

SUBSLAB DEPRESSURIZATION CONCEPTUAL DESIGN REPORT BUILDING 330C

Former IBM East Fishkill Facility Hopewell Junction, New York

Prepared for IBM Corporation File No. 2999.04 March 2017

Sent via email

8976 Wellington Road Manassas, VA 20109

March 24, 2017

Alex G. Czuhanich New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, 12th Floor 625 Broadway Albany, New York 12233-7017

Re: Subslab Depressurization Conceptual Design Report - Building 330C

Former IBM East Fishkill Facility EPA ID No. NYD000707901

Dear Mr. Czuhanich:

The enclosed report presents the conceptual design of a subslab depressurization (SSD) system for Building 330C (B330C) at the former IBM East Fishkill facility, which is currently owned by Global Foundries (GF).

As presented in IBM's July 2016 report titled, *Report of Interim Measures and Indoor Air Quality Testing, Building 330C*, a temporary SSD system began operating in B330C in March 2016. IBM intends to continue operating the temporary SSD system until the full-scale SSD system is operational.

IBM is moving forward with the detailed design of the full-scale SSD system. The timing of construction and startup of the SSD system will be contingent upon GF's plans for the building, but IBM is currently targeting construction beginning in the third quarter of 2017 and startup in fourth quarter of 2017. IBM understands that construction and operation of the SSD system can proceed once the Agencies have accepted this report.

If you have questions, please contact me at (703) 257-2583.

Sincerely yours,

Dean W. Chartrand Program Manager

Corporate Environmental Affairs

Han W Chartrand

Enclosure: Electronic copy

cc: Gary Marone Global Foundries (via email)
Jayne Ulrich Global Foundries (via email)
Scarlett McLaughlin NYSDOH (via email)

Dean Chartrand IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, VA 20109 March 24, 2017 File No. 2999.04

Re: Subslab Depressurization Conceptual Design Report – Building 330C

Former IBM East Fishkill Facility Hopewell Junction, New York EPA ID No. NYD000707901

Dear Mr. Chartrand:

The enclosed report presents the conceptual design of a subslab depressurization (SSD) system for Building 330C (B330C) at the former IBM East Fishkill facility. Please contact us if you have any questions.

Very truly yours,

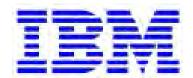
SANBORN, HEAD ENGINEERING, P.C.

David Shea, P.E.

President 20 Foundry St Concord, NH 03301

JHS/DS: ds

Encl. Subslab Depressurization Conceptual Design Report – Building 330C


P:\2900s\2999.04\Source Files\Conceptual Design Report\SHPC cover letter.doc

SUBSLAB DEPRESSURIZATION CONCEPTUAL DESIGN REPORT BUILDING 330C

Former IBM East Fishkill Facility Hopewell Junction, New York

Prepared for **IBM Corporation**

Prepared by Sanborn, Head Engineering, P.C.

File 2999.04 March 2017

SUBSLAB DEPRESSURIZATION CONCEPTUAL DESIGN REPORT BUILDING 330C TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	1
3.0 3.1 3.2		2
4.0 4.1 4.2 4.3	Testing Procedures	3 5
5.0 5.1 5.2 5.3 5.4 5.5	System Configuration Process Flow Diagram VOC Mass Removal and Treatment	8 8 9
6.0	CONCLUSIONS	11
Table Table Table	Summary of Portable GC/MS Subslab Vapor Screening Results (PCE and Summary of Subslab Vapor Sample Analytical Results (SUMMA® Caniste	_
FIGUR	RES	
Figure Figure Figure Figure Figure	 B330C Location Plan Subslab Port Location Plan Summary of PCE Concentrations in Subslab Vapor Subslab Pressure Response to Vapor Extraction Testing 	

APPENDICES

Appendix A Limitations

Appendix B Appendix C

EXHIBITS		
Exhibit 3.1	Subslab Vapor Port - Sampling/Monitoring Configuration	
Exhibit 4.1	Subslab Vapor Extraction Test Port	
Exhibit 4.2	Typical Suction Pit Configuration	
Exhibit 4.3	Subslab Extraction Testing Setup	
Exhibit 4.4	Subslab Extraction Testing Setup for Two Ports	
Exhibit 4.5	SSD Testing Data Summary	
Exhibit 5.1	Vapor Extraction System Process Flow Diagram	

Analytical Laboratory Reports

Subslab Pressure Response to Individual Vapor Extraction Tests

1.0 INTRODUCTION

This report presents the conceptual design of a subslab depressurization (SSD) system, including the results of a subslab vapor assessment and SSD pilot testing, for Building 330C (B330C) at the former IBM East Fishkill facility (the site), currently owned by Global Foundries (GF). A site location plan is provided as Figure 1, and the location of B330C at the site is shown on Figure 2.

The work described herein was conducted by Sanborn, Head Engineering, PC (SHPC), on behalf of IBM, in general accordance with IBM's Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Work Plan dated June 15, 2009 (RFI Work Plan), which was approved by the New York State Department of Environmental Conservation and Department of Health (the Agencies). Progress updates and relevant data associated with vapor intrusion investigations and testing associated with Building 330C have been communicated to the Agencies through periodic correspondence and meetings.

The services conducted and this report are subject to the standard limitations for this type of work, as described in Appendix A.

2.0 BACKGROUND INFORMATION

B330C was designated in the RFI Work Plan for indoor air assessment for certain volatile organic compounds (VOCs). The assessment found anomalous presence of VOCs, primarily tetrachloroethene (PCE), in indoor air in several areas of the building. Based on these results, remedial measures were implemented to reduce VOC concentrations in indoor air as documented in reports submitted to the Agencies in November 2009¹ and July 2014².

In recent years, decommissioning of certain manufacturing areas has been conducted and much of the building has been vacated, although certain areas of the building remain routinely occupied. Additional indoor air quality (IAQ) testing was conducted in B330C in April and November 2015 in conjunction with heating, ventilating, and air conditioning (HVAC) system shutdown testing, as described in a February 2016³ report to the Agencies. As part of this testing, screening of subslab vapor samples collected in April 2015 confirmed the presence of PCE in subslab vapor beneath B330C.

IBM elected to conduct SSD pilot testing in 2015 and 2016 to: 1) evaluate its potential effectiveness in controlling air pressure gradients across the floor slab in certain areas with higher potential for vapor intrusion, and 2) obtain observational data that could be used to support design of an SSD system.

Based on favorable results of the SSD pilot testing, in March 2016 IBM elected to install a temporary SSD system as an interim measure in the former Baseline Area located in the

¹ IBM and Sanborn, Head Engineering, P.C., *Confirmatory Sampling Results, Buildings 330C and 338, VOC Source Assessment, IBM East Fishkill Facility, Hopewell Junction, NY*, November 2009.

² IBM and Sanborn, Head Engineering, P.C., Report of Supplemental Remedial Measures, Building 330C VOC Source Assessment, IBM East Fishkill Facility, Hopewell Junction, NY, July 2014.

³ IBM and Sanborn, Head Engineering, P.C., Report of HVAC Adjustment and Indoor Air Quality Testing – Buildings 330C and 338, Former IBM East Fishkill Facility, Hopewell Junction, New York, February 2016.

northwest portion of the building where the highest subslab PCE concentrations were observed. IAQ sampling and screening were conducted after the interim SSD system was brought online, the results of which were presented in a July 2016 report⁴ that was submitted to the Agencies. As discussed in the July 2016 report, the interim SSD system was found to be successful in reducing VOC vapor intrusion into the northwest portion of the building.

This report documents the subslab VOC vapor assessment and SSD pilot testing results that support the development and presentation of the conceptual design for a full-scale SSD system for B330C.

3.0 SUBSLAB VAPOR ASSESSMENT

A subslab vapor assessment was conducted to: 1) evaluate the presence and extent of VOCs below the floor slab, and 2) establish a subslab vapor testing and monitoring network to support potential subslab depressurization as a measure to control air pressure gradients across the floor slab. Subslab vapor assessment activities were initiated in April 2015 and included the installation, screening, sampling, and monitoring of subslab vapor monitoring ports (SSV ports).

3.1 Subslab Vapor Monitoring Port Installation and Screening and Sampling

SSV ports SS3001 through SS3031 were installed in April 2015. SSV screening was conducted at the ports between April 8 and May 5, 2015 using a portable gas chromatograph/mass spectrometer (GC/MS). SSV ports SS3055 through SS3058, located in the far southeastern corner of the building, were installed in January 2016 and were sampled on February 9 and 15, 2016 over a period of approximately 1 hour using 1-L SUMMA® canisters. SSV ports SS3032 through SS3054 were installed in September and October 2015 to obtain cross-slab differential pressure measurements only, and were not sampled.

The SSV ports consist of ¼-inch stainless steel tubing equipped with threaded connectors that penetrate the building slab. A schematic of an SSV port is shown in Exhibit 3.1 below. Helium integrity testing was performed on a subset of the SSV ports following installation to confirm air tight seals around the slab penetration. Figure 3 shows the location of SSV ports installed throughout B330C. The overall SSV port network provides broad coverage of the building.

⁴ IBM and Sanborn, Head Engineering, P.C., Report of Interim Measures and Indoor Air Quality Testing, Building 330C, Former IBM East Fishkill Facility, Hopewell Junction, NY, July 22, 2016.

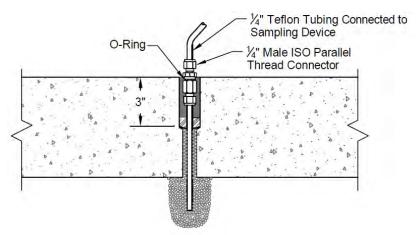
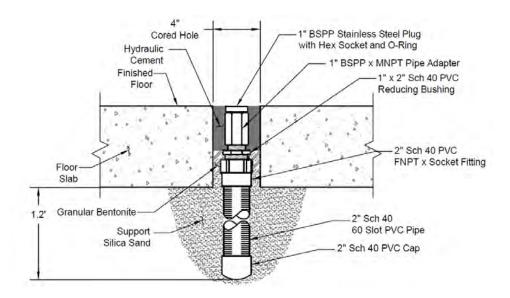


Exhibit 3.1: Subslab Vapor Port - Sampling/Monitoring Configuration

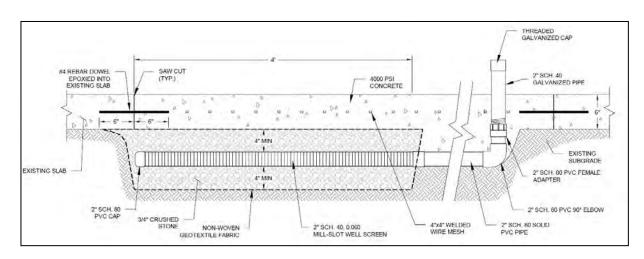
3.2 Subslab Vapor Screening and Sampling Results

The analytical results of the subslab vapor screening and sampling are presented in Tables 1 and 2, respectively. Subslab vapor screening and sampling locations, PCE concentrations, and inferred concentration isopleths for PCE are shown on Figure 4. The results indicate that an area of relatively greater PCE concentrations is present in subslab vapor beneath the former Baseline Area and Reliability Lab located in the western area of the building, where PCE was detected at concentrations of up to 870,000 $\mu g/m^3$. PCE was also present in subslab vapor beneath the eastern and southern portions of the building, but at concentrations of about an order of magnitude lower than below the western side of the building.


TCE was also detected in subslab vapor, but at concentrations generally several orders of magnitude lower than PCE. The highest detected subslab vapor concentration of TCE was 1,200 $\mu g/m^3$ beneath the former Sintering Furnace area at the southern portion of the building. Since PCE was the predominant compound detected beneath B330C in subslab vapor and in indoor air of B330C, PCE was the primary focus of the subslab depressurization pilot testing work described next.

4.0 SUBSLAB DEPRESSURIZATION PILOT TESTING

SSD pilot testing was conducted at extraction ports (EPs) located throughout the building, and at a suction pit located in the former Baseline Area, to: 1) evaluate the effectiveness of SSD in controlling air pressure gradients across the floor slab as means of reducing potential for vapor intrusion; and 2) obtain observational data that could be used to support design of an SSD system. This section provides a summary of the testing procedures and results.


4.1 Extraction Port and Suction Pit Installations

Seventeen subslab vapor EPs were installed in B330C from July 2015 through August 2016 and are shown on Figure 3. Each EP was constructed by coring a hole through the concrete floor slab and installing a 2-inch-diameter by 1-ft-long 60-slot schedule 40 PVC screen equipped with a capped port flush with the floor. A schematic of an EP is shown in Exhibit 4.1 below.

Exhibit 4.1: Subslab Vapor Extraction Test Port

To evaluate and compare alternative methods of applying a vacuum to the subslab, one suction pit was installed in the former Baseline Area of B330C in August 2016. The suction pit was constructed by removing an approximately 4 ft x 4 ft area of the floor slab and excavating the underlying soil to approximately 10 inches below the bottom of the slab. The open pit was lined with a non-woven geotextile fabric and then backfilled with ¾-inch crushed stone. A 2-inch-diameter, 60-slot PVC pipe was installed horizontally through the center of the pit, extended through a conveyance trench via a solid PVC pipe, and angled 90 degrees and extended through the slab near a wall. Additional crushed stone and geotextile was added to the pit and a new concrete slab was poured. A schematic of the suction pit is shown below in Exhibit 4.2.


Exhibit 4.2: Typical Suction Pit Configuration

4.2 Testing Procedures

SSD pilot testing activities were conducted in July and October 2015, as well as February, July, and August 2016. During pilot testing activities, individual vacuum extraction tests were conducted at each EP and the suction pit. Extraction ports were connected to a regenerative vacuum blower mounted on a portable cart, shown in Exhibit 4.3 below, which was used to withdraw vapor from the ports for durations ranging from approximately 60 to 180 minutes each. The vapor flow rate, applied vacuum, and photoionization detector (PID) screening value were monitored and recorded at each EP using the assembly shown in Exhibit 4.3. For each test, the cross-slab differential pressure response was monitored at nearby SSV ports using digital micromanometers. For certain tests, the regenerative vacuum blower was used to withdraw air from two extraction ports simultaneously using the setup shown in Exhibit 4.4 to assess the combined influence of extracting from multiple ports.

Exhibit 4.3 – Subslab Vapor Extraction Testing SetupBlower cart (left) and extraction port test assembly (right)

Exhibit 4.4 - Subslab Vapor Extraction Testing Setup for Two Ports

4.3 Pilot Test Results

Figure 5 summarizes the vapor extraction conditions and inferred combined extent of subslab pressure response during pilot testing at eight of the EPs proposed for the SSD system. Please note that the results of the individual tests are superimposed on Figure 5; simultaneous extraction would likely result in a somewhat different response pattern. The subslab pressure response for each individual test (including the EPs that are not proposed for the SSD system) is shown on Figures B-1 through B-23 in Appendix B. On these figures, the inferred extent of subslab pressure response is depicted by the pressure differential isopleth of -0.004 inches of water column (in. wc) (or 1 Pascal); this value, or lower pressure (greater vacuum), is indication that vapor extraction has influence, and is expected to be sufficient to capture subslab soil vapor, within at least the area encompassed by the -0.004 in. wc isopleth.

The test results indicate a wide range of variability in the extent of subslab pressure response and extraction flow rate, which is typical for an older industrial building. For example, while the applied vacuum at the ports was generally consistent at 60 in. wc, the resulting extraction rates ranged from less than 10 cubic feet per minute (cfm) up to nearly 160 cfm. At some ports, vacuum influence was observed at radial distances of 160 feet or more (e.g, EP3003); other ports resulted in limited subslab vacuum responses ranging from approximately 20 to 30 feet away from the port (e.g, EP3002).

Although the individual test results varied, the aggregate results indicate that significant and extensive depressurization can be achieved by concurrent extraction from the installed port network. In particular, simultaneous extraction from the eight ports proposed for the SSD system will effectively depressurize much of the areas where subslab PCE concentrations are greater than $50,000 \,\mu\text{g/m}^3$, as shown on Figure 5.

Near the conclusion of each test, a grab sample of the vapor stream was collected into a Summa® canister and submitted to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts for analysis of five VOCs by USEPA Method TO-15. The SSD pilot testing data

for each test are summarized in Exhibit 4.5 below. The complete analytical results for the vapor grab samples are provided in Table 3, and analytical laboratory reports are provided in Appendix C.

Port Location	Proposed SSD System ⁵	Applied Vacuum [in. wc]	Extracted Flow Rate [cfm]	PID Screening [ppmv]	PCE Laboratory Analysis [µg/m³]	PCE Removal Rate [lbs/hr]
EP3001	System 2	60	9.2	28	78,000	2.7 x10 ⁻³
EP3002		60	130	8.7	4,690	2.3 x10 ⁻³
EP30036		60	100	80	2,710,000	1.0
EP3004		60	150	0.20	4.77	2.7 x10 ⁻⁶
EP3005		60	91	1.4	5,360	1.8 x10 ⁻³
EP3006	System 2	60	40	1.0	2,210	3.3 x10 ⁻⁴
EP3007	System 2	60	160	0.50	976	5.8 x10 ⁻⁴
EP3008	System 2	59	160	1.0	8,410	5.0 x10 ⁻³
EP3009	System 1	60	100	1.7	15,500	5.8 x10 ⁻³
EP3010		53	160	11	210	1.3 x10 ⁻⁴
EP3011		60	89	15	20,500	6.8 x10 ⁻³
EP3012	System 1	60	94	36	235,000	8.3 x10 ⁻²
EP3013		60	19	110	300,000	2.1 x10 ⁻²
EP3014		60	14	52	133,000	7.0 x10 ⁻³
EP3015	System 1	60	52	14	30,800	6.0 x10 ⁻³
EP3016	System 1	60	53	88	184,000	3.7 x10 ⁻²
EP3017		60	53	81	161,000	3.2 x10 ⁻²
SP3001		60	100	36	108,000	4.0 x10 ⁻²

Exhibit 4.5: SSD Testing Data Summary

"--" indicates port not planned for full-scale operation

Pilot testing results at suction pit SP3001 (see Fig B-22) were not significantly different from the results at nearby extraction ports with respect to area of vacuum influence (e.g., EP3016 shown in Fig B-16). In addition, the extracted flow rate for SP3001 was about two times higher than EP3016 to achieve a similar area of influence. Because the use of the suction pit would require a larger design flow than the use of the extraction ports, without a commensurate improvement in vacuum field extension, SP3001 is not planned to be connected to the SSD system, and additional suction pits for B330C are not planned.

5.0 SSD SYSTEM DESIGN BASIS

This section presents the design basis for subslab depressurization beneath B330C. The conceptual design is based on the results of vapor extraction pilot testing, which indicates that SSD will achieve the goals of capture of subslab VOC vapor and control of cross-slab pressure gradients to reduce the potential for vapor intrusion to affect indoor air quality.

⁵ The planned SSD system will include two separate extraction port networks connected to separate blowers, as further described in Section 5, to provide flexibility for operations and future expansion if appropriate.

⁶ Floor cracks were sealed using non-shrinking grout between two pilot tests at EP3003 to limit short-circuiting. The results provided in the table represent post-floor sealing conditions.

The conceptual design of the subslab depressurization and treatment system is described below, including the proposed configuration of the vapor extraction ports, target operating conditions (applied vacuum and extraction flow rate), and treatment of VOC-containing vapor.

5.1 Extraction Port Configuration and Target Operating Conditions

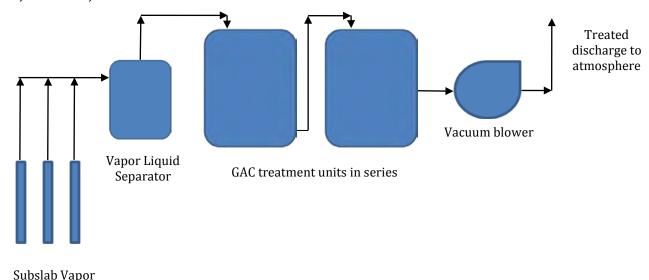
Subslab vapor extraction from EP3012 and EP3015 would effectively depressurize and remove VOC mass from the primary VOC vapor source area delineated by the >500,000 $\mu g/m^3$ subslab PCE isopleth located in the west portion of the building. However, initially, vapor extraction from 6 additional ports is planned as a conservative measure to encompass much of the 50,000 $\mu g/m^3$ subslab PCE isopleths to provide redundancy and operating flexibility.

A total of 8 of the 17 extraction ports used for pilot testing will be connected to the permanent system. These ports, shown on Figure 6, were selected because they exhibited favorable test results with respect to applied vacuum, corresponding extraction rate, and area of subslab depressurization. They provide the coverage believed appropriate to reduce vapor intrusion potential in the areas where subslab PCE presence is greatest. Since future use and occupancy of the building is unknown, the SSD will be designed to allow other extraction ports to be incorporated into the system in the future if appropriate.

