | 05/15/2012       | 15:14            | LB60687       |
| CCV07     | Mercury | 5.08           | 5.0        | 101.6         | 90 - 110                  | CV | 05/15/2012       | 15:24            | LB60687       |



## - 2b - CRDL STANDARD FOR AA & ICP

Client: Dvirka & Bartilucci

SDG No.: D2546

Contract:

DVIR01

Lab Code:

CHEM

Case No.: D2546

SAS No.: D2546

**Initial Calibration Source:** 

**Continuing Calibration Source:** 

INORGANIC-VENTURES

| Sample ID | Analyte   | Result<br>ug/L | True Value<br>ug/L | %<br>Recovery | Acceptance Window (%R) | M  | Analysis<br>Date | Analysis<br>Time | Run<br>Numbe |
|-----------|-----------|----------------|--------------------|---------------|------------------------|----|------------------|------------------|--------------|
|           |           |                |                    |               |                        |    |                  |                  |              |
| CRI01     | Antimony  | 26.97          | 25 0               | 107.9         | 50 - 150               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Arsenic   | 9.94           | 10.0               | 99.4          | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Beryllium | 3 00           | 3.0                | 100 0         | 70 - 130               | Р  | 05/14/2012       | 12:39            | LB60659      |
|           | Cadmium   | 3 43           | 3.0                | 114,3         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Chromium  | 5.74           | 5.0                | 114.8         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Copper    | 11.04          | 10.0               | 110.4         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Lead      | 6.11           | 6.0                | 101.8         | 50 - 150               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Nickel    | 21.76          | 20.0               | 108_8         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Selenium  | 8,21           | 10.0               | 82.1          | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Silver    | 5.48           | 5.0                | 109.6         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Thallium  | 21.35          | 20.0               | 106.8         | 50 - 150               | P  | 05/14/2012       | 12:39            | LB60659      |
|           | Zinc      | 25,52          | 20.0               | 127.6         | 70 - 130               | P  | 05/14/2012       | 12:39            | LB60659      |
| CR101     | Mercury   | 0.15           | 0.2                | 75.0          | 70 - 130               | CV | 05/15/2012       | 13:24            | LB60687      |
| CRI01     | Antimony  | 23,58          | 25.0               | 94.3          | 50 - 150               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Arsenic   | 6.05           | 10.0               | 60.5          | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Beryllium | 3.14           | 3.0                | 104.7         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Cadmium   | 3 32           | 3.0                | 110_7         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Chromium  | 5_11           | 5.0                | 102,2         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Copper    | 10,37          | 10.0               | 103.7         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Lead      | 5.78           | 6.0                | 96.3          | 50 - 150               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Nickel    | 21.39          | 20.0               | 107.0         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Selenium  | 7.72           | 10.0               | 77.2          | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Silver    | 5.01           | 5.0                | 100,2         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Thallium  | 17.91          | 20.0               | 89.6          | 50 - 150               | P  | 05/15/2012       | 15:48            | LB60693      |
|           | Zinc      | 24.05          | 20.0               | 120.2         | 70 - 130               | P  | 05/15/2012       | 15:48            | LB60693      |



#### Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: Dvirka & Bartilucci

**SDG No.:** D2546

Contract:

DV1R01

Lab Code:

CHEM

Case No.:

D2546

**SAS No.:** D2546

ICS Source:

**EPA** 

Instrument ID:

P4

|           |           | Result | True Value | %        | Acceptance | Analysis   | Analysis | Run     |
|-----------|-----------|--------|------------|----------|------------|------------|----------|---------|
| Sample 1D | Analyte   | ug/L   | ug/L       | Recovery | Window     | Date       | Time     | Number  |
|           | 1,50,400. |        |            |          |            |            |          |         |
| CSA01     | Antimony  | 4,8    |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Arsenic   | 3.8    |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Beryllium | 0.62   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Cadmium   | 3.4    |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Chromium  | 49.1   | 43         | 114.2    | 80 - 120%  | 05/14/2012 | 12:47    | LB60659 |
|           | Copper    | 27.8   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Lead      | 6.9    |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Nickel    | 23.8   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Selenium  | -4.9   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Silver    | -6,6   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Thallium  | 2.7    |            |          |            | 05/14/2012 | 12:47    | LB60659 |
|           | Zinc      | 35.7   |            |          |            | 05/14/2012 | 12:47    | LB60659 |
| ICSAB01   | Antimony  | 639    | 589        | 108,5    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Arsenic   | 102    | 101        | 101.0    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Beryllium | 483    | 475        | 101_7    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Cadmium   | 1060   | 940        | 112.8    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Chromium  | 530    | 511        | 103.7    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Copper    | 497    | 548        | 90.7     | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Lead      | 63,1   | 61         | 103.4    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Nickel    | 1060   | 984        | 107.7    | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Selenium  | 42.7   | 53         | 80.6     | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Silver    | 200    | 206        | 97.1     | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Thallium  | 100    | 103        | 97.1     | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
|           | Zinc      | 1000   | 1028       | 97.3     | 80 - 120%  | 05/14/2012 | 12:51    | LB60659 |
| CSA01     | Antimony  | 5,2    |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Arsenic   | -5,9   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Beryllium | 0.66   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Cadmium   | 1.6    |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Chromium  | 49,9   | 43         | 116.0    | 80 - 120%  | 05/15/2012 | 15:56    | LB60693 |
|           | Copper    | 35.4   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Lead      | 7.2    |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Nickel    | 25,2   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Selenium  | 8,3    |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Silver    | -1:1   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Thallium  | -3.8   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
|           | Zinc      | 25.0   |            |          |            | 05/15/2012 | 15:56    | LB60693 |
| CSAB01    | Antimony  | 590    | 589        | 100.2    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Arsenic   | 99.8   | 101        | 98.8     | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Beryllium | 510    | 475        | 107.4    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Cadmium   | 1010   | 940        | 107.4    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Chromium  | 532    | 511        | 104.1    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Copper    | 534    | 548        | 97.4     | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Lead      | 60.7   | 61         | 99.5     | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Nickel    | 1030   | 984        | 104-7    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |
|           | Selenium  | 56.2   | 53         | 106.0    | 80 - 120%  | 05/15/2012 | 16:00    | LB60693 |



- 4 -

## INTERFERENCE CHECK SAMPLE

Client:

Dvirka & Bartilucci

SDG No.: D2546

Contract:

DVIR01

Lab Code: CHEM Case No.: D2546

SAS No.: D2546

ICS Source:

EPA

Instrument ID:

P4

| Sample ID | Analyte  | Result<br>ug/L | True Value<br>ug/L | %<br>Recovery | Acceptance<br>Window | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|-----------|----------|----------------|--------------------|---------------|----------------------|------------------|------------------|---------------|
| ICSAB01   | Silver   | 209            | 206                | 101.5         | 80 - 120%            | 05/15/2012       | 16:00            | LB60693       |
|           | Thallium | 96.9           | 103                | 94.1          | 80 - 120%            | 05/15/2012       | 16:00            | LB60693       |
|           | Zinc     | 991            | 1028               | 96.4          | 80 - 120%            | 05/15/2012       | 16:00            | LB60693       |



- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client:

Dvirka & Bartilucci

SDG No.:

D2546

Contract:

DVIR01

Lab Code:

CHEM

Case No.:

D2546

SAS No.: D2546

| 8 - 8     | ( <u>)</u>           | Result | Acceptance<br>Limit | Conc<br>Qual | MES | CDOL |        | Analysis   | Analysis | Run     |
|-----------|----------------------|--------|---------------------|--------------|-----|------|--------|------------|----------|---------|
| Sample ID | Analyte              | ug/L   | Lillit              | Quai         | MDL | CRQL | M      | Date       | Time     | Number  |
| CD04      | A t                  | 8.0    | +/-25.0             | U            | 8.0 | 25.0 | Р      | 05/14/2012 | 12:31    | LB60659 |
| ICB01     | Antimony<br>Arsenic  | 4 2    | +/-23.0             | U            | 4.2 | 10.0 | P<br>P | 05/14/2012 | 12:31    | LB60659 |
|           |                      | 0.7    | +/-3.0              | U            | 0.7 | 3.0  | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Beryllium<br>Cadmium | 0.5    | +/-3.0              | U            | 0.5 | 3.0  | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Chromium             | 1_1    | +/-5.0              | υ            | 1.1 | 5.0  | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Copper               | 2.0    | +/-100              | U            | 2.0 | 10.0 | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Lead                 | 2.6    | +/-6.0              | U            | 2.6 | 6.0  | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Nickel               | 4.2    | +/-20 0             | U            | 4.2 | 20.0 | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Selenium             | 4.2    | +/-10 0             | U            | 4.8 | 10.0 | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Silver               | 1.5    | +/-5.0              | Ū            | 1,5 | 5.0  | Р      | 05/14/2012 | 12:31    | LB60659 |
|           | Thallium             | 2.4    | +/-20 0             | U            | 2.4 | 20.0 | P      | 05/14/2012 | 12:31    | LB60659 |
|           | Zinc                 | 6.5    | +/-20 0             | U            | 6.5 | 20.0 | Р      | 05/14/2012 | 12:31    | LB60659 |
|           |                      |        |                     |              |     |      |        |            |          |         |
| CCB01     | Antimony             | 8.0    | +/-25 0             | U            | 8.0 | 25.0 | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Arsenic              | 4.2    | +/-100              | U            | 4.2 | 10.0 | P      | 05/14/2012 | 13:20    | LB60659 |
|           | Beryllium            | 0.7    | +/-3.0              | U            | 0.7 | 3.0  | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Cadmium              | 0.5    | +/-3.0              | U            | 0.5 | 3.0  | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Chromium             | 1:1    | +/-5.0              | U            | 1:1 | 5.0  | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Copper               | 2.0    | +/-10.0             | U            | 2.0 | 10.0 | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Lead                 | 2.6    | +/-6 0              | U            | 2.6 | 6.0  | P      | 05/14/2012 | 13:20    | LB60659 |
|           | Nickel               | 4.2    | +/-20_0             | U =          | 4.2 | 20.0 | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Selenium             | 4.8    | +/-10.0             | U            | 4_8 | 10.0 | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Silver               | 1,5    | +/-5.0              | U            | 1.5 | 5.0  | P      | 05/14/2012 | 13:20    | LB60659 |
|           | Thallium             | 2.4    | +/-20.0             | U            | 2.4 | 20.0 | Р      | 05/14/2012 | 13:20    | LB60659 |
|           | Zinc                 | 6.5    | +/-20_0             | U            | 6.5 | 20.0 | P      | 05/14/2012 | 13:20    | LB60659 |
| CCB02     | Antimony             | 8.0    | +/-25.0             | U            | 8.0 | 25.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Arsenic              | 4.2    | +/-100              | U            | 4.2 | 10.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Beryllium            | 0.7    | +/-3 0              | U            | 0.7 | 3.0  | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Cadmium              | 0.5    | +/-3_0              | U            | 0,5 | 3.0  | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Chromium             | 1.1    | +/-5.0              | U            | 1,1 | 5.0  | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Copper               | 2.0    | +/-10.0             | U            | 2.0 | 10.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Lead                 | 2.6    | +/-6 0              | U            | 2,6 | 6.0  | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Nickel               | 4.2    | +/-20 0             | U            | 4.2 | 20.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Selenium             | 4.8    | +/-10.0             | U            | 4.8 | 10.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Silver               | 1,5    | +/-5 0              | U            | 1.5 | 5.0  | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Thallium             | 2.4    | +/-20 0             | U            | 2.4 | 20.0 | P      | 05/14/2012 | 14:11    | LB60659 |
|           | Zinc                 | 6.5    | +/-20 0             | U            | 6.5 | 20.0 | P      | 05/14/2012 | 14:11    | LB60659 |
| CCB03     | Antimony             | 8.0    | +/-25.0             | U            | 8.0 | 25,0 | P      | 05/14/2012 | 15:01    | LB60659 |
|           | Arsenic              | 4.2    | +/-10.0             | U            | 4.2 | 10.0 | P      | 05/14/2012 | 15:01    | LB60659 |
|           | Beryllium            | 0.7    | +/-3.0              | U            | 0.7 | 3.0  | Р      | 05/14/2012 | 15:01    | LB60659 |



- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

|           |           |                |                     | CHEM         |     | se No.: <u>D23</u> |   |                  | S No.: D2        | 546           |
|-----------|-----------|----------------|---------------------|--------------|-----|--------------------|---|------------------|------------------|---------------|
| Sample ID | Analyte   | Result<br>ug/L | Acceptance<br>Limit | Conc<br>Qual | MDL | CRQL               | M | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|           |           |                |                     |              |     |                    |   |                  |                  |               |
| CCB03     | Cadmium   | 0.5            | +/-3.0              | U            | 0.5 | 3.0                | P | 05/14/2012       | 15:01            | LB60659       |
|           | Chromium  | 1.1            | +/-50               | U            | 1.1 | 5,0                | P | 05/14/2012       | 15:01            | LB60659       |
|           | Copper    | 2.0            | +/-10_0             | U            | 2.0 | 10.0               | P | 05/14/2012       | 15:01            | LB60659       |
|           | Lead      | 2.6            | +/-6,0              | U            | 2.6 | 6.0                | Р | 05/14/2012       | 15:01            | LB60659       |
|           | Nickel    | 4.2            | +/-20.0             | U            | 4.2 | 20_0               | P | 05/14/2012       | 15:01            | LB60659       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4.8 | 10.0               | Р | 05/14/2012       | 15:01            | LB60659       |
|           | Silver    | 1_5            | +/-5.0              | U            | 1.5 | 5.0                | P | 05/14/2012       | 15:01            | LB60659       |
|           | Thallium  | 2.8            | +/-20.0             | J            | 2.4 | 20.0               | P | 05/14/2012       | 15:01            | LB60659       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5 | 20,0               | P | 05/14/2012       | 15:01            | LB60659       |
| CB04      | Antimony  | 8.0            | +/-25.0             | υ            | 8.0 | 25.0               | Р | 05/14/2012       | 15:51            | LB60659       |
|           | Arsenic   | 4.2            | +/-10,0             | U            | 4.2 | 10.0               | Р | 05/14/2012       | 15:51            | LB60659       |
|           | Beryllium | 0.7            | +/-3_0              | U            | 0.7 | 3.0                | P | 05/14/2012       | 15:51            | LB60659       |
|           | Cadmium   | 0,5            | +/-3.0              | U            | 0.5 | 3.0                | P | 05/14/2012       | 15:51            | LB60659       |
|           | Chromium  | 1,1            | +/-5_0              | U            | 1,1 | 5.0                | P | 05/14/2012       | 15:51            | LB60659       |
|           | Соррег    | 2.0            | +/-10.0             | U            | 2.0 | 10.0               | P | 05/14/2012       | 15:51            | LB60659       |
|           | Lead      | 2,6            | +/-6 0              | U            | 2.6 | 6.0                | P | 05/14/2012       | 15:51            | LB60659       |
|           | Nickel    | 4.2            | +/-20 0             | U            | 4.2 | 20 0               | P | 05/14/2012       | 15:51            | LB60659       |
|           | Selenium  | 4.8            | +/-100              | U            | 4.8 | 10.0               | P | 05/14/2012       | 15:51            | LB60659       |
|           | Silver    | 1.5            | +/-5.0              | U            | 1,5 | 5.0                | P | 05/14/2012       | 15:51            | LB60659       |
|           | Thallium  | 2.7            | +/-20.0             | J            | 2.4 | 20.0               | P | 05/14/2012       | 15:51            | LB60659       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5 | 20.0               | P | 05/14/2012       | 15:51            | LB60659       |
| CB05      | Antimony  | 8.0            | +/-25.0             | U            | 8.0 | 25.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Arsenic   | 4.2            | +/-10.0             | υ            | 4.2 | 10.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7 | 3.0                | P | 05/14/2012       | 16:42            | LB60659       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5 | 3.0                | P | 05/14/2012       | 16:42            | LB60659       |
|           | Chromium  | 1.1            | +/-5.0              | U            | 1.1 | 5.0                | P | 05/14/2012       | 16:42            | LB60659       |
|           | Copper    | 2.0            | +/-10.0             | U            | 2.0 | 10.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Lead      | 2.6            | +/-6.0              | U            | 2.6 | 6.0                | P | 05/14/2012       | 16:42            | LB60659       |
|           | Nickel    | 4.2            | +/-20.0             | U            | 4.2 | 20.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4.8 | 10.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Silver    | 1.5            | +/-5.0              | U            | 1.5 | 5.0                | P | 05/14/2012       | 16:42            | LB60659       |
|           | Thallium  | 2.4            | +/-20.0             | U            | 2.4 | 20.0               | P | 05/14/2012       | 16:42            | LB60659       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5 | 20.0               | P | 05/14/2012       | 16:42            | LB60659       |
| CB06      | Antimony  | 80             | +/-25_0             | U            | 8.0 | 25.0               | Р | 05/14/2012       | 17:32            | LB60659       |
|           | Arsenic   | 6.3            | +/-10.0             | J            | 4.2 | 10.0               | P | 05/14/2012       | 17:32            | LB60659       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7 | 3.0                | P | 05/14/2012       | 17:32            | LB60659       |
|           | Cadmium   | 1.5            | +/-3.0              | J            | 0.5 | 3.0                | P | 05/14/2012       | 17:32            | LB60659       |
|           | Chromium  | 1.1            | +/-5.0              | U            | 1.1 | 5.0                | P | 05/14/2012       | 17:32            | LB60659       |
|           | Copper    | 2.0            | +/-10.0             | U            | 2.0 | 10.0               | Р | 05/14/2012       | 17:32            | LB60659       |
|           | Lead      | 3.3            | +/-6.0              | J            | 2.6 | 6.0                | Р | 05/14/2012       | 17:32            | LB60659       |
|           | Nickel    | 4.2            | +/-20 0             | U            | 4.2 | 20.0               | P | 05/14/2012       | 17:32            | LB60659       |
|           | Selenium  | 6.0            | +/-10.0             | J            | 4.8 | 10.0               | Р | 05/14/2012       | 17:32            | LB60659       |



- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci

**SDG No.:** D2546

 Contract:
 DVIR01
 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546

|           |                      | Result     | Acceptance                                  | Conc   |            |             |        | Analysis                 | Analysis       | Run                |
|-----------|----------------------|------------|---------------------------------------------|--------|------------|-------------|--------|--------------------------|----------------|--------------------|
| Sample ID | Analyte              | ug/L       | Limit                                       | Qual   | MDL        | CRQL        | M      | Date                     | Time           | Number             |
|           |                      |            |                                             |        |            |             |        |                          |                |                    |
| CORAC     | Silver               | 1.5        | +/-5,0                                      | 1.1    | 1.5        | 5.0         | D      | 05/14/2012               | 17.22          | 1 D(0(50           |
| CCB06     | Thallium             | 7.5        | +/-3,0                                      | U<br>J | 1,5<br>2,4 | 5.0<br>20.0 | P<br>P | 05/14/2012               | 17:32          | LB60659            |
|           | Zinc                 | 6.5        | +/-20 0                                     | U      | 6,5        | 20.0        | P      | 05/14/2012               | 17:32<br>17:32 | LB60659<br>LB60659 |
|           |                      |            |                                             |        |            |             |        |                          |                |                    |
| CCB07     | Antimony             | 8.0        | +/-25.0                                     | U      | 8.0        | 25.0        | Р      | 05/14/2012               | 18:23          | LB60659            |
|           | Arsenic              | 6.6        | +/-10.0                                     | J      | 4.2        | 10.0        | Р      | 05/14/2012               | 18:23          | LB60659            |
|           | Beryllium            | 0.7        | +/-3.0                                      | U      | 0.7        | 3.0         | P      | 05/14/2012               | 18:23          | LB60659            |
|           | Cadmium              | 2.2        | +/-3.0                                      | J      | 0,5        | 3.0         | Р      | 05/14/2012               | 18:23          | LB60659            |
|           | Chromium             | 1.I<br>2.0 | +/-5 <sub>.</sub> 0<br>+/-10 <sub>.</sub> 0 | U      | 1,1<br>2,0 | 5.0<br>10.0 | P<br>P | 05/14/2012               | 18:23          | LB60659            |
|           | Copper<br>Lead       | 5.1        | +/-10.0                                     | U<br>J | 2,6        | 6.0         | P      | 05/14/2012<br>05/14/2012 | 18:23          | LB60659<br>LB60659 |
|           | Nickel               | 4 2        | +/-20 0                                     | U      | 4.2        | 20.0        | Р      | 05/14/2012               | 18:23<br>18:23 | LB60659            |
|           | Selenium             | 5.6        | +/-10.0                                     | J      | 4.8        | 10.0        | P      | 05/14/2012               | 18:23          | LB60659            |
|           | Silver               | 1.5        | +/-5.0                                      | U      | 1.5        | 5.0         | P      | 05/14/2012               | 18:23          | LB60659            |
|           | Thallium             | 8 2        | +/-20.0                                     | J      | 2.4        | 20.0        | P      | 05/14/2012               | 18:23          | LB60659            |
|           | Zinc                 | 6.5        | +/-20.0                                     | U      | 6.5        | 20.0        | ,<br>P | 05/14/2012               | 18:23          | LB60659            |
| aanaa     |                      |            |                                             |        |            |             |        |                          |                |                    |
| CCB08     | Antimony             | 8.0        | +/-25.0                                     | U      | 8.0        | 25.0        | Р      | 05/14/2012               | 19:28          | LB60659            |
|           | Arsenic              | 4.2        | +/-10.0                                     | U      | 4.2        | 10.0        | P      | 05/14/2012<br>05/14/2012 | 19:28          | LB60659            |
|           | Beryllium<br>Cadmium | 0.7<br>0.5 | +/-3 <sub>0</sub> 0<br>+/-3 <sub>0</sub> 0  | U      | 0.7        | 3.0         | Р      |                          | 19:28          | LB60659            |
|           |                      |            |                                             | U      |            | 3.0         | P<br>P | 05/14/2012               | 19:28          | LB60659            |
|           | Chromium             | 2.0        | +/-5_0<br>+/-10_0                           | บ<br>บ | 1.1<br>2.0 | 5.0<br>10.0 | P      | 05/14/2012<br>05/14/2012 | 19:28          | LB60659            |
|           | Copper<br>Lead       | 2.6        | +/-6.0                                      | U      | 2,6        | 6.0         | P      | 05/14/2012               | 19:28<br>19:28 | LB60659<br>LB60659 |
|           | Nickel               | 4.2        | +/-20.0                                     | U      | 4.2        | 20.0        | г<br>Р | 05/14/2012               | 19:28          | LB60659            |
|           | Selenium             | 4.2        | +/-10.0                                     | U      | 4.8        | 10.0        | P      | 05/14/2012               | 19:28          | LB60659            |
|           | Silver               | 1.5        | +/-5.0                                      | U      | 1,5        | 5.0         | P      | 05/14/2012               | 19:28          | LB60659            |
|           | Thallium             | 2.6        | +/-20.0                                     | J      | 2.4        | 20.0        | Р      | 05/14/2012               | 19:28          | LB60659            |
|           | Zinc                 | 6.5        | +/-20.0                                     | U      | 6.5        | 20.0        | P      | 05/14/2012               | 19:28          | LB60659            |
| CDOO      |                      |            |                                             |        |            |             |        |                          |                |                    |
| CCB09     | Antimony             | 8.0<br>4.2 | +/-25.0                                     | U      | 8.0        | 25.0        | P      | 05/14/2012               | 20:18          | LB60659            |
|           | Arsenic<br>Beryllium | 0.7        | +/-10 0<br>+/-3.0                           | U      | 4.2<br>0.7 | 10.0<br>3.0 | P<br>P | 05/14/2012<br>05/14/2012 | 20:18          | LB60659<br>LB60659 |
|           | Cadmium              | 0.7        | +/-3.0                                      | U      | 0.7        | 3.0         | P<br>P |                          | 20:18          |                    |
|           | Chromium             | 1.1        | +/-5.0                                      | U      | 1,1        | 5.0         | P<br>P | 05/14/2012<br>05/14/2012 | 20:18<br>20:18 | LB60659<br>LB60659 |
|           |                      | 2.0        | +/-10.0                                     | U      | 2.0        | 10.0        | P      | 05/14/2012               | 20:18          |                    |
|           | Copper<br>Lead       | 2.6        | +/-6.0                                      | U      | 2.6        | 6.0         | P      | 05/14/2012               |                | LB60659<br>LB60659 |
|           | Nickel               | 4.2        | +/-20.0                                     | U      | 4.2        | 20.0        | P      | 05/14/2012               | 20:18<br>20:18 | LB60659            |
|           | Selenium             | 4.8        | +/-10.0                                     | U      | 4.8        | 10.0        | p      | 05/14/2012               | 20:18          | LB60659            |
|           | Silver               | 1.5        | +/-5.0                                      | U      | 1.5        | 5.0         | P      | 05/14/2012               | 20:18          | LB60659            |
|           | Thallium             | 2.4        | +/-20.0                                     | U      | 2.4        | 20.0        | P      | 05/14/2012               | 20:18          | LB60659            |
|           | Zinc                 | 6.5        | +/-20.0                                     | U      | 6.5        | 20.0        | P      | 05/14/2012               | 20:18          | LB60659            |
| CD16      |                      |            |                                             |        |            |             |        |                          |                |                    |
| CCB10     | Antimony             | 8.0        | +/-25.0                                     | U      | 8.0        | 25_0        | P      | 05/14/2012               | 21:09          | LB60659            |
|           | Arsenic              | 4.2        | +\-10"0                                     | U      | 4.2        | 10.0        | P      | 05/14/2012               | 21:09          | LB60659            |
|           | Beryllium            | 0.7        | +/-3.0                                      | U      | 0.7        | 3.0         | P      | 05/14/2012               | 21:09          | LB60659            |



- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 D2546 Lab Code: CHEM Case No.: SAS No.: D2546 Result Acceptance Conc Analysis Analysis Run Limit Qual Sample 1D Analyte ug/L MDL **CRQL** M Date Time Number 0.5 U P CCB10 Cadmium +/-30 0.5 3.0 05/14/2012 21:09 LB60659 Chromium 1.1 +/-5\_0 U 1,1 5\_0 P 05/14/2012 21:09 LB60659 Copper 2,0 +/-10.0 U 2.0 10\_0 P 05/14/2012 21:09 LB60659 Lead 2.6 +/-6.0 U P 2.6 6.0 05/14/2012 21:09 LB60659 Nickel 4.2 +/-20.0 U 4.2 20.0 P 05/14/2012 21:09 LB60659 Selenium 4\_8 U P +/-10.0 4.8 10.0 05/14/2012 21:09 LB60659 Silver 1.5 +/-5.0 U 1.5 5.0 p 05/14/2012 21:09 LB60659 Thallium 2.7 +/-20.0 J 2.4 20.0 P 21:09 05/14/2012 LB60659 Zinc 6.5 +/-20.0 U 6.5 20.0 p 05/14/2012 21:09 LB60659 Antimony 8\_0 +/-25.0 U 8.0 P 05/14/2012 CCB11 25\_0 22:01 LB60659 Arsenic 5 4  $\pm /-10.0$ 1 10.0 P 4.2 05/14/2012 22:01 LB60659 Beryllium 0.7 +/-3\_0 U 0.7 3.0 P 05/14/2012 22:01 LB60659 Cadmium 0.5 +/-3.0 U 0.5 3.0 P 05/14/2012 22:01 LB60659 Chromium LI +/-5.0 U 1.1 5.0 P 05/14/2012 22:01 LB60659 Copper 2.0 +/-10.0 U 2.0 10.0 P 22:01 05/14/2012 LB60659 2.6 U Lead +/-6.0 26 6.0 P 05/14/2012 22:01 LB60659 Nickel 4.2 +/-20.0 U 4.2 20.0 P 05/14/2012 22:01 LB60659 U Selenium 4.8 P +/-100 4.8 10.0 05/14/2012 22:01 LB60659 Silver P 1.5 +/-5.0 U 1.5 5.0 05/14/2012 22:01 LB60659 Thallium 9.2 +/-20.0 J 2.4 20.0 P 05/14/2012 22:01 LB60659 Zinc 6.5 +/-20.0 U 6.5 20.0 P 05/14/2012 22:01 LB60659 P CCB12 Antimony 8.0 +/-25.0 U 8.0 25.0 05/14/2012 23:00 LB60659 Arsenic 4.2 +/-10,0 U 4.2 10.0 P 05/14/2012 23:00 LB60659 Beryllium 0.7 +/-3.0 U 0.7 3.0 P 05/14/2012 23:00 LB60659 0.5 U p Cadmium +/-3.0 0.5 3.0 05/14/2012 23:00 LB60659 Chromium 1,1 +/-5.0 U 1.15.0 P 05/14/2012 23:00 LB60659 2.0 U P +/-10.0 2.0 10.0 Соррег 05/14/2012 23:00 LB60659 Lead 2.6 +/-6\_0 U 2.6 P 05/14/2012 6.0 23:00 LB60659 Nickel 4.2 U P +/-20.0 4.2 20.0 05/14/2012 23:00 LB60659 Selenium 4.8 +/-10.0 U 4.8 10.0 P 05/14/2012 23:00 LB60659 Silver 1.5 +/-5\_0 U 1.5 5.0 P 05/14/2012 23:00 LB60659 Thallium 2.4 p +/-20.0 U 2.4 20.0 05/14/2012 23:00 LB60659 Zinc 6.5 +/-20.0 U 6.5 20.0 P 05/14/2012 23:00 LB60659 8.0 U P CCB13 Antimony +/-25.0 8.0 25.0 05/14/2012 23:46 LB60659 Arsenic 4.2 +/-10.0 U 4.2 10.0 P 05/14/2012 23:46 LB60659 Beryllium 0.7 U 0.7 P +/-3.03.0 05/14/2012 23:46 LB60659 P Cadmium 0.5 +/-3.0 U 0.5 3.0 05/14/2012 23:46 LB60659 Chromium 1.1 +/-5.0 U 1:1 5.0 P 05/14/2012 23:46 LB60659 2.0 P Copper +/-10:0 U 2.0 10.0 05/14/2012 23:46 LB60659 P Lead 2.6 +/-6.0 U 2.6 6.0 05/14/2012 23:46 LB60659 Nickel 4.2 +/-20.0 U 4.2 20.0 P 05/14/2012 23:46 LB60659 Selenium 4.8 +/-10.0 U 4.8 10.0 P 05/14/2012 23:46 LB60659



- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci

SDG No.:

D2546

 Contract:
 DVIR01
 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546

| Sample ID | Analyte   | Result<br>ug/L | Acceptance<br>Limit | Cone<br>Qual | MDL   | CRQL  | M  | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|-----------|-----------|----------------|---------------------|--------------|-------|-------|----|------------------|------------------|---------------|
| -         |           |                |                     |              |       |       |    |                  |                  |               |
| CCB13     | Silver    | 1.5            | +/-5,0              | υ            | 1_5   | 5.0   | P  | 05/14/2012       | 23:46            | LB60659       |
|           | Thallium  | 3.6            | +/-20_0             | J            | 2.4   | 20.0  | P  | 05/14/2012       | 23:46            | LB60659       |
|           | Zinc      | 6_5            | +/-20 0             | U            | 6,5   | 20.0  | P  | 05/14/2012       | 23:46            | LB60659       |
| ICB01     | Mercury   | 0.092          | +/-0,200            | U            | 0.092 | 0.200 | CV | 05/15/2012       | 13:18            | LB60687       |
| CCB01     | Мегситу   | 0.092          | +/-0 200            | U            | 0.092 | 0.200 | CV | 05/15/2012       | 13:22            | LB60687       |
| CCB02     | Мегсигу   | 0.092          | +/-0,200            | U            | 0.092 | 0.200 | CV | 05/15/2012       | 13:45            | LB60687       |
| CCB03     | Mercury   | 0,092          | +/-0,200            | U            | 0.092 | 0.200 | CV | 05/15/2012       | 14:08            | LB60687       |
| CCB04     | Mercury   | 0.092          | +/-0 200            | U            | 0.092 | 0.200 | CV | 05/15/2012       | 14:31            | LB60687       |
| CCB05     | Mercury   | 0 092          | +/-0.200            | U            | 0,092 | 0.200 | CV | 05/15/2012       | 14:54            | LB60687       |
| CCB06     | Mercury   | 0 092          | +/-0 200            | U            | 0.092 | 0_200 | CV | 05/15/2012       | 15:16            | LB60687       |
| CCB07     | Mercury   | 0.092          | +/-0.200            | U            | 0.092 | 0,200 | CV | 05/15/2012       | 15:26            | LB60687       |
| ICB01     | Antimony  | 8.0            | +/-25.0             | U            | 8.0   | 25.0  | P  | 05/15/2012       | 15:43            | LB60693       |
| CD01      | Arsenic   | 4.2            | +/-100              | U            | 4.2   | 10.0  | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7   | 3.0   | Р  | 05/15/2012       | 15:43            | LB60693       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5   | 3.0   | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Chromium  | 1,1            | +/-5.0              | U            | 1,1   | 5.0   | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Copper    | 2.0            | +/-100              | U            | 2.0   | 10.0  | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Lead      | 2.6            | +/-6.0              | U            | 2.6   | 6.0   | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Nickel    | 4.2            | +/-20.0             | U *          | 4.2   | 20.0  | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4.8   | 10.0  | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Silver    | 1.5            | +/-5,0              | U            | 1.5   | 5.0   | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Thallium  | 2.4            | +/-20.0             | U            | 2.4   | 20,0  | P  | 05/15/2012       | 15:43            | LB60693       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5   | 20,0  | P  | 05/15/2012       | 15:43            | LB60693       |
| CCB01     | Antimony  | 8.0            | +/-25.0             | U            | 8.0   | 25.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Arsenic   | 4.2            | +/-100              | U            | 4.2   | 10.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Beryllium | 0.7            | +/-3,0              | U            | 0.7   | 3.0   | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5   | 3.0   | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Chromium  | 1:1            | +/-5.0              | U            | 1.1   | 5.0   | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Copper    | 2.0            | +/-10.0             | U            | 2.0   | 10.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Lead      | 2.6            | +/-6.0              | U            | 2.6   | 6.0   | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Nickel    | 4.2            | +/-20.0             | U            | 4.2   | 20.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4_8   | 10.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Silver    | 1.5            | +/-5.0              | U            | 1.5   | 5.0   | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Thallium  | 2.4            | +/-20_0             | U            | 2.4   | 20.0  | P  | 05/15/2012       | 16:09            | LB60693       |
|           | Zinc      | 6.5            | +/-20_0             | U            | 6.5   | 20.0  | P  | 05/15/2012       | 16:09            | LB60693       |
| CCB02     | Antimony  | 8.0            | +/-25.0             | U            | 8.0   | 25.0  | P  | 05/15/2012       | 17:00            | LB60693       |
|           | Arsenic   | 4.2            | +/-10.0             | U            | 4.2   | 10,0  | P  | 05/15/2012       | 17:00            | LB60693       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7   | 3.0   | P  | 05/15/2012       | 17:00            | LB60693       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5   | 3.0   | P  | 05/15/2012       | 17:00            | LB60693       |
|           | Chromium  | 1,1            | +/-5.0              | U            | 1.1   | 5,0   | P  | 05/15/2012       | 17:00            | LB60693       |
|           | Copper    | 2.0            | +/-10.0             | U            | 2,0   | 10.0  | Р  | 05/15/2012       | 17:00            | LB60693       |



- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 D2546 Lab Code: **CHEM** Case No.: SAS No.: D2546 Result Acceptance Cone Analysis Analysis Run Qual Limit Sample ID Analyte ug/L **MDL CRQL** Μ Date Time Number CCB02 Lead 2.6 +/-6\_0 U 2.6 6.0 P 05/15/2012 17:00 LB60693 Nickel 4.2 +/-20,0 U 4.2 20.0 P 05/15/2012 17:00 LB60693 Selenium 4.8 +/-10.0 U 4\_8 10.0 P 05/15/2012 17:00 LB60693 Silver 1.5 U +/-5.0 1.5 5.0 P 05/15/2012 17:00 LB60693 Thallium 2.4 +/-20,0 U 2.4 20.0 P 05/15/2012 17:00 LB60693 Zinc U P 6.5 +/-20.0 6.5 20.0 05/15/2012 17:00 LB60693 8.0 U P CCB03 Antimony +/-25.0 8.0 25.0 05/15/2012 17:51 LB60693 Arsenic 4.2 +/-100 U 4.2 10.0 P 05/15/2012 17:51 LB60693 Beryllium 0.7 U 0\_7 P +/-3\_0 3.0 05/15/2012 17:51 LB60693 Cadmium 0.5 +/-3\_0 U P 0.5 3.0 05/15/2012 17:51 LB60693 Chromium 1.1 +/-5.0 U 1.3 P 5.0 05/15/2012 17:51 LB60693 Copper 7.2 +/-10\_0 J 2.0 10.0 P 05/15/2012 17:51 LB60693 Lead 2.6 +/-6.0 U 2.6 6.0 p 05/15/2012 17:51 LB60693 Nickel 4.2 +/-20.0 U 4.2 20.0 P 05/15/2012 17:51 LB60693 Selenium 4\_8 +/-10\_0 U 4.8 10.0 P 17:51 05/15/2012 LB60693 Silver U 1.5 +/-5.0 1.5 5.0 P 05/15/2012 17:51 LB60693 Thallium 2.4 +/-20.0 U 2.4 20.0 P 05/15/2012 17:51 LB60693 Zinc U 6.5 +/-20.0 6.5 20.0 P 05/15/2012 17:51 LB60693 CCB04 Antimony 8\_0 +/-25.0 U 8.0 25.0 P 05/15/2012 18:42 LB60693 +/-10.0 U 4.2 P Arsenic 4.2 10.0 05/15/2012 18:42 LB60693 Beryllium 0.7 +/-3\_0 U 0.7 3.0 P 05/15/2012 18:42 LB60693 Cadmium 0.5 +/-30 U 0.5 3.0 P 05/15/2012 18:42 LB60693 Chromium 1.1 +/-5.0 U 1.1 5.0 P 05/15/2012 18:42 LB60693 Copper 2.0 +/-10.0 U 2.0 10.0 P 05/15/2012 18:42 LB60693 Lead 2.6 +/-60 U 2.6 6.0 P 05/15/2012 18:42 LB60693 Nickel 4.2 +/-20,0 U 4.2 20.0 P 05/15/2012 18:42 LB60693 4.8 Selenium +/-10.0 U 4.8 P 10.0 05/15/2012 18:42 LB60693 Silver 1.5 +/-50 U P 1.5 5.0 05/15/2012 18:42 LB60693 Thallium P 2.4 +/-20.0 U 2.4 20.0 05/15/2012 18:42 LB60693 Zinc 6,5 +/-20.0 U 6.5 20.0 P 05/15/2012 18:42 LB60693 8.0 +/-25.0 U P CCB05 Antimony 8.0 25.0 05/15/2012 19:33 LB60693 P Arsenic 4.2 +/-10.0 U 4.2 10.0 05/15/2012 19:33 LB60693 Beryllium 0.7 +/-3.0 U 0.7 P 3.0 05/15/2012 19:33 LB60693 P Cadmium 0.5 +/-3.0 U 0.5 3.0 05/15/2012 19:33 LB60693 Chromium 1,1 +/-5.0 U Lat 5.0 P 05/15/2012 19:33 LB60693 2.0 +/-10.0 2:0 10:0 P Copper U 05/15/2012 19.33 LB60693 Lead 2.6 +/-6.0 U 26 6.0 P 05/15/2012 19:33 LB60693 Nickel 4.2 +/-20.0 U 4.2 20.0 P 05/15/2012 19:33 LB60693 Selenium 4.8 +/-10.0 U 4.8 10.0 P 05/15/2012 19:33 LB60693 Silver 1.5 +/-50 U 1.5 P 5.0 05/15/2012 19:33 LB60693 Thallium 2.4 +/-20.0 U 2.4 20.0 P 05/15/2012 19:33 LB60693 Zinc 6.5 +/-20-0 U 6.5 20.0 P 05/15/2012 19:33 LB60693



