

REPORT OF FINDINGS -ADDITIONAL INVESTIGATIONS BUILDING 320B

IBM East Fishkill Facility Hopewell Junction, New York

Prepared for IBM Corporation File No. 2999.00 May 2014

Hudson Valley Research Park 2070 Route 52 Hopewell Junction, NY 12533-6531 D.E. Speed Zip 65A

May 27, 2014

Alex G. Czuhanich New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E 625 Broadway, 12th Floor Albany, NY 12233-7017

Re: Report of Findings – Additional Investigations

Building 320B

RFI Work Plan Implementation

IBM East Fishkill Facility, Hopewell Junction, New York

EPA ID No. NYD000707901

Dear Mr. Czuhanich:

The enclosed report presents the results of additional investigations to evaluate the source of certain volatile organic compounds (VOCs) detected in indoor air in portions of Building 320B at the IBM East Fishkill facility. The scope of this work and progress updates have been communicated to the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) (collectively, the Agencies) through regular correspondence and meetings. The validated indoor air data has been posted for review by the building occupants.

If you wish to further discuss this report or have questions, please contact me at (845) 892-3176.

Sincerely,

David E. Speed, Ph.D.

Systems and Technology Group

International Business Machines Corporation

cc: N. Walz (NYSDOH)

G. Marone (IBM)

J. Ulrich (IBM)

REPORT OF FINDINGS -ADDITIONAL INVESTIGATIONS

Building 320B IBM East Fishkill Facility Hopewell Junction, New York

Prepared for **IBM Corporation**

Prepared by Sanborn, Head Engineering, P.C.

File 2999.00 May 2014

Report of Findings – Additional Investigations Building 320B TABLE OF CONTENTS

1.0 IN	TRODUCTION	1
2.0 C4	CLEAN ROOM ASSESSMENT AND RESULTS	2
2.1	HVAC System Review and Sampling	
2.2	Source Assessment Sampling	
2.3	Additional Indoor Air Sampling	
	EXPANSION AREA ASSESSMENT AND RESULTS	
3.1 Ini	itial Assessment Results	6
3.2 Re	sults Following Floor Sealing Activities	7
4.0 CC	ONCLUSIONS	7
EXHIBITS	S	
Exhibit A	C4 Clean Room Schematic Cross-Section	
Exhibit B	Gowning Room Schematic Cross Section	
Exhibit C	HAPSITE Portable GC/MS Instrument	
Exhibit D	Building Materials Sample Locations and Results	
TABLES		
Table 1	Building 320B Indoor Air Sampling Results	
Table 2	C4 Clean Room Targeted Air Sampling Results	
Table 3	Portable GC/MS Screening Results	
Table 4	C4 Clean Room Building Material Sampling Results	
FIGURES		
Figure 1	Locus Plan	
Figure 2	Building Location Plan	
Figure 3	Indoor Air Sampling Results for Vinyl Chloride	
Figure 4	Targeted Vinyl Chloride Results in the C4 Clean Room	
Figure 5	TCE Screening Results – C4 Expansion Area	
APPENDI		
Appendix		
Appendix	B Analytical Laboratory Data Reports (Enclosed on CD only)	

1.0 INTRODUCTION

This report presents the results of additional investigations to evaluate the source of certain volatile organic compounds (VOCs) detected in indoor air in portions of Building 320B at the IBM East Fishkill facility (the Site). A Site Locus Plan is provided as Figure 1, and the Building 320B location on the Site is shown on Figure 2.

As documented in a May 2010 report¹, low-level concentrations of vinyl chloride (VC) were detected in the indoor air within the western and southern portions of Building 320B centered on the C4 Clean Room. As requested in a March 13, 2013 letter from the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) (collectively, the Agencies), IBM has completed additional investigations to attempt to identify the source(s) of the low-level VC detections within portions of the C4 Clean Room. This report presents the results.

As a separate initiative, this report also presents the results of supplemental investigations associated with an unoccupied portion of Building 320B known as the C4 Expansion Area. In 2012, IBM began remodeling this area for future clean room manufacturing activities. As part of this remodeling, former infrastructure was removed, the floor slab and associated features (e.g., trenches and sumps) were exposed and sealed, and new heating, ventilation, and air conditioning (HVAC) systems were installed. While chlorinated volatile organic compounds (CVOCs) were not detected in indoor air in this portion of Building 320B in 2010, IBM voluntarily performed additional investigations before and after remodeling activities to evaluate whether floor penetrations and other features could serve as preferential pathways for VOC vapor entry. This report presents the results. Although remodeling is complete, a date for re-occupying the area has not been established.

Sanborn, Head Engineering P.C. (SHPC), with assistance from IBM personnel, conducted this work consistent with the objectives and procedures described in IBM's Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan (the Work Plan)², approved by the Agencies. The investigations and this report are subject to the standard limitations of this type of work, as provided in Appendix A.

This report is organized into the following sections:

Section 2 presents an overview of investigation activities and results associated with the low-level VC detections in the C4 Clean Room.

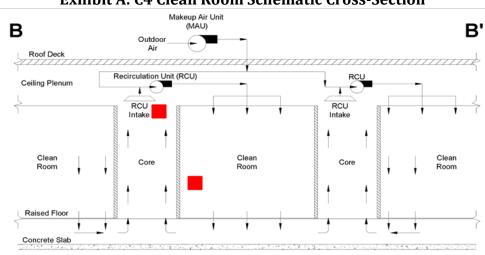
Section 3 presents an overview of investigation activities and results in the C4 Expansion Area.

Analytical laboratory data reports for samples collected since submittal of the May 2010 report are provided in Appendix B.

¹ Sanborn Head Engineering, P.C., *Confirmatory Sampling Results Buildings 308, 320B, and 334, VOC Source Assessment, IBM East Fishkill Facility, Hopewell Junction, New York,* May 2010.

² IBM Corporation and Sanborn Head Engineering, P.C., Work Plan, RCRA Facility Investigation (RFI), VOC Source Assessment, IBM East Fishkill Facility, Hopewell Junction, New York, June 15, 2009.

2.0 C4 CLEAN ROOM ASSESSMENT AND RESULTS

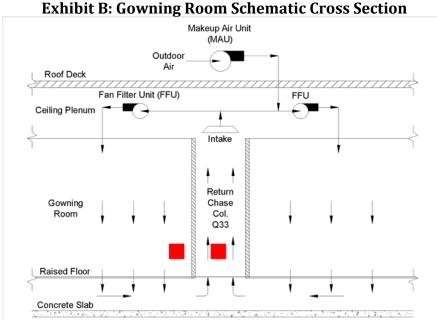

To verify the March 2010 detections of VC, another round of indoor air samples was collected on April 19, 2012 in the western and southern portions of Building 320B at the five locations where VC was previously observed (see Figure 3). Samples were collected into 6-liter Summa® canisters using 8-hour flow controllers and submitted to Eurofins Air Toxics, Inc. (EATI) of Folsom, California for laboratory analysis of the Site-specific list of 22 VOCs by USEPA Method TO-15 Hi/Lo³.

VC was detected in the April 2012 samples at concentrations ranging from 0.12 to 1.1 micrograms per cubic meter ($\mu g/m^3$), similar to the concentrations detected in the March 2010 samples. In both March 2010 and April 2012, the highest concentrations of VC were detected in samples collected at location IA0710, which is located within the southeast portion of the C4 Clean Room. The results of the March 2010 and April 2012 samples are provided in Table 1, and summarized on Figure 3. The analytical laboratory data report for the April 2012 indoor air samples is provided in Appendix B.

As a result of the March 2010 and April 2012 VC data, a program of additional investigations for potential VC sources was completed within the C4 Clean Room, which included an assessment of the HVAC system operations, areas of chemical and manufactured product storage, manufacturing equipment/tools, and building materials. The results of these assessments are summarized in the sections below.

2.1 HVAC System Review and Sampling

As shown on Figure 4, six "Core" areas are located within the C4 Clean Room that contain tools and support equipment for the manufacturing activities that occur in this portion of the building. The Core areas are also used to return and/or recycle air as shown in the schematic cross-section presented as Exhibit A, below.


Exhibit A: C4 Clean Room Schematic Cross-Section

 $Red\ squares\ denote\ typical\ locations\ of\ targeted\ air\ samples\ within\ the\ C4\ Clean\ Room,\ as\ described\ below.$

³ Samples were analyzed using gas chromatograph/mass spectrometry (GC/MS) techniques. Trichloroethene, vinyl chloride, and carbon tetrachloride were also analyzed in Selective Ion Monitoring (SIM) mode.

As shown in Exhibit A, and typical of many clean room HVAC systems, supply air (a mixture of outside air and return air) is delivered to the Clean Room by recirculation units (RCUs) located above the ceiling. Air flows downward from the ceiling and passes through perforations in the raised floor. Then, the air flows in the space between the floor slab and the raised floor to the Core areas, where it flows upward and back to the RCUs. As shown conceptually in Exhibit A and further discussed below, targeted air samples were collected from the Clean Room and the intake to the RCUs within the Core areas to evaluate whether VOC vapor entry was occurring along the air flow path.

Additional evaluations were also completed for the HVAC system in the Gowning Room portion of the Clean Room. As shown in Exhibit B, within the Gowning Room, supply air is delivered from ceiling-mounted fan filter unit (FFU) downward through raised and perforated floor. Air flows in the space between the raised floor and the concrete floor slab to a return air chase where it is collected by the FFU and redistributed. conceptually in Exhibit B and further discussed below, targeted air samples were collected from the Gowning Room and from within the return air chase to evaluate whether VOC vapor entry was occurring along the air flow path.

Red squares denote typical locations of targeted air samples within the C4 Clean Room, as described below.

On April 19, 2012, eight targeted air samples were collected at the locations shown on Figure 4 (teal triangle symbols) in the C4 Clean Room /Core Areas and the Gowning Room/return chase. The samples included the following:

- Three pairs of samples (total of six samples) were collected from various C4 Clean Room/Core Area locations.
- One pair of samples (two samples) was collected from the Gowning Room. One of the samples was collected in a return air chase adjacent to the Gowning Room, with a corresponding sample collected from inside the Gowning Room.

In addition, one sample was collected from the return duct for HVAC zone HVAC 304 (not depicted on figures) which serves a break area outside the C4 Clean Room to evaluate potential VOC vapor entry in this area that could be contributing to the occurrence of VC previously detected at sample location IA0709.

Samples were collected into 6-liter Summa® canisters equipped with 1-hour flow controllers and submitted to EATI for laboratory analysis of the Site-specific list of 22 VOCs by USEPA Method TO-15 Hi/Lo. Analytical results for the targeted air samples are provided in Table 2, and the analytical laboratory data report is provided in Appendix B.

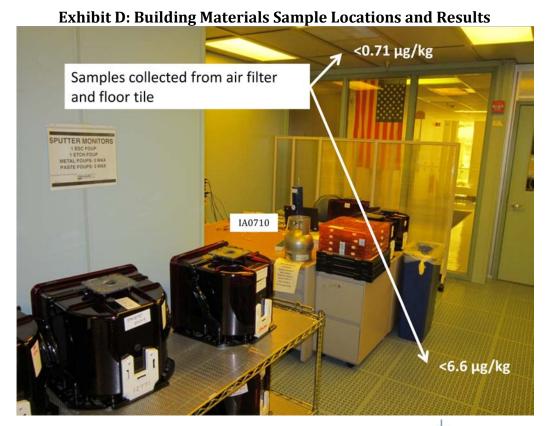
VC was not detected in any of the targeted samples. These results suggest that the HVAC configuration and operations are not the principal cause of the previous indoor air VC detections in the C4 Clean Room.

Trichloroethene (TCE) was detected at approximately equivalent low-level concentrations (about $0.6~\mu g/m^3$) in both samples collected from the Gowning Room and adjacent return air chase. The TCE concentrations observed in the 2012 Gowning Room samples were approximately equivalent to the levels observed in the 2010 indoor air sample collected from the adjacent storage area at sample location IA0707.

2.2 Source Assessment Sampling

On February 13, 2013, an Inficon HAPSITE portable gas chromatograph/mass spectrometer (GC/MS), pictured below in Exhibit C, was used to screen locations in the C4 Clean Room. These screening samples are collected over an approximately one-minute duration. Screening focused on manufacturing equipment, HVAC system features, and building materials in near proximity to former solvent Solid Waste Management Units (SWMUs) as potential sources for VC in the C4 Clean Room. Locations were screened for a targeted list of CVOCs, including tetrachloroethene (PCE), TCE, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), and VC.

Exhibit C: HAPSITE Portable GC/MS Instrument


For data comparison purposes, grab air samples were collected into 6-liter Summa® canisters at locations TA-1052 (adjacent to a plating reservoir within one of the core areas) and TA-1055 (collected near location IA0710) at approximately the same time as the

portable GC/MS screening, and submitted to EATI for analysis of the Site-specific list of 22 VOCs by USPEA Method TO-15 Hi/Lo.

As summarized on Figure 4, VC was not recorded by the portable GC/MS at any of the screening locations in near proximity to various manufacturing equipment or the HVAC system features. VC was detected in the grab Summa sample collected at indoor air location IA0710 at a concentration of 1 μ g/m³, similar to that observed in previous indoor air samples collected at this location. VC was also detected in one targeted grab Summa sample collected from the vicinity of a manufactured product storage container (TA-1055) at a concentration of 0.46 μ g/m³, which is lower than the results from nearby indoor air location IA0710, suggesting that the manufactured product container is not the source of VC observed in indoor air sample IA0710.

On May 1, 2013, samples of building materials were collected from a filter for an HVAC vent (designated as BM1001) and a floor tile (designated as BM1000) in the vicinity of indoor air sample location IA0710 to evaluate whether these building materials (located in near proximity to sample IA0710 and former SWMUs) might be potential sources of VC observed in indoor air. Samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts for analysis of VOCs by USEPA Method 8260C. As shown in Exhibit D, VC was not detected in either the floor tile or air filter sample. Analytical results for these building material samples are provided in Table 4.

In addition, the building material samples were screened with the portable GC/MS for the targeted list of VOCs and VC was not recorded, which suggests that these building materials in the vicinity of location IA0710 are not the source of VC observed in indoor air.

2.3 Additional Indoor Air Sampling

Additional indoor air samples were collected on November 25, 2013 at seven locations in the C4 Clean Room. Samples were collected as 8-hour, time-integrated samples using 6-liter Summa® canisters in near proximity to manufacturing equipment and from location IA0710. These samples were collected to obtain 8-hr, time-integrated samples throughout the C4 Clean Room, and to evaluate the extent of the low-level VC at detection limits below those that were achievable with the portable GC/MS. Samples were submitted to EATI for laboratory analysis of the Site-specific list of 22 VOCs by USEPA Method TO-15 Hi/Lo.

VC was detected at levels similar to or slightly lower than those observed in prior indoor air samples. Concentrations ranged from 0.42 to 0.68 $\mu g/m^3$, with the highest concentration reported at sample location IA0710, where all previous maximum VC concentrations have been detected. The results of this sampling round are summarized in Table 1, and VC detections are depicted on Figure 3.

3.0 C4 EXPANSION AREA ASSESSMENT AND RESULTS

As described above, IBM began remodeling the C4 Expansion Area in 2012. As part of remodeling activities, former infrastructure was removed, the floor slab and associated features (e.g., trenches and sumps) were exposed and sealed (see highlighted area on Figure 5), raised flooring was re-installed, and new HVAC systems were installed. While CVOCs were not detected in the indoor air sample collected in 2010 in this portion of the building, IBM elected to voluntarily perform additional investigations before and after remodeling activities to assess whether floor penetrations or other features could serve as preferential pathways for VOC vapor entry once remodeling activities were complete.

The screening locations were grouped into two categories: those screened approximately 4 to 5 feet above the concrete floor and designated as indoor air samples (prefixed with IA), and those screened at a specific feature in the concrete floor (e.g. an expansion joint, or from within a sub-grade trench) and designated as targeted air samples (prefixed with TA).

As shown on Table 3, portable GC/MS screening samples were collected multiple times at several locations. Figure 5 presents TCE screening results from the first and last measurements corresponding to before and after floor sealing activities (where completed). TCE was generally detected at higher concentrations and greater frequency than other analytes and therefore Figure 5 and the following discussion focus on this analyte. For comparison purposes, co-located grab samples were collected into 6-liter Summa® canisters at three locations at approximately the same time as the portable GC/MS screening, and submitted to EATI for analysis by USPEA Method TO-15 Hi/Lo.

3.1 Initial Assessment Results

Initial screening was conducted in February 2013 after the old raised floors were removed and the concrete floors were exposed in order to identify potential preferential vapor intrusion pathways. Screening was conducted with particular attention to floor penetrations and subsurface features. In addition, indoor air screening samples were collected throughout the C4 Expansion Area.

As shown on Figure 5, TCE was detected at concentrations in the 10s of $\mu g/m^3$ in the initial screening at several construction/expansion joints in the concrete floor, and at several utility clean-out locations. Some of these features were located in near proximity to future return air ducts where air pressure differentials could facilitate vapor intrusion of VOCs into indoor air once the new HVAC system becomes operational. TCE was not detected in any of the initial indoor air screening samples collected from the C4 Expansion Area.

VC was not detected during the initial screening. Although the reporting limit for VC for the portable GC/MS is not as low as can be achieved by off-site analysis of Summa® canister samples, VC concentrations detected in grab samples collected into Summa canisters at targeted construction joints TA-1012 and TA-1029 were 0.18 and 0.12 μ g/m³, respectively (see Table 3); these low levels are not indicative of a source of VC.

3.2 Results Following Floor Sealing Activities

As a precautionary measure, IBM elected to seal the concrete floor in April 2013 in a portion of the C4 Expansion Area that would be covered by raised flooring, as shown by the orange shaded area on Figure 5, using a chemical resistant floor sealing system. Floors were not sealed in those portions of the C4 Expansion Area that are not currently intended for future clean room manufacturing operations.

Following completion of floor sealing activities, TCE was not detected at the construction/expansion joints where it was previously observed above reporting limits (TA-1031 and TA-1029), indicating that floor sealing activities were successful in eliminating this potential vapor intrusion pathway. Following floor sealing activities, TCE was detected at relatively low concentrations (1.7 and 2.8 $\mu g/m^3$ at TA1015 and TA-1032, respectively) at two utility clean-out penetrations. These features were subsequently resealed. Although another round of screening was not performed at these locations, the relatively low TCE concentrations and success of the construction joint floor sealing activities suggest that they are unlikely to be continued preferential vapor intrusion pathways.

TCE and VC were not detected in any of the indoor air screening samples collected following floor sealing activities. VC was detected in the Summa canister grab sample at location IA-0708, but at a low-level concentration (0.45 $\mu g/m^3$) consistent with previous detections of VC in the vicinity.

4.0 **CONCLUSIONS**

As requested by the Agencies, IBM completed additional investigations to attempt to identify the source of low-level concentrations of VC observed in indoor air samples within Building 320B. These investigations included additional indoor air sampling rounds, targeted sampling of HVAC air flow patterns, targeted screening of certain manufacturing equipment and tools that could be emitting VC, and sampling of building materials in the vicinity of the indoor air detections. The results of these investigations did not identify the source of VC. While the sampling was extensive, it was not exhaustive, and VC could be associated with intermittent off-gassing from manufacturing processes that was not captured during the sampling program.

Although the source of the VC was not identified, it is also unclear whether the VC is attributable to vapor intrusion from a subslab/subsurface source. Based on the collective experience of Sanborn Head and IBM with vapor intrusion at many sites, we are unaware of a situation where VC vapor intrusion was occurring without concurrent vapor intrusion by related parent compounds at similar of higher concentrations than VC, such as PCE, TCE, and cDCE. Review of the Building 320B data indicates no detections of cDCE in any indoor air samples, and only sporadic detections of TCE and one detection of PCE, but all at concentrations less than the highest detections of VC. In aggregate, this data set is inconsistent with our experience with vapor intrusion; rather, we would expect PCE, TCE, and cDCE detections to be more prevalent and at higher concentrations than VC when vapor intrusion from a subslab/subsurface source is present.

Given that the VC concentrations are very low, and that the aggregate data set is inconsistent with our experience with vapor intrusion, we believe that further assessment is not warranted at this time. However, in recognition of an unresolved potential source for VC, if future use of the C4 Clean Room changes, or if HVAC operations are modified, IBM will undertake further assessment and actions, if appropriate.

Under a separate initiative, IBM elected to evaluate and address potential VOC vapor entry in the C4 Expansion Area. While VC was not detected in initial indoor air sampling in this area, subsequent screening of floor features indicated potential for VOC vapor entry. Therefore, as part of the fit-up of this space for future manufacturing, a sealant was applied to the concrete floor slab. Subsequent screening and sampling indicated that the sealant was successful in reducing VOC concentrations at potential pathways for vapor entry.

 $S: CONDATA \ 2900s \ 2999.00 \ Source\ Files \ B320B\ Rpt\ of\ Findings_Add\ Investigations \ 20140527\ B320B\ Rpt\ of\ Finds_Add\ Inv.docx$

TABLES

TABLE 1 Building 320B Indoor Air Samping Results Report of Findings – Additional Investigations Building 320B IBM East Fishkill Facility

Hopewell Junction, New York

													Conce	ntratio	ns in µg	g/m ³												
		Fi	eld Bla	ınk			Aml	bient Ou	ıtdoor A	Air						,,			In	door A	\ir							
							AA0711			AA0712			IA0700			IA0701			IA0702			A0703		IA	0703 Du <u>r</u>).	IAC	0703
Analyte Name		FB01		FB	-03		.C Intake f HVAC-1	for		AC Intake HVAC-4	for		· Office/ Fo Room Entr		Cl	ean Room		Cl	ean Room	l			Forn	ner Manı	ıfacturinş	g Area		
	0	3/16/10		04/1	9/12	0	3/16/10		(03/16/10		(3/16/10		0	3/16/10		0	3/16/10		0	3/16/10		0	3/16/10		04/	19/12
	Result	Qualifier	Bias	Result	Qualifier	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier	Bias	Result	Qualifier
Tetrachloroethene (PCE)	<1.0	U		<1.3	U	<1.1	U		<2.7	U		<1.1	U		<1.1	U		<1.2	U		<1.0	U		<1.1	U		<1.1	U
Trichloroethene (TCE)	< 0.17	U		< 0.21	U	< 0.17	U		< 0.42	U		< 0.17	U		< 0.17	U		< 0.18	U		< 0.17	U		<0.18	U		0.21	
cis-1,2-Dichloroethene (cDCE)	< 0.61	U		< 0.79	U	< 0.63	U		<1.6	U		< 0.64	U		< 0.64	U		<0.68	U		< 0.61	U		< 0.65	U		< 0.64	U
1,1-Dichloroethene (DCE)	< 0.61	U		< 0.79	U	< 0.63	U		<1.6	U		< 0.64	U		< 0.64	U		<0.68	U		< 0.61	U		< 0.65	U		< 0.64	U
Vinyl chloride (VC)	0.048			0.28		< 0.040	U		< 0.10	U		< 0.041	U		< 0.041	U		< 0.044	U		0.15	EB	Н	0.15	EB	Н	0.12	
1,1,1-Trichloroethane (TCA)	<0.84	U		<1.1	U	<0.86	U		<2.2	U		<0.88	U		<0.88	U		< 0.93	U		<0.84	U		<0.89	U		<0.88	U
Carbon tetrachloride	< 0.20	U		< 0.25	U	0.38			< 0.50	U		0.40			0.40			0.45			0.44			0.44			0.71	
Methylene chloride (MeCI)	<1.1	U		<1.4	U	<1.1	U		<2.7	U		<1.1	U		<1.1	U		<1.2	U		<1.1	U		<1.1	U		<1.1	U
Chlorobenzene	< 0.71	U		< 0.92	U	< 0.73	U		<1.8	U		< 0.74	U		< 0.74	U		< 0.79	U		< 0.71	U		< 0.76	U		< 0.74	U
1,2,4-Trichlorobenzene	<5.8	U		<7.4	U	<5.9	U		<15	U		<6.0	U		<6.0	U		<6.3	U		<5.8	U		<6.1	U		<6.0	U
1,2-Dichlorobenzene	< 0.93	U		<1.2	U	< 0.95	U		<2.4	U		< 0.97	U		< 0.97	U		<1.0	U		< 0.93	U		< 0.99	U		< 0.97	U
1,3-Dichlorobenzene	< 0.93	U		<1.2	U	< 0.95	U		<2.4	U		< 0.97	U		< 0.97	U		<1.0	U		< 0.93	U		< 0.99	U		< 0.97	U
1,4-Dichlorobenzene	< 0.93	U		<1.2	U	< 0.95	U		<2.4	U		< 0.97	U		< 0.97	U		<1.0	U		< 0.93	U		< 0.99	U		< 0.97	U
Acetone	2.1			<2.4	U	88			230			9.5	EB	Н	92			27			17			19			12	
Benzene	< 0.50	U		< 0.64	U	< 0.50	U		<1.3	U		< 0.51	U		< 0.51	U		< 0.55	U		< 0.50	U		< 0.52	U		0.52	
Ethylbenzene	< 0.67	U		<0.86	U	< 0.69	U		<1.7	U		< 0.70	U		< 0.70	U		< 0.74	U		< 0.67	U		< 0.71	U		< 0.70	U
m,p-Xylene	< 0.67	U		<0.86	U	< 0.69	U		<1.7	U		< 0.70	U		< 0.70	U		< 0.74	U		< 0.67	U		< 0.71	U		< 0.70	U
o-Xylene	< 0.67	U		<0.86	U	< 0.69	U		<1.7	U		< 0.70	U		< 0.70	U		< 0.74	U		< 0.67	U		< 0.71	U		< 0.70	U
Toluene	<0.58	U		< 0.75	U	< 0.60	U		<1.5	U		1.4			7.2			5.2			1.3		1	1.6			2.0	
Trichlorofluoromethane (Freon 11)	< 0.87	U		<1.1	U	1.3			<2.2	U		2.4			3.0			3.4			6.9		1	7.4			9.2	
Dichlorodifluoromethane (Freon 12)	< 0.77	U		< 0.98	U	2.5			2.0			2.0			2.2			2.7			3.0		1	3.1			2.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<1.2	U		<1.5	U	<1.2	U		<3.0	U		<1.2	U		<1.2	U		<1.3	U		3.5			3.3			3.6	

Notes:

- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel on the dates indicated. Samples were collected using 6-liter Summa® canisters equipped with 8-hour flow controllers. Refer to figures for sample locations.
- 2. Sample analysis was completed by Eurofins Air Toxics, Inc. (EATI) of Folsom, California using United States Environmental Protection Agency (USEPA) Method TO-15 (Hi/Lo). Trichloroethene, vinyl chloride, and carbon tetrachloride were analyzed in Selective Ion Monitoring (SIM) mode.
- 3. "<" indicates a non-detection at the reporting limit shown.
- 4. New Environmental Horizons, Inc. (NEH) performed an independent validation of the 2010 analytical data, as described in their <u>Data Usability Report</u>, dated April 12, 2010. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data:
- "EB" The associated numerical value is biased due to the presence of the analyte in the equipment blank sample FB01, which was collected March 16, 2010.
- "J" The associated numerical value is an estimated quantity due to quality control criteria exceedance(s). The value is usable for project objectives with the documentation of the uncertainty, bias, and/or imprecision.
- "U" The compound was analyzed for, but was not detected. The associated numerical value is the sample-specific reporting limit. The value is usable for project decisions as a non-detect result at the reporting limit.
- "UJ" The non-detect is estimated at the practical quantitation limit (PQL).
- "H" High bias.
- "L" Low bias.
- 5. **Bold** values indicate the analyte was detected above reporting limits.