The design target applied vacuum at the extraction ports will be approximately 60 in. we because this vacuum provided a reasonable balance among extraction flow, vacuum influence, and the efficient operating range of blower capability during pilot testing.

At the target applied vacuum, the subslab vapor extraction rate estimated by summing the extraction rates observed during pilot testing at the 8 extraction ports to be connected to the permanent system would be approximately 665 cfm. The actual withdrawal rate during simultaneous extraction from the port network will likely be lower than estimated above due in part to superposition effects and competition among extraction ports. Overall, the planned extraction port network and target operating conditions will provide for operating flexibility and redundancy via overlapping areas of influence. Additional ports can be connected to the SSD system if appropriate based on the results of system startup performance testing.

5.2 System Configuration


The permanent SSD system will consist of two independent vapor extraction and treatment trains, designated as sub-system 1 and sub-system 2. Figure 6 shows the proposed vacuum pipe header locations within the building and the extraction ports that will be connected to each sub-system.

A two sub-system configuration will provide greater installation flexibility and operational efficiency, flexibility, and redundancy. The SSD equipment will be located in separate enclosures outside of the building. Splitting the extracted vapor stream into two will allow the equipment to fit into pre-constructed enclosures while providing greater operational

flexibility to "scale" the system up or down by turning ports on or off depending upon future building use and occupancy.

5.3 Process Flow Diagram

The planned process flow diagram for each of the two sub-systems is shown in Exhibit 5.1. Subslab soil vapor will be withdrawn from the extraction ports using a regenerative vacuum blower. Before entering the blower, the vapor will pass through a vapor-liquid separator, followed by two granular activated carbon (GAC) units plumbed in series. Placing the GAC units on the suction side of the blowers has several advantages, including 1) maintaining all pipe and equipment with untreated VOC-containing vapor under vacuum, and 2) eliminating the need for a blower aftercooler, which would otherwise be needed on the blower discharge to reduce the temperature prior to GAC treatment. The treated vapor passing through the vacuum blowers will be discharged outside via an exhaust stack installed above the roofline of the treatment system enclosures and away from building doors, windows, and air intakes.

Exhibit 5.1 - Vapor Extraction System Process Flow Diagram

Vacuum blowers for each system will be sized to achieve an applied vacuum at the extraction ports of 60 in. wc and vapor extraction rates of about 300 and 365 cfm for subsystem 1 and sub-system 2, respectively. The blowers will be sized to account for combined head losses through the piping network and GAC-filled vessels. The blowers will be regenerative type blowers, such as FPZ's Model K09-TS with an estimated 20 to 25 horsepower motor and variable frequency drive (VFD). The VFDs will allow for lower power consumption when operating at conditions less than the capacity of the blowers.

5.4 VOC Mass Removal and Treatment

Extraction Ports

The sum of the VOC mass removal rates observed during short-term testing of the ports associated with sub-system 1 was about 0.13 lb/hr (3.1 lb/day), while the mass removal for the ports of sub-system 2 was about 0.01 lb/hr (0.24 lb/day). After startup of the full-scale

SSD system, we expect the VOC mass recovery to decrease from these values and level off at a rate that represents the mass transfer limitations in the subsurface.

Although the projected VOC removal rates for both sub-systems is expected to be less than the emission rate potential threshold of 0.5 lb/hr that requires air pollution controls under NYSDEC Division of Environmental Remediation guidelines⁷, installation of GAC for emissions control is planned. VOC mass in the vapor streams will be treated using coconutshell GAC units installed in a lead-lag configuration. Each GAC unit will contain about 700 lb of GAC. Assuming an adsorption capacity of about 0.1 lb VOC per lb GAC, and that the initial average VOC loading will be 50% of that observed during pilot testing (i.e. 1.6 lb/day for System 1), a 700 lb GAC unit would need to be replaced after about 40 days for System 1 and over 500 days for System 2. The GAC replacement frequency will gradually decrease as the VOC mass recovery rate declines.

Monitoring of the VOC breakthrough of the lead unit will be conducted, and when the lead unit has exhausted its capacity, the lag unit will be operated in the lead position, and spent GAC can be replaced with fresh GAC that will be operated in the lag position. Spent GAC will be transported off-site for reactivation or disposal.

5.5 System Location and Safeguards

The subslab vapor extraction and treatment equipment for both sub-systems are planned to be installed within two enclosures located outside the southwest corner of Building 330C (see Figure 6). Each sub-system will include the following engineering design and operational safeguards that will prevent VOC vapors from entering occupied building space during system operation, maintenance shutdowns, or potential system malfunction:

- The vacuum blowers will be located downstream of the GAC treatment units such that untreated VOC-containing vapors and the GAC units are maintained under a vacuum condition during operation, limiting the potential for fugitive VOC emissions from the pipe network in B330C or the equipment enclosures.
- The GAC treatment units will be located in dedicated enclosures completely separate from B330C and its occupants.
- The discharge from the vacuum blower will contain only treated vapor and will be piped to an exhaust stack that will be terminated above the roofline of the enclosure and away from building doors, windows, and air intakes.
- For maintenance shutdowns, including GAC replacement, the GAC beds and associated pipe/hose will be purged with clean, outside air by opening a purge air inlet valve located upstream of the GAC units. This will allow clean outside air to be drawn through the GAC units to flush out VOC-containing vapor from the system prior to shut down and carbon change outs. The enclosure will be equipped with a ventilation system, such that

⁷ NYSDEC, Division of Environmental Remediation, Internal memorandum from Dale Desnoyers, "Substantive Compliance with Air Requirements", February 28, 2003.

the equipment area will be ventilated during maintenance shut downs, including when the GAC vessels are opened for carbon change-outs.

The sub-systems will be equipped with several sensors and alarms (e.g., low vacuum, high temperature) that will automatically shut down the blower and send notifications to appropriate personnel if operating conditions are outside of their preset range.

6.0 CONCLUSIONS

The results of this work have met the objectives of: 1) evaluating the feasibility of subslab vapor extraction to control air pressure gradients across the slab in certain areas that have higher potential for VOC vapor entry into the building, and 2) gathering sufficient information to prepare a conceptual design for an effective SSD system.

A design basis for the subslab vapor extraction and treatment system has been developed from the results of pilot testing. The design basis is intended to achieve subslab depressurization in areas where PCE levels in subslab vapor exceeded 50,000 μ g/m³, and which generally correspond to areas where PCE levels in indoor air have historically been higher than other areas of the building. The design will also provide for operating flexibility, redundancy, and future expansion, if appropriate.

IBM is moving forward with the detailed design. The timing of construction and startup of the SSD system will be contingent upon GF's plans for the building, but IBM is currently targeting construction beginning in the third quarter of 2017 and startup in fourth quarter of 2017. IBM understands that construction and operation of the SSD system can proceed once the Agencies have accepted this report. IBM intends to continue operating the temporary SSD system in the former Baseline Area until the full-scale SSD system is operational.

P:\2900s\2999.04\Source Files\Conceptual Design Report\20170324 B330C SSD Design Rpt.docx

TABLES

Table 1

Summary of Portable GC/MS Subslab Vapor Screening Results (PCE and TCE) Subslab Depressurization Conceptual Design Report - Building 330C Former IBM East Fishkill Facility Hopewell Junction, New York

	ъ.	μg/m³			
Location	Date	PCE	TCE		
SS3001	04/08/2015	70	32		
SS3002	05/05/2015	25,000	R		
SS3003	04/08/2015	7,500	<5,400		
SS3004	04/13/2015	6,300	1,200		
SS3005	05/05/2015	34,000	R		
SS3006	04/08/2015	98,000	<21,000		
SS3007	04/16/2015	39,000	<5,400		
SS3008	05/05/2015	17,000	R		
SS3009	04/23/2015	1,800	190		
SS3010	04/08/2015	8,800	<5,400		
SS3011	04/16/2015	14,000	<5,400		
SS3012	04/13/2015	2,200	37		
SS3013	05/05/2015	100,000	R		
SS3014	04/16/2015	13,000	<5,400		
SS3015	04/16/2015	460,000	<11,000		
SS3016	04/16/2015	610,000	<11,000		
SS3017	05/05/2015	870,000	R		
SS3018	04/23/2015	4,700	44		
SS3019	04/09/2015	14,000	<5,400		
SS3020	04/09/2015	7,400	<5,400		
SS3021	05/05/2015	12,000	R		
SS3022	04/14/2015	1,500	330		
SS3023	04/23/2015	13,000	<5,400		
SS3024	04/23/2015	3,200	94		
SS3025	04/08/2015	22,000	<5,400		
SS3026	04/08/2015	32,000	<5,400		
SS3027	04/08/2015	32,000	<21,000		
SS3028	04/13/2015	2,100	15		
SS3029	04/09/2015	11,000	<5,400		
SS3030	04/09/2015	140,000	<11,000		
SS3031	04/08/2015	9,500	<5,400		

Notes:

- 1. This table summarizes data recorded during field screening of subslab vapor screening samples by Sanborn, Head Engineering, PC (SHPC) using a HAPSITE Smart \circledR portable gas chromatograph/mass spectrometer (GC/MS), manufactured by Inficon. The instrument was calibrated to vendor prepared standards for tetrachloroethene (PCE) and trichloroethene (TCE). Results were converted to micrograms per cubic meter (µg/m³) by SHPC assuming standard temperature (25 °C) and pressure (1 atmosphere) for the conversion. Results were rounded to two significant figures.
- 2. < The analyte was not detected above the indicated reporting limit.
 - R The result was rejected because the field calibration check indicated that the result was unreliable.

TABLE 2

Summary of Subslab Vapor Sample Analytical Results (SUMMA® Canisters) Subslab Depressurization Conceptual Design Report - Building 330C Former IBM East Fishkill Facility Hopewell Junction, New York

	Concentration in μg/m ³					
Field Sample Name	SS3055	FDSS3055 (Field Duplicate)	SS3056	SS3057	SS3058	
Collection Date	02/09/2016	02/09/2016	02/09/2016	02/09/2016	02/09/2016	
Acetone	73	75	<26	29	<27	
Benzene	<3.8	<3.7	<3.5	<3.6	<3.6	
Carbon tetrachloride	<7.4	<7.2	< 7.0	< 7.0	<7.2	
Chlorobenzene (Monochlorobenzene)	< 5.4	<5.3	<5.1	< 5.1	<5.2	
Dichlorobenzene (1,2-)	<7.1	<6.9	< 6.7	< 6.7	<6.8	
Dichlorobenzene (1,3-)	<7.1	<6.9	< 6.7	< 6.7	<6.8	
Dichlorobenzene (1,4-)	<7.1	<6.9	< 6.7	< 6.7	<6.8	
Dichlorodifluoromethane (CFC12)	12	13	3,100	610	1,900	
Dichloroethene (1,1-)	<4.6	<4.6	<4.4	<4.4	<4.5	
Dichloroethene (cis-1,2-)	<4.6	<4.6	<4.4	<4.4	<4.5	
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	<9.0	<8.8	<8.5	<8.5	<8.7	
Ethylbenzene	< 5.1	<5.0	<4.8	<4.8	<4.9	
Methylene Chloride (Dichloromethane)	<41	<40	<38	<39	<40	
Tetrachloroethene (PCE)	610	620	170	54	310	
Toluene	<4.4	<4.3	<4.2	<4.2	<4.3	
Trichlorobenzene (1,2,4-)	<35	<34	<33	<33	<34	
Trichloroethane (1,1,1-)	< 6.4	<6.3	< 6.0	< 6.1	<6.2	
Trichloroethene (TCE)	< 6.3	<6.2	<6.0	< 6.0	<6.1	
Trichlorofluoromethane	<6.6	< 6.5	<6.2	< 6.3	< 6.4	
Vinyl chloride	<3.0	<2.9	<2.8	<2.8	<2.9	
Xylene (o-)	< 5.1	< 5.0	<4.8	<4.8	< 5.0	
Xylene-m,p (Sum of Isomers)	< 5.1	< 5.0	<4.8	<4.8	< 5.0	

Notes:

- 1. Samples were collected by Sanborn, Head Engineering, PC (SHPC) on the dates indicated over an approximately 1-hour sampling period. The samples were analyzed by Eurofins Air Toxics, Inc. (EATI) of Folsom, California for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in the full scan mode.
- 2. Results are presented in micrograms per cubic meter (µg/m³).
- 3. < The analyte was not detected above the indicated reporting limit.

Table 3

Summary of Subslab Vapor Extraction Pilot Test Analytical Results Subslab Depressurization Conceptual Design Report - Building 330C Former IBM East Fishkill Facility Hopewell Junction, New York

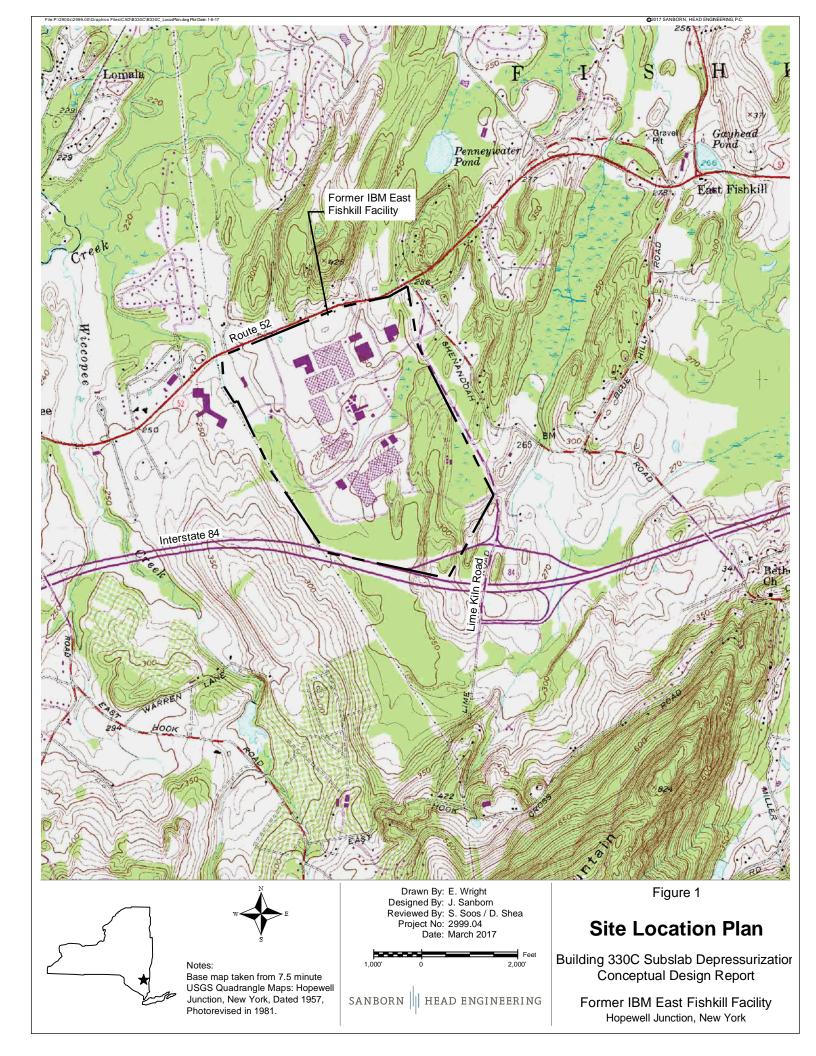
Sample	Collection	VC	t-1,2-DCE	c-1,2-DCE	TCE	PCE	Total VOCs
Location	Date	μg/m ³	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m³
EP3001	7/29/2015	<70.6	<109	<109	159	78,000	78,159
EP3002	7/30/2015	< 5.09	<7.89	<7.89	774	4,690	5,464
EP3003	7/29/2015	<585	<908	<908	3,770	2,710,000	2,713,770
EP3004	10/14/2015	<1.49	<2.32	<2.32	<3.14	4.77	4.77
EP3005	10/15/2015	<4.7	<7.3	<7.3	607	5,360	5,967
EP3006	10/14/2015	<2.66	<4.12	<4.12	2,420	2,210	4,630
EP3007	10/13/2015	<3.37	<5.23	<5.23	543	976	1,519
EP3008	10/13/2015	<7.13	<11.1	<11.1	380	8,410	8,790
EP3009	10/14/2015	<16.7	<26	<26	272	15,500	15,772
EP3010	2/15/2016	<1.24	<1.92	<1.92	<2.61	210	210
EP3011	3/16/2016	<25.8	<40	<40	4,400	20,500	24,900
EP3012	3/16/2016	<473	<733	<733	3,150	235,000	238,150
EP3013	3/16/2016	<510	NA	< 790	1,100	300,000	301,100
EP3014	3/16/2016	<168	<260	<260	<353	133,000	133,000
EP3015	3/16/2016	<58.8	<91.2	<91.2	170	30,800	30,970
EP3016	7/7/2016	<263	<408	<408	2,460	184,000	186,460
EP3017	7/7/2016	<261	<404	<404	1,370	161,000	162,370
SP3001	8/15/2016	<88.7	<138	<138	444	108,000	108,444

Notes:

- 1. Samples were collected by Sanborn Head on the dates indicated. Samples were grab samples collected in Summa canisters during subslab vapor extraction pilot testing, and were collected once the pilot test field parameters stabilized. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts, with the exception of sample EP3013 which was analyzed by Eurofins/Air Toxics of Folsom, California, for five volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15.
- 2. "<" indicates the analyte was not detected above the indicated laboratory reporting limit.
- 3. Total VOCs are the sum of the detected concentrations of VOCs.
- 4. Abbreviations:

VC = vinvl chloride

t-1,2-DCE = trans-1,2-dichloroethene


c-1,2-DCE = cis-1,2-dichloroethene

TCE = trichloroethene

PCE = tetrachloroethene

NA = not analyzed

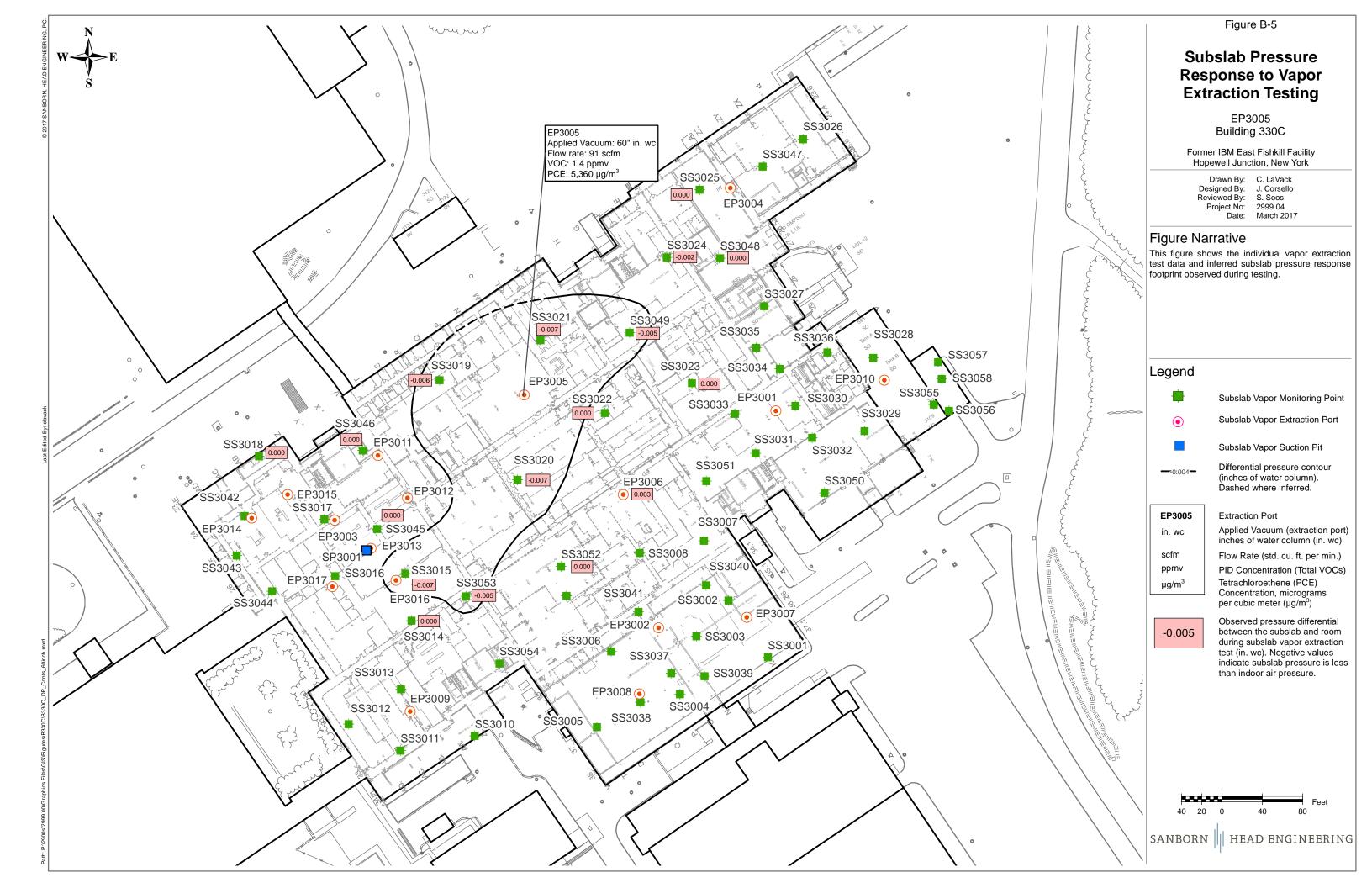
FIGURES

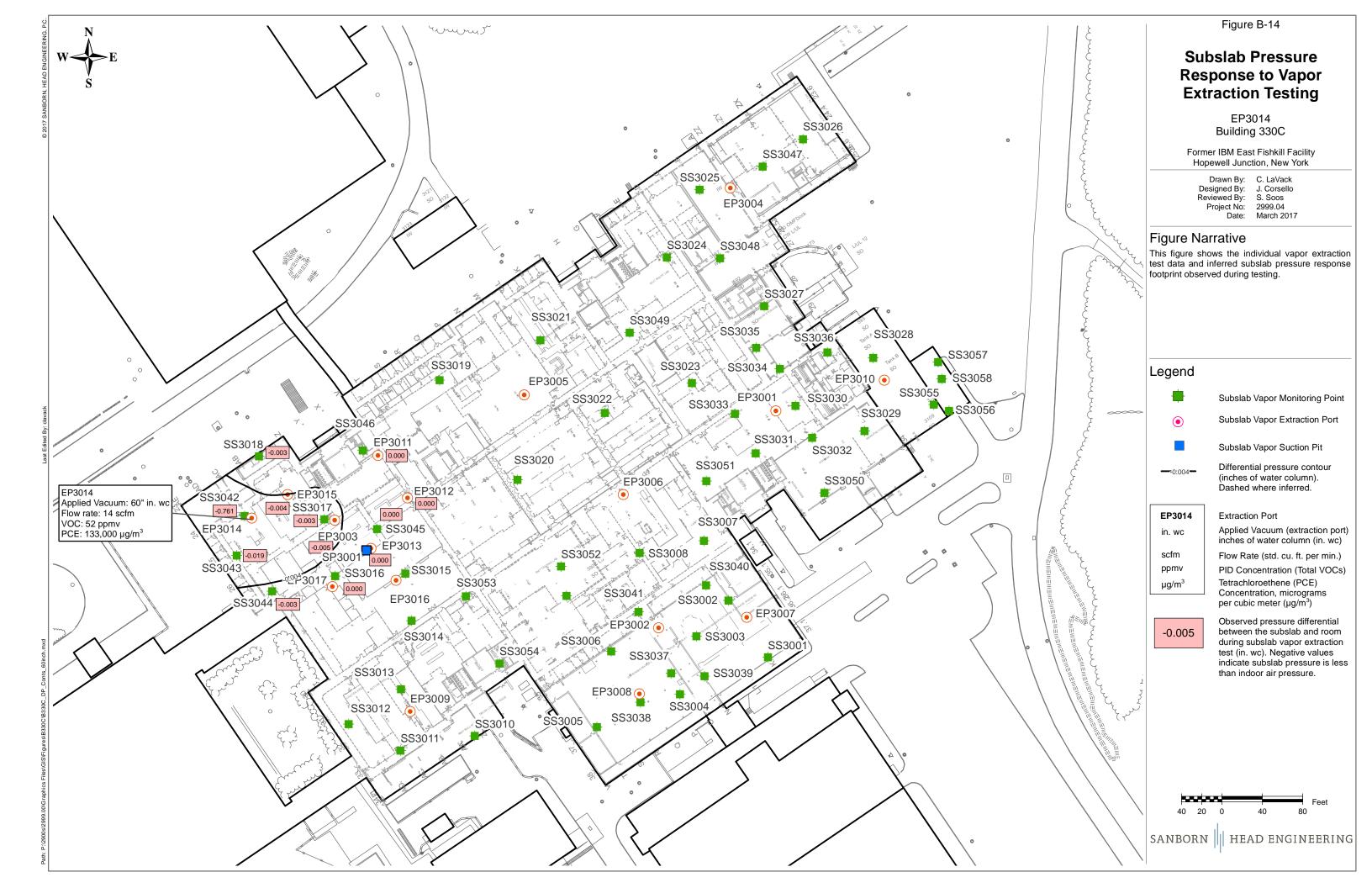
APPENDIX A LIMITATIONS

APPENDIX A SHPC LIMITATIONS

- 1. The findings and conclusions described in this report are based in part on the data obtained from a finite number of samples from widely spaced locations. The figures are intended to depict inferred conditions during a given period of time, consistent with available information. The actual conditions will vary from that shown, both spatially and temporally. Other interpretations are possible. The nature and extent of variations between sampling locations may not become evident until further investigation is initiated. If variations or other latent conditions then appear evident, it may be necessary to re-evaluate the conclusions of this report.
- 2. The conclusions contained in this report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed by previous investigators. While SHPC has reviewed that data available to us at the time the report was prepared and information as stated in this report, any of SHPC's interpretations and conclusions that have relied on that information will be contingent on its validity. SHPC has not performed an independent assessment of the reliability of the data; should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by SHPC and the interpretations and conclusions presented herein may be modified accordingly.
- 3. Sampling and quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, SHPC has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data. It must be noted that additional compounds not searched for during the current study may be present in vapor and indoor air at the site. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their distribution within the vapor and indoor air may occur due to the passage of time, seasonal water table fluctuations, recharge events, and other factors.
- 4. This report has been prepared for the exclusive use of the IBM Corporation for specific application to the former IBM East Fishkill facility in accordance with generally accepted hydrogeologic and engineering practices. No warranty, expressed or implied, is made. The contents of this report should not be relied on by any other party without the express written consent of SHPC.
- 5. In preparing this report, SHPC has endeavored to conform to generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area. SHPC has attempted to observe a degree of care and skill generally exercised by the technical community under similar circumstances and conditions.

APPENDIX B


SUBSLAB PRESSURE RESPONSE TO INDIVIDUAL VAPOR EXTRACTION TESTS



APPENDIX C ANALYTICAL LABORATORY REPORTS (ON CD)

4/4/2016 Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road

Latham NY

Project Name: B330C Project #: 2999.04 Workorder #: 1603419

Dear Ms. Erica Bosse

The following report includes the data for the above referenced project for sample(s) received on 3/22/2016 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1603419

Work Order Summary

CLIENT: Ms. Erica Bosse BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

24 Wade Road20 Foundry StreetLatham, NYConcord, NH 03301

PHONE: 518-207-0769 **P.O.** # 2999.04

FAX: PROJECT # 2999.04 B330C

DATE RECEIVED: 03/22/2016 CONTACT: Ausha Scott

DATE COMPLETED: 04/04/2016

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20160314 INF	TO-15	5.3 "Hg	15.1 psi
01B	20160314 INF	TO-15	5.3 "Hg	15.1 psi
02A	20160314 MID	TO-15	5.9 "Hg	14.7 psi
03A	20160314 EFF	TO-15	6.1 "Hg	15.1 psi
04A	EP3013	TO-15	4.9 "Hg	14.6 psi
04B	EP3013	TO-15	4.9 "Hg	14.6 psi
05A	Lab Blank	TO-15	NA	NA
05B	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
06B	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA
07B	LCS	TO-15	NA	NA
07BB	LCSD	TO-15	NA	NA

	1	cide /	layer		
CERTIFIED BY:			0	DATE:	04/04/16

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1603419

Four 1 Liter Summa Canister (100% Certified) samples were received on March 22, 2016. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) information for sample 20160314MID and 20160314EFF did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the samples.

Analytical Notes

Due to high-level target compounds, samples 20160314 INF and EP3013 were analyzed twice. In the "B" fraction, the sample was diluted to bring the highest-level compounds within the calibration range.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: 20160314 INF

Lab ID#: 1603419-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 113	25	430	190	3300	
Acetone	98	270	230	650	
Benzene	25	210	78	660	
Trichloroethene	25	97	130	520	

Client Sample ID: 20160314 INF

Lab ID#: 1603419-01B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	100	17000	700	120000	

Client Sample ID: 20160314 MID

Lab ID#: 1603419-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	2.7	6.2	14
Acetone	12	16	30	38
Benzene	1.2	18	4.0	58
m,p-Xylene	1.2	2.2	5.4	9.5
o-Xylene	1.2	2.0	5.4	8.8

Client Sample ID: 20160314 EFF

Lab ID#: 1603419-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	2.7	6.3	14
Benzene	1.3	2.2	4.0	6.9

Client Sample ID: EP3013

Lab ID#: 1603419-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: EP3013 Lab ID#: 1603419-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	200	500	1500	3800
Trichloroethene	200	200	1100	1100
Client Sample ID: EP3013				
T 1 TD // 4 CO2 440 0 4D				

Lab ID#: 1603419-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	300	44000	2000	300000

Client Sample ID: 20160314 INF Lab ID#: 1603419-01A

EPA METHOD TO-15 GC/MS

File Name: 14033113 Date of Collection: 3/14/16 6:00:00 PM
Dil. Factor: 4.92 Date of Analysis: 3/31/16 02:29 PM

				• .
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	25	Not Detected	120	Not Detected
Vinyl Chloride	25	Not Detected	63	Not Detected
Freon 11	25	Not Detected	140	Not Detected
Freon 113	25	430	190	3300
1,1-Dichloroethene	25	Not Detected	98	Not Detected
Acetone	98	270	230	650
Methylene Chloride	25	Not Detected	85	Not Detected
cis-1,2-Dichloroethene	25	Not Detected	98	Not Detected
1,1,1-Trichloroethane	25	Not Detected	130	Not Detected
Carbon Tetrachloride	25	Not Detected	150	Not Detected
Benzene	25	210	78	660
Trichloroethene	25	97	130	520
Toluene	25	Not Detected	93	Not Detected
Chlorobenzene	25	Not Detected	110	Not Detected
Ethyl Benzene	25	Not Detected	110	Not Detected
m,p-Xylene	25	Not Detected	110	Not Detected
o-Xylene	25	Not Detected	110	Not Detected
1,3-Dichlorobenzene	25	Not Detected	150	Not Detected
1,4-Dichlorobenzene	25	Not Detected	150	Not Detected
1,2-Dichlorobenzene	25	Not Detected	150	Not Detected
1,2,4-Trichlorobenzene	98	Not Detected	730	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: 20160314 INF Lab ID#: 1603419-01B

EPA METHOD TO-15 GC/MS

Dil. Factor:	20.5	Date of Analysis: 3/31/16 12:38 PM
File Name:	14033110	Date of Collection: 3/14/16 6:00:00 PM

0	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	100	17000	700	120000

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: 20160314 MID Lab ID#: 1603419-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17032513 Date of Collection: 3/14/16 6:05:00 PM
Dil. Factor: 2.49 Date of Analysis: 3/25/16 06:57 PM

			2410 01 7 11141 y 0101 07 207 10 00101 1 111	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	2.7	6.2	14
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
Freon 11	1.2	Not Detected	7.0	Not Detected
Freon 113	1.2	Not Detected	9.5	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	16	30	38
Methylene Chloride	12	Not Detected	43	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected
Benzene	1.2	18	4.0	58
Trichloroethene	1.2	Not Detected	6.7	Not Detected
Toluene	1.2	Not Detected	4.7	Not Detected
Tetrachloroethene	1.2	Not Detected	8.4	Not Detected
Chlorobenzene	1.2	Not Detected	5.7	Not Detected
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	2.2	5.4	9.5
o-Xylene	1.2	2.0	5.4	8.8
1,3-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: 20160314 EFF Lab ID#: 1603419-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17032514 Date of Collection: 3/14/16 6:10:00 PM Dil. Factor: 2.54 Date of Analysis: 3/25/16 07:23 PM

Dill'i dotori	2.07	Date	of Analysis. orza	10 07.20 1 10
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	2.7	6.3	14
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	13	Not Detected	30	Not Detected
Methylene Chloride	13	Not Detected	44	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
Benzene	1.3	2.2	4.0	6.9
Trichloroethene	1.3	Not Detected	6.8	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected

_	·	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: EP3013 Lab ID#: 1603419-04A

EPA METHOD TO-15 GC/MS

 File Name:
 14033111
 Date of Collection: 3/16/16 5:54:00 PM

 Dil. Factor:
 39.7
 Date of Analysis: 3/31/16 01:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	200	Not Detected	980	Not Detected
Vinyl Chloride	200	Not Detected	510	Not Detected
Freon 11	200	Not Detected	1100	Not Detected
Freon 113	200	500	1500	3800
1,1-Dichloroethene	200	Not Detected	790	Not Detected
Acetone	790	Not Detected	1900	Not Detected
Methylene Chloride	200	Not Detected	690	Not Detected
cis-1,2-Dichloroethene	200	Not Detected	790	Not Detected
1,1,1-Trichloroethane	200	Not Detected	1100	Not Detected
Carbon Tetrachloride	200	Not Detected	1200	Not Detected
Benzene	200	Not Detected	630	Not Detected
Trichloroethene	200	200	1100	1100
Toluene	200	Not Detected	750	Not Detected
Chlorobenzene	200	Not Detected	910	Not Detected
Ethyl Benzene	200	Not Detected	860	Not Detected
m,p-Xylene	200	Not Detected	860	Not Detected
o-Xylene	200	Not Detected	860	Not Detected
1,3-Dichlorobenzene	200	Not Detected	1200	Not Detected
1,4-Dichlorobenzene	200	Not Detected	1200	Not Detected
1,2-Dichlorobenzene	200	Not Detected	1200	Not Detected
1,2,4-Trichlorobenzene	790	Not Detected	5900	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: EP3013 Lab ID#: 1603419-04B

EPA METHOD TO-15 GC/MS

File Name: 14033112 Date of Collection: 3/16/ Dil. Factor: 59.5 Date of Analysis: 3/31/10
File Name: 14033112 Date of Collection: 3/16/
File Name: 14033112 Date of Collection: 3/16/

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	300	44000	2000	300000

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 1603419-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17032506	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/16 01:23 PM

Dill I dotoi!	1.00	Date	of Allarysis. or zor	10 01.231 10
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: Lab Blank Lab ID#: 1603419-05B

EPA METHOD TO-15 GC/MS

File Name:	14033106	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/31/16 10:42 AM

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
5.0	Not Detected	25	Not Detected
5.0	Not Detected	13	Not Detected
5.0	Not Detected	28	Not Detected
5.0	Not Detected	38	Not Detected
5.0	Not Detected	20	Not Detected
20	Not Detected	48	Not Detected
5.0	Not Detected	17	Not Detected
5.0	Not Detected	20	Not Detected
5.0	Not Detected	27	Not Detected
5.0	Not Detected	31	Not Detected
5.0	Not Detected	16	Not Detected
5.0	Not Detected	27	Not Detected
5.0	Not Detected	19	Not Detected
5.0	Not Detected	34	Not Detected
5.0	Not Detected	23	Not Detected
5.0	Not Detected	22	Not Detected
5.0	Not Detected	22	Not Detected
5.0	Not Detected	22	Not Detected
5.0	Not Detected	30	Not Detected
5.0	Not Detected	30	Not Detected
5.0	Not Detected	30	Not Detected
20	Not Detected	150	Not Detected
	(ppbv) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	(ppbv) (ppbv) 5.0 Not Detected 5.0 Not Detected	(ppbv) (ppbv) (ug/m3) 5.0 Not Detected 25 5.0 Not Detected 13 5.0 Not Detected 28 5.0 Not Detected 38 5.0 Not Detected 20 20 Not Detected 48 5.0 Not Detected 20 5.0 Not Detected 27 5.0 Not Detected 31 5.0 Not Detected 16 5.0 Not Detected 27 5.0 Not Detected 27 5.0 Not Detected 34 5.0 Not Detected 23 5.0 Not Detected 22 5.0 Not Detected 22 5.0 Not Detected 22 5.0 Not Detected 30 5.0 Not Detected 30 5.0 Not Detected 30 5.0 Not Detected 30 5.0 Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1603419-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17032502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/25/16 09:51 AM

Compound	%Recovery	
Freon 12	96	
Vinyl Chloride	92	
Freon 11	102	
Freon 113	106	
1,1-Dichloroethene	94	
Acetone	99	
Methylene Chloride	88	
cis-1,2-Dichloroethene	95	
1,1,1-Trichloroethane	96	
Carbon Tetrachloride	102	
Benzene	94	
Trichloroethene	95	
Toluene	96	
Tetrachloroethene	107	
Chlorobenzene	101	
Ethyl Benzene	98	
m,p-Xylene	99	
o-Xylene	98	
1,3-Dichlorobenzene	105	
1,4-Dichlorobenzene	104	
1,2-Dichlorobenzene	104	
1,2,4-Trichlorobenzene	94	

,,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	111	70-130	

Client Sample ID: CCV Lab ID#: 1603419-06B

EPA METHOD TO-15 GC/MS

File Name: 14033102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/31/16 08:40 AM

Compound	%Recovery	
Freon 12	88	
Vinyl Chloride	83	
Freon 11	94	
Freon 113	94	
1,1-Dichloroethene	87	
Acetone	91	
Methylene Chloride	86	
cis-1,2-Dichloroethene	88	
1,1,1-Trichloroethane	96	
Carbon Tetrachloride	103	
Benzene	92	
Trichloroethene	82	
Toluene	89	
Tetrachloroethene	97	
Chlorobenzene	92	
Ethyl Benzene	90	
m,p-Xylene	95	
o-Xylene	93	
1,3-Dichlorobenzene	94	
1,4-Dichlorobenzene	94	
1,2-Dichlorobenzene	87	-
1,2,4-Trichlorobenzene	71	

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: LCS Lab ID#: 1603419-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17032503 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/25/16 10:17 AM

		Method
Compound	%Recovery	Limits
Freon 12	93	70-130
Vinyl Chloride	90	70-130
Freon 11	100	70-130
Freon 113	99	70-130
1,1-Dichloroethene	86	70-130
Acetone	83	70-130
Methylene Chloride	83	70-130
cis-1,2-Dichloroethene	87	70-130
1,1,1-Trichloroethane	90	70-130
Carbon Tetrachloride	95	70-130
Benzene	90	70-130
Trichloroethene	101	70-130
Toluene	95	70-130
Tetrachloroethene	106	70-130
Chlorobenzene	98	70-130
Ethyl Benzene	98	70-130
m,p-Xylene	98	70-130
o-Xylene	99	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	103	70-130
1,2-Dichlorobenzene	103	70-130
1,2,4-Trichlorobenzene	98	70-130

		Wetnoa	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	113	70-130	

Client Sample ID: LCSD Lab ID#: 1603419-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17032504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/25/16 10:44 AM

		Method
Compound	%Recovery	Limits
Freon 12	96	70-130
Vinyl Chloride	92	70-130
Freon 11	102	70-130
Freon 113	102	70-130
1,1-Dichloroethene	89	70-130
Acetone	83	70-130
Methylene Chloride	83	70-130
cis-1,2-Dichloroethene	88	70-130
1,1,1-Trichloroethane	92	70-130
Carbon Tetrachloride	97	70-130
Benzene	91	70-130
Trichloroethene	103	70-130
Toluene	96	70-130
Tetrachloroethene	106	70-130
Chlorobenzene	99	70-130
Ethyl Benzene	97	70-130
m,p-Xylene	98	70-130
o-Xylene	99	70-130
1,3-Dichlorobenzene	105	70-130
1,4-Dichlorobenzene	105	70-130
1,2-Dichlorobenzene	105	70-130
1,2,4-Trichlorobenzene	112	70-130

,		Method Limits
Surrogates	%Recovery	
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: LCS Lab ID#: 1603419-07B

EPA METHOD TO-15 GC/MS

File Name: 14033103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/31/16 09:21 AM

		Method
Compound	%Recovery	Limits
Freon 12	96	70-130
Vinyl Chloride	92	70-130
Freon 11	98	70-130
Freon 113	94	70-130
1,1-Dichloroethene	89	70-130
Acetone	95	70-130
Methylene Chloride	88	70-130
cis-1,2-Dichloroethene	90	70-130
1,1,1-Trichloroethane	102	70-130
Carbon Tetrachloride	102	70-130
Benzene	93	70-130
Trichloroethene	84	70-130
Toluene	92	70-130
Tetrachloroethene	98	70-130
Chlorobenzene	94	70-130
Ethyl Benzene	97	70-130
m,p-Xylene	97	70-130
o-Xylene	98	70-130
1,3-Dichlorobenzene	100	70-130
1,4-Dichlorobenzene	98	70-130
1,2-Dichlorobenzene	99	70-130
1,2,4-Trichlorobenzene	97	70-130

Container Type: NA - Not Applicable

,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1603419-07BB

EPA METHOD TO-15 GC/MS

File Name: 14033104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/31/16 09:40 AM

		Method
Compound	%Recovery	Limits
Freon 12	92	70-130
Vinyl Chloride	88	70-130
Freon 11	98	70-130
Freon 113	95	70-130
1,1-Dichloroethene	88	70-130
Acetone	95	70-130
Methylene Chloride	85	70-130
cis-1,2-Dichloroethene	90	70-130
1,1,1-Trichloroethane	103	70-130
Carbon Tetrachloride	107	70-130
Benzene	93	70-130
Trichloroethene	86	70-130
Toluene	90	70-130
Tetrachloroethene	102	70-130
Chlorobenzene	94	70-130
Ethyl Benzene	95	70-130
m,p-Xylene	96	70-130
o-Xylene	94	70-130
1,3-Dichlorobenzene	103	70-130
1,4-Dichlorobenzene	98	70-130
1,2-Dichlorobenzene	95	70-130
1,2,4-Trichlorobenzene	104	70-130

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	107	70-130

ANALYTICAL REPORT

Lab Number: L1518041

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C PILOT TEST

Project Number: 2999.04 Report Date: 08/06/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1518041-01	EP3001	SOIL_VAPOR	HOPEWELL JUNCTION, NY	07/29/15 14:30	07/31/15
L1518041-02	EP3002	SOIL_VAPOR	HOPEWELL JUNCTION, NY	07/30/15 13:00	07/31/15
L1518041-03	EP3003	SOIL_VAPOR	HOPEWELL JUNCTION, NY	07/29/15 09:50	07/31/15
L1518041-04	UNUSED CAN #2087	SOIL_VAPOR	HOPEWELL JUNCTION, NY		07/31/15

L1518041

Lab Number:

Project Name: B330C PILOT TEST

Project Number: 2999.04 Report Date: 08/06/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

L1518041

B330C PILOT TEST Project Name:

Project Number: 2999.04 **Report Date:** 08/06/15

Lab Number:

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on July 27, 2015. The canister certification results are provided as an addendum.

