

2070 Route 52 Hopewell Junction, NY 12533 USA www.globalfoundries.com

January 17, 2019

VIA ELECTRONIC MAIL

Ms. Jessica LaClair Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12233-7015

Subject:Closure of Solid Waste Management Units (Tanks 204-207 and B/312B Vault)GLOBALFOUNDRIES U.S. 2 LLC – Fab 10Former IBM East Fishkill Facility, Hopewell Junction, New YorkReference:NYSDEC Site No. 314054, EPA ID No. NYD000707901

Dear Ms. LaClair:

In accordance with the New York State Department of Environmental Conservation (NYSDEC)approved Work Plans for Decontamination of Various Solid Waste Management Units (SWMUs) dated November 2009 and July 2018, GLOBALFOUNDRIES U.S. 2, LLC (GLOBALFOUNDRIES) is pleased to submit the attached documentation that the decontamination procedures have been completed for the following SWMUS at the GLOBALFOUNDRIES – FAB 10 facility located in Hopewell Junction, New York:

UNIT	LOCATION	CONTENTS	VOLUME	Date Completed
$\Pi \pi$			(gai)	Completeu
204	B/312B Vault	Mixed Solvent Waste	5,000	June 2010
205	B/312B Vault	n-Butyl Acetate Waste	5,000	June 2010
206	B/312B Vault	Isopropyl Alcohol Waste	5,000	June 2010
207	B/312B Vault	N-Methyl-2-Pyrrolidone	5,000	June 2010
		Waste		
B/312B	B/312B	Various Solvents (see		October 2018
Vault		above)		

The attached file contains a report that summarizes the procedures used to complete the decontamination process for the B/312B vault, including a certification signed and stamped by a professional engineer, a copy of the analytical summary tables, laboratory Chains of Custody forms, a memorandum regarding data validation and Category B analytical results. Also, included as Appendix A to the attached report is the June 2010 report that documents the decontamination of Tanks 204 through 207 that were contained within the vault.

Following confirmation that the decontamination activities were complete, based on analytical results from the rinse water samples, GLOBALFOUNDRIES proceeded to demolish/close each SWMU, as follows:

- Tanks 204 through 207 were disconnected from the piping, cut into pieces and disposed of as scrap metal.
- All piping for the tanks identified above was decontaminated and "air gapped" or "blind flanged" to prevent unintended usage.
- The walls of the secondary containment vault were demolished in-place to below grade level and backfilled to grade level.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

We hope that you find that the attached documentation satisfies the requirements for decontamination of these SWMUs. If you have any questions or need further information regarding the enclosed document, please contact Tracy Williams of my staff at (845) 892-9855.

Sincerely,

GLOBALFOUNDRIES U.S. 2 LLC

By:

Andrew Lacourciere, Manager N.E. Regional Environmental Engineering

Enclosure

cc: T. Williams (GLOBALFOUNDRIES)
 D. Chartrand (IBM)
 W. Palomino, USEPA, Region 2 (w/o enclosure)
 M. O'Connor, NYSDEC Region 3 (w/o enclosure)

3932-07\NYSDEC Submittal Letter.docx

Decontamination of B/312B Solvent Vault Solid Waste Management Unit (SWMU)

GLOBALFOUNDRIES U.S. 2 LLC - FAB 10

Hopewell Junction, New York

October 2018

DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU)

Prepared for:

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 HOPEWELL JUNCTION, NEW YORK

Prepared by:

D&B ENGINEERS AND ARCHITECTS, P.C. 330 CROSSWAYS PARK DRIVE WOODBURY, NEW YORK

OCTOBER 2018

DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU) GLOBALFOUNDRIES U.S. 2 LLC – FAB 10

TABLE OF CONTENTS

Section		Title	Page
1.0	INT	1-1	
	1.1 1.2	Project Background Project Scope and Objective	
2.0	SUM	IMARY OF DECONTAMINATION ACTIVITIES	2-1
3.0	DISC	CUSSION OF ANALYTICAL RESULTS	
	3.1	B/312B Solvent Vault	
4.0	CER	RTIFICATION OF DECONTAMINATION	

List of Appendices

Decontamination of B/312B Solid Waste Management Units (SWMUs) 204-207 Report	A
Work Plan and Quality Assurance Project Plan	B
Daily Field Activity Reports	C
Photographic Log	D
Chain of Custody Form	E
Laboratory Analytical Results	F
Data Validation	G

TABLE OF CONTENTS (continued)

List of Figures

1-1	Building 312B Solvent Vault Solid Waste Management Unit Location Map	1-4
List of Tables		
1-1	Decontamination of B/312B SWMUs	1-3
3-1	Rinse Water Sampling Analytical Results for Volatile Organic Compounds (VOCs) and Additional Compounds	

1.0 INTRODUCTION

1.1 Project Background

The GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 (GLOBALFOUNDRIES), formerly known as International Business Machines Corporation (IBM) East Fishkill facility, is located on State Route 52 in Hopewell Junction, Dutchess County, New York. The facility is bordered on the north by State Route 52 and on the south by U.S. Interstate 84, and is located approximately 10 miles east of the Hudson River. The site currently houses various facilities and operations primarily involved in the manufacture of semiconductors and electronic computing equipment.

As a result of the manufacturing operations conducted at the facility, both hazardous and nonhazardous waste are generated. In order to properly manage hazardous waste at the facility, IBM had previously obtained a 6 NYCRR Part 373 Permit from the New York State Department of Environmental Conservation (NYSDEC) for the storage of hazardous waste in containers within Building 309 (Permit No. 3-1323-0025/00249-0). As part of the permit application process, IBM was required to identify all solid waste management units (SWMUs) located at the facility.

In July 2015, GLOBALFOUNDRIES U.S. 2 LLC took ownership of the East Fishkill facility from IBM. Prior to the transfer of ownership, the container storage rooms in Building 309 were closed and reopened as less-than-90-day hazardous waste container storage areas. Following transfer of ownership of the facility from IBM to GLOBALFOUNDRIES, IBM retained the corrective action portions of the permit, and GLOBALFOUNDRIES began to operate the facility with unpermitted less-than-90-day hazardous waste container storage areas in Building 309. While IBM is still responsible for the facility's Corrective Action Program, it is our understanding that GLOBALFOUNDRIES is responsible for ensuring that the facility's SWMUs are operated (and closed) in accordance with applicable laws and regulations.

SWMUs are defined as any discernible unit in which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of hazardous or solid wastes. These SWMUs were incorporated into the permit for the facility and evaluated on the potential for the release of hazardous waste or hazardous constituents from the unit to the environment. In evaluating each SWMU, several factors were considered to determine the "release potential" of each unit, including history of releases, design characteristics, secondary containment, location and proximity to contaminated environmental media.

Based on the above factors regarding release potential, each unit was placed into one of the following three subcategories:

- Category A No Further Action (no release)
- Category B Sampling Required (possible release)
- Category C RCRA Facility Investigation and/or Corrective Measure Study required (documented release)

The SWMUs shown on **Table 1-1**, located at the B/312B Solvent Vault would require decontamination and closure prior to their removal. These SWMUs include four less-than-90-day mixed solvent hazardous waste storage tanks, associated piping and the secondary containment vault. The location of the B/312B Solvent Vault is shown on **Figure 1-1**.

It should be noted that Tanks 204-207 previously located within the B/312B Solvent Vault were decontaminated and closed by IBM in 2010. However, the B/312B Solvent Vault was not decontaminated as part of the 2010 closure activities. A copy of IBM's 2010 report for the Decontamination of B/312B SWMUs 204-207 is provided in **Appendix A**.

Tanks 204-207 and associated piping were removed and disposed as scrap metal in June 2018. In August 2018, the B/312B Solvent Vault was decontaminated to allow for the proper closure of Tanks 204-207 and the B/312B Solvent Vault.

Table 1-1

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUs)

Unit #	Capacity (gallons)	Location	Material	Orientation	Tank Contents
204	5,000	B/312B Vault	Steel	Horizontal	Mixed Solvent Waste (Closed in 2010)
205	5,000	B/312B Vault	Steel	Horizontal	n-Butyl Acetate Waste (Closed in 2010)
206	5,000	B/312B Vault	Steel	Horizontal	Isopropyl Alcohol Waste (Closed in 2010)
207	5,000	B/312B Vault	Steel	Horizontal	N-Methyl-2-Pyrrolidone Waste (Closed in 2010)
Vault for 204-207		B/312B Vault	Concrete		Solvents (Closed in 2018)

1.2 Project Scope and Objective

The objective of this decontamination report is to ensure that the B/312B Solvent Vault SWMU has been properly decontaminated and that the decontamination process is documented and certified as having been completed in accordance with the Work Plan that is provided as Appendix B, along with the 2010 closure report for Tanks 204-207, to allow the proper closure of the tanks and the Solvent Vault. GLOBALFOUNDRIES has decontaminated these SWMUs in accordance with the closure performance standard at 6 NYCRR Part 373-3.7(b) and (e) and general policy guidelines obtained from the NYSDEC. GLOBALFOUNDRIES retained D&B Engineers and Architects, P.C. (D&B) to provide engineering oversight of the project, sample collection and to prepare a written report to document the decontamination activities. Techtron Environmental, Inc. (Techtron), conducted the decontamination activities for GLOBALFOUNDRIES. This report provides a Professional Engineer's certification that the SWMUs were decontaminated in accordance with the Work Plan as further detailed in this report.

2.0 SUMMARY OF DECONTAMINATION ACTIVITIES

This section of the report provides a summary of the field activities associated with the decontamination of the B/312B Solvent Vault SWMU. During the course of the project, D&B provided engineering oversight to ensure that the decontamination and sampling activities undertaken at B/312B were conducted in accordance with the Work Plan. The following section provides excerpts from the work plan for each step of the decontamination project (shown in italics), followed by a brief description of the onsite decontamination activities. **Appendix C** of this report, entitled "Daily Field Activity Reports," contains a detailed description of the daily activities conducted by D&B and Techtron during the course of the project. In addition, photographs of the work conducted are provided in the photographic log provided in **Appendix D**.

1. The unit will be pumped as low as possible, with all residual waste removed from the unit either by utilizing a vacuum truck or a portable pump. The liquid will be transferred to B/309 for classification and management in accordance with standard procedures under the GLOBALFOUNDRIES 6 NYCRR 373 Permit. Any remaining sludge/solids will be removed from the unit by hand, placed in a drum and labeled in accordance with USDOT regulations before being transferred to B/309 for proper classification and management.

Tanks 204-207 and associated piping which were decontaminated and closed in 2010, were removed and disposed as scrap metal in June 2018. A tanker truck was used to collect any accumulated liquids within the B/312B Solvent Vault and the wastewater was characterized prior to proper off-site disposal. A non-potable water source was utilized to decontaminate the interior of B/312B Solvent Vault. The tanker truck used to collect the decontamination wastewater and the wastewater was characterized prior to proper off-site disposal.

2. The SWMU interior will be decontaminated with a water and suitable surfactant solution in accordance with procedures approved by GLOBALFOUNDRIES. Decontamination water will be removed from the unit utilizing the same method as was used to remove residual liquid in Step 1 above.

A mixture of ZEP Z-Green detergent and water was used to clean the interior of B/312B Solvent Vault. After cleaning, the B/312B Solvent Vault was rinsed with water to remove any residual surfactant solution and the contents of the Solvent Vault were pumped into the tanker truck.

3. Rinse water samples will be collected in accordance with the Rinsate Sample Collection Protocol provided in Section 1.7.3 on page 1-13 of the Quality Assurance Project Plan (QAPP)

Rinse water samples were collected in accordance with the procedures found in Section 1.7.3 of the QAPP. A rinse blank sample was first collected from the source water utilized to decontaminate the B/312B Solvent Vault. A non-potable water source from a B/312 water spigot (312-1-NA-HB-3154-ASR) was utilized as rinse water. The rinse water was poured into new 5-gallon buckets with the bottoms removed with weather stripping and allowed to collect within the buckets placed at two separate locations on the B/312B Solvent Vault floor. The rinse water was allowed to remain in each bucket for approximately 10 minutes before a sample was collected from each. In addition, a blind duplicate sample was collected. Disposable sampling equipment was placed into 55-gallon drums for proper characterization and off-site disposal.

4. Rinse water samples will be analyzed for volatile organic compounds by a NYSDOH ELAP certified laboratory.

In addition to the analysis for volatile organic compounds, the B/312B Solvent Vault samples were analyzed for additional compounds that were previously stored within Tanks 204-207 including n-Butyl Acetate, N-methyl-2-pyrrolidone, isopropyl alcohol and total phenols. Rinse water samples, blanks and duplicates were labeled, placed in a cooler with ice and transported via Chain of Custody to EnviroTest Laboratories, Inc. in Newburgh, New York for analysis. A copy of the Chain of Custody form is provided in **Appendix E**.

5. Rinse water sample analytical results will be compared to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1-"Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations." If the rinse water sample results exceed the Class GA Groundwater Standards, the decontamination process will be repeated until the results are below the Class GA Standards at which time the decontamination will be deemed complete.

Section 3.0 of this report provides a discussion of the results of the rinse water sample analysis. The rinse blank sample, the rinse water samples and the blind duplicate sample exceeded Class GA Groundwater Standards for chloroform and dichlorobromomethane. It should be noted that the elevated concentrations of chloroform and dichlorobromomethane were detected in the rinse blank sample (source water) at higher concentrations than the two rinse water samples. Therefore, the source of these compounds is attributed to the water source and not to contamination within the B/312B Solvent Vault. As a result, the decontamination of B/312B Solvent Vault has been deemed complete.

3.0 DISCUSSION OF ANALYTICAL RESULTS

This section of the report presents the results of the laboratory analyses conducted on the rinse water, rinse water blank and blind duplicate samples collected during the decontamination of the B/312B Solvent Vault SWMU. As discussed in **Section 2.0** of this report, two rinse water samples were collected from the B/312B Solvent Vault SWMU after decontamination activities were completed. In addition, a rinse water blank sample was collected daily from the same water source used to decontaminate the SWMU. A blind duplicate sample was collected as well. A copy of the laboratory Chain of Custody form used to transfer the samples to the EnviroTest Laboratories, Inc. (EnviroTest) for analysis is provided in **Appendix E**. Copies of the Category B deliverables from EnviroTest are provided in **Appendix F**. **Appendix G** provides documentation of the data validation process conducted by D&B.

3.1 B/312B Solvent Vault

The rinse water samples collected from B/312B Solvent Vault were analyzed for volatile organic compounds (VOCs) to verify the effectiveness of the decontamination activities. In addition to the analysis for VOCs, the samples were analyzed for additional compounds previously stored within Tanks 204-207 such as n-Butyl Acetate for Tanks 204 and 205, N-methyl-2-pyrrolidone for Tank 207, isopropyl alcohol for Tanks 204 and 206 and total phenols for Tank 204. **Table 3-1** summarizes and compares the analytical results to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC's Technical and Operational Guidance Series (TOGS) 1.1.1 – "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations."

It should be noted that chloroform and dichlorobromomethane were detected at concentrations exceeding the Class GA Groundwater Standards in the two rinse water samples (B312BSV-R1-1 and B312BSV-R2-1) and in the blind duplicate sample (DUP083018). However, since elevated concentrations were detected in the rinse blank sample (B312BSV-RB-1) collected directly from the source water, the source of chloroform and dichlorobromomethane

TABLE 3-1

GLOBALFOUNDRIES U.S. 2 LLC - FAB 10

DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU) RINSE WATER SAMPLING ANALYTICAL RESULTS FOR

Comple ID					UNDS	NIVODEO
Sample ID	B312B5V-RB-1	B312B5V-R1-1	B312B5V-R2-1		Dementing a	
Sample Type		RINGE	RINGE		Reporting	
Sampling Date	0/30/2010	0/30/2010	0/30/2010	0/30/2010	Limit	Stanuard or
Dilution Factor	1/2	1	1/2	1/2	ug/l	
	ugn	ugn	ugn	ugn	ugn	ug/i
1 1 1 2-Tetrachloroethane			Ц	Ц	1	5
1 1 1-Trichloroethane	U	0	0	U	1	5
1 1 2 2-Tetrachloroethane	U	0	U	U	1	5
1 1 2-Trichloroethane	U	U	U	U U	1	1
1 1-Dichloroethane	U	U	U	Ŭ	1	5
1 1-Dichloroethene	U	0	U	U	1	5
1 1-Dichloropropene	U	U	U	U	1	5
1.2.3-Trichlorobenzene	U	U	U	U	1	5
1.2.3-Trichloropropane	Ŭ	U	U	Ŭ	1	0.04
1.2.4-Trichlorobenzene	Ŭ	U	U	Ŭ	1	5
1.2.4-Trimethylbenzene	Ŭ	U	U	Ŭ	1	5
1 2-Dibromo-3-chloropropane	U	U U	U U	U	5	0.04
1.2-Dibromoethane	U	U U	U U	Ŭ	1	0,0006
1.2-Dichlorobenzene	Ŭ	U	U	Ŭ	1	3
1.2-Dichloroethane	Ŭ	U	U	Ŭ	1	0.6
1.2-Dichloropropane	Ŭ	U	U	Ŭ	1	1
1.3.5-Trimethylbenzene	U	Ŭ	Ŭ	Ŭ	1	5
1.3-Dichlorobenzene	U	U	Ŭ	U	1	3
1.3-Dichloropropane	U	U	U	U	1	5
1.4-Dichlorobenzene	U	U	U	U	1	3
2,2-Dichloropropane	U	U	U	U	1	5
2-Butanone	U	U	U	U	1	50
2-Chlorotoluene	U	U	U	U	1	5
2-Hexanone	U	U	U	U	5	50
4-Chlorotoluene	U	U	U	U	1	5
4-Isopropyltoluene	U	U	U	U	1	5
4-Methyl-2-pentanone	U	U	U	U	5	
Acetone	U	U	U	U	5	50
Benzene	U	U	U	U	1	1
Bromobenzene	U	U	U	U	1	5
Bromochloromethane	U	U	U	U	1	5
Bromoform	U	U	U	U	1	50
Bromomethane	U	U	U	U	1	5
Carbon Disulfide	U	U	U	U	1	60
Carbon Tetrachloride	U	U	U	U	1	5
Chlorobenzene	U	U	U	U	1	5
Chloroethane	U	U	U	U	1	5
Chloroform	<u>55</u> <u>D</u>	48 UB	44 UBD	43 UBD	1	7
Chloromethane	0	U	U	U	1	5
cis-1,2-Dichloroethene	U	0	0	U	1	Э 0.4.*
Dibromochloromothono	U				1	U.4 " 50
Dibromomethane	0.0	4.2 UB	5.2 UB	4.9 UD	1	50
Dichlorobromomethane	16	12 I P		11 IB	1	5
Dichlorodifluoromethane	<u>10</u>				1	5
Ethylbenzene		11	11	U U	1	5
Hexachlorobutadiene	U U	U U	U U	U	1	0.5
i ioxuoliioi obuldulelle	0	0	0	0	I	0.0

See next page for footnotes/qualifiers.

TABLE 3-1

GLOBALFOUNDRIES U.S. 2 LLC - FAB 10

DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU) RINSE WATER SAMPLING ANALYTICAL RESULTS FOR

VOLATILE ORGANIC COMPOUNDS (VOCs) AND ADDITIONAL COMPOUNDS							
Sample ID	B312BSV-RB-1	B312BSV-R1-1	B312BSV-R2-1	DUP083018		NYSDEC	
Sample Type	RINSE BLANK	RINSE	RINSE	DUPLICATE R2	Reporting	Class GA	
Sampling Date	8/30/2018	8/30/2018	8/30/2018	8/30/2018	Limit	Standard or	
Dilution Factor	1/2	1	1/2	1/2		Guidance Value	
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
COMPOUNDS CONTINUED							
lodomethane	U	U	U	U	1		
Isopropylbenzene	U	U	U	U	1	5	
m,p-Xylene	U	U	U	U	2	5	
Methyl tert-Butyl Ether	U	U	U	U	1	10	
Methylene Chloride	U	U	U	U	1	5	
Naphthalene	U	U	U	U	5	10	
n-Butylbenzene	U	U	U	U	1	5	
n-Propylbenzene	U	U	U	U	1	5	
o-Xylene	U	U	U	U	1	5	
sec-Butylbenzene	U	U	U	U	1	5	
Styrene	U	U	U	U	1	5	
tert-Butylbenzene	U	U	U	U	1	5	
Tetrachloroethene	U	U	U	U	1	5	
Toluene	U	U	U	U	1	5	
trans-1,2-Dichloroethene	U	U	U	U	1	5	
trans-1,3-Dichloropropene	U	U	U	U	1	0.4 *	
Trichloroethene	U	U	U	U	1	5	
Trichlorofluoromethane	U	U	U	U	1	5	
Vinyl Acetate	U	U	U	U	1		
Vinyl Chloride	U	U	U	U	1	2	
Xylene (total)	U	U	U	U	1	5	
Isopropyl Alcohol	U	U	U	U	10		
n-Butyl Acetate	ND	ND	ND	ND			
N-methyl-2-pyrrolidone	UJ	UJ	UJ	UJ	1		
Total phenols	U	U	U	U	1	1	
Total	77.6	0	0	0			

Footnotes/Qualifiers:

ug/I: Micrograms per liter

--: No standard

Exceeds Class GA Standard or Guidance Value

U: Analyzed for but not detected

B: Qualified as non-detect based on blank results

D: Result reported from a secondary dilution

J: Estimated detection limit

ND: Not detected analyzed as a tentatively identified compound

*: Sum of both isomers

was not attributed to contamination within the B/312B Solvent Vault. Since no additional compounds exceeded the Class GA Groundwater Standards, the decontamination of the B/312B Solvent Vault was determined to be complete. As a result, it is recommended that Tanks 204-207 and the B/312B Solvent Vault be considered properly closed in accordance with applicable laws and regulations.

4.0 CERTIFICATION OF DECONTAMINATION

I certify under penalty of law that the Solid Waste Management Units B/312B Solvent Vault located at the GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 in Hopewell Junction, New York, included in this report has been decontaminated in accordance with the specifications contained in the Work Plan as described in this report. It is recommended that Tanks 204-207 and the B/312B Solvent Vault considered closed in accordance with applicable laws and regulations and that no further action be required.

	,
Signature:	Andr 1
Name:	ANDREW LACOURCIENE
Title:	Northcost Regional Environmental My
Date:	11/70/2015

·

OWNER/OPERATOR:

INDEPENDENT PROFESSIONAL ENGINEER:

Signature:

Name:

Title:

Date:

Brien Voit

Brian M. Veith

Senior Vice President

10/25/2018

+3932/NN09251809_Rpt

APPENDIX A

DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUS) 204-207 REPORT

2515/IBM/Jobs/HW(06/14/10)RLA

DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUS) 204-207 INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY

Prepared for:

PIZZAGALLI CONSTRUCTION COMPANY WAPPINGERS FALLS, NEW YORK

AND

INTERNATIONAL BUSINESS MACHINES CORPORATION HOPEWELL JUNCTION, NEW YORK

Prepared by:

WILLIAM F. COSULICH ASSOCIATES, P.C. 330 CROSSWAYS PARK DRIVE WOODBURY, NEW YORK

JUNE 2010

DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUS) 204-207 INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY

TABLE OF CONTENTS

Section	. ·	Title	<u>Page</u>	
1.0	INTRODUCTION			
	1.1 1.2	Project Background Project Scope and Objective	1-1 1-2	
2.0	SUM	IMARY OF DECONTAMINATION ACTIVITIES	2-1	
3.0	DISC	CUSSION OF ANALYTICAL RESULTS	3-1	
	3.1	Tanks 204 through 207	3-1	
4.0	CER	TIFICATION OF DECONTAMINATION	4-1	

List of Appendices

Work Plan and Quality Assurance Project Plan	A
Daily Field Activity Reports	B
Photographic Log	C
Chain of Custody Forms	D
Laboratory Analytical Results	E
Data Validation	F

i

TABLE OF CONTENTS (continued)

List of Figures

1-1	Building 312B Vault Solid Waste Management Units Location Map 1-4
List of Tables	
1-1	Identification of SWMUs Undergoing Decontamination 1-3
3-1	Rinse Water Sampling Analytical Results for Volatile Organic Compounds (VOCs) and Additional Compounds
3-2	Tank 205 - Second Round of Rinse Water SamplingAnalytical Results for Acetone3-5

ii

1.0 INTRODUCTION

1.1 **Project Background**

The International Business Machines Corporation (IBM) East Fishkill facility is located at the Hudson Valley Research Park (HVRP) on State Route 52 in Hopewell Junction, Dutchess County, New York. The facility is bordered on the north by State Route 52 and on the south by U.S. Interstate 84, and is located approximately 10 miles east of the Hudson River. IBM initiated manufacturing operations at the East Fishkill facility in April 1963. The site currently houses various facilities and operations primarily involved in the manufacture of semiconductors and electronic computing equipment.

As a result of the manufacturing operations conducted at the facility, both hazardous and nonhazardous waste are generated. In order to properly manage hazardous waste at the facility, IBM obtained a 6 NYCRR Part 373 Permit from the New York State Department of Environmental Conservation (NYSDEC) for the storage of hazardous waste in containers within Building 309 (Permit No. 3-1323-0025/00249-0). As part of the permit application process, IBM was required to identify all solid waste management units (SWMUs) located at the facility. SWMUs are defined as any discernible unit in which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of hazardous or solid wastes. These SWMUs were incorporated into the permit for the facility and evaluated on the potential for the release of hazardous waste or hazardous constituents from the unit to the environment. In evaluating each SWMU, several factors were considered to determine the "release potential" of each unit, including history of releases, design characteristics, secondary containment, location and proximity to contaminated environmental media.

Based on the above factors regarding release potential, each unit was placed into one of the following three subcategories:

- Category A No Further Action (no release)
- Category B Sampling Required (possible release)

• Category C - RCRA Facility Investigation and/or Corrective Measure Study required (documented release)

Due to the fact that B/312B is considered to be a part of the IBM East Fishkill facility, the SWMUs located at B/312B vault are incorporated into the 6 NYCRR Part 373 Permit. However, it should be noted Table II-1 included in the 6 NYCRR Part 373 Permit lists the location of SMUs 204-207 as B/322 E (east of Building 322) where B/312B is currently located. All of the SWMUs located at B/312B are grouped in Category A on the permit.

In June 2000, MiCRUS, a tenant of the HVRP, was purchased by the Philips Semiconductor Manufacturing, Inc. and took over ownership of the division. In 2006, NXP Semiconductors USA, Inc. (NXP) took over ownership of the Philip's Semiconductor division and operated the spaces previously occupied by Philips until 2009, when NXP ceased manufacturing operations at the HVRP. This resulted in the termination of the lease agreement and turning over to IBM control, the operation of the spaces in B/310, B/320B and B/322 formerly occupied by NXP. IBM determined that the SWMUs listed on Table 1-1 required decontamination before the final turnover of the leased space was completed. These SWMUs include less-than-90-day mixed solvent hazardous waste storage tanks and associated piping. The locations of these SWMUs are provided on the site location map in Figure 1-1.

It should be noted that although the B/312B SWMUs listed on Table 1-1 have been decontaminated, they will remain a part of the 6 NYCRR Part 373 Permit for the IBM East Fishkill facility.

1.2 Project Scope and Objective

The objective of this decontamination report is to ensure that the SWMUs located at B/312B have been properly decontaminated and that the decontamination process is documented and certified as having been completed in accordance with the Work Plan that is provided as Appendix A. IBM has decontaminated these SWMUs in accordance with the closure performance standard at 6 NYCRR Part 373-3.7(b) and (e) and general policy guidelines

1-2

Table 1-1

IBM EAST FISHKILL FACILITY DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUs) 204-207 IDENTIFICATION OF SWMUs UNDERGOING DECONTAMINATION

Tank #	Capacity (gallons)	Location	Material	Orientation	Tank Contents
204	5,000	B/312B Vault	Steel	Horizontal	Mixed Solvent Waste
205	5,000	B/312B Vault	Steel	Horizontal	n-Butyl Acetate Waste
206	5,000	B/312B Vault	Steel	Horizontal	Isopropyl Alcohol Waste
207	5,000	B/312B Vault	Steel	Horizontal	N-Methyl-2-Pyrrolidone Waste

1-3

-\2515\dwg\2515-FIG1-1.dwg, FIG 1-1-312B, 6/14/2010 2:08:31 PM, AStrauss

obtained from the NYSDEC. Techtron Environmental, Inc. (Techtron), stationed at the IBM East Fishkill facility, conducted the decontamination activities for the Pizzagalli Construction Company (Pizzagalli). Pizzagalli retained William F. Cosulich Associates, P.C. (WFC) to provide engineering oversight of the project and to prepare a written report to document the decontamination activities. This report provides a Professional Engineer's certification that the SWMUs were decontaminated in accordance with the Work Plan as further detailed in this report.

2.0 SUMMARY OF DECONTAMINATION ACTIVITIES

This section of the report provides a summary of the field activities associated with the decontamination of the B/312B SWMUs identified in Section 1.0. During the course of the project, WFC provided engineering oversight to ensure that the decontamination and sampling activities undertaken at B/312B were conducted in accordance with the Work Plan. The following section provides excerpts from the work plan for each step of the decontamination project (shown in italics), followed by a brief description of the onsite decontamination activities. Appendix B of this report, entitled "Daily Field Activity Reports," contains a detailed description of the daily activities conducted by WFC and Techtron during the course of the project. In addition, photographs of the work conducted are provided in the photographic log provided in Appendix C.

1. The unit will be pumped as low as possible, with all residual waste removed from the unit either by utilizing a vacuum truck or a portable pump. The liquid will be transferred to B/309 for classification and management in accordance with standard procedures under the IBM East Fishkill 6 NYCRR 373 Permit. Any remaining sludge/solids will be removed from the unit by hand, placed in a drum and labeled in accordance with USDOT regulations before being transferred to B/309 for proper classification and management.

Tanks 204 and 205 were found to be free of liquids, but residue was noted within the interior of the tanks and was removed during the cleaning process. In addition, Tank 205 had a minor amount of sludge located within the tank that was pumped into the tanker truck. Tanks 206 and 207 were found to be free of liquids with minor amount of residue noted on the interior tank shells. Any solid waste material such as PPE and used rags and other debris were placed in 55-gallon drums for proper off-site disposal. A non-potable water source was utilized to decontaminate the interior of the units. The tanker truck used to collect the decontamination wastewater was transported to B/309 for characterization prior to proper off-site disposal of the wastewater.

2. The SWMU interior will be decontaminated with a water and suitable surfactant solution in accordance with procedures approved by IBM. Decontamination water will be removed from the unit utilizing the same method as was used to remove residual liquid in Step 1 above.

A mixture of ZEP Z-Green detergent and water was used to clean the interiors of the units. After cleaning, the tanks were rinsed with water to remove any residual surfactant solution and the contents of the tanks were pumped into the tanker truck.

Rinse water samples will collected in accordance with the Rinsate Sample Collection Protocol provided in Section 1.7.3 on page 1-13 of the Quality Assurance Project Plan (QAPP)

Rinse water samples were collected in accordance with the procedures found in Section 1.7.3 of the QAPP. A rinse blank sample was first collected from the source water utilized to decontaminate the units. Organic-free distilled water supplied by the laboratory was utilized as rinse water. The rinse water was poured into the tanks and allowed to collect in the bottom of each of the units. Plastic bags filled with sand were used as a berm to create a pool of water. The rinse water was allowed to remain in each unit for approximately 10 minutes before a sample was collected. In addition, a blind duplicate sample was collected each day. Disposable sampling equipment was placed into 55-gallon drums for proper off-site disposal.

Rinse water samples will be analyzed for volatile organic compounds by a NYSDOH ELAP certified laboratory.

In addition to the analysis for volatile organic compounds, certain samples were analyzed for additional compounds such as n-Butyl Acetate for Tanks 204 and 205, N-methyl-2-pyrrolidone for Tank 207, isopropyl alcohol for Tanks 204 and 206 and total phenols for Tank 204. Rinse water samples, blanks and duplicates were labeled, placed in a cooler on ice and transported via Chain of Custody to EnviroTest Laboratories, Inc. in Newburgh, New York for analysis. Copies of the Chain of Custody forms are provided in Appendix D.

5. Rinse water sample analytical results will be compared to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1-"Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations." If the rinse water sample results exceed the Class GA Groundwater Standards, the decontamination process will be repeated until the results are below the Class GA Standards at which time the decontamination will be deemed complete.

Section 3.0 of this report provides a discussion of the results of the rinse water sample analysis. Tank 205 exceeded Class GA Groundwater Standards for Acetone. Tank 205 was, therefore, recleaned and resampled.

3.

4.

3.0 DISCUSSION OF ANALYTICAL RESULTS

This section of the report presents the results of the laboratory analyses conducted on the rinse water, rinse water blank and blind duplicate samples collected during the decontamination of the B/312B SWMUs. As discussed in Section 2.0 of this report, a rinse water sample was collected from each of the B/312B SWMUs after decontamination activities were completed. In addition, a rinse water blank sample was collected daily from the same water source used to decontaminate the SWMUs. A blind duplicate sample was collected daily. Copies of the laboratory Chain of Custody forms used to transfer the samples to the laboratory for analysis are provided in Appendix D. Copies of the Category B deliverables from EnviroTest Laboratories, Inc. are provided in Appendix E. Appendix F provides documentation of the data validation process conducted by WFC.

3.1 Tanks 204 through 207

The rinse water samples collected from Tanks 204 through 207 were analyzed for volatile organic compounds (VOCs) to verify the effectiveness of the decontamination activities. In addition, certain samples were analyzed for additional compounds such as n-Butyl Acetate for Tanks 204 and 205, N-methyl-2-pyrrolidone for Tank 207, isopropyl alcohol for Tanks 204 and 206 and total phenols for Tank 204. Table 3-1 summarizes and compares the analytical results to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC's Technical and Operational Guidance Series (TOGS) 1.1.1 – "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations."

It should be noted that, for Tank 204, total phenols were detected at a concentration exceeding the Class GA Groundwater Standards in samples MWS-204-R-1 and B312-RB-1. However, since elevated concentrations were detected in the rinse water blank samples as well as the rinse water sample, the source of total phenols cannot be attributed to contamination within the tank. As a result, the decontamination of Tank 204 was determined to be complete. In addition, chloroform and bromodichloromethane were detected at concentrations exceeding the Class GA Groundwater Standard in sample B312-RB-1 the rinse blank sample.

TABLE 3-1 IBM EAST FISHKILL FACILITY DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUs) 204-207 RINSE WATER SAMPLING ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS (VOCs) AND ADDITIONAL COMPOUNDS

SAMPLE ID	MWS-204-R-1	NBA-205-R-1	IPA-206-R-1	DUP012910	NMP-207-R-1	B312-RB-1		NYSDEC CLASS GA
SAMPLE I YPE	RINSE	RINSE	RINSE	DUPLICATE	RINSE	RINSE BLANK	DEDODENIC	GROUNDWATER
DATE OF COLLECTION	1/29/2010	1/29/2010	1/29/2010	1/29/2010	1/29/2010	1/29/2010	REPORTING	STANDARDS/
DILUTION FACTOR	1.0	1/10	1.0	1.0	1.0	1.0	LIMITS	GUIDANCE VALUES
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Dichlorodifluoromethane	U	U	U	U	U	U	1	5 ST
Chloromethane	U	U	U	U	U	U	1	5 ST
Vinyl Chloride	U	U	U	U	U	U	1	2 ST
Bromomethane	U	U	U	U	U	U	1	5 ST
Chloroethane	U	U	U	U	U	U	1	5 ST
Trichlorofluoromethane	U	U	U	U	U	U	1	5 ST
1,1-Dichloroethene	U	U	U	U	U	U	1	5 ST
Acetone	U	190 DJ	U	U	U	2.8 J	1	50GV
Iodomethane	U	U	U	U	U	U	1	
Carbon Disulfide	U	U	U	U	U	U	1	60GV
Methylene Chloride	U	U	U	U	U	U	1	5 ST
trans-1,2-Dichloroethene	U	U	U	U	U	U	1	5 ST
Methyl tert-Butyl Ether	U	U	U	U	U	U	1	10GV
1,1-Dichloroethane	U	U	U	U	U	U	1	5 ST
Vinyl Acetate	U	U	U	U	U	U	1	
2-Butanone	U	U	U	U	U	U	1	50GV
cis-1,2-Dichloroethene	U	U	U	U	U	U	1	5 ST
2,2-Dichloropropane	U	U	U	U	U	U	1	5 ST
Bromochloromethane	U	U	U	U	U	U	1	5 ST
Chloroform	U	U	U	U	U	17	1	/ 51
1,1,1-Trichloroethane	U	U	U	U	U	U	1	5 51
1,1-Dichloropropene	U	U	U	U	U	U	1	5 S1
1 2 Dishlarosthana	U	U	U	U	U	U	1	0.6 ST
Renzene	U	U	U	U	U	U	1	1 ST
Trichloroethene	U U	U	U	U U	U U	U	1	5 ST
1 2-Dichloropropane	U	U	U	U	U	U	1	1 ST
Dibromomethane	U	Ŭ	U	U	U	U U	1	5 ST
Bromodichloromethane	Ŭ	Ŭ	Ũ	Ŭ	Ŭ	5.3	1	5 ST
cis-1,3-Dichloropropene	Ū	Ŭ	Ũ	Ū	Ū	U	1	0.4 ST *
4-Methyl-2-pentanone	U	U	U	U	U	U	1	
Toluene	U	U	U	U	U	U	1	5 ST
trans-1,3-Dichloropropene	U	U	U	U	U	U	1	0.4 ST *
1,1,2-Trichloroethane	U	U	U	U	U	U	1	1 ST
1,3-Dichloropropane	U	U	U	U	U	U	1	5 ST

TABLE 3-1 (Continued) IBM EAST FISHKILL FACILITY DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUs) 204-207 RINSE WATER SAMPLING ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS (VOCs) AND ADDITIONAL COMPOUNDS

SAMPLE ID	MWS-204-R-1	NBA-205-R-1	IPA-206-R-1	DUP012910	NMP-207-R-1	B312-RB-1		NYSDEC CLASS GA
SAMPLE TYPE	RINSE	RINSE	RINSE	DUPLICATE	RINSE	RINSE BLANK		GROUNDWATER
DATE OF COLLECTION	1/29/2010	1/29/2010	1/29/2010	1/29/2010	1/29/2010	1/29/2010	REPORTING	STANDARDS/
DILUTION FACTOR	1.0	1/10	1.0	1.0	1.0	1.0	LIMITS	GUIDANCE VALUES
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Tetrachloroethene	U	U	U	U	U	U	1	5 ST
2-Hexanone	U	U	U	U	U	U	1	50GV
Dibromochloromethane	U	U	U	U	U	U	1	50GV
1,2-Dibromoethane	U	U	U	U	U	U	1	
Chlorobenzene	U	U	U	U	U	U	1	5 ST
1,1,1,2-Tetrachloroethane	U	U	U	U	U	U	1	5 ST
Ethylbenzene	U	U	U	U	U	U	1	5 ST
m,p-Xylene	U	U	U	U	U	U	1	5 ST
o-Xylene	U	U	U	U	U	U	1	5 ST
Xylene (total)	U	U	U	U	U	U	1	5 ST
Styrene	U	U	U	U	U	U	1	5 ST
Bromoform	U	U	U	U	U	U	1	50GV
Isopropylbenzene	U	U	U	U	U	U	1	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	1	5 ST
Bromobenzene	U	U	U	U	U	U	1	5 ST
1,2,3-Trichloropropane	U	U	U	U	U	U	1	0.04 ST
n-Propylbenzene	U	U	U	U	U	U	1	5 ST
2-Chlorotoluene	U	U	U	U	U	U	1	5 ST
1,3,5-Trimethylbenzene	U	U	U	U	U	U	1	5 ST
4-Chlorotoluene	U	U	U	U	U	U	1	5 ST
tert-Butylbenzene	U	U	U	U	U	U	1	5 ST
1,2,4-Trimethylbenzene	U	U	U	U	U	U	1	5 ST
sec-Butylbenzene	U	U	U	U	U	U	1	5 ST
4-Isopropyltoluene	U	U	U	U	U	U	1	5 ST
1,3-Dichlorobenzene	U	U	U	U	U	U	1	3 ST
1,4-Dichlorobenzene	U	U	U	U	U	U	1	3 ST
n-Butylbenzene	U	U	U	U	U	U	1	5 ST
1,2-Dichlorobenzene	U	U	U	U	U	U	1	3 ST
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	1	0.04 ST
1.2.4-Trichlorobenzene	U	Ū	Ū	U	U	U	1	5 ST
Hexachlorobutadiene	U	U	U	U	U	U	1	0.5 ST
Naphthalene	U	Ū	Ū	U	U	U	1	10 GV
1.2.3-Trichlorobenzene	Ŭ	Ū	Ũ	Ŭ	Ŭ	Ŭ	1	5 ST
Isopropyl Alcohol	Ŭ	NA	190 I	200 I	NA	Ŭ	10	
n-Butyl Acetate	Ŭ	U	NA	NA	NA	Ŭ	1	
N-methyl-2-pyrrolidone	NA	NA	NA	NA	14	Ŭ	1,000	
Total phenols	U	NA	NA	NA	NA	12	10	1 ST
rour pierois	Ū	1111	1121	1111	1121	14		101
Totals	0.0	190.0	190.0	200.0	14.0	37.1		

Qualifiers:

U: Constituent analyzed for but not detected. D: Analysis reported from secondary dilution

J: Estimated.

Notes:

*: Value pertains to the sum of the isomers

GV: Guidance Value

ST: Standard

----: Not established

: Result exceeds NYSDEC Class GA Standards/Guidance Values

DUP: Blind duplicate sample

IPA: Isopropyl Alcohol

MWS: Mixed waste solvent

NA: Not analyzed

NBA: n-Butyl Acetate

NMP: N-methyl-2-pyrrolidone

R: Rinse sample

RB: Rinse blank sample

Acetone was detected at a concentration of 190 ug/l, exceeding the Class GA Groundwater Standards of 50 ug/l in sample NBA-205-R-1. As a result, Tank 205 was recleaned in accordance with the Work Plan and resampled and analyzed for acetone.

The analytical results from the second cleaning of Tank 205 for acetone are summarized on Table 3-2. Elevated concentrations were detected in all three samples collected; the rinse blank sample, the rinse water sample and the blind duplicate samples for Tank 205. Due to the concentration of acetone detected in the rinse blank (59 ug/l) being comparable to that detected in the samples, the source of acetone is attributed to the water source and not the SWMU. As a result, the decontamination of SWMU 205 was determined to be complete.

The rinse water samples for Tanks 206 and 207 did not have any analytical results that exceeded Class GA Groundwater Standards and Guidance Values; therefore, Tanks 206 and 207 have been deemed successfully decontaminated.

3-4

TABLE 3-2

IBM EAST FISHKILL FACILITY DECONTAMINATION OF B/312B SOLID WASTE MANAGEMENT UNITS (SWMUs) 204-207

TANK 205 - SECOND ROUND OF RINSE WATER SAMPLING ANALYTICAL RESULTS FOR ACETONE

SAMPLE ID	NBA-205-R-2	DUP031210	B312-RB-2		NYSDEC CLASS GA
SAMPLE TYPE	RINSE	DUPLICATE	RINSE BLANK		GROUNDWATER
DATE OF COLLECTION	3/12/2010	3/12/2010	3/12/2010	REPORTING	STANDARDS/
DILUTION FACTOR	5.0	5.0	5.0	LIMITS	GUIDANCE VALUES
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l
Acetone	UJ	UJ	59 DJ	1	50GV

Qualifiers:

D: Analyzed at secondary dilution.

J: Estimated.

U: Constituent analyzed for but not detected.

Notes:

GV: Guidance Value

: Result exceeds NYSDEC Class GA Standards/Guidance Values

DUP: Blind duplicate sample

NBA: n-Butyl Acetate

R: Rinse sample

RB: Rinse blank sample

2515/I/B312BSWMUs204_207/Table 3-2

4.0 CERTIFICATION OF DECONTAMINATION

I certify under penalty of law that the Solid Waste Management Units 204-207 located at Building 312B Vault at the International Business Machines Corporation East Fishkill facility in Hopewell Junction, New York, included in this report have been decontaminated in accordance with the specifications contained in the Work Plan as described in this report.

OWNER/OPERATOR:

Signature:	J. In Halis
Name:	Steve Hawkins
Title:	Mgr. Env. Eng.
Date:	3/21/13

INDEPENDENT PROFESSIONAL ENGINEER:

Brein Verth Signature: Name: Brian M. Veith Vice President Title: 6/15/2010 Date:

APPENDIX A

WORK PLAN AND QUALITY ASSURANCE PROJECT PLAN

♦2515\RR02091001.DOC

INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY PROCEDURES FOR DECONTAMINATION OF NXP AND RELATED SOLID WASTE MANAGEMENT UNITS (SWMUs)

Mixed Solvent Waste Tanks

This procedure is intended to be used to collect samples for analysis from the solvent storage tanks listed below.

UNIT ID #	LOCATION	TANK CONTENTS	PURPOSE	
204	312 B Vault	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
205	312 B Vault	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
206	312 B Vault	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
207	312 B Vault	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
208	322 West Truck Spill	Solvent Waste - Mixed	Spill Tank	
3109	OMF	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
3110	330D South Outside	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
285	309 Outside	Solvent Waste - Mixed	< 90 Day HW Storage Tank	
3158	310 Column J8	Solvent Waste - Mixed	< 90 Day HW Storage Tank	

1. The unit will be pumped as low as possible, with all residual waste removed from the unit either by utilizing a vacuum truck or a portable pump. The liquid will be transferred to B/309 for classification and management in accordance with standard procedures under the IBM East Fishkill 6 NYCRR 373 Permit. Any remaining sludge/solids will be removed from the unit by hand, placed in a drum and labeled in accordance with USDOT regulations before being transferred to B/309 for proper classification and management.

INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL FACILITY DECONTAMINATION OF NXP AND RELATED SOLID WASTE MANAGEMENT UNITS (SWMUs)

<u>CERTIFICATION OF COMPARISON OF RINSE WATER SAMPLES TO CLASS GA</u> <u>GROUNDWATER STANDARDS</u>

- 2. The SWMU interior will be decontaminated with a water and suitable surfactant solution in accordance with procedures approved by IBM. Decontamination water will be removed from the unit utilizing the same method as was used to remove residual liquid in Step 1 above.
- 3. Rinse water samples will collected in accordance with the Rinsate Sample Collection Protocol provided in Section 1.7.3 on page 1-13 of the attached Quality Assurance Project Plan (QAPP)
- 4. Rinse water samples will be analyzed for volatile organic compounds by a NYSDOH ELAP certified laboratory.
- 5. Rinse water sample analytical results will be compared to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1-"Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations." If the rinse water sample results exceed the Class GA Groundwater Standards, the decontamination process will be repeated until the results are below the Class GA Standards at which time the decontamination will be deemed complete.

INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL, NEW YORK

QUALITY ASSURANCE PROJECT PLAN FOR DECONTAMINATION OF NXP AND RELATED SOLID WASTE MANAGEMENT UNITS (SWMUs)

Prepared for:

INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL, NEW YORK

Prepared by:

WILLIAM F. COSULICH ASSOCIATES, P.C. WOODBURY, NEW YORK

NOVEMBER 2009

INTERNATIONAL BUSINESS MACHINES CORPORATION EAST FISHKILL, NEW YORK QUALITY ASSURANCE PROJECT PLAN FOR DECONTAMINATION OF NXP AND RELATED SOLID WASTE MANAGEMENT UNITS

TABLE OF CONTENTS

Section

<u>Title</u>

Page

1.0	QUA	LITY ASSURANCE PROJECT PLAN1-1
	1.1	Project Identification1-1
	1.2	Objective and Scope1-1
	1.3	Data Usage
	1.4	Sampling Program Design and Rationale1-2
	1.5	Analytical Methods1-2
	1.6	Data Quality Requirements and Assessment
		1.6.1 Data Representativeness
		1.6.2 Data Comparability1-9
		1.6.3 Data Completeness1-9
	1.7	Detailed Sampling Procedures1-9
		1.7.1 Sample Identification1-10
		1.7.2 Sample Handling, Packaging and Shipping1-11
		1.7.3 Rinse Water/Blind Duplicate Samples1-12
		1.7.4 Rinse Water Blank Sample1-13
	1.8	Decontamination Procedures1-14
		1.8.1 Field Decontamination Procedures1-14
		1.8.2 Decontamination Procedure for Sampling Equipment1-14
	1.9	Laboratory Sample Custody Procedures1-15
	1.10	Field Management Documentation1-15
		1.10.1 Location Sketch
		1.10.2 Chain of Custody1-15
		1.10.3 Field Log Book1-17
	1.11	Calibration Procedures and Preventive Maintenance
•	1.12	Performance of Field Audits1-19
	1.13	Control and Disposal of Contaminated Material1-19
	1.14	Data Validation
	1.15	Performance and System Audits1-22
	1.16	Corrective Action
	1.17	Duplicate
	1.18	Trip Blanks (Travel Blanks)

i

Exhibit A - Detection Limits

Exhibit B - Data Validation Forms

TABLE OF CONTENTS (continued)

List of Tables

1-1	Summary of Monitoring Parameters/Sample Fractions1-	.3
1-2	Objectives for Precision and Accuracy1-	7

1.0 QUALITY ASSURANCE PROJECT PLAN

1.1 Project Identification

Facility Name:	International Business Machines Corporation (IBM)			
	East Fishkill, New York			
Project Name:	Decontamination of NXP and Related Solid Waste Management Units (SWMUs)			
Project Managers:	Linda N. Daubert			
	Ellen R. DeOrsay (William F. Cosulich Associates, P.C.)			
Quality Assurance Officer:	Robbin A. Petrella (William F. Cosulich Associates, P.C.)			
Field Operations Manager:	Michael Williams (William F. Cosulich Associates, P.C.)			

1.2 Objective and Scope

The objective of this program is to decontaminate the NXP and related Solid Waste Management Units (SWMUs) located of the IBM East Fishkill facility. As part of the decontamination activities, rinse water and rinse water blank samples will be collected to verify the effectiveness of the decontamination procedures. The purpose of this Quality Assurance Project Plan (QAPP) is to develop and describe the detailed sample collection and analytical procedures that will ensure high quality data.

1.3 Data Usage

The data generated from the field sampling will be used to verify the effectiveness of the decontamination activities performed on the SWMUs and associated piping. Specifically, the samples will be used to determine whether the decontamination activities were successful in removing any contamination present in the SWMUs and associated piping. If the samples

indicate that contamination remains present, then additional decontamination may be required before the unit can be considered decontaminated.

1.4 Sampling Program Design and Rationale

The following presents a general discussion of the sampling to be conducted during the sampling portion of the program.

- Rinse Water Samples: Rinse water samples will be collected from certain SWMUs being decontaminated during this project. In addition, one blind duplicate will be collected each day a rinse water sample is collected.
- Rinse Water Blank Sample: One rinse water blank sample will be collected each day a rinse water sample is collected during this decontamination project directly from the water supply utilized to decontaminate the SWMUs.

1.5 Analytical Methods

Laboratory analysis of the rinse water and rinse water blank samples will consist of analyzing for pH, fluoride, and/or volatile organic compounds (VOCs) as identified in the 2005 NYSDEC Analytical Services Protocol (ASP), depending on sample location.

Table 1-1 presents a summary of the parameters/sample fractions to be analyzed. The table also lists the sample location, type of sample, sample matrix, number of samples and frequency of sample collection, type of sample container, method of preservation, holding time and analytical method.

Table 1-1

INTERNATIONAL BUSINESS MACHINES CORPORATION DECONTAMINATION OF NXP AND RELATED SWMUs SUMMARY OF MONITORING PARAMETERS/SAMPLE FRACTIONS

Sample Location	Sample Type	Sample Matrix	Sample Fraction	No. of <u>Samples</u> *	<u>Frequency</u> **	Container <u>Type/Size/No.</u>	Sample <u>Preservation</u>	Maximum <u>Holding Time</u> ***	Analytical Method
Fluoride Wastewater SWMUs	Grab	Water	Fluoride	3	2	Plastic/50 ml/1 ICHEM 300 series or equivalent	Cool to 4°C	26 days for analysis	7/05 NYSDEC ASP, Method 9214
Fluoride Wastewater and Acid SWMUs			рН	3	3	Plastic/50 ml/1 ICHEM 300 series or equivalent	Cool to 4°C	analyze immediately	7/05 NYSDEC ASP, Method 9040

*Number of samples includes a rinse water, rinse water blank and duplicate.

**Frequency equals number of SWMUs to be decontaminated.

***Holding times based upon Verified Time of Sample Receipt at the laboratory.

Table 1-1 (continued)

INTERNATIONAL BUSINESS MACHINES CORPORATION DECONTAMINATION OF NXP AND RELATED SWMUs SUMMARY OF MONITORING PARAMETERS/SAMPLE FRACTIONS

Sample Location	Sample Type	<u>Sample Matrix</u>	Sample Fraction	No. of <u>Samples</u> *	<u>Frequency</u> **	Container <u>Type/Size/No.</u>	Sample <u>Preservation</u>	Maximum <u>Holding Time</u> ***	Analytical Method
Mixed Solvent Tanks	Grab	Water	Volatile Organics	3	9	Glass/40 ml/3 ICHEM 300 series or equivalent	Cool to 4°C	10 days	7/05 NYSDEC ASP, Method 8260B

1-4

*Number of samples includes a rinse water, rinse water blank and duplicate.

**Frequency equals number of SWMUs to be decontaminated.

***Holding times based upon Verified Time of Sample Receipt at the laboratory.

Trip Blanks will be submitted each day samples are shipped to the laboratory. Provision for 6 trip blanks has been made.

1.6 Data Quality Requirements and Assessment

Data quality requirements and assessments are provided in the 2005 NYSDEC ASP, which includes the detection limit for each parameter and sample matrix (see Exhibit A). Note that quantification limits, estimated accuracy, accuracy protocol, estimated precision and precision protocol are determined by the laboratory and will be in conformance with the requirements of the 2005 NYSDEC ASP, where applicable. Table 1-2 presents a summary of the data quality requirements.

In addition to meeting the requirements provided in the 2005 NYSDEC ASP, the data must also be useful in evaluating the nature and extent of contamination. Data obtained during the field program will be compared to specific Standards, Criteria and Guidelines (SCGs). The SCGs to be utilized include:

<u>Matrix</u>

<u>SCG</u>

Rinse Water and
Rinse WaterNYSDEC Class GA Groundwater Standards found at Division
of Water Technical and Operational Guidance Series (1.1.1)
dated June 1998.

1.6.1 Data Representativeness

Representative samples will be collected as follows:

- <u>Rinse Water</u> Samples will be collected utilizing hose (deionized) water. Hose water will be poured into the SWMU, allowed to stand for approximately 10 minutes and then collected utilizing sterile plastic pipettes or similar equipment.
- <u>Rinse Water Blank</u> Samples will be collected of the water utilized to decontaminate the area directly from the water source (e.g., hose, etc.) and passed through a sterile plastic pipette into the sample container.
- <u>Equipment Decontamination</u> Non-sterile sampling equipment will be decontaminated prior to use at each location according to the NYSDEC-approved procedures described in Section 1.8 of this QAPP.

Table 1-2

INTERNATIONAL BUSINESS MACHINES CORPORATION DECONTAMINATION OF NXP AND RELATED SWMUs DATA QUALITY REQUIREMENTS

<u>Parameter</u>	<u>Sample Matrix</u>	CRDL* (ug/l)	Estimated Accuracy	Accuracy Protocol	Estimated Precision	Precision Protocol
Volatile Organics	Liquid	5-10 5-10	0.87 - 2.48 ug/l	Vol. IB, Chapter 4, Method 8260B, Table 7	0.11 - 4.00 ug/l	Vol. IB, Chapter 4, Method 8260B, Table 7

*Contract Required Detection Limits.

Table 1-2 (continued)

INTERNATIONAL BUSINESS MACHINES CORPORATION DECONTAMINATION OF NXP AND RELATED SWMUs DATA QUALITY REQUIREMENTS OBJECTIVES FOR PRECISION, ACCURACY, AND COMPLETENESS

<u>Matrix/Parameter</u>	Precision (%)	Accuracy (%)
Rinse Water		
VOCs(a)	See Table 1-2a	See Table 1-2a

Notes:

- (a) Accuracy will be determined as percent recovery of surrogate spike compounds and matrix spike compounds. Surrogate and matrix spike compounds for VOCs are listed in Table 1-2a. Precision will be estimated as the relative standard deviation of the percent recoveries per matrix.
- (b) Accuracy will be determined as percent recovery of matrix spikes when appropriate or the percent recovery of a QC sample if spiking is inappropriate. Precision will be determined as relative percent difference of matrix spike duplicate samples, or duplicate samples if spiking is inappropriate.
- (c) Precision will be determined as the average percent difference for replicate samples. Accuracy will be determined as the percent recovery of matrix spike samples or laboratory control samples, as appropriate.

Source: NYSDEC ASP

Table 1-2 (continued)

INTERNATIONAL BUSINESS MACHINES CORPORATION DECONTAMINATION OF SNXP AND RELATED WMUs DATA QUALITY REQUIREMENTS ACCURACY REQUIREMENTS FOR VOC

	Spike Recovery Limits (%)
	Water
Surrogate Compound	
Toluene-d8	88-110
4-Bromofluorobenzene	86-115
1,2-Dichloroethane-d4	76-114
Matrix Spike Compound	
1,1-Dichloroethene	61-145
Trichloroethane	71-120
Chlorobenzene	75-130
Toluene	76-125
Benzene	76-127

Source: NYSDEC ASP

1.6.2 Data Comparability

All data will be presented in the units designated by the methods specified by a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory, and the 2005 NYSDEC ASP. In addition, sample locations, collection procedures and analytical methods from earlier studies will be evaluated for comparability with current procedures/methods.

1.6.3 Data Completeness

The acceptability of 100% of the data is desired as a goal for this project. The acceptability of less than 100% complete data, meeting all laboratory Quality Assurance/Quality Control (QA/QC) protocols/standards, will be evaluated on a case-by-case basis.

The laboratory utilized to perform the analyses on the rinse water, rinse water blank and duplicate samples will provide NYSDEC ASP Category B data deliverables.

1.7 Detailed Sampling Procedures

Rinse water, rinse water blank and duplicate samples will be collected following the decontamination activities in order to verify the effectiveness of the decontamination activities. One rinse water sample, one rinse water blank sample and one duplicate sample will be collected from certain SWMUs which are decontaminated as part of this program. Sampling procedures and equipment to be utilized are described in this QAPP. Sample collection will be performed in conformance with the procedures outlined in this QAPP.

When collecting the samples, care will be taken to maintain sample integrity by preserving its physical form and chemical composition to as great an extent as possible. First, the equipment utilized to collect the samples must be new and sterile or properly decontaminated. An appropriate piece of sampling equipment (e.g., disposable pipette) will be utilized to collect the sample and transfer it to the laboratory-supplied sample container. The sample should reflect

and contain a good representation of the area from which it was collected. The sample will be transferred into the sample container as quickly as possible.

There are several steps performed after the transfer of the sample into the sample container that are necessary to properly complete the collection activities. Once the sample is transferred into the appropriate container, the container will be capped and, if necessary, the outside of the container will be wiped with a clean paper towel to remove any grime. A clean paper towel moistened with distilled/deionized water will be used for this purpose.

Prior to sample collection, the sample container will be properly labeled. Information such as the sample identification number, location, collection time and sample description will be recorded in the field log book. Associated paper work (e.g., Chain of Custody forms) will then be completed and will stay with the sample. The samples will be packaged in a manner that will allow the appropriate storage temperature to be maintained during transportation to the laboratory. Samples will be delivered to the laboratory within 48 hours of collection.

Proper personal protective equipment and monitoring equipment (if determined to be necessary) will be used at all times during sample collection to further maintain sample integrity and protection of worker health and safety.

1.7.1 <u>Sample Identification</u>

All samples collected during the field activities undertaken at NXP and Related SWMUs will be labeled with a sample identification code. The code will identify the sample location, sample type (sample matrix) and series numbers for the sample locations. Samples will be labeled according to the following system:

Location Identification:

The sample location will be assigned an identifier based on the SWMU from which the sample was collected. Samples collected from the first Fluoride/Heavy Metal Tank will be denoted "FHM (SWMU number)" (e.g., FHM 5072). <u>Sample Type</u>: - "R" for rinse water and duplicate samples and "RB" for rinse water blank sample.

<u>Sample Number</u>: - In the field, each sample location will be designated with a number. The number will correspond with the number of the sample collected. Therefore, the first blank collected from an SWMU will be denoted "1." If the SWMU requires further decontamination, the second rinse blank will be denoted "2" and so on.

Based on the above sample identification procedures, an example of a sample label may

be:

Sample Type	Sample Number
FHM 5072-R	k-1≝
Location Identification	

1.7.2 Sample Handling, Packaging and Shipping

All analytical samples will be placed in the appropriate sample containers as specified in the NYSDEC July2005 ASP. The holding time criteria identified in the ASP will be followed, as specified in Table 1-1.

Prior to packaging any samples for transportation to the laboratory, the sample containers will be checked for proper identification and compared to the field log book for accuracy. The samples will then be wrapped with a cushioning material (e.g., bubble wrap) and placed in a cooler (or laboratory shuttle) with a sufficient quantity of bagged ice or "blue ice" packs to maintain the samples at 4°C until arrival at the laboratory.

All necessary documentation required to accompany the samples during transportation will be placed in a sealed plastic bag and taped to the underside of the cooler lid. The cooler will then be sealed with fiber (duct) tape, and custody seals will be placed in such a manner that any opening of the cooler prior to arrival at the laboratory can be detected. All samples will be shipped to ensure receipt at the laboratory within 48 hours of sample collection in accordance with ASP requirements.

1.7.3 <u>Rinse Water/Blind Duplicate Samples</u>

The following protocol will be adhered to for the collection of rinse water samples and the blind duplicate sample:

- 1. Be certain that the sample location is noted on a sample location sketch (see Section 1.10).
- 2. Be certain that the sampling equipment is either new or has been decontaminated utilizing the procedures outlined in Section 1.8.
- 3. Select a sample location within the area. One rinse water sample and one duplicate will be collected from each SWMU.
- 4. Remove a set of laboratory-supplied, precleaned sample containers from the sample cooler, label containers with an indelible marker and fill out a Chain of Custody form (refer to Section 1.10.2).
- 5. Don a new pair of disposable laboratory gloves (nitrile).
- 6. Slowly pour water into the SWMU from hose. The minimum amount of water necessary to properly fill all of the sample containers should be utilized. <u>Note</u>: Since it is not possible to extract all of the water poured into the SWMU, the volume of the sample containers plus additional water will have to be poured into the SWMU in order to properly fill all of the sample containers. Record the approximate volume of water utilized in the field log book.
 - <u>Note</u>: If water will not pool within the SWMU, construct a berm to ensure pooling. Absorbent material or similar means should be used to construct berm.
- 7. Allow the water to remain within the tank or vault for approximately 10 minutes.
- 8. Collect the rinse water duplicate samples from the SWMU utilizing a new or decontaminated pipette. If the liquid level is of sufficient depth, containers may be filled by dunking the unpreserved container into the pooled liquid, or utilizing a dedicated unpreserved container to then fill the preserved sample container.
- 9. Once each sample container has been filled, replace the sample container cap.

- 10. Return the sample containers to the cooler.
- 11. Measure the wetted area of SWMU in each sample location and record in the field log book.
- 12. Record notes in field log book as described in Section 1.10.3.
- 13. If reusable sampling equipment was utilized, decontaminate the sampling equipment according to the procedures described in Section 1.8.
- 14. Place all disposable personal protective equipment and disposable sampling equipment into a 55-gallon drum or other approved container for disposal.

1.7.4 Rinse Water Blank Sample

The following protocol will be adhered to for the collection of the rinse water blank sample:

- 1. Be certain that the sample location is noted on a sample location sketch (see Section 1.10).
- 2. Be certain that the sampling equipment is either new or has been decontaminated utilizing the procedures outlined in Section 1.8.
- 3. Remove a set of laboratory-supplied, precleaned sample containers from the sample cooler, label containers with an indelible marker and fill out a Chain of Custody form (refer to Section 1.10.2).
- 4. Don a new pair of disposable laboratory gloves (nitrile).
- 5. Collect the rinse water blank sample by filling each container directly from the hose or other source utilized to supply water to the area for the decontamination activities. The hose water should be passed from the hose through a sterile disposable syringe/pipette (the same type utilized for collecting the rinse water samples) into the sample container.
- 6. Once each sample container has been filled, replace the sample container cap.
- 7. Return the sample containers to the cooler.
- 8. Record notes in field log book as described in Section 1.10.3.
- 9. Place all disposable personal protective equipment and disposable sampling equipment into a 55-gallon drum or other approved container for disposal.

1.8 Decontamination Procedures

Whenever feasible, all field sampling equipment should be dedicated to a particular sampling location. In instances where this is not possible, a field cleaning (decontamination) procedure will be used in order to reduce the risk of cross-contamination between sample locations. A decontamination station will be established for all field activities if field decontamination is necessary. This will be an area located at some distance from the sampling locations so as not to adversely impact the decontamination procedure while still allowing the sampling team to keep equipment handling to a minimum.

1.8.1 Field Decontamination Procedures

All nondisposable equipment will be decontaminated at appropriate intervals (e.g., prior to initial use, prior to moving to a new sampling interval or location, and prior to leaving the site). Different decontamination procedures are used for the various types of equipment utilized to perform the field activities. When designing a field decontamination program, it is advisable to initiate environmental sampling in the area of the site with the lowest contaminant probability and proceed through to the areas of highest suspected contamination.

1.8.2 Decontamination Procedure for Sampling Equipment

All Teflon, polyvinyl chloride (PVC), high density polyethylene (HDPE) and stainless steel sampling equipment will be decontaminated utilizing the following procedure:

- Wash thoroughly with nonresidual detergent (e.g., alconox) and clean potable tap water using a brush to remove particulate matter or surface film.
- Rinse thoroughly utilizing distilled or deionized water.
- Wrap completely in clean aluminum foil with dull side against the equipment.

The first step, a soap and water wash, is designed to remove all visible particulate matter and residual oil and grease. The distilled/deionized water rinse ensures complete removal of

QAPP

residual cleaning products and the aluminum wrap protects the equipment from contamination and keeps it clean for use at another sampling location.

1.9 Laboratory Sample Custody Procedures

A NYSDOH ELAP certified laboratory meeting the requirements for sample custody procedures, including cleaning and handling sample containers and analytical equipment, will be used. The Standard Operating Procedures of the laboratory selected to undertake the analysis of environmental samples for this program will be available upon request.

1.10 Field Management Documentation

Proper management and documentation of field activities is essential to ensure that all necessary work is conducted in accordance with this Quality Assurance Project Plan in an efficient and high quality manner. Field management procedures include following proper chain of custody procedures to track a sample from collection through analysis, noting when and how samples are split (if required), completing Chain of Custody forms and maintaining a daily field log book. Proper completion of the Chain of Custody and the field log book are necessary to support the future actions that may result from the sample analysis. This documentation will support that the samples were properly collected and handled.

1.10.1 Location Sketch

Each sampling point shall have its own location sketch with measurements and permanent references if possible. This sketch will be recorded in the field log book.

1.10.2 Chain of Custody

A Chain of Custody (COC) form is initiated at the laboratory with container preparation and transportation to the site. The COC must remain with the samples at all times and bear the name of the person assuming responsibility for the samples. This person is tasked with ensuring secure and proper handling of the containers and samples. When the form is complete, it should indicate that there were no lapses in sample accountability.

A sample is considered to be in an individual's custody if any of the following conditions are met:

- It is in the individual's physical possession, or
- It is in the individual's view after being in his or her physical possession, or
- It is secured by the individual so that no one can tamper with it, or
- The individual puts it in a designated and identified secure area.

In general, Chain of Custody forms are provided by the laboratory contracted to perform the analytical services. At a minimum, the following information shall be provided on these forms:

- Project name and address
- Project number
- Sample identification number of each sample contained in the sample cooler
- Date of sample collection
- Time of sample collection
- Sample location
- Sample type/matrix
- Analyses requested
- Number of containers and volume collected
- Remarks (e.g., preservation, special handling, etc.)
- Sampler(s) name(s) and signature(s)
- Spaces for relinquished by/received by signature and date/time.

For this particular study, Chain of Custody forms provided by the laboratory will be utilized.

The Chain of Custody form is completed and signed by the person performing the sampling activities. The original form travels with the samples and is signed and dated each time the samples are relinquished to another party, until it reaches the laboratory or analysis is completed. The field sampler maintains a copy of the Chain of Custody form and a copy is retained for the project file. Each sample container must also be labeled with an indelible marker with a minimum of the following information:

- Sample identification number
- Project name/location
- Analysis to be performed
- Date and time of collection
- Sampler's initials

A copy of the completed Chain of Custody form is returned by the laboratory with the analytical results.

1.10.3 Field Log Book

Field log books must be bound and should have consecutively numbered, water resistant pages. All pertinent information regarding the site, project and sampling procedures must be documented. Notations should be made in log book fashion, noting the time and date of all entries. Information recorded in the log book should include, but is not necessarily be limited to, the following:

The first page of the log contains the following information:

- Project name and address
- Name, address and phone number of field contact
- Name, address and phone number of subcontractors and contact persons

Daily entries are made for the following information:

- Purpose of sampling
- Sampling location
- Number and volume(s) of sample(s) collected
- Description of sample location and sampling methodology
- Date and time of sample collection and personnel arrival and departure
- Geologic description of each sample interval, if applicable
- Collector's sample identification number(s)
- Sample distribution and method of storage and transportation
- References, such as sketches of the sample location or photographs of sample collection with dimensions
- Field observations such as weather conditions, visual signs of staining and/or stressed vegetation
- Signature of personnel responsible for completing log entries

1.11 Calibration Procedures and Preventive Maintenance

The following information regarding equipment will be maintained at the project site if monitoring is deemed necessary for health and safety purposes:

1. Equipment calibration and operating procedures which will include provisions for documentation of frequency, conditions, standards and records reflecting the

calibration procedures, methods of usage and repair history of the measurement system. Calibration of field equipment will be completed daily at the sampling site so that any background contamination can be taken into consideration and the instrument calibrated accordingly.

- 2. A schedule of preventive maintenance tasks, consistent with the instrument manufacturer's specific operation manuals, that will be carried out to minimize down time of the equipment.
- 3. Critical spare parts, necessary tools and manuals will be on hand to facilitate equipment maintenance and repair.

1.12 Performance of Field Audits

During field activities, if determined to be necessary, the QA/QC Officer will accompany sampling personnel into the field, verify that the site sampling program is being properly implemented and detect and define problems so that resolutions can be determined and implemented. All findings will be documented and provided to the Field Operations Manager.

1.13 Control and Disposal of Contaminated Material

Contaminated materials generated during this field program will primarily be limited to spent protective clothing, spent disposable sampling equipment and wastes generated as a result of equipment decontamination.

Any contaminated materials generated as a result of the field program will be contained in U.S. Department of Transportation (DOT) 55-gallon drums and staged in a designated area for subsequent waste characterization. Each drum will be identified by the type of material contained.

Decisions regarding the disposal of drummed material will be made, at least in part, based on the analytical results of the samples collected during this program. At the present time, there is no provision for separate analysis of contained material. Decontamination water and sediment, if any, will be contained in 55-gallon drums. A decision regarding disposal of this material will be made following receipt of the sample results. Analysis of decontamination water/sediment may be required for proper management.

DOT-approved 55-gallon drums will be available for disposal of spent protective clothing and disposable sampling equipment, if any. These drums will be marked and labeled as containing personnel protective and sampling equipment. These drums will not be sampled. All drums will be sealed and staged on site to await proper off-site disposal.

1.14 Data Validation

Data validation will be performed in order to define and document analytical data quality in accordance with NYSDEC requirements that project data must be of known and acceptable quality. The analytical and validation processes will be conducted in conformance with the July 2005 NYSDEC ASP and USEPA CLP Statements of Work (SOW) dated June 1999 and January 2000. The validation will be performed by an individual meeting the qualification requirements for a data validator for the NYSDEC.

The USEPA Functional Guidelines for Evaluating Organics and Inorganics Analyses for the CLP will be used for the data validation process. The data validation process will ensure that all analytical requirements specific to this sampling program, including this Quality Assurance Project Plan, are followed. Procedures will address validation of routine analytical services (RAS) results based on the NYSDEC Target Compound List (TCL) for standard sample matrices.

The data validation process will provide an informed assessment of the laboratory's performance based upon contractual requirements and applicable analytical criteria. The report generated as a result of the data validation process will provide a base upon which the usefulness of the data can be evaluated by the end user of the analytical results. The overall level of effort and specific data validation procedure to be used will be equivalent to a "20% validation" of all analytical data in any given data package.

During the review process, it will be determined whether the contractually-required laboratory submittals for sample results are supported by sufficient back-up data and QA/QC results to enable the reviewer to conclusively determine the quality of data. Each data package will be checked for completeness and technical adequacy of the data. Upon completion of the review, the reviewer will develop a QA/QC data validation report for each analytical data package.

"Qualified" analytical results for any one field sample are established and presented based on the results of specific QC samples and procedures associated with its sample analysis group or batch. Precision and accuracy criteria (i.e., QC acceptance limits) are used in determining the need for qualifying data. Where test data have been reduced by the laboratory, the method of reduction will be described in the report. Reduction of laboratory measurements and laboratory reporting of analytical parameters shall be verified in accordance with the procedures specified in the NYSDEC program documents for each analytical method (i.e., recreate laboratory calculations and data reporting in accordance with the method specific procedure). The standard operating guideline manuals and any special analytical methodology required are expected to specify documentation needs and technical criteria and will be taken into consideration in the validation process. Copies of the complete ASP Category B deliverables will be submitted to the NYSDEC for review. Copies of the validation report, including the laboratory result data report sheets, with any qualifiers deemed appropriate by the data reviewer, and a supplementary field QC sample result summary statement, will be submitted to the NYSDEC, if requested.

Examples of standard organic and inorganic data validation reporting formats and completeness inventory lists which are proposed for use on this project are contained in Exhibit B. These report forms will be modified as necessary and made appropriate for any project specific or NYSDEC requirements.

The following is a description of the two-phased approach to data validation planned to be used on this project. The first phase is called "checklisting" and the second phase is the analytical quality review, with the former being a subset of the latter.

- <u>Checklisting</u> The data package is checked for correct submission of the contract required deliverables, correct transcription from the raw data to the required deliverable summary forms and proper calculation of a number of parameters.
- <u>Analytical Quality Review</u> The data package is closely examined to recreate the analytical process and verify that proper and acceptable analytical techniques have been performed. Additionally, overall data quality and laboratory performance is evaluated by applying the appropriate data quality criteria to the data to reflect conformance with the specified, accepted QA/QC standards and contractual requirements.

At the completion of the data validation, a Summary Data Validation/Usability Report will be prepared and submitted to the NYSDEC, if requested.

1.15 Performance and System Audits

A NYSDOH ELAP certified laboratory, which has satisfactorily completed performance audits and performance evaluation samples, shall be used on this project.

1.16 Corrective Action

A NYSDOH ELAP certified laboratory shall meet the requirements for corrective action protocols, including sample "cleanup" to attempt to eliminate/mitigate "matrix interference." Sample "cleanup" is not required for samples to be analyzed for volatile organic compounds or RCRA metals. However, sample "cleanup" is required for samples to be analyzed for samples to be ana

1.17 Duplicate

The primary purpose of a duplicate sample is to determine the analytical precision of the laboratory contracted to perform the sample analyses. A duplicate sample is collected in the same manner as one of the environmental samples and analyzed for the same constituents. In this manner, the precision of the laboratory can be checked. One duplicate of a rinse water sample will be collected and analyzed during decontamination of each SWMU identified in this decontamination program.

1.18 Trip Blanks (Travel Blanks)

The primary purpose of this type of blank is to detect additional sources of contamination that might potentially influence contaminant values reported in actual samples both quantitatively and qualitatively. The following have been identified as potential sources of contamination:

- Laboratory reagent water
- Sample containers
- Cross contamination in shipment
- Ambient air or contact with analytical instrumentation during preparation and analysis at the laboratory
- Laboratory reagents used in analytical procedures

A trip blank consists of a set of 40 ml sample vials filled at the laboratory with laboratory demonstrated analyte free water. Trip blanks should be handled, transported and analyzed in the same manner as the samples acquired that day, except that the sample containers themselves are not opened in the field. Rather, they just travel with the sample cooler. Trip blanks must accompany samples at a rate of one per shipment. The temperature of the trip blanks must be maintained at 4°C while on-site and during shipment. Trip blanks must return to the laboratory with the same set of bottles they accompanied in the field.

The purpose of a trip blank is to control sample bottle preparation and blank water quality as well as sample handling. Thus, the trip blank travels to the site with the empty sample bottles and back from the site with the collected samples in an effort to simulate sample handling conditions. Contaminated trip blanks may indicate inadequate bottle cleaning or blank water of questionable quality. Trip blanks are implemented only when collecting water samples, and analyzed for volatile organic compounds only.

EXHIBIT A

DETECTION LIMITS

Volatiles Target Compound List (TCL) and	
Contract Required Quantitation Limits (CRQL)	
for Aqueous Samples	

	Volatile Analyte	CAS Number	Trace Water By SIM (µg/L)	Trace Level Water (µg/L)	Low Level Water (µg/L)
1.	Dichlorodifluoromethane	75-71-8		0.50	5.0
2.	Chloromethane	74-87-3		0.50	5.0
3.	Vinyl Chloride	75-01-4	1	0.50	5.0
4.	Bromomethane	74-83-9		0.50	5.0
5.	Chloroethane	75-00-3		0.50	5.0
6.	Trichlorofluoromethane	75-69-4		0.50	5.0
7.	1,1-Dichloroethene	75-35-4		0.50	5.0
8.	1,1,2-Trichloro-1,2,2- trifluoroethane	76-13-1		0.50	5.0
9.	Acetone	67-64-1		5.0	10.0
10.	Carbon Disulfide	75-15-0		0.50	5.0
11.	Methyl Acetate	79-20-9		0.50	5.0
12.	Methylene chloride	75-09-2		0.50	5.0
13.	trans-1,2-Dichloroethene	156-60-5		0.50	5.0
14.	Methyl tert-Butyl Ether	1634-04-4		0.50	5.0
15.	1,1-Dichloroethane	75-34-3	4	0.50	5.0
16.	cis-1,2-Dichloroethene	156-59-2		0.50	5.0
17.	2-Butanone	78-93-3		5.0	10.0
18.	Bromochloromethane	74-97-5		0.50	5.0
19.	Chloroform	67-66-3		0.50	5.0
20.	1,1,1-Trichloroethane	71-55-6		0.50	5.0
21.	Cyclohexane	110-82-7		0.50	5.0
22.	Carbon tetrachloride	56-23-5		0.50	5.0
23.	Benzene	71-43-2		0.50	5.0
24.	1,2-Dichloroethane	107-06-2		0.50	5.0
25.	1,4-Dioxane	123-91-1	1.0	25	125
26.	Trichloroethane	79-01-6	5	0.50	5.0

•

:) .