TABLE 1 Building 320B Indoor Air Samping Results Report of Findings – Additional Investigations Building 320B IBM East Fishkill Facility

Hopewell Junction, New York

											Coı	ıcentrat	ions in μg/	m3										
												Inde	oor Air											
		IA0704			IA0705]	A070	6]	A070	7			IA0708]	IA070	9	
Analyte Name		er Clean R	oom		er Clean Ro	oom		Former Ma	nufac					ructio	n Area			er Clean Ro	oom			eak Ro		
	_	3/16/10	T		03/16/10			03/16/10		- /	19/12		03/16/10		. ,	19/12		03/16/10	·		03/16/10	T	- /	/19/12
		Qualifier	Bias		Qualifier	Bias		Qualifier	Bias				Qualifier	Bias		Qualifier			Bias		Qualifier	Bias		Qualifier
Tetrachloroethene (PCE)	1.4			<1.1	U		<1.1	U		<1.1	U	<1.1	U		<1.1	U	< 0.96	UJ	L	<1.1	U		<1.1	U
Trichloroethene (TCE)	1.0			< 0.17	U		0.50			0.68		0.62			0.76		< 0.15	UJ	L	< 0.18	U		< 0.17	U
cis-1,2-Dichloroethene (cDCE)	<0.65	U		< 0.64	U		< 0.67	U		< 0.66	U	< 0.64	U		< 0.67	U	< 0.56	UJ	L	< 0.67	U		< 0.64	U
1,1-Dichloroethene (DCE)	<0.65	U		< 0.64	U		< 0.67	U		< 0.66	U	< 0.64	U		< 0.67	U	< 0.56	UJ	L	< 0.67	U		< 0.64	U
Vinyl chloride (VC)	< 0.042	U		< 0.041	U		0.083	EB	Н	0.12		0.28			0.43		< 0.036	UJ	L	0.31			0.31	
1,1,1-Trichloroethane (TCA)	<0.89	U		<0.88	U		< 0.92	U		< 0.90	U	<0.88	U		< 0.92	U	< 0.77	UJ	L	< 0.92	U		<0.88	U
Carbon tetrachloride	0.27			0.42			0.40			0.75		0.42			0.72		0.41	J	L	0.44			0.76	
Methylene chloride (MeCI)	<1.1	U		<1.1	U		<1.2	U		<1.2	U	<1.1	U		<1.2	U	4.8	J	L	<1.2	U		<1.1	U
Chlorobenzene	< 0.76	U		< 0.74	U		< 0.77	U		< 0.76	U	< 0.74	U		< 0.77	U	< 0.65	UJ	L	< 0.77	U		< 0.74	U
1,2,4-Trichlorobenzene	<6.1	U		<6.0	U		<6.2	U		<6.2	U	<6.0	U		<6.2	U	<5.2	UJ	L	<6.2	U		<6.0	U
1,2-Dichlorobenzene	< 0.99	U		< 0.97	U		<1.0	U		<1.0	U	< 0.97	U		<1.0	U	< 0.85	UJ	L	<1.0	U		< 0.97	U
1,3-Dichlorobenzene	<0.99	U		< 0.97	U		<1.0	U		<1.0	U	< 0.97	U		<1.0	U	< 0.85	UJ	L	<1.0	U		< 0.97	U
1,4-Dichlorobenzene	< 0.99	U		< 0.97	U		<1.0	U		<1.0	U	< 0.97	U		<1.0	U	< 0.85	UJ	L	<1.0	U		< 0.97	U
Acetone	6.3	EB	Н	3.7	EB	Н	34			11		55			33		12	J	L	12			7.5	
Benzene	< 0.52	U		< 0.51	U		< 0.54	U		0.62		< 0.51	U		< 0.54	U	0.53	J	L	< 0.54	U		< 0.52	U
Ethylbenzene	< 0.71	U		< 0.70	U		< 0.73	U		< 0.72	U	3.8			< 0.73	U	< 0.61	UJ	L	< 0.73	U		< 0.70	U
m,p-Xylene	< 0.71	U		< 0.70	U		< 0.73	U		< 0.72	U	11			0.77		0.65	J	L	1.4			< 0.70	U
o-Xylene	< 0.71	U		< 0.70	U		< 0.73	U		< 0.72	U	2.2			< 0.73	U	< 0.61	UJ	L	< 0.73	U		< 0.70	U
Toluene	1.6			1.3			1.8			3.3		7.3			2.0		2.5	J	L	3.5			0.80	
Trichlorofluoromethane (Freon 11)	2.3			1.8			19			19		5.0			2.0		1.7	J	L	6.7			1.8	
Dichlorodifluoromethane (Freon 12)	2.3			2.2			2.4			2.8		3.0			2.7		2.2	J	L	2.9			2.6	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<1.2	U		<1.2	U		11			9.9		11			12		<1.1	UJ	L	<1.3	U		1.7	

Notes:

- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel on the dates indicated. Samples were collected using 6-liter Summa® canisters equipped with 8-hour flow controllers. Refer to figures for sample locations.
- 2. Sample analysis was completed by Eurofins Air Toxics, Inc. (EATI) of Folsom, California using United States Environmental Protection Agency (USEPA) Method TO-15 (Hi/Lo). Trichloroethene, vinyl chloride, and carbon tetrachloride were analyzed in Selective Ion Monitoring (SIM) mode.
- 3. "<" indicates a non-detection at the reporting limit shown.
- 4. New Environmental Horizons, Inc. (NEH) performed an independent validation of the 2010 analytical data, as described in their <u>Data Usability Report</u>, dated April 12, 2010. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data:
- "EB" The associated numerical value is biased due to the presence of the analyte in the equipment blank sample FB01, which was collected March 16, 2010.
- "J" The associated numerical value is an estimated quantity due to quality control criteria exceedance(s). The value is usable for project objectives with the documentation of the uncertainty, bias, and/or imprecision.
- "U" The compound was analyzed for, but was not detected. The associated numerical value is the sample-specific reporting limit. The value is usable for project decisions as a non-detect result at the reporting limit.
- "UJ" The non-detect is estimated at the $\,$ practical quantitation limit (PQL).
- "H" High bias.
- "L" Low bias.
- 5. **Bold** values indicate the analyte was detected above reporting limits.

S:\(CONDATA\(2900\(s\)\(2999\).00\(\Work\\Master Tables\(320B\) IA TA Tables.xls

TABLE 1 Building 320B Indoor Air Samping Results Report of Findings – Additional Investigations Building 320B IBM East Fishkill Facility

Hopewell Junction, New York

	1									Conce	entrations	in μg/m3	3								
											Indoor A	ir									
				IA07	10			IA07	10 Dup.	IA	0730	IA(0731	IA	0732	IAC	733	IA	0734	IA0	735
Analyte Name				Clea	ın Room Bı	eak Area	ı			Clear	ı Room		n Room e Area)	Clea	n Room		Room Area)		n Room e Area)	Clean	Room
	0	03/16/10		04/	19/12	11/2	5/2013	11/2	5/2013	11/2	5/2013	11/2	5/2013	11/2	5/2013	11/25	5/2013	11/2	5/2013	11/25	5/2013
	Result	Qualifier	Bias	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene (PCE)	<1.1	U		<1.2	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U
Trichloroethene (TCE)	<0.18	U		< 0.18	U	< 0.17	U	< 0.17	U	< 0.18	U	< 0.17	U	< 0.18	U	< 0.17	U	<0.18	U	<0.18	U
cis-1,2-Dichloroethene (cDCE)	< 0.67	U		<0.68	U	< 0.63	U	< 0.64	U	< 0.65	U	< 0.64	U	< 0.66	U	< 0.64	U	< 0.65	U	< 0.65	U
1,1-Dichloroethene (DCE)	< 0.67	U		<0.68	U	< 0.63	U	< 0.64	U	< 0.65	U	< 0.64	U	< 0.66	U	< 0.64	U	< 0.65	U	< 0.65	U
Vinyl chloride (VC)	1.6			1.1		0.68		0.55		0.55		0.61		0.57		0.55		0.42		0.53	
1,1,1-Trichloroethane (TCA)	< 0.92	U		< 0.94	U	< 0.86	U	<0.88	U	< 0.9	U	<0.88	U	< 0.9	U	<0.88	U	< 0.89	U	< 0.89	U
Carbon tetrachloride	0.44			0.70		0.92		0.54		0.53		0.50		0.51		0.44		0.54		0.47	
Methylene chloride (MeCI)	<1.2	U		<1.2	U	1.5		<1.1	U	<1.1	U	<1.1	U	<1.2	U	<1.1	U	<1.1	U	<1.1	U
Chlorobenzene	< 0.77	U		< 0.79	U	< 0.73	U	< 0.74	U	< 0.76	U	< 0.74	U	< 0.76	U	< 0.74	U	< 0.75	U	< 0.76	U
1,2,4-Trichlorobenzene	<6.2	U		<6.4	U	<5.9	U	<6	U	<6.1	U	<6	U	<6.2	U	<6	U	<6	U	<6.1	U
1,2-Dichlorobenzene	<1.0	U		<1.0	U	< 0.95	U	< 0.97	U	< 0.99	U	< 0.97	U	<1	U	< 0.97	U	<0.98	U	< 0.99	U
1,3-Dichlorobenzene	<1.0	U		<1.0	U	< 0.95	U	< 0.97	U	< 0.99	U	< 0.97	U	<1	U	< 0.97	U	<0.98	U	< 0.99	U
1,4-Dichlorobenzene	<1.0	U		<1.0	U	< 0.95	U	< 0.97	U	< 0.99	U	< 0.97	U	<1	U	< 0.97	U	<0.98	U	< 0.99	U
Acetone	9.5	EB	Н	7.1		5.1		11		3.7		6.0		5.9	·	5.4		4.9		4.8	

U

U

< 0.53

< 0.72

< 0.72

< 0.72

< 0.62

0.98

1.9

<1.3

< 0.52

< 0.7

< 0.7

< 0.7

< 0.61

1.1

2.0

<1.2

Notes:

< 0.54

< 0.73

< 0.73

< 0.73

10

2.0

2.3

<1.3

U

U

U

Benzene

Ethylbenzene

m,p-Xylene o-Xylene

Toluene

Trichlorofluoromethane (Freon 11)

Dichlorodifluoromethane (Freon 12)

1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel on the dates indicated. Samples were collected using 6-liter Summa® canisters equipped with 8-hour flow controllers. Refer to figures for sample locations.

U

U

< 0.51

< 0.7

< 0.7

< 0.7

< 0.61

1.0

2.0

<1.2

IJ

U

U

U

< 0.53

< 0.72

< 0.72

< 0.72

1.2

0.99

2.1

<1.3

U

U

U

< 0.52

< 0.7

< 0.7

< 0.7

< 0.61

1.1

2.0

1.2

U

U

U

U

0.69

< 0.71

< 0.71

< 0.71

1.2

1.1

2.1

1.4

U

U

< 0.52

< 0.71

< 0.71

< 0.71

< 0.62

1.0

2.0

<1.2

IJ

U

- 2. Sample analysis was completed by Eurofins Air Toxics, Inc. (EATI) of Folsom, California using United States Environmental Protection Agency (USEPA) Method TO-15 (Hi/Lo). Trichloroethene, vinyl chloride, and carbon tetrachloride were analyzed in Selective Ion Monitoring (SIM) mode.
- 3. "<" indicates a non-detection at the reporting limit shown.

< 0.55

< 0.75

< 0.75

< 0.75

< 0.65

1.4

2.6

<1.3

U

U

U

0.60

< 0.69

0.70

< 0.69

4.8

1.0

2.1

<1.2

U

- 4. New Environmental Horizons, Inc. (NEH) performed an independent validation of the 2010 analytical data, as described in their <u>Data Usability Report</u>, dated April 12, 2010. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data:
- "EB" The associated numerical value is biased due to the presence of the analyte in the equipment blank sample FB01, which was collected March 16, 2010.
- "J" The associated numerical value is an estimated quantity due to quality control criteria exceedance(s). The value is usable for project objectives with the documentation of the uncertainty, bias, and/or imprecision.
- "U" The compound was analyzed for, but was not detected. The associated numerical value is the sample-specific reporting limit. The value is usable for project decisions as a non-detect result at the reporting limit.
- "UJ" The non-detect is estimated at the practical quantitation limit (PQL).
- "H" High bias.
- "L" Low bias.
- 5. **Bold** values indicate the analyte was detected above reporting limits.

TABLE 2 C4 Clean Room Targeted Air Sampling Results Report of Findings – Additional Investigations Building 320B IBM East Fishkill Facility Hopewell Junction, New York

								Co	ncentrat	ions in μg,	/m³							
								,	Targeted	d Indoor Ai	r							
	TA	1001	TA	1002	TA	1003	TA	1004	TA	1005	TA	1006	TA	1007	TA	1008	TA	1009
Analyte Name	HVAC 3	04 Return		ing Room Air Chase	Gowni	ing Room		Room Core ntake		loom Near ore 9		Room Core ntake		oom Near ore 7		loom Core ntake		toom Near ore 3
	4/19	9/2012	4/19	9/2012	4/19	9/2012	4/1	9/2012	4/19	9/2012	4/19	9/2012	4/19	9/2012	4/19	9/2012	4/19	9/2012
	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene (PCE)	<1.3	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U
Trichloroethene (TCE)	< 0.20	U	0.66		0.62		< 0.17	U	< 0.17	U	< 0.18	U	< 0.18	U	< 0.18	U	<0.18	U
cis-1,2-Dichloroethene (cDCE)	< 0.75	U	< 0.64	U	< 0.62	U	< 0.63	U	< 0.63	U	< 0.66	U	< 0.67	U	< 0.65	U	< 0.65	U
1,1-Dichloroethene (DCE)	< 0.75	U	< 0.64	U	< 0.62	U	< 0.63	U	< 0.63	U	< 0.66	U	< 0.67	U	< 0.65	U	< 0.65	U
Vinyl chloride (VC)	< 0.048	U	< 0.041	U	< 0.04	U	< 0.04	U	< 0.041	U	< 0.042	U	< 0.043	U	< 0.042	U	< 0.042	U
1,1,1-Trichloroethane (TCA)	<1.0	U	<0.88	U	< 0.86	U	< 0.86	U	< 0.87	U	< 0.90	U	< 0.92	U	< 0.89	U	< 0.90	U
Carbon tetrachloride	0.74		0.78		0.72		0.76		0.77		0.78		0.81		0.80		0.66	
Methylene chloride (MeCI)	<1.3	U	<1.1	U	<1.1	U	<1.1	U	<1.1	U	<1.2	U	<1.2	U	<1.1	U	<1.1	U
Chlorobenzene	< 0.87	U	< 0.74	U	< 0.72	U	< 0.73	U	< 0.74	U	< 0.76	U	< 0.78	U	< 0.75	U	< 0.76	U
1,2,4-Trichlorobenzene	<7.0	U	<6.0	U	<5.8	U	< 5.9	U	< 5.9	U	<6.2	U	<6.3	U	<6.0	U	<6.1	U
1,2-Dichlorobenzene	<1.1	U	< 0.97	U	< 0.94	U	< 0.95	U	< 0.96	U	<1.0	U	<1.0	U	< 0.98	U	< 0.99	U
1,3-Dichlorobenzene	<1.1	U	< 0.97	U	< 0.94	U	< 0.95	U	< 0.96	U	<1.0	U	<1.0	U	< 0.98	U	< 0.99	U
1,4-Dichlorobenzene	<1.1	U	< 0.97	U	< 0.94	U	< 0.95	U	< 0.96	U	<1.0	U	<1.0	U	< 0.98	U	< 0.99	U
Acetone	10		18		19		7.2		7.8		23		9.1		5.4		5.2	
Benzene	0.88		0.55		0.55		< 0.50	U	< 0.51	U	< 0.53	U	< 0.54	U	< 0.52	U	< 0.53	U
Ethylbenzene	< 0.82	U	< 0.70	U	< 0.68	U	< 0.69	U	< 0.69	U	< 0.72	U	< 0.73	U	< 0.71	U	< 0.72	U
m,p-Xylene	0.97		0.75		0.80		< 0.69	U	< 0.69	U	< 0.72	U	< 0.73	U	< 0.71	U	< 0.72	U
o-Xylene	< 0.82	U	< 0.70	U	< 0.68	U	< 0.69	U	< 0.69	U	< 0.72	U	< 0.73	U	< 0.71	U	< 0.72	U
Toluene	1.6		1.3		1.5		0.8		0.81		0.80		0.70		0.75		0.94	
Trichlorofluoromethane (Freon 11)	2.1		1.5		1.5		1.3		1.4		1.4		1.4		1.5		1.5	
Dichlorodifluoromethane (Freon 12)	2.8		2.6		2.6		2.6		2.7		2.8		2.8		2.9		3.0	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	2.2		19		19		<1.2	U	<1.2	U	<1.3	U	<1.3	U	<1.2	U	<1.3	U

Notes:

- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel on the dates indicated. Samples were collected using 6-Liter Summa® canisters equipped with 1-hour flow controllers.
- 2. Sample analysis was completed by Eurofins Air Toxics, Inc. (EATI) of Folsom, California using United States Environmental Protection Agency (USEPA) Method TO-15 (Hi/Lo). Trichloroethene, vinyl chloride, and carbon tetrachloride were analyzed in Selective Ion Monitoring (SIM) mode.
- 3. "<" indicates a non-detection at the reporting limit shown.
- "U" indicates the compound was analyzed for, but not detected. The associated numerical value is the sample-specific reporting limit.
- 4. **Bold** values indicate the analyte was detected above reporting limits.

TABLE 3 Portable GC/MS Screening Results Report of Findings - Additional Investigations Building 320B IBM East Fishkill Facility Hopewell Junction, New York

