ecology and environment engineering, p.c. BUFFALO CORPORATE CENTER 368 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14086, TEL. 716/684-8060

June 17, 1992

Mr. Joseph Yavondette Project Officer Bureau of Construction Services Division of Hazardous Waste Remediation New York State Department of Environmental Conservation 50 Wolf Road, Room 430 Albany, New York 12233-7010

Re: Work Assignment #D002625-9, Subtask 2.3, Recommendations For Interim Remedial Actions Report for the Schatz Plant Site No. 3-14-074.

Dear Mr. Yavondette:

Enclosed you will find two copies of the Ecology and Environment Engineering, P.C. (E & E) Subtask 2.3 - Recommendations for Interim Remedial Actions Report for the Schatz Plant Site No. 3-14-074.

The report addresses the recommended remedial measures for:

- Implementing improvements to the existing facilities.
- Removal and disposal of identified wastes excavated and removed from the quenching pits.
- Removal and disposal of the PCB electrical capacitors in the Heat Treatment Building.
- Removal and disposal of the dirt cover on the floor and the materials in the two pits in the Electrical Panel Room and Building No. 3.
- Cleaning the contaminants from the pit surfaces and flooring.
- Securing access to the cleaned pits and flooring in both buildings.

The recommendations in the report are based on qualitative evaluation of the risks and regulatory requirements associated with leaving these materials in place. In all cases, the wastes warranted removal and the securing of the area where cleanup occurred as a part of the remedial response.

An order of magnitude construction cost estimate and preliminary schedule have been developed as part of the report. As discussed in Section 4 of the report, the construction costs exceed \$100,000 thus preventing E & E from procuring a subcontractor to perform the services under our standby work authorization. Therefore, public procurement of a contractor would be required to implement the remedial activities recommended in this report. Once decisions are

Mr. Joseph Yavondette June 17, 1992 Page 2

۰

made by NYSDEC on the recommendations for the materials remaining in the building, E & E is prepared to develop bid specifications, a more accurate cost estimate, and a project schedule.

As discussed previously, difficulties were encountered in producing this report in accordance with the originally approved work plan schedule because discrete analyses for PCBs and petroleum hydrocarbons at each location and a determination of the land disposal restrictions on a number of waste streams were required.

After your review of the document, I would like to discuss your comments to finalize the report recommendations. Once all your comments have been addressed, E & E is prepared to begin the design task for the project.

If you need additional information or have any questions during your initial review, please call me at 716/684-8060.

Sincerely,

Michael J. Steffan

Michael G. Steffan Project Manager

MGS/dlw Attachment

cc: CTF OB4041 H. Shapiro

OB4901 D3900

RECOMMENDATIONS FOR INTERIM REMEDIAL ACTIONS SUBTASK 2.3

SCHATZ PLANT, SITE NUMBER 3-14-074 W.A. NUMBER: D002625-9

June 1992

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF CONSTRUCTION SERVICES DIVISION OF HAZARDOUS WASTE REMEDIATION 50 Wolf Road Albany, New York 12233-7010

recycled paper

TABLE OF CONTENTS

ſ.

<u>Section</u>				<u>Page</u>
1	INTR	ODUCTIC	DN	1-1
	1.1	PURPO	SE AND SCOPE	1-1
	1.2	OBJECT	rives	1-1
	1.3	REMOV	AL ACTION REGULATORY ISSUES	1-2
	1.4	DOCUN	IENT ORGANIZATION	1-3
2	SUM	MARY O	ANALYTICAL RESULTS	2-1
	2.1	THE SC	HATZ PLANT	2-2
	2.2	HEAT T	REATMENT BUILDING	2-2
		2.2.1	Hazardous Categorization (HAZCAT) and Waste Characterization Results	2-2
		2.2.2	Clear and Brown Liquid Sample Results	2-3
		2.2.3	Oily Liquid Sample Results	2-3
		2.2.4	Soil Sample Results	2-4
	2.3	BUILDI	NG NO. 3	2-5
		2.3.1	HAZCAT and Waste Characterization Results	2-5
		2.3.2	Oily Liquid Sample Results	2-5
		2.3.3	Soil Sample Results	2-6
	2.4	ELECTR	NICAL PANEL ROOM	2-6
3	INTE			3-1
	3.1	GENER		3-1
	3.2	IDENTIF		3-2
		3.2.1	Site Wastes	3-2
		3.2.2	Site Generated Debris	3-6

.

<u>Section</u>

.

