

8976 Wellington Road Manassas, VA 20109

April 23, 2019

Jessica LaClair New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, 12th Floor 625 Broadway Albany, New York 12233-7014

Re: Building 335 Data Summary Report Former IBM East Fishkill Facility Hopewell Junction, New York NYSDEC Site No. 314054

Dear Ms. LaClair:

The enclosed document presents the findings of a vapor intrusion assessment conducted at Building 335, located at the former IBM East Fishkill Facility in Hopewell Junction, New York. Building 335 is currently owned by iPark East Fishkill LLC.

If you have any questions, please contact me at (703) 257-2583.

Sincerely yours, International Business Machines Corporation

Sion V Chartand

Dean W. Chartrand Program Manager Corporate Environmental Affairs

Enclosure

NYSDOH Cc: Julia Kenney (w/enclosure via e-mail) Mike Buckley iPark (w/enclosure via e-mail) Carl Monheit iPark (w/enclosure via e-mail) Gary Marone **Global Foundries** (w/enclosure via e-mail) David Shea Sanborn Head (w/enclosure via e-mail)

B335 DATA SUMMARY REPORT

Former IBM East Fishkill Facility Hopewell Junction, New York

Prepared for IBM Corporation File No. 2999.06 April 2019

20 Foundry Street Concord, NH 03301

Dean Chartrand IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, VA 20109

April 19, 2019 File No. 2999.06

Re: Building 335 Data Summary Report Former IBM East Fishkill Facility Hopewell Junction, New York EPA ID No. NYD000707901, NYSDEC Site No. 314054

Dear Mr. Chartrand:

The enclosed report presents the findings of a vapor intrusion assessment conducted between November 2018 and February 2019 at Building 335 of the former IBM East Fishkill facility. Please contact us if you have any questions.

Very truly yours, Sanborn, Head Engineering, P.C.

David Shea

David Shea, P.E. *President*

JHS/DS: ds

Encl. B335 Data Summary Report

P:\2900s\2999.06\Source Files\201904 B335 Summary Report\SHPC cover letter.docx

B335 DATA SUMMARY REPORT

Former IBM East Fishkill Facility Hopewell Junction, New York

Prepared for **IBM Corporation**

Prepared by Sanborn, Head Engineering, P.C.

File 2999.06 April 2019

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND INFORMATION 2.1 Hydrogeology	
2.2 Former Building Processes	2
2.3 Potential PCE Sources and Transport M	lechanisms to Indoor Air2
3.0 VAPOR INTRUSION ASSESSMENT	
3.1 Indoor Air Grab Sample - Scope of Wor	k and Results4
3.2 Passive Diffusion Sampling	
	5
3.3 Building Pressure Testing and Indoor A	Air Screening5
	5
3.3.2.1 Differential Pressure	7
	7
0	
,	ition and Sampling9
	9
-	
	R MITIGATION

EXHIBITS

Exhibit 2-1: Conceptual Schematic of Transport Mechanisms of PCE to Indoor Air
--

- Exhibit 3-1: Testing Methods and Project Objectives
- Exhibit 3-2: Summary of Testing Conditions and Air Exchange Rates
- Exhibit 3-3: Air Exchange Rate Versus PCE Concentrations in Indoor Air
- Exhibit 3-4: Subslab Vapor Port
- Exhibit 3-5: Flux Chamber
- Exhibit 3-6: Calculated Mass Flux Values

TABLES

- Table 1Summary of Grab Indoor Air Analytical Results
- Table 2
 Summary of PCE Screening Results During Building Pressure Testing
- Table 3Summary of Subslab Vapor Analytical Results
- Table 4Summary of Flux Chamber Analytical Results

Page 2 2999.06

FIGURES

Figure 1	Site Location Plan
Figure 2	Building Location Plan

- Figure 3 Historical Building Layout Plan
- Figure 4 Exploration Location Plan
- Figure 5 Passive Diffusion Sample Results
- Figure 6 Subslab Vapor Sample Results

APPENDICES

- Appendix A Limitations
- Appendix B Photograph Log
- Appendix C Analytical Laboratory Reports
 - C.1 Indoor Air Grab Sample
 - C.2 Passive Diffusion Samples
 - C.3 Pressure Testing Split Samples
 - C.4 Subslab Vapor and Flux Chamber Samples
- Appendix D Building Pressure Testing Time Series Plots
- Appendix E Relative Percent Difference Summary
- Appendix F Field Documentation

1.0 INTRODUCTION

This report presents the scope of work and results of a vapor intrusion (VI) assessment for Building 335 (B335) at the former IBM East Fishkill Facility in Hopewell Junction, New York (the site). B335 formerly housed IBM's tetrachloroethene (PCE) recycling plant for the facility. B335 has been owned by iPark East Fishkill LLC (also referred to as National Resources [NR]) since September 2017 and is reportedly unoccupied. A site location plan is provided as Figure 1, and the location of B335 is shown on the facility plan provided as Figure 2.

In summer of 2018, iPark expressed its intent to market B335 for lease. Therefore, IBM elected to proceed with an investigation of PCE presence in indoor air and subslab vapor. The work described herein was conducted on behalf of IBM by Sanborn, Head Engineering, PC (SHPC). The services performed and this report are subject to the standard limitations for this type of work, as described in Appendix A.

2.0 BACKGROUND INFORMATION

IBM owned the East Fishkill facility property until 2015, at which time the property was transferred to Global Foundries. Global Foundries subsequently subdivided the property into 8 lots and sold 6 lots to iPark in September 2017. The lot lines as of the date of this report are shown on Figure 2. B335 is located on Lot 7, which is owned by iPark East Fishkill LLC.

B335 formerly housed the facility's PCE recycling operations, and the building and its contents were decommissioned by IBM circa 2002. The scope of decommissioning is uncertain, but it included removal of all interior process equipment (further described in Section 2.2), pipes and ducts, and roof-top equipment. The building is currently a vacant empty shell and a portion of the Building is being used by iPark for storage of various materials and equipment. Photographs of the building exterior and interior are provided in the photograph log in Appendix B. The building is located within the Area C (or B330) Area of Concern (AOC) as identified in the site's Part 373 Hazardous Waste Management Permit.

B335 is a single-story building that was constructed in three phases, which are shown on Figure 3 as Original B335, Expansion 1, and Expansion 2. The original building is at the northeastern end and is built into the hillside that slopes up to B330C to the north and B338 to the east. It is uncertain in what year the original building was constructed. Expansion 1 was added onto the northwest side of the original building circa 1979-1980¹. The original building and Expansion 1 were constructed of concrete walls and a concrete ceiling. Expansion 2 was constructed in 1982-1983² and was added onto the west side of the building for additional capacity. Expansion 2 was constructed of a combination of concrete and corrugated steel walls and a steel roof deck.

¹ Drawing titled, "Support Building #335 Addition", Sheet A-4012, prepared by IBM Data Systems Division Facilities Engineering, dated 10/5/79.

² Drawing titled, "Perchlor Storage Tanks, As-Built Drawings", Sheet M-2011, prepared by IBM Data Systems Division Facilities Engineering, dated 7/1/83.

Air louvers are situated on the upper portion of the northwest and southeast exterior walls to allow fresh air to enter the building. In addition, several electric coil unit heaters are located near the ceiling, several of which can be activated with switches. No other heating, ventilation, and air conditioning (HVAC) is present in the building.

2.1 Hydrogeology

Based on information provided in the most recent site Annual Corrective Action Status Report³, overburden groundwater (also referred to as soil groundwater) is present at a depth of approximately 15 feet below ground surface (bgs) near the building. Based on logs for borings advanced near the building, the building is underlain by approximately 40 feet of glacial till, which is underlain by dolomite.

PCE was detected at a concentration of 2.5 micrograms per liter (μ g/L), or parts per billion (ppb), in a sample of groundwater collected in 2017 from the nearest overburden monitoring well located just to the south of B335 (well #756). PCE was detected at a concentration of 2,700 ppb in a sample of bedrock groundwater collected in 2017 from a monitoring well located just to the west of B335 (well #607).

2.2 Former Building Processes

Five PCE aboveground storage tanks (ASTs) were located within B335 after both expansions were complete: two 10,000-gallon clean PCE ASTs; one 10,000-gallon spent PCE AST, and two 5,000-gallon PCE ASTs. Based on information provided by a former site worker, spent PCE was piped to a series of stills where PCE was boiled off and recondensed to remove the impurities. The condensed liquid went through a water separator, and the effluent PCE went to the clean PCE tanks. Exhaust from the stills was treated through activated carbon units, with waste condensate from the exhaust collected in a pit near the carbon beds. The waste condensate was then pumped back through the still system. Sludge from the still bottoms was reportedly shoveled out and trucked away for disposal. Refer to Figure 3 for the approximate location of the tanks and equipment.

2.3 Potential PCE Sources and Transport Mechanisms to Indoor Air

Potential sources for PCE presence in soil, groundwater, and soil vapor resulting from B335 operations include interior subsurface pits, interior subsurface PCE drain lines associated with the stills, and spillage of PCE inside the building. Anecdotal information suggests that at least one PCE spill occurred onto the floor due to overflowing of the stills in the northern portion of the building.

PCE was detected at a concentration of 560 μ g/m³ in a grab sample of indoor air collected using a SUMMA[®] canister from the center of the building in November 2018. The sources and mechanisms by which PCE reaches indoor air is important because of the implications for selecting an effective mitigation approach. The three primary sources and transport mechanisms for PCE presence in indoor air include: off-gassing (volatilization) of PCE

³ Groundwater Sciences Corporation and IBM, "2017 Annual Corrective Action Status Report, Former IBM East Fishkill Facility, Town of East Fishkill, Dutchess County, New York, NYSDEC Site No. 314054, EPA ID No. NYD000707901", dated May 30, 2018.

April 2019	Page 3
201904-B335SummaryReport.docx	2999.06

sorbed in concrete building materials, VI of PCE-containing soil vapor by diffusion through the concrete floors and walls, and VI of PCE-containing soil vapor by pressure gradientdriven advective flow through the building envelope. Exhibit 2-1 provides a conceptual schematic of these three transport mechanisms in a building with historical interior spills to the concrete floor, and a release from a subgrade pipe.

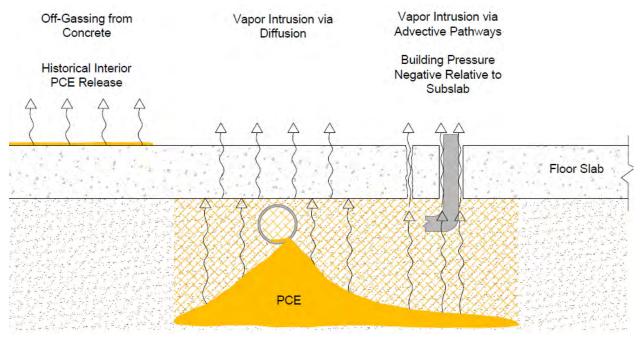


Exhibit 2-1: Conceptual Schematic of Transport Mechanisms of PCE to Indoor Air

Off-gassing and VI by diffusion are driven by a concentration gradient, meaning that contamination moves from an area of high to low concentrations. VI by advection is driven by pressure gradients, meaning that contamination moves from an area of higher to lower pressure.

In addition to the previously-discussed sources, PCE in indoor air may sorb into the concrete floor, walls, and ceiling over time, and then eventually back-diffuse (off-gas) into the building.

3.0 VAPOR INTRUSION ASSESSMENT

A VI assessment was completed in B335 with the following objectives:

- To evaluate the impacts to indoor air (IA) and subslab vapor (SSV) related to the building's former use as the facility's PCE recycling plant;
- To evaluate the transport mechanisms of PCE to indoor air (i.e., off-gassing, VI by diffusion, VI by advection);
- To assess the suitability of the building for occupancy under current conditions; and
- To assess the feasibility of mitigating impacts to indoor air.

Exhibit 3-1 summarizes the testing methods employed and corresponding project objectives for the VI assessment. A description and the results of each testing method are provided in the following sections. Exploration locations are shown on Figure 4.

	Assess	Assess	Trai	nsport Mech	Suitability	Feasibility	
Testing Method	IA	SSV	Off- Gassing	VI - Diffusion	VI - Advection	for Occupancy	of Mitigation
Indoor Air Grab Sample							
Passive Diffusion Sampling							\checkmark
Building Pressure Testing and Indoor Air Screening		\checkmark		\checkmark		\checkmark	\checkmark
Subslab Vapor Sampling							
Flux Testing							

Exhibit 3-1: Testing Methods and Project Objectives

3.1 Indoor Air Grab Sample - Scope of Work and Results

One indoor air grab sample (IAB335-Grab) was collected on November 7, 2018 to obtain a discrete snapshot of site-related VOCs in the building air. The sample was collected over a period of approximately 1 minute into a 6-L SUMMA canister and submitted to Eurofins Air Toxics, Inc. (EATI) of Folsom, California for analysis of the site-specific analyte list by USEPA Method TO-15 in select ion monitoring (SIM)/full scan mode.

At the time of sampling, the building had been generally closed-up for some time, and the air louvers were partially closed, resulting in limited air exchange. TCE and PCE were detected in the sample at concentrations of 1.8 and 560 μ g/m³, respectively. A summary of results, including other compounds, is provided in Table 1. The laboratory analytical report is included in Appendix C.1.

3.2 Passive Diffusion Sampling

Passive diffusion samples were collected in November 2018 to assess the potential for offgassing and VI by diffusion from the concrete floor slab. Photographs of the passive samplers are included in Appendix B.

3.2.1 Scope of Work

Passive samples were obtained using Assay Technology's 566 Organic Vapor Monitor, which contains a charcoal insert for sample collection over time. The passive diffusion samplers were placed at 11 locations on the concrete floor as shown on Figure 4, with the sorbent facing down toward the concrete. The samplers were placed uniformly in the building to provide general building coverage.

The samplers were deployed on November 26, 2018 for a period of approximately 43 hours (~1.8 days). Passive samplers were submitted to SGS Galson of East Syracuse, NY (SGS) for analysis of TCE and PCE using modified NIOSH Method 1022.

3.2.2 Results

The passive diffusion sample results for PCE are presented on Figure 5, and the lab reports are included in Appendix C.2. TCE was not detected above the reporting limit at any of the sample locations.

PCE was detected in each of the samples at concentrations ranging from 300 to $620 \ \mu g/m^3$. PCE isopleths are shown on Figure 5. The highest concentrations of PCE ($600 \ \mu g/m^3$ and greater) were detected on the north and northeast side of the building near the former still area and the approximate vicinity of at least one former PCE spill to the floor. Concentrations decreased to the south and west in the area where less PCE handling occurred.

The passive sampler results suggest:

- Off-gassing and VI by diffusion are likely contributing to PCE concentrations in indoor air; and
- The highest concentration of PCE sorbed to the concrete floor slab and/or beneath the floor slab is in the northeast area of the building near the former stills and PCE spill to the floor.

3.3 Building Pressure Testing and Indoor Air Screening

Building pressure testing and indoor air screening was completed between December 5 and 7, 2018. The purpose of the testing was to identify the transport mechanisms by which PCE is entering indoor air (i.e., off-gassing, VI by diffusion, VI by advection). Photographs of the general set-up for pressure testing are included in Appendix B.

3.3.1 Scope of Work

Indoor air screening was conducted with the building at varying pressures relative to the building exterior to assess transport mechanisms of PCE to indoor air. With the building at a positive pressure relative to the subslab, VI by advective pathways is theoretically cut off. Increases in PCE in indoor air when the building is under a positive pressure can be attributed to off-gassing of PCE from the concrete floors or walls, or by diffusion of PCE through the floor slab. Conversely, with the building under negative pressure relative to the subslab, VI by advective pathways is theoretically enhanced. An increase in PCE in indoor air when the building is under negative pressure relative to the subslab, VI by advective pathways is theoretically enhanced. An increase in PCE in indoor air when the building is under negative pressure would indicate VI is occurring by the advective pathway.

A gas chromatograph with an electron capture detector (GC-ECD) was set up in B335 to sample and analyze indoor air for PCE and TCE at six locations (IA335-001 through IA335-006 on Figure 4) for the duration of the testing. The GC-ECD collected and analyzed an indoor air sample every 10 minutes, rotating through the 6 locations on a continuous basis, resulting in approximately one reading per hour at each location. Two GC-ECD split

samples were collected using SUMMA[®] canisters and submitted for laboratory analysis for quality assurance/quality control (QA/QC) purposes.

Three differential pressure (DP) transducers were set up in the doorways to measure and record the pressure differential between the interior and exterior of the building. Measurements were collected for the duration of the testing.

Up to three 36-inch-diameter air circulating floor fans were placed in exterior doorways to either transfer air into or out of the building depending on the desired test conditions. The fans were equipped with two speeds for a flow rate of up to 7,800 cubic feet per minute (CFM) each. Air exchange rates (AER) were calculated as described in Exhibit 3-2.

The general procedure for pressure testing was as follows:

- The building was flushed with outside air to reduce the initial indoor air PCE concentrations as much as possible before starting the test. Exterior doorways were opened, and the fans were placed in the doorways on a high setting, which resulted in an AER of 12 to 13 per hour.
- Louvers on the exterior walls were then covered with plastic sheeting to decrease air leakage during pressure testing.
- Floor fans were set up in the doorways with plastic sheeting around them to decrease leakage of outside air.
- Floor fans were oriented to transfer outside air into the building to test the building under positive pressure.
- Floor fans were oriented to exhaust air out of the building to test the building under negative pressure.

The number of fans and doorways in which they were installed was adjusted to reach the desired differential pressure of at least 5 Pa. Exhibit 3-2 presents a summary of tests and associated AER and differential pressure.

		Air Exchanges	Representative
Date	Test Condition	Per Hour *	DP (Pascals)**
12/5/2018	Building Flush #1	12	0.52
12/5/2018	Positive Pressure Test #1	3.3	18
12/6/2018	Negative Pressure Test #1	3.8	-25
12/6/2018	Negative Pressure Test #2	2.0	-8.9
12/6/2018	Negative Pressure Test #3	3.1	-16
12/6/2018	Building Flush #2	13	5.2
12/6/2018	Positive Pressure Test #2	4.4	24
12/7/2018	Negative Pressure Test #4	1.9	-5.5

Exhibit 3-2: Summary of Test Conditions

*Air exchanges per hour were calculated using the following formula:

AER = (60/[V/Q])

V = Building volume in cubic feet (ft³)

Q = Air Flow Rate in cubic feet per minute (cfm)

** Positive DP values indicate that the building interior is at a higher pressure than the building exterior (i.e., pressurized). Negative DP values indicate that the building interior is at a lower pressure than the building exterior (i.e., under vacuum). 1 Pa = 0.004 inches of water column

3.3.2 Results

Time series charts showing DP measurements and PCE concentrations (measured using the GC-ECD) are provided in Appendix D. The AER and DPs for each of the testing periods are also shown on the charts. A summary of stabilized, representative PCE indoor air concentrations during the testing periods is provided in Table 2.

3.3.2.1 Differential Pressure

DP measurements confirmed that the building was either negative or positive relative to the building exterior during the associated tests. These results demonstrate that the fans were capable of controlling building pressures as intended during the testing. Note that the DPs were measured between the building interior and exterior, but were assumed to also reflect the relative changes in DP between the building interior and the subslab.

During Positive Pressure (PP) testing, DPs ranged from approximately 15 to 25 Pascals, and during Negative Pressure (NP) testing, DPs ranged from approximately -5 to -25 Pascals. In general, a DP of 5-10 Pascals is presumed to be adequate to either suppress or enhance VI.

In addition, changes in AER generally directly correlated with changes in DP measurements during PP and NP tests. For example, the higher AER for PP Test #2 resulted in the building being more positive (higher DP) than during PP Test #1 when the AER was lower.

3.3.2.2 Air Exchange Rate

As shown in Exhibit 3-3, lower AERs generally resulted in higher PCE concentrations, while higher AERs generally resulted in lower PCE concentrations.

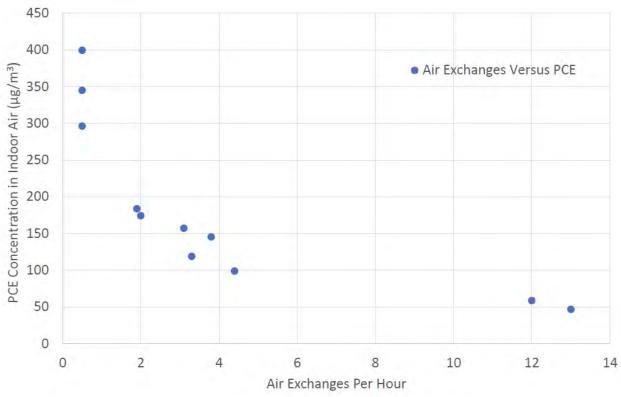


Exhibit 3-3: AER Versus PCE Concentrations in Indoor Air

3.3.2.3 Key Findings

The following discussion is based on the data presented in Table 2. During the building flush-out periods, PCE concentrations decreased to between 28 and 99 μ g/m³ (average = 53 μ g/m³) at AERs between 12 and 13 per hour. These elevated concentrations even during significant ventilation suggest that relatively high air exchanges are not adequate to lower PCE concentrations to acceptable levels due to the combined effects of off-gassing, VI by diffusion, and VI by advection.

During PP testing, PCE concentrations increased from between 28 and 45 μ g/m³ to between 88 and 126 μ g/m³ (average = 109 μ g/m³). Under positive building conditions, VI by advective pathways should be cut off in theory. Therefore, the observed PCE increases confirm that off-gassing and/or VI by diffusion are contributing to PCE presence in indoor air.

During NP testing, VI by advective pathways should in theory be enhanced due to the increased pressure gradient from the subslab into the building. PCE stabilized at a higher concentration during NP testing (average = $165 \ \mu g/m^3$) than during PP testing (average = $109 \ \mu g/m^3$), confirming that VI by the advective pathway is also contributing to PCE concentrations in indoor air. The results also showed that PCE concentrations were dependent on AER in addition to DP; PCE concentrations were found to decrease under higher AERs (and when the building was more negative). This is likely the result of dilution

from fresh air being drawn through the leaky metal walls of the building, not just intrusion of soil vapor.

A comparison of split SUMMA canisters with GC-ECD screening samples is provided in Appendix E, and the analytical laboratory report for the split SUMMA samples is provided in Appendix C.3.

3.4 Subslab Vapor Monitoring Port Installation and Sampling

Subslab vapor (SSV) monitoring ports SSV335-001 through SSV335-012 were installed on January 29, 2019. The SSV port locations are shown on Figure 4 and were intended to provide generally broad coverage of the building footprint.

3.4.1 Scope of Work

The SSV ports consist of ¼-inch stainless steel tubing equipped with threaded connectors that penetrate the building slab. A schematic of an SSV port is shown in Exhibit 3-4 below.

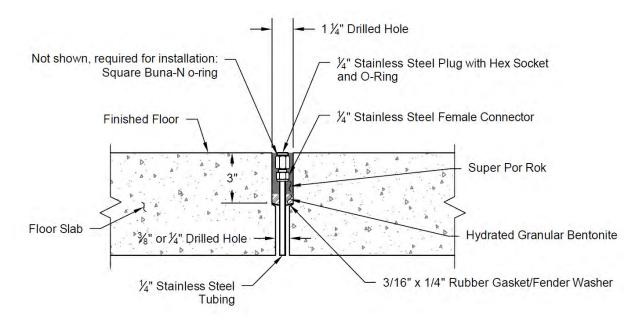


Exhibit 3-4: Subslab Vapor Port

Helium integrity testing was performed on two of the SSV ports on January 30, 2019 following installation to confirm air tight seals around the slab penetration.

The SSV ports were sampled on January 30, 2019 over a period of approximately 1 hour using 1-L SUMMA[®] canisters. The samples were submitted to EATI for analysis of the site-specific analyte list using USEPA Method TO-15 in full scan mode.

3.4.2 Results

A summary of subslab vapor results is included in Table 3. Laboratory analytical reports are provided in Appendix C.4. Field forms that document the subslab vapor sample collection and integrity testing results are including in Appendix F.

PCE was detected in each of the subslab vapor samples ranging in concentration from 13,000 to 25,000,000 μ g/m³. The PCE results are shown on Figure 6 along with isopleths showing the inferred distribution of PCE in subslab vapor. The highest concentration of PCE was detected in the area of the former stills, where subgrade PCE drain pipes have been identified on historical drawings. Concentrations were also elevated in the area of the former PCE ASTs. In general, PCE concentrations were higher in the northeastern half of the building where most of the PCE handling occurred.

At the location of the highest passive sample result (PD335-05/SSV335-005), the subslab vapor concentration was two orders of magnitude lower than the highest subslab vapor concentration. This inconsistency suggests that off-gassing from the concrete floor, rather than VI by diffusion, may be the primary contributor to the passive sample results in that area. Anecdotal information suggests that this area was impacted by at least one PCE surface spill in the past.

The subslab vapor sample results suggest:

- PCE was likely released to the subsurface in the northwest corner of the building near the former stills via subsurface pipes or pits;
- Subsurface releases may have occurred near the former PCE tanks;
- VI is likely occurring by advection and diffusion through the floor slab (given the elevated PCE concentrations in subslab vapor); and
- Interior PCE spills likely impacted the western portion of the building near SSV335-005.

3.5 Mass Flux Testing

Mass flux testing was conducted using fabricated flux chambers on January 29 and 30, 2019 to further assess the transport mechanisms contributing to PCE in indoor air. The main goal was to assess the flux of PCE into the building from off-gassing and VI by diffusion.

3.5.1 Scope of Work

A photograph of a flux chamber and its main components is provided in Exhibit 3-5.

Exhibit 3-5: Flux Chamber

The chambers were constructed using a 3.4-L plastic container with a gasket secured to the open side of the container to create a seal when placed on the floor. Two ports were drilled into the sides of the chamber to purge and sample the air within the chamber. A weight was placed on top of the chamber to allow the gasket to maintain contact with the concrete floor during the test.

The chambers were placed at the locations designated FT335-001 through FT335-006 on Figure 4. The flux tests were co-located with the passive diffusion sampler locations to compare the results. FT335-001 and FT335-002 were placed on the northwest and northeast concrete walls, respectively, at a height of approximately 5 feet above the floor slab (center of chamber). FT335-003 through FT335-006 were placed on the floor slab. In each case, the chambers were placed over areas where there were no visible cracks or other pathways for VI by advection. Photographs of the flux chambers are included in Appendix B.

With both sample ports open, 4 to 5 chamber volumes of ultra-high purity nitrogen were injected through one port to purge any initial VOC presence from the chamber. Both sample ports were then closed, and the chamber was allowed to sit for a period of between 40 and 60 minutes. At the end of the test, a grab sample of the chamber air was collected through one of the sample ports using a 1-L SUMMA[®] canister. The samples were submitted to EATI for analysis of the site-specific analyte list by USEPA Method TO-15.

3.5.2 Results

A summary of the analytical results for the flux chamber samples are provided in Table 4, and the analytical laboratory report is provided in Appendix C.4. Mass flux of PCE from the walls and floor was calculated at each location using the following equation.

Mass Flux = M/SA/T

where: M = Mass of PCE in the chamber (μg)* SA = Surface area enclosed by the chamber (m²) T = Duration of test (days) *PCE mass was calculated by multiplying the volume of the chamber by the PCE concentration.