Sample Location										
Location	Sample	Collection		PCE	TCE	DCA	DCE	cDCE	tDCE	VC
	Type	Date	Time	Clean Room						
Indoor Air Sa	amples			Clean Room						
	HAPSITE - Indoor Air	2/13/2013	09:51	< 0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
IA0710	SUMMA Grab - Indoor Air	5/1/2013 5/1/2013	10:50 10:40	<3.4 <1.0	<2.7 <0.16	<2.0	<2.0 <0.60	<2.0 <0.6	<2.0	<1.3 1.0
IA0720	HAPSITE - Indoor Air	2/13/2013	09:59	<0.68	< 0.54	< 0.40	< 0.40	<0.40	< 0.40	<2.6
IA0721 IA0722	HAPSITE Indoor Air	2/13/2013	10:59	< 0.68	< 0.54	< 0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6 <2.6
IA0722 IA0723	HAPSITE - Indoor Air HAPSITE - Indoor Air	2/13/2013 2/13/2013	11:36 12:09	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40	<0.40	<0.40	<2.6
IA0724	HAPSITE - Indoor Air	2/13/2013	13:50	< 0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
IA0725 IA0726	HAPSITE - Indoor Air HAPSITE - Indoor Air	2/13/2013 2/13/2013	13:58 14:33	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6 <2.6
IA0727	HAPSITE - Indoor Air	2/13/2013	15:06	<0.68	< 0.54	< 0.40	< 0.40	<0.40	<0.40	<2.6
IA0728	HAPSITE - Indoor Air	2/13/2013	15:15	<0.68	< 0.54	< 0.40	< 0.40	< 0.40	<0.40	<2.6
IA0729 Targeted Air	HAPSITE - Indoor Air	2/13/2013	15:23	<0.68	<0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
TA-1038	HAPSITE - HVAC Ceiling Vent	2/13/2013	10:07	< 0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
TA-1039 TA-1040	HAPSITE - Raised Floor HAPSITE - Machine (APLY2)	2/13/2013 2/13/2013	10:16 10:25	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6 <2.6
TA-1040	HAPSITE - Machine (AFET2)	2/13/2013	10:33	<0.68	< 0.54	<0.40	<0.40	<0.40	<0.40	<2.6
TA-1042 TA-1043	HAPSITE - Machine (SPT-01)	2/13/2013	10:41	<0.68	< 0.54	< 0.40	< 0.40	< 0.40	<0.40	<2.6 <2.6
TA-1043 TA-1044	HAPSITE - Machine (PBO01) HAPSITE - Machine (SPT-01)	2/13/2013 2/13/2013	10:51 11:08	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6
TA-1045	HAPSITE - Calibration Canisters	2/13/2013	11:19	<0.68	< 0.54	< 0.40	0.52	< 0.40	<0.40	<2.6
TA-1046 TA-1047	HAPSITE - Disc/Wafer Storage HAPSITE - Fire Extinguisher	2/13/2013 2/13/2013	11:27 11:45	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6 <2.6
TA-1048	HAPSITE - Fire Extinguisher	2/13/2013	11:53	< 0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
TA-1049 TA-1050	HAPSITE - Plating Area HAPSITE - PGMEA Bottle	2/13/2013 2/13/2013	12:20 13:41	<0.68 <0.68	<0.54 <0.54	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<2.6 <2.6
TA-1050	HAPSITE - Plating Reservoir	2/13/2013	13:33	<0.68	< 0.54	<0.40	<0.40	<0.40	< 0.40	<2.6
TA-1052	HAPSITE - Plating Reservoir	2/13/2013	14:48	< 0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
	SUMMA Grab - Plating Reservoir HAPSITE - Ceiling Above IA0710	2/13/2013 2/13/2013	14:30 15:32	<6.0 <0.68	<0.96 <0.54	<0.40	<3.5 <0.40	<3.5 <0.40	<0.40	<0.23 <2.6
TA-1053	HAPSITE - Ceiling Above IA0710 HAPSITE - Ceiling Above IA0710	5/1/2013	11:08	<3.4	<2.7	<2.0	<0.40	<2.0	<0.40	<1.3
TA-1054	HAPSITE - Raised Floor	2/13/2013	15:40	<0.68	< 0.54	< 0.40	<0.40	<0.40	<0.40	<2.6
	HAPSITE - Raised Floor HAPSITE - Manufactured Product Storage Boxes	5/1/2013 2/13/2013	11:00 15:54	<3.4 <0.68	<2.7 <0.54	<2.0 <0.40	<2.0 <0.40	<2.0 <0.40	<2.0 <0.40	<1.3 <2.6
TA-1055	SUMMA Grab - Manufactured Product Storage Boxes	2/13/2013	16:00	<1.2	<0.20	_	<0.40	<0.40	_	0.46
TA-1056	HAPSITE - HVAC Ceiling Vent	5/1/2013	11:16	<3.4	<2.7	<2.0	<2.0	<2.0	<2.0	<1.3
			C.	4 Expansion A	rea					
Indoor Air Sa	amples HAPSITE - Indoor Air	2/12/2013	11:47	<0.68	< 0.54	< 0.40	< 0.40	< 0.40	< 0.40	<2.6
IA0708	HAPSITE - Indoor Air	4/30/2013	16:15	<3.4	<2.7	<2.0	<2.0	<2.0	<2.0	<1.3
	SUMMA Grab - Indoor Air	4/30/2013	16:36	<1.0	<0.16		<0.58	< 0.58		0.45
	HAPSITE - Indoor Air HAPSITE - Indoor Air	2/12/2013 4/30/2013	11:12 14:56	<0.68	<0.54 <2.7	<0.40 <2.0	0.44 <2.0	<0.40 <2.0	<0.40 <2.0	<2.6 <1.3
IA0713	HAPSITE - Indoor Air	4/30/2013	20:13	<3.4	<2.7	<2.0	<2.0	<2.0	<2.0	<1.3
	HAPSITE - Indoor Air HAPSITE - Indoor Air	5/1/2013 2/12/2013	12:47 11:26	<3.4 <0.68	<2.7 <0.54	<2.0 <0.40	<2.0 <0.40	<2.0 <0.40	<2.0 <0.40	<1.3 <2.6
IA0714	HAPSITE - Indoor Air	4/30/2013	14:46	<3.4	<2.7	<2.0	<2.0	<2.0	<2.0	<1.3
	HAPSITE - Indoor Air	2/12/2013	11:56	<0.68	< 0.54	< 0.40	0.63	< 0.40	< 0.40	<2.6
IA0715	HAPSITE - Indoor Air HAPSITE - Indoor Air	4/30/2013 4/30/2013	11:15 20:30	<3.4 <3.4	<2.7 <2.7	<2.0 <2.0	2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<1.3 <1.3
	HAPSITE - Indoor Air	5/1/2013	12:55	<3.4	<2.7	<2.0	<2.0	<2.0	<2.0	<1.3
				< 0.68	< 0.54	< 0.40	0.87	< 0.40	< 0.40	<2.6
	HAPSITE Indoor Air	2/12/2013	12:06		-27	-2.0	-2.0	-2.0	-20	-1.2
IA0716	HAPSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Indoor Air	2/12/2013 4/30/2013 4/30/2013	12:06 10:25 20:41	<3.4 <3.4	<2.7 <2.7	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<1.3 <1.3
IA0716	HAPSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Indoor Air	4/30/2013 4/30/2013 5/1/2013	10:25 20:41 13:04	<3.4 <3.4 <3.4	<2.7 <2.7	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<1.3 <1.3
IA0716 IA0717	HAPSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Indoor Air	4/30/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17	<3.4 <3.4 <3.4 <0.68	<2.7 <2.7 <0.54	<2.0 <2.0 <0.40	<2.0 <2.0 <0.40	<2.0 <2.0 <0.40	<2.0 <2.0 <0.40	<1.3 <1.3 <2.6
	HAPSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Indoor Air	4/30/2013 4/30/2013 5/1/2013	10:25 20:41 13:04	<3.4 <3.4 <3.4	<2.7 <2.7	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<1.3 <1.3
IA0717 IA0718 IA0719	HAPSITE - Indoor Air	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40	<3.4 <3.4 <3.4 <0.68 <3.4	<2.7 <2.7 <0.54 <2.7	<2.0 <2.0 <0.40 <2.0	<2.0 <2.0 <0.40 <2.0	<2.0 <2.0 <0.40 <2.0	<2.0 <2.0 <0.40 <2.0	<1.3 <1.3 <2.6 <1.3
IA0717 IA0718 IA0719	HAPSITE - Indoor Air	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15	<3.4 <3.4 <3.4 <0.68 <3.4 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40	<1.3 <1.3 <2.6 <1.3 <2.6 <2.6
IA0717 IA0718 IA0719	HAPSITE - Indoor Air FAPSITE - Indoor Air HAPSITE - Endoor Air HAPSITE - Endoor Air	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28	<3.4 <3.4 <3.4 <0.68 <3.4 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40	<1.3 <1.3 <2.6 <1.3 <2.6
IA0717 IA0718 IA0719	HAPSITE - Indoor Air Famples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05	<3.4 <3.4 <3.4 <3.6 <0.68 <3.4 <0.68 <3.6 <3.6 <1.68 <1.68 <1.68 <1.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <4.6 <1.3 <4.6 <1.3
IA0717 IA0718 IA0719 Targeted Air	HAPSITE - Indoor Air Famples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07	<3.4 <3.4 <3.4 <0.68 <3.4 <0.68 <3.68 <0.68 <1.1 1.1 1.1	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.66 <0.68 <2.0 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <1.3
IA0717 IA0718 IA0719 Targeted Air	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05	<3.4 <3.4 <3.4 <3.6 <0.68 <3.4 <0.68 <3.6 <3.6 <1.68 <1.68 <1.68 <1.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <4.6 <1.3 <4.6 <1.3
IA0717 IA0718 IA0719 Targeted Air	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30	<3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 0.71 <2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 <1.3 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3
IA0717 IA0718 IA0719 Targeted Air TA-1012	HAPSITE - Indoor Air FARSITE - Indoor Air HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:09 15:30 20:57	<3.4 <3.4 <3.4 <3.4 <0.68 <3.4 <0.68 <0.68 <1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <1.54 <1.54 83 24 97 91 86 22	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 - <2.0 <2.0 <2.0 <0.40 - <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <2.6
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016	HAPSITE - Indoor Air HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14	<3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <1.1 3.2 11 11 10 1.7 <3.4 <3.4 <3.4 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.040 < <2.0 <4.040 < <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.040 <4.0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <2.6
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29	<3.4 <3.4 <3.4 <3.68 <0.68 <0.68 <1.1 1.1 1.1 1.7 <1.3.4 <1.4 <1.4 <1.4 <1.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.71 <2.0 <2.0 <2.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Celanout HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58	<3.4 <3.4 <3.4 <3.68 <3.68 <3.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.5	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <2.0 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.71 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Coerrete Cut HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Concrete Core	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:20 13:21 13:24 14:41 14:50 14:58 21:25	<3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <11 11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <4.0 <4.0 40.40 <4.0 40.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <4.0 40.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Celanout HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58	<3.4 <3.4 <3.4 <3.68 <3.68 <3.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.555 <0.5	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <2.0 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.71 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
TA-1014 TA-1016 TA-1019 TA-1010 TA-1012 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 < <4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.040 <2.0 <2.0 <2.0 <4.040 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1014 TA-1016 TA-1019 TA-1010 TA-1012 TA-1016 TA-1018 TA-1020 TA-1021 TA-1022 TA-1023	HAPSITE - Indoor Air **Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Cleanout HAPSITE - Trench Sump HAPSITE - Trench Core HAPSITE - Trench Sump	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1014 TA-1016 TA-1018 TA-1019 TA-1014 TA-1016 TA-1018 TA-1020 TA-1021 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench Sump	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46	<3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <2.7 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1014 TA-1019 TA-1014 TA-1019 TA-1019 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1026	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56	<3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1014 TA-1016 TA-1018 TA-1019 TA-1014 TA-1016 TA-1018 TA-1020 TA-1021 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench Sump	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46	<3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <2.7 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1014 TA-1016 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1033 TA-1037	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:36 15:46 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1033 TA-1037 Targeted Air	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1014 TA-1016 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1033 TA-1037	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:36 15:46 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554 <0.554	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 - <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1010	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:20 13:20 13:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <11 10 1.7 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1019 TA-1020 TA-1021 TA-1022 TA-1022 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut HAPSITE - Trench	4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.68 <0.68 <0.68 8.1 3.2 11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <-2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <	<1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1010	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HAPSITE - Trench Crack HAPSITE - Trench Crack	4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.4 <3.68 <0.68 8.1 3.2 11 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HAPSITE - Trench Crack HAPSITE - Trench Crack HAPSITE - Trench Cleanout HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 20:06 12:39 13:00 13:19 15:20 20:49	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <11 10 17 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 < <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 0.71 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1011 TA-1013	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HAPSITE - Trench Crack HAPSITE - Trench Crack	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.4 <3.68 <0.68 8.1 3.2 11 11 10 1.7 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1016 TA-1018 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1025 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Trench Crack HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1011 TA-1013	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Cut HAPSITE - Trench SUMP HAPSITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1016 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027 TA-1028	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Trench Crack HAPSITE - Cleanout	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1016 TA-1018 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1025 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027	HAPSITE - Indoor Air HAPSITE - Expansion Joint Summa Grab - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 15:38 11:00 15:19 15:28 15:36 15:46 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 17:15 14:38	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <4.00 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <0.40 <2.0 <0.40 <2.0 <0.40 <0.40 0.56 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1016 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027 TA-1028	HAPSITE - Indoor Air HAPSITE - Expansion Joint Summa Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Trench HAPSITE - Trench HAPSITE - Trench	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1016 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027 TA-1028	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Cleanout HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Floor Penetration HASPITE - Floor Penetration	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 14:21	Continue	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1016 TA-1018 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1025 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027 TA-1028 TA-1029	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HAPSITE - Construction Joint HAPSITE - Construction Joint HAPSITE - Construction Joint HAPSITE - Floor Penetration HAPSITE - Floor Penetration HAPSITE - Floor Penetration	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:41	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <3.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <2.7 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1016 TA-1018 TA-1016 TA-1018 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1025 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1027 TA-1028 TA-1029	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Cleanout HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Construction Joint HASPITE - Floor Penetration HASPITE - Floor Penetration	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 2/12/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 14:21 19:41 16:46	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.408 <0.68 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
TA-1012 TA-1014 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1030	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint SUMMA Grab - Construction Joint HAPSITE - Construction Joint HAPSITE - Construction Joint HAPSITE - Floor Penetration HAPSITE - Construction Joint	4/30/2013 4/30/2013 5/1/2013 5/1/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 17:15 14:38 19:57 16:36 14:21 19:41	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 < <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 < <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
IA0717 IA0718 IA0718 IA0719 Targeted Air TA-1012 TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1017 TA-1017 TA-1027 TA-1028 TA-1029 TA-1030 TA-1031	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Cut HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Construction Joint	4/30/2013 4/30/2013 5/1/2013 5/1/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 14:21 19:41 16:46 14:30 19:49 17:00	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <11 10 1.7 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
TA-1012 TA-1014 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1030	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint SUMMA Grab - Construction Joint HAPSITE - Construction Joint HAPSITE - Construction Joint HAPSITE - Floor Penetration HAPSITE - Construction Joint	4/30/2013 4/30/2013 5/1/2013 5/1/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 17:15 14:38 19:57 16:36 14:21 19:41	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.55 <0.54 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.5	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 < <2.0 <2.0 <0.40 <0.40 < <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 < <0.40 <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 < <0.40 <	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
IA0717 IA0718 IA0719 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1029 TA-1030 TA-1031	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered)	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:41 16:46 14:21 19:41 16:46 14:30 19:49 17:00 13:30 19:30 12:16	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <3.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.56 <0.56 <0.57 <0.57 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.408 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<pre><1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6</pre>
IA0717 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1011 TA-1013 TA-1017 TA-1017 TA-1017 TA-1027 TA-1028 TA-1030 TA-1031 TA-1031	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint HAPSITE - Cleanout (Uncovered)	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 5/1/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:58 21:25 15:08 11:00 15:19 15:28 15:06 17:17 18:05 11:37 15:50 20:66 17:17 18:05 11:37 15:50 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 16:25 17:15 14:38 19:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49	Continue	<2.7 <2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <1.54 <0.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.54 <1.5	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0 <2.0 <2.0 <0.40 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <4.040 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<pre><1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6</pre>
IA0717 IA0718 IA0719 IA0718 IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1033 TA-1037 Targeted Air TA-1010 TA-1011 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1029 TA-1030 TA-1031	HAPSITE - Indoor Air Samples in Areas without Floor Sealant HAPSITE - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Concrete Core HAPSITE - Trench HASPITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered) HAPSITE - Cleanout (Uncovered)	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:58 21:25 15:08 11:00 15:19 15:28 15:06 17:17 18:05 11:37 15:50 20:66 17:17 18:05 11:37 15:50 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 16:25 17:15 14:38 19:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49 17:00 13:30 13:49	Continue	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 <3.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.55 <0.55 <0.55 <0.56 <0.56 <0.57 <0.57 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.58 <0.	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 <0.40 <-2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.408 <0.68 <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	<2.0	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<pre><1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <1.3 <2.6 <2.6 <1.3 <2.6 <2.6 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6</pre>
IA0717 IA0718 IA0719 Targeted Air IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1029 TA-1030 TA-1031 TA-1031	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint HAPSITE - Cleanout (Uncovered)	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 5/1/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 17:17 18:05 11:37 15:50 20:06 17:37 15:50 20:49 14:31 16:06 11:25 16:16 16:25 17:15 14:38 19:57 16:36 14:21 19:41 16:46 14:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:49 17:00 13:30 19:30 19:30 19:30 19:30 19:30 19:30	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0	<2.0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6
IA0717 IA0718 IA0719 Targeted Air IA0719 Targeted Air TA-1012 TA-1014 TA-1016 TA-1018 TA-1019 TA-1020 TA-1021 TA-1022 TA-1023 TA-1024 TA-1025 TA-1026 TA-1037 Targeted Air TA-1010 TA-1011 TA-1013 TA-1015 TA-1017 TA-1027 TA-1028 TA-1029 TA-1030 TA-1031 TA-1031	HAPSITE - Indoor Air HAPSITE - Expansion Joint SUMMA Grab - Expansion Joint HAPSITE - Cleanout HAPSITE - Concrete Core HAPSITE - Trench Sump HAPSITE - Trench Sump HAPSITE - Trench HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Cleanout HAPSITE - Construction Joint HAPSITE - Cleanout (Uncovered)	4/30/2013 4/30/2013 5/1/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 2/12/2013 4/30/2013 4/30/2013 4/30/2013 5/1/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 2/12/2013 4/30/2013 2/12/2013	10:25 20:41 13:04 12:17 10:40 12:28 18:15 12:49 17:30 13:05 21:07 13:20 13:09 15:30 20:57 13:14 13:29 14:41 14:50 14:58 21:25 15:08 11:00 15:19 15:28 15:36 15:46 15:56 17:17 18:05 11:37 15:50 20:06 12:39 13:00 13:19 15:20 20:49 14:31 16:06 11:25 16:16 16:25 17:17 18:05	<3.4 <3.4 <3.4 <3.4 <3.4 <3.4 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68 <0.68	<2.7 <2.7 <0.54 <2.7 <0.54 <2.7 <0.54 <0.54 83 24 97 91 86 22 20 <2.7 49 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.55 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54 <0.54	<2.0 <2.0 <2.0 <2.0 <0.40 <2.0 <0.40 <0.40 < <2.0 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.	<2.0 <2.0 <2.0 <0.40 <2.040 <2.040 <0.40 <0.40 <0.40 <0.68 <2.0 <2.0 <2.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.4	<2.0	<2.0	<1.3 <1.3 <1.3 <2.6 <1.3 <2.6 <1.3 <2.6 0.18 <1.3 <1.3 <1.3 <1.3 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6

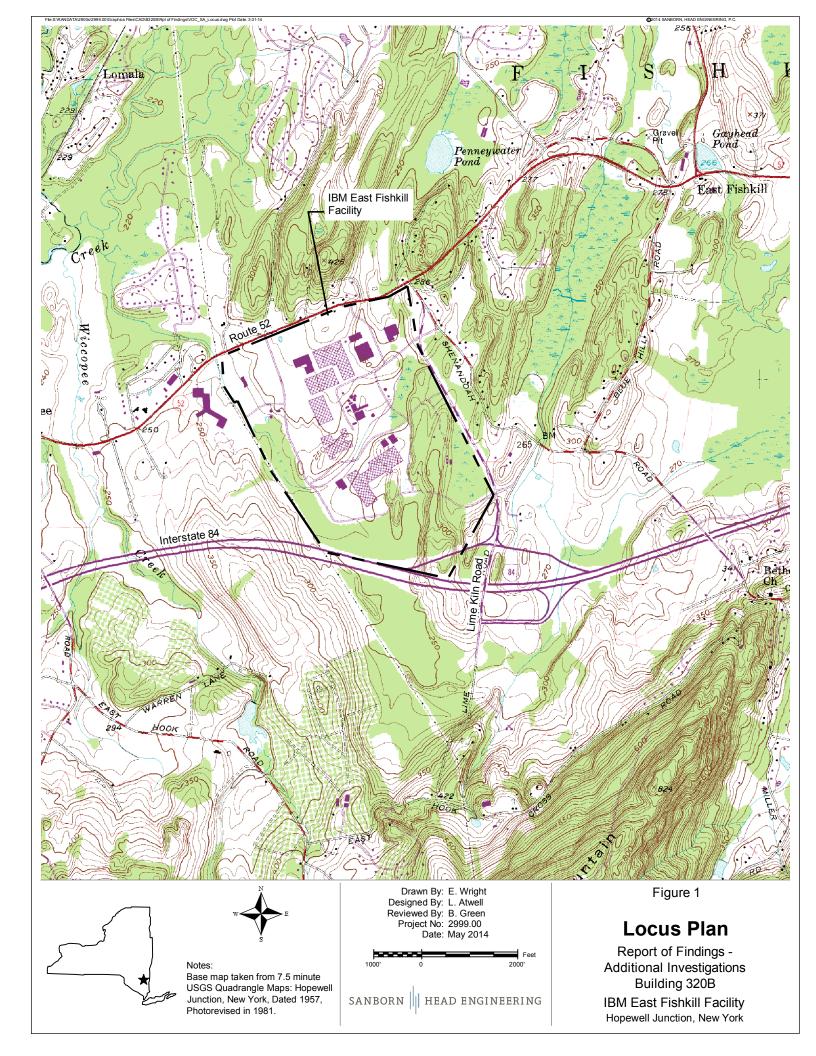
TABLE 3

Portable GC/MS Screening Results Report of Findings - Additional Investigations Building 320B IBM East Fishkill Facility Hopewell Junction, New York

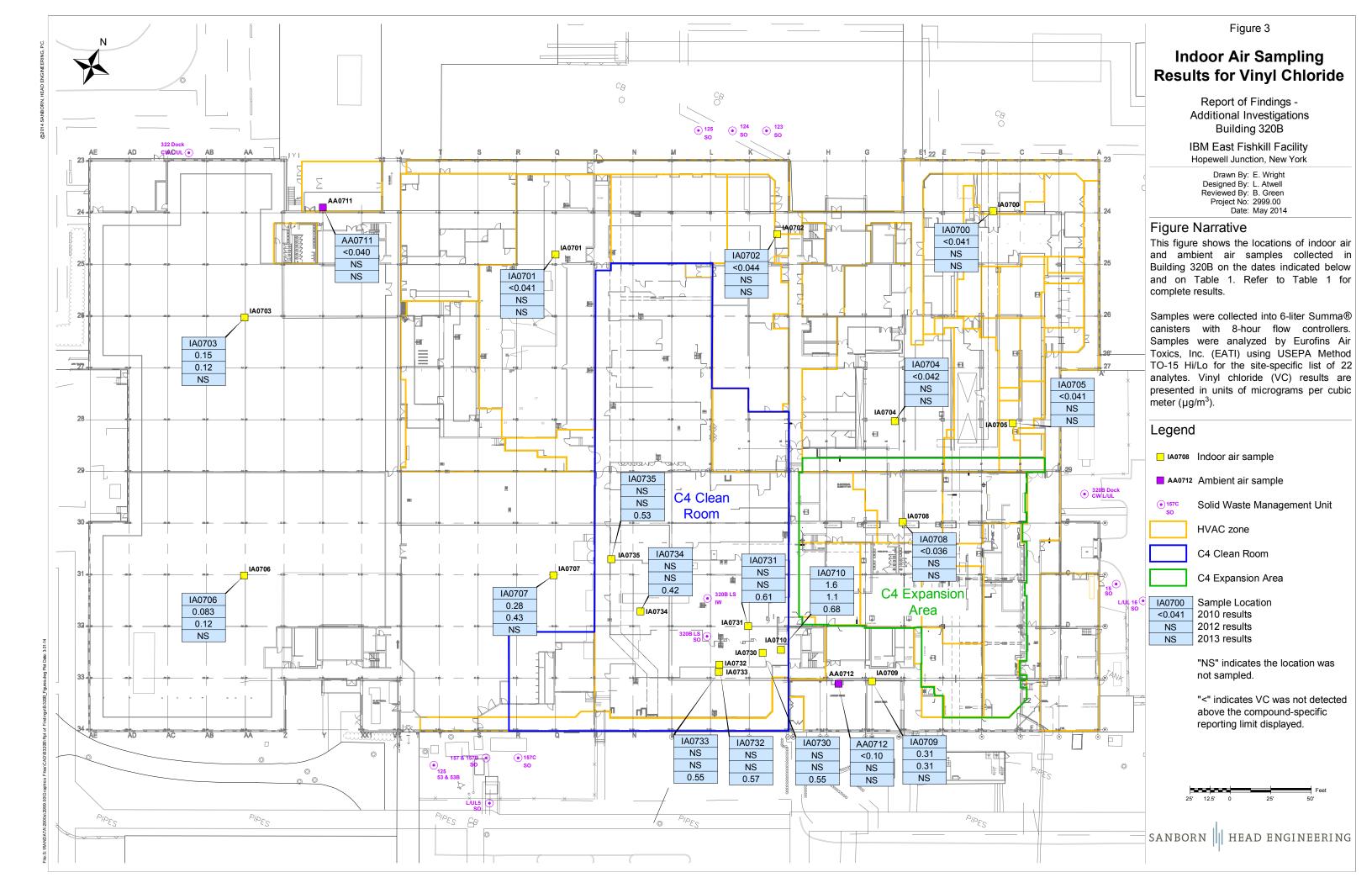
Notes:

- 1. This table summarizes data recorded during field screening at indoor air and targeted air locations using an Inficon HAPSITE SmartPlus portable gas chromatograph/mass spectrometer (GC/MS), manufactured by Inficon. The field samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel directly into the portable GC/MS sampling probe over a one-minute timeframe from the locations and on the dates noted in the table. The samples were screened using the portable GC/MS in selective ion monitoring (SIM) mode for tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), and vinyl chloride (VC). Results were converted to micrograms per cubic meter (μ g/m³) using standard temperature (25°C) and pressure (1 atmosphere) for the conversion. Results were rounded to two significant figures.
- 2. The portable GC/MS was used as a field screening tool; therefore, the data should be considered estimated and not suitable for independent validation and decision-making. The findings should be considered in conjunction with the results of samples analyzed by a fixed laboratory.
- 3. SUMMA Grab samples were collected by Sanborn Head personnel as grab samples into 6-liter Summa® canisters and submitted to Eurofins Air Toxics, Inc. (EATI) for laboratory analysis of the site-specific list of 22 VOCs by United States Environmental Protection Agency (USEPA) Method TO-15 Hi/Lo. Trichloroethene, vinyl chloride, and carbon tetrachloride (not tabulated) were analyzed in SIM mode.
- 4. "<" The method reporting limit was considered to be 1 ppbv (February 2013) and 0.5 ppbv (April and May 2013) for the portable GC/MS measurements. Sanborn Head reviewed the quality of the data, and the results of the review are presented in this table.
- 5. "NA" indicates not analyzed for the indicated parameter.

TABLE 4


C4 Clean Room Building Material Sampling Results Report of Findings - Additional Investigations Building 320B IBM East Fishkill Facility Hopewell Junction, New York

	Concentrat	tions in µg/kg
Analyte Name	BM1000	BM1001
Analyte Name	Floor Tile	HVAC Vent Filter
	5/1/2013	5/1/2013
Tetrachloroethene (PCE)	<6.5	<0.70
Trichloroethene (TCE)	<7.1	<0.76
cis-1,2-Dichloroethene (cDCE)	<6.9	<0.75
1,1-Dichloroethene (DCE)	<9.6	<1.0
Vinyl chloride (VC)	<6.6	<0.71
1,1,1-Trichloroethane (TCA)	<5.1	<0.55
Carbon tetrachloride	<9.8	<1.0
Methylene chloride (MeCI)	<93	<10
Chlorobenzene	<16	<1.7
1,2,4-Trichlorobenzene	<37	<3.9
1,2-Dichlorobenzene	<8.5	<0.92
1,3-Dichlorobenzene	<8.5	<0.92
1,4-Dichlorobenzene	<11	<1.2
Acetone	<140	180
Benzene	<5.5	<0.59
Ethylbenzene	<6.8	< 0.74
m,p-Xylene	<15	<1.6
o-Xylene	<12	<1.4
Toluene	14 J	<0.56
Trichlorofluoromethane (Freon 11)	<5.6	<0.61
Dichlorodifluoromethane (Freon 12)	<10	<1.1
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<13	<1.4


Notes:

- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) personnel on the date indicated and submitted to Alpha Analytical of Westborough, Massachusetts for analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C.
- 2. Concentrations are presented in micrograms per kilogram ($\mu g/kg$), which are equivalent to parts per billion (ppb).
- 3. All non-detect or estimated (J-qualified) concentrations were quantitated to the indicated method detection limit (MDL). Concentrations detected below the laboratory reporting limit (RL) are qualified as estimated (J). "<" indicates not detected at or above the indicated method detection limit.
- 4. **Bold** indicates a detected concentration.
- 5. Refer to the analytical laboratory report for additional information.

FIGURES

APPENDIX A LIMITATIONS

APPENDIX A LIMITATIONS

- 1. The findings and conclusions described in this report are based in part on the data obtained from a finite number of samples from widely spaced locations. The figures are intended to depict inferred conditions during a given period of time, consistent with available information. The actual conditions will vary from that shown, both spatially and temporally. Other interpretations are possible. The nature and extent of variations between sampling locations may not become evident until further investigation is initiated. If variations or other latent conditions then appear evident, it may be necessary to re-evaluate the conclusions of this report.
- 2. The conclusions contained in this report are based in part upon various types of chemical data, as well as historical and hydrogeologic information developed by previous investigators. While SHPC has reviewed that data available to us at the time the report was prepared and information as stated in this report, any of SHPC's interpretations and conclusions that have relied on that information will be contingent on its validity. SHPC has not performed an independent assessment of the reliability of the data; should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by SHPC and the interpretations and conclusions presented herein may be modified accordingly.
- 3. Sampling and quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, SHPC has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data. It must be noted that additional compounds not searched for during the current study may be present in indoor and ambient air at the site. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their distribution within indoor and ambient air may occur due to the passage of time, seasonal water table fluctuations, recharge events, and other factors.
- 4. This report has been prepared for the exclusive use of IBM for specific application to Building 320B at the East Fishkill facility in accordance with generally accepted engineering and scientific practices. No warranty, expressed or implied, is made. The contents of this report should not be relied on by any other party without the express written consent of SHPC.
- 5. In preparing this report, SHPC has endeavored to conform to generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area. SHPC has attempted to observe a degree of care and skill generally exercised by the technical community under similar circumstances and conditions.

 $S: \ CONDATA \ 2900s \ 2999.00 \ Source\ Files \ B320B\ Rpt\ of\ Findings_Add\ Investigations \ Appendix\ A\ Limits.docx$

APPENDIX B ANALYTICAL LABORATORY DATA REPORTS (ENCLOSED ON CD ONLY)

5/8/2012 Mr. Brad Green Sanborn, Head & Associates 20 Foundry Street

Concord NH 03301

Project Name: IBM - EFK Building 320B

Project #: 2999

Workorder #: 1204500

Dear Mr. Brad Green

The following report includes the data for the above referenced project for sample(s) received on 4/24/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1204500

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street20 Foundry StreetConcord, NH 03301Concord, NH 03301

PHONE: 603-229-1900 **P.O.** #

FAX: 603-229-1919 **PROJECT** # 2999 IBM - EFK Building 320B

DATE RECEIVED: 04/24/2012 **CONTACT:** Ausha Scott **DATE COMPLETED:** 05/07/2012

FRACTION #	<u>NAME</u>	<u>TEST</u>	RECEIPT <u>VAC./PRES.</u>	FINAL <u>PRESSURE</u>
01A	IA0703	Modified TO-15	5.0 "Hg	5 psi
01B	IA0703	Modified TO-15	5.0 "Hg	5 psi
02A	IA0706	Modified TO-15	5.8 "Hg	5 psi
02B	IA0706	Modified TO-15	5.8 "Hg	5 psi
03A	IA0707	Modified TO-15	6.0 "Hg	5 psi
03B	IA0707	Modified TO-15	6.0 "Hg	5 psi
04A	IA0709	Modified TO-15	5.2 "Hg	5 psi
04B	IA0709	Modified TO-15	5.2 "Hg	5 psi
05A	IA0710	Modified TO-15	6.6 "Hg	5 psi
05B	IA0710	Modified TO-15	6.6 "Hg	5 psi
06A	FB-03	Modified TO-15	9.8 "Hg	5 psi
06B	FB-03	Modified TO-15	9.8 "Hg	5 psi
07A	Lab Blank	Modified TO-15	NA	NA
07B	Lab Blank	Modified TO-15	NA	NA
07C	Lab Blank	Modified TO-15	NA	NA
07D	Lab Blank	Modified TO-15	NA	NA
08A	CCV	Modified TO-15	NA	NA
08B	CCV	Modified TO-15	NA	NA
08C	CCV	Modified TO-15	NA	NA
08D	CCV	Modified TO-15	NA	NA
09A	LCS	Modified TO-15	NA	NA
09AA	LCSD	Modified TO-15	NA	NA
09B	LCS	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1204500

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street20 Foundry StreetConcord, NH 03301Concord, NH 03301

PHONE: 603-229-1900 **P.O.** #

FAX: 603-229-1919 **PROJECT** # 2999 IBM - EFK Building 320B

DATE RECEIVED: 04/24/2012 CONTACT: Ausha Scott DATE COMPLETED: 05/07/2012

RECEIPT **FINAL TEST** VAC./PRES. **PRESSURE FRACTION # NAME** 09BB LCSD Modified TO-15 NA NA 09C Modified TO-15 LCS NA NA 09CC **LCSD** Modified TO-15 NA NA 09D LCS Modified TO-15 NA NA 09DD LCSD Modified TO-15 NA NA

CERTIFIED BY: DATE: 05/07/12

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder# 1204500

Six 6 Liter Summa Canister (SIM Certified) samples were received on April 24, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: IA0703 Lab ID#: 1204500-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.57	0.80	2.8
Freon 11	0.16	1.6	0.90	9.2
Freon 113	0.16	0.48	1.2	3.6
Acetone	0.80	5.1	1.9	12
Benzene	0.16	0.16	0.51	0.52
Toluene	0.16	0.53	0.61	2.0

Client Sample ID: IA0703

Lab ID#: 1204500-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.016	0.048	0.041	0.12	
Carbon Tetrachloride	0.032	0.11	0.20	0.71	
Trichloroethene	0.032	0.040	0.17	0.21	

Client Sample ID: IA0706

Lab ID#: 1204500-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.58	0.82	2.8
Freon 11	0.17	3.4	0.93	19
Freon 113	0.17	1.3	1.3	9.9
Acetone	0.83	4.6	2.0	11
Benzene	0.17	0.19	0.53	0.62
Toluene	0.17	0.86	0.62	3.3

Client Sample ID: IA0706

Lab ID#: 1204500-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	0.048	0.042	0.12
Carbon Tetrachloride	0.033	0.12	0.21	0.75

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: IA0706

Lab ID#: 1204500-02B

Trichloroethene 0.033 0.12 0.18 0.68

Client Sample ID: IA0707

Lab ID#: 1204500-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.55	0.83	2.7
Freon 11	0.17	0.36	0.94	2.0
Freon 113	0.17	1.6	1.3	12
Acetone	0.84	14	2.0	33
Toluene	0.17	0.54	0.63	2.0
m,p-Xylene	0.17	0.18	0.73	0.77

Client Sample ID: IA0707

Lab ID#: 1204500-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	0.17	0.043	0.43
Carbon Tetrachloride	0.034	0.11	0.21	0.72
Trichloroethene	0.034	0.14	0.18	0.76

Client Sample ID: IA0709

Lab ID#: 1204500-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.53	0.80	2.6
Freon 11	0.16	0.31	0.91	1.8
Freon 113	0.16	0.22	1.2	1.7
Acetone	0.81	3.2	1.9	7.5
Toluene	0.16	0.21	0.61	0.80

Client Sample ID: IA0709 Lab ID#: 1204500-04B

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: IA0709 Lab ID#: 1204500-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.12	0.041	0.31
Carbon Tetrachloride	0.032	0.12	0.20	0.76

Client Sample ID: IA0710

Lab ID#: 1204500-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.52	0.85	2.6
Freon 11	0.17	0.25	0.97	1.4
Acetone	0.86	3.0	2.0	7.1

Client Sample ID: IA0710

Lab ID#: 1204500-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.017	0.42	0.044	1.1	
Carbon Tetrachloride	0.034	0.11	0.22	0.70	

Client Sample ID: FB-03

Lab ID#: 1204500-06A
No Detections Were Found.