	3.3	FEASIB	ILITY REVIEW OF SURFACE CLEANING METHODS	3-6
		3.3.1	Vacuum Extraction	3-7
		3.3.2	High Pressure Flushing and Washing	3-8
		3.3.3	Dustless Scabbing, Scarifying, or Planing	3-8
	3.4		IMENDATIONS FOR REMEDIATION, REMOVAL, PORTATION, AND DISPOSAL	3-9
		3.4.1	Electrical Panel Room	3-10
		3.4.2	Building No. 3	3-10
		3.4.3	Heat Treatment Building	3-11
		3.4.4	Site Generated Debris	3-13
	3.5		IPROVEMENTS, ACCESS RESTRICTIONS, JILDING SECURITY	3-13
4			AGNITUDE COST ESTIMATE AND PROJECT	4-1
	4.1	ORDER	OF MAGNITUDE COST ESTIMATE	4-1
		4.1.1	Assumptions Related to Initial Remedial Order of Magnitude Construction Costs	4-1
		4.1.2	Assumptions Related to Construction Oversight Services	4-4
	4.2	PROJE	CT SCHEDULE	4-4
5	CON	STRUCTI	ON OVERSIGHT	5-1
6	ISSU	ES OF CO	DNCERN	6-1
	6.1		「OS REMAINING IN THE HEAT TREATMENT ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-1
		6.1.1	Cost and Schedule	6-2
	6.2	SUBSU	RFACE EXCAVATION	6-2
	6.3	PUBLIC	LY BID PROJECTS	6-3

Table of Contents (Cont.)

<u>Appendix</u>

Α	HAZCAT RESULTS - HEAT TREATMENT BUILDING	A-1
В	HAZCAT RESULTS - BUILDING NO. 3	B-1
С	FIRST ROUND COMPOSITE ANALYTICAL RESULTS - SCHATZ PLANT SITE	C-1
D	FIRST ROUND INDIVIDUAL ANALYTICAL RESULTS - SCHATZ PLANT SITE	D-1
E	DATA EVALUATION OF FIRST ROUND ANALYTICAL RESULTS - SCHATZ PLANT SITE	E-1
F	SECOND ROUND OF INDIVIDUAL ANALYTICAL RESULTS - SCHATZ PLANT SITE	F-1

<u>Page</u>

LIST OF TABLES

<u>Table</u>		<u>Page</u>
2-1	HAZCAT Results Summary - Heat Treatment Building	2-9
2-2	Summary of Physical Characteristics Tests - Heat Treatment Building	2-14
2-3	Summary of Chemical Characteristics Tests - Heat Treatment Building	2-15
2-4	First Round Water Analytical Results - Heat Treatment Building	2-16
2-5	Second Round Water Analytical Results - Heat Treatment Building	2-17
2-6	First Round Liquid Analytical Results - Heat Treatment Building	2-18
2-7	Second Round Liquid Analytical Results - Heat Treatment Building	2-19
2-8	First Round Soil Analytical Results - Heat Treatment Building	2-20
2-9	Second Round Soil Analytical Results - Heat Treatment Building	2-21
2-10	HAZCAT Results Summary - Building No. 3	2-22
2-11	Summary of Chemical Characteristics Tests - Building No. 3	2-23
2-12	Second Round Liquid Analytical Results - Building No. 3	2-24
2-13	First Round Soil Analytical Results - Building No. 3/ Electrical Panel Room	2-25
2-14	Second Round Soil Analytical Results - Building No. 3/ Electrical Panel Room	2-26
3-1	TCLP Concentration Levels for Land Disposal Restriction and NYSDEC Part 371	3-15

ecology and environment

.

List of Tables (Cont.)

<u>Table</u>

<u>Page</u>

3-2	Identification of Waste Streams - General Site - Land Disposal Restrictions and Disposal Options	3-16
3-3	Matrix of Removal, Transport, and Disposal Recommendations	3-20
4-1	Initial Remedial Order of Magnitude Construction Costs	4-5
4-2	Order of Magnitude Estimate for Construction Oversight and Health and Safety Monitoring Costs	4-13
4-3	Summary of Project Costs	4-15
4-4	Ambient Contaminant Guidelines/Action Levels	4-16