Page 12 2999.06

Calculated mass flux values are provided in Exhibit 3-6.

Flux Test Location	Calculated PCE Mass Flux (µg/m²/day)
FT335-001 (NW wall)	290
FT335-002 (NE wall)	440
FT335-003 (floor)	980
FT335-004 (floor)	7,600
FT335-005 (floor)	56,000
FT335-006 (floor)	6,400

Exhibit 3-6: Calculated Mass Flux Values

The highest mass flux value was calculated at FT335-005, which is co-located with the passive sample with the highest PCE concentration and located in the area where at least one historical PCE spill occurred. Like the passive sample, this location is outside of the area exhibiting the highest subslab vapor concentrations, indicating that the elevated mass flux is likely predominantly due to off-gassing from the slab rather than VI by diffusion or advection.

The wall samples exhibited the lowest mass flux values, indicating limited off-gassing or diffusive VI from the walls (in the case of the east wall built into the hillside).

Theoretical indoor air concentrations assuming steady-state, well-mixed conditions were calculated based on the mass flux values and assumed air exchange rates using the following equation:

IA = MFlux/(AER*H)

where: IA = Calculated PCE concentration in indoor air (μ g/m³) MFlux = Mass flux (μ g/m²/day) AER = Air exchange rate (1/day) H = Mixing height of the building (m)

The results represent PCE concentrations from off-gassing and VI by diffusion and provide an estimate of the relative contribution from those pathways, and not VI by advection.

Based on typical AER in buildings with modern HVAC systems (48 to 96 outside air exchanges per day), potential PCE concentrations in indoor air from off-gassing and VI by diffusion were calculated to range from 37 to 74 μ g/m³.

4.0 CONCLUSIONS AND IMPLICATIONS FOR MITIGATION

A VI investigation was completed in B335 between November 2018 and February 2019 to assess impacts to subslab vapor and indoor air as a result of its former use as the facility's

PCE recycling plant. These investigations included indoor air grab sampling, passive diffusion sampling, building pressure testing and indoor air screening, subslab vapor sampling, and mass flux testing. The building is currently vacant and used for storage.

PCE was detected at a concentration of 560 μ g/m³ in an indoor air grab sample collected from the building in November 2018, indicating that the building is not suitable for occupancy under current conditions as compared to NYSDOH's guidance value of 30 ug/m³.⁴

The results of the VI investigation indicated that three transport mechanisms are likely contributing to the PCE presence in indoor air: off-gassing of PCE from the slab, VI through the slab by diffusion, and VI through floor cracks and other advective pathways.

Based on these results, a multi-faceted mitigation approach would likely be needed to adequately lower PCE concentrations in indoor air. Potential mitigation techniques include floor sealants to address off-gassing and diffusion, a subslab depressurization system (SSDS) to address advective VI, active HVAC to increase AER and building pressure, and/or a vented floor constructed over the existing slab. It is difficult to predict if these measures would be sufficient to lower PCE indoor air concentrations to levels suitable for routine occupancy. Based on our experience with VI mitigation and the results of this study, we believe it would be challenging to reduce PCE indoor air concentrations to acceptable levels in this building using the above measures.

Given the building's historical use as the PCE recycling plant and the very high PCE concentrations in subslab vapor, IBM is considering conducting a RCRA Facility Investigation (RFI) to evaluate the potential source of PCE, including assessment of the magnitude and extent of subsurface contamination and the feasibility of remediation, if appropriate.

P:\2900s\2999.06\Source Files\201904 B335 Summary Report\201904-B335SummaryReport.docx

⁴ <u>Tetrachloroethene (PERC) in Indoor and Outdoor Air</u>, September 2013 Fact Sheet, New York State Department of Health, Bureau of Toxic Substance Assessment.

TABLES

SANBORN 📗 HEAD ENGINEERING

Table 1 Summary of Grab Indoor Air Analytical Results Building 335 Former IBM East Fishkill Facility Hopewell Junction, New York

Analyte	Sample Name	IAB335-Grab		
Analyte	Collection Date	11/7/2018		
Acetone	μg/m3	13		
Benzene	μg/m3	<2.5		
Carbon tetrachloride	μg/m3	<0.98		
CFC113 (Ethane, 1,1,2-trichloro-1,2,2-trifluoro-)	μg/m3	<5.9		
Chlorobenzene (Monochlorobenzene)	μg/m3	<3.6		
Dichlorobenzene (1,2-)	μg/m3	<4.6		
Dichlorobenzene (1,3-)	μg/m3	<4.6		
Dichlorobenzene (1,4-)	μg/m3	<4.6		
Dichlorodifluoromethane (CFC12)	μg/m3	<19		
Dichloroethene (1,1-)	μg/m3	< 0.31		
Dichloroethene (cis-1,2-)	μg/m3	1.4		
Ethylbenzene	μg/m3	<3.4		
Methylene Chloride (Dichloromethane)	μg/m3	<5.4		
Tetrachloroethene (PCE)	μg/m3	560		
Toluene	μg/m3	3.6		
Trichlorobenzene (1,2,4-)	μg/m3	<29		
Trichloroethane (1,1,1-)	μg/m3	<4.2		
Trichloroethene (TCE)	μg/m3	1.8		
Trichlorofluoromethane (CFC11)	μg/m3	<4.4		
Vinyl chloride	μg/m3	< 0.20		
Xylene (m,p-)	μg/m3	5.4		
Xylene (o-)	μg/m3	<3.4		

Notes:

1. The results represent a grab sample collected by Sanborn Head Engineering P.C. on the date indicated in a 6L SUMMA canister. The sample was analyzed by Eurofins Air Toxics of Folsom, California for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 using a combination of full scan and selective ion monitoring (SIM) mode.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. Results are displayed with two significant figures.

4. "<" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

Table 2 Summary of PCE Screening Results During Building Pressure Testing Building 335 Former IBM East Fishkill Facility Hopewell Junction, New York

Test Period	Air Exchange Stabilized PCE Concentration (μg/m ³)							
	Rate per Hour	IA335-001	IA335-002	IA335-003	IA335-004	IA335-005	IA335-006	
Baseline (Pre-Testing Conditions)	NM	405	399	406	400	400	386	
Building Flush #1	12	62	62	6	45	46	78	
Positive Pressure Test #1	3.3	126	119	118	109	122	119	
Resting Overnight #1	NM	349	343	338	345	349	345	
Negative Pressure Test #1	3.8	159	158	112	148	152	143	
Negative Pressure Test #2	2.0	186	183	159	170	173	174	
Negative Pressure Test #3	3.1	172	168	138	143	153	169	
Building Flush #2	1.3	29	32	2	28	45	99	
Positive Pressure Test #2	4.4	100	101	9	88	98	107	
Resting Overnight #2	NM	301	300	292	304	296	284	
Negative Pressure Test #4	1.9	186	180	164	177	194	201	

Notes

1. Indoor air samples were collected and analyzed by Sanborn Head using a portable gas chromatograph with electron capture detector (GC-ECD).

2. IA335-003 was located near a floor fan for the building flushes and Positive Pressure Test #2. Therefore, the concentrations

are not representative of typical indoor air concentrations during those tests because of the intense mixing in front of the fan.

Table 3 Summary of Subslab Vapor Analytical Results Building 335 Former IBM East Fishkill Facility Hopewell Junction, New York

	Sample Name	SSV335-001	SSV335-002	SSV335-003	SSV335-004	SSV335-005	SSV335-006	SSV335-007	SSV335-008	SSV335-009	SSV335-010	SSV335-011	SSV335-011 Dup	SSV335-012
Analyte	Collection Date	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019	1/30/2019
Acetone	ug/m3	<150	<830	<5,900	<23,000	<12,000	<220	<120,000	<200,000	<29,000	<1,200	<57,000	<49,000	<73,000
Benzene	ug/m3	<20	<280	<2,000	<7,800	<4,000	<29	<39,000	<68,000	<9,700	<390	<19,000	<16,000	<24,000
Carbon tetrachloride	ug/m3	<39	<550	<3,900	<15,000	<7,900	<58	<77,000	<130,000	<19,000	<770	<38,000	<32,000	<48,000
CFC113 (Ethane, 1,1,2-trichloro-1,2,2-trifluoro-)	ug/m3	<47	<670	<4,800	<19,000	<9,600	<70	<94,000	<160,000	<23,000	<940	<46,000	<39,000	<59,000
Chlorobenzene (Monochlorobenzene)	ug/m3	<28	<400	<2,900	<11,000	<5,800	<42	<57,000	<98,000	<14,000	<570	<28,000	<24,000	<35,000
Dichlorobenzene (1,2-)	ug/m3	<37	<520	<3,800	<15,000	<7,500	<55	<74,000	<130,000	<18,000	<740	<36,000	<31,000	<46,000
Dichlorobenzene (1,3-)	ug/m3	<37	<520	<3,800	<15,000	<7,500	<55	<74,000	<130,000	<18,000	<740	<36,000	<31,000	<46,000
Dichlorobenzene (1,4-)	ug/m3	<37	<520	<3,800	<15,000	<7,500	<55	<74,000	<130,000	<18,000	<740	<36,000	<31,000	<46,000
Dichlorodifluoromethane (CFC12)	ug/m3	<30	<430	<3,100	<12,000	<6,200	<45	<61,000	<100,000	<15,000	<610	<30,000	<25,000	<38,000
Dichloroethene (1,1-)	ug/m3	<24	<340	<2,500	<9,700	<5,000	<36	<49,000	<85,000	<12,000	<490	<24,000	<20,000	<30,000
Dichloroethene (cis-1,2-)	ug/m3	<24	<340	<2,500	<9,700	<5,000	150	110,000	<85,000	<12,000	<490	<24,000	<20,000	<30,000
Ethylbenzene	ug/m3	<27	<380	<2,700	<10,000	<5,400	<40	<53,000	<93,000	<13,000	<530	<26,000	<22,000	<33,000
Methylene Chloride (Dichloromethane)	ug/m3	<210	<1,200	<8,700	<34,000	<17,000	<320	<170,000	<300,000	<42,000	<1,700	<84,000	<71,000	<110,000
Tetrachloroethene (PCE)	ug/m3	13,000	100,000	580,000	660,000	370,000	14,000	15,000,000	25,000,000	2,500,000	88,000	3,800,000	3,000,000	7,700,000
Toluene	ug/m3	<23	<330	<2,400	<9,200	<4,700	<34	<46,000	<81,000	<11,000	<460	<23,000	<19,000	<29,000
Trichlorobenzene (1,2,4-)	ug/m3	<180	<2,600	<18,000	<72,000	<37,000	<270	<360,000	<640,000	<90,000	<3,600	<180,000	<150,000	<230,000
Trichloroethane (1,1,1-)	ug/m3	<34	<470	<3,400	<13,000	<6,800	<50	<67,000	<120,000	<16,000	<670	<33,000	<28,000	<42,000
Trichloroethene (TCE)	ug/m3	160	1,700	<3,400	<13,000	<6,700	350	70,000	<120,000	<16,000	<660	<32,000	<28,000	<41,000
Trichlorofluoromethane (CFC11)	ug/m3	<34	<490	<3,500	<14,000	<7,000	<51	<69,000	<120,000	<17,000	<690	<34,000	<29,000	<43,000
Vinyl chloride	ug/m3	<16	<220	<1,600	<6,200	<3,200	<23	<31,000	<55,000	<7,800	<310	<15,000	<13,000	<20,000
Xylene (m,p-)	ug/m3	<27	<380	<2,700	<10,000	<5,400	<40	<53,000	<93,000	<13,000	<530	<26,000	<22,000	<33,000
Xylene (o-)	ug/m3	<27	<380	<2,700	<10,000	<5,400	<40	<53,000	<93,000	<13,000	<530	<26,000	<22,000	<33,000

Notes:

1. Subslab vapor samples were collected by Sanborn Head Engineering P.C. in 1L SUMMA® canisters over a period of approximately 1 hour. The samples were analyzed by Eurofins Air Toxics of Folsom, California for the project-specific list of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 in full scan mode.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

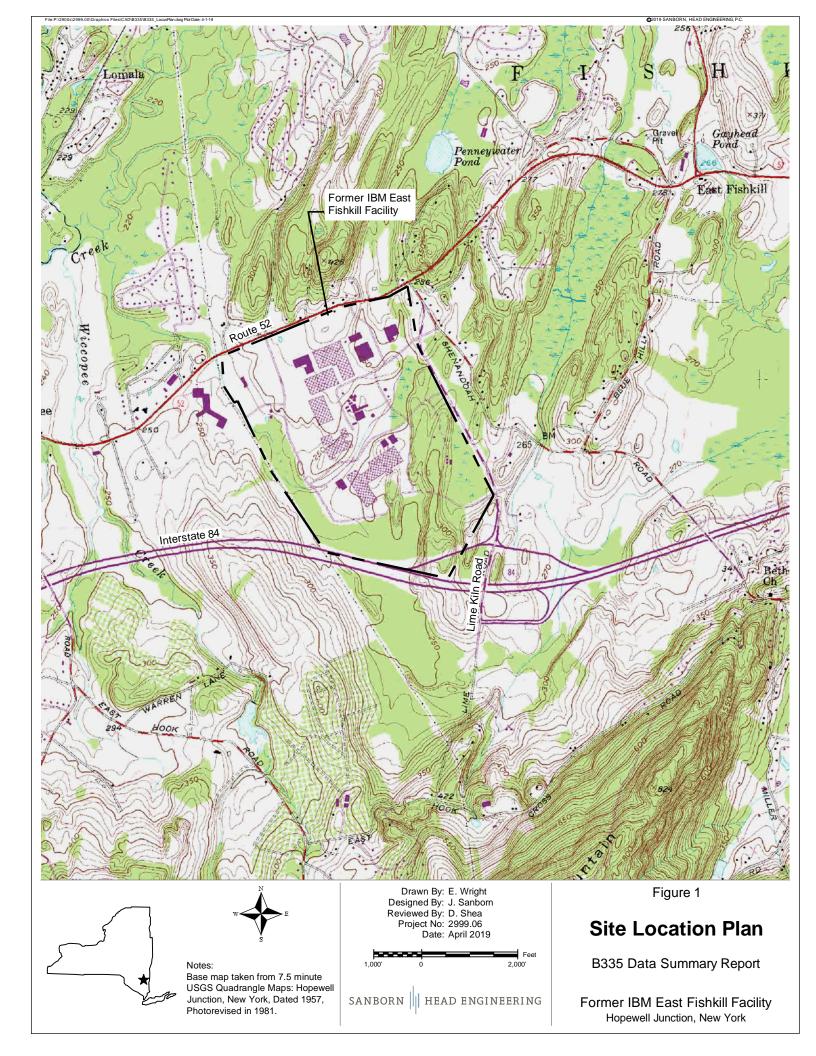
3. Results are displayed with two significant figures.

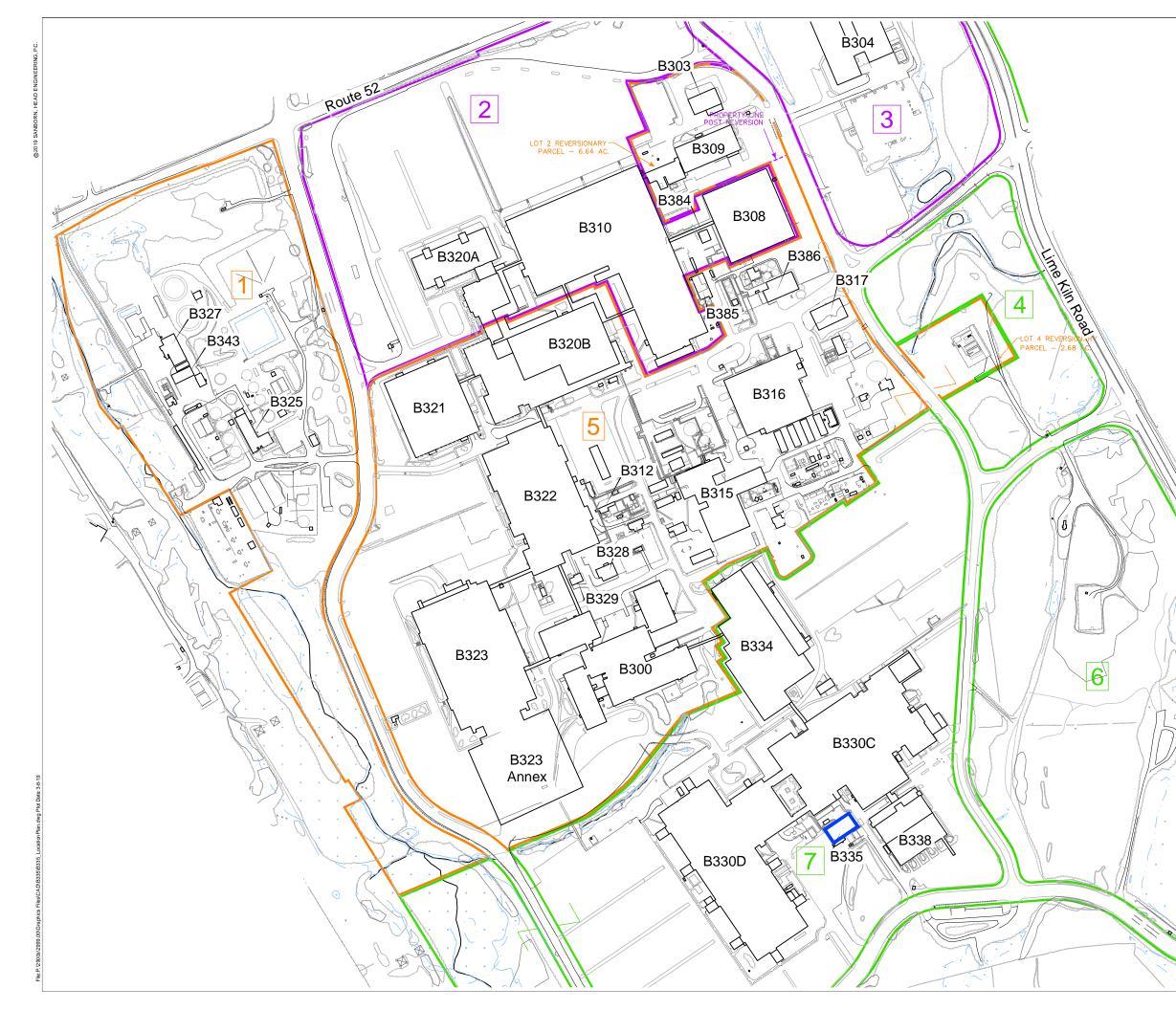
4. "<" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

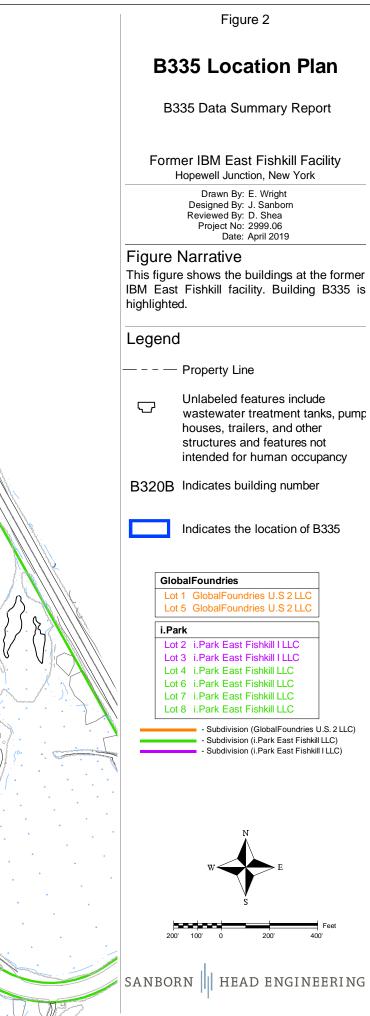
Table 4 Summary of Flux Chamber Analytical Results Building 335 Former IBM East Fishkill Facility Hopewell Junction, New York

Amplita	Sample Name	FT335-001-60G	FT335-002-40G	FT335-003-40G	FT335-004-40G	FT335-005-40G	FT335-006-40G
Analyte	Collection Date	1/29/2019	1/29/2019	1/29/2019	1/29/2019	1/30/2019	1/30/2019
Acetone	ug/m3	33	<30	<25	<30	<120	<28
Benzene	ug/m3	<4.3	<4.0	<3.4	<4.0	<16	<3.8
Carbon tetrachloride	ug/m3	<8.4	<7.8	<6.6	<7.9	<31	<7.6
CFC113 (Ethane, 1,1,2-trichloro-1,2,2-trifluoro-)	ug/m3	<10	<9.5	<8.0	<9.6	<38	<9.2
Chlorobenzene (Monochlorobenzene)	ug/m3	<6.2	<5.7	<4.8	<5.8	<23	<5.5
Dichlorobenzene (1,2-)	ug/m3	<8.0	<7.5	<6.3	<7.5	<30	<7.2
Dichlorobenzene (1,3-)	ug/m3	<8.0	<7.5	<6.3	<7.5	<30	<7.2
Dichlorobenzene (1,4-)	ug/m3	<8.0	<7.5	<6.3	<7.5	<30	<7.2
Dichlorodifluoromethane (CFC12)	ug/m3	<6.6	<6.2	<5.2	<6.2	<24	<5.9
Dichloroethene (1,1-)	ug/m3	<5.3	<4.9	<4.2	<5.0	<19	<4.8
Dichloroethene (cis-1,2-)	ug/m3	<5.3	<4.9	<4.2	7.9	<19	<4.8
Ethylbenzene	ug/m3	<5.8	<5.4	13	13	<21	<5.2
Methylene Chloride (Dichloromethane)	ug/m3	<46	<43	<36	<43	<170	<42
Tetrachloroethene (PCE)	ug/m3	180	180	400	3,100	23,000	2,600
Toluene	ug/m3	<5.0	<4.7	5.6	5.2	<18	<4.5
Trichlorobenzene (1,2,4-)	ug/m3	<40	<37	<31	<37	<140	<36
Trichloroethane (1,1,1-)	ug/m3	<7.3	<6.8	<5.7	<6.8	<27	<6.5
Trichloroethene (TCE)	ug/m3	<7.2	<6.7	<5.6	11	34	37
Trichlorofluoromethane (CFC11)	ug/m3	<7.5	<7.0	<5.9	<7.0	<28	<6.7
Vinyl chloride	ug/m3	<3.4	<3.2	<2.7	<3.2	<12	<3.1
Xylene (m,p-)	ug/m3	<5.8	<5.4	70	66	38	20
Xylene (o-)	ug/m3	<5.8	<5.4	21	22	<21	8.4

Notes:


1. Flux chamber samples were grab samples collected by Sanborn Head Engineering P.C. on the dates indicated in 1L SUMMA® canisters. The samples were analyzed by Eurofins Air Toxics of Folsom, California for the project-specific list of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 in full scan mode.


2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).


3. Results are displayed with two significant figures.

4. "<" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

FIGURES

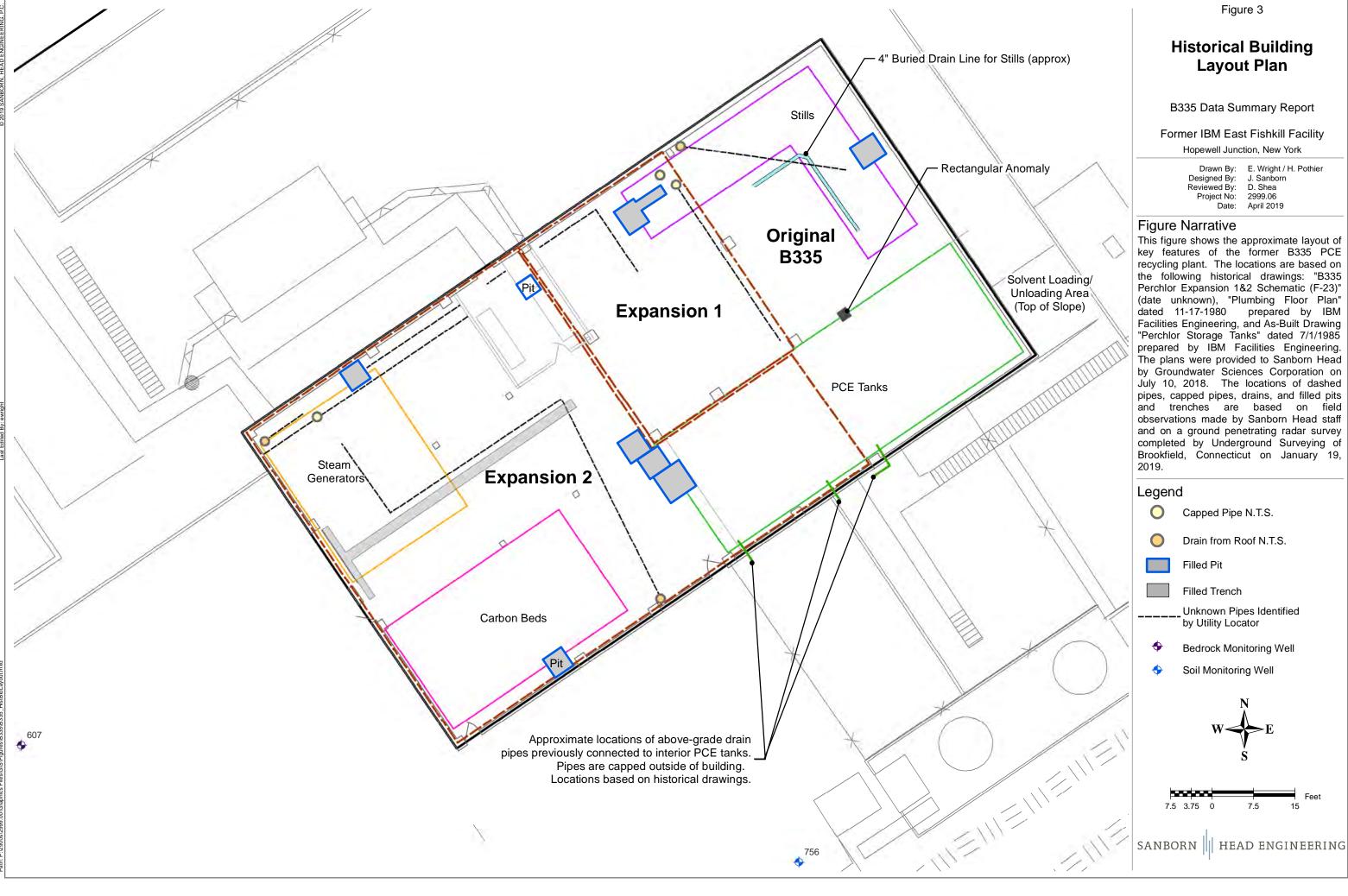
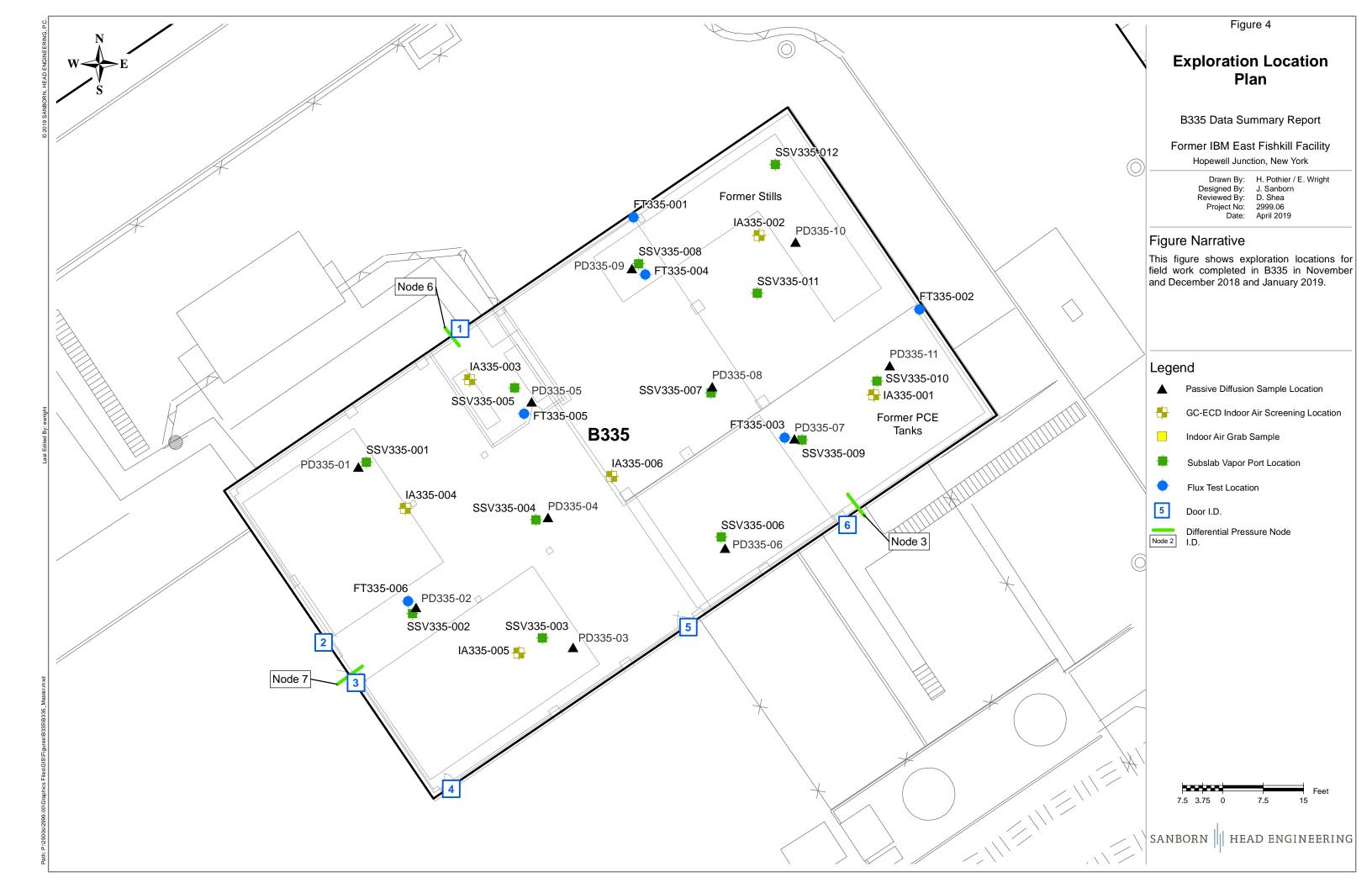