Samples L1518041-01 through -03: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

Samples L1518041-01 through -03 and WG808943-5 Duplicate: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Sample L1518041-03 was diluted and re-analyzed to quantify the sample within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Date: 08/06/15 Title: Technical Director/Representative

Chulch J. Christopher J. Anderson

AIR

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

SAMPLE RESULTS

Lab ID: L1518041-01 D

Client ID: EP3001

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/04/15 17:28

Analyst: MB

Date Collected:	07/29/15 14:30
Date Received:	07/31/15

Field Prep: Not Specified

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	27.6		ND	70.6			137.8
ND	27.6		ND	109			137.8
ND	27.6		ND	109			137.8
29.5	27.6		159	148			137.8
11500	27.6		78000	187			137.8
	ND ND ND 29.5	Results RL d Lab ND 27.6 ND 27.6 ND 27.6 ND 27.6 27.6 29.5 27.6	Results RL MDL d Lab ND 27.6 ND 27.6 29.5 27.6	Results RL MDL Results Id Lab ND 27.6 ND ND 27.6 ND ND 27.6 ND 29.5 27.6 159	Results RL MDL Results RL Id Lab ND 27.6 ND 70.6 ND 27.6 ND 109 ND 27.6 ND 109 29.5 27.6 159 148	Results RL MDL Results RL MDL I Lab ND 27.6 ND 70.6 ND 27.6 ND 109 ND 27.6 ND 109 29.5 27.6 159 148	Results RL MDL Results RL MDL Qualifier I Lab ND 27.6 ND 70.6 ND 27.6 ND 109 ND 27.6 ND 109 29.5 27.6 159 148

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

SAMPLE RESULTS

Lab ID: L1518041-02 D

Client ID: EP3002

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/04/15 18:00

Analyst: MB

Date Collected: 07/30/15 13:00 Date Received: 07/31/15

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Vinyl chloride	ND	1.99		ND	5.09			9.933
trans-1,2-Dichloroethene	ND	1.99		ND	7.89			9.933
cis-1,2-Dichloroethene	ND	1.99		ND	7.89			9.933
Trichloroethene	144	1.99		774	10.7			9.933
Tetrachloroethene	691	1.99		4690	13.5			9.933

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

L1518041

07/29/15 09:50

Not Specified

07/31/15

Project Name: B330C PILOT TEST

Project Number: 2999.04

Report Date: 08/06/15

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1518041-03 D

Client ID: EP3003

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/04/15 19:03

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Vinyl chloride	ND	229.		ND	585			1145
trans-1,2-Dichloroethene	ND	229.		ND	908			1145
cis-1,2-Dichloroethene	ND	229.		ND	908			1145
Trichloroethene	702	229		3770	1230			1145
Tetrachloroethene	339000	229		2300000	1550		E	1145

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	91		60-140

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

SAMPLE RESULTS

Lab ID: L1518041-03 D2

Client ID: EP3

EP3003

HOPEWELL JUNCTION, NY

Matrix: Anaytical Method:

Sample Location:

Soil_Vapor 48,TO-15

Analytical Date:

08/05/15 09:17

Analyst:

MB

Date Collected: 07/29/15 09:50

Date Received:

07/31/15

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Tetrachloroethene	400000	1140		2710000	7730			5721

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	91		60-140

Project Name: B330C PILOT TEST Lab Number: L1518041

Project Number: 2999.04 Report Date: 08/06/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/04/15 16:40

	ppbV				ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab for samp	ole(s): 01-	03 Batch	: WG80894	3-4			
Vinyl chloride	ND	0.200		ND	0.511			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Trichloroethene	ND	0.200		ND	1.07			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s)	: 01-03	Batch: WG808943	-3					
Vinyl chloride	94		-		70-130	-			
trans-1,2-Dichloroethene	84		-		70-130	-			
cis-1,2-Dichloroethene	100		-		70-130	-			
Trichloroethene	97		-		70-130	-			
Tetrachloroethene	90		-		70-130	-			

Lab Duplicate Analysis Batch Quality Control

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1518041

Report Date:

08/06/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
/olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG808943-5	QC Sample:	L1518041-02	Client ID: EP3002	
Vinyl chloride	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
Trichloroethene	144	140	ppbV	3	25	
Tetrachloroethene	691	701	ppbV	1	25	

B330C PILOT TEST L1518041

Project Number: 2999.04 Report Date: 08/06/15

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1518041-01	EP3001	1926	1.0L Can	07/27/15	207122	L1516783-02	Pass	-29.6	-6.5	-	-	-	-
L1518041-02	EP3002	1503	1.0L Can	07/27/15	207122	L1516783-02	Pass	-29.6	-8.2	-	-	-	-
L1518041-03	EP3003	1958	1.0L Can	07/27/15	207122	L1516783-02	Pass	-29.6	-7.1	-	-	-	-
L1518041-04	UNUSED CAN #2087	2087	1.0L Can	07/27/15	207122	L1516783-02	Pass	-29.6	-29.0	-	-	-	-

Project Name:

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Matrix: Air Anaytical Method: 48,TO-15

Analytical Date: 07/21/15 17:44

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
sopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 [

Client ID: CAN 566 SHELF 4

Sample Location:

Date Collected: 07/20/15 18:00 Date Received: 07/21/15

Not Specified

Field Prep:

ppbV ug/m3 Dilution **Factor** Results RL Qualifier **Parameter** Results RLMDL MDL Volatile Organics in Air - Mansfield Lab o-Chlorotoluene ND 0.200 ND 1.04 1 n-Propylbenzene ND 0.200 --ND 0.983 1 p-Chlorotoluene 0.200 ND ND 1.04 1 4-Ethyltoluene 0.200 ND ND 0.983 1 ----1,3,5-Trimethylbenzene ND 0.200 ND 0.983 1 tert-Butylbenzene ND 0.200 ND 1.10 --1 1,2,4-Trimethylbenzene ND 0.200 --ND 0.983 1 Decane (C10) ND 0.200 ND 1.16 1 --Benzyl chloride ND 0.200 ND 1.04 1 ----1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 sec-Butylbenzene 0.200 1 ND ND 1.10 ---p-Isopropyltoluene ND 0.200 ND 1.10 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 n-Butylbenzene ND 0.200 ND 1.10 1 1,2-Dibromo-3-chloropropane ND 0.200 ND 1 --1.93 --Undecane ND 0.200 ND 1 1.28 ----Dodecane (C12) ND 0.200 ND 1.39 1 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 1 Naphthalene ND 0.200 --ND 1.05 --1 1,2,3-Trichlorobenzene ND 0.200 ND 1 --1.48 --Hexachlorobutadiene 0.200 ND --ND 2.13 --1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/21/15 17:44

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15
Sample Location: Field Prep: Not Specified

ppbV ug/m3 Dilution **Factor** Results Results Qualifier **Parameter** RLMDL RL MDL Volatile Organics in Air by SIM - Mansfield Lab Bromodichloromethane ND 0.020 ND 0.134 1 1.4-Dioxane ND 0.100 --ND 0.360 --1 Trichloroethene 0.020 ND ND 0.107 1 cis-1,3-Dichloropropene ND 0.020 ND 0.091 1 ----4-Methyl-2-pentanone ND 0.500 ND 2.05 1 trans-1,3-Dichloropropene ND 0.020 ND 0.091 --1 1,1,2-Trichloroethane ND 0.020 --ND 0.109 1 Toluene ND 0.050 ND 0.188 1 --Dibromochloromethane ND 0.020 ND 0.170 1 ----1,2-Dibromoethane ND 0.020 ND 0.154 1 Tetrachloroethene ND 0.020 ND 0.136 1 1,1,1,2-Tetrachloroethane ND 0.020 ND 0.137 1 ----Chlorobenzene ND 0.020 ND 0.092 1 Ethylbenzene ND 0.020 ND 0.087 1 p/m-Xylene ND 0.040 ND 0.174 1 **Bromoform** ND 0.020 0.207 1 --ND Styrene ND 0.020 ND 0.085 1 ----1,1,2,2-Tetrachloroethane ND 0.020 ND 0.137 1 o-Xylene ND 0.020 ND 0.087 1 Isopropylbenzene ND 0.200 --ND 0.983 --1 4-Ethyltoluene ND 0.020 ND 0.098 ----1 1,3,5-Trimethylbenzene ND 0.020 ND 0.098 --1 --1,2,4-Trimethylbenzene ND 0.020 ND 0.098 1 1,3-Dichlorobenzene ND 0.020 ND 0.120 1 1,4-Dichlorobenzene ND 0.020 ND 1 --0.120 -sec-Butylbenzene ND 0.200 ND 1.10 1 p-Isopropyltoluene 0.200 ND ND 1.10 1 ----1,2-Dichlorobenzene ND 0.020 ND 0.120 1

Project Name: Lab Number: L1516783

Project Number: CANISTER QC BAT Report Date: 08/06/15

Air Canister Certification Results

Lab ID: L1516783-02 Date Collected: 07/20/15 18:00

Client ID: CAN 566 SHELF 4 Date Received: 07/21/15

Sample Location: Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL MDL		Results	Results RL MD		Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Name: B330C PILOT TEST Lab Number: L1518041

Project Number: 2999.04 Report Date: 08/06/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1518041-01A	Canister - 2.7 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1518041-02A	Canister - 2.7 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1518041-03A	Canister - 2.7 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1518041-04A	Canister - 1 Liter	N/A	N/A		Υ	Absent	CLEAN-FEE()

Project Name: B330C PILOT TEST Lab Number: L1518041

Project Number: 2999.04 Report Date: 08/06/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name:B330C PILOT TESTLab Number:L1518041Project Number:2999.04Report Date:08/06/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Number: B330C PILOT TEST Lab Number: L1518041

Project Number: 2000 04 Report Date: 08/06/15

Project Number: 2999.04 Report Date: 08/06/15

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endeauten L. Endeauten author. Endeauten Aldrin Aldrin alpha-blanda BCR.

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Maria	AIR AI	VALY	SIS	PA	GE(OF	Date R	ec'd in Lal	. 7	/31	15		A	LPH	IA Jo	ob #:	L15	180	140	
AMATENTICAL	CHAIN OF CUSTODY	Project	Informati	on			Repo	rt Informa	ation -	Data D	elivera	bles	E	Billin	g Info	orma	ition			
320 Forbes Blvd, Ma TEL: 508-822-9300	nsfield, MA 02048 FAX: 508-822-3288	Project Na	ame: R3	30C F	Pilet Te	est	□ FAX	·					×	Sam	e as C	Client	info PO	#:		
Client Informatio	n			opewell		_	E CAD		ockor:											
Client: Sanborn	, Head + Associates		2999					(Default base	d on Regu	latory Crite	eria Indicate	d)				,				
	rology Park Dr	Project Ma	anager: S	s. Sous				Other Form AIL (standa		eport)		<u>.</u>	F	Regu	lator	y Re	quireme	nts/Rep	ort Lin	nits
Westford, 1	1A OIP8G	ALPHA Q	uote #:				☐Add	litional Deli	verable	s:			S	tate/F	ed	Pı	rogram	Ci	riteria	
Phone: 978-		Turn-A	round Tin	ne			Report	to: (if different	than Projec	Manager)					_					
Fax:																				
Email: 55005	a san bomherd.com	Standar	rd 🗖	RUSH (only co	onfirmed if pre-ap	proved!)								4,	ANA	LYS	IS			
	e been previously analyzed by Alpha	Date Due):		Time:									/ ,	/ /		///			İ
Other Project Sp	pecific Requirements/Comr	nents:	T.C.	<i>a</i> \	20 4 6	= Tran	- s	-006	: (<i>)</i> ;	150	Chlari	de	//	/ /	/ ,	/ /				
X 514	pecific Requirements/Comme C specific list:	PCE,	1CE, (15-1,6	Dec	=, 1184.	J - 7, C		-, 0	,,, ,	- 1,41		0.15			?	0,			
	All C	olum	ıns E	elow	Mus	st Be	Fill	ed O	ut			A A	' /_ /		SAS	X E	i			
ALPHA Lab ID (Lab Use Only)	Sample ID	Date		End Time	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	I D Can	I D - Flow Controller	70.74A by	70.15	S HOW	FIXED GASES	104/17	Sample (Commer	ıts (i.e. F	'ID)
18041-01	EP3001	7/29/15	1430	1430	24"	8,,	SV	JWC	16	1926	_	>	ς				26 Siz	. spei	eithe 1	ঠ
702	EP3002	7/30/15	1300	1300	16"	5"	57	JWC	11	1503			(A Six			
-03	Ep3003	7/29/15	0150	0950	22"	3.5"	SV	TUC	12	1958		<u> </u>	Χ				A Six	sp.	eithe	lis
																			N	
													_							
	MAN .						<u> </u>													
*SAMPLE	E MATRIX CODES S	A = Ambien V = Soil Vap ther = Please	or/Landfill (**************************************			Co	ontainer	Туре							Please prin completely. logged in a	Samples	can not	be
		Relinquis	hed By:			e/Time		Recei	ved By:				Date/				clock will no guities are	ot start un	til any am	ıbi-
		rel			7/31/	15 1625 -1825	W.W	<u> </u>	Arc			3/19			-5		submitted a Terms and	are subjec	t to Alpha	
Form No: 101-02 (19-Jun-0	9) +49°1	-			מאוייונ	1843	Dell	سےلاک	بعلم		7	131/	(3	18	:25		See reverse			

ANALYTICAL REPORT

Lab Number: L1526552

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C PILOT TEST

Project Number: 2999.04 Report Date: 10/23/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: B330C PILOT TEST

Project Number: 2999.04 Lab Number: L1526552

Report Date: 10/23/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1526552-01	EP3004	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/14/15 12:05	10/19/15
L1526552-02	EP3005	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/15/15 09:30	10/19/15
L1526552-03	EP3006	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/14/15 16:20	10/19/15
L1526552-04	EP3007	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/13/15 16:55	10/19/15
L1526552-05	EP3008	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/13/15 13:30	10/19/15
L1526552-06	EP3009	SOIL_VAPOR	HOPEWELL JUNCTION, NY	10/14/15 08:50	10/19/15
L1526552-07	UNUSED CAN # 699	SOIL_VAPOR	HOPEWELL JUNCTION, NY		10/19/15
L1526552-08	UNUSED CAN # 1495	SOIL_VAPOR	HOPEWELL JUNCTION, NY		10/19/15

Serial_No:10231511:40

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	Please o	contact Client	Services at	800-624-9220	with any	questions.
--	----------	----------------	-------------	--------------	----------	------------

Serial_No:10231511:40

L1526552

Lab Number:

Project Name: B330C PILOT TEST

Project Number: 2999.04 Report Date: 10/23/15

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on October 8, 2015. The canister certification results are provided as an addendum.

Samlples L1526552-01 through -06: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

Samlples L1526552-02, -03, -05 and -06: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Samlple L1526552-04: The canister vacuum measured on receipt at the laboratory was > 15 in. Hg and a larger dilution resulted due to pressurization. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/23/15

Church January Christopher J. Anderson

AIR

Serial_No:10231511:40

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

SAMPLE RESULTS

Lab ID: L1526552-01 D Date Collected: 10/14/15 12:05

Client ID: EP3004 Date Received: 10/19/15

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/23/15 01:43

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	esults RL MD		Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Vinyl chloride	ND	0.584		ND	1.49			2.922
trans-1,2-Dichloroethene	ND	0.584		ND	2.32			2.922
cis-1,2-Dichloroethene	ND	0.584		ND	2.32			2.922
Trichloroethene	ND	0.584		ND	3.14			2.922
Tetrachloroethene	0.704	0.584		4.77	3.96			2.922

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	93		60-140

Serial_No:10231511:40

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

SAMPLE RESULTS

Lab ID: L1526552-02 D Date Collected: 10/15/15 09:30

Client ID: EP3005 Date Received: 10/19/15

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/23/15 03:11

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	RL MDL		s RL MDL		Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Vinyl chloride	ND	1.84		ND	4.70			9.198
trans-1,2-Dichloroethene	ND	1.84		ND	7.30			9.198
cis-1,2-Dichloroethene	ND	1.84		ND	7.30			9.198
Trichloroethene	113	1.84		607	9.89			9.198
Tetrachloroethene	790	1.84		5360	12.5			9.198

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	92		60-140

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

SAMPLE RESULTS

Lab ID: L1526552-03 D Date Collected: 10/14/15 16:20

Client ID: EP3006 Date Received: 10/19/15

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/23/15 03:55

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Vinyl chloride	ND	1.04		ND	2.66			5.193
trans-1,2-Dichloroethene	ND	1.04		ND	4.12			5.193
cis-1,2-Dichloroethene	ND	1.04		ND	4.12			5.193
Trichloroethene	451	1.04		2420	5.59			5.193
Tetrachloroethene	326	1.04		2210	7.05			5.193

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	91		60-140

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

SAMPLE RESULTS

Lab ID: L1526552-04 D Date Collected: 10/13/15 16:55

Client ID: EP3007 Date Received: 10/19/15

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/23/15 04:41

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Vinyl chloride	ND	1.32		ND	3.37			6.578
trans-1,2-Dichloroethene	ND	1.32		ND	5.23			6.578
cis-1,2-Dichloroethene	ND	1.32		ND	5.23			6.578
Trichloroethene	101	1.32		543	7.09			6.578
Tetrachloroethene	144	1.32		976	8.95			6.578

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

10/13/15 13:30

Not Specified

10/19/15

Date Collected:

Date Received:

Field Prep:

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

SAMPLE RESULTS

Lab ID: L1526552-05 D

Client ID: EP3008

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/23/15 05:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Vinyl chloride	ND	2.79		ND	7.13			13.96
trans-1,2-Dichloroethene	ND	2.79		ND	11.1			13.96
cis-1,2-Dichloroethene	ND	2.79		ND	11.1			13.96
Trichloroethene	70.7	2.79		380	15.0			13.96
Tetrachloroethene	1240	2.79		8410	18.9			13.96

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	91		60-140

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1526552

Report Date:

Date Collected:

Date Received:

Field Prep:

10/23/15

10/19/15

10/14/15 08:50

Not Specified

32.75

32.75

32.75

SAMPLE RESULTS

Lab ID: L1526552-06 D

Client ID: EF

EP3009

HOPEWELL JUNCTION, NY

Results

ND

ND

ND

50.7

2290

Matrix: Anaytical Method:

Sample Location:

Soil_Vapor 48,TO-15

Analytical Date:

10/23/15 06:06

Analyst:

Parameter

Vinyl chloride

Trichloroethene

Tetrachloroethene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

RY

Volatile Organics in Air - Mansfield Lab

ppbV			ug/m3			Dilution
RL	MDL	Results	RL	MDL	Qualifier	Factor
6.55		ND	16.7			32.75
6.55		ND	26.0			32.75

26.0

35.2

44.4

--

--

ND

272

15500

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	89		60-140

6.55

6.55

6.55

--

--

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-06 Batch	: WG83330	7-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: B330C PILOT TEST **Lab Number:** L1526552