LIST OF ILLUSTRATIONS

Figure		<u>Page</u>
2-1	Schatz Plant Site Subtask 2.2 Sample Locations - Heat Treatment Building	2-27
2-2	Schatz Plant Site Analytical Results - Heat Treatment Building	2-28
2-3	Schatz Plant Site Subtask 2.2 Sample Locations - Building No. 3 and Electrical Panel Room	2-29
2-4	Schatz Plant Site Analytical Results - Building No. 3 and Electrical Panel Room	2-30
3-1	Schatz Plant Site Recommended Actions - Heat Treatment Building	3-23
3-2	Schatz Plant Site Recommended Remediation Actions - Building No. 3 and Electrical Panel Room	3-24
3-3	Schatz Plant site Recommended Site Improvements, Access Restrictions and Building Security - Heat Treatment Building	3-25
3-4	Schatz Plant Site Recommended Site Improvements, Access Restrictions and Building Security - Building No. 3 and Electrical Panel Room	3-26
4-1	Estimate of Project Schedule	4-17

.

.

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

This report presents the results of the interim remedial investigation conducted by Ecology and Environment Engineering, P.C. (E & E) at the Schatz Plant site (Site No. 3-14-074) located at 70 Fairview Avenue, Poughkeepsie, New York. The purpose of the investigation was to characterize waste materials in areas identified in the initial site investigation as potentially hazardous in order to determine whether removal actions are needed and appropriate disposal methods. Wastes were evaluated for Resource Conservation and Recovery Act (RCRA) characteristics, polychlorinated biphenyls (PCBs), petroleum hydrocarbons, and other inorganic materials.

1.2 OBJECTIVES

The goal of the remedial investigation was to develop preliminary analytical data concerning RCRA hazardous characteristics, PCBs, petroleum hydrocarbons, and other inorganic materials in soil, water, and liquid at the Schatz Plant site in order to determine whether wastes from various sources could be combined to facilitate disposal. To achieve this goal, E & E identified the following objectives for the remedial investigation:

- Provide sufficient data to adequately determine the concentration of PCBs, petroleum hydrocarbons, and other inorganic materials in soil and water samples in the vicinity of the Heat Treatment Building, Building No. 3, and the Electrical Panel Room, and to determine whether those materials exhibit any RCRA hazardous characteristics;
- Provide sufficient data to determine whether PCBs and petroleum hydrocarbons are present in liquid samples collected from the pits in the Heat Treatment Building and Building No. 3 and to determine whether those materials exhibit any RCRA hazardous characteristics; and
- Develop remedial action recommendations and cost estimates for the removal and disposal of wastes exhibiting hazardous characteristics or

containing significant concentrations of PCBs, petroleum hydrocarbons, and other inorganic materials at the Schatz Plant site in accordance with the goals of the site response activities stated in the work authorization (No. D002625-9).

1.3 REMOVAL ACTION REGULATORY ISSUES

Two types of regulatory issues were considered in the development an interim remedial program for the Schatz Plant site: regulatory requirements for the transportation and disposal of waste materials being removed from the site, and regulatory guidelines used in establishing cleanup goals for contaminated areas at the site.

Transportation and Disposal Requirements

State and Federal regulations require that a generator determine whether a waste is hazardous before it can be transported off site for disposal. Hazardous waste must be further characterized (profiled) to determine whether treatment is required to satisfy land disposal requirements (LDR) prior to disposal. Since information regarding the facility operations that generated the wastes destined for off-site disposal was not available, E & E was not able to determine that any of the wastes are listed hazardous wastes. Consequently, all hazardous waste determinations were made based on the presence or absence of hazardous characteristics. Characteristic determinations were based on information obtained through Hazard Categorization (HAZCAT), PCB, and Toxic Characteristic Leaching Procedure (TCLP) analysis. Because it covers a broader range of requirements, the TCLP was used instead of the EP Tox procedure. LDR were determined based on TCLP results.

There is no regulatory requirement to characterize wastes that are determined to be nonhazardous; however, as a practical matter, these wastes must be characterized before they will be accepted by a disposal facility. HAZCAT, PCB, and TCLP analytical results were also used for this characterization.

Regulatory Cleanup Guidelines

Draft Cleanup Policy and Guidelines issued by NYSDEC for public comment in October 1991 establish cleanup goals for "immediate/emergency response" actions. Because a complete RI/FS is being conducted at the Schatz Plant site, and the conditions that are addressed in this report warrant action in order to prevent or reduce the significant spread of contaminants and reduce public exposure, E & E has determined that the cleanup goal established for "immediate/emergency response" actions is applicable to this site. That goal is the restoration of prerelease conditions with a minimum requirement of the elimination of any significant threat of the spread of contaminants and the reduction of public exposure. In addition, federal Toxic Substances Control Act (TSCA) regulations (40 CFR 761.125) establish cleanup requirements for new spills of PCBs at concentrations of 50 ppm or greater that provide for the cleanup of solid surfaces to 10 micrograms (μ g) per 100 square centimeters (cm²) by standard commercial wipe tests.