Volatiles Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL) for Aqueous Samples (Continued)

	Volatile Analyte	CAS Number	Trace Water By SIM (µg/L)	Trace Level Water (µg/L)	Low Level Water (µg/L)
27.	Methylcyclohexane	108-87-2		0.50	5.0
28.	1,2-Dichloropropane	78-87-5		0.50	5.0
29.	Bromodichloromethane	75-27-4		0.50	5.0
30.	cis-1,3-Dichloropropene	10061-01-5		0.50	5.0
31.	4-methyl-2-pentanone	108-10-1		5.0	10.0
32.	Toluene	108-88-3		0.50	5.0
33.	Trans-1,3-Dichloropropene	10061-02-6		0.50	5.0
34.	1,1,2-Trichloroethane	79-00-5		0.50	5.0
35.	Tetrachloroethene	127-18-4		0.50	5.0
36.	2-Hexanone	591-78-6		5.0	10.0
37.	Dibromochloromethane	124-48-1		0.50	5.0
38.	1,2-Dibromoethane	106-93-4	0.05	0.50	5.0
39.	Chlorobenzene	108-90-7		0.50	5.0
40.	Ethylbenzene	100-41-4		0.50	5.0
41.	Xylenes (Total)	1330-20-7		0.50	5.0
42.	Styrene	100-42-5		0.50	5.0
43.	Bromoform	75-25-2		0.50	5.0
44.	Isopropylbenzene	98-82-8		0.50	5.0
45.	1,1,2,2-Tetrachloroethane	79-34-5		0.50	5.0
46.	1,3-Dichlorobenzene	541-73-1		0.50	5.0
47.	1,4-Dichlorobenzene	106-46-7		0.50	5.0
48.	1,2-Dichlorobenzene	95-50-1		0.50	5.0
49.	1,2-Dibromo-3-chloropropane	96-12-8	0.05	0.50	5.0
50.	1,2,4-Trichlorobenzene	120-82-1		0.50	5.0
51.	1,2,3-Trichlorobenzene	87-61-6		0.50	5.0

EXHIBIT B

DATA VALIDATION FORMS

Site Name:	Laboratory Name: Date of Review:			
Reviewer:				
I. Data Deliverable Requirements				
A. Legible	Yes	No		
B. Paginated	Yes	No		
C. Arranged in order	Yes	No		
D. Consistent dates	Yes	No		
E. Case Narrative	Yes	No		
F. Chain-of-Custody Record	Yes	No		
G. Sample Data Complete	Yes	No		
H. Standard Date Complete	Yes	No		
I. Raw QC Data Complete	Yes	No		
		······································		

DATA VALIDATION - ORGANICS

♦0020\VALIDATION FORM.DOC\1

DATA VALIDATION - ORGANICS

Site Name:	and the second	Laborato	Laboratory Name:			
Reviewer:		Date c	Date of Review:			
II. Holding T	imes					
Sample I.D.	Date <u>Received</u>	Date <u>Extracted</u>	Date <u>Analyzed</u>	Holding Time <u>Exceeded?</u>		
DATA VALIDATION - ORGANICS

Site Name:	Laboratory Name:	
Reviewer:	Date of Review:	
Fraction:		

III. Tune Summary

Tune File I.D. Number	Acceptable ?	Comments
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

DATA VALIDATION -- ORGANICS

Site Name:	Laboratory Name:
Reviewer:	Date of Review:
Fraction:	
IV. Initial Calibration Summary (GC/MS)	
Date of Calibration:	
 A. Standard Data Files Standard 1 ID:	Conc:
Comments:	· · · · · · · · · · · · · · · · · · ·

+0020\VALIDATION FORM.DOC\4

DATA VALIDATION -- ORGANICS

Site Name:	Laboratory Name:
Reviewer:	Date of Review:
Fraction:	Date of Calibration:
IV. Initial Calibration Summary (continu	ed)
2. All CCC met Criteria ?	
Yes	No
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	No
2. Was the calibration conducted w	ithin 12 hours of the tune
Yes	No
Comments:	·
 D. Overall assessment of the initial calibra (list the associated samples) 	ation:
	······································

DATA VALIDATION - ORGANICS

Site Name:	Laboratory Name:	
Reviewer:	Date of Review:	
Fraction:	_ .	
VI. Continuing Calibration Summary	GC/MS)	
Date of Initial Calibration:		
Date of Continuing Calibration:	File	ID:
A. 1. All SPCC met criteria ?		
Ŷ	es No	
Calculate a SPCC RRF		
Comments:		
2. All CCC met criteria ?		
Y	es No	
Calculate a CCC % D		
Comments:		
B. Overall assessment of Contir (list associated samples)	uing Calibration	
· · · ·		

DATA VALIDATION – ORGANICS

Site Name:		_ Laboratory Nam	e:
Reviewer:		Date of Review	W:
Fraction:		_	
VIII. Internal S	Standard Area Summary (GC/MS)	
Were all interna	al standard peak areas wit	hin the contract limi	ts?
		Yes	No
If No, please no	ote below		
	Internal Standard	Amount Above	•

<u>Sample</u>

nternal Standard Outside Limits Amount Above Contract Requirement

Comments

DATA VALIDATION - ORGANICS

Site Name:		Laboratory Name:	
Reviewer:		Date of Review:	
Fraction:		-	
IX. Blank Summa	ry		
Date/Time of Analysi	s:	File ID):
Compound	Concentration	< <u>CROL</u>	<u>Comments</u>

List the samples associated with this method blank.

+0020\VALIDATION FORM.DOC\8

DATA VALIDATION – ORGANICS

Site Name:	Laborator	y Name:
Reviewer:	Date of	Review:
Fraction:	<u>.</u>	
X. Surrogate Recovery Summa	ıry	
Were all surrogate recoveries within	n the contract limits ?	
	Yes	No
If No, please note below.		
Surrogate Cor Sample Outside Recover	mpound Amount any Limits <u>Contract Re</u>	Above equirement <u>Comments</u>

DATA VALIDATION - ORGANICS

Laboratory Name:
Date of Review:
n Summary
Matrix:
ontract recommended requirements ?
res No

Site Name:		Laborato	ory Name:	
Reviewer:		Date of I	Review:	
I. Holding tir	nes			
<u>Sample</u>	Date <u>Received</u>	Date <u>Digested</u>	Date Analyzed	Holding Time Exceeded?

÷

Site Name:				Laboratory Name:	
Reviewer:			Date of Review:		
Asso	ciat	ed Samples:			
11.	Init	ial Calibration			
	1.	Were all initial instrumer	nt calibrat	ions performed?	
		Yes	No		
	Со	mments:			
				······································	
	2.	Were the initial calibratic specified frequency?	on verifica	tion standards analyzed at the contract	
		Yes	No		
. <u></u>	Со	mments:			
			· · · · · · · · · · · · · · · · · · ·		
	3.	Were the initial calibration	on results	within the control limits listed below?	
		For tin and mercury: 80- For all other metals: 90-	-120% of 110% of	the true value the true value	
		Yes	No		
		If "No", note analytes		· · · · · · · · · · · · · · · · · · ·	

Site Name:		ne:	Laboratory Name:
		r:	Date of Review:
Asso	ociat	ed Samples:	
111.	Co	ntinuing Calibration	
	1.	Were the continuing calibrat specified frequency?	tion verification standards analyzed at the contract
		Yes	No
	Со	mments:	
·	······		
	2.	Were the continuing calibrat	tion results within the control limits listed below?
	For tin and mercury: 80-1209 For all other metals: 90-1109		% of the true value % of the true value
		Yes	No
	lf "l	No", note analytes	

Site Name:		ne:	Laboratory Name:
Revi	iewe	r:	Date of Review:
IV.	Bla	ank Summary	
	A.	Method Blanks	
	1.	Was a method blank frequency?	c prepared and analyzed at the contract specified
		Yes	No
	2.	Were all the analyte	s below the CRDL in the method blank?
		Yes	No
	Со	mments:	
	В.	Calibration Blanks	
	1.	Were all initial and c specified frequency/	ontinuing calibration blanks analyzed at the contract
		Yes	No
	2.	Were all the analyte	s below the CRDL in all the calibration blanks?
		Yes	No
	Co	mments:	

Site	• Name:	Laboratory Name:
Reviewer:		Date of Review:
\ <i>\</i>		
v.	Duplicate Analysis	
	1. Was a duplicate prepa	red and analyzed at the contract specified frequency?
	Yes	No
	Comments:	
	2. Were control limits for t analyte?	the relative percent differences (RPD) met for each
	Yes	No
	Comments:	
······		
	For sample values >5 time	es the CRDL, the RPD control limit is ±20%.
	For sample values \leq 5 time	es the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site	Name: Laboratory Name: ewer: Date of Review: Matrix Spike Analysis			
Revi	ewe	er:		Date of Review:
VI.	Ма 1.	atrix Spike Analysis Was a matrix spił Yes	ke prepared and No	analyzed at the contract specified frequency?
<u> </u>	Co	omments:	· · · · · · · · · · · · · · · · · · ·	
	2.	Were the matrix s (75-125%)?	pike recoveries	within the contract specified control limits
		Yes	No	
	lf "	No", note analytes		

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site	e Name:	Laboratory Name:				
Rev	/iewer:	Date of Review:				
VII.	ICP Interference Check Sample Su	mmary				
	1. Was the ICP serial dilution ana	lyzed at the contract specified frequency?				
	Yes No					
	Comments:					
·····						
	 Were the serial dilution differen <u></u>≤w 10%? 	ces within the contract specified limits of				
	Yes No					
	Comments:					
<u> </u>	 Was the ICP CRDL check stan frequency for the analytes required 	dard analyzed at the contract specified ired?				
	Yes No					
	Comments:					

Site N	lam	ie:	Laboratory Name:	
Revie	wei	r:	Date of Review:	
VII.	ICF	P Interference Cl	heck Sample Summary (continued):	
	4.	Was the ICP in frequency:	terference check sample analyzed at the contract s	pecified
		Yes	No	

No

Comments:

5. Were the ICP interference check sample results within the control limit of ± 20% of the mean value?

Yes No

If "No", not analytes _____

+0020\VALIDATION FORM.DOC\18

Site Name:	Laboratory Name:	Laboratory Name:					
Reviewer:	Date of Review:						
VIII. Laboratory Control Sample	Analysis						
 Was a laboratory contro Yes 	l sample analyzed at the contract req	uired frequency?					
Comments:	Laboratory Name:						
2. Were the percent recover and Sb) for each analyte	eries within the control limits of 80-12	0% (except for A					
Yes	No						
Comments:							

+0020\VALIDATION FORM.DOC\19

APPENDIX B

DAILY FIELD ACTIVITY REPORTS

William F. Cosulich Associates, P.C. Environmen

.

Environmental Engineers and	Date: 1/1 Date: 1/1 DAILY FIELD ACTIVITY REPORT DAILY FIELD ACTIVITY REPORT ort Number: 2515-1 Inclusion of SWMUs 204-207 in B/312B Ext: IBM EFK Decontamination of SWMUs 204-207 in B/312B ress: Lime Kiln Road, Hopewell Junction, New York Inches (PM)	1/19/10			
	DAILY	Y FIELD ACTIVI	TY REP	ORT	
Report Number:		Project Number:	2515-I		
Field Log Book Page	e Number:				
Project: IBM EFK	Decontamination of	SWMUs 204-207 in 1	B/312B		
Address: Lime Kill	n Road, Hopewell Ju	nction, New York			
Weather: (AM)	Cloudy, rain	ing Rainfa	ll: (AM)	-]	Inches
(PM)	-		(PM)	_]	Inches
Temperature: (AM) (PM)	30s °F Win °F	ad Speed: (AM) - (PM) -	MPH MPH	Wind Direction	n: (AM) - (PM) -
Site Condition: <u>Secu</u>	re				
Personnel On	Name	Affiliatio	<u>n</u>	Arrival <u>Time</u>	Departure <u>Time</u>
5110.	Brian Werner	WFC		8:30	11:45
-	Supervisor	Techtror	1	7:30	· · · · · · · · · · · · · · · · · · ·
-	Laborer	Techtror	1	7:30	
-	Laborer	Techtror	1	7:30	· `
	Laborer	Techtror	1	7:30	-
-					•
-		· · ·			·
-					·

(AM)

(AM)

-

-

(PM)

(PM)

-

-

Subcontractor Work Commencement: Subcontractor Work Completion:

2515/B312BSWMUs204_207/DFAR/011910 DFAR

.

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): Brian W. from WFC on-site at 8:30 and checked in with security. WFC provided oversight for the decontamination of the SWMUs located at B/312B. Work activities initiated on 1/18/10. Pizzagalli retained Techtron to decontaminate the four SWMUs at B/312B, Tanks 204-207. Brian W. spoke with Steve C. from Pizzagalli. In order to access the vault you need to conduct a confined space entry from the roof through roof hatches and another confined space entry to enter each of the tanks. Tanks 204 and 205 manways were opened to confirm the contents. Each of the tanks had been previously pumped out and requires cleaning and sampling. WFC spoke with Techtron and Pizzagalli the discharge piping will be pumped and flushed. Samples from the lines would not be collected due to the transfer area. According to Techtron personnel, residue was noted within Tanks 204 and 205 and pitting in areas. Techtron had to utilize a blower which forced in fresh air since there was an oxygen deficiency within the tanks. Techtron would enter the tanks utilizing supplied air. The four 5,000 gallon SWMUs were located within the same vault and were all horizontal. WFC took some measurements of the exterior of the building. Information was taken from the signage on the exterior of the vault. Tank 204 Mixed Solvent Waste T45, 5,000-gallon, steel, tank pressure 0. The warning sign for Tank 204 indicated the contents of the tank may contain n-butyl acetate, isopropyl alcohol, xylene, phenol, o-dichlorobenzene. Tank 205 NBA Waste T-34, 5,000-gallons, steel, Waste N-Butyl Acetate. Tank 206 IPA Waste T-31, 5,000-gallons, steel, Waste Isopropyl Alcohol. Tank 207 Waste N.M.P., total 5,000-gallons, working 4,000-gallons, steel, tank pressure 0, Waste N-Methyl-2-Pyrrolidone. Steve C. indicated Techtron was already on-site, just on a break and they had to wait a certain amount of time to let the let the oxygen deficient atmosphere clear before proceeding with work. Steve C. indicated that IBM EMS would be on-site shortly to screen the tanks. Manways are present on the top of each of the tanks. The transfer area has 4 pipes going into the transfer area from each of the tanks. A spill pallet is located on top of the grating. As discussed with Pizzagalli and Techtron the discharge lines will be flushed and pumped out with the pump truck. WFC planned to run the samples for a 5-day turnaround and expedite samples if further cleaning was necessary. Techtron utilized a regular hose pressure to rinse the interior of Tanks 204 and 205 and the residue within the tank was coming off. Techtron used ZEP Z-Green as a surfactant to clean the interior of the SWMUs. B/312B is located along the east side of B/322. Techtron crew on-site at 10:00. Techtron has a four person crew plus a pump truck. Techtron tested the areas with the 4-gas meter 20.9% for oxygen and zeros for LEL, CO and H2S in the vault and within Tank 204. Techtron took photos of the interior of the vault and took measurements; the tank was approximately 14' long and 8' in diameter. Techtron locked out and tagged out flanges associated with the tanks. Techtron has non sparking tools such as plastic brushes and plastic scrappers. Techtron set up supplied air bottles to use when entering the tanks for cleaning purposes. Techtron utilized the water source from B/312 the non-potable water line in the FDA Pump Room. Techtron indicated no spills were noted within the containment area. At 11:06 IBM EMS on-site and cleared Techtron to proceed with a confined space entry. Techtron indicated they would use at first the regular hose pressure to rinse the interior of the tanks since using a power washer would cause an issue with the exhaust. Initially Techtron would use hose pressure to decontaminate the interior of the tank and if needed would change to use a power washer. EMS wanted a tripod on the roof as part of the retrieval method. Techtron indicated it would take some time to clean each of the tanks due to the double confined space. After the tanks have been cleaned WFC will come back to the site to conduct rinse sampling from the cleaned tanks and sample the four tanks on one day. Techtron dropped off 55 gallon drums to drum solid material and used PPE. Techtron

2515/B312BSWMUs204_207/DFAR/011910 DFAR

Date:_____ 1/19/10

Date:_____1/19/10

DAILY FIELD ACTIVITY REPORT

indicated they would enter Tank 204 today and finish cleaning Tank 204 by Wednesday and then move onto the next tank. Techtron estimated the cleaning would most likely go into next week. WFC would call Steve C. to be updated on the status of the cleaning. WFC went Techtron over work practices with Techtron personnel. Brian W. left site at 11:45.

Date:_____1/19/10

DAILY FIELD ACTIVITY REPORT

General work performed today by WFC Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

Prepared by: Brian Werner

Reviewed by:

2515/B312BSWMUs204_207/DFAR/011910 DFAR

Date:	1/20/10

DAILY FIELD ACTIVITY REPORT

Report Number:		Project Number: 2515-I		
Field Log Book Page	e Number:			
Project: IBM EFK	Decontamination of	of SWMUs 204-207 in B/312B		
Address: Lime Kilr	n Road, Hopewell	Junction, New York		
Weather: (AM)	-	Rainfall: (AM)	- J	Inches
(PM)		(PM)	- J	Inches
Temperature: (AM)	- °F W	ind Speed: (AM) - MPH	Wind Direction	n: (AM) -
(PM)	- °F	(PM) - MPH		(PM) -
Site Condition: Secu	re			
Personnel On Site	Name	Affiliation	Arrival <u>Time</u>	Departure <u>Time</u>
bite.	Brian Werner	WFC	-	-
	· · · · ·			
_				
Field Log Book Page Number: Project: IBM EFK Decontamination of SWMUs 204-207 in B/312B Address: Lime Kiln Road, Hopewell Junction, New York Weather: (AM) - I (PM) - Rainfall: (AM) - I (PM) - (PM) - I I Temperature: (AM) - °F (PM) - I Temperature: (AM) - °F (PM) - I Site Condition: Secure Arrival Time Site: Brian Werner WFC - - Image: Brian Werner WFC - </td <td></td>				
_				Inches Inches on: (AM) - (PM) - Departure Time -
_		•		
		-		
_	n	<u> </u>		
· <u>·</u>				
				·
Subcontractor Work	Commencement:	(AM) -	(PM)	- ·
Subcontractor Work	Completion:	(AM) -	(PM)	-

2515/B312BSWMUs204_207/DFAR/0120_012810 DFAR

.

-

Date: 1/20/10

William F. Cosulich Associates, P.C. Environmental Engineers and Scientists

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): Below you will find a summarized description of the work activities completed by Techtron personnel pertaining to the decontamination of the SWMUs at B/312B. WFC was not on-site during the decontamination process, but was informed daily on the work activities through conversions with Pizzagalli personnel.

January 20, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Techtron was still in the process of decontaminating Tank 204, Techtron wanted to rinse the interior of Tank 204 on Thursday a few more times before sampling the Tanks. After finishing Tank 204 on Thursday Techtron would start to decontaminate Tank 205. Steve C. indicated that there was small amount of sludge at the bottom of Tank 205 that would need to be pumped out. Techtron continuing to use the ZEP Z-Green detergent to decontaminate the interior of the SWMUs. Techtron had to continue to use the air blower to force in fresh air at the request of IBM EMS personnel prior to entering the SWMUs due to oxygen levels. Steve C. indicated he wanted to have Techtron set up the blower first thing when they arrive on-site so by 8:00 am IBM EMS can screen the tanks so Techtron can continue with the decontamination of the SWMUs. There seems to lag in the work due to exhausting the tank with the air blower and then waiting for IBM EMS to arrive to screen the tanks before Techtron can enter the tanks to decontaminate the tanks. Steve C. estimated the tank cleaning will most likely go into next week.

January 21, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Tank 204 was rinsed additional times and was ready to be sampled. Techtron used a mixture of water and ZEP Z-Green to decontaminate the interior of the tank. Tank 205 had a small amount of sludge located within the tank that was pumped out using a pump truck. The interior of the tank was scraped clean. Techtron would rinse the interior of Tank 205 on Friday. Techtron continued to use the air blower to force in fresh air. Planned to open Tanks 206 and 207 on Friday to confirm the contents of the tank.

January 22, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Tank 205 was cleaned using water and ZEP Z-Green to decontaminate the interior of the tank. Rinse water was pumped into a pump truck. Tank 205 was ready to be sampled. Techtron opened the manways of Tanks 206 and 207. Techtron LOTO the tanks. Tank 206 had minor residue noted within the tank. Tank 207 appeared to be fairly clean. Techtron would continue with the cleaning of Tank 206 on Monday. Techtron continued to use the air blower on the roof to force in fresh air. Potentially would be finished cleaning the tanks by the middle of next week.

January 25, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Techtron scrapped and scrubbed the

Date: <u>1/20/10</u>

DAILY FIELD ACTIVITY REPORT

interior of Tank 206 using ZEP Z-Green and water mixture. Rinse water was pumped into pump truck. Steve C. indicated additional rinsing would take place on Tuesday and mobilize to Tank 207 in the afternoon and start the decontamination process. Techtron indicated Tank 207 appeared to be fairly clean.

January 26, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Steve C. indicated that the discharge piping for each of the tanks were flushed and pumped out through the use of the pump truck. Techtron finished cleaning the interior of Tank 206. Techtron started to decontaminate the interior of Tank 207. Techtron used ZEP Z-Green and a water mixture to clean the interior of Tank 207. Techtron would continue with the cleaning of the interior of Tank 207 on Wednesday.

January 27, 2010

WFC was not on-site during the cleaning of the SWMUs. Bill V. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Techtron finished scrubbing the interior of Tank 207. Techtron would finish rinsing the interior of Tank 207 on Thursday. Friday WFC would be able to sample the tanks.

January 28, 2010

WFC was not on-site during the cleaning of the SWMUs. Steve C. from Pizzagalli spoke with Brian W. from WFC and was updated on the work associated with the tank cleaning. Techtron had finished decontaminating the SWMUs and were ready to be sampled on Friday morning. Techtron has flushed the discharge lines of each of the tanks. Techtron has not had to utilize the blower unit since the oxygen levels were within the appropriate levels. Brian W. informed Steve C. that he would be on-site after 8:30 since he had to pickup supplies from the lab and then head to the site. The tanks will be sampled on Friday.

Date: <u>1/20/10</u>

DAILY FIELD ACTIVITY REPORT

General work performed today by WFC Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

Prepared by: Brian Werner

Reviewed by:

2515/B312BSWMUs204_207/DFAR/0120_012810 DFAR

Date: 1/29/10	0
---------------	---

DAILY FIELD ACTIVITY REPORT

Report Number:			Projec	t Numb	er: 2:	515-I		
Field Log Book Pag	ge Numbe	er:						
Project: IBM EFK	Deconta	minati	on of SWMUs	204-20	7 in B/	312B		
Address: Lime Ki	ln Road,	Hopew	ell Junction, N	lew Yorl	۲.			
Weather: (AM)		Su	nny	Ra	infall:	(AM)	-	Inches
(PM)		Su	nny	*		(PM) _	-	Inches
Temperature: (AM))	°F	Wind Speed:	(AM)	13	MPH	Wind Direction	on: (AM) WNW
(PM))3	°F -		(PM)	16	MPH		(PM) NW
Site Condition: Secu	ure							<u></u>
Personnel On Site	N	ame		<u>Affil</u>	iation		Arrival <u>Time</u>	Departure <u>Time</u>
510.	Brian	Werne	r	W	FC		8:30	12:45
-	Tech	nician	·	Tech	ntron		7:00	
-	Tech	nician		Tech	ntron		7:00	
-	Tech	nician		Tecł	ntron		7:00	
-								
-							• • • • • • • • • • • • • • • • • • •	
-								
-	·······							
-								
Subcontractor Work	Comme	ncemen	nt: (A	M)		-	(PM)	
Subcontractor Work	Complet	tion:	(A	.M)		-	(PM)	

.

4

2515/B312BSWMUs204_207/DFAR/012910 DFAR

.

٠

Date: 1/29/10

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): Brian W. from WFC arrived at EnviroTest Laboratory at 7:50 to pickup sampling supplies to avoid any delays. EnviroTest personnel gave WFC organic free distilled water to collect the rinse samples. Brian W. picked up ice for the samples and checked in with security. Brian W. arrived at B/312B at 8:30. Techtron already on-site and IBM EMS on-site screening the tanks and cleared Techtron for confined space entry. Techtron had a 3 person crew on-site. The four SWMUs had been decontaminated and were ready to be sampled. Techtron took photos of the interior of the decontaminated SWMUs. WFC went over sampling activities with Techtron personnel. The levels within the SWMUs were within the appropriate ranges and personnel entering the SWMUs were utilizing full-face APRs, tyveks, gloves and chicken boots. Techtron indicated the discharge piping of the SWMUs had been flushed and the pump truck was hooked up to pump out the discharge piping. Techtron took a break and WFC collected a rinse blank sample from the water source used to decontaminate the SWMUs from the non-potable line in B/312 FDA Pump Room from the green hose connected to the water source. WFC collected a rinse blank sample, B312-RB-1, from B/312 hose at 9:15 filling an unpreserved container and transferring into the appropriate sample containers and the rinse blank sample was analyzed for VOCs, total phenols, NMP, IPA, NBA. The samples were labeled and placed in the cooler on ice. Trip blanks were placed within the cooler. WFC made up sand bags to utilize as berm when collecting a sample from the interior of the tank. The method utilized to collect a rinse sample was accomplished by Techtron utilizing new PPE for each sample and putting on new gloves after the entrant was in the tank to avoid any contamination potentially located on the ladders. The entrant placed the sand bags along the west side of the tank away from the discharge piping. Techtron poured approximately 2 gallons of organic free distilled water supplied by the lab into the bermed area and let sit for approximately 10 minutes. After 10 minutes Techtron utilized an unpreserved small container to scoop up a sample which was transferred into a larger unpreserved container. Then WFC transferred the sample into the appropriate sample containers. Personnel drummed all used sampling equipment and PPE equipment. The process was repeated for the four SWMUs. Techtron used SPC Universal Gray Pads to wipe down the interior of the SWMUs to remove any stagnant water left in the area prior to sampling. Techtron started at Tank 204 mixed solvent waste and added 2 gallons of DI to the bermed at 10:16 and let sit for 10 minutes and collected a sample. The rinse sample for Tank 204 was collected at 10:30, MWS-204-R-1, and analyzed for VOCs, IPA, NBA and total phenols. The sample had yellowish tint due to the rust, and small fragments were noted within the sample from the pads used to wipe the interior of Tank 204. The samples were labeled and placed on ice within the cooler. Techtron used new PPE and mobilized to Tank 205 NBA. Techtron placed two gallons of DI water within the bermed area at 10:41 and let sit for 10 minutes and collected the sample. The rinse sample from Tank 205 was collected at 10:55, NBA-205-R-1, and was analyzed for VOCs and NBA. The sample was brownish due to the rust, and small fragments were noted within the sample from the pads used to wipe the interior of Tank 205. The samples were labeled and placed on ice within the cooler. Techtron had to go back to the field office to grab additional PPE for sampling activities. Techtron mobilized to Tank 206. Techtron placed two gallons of DI water within the bermed area at 11:32 and let sit for 10 minutes and collected the sample. The rinse sample from Tank 206 was collected at 11:45, IPA-206-R-1, and was analyzed for VOCs and IPA. A blind duplicate was also collected from Tank 206, DUP012910. The sample was clear, and small fragments were noted within the sample from the pads used to wipe the interior of Tank 206. The samples were labeled and placed on ice within the cooler. Mobilized to Tank 207 NMP. Techtron placed

2515/B312BSWMUs204_207/DFAR/012910 DFAR

Date: 1/29/10

DAILY FIELD ACTIVITY REPORT

two gallons of DI water within the bermed area at 12:00 and let sit for 10 minutes and collected the sample. The rinse sample from Tank 207 was collected at 12:15, NMP-207-R-1, and was analyzed for VOCs and NMP. The sample was clear, and small fragments were noted within the sample from the pads used to wipe the interior of Tank 207. The samples were labeled and placed on ice within the cooler. Techtron informed Steve C. from Pizzagalli that the samples from B/312B have been collected. All used sampling equipment and PPE was drummed within a 55-gallon drum. Techtron took a lunch break and would clean up the area after lunch. WFC packed up the cooler of samples and completed the chain of custody. WFC left the site at 12:45 and headed to the lab to drop off the samples. Brian W. arrived at the lab at 13:02 and relinquished the samples and returned the unused sample sampling equipment and coolers. Brian W. left the lab at 13:13.

Date:_____ 1/29/10

DAILY FIELD ACTIVITY REPORT

General work performed today by WFC Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

.

Prepared by: Brian Werner

.

Reviewed by:

2515/B312BSWMUs204_207/DFAR/012910 DFAR

Date: 3/12/10

DAILY FIELD ACTIVITY REPORT

			,					
Report Number:			Project	Number:	2515-I			
Field Log Book Pa	ge Number							
Project: IBM EFF	C Decontar	ninatio	on of SWMU 20	05 in B/312	B and SWI	MU 3109 in B/33	0C OMF	
Address: Lime Ki	ln Road, H	Iopew	ell Junction, Ne	w York		· · · · · · · · · · · · · · · · · · ·		
Weather: (AM)		Clo	udy	Rainfa	ll: (AM)	-]	inches	
(PM)			· · · · · · · · · · · · · · · · · · ·		(PM) _	-]	Inches	
Temperature: (AM) 40s	٩F	Wind Speed: ((AM) 4	MPH	Wind Direction	n: (AM)]	E
(PM)	٩F	((PM) -	MPH		(PM)	-
Site Condition: Sec	ure							
Personnel On	Na	me		Affiliatio	<u>n</u>	Arrival <u>Time</u>	Departur <u>Time</u>	re
Site.	Brian V	Verner		WFC		8:45	11:40	
-	Techn	nician	·····	Techtron				
	Techn	ician		Techtron	· · · · · · · · · · · · · · · · · · ·	-		
-							<u> </u>	
-								
							·····	_
-			. <u> </u>					
-			<u>u.</u>					
-	••••••••••••••••••••••••••••••••••••••							
Subcontractor Work	Commence	cement	:: (AN	1)		(PM)		

.

.

2515/B312BSWMUs204_207/DFAR/031210 DFAR

.

Date:_____

3/12/10

派

William F. Cosulich Associates, P.C. Environmental Engineers and Scientists

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): Brian W. from WFC arrived at the EnviroTest Laboratory at 7:45 and picked up ice for the samples. The objective of today was to resample Tanks 205 and analyze for acetone due to an exceedance from the previous sampling event. In addition, sample Tank 3109 for total phenols due to exceedance from the previous sampling event. At 8:26 picked up sampling supplies from the laboratory. At 8:45 checked in with security and called Steve C. to confirm WFC was on-site and heading to Tank 205. As per conversions with lab personnel at EnviroTest they indicated distilled water was sufficient to use for the Tank 3109 since we would only be analyzing for total phenols. WFC was not on-site during the recleaning of SWMU 205. Brian W. from WFC spoke with Steve C. from Pizzagalli and was updated on the work associated with the tank cleaning. Techtron had recleaned Tank 205 using ZEP Z-Green and water mixture. To further assist with the cleaning activities after Tank 205 was recleaned Techtron pumped water into the tank with the ZEP Z-Green mixture and let sit for a few days. After a few days the mixture was pumped out. Tank 205 was rinsed thoroughly to remove any surfactant and pumped dry. Techtron had equipment set up at Tank 205 to conduct a confined space entry. Techtron utilized the same water source to decontaminate Tank 205 from B/312 FDA Pump Room from the spigot with the green hose. A rinse blank was collected from B/312, B312-RB-2 at 9:26. The sample was labeled and placed in the cooler on ice. The trip blanks were placed within the cooler on ice. WFC made up sand bags to use as a berm within the tank to collect samples. Techtron entered Tank 205 and placed the sand bags along the back side of the tank and added approximately 2 gallons of organic free distilled water provided by the lab at 10:00. The water in Tank 205 was allowed to sit for 10 minutes. After 10 minutes Techtron personnel scooped up the sample using an unpreserved plastic container and transferred into a larger unpreserved plastic container. WFC transferred the sample into the appropriate containers. The rinse sample for Tank 205, NBA-205-R-2, was collected at 10:15. A blind duplicate sample was also collected from Tank 205, DUP031210. The samples were labeled and placed on ice. The chain of custody was completed. The crew packed up and mobilized to Tank 3109 at B/330C OMF. WFC was not on-site during the recleaning of SWMU 3109. Brian W. from WFC spoke with Steve C. from Pizzagalli and was updated on the work associated with the tank cleaning. Techtron recleaned Tank 3109 by power washing the interior of the tank from the opening on the top of the tank. Techtron used approximately 500 gallons of water and 10 gallons of ZEP Z-Green. The rinse water was pumped into the pump truck. It should be noted Techtron did not conduct a confined space entry associated with Tank 3109 due to access. Techtron utilized the same water source previously used to decontaminate Tank 3109. WFC collected a rinse blank sample from the treated water line adjacent to the eye wash, B330C-RB-2 at 10:50. The sample was labeled and placed on ice within the cooler. Pizzagalli personnel indicated the samples from Tank 3109 should be retrieved using a bailer instead of from the discharge piping located below the tank. Techtron poured in 6 gallons of distilled water into the tank from the top at 10:58 and let sit for 10 minutes. Then Techtron retrieved a sample from Tank 3109 using a one foot sterile bailer. The sample was poured into an unpreserved plastic container. WFC transferred the sample into the appropriate sample containers. The rinse sample from Tank 3109, MWS-3109-R-2, was collected at 11:10. A blind duplicate sample, DUP031210A was collected from Tank 3109. The samples were labeled and placed on ice. The crew packed up. Techtron would pump out the remaining water within Tank 3109 after lunch. The chain of custody was completed and the samples for Tank 3109 were sent for a 3-day turn at the request of Pizzagalli personnel. WFC left the site at 11:40 and headed to the lab to drop off the samples. WFC left the lab at 12:06.

2515/B312BSWMUs204_207/DFAR/031210 DFAR

Date: <u>3/12/10</u>

DAILY FIELD ACTIVITY REPORT

General work performed today by WFC Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

Prepared by: Brian Werner

Reviewed by:

2515/B312BSWMUs204_207/DFAR/031210 DFAR

APPENDIX C

PHOTOGRAPHIC LOG

♦2515\RR02091001.DOC

B/312B

B/312B roof with access to the tanks through the roof hatches.

B/312B transfer area

B/312B discharge piping located at the transfer area.

Tank 204 with the air blower to force in fresh air.

Tank 204 sign located on the exterior of the vault

The interior of Tank 204

The interior of Tank 204

The interior of Tank 204

Tank 205

The interior of Tank 205

The interior of Tank 205

A view of Tank 206 from the catwalk.

A view of Tank 207 from the catwalk.

Tank 204 discharge piping was LOTO.

The water source from the non-potable water line of B/312 used to decontaminate the SWMUs.

After Tank 204 was decontaminated.

After Tank 204 was decontaminated.

After Tank 204 was decontaminated.

After Tank 205 was decontaminated.

After Tank 205 was decontaminated.

After Tank 205 was decontaminated.

After Tank 206 was decontaminated.

After Tank 206 was decontaminated.

After Tank 206 was decontaminated.

After Tank 207 was decontaminated.

After Tank 207 was decontaminated.

After Tank 207 was decontaminated.

After Tank 205 was decontaminated a second time.

After Tank 205 was decontaminated a second time.

APPENDIX D

CHAIN OF CUSTODY FORMS

♦2515\RR02091001.DOC

EnviroTest Laboratories Inc.	CHAIN OF CU	STODY	315 Fuilerton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841
USTOMER NAME	REPORT TYPE	TURNAROUND	REPORT # (Lab Use Only)
DORESS			33004
17 STATE ZIP		St ourse 5-Day	SAMPLE TEMP. 2.1 C
Woodbury, NY 11797			SAMPLE REC'D ON ICE
REDEN POTRILLE 516-364-1890 F	UT -	VERBAL	
ROJECT LOCATION Q 1212 0	1 3C49		
LBM D/3120	DW = DRINKING WATER	S = SOIL O = OiL	
2515-I	WW = WASTE WATER SL = SLUD	GE GW = GROUND WATER	SOURCE ID
OTE: SAMPLE TEMPERATURE UPC	$\sum_{k=1}^{n} \frac{1}{3} \sum_{k=1}^{n} \frac{1}{2} \sum_{k=1}^{n} \frac{1}{3} \sum_{k$	1. 1. 1. 1. 1.01	
RECEIPT MUST BE 4° ± 2°C.			
ETL# CLIENT I.D.		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	ANALYSIS REQUESTED
129 11-15 NKW D312-KB-1			VULS, ITA, NBA, NMP, phenels
25 1/25 1/24 11:24 1rip 13/6m/			
1/29 10:30 X RW M1 JS. 204-1	143 1		VOCS, ITA NBA, phenols_
1/291 10.35 X RW NBA -205-R-	33		VOCS, NISA
169 11:45 X RW IPA-206-R-1	33		VOCS, IPA
1129 - XRW DUPOLOGIO	33		VOCS IPA
1/29 12:15 X RW NMP-207-R-1	53	2	VOCS, NMP
			3
			· ·
MPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECT TO THE ETL TER	AS AND CONDITIONS OF SALE UNLESS ALTERNA	TE TERMS ARE AGREED IN WRITIN	G.
ELINQUISHED BY	DATE TIME 310 RECEIVED	BY CO	MPANY DATE TIME
IMPLED BY COMPANY	DATE TIME RECEIVED	BY CO	MPANY DATE TIME
ELINQUISHED BY COMPANY	DATE TIME DECENTER	CO CO	MPANY DATE TIME IN
		y en	CIC YLAID BILD
OMMENTS Trip Blanks were collected	15110@11:26, Da		

Enviro Labor	oTes rato	t ries	5 	nc.			• •		C	H	Ai	N	C)F	- (Cl	J	S	Γ	DE)Y	1				315 Fulle Newburg TEL (845 FAX (845	erton Aven jh, NY 125 5) 562-089 5) 562-084	1 ue 550 90 41
CUSTOMER N	AME			251		; ;					F	REP	OR	ТТ	YPE	2	Τ		TUF		RO	UND)	REP	ORT	# (Lab Use	e Only)	
ADDRESS	<u>~ 1</u>			0 h	ILA N					s	TAN	DAR		Is	RA				NOF	IMAL	•				3	287	3	. ,
CITY, STATE,	<u>7055(</u> ZIP	vays	1	ARC		ive	<u> </u>			N		G							QUI	ск ^{і с}	5-'	Da		SAMPLE TE	MP	-8.O	<u> </u>	c
Wood b	NTY	<u>, NY</u>		1179	7						THE	РА R		в					VER				7	SAMPLE RE	C'D O	NICE TY	ПŃ	
Roban	Petre	İla		516-	364-	989(j Er	30	.Ki								-	<u> </u>						ph CHECK			rs.	
PROJECT LOC	FF	{	(3/31	R											Mot	riv							REVIEWED	BY:			
PROJECT NUM	ABER / PC	NO.		<u></u>	<u>~//</u>				,	ww	WA	DW =			IG W	ATEF	110C	S = S		0 =		• • • •	FD	NY PU	BLIC	WATER SI	JPPLIE	s
NOTE			TC		DAT		E 11		RW=	Rin	se	W	<u>ste</u>	<u>s</u>	JL	- 30		,						SOURCE ID				
NOTE: 3			ם ו דרכ		TD		モ U + 2°		• /	\$\$/	8 /	¥ /	š	3	ğ	2 5 5 5		<u>ह</u> ्ह	3	20	. 78	' _ /	22/	ELAP TYPE	 .			
				INIUS		.	- 4	.	a k		<u><u></u><u></u></u>	8 / 8	Surfin								8 / v			FEDERAL I)			
ETL#	SAMP DATE	LING TIME AM PM	GRAB	MATRIX		CLIE	NT I.D.		/~;		Ĕ.	/%	/3	8/ X*	د ک ر چ	8	/ 1	¹ 3 8	8/2			/ ⁸⁰		ANAL	YSIS	REQUEST	ED	
	3/12/10	10:15	X	RW	NBP	1-20)5-1	2-2	3	3													A	ietone	8	3260		
	3/12/10	9.26	X	RW	B31	2-	RB.	-2	3	3													Ď	cetone	2	3860		
	3/12/10		X	RW	DU	P03	5121	0	3	3													A	cetone	8	5260		
					Tri	ol	slant	r	2	2																		
						1																						
					Ì																							
SAMPLES SUB	MITTED F	OR ANA	LYSI	S WILL BE	SUBJEC	т то т	HE ETL	TERMS	AND	CONE	DITIO	NS OF	SAL		ESS	ALTE		TE TE	RMS /	ARE A	GREE	DINV		G.		0175	TH 10	
RELINQUISHED	INDA_			ŵf	(PANY C		_ 3	5/12	I Ø		TIN	Æ 2:	00	<u>></u>	F	ECEN	VED	BY	_					MPANY		DATE	TIME	
SAMPLED BY	Warn	~		CON W	FC			3/12	TE		TIN	AE			f		VED	BY	4	- <u>-</u>			CC	MPANY			THE	
RELINQUISHE	DBY			CON	APANY			D	TE		TIN	AE					Ð	Ľ	A	i	(CC	E.C.		3/12/10	12	,0
COMMENTS	Just	م ا	~ ~	luze	f	è<	ac	eta	~								Ĺ	/								7 6		

١

APPENDIX E

LABORATORY ANALYTICAL RESULTS

♦2515\RR02091001.DOC

ANALYTICAL REPORT

Job Number: 420-33004-1 SDG Number: IBM B/312B 2515-I Job Description: William F. Cosulich

For: William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Attention: Robbin A. Petrella

alicia M. John

Alicia M Labare Senior Customer Service Representative alabare@envirotestlaboratories.com 06/14/2010

cc: Brian Werner

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NELAP Accredited, NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554, EPA NY00049.

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

N-Butyl Acetate (NBA)

Please note that NBA was screened for as a (TIC) tentatively identified compound during the 8260 analysis. The following samples were screened for NBA and it was not detected:

420-33004-1 420-33004-3 420-33004-4

Method 8260B: The laboratory control standard (LCS) for batch 37053 exceeded control limits for the analytes indicated by an asterisk (*) on the results form. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported with confidence of no false negatives.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: William F. Cosulich Associates

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
420-33004-1	B312-RB-1				
Acetone Chloroform Dichlorobromometh Phenolics, Total Re	ane coverable	2.8 17 5.3 0.012	1.0 1.0 1.0 0.010	ug/L ug/L ug/L mg/L	8260B 8260B 8260B 10-210-00-1-A
420-33004-3	MWS-204-R-1				
Phenolics, Total Re	coverable	0.010	0.010	mg/L	10-210-00-1-A
420-33004-4	NBA-205-R-1				
Acetone		170 E	1.0	ug/L	8260B
420-33004-5	IPA-206-R-1				
Acetone Isopropyl alcohol		17 190	1.0 10	ug/L ug/L	8260B 8260B
420-33004-6	DUP012910				
Acetone Isopropyl alcohol		21 200	1.0 10	ug/L ug/L	8260B 8260B
420-33004-7	NMP-207-R-1				
Acetone 1-Methyl-2-pyrrilidin	ione	4.9 14	1.0 1.0	ug/L mg/L	8260B 8015B

METHOD SUMMARY

Client: William F. Cosulich Associates

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Phenols (Lachat) Distillation/Phenolics	EnvTest EnvTest	QuickChem 10-2	10-00-1-A Distill/Phenol
Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)	EnvTest	SW846 8015B	
Volatile Organic Compounds by GC/MS Purge-and-Trap	EnvTest EnvTest	SW846 8260B	SW846 5030B

Lab References:

EnvTest = EnviroTest

Method References:

QuickChem = Lachat QuickChem Manual

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: William F. Cosulich Associates

Method	Analyst	Analyst ID
SW846 8260B	Andersen, Eric C	ECA
SW846 8015B	Miller, Kyle A	KAM
QuickChem 10-210-00-1-A	Edwards, Yolanda	YE

SAMPLE SUMMARY

Client: William F. Cosulich Associates

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-33004-1	B312-RB-1	Water	01/29/2010 0915	01/29/2010 1310
420-33004-2	TRIP BLANK	Water	01/25/2010 1126	01/29/2010 1310
420-33004-3	MWS-204-R-1	Water	01/29/2010 1030	01/29/2010 1310
420-33004-4	NBA-205-R-1	Water	01/29/2010 1055	01/29/2010 1310
420-33004-5	IPA-206-R-1	Water	01/29/2010 1145	01/29/2010 1310
420-33004-6	DUP012910	Water	01/29/2010 0000	01/29/2010 1310
420-33004-7	NMP-207-R-1	Water	01/29/2010 1215	01/29/2010 1310

SAMPLE RESULTS

Client Sample ID:	B312-RB-1
Lab Sample ID:	420-33004-1

Date Sampled:	01/29/2010	0915
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B			Date A	Analyzed:	02/01/2010 1645	
Prep Method: 5030B			Date F	Prepared:	02/01/2010 1645	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	2.8		ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	17		ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID: B312-RB-1 Lab Sample ID: 420-33004-1

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20100915Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorobromomethane	5.3		ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
Iodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropyl alcohol	10	U	ug/L	10	10	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Surrogate					Acceptance Limits	
4-Bromofluorobenzene	82		%		74 - 118	
Toluene-d8 (Surr)	108		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	91		%		77 - 115	
Method: 8015B			Date A	nalyzed:	02/01/2010 1202	
1-Methyl-2-pyrrilidinone	1.0	U	mg/L	1.0	1.0	2.0
Method: 10-210-00-1-A			Date A	nalyzed:	02/02/2010 1300	
Phenolics, Total Recoverable	0.012		mg/L	0.010	0.010	1.0

Client Sample ID:TRIP BLANKLab Sample ID:420-33004-2

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled: 01/25/2010 1126 Date Received: 01/29/2010 1310 Client Matrix: Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date / Date F	Analyzed: ^D repared:	02/01/2010 1358 02/01/2010 1358	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	1.0	U	ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID:TRIP BLANKLab Sample ID:420-33004-2

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/25/20101126Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ua/L	1.0	1.0	1.0
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
Iodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropyl alcohol	10	U	ug/L	10	10	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Surrogate				A	cceptance Limit	S
4-Bromofluorobenzene	84		%		74 - 118	
Toluene-d8 (Surr)	100		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	82		%		77 - 115	

Client Sample ID:	MWS-204-R-1
Lab Sample ID:	420-33004-3

Date Sampled:	01/29/2010	1030
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B			Date A	Analyzed:	02/01/2010 1426	
Prep Method: 5030B			Date F	Prepared:	02/01/2010 1426	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	1.0	U	ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID: MWS-204-R-1 Lab Sample ID: 420-33004-3

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20101030Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
Iodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropyl alcohol	10	U	ug/L	10	10	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Surrogate				Aco	ceptance Limits	3
4-Bromofluorobenzene	92		%		74 - 118	
Toluene-d8 (Surr)	101		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	84		%		77 - 115	
Method: 10-210-00-1-A			Date A	nalyzed: 02/0	2/2010 1300	
Phenolics, Total Recoverable	0.010		mg/L	0.010	0.010	1.0

Client Sample ID:	NBA-205-R-1
Lab Sample ID:	420-33004-4

Date Sampled:	01/29/2010	1055
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date A Date F	Analyzed: Prepared:	02/01/2010 1453 02/01/2010 1453	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	170	Е	ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID:NBA-205-R-1Lab Sample ID:420-33004-4

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20101055Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
lodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Method: 8260B			Date A	nalyzed:	02/01/2010 1713	
Prep Method: 5030B			Date P	repared:	02/01/2010 1713	
Acetone	190	D	ug/L	10	10	10

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Client Sample ID: IPA-206-R-1 Lab Sample ID: 420-33004-5

Date Sampled:	01/29/2010	1145
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date A Date F	Analyzed: Prepared:	02/01/2010 1521 02/01/2010 1521	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	17		ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID:IPA-206-R-1Lab Sample ID:420-33004-5

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20101145Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
Iodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropyl alcohol	190		ug/L	10	10	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Surrogate			Acceptance Limits			S
4-Bromofluorobenzene	86		%		74 - 118	
Toluene-d8 (Surr)	101		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	87		%		77 - 115	

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Client Sample ID: DUP012910 Lab Sample ID: 420-33004-6

Date Sampled:	01/29/2010	0000
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date A Date F	Analyzed: ^D repared:	02/01/2010 1549 02/01/2010 1549	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	21		ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID: DUP012910 Lab Sample ID: 420-33004-6

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20100000Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution	
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0	
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0	
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0	
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0	
lodomethane	1.0	U	ug/L	1.0	1.0	1.0	
Isopropyl alcohol	200		ug/L	10	10	1.0	
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0	
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0	
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0	
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0	
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0	
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0	
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0	
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
Styrene	1.0	U	ug/L	1.0	1.0	1.0	
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0	
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0	
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0	
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0	
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0	
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0	
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0	
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0	
Toluene	1.0	U	ug/L	1.0	1.0	1.0	
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0	
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0	
Surrogate				A	Acceptance Limits		
4-Bromofluorobenzene	84		%		74 - 118		
Toluene-d8 (Surr)	103		%		74 - 129		
1,2-Dichloroethane-d4 (Surr)	83		%		77 - 115		

Client Sample ID:	NMP-207-R-1
Lab Sample ID:	420-33004-7

Date Sampled:	01/29/2010	1215
Date Received:	01/29/2010	1310
Client Matrix:	Water	

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date A Date F	Analyzed: Prepared:	02/01/2010 1616 02/01/2010 1616	
1,1,1,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,1-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1,2-Trichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,1-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,3-Trichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloroethane	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
1,3-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
1,4-Dichlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
2,2-Dichloropropane	1.0	U	ug/L	1.0	1.0	1.0
2-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
2-Hexanone	1.0	U	ug/L	1.0	1.0	1.0
4-Chlorotoluene	1.0	U	ug/L	1.0	1.0	1.0
4-Isopropyltoluene	1.0	U	ug/L	1.0	1.0	1.0
Acetone	4.9		ug/L	1.0	1.0	1.0
Benzene	1.0	U	ug/L	1.0	1.0	1.0
Bromobenzene	1.0	U	ug/L	1.0	1.0	1.0
Bromoform	1.0	U	ug/L	1.0	1.0	1.0
Bromomethane	1.0	U	ug/L	1.0	1.0	1.0
Carbon disulfide	1.0	U	ug/L	1.0	1.0	1.0
Carbon tetrachloride	1.0	U	ug/L	1.0	1.0	1.0
Chlorobenzene	1.0	U	ug/L	1.0	1.0	1.0
Chlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dibromochloromethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroethane	1.0	U	ug/L	1.0	1.0	1.0
Chloroform	1.0	U	ug/L	1.0	1.0	1.0
Chloromethane	1.0	U	ug/L	1.0	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0

Client Sample ID: NMP-207-R-1 Lab Sample ID: 420-33004-7

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Date Sampled:01/29/20101215Date Received:01/29/20101310Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Dibromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorobromomethane	1.0	U	ug/L	1.0	1.0	1.0
Dichlorodifluoromethane	1.0	U *	ug/L	1.0	1.0	1.0
Ethylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Hexachlorobutadiene	1.0	U	ug/L	1.0	1.0	1.0
Iodomethane	1.0	U	ug/L	1.0	1.0	1.0
Isopropylbenzene	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	1.0	U	ug/L	1.0	1.0	1.0
2-Butanone	1.0	U	ug/L	1.0	1.0	1.0
4-Methyl-2-pentanone	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
n-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
N-Propylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Naphthalene	1.0	U	ug/L	1.0	1.0	1.0
o-Xylene	1.0	U	ug/L	1.0	1.0	1.0
sec-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Styrene	1.0	U	ug/L	1.0	1.0	1.0
tert-Butylbenzene	1.0	U	ug/L	1.0	1.0	1.0
Xylenes, Total	1.0	U	ug/L	1.0	1.0	1.0
Vinyl chloride	1.0	U	ug/L	1.0	1.0	1.0
Vinyl acetate	1.0	U	ug/L	1.0	1.0	1.0
Trichlorofluoromethane	1.0	U	ug/L	1.0	1.0	1.0
Trichloroethene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	ug/L	1.0	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	ug/L	1.0	1.0	1.0
Toluene	1.0	U	ug/L	1.0	1.0	1.0
Tetrachloroethene	1.0	U	ug/L	1.0	1.0	1.0
1,2-Dibromoethane	1.0	U	ug/L	1.0	1.0	1.0
Method: 8015B			Date A	nalyzed: 0	2/01/2010 1222	
1-Methyl-2-pyrrilidinone	14		mg/L	1.0	1.0	2.0

DATA REPORTING QUALIFIERS

Client: William F. Cosulich Associates

Lab Section	Qualifier	Description
GC/MS VOA		
	*	LCS or LCSD exceeds the control limits
	F	MS or MSD exceeds the control limits
	E	Result exceeded calibration range, secondary dilution required
	F	RPD of the MS and MSD exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	U	The analyte was analyzed for but not detected at or above the stated limit.
GC VOA		
	U	The analyte was analyzed for but not detected at or above the stated limit.
General Chemistry		
	U	The analyte was analyzed for but not detected at or above the stated limit.

QUALITY CONTROL RESULTS

EnviroTest Laboratories, Inc.

Client: William F. Cosulich Associates

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

QC Association Summary

Lab Sample ID C	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:420-37053					
LCS 420-37053/1	Lab Control Spike	Т	Water	8260B	
MB 420-37053/2	Method Blank	Т	Water	8260B	
420-33004-1	B312-RB-1	Т	Water	8260B	
420-33004-2	TRIP BLANK	Т	Water	8260B	
420-33004-3	MWS-204-R-1	Т	Water	8260B	
420-33004-3MS	Matrix Spike	Т	Water	8260B	
420-33004-3MSD	Matrix Spike Duplicate	Т	Water	8260B	
420-33004-4	NBA-205-R-1	Т	Water	8260B	
420-33004-5	IPA-206-R-1	Т	Water	8260B	
420-33004-6	DUP012910	Т	Water	8260B	
420-33004-7	NMP-207-R-1	Т	Water	8260B	
<u>Report Basis</u> T = Total					
GC VOA					
Analysis Batch:420-37054					
LCS 420-37054/1	Lab Control Spike	Т	Water	8015B	
MB 420-37054/2	Method Blank	Т	Water	8015B	
420-33004-1	B312-RB-1	Т	Water	8015B	
420-33004-7	NMP-207-R-1	Т	Water	8015B	
420-33004-7MS	Matrix Spike	Т	Water	8015B	
420-33004-7MSD	Matrix Spike Duplicate	Т	Water	8015B	
<u>Report Basis</u> T = Total					
General Chemistry					
Analysis Batch:420-37091					
LCS 420-37091/4	Lab Control Spike	Т	Water	10-210-00-1-A	
MB 420-37091/3	Method Blank	Т	Water	10-210-00-1-A	
420-33004-1	B312-RB-1	Т	Water	10-210-00-1-A	
420-33004-1DU	Duplicate	Т	Water	10-210-00-1-A	
420-33004-1MS	Matrix Spike	Т	Water	10-210-00-1-A	
420-33004-3	MWS-204-R-1	Т	Water	10-210-00-1-A	
<u>Report Basis</u>					

T = Total

Quality Control Results

Client: William F. Cosulich Associates

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Lab Sample ID	Client Sample ID	12DCE %Rec	BFB %Rec	TOL %Rec
420-33004-3 MS	MWS-204-R-1	88	99	97
420-33004-3 MSD	MWS-204-R-1	90	97	98
LCS 420-37053/1		87	95	99
MB 420-37053/2		80	80	102
420-33004-1	B312-RB-1	91	82	108
420-33004-2	TRIP BLANK	82	84	100
420-33004-3	MWS-204-R-1	84	92	101
420-33004-5	IPA-206-R-1	87	86	101
420-33004-6	DUP012910	83	84	103

Surrogate		Acceptance Limits
12DCE	1,2-Dichloroethane-d4 (Surr)	77 - 115
BFB	4-Bromofluorobenzene	74 - 118
TOL	Toluene-d8 (Surr)	74 - 129

Client: William F. Cosulich Associates

Method Blank - Batch: 420-37053

Lab Sample ID:MB 420-37053/2Client Matrix:WaterDilution:1.0Date Analyzed:02/01/2010Date Prepared:02/01/20101231

Analysis Batch: 420-37053 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N Lab File ID: X020104.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL	RL
1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
1,1,1-Trichloroethane	1.0	U	1.0	1.0
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
1,1,2-Trichloroethane	1.0	U	1.0	1.0
1,1-Dichloroethane	1.0	U	1.0	1.0
1,1-Dichloroethene	1.0	U	1.0	1.0
1,1-Dichloropropene	1.0	U	1.0	1.0
1,2,3-Trichlorobenzene	1.0	U	1.0	1.0
1,2,3-Trichloropropane	1.0	U	1.0	1.0
1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	1.0
1,2-Dichlorobenzene	1.0	U	1.0	1.0
1,2-Dichloroethane	1.0	U	1.0	1.0
1,2-Dichloropropane	1.0	U	1.0	1.0
1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
1,3-Dichlorobenzene	1.0	U	1.0	1.0
1,3-Dichloropropane	1.0	U	1.0	1.0
1,4-Dichlorobenzene	1.0	U	1.0	1.0
2,2-Dichloropropane	1.0	U	1.0	1.0
2-Chlorotoluene	1.0	U	1.0	1.0
2-Hexanone	1.0	U	1.0	1.0
4-Chlorotoluene	1.0	U	1.0	1.0
4-Isopropyltoluene	1.0	U	1.0	1.0
Acetone	1.0	U	1.0	1.0
Benzene	1.0	U	1.0	1.0
Bromobenzene	1.0	U	1.0	1.0
Bromoform	1.0	U	1.0	1.0
Bromomethane	1.0	U	1.0	1.0
Carbon disulfide	1.0	U	1.0	1.0
Carbon tetrachloride	1.0	U	1.0	1.0
Chlorobenzene	1.0	U	1.0	1.0
Chlorobromomethane	1.0	U	1.0	1.0
Dibromochloromethane	1.0	U	1.0	1.0
Chloroethane	1.0	U	1.0	1.0
Chloroform	1.0	U	1.0	1.0
Chloromethane	1.0	U	1.0	1.0
cis-1,2-Dichloroethene	1.0	U	1.0	1.0
cis-1,3-Dichloropropene	1.0	U	1.0	1.0
Dibromomethane	1.0	U	1.0	1.0
Dichlorobromomethane	1.0	U	1.0	1.0

Calculations are performed before rounding to avoid round-off errors in calculated results.
Method Blank - Batch: 420-37053

Lab Sample ID:MB 420-37053/2Client Matrix:WaterDilution:1.0Date Analyzed:02/01/2010Date Prepared:02/01/20101231

Analysis Batch: 420-37053 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N Lab File ID: X020104.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL	RL
Dichlorodifluoromethane	1.0	U	1.0	1.0
Ethylbenzene	1.0	U	1.0	1.0
Hexachlorobutadiene	1.0	U	1.0	1.0
Iodomethane	1.0	U	1.0	1.0
Isopropyl alcohol	10	U	10	10
Isopropylbenzene	1.0	U	1.0	1.0
m-Xylene & p-Xylene	1.0	U	1.0	1.0
2-Butanone	1.0	U	1.0	1.0
4-Methyl-2-pentanone	1.0	U	1.0	1.0
Methyl tert-butyl ether	1.0	U	1.0	1.0
Methylene Chloride	1.0	U	1.0	1.0
n-Butylbenzene	1.0	U	1.0	1.0
N-Propylbenzene	1.0	U	1.0	1.0
Naphthalene	1.0	U	1.0	1.0
o-Xylene	1.0	U	1.0	1.0
sec-Butylbenzene	1.0	U	1.0	1.0
Styrene	1.0	U	1.0	1.0
tert-Butylbenzene	1.0	U	1.0	1.0
Xylenes, Total	1.0	U	1.0	1.0
Vinyl chloride	1.0	U	1.0	1.0
Vinyl acetate	1.0	U	1.0	1.0
Trichlorofluoromethane	1.0	U	1.0	1.0
Trichloroethene	1.0	U	1.0	1.0
trans-1,3-Dichloropropene	1.0	U	1.0	1.0
trans-1,2-Dichloroethene	1.0	U	1.0	1.0
Toluene	1.0	U	1.0	1.0
Tetrachloroethene	1.0	U	1.0	1.0
1,2-Dibromoethane	1.0	U	1.0	1.0
Surrogate	% Rec		Acceptance Limits	
4-Bromofluorobenzene	80		74 - 118	
Toluene-d8 (Surr)	102		74 - 129	
1,2-Dichloroethane-d4 (Surr)	80		77 - 115	

Lab Control Spike - Batch: 420-37053

Lab Sample ID:LCS 420-37053/1Client Matrix:WaterDilution:1.0Date Analyzed:02/01/2010Date Prepared:02/01/20101903

Analysis Batch: 420-37053 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N Lab File ID: X020118.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	20.0	21.9	109	70 - 130	
1,1,1-Trichloroethane	20.0	22.1	110	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	19.6	98	70 - 130	
1,1,2-Trichloroethane	20.0	20.8	104	70 - 130	
1,1-Dichloroethane	20.0	21.8	109	70 - 130	
1,1-Dichloroethene	20.0	22.8	114	70 - 130	
1,1-Dichloropropene	20.0	21.8	109	70 - 130	
1,2,3-Trichlorobenzene	20.0	22.3	111	70 - 130	
1,2,3-Trichloropropane	20.0	20.0	100	70 - 130	
1,2,4-Trichlorobenzene	20.0	22.1	110	70 - 130	
1,2,4-Trimethylbenzene	20.0	21.6	108	70 - 130	
1,2-Dibromo-3-Chloropropane	20.0	20.7	104	70 - 130	
1,2-Dichlorobenzene	20.0	23.0	115	70 - 130	
1,2-Dichloroethane	20.0	20.9	105	70 - 130	
1,2-Dichloropropane	20.0	21.1	106	70 - 130	
1,3,5-Trimethylbenzene	20.0	21.4	107	70 - 130	
1,3-Dichlorobenzene	20.0	21.1	105	70 - 130	
1,3-Dichloropropane	20.0	21.8	109	70 - 130	
1,4-Dichlorobenzene	20.0	21.6	108	70 - 130	
2,2-Dichloropropane	20.0	23.3	116	70 - 130	
2-Chlorotoluene	20.0	23.2	116	70 - 130	
2-Hexanone	20.0	21.3	106	70 - 130	
4-Chlorotoluene	20.0	22.3	112	70 - 130	
4-Isopropyltoluene	20.0	21.5	107	70 - 130	
Acetone	20.0	20.0	100	70 - 130	
Benzene	20.0	22.3	111	70 - 130	
Bromobenzene	20.0	21.9	109	70 - 130	
Bromoform	20.0	17.9	89	70 - 130	
Bromomethane	20.0	20.1	101	70 - 130	
Carbon disulfide	20.0	21.5	108	70 - 130	
Carbon tetrachloride	20.0	21.7	108	70 - 130	
Chlorobenzene	20.0	20.6	103	70 - 130	
Chlorobromomethane	20.0	20.4	102	70 - 130	
Dibromochloromethane	20.0	19.3	96	70 - 130	
Chloroethane	20.0	20.0	100	70 - 130	
Chloroform	20.0	21.3	106	70 - 130	
Chloromethane	20.0	23.6	118	70 - 130	
cis-1,2-Dichloroethene	20.0	21.8	109	70 - 130	
cis-1,3-Dichloropropene	20.0	19.2	96	70 - 130	
Dibromomethane	20.0	20.9	104	70 - 130	
Dichlorobromomethane	20.0	21.2	106	70 - 130	

Lab Control Spike - Batch: 420-37053

Lab Sample ID:LCS 420-37053/1Client Matrix:WaterDilution:1.0Date Analyzed:02/01/2010Date Prepared:02/01/20101903

Analysis Batch: 420-37053 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N Lab File ID: X020118.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dichlorodifluoromethane	20.0	26.4	132	70 - 130	*
Ethylbenzene	20.0	21.7	109	70 - 130	
Hexachlorobutadiene	20.0	22.7	114	70 - 130	
lodomethane	20.0	22.3	111	70 - 130	
Isopropyl alcohol	200	169	84	70 - 130	
Isopropylbenzene	20.0	21.7	109	70 - 130	
m-Xylene & p-Xylene	40.0	45.6	114	70 - 130	
2-Butanone	20.0	19.5	97	70 - 130	
4-Methyl-2-pentanone	20.0	21.0	105	70 - 130	
Methyl tert-butyl ether	20.0	21.9	110	70 - 130	
Methylene Chloride	20.0	20.4	102	70 - 130	
n-Butylbenzene	20.0	21.3	106	70 - 130	
N-Propylbenzene	20.0	21.5	108	70 - 130	
Naphthalene	20.0	21.0	105	70 - 130	
o-Xylene	20.0	21.3	106	70 - 130	
sec-Butylbenzene	20.0	21.0	105	70 - 130	
Styrene	20.0	21.2	106	70 - 130	
tert-Butylbenzene	20.0	21.7	108	70 - 130	
Vinyl chloride	20.0	22.6	113	70 - 130	
Vinyl acetate	20.0	19.8	99	70 - 130	
Trichlorofluoromethane	20.0	20.6	103	70 - 130	
Trichloroethene	20.0	22.5	112	70 - 130	
trans-1,3-Dichloropropene	20.0	19.3	97	70 - 130	
trans-1,2-Dichloroethene	20.0	21.3	106	70 - 130	
Toluene	20.0	23.3	117	70 - 130	
Tetrachloroethene	20.0	23.1	115	70 - 130	
1,2-Dibromoethane	20.0	20.7	104	70 - 130	
Surrogate	% R	ec	Ace	ceptance Limits	
4-Bromofluorobenzene	95			74 - 118	
Toluene-d8 (Surr)	99			74 - 129	
1,2-Dichloroethane-d4 (Surr)	87			77 - 115	

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 420-37053

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

MS Lab Sample ID:	420-33004-3	Analysis Batch: 420)-37053	Instrument ID:	Agilent 7890A/5975C GC
Client Matrix:	Water	Prep Batch: N/A		Lab File ID:	X020116.D
Dilution:	1.0			Initial Weight/Vc	olume: 5 mL
Date Analyzed:	02/01/2010 1808			Final Weight/Vo	lume: 5 mL
Date Prepared:	02/01/2010 1808				
MSD Lab Sample ID:	420-33004-3	Analysis Batch: 420)-37053	Instrument ID: A	Agilent 7890A/5975C GC-N
Client Matrix:	Water	Prep Batch: N/A		Lab File ID: >	(020117.D
Dilution:	1.0			Initial Weight/Vc	olume: 5 mL
Date Analyzed:	02/01/2010 1836			Final Weight/Vo	lume: 5 mL
Date Prepared:	02/01/2010 1836				

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	115	114	70 - 130	1	20		
1,1,1-Trichloroethane	132	126	70 - 130	5	20	F	
1,1,2,2-Tetrachloroethane	108	104	70 - 130	4	20		
1,1,2-Trichloroethane	108	110	70 - 130	2	20		
1,1-Dichloroethane	128	124	70 - 130	3	20		
1,1-Dichloroethene	139	134	70 - 130	4	20	F	F
1,1-Dichloropropene	129	127	70 - 130	2	20		
1,2,3-Trichlorobenzene	126	111	70 - 130	13	20		
1,2,3-Trichloropropane	105	103	70 - 130	3	20		
1,2,4-Trichlorobenzene	126	110	70 - 130	13	20		
1,2,4-Trimethylbenzene	123	114	70 - 130	7	20		
1,2-Dibromo-3-Chloropropane	115	109	70 - 130	5	20		
1,2-Dichlorobenzene	128	120	70 - 130	7	20		
1,2-Dichloroethane	117	115	70 - 130	2	20		
1,2-Dichloropropane	121	112	70 - 130	7	20		
1,3,5-Trimethylbenzene	122	115	70 - 130	6	20		
1,3-Dichlorobenzene	120	112	70 - 130	7	20		
1,3-Dichloropropane	115	113	70 - 130	2	20		
1,4-Dichlorobenzene	124	117	70 - 130	5	20		
2,2-Dichloropropane	138	135	70 - 130	3	20	F	F
2-Chlorotoluene	134	124	70 - 130	8	20	F	
2-Hexanone	102	100	70 - 130	3	20		
4-Chlorotoluene	125	118	70 - 130	6	20		
4-Isopropyltoluene	126	116	70 - 130	8	20		
Acetone	117	92	70 - 130	24	20		F
Benzene	129	124	70 - 130	4	20		
Bromobenzene	121	118	70 - 130	3	20		
Bromoform	93	97	70 - 130	4	20		
Bromomethane	121	112	70 - 130	8	20		

Quality Control Results

Client: William F. Cosulich Associates

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 420-37053

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution:	420-33004-3 Water 1.0	Analysis Batch: Prep Batch: N/A	420-37053	Instrument ID: Lab File ID: Initial Weight/Vo	Agilent 7890A/5975C GC X020116.D olume: 5 mL
Date Analyzed:	02/01/2010 1808			Final Weight/Vo	lume: 5 mL
Date Prepared:	02/01/2010 1808				
MSD Lab Sample ID:	420-33004-3	Analysis Batch:	420-37053	Instrument ID: A	Agilent 7890A/5975C GC-N
Client Matrix:	Water	Prep Batch: N/A		Lab File ID:	K020117.D
Dilution:	1.0			Initial Weight/Vo	olume: 5 mL
Date Analyzed:	02/01/2010 1836			Final Weight/Vo	lume: 5 mL
Date Prepared:	02/01/2010 1836				

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Carbon disulfide	129	125	70 - 130	3	20		
Carbon tetrachloride	127	125	70 - 130	2	20		
Chlorobenzene	110	108	70 - 130	2	20		
Chlorobromomethane	123	119	70 - 130	3	20		
Dibromochloromethane	100	106	70 - 130	5	20		
Chloroethane	121	116	70 - 130	4	20		
Chloroform	119	123	70 - 130	3	20		
Chloromethane	139	135	70 - 130	3	20	F	F
cis-1,2-Dichloroethene	127	127	70 - 130	0	20		
cis-1,3-Dichloropropene	101	98	70 - 130	2	20		
Dibromomethane	110	109	70 - 130	1	20		
Dichlorobromomethane	120	115	70 - 130	4	20		
Dichlorodifluoromethane	162	161	70 - 130	1	20	F	F
Ethylbenzene	120	113	70 - 130	6	20		
Hexachlorobutadiene	137	120	70 - 130	14	20	F	
Iodomethane	132	130	70 - 130	2	20	F	
Isopropyl alcohol	128	90	70 - 130	35	20		F
Isopropylbenzene	125	119	70 - 130	5	20		
m-Xylene & p-Xylene	128	122	70 - 130	5	20		
2-Butanone	96	86	70 - 130	11	20		
4-Methyl-2-pentanone	102	105	70 - 130	3	20		
Methyl tert-butyl ether	118	124	70 - 130	5	20		
Methylene Chloride	120	122	70 - 130	2	20		
n-Butylbenzene	128	115	70 - 130	10	20		
N-Propylbenzene	122	115	70 - 130	6	20		
Naphthalene	116	111	70 - 130	4	20		
o-Xylene	120	114	70 - 130	5	20		
sec-Butylbenzene	123	113	70 - 130	9	20		
Styrene	116	111	70 - 130	5	20		

Quality Control Results

Client: William F. Cosulich Associates

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 420-37053

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-33004-3 Water 1.0 02/01/2010 1808 02/01/2010 1808	Analysis Batch: Prep Batch: N/A	420-37053	Instrument ID: Agilent 7890A/597 Lab File ID: X020116.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL	5C GC
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-33004-3 Water 1.0 02/01/2010 1836 02/01/2010 1836	Analysis Batch: Prep Batch: N/A	420-37053	Instrument ID: Agilent 7890A/5975 Lab File ID: X020117.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL	C GC-N

	<u>%</u>	<u>% Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual	
tert-Butylbenzene	125	117	70 - 130	6	20		
Vinyl chloride	144	120	70 - 130	18	20	F	
Vinyl acetate	106	109	70 - 130	3	20		
Trichlorofluoromethane	99	81	70 - 130	19	20		
Trichloroethene	126	118	70 - 130	6	20		
trans-1,3-Dichloropropene	96	102	70 - 130	5	20		
trans-1,2-Dichloroethene	132	124	70 - 130	6	20	F	
Toluene	126	122	70 - 130	3	20		
Tetrachloroethene	106	105	70 - 130	1	20		
1,2-Dibromoethane	112	109	70 - 130	3	20		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Limits	
4-Bromofluorobenzene		99	97		7	74 - 118	
Toluene-d8 (Surr)		97	98		7	74 - 129	
1,2-Dichloroethane-d4 (Surr)		88	90		7	7 - 115	

Method Blank - Batch: 420-37054

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 8015B Preparation: N/A

Lab Sample ID: MB 420-37054/2 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/01/2010 1143 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	420-37054		Instrument ID: He Lab File ID: AC Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	ewlett Packard 5890II 020105.D ume: ume: 1 mL PRIMARY
Analyte	Resul	t	Qual	RL	RL
1-Methyl-2-pyrrilidinone	1.0		U	1.0	1.0
Lab Control Spike - Batch: 420-37054				Method: 8015E Preparation: N	3 /A
Lab Sample ID: LCS 420-37054/1 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/01/2010 1043 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	420-37054		Instrument ID: He Lab File ID: AC Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	ewlett Packard 5890II 020103.D ume: ume: 1 mL PRIMARY
Analyte	Spike Amount	Result	% Rec	c. Limit	Qual
1-Methyl-2-pyrrilidinone	100	99.1	99	70 - 1	130
Matrix Spike/ Matrix Spike Duplicate Recovery Repor	rt - Batch: 420-3	37054		Method: 8015E Preparation: N	3 /A
MS Lab Sample ID:420-33004-7Client Matrix:WaterDilution:2.0Date Analyzed:02/01/2010 1323Date Prepared:N/A	Analysis Batch: Prep Batch: N/A	420-37054		Instrument ID: H Lab File ID: A Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	Hewlett Packard 5890II A020110.D ume: ume: 1 mL PRIMARY
MSD Lab Sample ID:420-33004-7Client Matrix:WaterDilution:2.0Date Analyzed:02/01/2010 1343Date Prepared:N/A	Analysis Batch: Prep Batch: N/A	420-37054		Instrument ID: He Lab File ID: A0 Initial Weight/Volu Final Weight/Volu Injection Volume: Column ID:	ewlett Packard 5890II 020111.D ume: ume: 1 mL PRIMARY
Appluto	<u>% Rec.</u>	1 100-14	000		
1-Methyl-2-pyrrilidinone	104 107	70 - 130	2	20	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Qual RL RL U 0.010 0.010 Method: 10-210-00-1-A

Preparation: N/A

Lab File ID:

Lab Sample ID: LCS 420-37091/4 Analysis Batch: 420-37091 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Units: mg/L Initial Weight/Volume: Date Analyzed: 02/02/2010 1300 Final Weight/Volume: 50 mL Date Prepared: N/A

Analysis Batch: 420-37091

Result

0.010

Prep Batch: N/A

Units: mg/L

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Phenolics, Total Recoverable	0.0620	0.0588	95	56 - 144	
Matrix Spike - Batch: 420-37091			Method: [,] Preparati	10-210-00-1-A on: N/A	

Lab Sample ID: 420-33004-1 Analysis Batch: 420-37091 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Units: mg/L Initial Weight/Volume: Date Analyzed: 02/02/2010 1300 Final Weight/Volume: 50 mL Date Prepared: N/A Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual Phenolics, Total Recoverable 0.012 0.0300 0.0468 117 55 - 143

Client: William F. Cosulich Associates

Method Blank - Batch: 420-37091

Lab Sample ID: MB 420-37091/3

Water

Lab Control Spike - Batch: 420-37091

1.0

Date Analyzed: 02/02/2010 1300

Phenolics, Total Recoverable

Client Matrix:

Date Prepared: N/A

Dilution:

Analyte

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 10-210-00-1-A Preparation: N/A

Initial Weight/Volume:

Instrument ID: No Equipment Assigned

N/A

Final Weight/Volume: 50 mL

Quality Control Results

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Method: 10-210-00-1-A Preparation: N/A

Lab Sample ID: Client Matrix:	420-33004-1 Water	Analysis Batch: 42 Prep Batch: N/A	0-37091	Instrument ID: N Lab File ID [.] N	o Equipment As	ssigned
Dilution: Date Analyzed: Date Prepared:	1.0 02/02/2010 1300 N/A	Units: mg/L		Initial Weight/Vo Final Weight/Vol	lume: ume: 50 mL	
Analyte		Sample Result/Q	ual Result	RPD	Limit	Qual
Phenolics, Total	Recoverable	0.012	0.0108	9	15	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: William F. Cosulich Associates

Duplicate - Batch: 420-37091

LOGIN SAMPLE RECEIPT CHECK LIST

Client: William F. Cosulich Associates

Job Number: 420-33004-1 Sdg Number: IBM B/312B 2515-I

Login Number: 33004

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 420-33873-1 SDG Number: IBM EFK B/312B 2515-I Job Description: William F. Cosulich

> For: William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Attention: Robbin A. Petrella

alicia M. John

Alicia M Labare Senior Customer Service Representative alabare@envirotestlaboratories.com 06/14/2010

cc: Brian Werner

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NELAP Accredited, NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554, EPA NY00049.