Figure 3

Historical Building Layout Plan

B335 Data Summary Report


Former IBM East Fishkill Facility Hopewell Junction, New York

Drawn By:	E. Wrig
Designed By:	J. Sanb
Reviewed By:	D. Shea
Project No:	2999.00
Date:	April 20

ght / H. Pothier born 019

Figure Narrative

This figure shows the approximate layout of key features of the former B335 PCE recycling plant. The locations are based on the following historical drawings: "B335 Perchlor Expansion 1&2 Schematic (F-23)" (date unknown), "Plumbing Floor Plan" dated 11-17-1980 prepared by IBM Facilities Engineering, and As-Built Drawing "Perchlor Storage Tanks" dated 7/1/1985 prepared by IBM Facilities Engineering. The plans were provided to Sanborn Head by Groundwater Sciences Corporation on July 10, 2018. The locations of dashed pipes, capped pipes, drains, and filled pits and trenches are based on field observations made by Sanborn Head staff and on a ground penetrating radar survey completed by Underground Surveying of Brookfield, Connecticut on January 19,

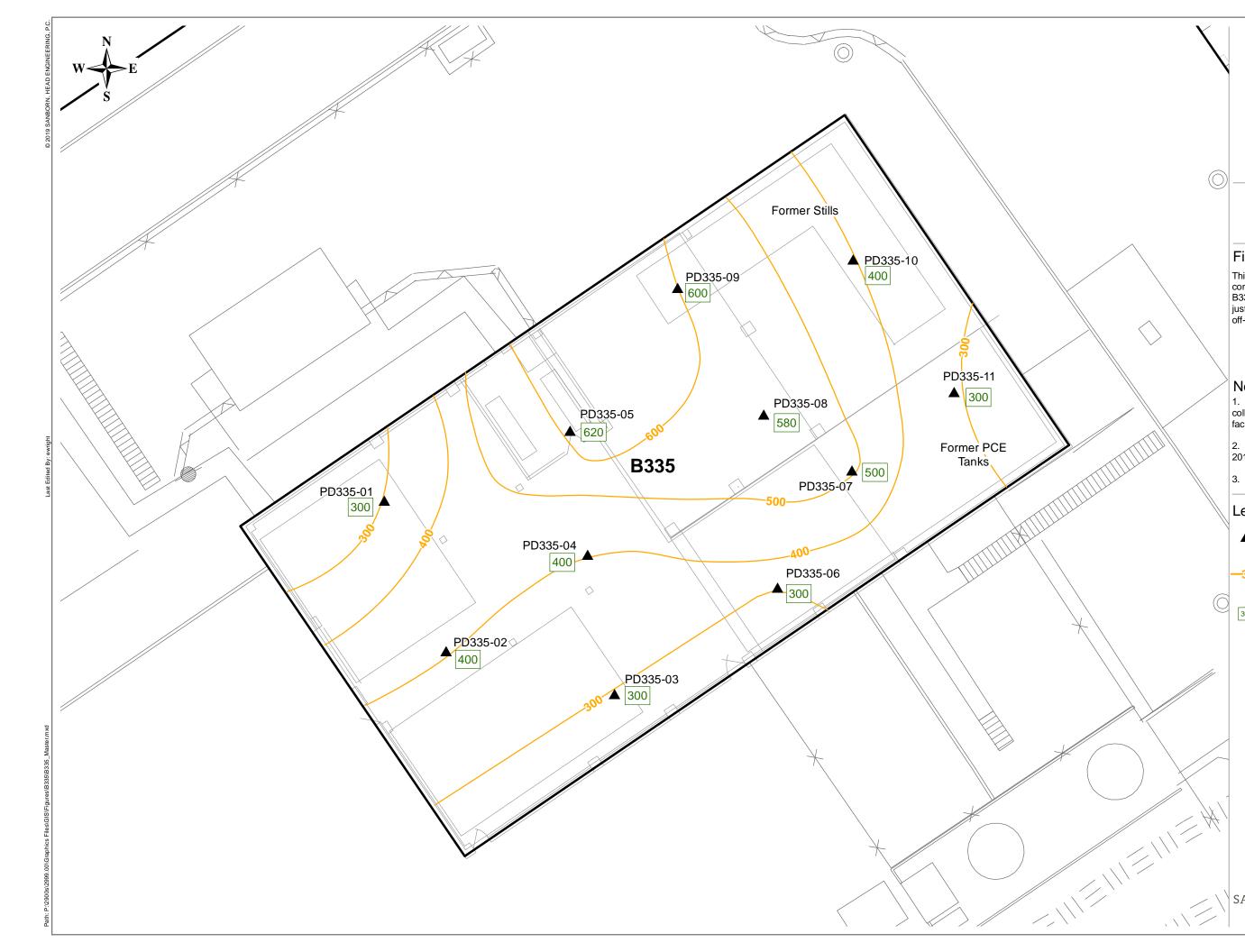


Figure 5

B335 Passive Sampler Results

B335 Data Summary Report

Former IBM East Fishkill Facility

Hopewell Junction, New York

Designed By: J. Reviewed By: D Project No: 2	. Pothier / E. Wright Sanborn Shea 999.06 pril 2019
--	---

nborn ea 06 2019

Figure Narrative

This figure shows the results of indoor air sampling conducted using passive diffusion samplers in B335. The results represent PCE concentrations just above the floor slab, and may be indicative of off-gassing from the floor slab.

Notes

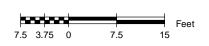
 \bigcirc

1. Samples PD335-01 through PD335-11 were collected on the concrete floor slab with the sorbent facing down.

2. Samplers were deployed on November 26, 2018 and retrieved on November 28, 2018.

3. Results shown are for PCE in units of µg/m³.

Legend


Passive Diffusion Sample Location

300

PCE Isopleth in µg/m³. Results represent – PCE concentrations just above the floor slab.

PCE concentration in $\mu g/m^3$ for samples collected using passive sampler

SANBORN || HEAD ENGINEERING

Figure 6

Concentration Isopleths for Tetrachloroethene in Subslab Vapor

B335 Data Summary Report

Former IBM East Fishkill Facility Hopewell Junction, New York


Drawn By:	H. Pothier / E. Wright
Designed By:	J. Sanborn
Reviewed By:	D. Shea
Project No:	2999.06
Date:	April 2019

Figure Narrative

 \bigcirc

This figure presents the tetrachlorethene (PCE) concentrations detected in subslab vapor in B335. Samples were collected on January 30, 2019 by Sanborn, Head Engineering PC using 1-L SUMMA canisters with 1-hour flow controllers.

The colored shading represents inferred PCE concentrations below the slab based on the results of the samples collected at the monitoring ports. Other interpretations are possible.

APPENDICES

SANBORN 📕 HEAD ENGINEERING

APPENDIX A

LIMITATIONS

SANBORN 📗 HEAD ENGINEERING

APPENDIX A SHPC LIMITATIONS

- 1. The findings and conclusions described in this report are based in part on the data obtained from a finite number of samples from widely spaced locations. The figures are intended to depict inferred conditions during a given period of time, consistent with available information. The actual conditions will vary from that shown, both spatially and temporally. Other interpretations are possible. The nature and extent of variations between sampling locations may not become evident until further investigation is initiated. If variations or other latent conditions then appear evident, it may be necessary to re-evaluate the conclusions of this report.
- 2. The conclusions contained in this report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed by previous investigators. While SHPC has reviewed that data available to us at the time the report was prepared and information as stated in this report, any of SHPC's interpretations and conclusions that have relied on that information will be contingent on its validity. SHPC has not performed an independent assessment of the reliability of the data; should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by SHPC and the interpretations and conclusions presented herein may be modified accordingly.
- 3. Additional compounds not searched for during the current study may be present in vapor and indoor air at the site. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their distribution within the vapor and indoor air may occur due to the passage of time, seasonal water table fluctuations, recharge events, and other factors.
- 4. This report has been prepared for the exclusive use of the IBM Corporation for specific application to the former IBM East Fishkill facility in accordance with generally accepted hydrogeologic and engineering practices. No warranty, expressed or implied, is made. The contents of this report should not be relied on by any other party without the express written consent of SHPC.
- 5. In preparing this report, SHPC has endeavored to conform to generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area. SHPC has attempted to observe a degree of care and skill generally exercised by the technical community under similar circumstances and conditions.

P:\2900s\2999.06\Source Files\201904 B335 Summary Report\Appendix A - Limitations\Appendix A - Limitations.doc

APPENDIX B

PHOTOGRAPH LOG

SANBORN 📗 HEAD ENGINEERING

APPENDIX B B335 Summary Report Photo Log

Photo 1: View of Building 335 looking north

Photo 2: View of Building 335 and air louvers, looking east

SANBORN || HEAD

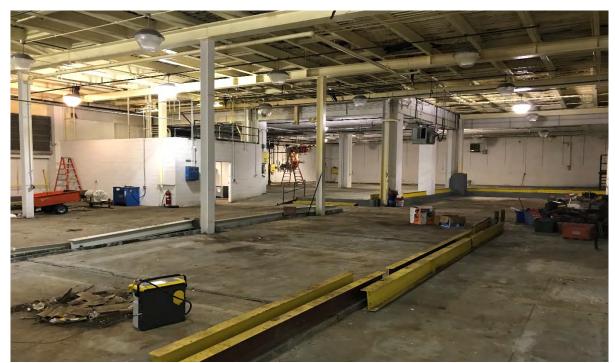


Photo 3: B335 Interior, looking north

Photo 4: B335 Interior, looking southwest

SANBORN || HEAD

Photo 5: B335 Interior, looking northeast toward the area of the former stills (left) and PCE ASTs (right)

Photo 6: Passive sampler deployed face-down on floor slab

SANBORN ||| HEAD

Photo 7: Close-up of passive sampler deployed face-down on floor slab

Photo 8: GC-ECD set-up during pressure testing

SANBORN || HEAD

Photo 9: Fans during flush-out for pressure testing

Photo 10: Fan and surrounding plastic during positive pressure test

SANBORN

Photo 11: Close-up of air louvers covered with plastic during pressure testing

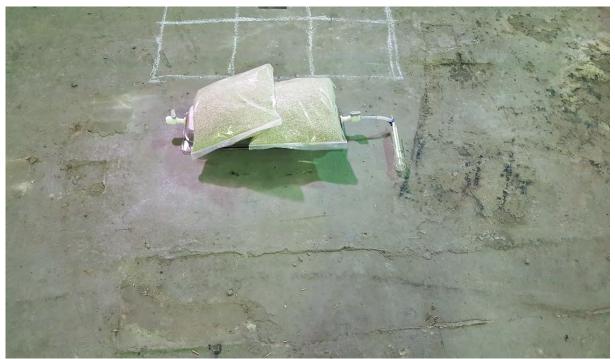


Photo 12: Flux chamber set up on floor covered with weights. Sampling syringe connected to port for GC-ECD screening

Photo 13: Close-up of flux chamber set up on floor being held down with a weight

Photo 14: Flux chamber fastened to wall with straps

Page 8 2999.06

Photo 15: Flux chamber fastened to wall during nitrogen flush-out

P:\2900s\2999.06\Source Files\201904 B335 Summary Report\Appendix B - Photograph Log\App B Photo Log.docx

APPENDIX C

ANALYTICAL LABORATORY REPORTS

C.1 – INDOOR AIR GRAB SAMPLE

SANBORN 📗 HEAD ENGINEERING

11/27/2018 Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road

Latham NY

Project Name: IBM - EFK Project #: 2999.00 Workorder #: 1811230A

Dear Ms. Erica Bosse

The following report includes the data for the above referenced project for sample(s) received on 11/12/2018 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630 🔅 eurofins

Air Toxics

WORK ORDER #: 1811230A

Work Order Summary

Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road Latham, NY	BILL TO:	Accounts Payable Sanborn, Head & Associates 20 Foundry Street Concord, NH 03301
518-207-0769	P.O. #	
	PROJECT #	2999.00 IBM - EFK
11/12/2018	CONTACT	Ausha Scott
11/26/2018	contacti	rusia soon
	Sanborn, Head & Associates 24 Wade Road Latham, NY 518-207-0769 11/12/2018	Sanborn, Head & Associates 24 Wade Road Latham, NY 518-207-0769 P.O. # PROJECT # 11/12/2018 CONTACT:

FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	IAB335-Grab_20181107	Modified TO-15	4.0 "Hg	5 psi
01B	IAB335-Grab_20181107	Modified TO-15	4.0 "Hg	5 psi
02A	Lab Blank	Modified TO-15	NA	NA
02B	Lab Blank	Modified TO-15	NA	NA
03A	CCV	Modified TO-15	NA	NA
03B	CCV	Modified TO-15	NA	NA
04A	LCS	Modified TO-15	NA	NA
04AA	LCSD	Modified TO-15	NA	NA
04B	LCS	Modified TO-15	NA	NA
04BB	LCSD	Modified TO-15	NA	NA

al

DATE: 11/26/18

DECEIDE

TINIA I

CERTIFIED BY:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8, LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

🛟 eurofins

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Sanborn, Head & Associates Workorder#1811230A

One 6 Liter Summa Canister (SIM Certified) sample was received on November 12, 2018. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement TO-15 **ATL Modifications** ICAL %RSD acceptance criteria </=30% RSD with 2 For Full Scan: compounds allowed out 30% RSD with 4 compounds allowed out to < 40% RSD to < 40% RSD For SIM: Project specific: default criteria is </=30% RSD with 10% of compounds allowed out to < 40% RSD **Daily Calibration** +- 30% Difference For Full Scan: </= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers Blank and standards Zero air Nitrogen Follow 40CFR Pt.136 Method Detection Limit The MDL met all relevant requirements in Method TO-15 App. B (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Dilution was performed on sample IAB335-Grab 20181107 due to the presence of high level target

species.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

E - Exceeds instrument calibration range.

S - Saturated peak.

Q - Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

CN - See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: IAB335-Grab_20181107

Lab ID#: 1811230A-01A

5

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	3.9	5.5	9.2	13
Toluene	0.78	0.96	2.9	3.6
Tetrachloroethene	0.78	83	5.2	560
m,p-Xylene	0.78	1.2	3.4	5.4
m'b-vhene	0.78	1.2	3.4	

Client Sample ID: IAB335-Grab_20181107

Lab ID#: 1811230A-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.16	0.35	0.61	1.4
Trichloroethene	0.16	0.33	0.83	1.8

Client Sample ID: IAB335-Grab_20181107 Lab ID#: 1811230A-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	21111607 7.75			f Collection: 11/7/18 09:00:00 f Analysis: 11/16/18 12:10 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	3.9	Not Detected	19	Not Detected	
Freon 11	0.78	Not Detected	4.4	Not Detected	
Freon 113	0.78	Not Detected	5.9	Not Detected	
Acetone	3,9	5.5	9.2	13	
Methylene Chloride	1.6	Not Detected	5.4	Not Detected	
1,1,1-Trichloroethane	0.78	Not Detected	4,2	Not Detected	
Benzene	0.78	Not Detected	2.5	Not Detected	
Toluene	0.78	0.96	2.9	3.6	
Tetrachloroethene	0.78	83	5.2	560	
Chlorobenzene	0.78	Not Detected	3.6	Not Detected	
Ethyl Benzene	0.78	Not Detected	3.4	Not Detected	
m,p-Xylene	0.78	1.2	3.4	5.4	
o-Xylene	0.78	Not Detected	3.4	Not Detected	
1,3-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected	
1,4-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected	
1,2-Dichlorobenzene	0.78	Not Detected	4.6	Not Detected	
1,2,4-Trichlorobenzene	3.9	Not Detected	29	Not Detected	

Container Type: 6 Liter Summa Canister (SIM Certified)

	 A second sec second second sec	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: IAB335-Grab_20181107 Lab ID#: 1811230A-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	21111607sim 7.75		Date of Collection: 11/7/18 09:00:00 Date of Analysis: 11/16/18 12:10 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.078	Not Detected	0.20	Not Detected
1,1-Dichloroethene	0.078	Not Detected	0.31	Not Detected
cis-1,2-Dichloroethene	0.16	0.35	0.61	1.4
Carbon Tetrachloride	0.16	Not Detected	0.98	Not Detected
Trichloroethene	0.16	0.33	0.83	1.8

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	96	70-130

File Name: Dil. Factor:	21111606 1.00		te of Collection: NA te of Analysis: 11/16/18 11:12 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Benzene	0.10	Not Detected	0.32	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1811230A-02A MODIFIED FPA METHOD TO 15 CC/MS SIM/FULL SCAL

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	119	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: Lab Blank Lab ID#: 1811230A-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	21111606sim 1.00	Date of Collection: NA Date of Analysis: 11/16/18 11:12 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	97	70-130

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN			
File Name: Dil. Factor:	21111602 1.00	Date of Collection: NA Date of Analysis: 11/16/18 08:44 AM	
Compound		%Recovery	
Freon 12		94	
Freon 11		100	
Freon 113		97	
Acetone		95	
Methylene Chloride		98	
1,1,1-Trichloroethane		102	
Benzene		101	
Toluene		100	
Tetrachloroethene		99	
Chlorobenzene		96	
Ethyl Benzene		99	
m,p-Xylene		100	
o-Xylene		100	
1,3-Dichlorobenzene		98	
1,4-Dichlorobenzene		96	
1,2-Dichlorobenzene		96	
1,2,4-Trichlorobenzene		86	

Client Sample ID: CCV Lab ID#: 1811230A-03A MODIFIED FRA METHOD TO 15 CC/MS SIM/FULL SCA

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1811230A-03B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	21111602sim	Date of Collection: NA
Dil. Factor:	1.00 Date of Analysis: 11/16/18 08	
Compound	1000	%Recovery
Vinyl Chloride		86
1,1-Dichloroethene		80
cis-1,2-Dichloroethene		86
Carbon Tetrachloride		87
Trichloroethene		85

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	103	70-130

File Name: Dil. Factor:	21111603 1.00	Date of Collect	tion: NA is: 11/16/18 09:23 AM
Compound	%Recovery		Method Limits
Freon 12		94	70-130
Freon 11		101	70-130
Freon 113		95	70-130
Acetone		96	70-130
Methylene Chloride		98	70-130
1,1,1-Trichloroethane		101	70-130
Benzene		102	70-130
Toluene		102	70-130
Tetrachloroethene		99	70-130
Chlorobenzene		100	70-130
Ethyl Benzene		103	70-130
m,p-Xylene		104	70-130
o-Xylene		107	70-130
1,3-Dichlorobenzene		104	70-130
1,4-Dichlorobenzene		105	70-130
1,2-Dichlorobenzene		104	70-130
1,2,4-Trichlorobenzene		106	70-130

Client Sample ID: LCS Lab ID#: 1811230A-04A MODIFIED FRA METHOD TO 15 CC/MS SIM/FULL SCAN

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	103	70-130

File Name: Dil. Factor:	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date of Collection: NA Date of Analysis: 11/16/18 09:59 AM	
Compound	%Recovery	Method Limits	
Freon 12	97	70-130	
Freon 11	103	70-130	
Freon 113	97	70-130	
Acetone	100	70-130	
Methylene Chloride	101	70-130	
1,1,1-Trichloroethane	103	70-130	
Benzene	102	70-130	
Toluene	101	70-130	
Tetrachloroethene	98	70-130	
Chlorobenzene	100	70-130	
Ethyl Benzene	104	70-130	
m,p-Xylene	101	70-130	
o-Xylene	103	70-130	
1,3-Dichlorobenzene	102	70-130	
1,4-Dichlorobenzene	102	70-130	
1,2-Dichlorobenzene	103	70-130	
1,2,4-Trichlorobenzene	109	70-130	

Client Sample ID: LCSD Lab ID#: 1811230A-04AA MODIFIED FPA METHOD TO 15 CC/MS SIM/FULL SCAN

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 1811230A-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	21111603sim	Date of Collect	tion: NA is: 11/16/18 09:23 AM
Compound	1.00 Date of Analysis %Recovery		Method Limits
		86	70-130
Vinyl Chloride 1,1-Dichloroethene		79	70-130
cis-1,2-Dichloroethene		80	70-130
Carbon Tetrachloride		90	60-140
Trichloroethene		87	70-130

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCSD Lab ID#: 1811230A-04BB MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	21111604sim 1.00	Date of Collection: NA Date of Analysis: 11/16/18 09:59 AM	
Compound		%Recovery	
Vinyl Chloride		88	70-130
1,1-Dichloroethene		79	70-130
cis-1,2-Dichloroethene		80	70-130
Carbon Tetrachloride		91	60-140
Trichloroethene		87	70-130

	ALCONT THE	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	102	70-130

APPENDIX C

ANALYTICAL LABORATORY REPORTS

C.2 - PASSIVE DIFFUSION SAMPLES

SANBORN II HEAD ENGINEERING

Mr. Joe Corsello Sanborn, Head & Associates 20 Foundry Street Concord, NH 03301

DOH ELAP #11626 AIHA-LAP #100324 Account# 19241

Login# L464501

December 07, 2018

Dear Mr. Corsello:

Enclosed are the analytical results for the samples received by our laboratory on November 30, 2018. All test results meet the quality control requirements of AIHA-LAP and NELAC unless otherwise stated in this report. All samples on the chain of custody were received in good condition unless otherwise noted.

Results in this report are based on the sampling data provided by the client and refer only to the samples as they were received at the laboratory. When possible, non-IOM samples will be retained for 14 days following the date of this report (unless an extension is specifically requested). IOM samples are retained for 7 days.

Current Scopes of Accreditation can be viewed at www.sgsgalson.com in the accreditations section of the "About" page.

Please contact Caroline Hudson at (888) 432-5227, if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Enclosure(s)

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

: B335
: 2999.06
: 28-NOV-18
: 30-NOV-18

Account No.: 19241 Login No. : L464501

Date Analyzed : 04-DEC-18 Report ID : 1106403

Trichloroethylene

<u>Sample II</u>	2	Lab ID	Time <u>minutes</u>	Raw uq	Total	Conc _mq/m3	ppm
PD335-01	(NI8121)	L464501-1	2559	<5	<5	<0.2	<0.05
PD335-02	(NI4359)	L464501-2	2557	<5	<5	<0.2	<0.05
PD335-03	(NI5897)	L464501-3	2560	<5	<5	<0.2	<0.05
PD335-04	(NI4545)	L464501-4	2564	<5	<5	<0.2	<0.05
PD335-05	(NI4318)	L464501-5	2565	<5	<5	<0.2	<0.05
PD335-06	(NI6347)	L464501-6	2559	<5	<5	<0.2	<0.05
PD335-07	(NI8161)	L464501-7	2559	<5	<5	<0.2	<0.05
PD335-08	(NI4330)	L464501-8	2563	<5	<5	<0.2	<0.05
PD335-09	(NI4101)	L464501-9	2562	<5	<5	<0.2	<0.05
PD335-10	(NI4234)	L464501-10	2560	<5	<5	<0.2	<0.05
PD335-11	(NI4121)	L464501-11	2559	<5	<5	<0.2	<0.05

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantit Analytical Metho Collection Media	od : mod. NIOSH 1	022; GC/FID BADGE	Submitted by: AR Date : 07 Supervisor : KA	-DEC-18 NY	proved by: MLN S DOH # : 11626 by : MLN
-Less Than	mg -Milligrams	m3 -Cubic Meters	kg -Kilograms	NA -Not Applicable	ND -Not Detected
-Greater Than	ug -Micrograms	1 -Liters	NS -Not Specified	ppm -Parts per Mill.	