Project Number: 2999.04 Report Date: 10/23/15

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	·06 Batch	n: WG83330	7-4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1

Project Name: B330C PILOT TEST **Lab Number:** L1526552

Project Number: 2999.04 Report Date: 10/23/15

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-06 Batch	: WG83330	7-4			
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
·	• • • •							•

Project Name: B330C PILOT TEST **Lab Number:** L1526552

Project Number: 2999.04 Report Date: 10/23/15

Method Blank Analysis Batch Quality Control

	ppbV				ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	06 Batcl	h: WG83330	7-4			
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 **Report Date:** 10/23/15

Method Blank Analysis Batch Quality Control

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	06 Batc	h: WG83330	7-4			
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number: L1526552

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG833307	-3				
Chlorodifluoromethane	85		-		70-130	-		
Propylene	97		-		70-130	-		
Propane	77		-		70-130	-		
Dichlorodifluoromethane	77		-		70-130	-		
Chloromethane	103		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	98		-		70-130	-		
Methanol	86		-		70-130	-		
Vinyl chloride	99		-		70-130	-		
1,3-Butadiene	102		-		70-130	-		
Butane	93		-		70-130	-		
Bromomethane	89		-		70-130	-		
Chloroethane	94		-		70-130	-		
Ethyl Alcohol	76		-		70-130	-		
Dichlorofluoromethane	90		-		70-130	-		
Vinyl bromide	89		-		70-130	-		
Acrolein	84		-		70-130	-		
Acetone	102		-		70-130	-		
Acetonitrile	94		-		70-130	-		
Trichlorofluoromethane	94		-		70-130	-		
iso-Propyl Alcohol	91		-		70-130	-		
Acrylonitrile	90		-		70-130	-		

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number:

L1526552

Report Date:

10/23/15

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-06	Batch: WG833307	-3				
Pentane	89		-		70-130	-		
Ethyl ether	87		-		70-130	-		
1,1-Dichloroethene	92		-		70-130	-		
tert-Butyl Alcohol	77		-		70-130	-		
Methylene chloride	93		-		70-130	-		
3-Chloropropene	97		-		70-130	-		
Carbon disulfide	84		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	79		-		70-130	-		
trans-1,2-Dichloroethene	78		-		70-130	-		
1,1-Dichloroethane	85		-		70-130	-		
Methyl tert butyl ether	76		-		70-130	-		
Vinyl acetate	112		-		70-130	-		
2-Butanone	94		-		70-130	-		
cis-1,2-Dichloroethene	103		-		70-130	-		
Ethyl Acetate	83		-		70-130	-		
Chloroform	83		-		70-130	-		
Tetrahydrofuran	88		-		70-130	-		
2,2-Dichloropropane	74		-		70-130	-		
1,2-Dichloroethane	84		-		70-130	-		
n-Hexane	117		-		70-130	-		
Isopropyl Ether	97		-		70-130	-		

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number: L1526552

arameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch:	WG833307	7-3				
Ethyl-Tert-Butyl-Ether	103			-		70-130	-		
1,1,1-Trichloroethane	104			-		70-130	-		
1,1-Dichloropropene	102			-		70-130	-		
Benzene	107			-		70-130	-		
Carbon tetrachloride	100			-		70-130	-		
Cyclohexane	115			-		70-130	-		
Tertiary-Amyl Methyl Ether	94			-		70-130	-		
Dibromomethane	99			-		70-130	-		
1,2-Dichloropropane	120			-		70-130	-		
Bromodichloromethane	110			-		70-130	-		
1,4-Dioxane	102			-		70-130	-		
Trichloroethene	98			-		70-130	-		
2,2,4-Trimethylpentane	120			-		70-130	-		
Methyl Methacrylate	119			-		70-130	-		
Heptane	125			-		70-130	-		
cis-1,3-Dichloropropene	117			-		70-130	-		
4-Methyl-2-pentanone	127			-		70-130	-		
trans-1,3-Dichloropropene	99			-		70-130	-		
1,1,2-Trichloroethane	109			-		70-130	-		
Toluene	87			-		70-130	-		
1,3-Dichloropropane	88			-		70-130	-		

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number: L1526552

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	associated sample(s):	01-06	Batch: WG8333	07-3				
2-Hexanone	110		-		70-130	-		
Dibromochloromethane	86		-		70-130	-		
1,2-Dibromoethane	90		-		70-130	-		
Butyl Acetate	85		-		70-130	-		
Octane	81		-		70-130	-		
Tetrachloroethene	80		-		70-130	-		
1,1,1,2-Tetrachloroethane	79		-		70-130	-		
Chlorobenzene	87		-		70-130	-		
Ethylbenzene	90		-		70-130	-		
p/m-Xylene	92		-		70-130	-		
Bromoform	85		-		70-130	-		
Styrene	89		-		70-130	-		
1,1,2,2-Tetrachloroethane	105		-		70-130	-		
o-Xylene	97		-		70-130	-		
1,2,3-Trichloropropane	90		-		70-130	-		
Nonane (C9)	100		-		70-130	-		
Isopropylbenzene	86		-		70-130	-		
Bromobenzene	90		-		70-130	-		
o-Chlorotoluene	82		-		70-130	-		
n-Propylbenzene	84		-		70-130	-		
p-Chlorotoluene	84		-		70-130	-		

Project Name: B330C PILOT TEST

Project Number: 2999.04

Lab Number: L1526552

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s):	01-06	Batch: WG833307	-3				
4-Ethyltoluene	87		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
tert-Butylbenzene	89		-		70-130	-		
1,2,4-Trimethylbenzene	100		-		70-130	-		
Decane (C10)	99		-		70-130	-		
Benzyl chloride	98		-		70-130	-		
1,3-Dichlorobenzene	93		-		70-130	-		
1,4-Dichlorobenzene	92		-		70-130	-		
sec-Butylbenzene	90		-		70-130	-		
p-Isopropyltoluene	82		-		70-130	-		
1,2-Dichlorobenzene	91		-		70-130	-		
n-Butylbenzene	95		-		70-130	-		
1,2-Dibromo-3-chloropropane	91		-		70-130	-		
Undecane	103		-		70-130	-		
Dodecane (C12)	113		-		70-130	-		
1,2,4-Trichlorobenzene	91		-		70-130	-		
Naphthalene	93		-		70-130	-		
1,2,3-Trichlorobenzene	86		-		70-130	-		
Hexachlorobutadiene	90		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

B330C PILOT TEST Batch Quality Co

Lab Number: L1

L1526552

Project Number: 2999.04

Project Name:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG833307-5	QC Sample:	L1526552-01	Client ID:	EP3004
Vinyl chloride	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
Trichloroethene	ND	ND	ppbV	NC		25
Tetrachloroethene	0.704	0.637	ppbV	10		25

Lab Number: L1526552

Report Date: 10/23/15

Project Number: 2999.04

B330C PILOT TEST

Project Name:

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out	Flow In mL/min	% RPD
L1526552-01	EP3004	734	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-8.4	-	-	-	
L1526552-02	EP3005	721	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-6.9	-	-	-	-
L1526552-03	EP3006	676	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-5.7	-	-	-	-
L1526552-04	EP3007	674	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-21.5	-	-	-	-
L1526552-05	EP3008	820	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-7.5	-	-	-	
L1526552-06	EP3009	837	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-11.6	-	-	-	
L1526552-07	UNUSED CAN # 699	699	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-29.4	-	-	-	
L1526552-08	UNUSED CAN # 1495	1495	1.0L Can	10/08/15	210660	L1524620-01	Pass	-29.7	-29.4	-	-	-	-

L1524620

09/30/15 16:00

Not Specified

Lab Number:

Date Collected:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Client ID: CAN 2084 SHELF 16 Date Received: 10/01/15

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 10/02/15 19:53

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1524620

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Date Collected: 09/30/15 16:00 Client ID: **CAN 2084 SHELF 16** Date Received: 10/01/15

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1524620

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Date Collected: 09/30/15 16:00 Client ID: **CAN 2084 SHELF 16** Date Received: 10/01/15

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
etrachloroethene	ND	0.200		ND	1.36			1
,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

L1524620

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Client ID: CAN 2084 SHELF 16

Sample Location:

Date Collected: 09/30/15 16:00

Date Received: 10/01/15

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.500		ND	3.48			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1524620

Project Number: CANISTER QC BAT **Report Date:** 10/23/15

Air Canister Certification Results

MDL

Lab ID: L1524620-01

Client ID: **CAN 2084 SHELF 16**

Sample Location:

Date Collected:

09/30/15 16:00

Date Received:

10/01/15

Field Prep:

ppbV

ug/m3

RL

Not Specified

Parameter Results RL

Results

MDL Qualifier Dilution Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	95		60-140

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

Date Collected:

Date Received:

Field Prep:

L1524620

09/30/15 16:00

Not Specified

10/01/15

Project Number: CANISTER QC BAT

Report Date: 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Client ID: CAN 2084 SHELF 16

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 10/02/15 19:53

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1524620

09/30/15 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Client ID: CAN 2084 SHELF 16 Date Received: 10/01/15

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number: L18

L1524620

Report Date: 10/23/15

Air Canister Certification Results

Lab ID: L1524620-01

Client ID: CAN 2084 SHELF 16

Sample Location:

Date Collected:

09/30/15 16:00

Date Received:

10/01/15

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	/lansfield Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	103		60-140
chlorobenzene-d5	101		60-140

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1526552-01A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1526552-02A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1526552-03A	Canister - 1 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1526552-04A	Canister - 1 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1526552-05A	Canister - 1 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1526552-06A	Canister - 1 Liter	N/A	N/A		Υ	Absent	TO15-LL(30)
L1526552-07A	Canister - 1 Liter	N/A	N/A		Υ	Absent	CLEAN-FEE()
L1526552-08A	Canister - 1 Liter	N/A	N/A		Υ	Absent	CLEAN-FEE()

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TIC

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name:B330C PILOT TESTLab Number:L1526552Project Number:2999.04Report Date:10/23/15

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: B330C PILOT TEST Lab Number: L1526552

Project Number: 2999.04 Report Date: 10/23/15

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 2

Published Date: 9/28/2015 10:34:24 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide) (soil), Methyl methacrylate (soil),

Azobenzene.

EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Walia .	AIR AI	VALY	SIS	PA	AGE	OF_	Date R	tec'd in La	p: /c	120	115		AL	.PH <i>F</i>	\ Job	#: L (SZ	655Z
320 Forbes Blvd, M	•	Project	Informat	ion			Repo	rt Inform	ation -	Data [elivera	bles	Bi	lling	Infor	mation	
	FAX: 508-822-3288	Project Na	ame: B3	30C	Pilot 1	rest	□ FA	X					Χs	ame	as Clie	ent info PO#	<i>t</i> :
Client Information	n			topewell			X AD	Ex Criteria Ch	ockor								
Client: Sanborn	Head + Associates		299			- ,,,, (c		(Default base	ed on Reg	ulatory Crit	eria Indicate	ed)					
	ehnology Park Dr	Project M	anager:	S'. Suos	•		1 .	Other Form IAIL (stand	_	report)			Re	gula	itory	Requiremen	ts/Report Limits
Westford, N	1A 01886	ALPHA C	luote #:				☐ Ad	ditional De	liverable	es:			Sta	te/Fe	d	Program	Criteria
Phone: 978-	392-0900	Turn-A	round Tir	me			Repor	t to: (if differer	t than Proje	ct Manager)					-		
Fax:		Standa	rd [RUSH (only o													
Email: SSaos	@ Sanbumhead.com	Standa	u u	I I COSI I (only t	сопитеа и рге-а	(pproveal)		_			-			Α	NAL	rsis .	
<u> </u>	ve been previously analyzed by Alpha	Date Due):	71.	Time:		<u> </u>							/ /		/ / / /	
Other Project S	pecific Requirements/Com pecific list: PCE, T	ments:	. 12 5	OCE A		7 - DCE	1 lins	1 chl	ırı).				/	/,	/ /		
- Size Sp	reent 1137: FCE, 1	CE, CI	5-1,2-	DUE, YY	oms - 1	C-DCE	, ((1))	,, , , ,	" I QE			Á	3/	/	ES	0	
	All C	olum	ıns E	Belov	/ Mu	st Be	• Fill	ed C	ut			4 by			GAS,	, /o /	
ALPHA Lab ID (Lab Use Only)	Sample ID	Dete		>1.1ecti End Time	Initial	Final	Sample Matrix*	Sampler's	Can Size	ID	I D - Flow	0.14	(2) (5) (2) (5) (2) (5)		70.13 10.13	Sample C	omments (i.e. PID)
26552 -01	EP3004	, ,	1205			-5	SV	TWC		734	I D - Flow Controller	×	1				specific lis
~07	EP 3005	 	0930		-24	-7	1	1	1	721		×					1
~03	Er 3006		1620		1	-6		11-		676	_		+-+				
104	EP 3007	-/-/	1655	 	-24	-5				674	_	/	+-+		++		
~05	EP3008	10/13/15		1330	-22	-6				0820	_		,	-	++		
-06				0850	-17	-4	1	1	1	837	_	×					1
															$\perp \downarrow$		
														_	$+ \downarrow$		
*SAMPLI	E MATRIX CODES s	A = Ambien V = Soil Var ther = Please	or/Landfill		1 mm min M6			\ C	ontaine	r Type						completely.	clearly, legibly and Samples can not be d turnaround time
		Relinqui	shed By:		Dat	te/Time		Flece	iyed By	:			Date/T			clock will not	start until any ambi- esolved. All samples
					10/19	/15 10ZG		JAN 46	14	4c	[0]	9/17	<u>,'</u>	24			e subject to Alpha's
Form No: 3191-02 (39-Jun-0	09)			(L)/	10/20	IK OYW		K B	AL.	- d		0/19	115 [165	140 040	0.	See reverse	side.

ANALYTICAL REPORT

Lab Number: L1604301

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C
Project Number: 2999.04
Report Date: 02/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: B330C Project Number: 2999.04 **Lab Number:** L1604301 **Report Date:** 02/22/16

Alpha Sample ID Client ID Matrix Soll_VAPOR HOPEWELL JUNCTION, NY

Collection
Date/Time Receive Date

HOPEWELL JUNCTION, NY 02/15/16 16:30 02/17/16

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220) with a	יער	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02-7 02-20	, with a	ıy c	_f ucstions.

Serial_No:02221616:22

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 12, 2016. The canister certification results are provided as an addendum.

Sample L1604301-01: Prior to sample analysis, the canister was pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/22/16

Outpl Christopher J. Anderson

AIR

02/15/16 16:30

Not Specified

02/17/16

Date Collected:

Date Received:

Field Prep:

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

SAMPLE RESULTS

Lab ID: L1604301-01 D

Client ID: EP3010

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 02/21/16 01:34

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Vinyl chloride	ND	0.485		ND	1.24			2.426
trans-1,2-Dichloroethene	ND	0.485		ND	1.92			2.426
cis-1,2-Dichloroethene	ND	0.485		ND	1.92			2.426
Trichloroethene	ND	0.485		ND	2.61			2.426
Tetrachloroethene	31.0	0.485		210	3.29			2.426

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	95		60-140

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/20/16 13:27

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG866999-4				
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/20/16 13:27

Parameter Volatile Organics in Air - Mansfield Methylene chloride	Results Lab for samp	` ,	MDL Batch:	Results	RL	MDL	Qualifier	Factor
-		` ,	Batch:	11/0000000 /				
Methylene chloride	ND			WG866999-4				
•		0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/20/16 13:27

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG866999-4				
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Name: Lab Number: B330C L1604301 Project Number: 2999.04

Report Date: 02/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/20/16 13:27

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01	Batch:	WG866999-4				
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: B330C Lab Number: L1604301

Project Number: 2999.04 Report Date: 02/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 02/20/16 13:27

		ppbV		ι	ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b for samp	ole(s): 01	Batch:	WG866999-4				
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C **Project Number:** 2999.04

Lab Number:

L1604301

Report Date:

02/22/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Ba	atch: WG866999-3					
Chlorodifluoromethane	92		-		70-130	-		
Propylene	100		-		70-130	-		
Propane	75		-		70-130	-		
Dichlorodifluoromethane	74		-		70-130	-		
Chloromethane	84		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	93		-		70-130	-		
Methanol	73		-		70-130	-		
Vinyl chloride	90		-		70-130	-		
1,3-Butadiene	88		-		70-130	-		
Butane	76		-		70-130	-		
Bromomethane	94		-		70-130	-		
Chloroethane	83		-		70-130	-		
Ethyl Alcohol	85		-		70-130	-		
Dichlorofluoromethane	90		-		70-130	-		
Vinyl bromide	95		-		70-130	-		
Acrolein	83		-		70-130	-		
Acetone	90		-		70-130	-		
Acetonitrile	74		-		70-130	-		
Trichlorofluoromethane	106		-		70-130	-		
iso-Propyl Alcohol	94		-		70-130	-		
Acrylonitrile	82		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C
Project Number: 2999.04

Lab Number: L1604301

Report Date: 02/22/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01 Batch	: WG866999-3					
Pentane	76		-		70-130	-		
Ethyl ether	79		-		70-130	-		
1,1-Dichloroethene	95		-		70-130	-		
tert-Butyl Alcohol	89		-		70-130	-		
Methylene chloride	91		-		70-130	-		
3-Chloropropene	87		-		70-130	-		
Carbon disulfide	85		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	92		-		70-130	-		
trans-1,2-Dichloroethene	81		-		70-130	-		
1,1-Dichloroethane	88		-		70-130	-		
Methyl tert butyl ether	88		-		70-130	-		
Vinyl acetate	92		-		70-130	-		
2-Butanone	83		-		70-130	-		
cis-1,2-Dichloroethene	109		-		70-130	-		
Ethyl Acetate	115		-		70-130	-		
Chloroform	110		-		70-130	-		
Tetrahydrofuran	90		-		70-130	-		
2,2-Dichloropropane	98		-		70-130	-		
1,2-Dichloroethane	107		-		70-130	-		
n-Hexane	87		-		70-130	-		
Isopropyl Ether	87		-		70-130	-		

02/22/16

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C
Project Number: 2999.04

Lab Number: L1604301

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asse	ociated sample(s)	: 01 Batch	: WG866999-3					
Ethyl-Tert-Butyl-Ether	82		-		70-130	-		
1,1,1-Trichloroethane	100		-		70-130	-		
1,1-Dichloropropene	90		-		70-130	-		
Benzene	90		-		70-130	-		
Carbon tetrachloride	106		-		70-130	-		
Cyclohexane	88		-		70-130	-		
Tertiary-Amyl Methyl Ether	81		-		70-130	-		
Dibromomethane	98		-		70-130	-		
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	100		-		70-130	-		
1,4-Dioxane	97		-		70-130	-		
Trichloroethene	103		-		70-130	-		
2,2,4-Trimethylpentane	90		-		70-130	-		
Methyl Methacrylate	88		-		70-130	-		
Heptane	85		-		70-130	-		
cis-1,3-Dichloropropene	99		-		70-130	-		
4-Methyl-2-pentanone	93		-		70-130	-		
trans-1,3-Dichloropropene	92		-		70-130	-		
1,1,2-Trichloroethane	101		-		70-130	-		
Toluene	97		-		70-130	-		
1,3-Dichloropropane	92		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C
Project Number: 2999.04

Lab Number: L1604301

Report Date: 02/22/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Batch	: WG866999-3					
2-Hexanone	97		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	103		-		70-130	-		
Butyl Acetate	94		-		70-130	-		
Octane	88		-		70-130	-		
Tetrachloroethene	103		-		70-130	-		
1,1,1,2-Tetrachloroethane	98		-		70-130	-		
Chlorobenzene	99		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	100		-		70-130	-		
Bromoform	115		-		70-130	-		
Styrene	101		-		70-130	-		
1,1,2,2-Tetrachloroethane	104		-		70-130	-		
o-Xylene	105		-		70-130	-		
1,2,3-Trichloropropane	93		-		70-130	-		
Nonane (C9)	86		-		70-130	-		
Isopropylbenzene	99		-		70-130	-		
Bromobenzene	94		-		70-130	-		
o-Chlorotoluene	98		-		70-130	-		
n-Propylbenzene	97		-		70-130	-		
p-Chlorotoluene	92		-		70-130	-		

L1604301

02/22/16

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C

Lab Number:

Report Date:

Project Number: 2999.04

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01 Batc	h: WG866999-3					
4-Ethyltoluene	101		-		70-130	-		
1,3,5-Trimethylbenzene	103		-		70-130	-		
tert-Butylbenzene	100		-		70-130	-		
1,2,4-Trimethylbenzene	107		-		70-130	-		
Decane (C10)	94		-		70-130	-		
Benzyl chloride	113		-		70-130	-		
1,3-Dichlorobenzene	113		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		
sec-Butylbenzene	100		-		70-130	-		
p-Isopropyltoluene	93		-		70-130	-		
1,2-Dichlorobenzene	113		-		70-130	-		
n-Butylbenzene	103		-		70-130	-		
1,2-Dibromo-3-chloropropane	100		-		70-130	-		
Undecane	102		-		70-130	-		
Dodecane (C12)	116		-		70-130	-		
1,2,4-Trichlorobenzene	132	Q	-		70-130	-		
Naphthalene	118		-		70-130	-		
1,2,3-Trichlorobenzene	123		-		70-130	-		
Hexachlorobutadiene	131	Q	-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: B330C **Project Number:** 2999.04 Lab Number: L1604301