EXECUTIVE SUMMARY - Detections

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Lab Sample ID Analyte	Client Sample ID	Result /	Qualifier	Reporting Limit	Units	Method	
420-33873-1 Acetone	NBA-205-R-2	58	E	1.0	ug/L	8260B	
420-33873-2 Acetone	B312-RB-2	63	Е	1.0	ug/L	8260B	
420-33873-3 Acetone	DUP031210	60	E	1.0	ug/L	8260B	

METHOD SUMMARY

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS Purge-and-Trap	EnvTest EnvTest	SW846 8260B	SW846 5030B
Lab References:			

EnvTest = EnviroTest

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Method	Analyst	Analyst ID
SW846 8260B	Andersen, Eric C	ECA

SAMPLE SUMMARY

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-33873-1	NBA-205-R-2	Water	03/12/2010 1015	03/12/2010 1200
420-33873-2	B312-RB-2	Water	03/12/2010 0926	03/12/2010 1200
420-33873-3	DUP031210	Water	03/12/2010 0000	03/12/2010 1200
420-33873-4	Trip Blank	Water	03/11/2010 0000	03/12/2010 1200

SAMPLE RESULTS

William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Client Sample ID: NBA-205-R-2 Lab Sample ID: 420-33873-1

Robbin A. Petrella

Date Sampled: 03/12/2010 1015 Date Received: 03/12/2010 1200 Client Matrix: Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B Prep Method: 5030B			Date A Date P	nalyzed: repared:	03/16/2010 1149 03/16/2010 1149	
Acetone	58	Е	ug/L	1.0	1.0	1.0
Surrogate					Acceptance Limits	
4-Bromofluorobenzene	87		%		74 - 118	
Toluene-d8 (Surr)	103		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	92		%		77 - 115	
Method: 8260B Run Type: DL Prep Method: 5030B	05	5	Date A Date P	nalyzed: repared:	03/16/2010 1340 03/16/2010 1340	5.0
Acetone	65	D	ug/L	5.0	5.0	5.0

Robbin A. Petrella William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Client Sample ID: B312-RB-2 Lab Sample ID: 420-33873-2

Date Sampled: 03/12/2010 0926 Date Received: 03/12/2010 1200 Client Matrix: Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B			Date A	nalyzed:	03/16/2010 1217	
Prep Method: 5030B			Date F	repared:	03/16/2010 1217	
Acetone	63	E	ug/L	1.0	1.0	1.0
Surrogate					Acceptance Limits	
4-Bromofluorobenzene	86		%		74 - 118	
Toluene-d8 (Surr)	103		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	93		%		77 - 115	
Method: 8260B Run Type: DL			Date A	nalyzed:	03/16/2010 1408	
Prep Method: 5030B			Date F	Prepared:	03/16/2010 1408	
Acetone	59	D	ug/L	5.0	5.0	5.0

Robbin A. Petrella William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Client Sample ID: DUP031210 Lab Sample ID: 420-33873-3

Date Sampled:03/12/20100000Date Received:03/12/20101200Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B			Date A	nalyzed:	03/16/2010 1245	
Prep Method: 5030B			Date F	repared:	03/16/2010 1245	
Acetone	60	E	ug/L	1.0	1.0	1.0
Surrogate					Acceptance Limits	
4-Bromofluorobenzene	86		%		74 - 118	
Toluene-d8 (Surr)	104		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	95		%		77 - 115	
Method: 8260B Run Type: DL			Date A	nalyzed:	03/16/2010 1436	
Prep Method: 5030B			Date F	repared:	03/16/2010 1436	
Acetone	52	D	ug/L	. 5.0	5.0	5.0

Robbin A. Petrella William F. Cosulich Associates 330 Crossways Park Drive Woodbury, NY 11797

Client Sample ID: Trip Blank Lab Sample ID: 420-33873-4

Date Sampled:03/11/20100000Date Received:03/12/20101200Client Matrix:Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: 8260B			Date A	analyzed:	03/16/2010 1313	
Prep Method: 5030B			Date F	Prepared:	03/16/2010 1313	
Acetone	1.0	U	ug/L	1.0	1.0	1.0
Surrogate					Acceptance Limits	
4-Bromofluorobenzene	88		%		74 - 118	
Toluene-d8 (Surr)	103		%		74 - 129	
1,2-Dichloroethane-d4 (Surr)	96		%		77 - 115	

DATA REPORTING QUALIFIERS

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Lab Section	Qualifier	Description
GC/MS VOA		
	F	MS or MSD exceeds the control limits
	E	Result exceeded calibration range, secondary dilution required
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	U	The analyte was analyzed for but not detected at or above the stated limit.

QUALITY CONTROL RESULTS

EnviroTest Laboratories, Inc.

QC Association Summary

Lab Camala ID	Oliont Comple ID	Report Basis		Mathad	Dran Datah
Lab Sample ID	Client Sample ID	Dasis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:420-37	7983				
LCS 420-37983/1	Lab Control Spike	Т	Water	8260B	
MB 420-37983/2	Method Blank	Т	Water	8260B	
420-33873-1	NBA-205-R-2	Т	Water	8260B	
420-33873-1DL	NBA-205-R-2	Т	Water	8260B	
420-33873-2	B312-RB-2	Т	Water	8260B	
420-33873-2DL	B312-RB-2	Т	Water	8260B	
420-33873-3	DUP031210	Т	Water	8260B	
420-33873-3DL	DUP031210	Т	Water	8260B	
420-33873-4	Trip Blank	Т	Water	8260B	
420-33937-A-1 MS	Matrix Spike	Т	Water	8260B	
420-33937-A-1 MSD	Matrix Spike Duplicate	Т	Water	8260B	

Report Basis

T = Total

Quality Control Results

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Lab Sample ID	Client Sample ID	12DCE %Rec	BFB %Rec	TOL %Rec
420-33937-A-1 MS		92	90	94
420-33937-A-1 MSD		94	95	95
LCS 420-37983/1		92	92	98
MB 420-37983/2		95	84	100
420-33873-1	NBA-205-R-2	92	87	103
420-33873-2	B312-RB-2	93	86	103
420-33873-3	DUP031210	95	86	104
420-33873-4	Trip Blank	96	88	103

Surrogate		Acceptance Limits
12DCE	1,2-Dichloroethane-d4 (Surr)	77 - 115
BFB	4-Bromofluorobenzene	74 - 118
TOL	Toluene-d8 (Surr)	74 - 129

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N X031608.D Lab File ID: Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Method Blank - Batch: 420-37983

Client: William F. Cosulich Associates

Lab Sample ID: MB 420-37983/2 Client Matrix: Water Dilution: 1.0 Date Analyzed: 03/16/2010 1121 Date Prepared: 03/16/2010 1121

Analyte	Result	Qual	RL	RL
Acetone	1.0	U	1.0	1.0
Surrogate	% Rec	Accep	tance Limits	
4-Bromofluorobenzene	84	74	4 - 118	
Toluene-d8 (Surr)	100	74	4 - 129	
1,2-Dichloroethane-d4 (Surr)	95	77	7 - 115	

Analysis Batch: 420-37983

Prep Batch: N/A

Units: ug/L

Lab Control Spike - Batch: 420-37983

Lab Sample ID: LCS 420-37983/1 Client Matrix: Water Dilution: 1.0 Date Analyzed: 03/16/2010 1026 Date Prepared: 03/16/2010 1026 Analysis Batch: 420-37983 Prep Batch: N/A Units: ug/L

Method: 8260B Preparation: 5030B

Instrument ID: Agilent 7890A/5975C GC-N Lab File ID: X031606.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Acetone	20.0	16.2	81	70 - 130	
Surrogate	% R	% Rec		ceptance Limits	
4-Bromofluorobenzene	92			74 - 118	
Toluene-d8 (Surr)	98		74 - 129		
1,2-Dichloroethane-d4 (Surr)	92			77 - 115	

Page 15 of 17

Quality Control Results

Client: William F. Cosulich Associates

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 420-37983

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-33937-A-1 MS Water 1.0 03/16/2010 1846 03/16/2010 1846	Analysis Batch: Prep Batch: N/A	420-37983	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	Agilent 7890A/5975C GC· X031624.D lume: 5 mL lume: 5 mL
MSD Lab Sample ID:	420-33937-A-1 MSD	Analysis Batch:	420-37983	Instrument ID: A	gilent 7890A/5975C GC-N
Client Matrix:	Water	Prep Batch: N/A		Lab File ID: X	(031625.D
Dilution:	1.0			Initial Weight/Vo	lume: 5 mL
Date Analyzed:	03/16/2010 1914			Final Weight/Vol	lume: 5 mL
Date Prepared:	03/16/2010 1914				

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Acetone	72	67	70 - 130	7	20	F
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits
4-Bromofluorobenzene		90	95		74	4 - 118
Toluene-d8 (Surr)		94	95		74	4 - 129
1,2-Dichloroethane-d4 (Surr)		92	94		77	7 - 115

LOGIN SAMPLE RECEIPT CHECK LIST

Client: William F. Cosulich Associates

Job Number: 420-33873-1 Sdg Number: IBM EFK B/312B 2515-I

Login Number: 33873

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

APPENDIX F

DATA VALIDATION

♦2515\RR02091001.DOC

DATA VALIDATION CHECKLIST

Project Name:	IBM East Fishkill Facility	
Project Number:	2515-I	
Sample Date(s):	January 29, 2010	
Sample Team:	B. Werner	
Matrix/Number	Water/4	
of Samples:	Field Duplicates/ 1	
	<u>Trip Blanks / 1</u>	
	Rinse Blanks/ 1	
	Field Blanks/ 0	
Analyzing Laboratory:	EnviroTest Laboratories Inc	, Newburgh, NY
Analyses:	Volatile Organic Compound 2-pyrrilidinone by SW846 8 210-00-1-A.	ls (VOCs): by SW846 8260B in addition to n-methyl- 015B and total recoverable phenols by method 10-
Laboratory Report No:	420-33004-1	Date:6/14/2010

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		X		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		Х	
4. Sample collection date		Х		Х	
5. Laboratory sample received date		Х		Х	
6. Sample analysis date		Х		Х	
7. Copy of chain-of-custody form signed by Lab sample custodian		Х		x	
8. Narrative summary of QA or sample problems provided		Х		Х	

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, June, 2008, method performance criteria, and Dvirka and Bartilucci Consulting Engineers, a Division of William F. Cosulich Associates, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

ORGANIC ANALYSES

VOCS

	Rej	Reported		rmance eptable	Not
	No	Yes	No	Yes	Required
1. Holding times		X		Х	
2. Blanks		X	X		
3. Matrix spike (MS) %R		X	X		
4. Matrix spike duplicate (MSD) %R		X	X		
5. MS/MSD precision (RPD)		X	X		
6. Laboratory Control Sample %R		X	X	· .	
7. Surrogate spike recoveries		X		Х	
8. Field duplicates RPD		X		Х	
VOCs - volatile organic compounds %R - percent rec	overv	RPD - relat	ive percent di	ference	······

Comments:

Performance was acceptable with the following exceptions:

Acetone exceeded the calibrations range in NBA-205-R-1 and was reanalyzed at a secondary dilution. The secondary dilution result was reported for acetone in NBA-205-R-1.

- 2. Acetone, chloroform, dichlorobromomethane and phenols were detected in the rinsate blank. Acetone was detected at less than 10 times the blank results and was qualified as non-detect (U) in IPA-206-R-1, DUP012910 and NMP-207-R-1. Phenols were qualified as non-detect (U) in MWS-204-R-1.
- 3-5. 1,1,1-Trichloroethane, 1,1-dichloroethene, 2,2-dichloropropane, 2-chlorotoluene, chloromethane, dichlorodifluoromethane, hexachlorobutadiene, iodomethane, vinyl chloride and trans-1,2-dichloroethene had %Rs above QC limits in the MS and/or MSD. The RPDs were above QC limits in isopropyl alcohol and acetone. The following compounds were qualified as estimated (J): acetone in NBA-205-R-1 and B312-RB-1; and isopropyl alcohol in IPA-206-R-1 and DUP012910.

6. The %R was above QC limits for dichlorodifluoromethane in the laboratory control sample. It was not detected in the associated samples and qualification of the data was not necessary.

J:_HazWaste\2515 (Pizzagalli)\I - NXP Closure\Data Validation\420-33004_Jan2010.doc

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers:420-33004-1

Sample ID	Analyte(s)	Qualifier	Reason(s)
VOCs			•
NBA-205-R-1	Acetone	D	Secondary dilution result was reported
IPA-206-R-1, DUP012910 and NMP-207-R-1.	Acetone	U	Detected in associated blank
MWS-204-R-1	Phenols	U	Detected in associated blank
NBA-205-R-1 and B312- RB-1	Acetone	J	The MS/MSD RPD was above QC limits
IPA-206-R-1 and DUP012910	Isopropyl alcohol	J	The MS/MSD RPD was above QC limits

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 06/15/2010	
VALIDATION PERFORMED BY	1 200	
SIGNATURE:	la "lan	

J:_HazWaste\2515 (Pizzagalli)\I - NXP Closure\Data Validation\420-33004_Jan2010.doc

DATA VALIDATION CHECKLIST

Project Name:	IBM East Fishkill Facility		
Project Number:	2515-I		
Sample Date(s):	March 16, 2010		
Sample Team:	B. Werner		
Matrix/Number	Water/1		
of Samples:	Field Duplicates/ 1		
	<u>Trip Blanks / 1</u>		
	<u>Rinse Blanks/1</u>		
	Field Blanks/ 0		
Analyzing Laboratory:	EnviroTest Laboratories Inc, Newburgh, NY		
Analyses:	Volatile Organic Compounds (VOCs): Acetone by SW846 826	0B	

Laboratory Report No:

420-33873-1

Date:6/14/2010

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		Х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		X	
4. Sample collection date		Х		Х	
5. Laboratory sample received date		Х		Х	
6. Sample analysis date		Х		Х	
 Copy of chain-of-custody form signed by Lab sample custodian 		x		x	
8. Narrative summary of QA or sample problems provided	·	Х		х	

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, June, 2008, method performance criteria, and Dvirka and Bartilucci Consulting Engineers, a Division of William F. Cosulich Associates, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

ORGANIC ANALYSES

	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
1. Holding times		• X		X	
2. Blanks		Х	X		
3. Matrix spike (MS) %R		Х		X	
4. Matrix spike duplicate (MSD) %R		Х	X		
5. MS/MSD precision (RPD)		Х		X	
6. Laboratory Control Sample %R		Х		x	
7. Surrogate spike recoveries		X		Х	
8. Field duplicates RPD		X		х	
CS - volatile organic compounds %R - percent rec	overy	RPD - relat	ive percent dif	ference	

Comments:

Performance was acceptable with the following exceptions:

Acetone exceeded the calibrations range in all samples and was reanalyzed at a secondary dilution. The secondary dilution result was reported for acetone in all samples.

- 2. Acetone was detected in the rinsate blank. Acetone was detected at less than 10 times the blank results and was qualified as non-detect (U) in NBA-205-R-2 and DUP031210.
- 4. Acetone had %Rs below QC limits in the MSD. Acetone was qualified as estimated (J/UJ) in all samples.

J:_HazWaste\2515 (Pizzagalli)\I - NXP Closure\Data Validation\420-33873_Mar2010.doc

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers:420-33873-1

Sample ID	Analyte(s)	Qualifier	Reason(s)
VOCs			
All samples	Acetone	D	Secondary dilution result was reported
NBA-205-R-2 and	Acetone	U U	Detected in associated blank
DUP031210			
All complex	Acetone		The MSD %R was below OC limits
All samples	Action	3/03	

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 06/15/2010
VALIDATION PERFORMED BY SIGNATURE:	la-pa
·	

J:_HazWaste\2515 (Pizzagalli)\I - NXP Closure\Data Validation\420-33873_Mar2010.doc

APPENDIX B

WORK PLAN AND QUALITY ASSURANCE PROJECT PLAN

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 HUDSON VALLEY RESEARCH PARK HOPEWELL JUNCTION, NEW YORK

QUALITY ASSURANCE PROJECT PLAN FOR DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU)

Prepared for:

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 HOPEWELL JUNCTION, NEW YORK

Prepared by:

D&B ENGINEERS AND ARCHITECTS, P.C. WOODBURY, NEW YORK

JULY 2018
GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 HOPEWELL JUNCTION, NEW YORK QUALITY ASSURANCE PROJECT PLAN FOR DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT

TABLE OF CONTENTS

Section

<u>Title</u>

Page

1-1	LITY ASSURANCE PROJECT PLAN	LO QUA	1.0
1-1	Project Identification	1.1	
1-1	Objective and Scope	1.2	
1-1	Data Usage	1.3	
1-2	Sampling Program Design and Rationale	1.4	
1-2	Analytical Methods	1.5	
1-6	Data Quality Requirements and Assessment	1.6	
1-6	1.6.1 Data Representativeness		
1-10	1.6.2 Data Comparability		
1-10	1.6.3 Data Completeness		
1-10	Detailed Sampling Procedures	1.7	
1-11	1.7.1 Sample Identification		
1-12	1.7.2 Sample Handling, Packaging and Shipping		
1-13	1.7.3 Rinse Water/Blind Duplicate Samples		
1-14	1.7.4 Rinse Water Blank Sample		
1-15	Decontamination Procedures	1.8	
1-15	1.8.1 Field Decontamination Procedures		
1-15	1.8.2 Decontamination Procedure for Sampling Equipment		
1-16	Laboratory Sample Custody Procedures	1.9	
1-16	Field Management Documentation	1.10	
1-16	1.10.1 Location Sketch		
1-16	1.10.2 Chain of Custody		
1-18	1.10.3 Field Log Book		
1-19	Calibration Procedures and Preventive Maintenance	1.11	
1-20	Performance of Field Audits	1.12	
1-20	Control and Disposal of Contaminated Material	1.13	
1-21	Data Validation	1.14	
1-23	Performance and System Audits	1.15	
1-23	Corrective Action	1.16	
1-24	Duplicate	1.17	
••	Duplicate	1.16 1.17	

Exhibit A - Detection Limits

Exhibit B - Data Validation Forms

TABLE OF CONTENTS (continued)

List of Tables

1-1	Summary of Monitoring Parameters/Sample Fractions1-3
1-2	Objectives for Precision and Accuracy1-7

1.0 QUALITY ASSURANCE PROJECT PLAN

1.1 Project Identification

Facility Name:	GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 (GLOBALFOUNDRIES) Hudson Valley Research Park (HVRP) Hopewell Junction, New York
Project Name:	Decontamination of the B/312B Solvent Vault Solid Waste Management Unit (SWMU)
Project Managers:	Brian Veith (D&B Engineers and Architects, P.C.)
Quality Assurance Officer:	Robbin A. Petrella (D&B Engineers and Architects, P.C.)
Field Operations Manager:	Brian Werner (D&B Engineers and Architects, P.C.)

1.2 Objective and Scope

The objective of this program is to decontaminate the Solid Waste Management Unit (SWMU) located at Building 312B (B/312B) Vault at the GLOBALFOUNDRIES HVRP. As part of the decontamination activities, rinse water and rinse water blank samples will be collected to verify the effectiveness of the decontamination procedures. The purpose of this Quality Assurance Project Plan (QAPP) is to develop and describe the detailed sample collection and analytical procedures that will ensure high quality data.

1.3 Data Usage

The data generated from the field sampling will be used to verify the effectiveness of the decontamination activities performed on the SWMUs and associated piping. Specifically, the samples will be used to determine whether the decontamination activities were successful in removing any contamination present in the SWMUs and associated piping. If the samples

indicate that contamination remains present, then additional decontamination may be required before the unit can be considered decontaminated.

1.4 Sampling Program Design and Rationale

The following presents a general discussion of the sampling to be conducted during the sampling portion of the program.

- Rinse Water Samples: Rinse water samples will be collected from certain SWMUs being decontaminated during this project. In addition, one blind duplicate will be collected each day a rinse water sample is collected.
- Rinse Water Blank Sample: One rinse water blank sample will be collected each day a rinse water sample is collected during this decontamination project directly from the water supply utilized to decontaminate the SWMUs.

1.5 Analytical Methods

Laboratory analysis of the rinse water and rinse water blank samples will consist of analyzing for volatile organic compounds (VOCs), n-butyl acetate (NBA), isopropyl alcohol (IPA), N-methyl-2-pyrolidone (NMP) and total phenols as identified in the 2005 NYSDEC Analytical Services Protocol (ASP), depending on sample location.

Table 1-1 presents a summary of the parameters/sample fractions to be analyzed. The table also lists the sample location, type of sample, sample matrix, number of samples and frequency of sample collection, type of sample container, method of preservation, holding time and analytical method.

Table 1-1

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU SUMMARY OF MONITORING PARAMETERS/SAMPLE FRACTIONS

Sample Location	Sample Type	<u>Sample Matrix</u>	Sample Fraction	No. of <u>Samples</u> *	<u>Frequency</u> **	Container <u>Type/Size/No.</u>	Sample <u>Preservation</u>	Maximum <u>Holding Time</u> ***	Analytical Method
Fluoride/Heavy Metal SWMUs	Grab	Water	Fluoride	3	3	Plastic/50 ml/1 ICHEM 300 series or equivalent	Cool to 4°C	26 days for analysis	7/05 NYSDEC ASP, Method 9214
			рН	3	3	Plastic/50 ml/1 ICHEM 300 series or equivalent	Cool to 4°C	analyze immediately	7/05 NYSDEC ASP, Method 9040
			Metals****	3	3	Plastic/500 ml/1 ICHEM 300 series or equivalent	HNO3 to pH <2 Cool to 4°C	6 months for analysis	7/05 NYSDEC ASP Method 6010

*Number of samples includes a rinse water, rinse water blank and duplicate.

**Frequency equals number of SWMUs to be decontaminated.

***Holding times based upon Verified Time of Sample Receipt at the laboratory.

****Metals to include lead and nickel.

Table 1-1 (continued)

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU SUMMARY OF MONITORING PARAMETERS/SAMPLE FRACTIONS

Sample Location	Sample Type	<u>Sample Matrix</u>	Sample Fraction	No. of <u>Samples</u> *	<u>Frequency</u> **	Container <u>Type/Size/No.</u>	Sample <u>Preservation</u>	Maximum <u>Holding Time</u> ***	Analytical Method
Industrial Wastewater	Grab	Water	рН	3	1	Plastic/50 ml/1 ICHEM 300 series or equivalent	Cool to 4°C	analyze immediately	7/05 NYSDEC ASP, Method 9040

*Number of samples includes a rinse water, rinse water blank and duplicate.

**Frequency equals number of SWMUs to be decontaminated.

***Holding times based upon Verified Time of Sample Receipt at the laboratory.

Table 1-1 (continued)

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU SUMMARY OF MONITORING PARAMETERS/SAMPLE FRACTIONS

Sample Location	Sample Type	Sample Matrix	Sample Fraction	No. of <u>Samples</u> *	<u>Frequency</u> **	Container <u>Type/Size/No.</u>	Sample <u>Preservation</u>	Maximum <u>Holding Time</u> ***	Analytical Method
Less-Than-90-Day Hazardous Waste Storage Tanks and Vaults	Grab	Water	Volatile Organics	3	4	Glass/40 ml/3 ICHEM 300 series or equivalent	Cool to 4°C	10 days	7/05 NYSDEC ASP, Method 8260

*Number of samples includes a rinse water, rinse water blank and duplicate.

**Frequency equals number of SWMUs to be decontaminated.

***Holding times based upon Verified Time of Sample Receipt at the laboratory.

1.6 Data Quality Requirements and Assessment

Data quality requirements and assessments are provided in the 2005 NYSDEC ASP, which includes the detection limit for each parameter and sample matrix (see Exhibit A). Note that quantification limits, estimated accuracy, accuracy protocol, estimated precision and precision protocol are determined by the laboratory and will be in conformance with the requirements of the 2005 NYSDEC ASP, where applicable. Table 1-2 presents a summary of the data quality requirements.

In addition to meeting the requirements provided in the 2005 NYSDEC ASP, the data must also be useful in evaluating the nature and extent of contamination. Data obtained during the field program will be compared to specific Standards, Criteria and Guidelines (SCGs). The SCGs to be utilized include:

<u>Matrix</u>

<u>SCG</u>

Rinse Water and
Blank SamplesNYSDEC Class GA Groundwater Standards found at Division
of Water Technical and Operational Guidance Series (1.1.1)
dated June 1998.

1.6.1 Data Representativeness

Representative samples will be collected as follows:

- <u>Rinse Water</u> Samples will be collected utilizing hose water. Hose water will be poured into the SWMU, allowed to stand for approximately 10 minutes and then collected utilizing sterile plastic pipettes or similar equipment.
- <u>Rinse Water Blank</u> Samples will be collected of the water utilized to decontaminate the area directly from the water source (e.g., hose, etc.) and passed through a sterile plastic pipette into the sample container.
- <u>Equipment Decontamination</u> Non-sterile sampling equipment will be decontaminated prior to use at each location according to the NYSDEC-approved procedures described in Section 1.8 of this QAPP.

Table 1-2

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU DATA QUALITY REQUIREMENTS

<u>Parameter</u>	<u>Sample Matrix</u>	CRDL* (ug/l)	Estimated Accuracy	Accuracy Protocol	Estimated Precision	Precision Protocol
Volatile Organics	Liquid	5-10 5-10	0.87 - 2.48 ug/l	Vol. IB, Chapter 4, Method 8260B, Table 7	0.11 - 4.00 ug/l	Vol. IB, Chapter 4, Method 8260B, Table 7
Metals	Liquid	0.2-200		Vol. IA, Chapter 3, Method 6010, Table 4		Vol. IA, Chapter 3, Method 6010, Table 4

*Contract Required Detection Limits.

Table 1-2 (continued)

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU DATA QUALITY REQUIREMENTS OBJECTIVES FOR PRECISION, ACCURACY, AND COMPLETENESS

<u> Matrix/Parameter</u>	Precision (%)	Accuracy (%)
Rinse Water		
VOCs(a)	See Table 1-2a	See Table 1-2a
Metals(b)	$\pm 25\%$	75-125

Notes:

- (a) Accuracy will be determined as percent recovery of surrogate spike compounds and matrix spike compounds. Surrogate and matrix spike compounds for VOCs are listed in Table 1-2a. Precision will be estimated as the relative standard deviation of the percent recoveries per matrix.
- (b) Accuracy will be determined as percent recovery of matrix spikes when appropriate or the percent recovery of a QC sample if spiking is inappropriate. Precision will be determined as relative percent difference of matrix spike duplicate samples, or duplicate samples if spiking is inappropriate.
- (c) Precision will be determined as the average percent difference for replicate samples. Accuracy will be determined as the percent recovery of matrix spike samples or laboratory control samples, as appropriate.

Source: NYSDEC ASP

Table 1-2 (continued)

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 DECONTAMINATION OF B/312B SOLVENT VAULT SWMU DATA QUALITY REQUIREMENTS ACCURACY REQUIREMENTS FOR VOC

Spike Recovery Limits (%)

	Water
Surrogate Compound	
Toluene-d8	88-110
4-Bromofluorobenzene	86-115
1,2-Dichloroethane-d4	76-114
Matrix Spike Compound	
1,1-Dichloroethene	61-145
Trichloroethane	71-120
Chlorobenzene	75-130
Toluene	76-125
Benzene	76-127

Source: NYSDEC ASP

1.6.2 Data Comparability

All data will be presented in the units designated by the methods specified by a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory, and the 2005 NYSDEC ASP. In addition, sample locations, collection procedures and analytical methods from earlier studies will be evaluated for comparability with current procedures/methods.

1.6.3 Data Completeness

The acceptability of 100% of the data is desired as a goal for this project. The acceptability of less than 100% complete data, meeting all laboratory Quality Assurance/Quality Control (QA/QC) protocols/standards, will be evaluated on a case-by-case basis.

The laboratory utilized to perform the analyses on the rinse water, rinse water blank and duplicate samples will provide NYSDEC ASP Category B data deliverables.

1.7 Detailed Sampling Procedures

Rinse water, rinse water blank and duplicate samples will be collected following the decontamination activities in order to verify the effectiveness of the decontamination activities. One rinse water sample, one rinse water blank sample and one duplicate sample will be collected from certain SWMUs which are decontaminated as part of this program. Sampling procedures and equipment to be utilized are described in this QAPP. Sample collection will be performed in conformance with the procedures outlined in this QAPP.

When collecting the samples, care will be taken to maintain sample integrity by preserving its physical form and chemical composition to as great an extent as possible. First, the equipment utilized to collect the samples must be new and sterile or properly decontaminated. An appropriate piece of sampling equipment (e.g., disposable pipette) will be utilized to collect the sample and transfer it to the laboratory-supplied sample container. The sample should reflect

and contain a good representation of the area from which it was collected. The sample will be transferred into the sample container as quickly as possible.

There are several steps performed after the transfer of the sample into the sample container that are necessary to properly complete the collection activities. Once the sample is transferred into the appropriate container, the container will be capped and, if necessary, the outside of the container will be wiped with a clean paper towel to remove any grime. A clean paper towel moistened with distilled water will be used for this purpose.

Prior to sample collection, the sample container will be properly labeled. Information such as the sample identification number, location, collection time and sample description will be recorded in the field log book. Associated paper work (e.g., Chain of Custody forms) will then be completed and will stay with the sample. The samples will be packaged in a manner that will allow the appropriate storage temperature to be maintained during transportation to the laboratory. Samples will be delivered to the laboratory within 48 hours of collection.

Proper personal protective equipment and monitoring equipment (if determined to be necessary) will be used at all times during sample collection to further maintain sample integrity and protection of worker health and safety.

1.7.1 Sample Identification

All samples collected during the field activities undertaken at GLOBALFOUNDRIES HVRP B/312B Solvent Vault will be labeled with a sample identification code. The code will identify the sample location, sample type (sample matrix) and series numbers for the sample locations. Samples will be labeled according to the following system:

Location Identification: - The sample location will be assigned an identifier based on the SWMU from which the sample was collected. Samples collected from the B312B Solvent Vault will be denoted "B312B (SWMU number)" (e.g., B312BSV).

Sample Type:	-	"R" for rinse water and duplicate samples and "RB" for rinse water blank sample.
<u>Sample Number</u> :	-	In the field, each sample location will be designated with a number. The number will correspond with the number of the sample collected. Therefore, the first blank collected from an SWMU will be denoted "1." If the SWMU requires further decontamination, the second rinse blank will be denoted "2" and so on.

Based on the above sample identification procedures, an example of a sample label may be:

1.7.2 <u>Sample Handling, Packaging and Shipping</u>

All analytical samples will be placed in the appropriate sample containers as specified in the NYSDEC July 2005 ASP. The holding time criteria identified in the ASP will be followed, as specified in Table 1-1.

Prior to packaging any samples for transportation to the laboratory, the sample containers will be checked for proper identification and compared to the field log book for accuracy. The samples will then be wrapped with a cushioning material (e.g., bubble wrap) and placed in a cooler (or laboratory shuttle) with a sufficient quantity of bagged ice or "blue ice" packs to maintain the samples at 4°C until arrival at the laboratory.

All necessary documentation required to accompany the samples during transportation will be placed in a sealed plastic bag and taped to the underside of the cooler lid. The cooler will then be sealed with fiber (duct) tape, and custody seals will be placed in such a manner that any opening of the cooler prior to arrival at the laboratory can be detected.

All samples will be shipped to ensure receipt at the laboratory within 48 hours of sample collection in accordance with ASP requirements.

1.7.3 <u>Rinse Water/Blind Duplicate Samples</u>

The following protocol will be adhered to for the collection of rinse water samples and the blind duplicate sample:

- 1. Be certain that the sample location is noted on a sample location sketch (see Section 1.10).
- 2. Be certain that the sampling equipment is either new or has been decontaminated utilizing the procedures outlined in Section 1.8.
- 3. Select a sample location within the area. One rinse water sample and one duplicate will be collected from each SWMU.
- 4. Remove a set of laboratory-supplied, precleaned sample containers from the sample cooler, label containers with an indelible marker and fill out a Chain of Custody form (refer to Section 1.10.2).
- 5. Don a new pair of disposable laboratory gloves (nitrile).
- 6. Slowly pour water into the SWMU from hose. The minimum amount of water necessary to properly fill all of the sample containers should be utilized. <u>Note</u>: Since it is not possible to extract all of the water poured into the SWMU, the volume of the sample containers plus additional water will have to be poured into the SWMU in order to properly fill all of the sample containers. Record the approximate volume of water utilized in the field log book.
 - <u>Note</u>: If water will not pool within the SWMU, construct a berm to ensure pooling. Absorbent material or similar means should be used to construct berm.
- 7. Allow the water to remain within the tank or vault for approximately 10 minutes.
- 8. Collect the rinse water duplicate samples from the SWMU utilizing a new or decontaminated pipette. If the liquid level is of sufficient depth, containers may be filled by dunking the unpreserved container into the pooled liquid, or utilizing a dedicated unpreserved container to then fill the preserved sample container.
- 9. Once each sample container has been filled, replace the sample container cap.

- 10. Return the sample containers to the cooler.
- 11. Measure the wetted area of SWMU in each sample location and record in the field log book.
- 12. Record notes in field log book as described in Section 1.10.3.
- 13. If reusable sampling equipment was utilized, decontaminate the sampling equipment according to the procedures described in Section 1.8.
- 14. Place all disposable personal protective equipment and disposable sampling equipment into a 55-gallon drum or other approved container for disposal.

1.7.4 <u>Rinse Water Blank Sample</u>

The following protocol will be adhered to for the collection of the rinse water blank sample:

- 1. Be certain that the sample location is noted on a sample location sketch (see Section 1.10).
- 2. Be certain that the sampling equipment is either new or has been decontaminated utilizing the procedures outlined in Section 1.8.
- 3. Remove a set of laboratory-supplied, precleaned sample containers from the sample cooler, label containers with an indelible marker and fill out a Chain of Custody form (refer to Section 1.10.2).
- 4. Don a new pair of disposable laboratory gloves (nitrile).
- 5. Collect the rinse water blank sample by filling each container directly from the hose or other source utilized to supply water to the area for the decontamination activities. The hose water should be passed from the hose through a sterile disposable syringe/pipette (the same type utilized for collecting the rinse water samples) into the sample container.
- 6. Once each sample container has been filled, replace the sample container cap.
- 7. Return the sample containers to the cooler.
- 8. Record notes in field log book as described in Section 1.10.3.
- 9. Place all disposable personal protective equipment and disposable sampling equipment into a 55-gallon drum or other approved container for disposal.

◆3932-07\NN09251810_QAPP

1.8 Decontamination Procedures

Whenever feasible, all field sampling equipment should be dedicated to a particular sampling location. In instances where this is not possible, a field cleaning (decontamination) procedure will be used in order to reduce the risk of cross-contamination between sample locations. A decontamination station will be established for all field activities if field decontamination is necessary. This will be an area located at some distance from the sampling locations so as not to adversely impact the decontamination procedure while still allowing the sampling team to keep equipment handling to a minimum.

1.8.1 Field Decontamination Procedures

All nondisposable equipment will be decontaminated at appropriate intervals (e.g., prior to initial use, prior to moving to a new sampling interval or location, and prior to leaving the site). Different decontamination procedures are used for the various types of equipment utilized to perform the field activities. When designing a field decontamination program, it is advisable to initiate environmental sampling in the area of the site with the lowest contaminant probability and proceed through to the areas of highest suspected contamination.

1.8.2 Decontamination Procedure for Sampling Equipment

All non-disposable Teflon, polyvinyl chloride (PVC), high density polyethylene (HDPE) and stainless steel sampling equipment will be decontaminated utilizing the following procedure:

- Wash thoroughly with nonresidual detergent (e.g., alconox) and clean potable tap water using a brush to remove particulate matter or surface film.
- Rinse thoroughly utilizing distilled water.
- Wrap completely in clean aluminum foil with dull side against the equipment.

The first step, a soap and water wash, is designed to remove all visible particulate matter and residual oil and grease. The distilled water rinse ensures complete removal of residual cleaning products and the aluminum wrap protects the equipment from contamination and keeps it clean for use at another sampling location.

1.9 Laboratory Sample Custody Procedures

A NYSDOH ELAP certified laboratory meeting the requirements for sample custody procedures, including cleaning and handling sample containers and analytical equipment, will be used. The Standard Operating Procedures of the laboratory selected to undertake the analysis of environmental samples for this program will be available upon request.

1.10 Field Management Documentation

Proper management and documentation of field activities is essential to ensure that all necessary work is conducted in accordance with this Quality Assurance Project Plan in an efficient and high quality manner. Field management procedures include following proper chain of custody procedures to track a sample from collection through analysis, noting when and how samples are split (if required), completing Chain of Custody forms and maintaining a daily field log book. Proper completion of the Chain of Custody and the field log book are necessary to support the future actions that may result from the sample analysis. This documentation will support that the samples were properly collected and handled.

1.10.1 Location Sketch

Each sampling point shall have its own location sketch with measurements and permanent references if possible. This sketch will be recorded in the field log book.

1.10.2 Chain of Custody

A Chain of Custody (COC) form is initiated at the laboratory with container preparation and transportation to the site. The COC must remain with the samples at all times and bear the name of the person assuming responsibility for the samples. This person is tasked with ensuring secure and proper handling of the containers and samples. When the form is complete, it should indicate that there were no lapses in sample accountability.

A sample is considered to be in an individual's custody if any of the following conditions are met:

- It is in the individual's physical possession, or
- It is in the individual's view after being in his or her physical possession, or
- It is secured by the individual so that no one can tamper with it, or
- The individual puts it in a designated and identified secure area.

In general, Chain of Custody forms are provided by the laboratory contracted to perform the analytical services. At a minimum, the following information shall be provided on these forms:

- Project name and address
- Project number
- Sample identification number of each sample contained in the sample cooler
- Date of sample collection
- Time of sample collection
- Sample location
- Sample type/matrix
- Analyses requested
- Number of containers and volume collected
- Remarks (e.g., preservation, special handling, etc.)
- Sampler(s) name(s) and signature(s)
- Spaces for relinquished by/received by signature and date/time.

For this particular study, Chain of Custody forms provided by the laboratory will be utilized.

The Chain of Custody form is completed and signed by the person performing the sampling activities. The original form travels with the samples and is signed and dated each time the samples are relinquished to another party, until it reaches the laboratory or analysis is completed. The field sampler maintains a copy of the Chain of Custody form and a copy is retained for the project file. Each sample container must also be labeled with an indelible marker with a minimum of the following information:

- Sample identification number
- Project name/location
- Analysis to be performed
- Date and time of collection
- Sampler's initials

A copy of the completed Chain of Custody form is returned by the laboratory with the analytical results.

1.10.3 Field Log Book

Field log books must be bound and should have consecutively numbered, water resistant pages. All pertinent information regarding the site, project and sampling procedures must be documented. Notations should be made in log book fashion, noting the time and date of all entries. Information recorded in the log book should include, but is not necessarily be limited to, the following:

The first page of the log contains the following information:

- Project name and address
- Name, address and phone number of field contact
- Name, address and phone number of subcontractors and contact persons

Daily entries are made for the following information:

- Purpose of sampling
- Sampling location
- Number and volume(s) of sample(s) collected
- Description of sample location and sampling methodology
- Date and time of sample collection and personnel arrival and departure
- Geologic description of each sample interval, if applicable
- Collector's sample identification number(s)
- Sample distribution and method of storage and transportation
- References, such as sketches of the sample location or photographs of sample collection with dimensions
- Field observations such as weather conditions, visual signs of staining and/or stressed vegetation
- Signature of personnel responsible for completing log entries

1.11 Calibration Procedures and Preventive Maintenance

The following information regarding equipment will be maintained at the project site if monitoring is deemed necessary for health and safety purposes:

1. Equipment calibration and operating procedures which will include provisions for documentation of frequency, conditions, standards and records reflecting the

calibration procedures, methods of usage and repair history of the measurement system. Calibration of field equipment will be completed daily at the sampling site so that any background contamination can be taken into consideration and the instrument calibrated accordingly.

- 2. A schedule of preventive maintenance tasks, consistent with the instrument manufacturer's specific operation manuals, that will be carried out to minimize down time of the equipment.
- 3. Critical spare parts, necessary tools and manuals will be on hand to facilitate equipment maintenance and repair.

1.12 Performance of Field Audits

During field activities, if determined to be necessary, the QA/QC Officer will accompany sampling personnel into the field, verify that the site sampling program is being properly implemented and detect and define problems so that resolutions can be determined and implemented. All findings will be documented and provided to the Field Operations Manager.

1.13 Control and Disposal of Contaminated Material

Contaminated materials generated during this field program will primarily be limited to spent protective clothing, spent disposable sampling equipment and wastes generated as a result of equipment decontamination.

Any contaminated materials generated as a result of the field program will be contained in U.S. Department of Transportation (DOT) 55-gallon drums and staged in a designated area for subsequent waste characterization. Each drum will be identified by the type of material contained.

Decisions regarding the disposal of drummed material will be made, at least in part, based on the analytical results of the samples collected during this program. At the present time, there is no provision for separate analysis of contained material. Decontamination water and sediment, if any, will be contained in 55-gallon drums. A decision regarding disposal of this material will be made following receipt of the sample results. Analysis of decontamination water/sediment may be required for proper management.

DOT-approved 55-gallon drums will be available for disposal of spent protective clothing and disposable sampling equipment, if any. These drums will be marked and labeled as containing personnel protective and sampling equipment. These drums will not be sampled. All drums will be sealed and staged on site to await proper off-site disposal.

1.14 Data Validation

Data validation will be performed in order to define and document analytical data quality in accordance with NYSDEC requirements that project data must be of known and acceptable quality. The analytical and validation processes will be conducted in conformance with the July 2005 NYSDEC ASP and USEPA CLP Statements of Work (SOW) dated June 1999 and January 2000. The validation will be performed by an individual meeting the qualification requirements for a data validator for the NYSDEC.

The USEPA Functional Guidelines for Evaluating Organics and Inorganics Analyses for the CLP will be used for the data validation process. The data validation process will ensure that all analytical requirements specific to this sampling program, including this Quality Assurance Project Plan, are followed. Procedures will address validation of routine analytical services (RAS) results based on the NYSDEC Target Compound List (TCL) for standard sample matrices.

The data validation process will provide an informed assessment of the laboratory's performance based upon contractual requirements and applicable analytical criteria. The report generated as a result of the data validation process will provide a base upon which the usefulness of the data can be evaluated by the end user of the analytical results. The overall level of effort and specific data validation procedure to be used will be equivalent to a "20% validation" of all analytical data in any given data package.

During the review process, it will be determined whether the contractually-required laboratory submittals for sample results are supported by sufficient back-up data and QA/QC results to enable the reviewer to conclusively determine the quality of data. Each data package will be checked for completeness and technical adequacy of the data. Upon completion of the review, the reviewer will develop a QA/QC data validation report for each analytical data package.

"Qualified" analytical results for any one field sample are established and presented based on the results of specific QC samples and procedures associated with its sample analysis group or batch. Precision and accuracy criteria (i.e., QC acceptance limits) are used in determining the need for qualifying data. Where test data have been reduced by the laboratory, the method of reduction will be described in the report. Reduction of laboratory measurements and laboratory reporting of analytical parameters shall be verified in accordance with the procedures specified in the NYSDEC program documents for each analytical method (i.e., recreate laboratory calculations and data reporting in accordance with the method specific procedure). The standard operating guideline manuals and any special analytical methodology required are expected to specify documentation needs and technical criteria and will be taken into consideration in the validation process. Copies of the complete ASP Category B deliverables will be submitted to the NYSDEC for review. Copies of the validation report, including the laboratory result data report sheets, with any qualifiers deemed appropriate by the data reviewer, and a supplementary field QC sample result summary statement, will be submitted to the NYSDEC, if requested.

Examples of standard organic and inorganic data validation reporting formats and completeness inventory lists which are proposed for use on this project are contained in Exhibit B. These report forms will be modified as necessary and made appropriate for any project specific or NYSDEC requirements.

The following is a description of the two-phased approach to data validation planned to be used on this project. The first phase is called "checklisting" and the second phase is the analytical quality review, with the former being a subset of the latter.

- <u>Checklisting</u> The data package is checked for correct submission of the contract required deliverables, correct transcription from the raw data to the required deliverable summary forms and proper calculation of a number of parameters.
- <u>Analytical Quality Review</u> The data package is closely examined to recreate the analytical process and verify that proper and acceptable analytical techniques have been performed. Additionally, overall data quality and laboratory performance is evaluated by applying the appropriate data quality criteria to the data to reflect conformance with the specified, accepted QA/QC standards and contractual requirements.

At the completion of the data validation, a Summary Data Validation/Usability Report will be prepared and submitted to the NYSDEC, if requested.

1.15 Performance and System Audits

A NYSDOH ELAP certified laboratory, which has satisfactorily completed performance audits and performance evaluation samples, shall be used on this project.

1.16 Corrective Action

A NYSDOH ELAP certified laboratory shall meet the requirements for corrective action protocols, including sample "cleanup" to attempt to eliminate/mitigate "matrix interference." Sample "cleanup" is not required for samples to be analyzed for volatile organic compounds or RCRA metals. However, sample "cleanup" is required for samples to be analyzed for semivolatile organic compounds.

1.17 Duplicate

The primary purpose of a duplicate sample is to determine the analytical precision of the laboratory contracted to perform the sample analyses. A duplicate sample is collected in the same manner as one of the environmental samples and analyzed for the same constituents. In this manner, the precision of the laboratory can be checked. One duplicate of a rinse water sample will be collected and analyzed during decontamination of each SWMU identified in this decontamination program.

EXHIBIT A

DETECTION LIMITS

Volatiles Target Compound List (TCL) and
Contract Required Quantitation Limits (CRQL)
for Aqueous Samples

	Volatile Analyte	CAS Number	Trace Water By SIM (µg/L)	Trace Level Water (µg/L)	Low Level Water (µg/L)
1.	Dichlorodifluoromethane	75-71-8		0.50	5.0
2.	Chloromethane	74-87-3		0.50	5.0
3.	Vinyl Chloride	75-01-4		0.50	5.0
4.	Bromomethane	74-83-9		0.50	5.0
5.	Chloroethane	75-00-3		0.50	5.0
6.	Trichlorofluoromethane	75-69-4		0.50	5.0
7.	1,1-Dichloroethene	75-35-4		0.50	5.0
8.	1,1,2-Trichloro-1,2,2- trifluoroethane	76-13-1		0.50	5.0
9.	Acetone	67-64-1		5.0	10.0
10.	Carbon Disulfide	75-15-0		0.50	5.0
11.	Methyl Acetate	79-20-9		0.50	5.0
12.	Methylene chloride	75-09-2		0.50	5.0
13.	trans-1,2-Dichloroethene	156-60-5		0.50	5.0
14.	Methyl tert-Butyl Ether	1634-04-4		0.50	5.0
15.	1,1-Dichloroethane	75-34-3		0.50	5.0
16.	cis-1,2-Dichloroethene	156-59-2		0.50	5.0
17.	2-Butanone	78-93-3		5.0	10.0
18.	Bromochloromethane	74-97-5		0.50	5.0
19.	Chloroform	67-66-3		0.50	5.0
20.	1,1,1-Trichloroethane	71-55-6	X	0.50	5.0
21.	Cyclohexane	110-82-7		0.50	5.0
22.	Carbon tetrachloride	56-23-5		0.50	5.0
23.	Benzene	71-43-2		0.50	5.0
24.	1,2-Dichloroethane	107-06-2		0.50	5.0
25.	1,4-Dioxane	123-91-1	1.0	25	125
26.	Trichloroethane	79-01-6		0.50	5.0

.

	Volatile Analyte	CAS Number	Trace Water By SIM (µg/L)	Trace Level Water (µg/L)	Low Level Water (µg/L)
27.	Methylcyclohexane	108-87-2		0.50	5.0
28.	1,2-Dichloropropane	78-87-5		0.50	5.0
29.	Bromodichloromethane	75-27-4		0.50	5.0
30.	cis-1,3-Dichloropropene	10061-01-5		0.50	5.0
31.	4-methyl-2-pentanone	108-10-1		5.0	10.0
32.	Toluene	108-88-3		0.50	5.0
33.	Trans-1,3-Dichloropropene	10061-02-6		0.50	5.0
34.	1,1,2-Trichloroethane	79-00-5		0.50	5.0
35.	Tetrachloroethene	127-18-4		0.50	5.0
36.	2-Hexanone	591-78-6		5.0	10.0
37.	Dibromochloromethane	124-48-1		0.50	5.0
38.	1,2-Dibromoethane	106-93-4	0.05	0.50	5.0
39.	Chlorobenzene	108-90-7		0.50	5.0
40.	Ethylbenzene	100-41-4		0.50	5.0
41.	Xylenes (Total)	1330-20-7		0.50	5.0
42.	Styrene	100-42-5		0.50	5.0
43.	Bromoform	75-25-2		0.50	5.0
44.	Isopropylbenzene	98-82-8		0.50	5.0
45.	1,1,2,2-Tetrachloroethane	79-34-5		0.50	5.0
46.	1,3-Dichlorobenzene	541-73-1		0.50	5.0
47.	1,4-Dichlorobenzene	106-46-7		0.50	5.0
48.	1,2-Dichlorobenzene	95-50-1		0.50	5.0
49.	1,2-Dibromo-3-chloropropane	96-12-8	0.05	0.50	5.0
50.	1,2,4-Trichlorobenzene	120-82-1		0.50	5.0
51.	1,2,3-Trichlorobenzene	87-61-6		0.50	5.0

Volatiles Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL) for Aqueous Samples (Continued)

ک بر ا

Superfund Target Compound List (TCL) and Contract Required Quantitation Limits (CRQL)

Resource Conservation and Recovery Act (RCRA) Metals plus Nickel

	· .	Quantitation Limits*				
<u>Parameter</u>	CAS Number Low Water (ug/l)		Low Soil/Sediment (ug/kg)			
1. Arsenic		15	3,000			
2. Barium		200	40,000			
3. Cadmium		5	1,000			
4. Chromium		10	2,000			
5. Lead		10	2,000			
6. Mercury		0.2	100			
7. Selenium		35	7,000			
8. Silver		10	2,000			
9. Nickel*		40	8,000			

* Quantitation Limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, as required by the protocol, will be higher.

All quantitation limits are referenced from the 2005 NYSDEC ASP.

EXHIBIT B

DATA VALIDATION FORMS

DATA VALIDATION CHECKLIST

Project Name:		 				
Project Number:			•		 ÷	
Sample Date(s):	•					
Sample Team:				• *		
Matrix/Number						
of Samples:						

Analyzing				
Laboratory:			•	
Analyses:		-		

Laboratory Report No:

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acce	ptable	Not
	No	Yes	No	Yes	Required
1. Sample results					
2. Parameters analyzed					
3. Method of analysis					
4. Sample collection date					
5. Laboratory sample received date					
6. Sample analysis date					-
7. Copy of chain-of-custody form signed by					
Lab sample custodian	. 3		1		
8. Narrative summary of QA or sample					
problems provided					

QA - quality assurance

Comments:

Laboratory Report: SAMPLE AND ANALYSIS LIST

	Sample		Change or				Analysi	s	
Sample ID	Collection Date	Matrix	Lab ID	Parent ID	voc	SVOC	РСВ	Pb	Hg
		X							
							,		
			5						
				•					
			-	· · · · · · · · · · · · · · · · · · ·					
							,		
								,	

S:\RPetrella\val checklist.doc

Pages

2/4

INORGANIC ANALYSES

	Reported		Perfor	mance	Not	
			Acce	otable		
	No	Yes	No	Yes	Required	
1. Holding times						
2. Blanks						
A. Preparation and calibration blanks						
B. Field blanks						
3. Total verse dissolved results						
4. Field duplicates RPD						
5. Case Narrative results	-					
A. Initial calibration verification %R						
B. Continuing calibration verification %R						
C. Laboratory control sample %R	-					
D. Spike sample %R						
E. Duplicate RPD						
F. Serial dilution check %D		X	X			
K - percent recovery %D - percent diffe	rence	R	PD - relative p	ercent differer	ice	

Comments:

Sample ID/Duplicate ID	Metal	Sample Result	Duplicate Result

S:\RPetrella\val checklist.doc

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Report: Z2792

Sample ID	Analyte(s)	Qualifier	Reason(s)
	· · ·		
L			

VALIDATION PERFORMED BY & DATE:	
VALIDATION PERFORMED BY SIGNATURE:	
PEER REVIEW BY & DATE:	

S:\RPetrella\val checklist.doc

GLOBALFOUNDRIES U.S. 2 LLC – FAB 10 HUDSON VALLEY RESEARCH PARK PROCEDURES FOR DECONTAMINATION OF B/312B SOLVENT VAULT SOLID WASTE MANAGEMENT UNIT (SWMU)

Solvent Vault

This procedure is intended to be used to collect samples for analysis from the Solvent Vault listed below.

UNIT ID #	LOCATION	TANK CONTENTS	PURPOSE
B/312B Solvent Vault	B/312B Vault	Solvents	Solvent Vault

- 1. The unit will be pumped as low as possible, with all residual waste removed from the unit either by utilizing a vacuum truck or a portable pump. The liquid will be transferred to B/309 for classification and management in accordance with standard procedures under the GLOBALFOUNDRIES HVRP 6 NYCRR 373 Permit. Any remaining sludge/solids will be removed from the unit by hand, placed in a drum and labeled in accordance with USDOT regulations before being transferred to B/309 for proper classification and management.
- 2. The SWMU interior will be decontaminated with a water and suitable surfactant solution in accordance with procedures approved by GLOBALFOUNDRIES. Decontamination water will be removed from the unit utilizing the same method as was used to remove residual liquid in Step 1 above.
- 3. Rinse water samples will be collected in accordance with the Rinsate Sample Collection Protocol provided in Section 1.7.3 on page 1-13 of the attached Quality Assurance Project Plan (QAPP)
- 4. *Rinse water samples will be analyzed for volatile organic compounds by a NYSDOH ELAP certified laboratory.*
- 5. Rinse water sample analytical results will be compared to the Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1-"Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations." If the rinse water sample results exceed the Class GA Groundwater Standards, the decontamination process will be repeated until the results are below the Class GA Standards at which time the decontamination will be deemed complete.
APPENDIX C

DAILY FIELD ACTIVITY REPORTS

Date: 08/29/2018

DAILY FIELD ACTIVITY REPORT

Report Number: 1		Project N	umber: 39	932-07		
Field Log Book Pag	e Number:					
Project: GLOBAL	FOUNDRIES H	IVRP B/312B Sol	vent Vault	SWMU (Closure	
Address: 2070 Ro	ute 52, Hopewel	l Junction, NY				
Weather: (AM)	-		Rainfall:	(AM)	-	Inches
(PM)	Sun	ny	- -	(PM)	-	Inches
Temperature: (AM) (PM)) - °F 90 °F	Wind Speed: (A)	M) - M) Calm	MPH MPH	Wind Direction	on: (AM) - (PM) -
Site Condition: Sec	ure					
Personnel On	Name	<u> 1</u>	<u>Affiliation</u>		Arrival <u>Time</u>	Departure <u>Time</u>
Site.	Brian Werner	D&B		11:38 AM	12:25 PM	
-	Jesse Sutherlar	ıd	Techtron		11:38 AM	12:00 PM
-						
-						
-						
-						
-						
-						
	Commencemen	t: (AM)		-	(PM)	
Subcontractor Work	Completion:	(AM)		-	(PM)	_

Date: <u>08/29/2018</u>

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): D&B inspected the work area and reviewed decontamination activities with Techtron personnel. Techtron personnel decontaminated the interior of the B/312B Solvent Vault on 8/29/2018 utilizing a gas-powered power washer, ZEP Z-Green (surfactant) and the water source from B/312 water spigot (312-1-NA-HB-3154-ASR). The wash water was pumped in Techtron's tanker truck and properly disposed. It should be noted that water infiltration was still coming into the vault from below the pipe penetration along the west middle wall of the Solvent Vault. It is presumed the water entering the vault is due to the shallow groundwater table in the surrounding area. D&B requested Techtron contain the water entering the vault using a drum or an equivalent method to avoid cross-contamination of the decontaminated vault, since D&B is scheduled to conduct the closure sampling activities on 8/30/2018. In addition, D&B requested that Techtron perform a final rinse and pump out of the Solvent Vault on 8/30/2018 prior to D&B's arrival on-site to remove any pooled water within the decontaminated Solvent Vault.

Date: <u>08/29/2018</u>

DAILY FIELD ACTIVITY REPORT

General work performed today by D&B Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

Prepared by: Brian Werner

Reviewed by:

3932/07/082918_DFAR_BW.docx

Date: 08/30/2018

DAILY FIELD ACTIVITY REPORT

Report Number: 2	2	Project Number: 3932-07		
Field Log Book Pag	ge Number:			
Project: GLOBAL	FOUNDRIES HVRI	PB/312B Solvent Vault SWMU	Closure	
Address: 2070 Ro	ute 52, Hopewell Jun	ction, NY		
Weather: (AM)	-	Rainfall: (AM)	- 1	Inches
(PM)	Sunny	(PM)	-]	Inches
Temperature: (AM) (PM)) - °F Win) <u>87</u> °F	d Speed: (AM) - MPH (PM) Calm MPH	Wind Direction	n: (AM) - (PM) -
Site Condition: Sec	ure			
Personnel On Site:	Name	Affiliation	Arrival <u>Time</u>	Departure <u>Time</u>
Brian Werner		D&B	11:38 AM	12:25 PM
-	Supervisor	Techtron		
-	Laborer	Techtron		
-	Laborer	Techtron		
-				·
-				
-				·
-				
Subcontractor Work	Commencement:	(AM) -	(PM)	-
Subcontractor Work	Completion:	(AM) -	(PM)	-

Date: 08/30/2018

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): D&B picked up the sampling bottles from the EnviroTest Laboratory in Newburgh, NY and drove to the site. While D&B was picking up the sampling bottles Techtron personnel conducted final rinse of the B/312B Solvent Vault utilizing the water source from B/312 water spigot (312-1-NA-HB-3154-ASR), non-potable water line. A 55-gallon polyethylene drum was placed below the trough along the west wall of the Solvent Vault to avoid cross-contaminating the decontaminated area of the Solvent Vault. The accumulated wash water was pumped into Techtron's tanker truck. With the assistance of Techtron personnel D&B collected one rinse blank sample from B/312 water spigot (312-1-NA-HB-3154-ASR), non-potable water line, which was utilized to decontaminate B/312B Solvent Vault and the same water source used for the rinse water samples. In addition, D&B collected 2 rinse water samples and one blind duplicate sample from the floor of the B/312B Solvent Vault utilizing new 5-gallon buckets, with weather stripping and approximately 2 gallons of water from B/312 water spigot (312-1-NA-HB-3154-ASR). The water within the sample area on the Solvent Vault floor was allowed to sit for 10 minutes and collected using an unpreserved sample container provided by the laboratory. The sample bottles were filled and placed in a cooler on ice. The samples were packaged and delivered to the EnviroTest Laboratory on 8/30/2018.

Date: 08/30/2018

DAILY FIELD ACTIVITY REPORT

General work performed today by D&B Engineers: D&B collected a rinse blank, a blind duplicate and two rinse water samples in accordance with the QAPP and

sampling procedures.

List specific inspection(s) performed and results (include problems and corrective actions): Samples were collected in accordance with the QAPP and sampling procedures.

List type and location of tests performed and results (include equipment used and monitoring results): Samples were collected in accordance with the QAPP and sampling procedures.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): None.

Prepared by: Brian Werner

Reviewed by:

3932/07/083018_DFAR_BW.docx

Date: 08/31/2018

DAILY FIELD ACTIVITY REPORT

Report Number: 3		Project	Number: 39	032-07		
Field Log Book Pag	ge Number:					
Project: GLOBAL	FOUNDRIES I	IVRP B/312B S	Solvent Vault	SWMU (Closure	
Address: 2070 Ro	ute 52, Hopewe	ll Junction, NY				
Weather: (AM)		-	Rainfall:	(AM)	-	Inches
(PM)		-		(PM)	-	Inches
Temperature: (AM)) - °F	Wind Speed:	(AM) -	MPH MPH	Wind Direction	on: (AM) -
Site Condition: <u>Sec</u>	ure		(111)			
Personnel On Site:	Name		<u>Affiliation</u>		Arrival <u>Time</u>	Departure <u>Time</u>
-	Brian Werne	r	D&B			
-						
-						
-						
-						
-						
-						
Subcontractor Work	Commencemer	nt: (Al	M)	-	(PM)	-
Subcontractor Work	Completion:	(Al	M)	-	(PM)	-

Date: 08/31/2018

DAILY FIELD ACTIVITY REPORT

Work Performed by subcontractor(s) (includes equipment and labor breakdown): Below you will find a summarized description of the work activities completed by Techtron personnel pertaining to the decontamination of B/312B Solvent Vault SWMU. D&B was not on-site during the dismantling and decontamination process, but was informed on the work activities through conversions with Techtron and GLOBALFOUNDRIES personnel.

May 29 - 30, 2018

D&B was not on-site for the dismantling process. The roof of the B/312B Solvent Vault was removed and properly disposed.

<u>May 31 – June 21, 2018</u>

D&B was not on-site for the dismantling process. Tanks 204-207 and associated piping were removed from the B/312B Solvent Vault and were properly disposed as scrap metal.

June 25, 2018

D&B was not on-site for the decontamination process. The walls and floors of B/312B Solvent Vault were power washed and the wash water was collected and properly disposed.

July 11, 2018

D&B was not on-site for the decontamination process. The accumulated groundwater within the B/312B Solvent Vault was pumped out and the walls and floors of the vault were power washed the wash water was collected and properly disposed.

August 29, 2018

D&B was not on-site for the decontamination process. Techtron scrubbed the floors and walls of B/312B Solvent Vault with ZEP Z-Green (surfactant) and pressure washed the interior of the vault. The wash water was collected and properly disposed.

August 29, 2018

According Edward Peppe, GLOBALFOUNDRIES, to date all the SWMU solvent piping within B/322 building footprint has been removed from the trenches and capped at the building wall.

- 1) All solvent SWMU drain piping within Building 322 was removed and capped at the foundation wall.
- 2) Remaining solvent SWMU drain piping from Building 322 foundation wall to B/312B Solvent Vault, will be abandoned in place per agreement with IBM.
- 3) B/312B Solvent Vault will be filled with crushed stone to grade level. The block walls will be removed from the foundation, and the vault will be capped off with a concrete topping slab.
- 4) Building 322 solvent system SWMU piping will be listed as partially closed on the building 322 NYSDEC closure plan.

Date: <u>08/31/2018</u>

DAILY FIELD ACTIVITY REPORT

August 30, 2018

D&B was not on-site for the decontamination process. Techtron conducted a final rinse of B/312B Solvent Vault. The wash water was collected and properly disposed.

Date: 08/31/2018

DAILY FIELD ACTIVITY REPORT

General work performed today by D&B Engineers: See the attached work description.

List specific inspection(s) performed and results (include problems and corrective actions): See the attached work description.

List type and location of tests performed and results (include equipment used and monitoring results): See the attached work description.

Verbal comments received from subcontractor (include construction and testing problems, and recommendations/resulting actions): See the attached work description.

Prepared by: Brian Werner

Reviewed by:

3932/07/083118_DFAR_BW.docx

APPENDIX D

PHOTOGRAPHIC LOG

A view of B/312B Solvent Vault.

The water source from the non-potable water line in B/312 used to decontaminate the Solvent Vault and for the rinse water samples.

After the Solvent Vault was decontaminated.

A view of the water infiltration from below the pipes along the west wall of the Solvent Vault.

A view of the new 5-gallon buckets with weather stripping to collect the rinse water samples.

A view of the 2 rinse water sample locations within the Solvent Vault.

A view of the decontaminated Solvent Vault.

A view of the decontaminated Solvent Vault.

A view of the decontaminated Solvent Vault.

APPENDIX E

CHAIN OF CUSTODY FORM

EnviroTest Laboratories, Inc.																			_			
315 Fullerton Avenue			C	hain c	of	Cι	ıst	od	ly I	Rec	or	d							E	inviro	oTest	
Newburgh, NY 12550 Phone (845) 562-0890 Fax (845) 562-0841																			L	.aboı	ratori	es Inc
	Sampler:			Lab	PM:								De	livera	ble Ty	pe;		_	JOB #			
Client Information	Brian Werner Phone:			E-Ma	editi ail:	n Ru	Ruthven Level I, NYS EDD (Specif				5 ASF (v): E(ASP Cat B										
Brian Werner	516-364-9890 >	x3093		bwe	me	r@dl	@db-eng.com					<i></i>			^L	- 1 '	.					
Company: D&B Engineers and Architects, P.C.										An	alvs	is R	eau	este	ed				Page: Page	1 of 1		
Address:	Due Date Request	ted:		•	纝	200			B	,			Ť			1		1	Prese	rvation Co	odes:	
City:	TAT Requested (c	lays):				, ±.			te [N									1000	A - HO)L	L- EDA	
Woodbury		1	E davi						ceta									to Maria	C - Zr	Acetate	M - Sodi N - None	um Sulfite
State, Zip: NY, 11797		Level I =	5 day					6	tyla									<u>, 199</u>	E-H	SO4	O - MCA P - Other	A r (specify)
Phone:	PO #:							3015	ng-									1000	G - N	∋OH H4CL		
Email:	PWS #:							3 poi	р С										H - As	corbic Acid		
LabData@db-eng.com	Bud ut #				0)		\$	Meth	÷										J - DI K - So	Water		
GLOBALFOUNDRIES B/312B Solvent Vault	3932-07				or	: X	0-1-0) [dv	сч										Thiosu	lfate		
	Additional Contacts	5:			Xes.		0-0	NN a	yl al										Other	:	DO Pill	ows
GLOBALFOUNDRIES HVRP					ple <u>:</u>		10-2	qone	prop									100		n Receipt	Preserva	tion verified
				Matrix (DW=	Sam		poq	Intoli	e Iso										0		Y / N	
			Sample	water,	pare		(Met	2-py	glud													
			Туре	W=water, S=solid,	HIH		ols	thy!	ŭ.						1			1				
Sample Identification Client ID (Lab ID)	Sample Date	Sample	(C=comp, G=grab)	O=waste/oil,	leid		hen	-Me	3260										0			
			Preserva	tion Code:	Ŕ	X	龗	IN.	ÂN	iiiiiii			豒翅	激機			躑		X	Special I	nstruction	ns/Note:
B312RSV-RR-1	8/30/18	9:20	G	w	Ν	N	2	3	2/2								- Count		6			•
POUDE PIET	N VICE	9 824	G	۱۸/	N		2	2	2/2	-	_	+	+	-	_							
DO DV L+ +	0)20110	1.5-1	<u> </u>				2	3	212	_												_
13312BSV-192-1	8130118	10:00	G	w	N	N	2	3	2/2								e					
DUPO83018	813018	-	G	w	Ν	Ν	2	3	2/2										- Y			
Trip Blank (Do Not Open)	, ,		NA	w					2/2										3			
					t										\top	1						
· · · · · · · · · · · · · · · · · · ·					╋					+	+	+	+	+	+	+						-
		··· .			┢					_				4	-	-		1				
			<u> </u>		_																	
						Γ																
					t	t	D24	1000	42	20-1	141	881	-A-	1								
					┢	+	55	1203	v-17.0-	1												
	. <u></u>				-	┢	Dat	te Sar	mpled	: 8/30/	/2018		42	0-12	23982	22						_
							-															
					Γ					_								200				
Container Code: P=Plastic, A=Amber, V=Vial, G=Glass, B=Bacteria	C=Cube, O=Oth	er. F=Encore	1 D=800 Br	1	-	-	Δ	v	v						-	+			Con	ainer Tvr		
Size Code: 1=Liter, 2=250 mL, 3=125 mL, 4=40 mL, 5=Gallon, 6=Hal	f Gallon, 7=Other		., 0-000 00				2	4	4/4		\neg			+	+	1			Con	ainer Siz	9	
Preservation Added Upon Receipt:		Date:			Ti	me:	<u> </u>	<u>, ,</u>			I			Sa	mple #	# (s):			100/1		-	
Manufacturer/Lot #:	DatatTimer	L,		10			0.7		\square	(1					15-1	- (* *1					
Swm Wennel	8/30/18	/ 12	:09	Company			Reqe		m.	A	No	r						30/1	18	12:10		T.
Relinquished by:	Date/Time:			Company			Rece	eived	by:	-7						Dat	e/Time:				Compan	y <u> </u>
Relinquished by:	Date/Time:			Company			Rece	eived l	by:				<u> </u>			Dat	e/Time:	:			Compan	y
																						-
ICE Present: Custody Seal No.: Δ Yes Δ No			Custody S	eals Intact: lo		Δ	Cool	er Ter	mpera	ture(s) ک	°C/ IR	GUN	te.	43	?							

APPENDIX F

LABORATORY ANALYTICAL RESULTS

EnviroTest 🔛 Laboratories Inc.

ANALYTICAL REPORT

Job Number: 420-141881-1 SDG Number: GLOBALFOUNDRIES B/312B Solvent Vault Job Description: D & B Engineers and Architects, P.C.

> For: D & B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797

> > Attention: Brian Werner

Meredith Ruthven

Meredith W Ruthven Customer Service Manager mruthven@envirotestlaboratories.com 09/17/2018

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified in the Certification Information section of this report Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

Job Narrative 420-J141881-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Please note that NBA was screened for as a (TIC) tentatively identified compound during the 8260 analysis. The following samples were screened for NBA and it was not detected:

420-141881-1 420-141881-2 420-141881-3 420-141881-4 420-141881-5

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

Method 8015D: The matrix spike (MS) recovery for this analytical batch did not meet the range of acceptable recoveries. The associated laboratory control standard (LCS) met acceptance criteria.

The RPD of the matrix spike/matrix spike duplicate is outside the acceptable range of recoveries.

Method 8015D: Surrogate recovery for sample 141881-4MS did not meet the range of acceptable recoveries.

Please note the matrix spike duplicate had acceptable recoveries of NMP and the surrogate. Therefore, the data is reported with confidence.

No other analytical or quality issues were noted.

SAMPLE SUMMARY

Client: D & B Engineers and Architects, P.C.

Job Number: 420-141881-1 SDG Number: GLOBALFOUNDRIES B/312B Solvent Vault

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time <u>Rec</u> eived
420-141881-1	B312BSV-RB-1	Water	08/30/2018 0930	08/30/2018 1100
420-141881-2	B312BSV-R1-1	Water	08/30/2018 0954	08/30/2018 1100
420-141881-3	B312BSV-R2-1	Water	08/30/2018 1020	08/30/2018 1100
420-141881-4	DUP083018	Water	08/30/2018 0000	08/30/2018 1100
420-141881-5	Trip Blank	Water	08/30/2018 0000	08/30/2018 1100

EnviroTest Laboratories, Inc.										R
315 Fullerton Avenue Newburgh, NY 12550 Phone 1345, 552-JP801 Exv 1845) 552-JP841		ວົ	ain of C	ust	ody	Record			Enviro	ofest 🔐
Client Information	Sampler: Brian Werner		Lab PM: Meredith F	Suthver			Deliverable T Level 1, NY	rpe: S ASP Cat B	nOB#:	
Client Contact Brian Werner	Phone: 516-364-9890 x3093		E-Mail: bwerner@	odb-eng	E CO		EDD (Spec	fy): EQuIS		الم
Company: D&B Engineers and Architects, P.C.					$ _{l}$	Analysis	Requested		Page: Page 1 of 1	
Address: 330 Crossways Park Drive	Due Date Requested:				Aan]				Preservation Co	des:
City: Woodbury	TAT Requested (days):] etste				A - HCL B - NaOH V - Zn Acetate	L- EDA M - Sodium Sulfite
State, Zip. NY, 11797	Level I =	5 day			tyl acc D)				D - Nitrie Acid E - H2SO4	N - None O - MCAA P - Other (specify)
Phone: 516-364-9890 x3093	PO #				8108 9108				F - MeOH G - NH4CL H - Accordin Anid	
Emait: LabData@db-eng.com	PWS #:				эЦ + poцta	-			- I-ke	
Project Name: GLOBALFOUNDRIES B/312B Solvent Vault	Project #: 3932-07		ON!40	(A-1-0	NP] (M				K - Sodium Thiosultate	
Site: GLOBAL FOUNDRIES HVRP	Additional Contacts:		19)]]	0-012-	N] en s lyqc				E Other:	DO Pittows
	Sample	Sample Type (C=comp, O=	atrix (DW= atrix drinking water, S=solid, S=solid, S=solid,	-01 borth9M) slonar	obilomyq-2-iyitaM oqosi abuloni 208				o Upon Receipt	Y / N
Sample Identification Client ID (Lab ID)	Sample Date Time	G=grab)	A=Air) E	id Sill S	-u 12				1124 Soecial It	istructions/Note:
B3JABSV-RR-1	06:16 31/02/8	Ð	N N	7	3 2/2					
R31265V-R1-1	R 130/18 9:54	σ	N	2	3 2/3					
B31265V-R2-1	1501810518	U	4 N M	1 2	3 2/2					
DuP083018	8/30/18/ -	g	4 N M	7	3 2/2					
Trip Blank (Do Not Open)		¥	3		22					
					-+					
					\neg					
				B312	A BSV-RE	20-14188	31-A-1			
				Date	Sample	d: 3/30/2018	420-12398	22		
										
					┼┦					
Container Code: P=Plastic, A=Amber, V=Vlal, G=Glass, B=Bacteria,	C=Cube, O=Other, E=Encore,	D=BOD Bottle		₹	> >				Container Type	
Size Code: 1-Lifer, 2-250 mL, 3-125 mL, 4-40 mL, 5-Gailon, 6-Hail Preservation Added Upon Receipt: Manufactured Added Upon Receipt:	f Gallon, 7=0ther Date:		Time	~	4 4/4		Sample		Container Size	
Reinguished by	Date/Time: 1. 0. 1.1	Cor Cor	mpany	Redeiv	- Kay	L'H		Date/Timf:	1.1. 1.1.	Company
BAR WRING	Date/Time:		mpany			unt-	Z	Date/Time:	01-21 2110	Company Company
Relinquished by:	Date/Time:	Cor	hubany	Receiv	ed by:			Date/Time:		Сотралу
ICE Present: Custody Seal No.: A Yes A No		Custody Seals Yes Δ No	s Intact: Δ	Cooler	Temper	aure(s)°C/ IR GU	1 E#3			

.

METHOD SUMMARY

Client: D & B Engineers and Architects, P.C.

Job Number: 420-141881-1 SDG Number: GLOBALFOUNDRIES B/312B Solvent Vault

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Phenois (Lachat)	EnvTest	QuickChem 1	I0-210-00-1-A
Distillation/Phenolics	EnvTest		Distill/Phenol
Nonhalogenated Organics using GC/FID direct inject	EnvTest	SW846 8015	D
Volatile Organic Compounds by GC/MS	EnvTest	SW846 8260	с
Purge and Trap for Aqueous Samples	EnvTest		SW846 5030C

Lab References:

EnvTest = EnviroTest

Method References:

QuickChem = Lachat QuickChem Manual

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

DATA REPORTING QUALIFIERS

Client: D & B Engineers and Architects, P.C.

Job Number: Sdg Number: GLOBALFOUNDRIES B/312B Solvent Vault

Lab Section	Qualifier	Description
GC/MS VOA		
	*	LCS or LCSD exceeds the control limits
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	F	RPD of the MS and MSD exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	U	The analyte was analyzed for but not detected at or above the lowest stated limit.
GC VOA		
	F	MS or MSD exceeds the control limits
	F	RPD of the MS and MSD exceeds the control limits
	х	Surrogate exceeds the control limits
	U	The analyte was analyzed for but not detected at or above the lowest stated limit.
General Chemistry		
	U	The analyte was analyzed for but not detected at or above the lowest stated limit.

LOGIN SAMPLE RECEIPT CHECK LIST

Client: D & B Engineers and Architects, P.C.