- 3a -

### INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Dvirka & Bartilucci

SDG No.:

D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

|           |           |                |                     |              |     | /    |   |                  |                  |               |
|-----------|-----------|----------------|---------------------|--------------|-----|------|---|------------------|------------------|---------------|
| Sample ID | Analyte   | Result<br>ug/L | Acceptance<br>Limit | Conc<br>Qual | MDL | CRQL | M | Analysis<br>Date | Analysis<br>Time | Run<br>Number |
|           |           |                |                     |              |     |      |   |                  |                  |               |
| CCB06     | Antimony  | 8.0            | +/-25.0             | U            | 8.0 | 25.0 | P | 05/15/2012       | 20:24            | LB60693       |
|           | Arsenic   | 4.2            | +/-10.0             | U            | 4.2 | 10.0 | P | 05/15/2012       | 20:24            | LB60693       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7 | 3,0  | P | 05/15/2012       | 20:24            | LB60693       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5 | 3.0  | P | 05/15/2012       | 20:24            | LB60693       |
|           | Chromium  | 1.1            | +/-5.0              | IJ           | 121 | 5.0  | P | 05/15/2012       | 20:24            | LB60693       |
|           | Copper    | 2.0            | +/-10.0             | IJ           | 2.0 | 10.0 | P | 05/15/2012       | 20.24            | LB60693       |
|           | Lead      | 2.6            | +/-6.0              | U            | 2.6 | 6.0  | P | 05/15/2012       | 20:24            | LB60693       |
|           | Nickel    | 4.2            | +/-20.0             | U            | 4.2 | 20.0 | P | 05/15/2012       | 20:24            | LB60693       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4.8 | 10.0 | P | 05/15/2012       | 20:24            | LB60693       |
|           | Silver    | 1.5            | +/-5.0              | U            | 1.5 | 5.0  | P | 05/15/2012       | 20:24            | LB60693       |
|           | Thallium  | 2.4            | +/-20.0             | U            | 2.4 | 20.0 | P | 05/15/2012       | 20:24            | LB60693       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5 | 20.0 | P | 05/15/2012       | 20:24            | LB60693       |
| CCB07     | Antimony  | 8.0            | +/-25.0             | U            | 8.0 | 25.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Arsenic   | 4.2            | +/-10.0             | U            | 4.2 | 10.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Beryllium | 0.7            | +/-3.0              | U            | 0.7 | 3.0  | P | 05/15/2012       | 21:15            | LB60693       |
|           | Cadmium   | 0.5            | +/-3.0              | U            | 0.5 | 3.0  | P | 05/15/2012       | 21:15            | LB60693       |
|           | Chromium  | 1.1            | +/-5.0              | U            | 1.1 | 5.0  | P | 05/15/2012       | 21:15            | LB60693       |
|           | Copper    | 2.0            | +/-10.0             | U            | 2.0 | 10.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Lead      | 2.6            | +/-6.0              | U            | 2.6 | 6.0  | P | 05/15/2012       | 21:15            | LB60693       |
|           | Nickel    | 4.2            | +/-20.0             | U            | 4.2 | 20.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Selenium  | 4.8            | +/-10.0             | U            | 4.8 | 10.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Silver    | 1.5            | +/-5.0              | U            | 1.5 | 5.0  | P | 05/15/2012       | 21:15            | LB60693       |
|           | Thallium  | 2,4            | +/-20.0             | U            | 2.4 | 20.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           | Zinc      | 6.5            | +/-20.0             | U            | 6.5 | 20.0 | P | 05/15/2012       | 21:15            | LB60693       |
|           |           |                |                     |              |     |      |   |                  |                  |               |



#### Metals - 3b -PREPARATION BLANK SUMMARY

Client:

Dvirka & Bartilucci

SDG No.: D2546

Instrument:

P4

| Sample ID | Analyte   | Result<br>(mg/Kg) | Acceptance<br>Limit | Conc<br>Qual | MDL<br>mg/Kg | CRQL<br>mg/Kg | M  | Analysis<br>Date | Analysis<br>Time | Run     |
|-----------|-----------|-------------------|---------------------|--------------|--------------|---------------|----|------------------|------------------|---------|
| PB62984BL |           | SOIL              |                     | Batch Number | r:           | PB62984       |    | Prep Date:       | 05/09/20         | 112     |
|           | Antimony  | 0.560             | <2.500              | U            | 0.560        | 2.500         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Arsenic   | 0.330             | <1.000              | U            | 0.330        | 1.000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Beryllium | 0.060             | < 0.300             | U            | 0.060        | 0.300         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Cadmium   | 0.060             | < 0.300             | U            | 0.060        | 0.300         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Chromium  | 0.130             | < 0.500             | U            | 0.130        | 0.500         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Copper    | 0.320             | <1_000              | U            | 0.320        | 1.000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | 1.cad     | 0.120             | < 0.600             | U            | 0.120        | 0.600         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Nickel    | 0.460             | <2.000              | U            | 0.460        | 2,000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Selenium  | 0.410             | <1.000              | U            | 0.410        | 1.000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Silver    | 0.150             | < 0.500             | U            | 0.150        | 0.500         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Thallium  | 0.270             | <2.000              | U            | 0.270        | 2,000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | Zinc      | 0.700             | <2.000              | U            | 0.700        | 2.000         | P  | 05/14/2012       | 20:06            | LB60659 |
|           | 3         |                   |                     |              |              |               |    |                  |                  |         |
| B63116BL  |           | SOIL              |                     | Batch Number |              | PB63116       |    | Prep Date:       | 05/14/20         | 12      |
|           | Mercury   | 0.002             | < 0.010             | U            | 0.002        | 0.010         | CV | 05/15/2012       | 13:30            | LB60687 |



# Metals - 5a MATRIX SPIKE SUMMARY

Client: Dvirka & Bartilucci Level: LOW SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

Matrix: SOIL Sample ID: D2546-01 Client ID: B-1(9-2)S

| Percent Solid | ls for Sampl | e: 79.4                | Spiked           |   | D2546-01S        |    | Percent So     | lids for Spike | 20 W | -<br>79.4 |
|---------------|--------------|------------------------|------------------|---|------------------|----|----------------|----------------|------|-----------|
| Analyte       | Units        | Acceptance<br>Limit %R | Spiked<br>Result | c | Sample<br>Result | C  | Spike<br>Added | %<br>Recovery  | Qual | M         |
| Antimony      | mg/Kg        | 47 - 131               | 35.9834          |   | 0.5877           | U  | 83.96          | 42.9           | N    | P         |
| Arsenic       | mg/Kg        | 73 - 114               | 72.0372          |   | 4.9829           |    | 83.96          | 79.9           |      | P         |
| Beryllium     | mg/Kg        | 79 - 112               | 16.3560          |   | 0.4764           |    | 20.99          | 75.7           | N    | P         |
| Cadmium       | mg/Kg        | 73 - 114               | 21.7853          |   | 1.0319           |    | 20.99          | 98.9           |      | P         |
| Chromium      | mg/Kg        | 68 - 122               | 46.7454          |   | 10.2360          |    | 41.98          | 87.0           |      | P         |
| Соррег        | mg/Kg        | 59 - 132               | 33.2872          |   | 8.0970           |    | 31.49          | 80.0           |      | P         |
| ead           | mg/Kg        | 66 - 125               | 110.6633         |   | 10.4778          |    | 104.95         | 95.5           |      | P         |
| Vickel        | mg/Kg        | 64 - 129               | 66.9721          |   | 15.3561          |    | 52.48          | 98.4           |      | P         |
| Selenium      | mg/Kg        | 69 - 105               | 141.5932         |   | 0.4303           | Ų. | 209.91         | 67.5           | N    | P         |
| Silver        | mg/Kg        | 54 - 131               | 5.1270           |   | 0.1574           | U  | 7.87           | 65.1           |      | P         |
| Thallium      | mg/Kg        | 74 - 116               | 192.8002         |   | 0.2834           | U  | 209.91         | 91.8           |      | P         |
| Zinc          | mg/Kg        | 67 - 127               | 58.7038          |   | 36.2639          |    | 20.99          | 106.9          |      | P         |