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	: Sanborn, Head & Associates
Site	: B335
Project No.	: 2999.06
Date Sampled	: 28-NOV-18
Date Received	: 30-NOV-18

Account No.: 19241 Login No. : L464501

Date Analyzed : 04-DEC-18 Report ID : 1106404

Tetrachloroethylene

<u>Sample II</u>	2	Lab ID	Time <u>minutes</u>	Raw uq	Total uq	Conc _mg/m3	ppm	
PD335-01	(NI8121)	L464501-1	2559	6	6	0.3	0.05	
PD335-02	(NI4359)	L464501-2	2557	7	7	0.4	0.06	
PD335-03	(NI5897)	L464501-3	2560	6	6	0.3	0.05	
PD335-04	(NI4545)	L464501-4	2564	7	8	0.4	0.06	
PD335-05	(NI4318)	L464501-5	2565	11	11	0.62	0.091	
PD335-06	(NI6347)	L464501-6	2559	6	6	0.3	0.05	
PD335-07	(NI8161)	L464501-7	2559	8	8	0.5	0.07	
PD335-08	(NI4330)	L464501-8	2563	10	11	0.58	0.085	
PD335-09	(NI4101)	L464501-9	2562	10	11	0.60	0.089	
PD335-10	(NI4234)	L464501-10	2560	7	7	0.4	0.06	
PD335-11	(NI4121)	L464501-11	2559	5	5	0.3	0.04	

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quant Analytical Met Collection Med	hod : mod. NIOSH	1003; GC/FID BADGE	Submitted by: AR Date : 07 Supervisor : KA	-DEC-18 N	pproved by: MLN YS DOH # : 11626 C by : MLN
-Less Than	mg -Milligrams	m3 -Cubic Meters	kg -Kilograms	NA -Not Applicable	
-Greater Than	ug -Micrograms	1 -Liters	NS -Not Specified	ppm -Parts per Mil	

LABORATORY FOOTNOTE REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 WWW.sgsgalson.com Client Name : Sanborn, Head & Associates Site : B335 Project No. : 2999.06

Date Sampled : 28-NOV-18 Date Received: 30-NOV-18 Date Analyzed: 04-DEC-18 Account No.: 19241 Login No. : 1464501

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise noted below, all quality control results associated with the samples were within established control limits or did not impact reported results.

Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceeding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.

The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).

Unless otherwise noted below, reported results have not been blank corrected for any field blank or method blank.

L464501 (Report ID: 1106403);

Total ug corrected for a desorption efficiency of 92%. SOPs: GC-SOP-16(19), GC-SOP-12(15), GC-SOP-9(19)

1464501 (Report ID: 1106403):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Trichloroethylene	+/-5%	104%

L464501 (Report ID: 1106404);

Total ug corrected for a desorption efficiency of 95%,

<	-Less Than	mg -Milligrams	m3	-Cubic Meters	kg -Kilograms	ppm -Parts per Million	
>	-Greater Than	ug -Micrograms	1	-Liters	NS -Not Specified	ND -Not Detected	NA -Not Applicable

LABORATORY FOOTNOTE REPORT

Client Name : Sanborn, Head & Associates Site : B335 Project No. : 2999.06

Date Sampled : 28-NOV-18 Date Received: 30-NOV-18 Date Analyzed: 04-DEC-18 Account No.: 19241 Login No. : L464501

L464501 (Report ID: 1106404):

6601 Kirkville Road

FAX: (315) 437-0571

www.sgsgalson.com

(315) 432-5227

East Syracuse, NY 13057

SOPs: GC-SOP-16(19), GC-SOP-12(15), GC-SOP-9(19)

L464501 (Report ID: 1106404):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOF referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Tetrachloroethylene	+/-5.2%	101%

-Less Than mg -Milligrams m3 -Cubic Meters kg -Kilograms ppm -Parts per Million
 Greater Than ug -Micrograms 1 -Liters NS -Not Specified ND -Not Detected NA -Not Applicable

GALSON CHAIN OF CUSTODY

Turn Around Time (TAT)	(surcharge)	You may edit :	and complete this COC electro	onically by logo	aina in to you	r Client Portal accou	unt at https://portai.gaisonlabs	.com/		
Standard	0%							6. THE UNITED		
4 Business Days	35%	Client Acct No	.: Report To : 1	fr. Brad Gr	wen Joh	e Corsello	Invoice To	: Mr-	Brad Green Accon	nts Payable
3 Business Days	50%	19241	Company Name :	Sanborn, He	ad & Asso	ciates	Company Name	: Sar	born, Head & Associat	es
2 Business Days	75%			0 Foundry	Street		Address 1	: 20	Foundry Street	
Next Day by 6pm	100%	Original Prep PSY506256					Address 2			
Next Day by Noon	150%	PS1300230	City, State Zip : _						ncord, NH 03301	
Same Day	200%	CS Rep:	Phone No. : _				Phone No.	- <u> </u>	8 - 415 - 6160	
		NTORMEY		SCORSELLO		1.45	Email Address Comments		ConGsanbornhead.com	
Samples submitted us FreePumpLoan™ Proc			Email reports to : 1			8 · 1 · 1 · 1		-		
Samples submitted us		Online COC N	o.: Email EDD to : 🚣 Comments : 🕻			om			999.06	The state time is the state
FreeSamplingBadges		168665							will call SGS Galson to provide Card on File (enter the last five o	
			1 * Please	emai	lane	son ulla	ab report			
e Miller and			1				1			
Comments :							State Samp	led :	Please indicate which OEL(s)	
		E	·				NX I			
							1.4		DIAO :	Other : Specify Other
Site Name : \$3	35	Projec	t: 2999.06	5	Sampled By :	J. Corsell.	O List descriptio	on of in	dustry or Process/interferences	present in sampling are
Sample ID * (Maximum of 20 Chara	octers) Da	te Sampled *	Collection Medium	Sam	nle Volume nple Time nple Area *	Liters Minutes in ² , cm ² , ft ² *	Analysis Requeste	d	Method Reference *	Hexavalent Chromit Process (e.g., weldin plating, painting, et
PD335-01	t	halia	Assay N566-A	143	54	2559	Trichloroethylene		mod. NIOSH 1022; GC/FID BADGE	
(NTBALI)		28/18		Ene	d time		Tetrachloroethyler	16	mod. NIOSH 1003; GC/FID BADGE	
				- ne	11/28	1				
If the method(s) ind	1. Table 1. 1. 1.			we will substitu		e/preferred method:	s. If this is not acceptable, che	ck here	to have us contact you,	
Chain of Custody	in the second	Print Name / Sig	gnature	Date	Time		Print Nam	he / Sigi	nature	Date Time
Relinquished By :						Received By :			Hans D.	tout to an o
Relinquished By :						Received By :	buye Silverail		Mess Seeler 1	13018 10.7
						amples which you a sidered as next day	v -	v	V Unline COC No. : 168 Prep No. : PSY Account No. : 192 Draft : 11/2	506256
	All ser	vices are render	ed in accordance with the app	licable SGS Ge	eneral Conditi	ons of Service acce	ssible via: http://www.sgs.com	v/en/Ter	ms-and-Conditions.aspx	

Page: 1/4

*

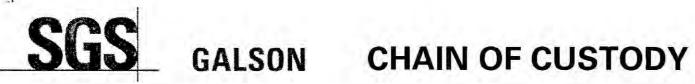
1215685W1395718216

Initials:TLS (46450)

SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 888 432 5227 |+1 315 432 5227 www.galsonlabs.com | www.sgs.com America,

Report Reference:1 Generated:07-DEC-18 10:19 Page 6 of 9

Member of the SGS Group (SGS SA)

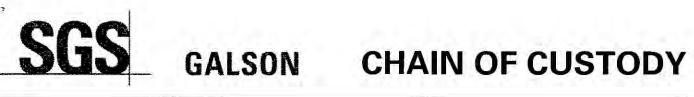


mments :	0000		End times				
Sample ID * (Maximum of 20 Characters)	Date Sampled *	Collection Medium	Sample Volume Sample Time Sample Area *	Liters Minutes in ² , cm ² , ft ² *	Analysis Requested	Method Reference ^	Hexavalent Chromiur Process (e.g., welding plating, painting, etc.
PD335-02	11/28/18	Аввау N566-А	1452	2557	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
(NI 4359)					Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
		Assay N566-A 2560 mins	1.15ØØ	2560	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
- 03 (NI 5897)		kms 11/30/18	14:55	2555	Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
- 04		Assay N566-A	10000	20000	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
(NE 4545)			1500	2564	Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
- 05		Авсау N566-А	1501	2565	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
(NI 4313)	120		1041	A PE	Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
V ac	10000	Assay N566-A	1455	2559	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
V - 06 (NIG347)	V		1100	2001	Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
* If the method(s) indicated	on the COC are not ou	r routine/preferred method(s), we	will substitute our rout	ine/preferred methods	. If this is not acceptable, check her	e to have us contact you.	
nain of Custody	Print Name / S		Date Time		Print Name / Sig		Date Time
elinquished By :			-	Received By :	Towna Silverant 1	1000	dentip in

Page: 2/4

SGS North | 6601 Kirkville Road E. Syracuse, NY 13057, USA 1+1 888 432 5227 | +1 315 432 5227 www.galsonlabs.com | www.sgs.com America,

Report Reference: 1 Generated:07-DEC-18.10:19 Page 7 of 9



Sampl (Maximum of 2		Date Sampled *	Collection Medium	Sam	ple Volume ple Volume pple Area *	Liters Minutes in ² , cm ² , ft ² *	Analysis Requested	Method Reference ^	Hexavalent Chromiun Process (e.g., welding plating, painting, etc.
PD 335.	-07	11/28/18	Assay N566-A	143	56	2559	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
	\$161)	1	12				Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
	-08		Аввау N566-А	15ØØ		2563	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
	(4330)	1	Colorest				Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
	-09		Аввау N566-А	14	59	2562	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
(NS	= 4101)				N 41.1		Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
10	-10		Assay N566-A	143	58	2560	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
CM	=4234)						Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
V	_11	Assay N566-A		N566-A		2559	Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE	
(NI	4121)		÷	110 1			Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE	
1 ^ If the metho	nd(s) indicated or	the COC are not ou	r routine/preferred method(s), v	ve will substitu	ute pur routin	e/preferred methods	If this is not acceptable, check here	to have us contact you.	
hain of Custody		Print Name / S		Date	Time		Print Name / Sig		Date Time
Relinquished By	1	×				Received By :	- Ir	1. Ch	6.50
lelinquished By	¢.					Received By :	TOULLA SINUIAN	Mark South 1	12018 10:3
						mples which you an sidered as next day's		Account No. : 192 Draft : 11/	506256

Page: 3/4

SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 888 432 5227 [+1 315 432 5227 www.galsonlabs.com] www.sgs.com America,

Report Reference:1 Generated:07-DEC-18 10:19 Page 8 of 9

Comments :					-				
Sample ID * (Maximum of 20 Cha		Collection Medium		Sample Volume Sample Time Sample Area *	Liters Minutes in², cm², ft² *	Analysis Requested	Method Reference	A Proces	alent Chromium s (e.g., welding g, painting, etc.)
		Азвау N566-А				Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE		
						Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE		
	Assay N566-A Assay N566-A					Trichloroethylene mod. NIOSH 1022; GC/FID BADGE Tetrachloroethylene mod. NIOSH 1003; GC/FID BADGE Trichloroethylene mod. NIOSH 1022; GC/FID BADGE Tetrachloroethylene mod. NIOSH 1003; GC/FID BADGE			
			6.						
					10.5			2	
			21						*
		Аввау N566-А				Trichloroethylene	mod. NIOSH 1022; GC/FID BADGE		
						Tetrachloroethylene	mod. NIOSH 1003; GC/FID BADGE		
				-					
		<u>d</u>							
If the method(s) is	ndicated on the COC are not out	routine/preferred method(s), we will sul	ostitute our routine	preferred method	s. If this is not acceptable, check I	here to have us contact you.		in the second se
Chain of Custody	Print Name / Signature		Date	Time		Print Name /	Signature	Date	Time
	Jennifer Santur V	In Sall	11/29/1		Received By :	Angela Sullivan	angela lito	1/29/18	r 11:30
Relinquished By : A	ngela Sullivan /	alugela Sell	11/29	18 4:36	Received By :	R	1//	ling	1636
		Samples	received afte	r 3pm will be cons	mples which you a idered as next day	's business.	Account No. Draft	: PSY506256	57:50 PM
Page : 4 / 4	All services are render	ed in accordance with the a				ssible via: <u>http://www.sgs.com/or</u> use, NY 13057, USA t+1 888 432			

America,

Page 9 of 9 ReportⁱReference:1 Generated:07-DEC-18 10:19

APPENDIX C

ANALYTICAL LABORATORY REPORTS

C.3 – PRESSURE TESTING SPLIT SAMPLES

SANBORN 📗 HEAD ENGINEERING

ANALYTICAL REPORT

Lab Number:	L1850539
Client:	Sanborn, Head & Associates, Inc.
	20 Foundry Street
	Concord, NH 03301
ATTN:	Jennifer Sanborn
Phone:	(603) 415-6137
Project Name:	Not Specified
Project Number:	2999.02
Report Date:	12/13/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:12131811:24

Lab Number: L1850539 Report Date: 12/13/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1850539-01	IAB335-005-G	AIR	EFK	12/05/18 07:10	12/08/18
L1850539-02	IAB335-002-G	AIR	EFK	12/06/18 14:37	12/08/18

Project Name:

Project Number:

Not Specified

2999.02

Lab Number: L1850539 Report Date: 12/13/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE". respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Lab Number: L1850539 Report Date: 12/13/18

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on Decemer 4, 2018. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

autol Gulun Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 12/13/18

AIR

Serial_No:12131811:24

L1850539

12/13/18

Lab Number:

Report Date:

Project Name:

Project Number: 2999.02

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1850539-01 IAB335-005-G EFK	Date Collected: Date Received: Field Prep:	12/05/18 07:10 12/08/18 Not Specified
Sample Depth: Matrix:	Air		
Anaytical Method: Analytical Date: Analyst:	48,TO-15-SIM 12/12/18 00:28 RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020	-	ND	0.051	-		- 1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079	~		ī
cis-1,2-Dichloroethene	0.080	0.020	-	0.317	0.079	-		1
Trichloroethene	0.061	0.020	<u> </u>	0.328	0.107	-		-1
Tetrachloroethene	15.3	0.020	÷	104	0.136	~		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	83		60-140
chlorobenzene-d5	81		60-140

Serial_No:12131811:24

L1850539

12/13/18

Lab Number:

Report Date:

Project Name:

Project Number: 2999.02

SAMPLE RESULTS

Lab ID:	L1850539-02	Date Collected:	12/06/18 14:37
Client ID:	IAB335-002-G	Date Received:	12/08/18
Sample Location:	EFK	Field Prep:	Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 12/12/18 01:47 RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020	-	ND	0.051	-		- 1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079	~		ī
cis-1,2-Dichloroethene	0.200	0.020	-	0.793	0.079	-		1
Trichloroethene	0 160	0.020	2	0.860	0.107	~		-1
Tetrachloroethene	31.5	0.020		214	0.136	-		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	81		60-140
chlorobenzene-d5	81		60-140

Method Blank Analysis Batch Quality Control

	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab f	or sample	(s): 01-0	2 Batch: W	G118812	4-4		
Propylene	ND	0.500	-	ND	0.861	9		1
Dichlorodifluoromethane	ND	0.200	4	ND	0.989	-		3
Chloromethane	ND	0.200		ND	0.413	-		4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050	-	ND	0.349	-		1
Vinyl chloride	ND	0.020	e e	ND	0.051	-		1
1,3-Butadiene	ND	0.020	-	ND	0.044	-		1
Bromomethane	ND	0.020	-	ND	0.078	-		1
Chloroethane	ND	0.100	4	ND	0.264	-		1.
Ethyl Alcohol	ND	5.00	-	ND	9.42	-		1
/inyl bromide	ND	0.200	-	ND	0.874	-		1
Acetone	ND	1.00	÷.	ND	2.38	-		1
Trichlorofluoromethane	ND	0.050	-	ND	0.281	-		1
so-Propyl Alcohol	ND	0.500	-	ND	1.23	-		. 1
Acrylonitrile	ND	0.500		ND	1.09	-		d.
I,1-Dichloroethene	ND	0.020	-	ND	0.079	-		1
ert-Butyl Alcohol	ND	0.500	-	ND	1,52	-		1
Methylene chloride	ND	0.500	ri y n	ND	1.74	-		1
3-Chloropropene	ND	0.200	-	ND	0.626	-		1
Carbon disulfide	ND	0.200	-	ND	0.623			. 1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050	4	ND	0.383	-		1
rans-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
1,1-Dichloroethane	ND	0.020	-	ND	0.081	-		1
Methyl tert butyl ether	ND	0.200	4	ND	0.721	-		1
/inyl acetate	ND	1.00	-	ND	3.52	-		i.
2-Butanone	ND	0.500	4	ND	1.47	-		1

Method Blank Analysis Batch Quality Control

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	1 - Mansfield Lab f	or sample	(s): 01-0	2 Batch: W	G118812	4-4		
cis-1,2-Dichloroethene	ND	0.020	-	ND	0.079	4		1
Ethyl Acetate	ND	0.500	4	ND	1.80	-		3
Chloroform	ND	0.020		ND	0.098	-		4
Tetrahydrofuran	ND	0.500	-	ND	1.47	-		1
I,2-Dichloroethane	ND	0.020	- A	ND	0.081	-		1
n-Hexane	ND	0.200	-	ND	0.705	-		1
1,1,1-Trichloroethane	ND	0.020	-	ND	0.109	-		1
Benzene	ND	0.100	÷.	ND	0.319	-		1.
Carbon tetrachloride	ND	0.020	-	ND	0.126	-		1
Cyclohexane	ND	0.200	-	ND	0.688	-		1
Dibromomethane	ND	0.200	e.	ND	1.42	-		đ.:
,2-Dichloropropane	ND	0.020	=	ND	0.092	-		1
Bromodichloromethane	ND	0.020	-	ND	0.134	-		. 1
,4-Dioxane	ND	0.100	-	ND	0.360	-		÷.
Frichloroethene	ND	0.020	+	ND	0.107	-		1
2,2,4-Trimethylpentane	ND	0.200	-	ND	0.934	-		1
Heptane	ND	0.200	-90	ND	0.820	4		1
cis-1,3-Dichloropropene	ND	0.020	-	ND	0.091	-		1
I-Methyl-2-pentanone	ND	0.500	-	ND	2.05	-		1
rans-1,3-Dichloropropene	ND	0.020	<u>4</u>	ND	0.091	-		1
1,1,2-Trichloroethane	ND	0.020	-	ND	0.109	-		1
Toluene	ND	0.050	-	ND	0.188	-		1
-Hexanone	ND	0.200	-	ND	0.820	-		1
Dibromochloromethane	ND	0.020	-	ND	0.170	-		i.
,2-Dibromoethane	ND	0.020	-	ND	0.154	-		1

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab f	or sample	(s): 01-0	2 Batch: W	G118812	4-4		
Tetrachloroethene	ND	0.020	-	ND	0.136	3		4
1,1,1,2-Tetrachloroethane	ND	0.020	4	ND	0.137	-		3
Chlorobenzene	ND	0.100		ND	0.461	-		1
Ethylbenzene	ND	0.020	-	ND	0.087	-		1
o/m-Xylene	ND	0.040	4	ND	0.174	-		1
Bromoform	ND	0.020	Ξ.	ND	0.207	-		Ť.
Styrene	ND	0.020	-	ND	0.085	-		1
1,1,2,2-Tetrachloroethane	ND	0.020	-	ND	0.137	-		1.1
o-Xylene	ND	0.020	-	ND	0.087	-		1
1,2,3-Trichloropropane	ND	0.020	-	ND	0.121	-		1
sopropylbenzene	ND	0.200	e.	ND	0.983	-		1
Bromobenzene	ND	0.200	-	ND	0.793	-		1
4-Ethyltoluene	ND	0.020	-	ND	0.098	-		. 1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098	-		1
1,2,4-Trimethylbenzene	ND	0.020	+	ND	0.098	-		1
Benzyl chloride	ND	0.200	-	ND	1.04	-		1
1,3-Dichlorobenzene	ND	0.020	÷	ND	0.120	-		1
1,4-Dichlorobenzene	ND	0.020	-	ND	0.120	-		1
sec-Butylbenzene	ND	0.200	-	ND	1.10	-		t
o-Isopropyltoluene	ND	0.200	÷	ND	1.10	-		1
I,2-Dichlorobenzene	ND	0.020	-	ND	0.120	-		1
n-Butylbenzene	ND	0.200	-	ND	1.10	-		1
1,2,4-Trichlorobenzene	ND	0.050	÷.	ND	0.371	œ.		ł.
Naphthalene	ND	0.050	+	ND	0.262	-		÷.
,2,3-Trichlorobenzene	ND	0.050	-	ND	0.371	-		1

Method Blank Analysis Batch Quality Control

	ppbV			allow a	ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	IM - Mansfield Lab f	or sample	(s): 01-0	2 Batch: W	G118812	4-4		
Hexachlorobutadiene	ND	0.050	1	ND	0.533			4

Project Name: Not Specified 2999.02 **Project Number:**

Lab Number: L1850539

Report Date:

12/13/18

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield	Lab Associated sample(s)	01-02 Batch: WO	G1188124-3				
Propylene	112			70-130	1.1		25
Dichlorodifluoromethane	97	*		70-130			25
Chloromethane	90			70-130	- ÷		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	.96	2.4		70-130	4		25
Vinyl chloride	113	·*		70-130			25
1,3-Butadiene	99	-		70-130	1.1		25
Bromomethane	110	.2		70-130			25
Chloroethane	108	<u>د</u> .		70-130			25
Ethyl Alcohol	98			70-130	-		25
Vinyl bromide	92	σ		70-130	-		25
Acetone	118	-		70-130	1		25
Trichlorofluoromethane	106	-		70-130			25
iso-Propyl Alcohol	114			70-130	- ÷		25
Acrylonitrile	88	·		70-130			25
1,1-Dichloroethene	109	4		70-130			25
tert-Butyl Alcohol1	136 Q	-		70-130	-		25
Methylene chloride	90	4		70-130	+		25
3-Chloropropene	124			70-130	-		25
Carbon disulfide	76	-		70-130			25
1,1,2-Trichloro-1,2,2-Trifluoroethane	103			70-130	-		25
trans-1,2-Dichloroethene	108			70-130	1		25
1,1-Dichloroethane	112	~		70-130	1		25
Methyl tert butyl ether	89	-		70-130			25

Project Name: Not Specified 2999.02 **Project Number:**

Lab Number: L1850539 Report Date:

12/13/18

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield	Lab Associated sample(s):	01-02 Batch: WG1188124-	3			
Vinyl acetate	95	-	70-130	14		25
2-Butanone	95	*	70-130			25
cis-1,2-Dichloroethene	100	.¥	70-130			25
Ethyl Acetate	109		70-130	4		25
Chloroform	96		70-130			25
Tetrahydrofuran	95	-	70-130			25
1,2-Dichloroethane	98	12	70-130	4		25
n-Hexane	100	<u>ب</u>	70-130			25
1,1,1-Trichloroethane	90		70-130	-		25
Benzene	.81	π	70-130	-		25
Carbon tetrachloride	89	-	70-130	1		25
Cyclohexane	99	-	70-130			25
Dibromomethane ¹	86	-	70-130	- ÷		25
1,2-Dichloropropane	93	-	70-130			25
Bromodichloromethane	95	4	70-130			25
1,4-Dioxane	100	8	70-130			25
Trichloroethene	85	4	70-130	+		25
2,2,4-Trimethylpentane	100	12	70-130	-		25
cis-1,3-Dichloropropene	76	1 	70-130	-		25
4-Methyl-2-pentanone	95	17.	70-130	-		25
trans-1,3-Dichloropropene	86		70-130	1		25
1,1,2-Trichloroethane	87	-	70-130	1		25
Toluene	97	-	70-130			25

Project Name: Not Specified **Project Number:** 2999.02

Lab Number: L1850539 Report Date: 12/13/18

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Ma	nsfield Lab Associated sample(s):	01-02 Batch: WG118812	4-3			
2-Hexanone	99		70-130	4		25
Dibromochloromethane	102	÷	70-130	-		25
1,2-Dibromoethane	87)¥	70-130			25
Tetrachloroethene	93	7	70-130	÷		25
1,1,1,2-Tetrachloroethane	87	<i></i>	70-130			25
Chlorobenzene	97		70-130			25
Ethylbenzene	103	12	70-130	-		25
p/m-Xylene	104	د.	70-130			25
Bromoform	101	-	70-130	-		25
Styrene	94	æ	70-130	-		25
1,1,2,2-Tetrachloroethane	111	-	70-130	1		25
o-Xylene	109	× .	70-130			25
1,2,3-Trichloropropane'	93		70-130	- ÷		25
Isopropylbenzene	94		70-130			25
Bromobenzene ¹	96	φ	70-130			25
4-Ethyltoluene	102	-	70-130	-		25
1,3,5-Trimethylbenzene	99	4	70-130	-		25
1,2,4-Trimethylbenzene	103		70-130	-		25
Benzyl chloride	104		70-130			25
1,3-Dichlorobenzene	106		70-130	-		25
1,4-Dichlorobenzene	107	-	70-130	1		25
sec-Butylbenzene	97	~	70-130	1		25
p-Isopropyltoluene	101	-	70-130			25

Project Name: Not Specified **Project Number:** 2999.02

Lab Number: L1850539 **Report Date:** 12/13/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual RPD Qual Limits Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-02 Batch: WG1188124-3 107 70-130 25 1.2-Dichlorobenzene 14 n-Butylbenzene 120 70-130 25 ÷ 70-130 25 1,2,4-Trichlorobenzene 94 -25 Naphthalene 70-130 90 -25 1,2,3-Trichlorobenzene 92 70-130 105 Hexachlorobutadiene 25 70-130 -

Project Name: Not Specified Project Number: 2999.02		L	Lab Duplicate Analysis Batch Quality Control					L1850539 12/13/18
Parameter		Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	d.
Volatile Organics in Air by 005-G	y SIM - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG	1188124-5	QC Sample: L	.1850539-01	Client ID:	IAB335-
Vinyl chloride		ND	ND	ppbV	NG		25	
trans-1,2-Dichloroethene		ND	ND	ppbV	NC		25	
cis-1,2-Dichloroethene		0.080	0.079	ppbV	1		25	
Trichloroethene		0.061	0.057	ppbV	7		25	
Tetrachloroethene		15.3	15.2	ppbV	1		25	

Project Name:

Project Number: 2999.02

Serial_No:12131811:24 Lab Number: L1850539

Report Date: 12/13/18

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in, Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1850539-01	IAB335-005-G	1729	2.7L Can	12/04/18	280033	L1848913-02	Pass	-29.0	-3.7	~	-	5	÷
L1850539-02	IAB335-002-G	420	2.7L Can	12/04/18	280033	L1848913-01	Pass	-29.0	-5.2	~	÷	-	9

		Serial_No:12	2131811:24	
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1848913	
Project Number:	CANISTER QC BAT	Report Date:	12/13/18	
	Air Canister Certification Results			
Lab ID:	L1848913-01	Date Collected	11/29/18 16:00	

L1848913-01	Date Collected:	11/29/18 16:00
CAN 420 SHELF 2	Date Received:	11/30/18
	Field Prep:	Not Specified
		CAN 420 SHELF 2 Date Received:

Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	11/30/18 09:59
Analyst:	RY

	ppbV			ug/m3				Dilution
Parameter	Results RL		MDL	Results	RL MDL		Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200	÷.	ND	0.707	-		1
Propylene	ND	0.500	-	ND	0.861	-		1
Propane	ND	0.500	-	ND	0.902	-		1
Dichlorodifluoromethane	ND	0.200	-	ND	0.989			1
Chloromethane	ND	0.200	-	ND	0.413	-		1
Freon-114	ND	0.200	~	ND	1.40	-		1
Methanol	ND	5.00	-	ND	6.55	-		1
Vinyl chloride	ND	0.200	-	ND	0.511	-		1
1,3-Butadiene	ND	0.200	+	ND	0.442	-		- 1
Butane	ND	0.200	. e	ND	0.475	-		1
Bromomethane	ND	0.200	-	ND	0.777	~		1
Chloroethane	ND	0.200	-	ND	0.528	-		1
Ethanol	ND	5.00	e.	ND	9.42			1
Dichlorofluoromethane	ND	0.200	-	ND	0.842	-		1
/inyl bromide	ND	0.200		ND	0.874	-		1
Acrolein	ND	0.500	é.	ND	1.15			đ.
Acetone	ND	1.00	-	ND	2.38	-		1
Acetonitrile	ND	0.200	-	ND	0.336	-		1
Trichlorofluoromethane	ND	0.200	÷.	ND	1.12	-		d.
Isopropanol	ND	0.500	-	ND	1,23	-		1
Acrylonitrile	ND	0.500	-	ND	1.09	-		1
Pentane	ND	0.200	. ÷	ND	0.590	-		1
Ethyl ether	ND	0.200	-	ND	0.606	-		1
1,1-Dichloroethene	ND	0.200	-	ND	0,793	~		1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1848913-01	Date Collected:	11/29/18 16:00
Client ID:	CAN 420 SHELF 2	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

(m. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Manst	field Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52	-		Ť
Methylene chloride	ND	0.500	-	ND	1.74	-		1
3-Chloropropene	ND	0.200	-	ND	0.626			1
Carbon disulfide	ND	0.200	-	ND	0.623	-		9
Freon-113	ND	0.200	-	ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200	-	ND	0.793			1
,1-Dichloroethane	ND	0.200	÷	ND	0.809	-		. d.
Nethyl tert butyl ether	ND	0.200	_	ND	0.721	-		- T
/inyl acetate	ND	1.00	- A -	ND	3.52	-		1
2-Butanone	ND	0.500	-	ND	1.47	~		1
is-1,2-Dichloroethene	ND	0.200	-	ND	0.793			1
thyl Acetate	ND	0.500	μ <u>Ω</u>	ND	1.80	-		1
Chloroform	ND	0.200		ND	0.977	~		1
etrahydrofuran	ND	0.500	-	ND	1.47	-		1
2,2-Dichloropropane	ND	0.200	-	ND	0.924			1
,2-Dichloroethane	ND	0.200	-	ND	0.809	-		1
-Hexane	ND	0 200	-	ND	0.705			1
Diisopropyl ether	ND	0.200	<u>0</u>	ND	0.836	-		1
ert-Butyl Ethyl Ether	ND	0.200	-	ND	0.836			Ŧ
,1,1-Trichloroethane	ND	0.200	-	ND	1.09	-		т
,1-Dichloropropene	ND	0.200	÷	ND	0.908			1
Benzene	ND	0.200		ND	0.639	-		Ŧ
Carbon tetrachloride	ND	0,200	-	ND	1.26	-		1
Cyclohexane	ND	0.200	-	ND	0.688	-		1
ert-Amyl Methyl Ether	ND	0.200	-	ND	0.836	<u>.</u>		1
Dibromomethane	ND	0.200	-	ND	1.42	-		1
1,2-Dichloropropane	ND	0.200	-	ND	0.924			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1848913-01	Date Collected:	11/29/18 16:00
Client ID:	CAN 420 SHELF 2	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

County of the second	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab							
Bromodichloromethane	ND	0.200		ND	1.34	-		Ť.
1,4-Dioxane	ND	0,200	-	ND	0.721	-		1
Trichloroethene	ND	0.200	~	ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200	÷.	ND	0.934	-		1
Methyl Methacrylate	ND	0.500	-	ND	2.05			1
Heptane	ND	0.200	-	ND	0.820			1
is-1,3-Dichloropropene	ND	0.200	÷.	ND	0.908	-		1
I-Methyl-2-pentanone	ND	0.500	-	ND	2.05	-		1
rans-1,3-Dichloropropene	ND	0.200	4	ND	0.908	-		1
,1,2-Trichloroethane	ND	0.200	÷	ND	1.09	~		1
Toluene	ND	0.200	-	ND	0.754			1
,3-Dichloropropane	ND	0.200	Δ.	ND	0.924	-		1
-Hexanone	ND	0.200		ND	0.820	~		1
Dibromochloromethane	ND	0.200	-	ND	1.70	-		1
,2-Dibromoethane	ND	0.200	÷	ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38	-		1
Octane	ND	0.200	-	ND	0.934	-		1
Fetrachloroethene	ND	0.200	2	ND	1.36	-		1
1,1,1,2-Tetrachloroethane	ND	0.200	-	ND	1.37			Ŧ
Chlorobenzene	ND	0.200	-	ND	0.921	-		т
Ethylbenzene	ND	0.200	÷	ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74	-		Ŧ
Bromoform	ND	0.200	-	ND	2.07	-		1
Styrene	ND	0.200	-	ND	0.852	-		
1,1,2,2-Tetrachloroethane	ND	0.200	-	ND	1.37	-		1
o-Xylene	ND	0.200	-	ND	0,869			1
1,2,3-Trichloropropane	ND	0.200	-	ND	1.21			1

Project Name:	BATCH CANISTER CERTIFICATION				
Project Number:	CANISTER QC BAT				

Air Canister Certification Results

Lab ID:	L1848913-01	Date Collected:	11/29/18 16:00
Client ID:	CAN 420 SHELF 2	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Nonane	ND	0.200	÷.	ND	1.05	-		- Ť
Isopropylbenzene	ND	0,200	-	ND	0.983	-		1
Bromobenzene	ND	0.200	-	ND	0.793	-		1
2-Chlorotoluene	ND	0.200		ND	1.04	-		9
n-Propylbenzene	ND	0.200	-	ND	0.983	-		1
4-Chlorotoluene	ND	0.200	-	ND	1.04	-		1
4-Ethyltoluene	ND	0.200	÷	ND	0.983	-		1
,3,5-Trimethylbenzene	ND	0.200	1	ND	0.983	-		÷.
ert-Butylbenzene	ND	0.200	- A -	ND	1.10	-		1
1,2,4-Trimethylbenzene	ND	0.200	-	ND	0.983	~		1
Decane	ND	0.200	-	ND	1,16	-		1
Benzyl chloride	ND	0.200	Ω.	ND	1.04	-		1
,3-Dichlorobenzene	ND	0.200	Ξ.	ND	1.20	~		1
,4-Dichlorobenzene	ND	0.200	-	ND	1.20	-		t t
sec-Butylbenzene	ND	0.200	4	ND	1.10	-		1
o-Isopropyltoluene	ND	0.200		ND	1.10	~		1
1,2-Dichlorobenzene	ND	0.200	14	ND	1.20	-		4
n-Butylbenzene	ND	0.200	<u> </u>	ND	1.10	-		1
1,2-Dibromo-3-chloropropane	ND	0.200	÷	ND	1.93			Ť
Jndecane	ND	0.200	-	ND	1.28	-		Ţ
Dodecane	ND	0.200	10 8 -	ND	1.39	-		1
,2,4-Trichlorobenzene	ND	0.200	ι÷.	ND	1.48	~		Ť
Naphthalene	ND	0.200	7	ND	1.05	-		-1
,2,3-Trichlorobenzene	ND	0.200	÷.	ND	1.48	-		1
Hexachlorobutadiene	ND	0.200	÷	ND	2.13	13		1

							Serial	_No:121	31811:24	
Project Name:	BATCH CANIST	ER CERTI	FICATION	N		L	ab Num	ber:	L1848913	
Project Number:	CANISTER QC	BAT				R	eport D	Date:	12/13/18	
		Air Can	ister Ce	rtification	n Results	e.				
Lab ID:	L1848913-01					Date	Collecte	ed:	11/29/18	16:00
Client ID:	CAN 420 SHEL	F 2				Date	Receive	ed:	11/30/18	
Sample Location:						Field	Prep:		Not Speci	fied
Sample Depth:										
		-	ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor	-
Volatile Organics in	Air - Mansfield Lab									-
		Re	sults	Qualifie	r Units	RDL		Dilutio Facto		
Tentatively Identified Cor	npounds									
No Tentatively Identified	Compounds									

Internal Standard	% Recovery	Qualifier	Criteria	
1,4-Difluorobenzene	77		60-140	
Bromochloromethane	84		60-140	
chlorobenzene-d5	82		60-140	
chlorobenzene-d5	82		60-140	

		Serial_No:12	2131811:24
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1848913
Project Number:	CANISTER QC BAT	Report Date:	12/13/18
	Air Canister Certification I	Results	
Lab ID:	1 1848913-01	Data Collected:	11/20/19 16:00

Lab ID:	L1848913-01	Date Collected:	11/29/18 16:00
Client ID:	CAN 420 SHELF 2	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

Sample Depth:

Matrix	Air	
Anaytical Method:	48,TO-15-SIM	
Analytical Date:	11/30/18 09:59	
Analyst:	RY	

....

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200	-	ND	0,989	-		1
Chloromethane	ND	0.200	-	ND	0.413	-		1
Freon-114	ND	0.050	-	ND	0.349	-		1
Vinyl chloride	ND	0.020	-	ND	0.051			1
1,3-Butadiene	ND	0.020	+	ND	0.044	-		1
Bromomethane	ND	0.020	-	ND	0.078	-		1
Chloroethane	ND	0.100	-	ND	0.264	-		1
Acetone	ND	1.00	-	ND	2.38	-		1
Trichlorofluoromethane	ND	0.050	+	ND	0.281	-		1
Acrylonitrile	ND	0,500	÷.	ND	1.09	-		1
1,1-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Methylene chloride	ND	0.500	-	ND	1.74	-		1
Freon-113	ND	0,050	÷.	ND	0,383			1
trans-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
1,1-Dichloroethane	ND	0.020	4	ND	0.081	-		1
Methyl tert butyl ether	ND	0.200	÷.	ND	0.721			1
2-Butanone	ND	0.500	-	ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Chloroform	ND	0.020	÷.	ND	0.098			1
1,2-Dichloroethane	ND	0.020	-	ND	0.081			1
1,1,1-Trichloroethane	ND	0.020	-	ND	0.109	-		1
Benzene	ND	0.100	÷.	ND	0.319	-		1
Carbon tetrachloride	ND	0.020	-	ND	0.126	-		1
1,2-Dichloropropane	ND	0.020	-	ND	0.092	~		1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

48913-01	Date Collected:	11/29/18 16:00
420 SHELF 2	Date Received:	11/30/18
	Field Prep:	Not Specified
		A 420 SHELF 2 Date Received:

Contract of the second		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134	-		Ť
1,4-Dioxane	ND	0.100	-	ND	0,360	-		1
Trichloroethene	ND	0.020	-	ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020	÷.	ND	0.091	-		4
4-Methyl-2-pentanone	ND	0.500	-	ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020	-	ND	0.091	-		1
1,1,2-Trichloroethane	ND	0.020	÷	ND	0.109	-		d.
Toluene	ND	0.050	-	ND	0.188	-		1
Dibromochloromethane	ND	0.020	- -	ND	0.170	-		1
1,2-Dibromoethane	ND	0.020	-	ND	0.154	~		1
Fetrachloroethene	ND	0.020	-	ND	0.136	-		1
1,1,1,2-Tetrachloroethane	ND	0.020	÷	ND	0.137	-		1
Chlorobenzene	ND	0.100		ND	0.461	~		1
Ethylbenzene	ND	0.020	-	ND	0.087	-		1
o/m-Xylene	ND	0.040	÷	ND	0.174	-		1
Bromoform	ND	0.020	-	ND	0.207	~		1
Styrene	ND	0.020	1.E.	ND	0.085	-		1
1,1,2,2-Tetrachloroethane	ND	0.020	-	ND	0.137	-		1
o-Xylene	ND	0.020		ND	0.087	-		Ŧ
sopropylbenzene	ND	0.200		ND	0.983	-		T
4-Ethyltoluene	ND	0.020	÷	ND	0.098	~		1
1,3,5-Trimethybenzene	ND	0.020	Ξ.	ND	0.098	~		ī
1,2,4-Trimethylbenzene	ND	0,020	7	ND	0.098	-		1
Benzyl chloride	ND	0.200	÷	ND	1.04	-		1
1,3-Dichlorobenzene	ND	0.020	÷	ND	0.120	e.		1
1,4-Dichlorobenzene	ND	0,020	-	ND	0,120	-		1
sec-Butylbenzene	ND	0.200	-	ND	1.10			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1848913-01	Date Collected:	11/29/18 16:00
Client ID:	CAN 420 SHELF 2	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	A - Mansfield Lab							
p-Isopropyltoluene	ND	0.200	÷	ND	1.10	-		9
1.2-Dichlorobenzene	ND	0.020	-	ND	0.120	-		1
n-Butylbenzene	ND	0.200	-	ND	1.10	-		-1
1,2,4-Trichlorobenzene	ND	0.050	÷	ND	0.371			1
Naphthalene	ND	0.050	-	ND	0.262	-		1
1,2,3-Trichlorobenzene	ND	0.050	-	ND	0.371	-		-1
Hexachlorobutadiene	ND	0.050	÷	ND	0.533	-		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	79		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	82		60-140

		Serial_No:1	2131811:24
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1848913
Project Number:	CANISTER QC BAT	Report Date:	12/13/18
	Air Canister Certification Results		
Lab ID:	L1848913-02	Date Collected:	11/29/18 16:00

L1848913-02	Date Collected:	11/29/18 16:00
CAN 1729 SHELF 3	Date Received:	11/30/18
	Field Prep:	Not Specified
	L1848913-02 CAN 1729 SHELF 3	CAN 1729 SHELF 3 Date Received:

Air
48,TO-15
11/30/18 10:31
RY

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Chlorodifluoromethane	ND	0,200	-	ND	0.707	-		1
Propylene	ND	0.500	-	ND	0.861	-		1
Propane	ND	0.500	-	ND	0.902	-		1
Dichlorodifluoromethane	ND	0,200	-	ND	0.989			÷Ť.
Chloromethane	ND	0.200	-	ND	0.413	-		1
Freon-114	ND	0.200	-	ND	1.40	-		1
Methanol	ND	5.00	-	ND	6.55	-		1
Vinyl chloride	ND	0.200	-	ND	0.511	-		1
1,3-Butadiene	ND	0.200	+	ND	0.442	-		1
Butane	ND	0,200	÷.	ND	0.475	-		1
Bromomethane	ND	0.200	+	ND	0.777	~		1
Chloroethane	ND	0.200	+	ND	0.528	-		1
Ethanol	ND	5.00	in the second	ND	9.42			1
Dichlorofluoromethane	ND	0.200	-	ND	0.842	-		1
Vinyl bromide	ND	0.200	-	ND	0.874	-		1
Acrolein	ND	0.500		ND	1.15			d.
Acetone	ND	1.00	-	ND	2.38	-		1
Acetonitrile	ND	0.200	-	ND	0.336			1
Trichlorofluoromethane	ND	0.200	÷.	ND	1.12	-		÷.
sopropanol	ND	0.500	-	ND	1,23	-		1
Acrylonitrile	ND	0.500	-	ND	1.09	-		1
Pentane	ND	0.200	Á.	ND	0.590	-		1
Ethyl ether	ND	0.200	-	ND	0.606	-		1
1,1-Dichloroethene	ND	0.200	-	ND	0,793	-		1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Date Collected:	11/29/18 16:00
Date Received:	11/30/18
Field Prep:	Not Specified
	Date Received:

(m. 4. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	1.00	ppbV	-	-	ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52	-		Ť.
Methylene chloride	ND	0.500	-	ND	1.74			1
3-Chloropropene	ND	0.200	-	ND	0.626			1
Carbon disulfide	ND	0.200	-	ND	0.623	-		- T.
Freon-113	ND	0.200	-	ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200	-	ND	0.793			1
,1-Dichloroethane	ND	0.200	÷	ND	0.809	-		d.
Nethyl tert butyl ether	ND	0.200	-	ND	0.721			÷.
/inyl acetate	ND	1.00	- Ω =	ND	3.52	-		1
2-Butanone	ND	0.500		ND	1.47	~		1
is-1,2-Dichloroethene	ND	0.200	-	ND	0.793			1
thyl Acetate	ND	0.500	Ω	ND	1.80			1
Chloroform	ND	0.200		ND	0.977	~		1
etrahydrofuran	ND	0.500	-	ND	1.47	-		1
,2-Dichloropropane	ND	0.200	- 2	ND	0.924	-		1
,2-Dichloroethane	ND	0.200	-	ND	0.809	-		1
-Hexane	ND	0 200	14	ND	0.705	-		1
Diisopropyl ether	ND	0.200	<u> </u>	ND	0.836	-		1
ert-Butyl Ethyl Ether	ND	0.200	-	ND	0.836	-		Ŧ
,1,1-Trichloroethane	ND	0.200	-	ND	1.09	-		Ŧ
,1-Dichloropropene	ND	0.200	÷	ND	0.908			1
Benzene	ND	0.200	1	ND	0.639	-		Ŧ
Carbon tetrachloride	ND	0.200	-	ND	1.26	-		1
Cyclohexane	ND	0.200	-	ND	0.688	-		1
ert-Amyl Methyl Ether	ND	0.200	~	ND	0.836	æ		1
Dibromomethane	ND	0.200	-	ND	1.42			1
,2-Dichloropropane	ND	0.200	-	ND	0.924			1

Project Name:	BATCH CANISTER CERTIFICATION	
Project Number:	CANISTER QC BAT	

Air Canister Certification Results

Lab ID:	L1848913-02	Date Collected:	11/29/18 16:00
Client ID:	CAN 1729 SHELF 3	Date Received:	11/30/18
Sample Location	1:	Field Prep:	Not Specified
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.51 24220043

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Bromodichloromethane	ND	0.200	÷	ND	1.34	-		đ
1,4-Dioxane	ND	0,200	-	ND	0.721	-		1
Trichloroethene	ND	0.200	~	ND	1.07	-		1
2,2,4-Trimethylpentane	ND	0.200	+	ND	0.934	-		9
Methyl Methacrylate	ND	0.500	-	ND	2.05			1
Heptane	ND	0.200	-	ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200	÷.	ND	0.908	-		. đ.
I-Methyl-2-pentanone	ND	0.500	-	ND	2.05			÷.
rans-1,3-Dichloropropene	ND	0.200	- 2 -	ND	0.908	-		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09	~		1
oluene	ND	0.200	-	ND	0.754			1
,3-Dichloropropane	ND	0.200	Δ	ND	0.924	-		1
-Hexanone	ND	0.200	7	ND	0.820	~		1
Dibromochloromethane	ND	0.200	-	ND	1.70	-		1
,2-Dibromoethane	ND	0.200	÷	ND	1.54	-		1
Butyl acetate	ND	0.500	-	ND	2.38	~		1
Octane	ND	0 200	4	ND	0.934	-		1
Fetrachloroethene	ND	0.200	Ω.	ND	1.36	-		1
1,1,1,2-Tetrachloroethane	ND	0.200	-	ND	1.37	-		Ŧ
Chlorobenzene	ND	0.200	-	ND	0.921	-		Ŧ
Ethylbenzene	ND	0.200	in ∺ i	ND	0.869			1
/m-Xylene	ND	0.400	÷.	ND	1.74	-		1
Bromoform	ND	0.200	-	ND	2.07	-		1
Styrene	ND	0.200	÷	ND	0.852	-		
1,1,2,2-Tetrachloroethane	ND	0.200	$\overline{\nabla}$	ND	1.37	æ		1
o-Xylene	ND	0.200	-	ND	0,869	-		1
,2,3-Trichloropropane	ND	0.200	-	ND	1.21			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Date Collected:	11/29/18 16:00
Date Received:	11/30/18
Field Prep:	Not Specified
	Date Received:

Sample Depth.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Nonane	ND	0.200	÷	ND	1.05	-		Ť
Isopropylbenzene	ND	0.200	-	ND	0.983			1
Bromobenzene	ND	0.200	-	ND	0.793			1
2-Chlorotoluene	ND	0.200	-	ND	1.04	-		d.
n-Propylbenzene	ND	0.200	-	ND	0.983	-		t
4-Chlorotoluene	ND	0.200	-	ND	1.04	-		1
4-Ethyltoluene	ND	0.200	÷	ND	0.983	-		d.
1,3,5-Trimethylbenzene	ND	0.200	-	ND	0.983	-		1
ert-Butylbenzene	ND	0.200	1 A 1	ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983	~		1
Decane	ND	0.200	-	ND	1,16	-		1
Benzyl chloride	ND	0.200	μ <u>Ω</u>	ND	1.04	-		1
1,3-Dichlorobenzene	ND	0.200		ND	1.20	~		1
1,4-Dichlorobenzene	ND	0.200	-	ND	1.20	-		t.
sec-Butylbenzene	ND	0.200	÷.	ND	1.10	-		1
o-Isopropyltoluene	ND	0.200		ND	1.10	~		1
1,2-Dichlorobenzene	ND	0.200	14	ND	1.20	-		1
n-Butylbenzene	ND	0.200	<u> </u>	ND	1.10	-		1
1,2-Dibromo-3-chloropropane	ND	0.200	iπ.	ND	1.93			1
Jndecane	ND	0.200	-	ND	1.28	-		T
Dodecane	ND	0.200	10 8 -	ND	1.39	-		1
1,2,4-Trichlorobenzene	ND	0.200	ι÷.	ND	1.48	~		1
Naphthalene	ND	0.200	7	ND	1.05	-		1
1,2,3-Trichlorobenzene	ND	0.200	1940	ND	1.48	-		1
Hexachlorobutadiene	ND	0.200	÷	ND	2.13	13		1

							Serial	_No:121	31811:24
Project Name:	BATCH CANIST	ER CERTI	FICATION	N		La	ab Num	ber:	L1848913
Project Number:	CANISTER QC	BAT				R	eport D	ate:	12/13/18
		Air Can	ister Ce	rtification	n Results	e.			
Lab ID;	L1848913-02					Date	Collecte	ed:	11/29/18 16:00
Client ID:	CAN 1729 SHE	LF 3				Date I	Receive	ed:	11/30/18
Sample Location:						Field	Prep:		Not Specified
Sample Depth:									
		_	ppbV		_	ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	sults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Cor	npounds								
No Tentatively Identified	Compounds								

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	77		60-140
Bromochloromethane	84		60-140
chlorobenzene-d5	80		60-140

		Serial_No:12	2131811:24
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1848913
Project Number:	CANISTER QC BAT	Report Date:	12/13/18
	Air Canister Certification	n Results	
Lab ID:	L1848913-02	Date Collected	11/29/18 16:00

Lab ID:	L1848913-02	Date Collected:	11/29/18 16:00
Client ID:	CAN 1729 SHELF 3	Date Received:	11/30/18
Sample Location:		Field Prep:	Not Specified

Air
48,TO-15-SIM
11/30/18 10:31
RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200	-	ND	0,989	-		1
Chloromethane	ND	0.200	-	ND	0.413	-		1
Freon-114	ND	0.050	-	ND	0.349	-		1
Vinyl chloride	ND	0.020	-	ND	0.051	-		1
1,3-Butadiene	ND	0.020	+	ND	0.044	~		1
Bromomethane	ND	0.020	~	ND	0.078	-		1
Chloroethane	ND	0.100	-	ND	0.264	-		1
Acetone	ND	1.00	-	ND	2.38	-		1
Trichlorofluoromethane	ND	0.050	+	ND	0.281	-		1
Acrylonitrile	ND	0.500	÷	ND	1.09			1
1,1-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Methylene chloride	ND	0.500	+	ND	1.74	-		1
Freon-113	ND	0,050	÷.	ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
1,1-Dichloroethane	ND	0.020	-	ND	0.081	-		1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500	-	ND	1.47	-		1
cis-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Chloroform	ND	0.020	÷.	ND	0.098			T
1,2-Dichloroethane	ND	0.020	-	ND	0.081	-		1
1,1,1-Trichloroethane	ND	0.020	1.44	ND	0.109	-		1
Benzene	ND	0.100	÷.	ND	0.319	-		1
Carbon tetrachloride	ND	0.020	-	ND	0.126	-		1
1,2-Dichloropropane	ND	0.020	-	ND	0,092	-		1

Project Name:	BATCH CANISTER CERTIFICATION			
Project Number:	CANISTER QC BAT			

Air Canister Certification Results

Lab ID:	L1848913-02	Date Collected:	11/29/18 16:00
Client ID:	CAN 1729 SHELF 3	Date Received:	11/30/18
Sample Location	12	Field Prep:	Not Specified
		Field Fiep.	Not Sp

Sample Depth.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134	-		Ť
I,4-Dioxane	ND	0.100	-	ND	0,360	-		1
Trichloroethene	ND	0.020	-	ND	0.107	-		T
sis-1,3-Dichloropropene	ND	0.020	-	ND	0.091	-		4
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020	-	ND	0.091			1
,1,2-Trichloroethane	ND	0.020	-	ND	0.109	-		1
oluene	ND	0.050	4	ND	0.188	-		Ť
Dibromochloromethane	ND	0.020	4	ND	0.170	-		1
,2-Dibromoethane	ND	0.020	-	ND	0.154	~		.
etrachloroethene	ND	0.020	-	ND	0,136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137	-		1
Chlorobenzene	ND	0.100	Ξ.	ND	0.461	~		1
Ethylbenzene	ND	0.020	-	ND	0.087	-		1
/m-Xylene	ND	0.040	÷.	ND	0.174	-		1
Bromoform	ND	0.020	-	ND	0.207	~		1
Styrene	ND	0.020	-	ND	0.085	-		1
,1,2,2-Tetrachloroethane	ND	0.020	1.2	ND	0.137	-		1
o-Xylene	ND	0.020	19	ND	0.087			1
sopropylbenzene	ND	0.200	-	ND	0.983	-		Ţ
I-Ethyltoluene	ND	0.020	nê i	ND	0.098			1
,3,5-Trimethybenzene	ND	0.020	iπ.	ND	0.098	~		1
,2,4-Trimethylbenzene	ND	0,020	7	ND	0.098	-		- 1
Benzyl chloride	ND	0.200	- e	ND	1.04	-		
,3-Dichlorobenzene	ND	0.020	÷	ND	0.120	13		1
I,4-Dichlorobenzene	ND	0,020	-	ND	0.120	-		1
ec-Butylbenzene	ND	0.200	÷.	ND	1.10	-		1

Project Name:	BATCH CANISTER CERTIFICATION			
Project Number:	CANISTER QC BAT			

Air Canister Certification Results

Lab ID:	L1848913-02	Date Collected:	11/29/18 16:00
Client ID:	CAN 1729 SHELF 3	Date Received:	11/30/18
Sample Location	1.	Field Prep:	Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
p-Isopropyltoluene	ND	0.200	÷	ND	1.10	-		9
1.2-Dichlorobenzene	ND	0.020	-	ND	0.120	-		.1
n-Butylbenzene	ND	0.200	-	ND	1.10	-		-1
,2,4-Trichlorobenzene	ND	0.050	-	ND	0.371	-		1
Naphthalene	ND	0.050	-	ND	0.262	-		1
1,2,3-Trichlorobenzene	ND	0.050	-	ND	0.371	-		1
Hexachlorobutadiene	ND	0.050	÷	ND	0.533	-		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	82		60-140