Job Number: 420-141881-1 SDG Number: GLOBALFOUNDRIES B/312B Solvent Vault

Login Number: 141881

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	6.0 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C $$	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Volatile Data QC Summary

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	EnviroTest Lab	oratories Inc.	Contract:	####		
Lab Code:	10142	Case No.: ####	SAS No	.: ####	SDG No.:	141881

	EPA	SMC1	SMC2	SMC3	тот
	SAMPLE NO.	#	#	#	OUT
01	MB	98	101	99	0
02	RB-1	105	101	101	0
03	R1-1	98	104	101	0
04	R2-1	100	103	98	0
05	DUP083018	102	100	99	0
06	ZZZZZMS	94	99	90	0
07	ZZZZZMSD	92	100	89	0
08	MB2	92	118	87	0
09	RB-1	90	118	85	0
10	R1-1	96	119	85	0
11	R2-1	92	117	85	0

QC LIMITS (77-117)

(74-129) (74-119)

SMC1	=	1,2-Dichloroethane-d4
SMC2	=	Toluene-d8
SMC3	~	Bromofluorobenzene

Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

FORM II VOA-1

OLM03.0

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

Level: Low

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Lab Sample ID: LCS 420-124333/1

	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	8	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	REC
Methylene Chloride	20.0	20	99	70-130
1,1-Dichloroethane	20.0	20	98	70-130
Chloroform	20.0	19	94	70-130
Carbon tetrachloride	20.0	18	90	70-130
1,2-Dichloropropane	20.0	20	102	70-130
Dibromochloromethane	20.0	17	85	70-130
1,1,2-Trichloroethane	20.0	19	96	70-130
Tetrachloroethene	20.0	19	97	70-130
Chlorobenzene	20.0	19	97	70-130
Trichlorofluoromethane	20.0	19	96	70-130
1,2-Dichloroethane	20.0	19	96	70-130
1,1,1-Trichloroethane	20.0	20	100	70-130
Dichlorobromomethane	20.0	18	90	70-130
trans-1,3-Dichloropropene	20.0	19	94	70-130
cis-1,3-Dichloropropene	20.0	19	95	70-130
1,1-Dichloropropene	20.0	20	101	70-130
Bromoform	20.0	17	87	70-130
1,1,2,2-Tetrachloroethane	20.0	19	95	70-130
Benzene	20.0	20	102	70-130
Toluene	20.0	22	109	70-130
Ethylbenzene	20.0	21	104	70-130
Chloromethane	20.0	19	94	70-130
Bromomethane	20.0	17	85	70-130
Vinyl chloride	20.0	19	93	70-130
Chloroethane	20.0	19	96	70-130
1,1-Dichloroethene	20.0	19	95	70-130
trans-1,2-Dichloroethene	20.0	20	100	70-130
Trichloroethene	20.0	20	99	70-130
1,2-Dichlorobenzene	20.0	21	103	70-130
1,3-Dichlorobenzene	20.0	20	102	70-130
1,4-Dichlorobenzene	20.0	19	96	70-130
Methyl tert-butyl ether	20.0	20	102	70-130
m-Xylene & p-Xylene	40.0	41	104	70-130
o-Xylene	20.0	21	103	70-130
cis-1,2-Dichloroethene	20.0	20	99	70-130
Dibromomethane	20.0	18	92	70-130
1,2,3-Trichloropropane	20.0	18	92	70-130
Acrylonitrile	20.0	20	100	70-130
Styrene	20.0	20	102	70-130
Dichlorodifluoromethane	20.0	20	99	70-130

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Level: Low

Lab Sample ID: LCS 420-124333/1

	SPIKE	LCS	LCS	QC LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	REC
Acetone	40.0	39	97	70-130
Carbon disulfide	20.0	18	91	70-130
Iodomethane	20.0	19	96	70-130
2-Butanone (MEK)	40.0	38	96	70-130
Vinyl acetate	20.0	21	105	70-130
4-Methyl-2-pentanone (MIBK)	40.0	42	105	70-130
2-Hexanone	40.0	43	107	70-130
Chlorobromomethane	20.0	20	101	70-130
2,2-Dichloropropane	20.0	20	102	70-130
1,2-Dibromoethane	20.0	19	94	70-130
1,3-Dichloropropane	20.0	19	97	70-130
1,1,1,2-Tetrachloroethane	20.0	19	94	70-130
Bromobenzene	20.0	20	100	70-130
n-Butylbenzene	20.0	22	112	70-130
sec-Butylbenzene	20.0	21	106	70-130
tert-Butylbenzene	20.0	22	108	70-130
2-Chlorotoluene	20.0	20	101	70-130
4-Chlorotoluene	20.0	20	99	70-130
1,2-Dibromo-3-Chloropropane	20.0	16	81	70-130
Hexachlorobutadiene	20.0	21	103	70-130
Isopropylbenzene	20.0	21	107	70-130
p-Isopropyltoluene	20.0	22	111	70-130
Naphthalene	20.0	19	95	70-130
N-Propylbenzene	20.0	21	104	70-130
1,2,3-Trichlorobenzene	20.0	23	113	70-130
1,2,4-Trichlorobenzene	20.0	23	114	70-130
1,3,5-Trimethylbenzene	20.0	21	104	70-130
1,2,4-Trimethylbenzene	20.0	21	105	70-130
trans-1,4-Dichloro-2-butene	20.0	19	95	70-130
Xylenes, Total	60.0	62	103	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

Level: Low

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Lab Sample ID: LCS 420-124409/1

	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	8	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	REC
Methylene Chloride	20.0	16	82	70-130
1,1-Dichloroethane	20.0	18	92	70-130
Chloroform	20.0	18	92	70-130
Carbon tetrachloride	20.0	18	92	70-130
1,2-Dichloropropane	20.0	21	104	70-130
Dibromochloromethane	20.0	18	91	70-130
1,1,2-Trichloroethane	20.0	20	100	70-130
Tetrachloroethene	20.0	24	118	70-130
Chlorobenzene	20.0	20	98	70-130
Trichlorofluoromethane	20.0	18	90	70-130
1,2-Dichloroethane	20.0	19	94	70-130
1,1,1-Trichloroethane	20.0	19	97	70-130
Dichlorobromomethane	20.0	18	91	70-130
trans-1,3-Dichloropropene	20.0	21	105	70-130
cis-1,3-Dichloropropene	20.0	21	107	70-130
1,1-Dichloropropene	20.0	22	108	70-130
Bromoform	20.0	16	82	70-130
1,1,2,2-Tetrachloroethane	20.0	20	98	70-130
Benzene	20.0	20	102	70-130
Toluene	20.0	23	113	70-130
Ethylbenzene	20.0	21	103	70-130
Chloromethane	20.0	19	96	70-130
Bromomethane	20.0	17	85	70-130
Vinyl chloride	20.0	16	81	70-130
Chloroethane	20.0	18	88	70-130
1,1-Dichloroethene	20.0	18	88	70-130
trans-1,2-Dichloroethene	20.0	18	92	70-130
Trichloroethene	20.0	20	101	70-130
1,2-Dichlorobenzene	20.0	23	114	70-130
1,3-Dichlorobenzene	20.0	21	107	70-130
1,4-Dichlorobenzene	20.0	20	100	70-130
Methyl tert-butyl ether	20.0	19	94	70-130
m-Xylene & p-Xylene	40.0	41	102	70-130
o-Xylene	20.0	20	101	70-130
cis-1,2-Dichloroethene	20.0	18	90	70-130
Dibromomethane	20.0	19	96	70-130
1,2,3-Trichloropropane	20.0	19	93	70-130
Acrylonitrile	20.0	16	81	70-130
Styrene	20.0	20	98	70-130
Dichlorodifluoromethane	20.0	16	82	70-130

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Level: Low

Lab Sample ID: LCS 420-124409/1

	SPIKE	LCS	LCS	QC
COMPOLIND		(ug/L)	880 #	DIMITS
Acetone	(49/1)	(43/1)		70 120
Carbon disulfide	40.0		90	70-130
Todomethane	20.0	19	97	70-130
2-Butanone (MEK)	40.0	41	103	70-130
Vinyl acetate	20.0	20	101	70-130
4-Methyl-2-pentanone (MIBK)	40.0	38	94	70-130
2-Hexanone	40.0	35	89	70-130
Chlorobromomethane	20.0	18	89	70-130
2,2-Dichloropropane	20.0	20	100	70-130
1,2-Dibromoethane	20.0	18	92	70-130
1,3-Dichloropropane	20.0	20	98	70-130
1,1,1,2-Tetrachloroethane	20.0	20	99	70-130
Bromobenzene	20.0	19	95	70-130
n-Butylbenzene	20.0	21	107	70-130
sec-Butylbenzene	20.0	20	98	70-130
tert-Butylbenzene	20.0	21	103	70-130
2-Chlorotoluene	20.0	19	94	70-130
4-Chlorotoluene	20.0	18	89	70-130
1,2-Dibromo-3-Chloropropane	20.0	21	104	70-130
Hexachlorobutadiene	20.0	23	114	70-130
Isopropylbenzene	20.0	20	101	70-130
p-Isopropyltoluene	20.0	23	113	70-130
Naphthalene	20.0	23	113	70-130
N-Propylbenzene	20.0	19	93	70-130
1,2,3-Trichlorobenzene	20.0	26	130	70-130
1,2,4-Trichlorobenzene	20.0	26	131 *	70-130
1,3,5-Trimethylbenzene	20.0	20	98	70-130
1,2,4-Trimethylbenzene	20.0	19	96	70-130
trans-1,4-Dichloro-2-butene	20.0	16	80	70-130
Xylenes, Total	60.0	61	102	70-130

Calculations are performed before rounding

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery and RPD values

4A

EPA SAMPLE NO.

	VOI	ATILE METHOD BL	ANK SUMMARY	
Lab Name:	EnviroTest Lab	oratories Inc.	Contract: ####	MB
Lab Code:	10142	Case No.: ####	SAS No.: #### SDG	No.: 141881
Lab File ID:	X083116.D		Lab Sample ID: M	В
Date Analyze	ed: 8/31/2018		Time Analyzed: 16	:26
GC Column:	DB-VRX ID:	<u>0.18</u> (mm)	Heated Purge: (Y/I	N) <u>N</u>
Instrument IE	D: MS4			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	RB-1	141881-1	X083117.D	16:58
02	R1-1	141881-2	X083118.D	17:30
03	R2-1	141881-3	X083119.D	18:02
04	DUP083018	141881-4	X083120.D	18:34
05	ZZZZMS	ZZZZZMS	X083131.D	0:26
06	ZZZZMSD	ZZZZMSD	X083132.D	0:58

COMMENTS

page 1 of 1

FORM IV VOA

OLM03.0

EPA SAMPLE NO.

Lab Name:	EnviroTest Lab	oratories Inc.	Contract: ####	MB2
Lab Code:	10142	Case No.: <u>####</u>	SAS No.: <u>####</u> SD	G No.: <u>141881</u>
Lab File ID:	X090506.D		Lab Sample ID: 👖	ИB
Date Analyze	ed: <u>9/5/2018</u>		Time Analyzed: 1	1:15
GC Column:	DB-VRX ID:	<u>0.18</u> (mm)	Heated Purge: (Y	/N) <u>N</u>
Instrument ID	D: MS4			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	RB-1	141881-1	X090507.D	11:47
02	R1-1	141881-3	X090508.D	12:19
03	R2-1	141881-4	X090509.D	12:51

COMMENTS

page 1 of 1

FORM IV VOA

OLM03.0

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	EnviroTest Labo	oratories In	c	Contract: ####	
Lab Code:	10142	Case No.:	####	SAS No.: <u>####</u> SDG N	lo.: <u>141881</u>
Lab File ID:	X083101.D			BFB Injection Date:	8/31/2018
Instrument ID): <u>MS4</u>			BFB Injection Time:	8:26
GC Column:	DB-VRX ID): <u>0.18</u>	(mm)	Heated Purge: (Y/N)	<u> </u>

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15 - 40.0% of mass 95	21.6
75	30.0 - 60.0% of mass 95	51.6
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.4
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	88.0
175	5.0 - 9.0% of mass 174	6.4 (7.2)1
176	95.0 - 101.0% of mass 174	83.9 (95.3)1
177	5.0 - 9.0% of mass 176	5.5 (6.5)2
		470

1-Value is % mass 174

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ſ	EPA	LAB	LAB	DATE	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED	
01	VSTD001	VSTD001	X083103.D	8/31/2018	9:30	
02	VSTD0025	VSTD0025	X083104.D	8/31/2018	10:02	
03	VSTD005	VSTD005	X083105.D	8/31/2018	10:34	
04	VSTD010	VSTD010	X083106.D	8/31/2018	11:06	
05	VSTD020	VSTD020	X083107.D	8/31/2018	11:38	
06	VSTD030	VSTD030	X083108.D	8/31/2018	12:10	
07	VSTD040	VSTD040	X083109.D	8/31/2018	12:42	
08	VSTD050	VSTD050	X083110.D	8/31/2018	13:14	

²⁻Value is % mass 176

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Nam	e: EnviroTest Laboratories Inc.	Contract: <u>####</u>				
Lab Code	e: <u>10142</u> Case No.: <u>####</u>	SAS No.: <u>####</u> SDG No.: <u>141881</u>				
Lab File I	ID: <u>X083111.D</u>	BFB Injection Date: 8/31/2018				
Instrument ID: MS4 BFB Injection Time: 13:46						
GC Colu	mn: <u>DB-VRX</u> ID: <u>0.18</u> (mm)	Heated Purge: (Y/N) N				
		% RELATIVE				
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE				
50	15 - 40.0% of mass 95	22.5				

50	15 - 40.0% of mass 95	22.5
75	30.0 - 60.0% of mass 95	51.0
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	88.0
175	5.0 - 9.0% of mass 174	6.6 (7.5)1
176	95.0 - 101.0% of mass 174	84.6 (96.2)1
177	5.0 - 9.0% of mass 176	6.0 (7.1)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA LAB		LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01[VSTD020	VSTD020 LM=8260C	X083113.D	8/31/2018	14:50
02	MB	MB	X083116.D	8/31/2018	16:26
03	RB-1	141881-1	X083117.D	8/31/2018	16:58
04	R1-1	141881-2	X083118.D	8/31/2018	17:30
05	R2-1	141881-3	X083119.D	8/31/2018	18:02
06	DUP083018	141881-4	X083120.D	8/31/2018	18:34
07	ZZZZZMS	ZZZZMS	X083131.D	9/1/2018	0:26
08	ZZZZMSD	ZZZZZMSD	X083132.D	9/1/2018	0:58

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	EnviroTest Laboratories Inc.			Contract:	####			
Lab Code:	10	142	Case No.	####	_ SAS No	.: _####	SDG N	lo.: <u>141881</u>
Lab File ID:		X090501.D			BF	B Injection	Date:	9/5/2018
Instrument ID: MS4				BF	B Injection	Time:	8:35	
GC Column:	DB	-VRX I	D: <u>0.18</u>	(mm)	He	ated Purge	: (Y/N)	<u> </u>

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15 - 40.0% of mass 95	21.0
75	30.0 - 60.0% of mass 95	50.7
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.9
173	Less than 2.0% of mass 174	0.9 (1.0)1
174	50.0 - 100.0% of mass 95	88.6
175	5.0 - 9.0% of mass 174	6.6 (7.5)1
176	95.0 - 101.0% of mass 174	84.3 (95.2)1
177	5.0 - 9.0% of mass 176	5.7 (6.8)2
·		

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01[VSTD020	VSTD020	X090503.D	9/5/2018	9:39
02	MB2	MB	X090506.D	9/5/2018	11:15
03	RB-1	141881-1	X090507.D	9/5/2018	11:47
04	R1-1	141881-3	X090508.D	9/5/2018	12:19
05	R2-1	141881-4	X090509.D	9/5/2018	12:51
8A

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	Enviro	Test Laborator	ries Inc.	Contract:	####		
Lab Code:	10142	Case	ə No.: ####	SAS No	o.: ####	SDG No.: 1418	381
Lab File ID (S	Standard	d): X083113	3.D		Date Ana	lyzed: 8/31/20	18
Instrument ID): MS4				Time Ana	alyzed: 14:50	
GC Column:	DB-VF	RX ID: 0	_ .18 (mm)		Heated P	urge: (Y/N)	N
		IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR	STD	1775652	6.64	866864	13.19	916920	16.46
UPPER LI	MIT	3551304	7.14	1733728	13.69	1833840	16.96
LOWER L	.IMIT	887826	6.14	433432	12.69	458460	15.96
EPA SAM	PLE						
NO.							
01 <u>MB</u>		1632784	6.65	811534	13.20	926667	16.46
02 <u>RB-1</u>		1547952	6.64	788445	13.20	925615	16.46
03 <u>R1-1</u>		1574081	6.65	750336	13.20	896151	16.46
04 R2-1		1579352	6.64	733440	13.20	865007	16.46
05 DUP0830)18	1539791	6.65	742263	13.20	885795	16.46
06 ZZZZZMS	s 📋	1847015	6.64	976844	13.20	987843	16.46
07 ZZZZZMS	SD	1901303	6.64	983652	13.20	958734	16.46

IS1 = Fluorobenzene

IS2 = Chlorobenzene-d5

IS3 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

8A

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	Enviro	Test Laborator	ries Inc.	Contract:	####			
Lab Code:	10142	Case	e No.: ####	SAS No.: #### SDG No.: 141881				
Lab File ID (St	tandar	d): <u>X090503</u>	3.D		Date Ana	lyzed: 9/5/201	8	
Instrument ID:	MS	4			Time Ana	alyzed: 9:39		
GC Column:	DB-V	<u>RX ID</u> : 0	_ .18 (mm)		Heated P	urge: (Y/N)	Ν	
		IS1		IS2		IS3		
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
12 HOUR S	STD	2295136	6.65	1081236	13.19	1028131	16.46	
UPPER LIN	/IT	4590272	7.15	2162472	13.69	2056262	16.96	
LOWER LI	МΙТ	1147568	6.15	540618	12.69	514066	15.96	
EPA SAMP	LE							
NO.								
01 MB2		2233101	6.67	882934	13.20	940165	16.46	
02 RB-1		2184587	6.66	870112	13.20	924607	16.46	
03 R1-1		2102437	6.66	827801	13.20	902961	16.46	
04 R2-1		2042376	6.66	824233	13.20	869917	16.46	

IS1 = Fluorobenzene

IS2 = Chlorobenzene-d5

IS3 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

Volatile Data Sample Data

1

e e la la la

ŧ

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

,

Client Sample ID:	B312BSV-RB-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1
Analysis Method:	8260C	Lab File ID:	X083117.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:58
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	6.6		1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	16		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	υ	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0

FORM I 8260C

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	B312BSV-RB-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1
Analysis Method:	8260C	Lab File ID:	X083117.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:58
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	U	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	υ	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	U	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	U	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0

FORM I 8260C

Client Sample ID:	B312BSV-RB-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solve	ent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1
Analysis Method:	8260C	Lab File ID:	X083117.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:58
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:	<u>,</u>	Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	υ	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Data Path : C:\MS4\083118\ Data File : X083117.D Acq On : 31 Aug 2018 4:59 Operator : EA Sample : 141881-J-1 LM=820 Misc : B312BSV-RB-1 ALS Vial : 17 Sample Multip	3 pm 60C BT=MS4 plier: 1	4083118	3A			
Quant Time: Aug 31 17:54:34 20 Quant Method : C:\MS4\METHODS Quant Title : Method for the QLast Update : Fri Aug 31 14: Response via : Initial Calibra	018 \8260083118 analysis (49:06 2018 ation	3.M of 8260) waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.644 13.195 16.460	2001 4350 5521	1547952 788445 925615	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 82) Bromofluorobenzene Spiked Amount 50.000	4.971 Range 77 11.014 Range 74 14.868 Range 74	1401 - 117 3568 - 129 4950 - 119	521312 Recove: 1072248 Recove: 361623 Recove	52.70 ry = 50.42 ry = 50.26 ry =	ug/L 105.40% ug/L 100.84% ug/L 100.52%	0.00 0.00 0.00
Target Compounds 35) Chloroform 52) Bromodichloromethane 62) Dibromochloromethane	4.112 7.883 11.555	1093 2445 3762	989026 77853 10774	65.77 16.45 6.57	Qva ug/L ug/L ug/L	alue 97 92 92

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MS4\083118\ Data File : X083117.D Acq On : 31 Aug 2018 4:58 pm Operator : EA Sample : 141881-J-1 LM=8260C BT=MS4083118A Misc : B312BSV-RB-1 ALS Vial : 17 Sample Multiplier: 1

Quant Time: Aug 31 17:54:34 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

X083117.D 8260083118.M

TENTATIVELY IDENTIFIED COMPOUNDS

Client Sample ID:	B312BSV-RB-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	ent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1
Analysis Method:	8260C	Lab File ID:	X083117.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:58
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		
Number TICs Found:	0	TIC Total:	0

CAS No.	Compound Name	RT	Result	Q
	Tentatively Identified Compound	0.00	None	

3562281 100.00% 19.289%

Dat Dat Acc Ope San Mis ALS	a Path a File on erator ple c Vial	: C:\N : X083 : 31 A : EA : 1418 : B312 : 17	4S4\08 3117.1 Aug 20 381-J- 2BSV-F Samp	33118))18 -1 LN RB-1 ple Mu	4:58 4=8260 11tip:	pm)C BT=MS4 Lier: 1	4083118A			
Int Int Smc Sam Sta Sta	egratic egrator othing pling art Thrs op Thrs	on Para r: RTE : ON : 1 s: 0.2 : 0	ametei	cs: rt	eint.	.p I	Filter Min A Max Pe Peak Locat	ing: 5 rea: 3 % aks: 100 ion: TOP	of large:	st Peak
If Pea Met Tit	<pre>If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 Method : C:\MS4\METHODS\8260083118.M Title : Method for the analysis of 8260 waters</pre>									
Sic	ŋnal	: TIC	c: x08	33117	.D\dat	ca.ms				
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	$\begin{array}{c} 4.110 \\ 4.971 \\ 6.644 \\ 7.885 \\ 11.014 \end{array}$	1069 1376 1964 2417 3545	1092 1401 2001 2446 3568	1158 1456 2081 2483 3606	rBV rBV2 rBV3 rBV2 rBV2 rBV2	777860 370418 756697 47269 1103818	2574413 1423874 3469534 232066 2899464	72.27% 39.97% 97.40% 6.51% 81.39%	$\begin{array}{c} 13.940\% \\ 7.710\% \\ 18.787\% \\ 1.257\% \\ 15.700\% \end{array}$	
6 7 8	11.552 13.195 14.868	3744 4330 4933	3761 4350 4950	3774 4393 4985	rBV6 rBV rBV	$16131 \\ 1117549 \\ 896608$	38995 2434902 1832465	1.09% 68.35% 51.44%	0.211% 13.184% 9.922%	

18467994 Sum of corrected areas:

16.460 5505 5521 5579 rBV 1703596

9

```
Data Path : C:\MS4\083118\
Data File : X083117.D
Acq On : 31 Aug 2018 4:58 pm
Operator : EA
Sample : 141881-J-1 LM=8260C BT=MS4083118A
Misc : B312BSV-RB-1
ALS Vial : 17 Sample Multiplier: 1
```

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

Data Path : C:\MS4\083118\
Data File : X083117.D
Acq On : 31 Aug 2018 4:58 pm
Operator : EA
Sample : 141881-J-1 LM=8260C BT=MS4083118A
Misc : B312BSV-RB-1
ALS Vial : 17 Sample Multiplier: 1
Quant Method : C:\MS4\METHODS\8260083118.M

Quant Method : C:\MS4\METHODS\8260083118.M
Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path	:	C:\MS4\08	3118'	\						
Data File	:	X083117.D								
Acq On	:	31 Aug 20	18	4:58 pm						
Operator	:	EA								
Sample	:	141881-J-	1 L)	M=8260C	BT=MS4	4083118A				
Misc	:	B312BSV-R	B-1							
ALS Vial	:	17 Samp	le M	ultiplie:	c: 1					
Quant Meth	100	i : C:\MS4	/MET!	HODS\826)083118	в.м				
Quant Titl	.e	: Method	for	the ana	Lysis d	of 8260 wa	aters			
TIC Librar	. Х	: C:\Da	taba	se\NIST0:	ba.L					
TIC Integr	at	ion Param	eter	s: LSCIN	ſ.P					
							In	cernal	Standa	rd
TIC Top Hi	.t	name	RT	EstConc	Units	Response	#	RT	Resp	Conc

Client Sample ID:	B312BSV-RB-1 DL	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1 DL
Analysis Method:	8260C	Lab File ID:	X090507.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/05/2018 11:47
% Moisture:		Dilution Factor:	2
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
67-66-3	Chloroform	55	D	2.0	2.0

Data Path : C:\MS4\090518\ Data File : X090507.D Acq On : 5 Sep 2018 11:47 am Operator : EA Sample : 141881-I-1 DF=2 LM=8260C BT=MS4090518A Misc : B312BSV-RB-1 ALS Vial : 7 Sample Multiplier: 1 Quant Time: Sep 05 12:22:53 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

QLast Update : Fri Aug 31 14:49:06 2018

Response via : Initial Calibration R.T. Scan Response Conc Units Dev(Min) Compound 50.00 ug/L 50.00 vg/i Internal Standards 0.02 6.664 2008 2184587 13.198 4351 870112 16.460 5521 924607 1) Fluorobenzene Fluorobenzene
 Chlorobenzene-d5
 1,4-Dichlorobenzene-d4 50.00 ug/L 50.00 ug/L 0.00 System Monitoring Compounds 4.996 1410 631477 45.23 ug/L 0.03 Range 77 - 117 Recovery = 90.46% 11.020 3570 1385546 59.04 ug/L 0.00 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 Range 74 - 129 Recovery = 118.08% 14.868 4950 338701 42.66 ug/L 82) Bromofluorobenzene 0.00 Spiked Amount 50.000 Range 74 - 119 Recovery = 85.32%
 Solution
 4.137
 1102
 584764
 27.55
 ug/L

 52)
 Bromodichloromethane
 7.913
 2456
 47954m
 7.18
 ug/L

 62)
 Dibromochloromethane
 11.555
 3762
 5101
 Target Compounds Qvalue 98 93 ______ ____

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MS4\090518\ Data File : X090507.D Acq On : 5 Sep 2018 11:47 am Operator : EA Sample : 141881-I-1 DF=2 LM=8260C BT=MS4090518A Misc : B312BSV-RB-1 ALS Vial : 7 Sample Multiplier: 1

Quant Time: Sep 05 12:22:53 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Thu Sep 13 15:20:33 2018 RPT1 Page 37 of 262

1

Client Sample ID: B312BSV-R1-1		Project:	D & B Engineers &		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1		
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault			
Matrix:	Water	Lab Sample ID:	420-141881-2		
Analysis Method:	8260C	Lab File ID:	X083118.D		
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00		
Level: (low/med)	Low	Date Analyzed:	08/31/2018 17:30		
% Moisture:		Dilution Factor:	1		
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	124333				

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	48		1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	4.2		1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	υ	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	12		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	υ	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	Ŭ	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0

Client Sample ID:	B312BSV-R1-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solve	ent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-2
Analysis Method:	8260C	Lab File ID:	X083118.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 17:30
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	U	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	υ	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	U	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	υ	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	Ŭ	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	Ŭ	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0

Client Sample ID:	B312BSV-R1-1	Project:	D & B Engineers &
Lab Name: EnviroTest Laboratories,		Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	ent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-2
Analysis Method:	8260C	Lab File ID:	X083118.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 17:30
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

(QT	Reviewed)
-----	-----------

Data Path : C:\MS4\083118\ Data File : X083118.D Acq On : 31 Aug 2018 5:3 Operator : EA Sample : 141881-H-2 LM=82 Misc : B312BSV=R1=1	0 pm 60C BT=MS	4083118	BA			
Quant Time: Sep 04 08:44:06 2 Quant Method : C:\MS4\METHODS Quant Title : Method for the QLast Update : Fri Aug 31 14: Response via : Initial Calibra	plier: 1 018 \8260083118 analysis (49:06 2018 ation	3.M of 826() waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.647 13.195 16.463	2002 4350 5522	1574081 750336 896151	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 82) Bromofluorobenzene Spiked Amount 50.000	4.974 Range 77 11.014 Range 74 14.868 Range 74	1402 - 117 3568 - 129 4950 - 119	494656 Recover 1051661 Recover 345646 Recover	49.17 51.97 51.97 50.48 59 =	ug/L 98.34% ug/L 103.94% ug/L 100.96%	0.00 0.00 0.00
Target Compounds 14) Acetone 35) Chloroform 52) Bromodichloromethane 62) Dibromochloromethane	2.021 4.115 7.891 11.558	343 1094 2448 3763	3776m 741622 58745 6969	3.91 48.50 12.21 4.18	Qva ug/L ug/L ug/L ug/L	alue 97 94 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	:	C:\MS4\083118\ X083118 D
Aca On	:	31 Aug 2018 5.30 pm
Operator	:	51 AUG 2018 5.50 pm
Sample	1	1/1991 U 2 IM-02600 DT-MC/0021103
Miaa	:	141001-n-2 LM-0200C DI-M34003110A
MISC	•	BSIZBSVERIEI
ALS Vial	:	18 Sample Multiplier: 1

Quant Time: Sep 04 08:44:06 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Page 3

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

TENTATIVELY IDENTIFIED COMPOUNDS

Client Sample ID:	B312BSV-R1-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-2
Analysis Method:	8260C	Lab File ID:	X083118.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 17:30
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		
Number TICs Found:	0	TIC Total:	0

CAS No.	Compound Name	RT	Result	Q
	Tentatively Identified Compound	0.00	None	

Data Path : C:\MS4\083118\ Data File : X083118.D Acq On : 31 Aug 2018 5:30 pm Operator : EA Sample : 141881-H-2 LM=8260C BT=MS4083118A Misc : B312BSV=R1=1 ALS Vial : 18 Sample Multiplier: 1	
Integration Parameters: rteint.p Integrator: RTE Smoothing : ON Sampling : 1 Start Thrs: 0.2 Stop Thrs : 0 Filtering: 5 Min Area: 3 Max Peaks: 1 Peak Location: T	% of largest Peak 00 'OP
If leading or trailing edge < 100 prefer < Baseline dro Peak separation: 5	op else tangent >
Method : C:\MS4\METHODS\8260083118.M Title : Method for the analysis of 8260 waters	
Signal : TIC: X083118.D\data.ms	
peak R.T. first max last PK peak corr. corr. # min scan scan scan TY height area % max	% of . total .

1	4.115	1071	1094	1152	rBV2	577782	1901765	54.16%	11.022%
2	4.977	1378	1403	1446	rBV3	347324	1326896	37.79%	7.690%
3 4	0.047 7.891	2414	2002	2070	rBV rBV4	35862	171640	97.005	19.0796
5	11.014	3546	3568	3607	rBV	1075488	2837640	80.81%	16.445%
6	13.195	4332	4350	4391	rBV	1059334	2306625	65.69%	13.368%
7	14.868	4931	4950	4994	rBV	847613	1768715	50.37%	10.251%
8	16.463	5504	5522	5572	rBV	1670721	3511507	100.00%	20.351%

Sum of corrected areas: 17254888

```
Data Path : C:\MS4\083118\
Data File : X083118.D
Acq On : 31 Aug 2018 5:30 pm
Operator : EA
Sample : 141881-H-2 LM=8260C BT=MS4083118A
Misc : B312BSV=R1=1
ALS Vial : 18 Sample Multiplier: 1
Quant Method : C:\MS4\METHODS\8260083118.M
```

Quant Title : Method for the analysis of 8260 waters

```
TIC Library : C:\Database\NIST05a.L
TIC Integration Parameters: LSCINT.P
```


Data Path : C:\MS4\083118\ Data File : X083118.D Acq On : 31 Aug 2018 5:30 pm Operator : EA Sample : 141881-H-2 LM=8260C BT=MS4083118A Misc : B312BSV=R1=1 ALS Vial : 18 Sample Multiplier: 1

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path	:	C:\MS4\08	3118	\						
Data File	:	X083118.D								
Acq On	:	31 Aug 20	18	5:30 pm						
Operator	:	EA								
Sample	:	141881-H-	2 LI	M=8260C	BT=MS4	4083118A				
Misc	:	B312BSV=R	1=1							
ALS Vial	:	18 Samp	le Mu	ultiplie	c: 1					
Quant Meth	oc	d : C: MS4	\MET!	HODS\826()083118	8.М				
Quant Titl	е	: Method	for	the ana	lysis d	of 8260 wa	aters			
TIC Librar	Y	: C:\Da	taba	se\NIST05	ba.L					
TIC Integr	at	ion Param	eter	s: LSCIN	Г.Р					
							In	ternal	Standa	rd
TIC Top Hi	t	name	RT	EstConc	Units	Response	#	RT	Resp	Conc

Client Sample ID:	B312BSV-R2-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3
Analysis Method:	8260C	Lab File ID:	X083119.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:02
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	5.2		1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	14		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	υ	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0

Client Sample ID:	B312BSV-R2-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3
Analysis Method:	8260C	Lab File ID:	X083119.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:02
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	υ	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	υ	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	U	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	U	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0

FORM I 8260C

1

Client Sample ID:	B312BSV-R2-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3
Analysis Method:	8260C	-Lab-File-ID:	
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:02
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Operator : EA Sample : 141881-H-3 LM=8260C BT=MS4083118A Misc : B312BSV=R2=1 ALS Vial : 19 Sample Multiplier: 1							
Quant Time: Sep 04 08:48:11 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration							
Compound R.T. Scan Response Conc Units Dev	(Min)						
Internal Standards 1) Fluorobenzene 6.644 2001 1579352 50.00 ug/L 66) Chlorobenzene-d5 13.195 4350 733440 50.00 ug/L 93) 1,4-Dichlorobenzene-d4 16.460 5521 865007 50.00 ug/L	0.00 0.00 0.00						
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 4.971 1401 505227 50.06 ug/L Spiked Amount 50.000 Range 77 - 117 Recovery = 100.12% 69) Toluene-d8 11.017 3569 1016567 51.39 ug/L Spiked Amount 50.000 Range 74 - 129 Recovery = 102.78% 82) Bromofluorobenzene 14.868 4950 327100 48.87 ug/L Spiked Amount 50.000 Range 74 - 119 Recovery = 97.74%	0.00 0.00 0.00						
Target Compounds Qv 14) Acetone 2.029 346 4394 4.53 ug/L 35) Chloroform 4.115 1094 819559 53.42 ug/L 52) Bromodichloromethane 7.883 2445 67043 13.89 ug/L 62) Dibromochloromethane 11.555 3762 8655 5.17 ug/L	alue 81 98 91 80						

(#) = qualifier out of range (m) = manual integration (+) = signals summed
Data Path Data File Acq On Operator	: C:\MS4\083118\ : X083119.D : 31 Aug 2018 6:02 pm : FA	
Sample Misc ALS Vial	: 141881-H-3 LM=8260C BT=MS4083118A : B312BSV=R2=1 : 19 Sample Multiplier: 1	

Quant Time: Sep 04 08:48:11 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

TENTATIVELY IDENTIFIED COMPOUNDS

Client Sample ID:	B312BSV-R2-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3
Analysis Method:	8260C	Lab File ID:	X083119.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:02
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:	· · · ·	Units:	ug/L
Analy. Batch No.:	124333		
Number TICs Found:	0	TIC Total:	0

CAS No.	Compound Name	RT	Result	Q
	Tentatively Identified Compound	0.00	None	

2251141 65.54% 13.157%

49.00%

3388627 98.66% 19.805%

9.836%

1682945

Sum of corrected areas: 17110292

Dat Dat Acq Ope: Sam Mis ALS	a Path a File On rator ple C Vial	: C:\ : X08 : 31 : EA : 141 : B31 : 19	MS4\0 3119. Aug 2 881-H 2BSV= Samj	83118 D 018 -3 LI R2=1 ple Mu	(6:02 4=826 11tip	pm OC BT=MS lier: 1	4083118A			
Into Into Smoo Samj Sta: Stoj	egratio egrator othing oling rt Thra o Thra	on Par : RTE : ON : 1 : 0.2 : 0	amete:	rs: r	ceint	•p	Filter Min A Max Pe Peak Locat	ring: 5 Area: 3 % eaks: 100 cion: TOP	of larges	t Peak
If Peal	leading k sepai	g or t ration	raili : 5	ng edg	ge < 1	100 prefe:	r < Baseli	ne drop	else tange	nt >
Met Tit	nod Le	: C:\i : Met	MS4\M hod f	ETHOD: or the	5\826 e ana:	0083118.M lysis of S	8260 water	s		
Sig	nal	: TI	C: X0	83119	D\dat	ta.ms				
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	4.115 4.971 6.644 7.885 11.017	1069 1377 1964 2419 3542	1094 1401 2001 2446 3569	1155 1440 2070 2450 3606	rBV rBV rBV rBV3 rBV	640972 358589 757252 36679 1055691	$\begin{array}{c}\\ 2145297\\ 1338785\\ 3434544\\ 102739\\ 2766214 \end{array}$	62.46% 38.98% 100.00% 2.99% 80.54%	12.538% 7.824% 20.073% 0.600% 16.167%	

4332 4350 4386 rBV 1036598 4931 4950 4988 rBV 814409

16.460 5504 5521 5574 rBV 1633054

6

7

8

13.195

14.868

```
Data Path : C:\MS4\083118\
Data File : X083119.D
Acq On : 31 Aug 2018 6:02 pm
Operator : EA
Sample : 141881-H-3 LM=8260C BT=MS4083118A
Misc : B312BSV=R2=1
ALS Vial : 19 Sample Multiplier: 1
```

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path : C:\MS4\083118\ Data File : X083119.D Acq On : 31 Aug 2018 6:02 pm Operator : EA Sample : 141881-H-3 LM=8260C BT=MS4083118A Misc : B312BSV=R2=1 ALS Vial : 19 Sample Multiplier: 1 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path : C:\MS4\083118\
Data File : X083119.D
Acq On : 31 Aug 2018 6:02 pm
Operator : EA
Sample : 141881-H-3 LM=8260C BT=MS4083118A
Misc : B312BSV=R2=1
ALS Vial : 19 Sample Multiplier: 1
Quant Method : C:\MS4\METHODS\8260083118.M
Quant Title : Method for the analysis of 8260 waters
-
TIC Library : C:\Database\NIST05a.L
TIC Integration Parameters: LSCINT.P
Internal Standard
TIC TOP Hit name RT EstConc Units Response # RT Resp Concl

Client Sample ID:	B312BSV-R2-1 DL	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3 DL
Analysis Method:	8260C	Lab File ID:	X090508.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/05/2018 12:19
% Moisture:		Dilution Factor:	2
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
67-66-3	Chloroform	44	D	2.0	2.0

Data Path : C:\MS4\090518\ Data File : X090508.D Acq On : 5 Sep 2018 12:19 pm Operator : EA Sample : 141881-G-3 DF=2 LM=8260C BT=MS4090518A Misc : B312BSV-R2-1 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Sep 05 12:47:36 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.664 13.198 16.460	2008 4351 5521	2102437 827801 902961	50.00 50.00 50.00	ug/L ug/L ug/L	0.02 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 82) Bromofluorobenzene Spiked Amount 50.000	4.994 Range 77 11.020 Range 74 14.868 Range 74	1409 - 117 3570 - 129 4950 - 119	644999 Recove 1327718 Recove 320326 Recove	48.00 ery = 59.47 ery = 42.41 ery =	ug/L 96.00% ug/L 118.94% ug/L 84.82%	0.02 0.00 0.00
Target Compounds 35) Chloroform 52) Bromodichloromethane 62) Dibromochloromethane	4.135 7.897 11.552	1101 2450 3761	453519 35132 4159	22.20 5.47 1.87	Qva ug/L ug/L # ug/L	alue 99 95 97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MS4\090518\ Data File : X090508.D Acq On : 5 Sep 2018 12:19 pm Operator : EA Sample : 141881-G-3 DF=2 LM=8260C BT=MS4090518A Misc : B312BSV-R2-1 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Sep 05 12:47:36 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Client Sample ID:	DUP083018	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4
Analysis Method:	82600	Lab File ID:	X083120.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:34
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	4.9		1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	14		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	Ū	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0

Client Sample ID:	DUP083018	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	ent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4
Analysis Method:	8260C	Lab File ID:	X083120.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:34
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	<u></u>
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	U	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	Ū	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	Ū	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	υ	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	Ū	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0

1

Client Sample ID:	DUP083018	Project:	D & B Engineers &		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1		
SDG No.:	GLOBALFOUNDRIES B/312B Solve	ent Vault			
Matrix:	Water	Lab Sample ID:	420-141881-4		
Analysis Method:	8260C	Lab File ID:	X083120.D		
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00		
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:34		
% Moisture:		Dilution Factor:	1		
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	124333				

CAS No.	Compound Name	Result	Q	RL	RL
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Reviewed
S

Data Path : C:\MS4\083118\ Data File : X083120.D Acq On : 31 Aug 2018 6:34 pm Operator : EA Sample : 141881-H-4 LM=8260C D Misc : DUP083018 ALS Vial : 20 Sample Multiplier	BT=MS4083118A : 1		
Quant Time: Sep 04 09:08:45 2018 Quant Method : C:\MS4\METHODS\8260 Quant Title : Method for the analy QLast Update : Fri Aug 31 14:49:06 Response via : Initial Calibration Compound	083118.M ysis of 8260 waters 2018 R.T. Scan Response	Conc Units	Dev(Min)

Internal Standards						
1) Fluorobenzene	6.647	2002	1539791	50.00	uq/L	0.00
66) Chlorobenzene-d5	13.195	4350	742263	50.00	ug/L	0.00
93) 1,4-Dichlorobenzene-d4	16.460	5521	885795	50.00	ug/L	0.00
System Monitoring Compounds						
40) 1.2-Dichloroethane-d4	4.974	1402	503692	51.19	ug/L	0.00
Spiked Amount 50.000	Range 77	- 117	Recover	v =	102.38%	
69) Toluene-d8	11.014	3568	1001590	50.03	ua/L	0.00
Spiked Amount 50.000	Range 74	- 129	Recover	- v	100.06%	
82) Bromofluorobenzene	14.868	4950	335910	49.59	ug/L	0.00
Spiked Amount 50.000	Range 74	- 119	Recover	су =	99.18%	
Target Compounds					Ova	alue
14) Acetone	2.026	345	4115	4.35	ua/L	68
35) Chloroform	4.115	1094	817106	54.62	ug/L	96
52) Bromodichloromethane	7.883	2445	66762m	14.18	ug/L	
62) Dibromochloromethane	11.552	3761	7946	4.87	ug/L	88

(#) = qualifier out of range (m) = manual integration (+) = signals summed

18A

Quant Time: Sep 04 09:08:45 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

TENTATIVELY IDENTIFIED COMPOUNDS

Client Sample ID:	DUP083018	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4
Analysis Method:	8260C	Lab File ID:	X083120.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 18:34
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		
Number TICs Found:	0	TIC Total:	0

CAS No.	Compound Name	RT	Result	Q
	Tentatively Identified Compound	0.00	None	

Dat Dat Acc	ta Path ta File q On	: C:\I : X08: : 31 2	MS4\08 3120.1 Aug 20	33118`))18	\ 6:34	pm				
Ope Sar Mis	erator mple sc	: EA : 1413 : DUP	881-H- 083018	-4 L1 8	4=826()C BT=MS	54083118A			
Int Int Smc Sar Sta	cegration cegrator pothing mpling art Thre op Thrs	Dn Para r: RTE : ON : 1 s: 0.2 : 0	amete:	rs: rt	ceint	.p	Filte Min A Max Pe Peak Locat	cing: 5 Area: 3 % eaks: 100 cion: TOP	of largest	: Peak
If Pea	leading ak separ	g or ti ration	railin : 5	ng edg	ge < 3	100 prefe	er < Basel:	ine drop	else tangen	nt >
Met Tit	chod cle	: C:\1 : Met1	MS4\MI nod fo	ETHODS	5\8260 e ana:	0083118.N Lysis of	4 8260 wate:	rs		
Sig	gnal	: TIC	C: X08	33120	.D\dat	ca.ms				
pea} #	k R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	$\begin{array}{c}\\ 4.115\\ 4.974\\ 6.644\\ 7.883\\ 11.014\end{array}$	1069 1377 1963 2417 3546	1094 1402 2001 2445 3568	1157 1440 2065 2446 3611	rBV2 rBV2 rBV2 rBV2 rBV2 rBV	643564 360230 740423 35889 1058895	2123579 1343603 3365808 77867 2732469	61.44% 38.87% 97.38% 2.25% 79.06%	12.407% 7.850% 19.665% 0.455% 15.964%	
6 7 8	13.195 14.868 16.460	4333 4932 5501	4350 4950 5521	4400 4987 5576	rBV rBV rBV	1057188 834505 1656292	2298309 1718136 3456243	66.50% 49.71% 100.00%	13.428% 10.038% 20.193%	

Sum of corrected areas: 17116014

```
Data Path : C:\MS4\083118\
Data File : X083120.D
Acq On : 31 Aug 2018 6:34 pm
Operator : EA
Sample : 141881-H-4 LM=8260C BT=MS4083118A
Misc : DUP083018
ALS Vial : 20 Sample Multiplier: 1
```

Quant Method : C:\MS4\METHODS\8260083118.M
Quant Title : Method for the analysis of 8260 waters

```
TIC Library : C:\Database\NIST05a.L
TIC Integration Parameters: LSCINT.P
```


Data Path : C:\MS4\083118\ Data File : X083120.D Acq On : 31 Aug 2018 6:34 pm Operator : EA Sample : 141881-H-4 LM=8260C BT=MS4083118A Misc : DUP083018 ALS Vial : 20 Sample Multiplier: 1

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path	:	C:\MS4\083	3118'	١				
Data File	:	X083120.D						
Acq On	:	31 Aug 201	L 8	6:34 pm				
Operator	:	EA						
Sample	:	141881-H-4	1 L1	4=8260C	BT=MS	4083118A		
Misc	:	DUP083018						
ALS Vial	:	20 Samp]	le Mu	ultiplie	r: 1			
		-		*				
Quant Meth	100	i : C:\MS4\	METI	HODS\826	008311	8.M		
Quant Titl	.e	: Method	for	the ana	lysis (of 8260 wa	ters	
					-			
TIC Librar	.v	: C:\Dat	abas	se\NIST0	5a.L			
TIC Integr	at	ion Parame	eters	s: LSCIN	T.P			
5								
							Internal	Standard
TIC Top Hi	.t	name	RT	EstConc	Units	Response	# RT	Resp Conc

Client Sample ID:	DUP083018 DL	Project:	D & B Engineers &		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1		
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	· · · · · · · · · · · · · · · · · · ·		
Matrix:	Water	Lab Sample ID:	420-141881-4 DL		
Analysis Method:	8260C	Lab File ID:	X090509.D		
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00		
Level: (low/med)	Low	Date Analyzed:	09/05/2018 12:51		
<pre>% Moisture:</pre>		Dilution Factor:	2		
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	124409				

CAS No.	Compound Name	Result	Q	RL	RL
67-66-3	Chloroform	43	D	2.0	2.0

Data Path : C:\MS4\090518\ Data File : X090509.D Acq On : 5 Sep 2018 12:51 pm Operator : EA Sample : 141881-F-4 DF=2 LM=8260C BT=MS4090518A Misc : DUP ALS Vial : 9 Sample Multiplier: 1 Quant Time: Sep 05 13:19:23 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration R.T. Scan Response Conc Units Dev(Min) Compound _ --- --- --- ---_____ ____ Internal Standards 1) Fluorobenzene6.6642008204237666) Chlorobenzene-d513.198435182423393) 1,4-Dichlorobenzene-d416.4605521869917 0.02 50.00 ug/L 50.00 ug/L 0.00 50.00 ug/L 0.00 System Monitoring Compounds 4.993 1409 603612 46.24 ug/L Range 77 - 117 Recovery = 92.48% 11.023 3571 1303148 58.62 ug/L 40) 1,2-Dichloroethane-d4 0.02 Spiked Amount 50.000 69) Toluene-d8 0.00 Spiked Amount 50.000 Range 74 - 129 Recovery = 117.24% 14.868 4950 319816 42.52 ug/L 82) Bromofluorobenzene 0.00 Spiked Amount 50.000 Range 74 - 119 Recovery = 85.04% Target Compounds Ovalue 21.47 ug/L 97 4.137 1102 425916 35) Chloroform 5.09 ug/L 1.75 ug/L 52) Bromodichloromethane 62) Dibromochloromethane 7.908 2454 31777 95 11.561 3764 3797 99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MS4\090518\ Data File : X090509.D Acq On : 5 Sep 2018 12:51 pm Operator : EA Sample : 141881-F-4 DF=2 LM=8260C BT=MS4090518A Misc : DUP ALS Vial : 9 Sample Multiplier: 1

Quant Time: Sep 05 13:19:23 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Page 3

Client Sample ID:	Trip Blank	Project:	D & B Engineers &		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1		
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault			
Matrix:	Water	Lab Sample ID:	420-141881-5		
Analysis Method:	8260C	Lab File ID:	X083121.D		
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00		
Level: (low/med)	Low	Date Analyzed:	08/31/2018 19:06		
% Moisture:	· · · · · · · · · · · · · · · · · · ·	Dilution Factor:	1		
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:			
Soil Extract Vol.:	· · · · · · · · · · · · · · · · · · ·	Units:	ug/L		
Analy. Batch No.:	124333				

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	Ū	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	Ŭ	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	Ü	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0

Client Sample ID:	Trip Blank	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-5
Analysis Method:	8260C	Lab File ID:	X083121.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 19:06
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	U	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	υ	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	U	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	υ	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0

Client Sample ID:	Trip Blank	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-5
Analysis Method:	8260C	Lab File ID:	X083121.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 19:06
% Moisture:	······	Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Data Path : C:\MS4\083118\ Data File : X083121.D Acq On : 31 Aug 2018 7:0 Operator : EA Sample : 141881-C-5 LM=82 Misc : TRIP BLK ALS Vial : 21 Sample Multi Quant Time: Sep 04 09:10:15 2 Quant Method : C:\MS4\METHODS Quant Title : Method for the QLast Update : Fri Aug 31 14: Response via : Initial Calibr	6 pm 60C BT=MS4 plier: 1 018 \8260083116 analysis c 49:06 2018 ation	4083118 3.M of 8260	}A) waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.645 13.195 16.463	2001 4350 5522	1593183 757168 899316	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 82) Bromofluorobenzene Spiked Amount 50.000	4.977 Range 77 11.017 Range 74 14.868 Range 74	1403 - 117 3569 - 129 4950 - 119	512113 Recover 1043588 Recover 343339 Recover	50.30 51.10 51.69 49.69 57 =	ug/L 100.60% ug/L 102.20% ug/L 99.38%	0.00 0.00 0.00
Target Compounds					Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Pa Data Fi Acq On Operato Sample Misc ALS Via	<pre>th : C:\MS4\083118\ le : X083121.D</pre>	3T=MS40831	18A			
Quant T Quant M Quant T QLast U Respons	ime: Sep 04 09:10:15 2018 Wethod : C:\MS4\METHODS\82600 itle : Method for the analy pdate : Fri Aug 31 14:49:06 e via : Initial Calibration	083118.M sis of 826 2018	60 waters			
Abundance 2000000		TI	C: X083121.D\data	.ms		
1900000		- - 				
1800000						
1700000				ene-d4,		
1600000				hilorobenz.		
1500000						
1400000						
1300000			S le-d5,l			
1200000			oluene-d8, lorobenzer			
1100000			г б ,	Zene,S		
1000000	ue, l'and			offuorober		
900000	luorobenze			Bron		
800000						
700000	ω					
600000	ethan o d4 ,			ß		
500000	2 Dichloro					
400000	, ,					
300000						
200000						
100000						
0 Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00	9.00 10.00 1	1.00 12.00 13.00 1	4.00 15.00 16.00	17.00 18.00 19.00 20.00	21.00 22.00 23.00

TENTATIVELY IDENTIFIED COMPOUNDS

Client Sample ID:	Trip Blank	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-5
Analysis Method:	8260C	Lab File ID:	X083121.D
Sample wt/vol:	5 (mL)	Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	08/31/2018 19:06
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	<u></u>
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		
Number TICs Found:	0	TIC Total:	0

CAS No.	Compound Name	RT	Result	Q						
	Tentatively Identified Compound	0.00	None							
Dat	a Path	: C:\	MS4\08	83118	۱					
---------------	----------	--------	--------	------------	----------	-----------	--	---------------	------------------------	--------
Dat	a File	: X08	3121.I	D n 1 9	7.0	6				
	arator	: EA	Rug 20	510	7.0	o più				
Sar	nple	: 141	881-C-	-5 LN	4=82	60C BT=M	S4083118A	L		
Mis	SC	: TRI	P BLK							
ALS	S Vial	: 21	Sam	ple Mu	lti	plier: 1	an a			
Int	egratio	on Par	amete	rs: rt	ein	t.p	19 10			
Int	egrato	r: RTE					<u> </u>			
Smo	pothing	: ON					Filt	ering: 5	C 1 · · · · · ·	D 1
Sar	npling	: 1				1	Mir	Area: 3 %	or larges	с Реак
Sto	n Thrs	• 0					Peak Loc	ation: TOP		
000	p into	• •					1 oun 100			
If	leading	g or t	raili	ng edg	ge <	100 pref	er < Base	eline drop	else tangen	nt >
Pea	ak sepai	ration	: 5							
Met	hod	: C:\	MS4\MI	ETHODS	5\82	60083118.	M			
Tit	le	: Met	hod fo	or the	e an	alysis of	8260 wat	ers		
- •	_				- \ 1					
Sig	gnal	: TI	C: X0	83121	.D\d	ata.ms .				
peal	c R.T.	first	max	last	PK	peak	corr.	corr.	% of	
#	min	scan	scan	scan	ΤY	height	area	% max.	total	
	4 980	1374	1404	1465	rBV	357672	141810	 16 40 69%	9 242%	
$\frac{1}{2}$	6.645	1968	2001	2069	rBV	764696	348494	4 100.00%	22.711%	
3	11.017	3547	3569	3612	rBV	1070371	284350	6 81.59%	18.531%	
4	13.195	4331	4350	4405	rBV	1054167	235801	1 67.66%	15.367%	
5	14.868	4934	4950	5002	rBV	832113	177172	20 50.84%	11.546%	
6	16.461	5505	5521	5572	rBV	1672887	346860)3 99.53%	22.604%	
0	10,101	2000	2011							
					_					
				Sum	of	corrected	areas:	15344980		

١

```
Data Path : C:\MS4\083118\
Data File : X083121.D
Acq On : 31 Aug 2018 7:06 pm
Operator : EA
Sample : 141881-C-5 LM=8260C BT=MS4083118A
Misc : TRIP BLK
ALS Vial : 21 Sample Multiplier: 1
```

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters

TIC Library : C:\Database\NIST05a.L TIC Integration Parameters: LSCINT.P

Data Path : C:\MS4\083118\
Data File : X083121.D
Acq on : 31 Aug 2018 7:06 pm
Operator : EA
Sample : 141881-C-5 LM=8260C BT=MS4083118A
Misc : TRIP BLK
ALS Vial : 21 Sample Multiplier: 1
Quant Method : C:\MS4\METHODS\8260083118.M
Quant Title : Method for the analysis of 8260 waters
TIC Library : C:\Database\NIST05a.L
TIC Integration Parameters: LSCINT.P

Data Path : Data File : Acq On : Operator : Sample : Misc : ALS Vial : Quant Metho Quant Title	C:\MS4\08311 X083121.D 31 Aug 2018 EA 141881-C-5 TRIP BLK 21 Sample od : C:\MS4\ME e : Method fo	8\ 7:06 pm LM=8260C E Multiplier: THODS\82600 r the analy	BT=MS4083118A 1 983118.M vsis of 8260 w	aters	
TIC Library TIC Integra	c : C:\Datab tion Paramete	ase\NIST05a rs: LSCINT.	r.L P		
TIC Top Hit	name RT	EstConc U	Jnits Response	Interna # RT	l Standard Resp Conc

i san ing i

ł,

Volatile Data Standards Data

Response Factor Report MS4

Method Path : C:\MS4\METHODS\ Method File : 8260083118.M Title : Method for the analysis of 8260 waters Last Update : Fri Aug 31 13:54:22 2018 Response Via : Initial Calibration

30 =X083108.D 40 =X083109.D 50 =X083110.D %RSD =X083107.D Avg 50 5.0 =X083105.D 10 =X083106.D 20 40 30 20 10 5.0 2.5 Calibration Files 1.0 =X083103.D 2.5 =X083104.D 1.0 Compound 1

N.

۲ ۲	. 4 . 7	12.91	8.92	6.70	3.29	28.60	3.21	3.72	6.01	13.35	7.29	9.96	10.74	19.25	5.64	10.51	5.43	4.95	8.32	5.92	3.40	3.88	6.23	10.31	9.43	5.29	4.21	8.94	3.10	2.76	5.54 5.54	TD . 0	50⊥ 1001	1.03	9.15	14.87	44.15	7.55	4.32	3.50	6.80	8.09
0.478	0.505	0.525	0.295	0.264	0.065	0.032	0.128	0.493	0.231	0.346	0.320	0.031	0.012	0.020	0.264	0.456	0.526	0.499	0.347	0.690	0.445	0.814	0.538	0.040	0.487	0.490	0.354	0.027	0.989	0.438	0.216	0.191 0	0.486	0.333	0.191	0.010	0.047	0.320	0.381	0.334	0.518	0.348
0.467	0.490	0.428	0.274	0.256	0.066	0.032	0.133	0.499	0.218	0.318	0.308	0.029	0.014	0.027	0.282	0.506	0.509	0.500	0.323	0.720	0.441	0.839	0.528	0.045	0.540	0.519	0.358	0.032	1.000	0.435	0.219	0.120	0.480	0.361	0.215	0.013	0.036	0.313	0.378	0.341	0.555	0.381
	6 0.543	5 0.476	4 0.273	0 0.251	7 0.064	0 0.029	8 0.130	1 0.499	8 0.227	8 0.313	9 0.305	1 0.025	2 0.010	5 0.021	8 0.281	0 0.501	5 0.516	3 0.483	0 0.334	0 0.708	9 0.439	4 0.830	6 0.527	1 0.034	9 0.546	7 0.504	0 0.346	8 0.028	7 0.982	2 0.430	9 0.220	0 0. LYJ	5 0.480	1 0.351	5 0.208	10.008	4 0.035	5 0.313	2 0.378	8 0.321	1 0.531	1 0.360
6 0 48	6 0.54	1 0.50	7 0.28	6 0.26	4 0.06	1 0.03	5 0.12	3 0.50	1.0.22	3 0.32	7 0.31	0 0.03	2 0.01:	2 0.02	1 0.27	8 0.51	2 0.52	4 0.50	9 0.34	0.74	2 0.45	0 0.84	5 0.54(8 0.04	0 0.52	2 0 49	0 0.37	6 0.02	1 1.00	2 0.45	5 0.22	10 T O T	3 0 48	1 0.35.	9 0.20	0 0.01	2 0.03	7 0.31	9 0 38	2 0.33	5 0 55.	9 0.37.
STD	84 0.50	40 0.45	81 0.28	64 0.25	66 0.06	28 0.03	28 0.12	70 0.50	28 0.23	19 0.33	98 0.30	31 0.03	11 0.01	18 0.02	42 0.25	24 0.45	28 0.51	86 0.49	25 0.33	59 0.70	30 0.45	94 0.80	25 0.52	38 0.03	41 0.49	67 0.48	33 0.36	25 0.02	49 0.98	37 0.43	37 0.20	21.0 UY	95 0.48	55.0 60 	73 0.18	10.0 60	38 0.03	93 0.30	77 0.36	30 0.33	95 0.53	17 0.35
I1	171 0.4	548 0.5	298 0.2	254 0.2	0.0 200	32 0.0	.22 0.1	167 0.4	37 0.2	318 0.3	313 0.2	32 0.0	0.0 210	0.0 010	256 0.2	118 0.4	193 0.5	174 0.4	335 0.3	518 0.6	141 O.4	183 0.7	528 0.5	337 0.0	156 0.4	177 0.4	342 0.3	25 0.0	952 0.9	153 0.4	204 0.2		156 U.4	306 U.3	84 0.1	11 0.0	148 0.0	320 0.2	368 0.3	325 0.3	[68 0.4	320 0.3
	488 0.4	555 0.5	317 0.2	265 0.2	066 0.(054 0.(123 0.1	481 0.4	219 0.2	409 0.3	349 0.3	032 0.0	012 0.(016 0.0	259 0.2	378 0.4	536 0.4	499 0.4	370 0.3	656 0.6	425 0.4	770 0.7	508 0.5	040 0.0	431 0.4	448 0.4	344 0.3	026 0.0	996 0.9	417 0 4	206 0.2	183 U.J	461 0.4	303 0.	165 0.1	010 0.0	064 0.0	320 0.3	374 0.3	329 0.3	471 0.4	310 0.5
474 0		.655 0.	.350 0.	.306 0.	.061 0.	.023 0.	.133 0.	.521 0.	.262 0.	.430 0.	.364 0.	.036 0.	.013 0.	.016 0.	.261 0.	.454 0.	.589 0.	.556 0.	.409 0.	.715 0.	.471 0.	.855 0.	.617 0.	.046 0.	.465 0.	.523 0.	.377 0.	.025 0.	.044 0.	.447 0.	.211 0.	.U 812.	.546 0.	.345 0.	.191 0.	.010 0.	.092 0.	.375 0.	.420 0.	.358 0.	.541 0.	.369 0.
() ()		de 0	0	0	0	0	0 1)	or 0	0 1	0	0	0	0	0	te 0	de 0	0	et 0	100	fide 0	ch 0	0	et 0	0 1)	0	0	0	0	ch 1	lo 0	crile 0	stU	0 0	<u>о</u> д	ate 0	ohol 0	can 0	et0	st0	о г 0	le 0	pr0
benzen(orourer methane	Chlorid	nethane	oethane	sin	nitrile	onitril.	Loroflue	/l ethe	123A	~	Je			L acetat	chloric	ethane	ichloro(Lene Ch.	l Disuli	-1,2-Dio		ichloro(nitrile	Acetate	prene	4)	anone	oropylet	2-Dich.	rylonit	chlorome	oform	chloro	. acryla	:yl alco	INdrofu	.chloro	chloro	-Trichlo	robutar	.chlorof
Fluore		Vinvl	Bromon	Chlord	Acrole	Acetor	Acryle	Trich	Dieth	FREON	FC-113	Acetor	IPA	TBA	Methy	Allyl	Iodom€	1,1-D	Methy	Carbor	trans-	MTBE	1,1-D	Propic	Vinyl	Chlord	Hexané	2-Buti	DiisoF	cis-1,	Methac	Bromoc	Chlord	2, 2-Di	Methyl	Isobut	Tetral	1,2-Di	1,2-Di	1,1,1-	1-Chlc	1,1-Di
ΗF	- 1-	+ [E-I	H	н	ы	н	н	н	н	н	ы	н	н	H	H	н	H	н	ы	H	н	H	н	ы	[1	ы	ŀ	н	н	ı н	[1	Ε	H	Η	Η	Ð	S	н	[−1	H	н
ĥ	<u>.</u>) 4	ر م	6	5	8	6	10)	11)	12)	13)	14)	Ŕ	age	- 9	ç ç	ê	ଛି	21)	22)	23)	24)	25)	26)	27)	28)	29)	30)	31)	32)	33)	34)	35)	36)	37)	38)	39)	40)	41)	42)	43)	44)

8260083118.M Fri Aug 31 14:01:19 2018 RPT1

4.84 5.14 4.16 4.16 4.16 4.16 19.25 19.29 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 10.01 10.01	$\begin{array}{c} 11\\ 15.13\\ 8.61\\ 8.61\\ 9.32\\ 9.32\\ 9.32\\ 9.32\\ 9.55\\ 8.55\\ 8.55\\ 10.55\\ 8.55\\ 11.8.55\\ 12.55\\$
00000000000000000000000000000000000000	の2660420000000000400004000000 こり47000000000000000000000000000000000000
00000000000000000000000000000000000000	
0.58 0.1933 0.1933 0.1933 0.1945 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1733 0.1739000000000000000000000000000000000000	211112 212 212 213 214 214 214 214 214 214 214 214
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	22112 22112 2212 2212 2212 222
0.19 0.19 0.19 0.19 0.119 0.119 0.119 0.119 0.119 0.100 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	00000000000000000000000000000000000000
0.1528 0.1528 0.1528 0.1528 0.12300 0.12300 0.12300 0.12300 0.12300 0.12300 0.12300 0.12300 0.12300 0.123000 0.123000 0.123000 0.123000 0.12300000000000000000000000000000000000	21111122000000000000000000000000000000
0.550 0.156 0.1576 0.17473 0.1504 0.1504 0.1177 0.1253 0.1253 0.1264 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267 0.12766 0.1276 0.12766 0.12766 0.12766 0.12766 0.12766 0.12766 0.1	2
0.525 0.525 0.525 0.526 0.141 0.1086 0.141 0.1086 0.1413 0.1013	0 0 0 0 0 0 0 0 0 0 0 0 0 0
M M M M M M M M M M M M M M M M M M M	00 11 12 12 12 12 12 12 12 12 12
:/MS4/Wbin 260083118. ane etrach 1 meth ethane loropr oethene hlorom ropane ethylv clohexane ethylv jchlor loropr hlorom thacry mneethane	nzene-d5 -2-Pen ne oroethene Tetrac nzene hexane zene tchlor 1chlor ichlor 1benzene tcoluene tcoluene tcoluene toluene toluene toluene toluene toluene toluene toluene toluene toluene toluene toluene toluene toluene
Fath: Carbon T Cyclohex Cyclohex Cyclohex Carbon T Benzene Benzene 1,2-Dichlor 1,2-Dichlor 1,4-Diox Methyl m Methyl m Methyl m 1,2-Tr 1,3-loch 1,2-Tr 1,3-loch Dibromocl Dibromo	Chlorobe 4-Methyl 2-Hexanol Toluene Toluene Toluene Chlorobe 1,1,1,2, Chlorobe 1,1,1,2,2, Chlorobe 1,1,1,2,2, 1,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,2,2,2,1,2
оо оо цаннннннннннн ннннннн ца	иннонннннннннны п
ма ма ма ма ма ма ма ма ма ма ма ма ма м	00000000000000000000000000000000000000

8260083118.M Fri Aug 31 14:01:19 2018 RPT1

	17.73	6.11	15.35	20.51	20.31	19.45	30.21	10.13	16.47
	1.859	1.065	1.608	0.038	0.071	0.763	1.775	0.296	0.785
	2.216	1.095	1.851	0.047	0.090	0.921	2.348	0.328	0.920
	2.114	1.103	1.782	0.046	0.086	0.885	2.232	0.299	0.881
	2.202	1.146	1.878	0.046	0.085	0.920	2.293	0.324	0.920
	2.035	1.112	1.767	0.039	0.077	0.830	2.034	0.303	0.849
	1.808	1.036	1.578	0.035	0.060	0.734	1.763	0.288	0.782
	1.634	0.991	1.448	0.032	0.057	0.657	1.378	0.266	0.702
	1.398	0.955	1.279	0.028	0.056	0.532	1.055	0.242	0.601
M M	1.467	1.083	1.284	0.030	0.059	0.623	1.095	0.320	0.622
<pre>Path : C:\MS4\METH File : 8260083118.</pre>	4-Isopropyltol	1,2-Dichlorobe	n-Butylbenzene	1,2-Dibromo-3	Hexachloroethane	1,2,4-Trichlor	Naphthalene	Hexachlorobuta	1,2,3-Trichlor
thod thod	н	H	н	н	н	H	н	н	i 1 1
Me Me	97)	98)	66)	100)	101)	102)	103)	104)	105)

(#) = Out of Range

Response = 3.056e-002 * Amt Coef of Det (r^2) = 0.994 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Page 99 of 262 Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Response = 3.495e-002 * Amt Coef of Det (r^2) = 0.994 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Response = 7.138e-001 * Amt Coef of Det (r^2) = 0.999 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:5422 2018

Response = 9.883e-004 * Amt Coef of Det (r^2) = 0.996 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Page 102 of 262 Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Response = 2.100e-001 * Amt Coef of Det (r^2) = 0.992 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

trans-1,3-Dichloropropene

R = 6.266e-002 A*A + 8.937e-002 A + 0.000e+000 Coef of Det (r^2) = 0.999 Curve Fit: Quad/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:9Page20520f1262

R = 1.694e-001 A*A + 2.416e-001 A + 0.000e+000 Coef of Det (r^2) = 0.999 Curve Fit: Quad/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Page 106 of 262 Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Response = 4.513e-002 * Amt Coef of Det (r^2) = 0.995 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Page 107 of 262 Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Response = 8.561e-002 * Amt Coef of Det (r^2) = 0.996 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:**54g220826f26**2

Response Ratio

Response = 2.250e+000 * Amt Coef of Det (r^2) = 0.997 Curve Fit: Linear/(0,0) Method Name: C:\MS4\METHODS\8260083118.M Calibration Table Last Updated: Fri Aug 31 13:54:22 2018

Data Data Acq O Opera Sampl Misc ALS V	Path : C:\MS4\083118\ File : X083103.D n : 31 Aug 2018 9:30 tor : EA e : VSTD001 : VSTD001 ial : 3 Sample Multipl	am ier: 1					
Quant Quant Quant QLast Respo	Time: Aug 31 10:03:26 20 Method : C:\MS4\METHODS\ Title : Method for the Update : Fri Aug 31 09:5 nse via : Initial Calibra	18 8260083118 analysis (9:42 2018 tion	3.M of 8260) waters			
	Compound	R.T.	Scan	Response	Conc Un	its D	ev(Min)
Inte	rnal Standards	6 642	2000	1445800	50 00	ug/1	0.00
66)	Chlorobenzene-d5	13.195	4350	679530	50.00	ug/L ug/L	0.00
93)	1,4-Dichlorobenzene-d4	16.460	5521	849293	50.00	ug/L	0.00
Syst	em Monitoring Compounds	4 071	1 4 0 1	10040	1 00	/ -	0 00
40) Sp	iked Amount 50.000	4.9/1 Range 77	-1401	10848m Recover	T.29 V =	ug/L 2.5	0.00 88#
69)	Toluene-d8	11.020	3570	19069	1.00	ug/L	0.00
Sp 82)	Iked Amount 50.000 Bromofluorobenzene	Range 74 14.876	-129 4953	Recover 8985	y = 1.63	2.0 ua/L	0.01
Sp	iked Amount 50.000	Range 74	- 119	Recover	- y =	3.2	6%#
Targ	et Compounds						Qvalue
2)	Dichlorodifluoromethane	1.212	46	13710	1.03	ug/L	# 91
3) 4)	Vinvl Chloride	1.387	112	18948	$1.04 \\ 1.40$	ug/L ug/L	# 96 91
5)	Bromomethane	1.574	182	10131	1.47	ug/L	95
6) 7)	Chloroethane Acrolein	1.622	200 315	8855 3512	$1.25 \\ 2.12$	ug/L ug/L	# 87 95
8)	Acetonitrile	1.954	319	671m	0.83	ug/L	
9) 10)	Acrylonitrile Trichlorofluoromethane	2.341	458 320	3837 15067m	1.11 1.03	ug/L	# 83
11)	Diethyl ether	2.104	373	7584	1.27	ug/L	95
12)	FREON 123A $FC = 113$	1.882	298 501	12437 10534	1.45 1.27	ug/L ug/L	95 # 87
14)	Acetone	2.024	344	2084	2.83	ug/L	81
15) 16)	IPA TPA	1,998	335	3641	13.89	ug/L	# 85
17)	Methyl acetate	2.459	433 500	7551	1.08	ug/L ug/L	# 92
18)	Allyl chloride	2.461	501	13131	1.12	ug/L	91
20)	1,1-Dichloroethene	2.300	443 438	16064	1.21 1.18	ug/L ug/L	97
21)	Methylene Chloride	2.400	479	11814	1.30	ug/L	96
22) 23)	Carbon Disulfide	2.534	527 675	20678m 13610	$1.68 \\ 1.13$	ug/L ug/L	95
24)	MTBE	3.083	724	24732	1.03	ug/L	97
25) 26)	1,1-Dichloroethane	3.186 3.234	761 778	17848 6633m	1.20	ug/L	98
27)	Vinyl Acetate	3.407	840	13439	1.18	ug/L	# 92
28)	Chloroprene	3.582	903 935	15127	1.11	ug/L	95 98
30)	2-Butanone	3.713	950	1423	2.04	ug/L ug/L	# 60
31)	Diisopropylether (DIPE)	3.780	974	30199	1.05	ug/L	100
32)	Methacrylonitrile	3.825	990 992	12934 12218m	2.02	ug/L ug/L	07
34)	Bromochloromethane	4.017	1059	6301m	1.24	ug/L	
35)	Chloroform 2,2-Dichloropropane	4.109	1122	9989	1.21 1.03	ug/L ug/L	# 93
37)	Methyl acrylate	4.291	1157	5516m	1.04	ug/L	
38)	Isobutyl alcohol Tetrabydrofuran	4.422	1204 1259	2759m 2663m	11.02 2 15	ug/L	
41)	1,2-Dichloroethane	5.111	1451	12133	1.19	ug/L	98
42) 12)	1,1,1-Trichloroethane	5.250	1501 1522	10359	1.18	ug/L	91
43) 44)	1,1-Dichloropropene	5.652	1645	10666m	1.06	ug/L	90
45)	Cyclohexane	5.741	1677	16834m	0.97	ug/L	
40)	CUTDON TELTUCUTOTING	5.930	1140	000410	T.40	uу/ш	

Data Path : C:\MS4\083118\ Data File : X083103.D Acq On : 31 Aug 2018 9:30 am Operator : EA : VSTD001 Sample : VSTD001 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 31 10:03:26 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units D	ev(Mi	.n)
47)	Benzene	6.062	1792	31374	0.98 ug/L		96
48)	tert-Amyl methyl ether	6.678	2013	38978m	1.62 ug/L		
49)	Dibromomethane	7.447	2289	4007m	1.12 ug/L		
50)	1,2-Dichloropropane	7.595	2342	6817m	0.96 ug/L		
51)	Trichloroethene	7.763	2402	7620m	1.13 ug/L		
52)	Bromodichloromethane	7.880	2444	4625m	1.43 ug/L		
53)	2-Nitropropane	7.994	2485	984m	1.15 ug/L		
55)	Methyl methacrylate	8.895	2808	3632m	0.84 ug/L		
56)	Methylcyclohexane	9.068	2870	13459m	1.00 ug/L		
57)	2-Chloroethylvinylether	9.427	2999	1049m	0.57 ug/L		
58)	cis-1,3-Dichloropropene	9.703	3098	3944	0.83 ug/L		96
59)	trans-1,3-Dichloropropene	10,668	3444	2240m	0.73 ug/L		
60)	1,1,2-Trichloroethane	10.816	3497	4288m	1.09 ug/L		
61)	1,3-Dichloropropane	11.257	3655	6227	0.97 ug/L		98
62)	Dibromochloromethane	11.566	3766	1566m	1.43 ug/L		
63)	Ethyl methacrylate	11.642	3793	4821	0.81 ug/L	#	79
64)	1,2-Dibromoethane	11.926	3895	3292m	1.23 ug/L		
65)	Bromoform	13.850	4585	605	1.13 ug/L	#	80
67)	4-Methyl-2-Pentanone	10.133	3252	11560	1.65 ug/L	#	91
68)	2-Hexanone	11.750	3832	5270m	1.70 ug/L		
70)	Toluene	11.140	3613	20303	0.88 ug/L		93
71)	Tetrachloroethene	12.258	4014	6571	0.82 ug/L		96
72)	1,1,1,2-Tetrachloroethane	13.153	4335	3850	1.40 ug/L	#	93
73)	Chlorobenzene	13.242	4367	14934	1.18 ug/L		91
74)	1-Chlorohexane	13.337	4401	4290	0.87 ug/L		98
75)	Ethylbenzene	13.605	4497	23180	0.96 ug/L		97
76)	m,p-Xylene	13.898	4602	35413	1.91 ug/L		98
77)	Styrene	14.308	4749	12149	1.00 ug/L		98
78)	o-Xylene	14.391	4779	21890	0.92 ug/L		95
79)	1,1,2,2-Tetrachloroethane	14.377	4774	7188	1.35 ug/L	#	87
80)	1,2,3-Trichloropropane	14.556	4838	5917	1.27 ug/L		91
81)	trans-1,4-Dichloro-2-b	14.692	4887	1499m	1.79 ug/L		
83)	Isopropylbenzene	14.885	4956	27038	0.89 ug/L		96
84)	Bromobenzene	15.072	5023	8209m	1.07 ug/L		
85)	n-Propylbenzene	15.440	5155	28153	0.92 ug/L	-	100
86)	2-Chlorotoluene	15.482	5170	19436	1.02 ug/L		98
87)	4-Chlorotoluene	15.596	5211	16551	1.0/ ug/L		96
88)	1,3,5-Trimethylbenzene	15.855	5304	22947	0.91 ug/L	n	97
89)	Pentachloroethane	15.772	5274	17764	2.22 ug/L	Ŧ	100
90)	tert-Butylbenzene	16.134	5404	1//64	0.80 ug/L		100
91)	1,2,4-irimetnyibenzene	16.299	5463	22300	0.86 ug/L		92
92)	sec-Butylbenzene	16.402	5500	27036	0.83 ug/L		90 01
94)	1,3-Dichlorobenzene	16.405	55UL	12070	1.03 ug/L		91
95)	Benzyi chioride	16.452	2210	5522 10072m	1,10 ug/L		90
96)	1,4-Dichiorobenzene	10.494	2222	1907211	1.29 ug/L		07
97)	4-Isopropyitoluene	10.004	5594	24911	0.75 ug/L		91
98) 001	1,2-DICRIOROBERZERE	17 140	50//	10402 21016	1.02 ug/L		90 06
39)	n-butyipenzene	17 46	5/0/	21010 510-	0.70 ug/L		70
101)	I, Z-DIDFOMO-3-CHIOFOPT	17 101	5000	1007	1 04 ug/L	#	21
102)	nexaction oethane	10 051	5000	10590	1.04 ug/L	11	00 2T
102)	1,2,4-IIICHIOTODENZENE	10 210	6516	10500	0.74 ug/L		עע 100
104	Naphthatene	10 150	6596	10392	1 18 ug/L	#	25
1051	1 2 3-Trichlorobongono	10 5/7	6629	10572	1,10 uy/L 0 73 ug/T	π	0.J Q1
T00)	r, z, 3-trichtorobenzene	19.04/	0020	10372	0.75 uy/L		υT

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Pa Data Fi Acq On Operato Sample Misc ALS Via	th : C:\MS4\083118\ le : X083103.D : 31 Aug 2018 9:30 an or : EA : VSTD001 : VSTD001 ll : 3 Sample Multiplier	·: 1		
Quant I Quant M Quant I QLast U Respons	Time: Aug 31 10:03:26 2018 Method : C:\MS4\METHODS\826 Title : Method for the ana Mpdate : Fri Aug 31 09:59:4 Se via : Initial Calibratic	0083118.M lysis of 8260 wate 2 2018 n	rs	
Abundance		TIC: X08310	3.D\data.ms	101010101015 \$ 1001 \$00 \$ 10001000 \$ 20000 20000000000
1900000				
1800000				
1700000			le-d4,1	
1600000			Horobenzen	
1500000				
1400000			<mark>shenide, T</mark>	
1300000		•	- Benzył (
1200000			ene-d5,1	
1100000			Chlorobenz	
1000000				
900000	benzene,I			
800000	Fluoro			
700000	AME, T			
600000	hy l ether (1			
500000	रिजेमाप्रुम मार्थ		्रा स्वयप्रकार स्वयप्रकार	
400000			e the transformed to the transfo	
300000	in international internationa	ethane,T late,T ane,T nopene,T nopene,T nanone,T nane,T ne,T ne,T ne,T	Hereitsen Hereitsen Hereitsen Hereitsen Hereitsen Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereit Hereitsen Hereit	benzene, T. Bälfetterne, T.
200000		旧世界的特別相信 自分的特別相信 自分的分別 に 自分の に の に の に に の に に に に に に に に に に に に に	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2.4-Trichlorc
100000		and a start and a start a sta		-2
0 Time>	2.00 3.00 4.00 5.00 6.00 7.00	<u>איזייזין אין אין אין אין אין אין אין אין אין א</u>	<u>․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․</u>	на праводати и br>18.00 19.00 20.00 21.00 22.00 23.00