Client Sample ID: FB-03

Lab ID#: 1204500-06B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.020	0.11	0.051	0.28

Client Sample ID: IA0703 Lab ID#: 1204500-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042612	Date of Collection: 4/19/12 4:32:00 PM
Dil. Factor:	1.61	Date of Analysis: 4/26/12 06:12 PM

Dill i dotoi i	1.01	Date	Ol Allalysis. 4/20	12 00.12 1 10
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.57	0.80	2.8
Freon 11	0.16	1.6	0.90	9.2
Freon 113	0.16	0.48	1.2	3.6
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.80	5.1	1.9	12
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	0.16	0.51	0.52
Toluene	0.16	0.53	0.61	2.0
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	Not Detected	0.70	Not Detected
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	6.0	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: IA0703 Lab ID#: 1204500-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042612sim	Date of Collection: 4/19/12 4:32:00 PM
Dil. Factor:	1.61	Date of Analysis: 4/26/12 06:12 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.048	0.041	0.12
Carbon Tetrachloride	0.032	0.11	0.20	0.71
Trichloroethene	0.032	0.040	0.17	0.21

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: IA0706 Lab ID#: 1204500-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042613	Date of Collection: 4/19/12 4:30:00 PM
Dil. Factor:	1.66	Date of Analysis: 4/26/12 06:56 PM

Dii. i actor.	1.00 Date of Affairysis. 4/20/12 0		12 00.30 F W	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.58	0.82	2.8
Freon 11	0.17	3.4	0.93	19
Freon 113	0.17	1.3	1.3	9.9
1,1-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Acetone	0.83	4.6	2.0	11
Methylene Chloride	0.33	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.90	Not Detected
Benzene	0.17	0.19	0.53	0.62
Toluene	0.17	0.86	0.62	3.3
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.76	Not Detected
Ethyl Benzene	0.17	Not Detected	0.72	Not Detected
m,p-Xylene	0.17	Not Detected	0.72	Not Detected
o-Xylene	0.17	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.83	Not Detected	6.2	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: IA0706 Lab ID#: 1204500-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042613sim	Date of Collection: 4/19/12 4:30:00 PM
Dil. Factor:	1.66	Date of Analysis: 4/26/12 06:56 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.048	0.042	0.12
Carbon Tetrachloride	0.033	0.12	0.21	0.75
Trichloroethene	0.033	0.12	0.18	0.68

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: IA0707 Lab ID#: 1204500-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042614	Date of Collection: 4/19/12 4:27:00 PM
Dil. Factor:	1.68	Date of Analysis: 4/26/12 07:42 PM

Dii. I detoi.	1.00	Date	01 Allalysis. 4/20	/ 12 U/ .42 F W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.55	0.83	2.7
Freon 11	0.17	0.36	0.94	2.0
Freon 113	0.17	1.6	1.3	12
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	14	2.0	33
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Benzene	0.17	Not Detected	0.54	Not Detected
Toluene	0.17	0.54	0.63	2.0
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.77	Not Detected
Ethyl Benzene	0.17	Not Detected	0.73	Not Detected
m,p-Xylene	0.17	0.18	0.73	0.77
o-Xylene	0.17	Not Detected	0.73	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.2	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: IA0707 Lab ID#: 1204500-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042614sim	Date of Collection: 4/19/12 4:27:00 PM
Dil. Factor:	1.68	Date of Analysis: 4/26/12 07:42 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.17	0.043	0.43
Carbon Tetrachloride	0.034	0.11	0.21	0.72
Trichloroethene	0.034	0.14	0.18	0.76

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: IA0709 Lab ID#: 1204500-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042616	Date of Collection: 4/19/12 4:22:00 PM
Dil. Factor:	1.62	Date of Analysis: 4/26/12 09:08 PM

Dii. i actor.	1.02	Date of Affaiysis: 4/20/12 09:00		12 03.00 F W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.53	0.80	2.6
Freon 11	0.16	0.31	0.91	1.8
Freon 113	0.16	0.22	1.2	1.7
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.81	3.2	1.9	7.5
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	Not Detected	0.52	Not Detected
Toluene	0.16	0.21	0.61	0.80
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	Not Detected	0.70	Not Detected
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.81	Not Detected	6.0	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: IA0709 Lab ID#: 1204500-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042616sim	Date of Collection: 4/19/12 4:22:00 PM
Dil. Factor:	1.62	Date of Analysis: 4/26/12 09:08 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.12	0.041	0.31
Carbon Tetrachloride	0.032	0.12	0.20	0.76
Trichloroethene	0.032	Not Detected	0.17	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: IA0710 Lab ID#: 1204500-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042615	Date of Collection: 4/19/12 4:20:00 PM
Dil. Factor:	1.72	Date of Analysis: 4/26/12 08:25 PM

Dii. i actor.	1.72	Date of Affaiysis: 4/20/12 00:25 FW		12 00.23 F W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.52	0.85	2.6
Freon 11	0.17	0.25	0.97	1.4
Freon 113	0.17	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.17	Not Detected	0.68	Not Detected
Acetone	0.86	3.0	2.0	7.1
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.94	Not Detected
Benzene	0.17	Not Detected	0.55	Not Detected
Toluene	0.17	Not Detected	0.65	Not Detected
Tetrachloroethene	0.17	Not Detected	1.2	Not Detected
Chlorobenzene	0.17	Not Detected	0.79	Not Detected
Ethyl Benzene	0.17	Not Detected	0.75	Not Detected
m,p-Xylene	0.17	Not Detected	0.75	Not Detected
o-Xylene	0.17	Not Detected	0.75	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.86	Not Detected	6.4	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: IA0710 Lab ID#: 1204500-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042615sim	Date of Collection: 4/19/12 4:20:00 PM
Dil. Factor:	1.72	Date of Analysis: 4/26/12 08:25 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.42	0.044	1.1
Carbon Tetrachloride	0.034	0.11	0.22	0.70
Trichloroethene	0.034	Not Detected	0.18	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: FB-03 Lab ID#: 1204500-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042614	Date of Collection: 4/19/12 12:30:00 PM
Dil. Factor:	1.99	Date of Analysis: 4/26/12 08:18 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.20	Not Detected	0.98	Not Detected
Freon 11	0.20	Not Detected	1.1	Not Detected
Freon 113	0.20	Not Detected	1.5	Not Detected
1,1-Dichloroethene	0.20	Not Detected	0.79	Not Detected
Acetone	1.0	Not Detected	2.4	Not Detected
Methylene Chloride	0.40	Not Detected	1.4	Not Detected
cis-1,2-Dichloroethene	0.20	Not Detected	0.79	Not Detected
1,1,1-Trichloroethane	0.20	Not Detected	1.1	Not Detected
Benzene	0.20	Not Detected	0.64	Not Detected
Toluene	0.20	Not Detected	0.75	Not Detected
Tetrachloroethene	0.20	Not Detected	1.3	Not Detected
Chlorobenzene	0.20	Not Detected	0.92	Not Detected
Ethyl Benzene	0.20	Not Detected	0.86	Not Detected
m,p-Xylene	0.20	Not Detected	0.86	Not Detected
o-Xylene	0.20	Not Detected	0.86	Not Detected
1,3-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,4-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,2-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected	7.4	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	118	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: FB-03 Lab ID#: 1204500-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042614sim	Date of Collection: 4/19/12 12:30:00 PM
Dil. Factor:	1.99	Date of Analysis: 4/26/12 08:18 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.020	0.11	0.051	0.28
Carbon Tetrachloride	0.040	Not Detected	0.25	Not Detected
Trichloroethene	0.040	Not Detected	0.21	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	117	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1204500-07A

File Name: Dil. Factor:	e042606 1.00		Date of Collection: NA Date of Analysis: 4/26/12 12:51 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Container Type: NA - Not Appl	icable			
Surrogates		%Recovery		Method Limits

Surrogates	%Recovery	Method Limits	
1,2-Dichloroethane-d4	85	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: Lab Blank Lab ID#: 1204500-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	e042606sim 1.00		of Collection: NA of Analysis: 4/26	/12 12:51 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not A	Applicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		95		70-130
Toluene-d8		100		70-130
4-Bromofluorobenzene		106		70-130

Client Sample ID: Lab Blank Lab ID#: 1204500-07C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN				
File Name: Dil. Factor:	v042608 1.00	Date of Collection: NA Date of Analysis: 4/26/12 02:46 PI		/12 02:46 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Container Type: NA - Not Appli	icable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		113		70-130
Toluene-d8		130		70-130
4-Bromofluorobenzene		100		70-130

Client Sample ID: Lab Blank Lab ID#: 1204500-07D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v042608asim 1.00		of Collection: NA of Analysis: 4/26	/12 02:46 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not A	applicable			Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		120		70-130
Toluene-d8		130		70-130
4-Bromofluorobenzene		102		70-130

Client Sample ID: CCV Lab ID#: 1204500-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 09:44 AM

Compound	%Recovery
Freon 12	97
Freon 11	97
Freon 113	104
1,1-Dichloroethene	102
Acetone	97
Methylene Chloride	103
cis-1,2-Dichloroethene	109
1,1,1-Trichloroethane	100
Benzene	105
Toluene	105
Tetrachloroethene	112
Chlorobenzene	104
Ethyl Benzene	108
m,p-Xylene	110
o-Xylene	110
1,3-Dichlorobenzene	114
1,4-Dichlorobenzene	111
1,2-Dichlorobenzene	114
1,2,4-Trichlorobenzene	110

		wetnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	84	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 1204500-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042602sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/26/12 09:44 AM

Compound	%Recovery
Vinyl Chloride	102
Carbon Tetrachloride	92
Trichloroethene	100

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CCV Lab ID#: 1204500-08C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 10:30 AM

Compound	%Recovery
Freon 12	136 Q
Freon 11	116
Freon 113	109
1,1-Dichloroethene	104
Acetone	87
Methylene Chloride	106
cis-1,2-Dichloroethene	97
1,1,1-Trichloroethane	108
Benzene	92
Toluene	116
Tetrachloroethene	96
Chlorobenzene	94
Ethyl Benzene	94
m,p-Xylene	91
o-Xylene	95
1,3-Dichlorobenzene	87
1,4-Dichlorobenzene	87
1,2-Dichlorobenzene	85
1,2,4-Trichlorobenzene	90

Q = Exceeds Quality Control limits.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	122	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1204500-08D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042602sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/26/12 10:30 AM

Compound	%Recovery
Vinyl Chloride	89
Carbon Tetrachloride	122
Trichloroethene	85

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	123	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: LCS Lab ID#: 1204500-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042603 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 10:33 AM

Compound	%Recovery
Freon 12	100
Freon 11	101
Freon 113	108
1,1-Dichloroethene	111
Acetone	98
Methylene Chloride	104
cis-1,2-Dichloroethene	115
1,1,1-Trichloroethane	104
Benzene	106
Toluene	108
Tetrachloroethene	114
Chlorobenzene	109
Ethyl Benzene	111
m,p-Xylene	116
o-Xylene	115
1,3-Dichlorobenzene	117
1,4-Dichlorobenzene	112
1,2-Dichlorobenzene	115
1,2,4-Trichlorobenzene	108

		Metnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	83	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCSD Lab ID#: 1204500-09AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042604 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 11:12 AM

Compound	%Recovery
Freon 12	98
Freon 11	98
Freon 113	106
1,1-Dichloroethene	110
Acetone	98
Methylene Chloride	102
cis-1,2-Dichloroethene	113
1,1,1-Trichloroethane	103
Benzene	104
Toluene	105
Tetrachloroethene	111
Chlorobenzene	106
Ethyl Benzene	108
m,p-Xylene	111
o-Xylene	111
1,3-Dichlorobenzene	111
1,4-Dichlorobenzene	106
1,2-Dichlorobenzene	112
1,2,4-Trichlorobenzene	101

		Metnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCS Lab ID#: 1204500-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042603sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/26/12 10:33 AM

Compound	%Recovery
Vinyl Chloride	104
Carbon Tetrachloride	100
Trichloroethene	102

Surrogates	%Recovery	Method Limits
Surrogates	,	
1,2-Dichloroethane-d4	86	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCSD Lab ID#: 1204500-09BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042604sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/26/12 11:12 AM

Compound	%Recovery
Vinyl Chloride	102
Carbon Tetrachloride	98
Trichloroethene	99

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	86	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCS Lab ID#: 1204500-09C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042605 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 12:23 PM

Compound	%Recovery
Freon 12	119
Freon 11	107
Freon 113	99
1,1-Dichloroethene	100
Acetone	81
Methylene Chloride	92
cis-1,2-Dichloroethene	92
1,1,1-Trichloroethane	104
Benzene	96
Toluene	112
Tetrachloroethene	90
Chlorobenzene	92
Ethyl Benzene	92
m,p-Xylene	91
o-Xylene	95
1,3-Dichlorobenzene	86
1,4-Dichlorobenzene	87
1,2-Dichlorobenzene	86
1,2,4-Trichlorobenzene	92

		Metnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	126	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1204500-09CC

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042606 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/26/12 12:59 PM

Compound	%Recovery
Freon 12	98
Freon 11	101
Freon 113	96
1,1-Dichloroethene	96
Acetone	77
Methylene Chloride	82
cis-1,2-Dichloroethene	94
1,1,1-Trichloroethane	100
Benzene	86
Toluene	88
Tetrachloroethene	92
Chlorobenzene	89
Ethyl Benzene	88
m,p-Xylene	84
o-Xylene	86
1,3-Dichlorobenzene	80
1,4-Dichlorobenzene	79
1,2-Dichlorobenzene	78
1,2,4-Trichlorobenzene	88

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCS Lab ID#: 1204500-09D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

F	File Name:	v042605sim	Date of Collection: NA
[Dil. Factor:	1.00	Date of Analysis: 4/26/12 12:23 PM

Compound	%Recovery
Vinyl Chloride	103
Carbon Tetrachloride	94
Trichloroethene	90

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	124	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: LCSD Lab ID#: 1204500-09DD

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042606sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/26/12 12:59 PM

Compound	%Recovery
Vinyl Chloride	104
Carbon Tetrachloride	96
Trichloroethene	84

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	119	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	96	70-130

1204890

Custody Seal Intact?
Y N None Temp No.

ESHAIMPROVING EARTH

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

Sample Transportation Notice

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020 Relinquishing signature on this document indicates that sample is being shipped in compilance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hottline (800) 467-492)

Project Info: **Turn Around Time** Relinquished by#(signature) Date/Time Received By: (signature) Date/Time Project Manager: Brad Green 6000 Email: bgreen@sanbornhead.com; latwell@sanbornhead.com; Normal x kdubois@sanbornhead.com Rush Relinquished by: (signature) Date/Ti Received By: (signature) Date/Time P.O# Project # 2999 IBM - EFK Building 320B Relinquished by: (signature) Date/Time Received By: (signature) Date/Time Project Name: Analyses: 1 = TO-15 H/L See attached analyte list specify Lab ID Field Sample I.D. **Collection Date Collection Time** Can# Initial Final (psi) Final Analysis Receipt OLAB IA0703 5591 04/19/2012 1632 30 6.5 1 OLAS IA0706 12951 04/19/2012 1630 30 6.5 1 SACO IA0707 94945 04/19/2012 1627 30 6.5 1 64AB IA0709 4589 04/19/2012 1622 30 6.5 1 0540 IA0710 33325 04/19/2012 1620 30 7 1 oh A6 FB-03 04/19/2012 1230 1559 30 10 1

<u>Analysis</u>

1 = TO-15 Modified

Analyte List	CAS#	
Tetrachloroethene (PCE)	127-18-4	
Trichloroethene (TCE)	79-01-6	
cis-1,2-Dichloroethene (cDCE)	156-59-2	
1,1-Dichloroethene (DCE)	75-35-4	
Vinyl chloride (VC)	75-01-4	
1,1,1-Trichloroethane (TCA)	71-55-6	
Carbon tetrachloride	56-23-5	
Methylene chloride (MeCl)	75-09-2	
Chlorobenzene	108-90-7	
1,2,4-Trichlorobenzene	120-82-1	
1,2-Dichlorobenzene	95-50-1	
1,3-Dichlorobenzene	541-73-1	
1,4-Dichlorobenzene	106-46-7	
Acetone	67-64-1	
Benzene	71-43-2	
Ethylbenzene	100-41-4	
m-Xylene	108-38-3	
p-Xylene	106-42-3	
o-Xylene	95-47-6	
Toluene	108-88-3	
Trichlorofluoromethane (Freon 11)	75-69-4	
Dichlorodifluoromethane (Freon 12)	75-71-8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	

1204500

5/8/2012 Mr. Brad Green Sanborn, Head & Associates 20 Foundry Street

Concord NH 03301

Project Name: IBM - EFK Building 320B

Project #: 2999

Workorder #: 1204488

Dear Mr. Brad Green

The following report includes the data for the above referenced project for sample(s) received on 4/23/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1204488

Work Order Summary

CLIENT: Mr. Brad Green **BILL TO:** Accounts Payable

> Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street 20 Foundry Street Concord, NH 03301 Concord, NH 03301

PHONE: 603-229-1900 P.O. #

FAX: 603-229-1919 PROJECT # 2999 IBM - EFK Building 320B

DATE RECEIVED: 04/23/2012 **CONTACT:** Ausha Scott

DATE COMPLETED: 05/07/2012

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	TA-1001	Modified TO-15	8.8 "Hg	5 psi
01B	TA-1001	Modified TO-15	8.8 "Hg	5 psi
02A	TA-1002	Modified TO-15	5.0 "Hg	5 psi
02B	TA-1002	Modified TO-15	5.0 "Hg	5 psi
03A	TA-1003	Modified TO-15	4.4 "Hg	5 psi
03B	TA-1003	Modified TO-15	4.4 "Hg	5 psi
04A	TA-1004	Modified TO-15	4.6 "Hg	5 psi
04B	TA-1004	Modified TO-15	4.6 "Hg	5 psi
05A	TA-1005	Modified TO-15	4.8 "Hg	5 psi
05B	TA-1005	Modified TO-15	4.8 "Hg	5 psi
06A	TA-1006	Modified TO-15	5.8 "Hg	5 psi
06B	TA-1006	Modified TO-15	5.8 "Hg	5 psi
07A	TA-1007	Modified TO-15	6.2 "Hg	5 psi
07B	TA-1007	Modified TO-15	6.2 "Hg	5 psi
08A	TA-1008	Modified TO-15	5.4 "Hg	5 psi
08B	TA-1008	Modified TO-15	5.4 "Hg	5 psi
09A	TA-1009	Modified TO-15	5.6 "Hg	5 psi
09B	TA-1009	Modified TO-15	5.6 "Hg	5 psi
10A	Lab Blank	Modified TO-15	NA	NA
10B	Lab Blank	Modified TO-15	NA	NA
10C	Lab Blank	Modified TO-15	NA	NA
10D	Lab Blank	Modified TO-15	NA	NA
11A	CCV	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1204488

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street 20 Foundry Street Concord, NH 03301 Concord, NH 03301

PHONE: 603-229-1900 **P.O.** #

FAX: 603-229-1919 **PROJECT** # 2999 IBM - EFK Building 320B

DATE RECEIVED: 04/23/2012 CONTACT: Ausha Scott DATE COMPLETED: 05/07/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
11B	CCV	Modified TO-15	NA	NA
11C	CCV	Modified TO-15	NA	NA
11D	CCV	Modified TO-15	NA	NA
12A	LCS	Modified TO-15	NA	NA
12AA	LCSD	Modified TO-15	NA	NA
12B	LCS	Modified TO-15	NA	NA
12BB	LCSD	Modified TO-15	NA	NA
12C	LCS	Modified TO-15	NA	NA
12CC	LCSD	Modified TO-15	NA	NA
12D	LCS	Modified TO-15	NA	NA
12DD	LCSD	Modified TO-15	NA	NA

CERTIFIED BY: DATE: 05/07/12

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder# 1204488

Nine 6 Liter Summa Canister (SIM Certified) samples were received on April 23, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: TA-1001 Lab ID#: 1204488-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.56	0.94	2.8
Freon 11	0.19	0.38	1.1	2.1
Freon 113	0.19	0.29	1.4	2.2
Acetone	0.95	4.4	2.2	10
Benzene	0.19	0.27	0.61	0.88
Toluene	0.19	0.41	0.72	1.6
m,p-Xylene	0.19	0.22	0.82	0.97

Client Sample ID: TA-1001

Lab ID#: 1204488-01B

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Carbon Tetrachloride	0.038	0.12	0.24	0.74

Client Sample ID: TA-1002

Lab ID#: 1204488-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.52	0.80	2.6
Freon 11	0.16	0.27	0.90	1.5
Freon 113	0.16	2.5	1.2	19
Acetone	0.80	7.6	1.9	18
Benzene	0.16	0.17	0.51	0.55
Toluene	0.16	0.36	0.61	1.3
m,p-Xylene	0.16	0.17	0.70	0.75

Client Sample ID: TA-1002

Lab ID#: 1204488-02B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Carbon Tetrachloride	0.032	0.12	0.20	0.78
Trichloroethene	0.032	0.12	0.17	0.66

Client Sample ID: TA-1003 Lab ID#: 1204488-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.53	0.78	2.6
Freon 11	0.16	0.26	0.88	1.5
Freon 113	0.16	2.5	1.2	19
Acetone	0.78	8.2	1.9	19
Benzene	0.16	0.17	0.50	0.55
Toluene	0.16	0.40	0.59	1.5
m,p-Xylene	0.16	0.18	0.68	0.80

Client Sample ID: TA-1003

Lab ID#: 1204488-03B

Q	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Carbon Tetrachloride	0.031	0.11	0.20	0.72	
Trichloroethene	0.031	0.12	0.17	0.62	

Client Sample ID: TA-1004

Lab ID#: 1204488-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.16	0.53	0.78	2.6	
Freon 11	0.16	0.24	0.89	1.3	
Acetone	0.79	3.0	1.9	7.2	
Toluene	0.16	0.21	0.60	0.80	

Client Sample ID: TA-1004

Lab ID#: 1204488-04B

Compound	Rpt. Limit	Amount	Rpt. Limit (ug/m3)	Amount
	(ppbv)	(ppbv)		(ug/m3)
Carbon Tetrachloride	0.032	0.12	0.20	0.76

Client Sample ID: TA-1005 Lab ID#: 1204488-05A

Client Sample ID: TA-1005 Lab ID#: 1204488-05A

(ug/m3)
2.7
1.4
7.8
0.81

Client Sample ID: TA-1005

Lab ID#: 1204488-05B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Carbon Tetrachloride	0.032	0.12	0.20	0.77	

Client Sample ID: TA-1006

Lab ID#: 1204488-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.57	0.82	2.8
Freon 11	0.17	0.26	0.93	1.4
Acetone	0.83	9.8	2.0	23
Toluene	0.17	0.21	0.62	0.80

Client Sample ID: TA-1006

Lab ID#: 1204488-06B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Carbon Tetrachloride	0.033	0.12	0.21	0.78	

Client Sample ID: TA-1007

Lab ID#: 1204488-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.57	0.84	2.8
Freon 11	0.17	0.25	0.95	1.4

Client Sample ID: TA-1007

Lab ID#: 1204488-07A

Acetone 0.84 3.8 2.0 9.1 Toluene 0.17 0.19 0.64 0.70

Client Sample ID: TA-1007

Lab ID#: 1204488-07B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Carbon Tetrachloride	0.034	0.13	0.21	0.81	

Client Sample ID: TA-1008

Lab ID#: 1204488-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.16	0.58	0.81	2.9	
Freon 11	0.16	0.27	0.92	1.5	
Acetone	0.82	2.2	1.9	5.4	
Toluene	0.16	0.20	0.61	0.75	

Client Sample ID: TA-1008

Lab ID#: 1204488-08B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Carbon Tetrachloride	0.033	0.13	0.20	0.80

Client Sample ID: TA-1009

Lab ID#: 1204488-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.60	0.82	3.0
Freon 11	0.16	0.27	0.93	1.5
Acetone	0.82	2.2	2.0	5.2
Toluene	0.16	0.25	0.62	0.94

Client Sample ID: TA-1009

Lab ID#: 1204488-09B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Carbon Tetrachloride	0.033	0.10	0.21	0.66	

Client Sample ID: TA-1001 Lab ID#: 1204488-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042507	Date of Collection: 4/19/12 8:30:00 AM
Dil. Factor:	1.90	Date of Analysis: 4/25/12 03:43 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.19	0.56	0.94	2.8
Freon 11	0.19	0.38	1.1	2.1
Freon 113	0.19	0.29	1.4	2.2
1,1-Dichloroethene	0.19	Not Detected	0.75	Not Detected
Acetone	0.95	4.4	2.2	10
Methylene Chloride	0.38	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.19	Not Detected	0.75	Not Detected
1,1,1-Trichloroethane	0.19	Not Detected	1.0	Not Detected
Benzene	0.19	0.27	0.61	0.88
Toluene	0.19	0.41	0.72	1.6
Tetrachloroethene	0.19	Not Detected	1.3	Not Detected
Chlorobenzene	0.19	Not Detected	0.87	Not Detected
Ethyl Benzene	0.19	Not Detected	0.82	Not Detected
m,p-Xylene	0.19	0.22	0.82	0.97
o-Xylene	0.19	Not Detected	0.82	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.95	Not Detected	7.0	Not Detected

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: TA-1001 Lab ID#: 1204488-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	e042507sim	Date of Collection: 4/19/12 8:30:00 AM		
DII. Factor.	1.90 Rpt. Limit	Date of Analysis: 4/25/12 03:43 PM Amount Rpt. Limit Amount		
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
Carbon Tetrachloride	0.038	0.12	0.24	0.74
Trichloroethene	0.038	Not Detected	0.20	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: TA-1002 Lab ID#: 1204488-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042508	Date of Collection: 4/19/12 10:02:00 AM
Dil. Factor:	1.61	Date of Analysis: 4/25/12 04:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.52	0.80	2.6
Freon 11	0.16	0.27	0.90	1.5
Freon 113	0.16	2.5	1.2	19
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.80	7.6	1.9	18
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	0.17	0.51	0.55
Toluene	0.16	0.36	0.61	1.3
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	0.17	0.70	0.75
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	6.0	Not Detected

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: TA-1002 Lab ID#: 1204488-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042508sim	Date of Collection: 4/19/12 10:02:00 AM
Dil. Factor:	1.61	Date of Analysis: 4/25/12 04:39 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
Carbon Tetrachloride	0.032	0.12	0.20	0.78
Trichloroethene	0.032	0.12	0.17	0.66