Serial_No:12131811:24 Lab Number: L1850539 Report Date: 12/13/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal			
N/A	Absent			

Container Information

Container Info		Initial Final		Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1850539-01A	Canister - 2.7 Liter	N/A	NA			Ŷ	Absent		TO15-SIM(30)	
L1850539-02A	Canister - 2.7 Liter	N/A	NA			Y	Absent		TO15-SIM(30)	

YES

Serial_No:12131811:24

L1850539

12/13/18

Lab Number:

Report Date:

Project Name: Not Specified

Project Number: 2999.02

GLOSSARY

Acronyms

Acronyms	
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	 Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	 Laboratory Control Sample Duplicate: Refer to LCS,
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	· Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	 Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	· Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	Toxic Equivalent: The measure of a sample/s toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	 Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method. Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: Not Specified

Project Number: 2999.02

Lab Number: L1850539 Report Date: 12/13/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common flab contaminants) in the associated method blank. For NJ-Air-related projects (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Lab Number: L1850539 Report Date: 12/13/18

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

		VIII NOT				-				_	_	-	Serial	_No:	:12131811:2	24
Austra		NALYSIS	P	AGE	OF	Date F	Rec'd in La	b: 12	Islig	8		AL	PHA	Job	#: 1850	539
320 Forbes Blud	CHAIN OF CUSTODY	Project Inform	ation			Repo	ort Inform	ation -	Data I	Delivera	bles	Bi	lling Ir	nform	nation	1
Contraction of the second second second	00 FAX: 508-822-3288	Project Name:				LI FA	x					As	ame as	Clier	nt info PO #:	
Client Informati	ion	Project Location: EFK			L AD	Ex Criteria Che	ecker									
Client: So	n hom Head	Project # 2999.02					(Default base		latory Crit	hnia Indicale	d)					
	Fandry St.	Project Manager Jenn Scinborn				Other Form IAIL (stand	ere -	report)		-	Re	gulato	ory R	equirements	Report Limit	
Concert NH		ALPHA Quote #:				Ad	ditional Del	iverable	S:			Sta	te/Fed	1	Program	Res / Comn
Phone: 60	3-415-6137	Turn-Around T	lime			Repor	t to: (if different	than Project	Managar)			-		-	-	
Fax		ZÍ Standard	C RUSH			-						i.				
Email: 1 Sant	corn @ Sanborn Head.com	a oranoard	a rooming	or an and a pro-a	dinaved)								AN	ALY	sis	
These samples had	ave been previously analyzed by Alpha	Date Due:		Time:								11	13	1	2/1/	
	Specific Requirements/Com											1	The write	Pu To	1//	
Project-Specific	c Target Compound List:										1	11	1/0	The second	11	
	A	I Colum	ns Bel	ow N	Must	Be	Fillec	0	at			SIM	Gase	a Men	11	
ALPHA Lab ID (Lab Use Only)	Sample ID	C(End Date Start Tim	DLLECTIO	N Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	1 D Can	I D - Flow Controller	T0.15	APH MAN	Fixed Gases	11	Sample Cor	nments (i.e. PID
50539-01	1AB335-005-67	12-5-18		-290		AA	JVF	27	1729		X				Grab Sum	ole
-02-	and the second se	12-618	14:37	- 29.0	- 5.0	A4	JVF	27	420	-	X				0	
										1						
ý																
						-								1		
								1						+		
				-		-		-	-					-		
								-					11	-		
														1		
				-	-							-	++	-		
		A = Ambient Air (Indo	or/Ontdown		-		_	_	-					-	-	
*SAMPL	E MATRIX CODES ST	V = Soil Vapor/Landfil ther = Please Specify					Co	ontainer	Туре					1		mples can not be
		Relinquished By:		Date	e/Time	1	Receiv	ed By:	-		Da	ate/Tin	ne:			art until any ambi-
			C 1.			0										ved. All samples ubject to Alpha's
Pade 39'df 39 ^{ra}	5-Sep-15)		Fredex	-		B	S K2	art	_	- 13	2/8/1	520	01	-	See reverse sid	
- AUE 39 U 39	a state of the second sec			-		-										

APPENDIX C

ANALYTICAL LABORATORY REPORTS

C.4 – SUBSLAB VAPOR AND FLUX CHAMBER SAMPLES

SANBORN II HEAD ENGINEERING

2/18/2019 Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road

Latham NY

Project Name: EFK Project #: 2999.00 Workorder #: 1902058

Dear Ms. Erica Bosse

The following report includes the data for the above referenced project for sample(s) received on 2/5/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

WORK ORDER #: 1902058

Work Order Summary

CLIENT:	Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road Latham, NY	BILL TO:	Accounts Payable Sanborn, Head & Associates 20 Foundry Street Concord, NH 03301
PHONE:	518-207-0769	P.O. #	
FAX:		PROJECT #	2999.00 EFK
DATE RECEIVED:	02/05/2019	CONTACT:	Ausha Scott
DATE COMPLETED:	02/18/2019	contact	Ausau boot

FRACTION #	NAME	TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
01A	FT335-001-60G 20190129	TO-15	6.7 "Hg	15.9 psi
02A	FT335-002-40G 20190129	TO-15	5.5 "Hg	15.2 psi
03A	FT335-003-40G 20190129	TO-15	0.2 "Hg	15.9 psi
04A	FT335-004-40G 20190129	TO-15	5.5 "Hg	15.3 psi
05A	FT335-005-40G 20190130	TO-15	4.9 "Hg	15.5 psi
05B	FT335-005-40G 20190130	TO-15	4.9 "Hg	15.5 psi
06A	FT335-006-40G 20190130	TO-15	4.3 "Hg	15.5 psi
07A	SSV335-001 20190130	TO-15	5.7 "Hg	14.7 psi
08A	SSV335-002 20190130	TO-15	4.7 "Hg	15.5 psi
09A	SSV335-003 20190130	TO-15	5.5 "Hg	15.3 psi
10A	SSV335-004_20190130	TO-15	5.5 "Hg	14.6 psi
11A	SSV335-005_20190130	TO-15	5.7 "Hg	15 psi
12A	SSV335-006 20190130	TO-15	3.9 "Hg	14.6 psi
13A	SSV335-007_20190130	TO-15	4,9 "Hg	15.6 psi
14A	SSV335-008_20190130	TO-15	6.7 "Hg	14.6 psi
15A	SSV335-009_20190130	TO-15	4.5 "Hg	15.7 psi
16A	SSV335-010_20190130	TO-15	4.9 "Hg	15.5 psi
17A	SSV335-011_20190130	TO-15	4.5 "Hg	15.6 psi
18A	SSV335-011_20190130_FD	TO-15	0.4 psi	16.2 psi
19A	SSV335-012_20190130	TO-15	5.1 "Hg	15.3 psi
20A	Lab Blank	TO-15	NA	NA
20B	Lab Blank	TO-15	NA	NA
20C	Lab Blank	TO-15	NA	NA

Continued on next page

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Air Toxics

WORK ORDER #: 1902058

Work Order Summary

CLIENT:	Ms. Erica Bosse Sanborn, Head & Associates 24 Wade Road Latham, NY	BILL TO:	Accounts Payable Sanborn, Head & Associates 20 Foundry Street Concord, NH 03301
PHONE:	518-207-0769	P.O. #	
FAX:		PROJECT #	2999.00 EFK
DATE RECEIVED:	02/05/2019	CONTACT:	Ausha Scott
DATE COMPLETED:	02/18/2019	connen	Ausia boot

FRACTION #	NAME	TEST	RECEIPT <u>VAC./PRES.</u>	FINAL PRESSURE
20D	Lab Blank	TO-15	NA	NA
21A	CCV	TO-15	NA	NA
21B	CCV	TO-15	NA	NA
21C	CCV	TO-15	NA	NA
21D	CCV	TO-15	NA	NA
22A	LCS	TO-15	NA	NA
22AA	LCSD	TO-15	NA	NA
22B	LCS	TO-15	NA	NA
22BB	LCSD	TO-15	NA	NA
22C	LCS	TO-15	NA	NA
22CC	LCSD	TO-15	NA	NA
22D	LCS	TO-15	NA	NA
22DD	LCSD	TO-15	NA	NA

al

Technical Director

02/18/19 DATE:

CERTIFIED BY:

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8, LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1902058

Nineteen 1 Liter Summa Canister samples were received on February 05, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

🔅 eurofins

Due to omission of the sampling date from the ID format on the sample tags, the information on the Chain of Custody (COC) for samples FT335-001-60G_20190129, FT335-002-40G_20190129, FT335-003-40G_20190129, FT335-005-40G_20190130, FT335-006-40G_20190130, SSV335-001_20190130, SSV335-002_20190130, SSV335-003_20190130, SSV335-004_20190130, SSV335-006_20190130, SSV335-006_20190130, SSV335-007_20190130, SSV335-008_20190130, SSV335-009_20190130, SSV335-010_20190130, SSV335-011_20190130, SSV335-011_20190130, SSV335-012_20190130 was used to process and report the samples.

There was a difference (greater than or equal to 5.0" Hg) between the measured canister receipt vacuum and that which was reported on the Chain of Custody (COC) for sample SSV335-011_20190130_FD. A leak test indicated that the valve was functioning properly.

Analytical Notes

Due to high-level target compounds, sample FT335-005-40G_20190130 was analyzed twice. In the "A" fraction, the sample was diluted to bring the highest-level compounds within the calibration range. The "B" fraction is also reported by client request and may be reported with "E" flags indicating the compound exceeds the calibration range. Both runs and associated QC are reported.

Dilution was performed on samples FT335-005-40G_20190130, SSV335-001_20190130, SSV335-002_20190130, SSV335-003_20190130, SSV335-004_20190130, SSV335-005_20190130, SSV335-006_20190130, SSV335-007_20190130, SSV335-008_20190130, SSV335-009_20190130, SSV335-010_20190130, SSV335-011_20190130, SSV335-011_20190130, FD and SSV335-012_20190130 due to the presence of high level target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.

Air Toxics

Q - Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: FT335-001-60G_20190129

Lab ID#: 1902058-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	13	14	32	33
Tetrachloroethene	1.3	27	9.1	180

Client Sample ID: FT335-002-40G 20190129

Lab ID#: 1902058-02A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	1.2	27	8.4	180

Client Sample ID: FT335-003-40G_20190129

Lab ID#: 1902058-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Toluene	1.0	1.5	4.0	5.6
Tetrachloroethene	1.0	59	7.1	400
Ethyl Benzene	1.0	3.0	4.6	13
m,p-Xylene	1.0	16	4.6	70
o-Xylene	1.0	4.9	4.6	21
	-			

Client Sample ID: FT335-004-40G 20190129

Lab ID#: 1902058-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	1.2	2.0	5.0	7.9
Trichloroethene	1.2	2.1	6.7	11
Toluene	1.2	1.4	4.7	5.2
Tetrachloroethene	1.2	460	8.5	3100
Ethyl Benzene	1.2	2.9	5.4	13
m,p-Xylene	1.2	15	5.4	66
o-Xylene	1.2	5.1	5.4	22

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: FT335-005-40G_20190130

Lab ID#: 1902058-05A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	9.8	3400	66	23000

Client Sample ID: FT335-005-40G_20190130

Lab ID#: 1902058-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	4.9	6.4	26	34
Tetrachloroethene	4.9	3100 E	33	21000 E
m,p-Xylene	4.9	8.8	21	38

Client Sample ID: FT335-006-40G_20190130

Lab ID#: 1902058-06A

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1.2	6.9	6.4	37
1.2	390	8.1	2600
1.2	4.7	5.2	20
1.2	1.9	5.2	8,4
	(ppbv) 1.2 1.2 1.2	(ppbv) (ppbv) 1.2 6.9 1.2 390 1.2 4.7	(ppbv) (ppbv) (ug/m3) 1.2 6.9 6.4 1.2 390 8.1 1.2 4.7 5.2

Client Sample ID: SSV335-001_20190130

Lab ID#: 1902058-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	6.2	31	33	160
Tetrachloroethene	6.2	1900	42	13000

Client Sample ID: SSV335-002_20190130

Lab ID#: 1902058-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	87	320	470	1700
Tetrachloroethene	87	15000	590	100000

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SSV335-003_20190130

Lab ID#: 1902058-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	620	86000	4200	580000
Client Sample ID: SSV335-004_20190130				
Lab ID#: 1902058-10A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	2400	98000	16000	660000
Client Sample ID: SSV335-005_20190130				
Lab ID#: 1902058-11A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	1200	55000	8500	370000
Client Sample ID: SSV335-006_20190130				
Lab ID#: 1902058-12A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	9.2	37	36	150
Trichloroethene	9.2	64	49	350
Tetrachloroethene	9.2	2100	62	14000

Client Sample ID: SSV335-007_20190130

Lab ID#: 1902058-13A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	12000	28000	49000	110000
Trichloroethene	12000	13000	66000	70000
Tetrachloroethene	12000	2200000	83000	15000000

Client Sample ID: SSV335-008_20190130

Lab ID#: 1902058-14A

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SSV335-008_20190130

Lab ID#: 1902058-14A

Tetrachloroethene 21000 3700000 140000 25000000 Client Sample ID: SSV335-009_20190130 Lab ID#: 1902058-15A Rpt. Limit Amount (ug/m3) Eab DB#: 1902058-16A Rpt. Limit Amount Rpt. Limit Amount (ppbv) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) Eab Bab ID#: 1902058-17A Rpt. Limit Amount Rpt. Limit Amount (ppbv) (ug/m3)		Rpt. Limit	Amount	Rpt. Limit	Amount
Client Sample ID: SSV335-009_20190130 Lab ID#: 1902058-15A Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 3000 370000 21000 2500000 Client Sample ID: SSV335-010_20190130 Lab ID#: 1902058-16A Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 38000000 Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Compound (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A	Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Lab ID#: 1902058-15ARpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene3000370000210002500000Client Sample ID: SSV335-010_20190130Lab ID#: 1902058-16ARpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)CompoundRpt. Limit (ppby)(ug/m3)(ug/m3)(ug/m3)Tetrachloroethene1201300083088000Client Sample ID: SSV335-011_20190130Lab ID#: 1902058-17ARpt. Limit (ppby)Amount (ug/m3)Rpt. Limit (ug/m3)Compound(ppby)(ug/m3)(ug/m3)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)CompoundRpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-18ARpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppby)Amount (ppby)Rpt. Limit (ug/m3)Amount (ug/m3)	Tetrachloroethene	21000	3700000	140000	25000000
Rpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene3000370000210002500000Client Sample ID: SSV335-010_20190130Lab ID#: 1902058-16ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)CompoundRpt. Limit (ppbv)Amount (ug/m3)Rpt. Limit (ug/m3)Amount (ug/m3)Amount (ug/m3)Tetrachloroethene1201300083088000Client Sample ID: SSV335-011_20190130Lab ID#: 1902058-17AAmount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount 	Client Sample ID: SSV335-009_20190130				
Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 3000 370000 21000 2500000 Client Sample ID: SSV335-010_20190130 Lab ID#: 1902058-16A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Amount Rpt. Limit Amount Compoun	Lab ID#: 1902058-15A				
Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 3000 370000 21000 2500000 Client Sample ID: SSV335-010_20190130 Lab ID#: 1902058-16A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Amount Rpt. Limit Amount Compoun		Rpt. Limit	Amount	Rpt. Limit	Amount
Client Sample ID: SSV335-010_20190130 Lab ID#: 1902058-16A Rpt. Limit Amount Rpt. Limit Amount (ug/m3) (ug/m3) Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Amount Rpt. Limit Amount Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Expt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ug/m3) (ug/m3) (ug/m3) (ug/m3)	Compound		(ppbv)		(ug/m3)
Lab ID#: 1902058-16A Rpt. Limit (ppbv) Amount (ppbv) Rpt. Limit (ug/m3) Amount (ug/m3) Compound 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Limit Amount (ppbv) Rpt. Limit Amount (ppbv) Rpt. Limit Amount (ug/m3) Amount (ug/m3) Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Eab ID#: 1902058-18A Rpt. Limit Amount (ppbv) Rpt. Limit Amount (ug/m3) (ug/m3) Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Eab ID#: 1902058-19A Rpt. Limit Amount (ppbv) Rpt. Limit Amount (ppbv) (ug/m3) (ug/m3)	Tetrachloroethene	3000	370000	21000	2500000
Rpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene1201300083088000Client Sample ID: SSV335-011_20190130Lab ID#: 1902058-17A.Rpt. Limit (ppbv)Amount (ug/m3)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene510045000035000Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ppbv)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)	Client Sample ID: SSV335-010_20190130				
Rpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene1201300083088000Client Sample ID: SSV335-011_20190130Lab ID#: 1902058-17A.Rpt. Limit (ppbv)Amount (ug/m3)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene510045000035000Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ppbv)Amount (ug/m3)Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)	Lab ID#: 1902058-16A				
Compound (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 120 13000 830 88000 Client Sample ID: SSV335-011_20190130 Lab ID#; 1902058-17A Rpt. Limit Amount Rpt. Limit Amount Rpt. Limit Amount (ug/m3) (ug/m3) Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#; 1902058-18A Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Amount Rpt. Limit Amount Compound (ppbv) (ug/m3) (ug/m3) (ug/m3) (ug/m3)	and the second	Rpt. Limit	Amount	Rpt. Limit	Amount
Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A Compound Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Compound Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Compound Rpt. Limit Amount Rpt. Limit Amount Lab ID#: 1902058-19A Compound (ppbv) (ppbv) (ug/m3) (ug/m3)	Compound	a tel ca ser cana t			
Lab ID#: 1902058-17ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene5100450000350003000000Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)	Tetrachloroethene	120	13000	830	88000
Lab ID#: 1902058-17ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)(ug/m3)Tetrachloroethene6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene5100450000350003000000Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)CompoundRpt. Limit (ppbv)Amount (ug/m3)Rpt. Limit (ug/m3)Amount (ug/m3)					
Rpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound6000560000410003800000Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ug/m3)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene510045000035000Client Sample ID: SSV335-012_20190130510045000035000Client Sample ID: SSV335-012_20190130Rpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)CompoundRpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)					
Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3) Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) 3000000 3000000	Lab ID#: 1902058-17A				
Tetrachloroethene 6000 560000 41000 3800000 Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A Rpt. Limit Amount Rpt. Limit Amount Rpt. Limit Amount (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) Client Sample ID: SSV335-012_20190130 3000000 Client Sample ID: SSV335-012_20190130 Rpt. Limit Amount Rpt. Limit Amount Rpt. Limit Amount Compound Client Sample ID: SSV335-012_20190130 Client Sample ID: SSV335-012_20190130 Client Sample ID: SSV335-012_20190130 Client Sample ID: SSV335-012_20190130 Client Sample ID: SSV335-013 Client Sample ID	Commission 1	CONTRACTOR CONTRACTOR CONTRACTOR			
Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A <u>Rpt. Limit Amount Rpt. Limit Amount</u> <u>Compound (ppbv) (ug/m3) (ug/m3)</u> Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A <u>Rpt. Limit Amount Rpt. Limit Amount</u> <u>Compound (ppbv) (ug/m3) (ug/m3)</u>		10-10-10-10-10-10-10-10-10-10-10-10-10-1			
Lab ID#: 1902058-18ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Compound(ppbv)(ppbv)(ug/m3)(ug/m3)Tetrachloroethene5100450000350003000000Client Sample ID: SSV335-012_20190130Lab ID#: 1902058-19ARpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)	Tetrachioroethene	6000	560000	41000	3800000
Rpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene5100450000350003000000Client Sample ID: SSV335-012_20190130 </td <td>Client Sample ID: SSV335-011_20190130_FD</td> <td></td> <td></td> <td></td> <td></td>	Client Sample ID: SSV335-011_20190130_FD				
Compound(ppbv)(ug/m3)(ug/m3)Tetrachloroethene5100450000350003000000Client Sample ID: SSV335-012_20190130 </td <td>Lab ID#: 1902058-18A</td> <td></td> <td></td> <td></td> <td></td>	Lab ID#: 1902058-18A				
Tetrachloroethene 5100 450000 35000 3000000 Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ug/m3) (ug/m3)		Rpt. Limit	Amount	Rpt. Limit	Amount
Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3)	Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Lab ID#: 1902058-19A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3)	Tetrachloroethene	5100	450000	35000	3000000
Lab ID#: 1902058-19A Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3)	Client Sample ID: SSV335-012 20190130				
Rpt. Limit Amount Rpt. Limit Amount Compound (ppbv) (ppbv) (ug/m3) (ug/m3)					
Compound (ppbv) (ppbv) (ug/m3) (ug/m3)		Rot Limit	Amount	Rot. Limit	Amount
	Compound				
	Tetrachloroethene	7700	1100000	52000	7700000

Client Sample ID: FT335-001-60G_20190129 Lab ID#: 1902058-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020708 2.68				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	1.3	Not Detected	6.6	Not Detected	
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected	
Freon 11	1.3	Not Detected	7.5	Not Detected	
Freon 113	1.3	Not Detected	10	Not Detected	
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected	
Acetone	13	14	32	33	
Methylene Chloride	13	Not Detected	46	Not Detected	
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected	
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected	
Carbon Tetrachloride	1.3	Not Detected	8.4	Not Detected	
Benzene	1.3	Not Detected	4.3	Not Detected	
Trichloroethene	1.3	Not Detected	7.2	Not Detected	
Toluene	1.3	Not Detected	5.0	Not Detected	
Tetrachloroethene	1.3	27	9.1	180	
Chlorobenzene	1.3	Not Detected	6.2	Not Detected	
Ethyl Benzene	1.3	Not Detected	5.8	Not Detected	
m,p-Xylene	1.3	Not Detected	5.8	Not Detected	
o-Xylene	1.3	Not Detected	5.8	Not Detected	
1,3-Dichlorobenzene	1.3	Not Detected	8,0	Not Detected	
1,4-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected	
1,2-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected	
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: FT335-002-40G_20190129 Lab ID#: 1902058-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020709 2.49			tion: 1/29/19 4:04:00 PM sis: 2/7/19 04:10 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	1.2	Not Detected	6.2	Not Detected	
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected	
Freon 11	1.2	Not Detected	7.0	Not Detected	
Freon 113	1.2	Not Detected	9.5	Not Detected	
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected	
Acetone	12	Not Detected	30	Not Detected	
Methylene Chloride	12	Not Detected	43	Not Detected	
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected	
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected	
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected	
Benzene	1.2	Not Detected	4.0	Not Detected	
Trichloroethene	1.2	Not Detected	6.7	Not Detected	
Toluene	1.2	Not Detected	4.7	Not Detected	
Tetrachloroethene	1.2	27	8.4	180	
Chlorobenzene	1.2	Not Detected	5.7	Not Detected	
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected	
m,p-Xylene	1.2	Not Detected	5.4	Not Detected	
o-Xylene	1.2	Not Detected	5.4	Not Detected	
1,3-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,4-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,2-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected	

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	87	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: FT335-003-40G_20190129 Lab ID#: 1902058-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020710 2.10			9/19 4:55:00 PM 9 04:36 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.0	Not Detected	5.2	Not Detected
Vinyl Chloride	1.0	Not Detected	2.7	Not Detected
Freon 11	1.0	Not Detected	5.9	Not Detected
Freon 113	1.0	Not Detected	8.0	Not Detected
1,1-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Acetone	10	Not Detected	25	Not Detected
Methylene Chloride	10	Not Detected	36	Not Detected
cis-1,2-Dichloroethene	1.0	Not Detected	4.2	Not Detected
1,1,1-Trichloroethane	1.0	Not Detected	5.7	Not Detected
Carbon Tetrachloride	1.0	Not Detected	6,6	Not Detected
Benzene	1.0	Not Detected	3.4	Not Detected
Trichloroethene	1.0	Not Detected	5.6	Not Detected
Toluene	1.0	1.5	4.0	5.6
Tetrachloroethene	1.0	59	7.1	400
Chlorobenzene	1.0	Not Detected	4.8	Not Detected
Ethyl Benzene	1.0	3.0	4.6	13
m,p-Xylene	1.0	16	4.6	70
o-Xylene	1.0	4.9	4.6	21
1,3-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,2,4-Trichlorobenzene	4.2	Not Detected	31	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: FT335-004-40G_20190129 Lab ID#: 1902058-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020711 2.50				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	1.2	Not Detected	6.2	Not Detected	
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected	
Freon 11	1.2	Not Detected	7.0	Not Detected	
Freon 113	1.2	Not Detected	9.6	Not Detected	
1,1-Dichloroethene	1.2	Not Detected	5.0	Not Detected	
Acetone	12	Not Detected	30	Not Detected	
Methylene Chloride	12	Not Detected	43	Not Detected	
cis-1,2-Dichloroethene	1.2	2.0	5.0	7.9	
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected	
Carbon Tetrachloride	1.2	Not Detected	7.9	Not Detected	
Benzene	1.2	Not Detected	4.0	Not Detected	
Trichloroethene	1.2	2.1	6.7	11	
Toluene	1.2	1.4	4.7	5.2	
Tetrachloroethene	1.2	460	8.5	3100	
Chlorobenzene	1.2	Not Detected	5.8	Not Detected	
Ethyl Benzene	1.2	2.9	5.4	13	
m,p-Xylene	1.2	15	5.4	66	
o-Xylene	1.2	5.1	5.4	22	
1,3-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,4-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,2-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected	
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected	

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	87	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: FT335-005-40G_20190130 Lab ID#: 1902058-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a020716	Date of Collection: 1/30/19 7:48:		
Dil. Factor:	19.6	Date of Analysis: 2/7/19 07:11 P		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	9.8	3400	66	23000

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: FT335-005-40G_20190130 Lab ID#: 1902058-05B EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020807 9.82			Date of Collection: 1/30/19 7:48:00 AM Date of Analysis: 2/8/19 03:42 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	4.9	Not Detected	24	Not Detected	
Vinyl Chloride	4.9	Not Detected	12	Not Detected	
Freon 11	4.9	Not Detected	28	Not Detected	
Freon 113	4.9	Not Detected	38	Not Detected	
1,1-Dichloroethene	4.9	Not Detected	19	Not Detected	
Acetone	49	Not Detected	120	Not Detected	
Methylene Chloride	49	Not Detected	170	Not Detected	
cis-1,2-Dichloroethene	4.9	Not Detected	19	Not Detected	
1,1,1-Trichloroethane	4.9	Not Detected	27	Not Detected	
Carbon Tetrachloride	4.9	Not Detected	31	Not Detected	
Benzene	4.9	Not Detected	16	Not Detected	
Trichloroethene	4.9	6.4	26	34	
Toluene	4.9	Not Detected	18	Not Detected	
Tetrachloroethene	4.9	3100 E	33	21000 E	
Chlorobenzene	4.9	Not Detected	23	Not Detected	
Ethyl Benzene	4,9	Not Detected	21	Not Detected	
m,p-Xylene	4.9	8.8	21	38	
o-Xylene	4.9	Not Detected	21	Not Detected	
1,3-Dichlorobenzene	4.9	Not Detected	30	Not Detected	
1,4-Dichlorobenzene	4.9	Not Detected	30	Not Detected	
1,2-Dichlorobenzene	4.9	Not Detected	30	Not Detected	
1,2,4-Trichlorobenzene	20	Not Detected	140	Not Detected	