Both of these guidelines were considered in the development of cleanup recommendations for the site.

1.4 DOCUMENT ORGANIZATION

The remainder of this report describes the remedial investigation analytical results (Section 2), the interim remedial action recommendations (Section 3), an order-of-magnitude cost estimate and preliminary project schedule for the removal and disposal activities (Section 4), construction oversight activities (Section 5), and remaining concerns that should be addressed prior to proceeding with construction activities (Section 6).

2. SUMMARY OF ANALYTICAL RESULTS

The sampling effort performed by E & E was in accordance with the work plan approved by NYSDEC on September 27, 1991. The sample gathering and analysis was performed under Subtask 2.2. The field work involved obtaining liquid and soil samples of the various unknown materials in the Heat Treatment Building, Building No. 3, and the Electrical Panel Room.

Upon sampling the suspected waste streams and phased materials in each of the locations, five samples of each pit and area were taken and shipped to E & E's Analytical Services Center (ASC) in Buffalo, New York. One set of samples was used for initial HAZCAT analysis, the second and third sets were used for composite and discrete analysis, and the last two sets were to be used for future shipment to disposal vendors for waste profiling and pricing.

Pursuant to the approved work plan, because all samples were going to be used for waste stream identification for future disposal approval purposes, no preservation, holding time protocols, or quality assurance protocol procedures were required.

E & E chose sampling methods and equipment to minimize decontamination requirements and to prevent cross-contamination of discrete samples. Decontamination of sampling equipment was performed between discrete sampling locations. Where necessary, disposable equipment (scrapers, spoons, jars, etc.) was used to collect samples allowing minimal decontamination. All site disposable debris was left on site for later disposal.

Due to the weather constraints on site, all HAZCAT analysis was performed at E & E's ASC. All decisions on compositing and discrete analyses were made by an E & E staff chemist with assistance from the project manager and field team leader.

The analysis of the composited samples was performed as Round 1 of the waste stream identification process. As results were received for selected composites, a second round of analysis was then performed to obtain more information on individual waste streams.

2.1 THE SCHATZ PLANT

The Schatz Plant facility was formerly a manufacturing and machining plant for automotive ball bearings. It is assumed that either the facility could not be modernized to compete with the market, or the former owners decided to close. The facility is approximately 80 years old and is constructed of brick, structural steel, and concrete.

The analysis that follows concerns three locations in the facility: the Heat Treatment Building, Building No. 3, and the Electrical Panel Room. These areas were of concern due to primary investigation of closed locations of the site for hazard assessment and analytical information from former sampling efforts.

A concurrent remedial investigation/feasibility study (RI/FS) is being performed by another Standby Consultant on the property external to the site buildings.

2.2 HEAT TREATMENT BUILDING

The Heat Treatment Building is a composite brick and steel building that is currently inactive with no occupants or utility services. This particular building was a part of a previous automobile bearing manufacturing facility. The name of the building suggests that as the ball bearings were manufactured, heat treatment was used to harden or temper the materials or products.

The building contains a total of 16 pits, some of which are suspected to have been used for bearing hardening. Currently, the pits are filled in with fire brick debris, oil, and water from previous demolition.

No process information is available because of the age of the facility (approximately 80 years old) and time since closure, so hazardous waste streams are generally categorized in Section 3 based on the presence or absence of RCRA characteristics, PCBs, or assumed process information.

2.2.1 HAZCAT and Waste Characterization Results

Samples of unknown materials in each of the 16 quenching pits in the Heat Treatment Building were collected and analyzed to determine their general physical and chemical characteristics. Physical characteristics were used to identify and categorize common material types found in the pit, and chemical characteristics were used to identify RCRA characteristic hazardous waste that have special storage, packaging, and disposal requirements. Table 2-1 identifies the test categories and the test results for each sample. The sample locations are shown on Figure 2-1. HAZCAT lab reports are provided in Appendix A. Analytical Data Lab Reports are provided in Appendices C, D, E, and F. Based on the results of the physical characteristics tests, two major categories, liquids and solids, and four material subcategories, soil/dirt, oily liquid, clear liquid, and brown liquid were identified (see Table 2-2). Based on the results of the HAZCAT chemical characteristics tests, the soil/dirt material found in Pit 15 was determined to be an oxidizer and materials in Pits 2 and 4 sustained flame. No other materials in the Heat Treatment Facility exhibited any HAZCAT characteristics tested for (see Table 2-3).