Data Data Acq O Opera Sampl Misc ALS V	Path : C:\MS4\083118\ File : X083104.D n : 31 Aug 2018 10:02 tor : EA e : VSTD0025 : VSTD0025 ial : 4 Sample Multipl	am ier: 1					
Quant Quant Quant QLast Respo	Time: Aug 31 10:34:00 20 Method : C:\MS4\METHODS\ Title : Method for the Update : Fri Aug 31 09:5 nse via : Initial Calibra	18 8260083118 analysis 6 9:42 2018 tion	8.M of 826	0 waters			
	Compound	R.T.	Scan	Response	Conc Ur	nits D	ev(Min)
Inte	rnal Standards						
⊥) 66)	Fluorobenzene Chlorobenzene-d5	6.633 13.195	1997	1335691 649244	50.00	ug/L ug/L	-0.01
93)	1,4-Dichlorobenzene-d4	16.460	5521	830743	50.00	ug/L	0.00
Svst	em Monitoring Compounds						
40)	1,2-Dichloroethane-d4	4.957	1396	21371	2.74	ug/L	-0.01
Sp	iked Amount 50.000	Range 77	- 117	Recover	·y =	5.4	8%#
(60 מצ	iked Amount 50.000	Range 74	-129	37020 Recover	2.04 v =	ug/ь 4.0	0.00 8%#
82)	Bromofluorobenzene	14.874	4952	15120	2.87	ug/L	0.00
Sp	iked Amount 50.000	Range 74	- 119	Recover	у =	5.7	48#
Tarq	et Compounds						Ovalue
2)	Dichlorodifluoromethane	1.204	43	34860	2.83	ug/L	~ 95
3)	Chloromethane	1.273	69	32595	2.49	ug/L	97
4) 5)	Bromomethane	1.377	$108 \\ 174$	21142	2.97	ug/L	99 95
6)	Chloroethane	1.616	198	17692	2.70	ug/L	97
7)	Acrolein	1.932	311	8873	5.81	ug/L	88
8)	Acetonitrile	1.943	315	3629	4.84	ug/L	# 34
10)	Trichlorofluoromethane	2.330	456 324	8233 32098m	2.38	ug/L ug/L	# 90
11)	Diethyl ether	2.093	369	14623	2.65	ug/L	94
12)	FREON 123A	1.869	293	27309	3.46	ug/L	93
13)	FC-113	2.462	501	23280	3.04	ug/L	# 93 92
15)	IPA	1.987	331	8080	33.37	ug/L ug/L	# 85
16)	TBA	2.328	453	10889	22.41	ug/L	# 82
17)	Methyl acetate	2.448	496	17329	2.69	ug/L	96
18) 19)	Allyi chloride Iodomethane	2.456	499	25218	2.34	ug/L	95
20)	1,1-Dichloroethene	2.200	434	33332	2.66	ug/L ug/L	95
21)	Methylene Chloride	2.386	474	24724	2.95	ug/L	96
22)	Carbon Disulfide	2.514	520	43811	3.85	ug/L	# 53
23)	trans-1,2-Dichloroethene	2.936	671 722	28368	2.56	ug/L	95 ga
25)	1,1-Dichloroethane	3.173	756	33943	2.47	ug/L ug/L	95
26)	Propionitrile	3.223	774	13399m	13.78	ug/L	
27)	Vinyl Acetate	3.393	835	28776	2.72	ug/L	# 95
20) 29)	Hexane	3.663	901	22983	2.30	ug/L ug/L	97
30)	2-Butanone	3.702	946	3434m	5.32	ug/L	
31)	Diisopropylether (DIPE)	3.769	970	66528	2.51	ug/L	99
32)	Cis-1,2-Dichloroethene	3.820	988	27863 27473m	2.60	ug/L	97
34)	Bromochloromethane	4.006	1055	12254	2.62	ug/L ug/L	95
35)	Chloroform	4.096	1087	30821	2.57	ug/L	93
36)	2,2-Dichloropropane	4.179	1117	20226	2.25	ug/L	95
37) 381	Metnyi acryiate Isobutyl alcohol	4.285 4.400	1196	6575m	28.43	ug/⊥ uα/ĭ.	
39)	Tetrahydrofuran	4.572	1258	4269m	3.74	ug/L	
41)	1,2-Dichloroethane	5.100	1447	24959	2.65	ug/L	# 88
42) 121	1,1,1-Trichloroethane	5.245	1499 1510	21951 31162m	2.70	ug/L	89
43)	1,1-Dichloropropene	5.635	1639	20698	2.24	ug/L ug/L	95
45)	Cyclohexane	5.727	1672	35047	2.19	ug/L	96
46)	Carbon Tetrachloride	5.931	1745	13410m	3.42	ug/L	

8260083118.M Fri Aug 31 14:06:32 2018 RPT1

*

Data Path : C:\MS4\083118\ Data File : X083104.D : 31 Aug 2018 10:02 am : EA Acq On Operator Sample : VSTD0025 Misc : VSTD0025 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Aug 31 10:34:00 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev	(Min)
47)	Benzene	6.050	1788	65824	2.23 ug/L		94
48)	tert-Amyl methyl ether	6.670	2010	60030m	2.71 ug/I		
49)	Dibromomethane	7.431	2283	8546m	2.59 ug/L	J	
50)	1,2-Dichloropropane	7.595	2342	13900m	2.12 ug/I		
51)	Trichloroethene	7.752	2398	14714m	2.37 ug/I	J	
52)	Bromodichloromethane	7.874	2442	9436m	3.17 ug/I	J	
53)	2-Nitropropane	7.980	2480	1749m	2.22 ug/I		
54)	1,4-Dioxane	8.457	2651	274m	12.20 ug/I	L	
55)	Methyl methacrylate	8.884	2804	7078m	1.77 ug/I	L	
56)	Methylcyclohexane	9.051	2864	26726m	2.15 ug/I	L	
57)	2-Chloroethylvinylether	9.422	2997	3511m	2.07 ug/I		
58)	cis-1,3-Dichloropropene	9.706	3099	7532	1.71 ug/I		98
59)	trans-1,3-Dichloropropene	10.641	3434	5063m	1.79 ug/I		
60)	1,1,2-Trichloroethane	10.813	3496	7223	1.99 ug/I	-	96
61)	1,3-Dichloropropane	11.246	3651	13511	2.28 ug/I	-	91
62)	Dibromochloromethane	11.547	3759	3096m	3.06 ug/I	-	
63)	Ethyl methacrylate	11.644	3794	9420	1.72 ug/I		96
64)	1,2-Dibromoethane	11.909	3889	6588	2.66 ug/I	_ #	87
65)	Bromoform	13.848	4584	1768	3.58 ug/I	. #	91
67)	4-Methyl-2-Pentanone	10.125	3249	28006	4.17 ug/I	_ #	95
68)	2-Hexanone	11.731	3825	13604m	4.60 ug/I		
70)	Toluene	11.131	3610	44889	2.04 ug/I	<u>.</u>	92
71)	Tetrachloroethene	12.252	4012	15373	2.01 ug/I		92
72)	1,1,1,2-Tetrachloroethane	13.148	4333	7752	2.94 ug/I		96
73)	Chlorobenzene	13.237	4365	31569	2.61 ug/I		99
74)	1-Chlorohexane	13.329	4398	9550	2.02 ug/I	പ	88
75)	Ethylbenzene	13.602	4496	48979	2.12 ug/I		98
76)	m,p-Xylene	13.900	4603	75456	4.26 ug/I		93
77)	Styrene	14.305	4748	25347	2.19 ug/I		99
78)	o-Xylene	14.386	4777	51704	2.28 ug/I		99
79)	1,1,2,2-Tetrachloroethane	14.380	4775	14496	2.86 ug/I		99
80)	1,2,3-Trichloropropane	14.559	4839	13453	3.02 ug/I	L	94
81)	trans-1,4-Dichloro-2-b	14.687	4885	2764	3.46 ug/1	L #	73
83)	Isopropylbenzene	14.882	4955	62215	2.15 ug/I		97
84)	Bromobenzene	15.061	5019	19294	2.64 ug/1	<u> </u>	93
85)	n-Propylbenzene	15.440	5155	65163	2.22 ug/I	<u> </u>	95
86)	2-Chlorotoluene	15.479	5169	44337	2.44 ug/1	L	97
87)	4-Chlorotoluene	15.590	5209	36805	2.49 ug/1	L	97
88)	1,3,5-Trimethylbenzene	15.855	5304	52201	2.16 ug/1	Ľ.	97
89)	Pentachloroethane	15.772	5274	2391	5.03 ug/1	L #	70
90)	tert-Butylbenzene	16.134	5404	41661	1.97 ug/l	L.	100
91)	1,2,4-Trimethylbenzene	16.302	5464	55362	2.22 ug/1	L,	97
92)	sec-Butylbenzene	16.405	5501	67437	2.15 ug/1	L I	97
94)	1,3-Dichlorobenzene	16.405	5501	33723	2.35 ug/1	L	99
95)	Benzyl chloride	16.449	5517	9519	2.02 ug/1	L	96
96)	1,4-Dichlorobenzene	16.491	5532	35071	2.43 ug/1	Ĺ	98
97)	4-Isopropyltoluene	16.664	5594	58074	1.75 ug/1	[. -	98
98)	1,2-Dichlorobenzene	16.890	5675	39688	2.25 ug/1	և -	93
99)	n-Butylbenzene	17.146	5767	53141	1.89 ug/1	ե	91
100)	1,2-Dibromo-3-chloropr	17.442	5873	1146m	2.36 ug/1	L	
101)	Hexachloroethane	17.487	5889	2334	2.46 ug/1	ь#	48
102)	1,2,4-Trichlorobenzene	19.051	6450	22096	1.57 ug/1	L	98
103)	Naphthalene	19.316	6545	43801	1.33 ug/1	և -	100
104)	Hexachlorobutadiene	19.455	6595	10058	2.23 ug/	ե -	99
105)	1,2,3-Trichlorobenzene	19.545	6627	24972	1.// ug/	L	94

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Page 115 of 262

(QT Reviewed)

Data Path : C:\MS4\083118\ Data File : X083105.D Acq On : 31 Aug 2018 10:34 Operator : EA Sample : VSTD005 Misc : VSTD005 ALS Vial : 5 Sample Multipl	am ier: 1					
Quant Time: Aug 31 11:00:52 20 Quant Method : C:\MS4\METHODS\ Quant Title : Method for the QLast Update : Fri Aug 31 09:5 Response via : Initial Calibra	18 8260083118 analysis 6 9:42 2018 tion	3.M of 8260) waters			
Compound	R.T.	Scan	Response	Conc Ur	nits D	ev(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	$6.647 \\ 13.195 \\ 16.461$	2002 4350 5521	1641577 778307 942776	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 69) Toluene-d8 Spiked Amount 50.000 82) Bromofluorobenzene Spiked Amount 50.000	4.977 Range 77 11.020 Range 74 14.868 Range 74	1403 - 117 3570 - 129 4950 - 119	52576 Recover 95757 Recover 32208 Recover	5.49 4.40 4.40 5.11 cy =	ug/L 10.9 ug/L 8.8 ug/L 10.2	0.00 8%# 0.00 0%# 0.00 2%#
<pre>Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Acrolein 8) Acetonitrile 9) Acrylonitrile 10) Trichlorofluoromethane 11) Diethyl ether 12) FREON 123A 13) FC-113 14) Acetone 15) IPA 16) TBA 17) Methyl acetate 18) Allyl chloride 19) Iodomethane 20) 1,1-Dichloroethene 21) Methylene Chloride 22) Carbon Disulfide</pre>	1.220 1.292 1.398 1.571 1.630 1.946 2.350 1.982 2.105 1.888 2.473 2.027 1.996 2.339 2.462 2.470 2.339 2.462 2.470 2.3292 2.403 2.531	$\begin{array}{r} 49\\ 76\\ 116\\ 181\\ 203\\ 316\\ 3221\\ 429\\ 373\\ 300\\ 505\\ 345\\ 334\\ 457\\ 501\\ 440\\ 480\\ 526\end{array}$	76668 77312 89961 48975 41764 21276 5275m 76680m 38853 52145 51356 10386 19387 31902m 41972 68611 80971 77856 54935 101502	5.07 4.81 5.86 6.25 5.19 11.33 5.73 5.70 4.61 5.72 5.46 12.44 65.15 53.42 5.30 5.15 5.30 5.15 5.30 5.15 5.30 5.15 5.30 5.15 5.30 5.30 5.33 7.25	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Qvalue 95 99 98 98 99 93 93 # 100 90 99 98 96 95 97 97 83
<pre>23) trans-1,2-Dichloroethene 24) MTBE 25) 1,1-Dichloroethane 26) Propionitrile 27) Vinyl Acetate 28) Chloroprene 29) Hexane 30) 2-Butanone 31) Diisopropylether (DIPE) 32) cis-1,2-Dichloroethene 33) Methacrylonitrile 34) Bromochloromethane 35) Chloroform 36) 2,2-Dichloropropane 37) Methyl acrylate 38) Isobutyl alcohol 39) Tetrahydrofuran 41) 1,2-Dichloroethane 42) 1,1,1-Trichloroethane 43) 1-Chlorobutane 44) 1,1-Dichloropropene 45) Cyclohexane 46) Carbon Tetrachloride</pre>	2.952 3.952 3.952 3.237 3.413 3.591 3.677 3.716 3.783 3.836 3.828 4.026 4.115 4.207 4.302 4.411 4.584 5.114 5.250 5.314 5.649 5.744 5.942		72321 128577 86736 30174 74821 78373 56156 8372m 156313 74307 67134m 29607 74881 50174 30238 18308m 7839 60403 53299 76744 52472 90362 28889	5.30 4.69 5.13 25.25 5.76 5.08 5.43 10.55 4.79 5.63 9.77 5.15 5.07 4.55 5.07 4.55 5.01 64.42 5.58 5.21 5.33 4.44 4.59 4.59 6.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	" 98 99 99 98 98 96 97 100 94 93 94 93 95 98 95 100 95 100

Data Path : C:\MS4\083118\ Data File : X083105.D Acq On : 31 Aug 2018 10:34 am Operator : EA : VSTD005 Sample Misc : VSTD005 ALS Vial : 5 Sample Multiplier: 1 Quant Time: Aug 31 11:00:52 2018 Quant Method : C:\MS4\METHODS\8260083118.M

Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev	v(Min)
47)	Benzene	6 065	1703	176105	1 05 ug/t		
	tort-Amul mothul other	6.005	2010	1010190	4.05 ug/1	т. Г	22
10)	Dibromomothano	7 /31	2019	21672m	5 2/ ug/1	J #	09
50)	1 2-Dichloropropapo	7.431	2203	21072m 24704m	1 22 ug/1	L	
51)	Trichloroothono	7.350	2343	26720	4.52 ug/1	J	0.0
521	Promodichloromethane	7.703	2402	2461Em	4.00 ug/1	J	90
52)		1.000	2440	24015m	6.72 ug/1	ı	
53)		0.014	2492	1041m	5.20 ug/1	J	
54)	1,4-DIOXANE	0.440	2047	10177	4/.// ug/1	J	0.2
55)	Methyl methacrylate	8.8/8	2802	19177	3.90 ug/1	J	93
50)	Methylcyclonexane	9.062	2000	62636	4.30 ug/1		96
57)	2-Chloroethylvinylether	9.433	3001	8687	4.1/ ug/1	J #	51
58)	cis-1,3-Dichioropropene	9.707	3099	22713	4.20 ug/l	J	98
59)	trans-1,3-Dichloropropene	10.646	3436	14265	4.11 ug/1	L	96
60)	1,1,2-Trichloroethane	10.811	3495	20624	4.62 ug/1	L	95
61)	1,3-Dichloropropane	11.249	3652	33506	4.60 ug/1	L	95
62)	Dibromochloromethane	11.553	3761	7516	6.05 ug/1		83
63)	Ethyl methacrylate	11.633	3790	27491	4.09 ug/l	<u>،</u> ۱	98
64)	1,2-Dibromoethane	11.915	3891	16404	5.38 ug/I	」#	89
65)	Bromotorm	13.848	4584	4008	6.60 ug/I	」#	92
67)	4-Methy1-2-Pentanone	10.122	3248	76043	9.45 ug/I	1	99
68)	2-Hexanone	11.728	3824	33546	9.46 ug/I	L	99
70)	Toluene	11.132	3610	119648	4.54 ug/I	ł	100
71)	Tetrachloroethene	12.250	4011	37092	4.04 ug/I	L	96
72)	1,1,1,2-Tetrachloroethane	13.150	4334	19697	6.24 ug/I	L	97
73)	Chlorobenzene	13.237	4365	74054	5.10 ug/I	J	96
74)	1-Chlorohexane	13.332	4399	25163	4.44 ug/I	L	92
75)	Ethylbenzene	13.605	4497	125326	4.53 ug/I	L	97
76)	m,p-Xylene	13.895	4601	197331	9.28 ug/I	L	99
77)	Styrene	14.305	4748	63256	4.56 ug/I	L	98
78)	o-Xylene	14.386	4777	130317	4.80 ug/I	L	100
79)	1,1,2,2-Tetrachloroethane	14.377	4774	38493	6.33 ug/I	J	94
80)	1,2,3-Trichloropropane	14.556	4838	30971	5.80 ug/I	J	93
81)	trans-1,4-Dichloro-2-b	14.684	4884	6430	6.71 ug/I	」 #	89
83)	Isopropylbenzene	14.882	4955	163917	4.73 ug/I	-	99
84)	Bromobenzene	15.058	5018	51042	5.83 ug/I	L	98
85)	n-Propylbenzene	15.437	5154	163299	4.65 ug/I	L	99
86)	2-Chlorotoluene	15.479	5169	107260	4.93 ug/I	J	97
87)	4-Chlorotoluene	15.591	5209	97209	5.50 ug/I	J	99
88)	1,3,5-Trimethylbenzene	15.855	5304	140529	4.84 ug/I	L	99
89)	Pentachloroethane	15.769	5273	6418	11.26 ug/I	L	91
90)	tert-Butylbenzene	16.132	5403	114908	4.54 ug/I	Ŀ	95
91)	1,2,4-Trimethylbenzene	16.299	5463	146824	4.92 ug/I		100
92)	sec-Butylbenzene	16.402	5500	190630	5.08 ug/I	L	97
94)	1,3-Dichlorobenzene	16.402	5500	82701	5.08 ug/I		97
95)	Benzyl chloride	16.452	5518	22361	4.18 ug/I	L	95
96)	1,4-Dichlorobenzene	16.491	5532	85740	5.23 ug/I		96
97)	4-Isopropyltoluene	16.664	5594	154011	4.09 ug/I		99
98)	1,2-Dichlorobenzene	16.890	5675	93462	4.67 ug/I		97
99)	n-Butylbenzene	17.144	5766	136502	4.29 ug/I		100
100)	1,2-Dibromo-3-chloropr	17.439	5872	2996	5.43 uq/I	. #	81
101)	Hexachloroethane	17.487	5889	5392	5.02 ua/I	_	69
102)	1,2,4-Trichlorobenzene	19.051	6450	61908	3.88 ug/I		94
103)	Naphthalene	19.313	6544	129876	3.47 ug/1		100
104)	Hexachlorobutadiene	19.453	6594	25065	4.91 ua/I		96
105)	1,2,3-Trichlorobenzene	19.542	6626	66175	4.13 ug/I	_	97
- /							

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8260083118.M Fri Aug 31 14:06:35 2018 RPT1

المراكبان المراجع والمراجع والم

Page: 3

Data Path : C:\MS4\083118\ Data File : X083106.D Acq On : 31 Aug 2018 11:06 Operator : EA Sample : VSTD010 Misc : VSTD010 ALS Vial : 6 Sample Multipli	am .er: 1					
Quant Time: Aug 31 11:39:57 201 Quant Method : C:\MS4\METHODS\8 Quant Title : Method for the a QLast Update : Fri Aug 31 09:59 Response via : Initial Calibrat	.8 3260083118 analysis 2:42 2018 Lion	3.M of 826() waters			
Compound	R.T.	Scan	Response	Conc Ur	its D	ev(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.645 13.195 16.461	2001 4350 5521	1621799 794071 914871	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 F 69) Toluene-d8 Spiked Amount 50.000 F 82) Bromofluorobenzene Spiked Amount 50.000 F	4.977 Range 77 11.017 Range 74 14.871 Range 74	1403 - 117 3569 - 129 4951 - 119	94973 Recove: 205150 Recove: 64701 Recove:	10.05 ry = 9.24 ry = 10.05 ry =	ug/L 20.1 ug/L 18.4 ug/L 20.1	0.00 0%# 0.00 8%# 0.00 0%#
<pre>Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Acrolein 8) Acetonitrile 9) Acrylonitrile 10) Trichlorofluoromethane 11) Diethyl ether 12) FREON 123A 13) FC-113 14) Acetone 15) IPA 16) TBA 17) Methyl acetate 18) Allyl chloride 19) Iodomethane 20) 1,1-Dichloroethene 21) Methylene Chloride 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) MTBE 25) 1,1-Dichloroethane 26) Propionitrile 27) Vinyl Acetate 28) Chloroprene 29) Hexane 30) 2-Butanone 31) Diisopropylether (DIPE) 32) cis-1,2-Dichloroethene 33) Methacrylonitrile 34) Bromochloromethane 35) Chloroform 36) 2,2-Dichloroprene 37) Methyl acrylate 38) Isobutyl alcohol 39) Tetrahydrofuran 41) 1,2-Dichloroethane 42) 1,11-Trichloroethane 43) 1-Chlorobutane 44) 1,1-Dichloroprene 45) Cucleboxane </pre>	1.220 1.294 1.398 1.576 1.635 1.946 1.946 1.9600 2.3500 2.1070 1.8900 2.478 2.027 1.9999 2.336 2.462 2.473 2.303 2.291 2.403 2.527 3.677 3.591 3.677 3.714 3.836 3.8361 4.026 4.294 4.294 4.294 4.294 4.294 4.595 5.261 5.261 5.261 5.261 5.261	$\begin{array}{c} 49\\ 776\\ 183\\ 205\\ 3161\\ 463\\ 307\\ 556\\ 440\\ 482\\ 776\\ 205\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 109\\ 112\\ 206\\ 152\\ 47\\ 152\\ 16\\ 77\\ 776\\ 29\\ 99\\ 99\\ 99\\ 20\\ 109\\ 115\\ 1206\\ 152\\ 47\\ 16\\ 77\\ 16\\ 77\\ 78\\ 99\\ 99\\ 99\\ 20\\ 20\\ 10\\ 12\\ 12\\ 15\\ 16\\ 77\\ 16\\ 77\\ 78\\ 99\\ 99\\ 99\\ 109\\ 10\\ 12\\ 15\\ 16\\ 77\\ 16\\ 77\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	154873 156865 175148 90994 85477 42916 9159m 41415 152593m 74067 103331 96754 19842 34960 57449 78592 137397 171117 157698 105300 213841 139564 257436 170249 61552 142917 151408 108063 16167 307958 141801 153658m 61774 160433 100121 56084 29078 12314m 122303 107063 160509 102743 102743 107063 160509 102743 102743 107063 160509 102743 102743 100509 102743 100509 102743 100509 102743 100509 102743 100509 102743 100509	$\begin{array}{c} 10.36\\ 9.88\\ 11.54\\ 11.76\\ 10.76\\ 23.13\\ 10.067\\ 9.29\\ 11.04\\ 10.77\\ 10.40\\ 24.06\\ 118.92\\ 97.37\\ 10.05\\ 10.49\\ 10.36\\ 10.34\\ 15.47\\ 10.36\\ 9.51\\ 10.38\\ 22.14\\ 11.14\\ 9.93\\ 10.58\\ 22.14\\ 11.14\\ 9.93\\ 10.58\\ 22.62\\ 9.56\\ 10.88\\ 22.62\\ 10.88\\ 20.62\\ 10.88\\ 20.62\\ 10.88\\ 10.68\\ 10.88\\ 10.68\\ 10.68\\ 10.83\\ 10.68\\$	ug/L ug/L ug/L ug/L ug/L ug/L L ug/L L L L L L L L L L L L L L L L L L L	Qvalue 97 96 97 96 93 99 92 99 98 97 98 97 98 97 98 96 97 98 97 98 96 97 98 97 98 96 97 98 98 97 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 97 98 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 99

1

Data Path : C:\MS4\083118\ Data File : X083106.D Acq On : 31 Aug 2018 11:06 am Operator : EA Sample : VSTD010 : VSTD010 Misc ALS Vial : 6 Sample Multiplier: 1

Quant Time: Aug 31 11:39:57 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	5 D	ev()	1in)
47)	Benzene	6.062	1792	349601	9.74 ug/	'L		96
48)	tert-Amvl methvl ether	6.695	2019	222561	8.27 ug/	'L		94
49)	Dibromomethane	7.434	2284	43413m	10.82 ug/	'L		
50)	1,2-Dichloropropane	7.607	2346	72786m	9.16 ug/	'L		
51)	Trichloroethene	7.771	2405	74528m	9.87 ug/	′L		
52)	Bromodichloromethane	7.883	2445	44006	12.16 ug/	'L		97
53)	2-Nitropropane	8.017	2493	9102m	9.50 ug/	'L		
54)	1,4-Dioxane	8.438	2644	3047m	111.70 ug/	'L		
55)	Methyl methacrylate	8.881	2803	41146	8.46 ug/	<u>′</u> ь	#	94
56)	Methylcyclohexane	9.065	2869	142686	9.47 ug/	L'L		97
57)	2-Chloroethylvinylether	9.416	2995	16712	8.12 ug/	L.	#	78
58)	cis-1,3-Dichloropropene	9.704	3098	47368	8.86 ug/	L'L		94
59)	trans-1,3-Dichloropropene	10.643	3435	29932	8.73 ug/	′L		96
60)	1,1,2-Trichloroethane	10.814	3496	42779	9.69 ug/	′Ц /т		93
61) (0)	1,3-Dichloropropane	11.246	3651	68589	9.52 ug/	/ Lu / T		98
62)	Dibromochloromethane	11.550	3760	15480	12.01 ug/	′ Ц /т		90
63)	Etnyi methacrylate	11 012	2000	29392	8.94 ug/	′ Ці /т		94
64) (F)	1,2-Dibromoethane	12 050	2020	29000	9.00 ug/	/ 1.1 / T		90
63)	A Mothul-2-Doptopo	10 122	3248	163970	19 98 ug/	/т.		93
68)	4-Methyr-z-rentanone	11 720	3821	80907	22.36 ug/	/T.		99
70)		11 131	3610	256068	9 52 ug/	/1.		98
707	Tetrachloroethene	12 252	4012	79266	8.47 119	/1.		99
72)	1.1.1.2-Tetrachloroethane	13,150	4334	39685	12.32 ug	/1.		94
73)	Chlorobenzene	13.237	4365	145690	9.84 ug	/L		96
74)	1-Chlorohexane	13.332	4399	50762	8.78 ug	/L		89
75)	Ethvlbenzene	13.602	4496	267074	9.45 ug	/L		98
76)	m,p-Xylene	13.895	4601	426107	19.65 ug,	/L		100
77)	Styrene	14.305	4748	135494	9.57 ug.	/L		98
78)	o-Xylene	14.386	4777	276206	9.97 ug,	/L		99
79)	1,1,2,2-Tetrachloroethane	14.375	4773	73875	11.92 ug,	/Г		99
80)	1,2,3-Trichloropropane	14.556	4838	60672	11.13 ug,	/L		98
81)	trans-1,4-Dichloro-2-b	14.684	4884	12058	12.34 ug,	/L	#	95
83)	Isopropylbenzene	14.882	4955	352550	9.97 ug.	/L		100
84)	Bromobenzene	15.058	5018	94855	10.62 ug	/L		96
85)	n-Propylbenzene	15.437	5154	354588	9.90 ug	/L		98
86)	2-Chlorotoluene	15.479	5169	237807	10.72 ug	/L		98
87)	4-Chlorotoluene	15.588	5208	195647	10.84 ug	/ Li		99
88)	1,3,5-Trimetnyibenzene	15.855	5304	301042	10.17 ug,	/L		97
89)	Pentachioroethane	15.700	5272	11010	19.81 ug	/ Ц /т		90
90)	tert-Butyibenzene	16 200	5403	202093	9.70 ug	/ Li /T		97
92)	1,2,4-IIIMethylbenzene	16 300	5/90	377860	9 86 ug	/ L		100
92) 94)	1 3-Dichlorobenzene	16 399	5499	160309	10 15 ug	/T.		98
951	Benzyl chloride	16 449	5517	45529	8.78 ug	/ T.		99
961	1.4-Dichlorobenzene	16.491	5532	169038	10.62 ug	/L		99
97)	4-Isopropyltoluene	16.664	5594	330790	9.05 ug	/L		99
98)	1.2-Dichlorobenzene	16.890	5675	189591	9.75 ug	/L		99
99)	n-Butylbenzene	17.141	5765	288667	9.34 uq	/L		98
100)	1,2-Dibromo-3-chloropr	17.445	5874	6325	11.82 ug	/L	#	76
101)	Hexachloroethane	17.484	5888	10998	10.54 ug	/L	#	54
102)	1,2,4-Trichlorobenzene	19.048	6449	134306	8.68 ug	/L		95
103)	Naphthalene	19.313	6544	322655	8.89 ug	/L		100
104)	Hexachlorobutadiene	19.456	6595	52633	10.62 ug	/L		99
105)	1,2,3-Trichlorobenzene	19.542	6626	143089	9.21 ug	/L		99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

8260083118.M Fri Aug 31 14:06:37 2018 RPT1

Data Path : C:\MS4\083118\ Data File : X083107.D Acq On : 31 Aug 2018 11:38 Operator : EA Sample : VSTD020 Misc : VSTD020 ALS Vial : 7 Sample Multipl	am ier: 1					
Quant Time: Aug 31 12:05:51 20 Quant Method : C:\MS4\METHODS\ Quant Title : Method for the QLast Update : Fri Aug 31 09:5 Response via : Initial Calibra	18 826008311 analysis 9:42 2018 tion	3.M of 8260	0 waters			
Compound	R.T.	Scan	Response	Conc Ur	its D	ev(Min)
Internal Standards	6 630	1000	1750070	50 00		0.00
66) Chlorobenzene-d5	13.195	4350	868898	50.00	ug/L ug/L	0.00
93) 1,4-Dichlorobenzene-d4	16.460	5521	954832	50.00	ug/L	0.00
System Monitoring Compounds		1 4 0 1	015650	01 04	/ -	0 00
40) 1,2-Dichloroethane-d4 Spiked Amount 50,000	4.971 Range 77	-117	ZI5670 Recove	21.04	ug/L 42.0	88#
69) Toluene-d8	11.017	3569	493506	20.32	ug/L	0.00
Spiked Amount 50.000	Range 74	- 129	Recove	ry =	40.6	48#
Spiked Amount 50.000	14.865 Range 74	4949 - 119	149235 Recove	ry =	42.3	88#
Target Compounds						Ovalue
2) Dichlorodifluoromethane	1.217	48	334684	20.65	ug/L	98
3) Chloromethane	1.289	75	355561	20.65	ug/L	99
4) Vinyl Chloride	1.401	117	345329	21.00	ug/L	99
6) Chloroethane	1.630	203	180001	24.00	ug/L ug/L	98
7) Acrolein	1.940	314	90291	44.89	ug/L	99
8) Acetonitrile	1.957	320	21866m	22.16	ug/L	
9) Acrylonitrile	2.344	459	88030 252712m	20.93	ug/L	96
11) Diethyl ether	2,102	372	162338	22.31	ug/L ug/L	97
12) FREON 123A	1.885	299	234158	22.51	ug/L	99
13) FC-113	2.475	506	216206	21.45	ug/L	# 97
14) Acetone	2.021	343	42497	47.53	ug/L	# 9/
16) TBA	2.336	456	156770	245.11	ug/L ug/L	# 94 94
17) Methyl acetate	2.459	500	176498	20.82	ug/L	99
18) Allyl chloride	2.464	502	322334	22.70	ug/L	98
19) Iodomethane	2.300	443	360212	20.97	ug/L	98
21) Methylene Chloride	2.200	478	238451	21.60	ug/L	99
22) Carbon Disulfide	2.528	525	492001	32.83	ug/L	95
23) trans-1,2-Dichloroethene	2.947	675	317747	21.76	ug/L	98
24) MTBE 25) 1 1-Dichloroethane	3.086 3.18/i	725	562421 369171	19.17 20 37	ug/L	99
26) Propionitrile	3.228	776	135005	105.49	ug/L	100
27) Vinyl Acetate	3.404	839	344452	24.78	ug/L	99
28) Chloroprene	3.585	904	338930	20.50	ug/L	98
29) Hexane 30) 2-Putanono	3.6/5	936 950	253376	42 28	ug/L	99 94
31) Diisopropylether (DIPE)	3.778	973	689956	19.75	ug/L	100
32) cis-1,2-Dichloroethene	3.831	992	303884	21.52	ug/L	99
33) Methacrylonitrile	3.822	989	288817m	39.23	ug/L	0.0
34) Bromochloromethane	4.023	1001	134216	21.79	ug/L	98
36) 2,2-Dichloropropane	4.199	1124	237240	20.07	ug/L	98
37) Methyl acrylate	4.285	1155	132756	20.56	ug/L	94
38) Isobutyl alcohol	4.411	1200	67472	221.67	ug/L	98
39) Tetranydrofuran 41) 1 2-Dichloroothano	4.5/5	1209 1229	22018 259496	15.18 20 91	ug/L	96 96
42) 1,1,1-Trichloroethane	5.253	1502	233665	21.80	uq/L	95
43) 1-Chlorobutane	5.309	1522	376550	20.34	ug/L	95
44) 1,1-Dichloropropene	5.643	1642	252802	20.67	ug/L	100
45) Cyclohexane	5.744	1678	417621	19.79	ug/L	98
40) Carbon retrachioride	5.930	1/4/	139/42M	21.09	uy/L	

Data Path	:	C:\MS4\083118\	
Data File	:	X083107.D	
Acq On	:	31 Aug 2018 11:38 am	
Operator	:	EA	
Sample	:	VSTD020	
Misc	:	VSTD020	
ALS Vial	:	7 Sample Multiplier: 1	

Quant Time: Aug 31 12:05:51 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev	(Min)
47)	Benzene	6.056	1790	798933	20.53 ug/L	 J	100
48)	tert-Amvl methvl ether	6.686	2016	486862	16.68 ug/L	_	96
49)	Dibromomethane	7.431	2283	91754	21.10 ug/L		97
50)	1,2-Dichloropropane	7.595	2342	157921	18.34 ug/L	_	96
51)	Trichloroethene	7.763	2402	166339	20.32 ug/1	<u>ـ</u>	96
52)	Bromodichloromethane	7.888	2447	100963	25.74 ug/I	-	95
53)	2-Nitropropane	8.005	2489	21395m	20.61 ug/I	L	
54)	1,4-Dioxane	8.446	2647	7088m	239.69 ug/I	L	
55)	Methyl methacrylate	8.870	2799	103270	19.59 ug/I	J	98
56)	Methylcyclohexane	9.068	2870	326368	19.97 ug/I	۔ 	95
57)	2-Chloroethylvinylether	9.416	2995	42429	19.01 ug/I	. #	85
58)	cis-1,3-Dichloropropene	9.698	3096	125057	21.58 ug/I	-	99
59)	trans-1,3-Dichloropropene	10.635	3432	78109	21.01 ug/1	-	98
60)	1,1,2-Trichloroethane	10.811	3495	98038	20.49 ug/1	-	97
61)	1,3-Dichioropropane	11.243	3030	100002	19.95 ug/1	-	90
62)	Dibromochioromethane	11.550	3700	36072	2/.11 ug/1		90 07
63)	Linyi methacrylate	11 012	2000	140302	19.51 ug/1		97
65)	Promoform	12 047	1591	12120	22.20 ug/1		99
671	A-Mothyl-2-Pontanono	10 116	3246	381976	/2 52 ug/1		100
68)	2-Hevanone	11 717	3820	188395	47 58 ug/I		100
70)		11 131	3610	613024	20.83 ug/I	-J	96
71)	Tetrachloroethene	12 250	4011	169419	16.55 ug/I	-	100
72)	1.1.1.2-Tetrachloroethane	13.150	4334	97461	27.64 ug/I		95
73)	Chlorobenzene	13.234	4364	337506	20.84 ug/I		99
74)	1-Chlorohexane	13.329	4398	125606	19.84 ug/I		96
75)	Ethvlbenzene	13.599	4495	632494	20.46 ug/I		100
76)	m,p-Xylene	13.892	4600	999233	42.11 ug/I		100
77)	Styrene	14.302	4747	328074	21.17 ug/I		98
78)	o-Xylene	14.386	4777	635633	20.96 ug/I		97
79)	1,1,2,2-Tetrachloroethane	14.375	4773	165189	24.35 ug/I		99
80)	1,2,3-Trichloropropane	14.550	4836	129537	21.72 ug/I	<u>.</u>	98
81)	trans-1,4-Dichloro-2-b	14.681	4883	28600	26.75 ug/I	. #	85
83)	Isopropylbenzene	14.879	4954	832662	21.52 ug/I		100
84)	Bromobenzene	15.058	5018	219202	22.43 ug/I	L	97
85)	n-Propylbenzene	15.434	5153	849678	21.68 ug/I	Ĺ	99
86)	2-Chlorotoluene	15.476	5168	518668	21.37 ug/I	Ĺ	98
87)	4-Chlorotoluene	15.588	5208	433024	21.93 ug/l		99
88)	1,3,5-Trimethylbenzene	15.853	5303	/10449	21.92 ug/1	Lu r	98
89)	Pentachioroethane	16 121	5272	30093	22.20 ug/1	և -	100
90)	tert-Butyidenzene	16 200	5405	726246	22.20 ug/I	L) F	T00
91) 92)	1,2,4-11 imethyidenzene	16 300	5/00	915611	21.01 ug/	ц г.	100
92)	1 3-Dichlorobongene	16 300	5/00	342603	21.04 ug/1	Lu F.	100
94)	Benzyl chloride	16 119	5517	11/939	20.70 ug/s	L) F.	99
961	1.4-Dichlorobenzene	16 491	5532	343533	20.68 ug/1	r.	98
97)	4-Isopropyltoluene	16.661	5593	777091	20.36 ug/1		99
98)	1.2-Dichlorobenzene	16.890	5675	424866	20.94 ug/1	L	98
991	n-Butylbenzene	17.141	5765	674699	20.92 ug/1	L	98
100)	1,2-Dibromo-3-chloropr	17.445	5874	14776	26.45 ug/1	L	93
101)	Hexachloroethane	17.484	5888	29506	27.10 ug/1	L #	55
102)	1,2,4-Trichlorobenzene	19.048	6449	316861	19.62 ug/1	L	98
103)	Naphthalene	19.310	6543	776798	20.52 ug/1	L	100
104)	Hexachlorobutadiene	19.453	6594	115786	22.39 ug/1	L	98
105)	1,2,3-Trichlorobenzene	19.542	6626	324095	19.98 ug/1	L	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed
1-2 × 4-2 5 - 2 4 2 4 1 - $\mathcal{L}_{\mathcal{T}} = \{ f \in \mathcal{T} : f \in \mathcal{T} \}$

Quant Time: Aug 31 12:05:51 2018 Quant Method: C:VMS4WHENDOS18260083118.M Response VIa : Initial Calibration Mundamed 2800000 2800000 2800000 2800000 2800000 2800000 2800000 2800000 2800000 2800000 2800000 2800000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000<	Data Pa Data Fi Acq On Operato Sample Misc ALS Via	ath : C:\MS4\083118\ ile : X083107.D : 31 Aug 2018 11:38 am or : EA : VSTD020 : VSTD020 al : 7 Sample Multiplier: 1
Abundance TIC: X083107.D/data.ms 25000000 2000000 23000000 2000000 2000000 2000000 2000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 100000000	Quant 1 Quant M Quant 1 QLast U Respons	Fime: Aug 31 12:05:51 2018 Method : C:\MS4\METHODS\8260083118.M Fitle : Method for the analysis of 8260 waters Update : Fri Aug 31 09:59:42 2018 se via : Initial Calibration
2200000 2200000 2200000 2000000 2000000 1900000 1900000 1900000 1900000 1000000 1000000 1000000 1000000 1000000	Abundance	TIC: X083107.D\data.ms
2400000 2000000 2000000 19000000 19000000 19000000 19000000 100000000	2500000	
2200000 2000000 1900000 19000000 19000000 19000000 100000000	2400000	
2200000 2000000 1900000 1900000 1900000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000	2300000	
2000000 19900000 18000000 10000000 10000000 10000000 1000000	2200000	
2000000 19000000 18000000 18000000 18000000 18000000 18000000 10000000 10000000 1000000 10000000 10000000 10000000 100000000	2100000	
19000000 18000000 17700000 16000000 16000000 16000000 15000000 100000000	2000000	
18000000 17000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 18000000 180000000 18000000 180000000 18000000 180000000 18000000 180000000 18000000 180000000 18000000 180000000 18000000 180000000 190000000 180000000 190000000 180000000 190000000 180000000 190000000 180000000 190000000 180000000 190000000 190000000 190000000 1900000000 190000000 1900000000 1900000000 <td>1900000</td> <td></td>	1900000	
0000001 0000000 0000000 0000000 0000000 000000	1800000	
1000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000	1700000	
1000000 000000 000000 000000 000000 000000 1000000 000000 000000 000000 000000 000000 1000000 000000 000000 000000 000000 000000 000000 1000000 000000 000000 000000 000000 000000 000000 1000000 000000 000000 000000 000000 000000 000000 1000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 000000 <t< td=""><td>1600000</td><td>rzene-df magnational and the second /td></t<>	1600000	rzene-df magnational and the second
14000000 13000000 13000000 1000000 1000000 100000000	1500000	
13000000 1000000 11000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 10000000 1000000 11000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000 11000000 10000000 11000000 10000000 11000000 10000000 11000000 10000000 11000000 100000000 11000000 1000000000 110000000 1000000000000000000000000000000000000	1400000	3.3.5.1 ···································
1500000 1000000 1000000 1000000 1000000 1000000 1000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.2000000 11000000 1.2.20000000 11000000 1.2.20000000 11000000 1.2.20000000000000000000000000000000000	1300000	ere a buyythere at a buy
11000000 10000000 10000000 10000000 10000000 0000000 10000000 10000000 10000000 10000000 0000000 10000000 10000000 10000000 10000000 0000000 10000000 10000000 10000000 10000000 11000000 10000000 10000000 10000000 10000000 11000000 10000000 10000000 10000000 10000000 11000000 10000000 10000000 10000000 10000000 11000000 10000000 10000000 10000000 10000000 110000000 10000000 10000000 10000000 10000000 110000000 100000000 100000000 100000000 100000000 110000000 100000000 100000000 100000000 100000000 110000000 100000000 100000000 100000000 100000000 110000000 100000000 100000000 100000000 100000000 1100000000 100000000 100000000 100000000 100000000 110000000000 100000000	1200000	ene, l ene, l rebenzer n n benzene, n- benzene, n- benzere, n-
10000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000 100000000 1000000000 1000000000000000000000000000000000000	1100000	ide, T T T T T T T T T T T T T T
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 0000000 000000 0000000 0000000 0000000 0000000 0000000 00000000 000000000000000000000000000000000000	1000000	Reference Bab Compare Compare <thcompare< th=""> <thcompare< th=""> <thcom< td=""></thcom<></thcompare<></thcompare<>
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 000000 000000 0000000 000000000000000000000000000000000000	900000	
200000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 000000000000000000000000000000000000	800000	
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 000000 000000 0000000 00000000 000000000 000000000 0000000 0000000000 000000000000000000000000000000000000	700000	exaction interest in the second secon
200000 300000 1-1-1000000000000000000000000000000000	600000	Here the second
400000 300000 100000000	500000	
300000 300000 200000 100000 100000 0 100000 0 200000 100000 0 100000 0 100000 0 100000 0 100000 0 100000 0 100000000	400000	
200000 100000 100000 2000 400 500 600 700 800 900 10 00 11 00 12 00 13 00 14 00 15 00 1	300000	
	200000	
	100000	
	0 Time>	

Quantitation Report (QT Reviewed)

8260083118.M Fri Aug 31 14:06:40 2018 RPT1

Data Path : C:\MS4\083118\ Data File : X083108.D Acq On : 31 Aug 2018 12:10 Operator : EA Sample : VSTD030 Misc : VSTD030 ALS Vial : 8 Sample Multipl:	pm ier: 1					
Quant Time: Aug 31 12:38:00 203 Quant Method : C:\MS4\METHODS\& Quant Title : Method for the a QLast Update : Fri Aug 31 09:59 Response via : Initial Calibrat	18 3260083118 analysis o 9:42 2018 cion	.M f 8260	waters			
Compound	R.T.	Scan	Response	Conc Un	its D	ev(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.642 13.195 16.460	2000 4350 5521	1772196 922518 967819	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 H 69) Toluene-d8 Spiked Amount 50.000 H 82) Bromofluorobenzene Spiked Amount 50.000 H	4.968 Range 77 11.014 Range 74 14.865 Range 74	1400 - 117 3568 - 129 4949 - 119	335329 Recove 818907 Recove 242796 Recove	32.46 ry = 31.76 ry = 32.48 ry =	ug/L 64.9 ug/L 63.5 ug/L 64.9	0.00 2%# 0.00 2%# 0.00 6%#
<pre>Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Acrolein 8) Acetonitrile 9) Acrylonitrile 10) Trichlorofluoromethane 11) Diethyl ether 12) FREON 123A 13) FC-113 14) Acetone 15) IPA 16) TBA 17) Methyl acetate 18) Allyl chloride 19) Iodomethane 20) 1,1-Dichloroethene 21) Methylene Chloride 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) MTBE 25) 1,1-Dichloroethane 26) Propionitrile 27) Vinyl Acetate 28) Chloroprene 29) Hexane 30) 2-Butanone 31) Diisopropylether (DIPE) 32) cis-1,2-Dichloroethene 33) Methacrylonitrile 34) Bromochloromethane 35) Chloroform 36) 2,2-Dichloroprene 37) Methyl accylate 38) Isobutyl alcohol 39) Tetrahydrofuran 41) 1,2-Dichloroethane 43) 1-Chlorobutane 44) 1,1-Dichloroprene 45) Cyclohexane 46) Carbon Totrachloride 45) Cyclohexane 46) Carbon Totrachloride 45) Cyclohexane 46) Carbon Totrachloride 45) Cyclohexane /pre>	$\begin{array}{c} 1.220\\ 1.292\\ 1.401\\ 1.571\\ 1.632\\ 1.943\\ 1.960\\ 2.344\\ 1.987\\ 2.105\\ 1.8853\\ 2.473\\ 2.987\\ 2.306\\ 2.3459\\ 2.459\\ 2.300\\ 2.286\\ 2.947\\ 3.086\\ 2.947\\ 3.084\\ 3.234\\ 3.407\\ 3.585\\ 3.714\\ 3.831\\ 2.020\\ 4.112\\ 4.288\\ 4.416\\ 4.584\\ 5.108\\ 5.247\\ 5.311\\ 5.6437\\ 5.647\\ 5.647\\ 5.647\\ 5.647\\ 5.647\\ 5.647\\ 5.647\\$	$\begin{array}{c} 49\\ 717\\ 181\\ 2015\\ 3259\\ 3379\\ 5033450\\ 3379\\ 5033450\\ 3379\\ 5033450\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3360\\ 3950\\ $	517740 580842 536858 301874 276213 143355 32423m 136185 532990 242688 349226 339514 66374 131097 262123 295661 542151 558043 534648 361952 786583 488111 897858 580215 220403 562458 528171 392999 59663 1070448 480247 487496m 197456 5156666 372757 217819 119864 36081 406590 359264 585458 394828 642321 215787	31.69 33.47 32.38 35.71 31.82 70.70 32.60 32.12 29.69 33.41 73.65 408.08 406.57 34.61 37.87 32.22 32.15 32.253 52.07 33.165 406.57 34.61 37.87 32.22 32.15 32.537 32.60 31.365 40.14 31.69 35.22 69.64 30.40 32.36 31.80 31.69 32.537 32.60 31.365 40.14 31.69 35.22 69.64 30.40 32.368 31.80 32.32 33.41 35.22 69.64 32.369 32.365 31.80 32.365 31.80 32.365 31.80 32.365 31.80 32.365 31.80 32.365 31.80 32.326 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.465 32.320 33.265	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	Qvalue 99 98 99 99 99 99 98 94 98 98 98 98 99 99 94 99 99 99 99 99 99 99

1

Data Path	:	C:\MS4\083118\	
Data File	:	X083108.D	
Acq On	:	31 Aug 2018 12:10 pm	
Operator	:	EA	
Sample	:	VSTD030	
Misc	:	VSTD030	
ALS Vial	:	8 Sample Multiplier:	1

Quant Time: Aug 31 12:38:00 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

47) Benzene 6.062 1792 1246564 31.78 ug/L 99 48) tert-Amyl methyl ether 6.689 2017 765463 26.02 ug/L 93 49) Dibromomethane 7.428 2222 152683 30.38 ug/L 96 50) 1,2-Dichloroptopane 7.595 2342 263738 30.38 ug/L 98 52) Bromodichloromethane 7.885 2446 174122 44.03 ug/L 98 51) 1.4-Dioxane 8.4015 26361 10306m 345.73 ug/L 98 52) Methyl methacrylate 8.416 2957 7717 34.54 ug/L 99 53) cias-1, 3-Dichloropropene 9.668 24304 13.477 ug/L 97 54) tian-1, 3-Dichloropropane 11.246 261394 31.47 ug/L 97 55) tickarplate 11.628 3183 31.477 ug/L 97 51) tickarplate 11.628 3453 140774 35.5 ug/L </th <th></th> <th>Compound</th> <th>R.T.</th> <th>Scan</th> <th>Response</th> <th>Conc Ur</th> <th>iits</th> <th>Dev</th> <th>(Min)</th>		Compound	R.T.	Scan	Response	Conc Ur	iits	Dev	(Min)
48) tert-Amyl methyl ether 6:889 2017 765463 26:02 gd/L 93 9) Dibronomethane 7.428 2282 152683 30.38 ug/L 96 511 Trichloroptopane 7.595 2342 263738 30.38 ug/L 96 511 Trichloroptopane 7.754 2342 163067 33.55 ug/L 98 52 Nethyl methacrylate 8.400 2487 361907 35.15 ug/L 98 531 Z-Nitropropane 8.467 2798 175950 33.10 ug/L 98 54 Methyl methacrylate 8.467 2798 175950 33.124 ug/L 98 55 cis-1,3-Dichloropropene 10.638 3333 140774 37.56 ug/L 98 59 trans-1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 51 1,3-Dichloropropane 11.246 3651 263394 33.47 ug/L 98 51 1,3-Dichloropropane 11.243	47)	Benzene	6.062	1792	1246564	31.78			99
49) Dibromomethane 7.428 2222 152683 34.83 a/fL 97 70) 1,2-Dichloropropane 7.585 2342 263738 30.38 ug/L 98 52) Bromodichloromethane 7.885 2446 174122 44.03 ug/L 98 52) Bromodichloromethane 7.885 2446 174122 44.03 ug/L 98 53) 2-Nitropropane 8.000 2487 36190m 33.15 ug/L 98 54) 1,4-Dioxane 8.415 26361 10306m 345.73 ug/L 98 55) Methylcytlohekane 9.068 270 514592 31.24 ug/L 92 58) cias-1,3-Dichloropropane 10.683 3433 140774 37.56 ug/L 98 59) trans-1,3-Dichloropropane 11.246 3611 263394 33.47 ug/L 97 51 1,2-Dibromochloromethane 11.52 3761 62533 46.59 ug/L 98 65 Bromoform 10.316 3	48)	tert-Amyl methyl ether	6.689	2017	765463	26.02	$u\alpha/L$		93
5001,2-Dichloropropane7.595234226373830.38 g/L 96511Trichloroethene7.784239927691033.55 ug/L 9852)Bromodichloromethane7.885244617412244.03 ug/L 9853)2-Nitropropane8.000248736790m35.15 ug/L 9854)1,4-Dioxane8.415263610306m345.73 ug/L 9855)Methyl methacrylate8.867279817595033.10 ug/L 9857)2-Chloroethylvinylether9.616287051536233.69 ug/L 9859)trans-1,3-Dichloropropene10.638343314077437.56 ug/L 9850)trans-1,3-Dichloropropane11.246356126339433.47 ug/L 9851)trans-1,3-Dichloropropane11.246356126339433.47 ug/L 9852)btyl methacrylate11.628378824856433.83 ug/L 9853)Ethyl methacrylate11.628378824856433.83 ug/L 9854)2-Nibromochloromethane11.216328022.814 ug/L 9855)2-Nibromochloromethane11.212360910629132.21 ug/L 9856)Bromoform13.84545832988445.57 ug/L 9957)1,1,1,2-Tetrachloroethane13.2274365 <t< td=""><td>49)</td><td>Dibromomethane</td><td>7.428</td><td>2282</td><td>152683</td><td>34.83</td><td>uq/L</td><td>ı.</td><td>97</td></t<>	49)	Dibromomethane	7.428	2282	152683	34.83	uq/L	ı.	97
51) Trichloroethane 7.754 2399 276910 33.55 ug/L 98 52) Bromodichloromethane 7.865 2446 174122 44.03 ug/L 90 53) 2-Nitropropane 8.000 2487 36790m 35.15 ug/L 90 54) 1,4-Dioxane 8.415 2636 10306m 345.73 ug/L 90 55) Methyl methacrylate 8.467 2798 175950 33.10 ug/L 98 56) Methyl cyclohexane 9.068 200 514592 31.24 ug/L 96 57) 2-Chloroethylvinylether 9.416 2995 77717 34.54 ug/L 98 59) trans-1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 60) 1,1,2-Trichloroethane 11.552 3761 62503 46.59 ug/L 97 61) 1,2-Dibromoethane 11.612 3890 124892 37.96 ug/L 93 637 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 99 641 1,2-Diroborothane 13.237 4365 557347 32.41 ug/L 97	50)	1,2-Dichloropropane	7.595	2342	263738	30.38	ug/L		96
52) Bromodichloromethane 7.885 2446 174122 44.03 ug/L 90 53) 2-Nitropropane 8.000 2487 36790m 35.15 ug/L 54) 1.4-Dioxane 8.415 2636 10306m 345.73 ug/L 90 55) Methyl methacrylate 8.667 2798 175950 33.10 ug/L 98 56) Methylcyclohexane 9.068 2870 514592 31.24 ug/L 96 57) 2-Chloroethylvinylether 9.068 2383 140774 37.56 ug/L 98 59) trans-1, 3-Dichloropropane 11.628 3788 245564 33.83 ug/L 97 61) 1, 2-Dibromochloromethane 11.52 3761 62533 27.96 ug/L 98 63) Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 64) 1,2-Dibromochloromethane 11.714 3819 32416 62257 69.4 ug/L 98 67) 4-Methyl-2-Pentanone 11.129 3609 1006291 32.21 ug/L 97 70) Totrachloroethene 13.220 4334 159611	51)	Trichloroethene	7.754	2399	276910	33.55	ug/L		98
33 2-Nitropropane 8.000 2487 36790m 35.15 ug/L 54 1.4-Dioxane 8.867 2798 175950 33.10 ug/L 98 56 Methylcyclohexane 9.068 2870 514592 31.24 ug/L 96 571 2-Chloroethylvinylether 9.416 2995 77717 34.54 ug/L 98 59 trans-1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 60) 1,1,2-Trichloroethane 10.811 3495 159652 33.09 ug/L 97 61 1.1.2-Dichloropropane 11.628 3768 24554 3.83 ug/L 97 62) Dibromochloromethane 11.522 3761 62503 46.59 ug/L 98 63) Ethyl methacrylate 10.624 3843 29844 45.57 ug/L 93 64) Methyl-2-Pentanone 10.113 3246 662257 69.44 ug/L 99 71) Tetrachloroethane 13.229 4365 557347 32.41 ug/L 98 72) 1.1.1.2-Zetrachloroethane<	52)	Bromodichloromethane	7.885	2446	174122	44.03	ug/L		90
54) 1,4-Dioxane 8.415 2636 10306m 345.73 ug/L 55) Methyleyclohexane 9.068 2870 514592 31.24 ug/L 96 57) 2-Chloroethylvinylether 9.416 2995 77717 34.54 ug/L 98 59) trans-1,3-Dichloropropene 9.698 3036 215362 36.87 ug/L 98 50) 1,1,2-Trichloroethane 10.638 3433 140774 37.56 ug/L 97 61) 1,3-Dichloropropane 11.252 3761 62503 346.59 ug/L 97 62) Dibromochloromethane 11.523 3761 62554 33.83 ug/L 93 63) Bromoform 13.845 4583 29884 45.57 ug/L 97 70) Totrachloroethane 11.714 3819 321120 76.39 ug/L 97 71) Tetrachloroethane 13.229 4334 159611 42.635 ug/L 98 72) 1,1,1,2-Tetrachloroethane 13.327 4336 <td>53)</td> <td>2-Nitropropane</td> <td>8.000</td> <td>2487</td> <td>36790m</td> <td>35.15</td> <td>ug/L</td> <td>ı.</td> <td></td>	53)	2-Nitropropane	8.000	2487	36790m	35.15	ug/L	ı.	
55) Methyl methaczylate 8.867 2798 175950 33.10 ug/L 96 56) Methylcyclohexane 9.668 20532 31.24 ug/L 96 57) 2-Chloroethylvinylether 9.416 2995 77717 34.54 ug/L 98 58) trans-1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 60) 1,1,2-Trichloroethane 10.811 3495 126524 33.09 ug/L 97 61) 1,2-Dichloropropane 11.628 3786 245564 33.83 ug/L 97 63) Ethyl methacrylate 11.628 3786 245564 33.83 ug/L 98 64) 1,2-Dibromoethane 11.14 3819 214892 37.96 ug/L 98 65) Bromoform 13.845 4585 29844 45.57 ug/L 97 70) Toluene 11.714 3819 212.11 14.14 2.63 ug/L 97 71) Tetrachloroethane 13.237 438	54)	1,4-Dioxane	8.415	2636	10306m	345.73	ug/L	ı.	
56) Methylcyclohexane 9.068 2870 514592 31.24 ug/L 96 571 2-Chloroethylvinylether 9.416 2995 37777 34.54 ug/L 98 581 cis-1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 501 1,1,2-Trichloroethane 10.811 3495 159652 33.09 ug/L 97 611 1,2-Dichloromethane 11.523 3761 62503 46.59 ug/L 98 631 Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 631 4-Methyl-2-Pentanone 10.116 3246 662257 60.44 ug/L 99 631 4-Methyl-2-Pentanone 11.129 3609 1006291 32.21 ug/L 97 701 Tetrachloroethane 13.150 4334 159611 42.63 ug/L 98 721 1,1,2-Z-Tetrachloroethane 13.229 4398 216432 32.21 ug/L 98 732 Chlorobenzene <	55)	Methyl methacrylate	8.867	2798	175950	33.10	ug/L	ı.	98
57) 2-Chloroethylvinylether 9.416 2995 77717 34.54 ug/L $\#$ 92 58) cis.1,3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 600 1,1,2-Trichloropropene 10.638 3433 140774 37.56 ug/L 98 601 1,3-Dichloropropane 11.246 3651 263394 33.47 ug/L 97 611 1,3-Dichloromethane 11.552 3761 62503 46.59 ug/L 97 62) Dibromochloromethane 11.525 3761 62503 46.59 ug/L 97 63) Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 64) 1,2-Dibromoethane 11.912 3890 124892 37.96 ug/L 98 65) Bromoform 13.845 5453 29884 45.57 ug/L 98 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 99 68) 2-Hexanone 11.714 3819 321120 76.39 ug/L 97 70) Toluene 11.714 3819 321120 76.39 ug/L 97 71) Tetrachloroethene 12.250 4011 288587 26.55 ug/L 95 72) 1,1,1,2-Tetrachloroethane 13.237 4365 557347 32.41 ug/L 99 731 Chlorobenzene 13.237 4365 557347 32.41 ug/L 99 751 Ethylbenzene 13.602 4496 1652634 32.20 ug/L 99 751 Ethylbenzene 13.602 4496 1652634 32.20 ug/L 99 763 o-Xylene 14.362 4747 551005 33.49 ug/L 99 771) styrene 14.302 4747 551005 33.49 ug/L 98 80 o-Xylene 14.355 45737 32.05 ug/L 100 76 m,p-Xylene 14.358 4377 215728 34.06 ug/L 99 81) trans-1,4-Dichoroethane 14.553 4837 215728 34.06 ug/L 99 80 1,2,3-Trichloropropane 14.553 1403839 33.73 ug/L 99 81 gromobenzene 15.634 5153 1403839 33.73 ug/L 99 83 Isopropylbenzene 15.634 5153 1403839 33.73 ug/L 99 84 Bromobenzene 15.6476 5168 86477 35.13 ug/L 99 84 Bromobenzene 15.6434 5153 1403839 33.73 ug/L 99 84 Jachlorotoluene 15.5476 5263 32.20 ug/L 99 95 1,2,4-Trimethylbenzene 15.638 5008 702977 33.53 ug/L 99 96 1,2,5-Trimethylbenzene 16.399 5499 1485652 33.38 ug/L 99 97 1,2,4-Trimethylbenzene 16.395 549 702977 33.53 ug/L 99 98 1,3,5-Trimethylbenzene 16.395 549 702977 33.53 ug/L 99 99 1,2,4-Trimethylbenzene 16.395 549 702977 33.53 ug/L 99 99 1,2,4-Trimethylbenzene 16.395 549 702977 33.53 ug/L 99 99 1,2,2-Dichoroo-3-chloropr 77.445 5874 26522 46.85 ug/L 93 99 1,2,2-Dichoroo-3-chloropr 77.445 5874 26522 46.85 ug/L 99 99 1,2,2-Dichoroo-3-chloropr 77.445 5874 26522 46.85 ug/L 99 91 00 1,2-Dibromo-3-chlo	56)	Methylcyclohexane	9.068	2870	514592	31.24	ug/L	ı.	96
58) cis-1,3-Dichloropropene 9.698 3096 215362 36.87 ug/L 98 60) 1,1,2-Trichloropethane 10.638 3435 159652 33.09 ug/L 97 61) 1,3-Dichloropropane 11.246 3651 263394 33.47 ug/L 97 62) Dibromochloromethane 11.552 3761 62503 46.59 ug/L 98 63) Ethyl methacrylate 11.628 3786 245564 33.83 ug/L 97 64) 1,2-Dibromochloromethane 10.116 3246 662257 69.44 ug/L 99 65) Bromoform 13.845 4583 29884 45.57 ug/L 93 70) Totaene 11.129 3609 1006291 32.21 ug/L 97 71) Tetrachloroethane 13.150 4334 159611 42.63 ug/L 98 74) 1-Chiorohexane 13.329 4398 216432 32.21 ug/L 99 75) Ethylbenzene 13.602	57)	2-Chloroethylvinylether	9.416	2995	77717	34.54	ug/L	#	92
59) trans-1, 3-Dichloropropene 10.638 3433 140774 37.56 ug/L 98 60) 1, 1, 2-Trichloroptane 11.246 3651 263394 33.47 ug/L 97 61) Dibromochloromethane 11.525 3761 62504 33.83 ug/L 98 63) Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 64) 1, 2-Dibromoethane 11.912 3800 124892 37.96 ug/L 98 65) Bromoform 13.845 4583 2984 45.57 ug/L 97 70) Toluene 11.129 3609 1006291 32.21 ug/L 97 71) Tetrachloroethane 13.504 334 159611 42.65 ug/L 98 73) Chlorobezane 13.237 4365 557347 32.41 ug/L 98 74) 1-Chlorohezane 13.602 4496 1052634 32.08 ug/L 90 75) Ethylbenzene 13.602 44961	58)	cis-1,3-Dichloropropene	9.698	3096	215362	36.87	ug/L	1	98
60) 1,1,2-Trichloroethane 10.811 3495 159652 33.09 ug/L 97 62) Dibromochloromethane 11.266 3651 263394 33.47 ug/L 97 63) Ethyl methacrylate 11.628 3768 245564 33.83 ug/L 97 64) 1,2-Dibromoethane 11.912 3890 124892 37.96 ug/L 98 65) Bromoform 13.845 4583 29884 45.57 ug/L 93 66) Bromoform 11.161 246 662257 69.44 ug/L 99 66) 2-Hexanone 11.116 3246 662257 69.44 ug/L 99 66) 2-Hexanone 11.129 3609 1006291 32.21 ug/L 97 70) Toluene 12.250 4011 28887 26.55 ug/L 95 72, 1,1,2-Tetrachloroethane 13.150 4334 159611 42.63 ug/L 94 73) Chlorobenzene 13.237 4365 557347 32.41 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 32.21 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.20 ug/L 99 76) mp-Xylene 13.602 4496 1052634 32.20 ug/L 99 77) Styrene 14.302 4747 551005 33.49 ug/L 98 78) o-Xylene 14.366 4777 1031972 32.05 ug/L 99 79] 1,2,2-Tetrachloroethane 14.375 4773 270023 37.49 ug/L 99 80) 1,2,3-Trichloroptopane 14.553 4837 215728 34.06 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 4883 43067 37.96 ug/L 99 84) Bromobenzene 15.058 5018 364547 35.13 ug/L 99 84) Bromobenzene 15.434 5153 1403839 33.73 ug/L 99 86) 2-Chlorotoluene 15.434 5131 140383 33.73 ug/L 99 86) 2-Chlorotoluene 15.434 5153 140383 33.73 ug/L 99 87) 4-Chlorotoluene 15.685 5018 364547 35.13 ug/L 99 88) 1,3,5-Trimethylbenzene 16.399 5499 1485632 33.88 ug/L 99 89) 1,3,5-Trimethylbenzene 16.399 5499 1485632 33.88 ug/L 99 91) 1,2,4-Trimethylbenzene 16.315 4563 140339 33.73 ug/L 99 92) 92 esc-Butylbenzene 16.399 5499 1485632 33.88 ug/L 99 93) 1,1,2,4-Trimethylbenzene 16.399 5499 133.22 ug/L 99 94) 1,3-Dichlorobenzene 16.399 5499 1485632 33.38 ug/L 99 95) Benzyl chloride 16.449 5517 205520 37.44 ug/L 97 96) 1,4-Dichlorobenzene 16.399 5499 133.22 ug/L 99 97) 1,2-Dichlorobenzene 16.399 5499 133.22 ug/L 99 97) 1,2-Dichlorobenzene 16.399 5499 133.32 ug/L 99 98) 1,2-Dichlorobenzene 16.399 5499 133.32 ug/L 99 99 100,1,2-Dichlorobenzene 16.687 5674 665436 33.05 ug/L 99 90 1,2-Dichlorobenzene 16.687 5674 66543 33.36 ug/L 99 9101,2-Dichlorobenzene	59)	trans-1,3-Dichloropropene	10.638	3433	140774	37.56	ug/L	ı –	98
61) 1,3-Dichloropropane 11.246 3651 263394 33.47 ug/L 97 62) Dibromochloromethane 11.552 3761 62503 46.559 ug/L 98 63) Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 64) 1,2-Dibromoethane 11.912 3890 124892 37.96 ug/L 93 65) Bromoform 13.845 4583 29884 45.57 ug/L 93 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 99 68) 2-Hexanone 11.129 3609 1006291 32.21 ug/L 97 70) Toluene 11.129 3609 1006291 32.21 ug/L 97 71) Tetrachloroethane 13.150 4334 159611 42.63 ug/L 94 73) Chlorobenzene 13.237 4365 557347 32.41 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 99 76) Toluene 13.892 4600 1631954 64.78 ug/L 99 77) Tyrene 14.302 4747 551005 33.49 ug/L 99 78) o-Xylene 14.366 4777 1031972 32.05 ug/L 99 80) 1,2,3-Trichloroptopane 14.553 4837 215728 34.06 ug/L 99 80) 1,2,3-Trichloroptopane 14.553 4837 215728 34.06 ug/L 99 80) 1,2,3-Trichloroptopane 14.553 140389 33.73 ug/L 99 80) 1,2,3-Trichloroptopane 15.058 5018 364547 31.3 ug/L 99 80) 1,2,3-Trichloroptopane 15.058 5018 364547 31.3 ug/L 99 80) 1,2,3-Trichloroptopane 15.058 3018 4364547 31.3 ug/L 99 80) 2-Chlorotoluene 15.476 5168 816247 31.68 ug/L 99 80) 3.5 -rrpogylbenzene 16.399 5499 13393 3.73 ug/L 99 80) 2-Chlorotoluene 15.476 5168 816247 31.68 ug/L 99 80) 9-Pentachloroethane 15.769 5273 54611 80.87 ug/L 99 80) 9-Pentachloroethane 15.769 5273 54611 80.87 ug/L 99 91) 1,2,4-Trimethylbenzene 16.399 5499 133923 3.33 ug/L 99 91) 1,2,4-Trimethylbenzene 16.399 5499 13322 ug/L 99 91) 1,2,4-Trimethylbenzene 16.399 5499 13022 ug/L 98 92) sec-Butylbenzene 16.399 5499 133.22 ug/L 99 91) 1,2,4-Trimethylbenzene 16.399 5499 1302.2 ug/L 98 92) sec-Butylbenzene 16.629 5463 1160397 32.82 ug/L 98 92) sec-Butylbenzene 16.629 5463 1160397 32.82 ug/L 98 93) 4.1-Dichlorobenzene 16.629 5463 1160397 32.82 ug/L 98 94) 1,2-Dichlorobenzene 16.629 5463 1160397 32.82 ug/L 98 95) Benzyl chloride 16.641 5593 1278466 33.05 ug/L 99 96) 1,2,4-Trimethylbenzene 17.445 5874 26522 46.85 ug/L 99 91) 1,	60)	1,1,2-Trichloroethane	10.811	3495	159652	33.09	ug/L	ı –	97
62) Dibromochloromethane 11.552 3761 625564 33.83 ug/L 97 64) 1,2-Dibromoethane 11.912 3890 124892 37.96 ug/L 98 65) Bromoform 13.845 4583 29884 45.57 ug/L 99 66) 2-Hexanone 10.116 3246 662257 69.44 ug/L 99 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 97 70) Toluene 11.714 3819 321120 76.39 ug/L 97 71) Tetrachloroethene 13.237 4334 159611 42.63 ug/L 98 72) 1,1,2,2-Tetrachloroethane 13.329 4398 216432 32.21 ug/L 98 73) Styrene 13.802 4747 551005 33.49 ug/L 99 74) 1-Chlorohexane 14.362 4747 51005 33.49 ug/L 99 75) Etyrene 14.3802 4777 1031972	61)	1,3-Dichloropropane	11.246	3651	263394	33.47	ug/L	ı	97
63) Ethyl methacrylate 11.628 3788 245564 33.83 ug/L 97 64) 1,2-Dibromoethane 11.912 3890 124892 37.96 ug/L 98 65) Bromoform 13.845 4583 29884 45.57 ug/L 93 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 99 68) 2-Hexanone 11.714 3819 321120 76.39 ug/L 97 70) Toluene 11.129 3609 1006291 32.21 ug/L 95 72) 1,1,1,2-Tetrachloroethane 13.504 4334 159611 42.63 ug/L 98 71) Tetrachloroethane 13.329 4398 216432 32.21 ug/L 99 73) Chlorobenzene 13.602 4496 1052634 32.08 ug/L 90 76) m,p-Xylene 13.802 4600 1631954 64.78 ug/L 99 76) o,zyterne 14.302 4747 551005 33.49 ug/L 98 77) styrene 14.534 4837 210723 34.06 ug/L 98 78) porpolphozene 14.534 4837 <	62)	Dibromochloromethane	11.552	3761	62503	46.59	ug/L	I I	98
64) 1,2-Dibromoethane 11,912 3890 124892 37,96 ug/L 98 65) Bromoform 13.845 583 29884 45.57 ug/L 93 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 99 68) 2-Hexanone 11.129 3609 1006291 32.21 ug/L 97 70) Toluene 11.229 3609 1006291 32.21 ug/L 97 71) Tetrachloroethane 13.237 4365 557347 32.41 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 32.21 ug/L 99 75) Etylbenzene 13.602 4496 1052634 32.08 ug/L 90 76) m.p-Xylene 13.892 4600 1631954 64.78 ug/L 98 77) Styrene 14.382 477 151005 33.49 ug/L 99 80) 1,2,3-Trichloroptopane 14.457 477 210172 32	63)	Ethyl methacrylate	11.628	3788	245564	33.83	ug/L		97
65) Bromoform 13.845 4583 2984 45.57 ug/L 93 67) 4-Methyl-2-Pentanone 10.116 3246 662257 69.44 ug/L 97 70) Toluene 11.714 3819 321120 76.39 ug/L 97 71) Tetrachloroethane 11.714 3819 321120 76.39 ug/L 97 71) Tetrachloroethane 13.150 4334 159611 42.63 ug/L 94 72) 1,1,1,2-Tetrachloroethane 13.29 4365 557347 32.41 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 32.08 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 98 76) m,Fylene 14.366 4777 1031972 32.05 ug/L 99 77) Styrene 14.386 4777 1031972 32.60 ug/L 98 78) o-Xylene 14.681 4883 43087 37.	64)	1,2-Dibromoethane	11.912	3890	124892	37.96	ug/L	I I	98
6') 4-Methyl-2-Pentanone 10.116 3246 66225' 69.44 ug/L 99 70) Toluene 11.714 3819 321120 76.39 ug/L 97 70) Toluene 11.129 3609 1006291 32.21 ug/L 97 71) Tetrachloroethene 12.250 4011 28887 26.55 ug/L 94 73) Chlorobenzene 13.329 4365 557347 32.41 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 22.21 ug/L 99 75) Ethylbenzene 13.602 4496 1652634 32.08 ug/L 98 78) o-Kylene 14.302 4747 551005 33.49 ug/L 98 80) rylene 14.353 4837 215728 34.06 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 4833 43087 37.96 ug/L 99 81) trans-1,4-Dichloro-2-b 14.879 4954 1339488	65)	Bromoform	13.845	4583	29884	45.57	ug/L	I .	93
68) 2-Hexanone 11.124 3819 321120 76.39 ug/L 97 70) Toluene 11.129 3609 10062291 32.21 ug/L 97 71) Tetrachloroethene 12.250 4011 288587 26.55 ug/L 95 72) 1,1,1,2-Tetrachloroethane 13.150 4334 159611 42.63 ug/L 99 73) Chlorobenzene 13.229 4398 216432 32.21 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 32.21 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 99 76) Styrene 14.302 4747 551005 33.49 ug/L 99 77) Styrene 14.375 4773 270023 37.49 ug/L 99 80) 1,2,2-Tetrachloroethane 14.575 4837 215728 34.06 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 48837 37.7	67)	4-Methy1-2-Pentanone	10.116	3246	662257	69.44	ug/L	2	99
70 Toluene 11.129 3609 1006291 32.21 Ug/L 97 71) Tetrachloroethane 12.250 4011 288587 26.55 Ug/L 95 72) 1,1,1,2-Tetrachloroethane 13.150 4334 159611 42.63 Ug/L 94 73) Chlorobenzene 13.237 4365 557347 32.41 Ug/L 99 75) Ethylbenzene 13.329 4398 216432 32.21 Ug/L 99 75) Ethylbenzene 13.329 4398 216432 32.21 Ug/L 99 76) m,p-Xylene 13.602 4496 1052634 32.08 Ug/L 99 77) Styrene 14.375 4777 2031972 32.05 Ug/L 90 78) o-Xylene 14.375 4777 27023 34.06 Ug/L 98 81) trans-1, 4-Dichloro-2-b 14.681 4883 43087 37.96 Ug/L 97 83) trans-1, 4-Dichloro-2-b 14.681 4883 43087	68)	2-Hexanone	11.714	3819	321120	/6.39	ug/L	J	97
711 11.1,2-Tetrachloroethane 12.250 4011 28.857 26.55 ug/L 95 721 1,1,2-Tetrachloroethane 13.237 4365 557347 32.41 ug/L 94 731 Chlorobenzene 13.237 4365 557347 32.41 ug/L 98 741 1-Chlorohexane 13.237 4365 557347 32.41 ug/L 99 751 Ethylbenzene 13.602 4496 1052634 32.08 ug/L 100 760 m,p-Xylene 14.302 4747 551005 33.49 ug/L 99 771 Styrene 14.302 4747 551005 34.9 ug/L 99 780 o-Xylene 14.375 4773 270023 37.49 ug/L 99 801 1,2,3-Trichloropropane 14.573 4837 215728 34.06 ug/L 99 811 trans-1,4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L 99 81 trans-1,4-Dichloro-2-b 14.681 4883 43087 35.13 ug/L 99 86) n-Propylbenzene 15.434 5153 1403839 33.73 ug/L 99 87 4-Chlorotoluene 15.46	70)	Toluene	11.129	3609	1006291	32.21	ug/L	J	97
7/2) 1,1,1,,2-letrachloroethane 13.150 4334 15011 42.63 10/L 94 73) Chlorobenzene 13.329 4398 216432 32.21 ug/L 98 74) 1-Chlorohexane 13.329 4398 216432 32.21 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 99 77) Styrene 14.302 4747 551005 33.49 ug/L 98 78) o-Xylene 14.302 4747 551005 33.49 ug/L 99 80) 1,2,2-Tetrachloroethane 14.375 4773 270023 37.49 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 4883 4087 37.96 ug/L 97 83) Isopropylbenzene 14.879 4954 133948 32.60 ug/L 99 84) Bromobenzene 15.434 5153 1403839 33.73 ug/L 99 85) n-Propylbenzene 15.435 5018 <	71)	Tetrachloroethene	12.250	4011	288587	26.55	ug/L	ı	95
73) 1-Chlorobexane 13.237 4363 37347 32.41 Ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 100 76) m, p-Xylene 13.892 4000 1631954 64.78 ug/L 99 77) Styrene 14.302 4747 551005 33.49 ug/L 98 78) o-Xylene 14.302 4747 551005 33.49 ug/L 99 80) n.2, 3-Trichloropropane 14.553 4837 215728 34.06 ug/L 98 81) trans-1, 4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L 99 84) Bromobenzene 15.058 5018 364547 31.68 ug/L 99 85) n-Propylbenzene 15.476 5168 816247 31.68 ug/L 99 86) 2-Chlorotoluene 15.785 5303 1148343 33.38 ug/L 99 87) 4-Chlorotoluene 15.769 5273 54611 <td>72)</td> <td>1,1,1,2-Tetrachloroethane</td> <td>13.150</td> <td>4334</td> <td>159611</td> <td>42.63</td> <td>ug/L</td> <td>1</td> <td>94</td>	72)	1,1,1,2-Tetrachloroethane	13.150	4334	159611	42.63	ug/L	1	94
74) 1-Chlobolnexane 13.329 4393 22.41432 32.21 ug/L 99 75) Ethylbenzene 13.602 4496 1052634 32.08 ug/L 99 76) m,p-Xylene 13.892 4600 1631954 64.78 ug/L 99 77) Styrene 14.302 4747 551005 33.49 ug/L 98 78) o-Xylene 14.302 4747 551005 33.49 ug/L 99 80) 1,2,2-Tetrachloroethane 14.375 4773 270023 37.49 ug/L 99 80) 1,2,3-Trichlorop-2-b 14.681 4883 43087 31.59 ug/L 98 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 31.30 ug/L 99 84) Bromobenzene 15.453 1403839 33.73 ug/L 99 85) n-Propylbenzene 15.434 5153 1403839 33.73 ug/L 99 861 1,3,5-Trimethylbenzene 15.853 5303 1148343	73)		13.239	4365	22/34/	32.41	ug/L	1	98
75) b.Chylben2ene 13.802 4436 1032634 32.08 1071 76) m.p-Xylene 13.802 4600 1631954 64.78 ug/L 99 77) Styrene 14.302 4747 551005 33.49 ug/L 99 78) o-Xylene 14.302 4747 551005 33.49 ug/L 99 80) 1.2,2-Tetrachloroethane 14.375 4773 270023 37.49 ug/L 99 80) 1.2,3-Trichloropropane 14.573 4837 215728 34.06 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L 99 84) Bromobenzene 15.058 5018 364547 31.30 ug/L 99 85) n-Propylbenzene 15.434 5153 1403839 33.73 ug/L 99 86) 2-Chlorotoluene 15.585 5003 1148343 33.38 ug/L 90 870 4-Chlorotoluene 15.769 5273 54611 <	74)	I-Chioronexane	13.329	4398	210432	32.21	ug/L	1	100
77) Styrene 13.392 4000 153153 64.76 1371 57 77) Styrene 14.302 4747 551005 33.49 ug/L 98 78) o-Xylene 14.302 4747 551005 33.49 ug/L 99 80) 1,2,2-Tetrachloropthane 14.375 4773 215728 34.06 ug/L 98 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L 99 84) Bromobenzene 15.058 5018 364547 35.13 ug/L 99 85) n-Propylbenzene 15.434 5153 1403839 33.73 ug/L 99 86) 2-Chlorotoluene 15.476 5168 816247 31.68 ug/L 99 87) 4-Chlorotoluene 15.588 5208 702997 33.53 ug/L 99 88) 1,3,5-Trimethylbenzene 16.395 54611 80.87 ug/L 93 90) tert-Butylbenzene 16.399 5499 1485652	75)		13.002	4490	1621054	52.00	ug/L	1	100
7814.3024747103193232.05103778o-Xylene14.3864777103197232.05ug/L100791,1,2,2-Tetrachloropethane14.375477327002337.49ug/L9980)1,2,3-Trichloroperopane14.553483721572834.06ug/L9881)trans-1,4-Dichloro-2-b14.68148834308737.96ug/L9783)Isopropylbenzene14.5794954133948832.60ug/L9984)Bromobenzene15.058501836454735.13ug/L9985)n-Propylbenzene15.4345153140383933.73ug/L9986)2-Chlorotoluene15.476516881624731.68ug/L9987)4-Chlorotoluene15.58852087029973.53ug/L9988)1,3,5-Trimethylbenzene16.131540399691933.22ug/L9390)tert-Butylbenzene16.3995499148565233.38ug/L9991)1,2,4-Trimethylbenzene16.399549953975032.30ug/L9992)sec-Butylbenzene16.491551720552037.44ug/L9796)1,4-Dichlorobenzene16.6615593127846633.05ug/L9997)4-Isopropyltoluene16.6615593127846633.36ug/L9998	707	m, p-xyrene	14 302	4000	551005	33 /0	ug/L	,	99
79) 1,2,2-Tetrachloroethane 14.375 4773 270023 37.49 ug/L 99 80) 1,2,3-Trichloropropane 14.375 4773 270023 37.49 ug/L 99 80) 1,2,3-Trichloropropane 14.375 4773 215728 34.06 ug/L 98 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L # 84) Bromobenzene 15.058 5018 364547 35.13 ug/L 99 85) n-Propylbenzene 15.434 5153 1403839 33.73 ug/L 99 86) 2-Chlorotoluene 15.476 5168 816247 31.68 ug/L 99 87) 4-Chlorotoluene 15.853 5303 1148343 33.38 ug/L 99 80) tert-Butylbenzene 16.131 5403 996919 33.22 ug/L 99 91) 1,2,4-Trimethylbenzene 16.399 5499 1485652 33.38 ug/L 99 91) 1,2,4-Trimethylbenzene <td< td=""><td>70</td><td></td><td>14.302</td><td>4/4/</td><td>1031072</td><td>32.45</td><td>ug/L</td><td>1</td><td>100</td></td<>	70		14.302	4/4/	1031072	32.45	ug/L	1	100
80) 1,2,3-Trichlorobropane 14.553 4837 215728 34.06 ug/L 98 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 37.96 ug/L 99 81) trans-1,4-Dichloro-2-b 14.681 4883 43087 37.3 ug/L 99 80) n-Propylbenzene 15.058 513 1403839 33.73 ug/L 99 81) 1,3.5-Trimethylbenzene 15.769 5273 54611 80.87 ug/L 93 90) tert-Butylbenzene 16.299 5463 1160397 32.22 ug/L 98 91.2,4-Trimethylbenzene <td>707</td> <td>1 1 2 2-Tetrachloroethane</td> <td>14.300</td> <td>4///</td> <td>270023</td> <td>37 /9</td> <td>ug/L</td> <td></td> <td>99</td>	707	1 1 2 2-Tetrachloroethane	14.300	4///	270023	37 /9	ug/L		99
81)17.3.511.0.0.0.011.0.0.0.011.0.0.0.011.0.0.0.0.011.0.0.0.0.011.0.0.0.0.0.011.0.0.0.0.0.011.0.0.0.0.0.0.011.0.0.0.0.0.0.0.0.0.0.011.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	801	1 2 3-Trichloropropage	14 553	4837	215728	34 06	ug/L	,	98
83)Isopropylbenzene14.8794954133948832.60ug/L9984)Bromobenzene15.058501836454735.13ug/L9985)n-Propylbenzene15.4345153140383933.73ug/L9986)2-Chlorotoluene15.476516881624731.68ug/L9987)4-Chlorotoluene15.588520870299733.53ug/L9988)1,3,5-Trimethylbenzene15.8535303114834333.38ug/L9090)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.3995499148565233.38ug/L9992)sec-Butylbenzene16.399549953975032.30ug/L9994)1,3-Dichlorobenzene16.491553253372831.70ug/L9796)1,4-Dichlorobenzene16.6615593127846633.05ug/L9997)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene17.1415765109065333.36ug/L9999)n-Butylbenzene17.44558742652246.85ug/L9690)1,2-Dichlorobenzene19.48644953431632.65ug/L9690)1,2-Dichlorobenzene19.4858742652246.85ug/L <td>81)</td> <td>trans-1 4-Dichloro-2-b</td> <td>14 681</td> <td>4883</td> <td>43087</td> <td>37.96</td> <td>ug/I</td> <td>, #</td> <td>20 77</td>	81)	trans-1 4-Dichloro-2-b	14 681	4883	43087	37.96	ug/I	, #	20 77
84)Bromobenzene15.058501836454735.13ug/L9985)n-Propylbenzene15.4345153140383933.73ug/L9986)2-Chlorotoluene15.476516881624731.68ug/L9987)4-Chlorotoluene15.588520870299733.53ug/L9988)1,3,5-Trimethylbenzene15.76952735461180.87ug/L9390)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.3995499148565233.38ug/L9992)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L9999)n-Butylbenzene17.44558742652246.85ug/L99100)1,2-Dichlorobenzene19.048644953431632.65ug/L99101)Hexachloroethane17.48758894921244.59ug/L453102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L <td>831</td> <td>Isopropylbenzene</td> <td>14.879</td> <td>4954</td> <td>1339488</td> <td>32.60</td> <td>$\frac{ug}{I}$</td> <td></td> <td>99</td>	831	Isopropylbenzene	14.879	4954	1339488	32.60	$\frac{ug}{I}$		99
85)n-Propylbenzene15.4345153140383933.73ug/L9986)2-Chlorotoluene15.476516881624731.68ug/L9987)4-Chlorotoluene15.588520870299733.53ug/L9988)1,3,5-Trimethylbenzene15.8535303114834333.38ug/L9089)Pentachloroethane15.76952735461180.87ug/L9390)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L9998)1,2-Dichlorobenzene17.1415765109065333.36ug/L9999)1,2-Dibromo-3-chloropr17.48758894921244.59ug/L96101)Hexachloroethane17.48758894921244.59ug/L95102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69<	84)	Bromobenzene	15.058	5018	364547	35.13	ug/L		99
86)2-Chlorotoluene15.476516881624731.68ug/L9987)4-Chlorotoluene15.588520870299733.53ug/L9988)1,3,5-Trimethylbenzene15.8535303114834333.38ug/L10089)Pentachloroethane15.76952735461180.87ug/L9390)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.499551720552037.44ug/L9795)Benzylchloride16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L10099)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L99103)Naphthalene19.048644953431632.65ug/L99103)Naphthalene19.453659418824435.91ug/L100104)Hexachlorobutadiene19.453659418824435.91 <td>85)</td> <td>n-Provlbenzene</td> <td>15.434</td> <td>5153</td> <td>1403839</td> <td>33.73</td> <td>uq/I</td> <td>-</td> <td>99</td>	85)	n-Provlbenzene	15.434	5153	1403839	33.73	uq/I	-	99
87)4-Chlorotoluene15.588520870299733.53ug/L9988)1,3,5-Trimethylbenzene15.8535303114834333.38ug/L10089)Pentachloroethane15.76952735461180.87ug/L9390)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.499551720552037.44ug/L9795)Benzylchloride16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L9990)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L91101)Hexachloroethane17.48758894921244.59ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L100104)Hexachlorobutadiene19.4536594188244 <td>86)</td> <td>2-Chlorotoluene</td> <td>15.476</td> <td>5168</td> <td>816247</td> <td>31.68</td> <td>uq/I</td> <td>_</td> <td>99</td>	86)	2-Chlorotoluene	15.476	5168	816247	31.68	uq/I	_	99
88)1,3,5-Trimethylbenzene15.8535303114834333.38ug/L10089)Pentachloroethane15.76952735461180.87ug/L9390)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.399549953975032.30ug/L9995)Benzylchloride16.449551720552037.44ug/L9796)1,4-Dichlorobenzene16.6615593127846633.05ug/L9997)4-Isopropyltoluene16.6615593127846633.36ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L10099)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L96101)Hexachloroethane17.48758894921244.59ug/L45102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L100104)Hexachlorobutadiene19.453659418824	87)	4-Chlorotoluene	15.588	5208	702997	33.53	uq/L	J	99
89)Pentachloroethane15.76952735461180.87 ug/L9390)tert-Butylbenzene16.131540399691933.22 ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82 ug/L9892)sec-Butylbenzene16.3995499148565233.38 ug/L9994)1,3-Dichlorobenzene16.399549953975032.30 ug/L9995)Benzyl chloride16.449551720552037.44 ug/L9796)1,4-Dichlorobenzene16.6615593127846633.05 ug/L9997)4-Isopropyltoluene16.6615593127846633.05 ug/L9998)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	88)	1,3,5-Trimethylbenzene	15.853	5303	1148343	33.38	uq/L		100
90)tert-Butylbenzene16.131540399691933.22ug/L9991)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.399549953975032.30ug/L9995)Benzylchloride16.449551720552037.44ug/L9796)1,4-Dichlorobenzene16.6415593127846633.05ug/L9997)4-Isopropyltoluene16.6615593127846632.36ug/L10098)1,2-Dichlorobenzene16.887567466543632.36ug/L10099)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L96101)Hexachloroethane17.48758894921244.59ug/L453102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L100104)Hexachlorobutadiene19.453659418824435.91ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50ug/L99	89)	Pentachloroethane	15.769	5273	54611	80.87	ug/L	J	93
91)1,2,4-Trimethylbenzene16.2995463116039732.82ug/L9892)sec-Butylbenzene16.3995499148565233.38ug/L9994)1,3-Dichlorobenzene16.399549953975032.30ug/L9995)Benzyl chloride16.449551720552037.44ug/L9796)1,4-Dichlorobenzene16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L10099)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L96101)Hexachloroethane17.48758894921244.59ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L100104)Hexachlorobutadiene19.453659418824435.91ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50ug/L99	90)	tert-Butylbenzene	16.131	5403	996919	33.22	ug/L		99
92)sec-Butylbenzene16.3995499148565233.38 ug/L9994)1,3-Dichlorobenzene16.399549953975032.30 ug/L9995)Benzyl chloride16.449551720552037.44 ug/L9796)1,4-Dichlorobenzene16.491553253372831.70 ug/L9897)4-Isopropyltoluene16.6615593127846633.05 ug/L9998)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	91)	1,2,4-Trimethylbenzene	16.299	5463	1160397	32.82	ug/I	L	98
94)1,3-Dichlorobenzene16.399549953975032.30 ug/L9995)Benzyl chloride16.449551720552037.44 ug/L9796)1,4-Dichlorobenzene16.491553253372831.70 ug/L9897)4-Isopropyltoluene16.6615593127846633.05 ug/L9998)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	92)	sec-Butylbenzene	16.399	5499	1485652	33.38	ug/I	L	99
95)Benzyl chloride16.449551720552037.44 ug/L9796)1,4-Dichlorobenzene16.491553253372831.70 ug/L9897)4-Isopropyltoluene16.6615593127846633.05 ug/L9998)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	94)	1,3-Dichlorobenzene	16.399	5499	539750	32.30	ug/L	J	99
96)1,4-Dichlorobenzene16.491553253372831.70ug/L9897)4-Isopropyltoluene16.6615593127846633.05ug/L9998)1,2-Dichlorobenzene16.887567466543632.36ug/L10099)n-Butylbenzene17.1415765109065333.36ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85ug/L96101)Hexachloroethane17.48758894921244.59ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65ug/L99103)Naphthalene19.3106543133124234.69ug/L100104)Hexachlorobutadiene19.453659418824435.91ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50ug/L99	95)	Benzyl chloride	16.449	5517	205520	37.44	ug/L	J	97
97)4-Isopropyltoluene16.6615593127846633.05 ug/L9998)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	96)	1,4-Dichlorobenzene	16.491	5532	533728	31.70	ug/L	L	98
98)1,2-Dichlorobenzene16.887567466543632.36 ug/L10099)n-Butylbenzene17.1415765109065333.36 ug/L99100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L#53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	97)	4-Isopropyltoluene	16.661	5593	1278466	33.05	ug/L	L	99
99) n-Butylbenzene17.141 5765 109065333.36 ug/L99100) 1,2-Dibromo-3-chloropr17.445 5874 2652246.85 ug/L96101) Hexachloroethane17.487 5889 4921244.59 ug/L #53102) 1,2,4-Trichlorobenzene19.048 6449 53431632.65 ug/L99103) Naphthalene19.310 6543 133124234.69 ug/L 100100104) Hexachlorobutadiene19.453 6594 18824435.91 ug/L100105) 1,2,3-Trichlorobenzene19.542 6626 53422532.50 ug/L99	98)	1,2-Dichlorobenzene	16.887	5674	665436	32.36	ug/I	L	100
100)1,2-Dibromo-3-chloropr17.44558742652246.85 ug/L96101)Hexachloroethane17.48758894921244.59 ug/L #53102)1,2,4-Trichlorobenzene19.048644953431632.65 ug/L99103)Naphthalene19.3106543133124234.69 ug/L100104)Hexachlorobutadiene19.453659418824435.91 ug/L100105)1,2,3-Trichlorobenzene19.542662653422532.50 ug/L99	99)	n-Butylbenzene	17.141	5765	1090653	33.36	ug/I	L	99
101) Hexachloroethane17.487 58894921244.59 ug/L #53102) 1,2,4-Trichlorobenzene19.048 644953431632.65 ug/L99103) Naphthalene19.310 6543133124234.69 ug/L100104) Hexachlorobutadiene19.453 659418824435.91 ug/L100105) 1,2,3-Trichlorobenzene19.542 662653422532.50 ug/L99	100)	1,2-Dibromo-3-chloropr	17.445	5874	26522	46.85	ug/I	۰ 	96
102) 1,2,4-Trichlorobenzene 19.048 6449 534316 32.65 ug/L 99 103) Naphthalene 19.310 6543 1331242 34.69 ug/L 100 104) Hexachlorobutadiene 19.453 6594 188244 35.91 ug/L 100 105) 1,2,3-Trichlorobenzene 19.542 6626 534225 32.50 ug/L 99	101)	Hexachloroethane	17.487	5889	49212	44.59	ug/L	_ #	53
103) Naphthalene 19.310 6543 1331242 34.69 ug/L 100 104) Hexachlorobutadiene 19.453 6594 188244 35.91 ug/L 100 105) 1,2,3-Trichlorobenzene 19.542 6626 534225 32.50 ug/L 99	102)	1,2,4-Trichlorobenzene	19.048	6449	534316	32.65	ug/I	J	99
104) Hexachlorobutadiene 19.453 6594 188244 35.91 ug/L 100 105) 1,2,3-Trichlorobenzene 19.542 6626 534225 32.50 ug/L 99	103)	Naphthalene	19.310	6543	1331242	34.69	ug/I	-	100
105) 1,2,3-Irichlorobenzene 19.542 6626 534225 32.50 ug/L 99	104)	Hexachlorobutadiene	19.453	6594	188244	35.91	ug/I	L	T00
	T02)	1,2,3-Iricniorobenzene	19.542	0020	534225	32.50	ug/L		99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page 131 of 262