02/22/16 Report Date:

arameter	Native Sample	e Duplicate Sample	Units	RPD	RPD Qual Limits	
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG866999-5	QC Sample:	L1604447-01	Client ID: DUP Sample	
Dichlorodifluoromethane	0.483	0.374	ppbV	25	25	
Chloromethane	0.543	0.540	ppbV	1	25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethyl Alcohol	65.8	66.8	ppbV	2	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	4.98	4.03	ppbV	21	25	
Trichlorofluoromethane	0.298	0.284	ppbV	5	25	
iso-Propyl Alcohol	4.83	4.74	ppbV	2	25	
tert-Butyl Alcohol	ND	ND	ppbV	NC	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	ND	ND	ppbV	NC	25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: B330C Project Number: 2999.04 **Lab Number:** L1604301 **Report Date:** 02/22/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ciated sample(s): 01 QC B	atch ID: WG866999-5	QC Sample:	L1604447-01	Client ID: DUP Sample
2-Butanone	1.87	2.01	ppbV	7	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	0.228	0.202	ppbV	12	25
Benzene	0.251	0.261	ppbV	4	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	0.236	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.642	0.659	ppbV	3	25
2-Hexanone	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: B330C Project Number: 2999.04 Lab Number: L1604301

02/22/16 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
platile Organics in Air - Mansfield Lab Assoc	iated sample(s): 01 QC E	Batch ID: WG866999-5	QC Sample:	L1604447-01	Client ID: DUP Sample
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.251	0.231	ppbV	8	25
p/m-Xylene	0.682	0.682	ppbV	0	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.241	0.226	ppbV	6	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	0.391	0.380	ppbV	3	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Project Name: B330C Lab Number: L1604301

Project Number: 2999.04 Report Date: 02/22/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L1604301-01	EP3010	1498	1.0L Can	02/12/16	217018	L1602994-02	Pass	-29.1	-4.2	-	-	-	-

L1602994

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

Matrix: Air Anaytical Method: 48,TO-15

Analytical Date: 02/04/16 17:57

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1602994

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1602994

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

L1602994

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Report Date: 02/22/16

Lab Number:

Air Canister Certification Results

Date Collected: Lab ID: L1602994-02 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified ppbV ug/m3

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-IsopropyItoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1602994

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	98		60-140

L1602994

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 02/04/16 17:57

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1602994

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected: 02/03/16 16:00

Client ID: CAN 731 SHELF 8 Date Received: 02/04/16

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

L1602994

Project Number: CANISTER QC BAT **Report Date:** 02/22/16

Air Canister Certification Results

Lab ID: L1602994-02 Date Collected:

02/03/16 16:00

Client ID: CAN 731 SHELF 8

Date Received:

02/04/16

Field Prep: Sample Location:

Not Specified

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ansfield Lab							
ND	0.200		ND	1.10			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.262			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.533			1
	ansfield Lab ND ND ND ND ND	Results RL ansfield Lab ND 0.200 ND 0.050 ND 0.050 ND 0.050 ND 0.050	Results RL MDL ansfield Lab ND 0.200 ND 0.050 ND 0.050 ND 0.050	Results RL MDL Results ansfield Lab ND 0.200 ND ND 0.050 ND ND 0.050 ND ND 0.050 ND	Results RL MDL Results RL ansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Results RL MDL Results RL MDL ansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Results RL MDL Results RL MDL Qualifier ansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	99		60-140		
bromochloromethane	97		60-140		
chlorobenzene-d5	100		60-140		

Project Name: Lab Number: L1604301 B330C

Project Number: 2999.04 **Report Date:** 02/22/16

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Absent

Container Information Temp deg C Pres Seal **Container ID Container Type** Analysis(*) Cooler рΗ L1604301-01A Canister - 1 Liter N/A N/A TO15-LL(30) N/A Υ Absent

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

GLOSSARY

Acronyms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 B330C
 Lab Number:
 L1604301

 Project Number:
 2999.04
 Report Date:
 02/22/16

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 6

Page 1 of 1

Published Date: 2/3/2016 10:23:10 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

		ANALYS	IS PA	AGEOF	- Date R	tec'd in La	ab: a	2/18/10	0	ALPH	IA Job	#: U6(9 4301
320 Forbes Blvd. M	CHAIN OF CUSTOD lansfield, MA 02048	Project Info	ormation		Repo	rt Inform	ation -	Data De	eliverables	Billin	g Inforr	nation	
) FAX: 508-822-3288	Project Name	13330 C		□ FA:	X				Sam	e as Clie	nt info PO#	:
Client Information	on	Project Locati	on: Agrewell	Juncaion, M	ŞX AD	Ex Criteria Ch	ecker:						
1	m Head	Project #:	2999,04	•		(Default bas	ed on Regu	ılatory Criter	ia Indicated)			COLUMN TO COLUMN	
Address: / Te	ichnology Part [Project Manag	ger: 5 . Su	05	1	Other Forr IAIL (stand		report)		Regu	latory F	Requiremen	ts/Report Limits
Westford,	MA 0188C	ALPHA Quote	e #:		☐ Add	ditional De	liverable	s:		State/Fed Program Res / Cor			
Phone: 978-	392-0100	Turn-Arou	nd Time		Repor	t to: (if differe	nt than Projec	t Manager)	The second secon				
Fax:		⊠ Standard	п впец.						· · · · · · · · · · · · · · · · · · ·			. ,	
Email: \$500\$	@ sounbornhead, com	SI Standard	□ RUSH (only o	confirmed if pre-approved!)							ANALY	'SIS	
	ve been previously analyzed by Al	Date Due:		Time:			-	_	(0)	III		15	
	Specific Requirements/Co	omments:	n East RS	SHI SIKSP PCE, TCE, I	pecific	, lisa	A	VOCs	(5)	/ / /,	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
Project-Specific	Target Compound List:	× 2.41	i Zazo i E	PUE, TCE, I	2-cis	DUE,	1,2-7n	ans DOE	[, vc] /	(a) the little of the little o	aptens	/ / /	
		All Colu	mns Bel	ow Must	Be	Fille	d O	ut		SIM.	sase & Merc		
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date Sta	COLLECTIO	N Initia Final Vacuum _: Vacuum	Sample Matrix*	Sampler' Initials	s Can Size	1	ID-Flow Controller	APH Subracy	Suffices & Mercapians by 75	/ /Sample C	omments (i.e. PID)
4301.01	EP3010	2/15/10 10	630 1630	-30 -5	SV	JWC	14	1498	- x		1	Six Si	pecific list
	Notes that the second s		1 - APP-181 St. (1811A1A1) 11 - PAR-19-19-19 St. (1811A1A1)									· · · · · · · · · · · · · · · · · · ·	
		-								1		*	
			· NAME - CANADA			***************************************		The state of the s					
		Transfer and the second		Annual physical physi								1	
		and the second s	A CANADA AND A CAN								4		AND THE PERSON NAMED IN COLUMN TO A STATE OF THE PERSON NAMED IN COLUMN TO A S
						1							
			n munusus									THE RESERVE TO SERVE THE PARTY OF THE PARTY	* I IA-1800
										:			· · · · · · · · · · · · · · · · · · ·
A		AA = Ambient Air	(Indoor/Outdoor)			·							****
*SAMPL	E MATRIX CODES	SV = Soil Vapor/L Other = Please Spe	andfill Gas/SVE			(Containe	r Type	(5		4		clearly, legibly and Samples can not be
		Relinquished		Date/Time		Rece	eived By:	<u>i</u>		ate/Time	:	logged in and clock will not	d turnaround time start until any ambi-
	4	all.		2/7/16: 1200		4.		sh	- 2/17/		' 3	submitted are	solved. All samples e subject to Alpha's
	2		MUNICIPAL	8/7/1, 1510		My	yyy	\mathcal{L}	7 2/47	16 15	10	Terms and C	
Form No: 101-02 Rev: (25	1-3ep-10]	Ar -		2/18/16 0100	I N	10115012	mo	5	10110	vyu			

ANALYTICAL REPORT

Lab Number: L1607836

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C
Project Number: 2999.04
Report Date: 03/23/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

L1607836

03/23/16

Project Name:B330CLab Number:Project Number:2999.04Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1607836-01	EP3012	SOIL_VAPOR	HOPEWELL JUNCTION, NY	03/16/16 16:23	03/17/16
L1607836-02	EP3011	SOIL_VAPOR	HOPEWELL JUNCTION, NY	03/16/16 14:38	03/17/16
L1607836-03	EP3015	SOIL_VAPOR	HOPEWELL JUNCTION, NY	03/16/16 11:52	03/17/16
L1607836-04	EP3014	SOIL_VAPOR	HOPEWELL JUNCTION, NY	03/16/16 10:25	03/17/16

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.
--

Serial_No:03231615:48

 Project Name:
 B330C
 Lab Number:
 L1607836

 Project Number:
 2999.04
 Report Date:
 03/23/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 15, 2016. The canister certification results are provided as an addendum.

Samples L1607836-01 through -04: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Samples L1607836-01 through -04: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/23/16

Church January Christopher J. Anderson

ALPHA

AIR

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

SAMPLE RESULTS

Lab ID: L1607836-01 D Date Collected: 03/16/16 16:23

Client ID: EP3012 Date Received: 03/17/16

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/23/16 06:15

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Vinyl chloride	ND	185.		ND	473			923.9
trans-1,2-Dichloroethene	ND	185.		ND	733			923.9
cis-1,2-Dichloroethene	ND	185.		ND	733			923.9
Trichloroethene	587	185		3150	994			923.9
Tetrachloroethene	34600	185		235000	1250			923.9

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

SAMPLE RESULTS

Lab ID: L1607836-02 D Date Collected: 03/16/16 14:38

Client ID: EP3011 Date Received: 03/17/16

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/23/16 06:49

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Vinyl chloride	ND	10.1		ND	25.8			50.7
trans-1,2-Dichloroethene	ND	10.1		ND	40.0			50.7
cis-1,2-Dichloroethene	ND	10.1		ND	40.0			50.7
Trichloroethene	819	10.1		4400	54.3			50.7
Tetrachloroethene	3030	10.1		20500	68.5			50.7

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	99		60-140

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

SAMPLE RESULTS

Lab ID: L1607836-03 D Date Collected: 03/16/16 11:52

Client ID: EP3015 Date Received: 03/17/16

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/23/16 07:20

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Vinyl chloride	ND	23.0		ND	58.8			114.8
trans-1,2-Dichloroethene	ND	23.0		ND	91.2			114.8
cis-1,2-Dichloroethene	ND	23.0		ND	91.2			114.8
Trichloroethene	31.6	23.0		170	124			114.8
Tetrachloroethene	4540	23.0		30800	156			114.8

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	98		60-140

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

SAMPLE RESULTS

Lab ID: L1607836-04 D Date Collected: 03/16/16 10:25

Client ID: EP3014 Date Received: 03/17/16

Sample Location: HOPEWELL JUNCTION, NY Field Prep: Not Specified

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/23/16 09:11

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Vinyl chloride	ND	65.6		ND	168			328.1
trans-1,2-Dichloroethene	ND	65.6		ND	260			328.1
cis-1,2-Dichloroethene	ND	65.6		ND	260			328.1
Trichloroethene	ND	65.6		ND	353			328.1
Tetrachloroethene	19600	65.6		133000	445			328.1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-04 Batch	: WG87639	2-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	-04 Batch	: WG87639	2-4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
Dibromomethane	ND	0.200		ND	1.42			

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	le(s): 01-	04 Batch:	WG87639	2-4			
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01	-04 Batch	n: WG87639	2-4			
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 01-	04 Batc	h: WG87639	2-4			
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: B330C
Project Number: 2999.04

Lab Number: L1607836

Report Date: 03/23/16

arameter	LCS %Recovery	Qual	LCS %Reco		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04	Batch: WG	876392-3				
Chlorodifluoromethane	86		-		70-130	-		
Propylene	90		-		70-130	-		
Propane	93		-		70-130	-		
Dichlorodifluoromethane	111		-		70-130	-		
Chloromethane	109		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	118		-		70-130	-		
Methanol	116		-		70-130	-		
Vinyl chloride	112		-		70-130	-		
1,3-Butadiene	117		-		70-130	-		
Butane	104		-		70-130	-		
Bromomethane	120		-		70-130	-		
Chloroethane	104		-		70-130	-		
Ethyl Alcohol	116		-		70-130	-		
Dichlorofluoromethane	102		-		70-130	-		
Vinyl bromide	113		-		70-130	-		
Acrolein	88		-		70-130	-		
Acetone	113		-		70-130	-		
Acetonitrile	103		-		70-130	-		
Trichlorofluoromethane	128		-		70-130	-		
iso-Propyl Alcohol	112		-		70-130	-		
Acrylonitrile	97		-		70-130	-		

Project Name: B330C
Project Number: 2999.04

Lab Number: L1607836

Report Date: 03/23/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-04	Batch: WG876392-	-3				
Pentane	101		-		70-130	-		
Ethyl ether	110		-		70-130	-		
1,1-Dichloroethene	112		-		70-130	-		
tert-Butyl Alcohol	104		-		70-130	-		
Methylene chloride	118		-		70-130	-		
3-Chloropropene	116		-		70-130	-		
Carbon disulfide	108		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	115		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	96		-		70-130	-		
Methyl tert butyl ether	93		-		70-130	-		
Vinyl acetate	104		-		70-130	-		
2-Butanone	94		-		70-130	-		
cis-1,2-Dichloroethene	101		-		70-130	-		
Ethyl Acetate	86		-		70-130	-		
Chloroform	102		-		70-130	-		
Tetrahydrofuran	83		-		70-130	-		
2,2-Dichloropropane	89		-		70-130	-		
1,2-Dichloroethane	102		-		70-130	-		
n-Hexane	84		-		70-130	-		
Isopropyl Ether	82		-		70-130	-		

Project Name: B330C
Project Number: 2999.04

·

Lab Number: L1607836

Report Date: 03/23/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01-04	Batch: WG876392	-3				
Ethyl-Tert-Butyl-Ether	77		-		70-130	-		
1,1,1-Trichloroethane	103		-		70-130	-		
1,1-Dichloropropene	84		-		70-130	-		
Benzene	87		-		70-130	-		
Carbon tetrachloride	110		-		70-130	-		
Cyclohexane	80		-		70-130	-		
Tertiary-Amyl Methyl Ether	77		-		70-130	-		
Dibromomethane	93		-		70-130	-		
1,2-Dichloropropane	88		-		70-130	-		
Bromodichloromethane	100		-		70-130	-		
1,4-Dioxane	90		-		70-130	-		
Trichloroethene	100		-		70-130	-		
2,2,4-Trimethylpentane	86		-		70-130	-		
Methyl Methacrylate	79		-		70-130	-		
Heptane	83		-		70-130	-		
cis-1,3-Dichloropropene	93		-		70-130	-		
4-Methyl-2-pentanone	92		-		70-130	-		
trans-1,3-Dichloropropene	85		-		70-130	-		
1,1,2-Trichloroethane	97		-		70-130	-		
Toluene	91		-		70-130	-		
1,3-Dichloropropane	91		-		70-130	-		

Project Name: B330C Project Number: 2999.04 Lab Number:

L1607836

Report Date:

03/23/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-04	Batch: WG876392	-3					
2-Hexanone	100		-		70-130	-			
Dibromochloromethane	115		-		70-130	-			
1,2-Dibromoethane	106		-		70-130	-			
Butyl Acetate	86		-		70-130	-			
Octane	84		-		70-130	-			
Tetrachloroethene	115		-		70-130	-			
1,1,1,2-Tetrachloroethane	103		-		70-130	-			
Chlorobenzene	105		-		70-130	-			
Ethylbenzene	97		-		70-130	-			
p/m-Xylene	100		-		70-130	-			
Bromoform	126		-		70-130	-			
Styrene	103		-		70-130	-			
1,1,2,2-Tetrachloroethane	106		-		70-130	-			
o-Xylene	103		-		70-130	-			
1,2,3-Trichloropropane	93		-		70-130	-			
Nonane (C9)	85		-		70-130	-			
Isopropylbenzene	100		-		70-130	-			
Bromobenzene	90		-		70-130	-			
o-Chlorotoluene	105		-		70-130	-			
n-Propylbenzene	105		-		70-130	-			
p-Chlorotoluene	95		-		70-130	-			

Project Name: B330C Project Number: 2999.04 Lab Number:

L1607836

Report Date:

03/23/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04	Batch: WG87639	2-3				
4-Ethyltoluene	102		-		70-130	-		
1,3,5-Trimethylbenzene	104		-		70-130	-		
tert-Butylbenzene	108		-		70-130	-		
1,2,4-Trimethylbenzene	113		-		70-130	-		
Decane (C10)	86		-		70-130	-		
Benzyl chloride	107		-		70-130	-		
1,3-Dichlorobenzene	123		-		70-130	-		
1,4-Dichlorobenzene	120		-		70-130	-		
sec-Butylbenzene	103		-		70-130	-		
p-Isopropyltoluene	98		-		70-130	-		
1,2-Dichlorobenzene	119		-		70-130	-		
n-Butylbenzene	102		-		70-130	-		
1,2-Dibromo-3-chloropropane	98		-		70-130	-		
Undecane	91		-		70-130	-		
Dodecane (C12)	98		-		70-130	-		
1,2,4-Trichlorobenzene	136	Q	-		70-130	-		
Naphthalene	113		-		70-130	-		
1,2,3-Trichlorobenzene	124		-		70-130	-		
Hexachlorobutadiene	141	Q	-		70-130	-		

L1607836

Lab Duplicate Analysis Batch Quality Control

Project Name: B330C
Project Number: 2999.04

Quality Control Lab Number:

Report Date: 03/23/16

RPD Parameter Native Sample Duplicate Sample Units **RPD** Qual Limits Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 QC Batch ID: WG876392-5 QC Sample: L1607836-03 Client ID: EP3015 Vinyl chloride ND NC ND ppbV 25 ppbV NC trans-1,2-Dichloroethene ND ND 25 cis-1,2-Dichloroethene ND ND ppbV NC 25 Trichloroethene 31.6 29.2 ppbV 8 25 4540 ppbV 2 25 Tetrachloroethene 4640

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)		Flow Out mL/min	Flow In mL/min	% RPD
L1607836-01	EP3012	848	1.0L Can	03/15/16	218771	L1606987-02	Pass	-29.9	-7.2	-	-	-	-
L1607836-02	EP3011	1508	1.0L Can	03/15/16	218771	L1606987-02	Pass	-29.9	-4.7	-	-	-	-
L1607836-03	EP3015	2148	1.0L Can	03/15/16	218771	L1606987-02	Pass	-30.0	-7.8	-	-	-	-
L1607836-04	EP3014	837	1.0L Can	03/15/16	218771	L1606987-02	Pass	-30.0	-5.5	-	-	-	

L1606987

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Date Collected: 03/10/16 16:00 Client ID: Date Received: 03/11/16 CAN 2147 SHELF 13

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/11/16 14:51

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1606987

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Date Collected: 03/10/16 16:00 Client ID: CAN 2147 SHELF 13 Date Received: 03/11/16

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1

L1606987

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Date Collected: 03/10/16 16:00 Client ID: CAN 2147 SHELF 13 Date Received: 03/11/16

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1606987

Report Date: 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

CAN 2147 SHELF 13

Sample Location:

Client ID:

Date Collected:

03/10/16 16:00

Date Received:

03/11/16

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lal)							
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1606987

Project Number: CANISTER QC BAT **Report Date:** 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Client ID: CAN 2147 SHELF 13

Sample Location:

03/10/16 16:00

Date Received:

03/11/16

Field Prep:

Date Collected:

Not Specified

ppbV ug/m3 Dilution Factor Results RLMDL Qualifier **Parameter** Results RLMDL

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	83		60-140

L1606987

03/10/16 16:00

Not Specified

Lab Number:

Date Collected:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Client ID: CAN 2147 SHELF 13 Date Received: 03/11/16

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/11/16 14:51

Analyst: RY

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1606987

03/10/16 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Client ID: CAN 2147 SHELF 13 Date Received: 03/11/16

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1606987

Report Date: 03/23/16

Air Canister Certification Results

Lab ID: L1606987-02

Client ID: CAN 2147 SHELF 13

Sample Location:

Date Collected:

03/10/16 16:00

Date Received:

03/11/16

Field Prep:

Not Specified

	ppbV				ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	110		60-140
chlorobenzene-d5	83		60-140