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: TA-1003 Lab ID#: 1204488-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042509	Date of Collection: 4/19/12 10:03:00 AM
Dil. Factor:	1.57	Date of Analysis: 4/25/12 05:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.53	0.78	2.6
Freon 11	0.16	0.26	0.88	1.5
Freon 113	0.16	2.5	1.2	19
1,1-Dichloroethene	0.16	Not Detected	0.62	Not Detected
Acetone	0.78	8.2	1.9	19
Methylene Chloride	0.31	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.86	Not Detected
Benzene	0.16	0.17	0.50	0.55
Toluene	0.16	0.40	0.59	1.5
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.72	Not Detected
Ethyl Benzene	0.16	Not Detected	0.68	Not Detected
m,p-Xylene	0.16	0.18	0.68	0.80
o-Xylene	0.16	Not Detected	0.68	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.94	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.94	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.94	Not Detected
1,2,4-Trichlorobenzene	0.78	Not Detected	5.8	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: TA-1003 Lab ID#: 1204488-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042509sim	Date of Collection: 4/19/12 10:03:00 AM
Dil. Factor:	1.57	Date of Analysis: 4/25/12 05:23 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
Carbon Tetrachloride	0.031	0.11	0.20	0.72
Trichloroethene	0.031	0.12	0.17	0.62

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: TA-1004 Lab ID#: 1204488-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042510	Date of Collection: 4/19/12 10:06:00 AM
Dil. Factor:	1.58	Date of Analysis: 4/25/12 06:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.53	0.78	2.6
Freon 11	0.16	0.24	0.89	1.3
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Acetone	0.79	3.0	1.9	7.2
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.86	Not Detected
Benzene	0.16	Not Detected	0.50	Not Detected
Toluene	0.16	0.21	0.60	0.80
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.73	Not Detected
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected
m,p-Xylene	0.16	Not Detected	0.69	Not Detected
o-Xylene	0.16	Not Detected	0.69	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2,4-Trichlorobenzene	0.79	Not Detected	5.9	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: TA-1004 Lab ID#: 1204488-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042510sim	Date of Collection: 4/19/12 10:06:00 AM
Dil. Factor:	1.58	Date of Analysis: 4/25/12 06:14 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
Carbon Tetrachloride	0.032	0.12	0.20	0.76
Trichloroethene	0.032	Not Detected	0.17	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: TA-1005 Lab ID#: 1204488-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042511	Date of Collection: 4/19/12 10:05:00 AM
Dil. Factor:	1.60	Date of Analysis: 4/25/12 06:57 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.55	0.79	2.7
Freon 11	0.16	0.26	0.90	1.4
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Acetone	0.80	3.3	1.9	7.8
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.87	Not Detected
Benzene	0.16	Not Detected	0.51	Not Detected
Toluene	0.16	0.22	0.60	0.81
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected
m,p-Xylene	0.16	Not Detected	0.69	Not Detected
o-Xylene	0.16	Not Detected	0.69	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	5.9	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: TA-1005 Lab ID#: 1204488-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042511sim	Date of Collection: 4/19/12 10:05:00 AM
Dil. Factor:	1.60	Date of Analysis: 4/25/12 06:57 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
Carbon Tetrachloride	0.032	0.12	0.20	0.77
Trichloroethene	0.032	Not Detected	0.17	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: TA-1006 Lab ID#: 1204488-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042512	Date of Collection: 4/19/12 10:00:00 AM
Dil. Factor:	1.66	Date of Analysis: 4/25/12 07:44 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.57	0.82	2.8
Freon 11	0.17	0.26	0.93	1.4
Freon 113	0.17	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Acetone	0.83	9.8	2.0	23
Methylene Chloride	0.33	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.90	Not Detected
Benzene	0.17	Not Detected	0.53	Not Detected
Toluene	0.17	0.21	0.62	0.80
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.76	Not Detected
Ethyl Benzene	0.17	Not Detected	0.72	Not Detected
m,p-Xylene	0.17	Not Detected	0.72	Not Detected
o-Xylene	0.17	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.83	Not Detected	6.2	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: TA-1006 Lab ID#: 1204488-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042512sim	Date of Collection: 4/19/12 10:00:00 AM
Dil. Factor:	1.66	Date of Analysis: 4/25/12 07:44 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	Not Detected	0.042	Not Detected
Carbon Tetrachloride	0.033	0.12	0.21	0.78
Trichloroethene	0.033	Not Detected	0.18	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: TA-1007 Lab ID#: 1204488-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042513	Date of Collection: 4/19/12 10:01:00 AM
Dil. Factor:	1.69	Date of Analysis: 4/25/12 08:28 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.57	0.84	2.8
Freon 11	0.17	0.25	0.95	1.4
Freon 113	0.17	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	3.8	2.0	9.1
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Benzene	0.17	Not Detected	0.54	Not Detected
Toluene	0.17	0.19	0.64	0.70
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.78	Not Detected
Ethyl Benzene	0.17	Not Detected	0.73	Not Detected
m,p-Xylene	0.17	Not Detected	0.73	Not Detected
o-Xylene	0.17	Not Detected	0.73	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.3	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: TA-1007 Lab ID#: 1204488-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042513sim	Date of Collection: 4/19/12 10:01:00 AM
Dil. Factor:	1.69	Date of Analysis: 4/25/12 08:28 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
Carbon Tetrachloride	0.034	0.13	0.21	0.81
Trichloroethene	0.034	Not Detected	0.18	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: TA-1008 Lab ID#: 1204488-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042514	Date of Collection: 4/19/12 10:08:00 AM
Dil. Factor:	1.63	Date of Analysis: 4/25/12 09:11 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.58	0.81	2.9
Freon 11	0.16	0.27	0.92	1.5
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Acetone	0.82	2.2	1.9	5.4
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.89	Not Detected
Benzene	0.16	Not Detected	0.52	Not Detected
Toluene	0.16	0.20	0.61	0.75
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.75	Not Detected
Ethyl Benzene	0.16	Not Detected	0.71	Not Detected
m,p-Xylene	0.16	Not Detected	0.71	Not Detected
o-Xylene	0.16	Not Detected	0.71	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,2,4-Trichlorobenzene	0.82	Not Detected	6.0	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: TA-1008 Lab ID#: 1204488-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042514sim	Date of Collection: 4/19/12 10:08:00 AM
Dil. Factor:	1.63	Date of Analysis: 4/25/12 09:11 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
Carbon Tetrachloride	0.033	0.13	0.20	0.80
Trichloroethene	0.033	Not Detected	0.18	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: TA-1009 Lab ID#: 1204488-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042513	Date of Collection: 4/19/12 10:09:00 AM
Dil. Factor:	1.65	Date of Analysis: 4/25/12 09:51 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.60	0.82	3.0
Freon 11	0.16	0.27	0.93	1.5
Freon 113	0.16	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Acetone	0.82	2.2	2.0	5.2
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.90	Not Detected
Benzene	0.16	Not Detected	0.53	Not Detected
Toluene	0.16	0.25	0.62	0.94
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.76	Not Detected
Ethyl Benzene	0.16	Not Detected	0.72	Not Detected
m,p-Xylene	0.16	Not Detected	0.72	Not Detected
o-Xylene	0.16	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2,4-Trichlorobenzene	0.82	Not Detected	6.1	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	127	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: TA-1009 Lab ID#: 1204488-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042513sim	Date of Collection: 4/19/12 10:09:00 AM
Dil. Factor:	1.65	Date of Analysis: 4/25/12 09:51 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
Carbon Tetrachloride	0.033	0.10	0.21	0.66
Trichloroethene	0.033	Not Detected	0.18	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	122	70-130
Toluene-d8	128	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: Lab Blank Lab ID#: 1204488-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAI

File Name: Dil. Factor:	e042506 1.00	1.00 Date of Analysis: 4/25/12 C		/12 01·26 PM
Compound				Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.49	Not Detected
Freon 113	0.10	Not Detected	0.30	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Container Type: NA - Not App	licable			
Surrogates		%Recovery		Method Limits

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	105	70-130	

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1204488-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	e042506sim 1.00	Date of Collection: NA Date of Analysis: 4/25/12 01:26 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not A	pplicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		98		70-130
Toluene-d8		99		70-130

105

70-130

Toluene-d8

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1204488-10C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN				
File Name: Dil. Factor:	v042506a 1.00	Date of Collection: NA Date of Analysis: 4/25/12 04:38 P Amount Rpt. Limit Amo		/12 04·38 PM
Dii. i detoi.				Amount
Compound	Rpt. Limit (ppbv)	(ppbv)	Rpt. Limit (ug/m3)	(ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Container Type: NA - Not App	olicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		97		70-130

120

105

70-130

70-130

Client Sample ID: Lab Blank Lab ID#: 1204488-10D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v042506asim 1.00	Date of Collection: NA Date of Analysis: 4/25/12 04:38 PM			
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)	
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected	
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected	
Trichloroethene	0.020	Not Detected	0.11	Not Detected	
Container Type: NA - Not A	Applicable				
Surrogates		%Recovery		Method Limits	
1,2-Dichloroethane-d4		105		70-130	
Toluene-d8		121		70-130	
4-Bromofluorobenzene		103		70-130	

Client Sample ID: CCV Lab ID#: 1204488-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 09:55 AM

Compound	%Recovery
Freon 12	102
Freon 11	104
Freon 113	110
1,1-Dichloroethene	105
Acetone	99
Methylene Chloride	106
cis-1,2-Dichloroethene	111
1,1,1-Trichloroethane	101
Benzene	104
Toluene	105
Tetrachloroethene	110
Chlorobenzene	101
Ethyl Benzene	104
m,p-Xylene	107
o-Xylene	106
1,3-Dichlorobenzene	111
1,4-Dichlorobenzene	106
1,2-Dichlorobenzene	108
1,2,4-Trichlorobenzene	89

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 1204488-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042502sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/25/12 09:55 AM

Compound	%Recovery
Vinyl Chloride	100
Carbon Tetrachloride	95
Trichloroethene	98

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CCV Lab ID#: 1204488-11C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 01:36 PM

Compound	%Recovery
Freon 12	117
Freon 11	108
Freon 113	98
1,1-Dichloroethene	92
Acetone	78
Methylene Chloride	92
cis-1,2-Dichloroethene	91
1,1,1-Trichloroethane	97
Benzene	89
Toluene	96
Tetrachloroethene	88
Chlorobenzene	90
Ethyl Benzene	90
m,p-Xylene	89
o-Xylene	93
1,3-Dichlorobenzene	83
1,4-Dichlorobenzene	85
1,2-Dichlorobenzene	83
1,2,4-Trichlorobenzene	79

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	108	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: CCV Lab ID#: 1204488-11D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042502sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/25/12 01:36 PM

Compound	%Recovery
Vinyl Chloride	82
Carbon Tetrachloride	110
Trichloroethene	83

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCS Lab ID#: 1204488-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042503 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 10:41 AM

Compound	%Recovery
Freon 12	108
Freon 11	111
Freon 113	116
1,1-Dichloroethene	119
Acetone	104
Methylene Chloride	113
cis-1,2-Dichloroethene	120
1,1,1-Trichloroethane	113
Benzene	107
Toluene	107
Tetrachloroethene	115
Chlorobenzene	108
Ethyl Benzene	110
m,p-Xylene	115
o-Xylene	116
1,3-Dichlorobenzene	115
1,4-Dichlorobenzene	110
1,2-Dichlorobenzene	115
1,2,4-Trichlorobenzene	97

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCSD Lab ID#: 1204488-12AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e042504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 11:41 AM

Compound	%Recovery
Freon 12	105
Freon 11	107
Freon 113	113
1,1-Dichloroethene	114
Acetone	98
Methylene Chloride	109
cis-1,2-Dichloroethene	116
1,1,1-Trichloroethane	108
Benzene	110
Toluene	109
Tetrachloroethene	117
Chlorobenzene	111
Ethyl Benzene	114
m,p-Xylene	117
o-Xylene	116
1,3-Dichlorobenzene	119
1,4-Dichlorobenzene	112
1,2-Dichlorobenzene	117
1,2,4-Trichlorobenzene	103

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	85	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 1204488-12B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042503sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/25/12 10:41 AM

Compound	%Recovery
Vinyl Chloride	104
Carbon Tetrachloride	105
Trichloroethene	103

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1204488-12BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e042504sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/25/12 11:41 AM

Compound	%Recovery
Vinyl Chloride	105
Carbon Tetrachloride	106
Trichloroethene	103

Surrogates		Method
	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCS Lab ID#: 1204488-12C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042503 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 02:24 PM

Compound	%Recovery
Freon 12	117
Freon 11	99
Freon 113	99
1,1-Dichloroethene	97
Acetone	79
Methylene Chloride	93
cis-1,2-Dichloroethene	89
1,1,1-Trichloroethane	98
Benzene	92
Toluene	96
Tetrachloroethene	91
Chlorobenzene	91
Ethyl Benzene	89
m,p-Xylene	87
o-Xylene	89
1,3-Dichlorobenzene	82
1,4-Dichlorobenzene	83
1,2-Dichlorobenzene	83
1,2,4-Trichlorobenzene	95

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: LCSD Lab ID#: 1204488-12CC

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 03:09 PM

Compound	%Recovery
Freon 12	109
Freon 11	93
Freon 113	93
1,1-Dichloroethene	92
Acetone	73
Methylene Chloride	80
cis-1,2-Dichloroethene	90
1,1,1-Trichloroethane	97
Benzene	92
Toluene	105
Tetrachloroethene	93
Chlorobenzene	92
Ethyl Benzene	92
m,p-Xylene	90
o-Xylene	92
1,3-Dichlorobenzene	84
1,4-Dichlorobenzene	85
1,2-Dichlorobenzene	83
1,2,4-Trichlorobenzene	97

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	118	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCS Lab ID#: 1204488-12D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v042503sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 4/25/12 02:24 PM

Compound	%Recovery
Vinyl Chloride	82
Carbon Tetrachloride	96
Trichloroethene	83

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	106	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCSD Lab ID#: 1204488-12DD

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v042504sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 4/25/12 03:09 PM

Compound	%Recovery
Vinyl Chloride	74
Carbon Tetrachloride	89
Trichloroethene	85

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	116	70-130
4-Bromofluorobenzene	98	70-130

1204483

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T.

Hotline (800) 467-4922

Custody Seal Intact?
Y N None Temp NA (603) 229-190

20 Foundry Street Concoró, NH 03301 (603) 229-1900 FAX (603) 229-1919

Project Info: **Turn Around Time** Relinquished by: [signature] Date/Time Received By: (signature) Date/Time, Project Manager: Brad Green Email: bgreen@sanbornhead.com; latwell@sanbornhead.com; Normal x kdubois@sanbornhead.com Rush Relinquished by: (signature) Date/Time P.O# Project # 2999 Project Name: IBM - EFK Building 320B Relinquished by: (signature) Date/Time Received By: (signature) Date/Time Analyses: 1 = TO-15 H/L See attached analyte list. specify

Analyses: 1 = 10-15 H/L Se	ee attached analyte list.	specity							
Lab ID	Field Sample I.D.	Can #	Collection Date	Collection Time	Initial	Final	Analysis	Receipt	Final (psi)
NIAB	TA-1001	33939	04/19/2012	0830	28	8.5	1		
OZAB	TA-1002	34748	04/19/2012	1002	30	6	1		
03AB	TA-1003	5596	04/19/2012	1003	29.5	4.5	1		Fig. 1.
CHAB	TA-1004	9925	04/19/2012	1006	30	5	1		* .
OSAB	TA-1005	25276	04/19/2012	1005	29.5	3.5	1		
DOAB	TA-1006	34742	04/19/2012	1000	30	3.5	1		
D7.4B	TA-1007	34436	04/19/2012	1001	<30	7.5	1		
08AB	TA-1008	33962	04/19/2012	1008	<30	6	1	-	
0943	TA-1009	33381	04/19/2012	1009	29.5	6	1		
								151 /g/15	
									,

<u>Analysis</u>

1 = TO-15 Modified

Analyte List	CAS#
Tetrachloroethene (PCE)	127-18-4
Trichloroethene (TCE)	79-01-6
cis-1,2-Dichloroethene (cDCE)	156-59-2
1,1-Dichloroethene (DCE)	75-35-4
Vinyl chloride (VC)	75-01-4
1,1,1-Trichloroethane (TCA)	71-55-6
Carbon tetrachloride	56-23-5
Methylene chloride (MeCl)	75-09-2
Chlorobenzene	108-90-7
1,2,4-Trichlorobenzene	120-82-1
1,2-Dichlorobenzene	95-50-1
1,3-Dichlorobenzene	541-73-1
1,4-Dichlorobenzene	106-46-7
Acetone	67-64-1
Benzene	71-43-2
Ethylbenzene	100-41-4
m-Xylene	108-38-3
p-Xylene	106-42-3
o-Xylene	95-47-6
Toluene	108-88-3
Trichlorofluoromethane (Freon 11)	75-69-4
Dichlorodifluoromethane (Freon 12)	75-71-8
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1

3/14/2013 Mr. Brad Green Sanborn, Head & Associates 20 Foundry Street

Concord NH 03301

Project Name: IBM East Fishkill

Project #: 2999.00

Workorder #: 1302287R1

Dear Mr. Brad Green

The following report includes the data for the above referenced project for sample(s) received on 2/16/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1302287R1

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street20 Foundry StreetConcord, NH 03301Concord, NH 03301

PHONE: 603-229-1900 P.O. #

FAX: 603-229-1919 **PROJECT** # 2999.00 IBM East Fishkill

DATE RECEIVED: 02/16/2013 **CONTACT:** Ausha Scott

DATE COMPLETED: 03/14/2013 **DATE REISSUED:** 03/07/2013

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	TA1029\G	Modified TO-15	6.0 "Hg	5 psi
01B	TA1029\G	Modified TO-15	6.0 "Hg	5 psi
02A	TA1012\G	Modified TO-15	6.5 "Hg	5 psi
02B	TA1012\G	Modified TO-15	6.5 "Hg	5 psi
03A	TA1052\G	Modified TO-15	25.5 "Hg	5 psi
03B	TA1052\G	Modified TO-15	25.5 "Hg	5 psi
04A	TA1055\G	Modified TO-15	8.0 "Hg	5 psi
04B	TA1055\G	Modified TO-15	8.0 "Hg	5 psi
04C	TA1055\G	Modified TO-15	8.0 "Hg	5 psi
05A	Lab Blank	Modified TO-15	NA	NA
05B	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
06B	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07AA	LCSD	Modified TO-15	NA	NA
07B	LCS	Modified TO-15	NA	NA
07BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY: DATE: 03/14/13

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder# 1302287R1

Four 6 Liter Summa Canister (SIM Certified) samples were received on February 16, 2013. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Sample TA1052\G was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

THE WORK ORDER WAS REISSUED ON 3/14/2013 TO CORRECT IDATE OF COLLECTION FOR SAMPLESTA1052\G AND TA1055\G DUE TO LABORATORY TRANSCRIPTION ERROR.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Due to high-level target compounds, sample TA1055\G was analyzed twice. In the "C" fraction, the sample was diluted to bring the highest-level compounds within the calibration range. The "A" fraction is also reported by client request and may be reported with "E" flags indicating the compound exceeds the calibration range. Both runs and associated QC are reported.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: TA1029\G Lab ID#: 1302287R1-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.56	0.83	2.8
Freon 11	0.17	0.48	0.94	2.7
Freon 113	0.17	1.2	1.3	9.6
Acetone	0.84	4.6	2.0	11
Benzene	0.17	0.18	0.54	0.57
m,p-Xylene	0.17	0.22	0.73	0.93

Client Sample ID: TA1029\G

Lab ID#: 1302287R1-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	0.049	0.043	0.12
Carbon Tetrachloride	0.034	0.086	0.21	0.54
Trichloroethene	0.034	0.12	0.18	0.63

Client Sample ID: TA1012\G

Lab ID#: 1302287R1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.65	0.84	3.2
Freon 11	0.17	0.65	0.96	3.7
Freon 113	0.17	6.1	1.3	47
Acetone	0.86	5.0	2.0	12
Benzene	0.17	0.17	0.55	0.54
Tetrachloroethene	0.17	0.47	1.2	3.2
m,p-Xylene	0.17	0.38	0.74	1.6

Client Sample ID: TA1012\G

Lab ID#: 1302287R1-02B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.072	0.044	0.18

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: TA1012\G

Lab ID#: 1302287R1-02B

 Carbon Tetrachloride
 0.034
 0.091
 0.22
 0.57

 Trichloroethene
 0.034
 4.5
 0.18
 24

Client Sample ID: TA1052\G

Lab ID#: 1302287R1-03A

 Compound
 Rpt. Limit (ppbv)
 Amount (ppbv)
 Rpt. Limit (ug/m3)
 Amount (ug/m3)

 Acetone
 4.5
 15
 11
 35

Client Sample ID: TA1052\G Lab ID#: 1302287R1-03B

No Detections Were Found.

Client Sample ID: TA1055\G

Lab ID#: 1302287R1-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.46	0.90	2.3
Freon 11	0.18	0.20	1.0	1.1
Acetone	0.92	360 E	2.2	840 E
Methylene Chloride	0.37	12	1.3	40
Toluene	0.18	0.60	0.69	2.3
m,p-Xylene	0.18	0.45	0.79	1.9

Client Sample ID: TA1055\G

Lab ID#: 1302287R1-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.018	0.18	0.047	0.46
Carbon Tetrachloride	0.037	0.073	0.23	0.46

Client Sample ID: TA1055\G Lab ID#: 1302287R1-04C

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: TA1055\G Lab ID#: 1302287R1-04C

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Acetone	6.6	340	16	800	

Client Sample ID: TA1029\G Lab ID#: 1302287R1-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022208	Date of Collection: 2/12/13 5:15:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/22/13 01:58 PM

Dill i dotoi i	1.00	Date	OI Allalysis. Elec	10 01.00 1 111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.56	0.83	2.8
Freon 11	0.17	0.48	0.94	2.7
Freon 113	0.17	1.2	1.3	9.6
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	4.6	2.0	11
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Benzene	0.17	0.18	0.54	0.57
Toluene	0.17	Not Detected	0.63	Not Detected
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.77	Not Detected
Ethyl Benzene	0.17	Not Detected	0.73	Not Detected
m,p-Xylene	0.17	0.22	0.73	0.93
o-Xylene	0.17	Not Detected	0.73	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.2	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: TA1029\G Lab ID#: 1302287R1-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022208sim	Date of Collection: 2/12/13 5:15:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/22/13 01:58 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.049	0.043	0.12
Carbon Tetrachloride	0.034	0.086	0.21	0.54
Trichloroethene	0.034	0.12	0.18	0.63

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: TA1012\G Lab ID#: 1302287R1-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022209	Date of Collection: 2/12/13 5:30:00 PM
Dil. Factor:	1.71	Date of Analysis: 2/22/13 02:40 PM

Dil. 1 dotor.		Date	Date of Arialysis. 2/22/13 02.40 Fivi		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.17	0.65	0.84	3.2	
Freon 11	0.17	0.65	0.96	3.7	
Freon 113	0.17	6.1	1.3	47	
1,1-Dichloroethene	0.17	Not Detected	0.68	Not Detected	
Acetone	0.86	5.0	2.0	12	
Methylene Chloride	0.34	Not Detected	1.2	Not Detected	
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected	
1,1,1-Trichloroethane	0.17	Not Detected	0.93	Not Detected	
Benzene	0.17	0.17	0.55	0.54	
Toluene	0.17	Not Detected	0.64	Not Detected	
Tetrachloroethene	0.17	0.47	1.2	3.2	
Chlorobenzene	0.17	Not Detected	0.79	Not Detected	
Ethyl Benzene	0.17	Not Detected	0.74	Not Detected	
m,p-Xylene	0.17	0.38	0.74	1.6	
o-Xylene	0.17	Not Detected	0.74	Not Detected	
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
1,2,4-Trichlorobenzene	0.86	Not Detected	6.3	Not Detected	

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: TA1012\G Lab ID#: 1302287R1-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022209sim	Date of Collection: 2/12/13 5:30:00 PM
Dil. Factor:	1.71	Date of Analysis: 2/22/13 02:40 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.072	0.044	0.18
Carbon Tetrachloride	0.034	0.091	0.22	0.57
Trichloroethene	0.034	4.5	0.18	24

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: TA1052\G Lab ID#: 1302287R1-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022210	Date of Collection: 2/13/13 2:30:00 PM
Dil. Factor:	8.93	Date of Analysis: 2/22/13 03:43 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.89	Not Detected	4.4	Not Detected
Freon 11	0.89	Not Detected	5.0	Not Detected
Freon 113	0.89	Not Detected	6.8	Not Detected
1,1-Dichloroethene	0.89	Not Detected	3.5	Not Detected
Acetone	4.5	15	11	35
Methylene Chloride	1.8	Not Detected	6.2	Not Detected
cis-1,2-Dichloroethene	0.89	Not Detected	3.5	Not Detected
1,1,1-Trichloroethane	0.89	Not Detected	4.9	Not Detected
Benzene	0.89	Not Detected	2.8	Not Detected
Toluene	0.89	Not Detected	3.4	Not Detected
Tetrachloroethene	0.89	Not Detected	6.0	Not Detected
Chlorobenzene	0.89	Not Detected	4.1	Not Detected
Ethyl Benzene	0.89	Not Detected	3.9	Not Detected
m,p-Xylene	0.89	Not Detected	3.9	Not Detected
o-Xylene	0.89	Not Detected	3.9	Not Detected
1,3-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
1,4-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
1,2-Dichlorobenzene	0.89	Not Detected	5.4	Not Detected
1,2,4-Trichlorobenzene	4.5	Not Detected	33	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: TA1052\G Lab ID#: 1302287R1-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022210sim	Date of Collection: 2/13/13 2:30:00 PM
Dil. Factor:	8.93	Date of Analysis: 2/22/13 03:43 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.089	Not Detected	0.23	Not Detected
Carbon Tetrachloride	0.18	Not Detected	1.1	Not Detected
Trichloroethene	0.18	Not Detected	0.96	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: TA1055\G Lab ID#: 1302287R1-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a022211 Date of Collection: 2/13/13 4:00:00 PM
Dil. Factor: 1.83 Date of Analysis: 2/22/13 04:38 PM

DII. Factor.	1.03	Date	of Analysis: Zizzi	13 U4:30 PW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.18	0.46	0.90	2.3
Freon 11	0.18	0.20	1.0	1.1
Freon 113	0.18	Not Detected	1.4	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected
Acetone	0.92	360 E	2.2	840 E
Methylene Chloride	0.37	12	1.3	40
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
1,1,1-Trichloroethane	0.18	Not Detected	1.0	Not Detected
Benzene	0.18	Not Detected	0.58	Not Detected
Toluene	0.18	0.60	0.69	2.3
Tetrachloroethene	0.18	Not Detected	1.2	Not Detected
Chlorobenzene	0.18	Not Detected	0.84	Not Detected
Ethyl Benzene	0.18	Not Detected	0.79	Not Detected
m,p-Xylene	0.18	0.45	0.79	1.9
o-Xylene	0.18	Not Detected	0.79	Not Detected
1,3-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2-Dichlorobenzene	0.18	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.92	Not Detected	6.8	Not Detected

E = Exceeds instrument calibration range.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: TA1055\G Lab ID#: 1302287R1-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022211sim	Date of Collection: 2/13/13 4:00:00 PM
Dil. Factor:	1.83	Date of Analysis: 2/22/13 04:38 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.018	0.18	0.047	0.46
Carbon Tetrachloride	0.037	0.073	0.23	0.46
Trichloroethene	0.037	Not Detected	0.20	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	90	70-130	

Client Sample ID: TA1055\G Lab ID#: 1302287R1-04C

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a022212 13.1		te of Collection: 2/13 te of Analysis: 2/22/1	
Compound	Rpt. Limit	Amount (nnby)	Rpt. Limit	Amount

 Compound
 (ppbv)
 (ppbv)
 (ug/m3)
 (ug/m3)