#### Metals - 5a -MATRIX SPIKE DUPLICATE SUMMARY

Level: LOW SDG No.: D2546 Client: Dvirka & Bartilucci

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

| Matrix:      | SOIL          |                        | Sample        | ID: | D2546-01         |   | _ Client ID:   | B-1(9-2)S     | D       | <del>-</del> 8 |  |  |
|--------------|---------------|------------------------|---------------|-----|------------------|---|----------------|---------------|---------|----------------|--|--|
| Percent Soli | ids for Sampl | e: 79.4                | Spiked        | ID: | D2546-01SD       |   | Percent Sol    | ids for Spike | Sample: | 79.4           |  |  |
| Analyte      | Units         | Acceptance<br>Limit %R | MSD<br>Result | С   | Sample<br>Result | С | Spike<br>Added | %<br>Recovery | Qual    | M              |  |  |
| Antimony     | mg/Kg         | 47 - 131               | 40.1582       |     | 0.6354           | U | 90.77          | 44.2          | N       | P              |  |  |
| Arsenic      | mg/Kg         | 73 - 114               | 76.6946       |     | 4.9829           |   | 90.77          | 79.0          |         | P              |  |  |
| Beryllium    | mg/Kg         | 79 - 112               | 17.2465       |     | 0.4764           |   | 22.69          | 73.9          | N       | P              |  |  |
| Cadmium      | mg/Kg         | 73 - 114               | 23.2771       |     | 1.0319           |   | 22.69          | 98.0          |         | P              |  |  |
| Chromium     | mg/Kg         | 68 - 122               | 48.8109       |     | 10.2360          |   | 45.39          | 85.0          |         | P              |  |  |
| Copper       | mg/Kg         | 59 - 132               | 34.7267       |     | 8.0970           |   | 34.04          | 78.2          |         | P              |  |  |
| Lead         | mg/Kg         | 66 - 125               | 117.5710      |     | 10.4778          |   | 113.46         | 94.4          |         | P              |  |  |
| Nickel       | mg/Kg         | 64 - 129               | 71.0282       |     | 15.3561          |   | 56.73          | 98.1          |         | P              |  |  |
| Selenium     | mg/Kg         | 69 - 105               | 152.3929      |     | 0.4652           | U | 226.93         | 67.2          | N       | P              |  |  |
| Silver       | mg/Kg         | 54 - 131               | 5.5631        |     | 0.1702           | U | 8.51           | 65.4          |         | P              |  |  |
| Thallium     | mg/Kg         | 74 - 116               | 208,2397      |     | 0.3064           | U | 226.93         | 91.8          |         | P              |  |  |
| Zinc         | mg/Kg         | 67 - 127               | 67.0910       |     | 36.2639          |   | 22.69          | 135.9         | N       | P              |  |  |



#### Metals - 5a -MATRIX SPIKE SUMMARY

| Client: D     | virka & Bartilu | cci                    | Le               | vel:  | LOW              | _ | SDG No         | .: D2546       |         | _             |
|---------------|-----------------|------------------------|------------------|-------|------------------|---|----------------|----------------|---------|---------------|
| Contract:     | DVIR01          |                        | La               | b Coo | le: CHEM         |   | Case No        | .: D2546       | SA      | AS No.: D2546 |
| Matrix:       | SOIL            |                        | Sample           | ID:   | D2466-16         |   | Client ID;     | TS-1-40-4      | 6S      |               |
| Percent Solid | ls for Sampl    | e: 70.6                | Spiked           | ID:   | D2466-16S        |   | Percent So     | lids for Spike | Sample: | 70.6          |
| Analyte       | Units           | Acceptance<br>Limit %R | Spiked<br>Result | c     | Sample<br>Result | C | Spike<br>Added | %<br>Recovery  | Qual    | M             |
| Mercury       | mg/Kg           | 34 - 153               | 0.3119           |       | 0.0136           | 1 | 0.28           | 106.5          |         | CA            |



## Metals - 5a -

### MATRIX SPIKE DUPLICATE SUMMARY

| Client: D    | virka & Bartilu | icci                   | Le            | vel:  | LOW                | _ | SDG No.:       | D2546         |         | _           |    |
|--------------|-----------------|------------------------|---------------|-------|--------------------|---|----------------|---------------|---------|-------------|----|
| Contract:    | DVIR01          |                        | La            | b Cod | le: CHEM           |   | Case No.:      | D2546         | SA      | AS No.: D25 | 46 |
| Matrix:      | SOIL            |                        | Sample        | ID:   | D2466-16           |   | Client ID:     | TS-1-40-4     | 6SD     | _           |    |
| Percent Soli | ds for Sampl    | e: 70.6                | Spiked        | ID:   | D2466-16SD         |   | Percent Soli   | ds for Spike  | Sample: | 70.6        |    |
| Analyte      | Units           | Acceptance<br>Limit %R | MSD<br>Result | c     | Sample<br>Result ( | C | Spike<br>Added | %<br>Recovery | Qual    | M           |    |
| Mercury      | mg/Kg           | 34 - 153               | 0.3121        |       | 0.0136 .           | J | 0.28           | 106.6         |         | CV          |    |



#### Metals - 5b -POST DIGEST SPIKE SUMMARY

Client: Dvirka & Bartilucci SDG No.: D2546

Contract:

Case No.: D2546 CHEM

SAS No.: D2546

DVIR01 WATER Lab Code: Level:

Client ID:

B-1(9-2)A

| Matrix:    | WATER    |                        | Lev              | el: | LOW              |   | Client ID:     | B-1(9-2)A     |      | <b>—</b> 8 |  |
|------------|----------|------------------------|------------------|-----|------------------|---|----------------|---------------|------|------------|--|
| Sample ID: | D2546-01 |                        | Spiked 1         | D:  | D2546-01A        |   |                |               |      |            |  |
| Analyte    | Units    | Acceptance<br>Limit %R | Spiked<br>Result | C   | Sample<br>Result | C | Spike<br>Added | %<br>Recovery | Qual | M          |  |
| Antimony   | ug/L     | 47 - 131               | 607.20           |     | 8.00             | U | 800.0          | 75.9          |      | P          |  |
| Beryllium  | ug/L     | 79 - 112               | 145.44           |     | 4.69             |   | 200.0          | 70.4          |      | P          |  |
| Selenium   | ug/L     | 69 - 105               | 1266.30          |     | 4.80             | U | 2000.0         | 63.3          |      | P          |  |
| Zinc       | ug/L     | 67 - 127               | 499.74           |     | 36.3             |   | 200            | 249.9         |      | P          |  |



-6-

#### DUPLICATE SAMPLE SUMMARY

Client: Dvirka & Bartilucci Level: LOW SDG No.: D2546

 Contract:
 DVIR01
 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546

Matrix: SOIL Sample ID: D2546-01 Client ID: B-1(9-2)D

| Percent Solids for | Sample: | 79.4                | Duplicate ID D2  | 546-01D | Percei              | nt Solids | for Spike S | ample: | 79.4 |
|--------------------|---------|---------------------|------------------|---------|---------------------|-----------|-------------|--------|------|
| Analyte            | Units   | Acceptance<br>Limit | Sample<br>Result | C       | Duplicate<br>Result | C         | RPD         | Qual   | M    |
| Antimony           | mg/Kg   | 20                  | 0.5927           | U       | 0.5927              | U         |             |        | P    |
| Arsenic            | mg/Kg   | 20                  | 4.9829           |         | 4.7499              |           | 4.8         |        | P    |
| Beryllium          | mg/Kg   | 20                  | 0.4764           |         | 0.4995              |           | 4.7         |        | P    |
| Cadmium            | mg/Kg   | 20                  | 1.0319           |         | 1.2690              |           | 20.6        | *      | P    |
| Chromium           | mg/Kg   | 20                  | 10.2360          |         | 12.1351             |           | 17.0        |        | P    |
| Copper             | mg/Kg   | 20                  | 8.0970           |         | 8.9410              |           | 9.9         |        | P    |
| Lead               | mg/Kg   | 20                  | 10.4778          |         | 12.0896             |           | 14.3        |        | P    |
| Nickel             | mg/Kg   | 20                  | 15.3561          |         | 17.6471             |           | 13.9        |        | P    |
| Selenium           | mg/Kg   | 20                  | 0.4339           | Ų       | 0.4339              | U         |             |        | P    |
| Silver             | mg/Kg   | 20                  | 0.1588           | U       | 0.1588              | U         |             |        | P    |
| Thallium           | mg/Kg   | 20                  | 0.2858           | U       | 0.2858              | U         |             |        | P    |
| Zine               | mg/Kg   | 20                  | 36,2639          |         | 41.8178             |           | 14.2        |        | P    |



Percent Solids for Sample:

79.4

#### Metals

- 6 -

#### DUPLICATE SAMPLE SUMMARY

79.4

Percent Solids for Spike Sample:

Client: Dvirka & Bartilucci Level: LOW SDG No.: D2546

Duplicate ID D2546-01SD

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

Matrix: SOIL Sample ID: D2546-01 Client ID: B-1(9-2)SD

Acceptance Sample Duplicate C RPD Units Limit Result C Result Qual M Analyte 11.0 P 40.1582 Antimony mg/Kg 20 35.9834 72.0372 76.6946 6.3 P Arsenic mg/Kg 20 5.3 P 17.2465 Beryllium mg/Kg 20 16.3560 6.6 P Cadmium mg/Kg 20 21.7853 23.2771 mg/Kg 4.3 P Chromium 20 46.7454 48.8109