2.2.2 Clear and Brown Liquid Sample Results

First Round

The clear liquid samples collected from Pits P1, P3, P5, P6, P8, and P12 were combined to form Water Composite Sample No. 1 (see Figure 2-1). Analysis of this sample showed the presence of total cyanide at a concentration of 0.11 μ g/L (see Table 2-4 and Figure 2-2). No other compounds were present above detection limits.

The brown liquid samples collected from Pits P7, P10, and P11 were combined to form Water Composite Sample No. 2 (see Figure 2-1). The analysis of this composite showed the presence of sulfide (1.3 mg/L) and organic chlorine (36 mg/L) at concentrations above the quantitation limits of 1.0 mg/L and 0.025 mg/L, respectively. Also noted was a concentration of barium (72 mg/L) (see Table 2-4 and Figure 2-2).

Second Round

Discrete liquid (clear and brown) samples were collected from Pits P1, P3, P5, P6, P7, P8, P10, P11, and P12 (see Figure 2-1) and analyzed for PCBs and total petroleum hydrocarbons. Analysis of these samples showed that Aroclor-1254 was present at low levels in water from Pits P1, P5, P6, P8, and P10. No PCBs were present above detection limits in pits P3, P7, P11, or P12; however, the quantitation limits were elevated in samples from Pits P3 ($2.5 \mu g/L$), P7 (400 $\mu g/L$), and P11 ($1.1 \mu g/L$) (see Table 2-5 and Figure 2-2). Total petroleum hydrocarbons were detected above quantitation limits (1.0 mg/L) in all of the discrete water samples except Pit P1 (see Table 2-5 and Figure 2-2).

2.2.3 Oily Liquid Sample Results

First Round

The two-phase oily liquids samples collected from Pits P2 and P4 were combined to form Liquid Composite Sample No. 3 (see Figure 2-1). Analysis of this sample showed the

presence of organic sulfur and cadmium at concentrations above the quantitation limits (0.025 mg/L and 0.20 mg/L, respectively) (see Table 2-6 and Figure 2-2). PCBs were not present above detection limits in this sample; however, the quantitation limit was elevated (10 mg/kg) due to matrix interference.

A discrete sample of brown liquid with oily particles collected from Pit P7 was analyzed for PCBs only. No PCBs were present above detection limits in this sample; however, the quantitation limit was elevated (15 mg/kg) due to matrix interference (see Table 2-6 and Figure 2-2).

Second Round

Discrete liquid samples were collected from Pits P2 and P4 and analyzed for PCBs and petroleum products (see Figure 2-1). PCBs were not detected above quantitation limits in either sample; however, the quantitation limit was elevated (5 mg/kg and 10 mg/kg, respectively) in both samples (see Table 2-7 and Figure 2-2). Both samples indicated the presence of an unidentified petroleum product. The petroleum product pattern seen in both samples best matched the lube/motor oil standard. No other petroleum products were identified.

2.2.4 Soil Sample Results

First Round

The soil samples collected from Pits P9, P13, P14, and P16 were combined to form Soil Composite Sample No. 4 (see Figure 2-1). Analysis of this sample showed the presence of chlorine, sulfur, and total sulfide above the quantitation limits of 0.050%, 0.025%, and 4.0 mg/kg, respectively (see Table 2-8 and Figure 2-2). In addition, this material was analyzed to determine its burning characteristics (BTU value and ash content, see Table 2-8).

A discrete soil sample was collected from Pit 15 and analyzed using the same parameters as the composite sample (see Figure 2-1). Analysis of this sample showed the presence of chlorine, organic sulfur, total cyanide, and cadmium above the quantitation limits of 0.050%, 0.025%, 1.0 mg/kg, and 0.20 mg/L, respectively (see Table 2-8 and Figure 2-2).

Second Round

The soil/dirt samples collected from Pits P9, P13, P14, and P16 (see Figure 2.1) were combined to form Soil Composite Sample No. 4, which was analyzed for PCB and total petroleum hydrocarbons. Analysis of this sample showed the presence of Aroclor-1254 at a

concentration of 330 mg/kg and the presence of total petroleum hydrocarbons at a concentration of 54,000 mg/kg (see Table 2-9 and Figure 2-4).