Data Pa Data Fi Acq On Operato Sample Misc ALS Via	<pre>th : C:\MS4\083118\ le : X083108.D</pre>	
Quant M Quant T QLast U Respons	lethod : C:\MS4\METHODS\8260083 itle : Method for the analys pdate : Fri Aug 31 09:59:42 20 e via : Initial Calibration	118.M s of 8260 waters 18
Abundance		TIC: X083108.D\data.ms
3800000		
3600000		
3400000		
3200000		
3000000		
2800000		
0000000		anzene, T Indoenze e, I
2600000		me, T opropylbe http://doc.org/ pry/totuenzen
2400000		e.T Is a function of the second
2200000		ethekydefi er S. - Jryfbenzei
2000000		5,1 setter the set of
1800000	F.	anzene-dt Bromoliu 47-12-2-1 Bromoliu 48-18-11 finchlorobe Linchlorobe
1600000	Handleride	Chlorob Vybenzene, T 1,2,4: 1,2,0: 1,
1400000	Hettryl ato	are, T
1200000	and and a second and a second and a second a se	ne, T
1000000	in in in in in in in in in in	Acyclohexat Itanone, T Tetrachlorc Hornerthan Bromobenz Hexach
800000	imane.i 	Methy opene, T tetry!-2-Pe Beelfane, T nacrylate, T - 1-1-42 (네ô)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1
600000		·····································
400000		Vethyl m clastication clastication classication 2.0 brond 2.0 bron
200000		
Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00	9,00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

Quantitation Report (QT Reviewed)

8260083118.M Fri Aug 31 14:06:43 2018 RPT1

Data I Data I Acq Or Operat Sample Misc ALS V: Quant	Path : C:\MS4\083118\ File : X083109.D n : 31 Aug 2018 12:42 tor : EA e : VSTD040 : VSTD040 ial : 9 Sample Multipl Time: Aug 31 13:50:08 20	pm ier: 1 18					
Quant Quant QLast Respon	Method : C:\MS4\METHODS\ Title : Method for the Update : Fri Aug 31 09:5 nse via : Initial Calibra	8260083118 analysis c 9:42 2018 tion	3.M of 826() waters			
	Compound	R.T.	Scan	Response	Conc Ur	its Dev	(Min)
Inte	rnal Standards	C C A O	0000	1960519	F0 00	····· / T	0 00
⊥) 66)	Fluorobenzene Chlorobenzene-d5	6.642 13.195	2000 4350	948505	50.00	ug/L ug/L	0.00
93)	1,4-Dichlorobenzene-d4	16.461	5521	960815	50.00	ug/L	0.00
Syste	em Monitoring Compounds						
40)	1,2-Dichloroethane-d4	4.971	1401	441764	42.97	ug/L	0.00
Sp	iked Amount 50.000	Range 77	- 117	Recove	ry =	85.94%	0 00
(90 Sp	iked Amount 50.000	Range 74	-129	Recove:	39.00 rv =	19.76%	0.00
82)	Bromofluorobenzene	14.865	4949	315038	40.99	ug/L	0.00
Sp	iked Amount 50.000	Range 74	- 119	Recove	ry =	81.98%	
Targ	et Compounds					Qv	alue
2)	Dichlorodifluoromethane	1.217	48	643303	39.57	ug/L	97
3)	Chloromethane Vinyl Chlorido	1.294	117	765946	44.35	ug/L #	97
4) 5)	Bromomethane	1.571	181	384982	45.77	ug/L	99
6)	Chloroethane	1.632	204	354057	40.99	ug/L	99
7)	Acrolein	1.940	314	179712 40306m	89.06	ug/L ug/I	96
8) 9)	Acrylonitrile	2.342	458	183275	40.72	ug/L ug/L	97
10)	Trichlorofluoromethane	1.987	331	703463m	39.38	ug/L	
11)	Diethyl ether	2.102	372	320826	43.96	ug/L	98
12) 13)	FREON 123A FC-113	2.470	299 504	430503	42.55	ug/L ug/L	90
14)	Acetone	2.024	344	70929	79.09	ug/L	94
15)	IPA	1.990	332	134771m	421.58	ug/L	
16) 17)	TBA Methyl acetate	2.333 2.459	455 500	291528m 396795	454.40	ug/L ug/L	98
18)	Allyl chloride	2.467	503	706702	49.61	ug/L	99
19)	Iodomethane	2.300	443	727430	42.21	ug/L	100
20)	1,1-Dichloroethene	2.286	438	681345	41.17	ug/L ug/L	99
22)	Carbon Disulfide	2.528	525	999542	66.49	ug/L	91
23)	trans-1,2-Dichloroethene	e 2.947	675	619259	42.27	ug/L	98
24)	MTBE	3.086	725	1171290	39.81	ug/L ug/I	100
25) 26)	Propionitrile	3.228	760	239572	186.62	ug/L ug/L	96
27)	Vinyl Acetate	3.404	839	769692	55.20	ug/L	100
28)	Chloroprene	3.585	904	711370	42.89	ug/L ug/L	96
29)	Hexane 2-Butanone	3.072	935	487861 80079	43.93 93.93	ug/L ug/L #	88
31)	Diisopropylether (DIPE)	3.781	974	1385377	39.53	ug/L	100
32)	cis-1,2-Dichloroethene	3.831	992	607188	42.86	ug/L	98
33)	Methacrylonitrile	3.822	989 1059	619455m 272301	83.87	ug/L ug/L	97
35)	Chloroform	4.112	1093	677243	42.71	ug/L ug/L	98
36)	2,2-Dichloropropane	4.202	1125	494901	41.74	ug/L	98
37)	Methyl acrylate	4.288	1156 1109	293677 115799	45.33	ug/L ug/L	94 95
30)	Tetrahydrofuran	4.575	1259	48827	32.37	ug/L	88
41)	1,2-Dichloroethane	5.105	1449	533225	42.83	ug/L	98
42)	1,1,1-Trichloroethane	5.250	1501	452485	42.09	ug/L	97
43) 22)	1.1-Dichloropropene	5.309	1643	740400 507276	40.30	ug/L ug/L	99
45)	Cyclohexane	5.741	1677	817686	38.63	ug/L	98
46)	Carbon Tetrachloride	5.936	1747	271616	52.50	ug/L	93

Data D Data D Acq Or Operat Samplo Misc ALS V	Path : C:\MS4\083118\ File : X083109.D n : 31 Aug 2018 12:42 pr tor : EA e : VSTD040 : VSTD040 ial : 9 Sample Multiplies	n (); ;; 1 ();			
Quant Quant Quant QLast Respon	Time: Aug 31 13:50:08 2018 Method : C:\MS4\METHODS\826 Title : Method for the and Update : Fri Aug 31 09:59:4 nse via : Initial Calibratio	50083118. alysis of 42 2018 on	M 8260 waters		
	Compound	R.T. S	can Response	e Conc Units I	Dev(Min)
47) 48) 51) 52) 555) 557) 557) 557) 557) 557) 557)	Benzene tert-Amyl methyl ether Dibromomethane 1,2-Dichloropropane Trichloroethene Bromodichloromethane 2-Nitropropane 1,4-Dioxane Methyl methacrylate Methylycyclohexane 2-Chloroethylvinylether cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 1,3-Dichloropropane Dibromochloromethane Ethyl methacrylate 1,2-Dibromoethane Bromoform 4-Methyl-2-Pentanone 2-Hexanone Toluene Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene 1-Chlorohexane Ethylbenzene m,p-Xylene Styrene o-Xylene 1,2,3-Trichloropropane trans-1,4-Dichloro-2-b Isopropylbenzene	6.0591 6.6922 7.42522 7.59322 7.75422 7.99422 8.4212 9.06822 9.06822 9.06823 10.6323 10.6323 10.6323 10.6323 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 11.24633 12.2504 13.2374 13.2374 13.2374 13.2374 13.3294 13.3294 13.5994 13.8484 14.3024	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40.28 ug/L 34.13 ug/L 34.13 ug/L 45.05 ug/L 39.28 ug/L 42.15 ug/L 57.79 ug/L n 44.23 ug/L 57.79 ug/L n 44.6.68 ug/L 38.03 ug/L 49.32 ug/L 51.44 ug/L 53.65 ug/L 43.99 ug/L 44.85 ug/L 63.23 ug/L 46.62 ug/L 50.96 ug/L 59.08 ug/L 50.96 ug/L 59.08 ug/L 88.59 ug/L 100.37 ug/L 40.15 ug/L 30.56 ug/L 30.56 ug/L 30.56 ug/L 30.56 ug/L 30.56 ug/L 30.75 ug/L 40.20 ug/L 41.03 ug/L 42.66 ug/L 39.78 ug/L 40.20 ug/L 41.74 ug/L 50.52 ug/L 40.43 ug/L	98 98 94 99 96 90 99 99 99 99 99 99 99 99 99 99 99 99
83) 84) 85) 88) 90) 92) 92) 92) 92) 92) 92) 92) 92) 92) 92	Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Pentachloroethane tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropr Hexachloroethane 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 1,2,3-Trichlorobenzene	$\begin{array}{c} 14.879 \\ 15.058 \\ 5.5.434 \\ 5.434 \\ 5.5.476 \\ 5.5.853 \\ 5.5.853 \\ 5.766 \\ 5.15.766 \\ 5.15.766 \\ 5.15.766 \\ 5.16.131 \\ 5.16.299 \\ 5.16.399 \\ 5.16.399 \\ 5.16.399 \\ 5.16.44$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40.43 ug/L 43.88 ug/L 40.38 ug/L 39.68 ug/L 41.34 ug/L 41.58 ug/L 124.22 ug/L 42.40 ug/L 40.75 ug/L 40.75 ug/L 40.83 ug/L 42.31 ug/L 42.31 ug/L 42.21 ug/L 42.63 ug/L 62.63 ug/L 60.09 ug/L 41.85 ug/L 41.85 ug/L 44.16 ug/L 41.49 ug/L	100 98 99 98 98 98 99 99 99 99 99 99 99 99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Pat Data Fil Acq On Operator Sample Misc ALS Vial	h : C:\MS4\083118\ e : X083109.D : 31 Aug 2018 12:42 pm : EA : VSTD040 : VSTD040 : 9 Sample Multiplier: 1	
Quant Ti Quant Me Quant Ti QLast Up Response	<pre>me: Aug 31 13:50:08 2018 thod : C:\MS4\METHODS\8260083 tle : Method for the analys3 date : Fri Aug 31 09:59:42 20 via : Initial Calibration</pre>	3118.M is of 8260 waters 018
Abundance		TIC: X083109.D\data.ms
4800000		
4600000		
4400000		
4200000		
4000000		
3800000		
3600000		
3400000		L'austration L'austration L'austration L'austration L'austration L'austration L'austration L'austration L'austr
3200000		propylbe propylbe benzenc ttoluene,
3000000		e,T then zero then z
2800000		· · · · · · · · · · · · · · · · · · ·
2600000		ethoroett benzene berzene T n-Burytt n-Burytt zene, T Zene, T
2400000		mentuereta mentuereta <u>5,1 1,</u> 1 dorobenz titalene,
2200000	T bride, T	2.3-Trich 2.3-Trich 2.3-Trich
2000000	ided lysteel a	tene-d5,4
1800000	-Methyl E	ine, in the second
1600000	始 <mark>始的。</mark> T e,T thega 634 都	188 188 188 188 188 188 188 188 188 188
1400000	<mark>ชัชร์หนึ่งควาสิ</mark> oroethen opropyle	e, T e, T foluened Hexact Hexact
1200000	بَ رَّة المُحكمة بالمُحكمة بالمحكمة محكمة محكمة بالمحكمة محكما محكمة محكما محكما محكمة محكما محاكما محما محكما محاكما محكما محكما محكما محكما محكما محكما محكما محكما محكما محكما محكما محاكما محاكما محماكما محما محاكما محاكما محاكما محاكما ما محاكما محمكما محاكما ما محاكما محاكما محاكما محاكما محمكما محما مح	entanon i, T i,
1000000	The second secon	Methyy opene, T <u>Poesital</u> -f proparie proparie proparie proparie
800000		istinate H estimate H 4. M 4. M
600000		1. methac thylviny thype thyp
400000	Cathoon Cathoon Xano, I	Methy 2-Chloro 2-Chloro 1,2-Dib 1,2-Dib 1,2-Dib
200000	L 2 Dig 2	
0	MIN TAM. A. M. M. M. M. M. VAV	
Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00	9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

Quantitation Report (QT Reviewed)

8260083118.M Fri Aug 31 14:06:46 2018 RPT1

Data Path : C:\MS4\083118\ Data File : X083110.D Acq On : 31 Aug 2018 1:14 Operator : EA Sample : VSTD050 Misc : VSTD050 ALS Vial : 10 Sample Multipl	pm ier: 1					
Quant Time: Aug 31 13:51:52 201 Quant Method : C:\MS4\METHODS\8 Quant Title : Method for the a QLast Update : Fri Aug 31 09:59 Response via : Initial Calibrat	8 260083118 nalysis c :42 2018 ion	3.M of 826() waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.642 13.192 16.460	2000 4349 5521	1822287 987592 1004162	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 R 69) Toluene-d8 Spiked Amount 50.000 R 82) Bromofluorobenzene Spiked Amount 50.000 R	4.968 ange 77 11.014 ange 74 14.865 ange 74	1400 - 117 3568 - 129 4949 - 119	570259 Recove 1411789 Recove 413476 Recove	53.68 ry = 51.14 ry = 51.66 ry =	ug/L 107.36% ug/L 102.28% ug/L 103.32%	0.00 0.00 0.00
<pre>Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Acrolein 8) Acetonitrile 9) Acrylonitrile 10) Trichlorofluoromethane 11) Diethyl ether 12) FREON 123A 13) FC-113 14) Acetone 15) IPA 16) TBA 17) Methyl acetate 18) Allyl chloride 19) Iodomethane 20) 1,1-Dichloroethene 21) Methylene Chloride 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) MTBE 25) 1,1-Dichloroethane 26) Propionitrile 27) Vinyl Acetate 28) Chloroprene 29) Hexane 30) 2-Butanone 31) Diisopropylether (DIPE) 32) cis-1,2-Dichloroethene 33) Methacrylonitrile 34) Bromochloromethane 35) Chloroform 36) 2,2-Dichloropropane 37) Methyl acrylate 38) Isobutyl alcohol 39) Tetrahydrofuran 41) 1,2-Dichloroethane 44) 1,1-Dichloroethane 44) 1,1-Dichloropropene </pre>	1.220 1.292 1.398 1.568 1.630 1.940 1.957 2.344 1.987 2.102 1.885 2.473 2.024 1.996 2.339 2.459 2.464 2.3006 2.5286 2.400 2.5286 2.4008 2.4008 2.4008 2.4008 2.42947 3.089 3.1811 3.4045 3.716 3.780 3.822 4.020 4.2020 4.2020 4.2020 3.8822 4.020 4.2000 4.2000	$\begin{array}{c} 49\\ 76\\ 118034091295344700238955629794514199003562009112522\\ 998035620091125222\\ 11120269122691222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026912222\\ 1112026922222\\ 11120269222222\\ 111202692222222222\\ 1112026922222222222222222222222222222222$	850706 892936 779272 499550 467069 242156 57786m 242105 909753 397190 561356 105259 252879 485362 513506 922561 928243 911664 588855 1311627 803891 1528274 962476 413184 983919 945529 652779 115285 1822835 793216 793216 793216 793216 793216 793216 7932258 236138 65589 6257861 392258 236138 65589 621004 1011325 694163	50.65 50.03 45.71 57.47 52.32 116.14 56.50 55.53 49.29 52.67 53.72 113.59 765.53 732.13 58.45 62.68 52.13 51.47 84.45 51.24 311.48 68.29 55.51 75.689 130.87 56.89 130.87 50.34 54.422 53.310 51.24 311.48 68.29 55.37 50.34 51.24 311.48 68.29 55.37 50.34 54.422 53.30 57.32 50.34 54.422 53.40 53.590 748.47 42.08 53.590 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.90 52.69 52.69 54.75 50.90 52.69 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.90 52.69 54.75 50.85 50.90 50.85 50.90 50	Qv ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	alue 98 96 99 99 98 99 98 98 98 98 98 98

		- \	
Data Path	:	C:\MS4\083118\	2
Data File	:	X083110.D	
Acq On	:	31 Aug 2018 1:14 pm	
Operator	:	EA	1
Sample	:	VSTD050	11
Misc	:	VSTD050	. F
ALS Vial	:	10 Sample Multiplier:	1
Out		A 01 10 E1 E0 0010	

Quant Time: Aug 31 13:51:52 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 09:59:42 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Ur	nits	Dev	(Min)
47)	Benzene	6.059	1791	2084535	51.68	ug/L		99
48)	tert-Amyl methyl ether	6.689	2017	1316091	43.51	ug/L		99
49)	Dibromomethane	7.431	2283	258337	57.31	ug/L		98
50)	1,2-Dichloropropane	7.598	2343	464562	52.04	ug/L		96
51)	Trichloroethene	7.757	2400	468752	55.24	ug/L		96
52)	Bromodichloromethane	7.891	2448	305065	75.03	ug/L		91
53)	2-Nitropropane	7.994	2485	57857	53.76	ug/L		97
54)	1,4-Dioxane	8.421	2638	18691m	609.79	ug/L		
55)	Methyl methacrylate	8.867	2798	326846	59.80	ug/L	I	96
56)	Methylcyclonexane	9.070	28/1	8/3914	51.60	ug/L		97
57)	2-Chloroethylvinylether	9.416	2995	149178	64.4/	ug/L	Ħ	92
58)	cis-1, 3-Dichloropropene	9.695	3095	410522	68.35	ug/L	I	97
59)	1 1 2 Trichlonosthano	10.032	3431	273699	71.02	ug/L		99
61)	1, 1, 2-11 ICHIOI GetHane	11 2/6	3495	2/4440	56 54	ug/L	1	90
621	Dibromochloromethane	11 550	3760	109003	79 03	ug/L		90
631	Ethyl methacrylate	11 628	3788	441070	59 09	ug/L		97
64)	1.2-Dibromoethane	11 912	3890	218532	64 59	ug/L		97
65)	Bromoform	13.847	4584	48883	72.50	ug/L		99
67)	4-Methvl-2-Pentanone	10.113	3245	1193292	116.88	ug/L		98
68)	2-Hexanone	11.714	3819	573066	127.34	ug/L		98
70)	Toluene	11.129	3609	1733481	51,83	uq/L	1	99
71)	Tetrachloroethene	12.250	4011	473935	40.72	uq/L	I	98
72)	1,1,1,2-Tetrachloroethane	13.150	4334	285880	71.33	ug/L		97
73)	Chlorobenzene	13.237	4365	955246	51.90	ug/L		97
74)	1-Chlorohexane	13.329	4398	380426	52.88	ug/L		100
75)	Ethylbenzene	13.599	4495	1823770	51.91	ug/L	1	99
76)	m,p-Xylene	13.892	4600	2817253	104.47	ug/L		100
77)	Styrene	14.302	4747	972034	55.18	ug/L	I	100
78)	o-Xylene	14.386	4777	1752416	50.84	ug/L	1	98
79)	1,1,2,2-Tetrachloroethane	14.374	4773	459127	59.55	ug/L	I	98
80)	1,2,3-Trichloropropane	14.553	4837	351166	51.79	ug/L		98
81)	trans-1,4-Dichloro-2-b	14.678	4882	72067	59.31	ug/L	· #	74
83)	Isopropyidenzene	14.8/9	4954	2331945	53.02	ug/L	,	99
84)	Bromobenzene n Dronulbenzene	15.058	5018	023232	56.10	ug/L	1	99
85)	2-Chlorotoluono	15.434	5169	241115 1397776	54.12	ug/L	1	99
00) 97)	A-Chlorotoluene	15 599	5200	1175302	52 37	ug/L	1	99
88)	1 3 5-Trimethylbenzene	15 852	5303	2022111	54 90	ug/L		99
89)	Pentachloroethane	15 766	5272	112339	155 39	ug/I		95
90)	tert-Butylbenzene	16,131	5403	1845489	57.45	ug/L		100
91)	1,2,4-Trimethylbenzene	16.299	5463	2025409	53.50	uq/L		- 98
92)	sec-Butvlbenzene	16.399	5499	2599660	54.56	uq/L	-	100
94)	1,3-Dichlorobenzene	16.399	5499	878554	50.67	uq/L	J	99
95)	Benzyl chloride	16.449	5517	407097	71.48	ug/L	1	96
96)	1,4-Dichlorobenzene	16.491	5532	878118	50.26	ug/L	J	99
97)	4-Isopropyltoluene	16.661	5593	2225232	55.44	ug/L	J	99
98)	1,2-Dichlorobenzene	16.887	5674	1099237	51.52	ug/L	J	99
99)	n-Butylbenzene	17.141	5765	1858680	54.79	ug/I	J	99
100)	1,2-Dibromo-3-chloropr	17.442	5873	47384	80.67	ug/L	. L	98
101)	Hexachloroethane	17.487	5889	90333	78.88	ug/I	」 #	46
102)	1,2,4-Trichlorobenzene	19.045	6448	925235	54.49	ug/I	L	97
103)	Naphthalene	19.310	6543	2357644	59.21	ug/L	L	100
104)	Hexachlorobutadiene	19.453	6594	329100	60.50	ug/L	J	97
TO2)	1,2,3-Tricniorobenzene	19.542	6626	924066	54.18	ug/l	L	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path Data File Acq On Operator Sample Misc ALS Vial	n : C:\MS4\083118\ e : X083110.D : 31 Aug 2018 1:14 pm : EA : VSTD050 : VSTD050 : 10 Sample Multiplier: 1	
Quant Tim Quant Met Quant Tit QLast Upd Response	ne: Aug 31 13:51:52 2018 hod : C:\MS4\METHODS\8260083 le : Method for the analysi late : Fri Aug 31 09:59:42 20 via : Initial Calibration	118.M 5 of 8260 waters 18
Abundance		TIC: X083110.D\data.ms
6500000		
6000000		
5500000		
5000000		
4500000	:	ylene, T Isopropylbenze imethylbenzene, T Mytabare, T ropyttoluene, T
4000000		еместика векудения 1.1.1.1.3.5-Тп 1.1.2.1.5.1.1 0.6.1.2.1.1.1.2.1.5.1.1 0.6.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
3500000		Tetrachloroeith Ruorobenzene,6 hB(rppylbenzene,6 n=1 n-Bury/ n=12ene,1 n=12ene,1 n=12ene,1 tichlorobenzene ichlorobenzene
3000000	tatel Fide, T Thene, T	itenzene, T - 1,-1,-2,-2 - 1,-2,-2 - 1,2,-2)teinteuroute - 1,2,4-1 - 1,2,3-1 - 1,2,2,3-1 - 1,2,3-1 - 1,
2500000	er,T Kettashjontotee E,T	ie, T eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
2000000-	tichloroethene.T Ichloroethene.T Lieppropylethet e.T e.T	lohexane,T tanone,T Toluenedda tchloroethene,T me,T Sty me,T Hexachterne,T Hexachternohut
1500000	arnol. 1 arnol.	Methylcyc Methylcyc 4. Methyl-2. Pen 900096818, I. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1000000	Consequencing Transformer Tra	Dibromoethywinytethe cis-1,3-Dichto cis-1,3-Dichto 1,3-Dichto Dibromoethaans, Dibromoethaans, Dibromoethaans, Dibromoethaans, Dibromoethaans, Dibromoethaans,
500000	2 Miles Contraction of the second secon	2-COM
[Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00 9	.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

8260083118.M Fri Aug 31 14:06:49 2018 RPT1

Method Path : C:\MS4\METHODS\ Method File : 8260083118.M Title : Method for the analysis of 8260 waters Last Update : Thu Sep 13 16:13:08 2018 Response Via : Initial Calibration

CC Data File: X083113.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF		%Dev	Area%
1	I	Fluorobenzene	1.000	1.000		0.0	101
2	Т	Dichlorodifluoromethane	0.478	0.473		1.2	100
3	T	Chloromethane	0.505	0.474		6.1	95
4	T	Vinvl Chloride	0.525	0.485		7.5	100
5	- T	Bromomethane	0.295	0.252		14.7	89
ĥ	Ť	Chloroethane	0.264	0 252		4.5	100
7	Ť	Acrolein	0.065	0.065		0 2	102
Ŕ	Ť	Acetonitrile	0.000	0.000		0.6	105
å	т т	Acrulonitrilo	0 128	0.002		-0.4	103
10	т Т	Trichlorofluoromethane	0,120	0.120		4 1	95
11	т т	Disthul other	0.433	0.224		3 0	99
⊥⊥ 1つ	т т	EDEON 1927	0.231	0.224		5.0	50
12 12	1 T	FREON 125A	0.340	0.320		3.2	102
10	т Ш		0.320	0.310		5.5	102
14	1	Acetone	0.031	0.030		3.1 10 7	99
15	T		0.012	0.010		12.7	00
10	T	TBA	0.020	0.021		-4.9	97
17	T	Methyl acetate	0.264	0.260		1.4	105
18	Т	Allyl chloride	0.456	0.468		-2.6	103
19	Т	Iodomethane	0.526	0.505		3.9	100
20	Т	1,1-Dichloroethene	0.499	0.473		5.2	97
21	Т	Methylene Chloride	0.347	0.342		1.3	102
22	Т	Carbon Disulfide	0.690	0.625		9.4	90
23	Т	trans-1,2-Dichloroethene	0.445	0.446		-0.2	100
24	Т	MTBE	0.814	0.828		-1.6	105
25	Т	1,1-Dichloroethane	0.538	0.527		2.0	101
26	Т	Propionitrile	0.040	0.038		4.2	101
27	Т	Vinyl Acetate	0.487	0.513		-5.3	106
28	Т	Chloroprene	0.490	0.470		4.1	98
29	Т	Hexane	0.354	0.343		3.0	96
30	Т	2-Butanone	0.027	0.026		4.2	101
31	Т	Diisopropylether (DIPE)	0.989	0.967		2.2	100
32	T	cis-1,2-Dichloroethene	0.438	0.435		0.6	102
33	T	Methacrylonitrile	0.216	0.220		-1.6	108
34	Ŧ	Bromochloromethane	0.191	0.194		-1.1	102
35	- T	Chloroform	0.486	0.455		6.4	95
36	- T	2.2-Dichloropropane	0.333	0.340	1	-2.0	102
37	T	Methyl acrylate	0.191	0.190		0.4	102
38	Ť	Isobutyl alcohol	0.010	0.009		8.9	98
39	Ť	Tetrahydrofuran	0.047	0.033		29.7#	104
40	Ś	1 2-Dichloroethane-d4	0.320	0.739		-131.24	243#
40 //1	л Т	1 2-Dichloroethane	0 381	0 367		3.6	100
47	т Т	1 1 1_Trichloroethane	0.334	0 335		-0.2	102
42	т Т	1-Chlorobutano	0.518	0.538		_3.8	101
4.0	т Т	1 1-Dichloropropene	0.348	0.353		-1 3	99
44	т Т	Cyclobowano	0.540	0.505		-3 3	101
40	I T	Cyclonexane Cambon Totrachlarida	0.100	0.357		- 3.3	<u>101</u> 01
40	т Т		1 000	1 125		-2 4	100
4/	1	Benzene	1.099	1.123		12.4	100
48	1	tert-Amyi metnyi ether (IAME)	0.015	0.702		13.9	102
49	Т	Dibromometnane	0.136	0.125		1.1	97
50	T	1,2-Dichloropropane	0.231	0.234		-1.5	105
51	Т	Trichloroethene	0.242	0.239		1.2	102
52	Т	Bromodichloromethane	0.153	0.138		9.5	97
53	Т	2-Nitropropane	0.031	0.027		13.7	89
54	Т	1,4-Dioxane	0.001	0.001		-8.7	95
55	Т	Methyl methacrylate	0.142	0.147		-3.5	101
56	Т	Methylcyclohexane	0.447	0.472		-5.5	103
57		2-Chloroethylvinylether	0.061	0.064		-5.1	107
58	Т	cis-1,3-Dichloropropene	0.169	0.170		-0.5	96
59	Т	trans-1,3-Dichloropropene	0.108	0.107		1.3	97
60	Т	1,1,2-Trichloroethane	0.138	0.133		3.9	96
61	Т	1,3-Dichloropropane	0.225	0.218		3.4	99

Method Path : C:\MS4\METHODS\ Method File : 8260083118.M Title : Method for the analysis of 8260 waters Last Update : Thu Sep 13 16:13:08 2018 Response Via : Initial Calibration

CC Data File: X083113.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

62 T Dibromochloromethane 0.053 0.045 14.6 89 63 T Ethyl methacrylate 0.196 0.204 -4.2 103 64 T 1,2-Dibromoethane 0.108 0.101 6.3 99 65 T Bromoform 0.025 0.022 12.9 88 66 I Chlorobenzene-d5 1.000 1.000 0.0 100 67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
63 T Ethyl methacrylate 0.196 0.204 -4.2 103 64 T 1,2-Dibromoethane 0.108 0.101 6.3 99 65 T Bromoform 0.025 0.022 12.9 88 66 I Chlorobenzene-d5 1.000 1.000 0.0 100 67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9 # 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
64 T 1,2-Dibromoethane 0.108 0.101 6.3 99 65 T Bromoform 0.025 0.022 12.9 88 66 I Chlorobenzene-d5 1.000 1.000 0.0 100 67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
65 T Bromoform 0.025 0.022 12.9 88 66 I Chlorobenzene-d5 1.000 1.000 0.0 100 67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 255 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
66 I Chlorobenzene-d5 1.000 1.000 0.0 100 67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
67 T 4-Methyl-2-Pentanone 0.523 0.551 -5.4 100 68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
68 T 2-Hexanone 0.251 0.269 -7.1 99 69 S Toluene-d8 1.348 3.626 -168.9# 251 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
69 S Toluene-d8 1.348 3.626 -168.9# 25. 70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	
70 T Toluene 1.633 1.776 -8.7 100 71 T Tetrachloroethene 0.484 0.468 3.3 96	5 #
71 T Tetrachloroethene 0.484 0.468 3.3 96	
72 T 1,1,1,2-Tetrachloroethane 0.270 0.254 6.0 90	
73 T Chlorobenzene 0.980 0.954 2.7 98	
74 T 1-Chlorohexane 0.344 0.392 -13.8 108	
75 T Ethylbenzene 1.733 1.794 -3.5 98	
76 T m,p-Xylene 1.350 1.399 -3.6 97	
77 T Styrene 0.902 0.920 -2.0 97	
78 T o-Xylene 1.728 1.777 -2.9 97	
79 T 1,1,2,2-Tetrachloroethane 0.478 0.454 4.9 95	
80 T 1,2,3-Trichloropropane 0.388 0.359 7.6 96	
81 T trans-1,4-Dichloro-2-butene 0.083 0.079 5.0 96	
82 S Bromofluorobenzene 0.456 1.057 -131.6# 24	5#
83 T Isopropylbenzene 2.207 2.354 -6.7 98	
84 T Bromobenzene 0.624 0.622 0.3 98	
85 T n-Propylbenzene 2.264 2.365 -4.5 96	
86 T 2-Chlorotoluene 1.429 1.447 -1.3 97	
87 T 4-Chlorotoluene 1.214 1.200 1.2 96	
88 T 1,3,5-Trimethylbenzene 1.888 1.962 -3.9 96	
89 T Pentachloroethane 0.092 0.094 -1.4 91	
90 T tert-Butylbenzene 1.607 1.742 -8.5 96	
91 T 1,2,4-Trimethylbenzene 1.924 2.013 -4.7 96	
92 T sec-Butylbenzene 2.413 2.550 -5.7 97	
93 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 96	
94 T 1,3-Dichlorobenzene 0.879 0.893 -1.5 96	
95 T Benzyl chloride 0.309 0.384 -24.0# 122	
96 T 1,4-Dichlorobenzene 0.919 0.879 4.3 94	
97 T 4-Isopropyltoluene 1.859 2.066 -11.1 98	
98 T 1,2-Dichlorobenzene 1.065 1.093 -2.6 94	
99 T n-Butylbenzene 1.608 1.798 -11.8 98	
100 T 1,2-Dibromo-3-chloropropane 0.038 0.037 1.8 92	
101 T Hexachloroethane 0.071 0.097 -36.5# 121	
102 T 1,2,4-Trichlorobenzene 0.763 0.869 -14.0 101	
103 T Naphthalene 1.775 2.159 -21.7# 102	
104 T Hexachlorobutadiene 0.296 0.306 -3.4 97	
105 T 1,2,3-Trichlorobenzene 0.785 0.888 -13.1 100	

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Data Path : C:\MS4\083118\ Data File : X083113.D Acq On : 31 Aug 2018 2:50 pm Operator : EA Sample : LCS LM=8260C BT=MS4083118A Misc : VSTD020 ALS Vial : 13 Sample Multiplier: 1

Quant Time: Aug 31 15:17:42 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev Are	a% Dev(min
1	I	Fluorobenzene	50.000	50.000	0.0 1	01 0.00
2	T	Dichlorodifluoromethane	20.000	19.762	1.2 1	00 0.00
3	Т	Chloromethane	20.000	18.780	6.1	95 0.00
4	т	Vinyl Chloride	20.000	18.503	7.5 1	00 0.00
5	Т	Bromomethane	20.000	17.064	14.7	89 0.00
6	Т	Chloroethane	20.000	19.110	4.5 1	00 0.00
7	т	Acrolein	40.000	39.919	0.2 1	02 0.00
8	Т	Acetonitrile	20.000	21.148	-5.7 1	05 0.00
9	Τ·	Acrylonitrile	20.000	20.084	-0.4 1	03 0.00
10	Т	Trichlorofluoromethane	20.000	19.187	4.1	95 0.00
11	Т	Diethyl ether	20.000	19.408	3.0	98 0.00
12	Т	FREON 123A	20.000	18.951	5.2	99 0.00
13	Т	FC-113	20.000	19.340	3.3 1	02 0.00
14	Т	Acetone	40.000	38.778	3.1	99 0.00
15	Т	IPA	200.000	174.633	12.7	88 0.00
16	T	TBA	200.000	209.805	-4.9	97 0.00
17	T	Methyl acetate	20.000	19.725	1.4 1	05 0.00
18	Т	Ally1 chloride	20.000	20.514	-2.6 1	03 0.00
19	Т	Iodomethane	20.000	19.215	3.9 1	00 0.00
20	Т	1,1-Dichloroethene	20.000	18.956	5.2	97 0.00
21	T	Methylene Chloride	20.000	19.735	1.3 1	02 0.00
22	T	Carbon Disulfide	20.000	18,128	9.4	90 0.00
23	T	trans-1,2-Dichloroethene	20.000	20.049	-0.2 1	00 0.00
24	T	MTBE	20.000	20.328	-1.6 1	05 0.00
25	Т	1,1-Dichloroethane	20.000	19.602	2.0 1	01 0.00
26	T	Propionitrile	100.000	95.765	4.2 1	01 0.00
27	Т	Vinyl Acetate	20.000	21.070	-5.4 1	06 0.00
28	T	Chloroprene	20.000	19.181	4.1	98 0.00
29	T	Hexane	20.000	19.409	3.0	96 0.00
30	T	2-Butanone	40.000	38.301	4.2 1	01 0.00
31	T	Dilsopropyletner (DIPE)	20.000	19.563		00 0.00
32	L L	Cis-i, Z-Dichioroethene	20.000	19.876	U.6 1	02 0.00
33	1	Methacrylonitrile	40.000	40.632	-1.0 1	08 0.00
34	L T	Schlemeferm	20.000	20.213	-1.1 1	02 0.00
33	т Т	Chiofororm	20.000	10./18	0.4	95 0.00
20	т Т	Z, Z-DICHIOLOPPOPANE	20.000	20.404	-2.0 1	02 0.00
20	т Т	Techyi adiyiate	20.000	192 166	0.4 1	
20	1	Tetrabudrefuran	200.000	10 024	0.J 5 2 1	
39	L C	1 2-Dichloroothano-d4	20.000	16 249	_131 2#	243 0.00
40	с T	1 2-Dichloroethane	20.000	19 270	-131.2#	
12	т Т	1 1 1-Trichloroothane	20.000	20 040	-0 2 1	02 0.00
42	т Т	1-Chlorobutano	20.000	20.040	-3.8 1	
4.0	т Т	1 1-Dichloropropope	20.000	20.752	-13	
15	т Т	Cyclobeware	20.000	20.203	-1.5	01 0.00
45	т Т	Carbon Tetrachloride		18 035	-2.2 T	91 0.00
17	Ť	Benzene	20.000	20 478	-2 / 1	
18	Ť	tert-Amul methyl ether (TAM		19 617	1 9 1	
49	Ť	Dibromomethane		18 456	77	97 0.00
50	Ť	1.2-Dichloropropane	20.000	20 304	-1 5 1	05 0.00
51	Ť	Trichloroethene	20,000	19,756	1 2 1	02 0 00
52	Ť	Bromodichloromethane	20 000	18 100	ч.с. 9 5	97 0.00
52	Ť	2-Nitropropane	20.000	17 251	13.7	89 0.00
54	Ť	1,4-Dioxane	200.000	191,732	4.1	95 -0.03

Data Path : C:\MS4\083118\ Data File : X083113.D Acq On : 31 Aug 2018 2:50 pm Operator : EA Sample : LCS LM=8260C BT=MS4083118A Misc : VSTD020 ALS Vial : 13 Sample Multiplier: 1

Quant Time: Aug 31 15:17:42 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev Area%	Dev(min)
55 56 57 59 61 62 63 64 65	T T T T T T T T	Methyl methacrylate Methylcyclohexane 2-Chloroethylvinylether cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 1,3-Dichloropropane Dibromochloromethane Ethyl methacrylate 1,2-Dibromoethane Bromoform	20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000	20.696 21.103 19.962 19.016 18.771 19.223 19.310 17.088 20.833 18.730 17.420	$\begin{array}{ccccc} -3.5 & 101 \\ -5.5 & 103 \\ 0.2 & 107 \\ 4.9 & 96 \\ 6.1 & 97 \\ 3.9 & 96 \\ 3.5 & 99 \\ 14.6 & 89 \\ -4.2 & 103 \\ 6.3 & 99 \\ 12.9 & 88 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
667689701723747577789812834568788999192	ннтопппппппппппппппппппппппппп	Chlorobenzene-d5 4-Methyl-2-Pentanone 2-Hexanone Toluene-d8 Toluene Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene 1-Chlorohexane Ethylbenzene m,p-Xylene Styrene o-Xylene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane trans-1,4-Dichloro-2-butene Bromofluorobenzene Isopropylbenzene Bromobenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Pentachloroethane tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene	50.000 40.000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.000	50.000 42.154 42.832 53.773 21.747 19.334 18.806 19.463 22.768 20.703 41.455 20.408 20.576 19.020 18.483 19.000 46.313 21.330 19.934 20.254 19.759 20.254 19.759 20.287 21.691 20.932 21.136	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\$
93 94 95 96 97 98 99 100 101 102 103 104	I H H H H H H H H H H H H H H H H H H H	<pre>1,4-Dichlorobenzene-d4 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 4-Isopropyltoluene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane Hexachloroethane 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 1,2,3-Trichlorobenzene</pre>	$50.000 \\ 2$	50.000 20.306 23.661 19.144 22.227 20.526 22.354 16.253 22.570 22.800 19.055 20.679 22.625	$\begin{array}{ccccccc} 0.0 & 96 \\ -1.5 & 96 \\ -18.3 & 122 \\ 4.3 & 94 \\ -11.1 & 98 \\ -2.6 & 94 \\ -11.8 & 98 \\ 18.7 & 92 \\ -12.9 & 121 \\ -14.0 & 101 \\ 4.7 & 102 \\ -3.4 & 97 \\ -13.1 & 100 \end{array}$	$\begin{array}{c} 0.00\\$

Data Path : C:\MS4\083118\ Data File : X083113.D Acq On : 31 Aug 2018 2:50 Operator : EA Sample : LCS LM=8260C BT= Misc : VSTD020 ALS Vial : 13 Sample Multip	pm MS40831187 lier: 1	A				
Quant Time: Aug 31 15:17:42 20 Quant Method : C:\MS4\METHODS\ Quant Title : Method for the QLast Update : Fri Aug 31 14:4 Response via : Initial Calibra	18 8260083118 analysis c 9:06 2018 tion	3.M of 826	0 waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards	6 611	2001	1775652	50 00	na/I	0 00
66) Chlorobenzene-d5	13.195	4350	866864	50.00	ug/L ug/L	0.00
93) 1,4-Dichlorobenzene-d4	16.460	5521	916920	50.00	ug/L	0.00
System Monitoring Compounds	4 071	1401	E 0 4 0 0 7	46 25		0 00
Spiked Amount 50.000	4.971 Range 77	-117	Recove:	40.25	92.50%	0.00
69) Toluene-d8	11.014	3568	1257169	53.77	ug/L	0.00
Spiked Amount 50.000	Range 74	- 129 4949	Recove:	ry = 46.31	107.54%	0.00
Spiked Amount 50.000	Range 74	- 119	Recove	ry =	92.628	0.00
Target Compounds					Ov	alue
2) Dichlorodifluoromethane	1.222	50	335666	19.76	ug/L	98
3) Chloromethane	1.289	75	336672	18.78	ug/L	96
5) Bromomethane	1.595	181	179068	17.06	ug/L ug/L	100
6) Chloroethane	1.632	204	179171	19.11	ug/L	96
7) Acrolein	1.943	315	92122	39.92	ug/L	99
8) Acetonitrile	1.957	320	22923m	21.15	ug/L ug/I	95
10) Trichlorofluoromethane	2.34/ 1.987	400 331	335703	19.19	ug/L ug/L	95
11) Diethyl ether	2.104	373	159445	19.41	ug/L	97
12) FREON 123A	1.888	300	232837	18.95	ug/L	99
13) $FC-113$	2.473	505	220127 42266m	19.34	ug/L ug/I	95
14) ACECONE 15) IPA	1.998	335	73614	174.63	ug/L ug/L #	96
16) TBA	2.339	457	152125	209.80	ug/L	98
17) Methyl acetate	2.461	501	184813	19.72	ug/L	99
18) Allyl chloride	2.470	504	332269	20.51	ug/L ug/I	98
20) 1.1-Dichloroethene	2.302	439	336173	18.96	ug/L ug/L	99
21) Methylene Chloride	2.400	479	243068	19.73	ug/L	98
22) Carbon Disulfide	2.531	526	443902	18.13	ug/L	99
23) trans-1,2-Dichloroethene 24) MTRE	2.949	676 726	587939	20.05	ug/L ug/L	98 97
25) 1,1-Dichloroethane	3.186	761	374606	19.60	ug/L	99
26) Propionitrile	3.234	778	135985	95.76	ug/L	99
27) Vinyl Acetate	3,410	841 905	364429	21.07	ug/L	99
29) Hexane	3.674	936	243813	19.10	ug/L ug/L	98
30) 2-Butanone	3.711	949	36445	38.30	ug/L #	87
31) Diisopropylether (DIPE)	3.780	974	687132	19.56	ug/L	100
32) Cls-1,2-Dichloroethene	3.833	993	309148 312295m	19.88	ug/ь ug/ь	99
34) Bromochloromethane	4.023	1061	137456	20.22	ug/L	95
35) Chloroform	4.115	1094	322883	18.72	ug/L	99
36) 2,2-Dichloropropane	4.202	1125 1157	241148 135105	20.40	ug/L	99 96
38) Isobutyl alcohol	4.413	1201	65936	182.17	ug/L	98
39) Tetrahydrofuran	4.575	1259	23622	18.93	ug/L	95
41) 1,2-Dichloroethane	5.108	1450	260526	19.27	ug/L	98
42) 1,1,1-Trichloroethane 43) 1-Chlorobutaro	5.253	1502 1525	237816	20.04	ug/⊥ ug/⊺	96 97
44) 1,1-Dichloropropene	5.646	1643	250665	20.26	ug/L	97
45) Cyclohexane	5.744	1678	423675	20.66	ug/L	97
46) Carbon Tetrachloride	5.933	1746	126677	18.04	ug/L	98

Data Path Data File	:	C:\MS4\083118\ X083113.D
Acq On	:	31 Aug 2018 2:50 pm
Operator	:	EA
Sample	:	LCS LM=8260C BT=MS4083118A
Misc	:	VSTD020
ALS Vial	:	13 Sample Multiplier: 1

Quant Time: Aug 31 15:17:42 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units I	Dev(Min)
47)	Benzene	6.059	1791	798920	20.48 ug/L	99
48)	tert-Amyl methyl ether	6.689	2017	498347	19.62 ug/L	99
49)	Dibromomethane	7.431	2283	89097	18.46 ug/L	97
50)	1,2-Dichloropropane	7.606	2346	166547	20.30 ug/L	98
51)	Trichloroethene	7.765	2403	169861	19.76 ug/L	98
52)	Bromodichloromethane	7.891	2448	98246	18.10 ug/L	93
53)	2-Nitropropane	8.000	2487	19023m	17.25 ug/L	
54)	1,4-Dioxane	8.415	2636	6720m	191.73 ug/L	
55)	Methyl methacrylate	8.873	2800	104701	20.70 ug/L	99
56)	Methylcyclohexane	9.065	2869	334888	21.10 ug/L	97
57)	2-Chloroethylvinylether	9.422	2997	45442	19.96 ug/L	95
58)	cis-1,3-Dichloropropene	9.701	3097	120595	19.02 ug/L	99
59)	trans-1,3-Dichloropropene	10.635	3432	76074	18.77 ug/L	98
60)	1,1,2-Trichloroethane	10.811	3495	94191	19.22 ug/L	98
61)	1,3-Dichloropropane	11.246	3651	154484	19.31 ug/L	98
62)	Dibromochloromethane	11.552	3761	32144	17.09 ug/L	95
63)	Ethyl methacrylate	11.630	3789	145175	20.83 ug/L	97
64)	1,2-Dibromoethane	11.915	3891	71753	18.73 ug/L	96
65)	Bromoform	13.847	4584	15673	17.42 ug/L	99
67)	4-Methy1-2-Pentanone	10.116	3246	382376	42.15 ug/L	96
68)	2-Hexanone	11.717	3820	186644	42.83 ug/L	100
70)	Toluene	11.129	3609	615652	21.75 ug/L	100
71)	Tetrachloroethene	12.252	4012	162221	19.33 ug/L	100
72)	1,1,1,2-Tetrachloroethane	13.150	4334	88001	18.81 ug/L	97
73)	Chlorobenzene	13.237	4365	330735	19.46 ug/L	99
74)	1-Chlorohexane	13.329	4398	135805	22.77 ug/L	99
75)	Ethylbenzene	13.602	4496	621937	20.70 ug/L	100
76)	m,p-Xylene	13.895	4601	970355	41.45 ug/L	99
77)	Styrene	14.302	4747	319116	20.41 ug/L	100
78)	o-Xylene	14.386	4777	616261	20.58 ug/L	98
79)	1,1,2,2-Tetrachloroethane	14.377	4774	157478	19.02 ug/L	99
80)	1,2,3-Trichloropropane	14.553	4837	124412	18.48 ug/L	98
81)	trans-1,4-Dichloro-2-b	14.678	4882	27373	19.00 ug/L	95
83)	lsopropylbenzene	14.879	4954	816328	21.33 ug/L	98
84)	Bromobenzene	15.058	5018	215518	19.93 ug/L	95
85)	n-Propylbenzene	15.437	5154	819891	20.89 ug/L	100
86)	2-Chlorotoluene	15.476	5168	501664	20.25 ug/L	99
87)	4-Chlorotoluene	15.588	5208	415931	19.76 ug/L	99
88)	1,3,5-Trimethylbenzene	15.852	5303	680178	20.78 ug/L	98
89)	Pentachloroethane	15.766	5272	32462	20.29 ug/L	97
90)	tert-Butylbenzene	16.131	5403	604194	21.69 ug/L	99
91)	1,2,4-Irimethylbenzene	16.299	5463	698152	20.93 ug/L	99
92)	sec-Butylbenzene	16.399	5499	884288	21.14 ug/L	100
94)	1,3-Dichlorobenzene	16.399	5499	32/4/2	20.31 ug/L	99
95)	Benzyl Chloride	16.446	2210	140709	23.66 ug/L	98
96)	1,4-Dichioropenzene	16.491	5532 5502	322493	19.14 ug/L	98
97)	4-isopropyltoluene	16.001	5595	151162	22.23 ug/L	99
20) 001	I, Z-DICHIOLODENZENE	10.090	50/5	4009/3	20.03 ug/L	99
37) 1001	n-butyipenzene	17 44	5705	12501	22.35 ug/L	97
101)	1,2-DIDFOMO-3-Chioropr	17,442	00/J	T32AT	10.25 ug/L	90
102	nexaciioroeunane	10 0/0	2022	310000CC	22.57 ug/L	100
102)	1,2,4-IIICHIOFODENZENE	10 210	6549	310304 701035	10 05 v~/t	100
1041	Naphillatelle	10 160	6501	112210	20 60 mg/L	100
1051	1 2 3-Trighlorobongono	10 5/0	6626	375553	20.00 uy/L	55
T02)	1,2,3-IIICHIOLODellSelle	19.044	0020	JZJJJJ	22.02 uy/D	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

•

Quantitation Report

(QT Reviewed)

2.00 3.00 4.00 5.00 6.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 7.00 8.00 Time-->

8260083118.M Wed Sep 05 14:09:12 2018 RPT1

Method Path : C:\MS4\METHODS\ Method File : 8260083118.M Title : Method for the analysis of 8260 waters Last Update : Thu Sep 13 16:12:34 2018 Response Via : Initial Calibration

CC Data File: X090503.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	Area%
1	I	Fluorobenzene	1.000	1.000	0.0	131
2	Т	Dichlorodifluoromethane	0.478	0.393	17.9	108
3	Т	Chloromethane	0.505	0.485	4.0	125
4	Т	Vinyl Chloride	0.525	0.427	18.6	114
5	Т	Bromomethane	0.295	0.250	15.5	114
6	Т	Chloroethane	0.264	0.232	12.3	118
7	Т	Acrolein	0.065	0.067	-3.4	137
8	Т	Acetonitrile	0.032	0.033	-2.0	139
9	Т	Acrylonitrile	0.128	0.104	18.7	108
10	Т	Trichlorofluoromethane	0.493	0.444	10.0	115
11	Т	Diethyl ether	0.231	0.223	3.7	126
12	Т	FREON 123A	0.346	0.277	19.9	109
13	Т	FC-113	0.320	0.276	13.8	117
14	Т	Acetone	0.031	0.029	4.5	127
15	Т	IPA	0.012	0.010	18.6	106
16	Т	TBA	0.020	0.018	10.7	107
17	Т	Methyl acetate	0.264	0.212	19.8	110
18	Т	Allyl chloride	0.456	0.461	-1.0	131
19	Т	Iodomethane	0.526	0.476	9.6	121
20	Т	1,1-Dichloroethene	0.499	0.437	12.5	116
21	Т	Methylene Chloride	0.347	0.285	17.7	110
22	Т	Carbon Disulfide	0.690	0.669	3.0	125
23	Т	trans-1,2-Dichloroethene	0.445	0.410	7.9	118
24	Т	MTBE	0.814	0.762	6.4	124
25	T	1.1-Dichloroethane	0.538	0.493	8.4	123
26	Ť	Propionitrile	0.040	0.033	18.7	111
27	Ϋ́.	Vinvl Acetate	0.487	0.491	-0.7	131
28	Ť	Chloroprepe	0 490	0 494	-1.0	134
29	Ť	Hevane	0 354	0 323	8.7	117
30	Ť	2-Butanone	0.027	0.028	-2 7	141
31	Ť	Diisopropylether (DIPE)	0.989	0.932	57	124
32	Ť	cis-1 2-Dichloroethene	0.438	0.396	95	120
22	Ť	Methacrylonitrile	0.400	0.243	_12 2	154#
37	т Т	Bromochloromothano	0.210	0.243	10 8	117
25	т	Chloroform	0.191	0.1/5	70.0	120
30	т т	2 2 Digbloropropage	0.400	0.445	0.4	120
20	1 T	2,2-Dichioropropane	0.333	0.332	2 1	120
27	т Т	Methyi aciyiale	0,191	0.107	2.1	120
20	т Т	Tetrahudrofuran	0.010	0.010	23.1#	107
29	T C	1 2 Dichlenesthere d4	0.047	0.032	120 04	⊥∠/ 21/#
40	о т	1,2-Dichlemethere	0.320	0.750	-100.9#	107
41	1	1,2-Dichioroethane	0.301	0.300	5.5	120
42	1	1,1,1-frichtoroethane	0.534	0.323	2.0	120
43	1 T	1 1 Dichlemennene	0.310	0.331	-0.4	127
44	1	1,1-Dichioropropene	0.340	0.377	-0.1	101
45	1		0.577	0.552	4.4	110
46	1	Carbon letrachioride	0.198	1 100	0.3	119
4 /	T	Benzene	1.099	1.122	-2.1	129
48	T	tert-Amyl metnyl etner (IAME)	0.815	0.698	14.3	121
49	T	Dibromomethane	0.136	0.131	3.6	131
50	Т	1,2-Dichioropropane	0.231	0.239	-3.5	139
51	Т	Trichloroethene	0.242	0.244	-0.7	135
52	T	Bromodichloromethane	0.153	0.139	9.1	126
53	T	2-Nitropropane	0.031	0.030	3.8	128
54	T	1,4-Dioxane	0.001	0.001	-29.3#	146 102
55	T	Methyl methacrylate	0.142	0.145	-1./	129
56	Т	Methylcyclohexane	0.447	0.435	2.6	122
57	_	2-Chloroethylvinylether	0.061	0.075	-23.8#	163#
58	Т	cis-1,3-Dichloropropene	0.169	0.195	-15.2	143
59	Т	trans-1,3-Dichloropropene	0.108	0.122	-12.4	143
60	Т	1,1,2-Trichloroethane	0.138	0.138	-0.1	129
61	Т	1,3-Dichloropropane	0.225	0.220	2.4	130

Method Path : C:\MS4\METHODS\ Method File : 8260083118.M Title : Method for the analysis of 8260 waters Last Update : Thu Sep 13 16:12:34 2018 Response Via : Initial Calibration

CC Data File: X090503.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%
62	 T	Dibromochloromethane	0.053	0.048	8.7	123
63	Т	Ethyl methacrylate	0.196	0.176	10.4	115
64	Т	1,2-Dibromoethane	0.108	0.100	7.7	126
65	Т	Bromoform	0.025	0.021	17.6	107
66	I	Chlorobenzene-d5	1.000	1.000	0.0	124
67	Т	4-Methyl-2-Pentanone	0.523	0.494	5.5	112
68	Т	2-Hexanone	0.251	0.223	11.4	102
69	S	Toluene-d8	1.348	3.730	-176.6#	327#
70	Т	Toluene	1.633	1.847	-13.1	130
71	Т	Tetrachloroethene	0.484	0.569	-17.6	145
72	Т	1,1,1,2-Tetrachloroethane	0.270	0.267	1.0	119
73	Т	Chlorobenzene	0.980	0.958	2.3	123
74	Т	1-Chlorohexane	0.344	0.371	-7.9	128
75	Т	Ethylbenzene	1.733	1.793	-3.5	123
76	Т	m, p-Xylene	1.350	1.376	-2.0	119
77	Т	Styrene	0.902	0.886	1.8	117
78	Т	o-Xylene	1.728	1.742	-0.8	119
79	Т	1,1,2,2-Tetrachloroethane	0.478	0.470	1.5	123
80	Т	1,2,3-Trichloropropane	0.388	0.362	6.8	121
81	Т	trans-1.4-Dichloro-2-butene	0.083	0.067	19.7	101
82	s	Bromofluorobenzene	0.456	0.968	-112.1#	280#
83	Ť	Isopropylbenzene	2.207	2.237	-1.3	116
84	T	Bromobenzene	0.624	0.591	5.3	117
85	T	n-Propylbenzene	2.264	2.098	7.3	107
86	T	2-Chlorotoluene	1,429	1.345	5.9	112
87	Ť	4-Chlorotoluene	1.214	1.080	11.0	108
88	Ť	1.3.5-Trimethylbenzene	1.888	1.854	1.8	113
89	Ť	Pentachloroethane	0.092	0.082	11.6	99
90	Ť	tert-Butylbenzene	1,607	1.653	-2.9	114
91	Ť	1.2.4-Trimethylbenzene	1.924	1.846	4.0	110
92	T	sec-Butylbenzene	2.413	2.362	2.1	112
93	I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	108
94	т	1,3-Dichlorobenzene	0.879	0.943	-7.2	113
95	Т	Benzyl chloride	0.309	0.388	-25.3#	139
96	Т	1,4-Dichlorobenzene	0.919	0.918	0.1	110
97	Т	4-Isopropyltoluene	1.859	2.100	-13.0	111
98	т	1.2-Dichlorobenzene	1.065	1.211	-13.7	117
99	Т	n-Butvlbenzene	1.608	1.718	-6.8	105
100	Т	1.2-Dibromo-3-chloropropane	0.038	0.048	-26.2#	132
101	Т	Hexachloroethane	0.071	0.073	-2.2	102
102	Т	1,2,4-Trichlorobenzene	0.763	1.002	-31.4#	130
103	Т	Naphthalene	1,775	2.564	-44.5#	136
104	T	Hexachlorobutadiene	0.296	0.337	-13.9	120
105	Ĩ	1.2.3-Trichlorobenzene	0.785	1,017	-29.6#	129
		_, _, -,		/	23.01	

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Data Path Data File	:	C:\MS4\090518\ X090503.D
Acq On	:	5 Sep 2018 9:39 am
Operator	:	EA
Sample	:	LCS LM=8260C BT=MS4090518A
Misc	:	VSTD020
ALS Vial	:	3 Sample Multiplier: 1

Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev Area%	Dev(min)
1	I	Fluorobenzene	50.000	50.000	0.0 131	0.01
2	Т	Dichlorodifluoromethane	20.000	16.417	17.9 108	0.01
3	Т	Chloromethane	20.000	19.209	4.0 125	0.03
4	Т	Vinyl Chloride	20.000	16.277	18.6 114	0.02
5	Т	Bromomethane	20.000	16.910	15.4 114	0.05
6	Т	Chloroethane	20.000	17.542	12.3 118	0.03
7	Т	Acrolein	40.000	41.357	-3.4 137	0.01
8	Т	Acetonitrile	20.000	21.696	-8.5 139	0.05
9	Т	Acrylonitrile	20.000	16.262	18.7 108	0.00
10	Т	Trichlorofluoromethane	20.000	18.007	10.0 115	0.02
11	Т	Diethyl ether	20.000	19.266	3.7 126	0.01
12	Т	FREON 123A	20.000	16.017	19.9 109	0.01
13	Т	FC-113	20.000	17.232	13.8 117	0.02
14	Т	Acetone	40.000	38.202	4.5 127	0.01
15	Т	IPA	200.000	162.821	18.6 106	0.01
16	Т	TBA	200.000	178.690	10.7 107	0.00
17	Т	Methyl acetate	20.000	16.048	19.8 110	0.01
18	Т	Allyl chloride	20.000	20.199	-1.0 131	0.01
19	Т	Iodomethane	20.000	18.085	9.6 121	0.02
20	Т	1,1-Dichloroethene	20.000	17.508	12.5 116	0.02
21	Т	Methylene Chloride	20.000	16.461	17.7 110	0.02
22	Т	Carbon Disulfide	20.000	19.402	3.0 125	0.01
23	Т	trans-1,2-Dichloroethene	20.000	18.420	7.9 118	0.01
24	Т	MTBE	20.000	18.713	6.4 124	0.01
25	Т	1,1-Dichloroethane	20.000	18.320	8.4 123	0.01
26	т	Propionitrile	100.000	81.311	18.7 111	0.01
27	Т	Vinvl Acetate	20.000	20.147	-0.7 131	0.01
28	Т	Chloroprene	20.000	20.194	-1.0 134	0.01
29	Т	Hexane	20,000	18.263	8.7 117	0.01
30	Т	2-Butanone	40.000	41.074	-2.7 141	0.01
31	T	Diisopropylether (DIPE)	20.000	18.854	5.7 124	0.01
32	Т	cis-1.2-Dichloroethene	20.000	18.095	9.5 120	0.01
33	T	Methacrylonitrile	40,000	44.869	-12.2 154	0.00
34	Ť	Bromochloromethane	20.000	17.847	10.8 117	0.01
35	T	Chloroform	20.000	18.326	8.4 120	0.01
36	Ť	2.2-Dichloropropage	20 000	19 927	0.4 128	0.02
37	Ť	Methyl acrylate	20,000	19 586	2.1 129	0.01
38	- T	Isobutyl alcohol	200 000	199 906	0.0 139	0.00
39	Ť	Tetrahydrofuran	20 000	18 034	9 8 127	0.03
40	ŝ	1.2-Dichloroethane-d4	20,000	46,178	-130.9# 31	4 0.01
41	Ť	1,2-Dichloroethane	20.000	18 890	5.5 127	0.01
42	Ť	1,1,1-Trichloroethane	20.000	19 438	2 8 128	0.01
43	т Т	1-Chlorobutane	20.000	21 282	-6 4 134	0.01
40	Ť	1 1-Dichloropropene	20.000	21.202	-8 1 137	0.01
44	т Т	Cyclobexape	20.000	10 126		0.02
45	т Т	Carbon Totrachlorido	20.000	19.120	93 110	0.01
40	т т		20.000	20 421	_2 1 120	0.01
4 /	т Т	tort-Amul mothul other (T	AM 20.000	10 52/	2 1 129	0.01
40 70	т Т	Dibromomethano	20.000	19.024	2.4 101 2 6 101	0.01
マフ	т Т	1 2 Dichleronnen	20.000	19.20U	-3 E 130	0.02
50	т Т	Triablereethere	20.000	20.703	-0 7 125	0.01
51	1 T	IIICHIOFOETHENE	20.000	20.139		0.00
ン乙 につ	1 T	Diomodichioromethane	20.000	10.1//	y.⊥ ⊥26 2 0 100	0.00
23	1	2-Nicropropane	20.000	19.245	J.8 128	0.00
54	T	1,4-DIOXANE	200.000	228.155	-14.⊥ 146	0.00

Data Path : C:\MS4\090518\ Data File : X090503.D Acq On : 5 Sep 2018 9:39 am Operator : EA Sample : LCS LM=8260C BT=MS4090518A Misc : VSTD020 ALS Vial : 3 Sample Multiplier: 1 Quant Time: Sep 05 10:17:38 2018

Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev Area%	Dev(min)
55	Т т	Methyl methacrylate	20.000	20.340	-1.7 129 2 6 122	0.00
57	T	2-Chloroethylvinylether	20.000	22 859	-14 3 163	0.00
58	т	cis-1 3-Dichloropropene	20.000	21 355	-6 8 143	0.00
59	Ť	trans-1.3-Dichloropropene	20.000	20.901	-4.5 143	0.00
60	Ť	1 1 2-Trichloroethane	20.000	20,026	-0 1 129	0.00
61	T	1 3-Dichloropropage	20.000	19 528	24130	0.00
62	т Т	Dibromochloromethane	20.000	18 261	8 7 123	0.00
63	Ť	Ethyl methacrylate	20.000	17 922	10 4 115	0.00
64	Ť	1 2-Dibromoethane	20.000	18 451	7 7 126	0.00
65	Ť	Bromoform	20.000	16.479	17.6 107	0.00
66	I	Chlorobenzene-d5	50.000	50.000	0.0 124	0.00
67	T	4-Methvl-2-Pentanone	40.000	37.795	5.5 112	0.00
68	T	2-Hexanone	40.000	35.457	11.4 102	0.00
69	ŝ	Toluene-d8	20.000	55.316	-176.6# 327	0.00
70	Ť	Toluene	20.000	22.619	-13.1 130	0.00
71	Ť	Tetrachloroethene	20.000	23.514	-17.6 145	0.00
72	Ť	1.1.1.2-Tetrachloroethane	20.000	19.808	1.0 119	0.00
73	Ť	Chlorobenzene	20.000	19.539	2.3 123	0.00
74	Ť	1-Chlorobexane	20.000	21.572	-7.9 128	0.00
75	Ť	Ethylbenzene	20,000	20.693	-3.5 123	0.00
76	Ť	$m_{\rm p} = Xy$ lene	40.000	40.781	-2.0 119	0.00
77	Ť	Styrene	20.000	19,638	1.8 117	0.00
78	Ť	o-Xylene	20.000	20.167	-0.8 119	0.00
79	Ť	1.1.2.2-Tetrachloroethane	20.000	19.691	1.5 123	0.00
80	Ť	1.2.3-Trichloropropane	20.000	18.637	6.8 121	0.00
81	- T	trans-1.4-Dichloro-2-butene	20.000	16.058	19.7 101	0.00
82	ŝ	Bromofluorobenzene	20.000	42,419	-112.1#280	0.00
83	Ť	Isopropylbenzene	20.000	20.265	-1.3 116	0.00
84	Ť	Bromobenzene	20.000	18.944	5.3 117	0.00
85	Ť	n-Propylbenzene	20.000	18.533	7.3 107	0.00
86	Ť	2-Chlorotoluene	20.000	18.827	5.9 112	0.00
87	л Т	4-Chlorotoluene	20.000	17.791	11.0 108	0.00
88	T	1.3.5-Trimethylbenzene	20.000	19.639	1.8 113	0.00
89	- Т	Pentachloroethane	20.000	17.679	11.6 99	0.00
90	T	tert-Butvlbenzene	20.000	20.583	-2.9 114	0.00
91	T	1,2,4-Trimethvlbenzene	20.000	19.196	4.0 110	0.00
92	T	sec-Butylbenzene	20.000	19.574	2.1 112	0.00
93	I	1,4-Dichlorobenzene-d4	50.000	50.000	0.0 108	0.00
94	Т	1,3-Dichlorobenzene	20.000	21.440	-7.2 113	0.00
95	Т	Benzyl chloride	20.000	23.860	-19.3 139	0.00
96	Т	1,4-Dichlorobenzene	20.000	19.984	0.1 110	0.00
97	Т	4-Isopropyltoluene	20.000	22.591	-13.0 111	0.00
98	Т	1,2-Dichlorobenzene	20.000	22.730	-13.7 117	0.00
99	Т	n-Butylbenzene	20.000	21.363	-6.8 105	0.00
100	Т	1,2-Dibromo-3-chloropropane	20.000	20.878	-4.4 132	0.00
101	Т	Hexachloroethane	20.000	16.904	15.5 102	0.00
102	Т	1,2,4-Trichlorobenzene	20.000	26.284	-31.4# 130	0.00
103	Т	Naphthalene	20.000	22.632	-13.2 136	0.00
104	Т	Hexachlorobutadiene	20.000	22.778	-13.9 120	0.00
105	Т	1,2,3-Trichlorobenzene	20.000	25.912	-29.6# 129	0.00

SPCC's out = 0 CCC's out = 0

Data Path : C:\MS4\090518\ Data File : X090503.D Acq On : 5 Sep 2018 9:39 am Operator : EA Sample : LCS LM=8260C BT=MS4090518A Misc : VSTD020 ALS Vial : 3 Sample Multiplier: 1 Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150% Compound Amount Calc. %Dev Area% Dev(min)

8260083118.M Fri Sep 07 11:30:46 2018 RPT1

(#) = Out of Range

Data Path : C:\MS4\090518\ Data File : X090503.D Acq On : 5 Sep 2018 9:39 Operator : EA Sample : LCS LM=8260C BT=M Misc : VSTD020 ALS Vial : 3 Sample Multipl:	am 4540905187 ier: 1	Ą				
Quant Time: Sep 05 10:17:38 201 Quant Method : C:\MS4\METHODS\8 Quant Title : Method for the a QLast Update : Fri Aug 31 14:49 Response via : Initial Calibrat	18 3260083118 analysis (9:06 2018 cion	3.M of 8260	0 waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards	6 653	2004	2295136	50 00	ug/T	0 01
66) Chlorobenzene-d5	13.195	4350	1081236m	50.00	ug/L ug/L	0.00
93) 1,4-Dichlorobenzene-d4	16.460	5521	1028131	50.00	ug/L	0.00
System Monitoring Compounds						
40) 1,2-Dichloroethane-d4	4.982	1405 - 117	677330 Becove	46.18	ug/L 92 36%	0.01
69) Toluene-d8	11.017	3569	1613072	55.32	ug/L	0.00
Spiked Amount 50.000 H	Range 74	- 129	Recove	ry =	110.64%	
82) Bromofluorobenzene Spiked Amount 50,000 B	14.865 Range 74	4949 - 119	418519 Becove	42.42	ug/L 84 84%	0.00
	ange /1	119	Recove	- y —	01.010	
Target Compounds	1 220	50	260427	16 10	QV	alue
3) Chloromethane	1.324	88	445092	10.42 19.21	ug/L ug/L #	96
4) Vinyl Chloride	1.425	126	392036m	16.28	ug/L	
5) Bromomethane	1.614	197	229357m	16.91	ug/L	0.0
7) Acrolein	1.954	$\frac{213}{319}$	123362m	41.36	ug/L ug/L	98
8) Acetonitrile	2.007	338	30398m	21.70	ug/L	
9) Acrylonitrile	2.353	462	95308	16.26	ug/L	96
10) Trichlorofluoromethane	2.007	338 377	407221m 204590	18.01	ug/L ug/L	96
12) FREON 123A	1.896	303	254361m	16.02	ug/L	50
13) FC-113	2.492	512	253503m	17.23	ug/L	
14) Acetone 15) TPA	2.032	34/ 338	53820m 88715m	162 82	ug/L ug/L	
16) TBA	2.344	459	167470	178.69	ug/L	98
17) Methyl acetate	2.470	504	194355	16.05	ug/L #	96
18) Allyl chloride	2.478	507 449	422874	20.20	ug/L ug/I	97
20) 1,1-Dichloroethene	2.310	444	401321	17.51	ug/L ug/L	99
21) Methylene Chloride	2.414	484	262068	16.46	ug/L	97
22) Carbon Disulfide	2.542	530	614097m	19.40	ug/L	0.0
23) trans-1,2-Dichloroethene 24) MTBE	2.958	729	375968	18.42	ug/L ug/L	99
25) 1,1-Dichloroethane	3.195	764	452520	18.32	ug/L	99
26) Propionitrile	3.242	781	149240m	81.31	ug/L	
27) Vinyl Acetate 28) Chloroprene	3.415	843	450424 453885	20.15	ug/L ug/L	99
29) Hexane	3.686	940	296545	18.26	ug/L	98
30) 2-Butanone	3.725	954	50519m	41.07	ug/L	
31) Diisopropylether (DIPE)	3.792	978	855953	18.85	ug/L	100
33) Methacrylonitrile	3.831	992	445757	44.87	ug/L ug/L	98
34) Bromochloromethane	4.034	1065	156855	17.85	ug/L	97
35) Chloroform	4.123	1097	408618	18.33	ug/L	95
37) Methyl acrylate	4.210	1160	171897	19.93	ug/L ug/L	99 95
38) Isobutyl alcohol	4.416	1202	93526m	199.91	ug/L	
39) Tetrahydrofuran	4.603	1269	29082m	18.03	ug/L	0.0
41) 1,2-Dichioroethane 42) 1.1.1-Trichloroethane	5.264	1454 1506	330102 298163	10.89 19.44	ug/L ua/L	98 98
43) 1-Chlorobutane	5.320	1526	506221	21.28	ug/L	94 94
44) 1,1-Dichloropropene	5.660	1648	345730	21.62	ug/L	99
45) Cyclonexane 46) Carbon Tetrachloride	5.758 5 947	1083 1751	506970 166462	19.13	ug/L ug/L	98 98
, entroit reprint of and	5.511				~_, <u>~</u>	

(QT	Reviewe	d)
-----	---------	----

Data Path Data File	:	C:\MS4\090518\ X090503.D
Acq On	:	5 Sep 2018 9:39 am
Operator	:	EA
Sample	:	LCS LM=8260C BT=MS4090518A
Misc	:	VSTD020
ALS Vial	:	3 Sample Multiplier: 1

Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev	(Min)
47)	Benzene	6.070	1795	1029768	20.42 ug/L		99
48)	tert-Amyl methyl ether	6.697	2020	641093	19.52 ug/I	L	95
49)	Dibromomethane	7.447	2289	120304m	19.28 ug/I	ı	
50)	1,2-Dichloropropane	7.609	2347	219497	20.70 ug/I	ı	100
51)	Trichloroethene	7.765	2403	223811	20.14 ug/I	L	97
52)	Bromodichloromethane	7.891	2448	127532	18.18 ug/I	L	96
53)	2-Nitropropane	8.014	2492	2/430m 10226m	19.24 ug/l	L	
54)	1,4-DIOXANE Mothul mothegrulate	0.449	2040	133002	228.15 ug/1	J	100
56)	Methyl methaciyiate	9 076	2873	399550	19 48 ug/1		0 Q Q
57)	2-Chloroethylvinylether	9.422	2997	69170	22.86 ug/I	, , #	88
58)	cis-1.3-Dichloropropene	9,701	3097	178624	21.36 ug/I	- " -	98
59)	trans-1,3-Dichloropropene	10.638	3433	111956	20.90 ug/I	L	98
60)	1,1,2-Trichloroethane	10.813	3496	126838	20.03 ug/I	L	100
61)	1,3-Dichloropropane	11.246	3651	201928	19.53 ug/I	L	97
62)	Dibromochloromethane	11.552	3761	44399	18.26 ug/I	L	98
63)	Ethyl methacrylate	11.628	3788	161427	17.92 ug/I	L	98
64)	1,2-Dibromoethane	11.912	3890	91362	18.45 ug/I		95
65)	Bromoform	13.847	4584	19164	16.48 ug/l	J #	97
67)	4-Methyl-2-Pentanone	10.116	3246	42/61Z	37.79 ug/I	J	98
68) 70)	Z-Hexanone	11 121	3610	192717m 709692	22.62 ug/1	-	99
70)	Tetrachloroethene	12.131 12.252	4012	246074	22.02 ug/I		99
72)	1.1.1.2-Tetrachloroethane	13,150	4334	115609	19.81 ug/I		98
73)	Chlorobenzene	13.237	4365	414131	19.54 ug/1	_	99
74)	1-Chlorohexane	13.329	4398	160495	21.57 ug/I	-	94
75)	Ethylbenzene	13.602	4496	775369	20.69 ug/I		100
76)	m,p-Xylene	13.892	4600	1190653	40.78 ug/I		100
77)	Styrene	14.302	4747	383021	19.64 ug/I		98
78)	o-Xylene	14.386	4777	753369	20.17 ug/I		97
79)	1,1,2,2-Tetrachloroethane	14.377	4774	203348	19.69 ug/1		98
80)	1,2,3-Trichloropropane	14.553	4837	15647Z	18.64 ug/1	-	99
02) 01)	Isopropul bonzone	14.070	4002	2003011	20.27 ug/I		98
84)	Bromobenzene	15 058	5018	255468	18.94 ug/I		97
85)	n-Propylbenzene	15.434	5153	907179	18.53 ug/1		99
86)	2-Chlorotoluene	15.476	5168	581622	18.83 ug/I		98
87)	4-Chlorotoluene	15.588	5208	467119	17.79 ug/I		100
88)	1,3,5-Trimethylbenzene	15.852	5303	801718	19.64 ug/I		98
89)	Pentachloroethane	15.769	5273	35284	17.68 ug/I		95
90)	tert-Butylbenzene	16.131	5403	715111	20.58 ug/1		100
91)	1,2,4-Trimethylbenzene	16.296	5462	798597	19.20 ug/l	-	100
92)	sec-Butylbenzene	16.399	5499	1021449	19.57 ug/l		99
94)	1,3-Dichlorobenzene	16.399	5499	38/698	21.44 ug/J		100
95)	Benzyi Chioride	16,449	5521	159420	19 98 ug/1	;	99
971	4-Isopropyltoluene	16 661	5593	863614	22.59 ug/	ш Г.	100
98)	1.2-Dichlorobenzene	16.887	5674	497899	22.73 ug/	ш Г,	98
99)	n-Butylbenzene	17.138	5764	706556	21.36 ug/1	_ L	100
100)	1,2-Dibromo-3-chloropr	17.442	5873	19576	20.88 ug/1	Ĺ	92
101)	Hexachloroethane	17.487	5889	29969	16.90 ug/1	L	83
102)	1,2,4-Trichlorobenzene	19.045	6448	412233m	26.28 ug/1	Ĺ	
103)	Naphthalene	19.310	6543	1054570m	22.63 ug/1	ե	
104)	Hexachlorobutadiene	19.453	6594	138722m	22.78 ug/1	L	
105)	1,2,3-Trichlorobenzene	19.542	6626	418070m	25.91 ug/1	L.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MS4\090518\ Data File : X090503.D Acq On : 5 Sep 2018 9:39 am Operator : EA Sample : LCS LM=8260C BT=MS4090518A Misc : VSTD020 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Volatile Data Raw QC Data

95

5

101

9 1

174

176

176

177

158592

11303 |

PASS

PASS

96.2

7.1

Page: 1

6.8

PASS

Page: 1

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	MB 420-124333/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124333/2
Analysis Method:	8260C	Lab File ID:	X083116.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:26
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	Ū	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	υ	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
Client Sample ID:	MB 420-124333/2	Project:	D & B Engineers &		
------------------------	----------------------------	------------------	-------------------		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1		
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault			
Matrix:	Water	Lab Sample ID:	MB 420-124333/2		
Analysis Method:	8260C	Lab File ID:	X083116.D		
Sample wt/vol:	5 (mL)	Date Received:			
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:26		
<pre>% Moisture:</pre>	•	Dilution Factor:	1		
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	124333				

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	Ŭ	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	U	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	U	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	U	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0

Client Sample ID:	MB 420-124333/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124333/2
Analysis Method:	8260C	Lab Fìle ID:	X083116.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	08/31/2018 16:26
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Data Path : C:\MS4\083118\ Data File : X083116.D Acq On : 31 Aug 2018 Operator : EA 4:26 pm Sample : MB LM=8260C BT=MS4083118A Misc : MB ALS Vial : 16 Sample Multiplier: 1 Quant Time: Sep 04 08:42:18 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration R.T. Scan Response Conc Units Dev(Min) Compound R.T. Scan Response Conc Units Dev(Min) Internal Standards 1) Fluorobenzene6.647 2002 163278450.00 ug/L0.0066) Chlorobenzene-d513.195 435081153450.00 ug/L0.0093) 1,4-Dichlorobenzene-d416.461 552192666750.00 ug/L0.00 System Monitoring Compounds

 40) 1,2-Dichloroethane-d4
 4.974 1402
 508654
 48.75 ug/L
 0.00

 Spiked Amount
 50.000
 Range 77 - 117
 Recovery = 97.50%
 97.50%

 69) Toluene-d8
 11.017 3569
 1101595
 50.33 ug/L
 0.00

 Spiked Amount
 50.000
 Range 74 - 129
 Recovery = 100.66%

 82) Bromofluorobenzene
 14.868 4950
 364916
 49.28 ug/L
 0.00

 Spiked Amount
 50.000
 Bange 74 - 119
 Becovery = 00.66%
 0.00

 Spiked Amount 50.000 Range 74 - 119 Recovery = 98.56% Target Compounds Qvalue

(QT Reviewed)

Data Path Data File	:	C:\N X083	454\ 3116	0831	18\			
Acq On	:	31 <i>F</i>	Aug	2018		4:26	pm	
Operator	:	ΕA	2				-	
Sample	:	MB	LM=	8260	С	BT=MS	\$40831	18A
Misc	:	MB						
ALS Vial	:	16	Sa	mple	Mu	ltip	lier:	1

Quant Time: Sep 04 08:42:18 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

Client Sample ID:	MB 420-124409/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	rent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124409/2
Analysis Method:	8260C	Lab File ID:	X090506.D
Sample wt/vol:	5 (mL)	Date Received:	- <u></u>
Level: (low/med)	Low	Date Analyzed:	09/05/2018 11:15
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
75-27-4	Dichlorobromomethane	1.0	υ	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
563-58-6	1,1-Dichloropropene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	υ	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	υ	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	υ	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0

Client Sample ID:	MB 420-124409/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124409/2
Analysis Method:	8260C	Lab File ID:	X090506.D
Sample wt/vol:	5 (mL)	Date Received:	·
Level: (low/med)	Low	Date Analyzed:	09/05/2018 11:15
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	2.0	U	2.0	2.0
95-47-6	o-Xylene	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
74-95-3	Dibromomethane	1.0	U	1.0	1.0
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
67-64-1	Acetone	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
74-88-4	Iodomethane	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	5.0
591-78-6	2-Hexanone	5.0	U	5.0	5.0
74-97-5	Chlorobromomethane	1.0	Ŭ	1.0	1.0
594-20-7	2,2-Dichloropropane	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
142-28-9	1,3-Dichloropropane	1.0	U	1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	1.0
108-86-1	Bromobenzene	1.0	U	1.0	1.0
104-51-8	n-Butylbenzene	1.0	U	1.0	1.0
135-98-8	sec-Butylbenzene	1.0	σ	1.0	1.0
98-06-6	tert-Butylbenzene	1.0	υ	1.0	1.0
95-49-8	2-Chlorotoluene	1.0	U	1.0	1.0
106-43-4	4-Chlorotoluene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
87-68-3	Hexachlorobutadiene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
99-87-6	p-Isopropyltoluene	1.0	U	1.0	1.0
91-20-3	Naphthalene	5.0	U	5.0	5.0
103-65-1	N-Propylbenzene	1.0	U	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	1.0

Client Sample ID:	MB 420-124409/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124409/2
Analysis Method:	8260C	Lab File ID:	X090506.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/05/2018 11:15
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		
·····			

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	10	U	10	10

Data Path : C:\MS4\090518\						
Para Fire : X090506.D	i am					
Operator : EA	, an					
Sample : MB LM=8260C BT=N	4S4090518A					
Misc : MB						
ALS Vial : 6 Sample Multip	lier: 1					
Quant Time: Sep 05 11:41:18 20)18					
Quant Method : C:\MS4\METHODS	\8260083118	З.М				
Quant Title : Method for the	analysis d	of 8260	0 waters			
QLast Update : Fri Aug 31 14:4	19:06 2018					
Response via : Initial Calibra	ation					
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards		0000	0000101	F0 00	1.7	0 0 0
1) Fluorobenzene	6.66/	2009	2233101	50.00	ug/L	0.03
93) 1 A-Dichlorobenzene-d4	15.198	4331	002934 940165m	50.00	ug/L	0.00
55) I, 4-DICHIOLODENZENE-04	10.401	3321	940103m	50.00	ug/ L	0.00
System Monitoring Compounds						
40) 1,2-Dichloroethane-d4	4.999	1411	655204	45.91	ug/L	0.03
Spiked Amount 50.000	Range 77	- 117	Recover	ry =	91.82%	
69) Toluene-d8	11.020	3570	1408149	59.13	ug/L	0.00
Spiked Amount 50.000	Range 74	- 129	Recover	ry =	118.26%	
82) Bromofluorobenzene	14.868	4950	348425	43.25	ug/L	0.00
Spiked Amount 50.000	Range 74	- 119	Recover	гу =	86.50%	
Target Compounds					Qv	alue

Data Path : C:\MS4\090518\ Data File : X090506.D : 5 Sep 2018 11:15 am Acq On : EA Operator : MB LM=8260C BT=MS4090518A Sample Misc : MB ALS Vial : 6 Sample Multiplier: 1 Quant Time: Sep 05 11:41:18 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration Abundance TIC: X090506.D\data.ms 2300000 2200000 2100000 izene-d4. 2000000 1900000 1800000 Foluene-d8,S 1700000 Chlorobenzene-d5,I 1600000 1500000 1400000 Bromofluorobenzene,S 1300000 "luorobenzene, l 1200000 1100000 1000000 900000 1,2-Dichloroethane-d4,S 800000 700000 600000 500000 400000 300000 200000 100000 0 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 Time-->

Client Sample ID:	LCS 420-124333/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124333/1
Analysis Method:	8260C	Lab File ID:	X083113.D
Sample wt/vol:	5 (mL)	Date Received:	<u> </u>
Level: (low/med)	Low	Date Analyzed:	08/31/2018 14:50
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	20		1.0	1.0
75-34-3	1,1-Dichloroethane	20		1.0	1.0
67-66-3	Chloroform	19		1.0	1.0
56-23-5	Carbon tetrachloride	18		1.0	1.0
78-87-5	1,2-Dichloropropane	20		1.0	1.0
124-48-1	Dibromochloromethane	17		1.0	1.0
79-00-5	1,1,2-Trichloroethane	19		1.0	1.0
127-18-4	Tetrachloroethene	19		1.0	1.0
108-90-7	Chlorobenzene	19		1.0	1.0
75-69-4	Trichlorofluoromethane	19		1.0	1.0
107-06-2	1,2-Dichloroethane	19		1.0	1.0
71-55-6	1,1,1-Trichloroethane	20		1.0	1.0
75-27-4	Dichlorobromomethane	18		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	19		1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	19		1.0	1.0
563-58-6	1,1-Dichloropropene	20		1.0	1.0
75-25-2	Bromoform	17		1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	19		1.0	1.0
71-43-2	Benzene	20		1.0	1.0
108-88-3	Toluene	22		1.0	1.0
100-41-4	Ethylbenzene	21		1.0	1.0
74-87-3	Chloromethane	19		1.0	1.0
74-83-9	Bromomethane	17		1.0	1.0
75-01-4	Vinyl chloride	19		1.0	1.0
75-00-3	Chloroethane	19		1.0	1.0
75-35-4	1,1-Dichloroethene	19		1.0	1.0
156-60-5	trans-1,2-Dichloroethene	20		1.0	1.0
79-01-6	Trichloroethene	20		1.0	1.0
95-50-1	1,2-Dichlorobenzene	21		1.0	1.0
541-73-1	1,3-Dichlorobenzene	20		1.0	1.0
106-46-7	1,4-Dichlorobenzene	19		1.0	1.0
1634-04-4	Methyl tert-butyl ether	20		1.0	1.0

Client Sample ID:	LCS 420-124333/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124333/1
Analysis Method:	8260C	Lab File ID:	X083113.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	08/31/2018 14:50
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	41		2.0	2.0
95-47-6	o-Xylene	21		1.0	1.0
156-59-2	cis-1,2-Dichloroethene	20		1.0	1.0
74-95-3	Dibromomethane	18		1.0	1.0
96-18-4	1,2,3-Trichloropropane	18		1.0	1.0
100-42-5	Styrene	20		1.0	1.0
75-71-8	Dichlorodifluoromethane	20		1.0	1.0
67-64-1	Acetone	39		5.0	5.0
75-15-0	Carbon disulfide	18		1.0	1.0
74-88-4	Iodomethane	19		1.0	1.0
78-93-3	2-Butanone (MEK)	38		1.0	1.0
108-05-4	Vinyl acetate	21		1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	42		5.0	5.0
591-78-6	2-Hexanone	43		5.0	5.0
74-97-5	Chlorobromomethane	20		1.0	1.0
594-20-7	2,2-Dichloropropane	20		1.0	1.0
106-93-4	1,2-Dibromoethane	19	·	1.0	1.0
142-28-9	1,3-Dichloropropane	19		1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	19		1.0	1.0
108-86-1	Bromobenzene	20		1.0	1.0
104-51-8	n-Butylbenzene	22		1.0	1.0
135-98-8	sec-Butylbenzene	21		1.0	1.0
98-06-6	tert-Butylbenzene	22		1.0	1.0
95-49-8	2-Chlorotoluene	20		1.0	1.0
106-43-4	4-Chlorotoluene	20		1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	16		5.0	5.0
87-68-3	Hexachlorobutadiene	21		1.0	1.0
98-82-8	Isopropylbenzene	21		1.0	1.0
99-87-6	p-Isopropyltoluene	22		1.0	1.0
91-20-3	Naphthalene	19		5.0	5.0
103-65-1	N-Propylbenzene	21	· · · ·	1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	23		1.0	1.0

1

Client Sample ID:	LCS 420-124333/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solve	ent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124333/1
Analysis Method:	8260C	Lab File ID:	X083113.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	08/31/2018 14:50
% Moisture:		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124333		

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	23		1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	21		1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	21		1.0	1.0
1330-20-7	Xylenes, Total	62		1.0	1.0

Data Data Acq O Opera Sampl Misc ALS V	Path : C:\MS4\083118\ File : X083113.D n : 31 Aug 2018 2:50 tor : EA e : LCS LM=8260C BT= : VSTD020 ial : 13 Sample Multip	pm MS40831182 lier: 1	Ą				
Quant Quant Quant QLast Respo	Time: Aug 31 15:17:42 20 Method : C:\MS4\METHODS\ Title : Method for the Update : Fri Aug 31 14:4 nse via : Initial Calibra	18 8260083118 analysis o 9:06 2018 tion	3.M of 8260) waters			
	Compound	R.T.	Scan	Response	Conc Un	its Dev	(Min)
Inte 1) 66) 93)	rnal Standards Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	6.644 13.195 16.460	2001 4350 5521	1775652 866864 916920	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
Syst	em Monitoring Compounds	1 971	1401	524827	16 25	ng/L	0 00
Sp	iked Amount 50.000	Range 77	- 117	Recove:	ry =	92.50%	0.00
(69 מצ	Toluene-d8 iked Amount 50.000	11.014 Range 74	3568 - 129	1257169 Recove:	53.77 rv =	ug/L 107.54%	0.00
82)	Bromofluorobenzene	14.865	4949	366337	46.31	ug/L	0.00
Sp	iked Amount 50.000	Range /4	- 119	Recove	ry =	92.628	
Targ	et Compounds	1 000	FO	225666	10 76	Qva	alue
2) 3)	Chloromethane	1.222	50 75	336672	19.78	ug/L ug/L	96
4)	Vinyl Chloride	1.395	115	344782	18.50	ug/L	98
5) 6)	Chloroethane	1.632	204	179171	19.11	ug/L ug/L	96
7)	Acrolein	1.943	315	92122	39.92	ug/L	99
8) 9)	Acetonitrile Acrvlonitrile	2,347	320 460	22923m 91066	21.15	ug/L ug/L	95
10)	Trichlorofluoromethane	1.987	331	335703	19.19	ug/L	96
11) 12)	Diethyl ether FREON 123A	$2.104 \\ 1.888$	373	159445 232837	$19.41 \\ 18.95$	ug/L ug/L	97
13)	FC-113	2.473	505	220127	19.34	ug/L	95
14) 15)	Acetone	2.026	345 335	42266m 73614	38.78	ug/L ug/L #	96
16)	TBA	2.339	457	152125	209.80	ug/L "	98
17) 18)	Methyl acetate	2.461	501 504	184813 332269	19.72 20.51	ug/L	99 98
19)	Iodomethane	2.302	444	358915	19.22	ug/L	99
20)	1,1-Dichloroethene	2.289	439	336173	18.96	ug/L	99 98
21)	Carbon Disulfide	2.400	526	443902	18.13	ug/L ug/L	99
23)	trans-1,2-Dichloroethene	2.949	676	316600	20.05	ug/L	98
∠4) 25)	MIBE 1,1-Dichloroethane	3.089	726 761	374606	20.33	ug/L ug/L	97
26)	Propionitrile	3.234	778	135985	95.76	ug/L	99
27)	Vinyl Acetate Chloroprene	3.410	841 905	364429 333530	21.07	ug/L ug/L	99 97
29)	Hexane	3.674	936	243813	19.41	ug/L	98
30) 31)	2-Butanone Diisopropylether (DIPE)	3.711	949 974	36445 687132	38.30	ug/L # ug/L	87 100
32)	cis-1,2-Dichloroethene	3.833	993	309148	19.88	ug/L	99
33) 34)	Methacrylonitrile	3.825	990 1061	312295m 137456	40.63	ug/L	95
35)	Chloroform	4.115	1094	322883	18.72	ug/L	99
36) 271	2,2-Dichloropropane	4.202	1125 1157	241148 135195	20.40	ug/L	99 96
38)	Isobutyl alcohol	4.413	1201	65936	182.17	ug/L	98
39) 41 V	Tetrahydrofuran	4.575	1259	23622	18,93	ug/L	95
41) 42)	1,1,1-Trichloroethane	5.253	1502	237816	20.04	ug/L ug/L	96
43)	1-Chlorobutane	5.317	1525	381888	20.75	ug/L	93
44) 45)	1,1-Dichioropropene Cvclohexane	5.646 5.744	1678 1	∠50665 423675	20.26	ug/L ug/L	97
46)	Carbon Tetrachloride	5.933	1746	126677	18.04	ug/L	98

Data Path Data File	:	C:\MS4\083118\ X083113.D
Acq On	:	31 Aug 2018 2:50 pm
Operator	:	EA
Sample	:	LCS LM=8260C BT=MS4083118A
Misc	:	VSTD020
ALS Vial	:	13 Sample Multiplier: 1

Quant Time: Aug 31 15:17:42 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev(Min)
47)	Benzene	6,059	1791	798920	20.48 ug/L	99
48)	tert-Amyl methyl ether	6.689	2017	498347	19.62 ug/L	99
49)	Dibromomethane	7.431	2283	89097	18.46 ug/L	97
50)	1,2-Dichloropropane	7.606	2346	166547	20.30 ug/L	98
51)	Trichloroethene	7.765	2403	169861	19.76 ug/L	98
52)	Bromodichloromethane	7.891	2448	98246	18.10 ug/L	93
53)	2-Nitropropane	8.000	2487	19023m	17.25 ug/L	ı
54)	1,4-Dioxane	8.415	2636	6720m	191.73 ug/L	
55)	Methyl methacrylate	8.873	2800	104701	20.70 ug/L	99
56)	Methylcyclohexane	9.065	2869	334888	21.10 ug/L	, 97
57)	2-Chloroethylvinylether	9.422	2997	45442	19.96 ug/L	95
58)	cis-1,3-Dichloropropene	9.701	3097	120595	19.02 ug/L	, 99
59)	trans-1,3-Dichloropropene	10.635	3432	76074	18.77 ug/L	, 98
60)	1,1,2-Trichloroethane	10.811	3495	94191	19.22 ug/L	98
61)	1,3-Dichloropropane	11.246	3651	154484	19.31 ug/L	, 98
62)	Dibromochloromethane	11.552	3761	32144	17.09 ug/L	95
63)	Ethyl methacrylate	11.630	3789	145175	20.83 ug/L	97
64)	1,2-Dibromoethane	11,915	3891	71753	18.73 ug/L	, 96
65)	Bromoform	13.847	4584	15673	17.42 ug/L	, 99
67)	4-Methyl-2-Pentanone	10.116	3246	382376	42.15 ug/L	, 96
68)	2-Hexanone	11.717	3820	186644	42.83 ug/L	ı 100
70)	Toluene	11.129	3609	615652	21.75 ug/L	100
71)	Tetrachloroethene	12.252	4012	162221	19.33 ug/L	100
72)	1,1,1,2-Tetrachloroethane	13.150	4334	88001	18.81 ug/I	. <u>97</u>
73)	Chlorobenzene	13.237	4365	330735	19,46 ug/L	. 99
74)	1-Chlorohexane	13.329	4398	135805	22.77 ug/L	, 99
75)	Ethylbenzene	13.602	4496	621937	20,70 ug/I	100
76)	m,p-Xylene	13.895	4601	970355	41.45 ug/I	, <u>99</u>
77)	Styrene	14.302	4747	319116	20.41 ug/L	100
78)	o-Xylene	14.386	4777	616261	20,58 ug/L	, <u>98</u>
/9)	1, 1, 2, 2-Tetrachloroethane	14.3//	4//4	15/4/8	19.02 ug/1	, 99
80)	1,2,3-Trichloropropane	14.553	4837	124412	18.48 ug/L	, 98
81)	trans-1,4-Dichloro-2-b	14.678	4882	2/3/3	19.00 ug/L	, 95
83)	Isopropyibenzene	14.879	4954	816328	21.33 ug/1	, 98 05
84)	Bromobenzene	15.058	5018	215518	19.93 ug/L	y 95
85)	n-Propyidenzene	15.437	5154	819891	20.89 ug/1	1 100
86)	2-Chlorotoluene	15.476	5168	501664	20.25 ug/1	, 99
87)	4-Chiorotoluene	15.588	5208	415931	19.76 ug/1	, 99
00)	1, 5, 5-IfImethyiDenzene	15.852	5303	00U1/0	20.78 ug/1	. 98
09)	tert Putulbongene	16 121	5272	32462	20.29 ug/1	. 97
90)	1 2 4 Trimethylbongone	16 200	5403	609152	21.69 ug/1	
91) 02)	1, 2, 4-11 imethyidenzene	16 200	5405	090102	20.93 ug/I	100
921	1 3 Dichlorobongono	16 200	5499	2074200	21.14 ug/1	1 100
94) 95)	Benzyl chloride	16 446	5516	1/0700	20.51 ug/I	. 99
957	1 A-Dichlorobongono	16 /01	5532	222403	23.00 ug/L	, 30 20
907	A-Isopropyltoluene	16 661	5593	757762	22 23 ug/1	, <u> </u>
981	1 2-Dichlorobenzene	16 890	5675	100975	20.53 ug/1	
991	n-Butylbenzene	17 1/1	5765	6593/3	20.35 ug/I	. 97
1001	1.2-Dibromo-3-chloropr	17 442	5873	12591	16 25 ug/1	. 96
1011	Hexachloroethane	17 484	5888	10001 25625m	$22 57 11 \alpha / 1$	
1021	1.2.4-Trichlorobenzene	19 048	6449	318904	22.80 110/1	100
1031	Naphthalene	19 310	6543	791835	19 05 ug/1	. 100
104)	Hexachlorobutadiene	19 453	6594	112319	20.68 ug/1	, da
1051	1.2.3-Trichlorobenzene	19,542	6626	325553	22.62 mg/I	. 96
	_, _,			~	ay/r	

Data Path : C:\MS4\083118\ Data File : X083113.D Acq On : 31 Aug 2018 2:50 pm Operator : EA Sample : LCS LM=8260C BT=MS4083118A Misc : VSTD020 ALS Vial : 13 Sample Multiplier: 1

Quant Time: Aug 31 15:17:42 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

TIC: X083113.D\data.ms Abundance 2400000 2300000 2200000 2100000 BTE-44. 2000000 emofluordiseprepage(28nzene, T 1900000 1800000 1700000 Chlorabenzene-d5,I 1600000 Toluene-d8,S 3.5-Trimethylbenzene.T m,p-Xylene,T 1500000 1,1,2,2-Tetracitioned and T 1400000 n-Butylbenzene, T 1300000 richlorobenzene, T te te <u>ilorotoluene, P</u>-Chlorotන්ැපිඥාthenzene, T 2.4-Trichlorobenzene,T ether (TAME), T Fluorobenzene, I 1,2-Dichlorobenzene 1200000 1100000 stherof@HRENerdphitnitetffene.T Ethylbenzene.T 1000000 900000 Hexachloroethane. 800000 trans.1.2.Dichloroethene,T oluene. 1.1.1.7.Tetrachloxanthapen.Zer -Dichloroethane-d4,S Methylcyclohexane,T Tetrachloroethene, T Bromobenzene, 700000 DichloropyppenexIne. 4-Methyl-2-Pentanone,T Benzene, ropropane, DNa123A.T Chercomethane. I 600000 trans-1,3-Dichloropropene,T iochlorgeneitheneutate, T 2-Chloroethylvinylether cis-1,3-Dichloropropene,T 500000 5.5-HEC216 Carbon Tetrachloride. Methyl methacrylate, T 400000 4-Dichlord Dibromomet 300000 -NithBior000011cl 1,2-Dibri .4-Dioxane, 200000 100000 C 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 3.00 4.00 5.00 6.00 7.00 8.00 2.00 Time-->

8260083118.M Wed Sep 05 14:09:12 2018 RPT1

Client Sample ID:	LCS 420-124409/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124409/1
Analysis Method:	8260C	Lab File ID:	X090503.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/05/2018 09:39
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
75-09-2	Methylene Chloride	16		1.0	1.0
75-34-3	1,1~Dichloroethane	18		1.0	1.0
67-66-3	Chloroform	18		1.0	1.0
56-23-5	Carbon tetrachloride	18		1.0	1.0
78-87-5	1,2-Dichloropropane	21		1.0	1.0
124-48-1	Dibromochloromethane	18		1.0	1.0
79-00-5	1,1,2-Trichloroethane	20		1.0	1.0
127-18-4	Tetrachloroethene	24		1.0	1.0
108-90-7	Chlorobenzene	20		1.0	1.0
75-69-4	Trichlorofluoromethane	18		1.0	1.0
107-06-2	1,2-Dichloroethane	19		1.0	1.0
71-55-6	1,1,1-Trichloroethane	19		1.0	1.0
75-27-4	Dichlorobromomethane	18		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	21		1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	21		1.0	1.0
563-58-6	1,1-Dichloropropene	22		1.0	1.0
75-25-2	Bromoform	16		1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	20		1.0	1.0
71-43-2	Benzene	20		1.0	1.0
108-88-3	Toluene	23		1.0	1.0
100-41-4	Ethylbenzene	21		1.0	1.0
74-87-3	Chloromethane	19		1.0	1.0
74-83-9	Bromomethane	17		1.0	1.0
75-01-4	Vinyl chloride	16		1.0	1.0
75-00-3	Chloroethane	18		1.0	1.0
75-35-4	1,1-Dichloroethene	18		1.0	1.0
156-60-5	trans-1,2-Dichloroethene	18		1.0	1.0
79-01-6	Trichloroethene	20		1.0	1.0
95-50-1	1,2-Dichlorobenzene	23		1.0	1.0
541-73-1	1,3-Dichlorobenzene	21		1.0	1.0
106-46-7	1,4-Dichlorobenzene	20		1.0	1.0
1634-04-4	Methyl tert-butyl ether	19		1.0	1.0

Client Sample ID:	LCS 420-124409/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124409/1
Analysis Method:	8260C	Lab File ID:	X090503.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/05/2018 09:39
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
136777-61-2	m-Xylene & p-Xylene	41		2.0	2.0
95-47-6	o-Xylene	20		1.0	1.0
156-59-2	cis-1,2-Dichloroethene	18		1.0	1.0
74-95-3	Dibromomethane	19		1.0	1.0
96-18-4	1,2,3-Trichloropropane	19		1.0	1.0
100-42-5	Styrene	20		1.0	1.0
75-71-8	Dichlorodifluoromethane	16		1.0	1.0
67-64-1	Acetone	38		5.0	5.0
75-15-0	Carbon disulfide	19		1.0	1.0
74-88-4	Iodomethane	18		1.0	1.0
78-93-3	2-Butanone (MEK)	41		1.0	1.0
108-05-4	Vinyl acetate	20		1.0	1.0
108-10-1	4-Methyl-2-pentanone (MIBK)	38		5.0	5.0
591-78-6	2-Hexanone	35		5.0	5.0
74-97-5	Chlorobromomethane	18		1.0	1.0
594-20-7	2,2-Dichloropropane	20		1.0	1.0
106-93-4	1,2-Dibromoethane	18		1.0	1.0
142-28-9	1,3-Dichloropropane	20		1.0	1.0
630-20-6	1,1,1,2-Tetrachloroethane	20		1.0	1.0
108-86-1	Bromobenzene	19		1.0	1.0
104-51-8	n-Butylbenzene	21		1.0	1.0
135-98-8	sec-Butylbenzene	20		1.0	1.0
98-06-6	tert-Butylbenzene	21		1.0	1.0
95-49-8	2-Chlorotoluene	19		1.0	1.0
106-43-4	4-Chlorotoluene	18		1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	21		5.0	5.0
87-68-3	Hexachlorobutadiene	23		1.0	1.0
98-82-8	Isopropylbenzene	20		1.0	1.0
99-87-6	p-Isopropyltoluene	23		1.0	1.0
91-20-3	Naphthalene	23		5.0	5.0
103-65-1	N-Propylbenzene	19		1.0	1.0
87-61-6	1,2,3-Trichlorobenzene	26		1.0	1.0

Client Sample ID:	LCS 420-124409/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	ent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124409/1
Analysis Method:	8260C	Lab File ID:	X090503.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/05/2018 09:39
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	DB-VRX 0.18 (um)	Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	124409		

CAS No.	Compound Name	Result	Q	RL	RL
120-82-1	1,2,4-Trichlorobenzene	26		1.0	1.0
108-67-8	1,3,5-Trimethylbenzene	20		1.0	1.0
95-63-6	1,2,4-Trimethylbenzene	19		1.0	1.0
1330-20-7	Xylenes, Total	61		1.0	1.0

Data Data Acq C Opera Sampl Misc ALS V	Path : C:\MS4\090518\ File : X090503.D on : 5 Sep 2018 9:39 tor : EA e : LCS LM=8260C BT= : VSTD020 Tial : 3 Sample Multipl	am MS40905187	Ą				
Quant Quant Quant QLast Respo	Time: Sep 05 10:17:38 20 Method : C:\MS4\METHODS\ Title : Method for the Update : Fri Aug 31 14:4 nse via : Initial Calibra	18 8260083118 analysis (9:06 2018 tion	3.M of 826	0 waters			
	Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Inte 1) 66)	rnal Standards Fluorobenzene Chlorobenzene-d5	6.653 13.195	2004 4350	2295136 1081236m	50.00	ug/L ug/L	0.01
93)	1,4-Dichlorobenzene-d4	16.460	5521	1028131	50.00	ug/L	0.00
Syst 40) Sp 69)	em Monitoring Compounds 1,2-Dichloroethane-d4 iked Amount 50.000 Toluene-d8	4.982 Range 77 11.017	1405 - 117 3569	677330 Recove: 1613072	46.18 ry = 55.32	ug/L 92.36% ug/L	0.01
82) 82	iked Amount 50.000 Bromofluorobenzene siked Amount 50.000	Range 74 14.865 Range 74	- 129 4949 - 119	Recove: 418519 Recove:	ry = 42.42 rv =	110.64% ug/L 84.84%	0.00
Taro	ret Compounds				- 1	Ov	alue
2)	Dichlorodifluoromethane Chloromethane Vipyl Chloride	1.230 1.324 1.425	53 88 126	360427 445092 392036m	16.42 19.21	ug/L ug/L #	99 96
5) 6)	Bromomethane Chloroethane	1.614	197 213	229357m 212583	16.91 17.54	ug/L ug/L ug/L	98
7) 8) 9)	Acetonitrile Acrylonitrile	2.007	338 462	30398m 95308	21.70 16.26	ug/L ug/L ug/L	96
10) 11)	Trichlorofluoromethane Diethyl ether	2.007 2.116	338 377	407221m 204590	18.01 19.27	ug/L ug/L	96
12) 13)	FREON 123A FC-113	1.896	303 512	254361m 253503m	16.02	ug/L ug/L	
14) 15) 16)	ACELONE IPA TBA	2.032 2.007 2.344	338 459	53820m 88715m 167470	162.82 178.69	ug/L ug/L ug/L	98
17)	Methyl acetate	2.470	504	194355	16.05	ug/L #	96
19)	Iodomethane	2.478	449	436634	18.09	ug/L ug/L	99
20)	1,1-Dichloroethene	2.302	444	401321	17.51	ug/L	99
22)	Carbon Disulfide	2.414	404 530	202000 614097m	19.40	ug/L ug/L	97
23)	trans-1,2-Dichloroethene	2.958	679	375968	18.42	ug/L	99
24) 25)	MIBE 1.1-Dichloroethane	3.097	729	699567 452520	18.71	ug/L ug/L	99 99
26)	Propionitrile	3.242	781	149240m	81.31	ug/L	
27)	Vinyl Acetate Chloroprepe	3.415	843 909	450424 453885	20.15	ug/L ug/L	99
29)	Hexane	3.686	940	296545	18.26	ug/L	98
30)	2-Butanone	3.725	954 978	50519m 855953	41.07	ug/L	100
32)	cis-1,2-Dichloroethene	3.845	997	363787	18.10	ug/L	99
33)	Methacrylonitrile	3.831	992 1065	445757	44.87	ug/L	98
35)	Chloroform	4.034	1085	408618	18.33	ug/L ug/L	97 95
36)	2,2-Dichloropropane	4.218	1131	304406	19.93	ug/L	99
37)	Methyl acrylate Isobutyl alcohol	4.299	$1160 \\ 1202$	1/189/ 93526m	19.59	ug/L ug/L	95
39)	Tetrahydrofuran	4.603	1269	29082m	18.03	ug/L	
41) 42)	1,2-Dichloroethane	5.119	$1454 \\ 1506$	330102 298163	18.89 19 11	ug/L ug/L	98 98
43)	1-Chlorobutane	5.320	1526	506221	21.28	ug/L	94
44)	1,1-Dichloropropene	5.660	1648	345730	21.62	ug/L	99
46)	Carbon Tetrachloride	5.947	1751	166462	18.34	ug/L ug/L	99 99

Data Path Data File	:	C:\MS4\090518\ X090503.D
Acq On	:	5 Sep 2018 9:39 am
Operator	:	EA
Sample	:	LCS LM=8260C BT=MS4090518A
Misc	:	VSTD020
ALS Vial	:	3 Sample Multiplier: 1

Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

47) Benzene 6.070 1795 1029768 20.42 ug/L 99 48) tert-Amyl methyl ether 6.697 2020 641093 19.52 ug/L 99 50) libromomethane 7.609 2347 219497 20.70 ug/L 100 51) 1richloroethene 7.605 2403 223811 20.14 ug/L 97 52) Bromodichloromethane 7.891 2448 127532 18.18 ug/L 97 53) 2-Nitropropane 8.014 2492 27430m 19.24 ug/L 100 54) Methyl methacrylate 8.473 2800 133002 20.34 ug/L 100 55) Methyl methacrylate 8.473 2807 13002 20.34 ug/L 100 56) Methyl cylohexane 9.076 2873 399550 19.48 ug/L 88 61, 1, 2-Trichloroerbane 10.813 3496 126938 20.39 ug/L 90 61) 1, 1, 2-Trichloroethane 11.52 3761 44399 18.26 ug/L 98 62) Dibromochloromethane 11.52 </th <th>Compound</th> <th></th> <th>R.T.</th> <th>Scan</th> <th>Response</th> <th>Conc Ur</th> <th>its I</th> <th>Dev</th> <th>(Min)</th>	Compound		R.T.	Scan	Response	Conc Ur	its I	Dev	(Min)
48) tert-Amyl methyl ether 6.697 2020 641093 19.28 ug/L 95 50) 1,2-Dichloropropane 7.609 2347 219497 20.70 ug/L 100 51) Trichloroptene 7.652 2434 223811 20.14 ug/L 97 53) 2-Mitropropane 8.014 2492 27430m 19.24 ug/L 96 54) 1,4-Dioxane 8.014 2492 27430m 19.24 ug/L 96 54) 1,4-Dioxane 8.016 2481 20335 19.48 ug/L 99 55) Tartopropane 9.076 27.67 22.65 ug/L 98 65) trans-1,3-Dichloropropene 10.613 3433 111956 20.03 ug/L 98 61) 1,2-Trichloroptropane 11.246 3651 201928 19.32 ug/L 98 63) Ethyl methacrylate 11.628 3788 161427 17.92 ug/L 98 64) 1,2-Dibromochloromethane 11.628 3784 19	47) Benzene		6.070	1795	1029768	20.42	ug/L		99
49) Dibromomethane 7.447 2289 120304m 19.28 ug/L 100 51) Trichloroethene 7.65 2403 223811 20.14 ug/L 96 52) Bromodichloromethane 7.867 2403 223811 20.14 ug/L 96 53) 2-Nitropropane 8.014 2492 27430m 19.24 ug/L 96 54) 1.4-Dioxane 8.492 2648 10336m 22.35 ug/L 99 55) Methylcyclohexane 9.076 2873 399550 19.44 ug/L 99 56) Clarosthylvinylether 9.422 2997 69170 22.86 ug/L 98 57) 2-Chlorosthylvinylether 9.422 2997 69170 22.86 ug/L 98 58) trans-1,3-Dichloropropane 10.843 3496 12638 20.39 ug/L 98 611 1,3-Dichloropropane 11.52 3761 4399 18.26 ug/L 99	48) tert-Amyl methy	l ether	6.697	2020	641093	19.52	ug/L		95
50)1, Z-Dichloropropane7.609234721949720.70ug/L10051)Trichloroethene7.765240322381120.14ug/L9752)Bromodichloromethane7.891244812753218.18ug/L9653)2-Nitropropane8.014249227430m19.24ug/L10054)1,4-Dioxane8.673280013300220.34ug/L9957)2-Chloroethylvinylether9.076287339955019.48ug/L9858)cis-1,3-Dichloropropene9.7013097717862421.36ug/L9859)trans-1,3-Dichloropropene10.638343311195620.09ug/L9860)1,1,2-Trichloroethane11.55237614433918.26ug/L9861)1,2-Dibromochloromethane11.55237614433918.26ug/L9863)Ethylmethacrylate11.628378816142717.92ug/L9864)1,2-Dibromochloromethane11.313610798.6022.62ug/L95714-Methyl-2-Pentanone11.313610798.6022.62ug/L9672)1,1,1,2-Tetrachloroethane13.237435541413119.54ug/L9873)Chlorobenzane13.327435641413119.54ug/L9874)Methyl-2-Pentanone13.237435641	49) Dibromomethane		7.447	2289	120304m	19.28	ug/L		
51) Trichloroethene 7.765 2403 22311 20.14 ug/L 97 52) Bromodichloromethane 7.891 2448 127532 18.18 ug/L 96 53) 2-Nitropropane 8.014 2492 27430m 19.24 ug/L 100 55) Methyl methacrylate 8.673 2800 133002 20.34 ug/L 100 56) Methyleyclohexane 9.076 2873 399550 19.48 ug/L 98 57) 2-Choroethylvinylether 9.422 2997 69170 22.86 ug/L 98 59) trans-1,3-Dichloropropene 10.638 333111956 20.90 ug/L 98 60) 1,1,2-Trichloroethane 11.552 3761 44399 18.26 ug/L 97 611 1,3-Dichloropotopane 11.628 3786 19164 16.48 ug/L 97 63) Ethyl methacrylate 11.628 3786 19164 16.48 ug/L 98 64) 1,2-Dichoromethane 11.113 3101 79862 22.62 ug/L 98 71 H-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug	50) 1,2-Dichloropro	pane	7.609	2347	219497	20.70	ug/L		100
52) Bromodichloromethane 7.891 2448 127532 18.18 ug/L 96 53) 2-Nitropropane 8.0449 2648 10336m 228.15 ug/L 10 55) Methyl methacrylate 8.073 2800 133002 20.34 ug/L 100 56) Methyl methacrylate 9.076 2873 399550 19.48 ug/L 99 57) 2-Chloroethylvinylether 9.076 2873 399550 19.48 ug/L 98 610 1,1,2-Trichloropethene 10.638 3433 111956 20.03 ug/L 98 611 1,2-Trichloroethane 11.523 3761 44399 18.26 ug/L 98 631 Bthyl methacrylate 11.628 3788 161427 17.92 ug/L 98 631 1,2-Dibromoethane 11.012 3840 91362 18.45 ug/L 99 631 1,2-Bertachloroethane 11.14 3819 9221.46.12 37.79 ug/L 99 701 Tetrachloroethane 12.322 4012 24607 23.51 ug/L 99<	51) Trichloroethene		7.765	2403	223811	20.14	ug/L		97
53) 2-Nitropropane 8.014 2492 27430m 19.24 ug/L 55) Methyl methacrylate 8.873 2800 133002 20.34 ug/L 100 56) Methyl cyclohexane 9.076 2873 399550 19.48 ug/L 98 57) 2-Chloroethylvinylether 9.422 2997 69170 22.86 ug/L 98 58) crans-1,3-Dichloropropene 10.638 3433 11956 20.90 ug/L 98 60) 1,1,2-Trichloroethane 10.813 3466 126838 20.03 ug/L 97 62) Dibromochloromethane 11.522 3761 44399 18.26 ug/L 98 63) Ethyl methacrylate 11.628 3788 161427 17.92 ug/L 98 64) 1,2-Dibromoethane 11.912 3890 91362 18.45 ug/L 99 767 4-Methyl-2-Pentanone 10.116 3246 427612 37.9 ug/L 98 71) Tetrachloroethene 12.252 40	52) Bromodichlorome	thane	7.891	2448	127532	18.18	ug/L		96
54)1,4-Dioxane8.449264810336m228.15ug/L55)Methyl methacrylate8.673280013300220.34ug/L9957)2-Chloroethylinylether9.076287339955019.48ug/L9858)cis-1,3-Dichloropropene9.701309717862421.36ug/L9859)trans-1,3-Dichloropropene10.638343311195620.90ug/L986011,3-Dichloroethane10.813349612683820.03ug/L9762)Dibromochloromethane11.55237614439918.26ug/L9863)Ethyl methacrylate11.628378816142717.92ug/L9864)1,2-Dibromochloroethane11.91238909136218.45ug/L9767)4-Methyl-2-Pentanone10.116324642761237.79ug/L9868)2-Hexanone11.7143819192717m35.46ug/L9970)Toluene13.3150433411560919.81ug/L9971)terachloroethane13.329433816049521.57ug/L9872)1,1,2,2-Tetrachloroethane13.8244001119065340.78ug/L9874)1-Chlorobenzane13.8244600119065340.78ug/L9875)ttylbenzene14.30244777536920.69ug/L98<	53) 2-Nitropropane		8.014	2492	27430m	19.24	ug/L		
55)Methyl methacrylate8.873280013300220.34ug/L10056)Methyl cyclohexane9.076287333955019.48ug/L9957)2-Chloroethylvinylether9.42229976917022.86ug/L9858)crans-1, 3-Dichloropropene10.638343311195620.90ug/L9860)1, 1, 2-Trichloroethane10.813349612683820.03ug/L9861)1, 3-Dichloropropane11.226361520192819.53ug/L9863)Ethyl methacrylate11.628378816142717.92ug/L9864)1,2-Dibromoethane11.91238909136218.45ug/L9565)Bromoform13.84745841916416.48ug/L9566)Bromoform13.161324642761237.79ug/L9870)Toluene11.31361079862222.62ug/L9971)Tetrachloroethane13.150433411560919.81ug/L9972)1, 1, 2-Tetrachloroethane13.237436541413119.44ug/L9973)Chlorohexane13.602449677536920.69ug/L9974)1-Chlorohexane13.602449677536920.69ug/L9875)p-Kylene13.602449677536920.69ug/L97 <t< td=""><td>54) 1,4-Dioxane</td><td></td><td>8.449</td><td>2648</td><td>10336m</td><td>228.15</td><td>ug/L</td><td></td><td></td></t<>	54) 1,4-Dioxane		8.449	2648	10336m	228.15	ug/L		
56) Methylcyclohexane 9.076 2873 399550 1.48 ug/L 98 57) 2-chloroethylvinylether 9.422 297 6917 22.86 ug/L 98 58) ctsn-1,3-Dichloropropene 10.638 3431 11156 20.90 ug/L 98 60) 1,1,2-Trichloroethane 10.813 3496 126838 20.03 ug/L 97 62) Dibromochloromethane 11.522 3761 44399 18.26 ug/L 98 63) Ethyl methacrylate 11.628 3761 44399 18.26 ug/L 98 64) 1,2-Dibromochoromethane 11.912 3890 91362 18.45 ug/L 98 65) Bromoform 13.847 4584 19164 16.48 ug/L 98 661 2-Hexanone 11.113 3610 798692 25.62 ug/L 99 71 Tetrachloroethane 13.250 4334 115609 18.1 <ug l<="" td=""> 98 72) 1,1,2,2-Tetrachloroethane 13.329 4398</ug>	55) Methyl methacry	late	8.873	2800	133002	20.34	ug/L		100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56) Methylcyclohexa	ne	9.076	2873	399550	19.48	ug/L		99
58) cis-1,3-Dichloropropene 59) trans-1,3-Dichloropropene 60) 1,1,2-Trichloroethane 10.813 3496 126838 20.03 ug/L 61) 1,3-Dichloropropane 11.246 3651 201928 19.53 ug/L 98 63) Ethyl methacrylate 11.622 3781 161427 17.92 ug/L 98 64) 1,2-Dibromoethane 11.552 3761 44399 18.26 ug/L 98 64) 1,2-Dibromoethane 11.628 3788 161427 17.92 ug/L 98 65) Bromoform 13.847 4584 19164 16.48 ug/L 97 66) Bromoform 13.847 4584 19164 16.48 ug/L 97 67) 4-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug/L 98 68) 2-Hexanone 11.714 3819 192717m 35.46 ug/L 99 71) Tetrachloroethane 12.252 402 246074 23.51 ug/L 99 72) 1,1,2-Tetrachloroethane 13.237 4365 414131 19.54 ug/L 99 74) 1-Chlorohexane 13.329 4398 160495 21.57 ug/L 94 75) Ethylbenzene 13.602 4496 775369 20.157 ug/L 94 76) mp-Xylene 13.602 4496 775369 20.157 ug/L 97 79) 1,1,2,2-Tetrachloroethane 14.362 4777 753369 20.17 ug/L 97 79) 1,1,2,2-Tetrachloroethane 14.374 477 4882 28856m 16.06 ug/L 99 71) Tetras-1,4-Dichloroethane 14.375 4837 156472 18.64 ug/L 99 80) 1,2,3-Trichloroptopane 14.678 4882 28856m 16.06 ug/L 83) Isopropylbenzene 15.638 5208 467119 17.79 ug/L 98 807 1,2,2-Tetrachloroethane 15.638 5208 467119 17.79 ug/L 98 807 1,2,5-Trimethylbenzene 15.638 5208 467119 17.79 ug/L 98 807 1,2,5-Trimethylbenzene 15.638 521 15.23 ug/L 99 81 1,3,5-Trimethylbenzene 15.638 523 303 801718 19.64 ug/L 99 81 1,3,5-Trimethylbenzene 16.399 549 1021449 19.57 ug/L 99 90 tetr-Butylbenzene 16.399 549 1021449 19.57 ug/L 99 91 1,2,4-Trimethylbenzene 16.395 549 1021449 19.57 ug/L 99 90 tetr-Butylbenzene 16.395 549 1021449 19.57 ug/L 99 91 1,2-Dichorobenzene 16.395 549 138722m 22.73	57) 2-Chloroethylvi	nylether	9.422	2997	69170	22.86	ug/L	#	88
59) trans-1, 3-Dichloropropene 10.638 3433 111956 20.90 ug/L 98 60) 1, 2-Trichloropropane 11.246 3651 201928 19.53 ug/L 97 62) Dibromochloromethane 11.552 3761 44399 18.26 ug/L 98 63) Ethyl methacrylate 11.628 3788 161427 17.92 ug/L 98 64) 1,2-Dibromoethane 11.912 3890 91362 18.45 ug/L 98 65) Bromoform 13.847 4584 19164 16.44 ug/L 98 66) 2-Hexanone 10.116 3246 427612 37.79 ug/L 98 70) Toluene 11.313 1610 798692 22.62 20 ug/L 99 71) Tetrachloroethene 12.252 4012 246074 33.51 ug/L 98 71) 1,1.2-Zetrachcloroethane 13.504 3434 11550 31.51 4131 19.54 ug/L 99 71) 1,	58) cis-1,3-Dichlor	opropene	9.701	3097	178624	21.36	ug/L		98
60) 1, 1, 2-Trichloroethane 10.813 3496 126838 20.03 ug/L 100 61) 1, 3-Dichloropropane 11.246 3651 201928 19.53 ug/L 98 63) Ethyl methacrylate 11.628 3788 161427 17.92 ug/L 98 64) 1,2-Dibromoethane 11.912 3800 91362 18.45 ug/L 95 65) Bromoform 13.847 4584 19164 16.48 ug/L 98 64) 1,2-Dibromoethane 11.912 3800 91362 18.45 ug/L 98 670 Toheme 11.313 610 798692 22.62 ug/L 99 71 Tetrachloroethane 13.237 4365 414131 19.54 ug/L 98 73 Chlorobenzane 13.3237 4365 141431 19.64 ug/L 99 74 1-Chlorohexane 13.329 4308 160495 20.17 ug/L 94 75 Ethylbenzene 13.602 4477 73369 <td>59) trans-1,3-Dichl</td> <td>oropropene</td> <td>10.638</td> <td>3433</td> <td>111956</td> <td>20.90</td> <td>ug/L</td> <td></td> <td>98</td>	59) trans-1,3-Dichl	oropropene	10.638	3433	111956	20.90	ug/L		98
61) 1,3-Dichloropropane 11.246 3651 201928 19.53 ug/L 99 62) Dibromochloromethane 11.552 3761 44399 18.26 ug/L 98 63) Ethyl methacrylate 11.628 3781 41399 18.45 ug/L 95 65) Bromoform 13.847 4584 19164 16.48 ug/L # 67) 4-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug/L 98 68) 2-Hexanone 11.313 3610 798692 22.62 ug/L 99 70) Toluene 11.313 3610 798692 22.62 ug/L 99 71) Tetrachloroethane 13.237 4365 414131 19.54 ug/L 98 73) Chlorobezane 13.602 4496 775369 20.69 ug/L 90 74) 1.610ropropane 14.302 4773 38021 19.64 ug/L 98 78) o-Xylene 13.4364 7774 203348	60) 1,1,2-Trichloro	ethane	10.813	3496	126838	20.03	ug/L		100
62) Dibromochloromethane 11.522 3761 44399 18.26 ug/L 98 63) Ethyl methacrylate 11.628 3788 161427 17.92 ug/L 98 64) 1,2-Dibromoethane 11.912 3890 91362 18.45 ug/L 95 65) Bromoform 13.847 4584 19164 16.48 ug/L 95 66) 2-Hexanone 10.116 3246 427612 37.79 ug/L 98 67) 4-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug/L 98 68) 2-Hexanone 11.714 3819 192717m 35.46 ug/L 99 71) Tetrachloroethane 13.150 4334 115609 19.81 ug/L 98 73) Chlorobenzene 13.329 4398 160495 21.57 ug/L 94 75) Ethylbenzene 13.602 4406 775369 20.69 ug/L 98 78) n-Rylene 13.892 4600 1190653	61) 1,3-Dichloropro	pane	11.246	3651	201928	19.53	ug/L		97
63) Ethyl methacrylate 11.628 3/88 16142/ 17.92 ug/L 98 64) 1,2-Dibromoethane 11.912 3890 91362 18.45 ug/L 95 65) Bromoform 13.847 4584 19164 16.48 ug/L 97 67) 4-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug/L 98 68) 2-Hexanone 11.714 3810 92717m 35.46 ug/L 99 71) Tetrachloroethane 12.252 4012 246074 23.51 ug/L 99 72) 1,1,1,2-Tetrachloroethane 13.237 4365 414131 19.54 ug/L 98 73) Chlorobenzene 13.329 4360 1190653 40.78 ug/L 90 74) 1-Chlorohexane 13.602 4496 775369 20.69 ug/L 100 76) m,p-Xylene 13.802 4600 1190653 40.78 ug/L 98 80 1,2,2-Tetrachloroethane 14.377 773369 20.27 ug/L 98 81 sogropylbenzene 15.634 8157367 20.27 ug/L 98	62) Dibromochlorome	thane	11.552	3761	44399	18.26	ug/L		98
64) 1,2-Dibromoethane 11,912 3890 91362 18.48 ug/L 95 65) Bromoform 13.847 4584 19164 16.48 ug/L 97 67) 4-Methyl-2-Pentanone 10.116 3246 427612 37.79 ug/L 98 68) 2-Hexanone 11.131 3610 798692 22.62 ug/L 99 70) Toluene 11.313 610 798692 22.62 ug/L 99 71) Tetrachloroethene 12.252 4012 246074 23.51 ug/L 99 71) Tetrachloroethane 13.237 4365 414131 19.54 ug/L 99 73) Chorobenzene 13.329 4398 160495 21.57 ug/L 94 74) 1-Chlorohexane 13.329 4398 160495 21.57 ug/L 94 74) 1-Chlorohexane 13.329 4308 1190653 40.78 ug/L 98 75) Ethylbenzene 13.602 77733630 20.17 ug/L 98 76) 1,1,2,2-Tetrachloroethane 14.533 4837 15	63) Ethyl methacryl	ate	11.628	3788	161427	17.92	ug/L		98
665Bromoform13.84745841916416.48ug/L986714-Methyl-2-Pentanone10.116324642761237.79ug/L9868)2-Hexanone11.7143819192717m35.46ug/L9970)Toluene11.131361079869222.62ug/L9971)Tetrachloroethene12.252401224607423.51ug/L9972)1,1,2-Tetrachloroethane13.237436541413119.54ug/L9873)Chlorobenzene13.329439816049521.57ug/L9474)1-Chlorohexane13.8924600119065340.78ug/L9875)Ethylbenzene13.8924600119065340.78ug/L9779)1,1,2,2-Tetrachloroethane14.377477420334819.69ug/L9880)1,2,3-Trichloropropane14.553483715647218.64ug/L9781)trans-1,4-Dichloro-2-b14.678488228856m16.06ug/L83)Isopropylbenzene15.434515390717918.53ug/L9884)Bromobenzene15.586501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9887)4-Chlorotoluene15.586520846711917.79ug/L9887) <td>64) 1,2-Dibromoetha</td> <td>ne</td> <td>11.912</td> <td>3890</td> <td>91362</td> <td>18.45</td> <td>ug/L</td> <td></td> <td>95</td>	64) 1,2-Dibromoetha	ne	11.912	3890	91362	18.45	ug/L		95
667) 4-Metnyl-2-Pentanone 10.116 3246 42/612 37.79 Ug/L 98 68) 2-Hexanone 11.714 3819 192717m 35.46 Ug/L 99 70) Toluene 11.131 3610 798692 22.62 ug/L 99 71) Tetrachloroethane 13.237 4365 414131 19.54 ug/L 94 73) Chlorobenzene 13.237 4365 414131 19.54 ug/L 94 74) 1-Chlorohexane 13.329 4305 160495 21.57 ug/L 94 75) Ethylbenzene 13.602 4496 773369 20.69 ug/L 98 76) m, p-Xylene 13.892 4600 1190653 40.78 ug/L 90 79) 1,1,2,2-Tetrachloroethane 14.377 4774 203348 19.69 ug/L 98 801 r,2,3-Trichloropropane 14.678 4882 28856m 16.06 ug/L 97 81) trans-1, 4-Dichloro-2-b 14.678 4882 <td>65) Bromoform</td> <td></td> <td>13.847</td> <td>4584</td> <td>19164</td> <td>16.48</td> <td>ug/L</td> <td>Ħ</td> <td>97</td>	65) Bromoform		13.847	4584	19164	16.48	ug/L	Ħ	97
688 2-Hexanone 11.714 3819 19271/m 35.46 Ug/L 70) Toluene 11.131 3610 798692 22.62 Ug/L 99 71) Tetrachloroethene 12.252 4012 246074 23.51 Ug/L 99 72) 1,1,1,2-Tetrachloroethane 13.150 4334 115609 19.81 Ug/L 99 73) Chlorobenzene 13.232 4398 160495 21.57 Ug/L 94 75) Ethylbenzene 13.602 4496 773369 20.69 Ug/L 98 76) m,p-Xylene 13.892 4001 1190653 40.78 Ug/L 98 77) Styrene 14.302 4747 383021 19.64 Ug/L 98 80) 1,2,2-Tetrachloroethane 14.377 4777 753369 20.17 Ug/L 98 80) 1,2,3-Trichloropropane 14.678 4882 2886m 16.06 Ug/L 99 81 trans-1,4-Dichloro-2-b 14.678 4882 20.27	67) 4-Methyl-2-Pent	anone	10.116	3246	427612	37.79	ug/L		98
701 Toluene 11.131 3610 79692 22.62 Ug/L 99 711 Tetrachloroethane 13.150 4334 115609 19.81 ug/L 99 721 1.1.1,1,2-Tetrachloroethane 13.237 4365 414131 19.54 ug/L 99 731 Tetrachloroethane 13.237 4365 414131 19.54 ug/L 94 741 1-Chlorohexane 13.237 4365 414131 19.54 ug/L 94 755 Ethylbenzene 13.602 4496 775369 20.69 ug/L 100 76 m,p-Xylene 13.892 4600 1190653 40.78 ug/L 98 79 1,1,2,2-Tetrachloroethane 14.377 4774 203348 19.69 ug/L 98 80 1,2,3-Trichloropopane 14.573 4837 156472 18.64 ug/L 97 81 trans-1,4-Dichloro-2-b 14.678 4882 285668 16.06 ug/L 98 82 Deobenzene 15.058 5018 <td>68) 2-Hexanone</td> <td></td> <td>11.714</td> <td>3819</td> <td>192717m</td> <td>35.46</td> <td>ug/L</td> <td></td> <td>~ ~</td>	68) 2-Hexanone		11.714	3819	192717m	35.46	ug/L		~ ~
71) Tetrachloroethene 12.252 4012 23.51 ug/L 99 72) 1,1,1,2-Tetrachloroethane 13.150 4334 115609 19.81 ug/L 98 73) Chlorobenzene 13.237 4365 414131 19.54 ug/L 99 74) 1-Chlorohexane 13.329 4398 160495 21.57 ug/L 94 75) Ethylbenzene 13.602 4496 775369 20.69 ug/L 98 76) m,p-Xylene 13.892 4600 1190653 40.78 ug/L 97 79) 1,1,2,2-Tetrachloroethane 14.377 4774 203348 19.69 ug/L 98 80) 1,2,3-Trichloropropane 14.678 482 28856m 16.06 ug/L 98 81) trans-1,4-1-drichoro-2-b 14.678 4954 967363 20.27 ug/L 98 84) Bromobenzene 15.058 5018 25468 18.94 ug/L 97 95) n-Propylbenzene 15.476 5168 <td< td=""><td>70) Toluene</td><td></td><td>11.131</td><td>3610</td><td>798692</td><td>22.62</td><td>ug/L</td><td></td><td>99</td></td<>	70) Toluene		11.131	3610	798692	22.62	ug/L		99
72) 1,1,1,2-Tetrachloroethame 13,150 4334 11500 19,81 ug/L 98 73) Chlorobenzene 13,327 4365 414131 19,54 ug/L 94 75) Ethylbenzene 13,329 4398 160495 21,57 ug/L 94 75) Ethylbenzene 13,602 4496 775369 20.69 ug/L 100 76) m,Pxylene 13,602 4496 775369 20.69 ug/L 98 78) o-Xylene 14,302 4747 383021 19.64 ug/L 98 80) 1,2,3-Trichloropropane 14,553 4837 156472 18.64 ug/L 98 81) trans-1,4-Dichloro-2-b 14.678 4882 28856m 16.06 ug/L 98 83) Isopropylbenzene 14.879 4954 967363 20.27 ug/L 98 84) Bromobenzene 15.434 5153 907179 18.53 ug/L 98 87) A-Chlorotoluene 15.434 5168 <td< td=""><td>/l) letrachloroethe</td><td>ne</td><td>12.252</td><td>4012</td><td>246074</td><td>23.51</td><td>ug/L</td><td></td><td>99</td></td<>	/l) letrachloroethe	ne	12.252	4012	246074	23.51	ug/L		99
74) 1-Chloroberaene 13.23/4565 414131 19.54 ug/L 94 74) 1-Chloroberaene 13.602 4496 775369 20.69 ug/L 100 75) Ethylbenzene 13.602 4496 775369 20.69 ug/L 100 76) m,p-Xylene 13.892 4600 1190653 40.78 ug/L 98 78) o-Xylene 14.302 4747 383021 19.64 ug/L 98 80) 1,2,3-Trichloropropane 14.553 4837 156472 18.64 ug/L 98 81) trans-1,4-Dichloro-2-b 14.678 4882 28856m 16.06 ug/L 98 84) Bromobenzene 15.058 5018 255468 18.94 ug/L 97 85) n-Propylbenzene 15.476 5168 581622 18.83 ug/L 98 87) 4-Chlorotoluene 15.588 5208 467119 17.79 ug/L 100 88) Pentachloroethane 15.769 5273 35284	72) 1,1,1,2-Tetrach	loroethane	13.150	4334	115609	19.81	ug/L		98
74) 1-Chloronexane 13.329 4398 100493 21.37 ug/L 34 75) Ethylbenzene 13.602 4496 775369 20.69 ug/L 100 76) m,p-Xylene 13.892 4600 1190653 40.78 ug/L 100 77) Styrene 14.302 4747 383021 19.64 ug/L 98 80 -Xylene 14.302 47747 203348 19.69 ug/L 98 80) 1,2,3-Trichloropropane 14.573 4837 156472 18.64 ug/L 99 81) trans-1,4-Dichloro-2-b 14.678 4882 28856m 16.06 ug/L 98 84) Bromobenzene 14.479 4954 967363 20.27 ug/L 98 85) n-Fropylbenzene 15.434 5153 907179 18.53 ug/L 98 861 2Chlorotoluene 15.434 5153 907179 18.53 ug/L 98 871 4-Chlorotoluene 15.588 5208 467119 <td>73) Chlorobenzene</td> <td></td> <td>13.23/</td> <td>4365</td> <td>414131</td> <td>19.54</td> <td>ug/L</td> <td></td> <td>99</td>	73) Chlorobenzene		13.23/	4365	414131	19.54	ug/L		99
75) Ethylpenzene 13.802 4496 //3389 20.69 ug/L 100 76) m, p-Xylene 14.302 4747 383021 19.64 ug/L 98 78) o-Xylene 14.302 4747 383021 19.64 ug/L 97 79) 1,1,2,2-Tetrachloroethane 14.377 4774 203348 19.69 ug/L 98 80) 1,2,3-Trichloropropane 14.553 4837 156472 18.64 ug/L 99 81) trans-1,4-Dichloro-2-b 14.678 4882 28856m 16.06 ug/L 98 83) Isopropylbenzene 15.434 5153 907179 18.53 ug/L 99 861 Bromobenzene 15.434 5153 907179 18.53 ug/L 98 87) 4-Chlorotoluene 15.485 5208 467119 17.79 ug/L 100 88) 1,3,5-Trimethylbenzene 16.131 5403 715111 20.58 ug/L 100 91 1,2,4-Trimethylbenzene 16.399 5499 387698 21.44 ug/L 100 92) sec-Butylbenzene 16.399 5499 387698 21.44 ug/L	74) I-Chloronexane		13.329	4398	160495	21.57	ug/L		100
76)m, p-Aylene13.892400011905340.76Ug/L10077)Styrene14.302474738302119.64Ug/L9878)o-Xylene14.386477775336920.17Ug/L9779)1,1,2,2-Tetrachloroethane14.377477420334819.64Ug/L9880)1,2,3-Trichloropropane14.573483715647218.64Ug/L9881)trans-1,4-Dichloro-2-b14.678488228856m16.06Ug/L9884)Bromobenzene15.058501825546818.94Ug/L9785)n-Propylbenzene15.476516858162218.83Ug/L9884)Bromobenzene15.476516858162218.83Ug/L9887)4-Chlorotoluene15.588520846711917.79Ug/L10088)1,3,5-Trimethylbenzene15.76952733528417.68Ug/L9889)Pentachloroethane15.769546279859719.20Ug/L10091)1,2,4-Trimethylbenzene16.3995499102144919.57Ug/L9994)1,3-Dichlorobenzene16.3995499102144919.57Ug/L9994)1,3-Dichlorobenzene16.488553137747919.98Ug/L9897)4-Isopropyltoluene16.661559386361422.59Ug/L9	75) Ethylbenzene		13.602	4496	1100(52	20.69	ug/L		100
1/1Styrene14.302474736302119.64Ug/L9878o-Xylene14.386477775336920.17Ug/L9791,1,2,2-Tetrachloroethane14.377477420334819.69ug/L9880)1,2,3-Trichloropropane14.573488715647218.64ug/L9981)trans-1,4-Dichloro-2-b14.678488228856m16.06ug/L9883)Isopropylbenzene14.879495496736320.27ug/L9884)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9887)4-Chlorotoluene15.434515390717918.53ug/L9887)4-Chlorotoluene15.585530380171819.64ug/L9889)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.3995499102144919.57ug/L10091)1,2,4-Trimethylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.661559386361422.59ug/L10095)Benzyl chloride16.661559386361422.59ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L98 <td>76) m,p-Xylene</td> <td></td> <td>14 202</td> <td>4000</td> <td>1190055</td> <td>40.70</td> <td>ug/L</td> <td></td> <td>100</td>	76) m,p-Xylene		14 202	4000	1190055	40.70	ug/L		100
76)0-Aylene14.3664/7/77336920.17ug/L9879)1,1,2,2-Tetrachloroethane14.377477420334819.69ug/L9880)1,2,3-Trichloropropane14.553483715647218.64ug/L9981)trans-1,4-Dichloro-2-b14.678488228856m16.06ug/L83)Isopropylbenzene14.879495496736320.27ug/L9884)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9986)2-Chlorotoluene15.476516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.399549938769821.44ug/L9994)1,3-Dichlorobenzene16.489551715942023.86ug/L9994)1,4-Dichlorobenzene16.661559386361422.59ug/L9995)1,2-Dichlorobenzene16.661559386361422.59ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L	77) Styrene		14.302	4/4/	383021	19.04	ug/L		90 07
791,1,2,2-1etrachloroberhane14.37/4/220334819.69ug/L9980)1,2,3-Trichloropropane14.553483715647218.64ug/L9981)trans-1,4-Dichloro-2-b14.678488228856m16.06ug/L83)Isopropylbenzene14.879495496736320.27ug/L9884)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9887)4-Chlorotoluene15.434516358162218.83ug/L9887)4-Chlorotoluene15.76952733528417.68ug/L9889)Pentachloroethane15.76952733528417.68ug/L9090)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.399549938769821.44ug/L10092)sec-Butylbenzene16.399549938769821.44ug/L10095)Benzyl chloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.887567449789922.73ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L98 <td>78) 0-Xylene</td> <td>levesthere</td> <td>14.380</td> <td>4///</td> <td>10000</td> <td>20.17</td> <td>ug/L</td> <td></td> <td>97</td>	78) 0-Xylene	levesthere	14.380	4///	10000	20.17	ug/L		97
81)17.2,3-111ch1010p10patte14.33313343713047218.044218.04421981)trans-1,4-Dichloro-2-b14.679488228856m16.06ug/L83)Isopropylbenzene14.879495496736320.27ug/L9884)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9986)2-Chlorotoluene15.476516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.852530380171819.64ug/L9889)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.3995499102144919.57ug/L10095)Benzylchloride16.488553137747919.98ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)n,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.188576470655621.36 </td <td>(9) 1,1,2,2-letrach</td> <td>TOLOECHANE</td> <td>14.3//</td> <td>4//4</td> <td>203340</td> <td>19.09</td> <td>ug/L</td> <td></td> <td>90</td>	(9) 1,1,2,2-letrach	TOLOECHANE	14.3//	4//4	203340	19.09	ug/L		90
83)Isopropylbenzene14.070495220030m10.000ug/L84)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9887)4-Chlorotoluene15.476516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.852530380171819.64ug/L9889)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.489551715942023.86ug/L9095)Benzyl chloride16.488553137747919.98ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L92100)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L10099)n-Butylbenzene17.138576470655621.36ug/L100 <td>(0) $(1,2,3-1)$</td> <td>propane</td> <td>14.555</td> <td>4037</td> <td>10472 28856m</td> <td>16.04</td> <td>ug/L</td> <td></td> <td>33</td>	(0) $(1,2,3-1)$	propane	14.555	4037	10472 28856m	16.04	ug/L		33
84)Bromobenzene14.879493490730320.2740719084)Bromobenzene15.058501825546818.94ug/L9785)n-Propylbenzene15.434515390717918.53ug/L9887)4-Chlorotoluene15.434516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.852530380171819.64ug/L9890)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.296546279859719.20ug/L10092)sec-Butylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.449551715942023.86ug/L9995)Benzylchloride16.488553137747919.98ug/L9897)4-Isopropyltoluene16.64559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachlorobenzene19.0456448412233m26.28 <td< td=""><td>01) Ulans-1,4-Dichi</td><td>010-2-0</td><td>14.070</td><td>4002</td><td>200000</td><td>20.00</td><td>ug/D</td><td></td><td>0.0</td></td<>	01) Ulans-1,4-Dichi	010-2-0	14.070	4002	200000	20.00	ug/D		0.0
84)Biomobenzene13.03020010020010010.041000085)n-Propylbenzene15.434515390717918.53ug/L9986)2-Chlorotoluene15.476516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.76952733528417.68ug/L9890)tert-Butylbenzene16.131540371511120.58ug/L9091)1,2,4-Trimethylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.661559386361422.59ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L9899)n-Butylbenzene17.138567449789922.73ug/L9899)n-Butylbenzene17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.4536594138722m22.78ug/L <td>84) Bromobongono</td> <td>e</td> <td>15 058</td> <td>5018</td> <td>255468</td> <td>18 9/</td> <td>ug/L</td> <td></td> <td>97</td>	84) Bromobongono	e	15 058	5018	255468	18 9/	ug/L		97
86)2-Chlorotoluene15.476516858162218.83ug/L9887)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.885530380171819.64ug/L9889)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.399549938769821.44ug/L10095)Benzylchloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L101)Hexachlorobutadiene19.4536594138722m22.78ug/L102)1,2,3-Trichlorobenzene19.5426626418070m25.91<	85) n-Propylbenzene		15 434	5153	907179	18 53	ug/L		99
87)4-Chlorotoluene15.588520846711917.79ug/L10088)1,3,5-Trimethylbenzene15.885530380171819.64ug/L9889)Pentachloroethane15.76952733528417.68ug/L9590)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.296546279859719.20ug/L10092)sec-Butylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.449551715942023.86ug/L9995)Benzylchloride16.449551715942023.86ug/L9896)1,4-Dichlorobenzene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L100103)Naphthalene19.31065431054570m22.63ug/L103104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m <td>86) 2-Chlorotoluene</td> <td></td> <td>15 476</td> <td>5168</td> <td>581622</td> <td>18.83</td> <td>ug/L</td> <td></td> <td>98</td>	86) 2-Chlorotoluene		15 476	5168	581622	18.83	ug/L		98
88) 1, 3, 5-Trimethylbenzene15.852530380171819.64 ug/L9889) Pentachloroethane15.76952733528417.68 ug/L9590) tert-Butylbenzene16.131540371511120.58 ug/L10091) 1, 2, 4-Trimethylbenzene16.296546279859719.20 ug/L10092) sec-Butylbenzene16.3995499102144919.57 ug/L9994) 1, 3-Dichlorobenzene16.399549938769821.44 ug/L10095) Benzyl chloride16.449551715942023.86 ug/L9996) 1, 4-Dichlorobenzene16.661559386361422.59 ug/L10097) 4-Isopropyltoluene16.661559386361422.59 ug/L10098) 1,2-Dichlorobenzene16.887567449789922.73 ug/L9899) n-Butylbenzene17.138576470655621.36 ug/L100100) 1, 2-Dibromo-3-chloropr17.48258731957620.88 ug/L92101) Hexachloroethane17.48758892996916.90 ug/L83102) 1, 2, 4-Trichlorobenzene19.0456448412233m26.28 ug/L103103) Naphthalene19.31065431054570m22.63 ug/L104104) Hexachlorobutadiene19.4536594138722m22.78 ug/L105) 1, 2, 3-Trichlorobenzene19.5426626418070m25.91 ug/L	87) A-Chlorotoluene		15 588	5208	467119	17 79	ug/L		100
80)17,5,511101	88 1 3 5-Trimethyl	hanzana	15 852	5303	801718	19 64	ug/I		98
90)tert-Butylbenzene16.131540371511120.58ug/L10091)1,2,4-Trimethylbenzene16.296546279859719.20ug/L10092)sec-Butylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.399549938769821.44ug/L10095)Benzylchloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.661559386361422.59ug/L10097)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	89) Pentachloroetha	ne	15.769	5273	35284	17.68	ug/L		95
91)1,2,4-Trimethylbenzene16.296546279859719.20ug/L10092)sec-Butylbenzene16.3995499102144919.57ug/L9994)1,3-Dichlorobenzene16.399549938769821.44ug/L10095)Benzylchloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.449551715942023.86ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	90) tert-Butylbenze	ne	16,131	5403	715111	20.58	ug/L		100
92) sec-Butylbenzene16.3995499102144919.57ug/L9994) 1,3-Dichlorobenzene16.399549938769821.44ug/L10095) Benzyl chloride16.449551715942023.86ug/L9996) 1,4-Dichlorobenzene16.488553137747919.98ug/L9897) 4-Isopropyltoluene16.661559386361422.59ug/L10098) 1,2-Dichlorobenzene16.887567449789922.73ug/L9899) n-Butylbenzene17.138576470655621.36ug/L100100) 1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101) Hexachloroethane17.48758892996916.90ug/L83102) 1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103) Naphthalene19.31065431054570m22.63ug/L104) Hexachlorobutadiene19.4536594138722m22.78ug/L105) 1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	91) $1.2.4$ -Trimethyl	benzene	16.296	5462	798597	19.20	$u\alpha/L$		100
94)1,3-Dichlorobenzene16.399549938769821.44ug/L10095)Benzyl chloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.488553137747919.98ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	92) sec-Butylbenzen	e	16.399	5499	1021449	19.57	ua/L		- 99
95)Benzyl chloride16.449551715942023.86ug/L9996)1,4-Dichlorobenzene16.488553137747919.98ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	94) 1.3-Dichloroben	zene	16.399	5499	387698	21.44	uq/L		100
96)1,4-Dichlorobenzene16.488553137747919.98ug/L9897)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	95) Benzvl chloride		16.449	5517	159420	23.86	uq/L		99
97)4-Isopropyltoluene16.661559386361422.59ug/L10098)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	96) 1.4-Dichloroben	zene	16.488	5531	377479	19.98	uq/L		98
98)1,2-Dichlorobenzene16.887567449789922.73ug/L9899)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L83103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	97) 4-Isopropyltolu	ene	16.661	5593	863614	22.59	ug/L		100
99)n-Butylbenzene17.138576470655621.36ug/L100100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L83103)Naphthalene19.31065431054570m22.63ug/L104104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	98) 1,2-Dichloroben	zene	16.887	5674	497899	22.73	ug/L		98
100)1,2-Dibromo-3-chloropr17.44258731957620.88ug/L92101)Hexachloroethane17.48758892996916.90ug/L83102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L83103)Naphthalene19.31065431054570m22.63ug/L104104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	99) n-Butylbenzene		17.138	5764	706556	21.36	ug/L		100
101) Hexachloroethane17.487 58892996916.90 ug/L83102) 1,2,4-Trichlorobenzene19.045 6448412233m26.28 ug/L83103) Naphthalene19.310 65431054570m22.63 ug/L83104) Hexachlorobutadiene19.453 6594138722m22.78 ug/L83105) 1,2,3-Trichlorobenzene19.542 6626418070m25.91 ug/L	100) 1,2-Dibromo-3-c	hloropr	17.442	5873	19576	20.88	ug/L		92
102)1,2,4-Trichlorobenzene19.0456448412233m26.28ug/L103)Naphthalene19.31065431054570m22.63ug/L104)Hexachlorobutadiene19.4536594138722m22.78ug/L105)1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	101) Hexachloroethan	e -	17.487	5889	29969	16.90	ug/L		83
103) Naphthalene19.31065431054570m22.63ug/L104) Hexachlorobutadiene19.4536594138722m22.78ug/L105) 1,2,3-Trichlorobenzene19.5426626418070m25.91ug/L	102) 1,2,4-Trichloro	benzene	19.045	6448	412233m	26.28	ug/L		
104) Hexachlorobutadiene 19.453 6594 138722m 22.78 ug/L 105) 1,2,3-Trichlorobenzene 19.542 6626 418070m 25.91 ug/L	103) Naphthalene		19.310	6543	1054570m	22.63	ug/L		
105) 1,2,3-Trichlorobenzene 19.542 6626 418070m 25.91 ug/L	104) Hexachlorobutad	liene	19.453	6594	138722m	22.78	ug/L		
	105) 1,2,3-Trichloro	benzene	19.542	6626	418070m	25.91	ug/L		