 Acetone
 6.6
 340
 16
 800

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	85	70-130

Client Sample ID: Lab Blank Lab ID#: 1302287R1-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	a022206 1.00		of Collection: NA of Analysis: 2/22	/13 11:20 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1302287R1-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	a022206sim 1.00	2	of Collection: NA of Analysis: 2/22	/13 11:20 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not A	pplicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		100		70-130
Toluene-d8		98		70-130

96

70-130

Client Sample ID: CCV Lab ID#: 1302287R1-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a022202 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/22/13 08:18 AM

Compound	%Recovery
Freon 12	89
Freon 11	86
Freon 113	95
1,1-Dichloroethene	95
Acetone	86
Methylene Chloride	88
cis-1,2-Dichloroethene	98
1,1,1-Trichloroethane	86
Benzene	93
Toluene	94
Tetrachloroethene	102
Chlorobenzene	98
Ethyl Benzene	100
m,p-Xylene	97
o-Xylene	94
1,3-Dichlorobenzene	80
1,4-Dichlorobenzene	79
1,2-Dichlorobenzene	81
1,2,4-Trichlorobenzene	70

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: CCV Lab ID#: 1302287R1-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022202sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/22/13 08:18 AM

Compound	%Recovery
Vinyl Chloride	93
Carbon Tetrachloride	97
Trichloroethene	91

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCS Lab ID#: 1302287R1-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a022203 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/22/13 09:05 AM

Compound	%Recovery
Freon 12	96
Freon 11	93
Freon 113	103
1,1-Dichloroethene	109
Acetone	91
Methylene Chloride	94
cis-1,2-Dichloroethene	108
1,1,1-Trichloroethane	96
Benzene	96
Toluene	98
Tetrachloroethene	100
Chlorobenzene	102
Ethyl Benzene	106
m,p-Xylene	105
o-Xylene	99
1,3-Dichlorobenzene	91
1,4-Dichlorobenzene	89
1,2-Dichlorobenzene	89
1,2,4-Trichlorobenzene	86

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCSD Lab ID#: 1302287R1-07AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: a022204 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/22/13 09:46 AM

Compound	%Recovery
Freon 12	90
Freon 11	88
Freon 113	96
1,1-Dichloroethene	103
Acetone	86
Methylene Chloride	87
cis-1,2-Dichloroethene	96
1,1,1-Trichloroethane	88
Benzene	99
Toluene	99
Tetrachloroethene	104
Chlorobenzene	104
Ethyl Benzene	107
m,p-Xylene	108
o-Xylene	101
1,3-Dichlorobenzene	90
1,4-Dichlorobenzene	87
1,2-Dichlorobenzene	90
1,2,4-Trichlorobenzene	75

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	83	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCS Lab ID#: 1302287R1-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022203sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/22/13 09:05 AM

Compound	%Recovery
Vinyl Chloride	96
Carbon Tetrachloride	107
Trichloroethene	94

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1302287R1-07BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	a022204sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/22/13 09:46 AM

Compound	%Recovery
Vinyl Chloride	94
Carbon Tetrachloride	106
Trichloroethene	96

		Metnoa
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	98	70-130

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinences of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

1302287

Project In Project Manager: Brad Gre Email: bgreen@sanbornhe latwell@sanbornhead.com, k P.O# Project # 2999.00 Project Name: Analyses: 1 = TO-15 H/L 2 =	en ad.com dubois@sanbornhead.com BIM East Fishkill	Turn Around Time Normal X Rush specify	REGMEN Relinquished by: (a	signature) Date/Time 2/15/13 signature) Date/Time	,0830	Received By:	(signature) Date/Time (signature) Date/Time (signature) Date/Time	16 02/16/13	03D
Lab ID	Field Sample I.D.	Can #	Collection Date	Collection Time	Initial	Final	Analysis	Receipt	Final (psi)
OIAB	TA1029\G	33580	2/12/2013	1715	30	6.5	1		
02 213	TA1012\G	34234	2/12/2013	1730	30	7.5	1		
0343	TA1052\G	34231	2/13/2013	1430	30	Unk.	1		-
0443	TA1055\G	9541	2/13/2013	1600	30	8.5	1		
							•		
							4		
				<u> </u>					
									'

Page 1 of 1

Sample Transportation Notice

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020 Asimple Trialsportation woulde
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T.
Hotline (800) 467-4922

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

WO # 1302287

<u>Analysis</u>

1 = TO-15 Modified

Analyte List	CAS#
Tetrachloroethene (PCE)	127-18-4
Trichloroethene (TCE)	79-01-6
cis-1,2-Dichloroethene (cDCE)	156-59-2
1,1-Dichloroethene (DCE)	75-35-4
Vinyl chloride (VC)	75-01-4
1,1,1-Trichloroethane (TCA)	71-55-6
Carbon tetrachloride	56-23-5
Methylene chloride (MeCl)	75-09-2
Chlorobenzene	108-90-7
1,2,4-Trichlorobenzene	120-82-1
1,2-Dichlorobenzene	95-50-1
1,3-Dichlorobenzene	541-73-1
1,4-Dichlorobenzene	106-46-7
Acetone	67-64-1
Benzene	71-43-2
Ethylbenzene	100-41-4
m-Xylene	108-38-3
p-Xylene	106-42-3
o-Xylene	95-47-6
Toluene	108-88-3
Trichlorofluoromethane (Freon 11)	75-69-4
Dichlorodifluoromethane (Freon 12)	75-71-8
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1

5/16/2013 Mr. Brad Green Sanborn, Head & Associates 20 Foundry Street

Concord NH 03301

Project Name: IBM - East Fishkill

Project #: 2999.00 Workorder #: 1305059

Dear Mr. Brad Green

The following report includes the data for the above referenced project for sample(s) received on 5/3/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1305059

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street20 Foundry StreetConcord, NH 03301Concord, NH 03301

PHONE: 603-229-1900 P.O. #

FAX: 603-229-1919 **PROJECT** # 2999.00 IBM - East Fishkill

DATE RECEIVED: 05/03/2013 CONTACT: Ausha Scott DATE COMPLETED: 05/16/2013

RECEIPT **FINAL** FRACTION# **NAME** TEST VAC./PRES. **PRESSURE** 01A IA0708\G Modified TO-15 2.6 "Hg 5 psi 2.6 "Hg 01B IA0708\G Modified TO-15 5 psi 3.5 "Hg IA0710\G Modified TO-15 02A 5.1 psi 02B IA0710\G Modified TO-15 3.5 "Hg 5.1 psi Modified TO-15 03A Lab Blank NA NA 03B Lab Blank Modified TO-15 NA NA 04A Modified TO-15 **CCV** NA NA 04B **CCV** Modified TO-15 NA NA 05A LCS Modified TO-15 NA NA 05AA **LCSD** Modified TO-15 NA NA Modified TO-15 05B LCS NA NA 05BB **LCSD** Modified TO-15 NA NA

CERTIFIED BY: DATE: 05/16/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-4, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2012, Expiration date: 10/17/2013.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder# 1305059

Two 6 Liter Summa Canister (SIM Certified) samples were received on May 03, 2013. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

A Method Detection Limit (MDL) study is not maintained for non-standard compounds. As such a

Method Detection Limit (MDL) study was not performed for Carbon Tetrachloride by TO-15 SIM analysis.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: IA0708\G

Lab ID#: 1305059-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.15	0.56	0.73	2.7
Freon 11	0.15	0.54	0.82	3.0
Acetone	0.74	20	1.7	48
Toluene	0.15	0.73	0.55	2.8
Ethyl Benzene	0.15	0.21	0.64	0.92
m,p-Xylene	0.15	0.92	0.64	4.0
o-Xylene	0.15	0.29	0.64	1.2

Client Sample ID: IA0708\G

Lab ID#: 1305059-01B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.015	0.18	0.038	0.45
Carbon Tetrachloride	0.029	0.050	0.18	0.31

Client Sample ID: IA0710\G

Lab ID#: 1305059-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.15	0.56	0.75	2.8
Freon 11	0.15	0.25	0.85	1.4
Acetone	0.76	6.8	1.8	16
Toluene	0.15	0.46	0.57	1.7

Client Sample ID: IA0710\G

Lab ID#: 1305059-02B

Compound	Rpt. Limit	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinvl Chloride	(ppbv) 0.015	0.41	0.039	1.0
Carbon Tetrachloride	0.030	0.086	0.19	0.54

Client Sample ID: IA0708\G Lab ID#: 1305059-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051407	Date of Collection: 4/30/13 4:36:00 PM
Dil. Factor:	1.47	Date of Analysis: 5/14/13 11:43 AM

Dill'i dotori	1.77	Date	of Allalysis. of 14	710 11.40 AW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.15	0.56	0.73	2.7
Freon 11	0.15	0.54	0.82	3.0
Freon 113	0.15	Not Detected	1.1	Not Detected
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Acetone	0.74	20	1.7	48
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1,1-Trichloroethane	0.15	Not Detected	0.80	Not Detected
Benzene	0.15	Not Detected	0.47	Not Detected
Toluene	0.15	0.73	0.55	2.8
Tetrachloroethene	0.15	Not Detected	1.0	Not Detected
Chlorobenzene	0.15	Not Detected	0.68	Not Detected
Ethyl Benzene	0.15	0.21	0.64	0.92
m,p-Xylene	0.15	0.92	0.64	4.0
o-Xylene	0.15	0.29	0.64	1.2
1,3-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,2,4-Trichlorobenzene	0.74	Not Detected	5.4	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: IA0708\G Lab ID#: 1305059-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

•			
ı	Dil. Factor:	1.47	Date of Analysis: 5/14/13 11:43 AM
	File Name:	c051407sim	Date of Collection: 4/30/13 4:36:00 PM
ı			

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.015	0.18	0.038	0.45
Carbon Tetrachloride	0.029	0.050	0.18	0.31
Trichloroethene	0.029	Not Detected	0.16	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: IA0710\G Lab ID#: 1305059-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051408	Date of Collection: 5/1/13 10:40:00 AM
Dil. Factor:	1.52	Date of Analysis: 5/14/13 12:33 PM

Dii. i actor.	1.32	Date of Affaiysis. 3/14/13 12:33 Fivi		/ 13 12.33 F W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.15	0.56	0.75	2.8
Freon 11	0.15	0.25	0.85	1.4
Freon 113	0.15	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Acetone	0.76	6.8	1.8	16
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected
1,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Benzene	0.15	Not Detected	0.48	Not Detected
Toluene	0.15	0.46	0.57	1.7
Tetrachloroethene	0.15	Not Detected	1.0	Not Detected
Chlorobenzene	0.15	Not Detected	0.70	Not Detected
Ethyl Benzene	0.15	Not Detected	0.66	Not Detected
m,p-Xylene	0.15	Not Detected	0.66	Not Detected
o-Xylene	0.15	Not Detected	0.66	Not Detected
1,3-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,2,4-Trichlorobenzene	0.76	Not Detected	5.6	Not Detected

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: IA0710\G Lab ID#: 1305059-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051408sim	Date of Collection: 5/1/13 10:40:00 AM
Dil. Factor:	1.52	Date of Analysis: 5/14/13 12:33 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.015	0.41	0.039	1.0
Carbon Tetrachloride	0.030	0.086	0.19	0.54
Trichloroethene	0.030	Not Detected	0.16	Not Detected

•		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: Lab Blank Lab ID#: 1305059-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

c051406	Dat	te of Collection: NA	
1.00	Date of Analysis: 5/14/13 10:55 AM		
Rpt. Limit	Amount	Rpt. Limit	Amount (ug/m3)
		1.00 Date Rpt. Limit Amount	1.00 Date of Analysis: 5/14/1 Rpt. Limit Amount Rpt. Limit

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1305059-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c051406sim 1.00		of Collection: NA of Analysis: 5/14	/13 10:55 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not A	pplicable			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		101		70-130
Toluene-d8		96		70-130

101

70-130

Client Sample ID: CCV Lab ID#: 1305059-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c051402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/14/13 07:16 AM

Compound	%Recovery
Freon 12	96
Freon 11	96
Freon 113	92
1,1-Dichloroethene	95
Acetone	94
Methylene Chloride	92
cis-1,2-Dichloroethene	103
1,1,1-Trichloroethane	98
Benzene	95
Toluene	94
Tetrachloroethene	104
Chlorobenzene	98
Ethyl Benzene	108
m,p-Xylene	107
o-Xylene	110
1,3-Dichlorobenzene	96
1,4-Dichlorobenzene	93
1,2-Dichlorobenzene	99
1,2,4-Trichlorobenzene	97

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1305059-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051402sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/14/13 07:16 AM

Compound	%Recovery
Vinyl Chloride	86
Carbon Tetrachloride	129
Trichloroethene	87

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCS Lab ID#: 1305059-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c051403 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/14/13 08:36 AM

Compound	%Recovery
Freon 12	93
Freon 11	94
Freon 113	92
1,1-Dichloroethene	96
Acetone	95
Methylene Chloride	91
cis-1,2-Dichloroethene	98
1,1,1-Trichloroethane	96
Benzene	94
Toluene	89
Tetrachloroethene	102
Chlorobenzene	96
Ethyl Benzene	101
m,p-Xylene	103
o-Xylene	102
1,3-Dichlorobenzene	87
1,4-Dichlorobenzene	86
1,2-Dichlorobenzene	87
1,2,4-Trichlorobenzene	89

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCSD Lab ID#: 1305059-05AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c051404 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/14/13 09:15 AM

Compound	%Recovery
Freon 12	89
Freon 11	92
Freon 113	90
1,1-Dichloroethene	98
Acetone	93
Methylene Chloride	91
cis-1,2-Dichloroethene	97
1,1,1-Trichloroethane	95
Benzene	92
Toluene	90
Tetrachloroethene	97
Chlorobenzene	93
Ethyl Benzene	100
m,p-Xylene	101
o-Xylene	102
1,3-Dichlorobenzene	89
1,4-Dichlorobenzene	85
1,2-Dichlorobenzene	89
1,2,4-Trichlorobenzene	96

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: LCS Lab ID#: 1305059-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051403sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/14/13 08:36 AM

Compound	%Recovery
Vinyl Chloride	85
Carbon Tetrachloride	115
Trichloroethene	87

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: LCSD Lab ID#: 1305059-05BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c051404sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/14/13 09:15 AM

Compound	%Recovery
Vinyl Chloride	83
Carbon Tetrachloride	114
Trichloroethene	84

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

1305059

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Project Info:

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature ako indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T.

Hotline (800) 457-4922

Received By: (signature) Date/Time

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

Project Manager: Brad Gre Email: bgreen@sanbornhe latwell@sanbornhead.com, P.O# Project # 2999.00	ad.com	Normal X Rush	Relinquished by: (MAL 05-02-13 signature) Date/Time	/0:3O	Received By: (White die signature) Date Time	ATL 5/3/1	3 0945
Project Name: Analyses: 1 = TO-15 H/I 2 =	IBM East Fishkill L site specific	specify	Relinquished by: (signature) Date/Time		Received By: (signature) Date/Time		
Lab ID	Field Sample I.D.	Can #	Collection Date	Collection Time	Initial	Final	Analysis	Receipt	Final (psi)
Ð(A	IA0708\G	4380	04.30.2013	1636	30	3.5	1		
02A	IA0710\G	5673	05.01.2013	1040	30	4.5	1		
	-								
							11-10		
									-

Page 1 of 1

Sample Transportation Notice

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

Air Toxics

$Method: Modified\ TO-15\ Hi/Lo\ (Sh)/SpRL-SHA\ (IBM\ Fishkill)-Carbon\ Tet,\ TCE\ \&\ VC\ @\ SIM$

CAS Number	Compound	Rpt. Limit (ppbv)
75-01-4	Vinyl Chloride	0.010
56-23-5	Carbon Tetrachloride	0.020
79-01-6	Trichloroethene	0.020
75-71-8	Freon 12	0.10
75-69-4	Freon 11	0.10
76-13-1	Freon 113	0.10
75-35-4	1,1-Dichloroethene	0.10
67-64-1	Acetone	0.50
75-09-2	Methylene Chloride	0.20
156-59-2	cis-1,2-Dichloroethene	0.10
71-55-6	1,1,1-Trichloroethane	0.10
71-43-2	Benzene	0.10
108-88-3	Toluene	0.10
127-18-4	Tetrachloroethene	0.10
108-90-7	Chlorobenzene	0.10
100-41-4	Ethyl Benzene	0.10
108-38-3	m,p-Xylene	0.10
95-47-6	o-Xylene	0.10
541-73-1	1,3-Dichlorobenzene	0.10
106-46-7	1,4-Dichlorobenzene	0.10
95-50-1	1,2-Dichlorobenzene	0.10
120-82-1	1,2,4-Trichlorobenzene	0.50

CAS Number	Surrogate	Method Limits	
17060-07-0	1,2-Dichloroethane-d4	0.0-0.0	
2037-26-5	Toluene-d8	0.0-0.0	
460-00-4	4-Bromofluorobenzene	0.0-0.0	

ANALYTICAL REPORT

Lab Number: L1307936

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: LeaAnne Atwell Phone: (603) 229-1900

Project Name: EFK - 320B
Project Number: 2999.00
Report Date: 05/10/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

Alpha Sample ID Client ID		Sample Location	Collection Date/Time
L1307936-01	BM1000	E. FISHKILL, NY	05/01/13 09:30
L1307936-02	BM1001	E. FISHKILL, NY	05/01/13 09:30

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1307936-01: The sample was soaked overnight in a volume of Methanol equal to the sample weight. A 100uL aliquot of the Methanol was then sampled.

L1307936-02: A 1g aliquot of sample was prepped in the laboratory due to matrix issues.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/10/13

Galta Por Elizabeth Porta

ALPHA

ORGANICS

VOLATILES

Project Name: EFK - 320B Lab Number: L1307936

Project Number: 2999.00 Report Date: 05/10/13

SAMPLE RESULTS

Lab ID: L1307936-01 Date Collected: 05/01/13 09:30

Client ID: BM1000 Date Received: 05/03/13
Sample Location: F_EISHKILL_NY Field Pren: Not Spec

Sample Location: E. FISHKILL, NY Field Prep: Not Specified Matrix: Solid
Analytical Method: 1,8260C

Analytical Date: 05/08/13 13:50 Analyst: BN

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
Methylene chloride	ND		ug/kg	460	93.	1
Carbon tetrachloride	ND		ug/kg	46	9.8	<u>·</u> 1
Tetrachloroethene	ND		ug/kg	46	6.5	1
Chlorobenzene	ND		ug/kg	46	16.	 1
Trichlorofluoromethane	ND		ug/kg	230	5.6	 1
1,1,1-Trichloroethane	ND		ug/kg	46	5.1	 1
Benzene	ND		ug/kg	46	5.5	 1
Toluene	14	J	ug/kg	70	5.2	1
Ethylbenzene	ND		ug/kg	46	6.8	1
Vinyl chloride	ND		ug/kg	93	6.6	1
1,1-Dichloroethene	ND		ug/kg	46	9.6	1
Trichloroethene	ND		ug/kg	46	7.1	1
1,2-Dichlorobenzene	ND		ug/kg	230	8.5	1
1,3-Dichlorobenzene	ND		ug/kg	230	8.5	1
1,4-Dichlorobenzene	ND		ug/kg	230	11.	1
p/m-Xylene	ND		ug/kg	93	15.	1
o-Xylene	ND		ug/kg	93	12.	1
cis-1,2-Dichloroethene	ND		ug/kg	46	6.9	1
Dichlorodifluoromethane	ND		ug/kg	460	10.	1
Acetone	ND		ug/kg	460	140	1
1,2,4-Trichlorobenzene	ND		ug/kg	230	37.	1
Freon-113	ND		ug/kg	930	13.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	98		70-130	

Project Name: EFK - 320B Lab Number: L1307936

Project Number: 2999.00 Report Date: 05/10/13

SAMPLE RESULTS

Lab ID: L1307936-02 Date Collected: 05/01/13 09:30

Client ID: BM1001 Date Received: 05/03/13

Sample Location: E. FISHKILL, NY Field Prep: Not Specified Matrix: Solid

Analytical Method: 1,8260C Analytical Date: 05/06/13 16:03

Analyst: BN

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Volatile Organics by EPA 5035 High - Westborough Lab Methylene chloride ND ug/kg 5000 Carbon tetrachloride ND ug/kg 500 Tetrachloroethene ND ug/kg 500 Chlorobenzene ND ug/kg 500 Trichlorofluoromethane ND ug/kg 2500 1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 500 Vinyl chloride ND ug/kg 500 Vinyl chloride ND ug/kg 500 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug	MDL	Dilution Factor
Carbon tetrachloride ND ug/kg 500 Tetrachloroethene ND ug/kg 500 Chlorobenzene ND ug/kg 500 Trichlorofluoromethane ND ug/kg 2500 1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 500 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500		
Tetrachloroethene ND ug/kg 500 Chlorobenzene ND ug/kg 500 Trichlorofluoromethane ND ug/kg 2500 1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 500 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 500 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500	1000	1
Chlorobenzene ND ug/kg 500 Trichlorofluoromethane ND ug/kg 2500 1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	100	1
Trichlorofluoromethane ND ug/kg 2500 1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	70.	1
1,1,1-Trichloroethane ND ug/kg 500 Benzene ND ug/kg 500 Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	170	1
Benzene ND ug/kg 500 Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	61.	1
Toluene ND ug/kg 750 Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	55.	1
Ethylbenzene ND ug/kg 500 Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	59.	1
Vinyl chloride ND ug/kg 1000 1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	56.	1
1,1-Dichloroethene ND ug/kg 500 Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	74.	1
Trichloroethene ND ug/kg 500 1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	71.	1
1,2-Dichlorobenzene ND ug/kg 2500 1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	100	1
1,3-Dichlorobenzene ND ug/kg 2500 1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	76.	1
1,4-Dichlorobenzene ND ug/kg 2500 p/m-Xylene ND ug/kg 1000	92.	1
p/m-Xylene ND ug/kg 1000	92.	1
	120	1
o-Xylene ND ug/kg 1000	160	1
	140	1
cis-1,2-Dichloroethene ND ug/kg 500	75.	1
Dichlorodifluoromethane ND ug/kg 5000	110	1
Acetone ND ug/kg 5000	1600	1
1,2,4-Trichlorobenzene ND ug/kg 2500	390	1
Freon-113 ND ug/kg 10000	140	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EFK - 320B Lab Number: L1307936

Project Number: 2999.00 Report Date: 05/10/13

SAMPLE RESULTS

Lab ID: L1307936-02 Date Collected: 05/01/13 09:30

Client ID: BM1001 Date Received: 05/03/13 Sample Location: E. FISHKILL, NY Field Prep: Not Specified

Matrix: Solid
Analytical Method: 1,8260C
Analytical Date: 05/06/13 16:31

Analyst: BN

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Mathylana ahlarida	ND		ug/kg	50	10.	1
Methylene chloride						
Carbon tetrachloride	ND		ug/kg	5.0	1.0	1
Tetrachloroethene	ND		ug/kg	5.0	0.70	1
Chlorobenzene	ND		ug/kg	5.0	1.7	1
Trichlorofluoromethane	ND		ug/kg	25	0.61	1
1,1,1-Trichloroethane	ND		ug/kg	5.0	0.55	1
Benzene	ND		ug/kg	5.0	0.59	1
Toluene	ND		ug/kg	7.5	0.56	1
Ethylbenzene	ND		ug/kg	5.0	0.74	1
Vinyl chloride	ND		ug/kg	10	0.71	1
1,1-Dichloroethene	ND		ug/kg	5.0	1.0	1
Trichloroethene	ND		ug/kg	5.0	0.76	1
1,2-Dichlorobenzene	ND		ug/kg	25	0.92	1
1,3-Dichlorobenzene	ND		ug/kg	25	0.92	1
1,4-Dichlorobenzene	ND		ug/kg	25	1.2	1
p/m-Xylene	ND		ug/kg	10	1.6	1
o-Xylene	ND		ug/kg	10	1.4	1
cis-1,2-Dichloroethene	ND		ug/kg	5.0	0.75	1
Dichlorodifluoromethane	ND		ug/kg	50	1.1	1
Acetone	180		ug/kg	50	16.	1
1,2,4-Trichlorobenzene	ND		ug/kg	25	3.9	1
Freon-113	ND		ug/kg	100	1.4	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	108		70-130	

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/13 09:33

Analyst: BN

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by EPA 5035 High	- Westboro	ugh Lab for	sample(s):	02	Batch:	WG606284-3
Methylene chloride	ND		ug/kg		500	100
Carbon tetrachloride	ND		ug/kg		50	10.
Tetrachloroethene	ND		ug/kg		50	7.0
Chlorobenzene	ND		ug/kg		50	17.
Trichlorofluoromethane	ND		ug/kg		250	6.1
1,1,1-Trichloroethane	ND		ug/kg		50	5.5
Benzene	ND		ug/kg		50	5.9
Toluene	ND		ug/kg		75	5.6
Ethylbenzene	ND		ug/kg		50	7.4
Vinyl chloride	ND		ug/kg		100	7.1
1,1-Dichloroethene	ND		ug/kg		50	10.
Trichloroethene	ND		ug/kg		50	7.6
1,2-Dichlorobenzene	ND		ug/kg		250	9.2
1,3-Dichlorobenzene	ND		ug/kg		250	9.2
1,4-Dichlorobenzene	ND		ug/kg		250	12.
p/m-Xylene	ND		ug/kg		100	16.
o-Xylene	ND		ug/kg		100	14.
cis-1,2-Dichloroethene	ND		ug/kg		50	7.5
Dichlorodifluoromethane	ND		ug/kg		500	11.
Acetone	ND		ug/kg		500	160
1,2,4-Trichlorobenzene	ND		ug/kg		250	39.
Freon-113	ND		ug/kg		1000	14.

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
40 D' 11 11 14	20		70.400				
1,2-Dichloroethane-d4	96		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	104		70-130				
Dibromofluoromethane	103		70-130				

Project Name: EFK - 320B Lab Number: L1307936

Project Number: 2999.00 **Report Date:** 05/10/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/13 09:33

Analyst: BN

arameter	Result	Qualifier Units	RL	MDL
platile Organics by 8260/503	5 - Westborough I	_ab for sample(s):	02 Batch: W	/G606287-3
Methylene chloride	ND	ug/kg	10	2.0
Carbon tetrachloride	ND	ug/kg	1.0	0.21
Tetrachloroethene	ND	ug/kg	1.0	0.14
Chlorobenzene	ND	ug/kg	1.0	0.35
Trichlorofluoromethane	ND	ug/kg	5.0	0.12
1,1,1-Trichloroethane	ND	ug/kg	1.0	0.11
Benzene	ND	ug/kg	1.0	0.12
Toluene	ND	ug/kg	1.5	0.11
Ethylbenzene	ND	ug/kg	1.0	0.15
Vinyl chloride	ND	ug/kg	2.0	0.14
1,1-Dichloroethene	ND	ug/kg	1.0	0.20
Trichloroethene	ND	ug/kg	1.0	0.15
1,2-Dichlorobenzene	ND	ug/kg	5.0	0.18
1,3-Dichlorobenzene	ND	ug/kg	5.0	0.18
1,4-Dichlorobenzene	ND	ug/kg	5.0	0.24
p/m-Xylene	ND	ug/kg	2.0	0.32
o-Xylene	ND	ug/kg	2.0	0.27
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.15
Dichlorodifluoromethane	ND	ug/kg	10	0.22
Acetone	ND	ug/kg	10	3.1
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.79
Freon-113	ND	ug/kg	20	0.27

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	96		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	104		70-130				
Dibromofluoromethane	103		70-130				

Project Name: EFK - 320B Lab Number: L1307936

Project Number: 2999.00 **Report Date:** 05/10/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/08/13 08:41

Analyst: BN

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by EPA 5035	5 High - Westboro	ugh Lab for s	sample(s):	01	Batch:	WG606779-3
Methylene chloride	ND		ug/kg		500	100
Carbon tetrachloride	ND		ug/kg		50	10.
Tetrachloroethene	ND		ug/kg		50	7.0
Chlorobenzene	ND		ug/kg		50	17.
Trichlorofluoromethane	ND		ug/kg		250	6.1
1,1,1-Trichloroethane	ND		ug/kg		50	5.5
Benzene	ND		ug/kg		50	5.9
Toluene	ND		ug/kg		75	5.6
Ethylbenzene	ND		ug/kg		50	7.4
Vinyl chloride	ND		ug/kg		100	7.1
1,1-Dichloroethene	ND		ug/kg		50	10.
Trichloroethene	ND		ug/kg		50	7.6
1,2-Dichlorobenzene	ND		ug/kg		250	9.2
1,3-Dichlorobenzene	ND		ug/kg		250	9.2
1,4-Dichlorobenzene	ND		ug/kg		250	12.
p/m-Xylene	ND		ug/kg		100	16.
o-Xylene	ND		ug/kg		100	14.
cis-1,2-Dichloroethene	ND		ug/kg		50	7.5
Dichlorodifluoromethane	ND		ug/kg		500	11.
Acetone	ND		ug/kg		500	160
1,2,4-Trichlorobenzene	ND		ug/kg		250	39.
Freon-113	ND		ug/kg		1000	14.