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

%Recovery	Limits
95	70-130
87	70-130
96	70-130
	95 87

Client Sample ID: FT335-006-40G_20190130 Lab ID#: 1902058-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020712 2.40		of Collection: 1/3 of Analysis: 2/7/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	5,9	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
Freon 11	1.2	Not Detected	6.7	Not Detected
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	Not Detected	28	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
Benzene	1.2	Not Detected	3.8	Not Detected
Trichloroethene	1.2	6.9	6.4	37
Toluene	1.2	Not Detected	4.5	Not Detected
Tetrachloroethene	1.2	390	8.1	2600
Chlorobenzene	1.2	Not Detected	5.5	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	4.7	5.2	20
o-Xylene	1.2	1.9	5.2	8.4
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1.2.4-Trichlorobenzene	4.8	Not Detected	36	Not Detected

	Method Limits	
%Recovery		
98	70-130	
87	70-130	
94	70-130	
	98 87	

Client Sample ID: SSV335-001_20190130 Lab ID#: 1902058-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020715 12.3		of Collection: 1/3 of Analysis: 2/7/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	6.2	Not Detected	30	Not Detected
Vinyl Chloride	6.2	Not Detected	16	Not Detected
Freon 11	6.2	Not Detected	34	Not Detected
Freon 113	6.2	Not Detected	47	Not Detected
1,1-Dichloroethene	6.2	Not Detected	24	Not Detected
Acetone	62	Not Detected	150	Not Detected
Methylene Chloride	62	Not Detected	210	Not Detected
cis-1,2-Dichloroethene	6.2	Not Detected	24	Not Detected
1,1,1-Trichloroethane	6.2	Not Detected	34	Not Detected
Carbon Tetrachloride	6.2	Not Detected	39	Not Detected
Benzene	6.2	Not Detected	20	Not Detected
Trichloroethene	6.2	31	33	160
Toluene	6.2	Not Detected	23	Not Detected
Tetrachloroethene	6.2	1900	42	13000
Chlorobenzene	6.2	Not Detected	28	Not Detected
Ethyl Benzene	6.2	Not Detected	27	Not Detected
m,p-Xylene	6.2	Not Detected	27	Not Detected
o-Xylene	6.2	Not Detected	27	Not Detected
1,3-Dichlorobenzene	6.2	Not Detected	37	Not Detected
1,4-Dichlorobenzene	6.2	Not Detected	37	Not Detected
1,2-Dichlorobenzene	6.2	Not Detected	37	Not Detected
1,2,4-Trichlorobenzene	25	Not Detected	180	Not Detected

	Method Limits	
%Recovery		
95	70-130	
87	70-130	
98	70-130	
	95 87	

Client Sample ID: SSV335-002_20190130 Lab ID#: 1902058-08A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021220 17.4		of Collection: 1/3 of Analysis: 2/12/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	87	Not Detected	430	Not Detected
Vinyl Chloride	87	Not Detected	220	Not Detected
Freon 11	87	Not Detected	490	Not Detected
Freon 113	87	Not Detected	670	Not Detected
1,1-Dichloroethene	87	Not Detected	340	Not Detected
Acetone	350	Not Detected	830	Not Detected
Methylene Chloride	350	Not Detected	1200	Not Detected
cis-1,2-Dichloroethene	87	Not Detected	340	Not Detected
1,1,1-Trichloroethane	87	Not Detected	470	Not Detected
Carbon Tetrachloride	87	Not Detected	550	Not Detected
Benzene	87	Not Detected	280	Not Detected
Trichloroethene	87	320	470	1700
Toluene	87	Not Detected	330	Not Detected
Tetrachloroethene	87	15000	590	100000
Chlorobenzene	87	Not Detected	400	Not Detected
Ethyl Benzene	87	Not Detected	380	Not Detected
m,p-Xylene	87	Not Detected	380	Not Detected
o-Xylene	87	Not Detected	380	Not Detected
1,3-Dichlorobenzene	87	Not Detected	520	Not Detected
1,4-Dichlorobenzene	87	Not Detected	520	Not Detected
1,2-Dichlorobenzene	87	Not Detected	520	Not Detected
1,2,4-Trichlorobenzene	350	Not Detected	2600	Not Detected

	Method Limits	
%Recovery		
96	70-130	
94	70-130	
96	70-130	
	96 94	

Client Sample ID: SSV335-003_20190130 Lab ID#: 1902058-09A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021320 125	Date of Collection: 1/30/1 Date of Analysis: 2/13/19		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	620	Not Detected	3100	Not Detected
Vinyl Chloride	620	Not Detected	1600	Not Detected
Freon 11	620	Not Detected	3500	Not Detected
Freon 113	620	Not Detected	4800	Not Detected
1,1-Dichloroethene	620	Not Detected	2500	Not Detected
Acetone	2500	Not Detected	5900	Not Detected
Methylene Chloride	2500	Not Detected	8700	Not Detected
cis-1,2-Dichloroethene	620	Not Detected	2500	Not Detected
1,1,1-Trichloroethane	620	Not Detected	3400	Not Detected
Carbon Tetrachloride	620	Not Detected	3900	Not Detected
Benzene	620	Not Detected	2000	Not Detected
Trichloroethene	620	Not Detected	3400	Not Detected
Toluene	620	Not Detected	2400	Not Detected
Tetrachloroethene	620	86000	4200	580000
Chlorobenzene	620	Not Detected	2900	Not Detected
Ethyl Benzene	620	Not Detected	2700	Not Detected
m,p-Xylene	620	Not Detected	2700	Not Detected
o-Xylene	620	Not Detected	2700	Not Detected
1,3-Dichlorobenzene	620	Not Detected	3800	Not Detected
1,4-Dichlorobenzene	620	Not Detected	3800	Not Detected
1,2-Dichlorobenzene	620	Not Detected	3800	Not Detected
1,2,4-Trichlorobenzene	2500	Not Detected	18000	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: SSV335-004_20190130 Lab ID#: 1902058-10A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021313 488		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2400	Not Detected	12000	Not Detected
Vinyl Chloride	2400	Not Detected	6200	Not Detected
Freon 11	2400	Not Detected	14000	Not Detected
Freon 113	2400	Not Detected	19000	Not Detected
1,1-Dichloroethene	2400	Not Detected	9700	Not Detected
Acetone	9800	Not Detected	23000	Not Detected
Methylene Chloride	9800	Not Detected	34000	Not Detected
cis-1,2-Dichloroethene	2400	Not Detected	9700	Not Detected
1,1,1-Trichloroethane	2400	Not Detected	13000	Not Detected
Carbon Tetrachloride	2400	Not Detected	15000	Not Detected
Benzene	2400	Not Detected	7800	Not Detected
Trichloroethene	2400	Not Detected	13000	Not Detected
Toluene	2400	Not Detected	9200	Not Detected
Tetrachloroethene	2400	98000	16000	660000
Chlorobenzene	2400	Not Detected	11000	Not Detected
Ethyl Benzene	2400	Not Detected	10000	Not Detected
m,p-Xylene	2400	Not Detected	10000	Not Detected
o-Xylene	2400	Not Detected	10000	Not Detected
1,3-Dichlorobenzene	2400	Not Detected	15000	Not Detected
1,4-Dichlorobenzene	2400	Not Detected	15000	Not Detected
1,2-Dichlorobenzene	2400	Not Detected	15000	Not Detected
1,2,4-Trichlorobenzene	9800	Not Detected	72000	Not Detected

	Method	
%Recovery	Limits	
93	70-130	
94	70-130	
100	70-130	
	93 94	

Client Sample ID: SSV335-005_20190130 Lab ID#: 1902058-11A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021314 250		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1200	Not Detected	6200	Not Detected
Vinyl Chloride	1200	Not Detected	3200	Not Detected
Freon 11	1200	Not Detected	7000	Not Detected
Freon 113	1200	Not Detected	9600	Not Detected
1,1-Dichloroethene	1200	Not Detected	5000	Not Detected
Acetone	5000	Not Detected	12000	Not Detected
Methylene Chloride	5000	Not Detected	17000	Not Detected
cis-1,2-Dichloroethene	1200	Not Detected	5000	Not Detected
1,1,1-Trichloroethane	1200	Not Detected	6800	Not Detected
Carbon Tetrachloride	1200	Not Detected	7900	Not Detected
Benzene	1200	Not Detected	4000	Not Detected
Trichloroethene	1200	Not Detected	6700	Not Detected
Toluene	1200	Not Detected	4700	Not Detected
Tetrachloroethene	1200	55000	8500	370000
Chlorobenzene	1200	Not Detected	5800	Not Detected
Ethyl Benzene	1200	Not Detected	5400	Not Detected
m,p-Xylene	1200	Not Detected	5400	Not Detected
o-Xylene	1200	Not Detected	5400	Not Detected
1,3-Dichlorobenzene	1200	Not Detected	7500	Not Detected
1,4-Dichlorobenzene	1200	Not Detected	7500	Not Detected
1,2-Dichlorobenzene	1200	Not Detected	7500	Not Detected
1.2.4-Trichlorobenzene	5000	Not Detected	37000	Not Detected

	Method	
%Recovery	Limits	
95	70-130	
94	70-130	
98	70-130	
	95 94	

Client Sample ID: SSV335-006_20190130 Lab ID#: 1902058-12A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a020808 18.3		of Collection: 1/3 of Analysis: 2/8/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	9.2	Not Detected	45	Not Detected
Vinyl Chloride	9.2	Not Detected	23	Not Detected
Freon 11	9.2	Not Detected	51	Not Detected
Freon 113	9.2	Not Detected	70	Not Detected
1,1-Dichloroethene	9.2	Not Detected	36	Not Detected
Acetone	92	Not Detected	220	Not Detected
Methylene Chloride	92	Not Detected	320	Not Detected
cis-1,2-Dichloroethene	9.2	37	36	150
1,1,1-Trichloroethane	9.2	Not Detected	50	Not Detected
Carbon Tetrachloride	9.2	Not Detected	58	Not Detected
Benzene	9.2	Not Detected	29	Not Detected
Trichloroethene	9.2	64	49	350
Toluene	9.2	Not Detected	34	Not Detected
Tetrachloroethene	9.2	2100	62	14000
Chlorobenzene	9.2	Not Detected	42	Not Detected
Ethyl Benzene	9.2	Not Detected	40	Not Detected
m,p-Xylene	9.2	Not Detected	40	Not Detected
o-Xylene	9.2	Not Detected	40	Not Detected
1,3-Dichlorobenzene	9.2	Not Detected	55	Not Detected
1,4-Dichlorobenzene	9.2	Not Detected	55	Not Detected
1,2-Dichlorobenzene	9.2	Not Detected	55	Not Detected
1,2,4-Trichlorobenzene	37	Not Detected	270	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	87	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SSV335-007_20190130 Lab ID#: 1902058-13A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021219 2460		of Collection: 1/3 of Analysis: 2/12/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	12000	Not Detected	61000	Not Detected
Vinyl Chloride	12000	Not Detected	31000	Not Detected
Freon 11	12000	Not Detected	69000	Not Detected
Freon 113	12000	Not Detected	94000	Not Detected
1,1-Dichloroethene	12000	Not Detected	49000	Not Detected
Acetone	49000	Not Detected	120000	Not Detected
Methylene Chloride	49000	Not Detected	170000	Not Detected
cis-1,2-Dichloroethene	12000	28000	49000	110000
1,1,1-Trichloroethane	12000	Not Detected	67000	Not Detected
Carbon Tetrachloride	12000	Not Detected	77000	Not Detected
Benzene	12000	Not Detected	39000	Not Detected
Trichloroethene	12000	13000	66000	70000
Toluene	12000	Not Detected	46000	Not Detected
Tetrachloroethene	12000	2200000	83000	15000000
Chlorobenzene	12000	Not Detected	57000	Not Detected
Ethyl Benzene	12000	Not Detected	53000	Not Detected
m,p-Xylene	12000	Not Detected	53000	Not Detected
o-Xylene	12000	Not Detected	53000	Not Detected
1,3-Dichlorobenzene	12000	Not Detected	74000	Not Detected
1,4-Dichlorobenzene	12000	Not Detected	74000	Not Detected
1,2-Dichlorobenzene	12000	Not Detected	74000	Not Detected
1.2.4-Trichlorobenzene	49000	Not Detected	360000	Not Detected

	Method	
%Recovery	Limits	
93	70-130	
95	70-130	
95	70-130	
	93 95	

Client Sample ID: SSV335-008_20190130 Lab ID#: 1902058-14A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021222 4280		of Collection: 1/3 of Analysis: 2/12/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	21000	Not Detected	100000	Not Detected
Vinyl Chloride	21000	Not Detected	55000	Not Detected
Freon 11	21000	Not Detected	120000	Not Detected
Freon 113	21000	Not Detected	160000	Not Detected
1,1-Dichloroethene	21000	Not Detected	85000	Not Detected
Acetone	86000	Not Detected	200000	Not Detected
Methylene Chloride	86000	Not Detected	300000	Not Detected
cis-1,2-Dichloroethene	21000	Not Detected	85000	Not Detected
1,1,1-Trichloroethane	21000	Not Detected	120000	Not Detected
Carbon Tetrachloride	21000	Not Detected	130000	Not Detected
Benzene	21000	Not Detected	68000	Not Detected
Trichloroethene	21000	Not Detected	120000	Not Detected
Toluene	21000	Not Detected	81000	Not Detected
Tetrachloroethene	21000	3700000	140000	25000000
Chlorobenzene	21000	Not Detected	98000	Not Detected
Ethyl Benzene	21000	Not Detected	93000	Not Detected
m,p-Xylene	21000	Not Detected	93000	Not Detected
o-Xylene	21000	Not Detected	93000	Not Detected
1,3-Dichlorobenzene	21000	Not Detected	130000	Not Detected
1,4-Dichlorobenzene	21000	Not Detected	130000	Not Detected
1,2-Dichlorobenzene	21000	Not Detected	130000	Not Detected
1,2,4-Trichlorobenzene	86000	Not Detected	640000	Not Detected

Surrogates	%Recovery	Method
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: SSV335-009_20190130 Lab ID#: 1902058-15A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021316 608		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	3000	Not Detected	15000	Not Detected
Vinyl Chloride	3000	Not Detected	7800	Not Detected
Freon 11	3000	Not Detected	17000	Not Detected
Freon 113	3000	Not Detected	23000	Not Detected
1,1-Dichloroethene	3000	Not Detected	12000	Not Detected
Acetone	12000	Not Detected	29000	Not Detected
Methylene Chloride	12000	Not Detected	42000	Not Detected
cis-1,2-Dichloroethene	3000	Not Detected	12000	Not Detected
1,1,1-Trichloroethane	3000	Not Detected	16000	Not Detected
Carbon Tetrachloride	3000	Not Detected	19000	Not Detected
Benzene	3000	Not Detected	9700	Not Detected
Trichloroethene	3000	Not Detected	16000	Not Detected
Toluene	3000	Not Detected	11000	Not Detected
Tetrachloroethene	3000	370000	21000	2500000
Chlorobenzene	3000	Not Detected	14000	Not Detected
Ethyl Benzene	3000	Not Detected	13000	Not Detected
m,p-Xylene	3000	Not Detected	13000	Not Detected
o-Xylene	3000	Not Detected	13000	Not Detected
1,3-Dichlorobenzene	3000	Not Detected	18000	Not Detected
1,4-Dichlorobenzene	3000	Not Detected	18000	Not Detected
1,2-Dichlorobenzene	3000	Not Detected	18000	Not Detected
1,2,4-Trichlorobenzene	12000	Not Detected	90000	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: SSV335-010_20190130 Lab ID#: 1902058-16A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021221 24.6		of Collection: 1/3 of Analysis: 2/12/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	120	Not Detected	610	Not Detected
Vinyl Chloride	120	Not Detected	310	Not Detected
Freon 11	120	Not Detected	690	Not Detected
Freon 113	120	Not Detected	940	Not Detected
1,1-Dichloroethene	120	Not Detected	490	Not Detected
Acetone	490	Not Detected	1200	Not Detected
Methylene Chloride	490	Not Detected	1700	Not Detected
cis-1,2-Dichloroethene	120	Not Detected	490	Not Detected
1,1,1-Trichloroethane	120	Not Detected	670	Not Detected
Carbon Tetrachloride	120	Not Detected	770	Not Detected
Benzene	120	Not Detected	390	Not Detected
Trichloroethene	120	Not Detected	660	Not Detected
Toluene	120	Not Detected	460	Not Detected
Tetrachloroethene	120	13000	830	88000
Chlorobenzene	120	Not Detected	570	Not Detected
Ethyl Benzene	120	Not Detected	530	Not Detected
m,p-Xylene	120	Not Detected	530	Not Detected
o-Xylene	120	Not Detected	530	Not Detected
1,3-Dichlorobenzene	120	Not Detected	740	Not Detected
1,4-Dichlorobenzene	120	Not Detected	740	Not Detected
1,2-Dichlorobenzene	120	Not Detected	740	Not Detected
1,2,4-Trichlorobenzene	490	Not Detected	3600	Not Detected

Container Type: 1 Liter Summa Canister

	Method
%Recovery	Limits
95	70-130
95	70-130
94	70-130
	95 95

Client Sample ID: SSV335-011_20190130 Lab ID#: 1902058-17A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021317 1210		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	6000	Not Detected	30000	Not Detected
Vinyl Chloride	6000	Not Detected	15000	Not Detected
Freon 11	6000	Not Detected	34000	Not Detected
Freon 113	6000	Not Detected	46000	Not Detected
1,1-Dichloroethene	6000	Not Detected	24000	Not Detected
Acetone	24000	Not Detected	57000	Not Detected
Methylene Chloride	24000	Not Detected	84000	Not Detected
cis-1,2-Dichloroethene	6000	Not Detected	24000	Not Detected
1,1,1-Trichloroethane	6000	Not Detected	33000	Not Detected
Carbon Tetrachloride	6000	Not Detected	38000	Not Detected
Benzene	6000	Not Detected	19000	Not Detected
Trichloroethene	6000	Not Detected	32000	Not Detected
Toluene	6000	Not Detected	23000	Not Detected
Tetrachloroethene	6000	560000	41000	3800000
Chlorobenzene	6000	Not Detected	28000	Not Detected
Ethyl Benzene	6000	Not Detected	26000	Not Detected
m,p-Xylene	6000	Not Detected	26000	Not Detected
o-Xylene	6000	Not Detected	26000	Not Detected
1,3-Dichlorobenzene	6000	Not Detected	36000	Not Detected
1,4-Dichlorobenzene	6000	Not Detected	36000	Not Detected
1,2-Dichlorobenzene	6000	Not Detected	36000	Not Detected
1,2,4-Trichlorobenzene	24000	Not Detected	180000	Not Detected

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SSV335-011_20190130_FD Lab ID#: 1902058-18A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021318 1020		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5100	Not Detected	25000	Not Detected
Vinyl Chloride	5100	Not Detected	13000	Not Detected
Freon 11	5100	Not Detected	29000	Not Detected
Freon 113	5100	Not Detected	39000	Not Detected
1,1-Dichloroethene	5100	Not Detected	20000	Not Detected
Acetone	20000	Not Detected	49000	Not Detected
Methylene Chloride	20000	Not Detected	71000	Not Detected
cis-1,2-Dichloroethene	5100	Not Detected	20000	Not Detected
1,1,1-Trichloroethane	5100	Not Detected	28000	Not Detected
Carbon Tetrachloride	5100	Not Detected	32000	Not Detected
Benzene	5100	Not Detected	16000	Not Detected
Trichloroethene	5100	Not Detected	28000	Not Detected
Toluene	5100	Not Detected	19000	Not Detected
Tetrachloroethene	5100	450000	35000	3000000
Chlorobenzene	5100	Not Detected	24000	Not Detected
Ethyl Benzene	5100	Not Detected	22000	Not Detected
m,p-Xylene	5100	Not Detected	22000	Not Detected
o-Xylene	5100	Not Detected	22000	Not Detected
1,3-Dichlorobenzene	5100	Not Detected	31000	Not Detected
1,4-Dichlorobenzene	5100	Not Detected	31000	Not Detected
1,2-Dichlorobenzene	5100	Not Detected	31000	Not Detected
1,2,4-Trichlorobenzene	20000	Not Detected	150000	Not Detected

% Pasavan	Method	
76 Recovery	Linnes	
97	70-130	
95	70-130	
95	70-130	
	95	

Client Sample ID: SSV335-012_20190130 Lab ID#: 1902058-19A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021319 1540		of Collection: 1/3 of Analysis: 2/13/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	7700	Not Detected	38000	Not Detected
Vinyl Chloride	7700	Not Detected	20000	Not Detected
Freon 11	7700	Not Detected	43000	Not Detected
Freon 113	7700	Not Detected	59000	Not Detected
1,1-Dichloroethene	7700	Not Detected	30000	Not Detected
Acetone	31000	Not Detected	73000	Not Detected
Methylene Chloride	31000	Not Detected	110000	Not Detected
cis-1,2-Dichloroethene	7700	Not Detected	30000	Not Detected
1,1,1-Trichloroethane	7700	Not Detected	42000	Not Detected
Carbon Tetrachloride	7700	Not Detected	48000	Not Detected
Benzene	7700	Not Detected	24000	Not Detected
Trichloroethene	7700	Not Detected	41000	Not Detected
Toluene	7700	Not Detected	29000	Not Detected
Tetrachloroethene	7700	1100000	52000	7700000
Chlorobenzene	7700	Not Detected	35000	Not Detected
Ethyl Benzene	7700	Not Detected	33000	Not Detected
m,p-Xylene	7700	Not Detected	33000	Not Detected
o-Xylene	7700	Not Detected	33000	Not Detected
1,3-Dichlorobenzene	7700	Not Detected	46000	Not Detected
1,4-Dichlorobenzene	7700	Not Detected	46000	Not Detected
1,2-Dichlorobenzene	7700	Not Detected	46000	Not Detected
1,2,4-Trichlorobenzene	31000	Not Detected	230000	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	95	70-130

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	a020707 1.00	Date of Collection: NA Date of Analysis: 2/7/		9 02:02 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1902058-20A FPA METHOD TO 15 CC/MS FULL SCA

Surrogates	%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	96	70-130

File Name: Dil. Factor:	a020806 1.00		Date of Collection: NA Date of Analysis: 2/8/19 12:35 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Tetrachloroethene	0.50	Not Detected	3,4	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1902058-20B EPA METHOD TO-15 CC/MS EULL SCA

Surrogates	%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1902058-20C EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021205 1.00	Date of Collection: NA Date of Analysis: 2/12/19 11:19 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.0	Not Detected	25	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	48	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
1,3-Dichlorobenzene	5,0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: Lab Blank Lab ID#: 1902058-20D EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14021305 1.00	Date of Collection: NA Date of Analysis: 2/13/19 08:33 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.0	Not Detected	25	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Freon 113	5,0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	48	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
1,3-Dichlorobenzene	5,0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	102	70-130

Lab ID#: 1902058-21A EPA METHOD TO-15 GC/MS FULL SCAN		
File Name: Dil. Factor:	a020702 1.00	Date of Collection: NA Date of Analysis: 2/7/19 09:43 AM
Compound		%Recovery
Freon 12		95
Vinyl Chloride		92
Freon 11		98
Freon 113		98
1,1-Dichloroethene		94
Acetone		93
Methylene Chloride		91
cis-1,2-Dichloroethene		99
1,1,1-Trichloroethane		101
Carbon Tetrachloride		103
Benzene	******	99
Trichloroethene		104
Toluene		97
Tetrachloroethene		104
Chlorobenzene		106
Ethyl Benzene	******************	103
m,p-Xylene		101
o-Xylene		99
1,3-Dichlorobenzene		104
1,4-Dichlorobenzene		104
1,2-Dichlorobenzene		105
1,2,4-Trichlorobenzene		102

Client Sample ID: CCV

Surrogates	%Recovery	Method	
	97	70-130	
Toluene-d8 1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	98	70-130	

Lab ID#: 1902058-21B EPA METHOD TO-15 GC/MS FULL SCAN			
File Name: Dil. Factor:	a020802 1.00	Date of Collection: NA Date of Analysis: 2/8/19 09:33 AM	
Compound		%Recovery	
Freon 12		94	
Vinyl Chloride		90	
Freon 11		95	
Freon 113		95	
1,1-Dichloroethene		95	
Acetone		91	
Methylene Chloride		90	
cis-1,2-Dichloroethene		97	
1,1,1-Trichloroethane		99	
Carbon Tetrachloride		100	
Benzene		99	
Trichloroethene		102	
Toluene		97	
Tetrachloroethene		105	
Chlorobenzene		107	
Ethyl Benzene		102	
m,p-Xylene		103	
o-Xylene		101	
1,3-Dichlorobenzene		105	
1,4-Dichlorobenzene		105	
1,2-Dichlorobenzene		105	
1,2,4-Trichlorobenzene		98	

Client Sample ID: CCV

Surrogates	%Recovery	Method	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	87	70-130	
4-Bromofluorobenzene	98	70-130	

Lab ID#: 1902058-21C EPA METHOD TO-15 GC/MS			
Compound		%Recovery	
Freon 12		95	
Vinyl Chloride		84	
Freon 11		100	
Freon 113		100	
1,1-Dichloroethene		94	
Acetone		89	
Methylene Chloride		96	
cis-1,2-Dichloroethene		91	
1,1,1-Trichloroethane		94	
Carbon Tetrachloride		103	
Benzene		91	
Trichloroethene		98	
Toluene		94	
Tetrachloroethene		105	
Chlorobenzene		103	
Ethyl Benzene		98	
m,p-Xylene		101	
o-Xylene		97	
1,3-Dichlorobenzene		106	
1,4-Dichlorobenzene		106	
1,2-Dichlorobenzene		104	
1,2,4-Trichlorobenzene		94	

Client Sample ID: CCV

Container Type: NA - Not Applicable

	Method Limits	
%Recovery		
94	70-130	
97	70-130	
103	70-130	
	94 97	

Lab ID#: 1902058-21D **EPA METHOD TO-15 GC/MS** File Name: **Date of Collection: NA** 14021302 Dil. Factor: 1.00 Date of Analysis: 2/13/19 07:24 AM Compound %Recovery 96 Freon 12 89 Vinyl Chloride Freon 11 104 104 Freon 113 96 1,1-Dichloroethene Acetone 89 97 Methylene Chloride 92 cis-1,2-Dichloroethene 1.1.1-Trichloroethane 101 105 Carbon Tetrachloride Benzene 94 Trichloroethene 102 Toluene 94 Tetrachloroethene 110 Chlorobenzene 104 Ethyl Benzene 98 102 m,p-Xylene 99 o-Xylene 110 1,3-Dichlorobenzene 1,4-Dichlorobenzene 111 109 1.2-Dichlorobenzene 98 1,2,4-Trichlorobenzene