Project Name: **Lab Number:** L1607836 B330C

Report Date: 03/23/16 Project Number: 2999.04

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1607836-01A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1607836-02A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1607836-03A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1607836-04A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

GLOSSARY

Acronyms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name:B330CLab Number:L1607836Project Number:2999.04Report Date:03/23/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: B330C Lab Number: L1607836

Project Number: 2999.04 Report Date: 03/23/16

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 6

Page 1 of 1

Published Date: 2/3/2016 10:23:10 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	AIR AN	VALY	SIS	P/	AGE	OF	- Date R	ec'd in La	p: 3 (18/1	6		A	LPF	IA Jo	ob#	LI607	836
ANALYTICAL 220 Fember Blad Ma		Project	Informat	ion			Repo	rt Inform	ation -	Data [Delivera	bles	E	Billin	g Inf	orm	ation	
320 Forbes Blvd, Ma TEL: 508-822-9300	FAX: 508-822-3288	Project Na	ame: B	330C			□ FAX	X			-		À	Sam	e as (Client	info PO#:	
Client Informatio	n	Project Lo	cation:	topenel1	Tincan	, NY	∑ ⊠ ÄDi)	Ex Criteria Cho	ecker.									
Client: San born	, Heal	Project #:						(Default base	d on Regu	ılatory Crit	eria Indicat	ed)	·					
Address: Tea	Indogs Pak Dr	Project Ma	anager: Ş	F. 5005				Other Form IAIL (stand	_	report)			·	Regu	lator	y Re	equirements	Report Limits
Westford,	andogy Pak Dr	ALPHA Q	uote #:				-	ditional Del					S	tate/F	ed	F	Program	Res / Comm
Phone: 978 -	392-0900	Turn-A	round Tir	ne			Report	t to: (if differen	than Projec	t Manager)			-					
Fax:				-			_									-		
Email: SS005	@ Sunbornhead.com	\$\standar	d 🗀	RUSH (only	confirmed if pre-ap	pproved!)									ANA	LYS	SIS	
☐ These samples hav	ve been previously analyzed by Alpha	Date Due			Time:								/	\int	/º/	/5	.//7	
	pecific Requirements/Comr		ast Fi	skell (I	BM) 1.	Stot	5 VU Cs						//	/ /.	HC3	\ \delta \	/ / /	
Project-Specific	Target Compound List: 🗡			PCE, +	CE, VC,	cis, +	runs (-	2 DCE				/	/ /	2n-Detroi		otans (
	Al	l Col	umn	s Bel	low N	/lust	Be I	Filled	1 0	ut			M	ubtract N.	sases Mer		/ /	
ALPHA Lab ID (Lab Use Only)	Sample ID		COI	LLECTIO	ANJ			Sampler's		1 D	I D - Flow	70/1 21/5/15	FO-15 SIM		Sulfides & Mer.	//	Sample Com	nments (i.e. PID)
60783601	EP306Z	3-16-16	- Start Fillie		24.5		SV	Twc	16	849	_	\times	-/-					
60-	EP3011	1		-	29.4)		1	1508	_	X			_			
-৩ই	C 0 2 0 1 10		_	1/52	28,9	8.3				2148	_	X	<u> </u>			_		
		1			29.5			1	1	837	_	V	+-					
-06				1023	2 (,)	0-1	-			821								
			-		<u> </u>					-					-	-		
					-					-						-		
		-										11	ļ	<u> </u>	\perp	ļ		
		_								1								
*SAMPL	E MATRIX CODES S	A = Ambien V = Soil Vap ther = Please	or/Landfill	,		I	ļ	С	ontaine	r Type		CN					Please print clea completely. Sai logged in and tu	mples can not be
	-1	Relinquis	shed By:			e/Time	1/1	Recei	ved By:	_/_/		_6 .	Date/	Time			clock will not sta guities are resol	art until any ambi- Ived. All samples
	1 1 m	THE		3/17/1		16 154	120		7 7	HA.	7		166	15	47 [:U	1	Terms and Cond	
Page NG 5101f035ev: (25	-Sep-15)	II.			3/18/14	000	Bet	R		X -)/ /// 3/18	16	06	:00	4	See reverse sid	e.

ANALYTICAL REPORT

Lab Number: L1621200

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C PILOT TESTS

Project Number: 2999.04 Report Date: 07/14/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: B330C PILOT TESTS

Project Number: 2999.04 Lab Number: L1621200

Report Date: 07/14/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621200-01	EP3017	SOIL_VAPOR	HOPEWELL JUNCTION, NY	07/07/16 14:10	07/11/16
L1621200-02	EP3016	SOIL_VAPOR	HOPEWELL JUNCTION, NY	07/07/16 16:02	07/11/16
L1621200-03	UNUSED CANISTER 571	SOIL VAPOR	HOPEWELL JUNCTION, NY		07/11/16

L1621200

Lab Number:

Project Name: B330C PILOT TESTS

Project Number: 2999.04 Report Date: 07/14/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800.	-624-9220	with an	nv c	nuestions
i icasc	Contact	Ciletit	OCI VICES	at 000	-024-3220	with a	ıy c	fuestions.

Serial_No:07141615:15

L1621200

Project Name: B330C PILOT TESTS

Project Number: 2999.04 **Report Date:** 07/14/16

Lab Number:

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 30, 2016. The canister certification results are provided as an addendum.

Sample L1621200-01 and -02: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly. The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Date: 07/14/16 Title: Technical Director/Representative

Church January Christopher J. Anderson

AIR

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number:

L1621200

Report Date:

Date Collected:

07/14/16

07/07/16 14:10

SAMPLE RESULTS

Lab ID: L1621200-01 D

Client ID: EP3017

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 07/14/16 06:05

Analyst: MB

Date Received:	07/11/16
Field Prep:	Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Vinyl chloride	ND	102.		ND	261			509.7
trans-1,2-Dichloroethene	ND	102.		ND	404			509.7
cis-1,2-Dichloroethene	ND	102.		ND	404			509.7
Trichloroethene	254	102		1370	548			509.7
Tetrachloroethene	23800	102		161000	692			509.7

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	92		60-140

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number:

L1621200

Report Date:

07/14/16

SAMPLE RESULTS

Lab ID: L1621200-02 D

Client ID: EP3016

Sample Location: HOPEWELL JUNCTION, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 07/14/16 06:50

Analyst: MB

Date Collected: 07/07/16 16:02

Date Received: 07/11/16

Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	_ab							
Vinyl chloride	ND	103.		ND	263			514.8
trans-1,2-Dichloroethene	ND	103.		ND	408			514.8
cis-1,2-Dichloroethene	ND	103.		ND	408			514.8
Trichloroethene	457	103		2460	554			514.8
Tetrachloroethene	27200	103		184000	698			514.8

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	93		60-140

Serial_No:07141615:15

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Method Blank Analysis Batch Quality Control

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-02 Batch	n: WG91309	1-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1

Serial_No:07141615:15

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Method Blank Analysis Batch Quality Control

Parameter Volatile Organics in Air - Mansfield La 3-Chloropropene Carbon disulfide 1,1,2-Trichloro-1,2,2-Trifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether	Results Ab for samp ND ND ND ND ND ND ND ND ND N	RL 0le(s): 01- 0.200 0.200 0.200 0.200	MDL -02 Batch 	Results : WG91309 ND ND	RL 1-4 0.626 0.623	MDL 	Qualifier	Factor 1
3-Chloropropene Carbon disulfide 1,1,2-Trichloro-1,2,2-Trifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND	0.200 0.200 0.200		ND	0.626			1
Carbon disulfide 1,1,2-Trichloro-1,2,2-Trifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND	0.200						1
1,1,2-Trichloro-1,2,2-Trifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND	0.200		ND	0.623			
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND				0.020			1
1,1-Dichloroethane		0.200		ND	1.53			1
·	ND			ND	0.793			1
Methyl tert butyl ether		0.200		ND	0.809			1
	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/13/16 15:48

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-02 Batch	n: WG91309	1-4			
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
	.,	0.200		.,-				

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/13/16 15:48

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-02 Batch	: WG91309	1-4			
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/13/16 15:48

	Vdqq				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab for samp	ole(s): 01-	02 Batc	h: WG913091	-4			
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s)	: 01-02 Bato	ch: WG91309	1-3				
Chlorodifluoromethane	83		-		70-130	-		
Propylene	86		-		70-130	-		
Propane	77		-		70-130	-		
Dichlorodifluoromethane	92		-		70-130	-		
Chloromethane	76		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	87		-		70-130	-		
Vinyl chloride	89		-		70-130	-		
1,3-Butadiene	90		-		70-130	-		
Butane	77		-		70-130	-		
Bromomethane	84		-		70-130	-		
Chloroethane	87		-		70-130	-		
Ethyl Alcohol	76		-		70-130	-		
Dichlorofluoromethane	81		-		70-130	-		
Vinyl bromide	85		-		70-130	-		
Acrolein	83		-		70-130	-		
Acetone	88		-		70-130	-		
Acetonitrile	85		-		70-130	-		
Trichlorofluoromethane	88		-		70-130	-		
iso-Propyl Alcohol	93		-		70-130	-		
Acrylonitrile	96		-		70-130	-		
Pentane	94		-		70-130	-		

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG91309	1-3				
Ethyl ether	95		-		70-130	-		
1,1-Dichloroethene	94		-		70-130	-		
tert-Butyl Alcohol	93		-		70-130	-		
Methylene chloride	97		-		70-130	-		
3-Chloropropene	96		-		70-130	-		
Carbon disulfide	102		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	97		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	93		-		70-130	-		
Methyl tert butyl ether	102		-		70-130	-		
Vinyl acetate	106		-		70-130	-		
2-Butanone	88		-		70-130	-		
cis-1,2-Dichloroethene	105		-		70-130	-		
Ethyl Acetate	83		-		70-130	-		
Chloroform	97		-		70-130	-		
Tetrahydrofuran	88		-		70-130	-		
2,2-Dichloropropane	94		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
n-Hexane	100		-		70-130	-		
Isopropyl Ether	93		-		70-130	-		
Ethyl-Tert-Butyl-Ether	94		-		70-130	-		

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01-02	Batch: WG913091	l - 3				
1,1,1-Trichloroethane	103		-		70-130	-		
1,1-Dichloropropene	100		-		70-130	-		
Benzene	97		-		70-130	-		
Carbon tetrachloride	104		-		70-130	-		
Cyclohexane	102		-		70-130	-		
Tertiary-Amyl Methyl Ether	97		-		70-130	-		
Dibromomethane	93		-		70-130	-		
1,2-Dichloropropane	93		-		70-130	-		
Bromodichloromethane	101		-		70-130	-		
1,4-Dioxane	94		-		70-130	-		
Trichloroethene	100		-		70-130	-		
2,2,4-Trimethylpentane	100		-		70-130	-		
Methyl Methacrylate	90		-		70-130	-		
Heptane	95		-		70-130	-		
cis-1,3-Dichloropropene	94		-		70-130	-		
4-Methyl-2-pentanone	96		-		70-130	-		
trans-1,3-Dichloropropene	108		-		70-130	-		
1,1,2-Trichloroethane	101		-		70-130	-		
Toluene	92		-		70-130	-		
1,3-Dichloropropane	87		-		70-130	-		
2-Hexanone	88		-		70-130	-		

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200

arameter	LCS %Recovery	Qual	LC %Rec	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: W	G913091	-3				
Dibromochloromethane	94			-		70-130	-		
1,2-Dibromoethane	92			-		70-130	-		
Butyl Acetate	91			-		70-130	-		
Octane	89			-		70-130	-		
Tetrachloroethene	93			-		70-130	-		
1,1,1,2-Tetrachloroethane	87			-		70-130	-		
Chlorobenzene	91			-		70-130	-		
Ethylbenzene	97			-		70-130	-		
p/m-Xylene	95			-		70-130	-		
Bromoform	95			-		70-130	-		
Styrene	99			-		70-130	-		
1,1,2,2-Tetrachloroethane	91			-		70-130	-		
o-Xylene	97			-		70-130	-		
1,2,3-Trichloropropane	88			-		70-130	-		
Nonane (C9)	85			-		70-130	-		
Isopropylbenzene	92			-		70-130	-		
Bromobenzene	89			-		70-130	-		
o-Chlorotoluene	93			-		70-130	-		
n-Propylbenzene	91			-		70-130	-		
p-Chlorotoluene	87			-		70-130	-		
4-Ethyltoluene	95			-		70-130	-		

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG91309	1-3				
1,3,5-Trimethylbenzene	111		-		70-130	-		
tert-Butylbenzene	92		-		70-130	-		
1,2,4-Trimethylbenzene	98		-		70-130	-		
Decane (C10)	90		-		70-130	-		
Benzyl chloride	96		-		70-130	-		
1,3-Dichlorobenzene	95		-		70-130	-		
1,4-Dichlorobenzene	92		-		70-130	-		
sec-Butylbenzene	91		-		70-130	-		
p-Isopropyltoluene	85		-		70-130	-		
1,2-Dichlorobenzene	90		-		70-130	-		
n-Butylbenzene	93		-		70-130	-		
1,2-Dibromo-3-chloropropane	91		-		70-130	-		
Undecane	95		-		70-130	-		
Dodecane (C12)	98		-		70-130	-		
1,2,4-Trichlorobenzene	98		-		70-130	-		
Naphthalene	98		-		70-130	-		
1,2,3-Trichlorobenzene	92		-		70-130	-		
Hexachlorobutadiene	93		-		70-130	-		

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number:

L1621200

Report Date:

07/14/16

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s): 01-02	QC Batch ID: WG913091-5	QC Sample:	L1621038-02	Client ID:	DUP Sample
Propylene	5.16	5.69	ppbV	10		25
Dichlorodifluoromethane	ND	ND	ppbV	NC		25
Chloromethane	ND	ND	ppbV	NC		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	ND	ND	ppbV	NC		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	3020	3030	ppbV	0		25
Trichlorofluoromethane	2.08	2.03	ppbV	2		25
iso-Propyl Alcohol	25.8	24.8	ppbV	4		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number: L1621200 **Report Date:** 07/14/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG913091-5	QC Sample:	L1621038-02	Client ID: DUP Sample
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
Vinyl acetate	ND	ND	ppbV	NC	25
2-Butanone	21.5	21.3	ppbV	1	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	3.00	3.12	ppbV	4	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number:

L1621200

Report Date:

07/14/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG913091-5	QC Sample:	L1621038-02	Client ID: DUP Sample
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	7.15	6.75	ppbV	6	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	5.28	5.40	ppbV	2	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	72.2	76.9	ppbV	6	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	2.36	2.44	ppbV	3	25
p/m-Xylene	11.7	11.9	ppbV	2	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	5.28	5.33	ppbV	1	25
4-Ethyltoluene	14.5	23.4	ppbV	47	Q 25
1,3,5-Trimethylbenzene	74.5	76.4	ppbV	3	25

Project Name: B330C PILOT TESTS

Project Number: 2999.04

Lab Number:

L1621200

Report Date:

07/14/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG913091-5	QC Sample:	L1621038-02	Client ID: DUP Sample
1,2,4-Trimethylbenzene	151	157	ppbV	4	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Naphthalene	2.15	2.40	ppbV	11	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1621200-01	EP3017	2095	1.0L Can	06/30/16	224520	L1619300-01	Pass -	29.4	-5.6	-	-	-	-
L1621200-02	EP3016	847	1.0L Can	06/30/16	224520	L1619300-01	Pass -	29.4	-5.3	-	-	-	-
L1621200-03	UNUSED CANISTER 571	571	1.0L Can	06/30/16	224520	L1619300-01	Pass -	29.3	-29.3	-	-	-	-

L1619300

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16

Sample Location: Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 06/23/16 20:49

Analyst: RY

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1619300

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16
Sample Location: Field Prep: Not Specified

ppbV ug/m3 Dilution **Factor** Results Qualifier **Parameter** Results RLMDL RL MDL Volatile Organics in Air - Mansfield Lab Methylene chloride ND 0.500 ND 1.74 1 3-Chloropropene ND 0.200 --ND 0.626 1 Carbon disulfide ND 0.200 ND 0.623 1 Freon-113 ND 0.200 ND 1.53 1 ---trans-1,2-Dichloroethene ND 0.200 ND 0.793 1 1,1-Dichloroethane ND 0.200 ND 0.809 --1 Methyl tert butyl ether ND 0.200 --ND 0.721 1 Vinyl acetate ND 1.00 ND 3.52 1 ----2-Butanone ND 0.500 1 --ND 1.47 -cis-1,2-Dichloroethene ND 0.200 ND 0.793 1 Ethyl Acetate ND 0.500 ND 1.80 1 Chloroform ND 0.200 ND 0.977 1 ----Tetrahydrofuran ND 0.500 ND 1.47 1 2,2-Dichloropropane ND 0.200 ND 0.924 1 1,2-Dichloroethane ND 0.200 ND 0.809 1 n-Hexane ND 0.200 0.705 1 --ND Diisopropyl ether ND 0.200 ND 0.836 1 ---tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1 1,1,1-Trichloroethane ND 0.200 ND 1.09 1 1,1-Dichloropropene ND 0.200 --ND 0.908 --1 Benzene ND 0.200 ND --0.639 1 Carbon tetrachloride ND 0.200 ND 1.26 --1 --Cyclohexane ND 0.200 ND 0.688 1 tert-Amyl Methyl Ether ND 0.200 ND 0.836 1 Dibromomethane ND 0.200 ND 1 --1.42 --1,2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 ND 1.34 1 ----1,4-Dioxane ND 0.200 ND 0.721 1

L1619300

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16
Sample Location: Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Lab Number:

L1619300

Report Date: 07/14/16

Air Canister Certification Results

Lab ID: L1619300-01 Client ID:

Sample Location:

CAN 871 SHELF 9

Date Collected: Date Received:

06/22/16 16:00

06/23/16

Field Prep:

Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1619300

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: L1619300-01 Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	84		60-140

L1619300

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16

Sample Location: Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/23/16 20:49

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1619300

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/14/16

Air Canister Certification Results

Lab ID: Date Collected: 06/22/16 16:00

Client ID: CAN 871 SHELF 9 Date Received: 06/23/16
Sample Location: Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
etrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
I-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
,3-Dichlorobenzene	ND	0.020		ND	0.120			1
,4-Dichlorobenzene	ND	0.020		ND	0.120			1
ec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1619300

Project Number: CANISTER QC BAT

Report Date: 07/14/16

Air Canister Certification Results

Lab ID: L1619300-01

Date Collected:

06/22/16 16:00

Client ID: CAN 871 SHELF 9

Date Received:

06/23/16

1

Sample Location:

Hexachlorobutadiene

Field Prep: Not Specified

ppbV ug/m3 **Dilution** Factor Results RLMDL Qualifier **Parameter** Results RLMDL Volatile Organics in Air by SIM - Mansfield Lab n-Butylbenzene ND 0.200 ND 1 1.10 1,2,4-Trichlorobenzene ND 0.050 --ND 0.371 1 Naphthalene ND 0.050 ND 0.262 1 --1,2,3-Trichlorobenzene ND 0.050 ND 0.371 1 ----

ND

0.533

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	88		60-140

0.050

ND

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1621200-01A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1621200-02A	Canister - 1 Liter	N/A	N/A	N/A	Υ	Absent	TO15-LL(30)
L1621200-03A	Canister - 1 Liter	N/A	N/A		Υ	Absent	CLEAN-FEE()

Project Name: B330C PILOT TESTS Lab Number: L1621200

Project Number: 2999.04 Report Date: 07/14/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:B330C PILOT TESTSLab Number:L1621200Project Number:2999.04Report Date:07/14/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:B330C PILOT TESTSLab Number:L1621200Project Number:2999.04Report Date:07/14/16

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 6 Published Date: 2/3/2016 10:23:10 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

		R ANALY	SIS	PAG	GE	OF	Date R	ec'd in Lal	b: 7[[1116	• ′		AL	PHA	Job	#: L16	2120	0
220 Forbes Plud M	CHAIN OF CUS	Project	Informatio	n			Repo	rt Informa	ation -	Data D	elivera	bles	Bi	lling	Infor	nation		
320 Forbes Blvd, M TEL: 508-822-9300) FAX: 508-822-3288	Project Na	ame: 133	300	Pilot 1	Tests	□ FAX	(X (s	ame a	s Clie	nt info P	O#:	
Client Information	on	Project Lo	cation: Ησρ	ewell:	Tunchion	YN,	Ş ₹ADI	Ex Criteria Che	ecker									
Client: Sanbor	n Head		Project #: 2999, 04 (Default based on Regulatory Criteria Indicated)															
	Andon Park Di	Project Ma	anager: 5	ieth.	Soos			Other Form AIL (standa	_	report)		.	Re	gula	tory F	Requirem	ents/Re	port Limits
	d, MA 01886	ALPHA Q	uote #:		☐ Additional Deliverables			s:		State/Fed			Program		Res / Comm			
Phone: 978-	392-0900	Turn-A	round Time	е			Report to: (if different than Project Manager)											
Fax:		26		211011	_													
Email: SSOO.	s@ sanbornhead	Standar 🖍	d 💷 I	RUSH (only co	onfirmed if pre-ap _l	proved!)					-			Α	NALY	SIS		
☐ Those samples ha	ve been previously analyzes	Date Due): 		Time:									/ / [7/	2	7	
Other Project S	pecific Requiremen	ts/Comments:	Cod G	1211	VOCs :	PCE	TCE,	VC, C	13,4	rams -	1,21	OCE	//	eum Ho	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<i>\$</i> /		
Project-Specific	pecific Requirements Target Compound	List: X 713M	EAST FF	3,7,2,111	,	,	,	,	•			/	' / ,	, petrol	ptans	/ / /		
		All Col							-				Miss	Saser A	* Merc			
ALPHA Lab ID	Sample ID		COL	LECTIO	N Initial	Final	Sample	Sampler's	Can	ΙD	i D - Fiov	, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.15 15 15 15	/ked (nlfides,	/		
(Lab Use Only)			Start Time	End Time		Final Vacuum	Matrix*	Initials TWC	Size	7.845°	Controlle	, / ~ / A	9/ \ /	1/0	'/ /	Sample		nts (i.e. PID)
21200-01	EP3017	7/7/6			29											1 1 1 1 1 1	<u> </u>	1 Apm
-07	EP 3016	7/7/16	_	1602	29	5	SV	TWC	11	847		X				120) = 81	7 ppm
							!											
						-										1		
																		-
1200															+			
					-							+ +-			++			
		AA = Ambien	t Air (Indoor/	Outdoor)						<u> </u>					++	 		
*SAMPL	E MATRIX CODES	SV = Soil Vap Other = Please	or/Landfill G					 c	ontaine	r Type		Cs						legibly and es can not be
		Relinquis			Date	e/Time		Recei	ved By:		<u> </u>		Date/T	ime:		logged in clock will	and turnar	round time ntil any ambi-
		a lele			7/8//	6, 1300	NC	M		4-		aluli.	6 1	CYE		submitted	d are subjec	. All samples ct to Alpha's
-D 00 : (00		499			Tufu	6/5/0	Red	# _	Sed	· 1		7/11/1	6 1	510)	Terms an See reve	d Condition rse side.	is.
Frague 366-02 fr 366(25	-Sep-15)					• •												

ANALYTICAL REPORT

Lab Number: L1625553

Client: Sanborn, Head & Associates, Inc.