Data File : X090503.D Acq On : 5 Sep 2018 9:39 am Operator : EA Sample : LCS LM=8260C BT=MS4090518A Misc : VSTD020 ALS Vial : 3 Sample Multiplier: 1 Quant Time: Sep 05 10:17:38 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration Abundance TIC: X090503.D\data.ms 2800000 2700000 nmente, T 2600000 2500000 2400000 ormeltenzene.T 2300000 2200000 2100000 2000000 Chlorobenzene-d5,l Toluene-d8,S 1900000 1,3,5-Trimethylbenzene,1 1800000 m,p-Xylene,T 1.2.2-Tetrecklyteomthane,T 4-Isopropyltoluene, 1700000 1600000 1,2,3-Trich ether (TAME). T Fluorobenzene, I 1,2,4-Trìc 1500000 1400000 1,2-Dich 1300000 Ethylbenzene, T 1200000 auravitine, T Anthenen Townseetates Townsee, T 1100000 1000000 oluene. Fetrachloroethene, T Hexachloroethane 1,2-Dichloroethane-d4,S 900000 trans-12-Dichloroethene,1 Methylcyclohexane, T Bromobenzene, 800000 Benzene, 1-Dichlyconcene 4-Methyl-2-Pentanone,T ± ≥ buterienenenenenenenenen Retane. 700000 oromethane, Ilohoorobane, rans-1,3-Dichloropropene,T 2-Chloroethylvinylether ^ie-1 3-Dichloropropene,T **Dichloropropane**, Constitution of the second sec 600000 **Prosthane** Methyl methacrylate, T 500000 4-Dichlord 400000 Dibromqraet 2-NinBigRoodigt 300000 .4-Dioxane.7 200000 100000

Quantitation Report

Data Path : C:\MS4\090518\

(QT Reviewed)

Time--> 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

8260083118.M Fri Sep 07 11:30:48 2018 RPT1

Data Path : C:\MS4\083118\ Data File : X083131.D Acq On : 1 Sep 2018 12:26	am					
Operator : EA Sample : 141880-T-1MS LM=8.	260C BT=N	1S4083	118A			
Misc : OUTFALL ALS Vial : 31 Sample Multip	lier: 1					
Quant Time: Sep 04 09:41:03 20 Quant Method : C:\MS4\METHODS\ Quant Title : Method for the a QLast Update : Fri Aug 31 14:49 Response via : Initial Calibra	18 8260083118 analysis o 9:06 2018 tion	3.M of 826	0 waters		·	
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards	6 611	2001	1947015	50 00	.ug/I	0 00
66) Chlorobenzene-d5	13.195	4350	976844	50.00	ug/L	0.00
93) 1,4-Dichlorobenzene-d4	16.460	5521	987843	50.00	ug/L	0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4	4.971	1401	551978	46.76	ug/L	0.00
Spiked Amount 50.000	Range 77	- 117	Recove	ery =	93.52%	0 00
Spiked Amount 50.000	11.014 Range 74	-129	1298281 Recove	49.28 erv =	ug/L 98.56%	0.00
82) Bromofluorobenzene	14.865	4949	400648	44.95	ug/L	0.00
Spiked Amount 50.000	Range 74	- 119	Recove	ery =	89.90%	
Target Compounds	1 220	49	316762	17 93	Qva	alue 99
3) Chloromethane	1.292	76	339986	18.23	ug/L ug/L	99
4) Vinyl Chloride	1.401	117	331132	17.08	ug/L	99
6) Chloroethane	1.632	204	165737	16.99	ug/L ug/L	98 95
7) Acrolein	1.943	315	82931	34.55	ug/L	99
8) Acetonitrile 9) Acrylonitrile	1.951 2.344	318 459	15944m 102763m	14.14	ug/L ug/L	
10) Trichlorofluoromethane	2.001	336	305773m	16.80	ug/L	
11) Diethyl ether	2.102	372	203293	23.79	ug/L #	1
13) FC-113	2.473	505	21220435	17.25	ug/L ug/L #	99 99
14) Acetone	2.024	344	3203684	2825.70	ug/L	91
15) IPA 16) TBA	2.336	333 456	18444909 101701m	42065.70	b ug/L # ug/L	98
17) Methyl acetate	2.459	500	370447m	38.01	ug/L	
18) Allyl chloride	2.470	504	283587	16.83	ug/L #	93
20) 1,1-Dichloroethene	2.289	439	327571	17.76	ug/L ug/L	98
21) Methylene Chloride	2.403	480	222308	17.35	ug/L	98
22) Carbon Disulfide 23) trans-1,2-Dichloroethene	∠.53⊥ 2.950	5∠6 676	404699 291034	15.89	ug/L # ug/L	63 99
24) MTBE	3.089	726	544649	18.10	ug/L #	69
25) 1,1-Dichloroethane 26) Propionitrile	3.187	761	364428 90344	18.33	ug/L ug/L	99
27) Vinyl Acetate	3.407	840	358380	19.92	ug/L #	94
28) Chloroprene	3.588	905 936	348928	19.29	ug/L ug/L #	96 73
30) 2-Butanone	3.714	950	42980	43.42	ug/L # ug/L #	64
31) Diisopropylether (DIPE)	3.781	974	596330	16.32	ug/L #	98
32) CIS-1,2-Dichioroethene 33) Methacrvlonitrile	3.834	993 990	29/36/ 301496m	37.71	ug/L ug/L	99
34) Bromochloromethane	4.023	1061	123641	17.48	ug/L	97
35) Chloroform 36) 2.2-Dichloropropage	4.115	$1094 \\ 1126$	340379	18.97	ug/L ug/L	99 98
37) Methyl acrylate	4.288	1156	136495	19.33	ug/L ug/L	98
38) Isobutyl alcohol	4.414	1201	40348m	107.17	ug/L	0.0
41) 1,2-Dichloroethane	5.108	1450	264292	18.79	ug/L	92 99
42) 1,1,1-Trichloroethane	5.253	1502	206966	16.77	ug/L	99
43, 1-Chioroputane 44) 1,1-Dichloropropene	5.646	1523 1643	365076 243118	19.07	ug/L # ug/L	94 97
45) Cyclohexane	5.744	1678	378311	17.73	ug/L	96
46) Carbon Tetrachloride	5.933	1746	119019	16.29	ug/L	97

Data Path : C:\MS4\083118\ Data File : X083131.D Acq On : 1 Sep 2018 12:26 am Operator : EA Sample : 141880-T-1MS LM=8260C BT=MS4083118A Misc : OUTFALL ALS Vial : 31 Sample Multiplier: 1

Quant Time: Sep 04 09:41:03 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev(Min)
	Desere		1700	776004-	10 14	
47)	Benzene	6.062	1/92	//080411	19.14 ug/L	100
40)	tert-Amyi metnyi etner	0.093	2019	4/1132	17.65 ug/L	100
49)	1 2 Dichlemennen	7 500	2204	162049	10 00 ug/L	90
50)	T, Z-Dichioropropane	7.590	2343	162049	10.99 ug/L	94
51)	Dramadiablement	7 005	2400	101100	17.10 ug/1	9/
52)	Bromodicniorometnane	7.885	2440	97016 10765m	17.18 ug/L	94
55)		0.000	2401	1070011	102 46 yg/L	
551	1,4-DIOXAILE	0.410	2037	102025	10 57 ug/L	05
55)	Methyl methactylate	0.070	2133	261011	15.07 ug/L	90
501	Additional and the second seco	9.071	2071	117702	19.01 ug/L	55
50)	trang_1 3.Dichloropropene	10 639	2030	72220	17 39 ug/L	97
591	1 1 2-Trichloroothano	10.030	3402	05339	17.39 ug/L	96
61)	1, 2, Dichlereprepape	11 240	3650	150912	10.70 ug/L	90
62)	Dibromochloromothano	11 552	3761	3/021	17.30 ug/L	90
631	Ethyl mothagrylato	11 629	3799	136000	19.79 ug/L	93
64)	1 2-Dibromoothane	11 909	2000	130222	10.79 ug/L	90
65)	Promoform	13 953	1586	17/69	18 67 ug/L	07
671	A.Mothyl_2_Pontanono	10 110	3047	252105	34 45 ug/L	97
691	2-Howapono	10.119	3830	162761	33 35 ug/L	07
70)	Z-nexalione	11 131	3610	602884	18 90 ug/L	97
707	Totrachloroothopo	12 250	1011	147587	15.61 ug/L	95
721	1 1 1 2-Tetrachloroethane	13 150	4011	22537	15.65 ug/L	93
73)	Chlorobenzene	13 237	4365	325955	17.02 ug/L	99
74	1_Chlorobevane	13 329	4303	120584	17.02 ug/L	100
751	Ft hylbenzene	13 602	4350	612134	18.08 ug/L	98
76)	m n-Yylene	13 895	4601	9/2213	35.72 ug/L	90
771	Sturene	14 302	4001	314710	17 86 ug/L	95
781	o-Xylene	14.386	4777	590109	17.48 ug/L	98
791	1.1.2.2-Tetrachloroethane	14 377	4774	170683	18 29 u g/L	99
80)	1.2.3-Trichloropropane	14.553	4837	137345	18.11 ug/L	99
81)	trans-1.4-Dichloro-2-b	14.679	4882	22816	14.05 ug/L	# 95
83)	Isopropylbenzene	14.879	4954	719227	16.68 ug/L	99
84)	Bromobenzene	15.058	5018	218890	17.97 ug/L	99
85)	n-Propylbenzene	15.437	5154	759584	17.18 ug/L	100
86)	2-Chlorotoluene	15.476	5168	483727	17.33 ug/L	100
87)	4-Chlorotoluene	15.588	5208	408501	17.22 ug/L	99
88)	1,3,5-Trimethvlbenzene	15.853	5303	615409	16.69 ug/L	, 99
89)	Pentachloroethane	15.766	5272	33865	18.78 ug/L	97
90)	tert-Butylbenzene	16.131	5403	495474	15.78 ug/L	. 98
91)	1,2,4-Trimethylbenzene	16.299	5463	646348	17.20 ug/L	98
92j	sec-Butylbenzene	16.399	5499	714676	15.16 ug/L	100
94j	1,3-Dichlorobenzene	16.399	5499	319129	18.37 ug/L	, 99
95)	Benzyl chloride	16.449	5517	98144	16.51 ug/L	98
96)	1,4-Dichlorobenzene	16.491	5532	311907	17.19 ug/L	97
97)	4-Isopropyltoluene	16.661	5593	645379	17.57 ug/L	99
98)	1,2-Dichlorobenzene	16.887	5674	383370	18.22 ug/L	. 98
99)	n-Butylbenzene	17.141	5765	542382	17.07 ug/L	, 98
100)	1,2-Dibromo-3-chloropr	17.445	5874	14812	16.44 ug/L	. 88
101)	Hexachloroethane	17.487	5889	21178	12.43 ug/L	. 87
102)	1,2,4-Trichlorobenzene	19.048	6449	277115	18.39 ug/L	. 99
103)	Naphthalene	19.310	6543	817481	18.26 ug/L	100
104)	Hexachlorobutadiene	19.453	6594	97730	16.70 ug/L	93
105)	1,2,3-Trichlorobenzene	19.542	6626	278844	17.99 ug/L	. 100

Data Path : C:\MS4\083118\ Data File : X083132.D Acq On : 1 Sep 2018 12:58 Operator : EA Sample : 141880-T-1MSD LM=8 Misc : OUTFALL ALS Vial : 31 Sample Multip	am 3260C BT= Lier: 1	=MS408	3118A			
Quant Time: Sep 04 09:43:04 201 Quant Method : C:\MS4\METHODS\8 Quant Title : Method for the a QLast Update : Fri Aug 31 14:49 Response via : Initial Calibrat	18 3260083118 analysis ():06 2018 :ion	3.M of 826	0 waters			
Compound	R.T.	Scan	Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Fluorobenzene 66) Chlorobenzene-d5 93) 1,4-Dichlorobenzene-d4	6.645 13.195 16.461	2001 4350 5521	1901303 983652 958734	50.00 50.00 50.00	ug/L ug/L ug/L	0.00 0.00 0.00
System Monitoring Compounds 40) 1,2-Dichloroethane-d4 Spiked Amount 50.000 F 69) Toluene-d8 Spiked Amount 50.000 F 82) Bromofluorobenzene Spiked Amount 50.000 F	4.974 Range 77 11.014 Range 74 14.865 Range 74	1402 - 117 3568 - 129 4949 - 119	557664 Recove 1324958 Recove 400180 Recove	45.89 ery = 49.94 ery = 44.58 ery =	ug/L 91.78% ug/L 99.88% ug/L 89.16%	0.00 0.00 0.00
<pre>Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Acrolein 8) Acetonitrile 9) Acrylonitrile 10) Trichlorofluoromethane 11) Diethyl ether 12) FREON 123A 13) FC-113 14) Acetone 15) IPA 16) TBA 17) Methyl acetate 18) Allyl chloride 19) Iodomethane 20) 1,1-Dichloroethene 21) Methylene Chloride 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) MTBE 25) 1,1-Dichloroethane 26) Propionitrile 27) Vinyl Acetate 28) Chloroprene 29) Hexane 30) 2-Butanone 31) Diisopropylether (DIPE) 32) cis-1,2-Dichloroethene 33) Methacrylonitrile 34) Bromochloromethane 35) Chloroform 36) 2,2-Dichloropropane 37) Methyl acrylate 38) Isobutyl alcohol 39) Tetrahydrofuran 41) 1,2-Dichloroethane 42) 1,1,1-Trichloroethane 42) 1,1,1-Trichloroethane 42) 1,1,1-Trichloroethane 42) 1,1,1-Trichloroethane 43) 1,1,1-Trichloroethane 43) 1,1,1-Trichloroethane 43) 1,1,1-Trichloroethane 34) 1,1,1-Trichloroethane 35) Chloroform 34) 1,2-Dichloroethane 34) 1,1,1-Trichloroethane 35) 1,1-Trichloroethane /pre>	1.225 1.292 1.404 1.571 1.632 1.946 1.912 2.344 1.996 2.105 1.888 2.478 2.303 2.473 2.333 2.462 2.473 2.303 2.291 2.403 2.531 2.950 3.089 3.234 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.677 3.714 3.591 3.677 3.714 3.591 3.677 3.714 3.591 3.627 3.617 3.714 3.591 3.627 3.617 3.714 3.591 3.627 3.617 3.591 3.627 3.617 3.714 3.591 3.6251 4.204 4.204 4.405 4.584 5.108 5.253	$\begin{array}{c} 51\\ 76\\ 1181\\ 2016\\ 335\\ 335\\ 335\\ 335\\ 534\\ 355\\ 444\\ 826\\ 766\\ 89\\ 935\\ 739\\ 999\\ 101\\ 115\\ 1265\\ 202\\ 111\\ 1265\\ 202\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102$	310164 358505 356181 185520 175778 81477 16755m 72222 334235m 206137 225443 213681 2602298 14583750 83639 181650m 312823 346870 337848 229611 448364 301186 566193 379130 83913 345825 328316 197768 36918 693927 295534 329587 129543 354614 199456 128547 40787m 22383 262455 219900	17.05 18.68 17.85 16.51 17.51 32.97 14.48 17.84 23.43 17.14 17.53 2229.73 32310.26 107.73 18.11 18.04 17.34 17.79 17.41 17.79 17.41 17.63 18.53 55.19 18.53 55.19 18.53 14.70 36.23 18.45 17.75 40.05 17.75 40.05 17.75 40.05 17.768 105.24 16.75 18.13 17.31	Qv. ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	alue 97 98 100 97 98 96 93 1 98 99 96 98 99 98 99 98 82 98 82 98 82 98 82 98 82 98 82 98 82 98 93 100 97 98 99 96 98 99 96 98 99 96 98 99 96 98 99 96 98 99 96 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 99 98 98
 43) I-Chlorobutane 44) 1,1-Dichloropropene 45) Cyclohexane 46) Carbon Tetrachloride 	5.314 5.649 5.744 5.936	1524 1644 1678 1747	379734 262526 402459 125377	19.27 19.82 18.33 16.67	ug/L # ug/L ug/L ug/L	90 99 93 94

Data Path : C:\MS4\083118\ Acq On : 1 Sep 2018 12:58 am Operator : EA Sample Sample : 141880-T-1MSD LM=8260C BT=MS4083118A Misc : OUTFALL ALS Vial : 31 Sample Multiplier: 1

Quant Time: Sep 04 09:43:04 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

	Compound	R.T.	Scan	Response	Conc Units	Dev((Min)
47)	Benzene	6.062	1792	803569	19.24 ug/L		100
48)	tert-Amyl methyl ether	6.692	2018	493029	18.12 ug/L		95
49)	Dibromomethane	7.434	2284	90260	17.46 ug/L	I.	98
50)	1,2-Dichloropropane	7.601	2344	168225	19.15 ug/L	#	98
51)	Trichloroethene	7.768	2404	164290	17.85 ug/L		97
52)	Bromodichloromethane	7.897	2450	106927m	18.40 ug/L	I	
53)	2-Nitropropane	8.005	2489	19133m	16.20 ug/L	I	
54)	1,4-Dioxane	8.432	2642	5994m	159.72 ug/L		
55)	Methyl methacrylate	8.878	2802	97632	18.02 ug/L	I	95
56)	Metnylcyclonexane	9.071	2871	268144	15./8 ug/L	1	98
58) 50)	cis-1,3-Dichloropropene	9.704	3098	11/55/	17.54 ug/L	1	96
59)	1 1 2 Trichlereethere	10.635	3432	/3419	17.20 ug/L	I	97
60)	1, 1, 2-11 ICHIOIOECHane	11 246	2651	94133	17.94 ug/L		90 00
62)	Dibromochloromethano	11 553	3761	34503	17.99 ug/L	I	99
631	Ethyl methacrylate	11 628	3788	1/0685	18 85 ug/L	1	93
64)	1 2-Dibromoethane	11 909	3889	70016	17.07 ug/L		97
65)	Bromoform	13.845	4583	16073	16.68 ug/L		97
67)	4-Methvl-2-Pentanone	10.116	3246	358901	34.87 ug/L		98
68)	2-Hexanone	11.717	3820	161093	32.58 ug/L		98
70)	Toluene	11.131	3610	603998	18.80 ug/L		98
71)	Tetrachloroethene	12.252	4012	149657	15.72 ug/L		99
72)	1,1,1,2-Tetrachloroethane	13.150	4334	87816	16.54 ug/L	1	99
73)	Chlorobenzene	13.237	4365	326539	16.93 ug/L	ı	98
74)	1-Chlorohexane	13.329	4398	123874	18.30 ug/L		99
75)	Ethylbenzene	13.602	4496	618322	18.14 ug/L	,	99
76)	m,p-Xylene	13.895	4601	962905	36.25 ug/L	r	99
77)	Styrene	14.302	4747	319815	18.02 ug/L	ı	96
78)	o-Xylene	14.386	4777	608264	17.90 ug/L	ı	97
79)	1,1,2,2-Tetrachloroethane	14.375	4773	163524	17.41 ug/L	ı	99
80)	1,2,3-Trichloropropane	14.550	4836	133901	17.53 ug/L		97
81)	trans-1,4-Dichloro-2-b	14.681	4883	22981	14.06 ug/L	· #	90
83)	Isopropylbenzene	14.8/9	4954	736385	16.96 ug/L	J	98
84) 05)	Bromodenzene	15.058	5018	214/07	17.50 ug/L	ı	97
85)	2-Chlorotoluono	15.43/	5154	119320	17.50 ug/L	ı	99
971	A-Chlorotoluone	15 599	5208	404949	17.25 ug/L	J	99
88)	1 3 5-Trimethylbenzene	15 853	5303	619719	$16 69 u \alpha/I$,	98
89)	Pentachloroethane	15.766	5272	33738	18.58 ug/L	,	92
90)	tert-Butylbenzene	16.131	5403	495735	15.68 ug/I		99
91)	1,2,4-Trimethylbenzene	16.296	5462	654957	17.31 ug/L		99
92)	sec-Butylbenzene	16.399	5499	730926	15.40 ug/L	1	100
94)	1,3-Dichlorobenzene	16.399	5499	317596	18.83 ug/L	J	99
95)	Benzyl chloride	16.449	5517	95883	16.60 ug/L		99
96)	1,4-Dichlorobenzene	16.491	5532	306255	17.39 ug/L	ı	99
97)	4-Isopropyltoluene	16.661	5593	653455	18.33 ug/I	د	99
98)	1,2-Dichlorobenzene	16.887	5674	397768	19.47 ug/I	J	98
99)	n-Butylbenzene	17.141	5765	548967	17.80 ug/I	L	98
100)	1,2-Dibromo-3-chloropr	17.445	5874	13322	15.24 ug/I	J	89
101)	Hexachloroethane	17.487	5889	20853	12.61 ug/I	L	86
102)	1,2,4-Trichlorobenzene	19.046	6448	286223	19.57 ug/I	J	98
103)	Naphthalene	19.311	6543	835294	19.22 ug/I	J	TOO
105)	nexachioroputadiene	10 500	6625	9/90I	1/.24 ug/l	1	94
TO2)	1, 2, 3-11 tontor openzene	19.009	C200	201110	10.08 ug/l	. <u> </u>	99

Data Path : C:\MS4\083118\ Data File : X083132.D Acq On : 1 Sep 2018 12:58 am Operator : EA Sample : 141880-T-1MSD LM=8260C BT=MS4083118A Misc : OUTFALL ALS Vial : 31 Sample Multiplier: 1

Quant Time: Sep 04 09:43:04 2018 Quant Method : C:\MS4\METHODS\8260083118.M Quant Title : Method for the analysis of 8260 waters QLast Update : Fri Aug 31 14:49:06 2018 Response via : Initial Calibration

8260083118.M Wed Sep 05 14:13:22 2018 RPT1

GC Organic Data QC Summary

2

SURROGATE COMPOUND RECOVERY Nonhalogenated Organics using GC/FID direct inject

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

420-141881-4ms	68
DUP083018	93
B312BSV-R2-1	85
B312BSV-R1-1	77
B312BSV-RB-1	99
MB 420-124372/2	98
LCS 420-124372/1	82
420-141881-4 MSD	95
SAMPLE ID	1,3-But

1,3-Butanediol

QC LIMITS (70-130)

Column to be used to flag recovery values

FORM II 8015D

Page 193 of 262

3 Lab Control Spike Nonhalogenated Organics using GC/FID direct inject

Lab	Name:	EnviroTest	Laboratories,
TAD	riance +		

Job No.: 420-141881-1

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Level: Low

Lab Sample ID: LCS 420-124372/1

	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	90	LIMITS
COMPOUND	(mg/L)	(mg/L)	REC #	REC
N-Methyl-2-pyrrolidone	25.0	22	89	70-130

Calculations are performed before rounding

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery and RPD values

3 Matrix Spike Nonhalogenated Organics using GC/FID direct inject

Lab Name: EnviroTest Laboratories,

Job No.: 420-141881-1

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Level: Low

Matrix Spike-Client Sample ID: DUP083018

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	ę	LIMITS
COMPOUND	(mg/L)	(mg/L)	(mg/L)	REC #	REC
N-Methyl-2-pyrrolidone	50.0	1.0 U	31	62 F	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

3 Matrix Spike Duplicate Nonhalogenated Organics using GC/FID direct inject

Lab Name: EnviroTest Laboratories, Job

Job No.: 420-141881-1

Level: Low

SDG No.: GLOBALFOUNDRIES B/312B Solvent Vault

Matrix: Water

Matrix Spike Duplicate-Client Sample ID: DUP083018

	SPIKE	MSD	MSD		QC L:	IMITS
COMPOUND	ADDED	CONCENTRATION	90	8		I
	(mg/L)	(mg/L)	REC #	RPD	RPD	REC
N-Methyl-2-pyrrolidone	50.0	41	81 F	27	20	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

FORM III 8015D

4 METHOD BLANK SUMMARY Nonhalogenated Organics using GC/FID direct inject

Lab Name:	EnviroTest Laboratories, Inc.	Job No.; 420-1	41881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solvent Vault		
Lab File I	D: 090406.D	Lab Sample ID:	MB 420-124372/2
Instrument	ID: Hewlett Packard 5890II	Date Analyzed:	09/04/2018
Matrix:	Dual FID Water	Time Analyzed:	1644
GC Column:	Stabilwax ID: 0.53		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
LCS 420-124372/1	LCS 420-124372/1	090404.D	1540
B312BSV-RB-1	420-141881-1	090407.D	1700
B312BSV-R1-1	420-141881-2	090408.D	1716
B312BSV-R2-1	420-141881-3	090409.D	1732
DUP083018	420-141881-4	090410.D	1747
DUP083018 MS	420-141881-4 MG	090411.D	1803
DUP083018 MSD	420-141881-4 MSO	090413.D	1834

GC Organic Data Sample Data
1

Client Sample ID:	B312BSV-RB-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-1
Analysis Method:	8015D	Lab File ID:	090407.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 17:00
% Moisture:		Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	1.0	U	1.0	1.0

Data File : C:\HPCHEM\2\DATA\090418G\090407.D Vial: 5 Acq On : 4 Sep 2018 5:00 pm Operator: KM Sample : 141881-F-1 Misc : BT=090418A3 IntFile : events.e Inst : GC-2 Multiplr: 2.00 Quant Time: Sep 5 9:12 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound 49.726 ppm = 99% System Monitoring Compounds 5.68 534687 4) s 1,3-Butanediol 50 Target Compounds 0.00 1) t Propylene Glycol 0 N.D. ppm d 0 N.D. ppm d 0 N.D. ppm d 2) t Ethylene Glycol 0.00 3) t NMP 0.00

Data File : C:\HPCHEM\2\DATA\090418G\090407.D Vial: 5 Acq On : 4 Sep 2018 5:00 pm Operator: KM : GC-2 Sample : 141881-F-1 Inst : BT=090418A3 Misc Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:12 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 090407.D\FID2B 25000 24000 23000 22000 5.68 21000 20000 19000 18000 17000 16000 15000 14000 13000 12000 11000 10000 3-Butane 9000 7.00 8.00 11.00 1.00 2.00 3.00 4.00 5.00 6.00 9.00 10.00 12.00 0.00 En twi Wed Sep 05 09: 15 301 20268 090407.D GL061918.M

1

Client Sample ID:	B312BSV-R1-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-2
Analysis Method:	8015D	Lab File ID:	090408.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 17:16
% Moisture:		Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.;	124372		
······			

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	1.0	U	1.0	1.0

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\2\DATA\090418G\090408.D Acq On : 4 Sep 2018 5:16 pm Sample : 141881-E-2 Misc : BT=090418A3 IntFile : events.e Vial: 6 Operator: KM Inst : GC-2 Multiplr: 2.00 Quant Time: Sep 5 9:13 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 5.68 831637 77.343 ppm = 77 / 4) s 1,3-Butanediol 100 Target Compounds 1) t Propylene Glycol 0.00 0.00 0 N.D. ppm d 0 N.D. ppm d 0 N.D. ppm d 2) t Ethylene Glycol 0.00 3) t NMP

alulie

Data File : C:\HPCHEM\2\DATA\090418G\090408.D Vial: 6 Operator: KM Acq On : 4 Sep 2018 5:16 pm : 141881-E-2 Sample Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:13 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : 090408.D\FID2B Response 38000 36000 34000 5.63 32000 30000 28000 26000 24000 22000 20000 18000 16000 14000 12000 10000 8000 3-Butane 6000 8.00 1 (N) (2 2.00 7.00 10.00 12.00 1.00 3.00 4.00 5.00 6.00 9.00 11.00 0.00 090408.D GL061918.M

Client Sample ID:	B312BSV-R2-1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-3
Analysis Method:	8015D	Lab File ID:	090409.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 17:32
% Moisture:		Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	1.0	U	1.0	1.0

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\2\DATA\090418G\090409.D Vial: 7 Acq On : 4 Sep 2018 5:32 pm Operator: KM Sample : 141881-E-3 Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:13 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Títle : Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 42.597 ppm = 85% 5.68 458022 4) s 1,3-Butanediol 50 Target Compounds 0.00 0.00 0.00 N.D. ppm d N.D. ppm d N.D. ppm d 1) t Propylene Glycol 2) t Ethylene Glycol 0 0 3) t NMP 0

P.18

Data File : C:\HPCHEM\2\DATA\090418G\090409.D Vial: 7 Acq On : 4 Sep 2018 5:32 pm Operator: KM Sample : 141881-E-3 Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:13 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 090409.D\FID2B 24000 23000 22000 80 21000 20000 19000 18000 17000 16000 15000 14000 13000 12000 11000 10000 3-Butane 9000 Berlie 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 ŧ

Client Sample ID:	DUP083018	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4
Analysis Method:	8015D	Lab File ID:	090410.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 17:47
% Moisture:		Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	1.0	U	1.0	1.0

Data File : C:\HPCHEM\2\DATA\090418G\090410.D Vial: 8 Acq On : 4 Sep 2018 5:47 pm Sample : 141881-E-4 Misc : BT=090418A3 IntFile : events.e Operator: KM Inst : GC-2 Multiplr: 2.00 Quant Time: Sep 5 9:14 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 5.68 497408 46.259 ppm - 93% 4) s 1,3-Butanediol 50 Target Compounds 0.00 1) t Propylene Glycol
2) t Ethylene Glycol 0 N.D. ppm d 0 N.D. ppm d 0 N.D. ppm d 0.00 3) t NMP

Data File : C:\HPCHEM\2\DATA\090418G\090410.D Vial: 8 : 4 Sep 2018 5:47 pm Operator: KM Acq On Sample : 141881-E-4 Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:14 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 090410.D\FID2B 27000 26000 25000 24000 5,38 23000 22000 21000 20000 19000 18000 17000 16000 15000 14000 13000 12000 11000 10000 9000 **Butane** 8000 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Time 0.00

GC Organic Data Standards Data

Method Title	:	С:\НРСН	EM\2\MET	HODS/G	L06191	8.M (Cl	nemstat	tion In	ntegrat	cor)	
Last Up	date :	Mon Auq	13 16:1	1:01 2	018						
Respons	se via :	Initial	Calibra	tion							
Calibra	ation Fil	.es									
1	=061902.	D 2	= 0	61903.1	D	3	=06190	04.D			
4	=061905.	D 5	=0	61908.	D	б	=06190	D6.D			
Co	mpound		1	2	3	4	5	6	Avg		%RSD
1) t Pi	copylene	Glycol	1.359	1.251	1.109	1.071	1.026	1.074	1.148	E4	11.21
2) t Et	hylene G	lycol	9.143	8.465	7.771	7.487	7.541	7.867	8.046	E3	7.97
3) t NN	1P	-	2.188	1.992	1.718	1.641	1.535	1.634	1.785	E4	14.08
4) s 1,	3-Butane	ediol		0.979	1.095	1.075	1.088	1.139	1.075	E4	5.49

Data File : C:\HPCHEM\2\DATA\ Acq On : 19 Jun 2018 3:2 Sample : 1 GLY 6/19/18 Misc : BT=061918A3 IntFile : events.e Quant Time: Jun 19 15:55 2018	\061918G\061 24 pm 3 Quant Res	.902.D sults File: GI	Vial: 2 Operator: KM Inst : GC-2 Multiplr: 1.00
Quant Method : C:\HPCHEM\2\MH Title : Last Update : Tue Jun 19 15: Response via : Initial Calibr DataAcq Meth : GLYCOL.M	THODS\GL041 :55:50 2018 cation	.818.M (Chemst	ation Integrator)
Volume Inj. : Signal Phase : Signal Info :			
Compound	R.T.	Response	Conc Units
System Monitoring Compounds 4) s 1,3-Butanediol	6.12	3468	0.276 ppm
Target Compounds 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP	4.67 5.04 5.77	13592 9143 21876	1.070 ppm 0.975 ppm 1.199 ppm

Data File : C:\HPCHEM\2\DATA\061918G\061902.D Vial: 2 Acq On : 19 Jun 2018 3:24 pm Operator: KM Sample : 1 GLY 6/19/18 Inst : GC-2 Misc : BT=061918A3 Multiplr: 1.00 : events.e IntFile Quant Time: Jun 19 15:55 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Last Update : Tue Jun 19 15:55:50 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 061902.D\FID2B 36000 34000 32000 30000-28000 26000 24000 22000 20000 18000 16000 14000 5.77 4.67 5.04 6.12 12000 10000 ഗ .3-Butane 8000 1.00 2.00 3.00 4.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Time 0.00 5.00 Tue Sep 11 11:593:5914201282 061902.D GL061918.M

Data File : C:\HPCHEM\2\DATA Acq On : 19 Jun 2018 3: Sample : 10 GLY 6/19/18 Misc : BT=061918A3 IntFile : events.e Quant Time: Jun 19 15:56 201	1/061918G/0619 42 pm 18 Quant Rest	903.D 1lts File: G	Vial: 3 Operator: KM Inst : GC-2 Multiplr: 1.00 L041818.RES
Quant Method : C:\HPCHEM\2\M Title : Last Update : Tue Jun 19 15 Response via : Initial Calik DataAcq Meth : GLYCOL.M	IETHODS\GL0418 5:55:50 2018 oration	318.M (Chems	tation Integrator)
Volume Inj. : Signal Phase : Signal Info :			
Compound	R.T.	Response	Conc Units
System Monitoring Compounds 4) s 1,3-Butanediol	6.12	97898	7.800 ppm
Target Compounds 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP	4.67 5.04 5.78	125062 84650 199240	9.846 ppm 9.025 ppm 10.917 ppm

Data File : C:\HPCHEM\2\DATA\061918G\061903.D Vial: 3 : 19 Jun 2018 Acq On 3:42 pm Operator: KM : 10 GLY 6/19/18 Sample Inst : GC-2 : BT=061918A3 Misc Multiplr: 1.00 IntFile : events.e Quant Time: Jun 19 15:56 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Last Update : Tue Jun 19 15:55:50 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 061903.D\FID2B 36000 34000 32000 30000 28000 26000 24000 22000 20000 5.78 18000 101 16000 5.04 8,15 51 14000 12000 10000 thylene G 3-Butane pylene 8000 2.00 3,00 7.00 9.00 0.00 1.00 4.00 5.00 6.00 8.00 10.00 11.00 Time 12.00 Tue Sep 11 11:59:50 2018 Page 216 of 262 061903.D GL061918.M

Data File : C:\HPCHEM\2\DATA\061918G\061904.D Vial: 4 Acq On : 19 Jun 2018 4:00 pm Operator: KM Sample : 25 GLY 6/19/18 Inst : GC-2 Misc : BT=061918A3 IntFile : events.e Multiplr: 1.00 Quant Time: Jun 19 16:23 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Title : Last Update : Tue Jun 19 15:55:50 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 6.12 273807 21.816 ppm 4) s 1,3-Butanediol Target Compounds 4.6727721521.825 ppm5.0419427020.712 ppm5.7842943423.529 ppm 1) t Propylene Glycol 2) t Ethylene Glycol Ethylene Glycol 3) t NMP

Data File : C:\HPCHEM\2\DATA\061918G\061904.D Vial: 4 Acq On : 19 Jun 2018 4:00 pm Operator: KM : 25 GLY 6/19/18 : GC-2 Sample Inst Misc Multiplr: 1.00 : BT=061918A3 IntFile : events.e Quant Time: Jun 19 16:23 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Last Update : Tue Jun 19 15:55:50 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Response 061904.D\FID2B 36000 34000 32000 30000 28000 5.78 26000 24000 22000 4.68 20000 5.12 5.04 18000 16000 14000 12000 10000 .3-Butane Ethylene G iovlene 8000 2.00 8.00 9.00 4.00 7.00 3.00 6.00 10.00 11.00 12.00 Time 0.00 1.00 5.00 Tue Sep 11 11:59.51 2018 Page 218 of 262 061904.D GL061918.M

Data File : C:\HPCHEM\2\DATA Acq On : 19 Jun 2018 4 Sample : 50 GLY 6/19/18 Misc : BT=061918A3 IntFile : events.e Quant Time: Jun 19 16:31 201	A\061918G\0619 :16 pm L8 Quant Resu	05.D lts File: GI	Vial: 5 Operator: KM Inst : GC-2 Multiplr: 1.00 041818.RES
Quant Method : C:\HPCHEM\2\M Title : Last Update : Tue Jun 19 19 Response via : Initial CaliM DataAcq Meth : GLYCOL.M	METHODS\GL0418 5:55:50 2018 pration	18.M (Chemst	ation Integrator)
Volume Inj. : Signal Phase : Signal Info :			
Compound	R.T.	Response	Conc Units
System Monitoring Compounds 4) s 1,3-Butanediol	6.11	537456	42.822 ppm
Target Compounds 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP	4.65 5.03 5.77	535395 374335 820357	42.152 ppm 39.909 ppm 44.948 ppm

Data File : C:\HPCHEM\2\DATA Acq On : 19 Jun 2018 4:3 Sample : 75 GLY 6/19/18 Misc : BT=061918A3 IntFile : events.e Quant Time: Jun 19 16:50 2018	\061918G\061 32 pm 8 Quant Res	906.D Sults File: GI	Vial: Operator: Inst : Multiplr:	6 KM GC-2 1.00
Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title : Last Update : Tue Jun 19 15:55:50 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M				
Volume Inj. : Signal Phase : Signal Info :				
Compound	R.T.	Response	Conc Un	its
System Monitoring Compounds 4) s 1,3-Butanediol	6.11	854463	68.079 pj	om
Target Compounds 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP	4.66 5.04 5.78	805720 590047 1225532	63.435 pj 62.906 pj 67.148 pj	om om

061906.D GL061918.M Tue Sep 11 11:59;5222018

Quantitation	Report	(QT Reviewed)
--------------	--------	---------------

Data File : C:\HPCHEM\2\DATA\061918G\061908.D Vial: 7 Acq On : 19 Jun 2018 5:03 pm Operator: KM : 100 GLY 6/19/18 Sample Inst : GC-2 Misc : BT=061918A3 IntFile : events.e Multiplr: 1.00 Quant Time: Jun 20 9:21 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Last Update : Tue Jun 19 15:55:50 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 6.11 1087873 86.676 ppm 4) s 1,3-Butanediol Target Compounds 4.65102616880.791 ppm5.0375409080.395 ppm5.77153486884.096 ppm 1) t Propylene Glycol 2) t Ethylene Glycol Ethylene Glycol 2) t 3) t NMP

Data File : C:\HPCHEM\2\DATA\061918G\061908.D Vial: 7 Acq On : 19 Jun 2018 5:03 pm Operator: KM Sample : 100 GLY 6/19/18 Inst : GC-2 Misc : BT=061918A3 Multiplr: 1.00 IntFile : events.e Quant Time: Jun 20 9:21 2018 Quant Results File: GL041818.RES Quant Method : C:\HPCHEM\2\METHODS\GL041818.M (Chemstation Integrator) Title Last Update : Tue Jun 19 15:55:50 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : 061908.D\FID2B 75000 70000 22.2 65000

Evaluate Continuing Calibration Report Data File : C:\HPCHEM\2\DATA\090418G\090402.D Vial: 2 Acq On : 4 Sep 2018 3:08 pm Operator: KM Sample : CCV50 9/4/18 Misc : BT=090418A3 Inst : GC-2 Multiplr: 1.00 IntFile : events.e : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Method Title : Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150% Amount Calc. %Dev Area% Dev(min) Compound 1 tPropylene Glycol50.00047.3795.2102-0.032 tEthylene Glycol50.00051.442-2.9111-0.033 tNMP50.00043.43613.194-0.034 s1,3-Butanediol50.00043.22013.686-0.03

Data File : C:\HPCHEM\2\DATA\090418G\090402.D Vial: 2 Acq On : 4 Sep 2018 3:08 pm Sample : CCV50 9/4/18 Misc : BT=090418A3 IntFile : events.e Operator: KM Inst : GC-2 Multiplr: 1.00 Quant Time: Sep 4 15:24 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 4) s 1,3-Butanediol 5.69 464725 43.220 ppm Target Compounds 4.27 4.63 4.2754406147.379ppm4.6341388551.442ppm5.3277513543.436ppm 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP

GC Organic Data Raw QC Data

1

Client Sample ID:	MB 420-124372/2	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Solv	vent Vault	
Matrix:	Water	Lab Sample ID:	MB 420-124372/2
Analysis Method:	8015D	Lab File ID:	090406.D
Sample wt/vol:		Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/04/2018 16:44
% Moisture:		Dilution Factor:	1
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	0.50	U	0.50	0.50

Data File : C:\HPCHEM\2\DATA\090418G\090406.D Vial: 4 Acq On : 4 Sep 2018 4:44 pm Sample : MB 9/4/18 Misc : BT=090418A3 IntFile : events.e Operator: KM Inst : GC-2 Multiplr: 1.00 Quant Time: Sep 5 9:15 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 981. 5.69 525511 48.873 ppm 4) s 1,3-Butanediol 50 Target Compounds 0 N.D. ppm d 0 N.D. ppm d 0 N.D. ppm d 0.00 t Propylene Glycol
t Ethylene Glycol 3) t NMP 0.00

91"110

1

Client Sample ID:	LCS 420-124372/1	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	LCS 420-124372/1
Analysis Method:	8015D	Lab File ID:	090404.D
Sample wt/vol:		Date Received:	
Level: (low/med)	Low	Date Analyzed:	09/04/2018 15:40
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	22		0.50	0.50

	Quantitation	Report (QT	Reviewed)	
Data File : C:\HPCHEM\2 Acq On : 4 Sep 2018 Sample : LCS 9/4/18 Misc : BT=090418A3 IntFile : events.e	\DATA\090418G` 3:40 pm	\090404.D	Vial: Operator: Inst : Multiplr:	3 KM GC-2 1.00
Quant Time: Sep 4 15:50	6 2018 Quant	Results File:	GL061918.RES	1
Quant Method : C:\HPCHEN Title : Last Update : Mon Aug : Response via : Initial (DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info :	M\2\METHODS\G 13 16:11:01 20 Calibration	2061918.M (Chen	nstation Inte	grator)
Compound	R.T.	Response	e Conc Uni	ts
System Monitoring Compound 4) s 1,3-Butanediol	ds 5.69	221527	20.602 pp	m ßzł,
Target Compounds	4 0 7	0.001.00	00 405	
1) t Propytene Giycol	4.27	269109	23.435 pp	m
3) t NMP	4.63	398079	22.307 pp	

t

(m)=manual int.

P Julio

1

ORGANIC ANALYSIS DATA SHEET NONHALOGENATED ORGANICS USING GC/FID DIRECT INJECT

Client Sample ID:	DUP083018 MS	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4 MS
Analysis Method:	8015D	Lab File ID:	090411.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 18:03
% Moisture:	·	Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	31		1.0	1.0

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\2\DATA\090418G\090411.D Vial: 9 Acq On : 4 Sep 2018 6:03 pm Sample : 141881-E-4MS Misc : BT=090418A3 IntFile : events.e Operator: KM Inst : GC-2 Multiplr: 2.00 Quant Time: Sep 5 9:25 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : R.T. Response Conc Units Compound System Monitoring Compounds 5.67 183140 34.064 ppm = 60%. 4) s 1,3-Butanediol 50 Target Compounds 4.2519337533.679 ppm4.6214901337.042 ppm 1) t Propylene Glycol 2) t Ethylene Glycol 5.30 274670 30.783 ppm 3) t NMP

Palulo

Data File : C:\HPCHEM\2\DATA\090418G\090411.D Vial: 9 Acq On : 4 Sep 2018 6:03 pm Operator: KM Sample : 141881-E-4MS Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:25 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : 090411.D\FID2B Response 24000 23000 22000 21000 3.30 20000 19000 18000 123 17000 5 16000 15000 14000 5,67 13000 12000 11000 10000 hylene G **3-Butane** 9000 5.00 7.00 9.00 10.00 0.00 1.00 2.00 3.00 4.00 6.00 8.00 11.00 12.00 Wed Sep 05 09:37:26 2018 Page 237 of 262 090411.D GL061918.M

1 ORGANIC ANALYSIS DATA SHEET NONHALOGENATED ORGANICS USING GC/FID DIRECT INJECT

Client Sample ID:	DUP083018 MSD	Project:	D & B Engineers &
Lab Name:	EnviroTest Laboratories,	Job No.:	420-141881-1
SDG No.:	GLOBALFOUNDRIES B/312B Sol	vent Vault	
Matrix:	Water	Lab Sample ID:	420-141881-4 MSD
Analysis Method:	8015D	Lab File ID:	090413.D
Sample wt/vol:		Date Received:	08/30/2018 11:00
Level: (low/med)	Low	Date Analyzed:	09/04/2018 18:34
% Moisture:		Dilution Factor:	2
GC Column/ID:	Stabilwax 0.53 (mm)	Soil Aliquot:	
Soil Extract Vol.:		Units:	mg/L
Analy. Batch No.:	124372		

CAS No.	Compound Name	Result	Q	RL	RL
872-50-4	N-Methyl-2-pyrrolidone	41		1.0	1.0

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\2\DATA\090418G\090413.D Vial: 10 Acq On : 4 Sep 2018 6:34 pm Sample : 141881-E-4MSD Misc : BT=090418A3 IntFile : events.e Operator: KM Inst : GC-2 Multiplr: 2.00 Quant Time: Sep 5 9:25 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Initial Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : Compound R.T. Response Conc Units System Monitoring Compounds 47.702 ppm = 95% 5.67 256461 4) s 1,3-Butanediol 50 Target Compounds 4.25 4.61 5.30 1) t Propylene Glycol 2) t Ethylene Glycol 3) t NMP 25766144.876 ppm19353148.108 ppm36164040.530 ppm

Data File : C:\HPCHEM\2\DATA\090418G\090413.D Vial: 10 Acq On : 4 Sep 2018 6:34 pm Operator: KM Sample : 141881-E-4MSD Inst : GC-2 Misc : BT=090418A3 Multiplr: 2.00 IntFile : events.e Quant Time: Sep 5 9:25 2018 Quant Results File: GL061918.RES Quant Method : C:\HPCHEM\2\METHODS\GL061918.M (Chemstation Integrator) Title Last Update : Mon Aug 13 16:11:01 2018 Response via : Multiple Level Calibration DataAcq Meth : GLYCOL.M Volume Inj. : Signal Phase : Signal Info : 090413.D\FID2B Response 28000 27000 26000 25000 24000 5 30 23000 22000 21000 4 20 10 20000 19000 0 18000 17000 5.67 16000 15000 14000 13000 12000 11000 10000 9000 iylene G vlene 2-Butane 8000 2.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 0.00 1.00 3.00 Wed Sep 05 09:37:31 2018 Page 240 of 262 090413.D GL061918.M

Inorganic Data Sample Data

.

Brian Werner D & B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797			Sdg Number	r: GLOBALI	Job Number: 4 FOUNDRIES B/312B	420-141881-1 Solvent Vault
Client Sample ID: B312BSV-RB-1 Lab Sample ID: 420-141881-1			Date Date Clier	e Sampled: Received: nt Matrix:	08/30/2018 0930 08/30/2018 1100 Water	
Analyte	Result/Qual	lifier	Unit	RL	RL	Dilution
Method: 10-210-00-1-A Prep Method: Distill/Phenol Phenolics Total Recoverable	0.010		Date Ar Date Pr	alyzed: epared:	09/04/2018 1712 09/04/2018 1217	1.0

•.

۰.

•.

•.

Brian Werner D & B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797

Client Sample ID: Lab Sample ID:	B312BSV-R1-1 420-141881-2			Date Date Clier	e Sampled: Received: nt Matrix:	08/30/2018 0 08/30/2018 1 Water	954 100	
Analyte		Result/Qua	lifier	Unit	RL	RI	L	Dilution
Method: 10-210-00-1	1-A			Date Ar	alyzed:	09/04/2018 1	730	
Prep Method: Distill	/Phenol			Date Pr	epared:	09/04/2018 1	217	
Phenolics, Total Recov	erable	0.010	U	mg/L	0.010) O.	010	1.0

Brian Werner D & B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797		Sdg Numbe	Job Number: 420-14188 Sdg Number: GLOBALFOUNDRIES B/312B Solvent V						
Client Sample ID: B312BSV-R2-1 Lab Sample ID: 420-141881-3			Da Da Cliu	te Sampled: te Received: ent Matrix:	08/30/2018 1020 08/30/2018 1100 Water				
Analyte	Result/Qua	lifier	Unit	RL	RL	Dilution			
Method: 10-210-00-1-A Prep Method: Distill/Phenol Phenolics, Total Recoverable	0.010	U	Date A Date F mg/L	nalyzed: Prepared: 0.010	09/04/2018 1714 09/04/2018 1217) 0.010	1.0			

.

۰.

Brian Werner D & B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797			Sdg Numbe	r: GLOBALI	Job Number: FOUNDRIES B/312B	420-141881-1 Solvent Vault
Client Sample ID: DUP083018 Lab Sample ID: 420-141881-4			Date Date Clie	e Sampled: e Received: nt Matrix:	08/30/2018 0000 08/30/2018 1100 Water	
Analyte	Result/Qua	lifier	Unit	RL	RL	Dilution
Method: 10-210-00-1-A Prep Method: Distill/Phenol Phenolics, Total Recoverable	0.010	U	Date Ar Date Pr mg/L	nalyzed: repared: 0.010	09/04/2018 1714 09/04/2018 1217 0.010	1.0

•

۰.

Inorganic Data QC Data

Page 246 of 262

Quality Control Results

Client: D & B Engineers and Architects, P.C.

Job Number: 420-141881-1 Sdg Number: GLOBALFOUNDRIES B/312B Solvent Vault

Method Blank - Batch: 420-124339

Method: 10-210-00-1-A Preparation: Distill/Phenol

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 420-124339/27-B Water 1.0 09/04/2018 1709 09/04/2018 1217	Analysis Batch: Prep Batch: 420 Units: mg/L	420-124360 -124339		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	Lachat Quik OM_9-4-20 blume: m lume: m	cchem 8500 FIA 18_04-46-24PM.O i∟ i∟
Analyte		Resul	t	Qual	RL		RL
Phenolics, Total	Recoverable	0.010		U	0.010	(0.010
Lab Control S	oike - Batch: 420-124339				Method: 10-2 [,] Preparation: I	10-00-1-A Distill/Phen	ol
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 420-124339/28-B Water 1.0 09/04/2018 1710 09/04/2018 1217	Analysis Batch: Prep Batch: 420 Units: mg/L	420-124360 -124339		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	Lachat Quik OM_9-4-20 blume: m lume: m	schem 8500 FIA 18_04-46-24PM.O กL IL
Analyte		Spike Amount	Result	% Re	c. Lii	mit	Qual
Phenolics, Total	Recoverable	0.0500	0.055	110	. 57	′ - 123	

Calculations are performed before rounding to avoid round-off errors in calculated results.

•

Quality Control Results

Job Number: 420-141881-1 Sdg Number: GLOBALFOUNDRIES B/312B Solvent Vault

.

•

Method: 10-210-00-1-A

					Prepa	ration: Distill	Phenol	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-141881-1 Water 1.0 09/04/2018 1713 09/04/2018 1217	Analysis Ba Prep Batch Units: mg	atch: 420-1: : 420-1243 J/L	24360 39	Instrur Lab Fi Initial Final V	nent ID: Lacha le ID: OM_s //eight/Volume: //eight/Volume:	at Quikchem 8 9-4-2018_04-4 mL mL	500 FIA 6-24PM.O
Analyte		Sample Re	sult/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Phenolics, Total	Recoverable	0.010	U	0.0300	0.034	114	55 - 136	
Matrix Spike -	Batch: 420-124339				Metho Prepa	od: 10-210-00- tration: Distill	1-A /Phenol	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-141688-D-1-C MS Water 1.0 09/04/2018 1723 09/04/2018 1217	Analysis Ba Prep Batch Units: mg	atch: 420-1: : 420-1243 J/L	24360 39	Instrur Lab Fi Initial Final V	nent ID: Lach: le ID: OM_ Weight/Volume: Weight/Volume:	at Quikchem 8 9-4-2018_04-4 mL mL	500 FIA 6-24PM.C
Analyte		Sample Re	sult/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Phenolics, Total	Recoverable	0.010	U	0.0300	0.036	118	55 - 136	

Client: D & B Engineers and Architects, P.C.

Matrix Spike - Batch: 420-124339

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Client: D & B Engineers and Architects, P.C.

Job Number: 420-141881-1 Sdg Number: GLOBALFOUNDRIES B/312B Solvent Vault

Duplicate - Batch: 420-124339

Method: 10-210-00-1-A Preparation: Distill/Phenol

۰.

۰.

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-141688-D-1-B DU Water 1.0 09/04/2018 1700 09/04/2018 1217	Analysis Batcl Prep Batch: 4 Units: mg/L	n: 420-124360 420-124339		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	Lachat Quik OM_9-4-20 blume: m lume: m	tchem 8500 FIA 18_04-46-24PM.O ปL
Analyte		Sample Re	esult/Qual	Result	RPD	Limit	Qual
Phenolics, Total	Recoverable	0.010	U	0.0037	NC	15	U
Duplicate - Bat	tch: 420-124339				Method: 10-21 Preparation: I	l0-00-1-A Distill/Phene	ot
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-141881-1 Water 1.0 09/04/2018 1712 09/04/2018 1217	Analysis Batch Prep Batch: 4 Units: mg/L	n: 420-124360 420-124339		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	Lachat Quik OM_9-4-20 ⁷ Iume: m Iume: m	rchem 8500 FIA 18_04-46-24PM.O IL IL
Analyte		Sample Re	sult/Qual	Result	RPD	Limit	Qual
Phenolics, Total I	Recoverable	0.010	U	-0.00072	NC	15	U

Calculations are performed before rounding to avoid round-off errors in calculated results.

Inorganic Data Raw Data

Analyst: DM

Prep Batch: 12433) Analytical Batch: 124360 Page: 1

Original Run Filename: Original Run Author's Signature: Current Run Filename: Current Run Author's Signature: Description: OM_9-4-2018_04-46-24PM.OMN created 9/4/2018 4:46:24 PM [newbwetchem2] OM_9-4-2018_04-46-24PM.OMN last modified 9/4/2018 5:35:29 PM [newbwetchem2] Default New Run

			Channel 1	
Sample	Rep.	Cup No.	Phenolics-	
			TR (mg/L)	
ICV	1	1	0.0484	97%
	Kno	wn Conc:	0.0350	
	C	alibration:	Table/Fig. 1	
ICB/MB	11	2	-0.00345	
	Kno	wn Conc:	0.00	
ICS		3	-0.0138	air caille
200	Kno	WD Conc:	0.0350	300-2
141452-1	1 1		0.0000	
1414521	╞╌╆╌		0.00007	
141403-1	+		0.0113	11 07
LUS	$\frac{1}{1}$	3	0.0581	10.15
	Kno	wn Conc:	0.0350	No. W
141461-2	1	6	-0.00264	and the second sec
141475-1	1	7	0.108	airspilles
141477-1	1	8	0.0148	
141477-2	1	9	-6.08e-4	न्द्र
141507-1	11	10	0.00474	
141546-2	1	11	-0.00112	
141688-1	1	12	-0.00247	
rinse	1	13	-0.00295	1
rinse	1-1-	13	-0.00847	
CCV	1-1-	14	0.0001/	-
	+ +	15	-0.00567	-
	+	10	-0.00307	are
		14	0.0476	1015076
	Kno	wn Conc:	0.0500	4
CCB	1	15	-1.5/e-4	-
	Kno	wn Conc:	100	
<u>141688-1 du</u>	1	16	0.00365	000662
141688-1 ms	1	17	0.00164	k≪
141688-2	1	18	0.00444	page .
141688-3	1	19	0.00635	
141688-4	1	20	0.0150	145
141690-1	1	21	0.0184	X
141787-1	1	22	0.00309	
141803-2	1	23	-6 08e-4	075
141803-4	+ ;-	24	0.00325	
141841-4	+	25	0.00020	4
DINCE		20	0.00121	4
DINCE	+	20	-0.00920	4
RINSE		20	-0.00832	Las
CCV	1 1	27	0.0538	03.1
	Kno	wn Conc:	0.0500	
ccb	1	<u> 28</u>	-0.00230	-
	Knc	wn Conc:	100	
ICB/MB	1	29	-6.48e-4	
	Kno	wn Conc:	0.00	
LCS	1	30	0.0552	110 %
	Knc	wn Conc.	0.0350	
141880-1		31	0.0307	1
1/1881-1	1	- 32	0.0007	
141001-1	+	22	7 170 4	nor Rei
141661-1 du		33	-7.178-4	11/07
141881-1 ms	+-]	34	0.0342	1 h
141881-2	- <u> </u>	35	-0.0117	475.
141881-3	1	36	0.00273	4
141881-4	1	37	0.00443	1 1 2 . 5 71. 1. 10
141888-2	1	38	0.163	outof curve, andly ud or is during
141988-2	1	39	0.00365	
141989-2	11	40	0.00948	- MA
RINSE	1	41	-0.0103	1
RINSE	+	41	-0.00671	4
	+	171	-0.00071	a (171)
<u></u>		44	<u>0.0471</u>	11

& airspike

MARKEN D

EnviroTest Laboratories Inc.

Prep Batch: 12433 Analytical Batch: 12436 Page: 2

Analyst:L)M		Prep Batch: <u>1</u> 7	2433 Analytic
ccb	1	43	-6.08e-4	
141461-2	1	6	0.0141	
141475-1	1	7	0.00270	
141477-2	1	9	0.00504	
141546-2	1	11	0.00362	1
141688-1	1	12	0.00492]
141688-1 ms	1	17	0.0355	118070
141688-4	1	20	0.00442	
141690-1	1	21	0.00527	
141803-2	1	23	0.0209	
141881-2	1	35	-0.313	
RINSE	1	41	-0.00836	
RINSE	1	41	-0.00780	
CCV	1	42	0.0470	94-10
	Kno	wn Conc:	0.0500	
ccb	1	43	-0.00157	1
	Kno	wn Conc:	100	
141888-2 x5	1	38	-6.08e-4	airgpilk
141989-2	1	40	0.0114	
141881-2	1	35	0.00896] .
141888-2 x5	1	38	0.0640	1.OMC SSML
RINSE	1	41	-0.0290]
RINSE	1	41	-0.00775	
CCV	1	42	0.0464	93%
	Kno	wn Conc:	0.0500	
ccb	1	43	7.63e-4	
	Kno	wn Conc:	100	J

DM

Analyte Properties Table for OM_9-4-2018_04-46-24PM.OMN

Broporty	Channel 1
Froperty	Phenolics-TR
Concentration Units	mg/L
Callibration Fit Type	First Order
Clear Calibration	True
Force Through Zero	False
Calibration Weighting	None
Auto Dilution Trigger	False
% of High Standard	110
Quik Chem Method	10-210-00-1-B
Chemistry	Direct/Bipolar
Calibration by Height	False
Inject to Peak Start	11
Peak Base Width	19

pe air spilm

Table 1: Phenolics-TR

	Conc. (mg/L)	Rep	Peak Area (Volt-s)	Peak Height (Volts)	% Residual	Detection Date	Detection Time
1	0.0750	1	0.0474	0.00640	-2.8	9/4/2018	4:30:33 PM
2	0.0500	1	0.0289	0.00402	6.5	9/4/2018	4:31:08 PM
3	0.0250	1	0.0157	0.00203	0.1	9/4/2018	4:31:44 PM
4	0.0100	1	0.00970	0.00109		9/4/2018	4:34:06 PM
5	0.00500	1	0.00424	4.48e-4	-21.3	9/4/2018	4:32:55 PM
6	0.00	1	4.40e-4	1.08e-4		9/4/2018	4:33:31 PM

Inorganic Data Digestion Distillation Log

Metals/Inorganics Prep Worksheet

(Used for Collecting Prep Info)

Batch Number: 420-124339

Analyst: Mastrobuono, Danielle

Batch Open: 9/4/2018 12:17:50PM Batch End:

Method Code: 420-Distill_Phenol-420

Distillation/Phenolics

ſ	Input Sample Lab ID	Input Sample Lab ID (Analytical Method)	SDG	Matrix	Initial Amount	Final Amount	Due Date	Analytical TAT	Dlv Rank	Comments
1		ICV~420-124339/1 N/A	N/A				N/A	N/A	N/A	
2		MB~420-124339/2 N/A	N/A				N/A	N/A	N/A	
3		LCS~420-124339/3 N/A	N/A				N/A	N/A	N/A	
4		420-141452-G-1 (10210001A)	Semi-Annual	Water			8/31/18	8_Days - R	1	
5		420-141453-B-1 (10210001A)	Monthly	Water			8/31/18	8_Days - R	1	, of 262
6		420-141461-E-2 (10210001A)	COK Quarterly	Water			8/31/18	8_Days - R	2	6 260 e
7	$4 2 \theta - 1 2 4 1 \theta 7 2 \theta$	420-141475-D-1 (10210001A)	Week 4	Water			9/4/18	8_Days - R	1	et spille
8	$4 2 \theta - 1 2 4 1 \theta 7 3$	420-141477-G-1 (10210001A)	N/A	Water			8/29/18	5_Days - R	1 1	
9		420-141477-F-2 (10210001A)	N/A	Water			8/29/18	5_Days - R	1	orspik
10		420-141507-В-1 N/А	N/A				N/A	N/A	N/A	
11		420-141546-E-2 (10210001A)	COK Quarterly	Water			9/4/18	8_Days - R	2	ar spike
12		420-141688-D-1 (10210001A)	Quarterly	Water			9/13/18	12_Days - R	4	or sp- 24
13		CCV~420-124339/13 N/A	N/A				N/A	N/A	N/A	
14		CCB~420-124339/14 N/A	N/A				N/A	N/A	N'A	
15		420-141688-D-1~DU (10210001A)	Quarterly	Water			9/13/18	12_Days - R	4	
- 1				1	1	1				

Metals/Inorganics Prep Worksheet

(Used for Collecting Prep Info)

Batch Number: 420-124339

Analyst: Mastrobuono, Danielle

Batch Open: 9/4/2018 12:17:50PM

Method Code: 420-Distill_Phenol-420

Batch End:

S.,

16	420-141688-D-1~MS (10210001A)	Quarterly	Water		9/13/18	12_Days - R	4	airspike
17	420-141688-F-2 (10210001A)	Quarterly	Water		9/13/18	12_Days - R	4 -	200 7 P. V Dutte & 14/18
18	420-141688-E-3 (10210001A)	Quarterly	Water		9/13/18	12_Days - R	4	
19	420-141688-G-4 (10210001A)	Quarterly	Water		9/13/18	12_Days - R	4	air saile
20	420-141690-D-1 (10210001A)	Quarterly	Water		9/7/18	8_Days - R	1	airspille
21	420-141787-E-1 (10210001A)	Week 5	Water		9/4/18	3_Days - R	1	
22	420-141803-B-2 (10210001A)	N/A	Water		9/6/18	5_Days - R	1	air spike
23	420-141803-B-4 (10210001A)	N/A	Water		9/6/18	5_Days - R	1	of 262
24	420-141841-A-4 (10210001A)	N/A	Water		9/4/18	3_Days - R	1	e 20 1
25	CCV~420-124339/25 N/A	N/A			N/A	N/A	N/A	
26	CCB~420-124339/26 N/A	N/A	a sa a nana		N/A	N/A	N/A	
27	MB~420-124339/27 N/A	N/A			N/A	N/A	N/A	
28	LCS~420-124339/28 N/A	N/A			N/A	N/A	N/A	
29	420-141880-E-1 (10210001A)		Water		9/12/18	8_Days - R	1	
30	420-141881-B-1 (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water		9/7/18	5_Days - R	2	
31	420-141881-B-1~DU (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water		9/7/18	5_Days - R	2	
32	420-141881-B-1~MS (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water		9/7/18	5_Days - R	2	
			-	-	-	-		-

Metals/Inorganics Prep Worksheet

(Used for Collecting Prep Info)

Batch Number: 420-124339

Analyst: Mastrobuono, Danielle

Batch Open: 9/4/2018 12:17:50PM

Method Code: 420-Distill_Phenol-420

Batch End:

33	420-141881-E-2 (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water	9/7/18	5_Days - R	2	airsbilk, airsbike
34	420-141881-A-3 (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water	9/7/18	5_Days - R	2	
35	420-141881-A-4 (10210001A)	GLOBALFOUNDRI ES B/312B Solvent Vault	Water	9/7/18	5_Days - R	2	
36	420-141888-B-2 (10210001A)	Pre-Treated Mini Schedule	Water	9/12/18	8_Days - R	1	x5 1.0ml asml, angeika
37	420-141988-A-2 (10210001A)	N/A	Water	9/10/18	5_Days - R	1	
38	420-141989-A-2 (10210001A)	N/A	Water	9/10/18	5_Days - R	1	arrspike
39	CCV~420-124339/39 N/A	N/A		N/A	N/A	N/A	of 26
40	CCB~420-124339/40 N/A	N/A		N/A	N/A	N/A	20 20 806 20

Batch Notes

Batch Comment

APPENDIX G

DATA VALIDATION

Project Name:	GLOBALFOUNDRIES B/312B Solve	nt Vault
Project Number:	3932-07	
Sample Date(s):	August 30, 2018	
Sample Team:	Brian Werner	
Matrix/Number	Rinse Water/ 2	
of Samples:	Field Duplicate/ 1	
	<u>Trip Blank / 1</u>	
	Rinsate Blank/1	
Analyzing Laboratory:	EnviroTest Laboratories, Inc., Newbu	rgh, NY
Analyses:	Volatile Organic Compounds (VOCs)	<u>):</u> by SW846 8260C
	N-methyl-2-pyrrolidone by SW846 8	015D
	Phenols: by QuickChem 10-210-00-1	-A
Laboratory Report No:	420-141881	Date: 9/17/18

DATA VALIDATION CHECKLIST

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

			Perfor	mance	
	Repo	orted	Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		Х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		Х	
4. Sample collection date		Х		Х	
5. Laboratory sample received date		Х		Х	
6. Sample analysis date		Х		Х	
 Copy of chain-of-custody form signed by Lab sample custodian 		Х		Х	
8. Narrative summary of QA or sample problems provided		X		Х	

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines for Superfund Organic Methods Data Review, January 2017, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:420-141881 SAMPLE AND ANALYSIS LIST

		Sample	Sample		Analysis	
Sample ID	Lab ID	Date	Parent Sample	VOC	N-methyl-2- pyrrolidone	Phenols
B312BSV-RB-1	420-141881-01	8/30/2018		Х	Х	Х
B312BSV-R1-1	420-141881-02	8/30/2018		Х	Х	Х
B312BSV-R2-1	420-141881-03	8/30/2018		Х	Х	Х
DUP083018	420-141881-04	8/30/2018	B312BSV-R2-1	Х	Х	Х
Trip Blank	420-141881-05	8/30/2018		X	X	Х

Pages

ALL ANALYSES

	Reported		Performance Acceptable		Not Required
	No	Yes	No	Yes	
1. Holding times		Х		Х	
2. Blanks					
A. Method blanks		Х		Х	
B. Trip blanks		Х		Х	
C. Rinsate blanks		Х	Х		
3. Matrix spike (MS) %R		Х	Х		
4. Matrix spike duplicate (MSD) %R		Х		Х	
5. MS/MSD precision (RPD)		Х	Х		
6. Laboratory control sample (LCS) %R		Х	Х		
7. Surrogate spike recoveries		Х		Х	
8. Instrument performance check		Х		Х	
9. Internal standard retention times and areas		Х		Х	
10. Initial calibration RRF's and %RSD's		Х		Х	
11. Continuing calibration RRF's and %D's X		Х		Х	
12. Transcriptions – quant report vs. Form I		Х		Х	

VOCs - volatile organic compounds %D - percent difference %R - percent recovery

%RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable, except the following:

- The water source utilized (B312BSV-RB-1) had chloroform, dibromochloromethane and 2C. dichlorobromomethane detected in it. Chloroform. dibromochloromethane and dichlorobromomethane were qualified as non-detected (UB) in samples B312BSV-R1-1, B312BSV-R1-1 and DUP083018 based on blank result.
- The %R was below the QC limit for n-methyl-2-pyrrolidone in the MS and the RPD was above the 3&5. QC limit in the MS/MSD. N-methyl-2-pyrrolidone was qualified as an estimated detection limit (UJ) in all samples.
- 6. The %R was above the QC limit for 1,2,4-trichlorobenzene in LSC. It was not detected in the samples therefore qualification of the data was not necessary.

DATA VALIDATION AND QUALIFICATION SUMMARY

QUALIFICATION SUM	MARY La	Laboratory Numbers: 420-141881				
Sample ID	Analyte(s)	Qualifier	Reason(s)			
All Analyses						
B312BSV-R1-1, B312BSV-R1-1 and DUP083018	Chloroform, dibromochloromethane and dichlorobromomethane	UB	Detected in the water source utilized			
All samples	N-methyl-2-pyrrolidone	UJ	The %R was below the QC limit in the MS			

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 9/20/2018
VALIDATION PERFORMED BY SIGNATURE:	Rom M Br

4/4