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	105		70-130				
Toluene-d8	100		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	103		70-130				

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	rough Lab Ass	ociated samp	ole(s): 02 Bat	ch: WG606284-1 WG6062	84-2		
Methylene chloride	97		96	70-130	1		30
1,1-Dichloroethane	110		105	70-130	5		30
Chloroform	104		102	70-130	2		30
Carbon tetrachloride	106		103	70-130	3		30
1,2-Dichloropropane	104		102	70-130	2		30
Dibromochloromethane	93		93	70-130	0		30
2-Chloroethylvinyl ether	104		102		2		30
1,1,2-Trichloroethane	92		92	70-130	0		30
Tetrachloroethene	106		102	70-130	4		30
Chlorobenzene	102		99	70-130	3		30
Trichlorofluoromethane	103		100	70-139	3		30
1,2-Dichloroethane	97		97	70-130	0		30
1,1,1-Trichloroethane	106		103	70-130	3		30
Bromodichloromethane	100		99	70-130	1		30
trans-1,3-Dichloropropene	96		96	70-130	0		30
cis-1,3-Dichloropropene	96		95	70-130	1		30
1,1-Dichloropropene	108		104	70-130	4		30
Bromoform	81		83	70-130	2		30
1,1,2,2-Tetrachloroethane	85		86	70-130	1		30
Benzene	104		101	70-130	3		30
Toluene	99		98	70-130	1		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated samp	ole(s): 02 Bat	ch: WG606284-1 WG6062	284-2		
Ethylbenzene	104		100	70-130	4		30
Chloromethane	122		119	52-130	2		30
Bromomethane	91		92	57-147	1		30
Vinyl chloride	115		112	67-130	3		30
Chloroethane	102		101	50-151	1		30
1,1-Dichloroethene	110		106	65-135	4		30
trans-1,2-Dichloroethene	106		104	70-130	2		30
Trichloroethene	101		98	70-130	3		30
1,2-Dichlorobenzene	99		99	70-130	0		30
1,3-Dichlorobenzene	101		100	70-130	1		30
1,4-Dichlorobenzene	102		99	70-130	3		30
Methyl tert butyl ether	88		89	66-130	1		30
p/m-Xylene	106		102	70-130	4		30
o-Xylene	102		98	70-130	4		30
cis-1,2-Dichloroethene	101		100	70-130	1		30
Dibromomethane	94		93	70-130	1		30
Styrene	99		96	70-130	3		30
Dichlorodifluoromethane	113		110	30-146	3		30
Acetone	79		77	54-140	3		30
Carbon disulfide	104		101	59-130	3		30
2-Butanone	85		84	70-130	1		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
platile Organics by EPA 5035 High - Westbo	orough Lab Ass	ociated samp	ole(s): 02 Bat	ch: WG606284-1 WG6062	284-2		
Vinyl acetate	87		88	70-130	1		30
4-Methyl-2-pentanone	70		72	70-130	3		30
1,2,3-Trichloropropane	85		86	68-130	1		30
2-Hexanone	69	Q	71	70-130	3		30
Bromochloromethane	100		100	70-130	0		30
2,2-Dichloropropane	107		102	70-130	5		30
1,2-Dibromoethane	90		91	70-130	1		30
1,3-Dichloropropane	94		95	69-130	1		30
1,1,1,2-Tetrachloroethane	98		95	70-130	3		30
Bromobenzene	99		96	70-130	3		30
n-Butylbenzene	111		108	70-130	3		30
sec-Butylbenzene	108		105	70-130	3		30
tert-Butylbenzene	108		106	70-130	2		30
o-Chlorotoluene	110		108	70-130	2		30
p-Chlorotoluene	104		102	70-130	2		30
1,2-Dibromo-3-chloropropane	66	Q	86	68-130	26		30
Hexachlorobutadiene	114		113	67-130	1		30
Isopropylbenzene	104		102	70-130	2		30
p-Isopropyltoluene	108		105	70-130	3		30
Naphthalene	84		87	70-130	4		30
Acrylonitrile	87		87	70-130	0		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	rough Lab Ass	sociated samp	ole(s): 02 Bat	ch: WG606284-1 WG6062	84-2		
Isopropyl Ether	105		102	66-130	3		30
tert-Butyl Alcohol	72		73	70-130	1		30
n-Propylbenzene	106		103	70-130	3		30
1,2,3-Trichlorobenzene	98		99	70-130	1		30
1,2,4-Trichlorobenzene	103		101	70-130	2		30
1,3,5-Trimethylbenzene	107		104	70-130	3		30
1,2,4-Trimethylbenzene	107		104	70-130	3		30
Methyl Acetate	83		86	51-146	4		30
Ethyl Acetate	82		83	70-130	1		30
Acrolein	84		86	70-130	2		30
Cyclohexane	113		109	59-142	4		30
1,4-Dioxane	84		85	65-136	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		106	50-139	4		30
1,4-Diethylbenzene	106		105	70-130	1		30
4-Ethyltoluene	105		102	70-130	3		30
1,2,4,5-Tetramethylbenzene	104		103	70-130	1		30
Tetrahydrofuran	82		83	66-130	1		30
Ethyl ether	92		92	67-130	0		30
trans-1,4-Dichloro-2-butene	80		84	70-130	5		30
Methyl cyclohexane	108		105	70-130	3		30
Ethyl-Tert-Butyl-Ether	97		96	70-130	1		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westbe	orough Lab Asso	ociated sa	mple(s): 02 Batc	h: WG6	606284-1 WG6062	84-2		
Tertiary-Amyl Methyl Ether	90		90		70-130	0		30

0	LCS	0	LCSD	01	Acceptance Criteria	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		97		70-130	
Toluene-d8	104		103		70-130	
4-Bromofluorobenzene	99		100		70-130	
Dibromofluoromethane	102		101		70-130	

olatile Organics by 8260/5035 - Westborough	Lab Associated sam	ple(s): 02 Batch: WG606	6287-1 WG606287-2	
Methylene chloride	97	96	70-130 1	30
1,1-Dichloroethane	110	105	70-130 5	30
Chloroform	104	102	70-130 2	30
Carbon tetrachloride	106	103	70-130 3	30
1,2-Dichloropropane	104	102	70-130 2	30
Dibromochloromethane	93	93	70-130 0	30
2-Chloroethylvinyl ether	104	102	2	30
1,1,2-Trichloroethane	92	92	70-130 0	30
Tetrachloroethene	106	102	70-130 4	30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	02 Batc	n: WG606287-	1 WG606287-2			
Chlorobenzene	102		99		70-130	3		30
Trichlorofluoromethane	103		100		70-139	3		30
1,2-Dichloroethane	97		97		70-130	0		30
1,1,1-Trichloroethane	106		103		70-130	3		30
Bromodichloromethane	100		99		70-130	1		30
trans-1,3-Dichloropropene	96		96		70-130	0		30
cis-1,3-Dichloropropene	96		95		70-130	1		30
1,1-Dichloropropene	108		104		70-130	4		30
Bromoform	81		83		70-130	2		30
1,1,2,2-Tetrachloroethane	85		86		70-130	1		30
Benzene	104		101		70-130	3		30
Toluene	99		98		70-130	1		30
Ethylbenzene	104		100		70-130	4		30
Chloromethane	122		119		52-130	2		30
Bromomethane	91		92		57-147	1		30
Vinyl chloride	115		112		67-130	3		30
Chloroethane	102		101		50-151	1		30
1,1-Dichloroethene	110		106		65-135	4		30
trans-1,2-Dichloroethene	106		104		70-130	2		30
Trichloroethene	101		98		70-130	3		30
1,2-Dichlorobenzene	99		99		70-130	0		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westboroug	h Lab Associat	ed sample(s):	02 Batch:	WG606287-1	WG606287-2			
1,3-Dichlorobenzene	101		100		70-130	1		30
1,4-Dichlorobenzene	102		99		70-130	3		30
Methyl tert butyl ether	88		89		66-130	1		30
p/m-Xylene	106		102		70-130	4		30
o-Xylene	102		98		70-130	4		30
cis-1,2-Dichloroethene	101		100		70-130	1		30
Dibromomethane	94		93		70-130	1		30
Styrene	99		96		70-130	3		30
Dichlorodifluoromethane	113		110		30-146	3		30
Acetone	79		77		54-140	3		30
Carbon disulfide	104		101		59-130	3		30
2-Butanone	85		84		70-130	1		30
Vinyl acetate	87		88		70-130	1		30
4-Methyl-2-pentanone	70		72		70-130	3		30
1,2,3-Trichloropropane	85		86		68-130	1		30
2-Hexanone	69	Q	71		70-130	3		30
Bromochloromethane	100		100		70-130	0		30
2,2-Dichloropropane	107		102		70-130	5		30
1,2-Dibromoethane	90		91		70-130	1		30
1,3-Dichloropropane	94		95		69-130	1		30
1,1,1,2-Tetrachloroethane	98		95		70-130	3		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery .imits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	: 02 Batch:	WG606287-1 \	WG606287-2			
Bromobenzene	99		96	7	70-130	3		30
n-Butylbenzene	111		108	7	70-130	3		30
sec-Butylbenzene	108		105	7	70-130	3		30
tert-Butylbenzene	108		106	7	70-130	2		30
o-Chlorotoluene	110		108	7	70-130	2		30
p-Chlorotoluene	104		102	7	70-130	2		30
1,2-Dibromo-3-chloropropane	66	Q	86	6	68-130	26		30
Hexachlorobutadiene	114		113	6	67-130	1		30
Isopropylbenzene	104		102	7	70-130	2		30
p-Isopropyltoluene	108		105	7	70-130	3		30
Naphthalene	84		87	7	70-130	4		30
Acrylonitrile	87		87	7	70-130	0		30
Isopropyl Ether	105		102	6	66-130	3		30
tert-Butyl Alcohol	72		73	7	70-130	1		30
n-Propylbenzene	106		103	7	70-130	3		30
1,2,3-Trichlorobenzene	98		99	7	70-130	1		30
1,2,4-Trichlorobenzene	103		101	7	70-130	2		30
1,3,5-Trimethylbenzene	107		104	7	70-130	3		30
1,2,4-Trimethylbenzene	107		104	7	70-130	3		30
Methyl Acetate	83		86	5	51-146	4		30
Ethyl Acetate	82		83	7	70-130	1		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westborough	n Lab Assoc	ated sample(s)	: 02	Batch:	WG606287-	1 WG606287-2			
Acrolein	84			86		70-130	2		30
Cyclohexane	113			109		59-142	4		30
1,4-Dioxane	84			85		65-136	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	110			106		50-139	4		30
1,4-Diethylbenzene	106			105		70-130	1		30
4-Ethyltoluene	105			102		70-130	3		30
1,2,4,5-Tetramethylbenzene	104			103		70-130	1		30
Tetrahydrofuran	82			83		66-130	1		30
Ethyl ether	92			92		67-130	0		30
trans-1,4-Dichloro-2-butene	80			84		70-130	5		30
Methyl cyclohexane	108			105		70-130	3		30
Ethyl-Tert-Butyl-Ether	97			96		70-130	1		30
Tertiary-Amyl Methyl Ether	90			90		70-130	0		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		97		70-130	
Toluene-d8	104		103		70-130	
4-Bromofluorobenzene	99		101		70-130	
Dibromofluoromethane	102		101		70-130	

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

rameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
platile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated samp	ole(s): 01 Ba	tch: WG606779-1 WG6067	779-2	
Methylene chloride	91		89	70-130	2	30
1,1-Dichloroethane	92		87	70-130	6	30
Chloroform	92		88	70-130	4	30
Carbon tetrachloride	95		87	70-130	9	30
1,2-Dichloropropane	90		88	70-130	2	30
Dibromochloromethane	83		84	70-130	1	30
2-Chloroethylvinyl ether	90		88		2	30
1,1,2-Trichloroethane	85		85	70-130	0	30
Tetrachloroethene	86		79	70-130	8	30
Chlorobenzene	85		82	70-130	4	30
Trichlorofluoromethane	107		98	70-139	9	30
1,2-Dichloroethane	94		92	70-130	2	30
1,1,1-Trichloroethane	93		86	70-130	8	30
Bromodichloromethane	89		88	70-130	1	30
trans-1,3-Dichloropropene	86		86	70-130	0	30
cis-1,3-Dichloropropene	92		90	70-130	2	30
1,1-Dichloropropene	94		87	70-130	8	30
Bromoform	78		80	70-130	3	30
1,1,2,2-Tetrachloroethane	81		83	70-130	2	30
Benzene	90		85	70-130	6	30
Toluene	83		80	70-130	4	30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	rough Lab Ass	sociated samp	ole(s): 01 Bat	ch: WG606	6779-1 WG60677	79-2		
Ethylbenzene	86		82		70-130	5		30
Chloromethane	78		76		52-130	3		30
Bromomethane	104		97		57-147	7		30
Vinyl chloride	94		84		67-130	11		30
Chloroethane	96		89		50-151	8		30
1,1-Dichloroethene	93		87		65-135	7		30
trans-1,2-Dichloroethene	90		84		70-130	7		30
Trichloroethene	91		84		70-130	8		30
1,2-Dichlorobenzene	82		81		70-130	1		30
1,3-Dichlorobenzene	83		82		70-130	1		30
1,4-Dichlorobenzene	82		81		70-130	1		30
Methyl tert butyl ether	89		90		66-130	1		30
p/m-Xylene	86		82		70-130	5		30
o-Xylene	87		85		70-130	2		30
cis-1,2-Dichloroethene	90		87		70-130	3		30
Dibromomethane	89		90		70-130	1		30
Styrene	88		86		70-130	2		30
Dichlorodifluoromethane	98		87		30-146	12		30
Acetone	157	Q	149	Q	54-140	5		30
Carbon disulfide	90		83		59-130	8		30
2-Butanone	118		111		70-130	6		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	rough Lab Ass	sociated samp	ole(s): 01 Bat	ch: WG606779-1 WG6067	79-2		
Vinyl acetate	100		101	70-130	1		30
4-Methyl-2-pentanone	84		88	70-130	5		30
1,2,3-Trichloropropane	82		84	68-130	2		30
2-Hexanone	96		95	70-130	1		30
Bromochloromethane	94		93	70-130	1		30
2,2-Dichloropropane	94		88	70-130	7		30
1,2-Dibromoethane	83		85	70-130	2		30
1,3-Dichloropropane	84		85	69-130	1		30
1,1,1,2-Tetrachloroethane	84		83	70-130	1		30
Bromobenzene	82		82	70-130	0		30
n-Butylbenzene	87		82	70-130	6		30
sec-Butylbenzene	86		82	70-130	5		30
tert-Butylbenzene	85		80	70-130	6		30
o-Chlorotoluene	84		82	70-130	2		30
p-Chlorotoluene	85		82	70-130	4		30
1,2-Dibromo-3-chloropropane	80		84	68-130	5		30
Hexachlorobutadiene	84		79	67-130	6		30
Isopropylbenzene	85		80	70-130	6		30
p-Isopropyltoluene	86		82	70-130	5		30
Naphthalene	80		82	70-130	2		30
Acrylonitrile	92		98	70-130	6		30

Project Name: EFK - 320B

Project Number: 2999.00

Lab Number: L1307936

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - West	oorough Lab Ass	sociated samp	ole(s): 01 Bat	ch: WG606779-1 WG6067	779-2		
Isopropyl Ether	93		91	66-130	2		30
tert-Butyl Alcohol	87		94	70-130	8		30
n-Propylbenzene	86		82	70-130	5		30
1,2,3-Trichlorobenzene	82		82	70-130	0		30
1,2,4-Trichlorobenzene	84		82	70-130	2		30
1,3,5-Trimethylbenzene	86		82	70-130	5		30
1,2,4-Trimethylbenzene	86		83	70-130	4		30
Methyl Acetate	88		91	51-146	3		30
Ethyl Acetate	87		92	70-130	6		30
Acrolein	88		91	70-130	3		30
Cyclohexane	102		94	59-142	8		30
1,4-Dioxane	94		100	65-136	6		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	102		93	50-139	9		30
1,4-Diethylbenzene	85		80	70-130	6		30
4-Ethyltoluene	85		82	70-130	4		30
1,2,4,5-Tetramethylbenzene	84		82	70-130	2		30
Tetrahydrofuran	79		94	66-130	17		30
Ethyl ether	92		94	67-130	2		30
trans-1,4-Dichloro-2-butene	88		92	70-130	4		30
Methyl cyclohexane	91		82	70-130	10		30
Ethyl-Tert-Butyl-Ether	92		93	70-130	1		30

Project Name: EFK - 320B

320B Batch Quality Cont

Project Number: 2999.00

Lab Number: L1307936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westb	orough Lab Asso	ociated samp	ole(s): 01 Batc	h: WG6	06779-1 WG6067	79-2		
Tertiary-Amyl Methyl Ether	89		90		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		101		70-130	
Toluene-d8	96		97		70-130	
4-Bromofluorobenzene	99		100		70-130	
Dibromofluoromethane	100		99		70-130	

Serial_No:05101314:10

Project Name:EFK - 320BLab Number:L1307936Project Number:2999.00Report Date:05/10/13

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info		Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1307936-01A	Amber 500ml unpreserved	Α	N/A	3.9	Υ	Absent	NYTCL-8260H(14)
L1307936-02A	Amber 500ml unpreserved	Α	N/A	3.9	Υ	Absent	NYTCL-8260HLW(2),NYTCL- 8260H(14)

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported

Report Format: DU Report with "J" Qualifiers

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

Data Qualifiers

due to obvious interference.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- -Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with "J" Qualifiers

Serial_No:05101314:10

 Project Name:
 EFK - 320B
 Lab Number:
 L1307936

 Project Number:
 2999.00
 Report Date:
 05/10/13

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised December 19, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, T urbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Cal cium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Bari um, Be ryllium, Cadmi um, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate, Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mo d 8270). Mi crobiology Param eters: Total Coliform -MF mEndo (SM9222B). Total Coliform - Colilert (SM9223, Enumeration and P/A), E. Co li. – Colilert (SM9223, E numeration and P/A), HP C – P our Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Pa rameters: Color, pH, Conduc tivity, Acidity, Alkalinity, Chl oride, T otal Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammoni a, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organi c Parameters: PCBs, Org. anochlorine Pe sticides, Te chnical Chlo rdane, Toxaphene, Acid Extractables (Phe nols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isoph orone, Polynuclear Aromatic Hy drocarbons, Halo ethers, Chlorinated Hydro carbons, Volatile Organi cs, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform - MF m-FC (SM9222D), Fecal Coliform - A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Ch romium, He xavalent Ch romium, Co balt, C opper, Iron, Lea d, Magne sium, Mangan ese, Me rcury, Molybdenum, Nickel, Potassi um, Seleni um, Silver, Sodium, T hallium, Tin, Vanadium, Zin c, Total Cyanid e, Ignitability, Phenolics, Corrosivity, TC LP Leach (1311), SPLP Leach (1312 metals only), Reactivity, Organic Parameters; PCBs. PCBs in Oil, Orga nochlorine Pesti cides, Techni cal Chlordane, Toxaphene, CT-Extracta ble Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Di camba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silv ex), Dala pon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidi nes (SW 8270), Phthalates (SW 8 270), Nitrosamines (SW 82 70), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H +B, 4500NO3-F, EPA 200.7, EPA 200. 8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Para meters: EPA 120.1, 1664A, 350.1, 351. 1, 353, 2, 410, 4, 420, 1, SM2320B, 2510B, 2540C, 2540 D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5 310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010B, 6010C, 200. 8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. Organic Parameters: 608, 624, 625, 8081A, 8081B, 8082, 8082A, 8330, 8151A, 8260B, 8260C, 8270C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9 012A, 9014, 9030B, 9040B, 9045 C, 6010B, 6010 C, 6020, 6020A, 7471A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 826 0B, 8270C, 8 270D, 8330, 8151A, 8081A, 8081B, 8082, 8082A, 354 0C, 3546, 3580A, 3630 C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Paramete rs: (EPA 200.8 for: Sb,As,Ba,Be,Cd, Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrat e-N and Nit rite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM 4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2 -Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Micro biology Parameters: SM92 15B; ENZ. SUB. SM9223; Page 31 of 35

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,C r,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,F e,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2 540C, 2340 B, 2320B, 4 500CL-E, 4 500F-BC, 426 C, SM450 0NH3-BH, (EP A 350.1 for: Ammonia -N), LACHAT 10-107-06-1-B f or A mmonia-N, SM4500NO3-F, 353.2 for Ni trate-N, SM4500NH3-B C-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 53 10C, 4500CL-D, EPA 1664, SM14 510A C, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (<u>Inorganic Parameters</u>: SM 9222B, 9223B, 9215B, EPA 200.7, 200. 8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9 030, 9040B, 9040C, SM2 120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4 500H+B, 4500CL-E, 4 500CN-E, 4 500NH3-H, 4500NO3-F, 4500 NO2-B, 4500P -E, 4500 -S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2 540C, 4 500F-C, 53 10C, 5540C, LA CHAT 1 0-204-00-1-A, LACHAT 10-107-06-2-D, 3 060A. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 901 4, 9030B, 9040C, 904 5C, 9045D, 90 50, 9065, 9251, 1311, 1312, 300 5A, 3050B, 3060A. Orga nic Parameters: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Jersey Department of Environmental Protection <u>Certificate/Lab ID</u>: MA935. *NELAP Accredited.*Drinking Water (Inorganic Param eters: SM922 2B, 9221E, 9 223B, 9215B, 4 500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 254 0C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010A, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9010 C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D, 9050A, 9065, 9251. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200. 7, 245.2, SM5310C, EPA 332. 0, SM2320B, E PA 300.0, S M2120B, 4 500CN-E, 4 500F-C, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Pa rameters: SM9221E, 9222D, 9221B, 9222 B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, S M4500CL-E, 4500F-C, SM 15 426C, EPA 350.1, SM 4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EP A 353.2, SM4500-NO3-F, 450 0-NO2-B, 4500P-E, 2540 C, 2540B, 2540D, EP A 200.8, EPA 6010B, 6010C, 6020, 6020A, EPA 7196A, SM3500Cr-D, EPA 245. 1, 7470A, SM2120B, LACHAT 10-204-00-1-A, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015, 9010C, 9030B. Organic Parameters: EPA 624, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 625, 608, 8081A, 8081B, 8151A, 8330, 8082, 8082A, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010B, 6010C, 7196A, 7471A, 7471B, 9012B, 9014, 9065, 9050A, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. Organic Parameters: EPA 8260B, Page \$260C, 8270C, 8270C, 8270C, 8270C-SIM, 8270C-SIM, 8015B, 8015C, 8081A, 808 1B, 8151A, 8330, 80 82 8082A, 3540C,

3546, 3580A, 5030B, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. (Inorganic Parameters: SM2310B, 2320B, 4500Cl-E, 4500Cn-E, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. Organic Parameters: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Drinking Water* (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A, 3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500Cl-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010 C, 6020A, 7196A, 7471B, 9 010C, 9012B, 9014, 9040B, 9045 D, 9050A, 9065, SM 450 0NH3-BH, 9030B, 9038, 9251. Organic Parameters: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476. **NELAP Accredited.** *Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2_D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited.*Drinking Water (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.2, 2320B, 4500F-C, 4500NO3-F, 5310C. Organic Parameters: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X, 7196A, 7470A, 9010B, 9040B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C. Organic Parameters: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, 7196A, 7471A, 7471B, 6020A, 9030B, 9010B, 9012A, 9014 9040B, 9045C, 9050A, 9065. Organic Parameters: EPA 5030B, 5035, 3540C, 3546, 355B0, 3580A, 3630C, 6020A, 8260B, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Para meters: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310 C, 2130B, 2320B, 2540 C, 3005A, 3015, 9010B , 9056, 719 6A, 3500-Cr-D. Organic Parameters: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Pic ric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 827 0C:** Methyl na phthalene, Dimethyl naph thalene, Tota I Methylnapt halenes, Tot al Dimethylnaphthalenes, 1, 4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4 -Chloroaniline, 4-Methylp henol. Tot al Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.