20 Foundry Street Concord, NH 03301

ATTN: Seth Soos

Phone: (603) 229-1900

Project Name: B330C SP TEST

Project Number: 2999.04 Report Date: 08/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number:

L1625553

Report Date:

08/22/16

Alpha Sample ID Client ID Matrix Soll_VAPOR HOPEWELL JUNCTION, NY 08/15/16 11:13 08/16/16

L1625553

Lab Number:

Project Name: B330C SP TEST

Project Number: 2999.04 Report Date: 08/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:08221612:09

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2999.04 Report Date: 08/22/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on August 9, 2016. The canister certification results are provided as an addendum.

Sample L1625553-01: Prior to sample analysis, the canister was pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

Sample L1625553-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/22/16

Christopher J. Anderson

AIR

Project Name: **B330C SP TEST**

Project Number: 2999.04 Lab Number:

L1625553

Not Specified

173.7

Report Date:

Field Prep:

08/22/16

SAMPLE RESULTS

Lab ID: L1625553-01 D

Client ID: SP3001

HOPEWELL JUNCTION, NY Sample Location:

Soil_Vapor Matrix: Anaytical Method: 48,TO-15 Analytical Date: 08/19/16 23:36

Analyst: MB

Trichloroethene Tetrachloroethene

Date Collected:	08/15/16 11:13
Date Received:	08/16/16

		ppbV			ug/m3		Dilution	
Parameter	Results	Results RL M		Results	RL MDL		Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Vinyl chloride	ND	34.7		ND	88.7			173.7
trans-1,2-Dichloroethene	ND	34.7		ND	138			173.7
cis-1,2-Dichloroethene	ND	34.7		ND	138			173.7
Trichloroethene	82.7	34.7		444	186			173.7

235

108000

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	102		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	89		60-140

34.7

15900

Serial_No:08221612:09

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2999.04 Report Date: 08/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/19/16 17:12

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	_ Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	le(s): 01	Batch:	WG924267-4				
Vinyl chloride	ND	0.200		ND	0.511			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Trichloroethene	ND	0.200		ND	1.07			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

Report Date: 08/22/16

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s)	: 01 Batch: WG924267-3				
Chlorodifluoromethane	96		70-130	-		
Propylene	122	-	70-130	-		
Propane	87	-	70-130	-		
Dichlorodifluoromethane	115	-	70-130	-		
Chloromethane	100	-	70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	104	-	70-130	-		
Methanol	83	-	70-130	-		
Vinyl chloride	106	-	70-130	-		
1,3-Butadiene	110	-	70-130	-		
Butane	110	-	70-130	-		
Bromomethane	107	-	70-130	-		
Chloroethane	103	-	70-130	-		
Ethyl Alcohol	92	-	70-130	-		
Dichlorofluoromethane	106	-	70-130	-		
Vinyl bromide	96	-	70-130	-		
Acrolein	87	-	70-130	-		
Acetone	110	-	70-130	-		
Acetonitrile	113	-	70-130	-		
Trichlorofluoromethane	114	-	70-130	-		
iso-Propyl Alcohol	104	-	70-130	-		
Acrylonitrile	93	-	70-130	-		

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

Report Date: 08/22/16

Volatile Organics in Air - Mansfield Lab Associated sample(s): 01 Batch: WG924267-3 Pentane 93 - 70-130 - Ethyl ether 101 - 70-130 - 1,1-Dichloroethene 115 - 70-130 - ten-Butyl Alcohol 99 - 70-130 - Methylene chloride 95 - 70-130 - 3-Chloropropene 114 - 70-130 - Carbon disulfide 99 - 70-130 - 1,1-2 Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethene 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Mothyl tert butyl either 99 - 70-130 - Vinja acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - Ethyl Acetate 112 - 70-130 - Chl	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Ethyl ether 101 - 70-130 - 1,1-Dichloroethene 115 - 70-130 - terr-Butyl Alcohol 99 - 70-130 - Methylene chloride 95 - 70-130 - 3-Chloropropene 114 - 70-130 - Carbon disultide 99 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - 1,1,2-Dichloroethane 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Virily acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - 2-Butyl Acetate 112 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - </td <td>/olatile Organics in Air - Mansfield Lab Asso</td> <td>ciated sample(s)</td> <td>: 01 Batch:</td> <td>WG924267-3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	/olatile Organics in Air - Mansfield Lab Asso	ciated sample(s)	: 01 Batch:	WG924267-3					
1,1-Dichloroethene 115 - 70-130 - tenr-Butyl Alcohol 99 - 70-130 - Methylene chloride 95 - 70-130 - 3-Chloropropene 114 - 70-130 - Carbon disulfide 99 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethane 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethane 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloroethane 123 - 70-130 -	Pentane	93		-		70-130	-		
tert-Butyl Alcohol 99 70-130 - Methylene chloride 95 70-130 - 3-Chloropropene 114 70-130 - Carbon disulfide 99 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 70-130 - trans-1,2-Dichloroethane 105 70-130 - Methyl tert butyl ether 99 70-130 - Vinyl acetate 127 70-130 - 2-Butanone 104 70-130 - Cis-1,2-Dichloroethane 128 70-130 - Ethyl Acetate 112 70-130 - Chloroform 115 70-130 - Tetrahydrofuran 102 70-130 - 2,2-Dichloropopane 100 70-130 - 1,2-Dichloroethane 123 70-130 - 1,2-Dichloroethane 123 70-130 - 1,2-Dichloroethane 111 70-130 -	Ethyl ether	101		-		70-130	-		
Methylene chloride 95 - 70-130 - 3-Chloropropene 114 - 70-130 - Carbon disulfide 99 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethane 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130	1,1-Dichloroethene	115		-		70-130	-		
3-Chloropropene 114 - 70-130 - Carbon disulfide 99 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethene 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - 1-Hexane 111 - 70-130 -	tert-Butyl Alcohol	99		-		70-130	-		
Carbon disulfide 99 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethene 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl terl butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - 1,2-Dichloroethane 111 - 70-130 -	Methylene chloride	95		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane 100 - 70-130 - trans-1,2-Dichloroethene 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	3-Chloropropene	114		-		70-130	-		
trans-1,2-Dichloroethene 105 - 70-130 - 1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Carbon disulfide	99		-		70-130	-		
1,1-Dichloroethane 113 - 70-130 - Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	1,1,2-Trichloro-1,2,2-Trifluoroethane	100		-		70-130	-		
Methyl tert butyl ether 99 - 70-130 - Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	trans-1,2-Dichloroethene	105		-		70-130	-		
Vinyl acetate 127 - 70-130 - 2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	1,1-Dichloroethane	113		-		70-130	-		
2-Butanone 104 - 70-130 - cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Methyl tert butyl ether	99		-		70-130	-		
cis-1,2-Dichloroethene 128 - 70-130 - Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Vinyl acetate	127		-		70-130	-		
Ethyl Acetate 112 - 70-130 - Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	2-Butanone	104		-		70-130	-		
Chloroform 115 - 70-130 - Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	cis-1,2-Dichloroethene	128		-		70-130	-		
Tetrahydrofuran 102 - 70-130 - 2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Ethyl Acetate	112		-		70-130	-		
2,2-Dichloropropane 100 - 70-130 - 1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Chloroform	115		-		70-130	-		
1,2-Dichloroethane 123 - 70-130 - n-Hexane 111 - 70-130 -	Tetrahydrofuran	102		-		70-130	-		
n-Hexane - 70-130 -	2,2-Dichloropropane	100		-		70-130	-		
	1,2-Dichloroethane	123		-		70-130	-		
Isopropyl Ether 97 - 70-130 -	n-Hexane	111		-		70-130	-		
	Isopropyl Ether	97		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s)	: 01 Batch	n: WG924267-3					
Ethyl-Tert-Butyl-Ether	102		-		70-130	-		
1,1,1-Trichloroethane	116		-		70-130	-		
1,1-Dichloropropene	106		-		70-130	-		
Benzene	103		-		70-130	-		
Carbon tetrachloride	124		-		70-130	-		
Cyclohexane	111		-		70-130	-		
Tertiary-Amyl Methyl Ether	92		-		70-130	-		
Dibromomethane	103		-		70-130	-		
1,2-Dichloropropane	113		-		70-130	-		
Bromodichloromethane	120		-		70-130	-		
1,4-Dioxane	105		-		70-130	-		
Trichloroethene	103		-		70-130	-		
2,2,4-Trimethylpentane	125		-		70-130	-		
Methyl Methacrylate	115		-		70-130	-		
Heptane	105		-		70-130	-		
cis-1,3-Dichloropropene	101		-		70-130	-		
4-Methyl-2-pentanone	110		-		70-130	-		
trans-1,3-Dichloropropene	114		-		70-130	-		
1,1,2-Trichloroethane	107		-		70-130	-		
Toluene	91		-		70-130	-		
1,3-Dichloropropane	90		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

Polatile Organics in Air - Mansfield Lab Associated sample(s): 01 Batch: WG924267-3 Part	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Dibromochloromethane 99 - 70-130 - 1,2-Dibromoethane 92 - 70-130 - Butyl Acetate 84 - 70-130 - Octane 89 - 70-130 - Tetrachloroethane 88 - 70-130 - 1,1,2-Tetrachloroethane 92 - 70-130 - Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - Bromoform 98 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - sorropythene 99 - 70-130 - Nonane (C9) 91 - 70-130 - Bromobenzene 94 - 70-130 - c-Chlorotoluene <th< td=""><td>/olatile Organics in Air - Mansfield Lab Asso</td><td>ciated sample(s)</td><td>: 01 Batch:</td><td>WG924267-3</td><td></td><td></td><td></td><td></td><td></td></th<>	/olatile Organics in Air - Mansfield Lab Asso	ciated sample(s)	: 01 Batch:	WG924267-3					
1,2-Dibromoethane 92	2-Hexanone	98		-		70-130	-		
Butyl Acetate 84 - 70-130 - Octane 89 - 70-130 - Tetrachloroethene 88 - 70-130 - 1,1,1,2-Tetrachloroethane 92 - 70-130 - Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - c-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - c-Chlorotoluene <	Dibromochloromethane	99		-		70-130	-		
Octane 89 - 70-130 - Tetrachloroethene 88 - 70-130 - 1,1,1,2-Tetrachloroethane 92 - 70-130 - Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - 0-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene	1,2-Dibromoethane	92		-		70-130	-		
Tetrachloroethene 88 - 70-130 - 1,1,1,2-Tetrachloroethane 92 - 70-130 - Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Butyl Acetate	84		-		70-130	-		
1.1,1,2-Tetrachloroethane 92 - 70-130 - Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Octane	89		-		70-130	-		
Chlorobenzene 94 - 70-130 - Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - 0-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - 0-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Tetrachloroethene	88		-		70-130	-		
Ethylbenzene 95 - 70-130 - p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	1,1,1,2-Tetrachloroethane	92		-		70-130	-		
p/m-Xylene 98 - 70-130 - Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Chlorobenzene	94		-		70-130	-		
Bromoform 100 - 70-130 - Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Ethylbenzene	95		-		70-130	-		
Styrene 89 - 70-130 - 1,1,2,2-Tetrachloroethane 104 - 70-130 - 0-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	p/m-Xylene	98		-		70-130	-		
1,1,2,2-Tetrachloroethane 104 - 70-130 - o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Bromoform	100		-		70-130	-		
o-Xylene 99 - 70-130 - 1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Styrene	89		-		70-130	-		
1,2,3-Trichloropropane 93 - 70-130 - Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	1,1,2,2-Tetrachloroethane	104		-		70-130	-		
Nonane (C9) 91 - 70-130 - Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	o-Xylene	99		-		70-130	-		
Isopropylbenzene 91 - 70-130 - Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	1,2,3-Trichloropropane	93		-		70-130	-		
Bromobenzene 94 - 70-130 - o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Nonane (C9)	91		-		70-130	-		
o-Chlorotoluene 86 - 70-130 - n-Propylbenzene 90 - 70-130 -	Isopropylbenzene	91		-		70-130	-		
n-Propylbenzene 90 - 70-130 -	Bromobenzene	94		-		70-130	-		
	o-Chlorotoluene	86		-		70-130	-		
p-Chlorotoluene 90 - 70-130 -	n-Propylbenzene	90		-		70-130	-		
	p-Chlorotoluene	90		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Association	ciated sample(s)	: 01 Batch	: WG924267-3					
4-Ethyltoluene	91		-		70-130	-		
1,3,5-Trimethylbenzene	96		-		70-130	-		
tert-Butylbenzene	93		-		70-130	-		
1,2,4-Trimethylbenzene	100		-		70-130	-		
Decane (C10)	102		-		70-130	-		
Benzyl chloride	106		-		70-130	-		
1,3-Dichlorobenzene	96		-		70-130	-		
1,4-Dichlorobenzene	95		-		70-130	-		
sec-Butylbenzene	90		-		70-130	-		
p-Isopropyltoluene	87		-		70-130	-		
1,2-Dichlorobenzene	95		-		70-130	-		
n-Butylbenzene	98		-		70-130	-		
1,2-Dibromo-3-chloropropane	110		-		70-130	-		
Undecane	105		-		70-130	-		
Dodecane (C12)	118		-		70-130	-		
1,2,4-Trichlorobenzene	93		-		70-130	-		
Naphthalene	93		-		70-130	-		
1,2,3-Trichlorobenzene	95		-		70-130	-		
Hexachlorobutadiene	99		-		70-130	-		

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553 **Report Date:** 08/22/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s): 01 QC Ba	atch ID: WG924267-5	QC Sample:	L1625564-04	Client ID: DUP Sample
Dichlorodifluoromethane	2.19	2.21	ppbV	1	25
Chloromethane	ND	ND	ppbV	NC	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethyl Alcohol	ND	ND	ppbV	NC	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	19.9	20.1	ppbV	1	25
Trichlorofluoromethane	144	147	ppbV	2	25
iso-Propyl Alcohol	1.33	1.39	ppbV	4	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
tert-Butyl Alcohol	ND	ND	ppbV	NC	25
Methylene chloride	ND	ND	ppbV	NC	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	1.33	1.32	ppbV	1	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number:

L1625553

Report Date:

08/22/16

arameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG924267-5	QC Sample:	L1625564-04	Client ID: DUP Sample
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
2-Butanone	15.4	15.5	ppbV	1	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	8.49	8.68	ppbV	2	25
Tetrahydrofuran	1.58	1.59	ppbV	1	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	1.09	1.09	ppbV	0	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	0.608	0.612	ppbV	1	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	0.724	0.750	ppbV	4	25

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number: L1625553

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab Associate	ed sample(s): 01 Q	C Batch ID: WG924267-5	QC Sample:	L1625564-04	Client ID: DUP Sample
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	5.34	5.43	ppbV	2	25
2-Hexanone	3.52	3.62	ppbV	3	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	33.5	33.3	ppbV	1	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	2.16	2.16	ppbV	0	25
p/m-Xylene	9.07	9.25	ppbV	2	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	6.78	6.97	ppbV	3	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	3.71	3.75	ppbV	1	25
4-Ethyltoluene	0.828	0.824	ppbV	0	25
1,3,5-Trimethylbenzene	1.46	1.48	ppbV	1	25
1,2,4-Trimethylbenzene	5.05	5.14	ppbV	2	25

Project Name: B330C SP TEST

Project Number: 2999.04

Lab Number:

L1625553

Report Date:

08/22/16

arameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG924267-5	QC Sample:	L1625564-04	Client ID: DUP Sample
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2999.04 Report Date: 08/22/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)			Flow In mL/min	% RPD
L1625553-01	SP3001	2083	1.0L Can	08/09/16	226822	L1624034-02	Pass	-30.0	-5.5	-	-	-	-

L1624034

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Date Collected: 08/02/16 16:00 Client ID: Date Received: 08/03/16 CAN 1502 SHELF 14

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 08/03/16 18:54

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1624034

08/02/16 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Client ID: CAN 1502 SHELF 14 Date Received: 0

Sample Location:

Date Received: 08/03/16
Field Prep: Not Specified

•						- 1		
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfiel		NE .	IVIDE	resuits	112	MIDE	Qualifier	
Methylene chloride	ND	0.500	<u></u>	ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1624034

08/02/16 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Client ID: CAN 1502 SHELF 14 Date Received: 08/03/16

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

L1624034

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Date Collected: 08/02/16 16:00 Client ID: CAN 1502 SHELF 14 Date Received: 08/03/16

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
Silanol, Trimethyl-	1.8	NJ	ppbV		1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1624034

Project Number: CANISTER QC BAT **Report Date:** 08/22/16

Air Canister Certification Results

MDL

Lab ID: L1624034-02

Client ID: CAN 1502 SHELF 14

Sample Location:

Date Collected:

08/02/16 16:00

Date Received:

08/03/16

Field Prep:

ppbV

ug/m3

RL

Not Specified

Parameter

Results RL

Results

MDL Qualifier **Dilution** Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	112		60-140
chlorobenzene-d5	109		60-140

L1624034

Not Specified

Lab Number:

Field Prep:

ua/m3

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/22/16

nnhV

Air Canister Certification Results

Lab ID: L1624034-02

Date Collected: 08/02/16 16:00 Client ID: Date Received: 08/03/16 CAN 1502 SHELF 14

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 08/03/16 18:54

Analyst: MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1624034

08/02/16 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Client ID: CAN 1502 SHELF 14 Date Received: 08/03/16

Sample Location:

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
n/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
1-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
,3-Dichlorobenzene	ND	0.020		ND	0.120			1
,4-Dichlorobenzene	ND	0.020		ND	0.120			1
ec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: L1624034

Project Number: CANISTER QC BAT **Report Date:** 08/22/16

Air Canister Certification Results

Lab ID: L1624034-02

Date Collected: 08/02/16 16:00 Client ID: CAN 1502 SHELF 14 Date Received: 08/03/16

Sample Location:

Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mansf	ield Lab							
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	109		60-140		
bromochloromethane	114		60-140		
chlorobenzene-d5	111		60-140		

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2999.04 Report Date: 08/22/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

N/A Absent

Container Information

Container ID Container Type

Cooler pH deg C Pres Seal Analysis(*)

L1625553-01A Canister - 1 Liter N/A N/A Y Absent TO15-LL(30)

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2999.04 Report Date: 08/22/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:B330C SP TESTLab Number:L1625553Project Number:2999.04Report Date:08/22/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: B330C SP TEST Lab Number: L1625553

Project Number: 2000 04

Report Date: 08/22/16

Project Number: 2999.04 Report Date: 08/22/16

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility **SM 2540D:** TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Port to: 3101 612 1321: (25-Sep-15)

See reverse side.