-6-

#### DUPLICATE SAMPLE SUMMARY

 Client:
 Dvirka & Bartilucci
 Level:
 LOW
 SDG No.:
 D2546

 Contract:
 DVIR01
 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546

Matrix: SOIL Sample ID: D2466-16 Client ID: TS-1-40-46D

Percent Solids for Sample: 70.6 70.6 Duplicate ID D2466-16D Percent Solids for Spike Sample: Duplicate Acceptance Sample C RPD Qual M Units C Result Analyte Limit Result 7.1 CV 0.0136 J 0.0146 mg/Kg 20 Mercury



## LABORATORY CONTROL SAMPLE SUMMARY

Client: Dvirka & Bartilucci SDG No.: D2546

Contract: DVIR01 Lab Code: CHEM Case No.: D2546 SAS No.: D2546

|          |       |            |        |   | %        | Acceptance |    |
|----------|-------|------------|--------|---|----------|------------|----|
| Analyte  | Units | True Value | Result | C | Recovery | Limits     | M  |
| 363116BS |       |            |        |   |          |            |    |
| Mercury  | mg/Kg | 0.200      | 0.200  |   | 100.0    | 73 - 121   | CV |



-9 -

#### ICP SERIAL DILUTIONS

| SAMPLE NO.  |  |
|-------------|--|
| TS-1-40-46L |  |

Lab Name:

Chemtech Consulting Group

Contract:

DVIR01

Lab Code:

CHEM

Case No.:

SAS No.: D2546

SDG No.: D2546

Matrix (soil/water):

WATER

D2546

Level (low/med):

LOW

Concentration Units:

ug/L

| Analyte | Initial Sample<br>Result (I) | c      | Serial Dilution<br>Result (S) | (    | 2 | % Differ-<br>ence | Q | М  |
|---------|------------------------------|--------|-------------------------------|------|---|-------------------|---|----|
| Mercury |                              | 0.19 J |                               | 0.46 | u | 100.0             |   | cv |



Matrix (soil/water):

#### Metals

#### -9 -

#### ICP SERIAL DILUTIONS

| SAMPLE NO. |  |
|------------|--|
| B-1(9-2)L  |  |

Lab Name: Chemtech Consulting Group Contract:

WATER

DVIR01

LOW

 Lab Code:
 CHEM
 Case No.:
 D2546
 SAS No.:
 D2546
 SDG No.:
 D2546

Concentration Units:

ug/L

Level (low/med):

| Analyte   | Initial Sample<br>Result (1) | С | Scrial Dilution<br>Result (S) | C   | % Differ-<br>ence | Q | M |
|-----------|------------------------------|---|-------------------------------|-----|-------------------|---|---|
| Antimony  | 8.00                         | U | 40 0                          | U   |                   |   | Р |
| Arsenic   | 49.06                        |   | 50,3                          | )   | 2.5               |   | P |
| Beryllium | 4_69                         |   | 5.8                           | ) J | 23.7              |   | P |
| Cadmium   | 10.16                        |   | 2,5                           | U   | 100.0             |   | P |
| Chromium  | 100.78                       |   | 118,6                         | 5   | 17.7              |   | P |
| Copper    | 79.72                        |   | 100.0                         | )   | 25 4              |   | P |
| Lead      | 103.16                       |   | 102.3                         |     | 0.8               |   | P |
| Nickel    | 151.19                       |   | 165.6                         |     | 9.5               |   | P |
| Selenium  | 4.80                         | U | 24.0                          | U   |                   |   | Р |
| Silver    | 1,50                         | U | 7.5                           | U   |                   |   | Р |
| Thallium  | 2.40                         | U | 12.0                          | U   |                   |   | P |
| Zinc      | 357.04                       |   | 466.5                         | )   | 30.7              |   | Р |
|           |                              |   |                               |     |                   |   |   |

### ATTACHMENT 6

DATA VALIDATION SHEETS



#### **DATA VALIDATION CHECKLIST**

| Project Name:            | IBM East Fishkill |                                         |  |
|--------------------------|-------------------|-----------------------------------------|--|
| Project Number:          | 3155-03           |                                         |  |
| Sample Date(s):          | April 30 and May  | 1, 2012                                 |  |
| Sample Team:             | PB                |                                         |  |
| Matrix/Number            | Soil/ 17          |                                         |  |
| of Samples:              | Trip Blanks / 0   |                                         |  |
|                          | Field Blanks/0    |                                         |  |
| Analyzing Laboratory:    | Chemtech, Moun    | tainside, New Jersey                    |  |
| Analyses:                | Volatile Organic  | Compounds (VOCs): by SW846 8260C        |  |
| -                        |                   | 6 Method 6010B, mercury by Method 7471A |  |
| Laboratory<br>Report No: | D2546             | Date: 06/01/2012                        |  |

## ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                 |          |     | Perfor              | mance |          |  |
|-----------------------------------------------------------------|----------|-----|---------------------|-------|----------|--|
|                                                                 | Reported |     | Reported Acceptable |       | Not      |  |
|                                                                 | No       | Yes | No                  | Yes   | Required |  |
| 1. Sample results                                               |          | X   |                     | X     |          |  |
| 2. Parameters analyzed                                          |          | X   |                     | X     |          |  |
| 3. Method of analysis                                           |          | X   |                     | X     |          |  |
| 4. Sample collection date                                       |          | X   |                     | X     |          |  |
| 5. Laboratory sample received date                              |          | X   |                     | X     |          |  |
| 6. Sample analysis date                                         |          | X   |                     | X     |          |  |
| 7. Copy of chain-of-custody form signed by Lab sample custodian |          | Х   |                     | Х     |          |  |
| 8. Narrative summary of QA or sample problems provided          | ř.       | Х   |                     | X     |          |  |

QA - quality assurance

#### Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of June 2008, or USEPA National Functional Guidelines of Inorganic Data Review, January 2010, method performance criteria, and Dvirka and Bartilucci Consulting Engineers, a Division of D&B Engineers and Architects, P.C. professional judgment.



## Custody Numbers:D2546 SAMPLE AND ANALYSIS LIST

|             |          | 6 )                          |     | Analysis |     |
|-------------|----------|------------------------------|-----|----------|-----|
| Sample ID   | Lab ID   | Sample<br>Collection<br>Date | voc | svoc     | мет |
| B-1 (9-2)   | D2546-01 | 4/30/12                      | X   |          | X   |
| B-1 (2-3.5) | D2546-02 | 4/30/12                      | X   |          | X   |
| B-1 (4-5.5) | D2546-03 | 4/30/12                      | X   |          | X   |
| B-1 (6-7.5) | D2546-04 | 4/30/12                      | X   |          | X   |
| B-2 (8-2)   | D2546-05 | 4/30/12                      | X   |          | X   |
| B-2 (2-3.5) | D2546-06 | 4/30/12                      | X   |          | X   |
| B-2 (4-5)   | D2546-07 | 4/30/12                      | X   |          | X   |
| B-2 (6-8)   | D2546-08 | 4/30/12                      | X   |          | X   |
| B-4 (9-2)   | D2546-09 | 4/30/12                      | X   | ū-       | X   |
| B-4 (2-3)   | D2546-10 | 4/30/12                      | X   |          | X   |
| B-3 (9-2)   | D2546-11 | 4/30/12                      | х   |          | X   |
| B-3 (2-3.5) | D2546-12 | 4/30/12                      | X   |          | X   |
| B-3 (6-7)   | D2546-13 | 4/30/12                      | X   |          | X   |
| B-5 (13-2)  | D2546-14 | 5/1/12                       | X   |          | X   |
| B-5 (6-7)   | D2546-15 | 5/1/12                       | X   |          | X   |
| B-6 (10-2)  | D2546-16 | 5/1/12                       | X   |          | X   |
| B-6 (2-3)   | D2546-17 | 5/1/12                       | Х   |          | X   |



## ORGANIC ANALYSES VOCS

|                                                | Reported |     | Performance<br>Acceptable |     | Not      |
|------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                | No       | Yes | No                        | Yes | Required |
| 1. Holding times                               |          | X   |                           | X   |          |
| 2. Blanks                                      |          |     |                           |     |          |
| A. Method blanks                               |          | X   |                           | X   |          |
| B. Trip blanks                                 |          |     |                           |     | X        |
| C. Field blanks                                |          |     |                           |     | X        |
| 3. Matrix spike (MS) %R                        |          | X   | X                         |     |          |
| 4. Matrix spike duplicate (MSD) %R             |          | X   | X                         |     |          |
| 5. MS/MSD precision (RPD)                      |          | X   |                           | X   |          |
| 6. Blank spike %R                              |          | X   | X                         |     |          |
| 7. Surrogate spike recoveries                  |          | X   | X                         |     |          |
| 8. Instrument performance check                |          | X   |                           | X   |          |
| 9. Internal standard retention times and areas |          | X   | X                         |     |          |
| 10. Initial calibration RRF's and %RSD's       |          | X   |                           | X   |          |
| 11. Continuing calibration RRF's and %D's      |          | X   | X                         |     |          |
| 12. Transcriptions – quant report vs. Form I   |          | X   |                           | X   |          |

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference %RSD - percent relative standard deviation RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable with the following exceptions:

- 3-4. The %Rs were above the QC limits for vinyl chloride, bromomethane and chloroethane in the MS and MSD. The compounds were not detected in the associated samples; therefore, qualification of the data was not necessary.
- 6. The blank spike %Rs for ten compounds were above the QC limits associated with the reanalysis for sample B-5(6-7). The blank spike %Rs were below QC limits for vinyl chloride and chloroethane associated with the reanalysis for sample B-2(2-3.5). The blank spike %Rs were below the QC limits for 1,2,3-trichlorobenzene, 1,2-dibromom-3-chloropropane, and 2-hexanone and above the QC limits for tetrachloroethene associated with the reanalysis for sample B-2(6-8). The following compounds were qualified as estimated (UJ): 1,2,3-trichlorobenzene, 1,2-dibromom-3-chloropropane, and 2-hexanone in the reanalysis for sample B-2(6-8) and vinyl chloride and chloroethane in the reanalysis for sample B-2(2-3.5).
- 7&9. The surrogate spike, 1,2-dichloroethane-d4 had the %Rs above the QC limits in the original analysis for samples:B-1(9-2), B-1(2-3.5), B-1(4-5.5), B-1(6-7.5), B-2(8-2) and B-2(2-3.5) and in the reanalysis for samples: B-1(9-2), B-1(2-3.5), B-1(4-5.5), B-1(6-7.5), B-2(8-2), B-2(4-5), B-2(6-8), B-4(9-2), B-4(2-3), B-3(9-2), B-3(2-3.5), B-3(6-7), B-5(13-2), B-6(10-2) and B-6(2-3). The surrogate spike, bromofluoromethane had the %R below the QC limits in the reanalysis for sample B-5(13-2).