MA MA	NSFIELD CI	HAIN OF CL	STOD	Y P#	AGE	OF	Date	e Rec'd	in Lab:	51	3/13	5		LPHA	Job#:41307936
WESTBORO, MA	MANSFIELD, MA	Project	Information	on			Re	oort In	formati	on - Da	ta Deli	verable			Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	lame: E	K - 3	ZoB			FAX	•	EMAI	-		Ĺ	Same a	as Client info PO#:
Client Informatio		Project L	ocation: É	Fish	till, N	4		ADEx		l l'bbA [
Client: Santa!	n Head		2999	-1		 			Requi	rement			ts		·
Address: Zo Fa		Project M	lanager:	Ath	ell		State	/Fed F	Program		C	riteria —	·		
	NH 6330					٠.									
Phone: 603 -	229=1900	Turn-A	round Tim	ie				-			÷				· · · · · · · · · · · · · · · · · · ·
Fax:				DI IOII) &						
Email: lattue	ll @ Sanbarnh	Standa			confirmed if pre-ap	provedl)		82408 11 14ml - m	Tana,		//	/	/ /	///	
☐ These samples hav	e been previously analyze	d by Alpha	e: 5/3/		Time:		ک	ره / او	\ \Z_3\	///	/ /	/-/	/ /	//	SAMPLE HANDLING
Other Project S	pecific Requiremen	nts/Comments/De	tection Lir	nits:			VZγ	18/	James 1	/ /		/ /		/ /	/ Filtration
PLEASE NOTE							₹/	%/ %/	9/ /	(/ :	/ /		//	/-/	/ ☐ Not needed ☐ Lab to do
MS/MSD (at unit	cost) will be omitte	ed unless you ch	eck here:				/3	300	/ /	//	′ /	//	/ /:	/ /	Preservation ☐ Lab to do
ALPHA Lab ID	Samp	le ID	Colle		Sample Matrix	Sampler's	/ ୧୪	82408		/ /		/ /	//	/ /	(Please specify below) Sample Specific Comments
(Lab Use Only)			Date	Time 0930	XI	Initials ずwc	X	/_		· [1 1	- / -		-	
67936 1	BM/000		7 7 7				-					+			Please analyze euch
2	BM 1001		5/1/13			REW	N	\ /				_			sample (2 total)
Les Exit V	BM1000		5/1/13		XI	JWC		X							for 8260B analytes !
2	BM1001		5/1/13	0930	XI	REW		<u>X</u> _							Hi and Lo level 1
														((with McOH/H2O
	•														as applicable)
															Call Lea Anne Atwell
					-										withquestions
															603-415-6145
	· · · · · · · · · · · · · · · · · · ·		<u> </u>		Conta	iner Type	A					1 .			Please print clearly, legibly and com
						eservative	A				1-1				pletely. Samples can not be logged in and turnaround time clock will not
	Γ	Relinqu	ished By:		Date	e/Time			Receive	d By:			Date/Ti	ime	start until any ambiguities are resolv
		Relinqu Reoyam We	he		5/1/13	300	7	<u>y</u>				5/3/	113	9:57	, tiletter a territor entre e en constante e e e e e e e e e e e e e e e e e e
FORM NO: 101-09 (rev. 27-5	SEP-10)	• •				<u>-</u>								•	See reverse side.
Page 35 of 35			***												

ALPHA MA	NSFIELD C	HAIN OF CU	ISTOD	Y P	AGE	OF	Date	Rec'd in	Lab: 5	-/3/	/3	A A	ALPHA	Job#:41307936	و
WESTBORO, MA	MANSFIELD, MA	Project	Informat	ion			Rep	ort Info	rmation ·	Data D	eliverab			Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	lame: E	-K - 3	ZOB		□F	AX	¥€	MAIL			Same	as Client info PO#:	
Client Information			ocation:			H		DEx		d'I Deliv					
Client: San of	n Head		2999		•	<u></u>			Requirem	ents/Re		nits			
Address: Zo Fa	undry St	Project N	lanager:	Ath	rell		State	/Fed Pro	gram		Criteria				
Concord,	NH 6330) ALPHA	Quote #:			٠.								***	
Phone: 603 -	229=1900	Turn-A	Around Tir	ne			* •								
Fax:		at Stand	ard [RUSH (only	confirmed if ore-su	antovedl)		70) ?						
Email: lattue	ll@Sanbarnh	Pa 1	e: 5/3/		Time:	pprovedit	Q	8260 B Lolew - Mar	Ymm,		/- /-		/ / /	SAMPLE HANDLING	T O T
	e been previously analyze	d by Alpha	£ £			 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\ \delta \/ :		//	/ / ·	/ /		Filtration	A L
Other Project Sp	pecific Requiremer	its/Comments/De	etection L	mits:			ANALYSIC	6 11 16 12 Lo 16 12 1		//			// ,	Done Not needed	#
PLEASE NOTE		- d f b-				*		12 Q	/ / /	/		///	' / /	☐ Lab to do Preservation	B 0
	cost) will be omitte	ea uniess you cn	eck nere:	<u> </u>	+		3	82608	1/		/ / .	/ /	///	│ □ Lab to do	T
ALPHA Lab ID (Lab Use Only)	Samp	e ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	/ 30/	8	/ /	//			/ / _	(Please specify below) Sample Specific Comments	E
67936 1	BM1000		5/1/13	0930	ΙX	JWC	X							Please analyze euch	1
2	BM 1001		5/1/13	0930	Xt	REW	X							Sample (2 total)	
	BM1000		5/1/13	0930	XI	JWC		X						for 8260B analytes	(
2	BM1001		5/1/13			REW)	X						Hi and Lo level	1
														(with McOH/H2O	
														as applicable)	
		· · · · · · · · · · · · · · · · · · ·												Call Lea Anne Atwell	
														withquestions	
														603-415-6145	
	<u> </u>		<u> </u>	<u> </u>	Cont	ainer Type	A					-		Please print clearly, legibly and	dom-
	_					reservative	A							pletely. Samples can not be log in and turnaround time clock will	ged
	Ţ	Relingu Regan Wil	ished By:			te/Time	~~	Re	eceived By	<i>r</i> :		Date/		start until any ambiguities are re	solved
		Reganale	he		-5/ 1/13	3 300	6	<u> </u>			5/3	3/13	9:57	Alpha's Terms and Conditions. See reverse side.	
FORM NO: 101-09 (rev. 27-S	SEP-10)	•												000 1010100 0.000.	

<u>-</u> <u>-</u>

· · ·

12/17/2013 Mr. Brad Green Sanborn, Head & Associates 20 Foundry Street

Concord NH 03301

Project Name: IBM - East Fishkill

Project #: 2999 T110 Workorder #: 1312028

Dear Mr. Brad Green

The following report includes the data for the above referenced project for sample(s) received on 12/3/2013 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1312028

Work Order Summary

CLIENT: Mr. Brad Green **BILL TO:** Accounts Payable

> Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street 20 Foundry Street Concord, NH 03301 Concord, NH 03301

PHONE: 603-229-1900 P.O. #

FAX: 603-229-1919 PROJECT # 2999 T110 IBM - East Fishkill

DATE RECEIVED: 12/03/2013 **CONTACT:** Ausha Scott

DATE COMPLETED: 12/16/2013

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	IA0710	Modified TO-15	4.1 "Hg	5.4 psi
01B	IA0710	Modified TO-15	4.1 "Hg	5.4 psi
02A	DUP20946	Modified TO-15	5.1 "Hg	5.1 psi
02B	DUP20946	Modified TO-15	5.1 "Hg	5.1 psi
03A	IA0730	Modified TO-15	5.5 "Hg	5.1 psi
03B	IA0730	Modified TO-15	5.5 "Hg	5.1 psi
04A	IA0731	Modified TO-15	5.1 "Hg	5 psi
04B	IA0731	Modified TO-15	5.1 "Hg	5 psi
05A	IA0732	Modified TO-15	5.3 "Hg	5.4 psi
05B	IA0732	Modified TO-15	5.3 "Hg	5.4 psi
06A	IA0733	Modified TO-15	5.3 "Hg	4.9 psi
06B	IA0733	Modified TO-15	5.3 "Hg	4.9 psi
07A	IA0734	Modified TO-15	5.3 "Hg	5 psi
07B	IA0734	Modified TO-15	5.3 "Hg	5 psi
08A	IA0735	Modified TO-15	5.3 "Hg	5.1 psi
08B	IA0735	Modified TO-15	5.3 "Hg	5.1 psi
09A	Lab Blank	Modified TO-15	NA	NA
09B	Lab Blank	Modified TO-15	NA	NA
10A	CCV	Modified TO-15	NA	NA
10B	CCV	Modified TO-15	NA	NA
11A	LCS	Modified TO-15	NA	NA
11AA	LCSD	Modified TO-15	NA	NA
11B	LCS	Modified TO-15	NA	NA
11D	LCS	Wiodified 10-13	INA	NA

Continued on next page

WORK ORDER #: 1312028

Work Order Summary

CLIENT: Mr. Brad Green BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

20 Foundry Street20 Foundry StreetConcord, NH 03301Concord, NH 03301

PHONE: 603-229-1900 **P.O.** #

FAX: 603-229-1919 **PROJECT** # 2999 T110 IBM - East Fishkill

DATE RECEIVED: 12/03/2013 CONTACT: Ausha Scott DATE COMPLETED: 12/16/2013

FRACTION # NAME TEST VAC./PRES. PRESSURE
11BB LCSD Modified TO-15 NA NA

CERTIFIED BY: DATE: 12/16/13

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ full, \ without \ the \ written \ approval \ of \ Eurofins \ Air \ Toxics, \ Inc.$

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder# 1312028

Eight 6 Liter Summa Canister (SIM Certified) samples were received on December 03, 2013. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample IA0710 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: IA0710 Lab ID#: 1312028-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.42	0.78	2.1
Freon 11	0.16	0.18	0.89	1.0
Acetone	0.79	2.2	1.9	5.1
Methylene Chloride	0.32	0.43	1.1	1.5
Benzene	0.16	0.19	0.50	0.60
Toluene	0.16	1.3	0.60	4.8
m,p-Xylene	0.16	0.16	0.69	0.70

Client Sample ID: IA0710

Lab ID#: 1312028-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	0.26	0.040	0.68
Carbon Tetrachloride	0.032	0.15	0.20	0.92

Client Sample ID: DUP20946

Lab ID#: 1312028-02A

Commound	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.16	0.41	0.80	2.0
Freon 11	0.16	0.20	0.91	1.1
Acetone	0.81	4.6	1.9	11

Client Sample ID: DUP20946

Lab ID#: 1312028-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.016	0.22	0.041	0.55	
Carbon Tetrachloride	0.032	0.085	0.20	0.54	

Client Sample ID: IA0730 Lab ID#: 1312028-03A

Client Sample ID: IA0730 Lab ID#: 1312028-03A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	0.16	0.39	0.82	1.9	
Freon 11	0.16	0.17	0.93	0.98	
Acetone	0.82	1.5	2.0	3.7	

Client Sample ID: IA0730

Lab ID#: 1312028-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.016	0.21	0.042	0.55	
Carbon Tetrachloride	0.033	0.084	0.21	0.53	

Client Sample ID: IA0731

Lab ID#: 1312028-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.41	0.80	2.0
Freon 11	0.16	0.19	0.90	1.0
Acetone	0.80	2.5	1.9	6.0

Client Sample ID: IA0731

Lab ID#: 1312028-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Vinyl Chloride	0.016	0.24	0.041	0.61	
Carbon Tetrachloride	0.032	0.080	0.20	0.50	

Client Sample ID: IA0732

Lab ID#: 1312028-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.42	0.82	2.1
Freon 11	0.17	0.18	0.93	0.99

Client Sample ID: IA0732

Lab ID#: 1312028-05A

Acetone 0.83 2.5 2.0 5.9 Toluene 0.17 0.31 0.62 1.2

Client Sample ID: IA0732

Lab ID#: 1312028-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	0.22	0.042	0.57
Carbon Tetrachloride	0.033	0.082	0.21	0.51

Client Sample ID: IA0733

Lab ID#: 1312028-06A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.40	0.80	2.0
Freon 11	0.16	0.20	0.91	1.1
Freon 113	0.16	0.16	1.2	1.2
Acetone	0.81	2.3	1.9	5.4

Client Sample ID: IA0733

Lab ID#: 1312028-06B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	0.22	0.041	0.55
Carbon Tetrachloride	0.032	0.069	0.20	0.44

Client Sample ID: IA0734

Lab ID#: 1312028-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.16	0.42	0.81	2.1	
Freon 11	0.16	0.19	0.92	1.1	
Freon 113	0.16	0.19	1.2	1.4	
Acetone	0.82	2.0	1.9	4.9	

Client Sample ID: IA0734

Lab ID#: 1312028-07A

Benzene 0.16 0.22 0.52 0.69
Toluene 0.16 0.31 0.61 1.2

Client Sample ID: IA0734

Lab ID#: 1312028-07B

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Vinyl Chloride	0.016	0.16	0.042	0.42	
Carbon Tetrachloride	0.033	0.085	0.20	0.54	

Client Sample ID: IA0735

Lab ID#: 1312028-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.40	0.81	2.0
Freon 11	0.16	0.18	0.92	1.0
Acetone	0.82	2.0	1.9	4.8

Client Sample ID: IA0735

Lab ID#: 1312028-08B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	0.21	0.042	0.53
Carbon Tetrachloride	0.033	0.074	0.21	0.47

Client Sample ID: IA0710 Lab ID#: 1312028-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121308 Date of Collection: 11/25/13 7:23:00 PM
Dil. Factor: 1.58 Date of Analysis: 12/13/13 12:46 PM

	1100	2 at 3 c 1 7 th at 1 g 1 c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0, 10 121101111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.42	0.78	2.1
Freon 11	0.16	0.18	0.89	1.0
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Acetone	0.79	2.2	1.9	5.1
Methylene Chloride	0.32	0.43	1.1	1.5
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.86	Not Detected
Benzene	0.16	0.19	0.50	0.60
Toluene	0.16	1.3	0.60	4.8
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.73	Not Detected
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected
m,p-Xylene	0.16	0.16	0.69	0.70
o-Xylene	0.16	Not Detected	0.69	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2,4-Trichlorobenzene	0.79	Not Detected UJ	5.9	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	84	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: IA0710 Lab ID#: 1312028-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121308sim	Date of Collection: 11/25/13 7:23:00 PM
Dil. Factor:	1.58	Date of Analysis: 12/13/13 12:46 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.26	0.040	0.68
Carbon Tetrachloride	0.032	0.15	0.20	0.92
Trichloroethene	0.032	Not Detected	0.17	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: DUP20946 Lab ID#: 1312028-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121309 Date of Collection: 11/25/13 7:23:00 PM
Dil. Factor: 1.62 Date of Analysis: 12/13/13 01:21 PM

		Date 6: 7 inaly cle: 12,167:16 6:12:11 in		• • • • • • • • • • • • • • • • • • • •
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.41	0.80	2.0
Freon 11	0.16	0.20	0.91	1.1
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.81	4.6	1.9	11
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	Not Detected	0.52	Not Detected
Toluene	0.16	Not Detected	0.61	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	Not Detected	0.70	Not Detected
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.81	Not Detected UJ	6.0	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	83	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: DUP20946 Lab ID#: 1312028-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121309sim	Date of Collection: 11/25/13 7:23:00 PM
Dil. Factor:	1.62	Date of Analysis: 12/13/13 01:21 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.22	0.041	0.55
Carbon Tetrachloride	0.032	0.085	0.20	0.54
Trichloroethene	0.032	Not Detected	0.17	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: IA0730 Lab ID#: 1312028-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121310 Date of Collection: 11/25/13 7:34:00 PM Dil. Factor: 1.65 Date of Analysis: 12/13/13 01:57 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.39	0.82	1.9
Freon 11	0.16	0.17	0.93	0.98
Freon 113	0.16	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Acetone	0.82	1.5	2.0	3.7
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.90	Not Detected
Benzene	0.16	Not Detected	0.53	Not Detected
Toluene	0.16	Not Detected	0.62	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.76	Not Detected
Ethyl Benzene	0.16	Not Detected	0.72	Not Detected
m,p-Xylene	0.16	Not Detected	0.72	Not Detected
o-Xylene	0.16	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2,4-Trichlorobenzene	0.82	Not Detected UJ	6.1	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	82	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: IA0730 Lab ID#: 1312028-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121310sim	Date of Collection: 11/25/13 7:34:00 PM
Dil. Factor:	1.65	Date of Analysis: 12/13/13 01:57 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.21	0.042	0.55
Carbon Tetrachloride	0.033	0.084	0.21	0.53
Trichloroethene	0.033	Not Detected	0.18	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: IA0731 Lab ID#: 1312028-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121311 Date of Collection: 11/25/13 7:36:00 PM
Dil. Factor: 1.61 Date of Analysis: 12/13/13 02:32 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.41	0.80	2.0
Freon 11	0.16	0.19	0.90	1.0
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.80	2.5	1.9	6.0
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	Not Detected	0.51	Not Detected
Toluene	0.16	Not Detected	0.61	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	Not Detected	0.70	Not Detected
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected UJ	6.0	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: IA0731 Lab ID#: 1312028-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121311sim	Date of Collection: 11/25/13 7:36:00 PM
Dil. Factor:	1.61	Date of Analysis: 12/13/13 02:32 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.24	0.041	0.61
Carbon Tetrachloride	0.032	0.080	0.20	0.50
Trichloroethene	0.032	Not Detected	0.17	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: IA0732 Lab ID#: 1312028-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121312 Date of Collection: 11/25/13 7:30:00 PM
Dil. Factor: 1.66 Date of Analysis: 12/13/13 03:07 PM

		- 410		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.42	0.82	2.1
Freon 11	0.17	0.18	0.93	0.99
Freon 113	0.17	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Acetone	0.83	2.5	2.0	5.9
Methylene Chloride	0.33	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.90	Not Detected
Benzene	0.17	Not Detected	0.53	Not Detected
Toluene	0.17	0.31	0.62	1.2
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Chlorobenzene	0.17	Not Detected	0.76	Not Detected
Ethyl Benzene	0.17	Not Detected	0.72	Not Detected
m,p-Xylene	0.17	Not Detected	0.72	Not Detected
o-Xylene	0.17	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.83	Not Detected UJ	6.2	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: IA0732 Lab ID#: 1312028-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121312sim	Date of Collection: 11/25/13 7:30:00 PM
Dil. Factor:	1.66	Date of Analysis: 12/13/13 03:07 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.017	0.22	0.042	0.57
Carbon Tetrachloride	0.033	0.082	0.21	0.51
Trichloroethene	0.033	Not Detected	0.18	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: IA0733 Lab ID#: 1312028-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121313 Date of Collection: 11/25/13 7:51:00 PM
Dil. Factor: 1.62 Date of Analysis: 12/13/13 03:57 PM

			·	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.40	0.80	2.0
Freon 11	0.16	0.20	0.91	1.1
Freon 113	0.16	0.16	1.2	1.2
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.81	2.3	1.9	5.4
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Benzene	0.16	Not Detected	0.52	Not Detected
Toluene	0.16	Not Detected	0.61	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	Not Detected	0.70	Not Detected
o-Xylene	0.16	Not Detected	0.70	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.81	Not Detected UJ	6.0	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	87	70-130

Client Sample ID: IA0733 Lab ID#: 1312028-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121313sim	Date of Collection: 11/25/13 7:51:00 PM
Dil. Factor:	1.62	Date of Analysis: 12/13/13 03:57 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.22	0.041	0.55
Carbon Tetrachloride	0.032	0.069	0.20	0.44
Trichloroethene	0.032	Not Detected	0.17	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: IA0734 Lab ID#: 1312028-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121315 Date of Collection: 11/25/13 7:39:00 PM
Dil. Factor: 1.63 Date of Analysis: 12/13/13 05:47 PM

		2 die 017 mary 6161 127 167 16 661 17 11		0, 10 00111 1 111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.42	0.81	2.1
Freon 11	0.16	0.19	0.92	1.1
Freon 113	0.16	0.19	1.2	1.4
1,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Acetone	0.82	2.0	1.9	4.9
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.89	Not Detected
Benzene	0.16	0.22	0.52	0.69
Toluene	0.16	0.31	0.61	1.2
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.75	Not Detected
Ethyl Benzene	0.16	Not Detected	0.71	Not Detected
m,p-Xylene	0.16	Not Detected	0.71	Not Detected
o-Xylene	0.16	Not Detected	0.71	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.98	Not Detected
1,2,4-Trichlorobenzene	0.82	Not Detected UJ	6.0	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	88	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: IA0734 Lab ID#: 1312028-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121315sim	Date of Collection: 11/25/13 7:39:00 PM
Dil. Factor:	1.63	Date of Analysis: 12/13/13 05:47 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.16	0.042	0.42
Carbon Tetrachloride	0.033	0.085	0.20	0.54
Trichloroethene	0.033	Not Detected	0.18	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: IA0735 Lab ID#: 1312028-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121317 Date of Collection: 11/25/13 7:46:00 PM
Dil. Factor: 1.64 Date of Analysis: 12/13/13 07:39 PM

			· · · · · · · · · · · · · · · · · · ·	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.40	0.81	2.0
Freon 11	0.16	0.18	0.92	1.0
Freon 113	0.16	Not Detected	1.2	Not Detected
1,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Acetone	0.82	2.0	1.9	4.8
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.89	Not Detected
Benzene	0.16	Not Detected	0.52	Not Detected
Toluene	0.16	Not Detected	0.62	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected
Chlorobenzene	0.16	Not Detected	0.76	Not Detected
Ethyl Benzene	0.16	Not Detected	0.71	Not Detected
m,p-Xylene	0.16	Not Detected	0.71	Not Detected
o-Xylene	0.16	Not Detected	0.71	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected
1,2,4-Trichlorobenzene	0.82	Not Detected UJ	6.1	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: IA0735 Lab ID#: 1312028-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121317sim	Date of Collection: 11/25/13 7:46:00 PM
Dil. Factor:	1.64	Date of Analysis: 12/13/13 07:39 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.016	0.21	0.042	0.53
Carbon Tetrachloride	0.033	0.074	0.21	0.47
Trichloroethene	0.033	Not Detected	0.18	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: Lab Blank Lab ID#: 1312028-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121307	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/13/13 11:52 AM

Dii. I actor.	Date of Affaiysis. 12/13/13		13/13 11.32 AW	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected UJ	3.7	Not Detected UJ

UJ = Non-detected compound associated with low bias in the CCV and/or LCS.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	90	70-130

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1312028-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v121307sim 1.00	Date of Collection: NA Date of Analysis: 12/13/13 11:52 AM		3/13 11:52 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Container Type: NA - Not Ap	plicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		90		70-130
Toluene-d8		98		70-130

95

70-130

Client Sample ID: CCV Lab ID#: 1312028-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121302 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/13/13 08:30 AM

Compound	%Recovery	
Freon 12	106	
Freon 11	88	
Freon 113	105	
1,1-Dichloroethene	112	
Acetone	79	
Methylene Chloride	108	
cis-1,2-Dichloroethene	109	
1,1,1-Trichloroethane	96	
Benzene	95	
Toluene	98	
Tetrachloroethene	104	
Chlorobenzene	98	
Ethyl Benzene	98	
m,p-Xylene	99	
o-Xylene	97	
1,3-Dichlorobenzene	88	
1,4-Dichlorobenzene	81	
1,2-Dichlorobenzene	83	
1,2,4-Trichlorobenzene	68 Q	

Q = Exceeds Quality Control limits.

,, .,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV Lab ID#: 1312028-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121302sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/13/13 08:30 AM

Compound	%Recovery	
Vinyl Chloride	116	
Carbon Tetrachloride	108	
Trichloroethene	93	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: LCS Lab ID#: 1312028-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121303 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/13/13 09:11 AM

		Method
Compound	%Recovery	Limits
Freon 12	101	70-130
Freon 11	88	70-130
Freon 113	116	70-130
1,1-Dichloroethene	121	70-130
Acetone	78	70-130
Methylene Chloride	112	70-130
cis-1,2-Dichloroethene	118	70-130
1,1,1-Trichloroethane	92	70-130
Benzene	98	70-130
Toluene	100	70-130
Tetrachloroethene	104	70-130
Chlorobenzene	100	70-130
Ethyl Benzene	102	70-130
m,p-Xylene	105	70-130
o-Xylene	97	70-130
1,3-Dichlorobenzene	90	70-130
1,4-Dichlorobenzene	86	70-130
1,2-Dichlorobenzene	86	70-130
1,2,4-Trichlorobenzene	78	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	85	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCSD Lab ID#: 1312028-11AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v121304 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/13/13 09:52 AM

		Method
Compound	%Recovery	Limits
Freon 12	98	70-130
Freon 11	85	70-130
Freon 113	113	70-130
1,1-Dichloroethene	117	70-130
Acetone	77	70-130
Methylene Chloride	109	70-130
cis-1,2-Dichloroethene	117	70-130
1,1,1-Trichloroethane	89	70-130
Benzene	99	70-130
Toluene	98	70-130
Tetrachloroethene	108	70-130
Chlorobenzene	99	70-130
Ethyl Benzene	101	70-130
m,p-Xylene	102	70-130
o-Xylene	97	70-130
1,3-Dichlorobenzene	87	70-130
1,4-Dichlorobenzene	82	70-130
1,2-Dichlorobenzene	85	70-130
1,2,4-Trichlorobenzene	76	70-130

, , , , , , , , , , , , , , , , , , , ,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	78	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCS Lab ID#: 1312028-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121303sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/13/13 09:11 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	116	70-130
Carbon Tetrachloride	110	60-140
Trichloroethene	95	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: LCSD Lab ID#: 1312028-11BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v121304sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/13/13 09:52 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	112	70-130
Carbon Tetrachloride	110	60-140
Trichloroethene	95	70-130

		Method Limits		
Surrogates	%Recovery			
1,2-Dichloroethane-d4	90	70-130		
Toluene-d8	100	70-130		
4-Bromofluorobenzene	94	70-130		

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Sample Transportation Notice

Refrequishing signature on this document undested that sample is being stopped in compliance with all applicable local, State, Foderel, national, and interrelational jame, regulations and ordinations of any stand, for Tools Limited assumes on liability with respect to the telescopies, the continued of any stand, for Tools Limited assumes to liability, with respect to the continued providing of the providing standard assumement to hold harmless, defens, and independent and the content of the providing standard assumement to hard harmless, defens, and independent and the content of the content of the providing standard assumement to hard harmless after a content of the conte

Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

F 20-21-21-2			Hatin4 (200) 467-4922						
Project Info Froject Manager Brad Green Small: bgreen@sanbornhead. letwel@sanbornhead.com, kd P.OB	coris	Turn Around Time Normal X Rush	Hanualia		12/13 530.	Jon.	By (seneture) Date/Time	12/3/13	0945
Project № 2999 T110	East Fishkill Refer to attached analyte	ist specify	Relinquished by: (:	signature) Date/Time		Received I	Sy: (signature) Date/Time		· · · · · · · · · · · · · · · · · · ·
· Lab ID	Field Sample I.D.	Can #	Collection Date	Collection Time	Initial	Final	Analysis	Receipt	Final (psi)
AIO.	IA0710	34487	11/25/2013	1923	30.5	6.5	1		1
02A	DUP20945	20946	11/25/2013	1923	30	6	. 1	,	1
03A	IA0730	34365	11/25/2013	1934	30	6	1		
	IA0731	25257	11/25/2013	1936	32	6.5	1		1
Q5A-	IA0732	33882	11/25/2013	1930	27	5,5	1		1
OKA	iA0733	5736	11/25/2013	1951	31	6.5	1		
07A	IA0734	12951	11/25/2013	1939	30	6.5	1		
08A-	IA0735	11301	11/25/2013	1946	30	4.5	1		
								*	

									1
		12							
								~···	
ELECTRICAL SECTION									T

Page 1 of 1

1312928

Custody Seal Intact?
Y N None Temp NA
Fedex

Revised COC received 12.5.13

180 BLUE RAVINE ROAD, SUITE B FOLSON, CA 95630-4719 (916) 985-1000 FAZ (916) 985-1020

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is bring shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

20 Foundry Street Concord, NH 03301 (603) 229-1900 FAX (603) 229-1919

Project Info Project Manager: Brad Green Email: bgreen@sanbornhead.c	com	Turn Around Time		signature) Date/Time		La.	iy: (signature) Date/Time Att	12/3/13	0945	
latwell@sanbornhead.com kdubois@sanbornhead.com P.O# 2999 T110 Project # 2999 T110 Project Name: IBM East Fishkill Analyses: I = TO-15 H/L Refer to attached analyte 2 =		Rush ist specify					Received By: (signature) Date/Time Received By: (signature) Date/Time			
* Lab ID	Field Sample I.D.	Can #	Collection Date	Collection Time	Initial	Final	Analysis	Receipt	Final (psi)	
OIA	IA0710	34487	11/25/2013	1923	30.5	6.5	1		-	
02A	DUP20946	20946	11/25/2013	1923	30	6	1			
03A	IA0730	34365	11/25/2013	1934	30	6	1			
0YA	IA0731	25257	11/25/2013	1936	32	6.5	1			
05A	· IA0732	33882	11/25/2013	1930	27	5.5	1	-		
06A	iA0733	3536	11/25/2013	1951	31	6.5	1			
07A	IA0734	12951	11/25/2013	1939	30	6.5	1			
Q8A	IA0735	11301	11/25/2013	1946	30	4.5	1			
				·						
	-								7	
		·	***************************************							