Client Sample ID: CCV

	Method Limits	
%Recovery		
94	70-130	
96	70-130	
102	70-130	
	94 96	

EPA METHOD TO-15 GC/MS FULL SCAN			
File Name: Dil. Factor:	a020704 1.00	Date of Colle Date of Analy	ction: NA /sis: 2/7/19 11:57 AM
Compound		%Recovery	
Freon 12		94	70-130
Vinyl Chloride		90	70-130
Freon 11		95	70-130
Freon 113		96	70-130
1,1-Dichloroethene		92	70-130
Acetone		93	70-130
Methylene Chloride		90	70-130
cis-1,2-Dichloroethene		100	70-130
1,1,1-Trichloroethane		99	70-130
Carbon Tetrachloride		100	70-130
Benzene		98	70-130
Trichloroethene		101	70-130
Toluene		96	70-130
Tetrachloroethene		103	70-130
Chlorobenzene		106	70-130
Ethyl Benzene		104	70-130
m,p-Xylene		101	70-130
o-Xylene		102	70-130
1,3-Dichlorobenzene		106	70-130
1,4-Dichlorobenzene		104	70-130
1,2-Dichlorobenzene		105	70-130
1,2,4-Trichlorobenzene		94	70-130

Client Sample ID: LCS Lab ID#: 1902058-22A

Surrogates	%Recovery	Method
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	99	70-130

EPA METHOD TO-15 GC/MS FULL SCAN			
File Name: Dil. Factor:	a020706 1.00		
Compound			
Freon 12		94	70-130
Vinyl Chloride		91	70-130
Freon 11		97	70-130
Freon 113		98	70-130
1,1-Dichloroethene		92	70-130
Acetone		92	70-130
Methylene Chloride		92	70-130
cis-1,2-Dichloroethene		103	70-130
1,1,1-Trichloroethane		101	70-130
Carbon Tetrachloride		101	70-130
Benzene		98	70-130
Trichloroethene		102	70-130
Toluene		98	70-130
Tetrachloroethene		104	70-130
Chlorobenzene		107	70-130
Ethyl Benzene		103	70-130
m,p-Xylene		102	70-130
o-Xylene		101	70-130
1,3-Dichlorobenzene		106	70-130
1,4-Dichlorobenzene		105	70-130
1,2-Dichlorobenzene		107	70-130
1,2,4-Trichlorobenzene		100	70-130

Client Sample ID: LCSD Lab ID#: 1902058-22AA FPA METHOD TO 15 CC/MS FULL SCA

Surrogates	%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	98	70-130

EPA METHOD TO-15 GC/MS FULL SCAN			
File Name: Dil. Factor:	a020803 1.00	Date of Colle Date of Analy	ction: NA /sis: 2/8/19 09:58 AM
Compound		%Recovery	
Freon 12		93	70-130
Vinyl Chloride		90	70-130
Freon 11		96	70-130
Freon 113		98	70-130
1,1-Dichloroethene		94	70-130
Acetone		90	70-130
Methylene Chloride		90	70-130
cis-1,2-Dichloroethene		102	70-130
1,1,1-Trichloroethane		100	70-130
Carbon Tetrachloride		101	70-130
Benzene		98	70-130
Trichloroethene		103	70-130
Toluene		97	70-130
Tetrachloroethene		105	70-130
Chlorobenzene		108	70-130
Ethyl Benzene		105	70-130
m,p-Xylene		104	70-130
o-Xylene		104	70-130
1,3-Dichlorobenzene		107	70-130
1,4-Dichlorobenzene		106	70-130
1,2-Dichlorobenzene		107	70-130
1,2,4-Trichlorobenzene		89	70-130

Client Sample ID: LCS Lab ID#: 1902058-22B

Surrogates	%Recovery	Method
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	97	70-130

EPA METHOD TO-15 GC/MS FULL SCAN			
File Name: Dil. Factor:	a020804 1.00		
Compound			
Freon 12		93	70-130
Vinyl Chloride		93	70-130
Freon 11		97	70-130
Freon 113		97	70-130
1,1-Dichloroethene		95	70-130
Acetone		92	70-130
Methylene Chloride		90	70-130
cis-1,2-Dichloroethene		104	70-130
1,1,1-Trichloroethane		100	70-130
Carbon Tetrachloride		103	70-130
Benzene		100	70-130
Trichloroethene		104	70-130
Toluene		98	70-130
Tetrachloroethene		104	70-130
Chlorobenzene		108	70-130
Ethyl Benzene		103	70-130
m,p-Xylene		104	70-130
o-Xylene		103	70-130
1,3-Dichlorobenzene		107	70-130
1,4-Dichlorobenzene		106	70-130
1,2-Dichlorobenzene		107	70-130
1,2,4-Trichlorobenzene		96	70-130

Client Sample ID: LCSD Lab ID#: 1902058-22BB

Surrogates	%Recovery	Method Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	99	70-130	

Lab ID#: 1902058-22C **EPA METHOD TO-15 GC/MS** File Name: **Date of Collection: NA** 14021203 Dil. Factor: 1.00 Date of Analysis: 2/12/19 09:47 AM Method Compound %Recovery Limits 95 70-130 Freon 12 87 70-130 Vinyl Chloride Freon 11 98 70-130 97 70-130 Freon 113 87 70-130 1,1-Dichloroethene 87 70-130 Acetone 89 70-130 Methylene Chloride 86 70-130 cis-1,2-Dichloroethene 1.1.1-Trichloroethane 95 70-130 101 70-130 Carbon Tetrachloride Benzene 89 70-130 Trichloroethene 96 70-130 90 70-130 Toluene Tetrachloroethene 98 70-130 Chlorobenzene 96 70-130 93 Ethyl Benzene 70-130 93 m,p-Xylene 70-130 91 70-130 o-Xylene 100 70-130 1,3-Dichlorobenzene 1,4-Dichlorobenzene 101 70-130 1.2-Dichlorobenzene 101 70-130 107 1,2,4-Trichlorobenzene 70-130

Client Sample ID: LCS

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1902058-22CC EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:		Collection: NA Analysis: 2/12/19 10:49 AM
Compound	%Recovery	Method Limits
Freon 12	93	70-130
Vinyl Chloride	80	70-130
Freon 11	96	70-130
Freon 113	96	70-130
1,1-Dichloroethene	88	70-130
Acetone	85	70-130
Methylene Chloride	88	70-130
cis-1,2-Dichloroethene	82	70-130
1,1,1-Trichloroethane	91	70-130
Carbon Tetrachloride	99	70-130
Benzene	88	70-130
Trichloroethene	94	70-130
Toluene	89	70-130
Tetrachloroethene	103	70-130
Chlorobenzene	97	70-130
Ethyl Benzene	96	70-130
m,p-Xylene	94	70-130
o-Xylene	92	70-130
1,3-Dichlorobenzene	100	70-130
1,4-Dichlorobenzene	103	70-130
1,2-Dichlorobenzene	100	70-130
1,2,4-Trichlorobenzene	106	70-130

container Typer fax Hot Apphoable		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	101	70-130

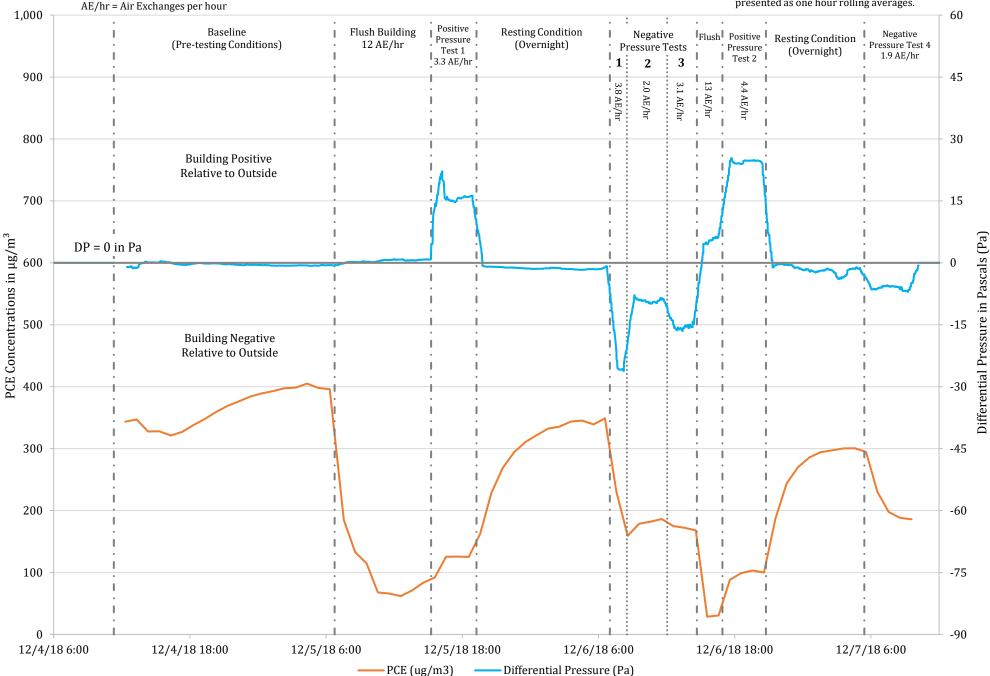
Lab ID#: 1902058-22D **EPA METHOD TO-15 GC/MS** File Name: **Date of Collection: NA** 14021303 Dil. Factor: 1.00 Date of Analysis: 2/13/19 07:47 AM Method Compound %Recovery Limits 94 70-130 Freon 12 83 70-130 Vinyl Chloride Freon 11 101 70-130 101 70-130 Freon 113 91 70-130 1,1-Dichloroethene 92 70-130 Acetone 88 70-130 Methylene Chloride 85 70-130 cis-1,2-Dichloroethene 1.1.1-Trichloroethane 97 70-130 105 70-130 Carbon Tetrachloride Benzene 88 70-130 92 Trichloroethene 70-130 92 70-130 Toluene Tetrachloroethene 102 70-130 Chlorobenzene 99 70-130 98 Ethyl Benzene 70-130 m,p-Xylene 96 70-130 96 70-130 o-Xylene 106 70-130 1,3-Dichlorobenzene 1,4-Dichlorobenzene 110 70-130 1.2-Dichlorobenzene 105 70-130 106 1,2,4-Trichlorobenzene 70-130

Client Sample ID: LCS

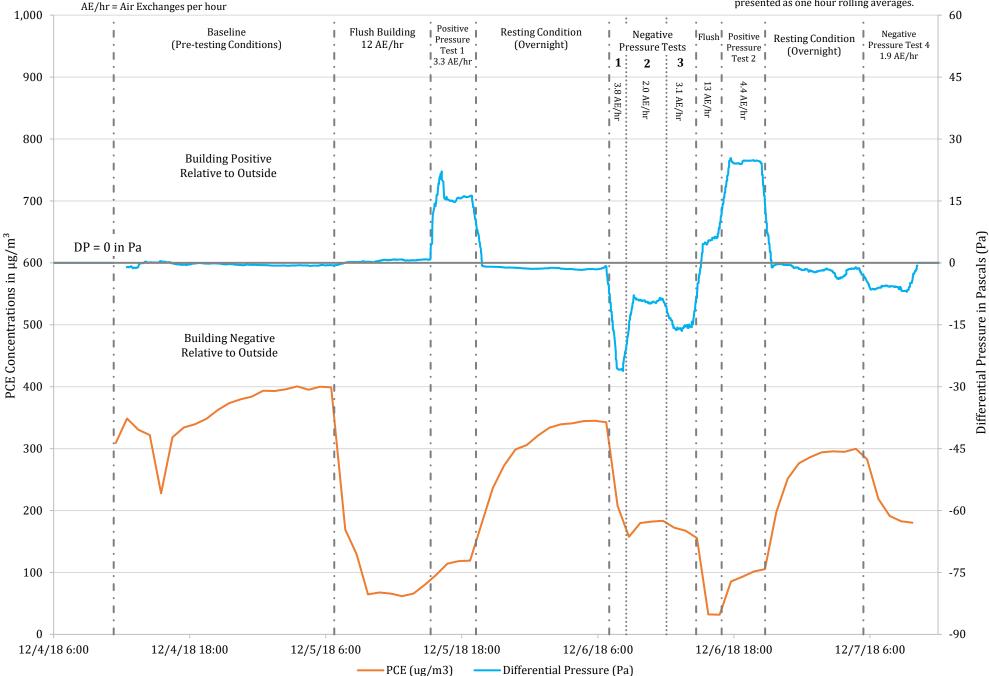
		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCSD Lab ID#: 1902058-22DD EPA METHOD TO-15 GC/MS

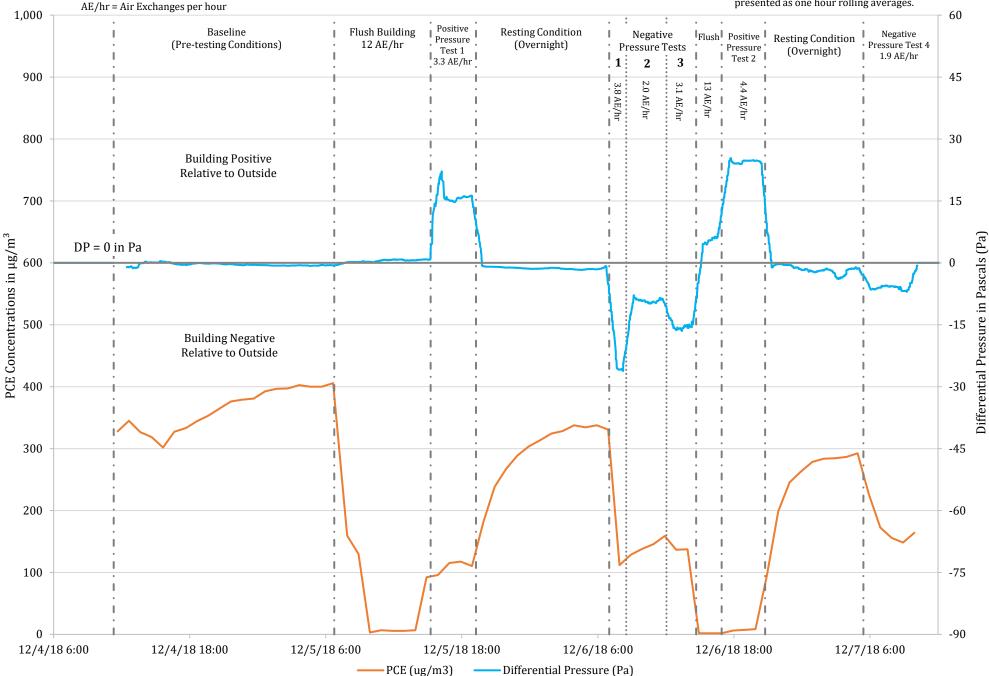
File Name: Dil. Factor:	14021304 1.00	Date of Collect Date of Analys	tion: NA is: 2/13/19 08:09 AM
Compound	1.00	%Recovery	Method Limits
Freon 12		91	70-130
Vinyl Chloride		81	70-130
Freon 11		99	70-130
Freon 113		100	70-130
1,1-Dichloroethene		87	70-130
Acetone		86	70-130
Methylene Chloride		89	70-130
cis-1,2-Dichloroethene		84	70-130
1,1,1-Trichloroethane		92	70-130
Carbon Tetrachloride		98	70-130
Benzene		88	70-130
Trichloroethene		97	70-130
Toluene		89	70-130
Tetrachloroethene		103	70-130
Chlorobenzene		98	70-130
Ethyl Benzene	******************	94	70-130
m,p-Xylene		96	70-130
o-Xylene		95	70-130
1,3-Dichlorobenzene		108	70-130
1,4-Dichlorobenzene		106	70-130
1,2-Dichlorobenzene		108	70-130
1,2,4-Trichlorobenzene		121	70-130

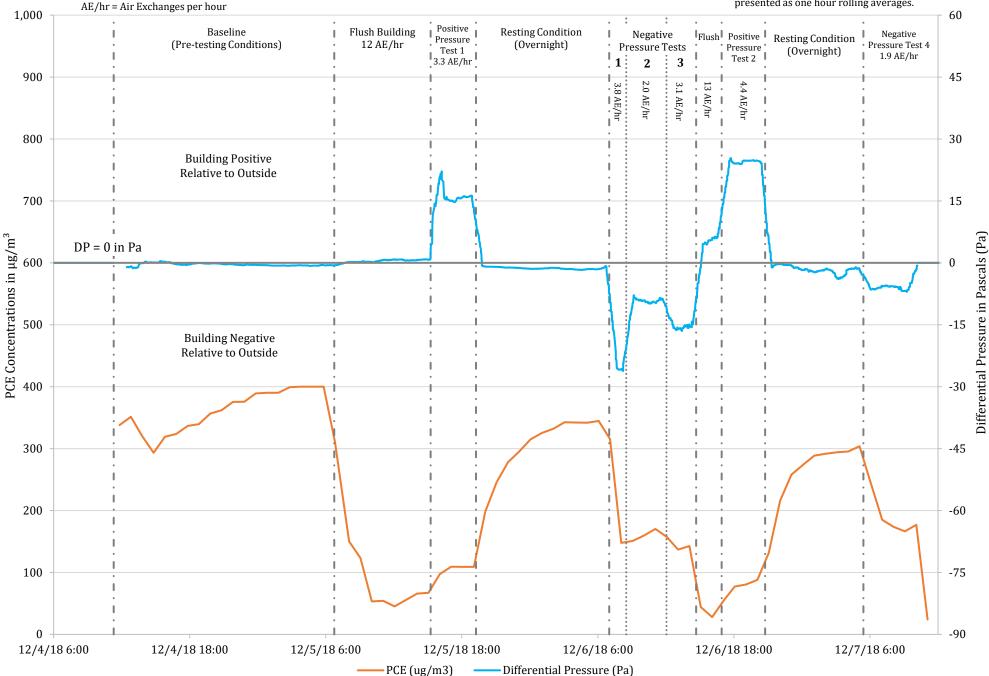

	Method	
%Recovery	Limits	
92	70-130	
94	70-130	
102	70-130	
	92 94	

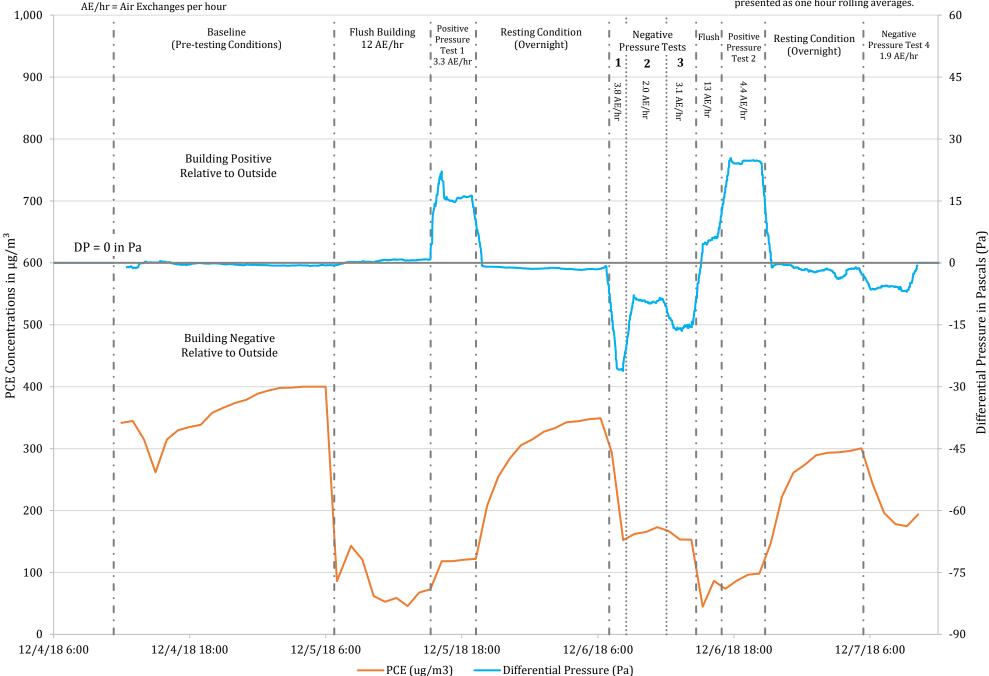
APPENDIX D

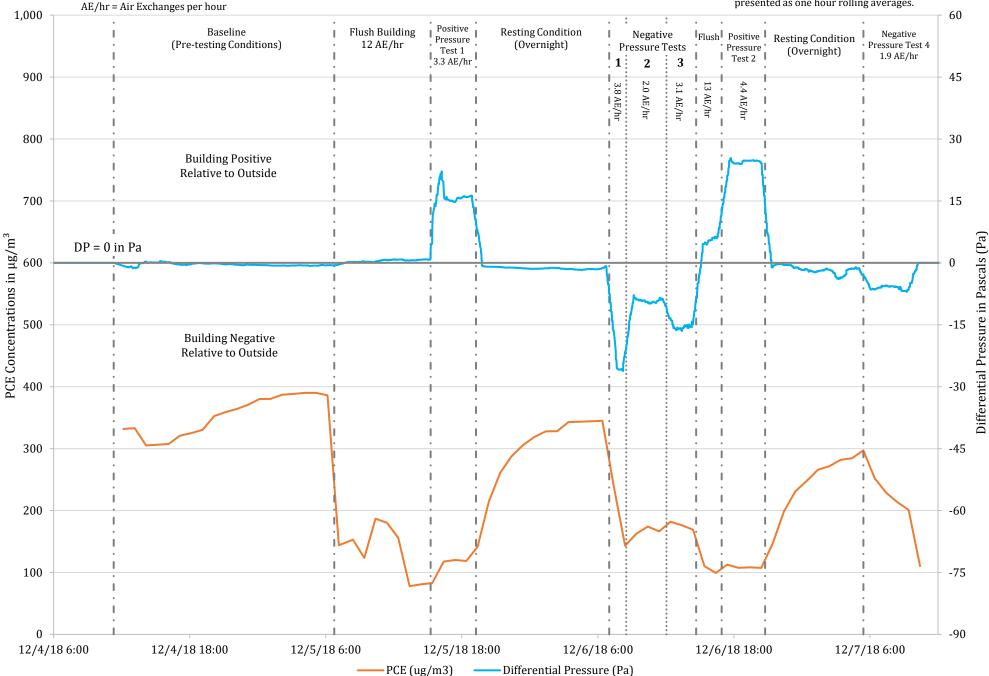

BUILDING PRESSURE TESTING TIME SERIES PLOTS

SANBORN 🛛 HEAD ENGINEERING


IAB335-001 / DP7 (Door 3)


IAB335-002 / DP7 (Door 3)


IAB335-003 / DP7 (Door 3)


IAB335-004 / DP7 (Door 3)

IAB335-005 / DP7 (Door 3)

IAB335-006 / DP7 (Door 3)

APPENDIX E

RELATIVE PERCENT DIFFERENCE SUMMARY

SANBORN 📗 HEAD ENGINEERING

Appendix E Relative Percent Difference Summary Building 335 Former IBM East Fishkill Facility Hopewell Junction, New York

Sample	IAB33	35-005		IAB3										
Date	12/5/2018 End of Positive Pressure Test		· · ·		, ,		12/5/2018		12/5/2018		RPD	12/	6/2018	RPD
Test							KF D	End of Negati	ve Pressure Test	KI D				
Sample Type	GC-ECD	Summa - Grab		GC-ECD	Summa - Grab									
Units	μg/m ³	μg/m ³	%	μg/m ³	$\mu g/m^3$	%								
PCE	122	104	16	156	214	31								
TCE	<1.0	0.33	-	<1.0	0.86	-								

Notes:

1. SUMMA® grab samples were collected by Sanborn Head Engineering P.C. on the dates indicated in 6L SUMMA® canisters at approximately the same time as the paired GC-ECD screening sample. Grab samples were analyzed by Eurofins Air Toxics of Folsom, California for trichloroethene (TCE) and tetrachloroethene (PCE) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode.

2. % RPD is the relative percent difference, calculated by the formula: | Result1 - Result2 | / ((Result1 + Result2) / 2) * 100

3. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

APPENDIX F

FIELD DOCUMENTATION

SANBORN 📗 HEAD ENGINEERING

Soil Vapor Sampling Summary

	Project No.: 29	99.06											
SANBORN 📗 HEAD	Project Name:	B335 VI Assessn	nent										
and the second second second	Location: Form	ner IBM East Fisł	nkill Facility (B33	5)									
Project Manager: J. Sanborn		Collector(s): M	. Stein										
PID Meter Used: ppbRAE		Other:											
					SOIL VA	POR SAMPLE RI	ECORD						
Location No.	SSV335-001	SSV335-002	SSV335-003	SSV335-004	SSV335-005	SSV335-006	SSV335-007	SSV335-008	SSV335-009	SSV335-010	SSV335-011	DUP	SSV335-012
Pre-purge DP (in H ₂ 0)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000
Duplicate Designation											DUP	SSV335-011	
Sample Date	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19	01/30/19
Sample Collection Depth (ft bgs)	0.62	0.58	1.04	0.80	0.60	0.50	1.07	1.26	~1.8	0.78	0.96		1.21
Ambient Air Temp (°F)	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60	55-60
purge Vacuum in Wc	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1		≤2
Summa Canister Sampling													
Approx. Purge Volume (mL)	12	12	15	13	12	11	15	16	20	13	14		16
Canister/Flow Controller ID No.	3340	3329	3459	3462	3339	3360	3327	1L 2271	3366	3458	3341	3336	3369
Start Time (hrs)	8:15	8:21	8:29	8:36	8:42	8:57	8:47	8:52	9:05	9:12	8:02	8:02	9:16
Start Pressure (inches Hg)	-30	-29.5	-30.5	-30	-29	-30	-30	-30	-30	-30	-28.5	-29	-29
Stop Time (hrs)	9:15	9:21	9:29	9:36	9:42	9:57	9:49	9:52	10:12	10:14	10:42	10:42	10:16
Stop Pressure (inches Hg)	-6.5	-5	-7.0	-7.0	-6.0	-4.5	-6.0	-7.0	-6.5	-7.0	-7.0	-5.5	-5.0
Field Screening													
PID (ppmv)	3,625	29.8	152.7	316	180.8	5,578	7,940	>10000	1,166	25.35	2,040		4,438
Comment No.													
						COMMENTS							
1.													
2.													
3.													

Soil Vapor Implant Integrity Testing Summary

- C. C. S.	Project No.: 299	9.06	Date: 1/30/19						
SANBORN 📗 HEAD	Project Name: B335 VI Assessment								
	Location: Forme	Location: Former IBM East Fishkill Facility (B335)							
Project Manager: J. Sanborn		Collector(s): M.	Stein						
PID Meter Used: ppbRAE		He Meter Used: I	Dielectric MGD-20	0					
Other: Magnehelic									
	INTEG	RITY TESTING R	ECORD						
Location No.	SSV335-004	SSV335-004	SSV335-007	SSV335-007					
Vacuum (in H ₂ 0)	0.1±	0.30 max	0.1±	0.30 max					
Time to fill 1 liter Bag (min)	5.25	1.5	5	1.5					
Approx. Flow Rate (L/min)	0.2	0.7	0.2	0.7					
Tracer Gas Applied?	Y	Y	Y	Y					
Tracer Gas Concentration (ppmv)	ND	ND	ND	ND					
PID (ppmv)	15.74	139.9	837.2	2574					
Testing Date	1/30/2019	1/30/2019	1/30/2019	1/30/2019					
Screen Interval Depth (ft bgs)	0.80		1.07						
Ambient Air Temp (°F)	55-60	55-60	55-60 55-60 5						
Weather Conditions	Bld Interior	Bld Interior	Bld Interior	Bld Interior					
Comment No.									
		COMMENTS		1					

Abbreviations:

max = maximum obtained vacuum; Y = Yes; ND = Not Detected.