In addition, the internal standard area for 1,4-dichlorobenzene-d4 was below the QC limit in the original analysis for samples: B-1(9-2), B-2(8-2) and B-2(6-8) and in the reanalysis for samples: B-1(9-2), B-1(6-7.5), B-2(8-2), B-3(9-2) and B-3(2-3.5). All internal standards areas



were below QC limits the original analysis for sample B-2(2-3.5) and the internal standard area for pentafluorobenzene and 1,4-difluorobenzene were below QC limits the original analysis for sample B-5(6-7).

Based on the surrogate %R and internal standard area the following original sample results were reported: B-1(9-2), B-1(2-3.5), B-1(4-5.5), B-1(6-7.5), B-2(8-2), B-2(4-5), B-4(9-2), B-4(2-3), B-3(9-2), B-3(2-3.5), B-3(6-7), B-5(13-2), B-6(10-2) and B-6(2-3).

Based on the surrogate %R and internal standard area the following the reanalysis samples results were reported: B-2(2-3.5), B-2(6-8) and B-5(6-7).

Acetone was qualified as estimated (J) in the original sample for B-1(9-2), B-1(6-7.5) and B-2(8-2) due to surrogate %Rs. 1,2,3-Trichlorobenzne, 1,2,4-trichlorobenzene, 1,2-dibromom-3-chloropropane, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene were qualified as not usable(R) based on the internal standard areas in the original sample for B-1(9-2) and B-2(8-2).

The continuing calibration %Ds for 1,2,3-trichlorobenzene, 1,2,4-trichlotobenzene, bromoform, bromochloromethane, dibromochloromethane and vinyl chloride were above QC limits and qualified as estimated (UJ) in the original samples for B-2(4-5), B-4(9-2), B-4(2-3), B-3(9-2), B-3(2-3.5), B-3(6-7), B-5(13-2), B-6(10-2) and B-6(2-3).

The continuing calibration %Ds for bromoform, 1,2,3-trichlorobenzene and vinyl chloride were above QC limits and qualified as estimated (UJ) in the reanalysis sample for B-2(2-3.5).

The continuing calibration %Ds for 1,2,3-trichlorobenzene, 1,1,2,2-tetrachloroethane, 1,4-dioxane, bromoform, bromomethane, tetrachloroethene and trans-1,3-dichloropropene were above QC limits and qualified as estimated (UJ) in the reanalysis sample for B-2(6-8).



## INORGANIC ANALYSES METALS

|                                           | Reported |     | Performance<br>Acceptable |     | Not      |  |
|-------------------------------------------|----------|-----|---------------------------|-----|----------|--|
|                                           | No       | Yes | No                        | Yes | Required |  |
| 1. Holding times                          |          | X   |                           | X   |          |  |
| 2. Blanks                                 |          |     |                           |     |          |  |
| A. Preparation and calibration blanks     |          | X   |                           | X   |          |  |
| B. Field blanks                           |          |     |                           |     | X        |  |
| 3. Initial calibration verification %R    |          | X   |                           | X   |          |  |
| 4. Continuing calibration verification %R |          | X   |                           | X   |          |  |
| 5. CRDL standard %R                       |          | X   |                           | X   |          |  |
| 6. Interference check sample %R           |          | X   |                           | X   |          |  |
| 7. Laboratory control sample %R           |          | X   |                           | X   |          |  |
| 8. Spike sample %R                        |          | X   | X                         |     |          |  |
| 9. Post digestive spike sample %R         |          | X   | X                         |     |          |  |
| 10. Duplicate %RPD                        |          | X   | X                         |     |          |  |
| 11. Serial dilution check %D              |          | X   | X                         |     |          |  |

%R - percent recovery

%D - percent difference

RPD - relative percent difference

#### Comments:

Performance was acceptable, with the following exceptions:

- 8&9. The %R was below the QC limits in the matrix spike and matrix spike duplicate for antimony, beryllium and selenium and the post digestive spike for beryllium and selenium associated with all samples. The %R was above the QC limits in the matrix spike duplicate and post digestion spike for zinc associated with all samples. Beryllium and selenium were qualified as estimated low (J-/UJ); antimony was qualified as estimated (J/UJ); and zinc was qualified as estimated high (J+) in all samples.
- 10. The %RPD was above the QC limits in the duplicate for cadmium associated with all samples. It was qualified as estimated (J) in all samples.
- 11. The %D was above the QC limits of 10% in the serial dilution for chromium and zinc associated with all samples. Chromium was qualified as estimated (J/UJ) in all samples.



## DATA VALIDATION AND QUALIFICATION SUMMARY

**Laboratory Numbers:D2546** 

| QUALIFICATIONS                                                                                                                                                                    |                                                                                                                                                    | Laboratory Numbers:D2546 |                                                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sample ID                                                                                                                                                                         | Analyte(s)                                                                                                                                         | Qualifier                | Reason(s)                                                                                                                                                |  |  |
| <u>VOCs</u>                                                                                                                                                                       |                                                                                                                                                    |                          |                                                                                                                                                          |  |  |
| B-2(6-8)                                                                                                                                                                          | 1,2,3-Trichlorobenzene, 1,2-<br>dibromom-3-chloropropane, and 2-<br>hexanone                                                                       | UJ                       | The blank spike %Rs were below QC limits                                                                                                                 |  |  |
|                                                                                                                                                                                   |                                                                                                                                                    |                          |                                                                                                                                                          |  |  |
| B-2(2-3.5)                                                                                                                                                                        | Vinyl chloride and chloroethane                                                                                                                    | UJ                       | The blank spike %Rs were below QC limits                                                                                                                 |  |  |
| B-1(9-2), B-1(2-3.5),<br>B-1(4-5.5), B-1(6-<br>7.5), B-2(8-2), B-2(4-<br>5), B-4(9-2), B-4(2-<br>3), B-3(9-2), B-3(2-<br>3.5), B-3(6-7), B-<br>5(13-2), B-6(10-2)<br>and B-6(2-3) | All VOCs                                                                                                                                           |                          | The surrogate spike had the %Rs above the QC limits and/or internal standard areas were below QC limits and the original sample results were reported    |  |  |
| B-2(2-3.5), B-2(6-8)<br>and B-5(6-7)                                                                                                                                              | All VOCs                                                                                                                                           | -                        | The surrogate spike had the %Rs above the QC limits and/or internal standard areas were below QC limits and the reanalysis samples results were reported |  |  |
|                                                                                                                                                                                   |                                                                                                                                                    |                          |                                                                                                                                                          |  |  |
| B-1(9-2), B-1(6-7.5)<br>and B-2(8-2)                                                                                                                                              | Acetone                                                                                                                                            | J                        | Due to surrogate %Rs.                                                                                                                                    |  |  |
| B-1(9-2) and B-2(8-<br>2)                                                                                                                                                         | 1,2,3-Trichlorobenzne, 1,2,4- trichlorobenzene, 1,2-dibromom-3- chloropropane, 1,2- dichlorobenzene, 1,3- dichlorobenzene and 1,4- dichlorobenzene | R                        | Based on the internal standard areas                                                                                                                     |  |  |
| B-2(2-3.5)                                                                                                                                                                        | Bromoform, 1,2,3-trichlorobenzene and vinyl chloride                                                                                               | UJ                       | The continuing calibration %Ds were above QC limits                                                                                                      |  |  |
| B-2(6-8)  1,2,3-Trichlorobenzene, 1,1,2,2- tetrachloroethane, 1,4-dioxane, bromoform, bromomethane, tetrachloroethene and trans-1,3- dichloropropene                              |                                                                                                                                                    | UJ                       | The continuing calibration %Ds were above QC limits                                                                                                      |  |  |



| Sample ID   | Analyte(s)             | Qualifier | Reason(s)                                                                                                  |
|-------------|------------------------|-----------|------------------------------------------------------------------------------------------------------------|
| Metals      |                        |           |                                                                                                            |
| All samples | Antimony               | J/UJ      | The %R was below the QC limits in the matrix spike and matrix spike duplicate                              |
| All samples | Beryllium and selenium | J-/UJ     | The %R was below the QC limits in the matrix spike and matrix spike duplicate and the post digestive spike |
| All samples | Zinc                   | J+        | The %R was above the QC limits in the matrix spike duplicate and post digestion spike                      |
| All samples | Cadmium                | J         | %RPD was above the QC limits in the duplicate                                                              |
| All samples | Chromium               | J/UJ      | %D was above the QC limits of 10% in the serial dilution                                                   |

| VALIDATION PERFORMED, BY & DATE:    | Donna M., Brown 6/5/2012 |
|-------------------------------------|--------------------------|
| VALIDATION PERFORMED, BY SIGNATURE: | 12 mac                   |