Because PCBs were present in the composite sample, discrete soil/dirt samples in Pits P9, P13, P14, and P16 (see Figure 2.2) were analyzed for PCBs. Aroclor-1254 was not detected above the quantitation limit in Pit P9; however, the quantitation limit was elevated (0.21 μ g/L) (see Table 2-9 and Figure 2-4).

In addition, the discrete analysis of the soil/dirt samples from Pit P15 showed the presence of Aroclor-1254 at a concentration of 160 mg/kg and the presence of total petroleum hydrocarbons at a concentration of 69,000 mg/kg (see Table 2-9 and Figure 2-4).

2.3 BUILDING NO. 3

Building No. 3 is also a steel and concrete composite building. It is currently used for limited product storage, away from the anticipated pit cleanup area.

No information is available regarding Building No. 3's previous uses besides general storage. The information provided for the waste streams is based on physical characteristics and chemical analysis.

2.3.1 HAZCAT and Waste Characterization Results

Two oily dirt samples were collected in Building No. 3 and analyzed to determine general physical and chemical characteristics. Table 2-10 identifies the test categories and the test results for each sample. The sample locations are shown on Figure 2-3. HAZCAT lab reports are provided in Appendices A and B. Analytical Data Lab Reports are provided in Appendices C, D, E, and F.

Based on the results of the physical characteristics tests, the samples were categorized initially as soil/dirt. Based on the results of the HAZCAT chemical characteristics tests, neither sample exhibited hazardous characteristics (see Table 2-11).

2.3.2 Oily Liquid Sample Results

First Round

No liquid samples were analyzed during the first round of sampling.

Second Round

A single discrete sample of oily liquid was collected from Pit P1 (see Figure 2-3) and analyzed for PCBs and petroleum products. Analysis of this sample showed the presence of

Aroclor-1254 at a concentration of 390 mg/kg. This sample also showed the presence of an unidentified petroleum product. The petroleum product pattern seen in this sample best matched the lube/motor oil standard (see Table 2-12 and Figure 2-4).

2.3.3 Soil Sample Results

First Round

Analysis of the single discrete soil sample collected from Pit P1 (see Figure 2-3) showed the presence of chlorine, organic sulfur, total sulfide, and total cyanide above quantitation limits of 0.050%, 0.025%, 4.0 mg/kg, and 1.0 mg/kg, respectively (see Table 2-13). Analysis of the single discrete soil sample collected from Pit P2 also showed the presence of chlorine, organic sulfur, total sulfide, total cyanide, and cadmium above quantitation limits.

In addition, the material in both pits was analyzed to determine its burning characteristics (BTU and ash content, see Table 2-13).

Second Round

A soil sample was collected from Pit P2 and analyzed for PCBs and total petroleum hydrocarbons (see Figure 2-4). Analysis of this sample showed the presence of Aroclor-1254 at a concentration of 110 mg/kg and total petroleum hydrocarbons at a concentration of 80,000 mg/kg (see Table 2-14).

2.4 ELECTRICAL PANEL ROOM

The Electrical Panel Room, a part of Building No. 3, has been so designated because of the electrical switch gear located at the north end of the building. The room has a concrete floor and is directly adjacent to the pits in Building No. 3. The room is approximately 40 feet wide by 140 feet long and is mainly a brick structure with steel roof joints.

No process information is available regarding this room in Building No. 3. The information provided for the waste streams is based on physical characteristics and chemical analysis.

First Round

Discrete soil/dirt samples from the Electrical Panel Room (see Figure 2-3) were combined to form a composite sample (F1 and F2) and analyzed for PCBs and total petroleum hydrocarbons. Analysis of this sample showed the presence of Aroclor-1254 at a concentration of 330 mg/kg and total petroleum hydrocarbons at a concentration of 60,000 mg/kg (see Table 2-14).

Second Round

Based on the concentration of PCBs in the composite sample, discrete samples from both collection locations were then analyzed for PCBs. Aroclor-1254 was detected above the quantitation limit of 3.1 mg/kg in sample F2 (See Table 2-14 and Figure 2-4). PCBs were not detected above quantitation limits in sample F1, however, the quantitation limit was elevated to 31 mg/kg.

Page 1 of 5

	Table 2-1							
	SUBTASK 2.2 HAZCAT RESULTS SUMMARY HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK							
				Sample Number				
	HAZCAT Parameter OB-HT-001-P1 (Top) (Bottom) OB-HT-001-P3 Top Layer							
1.	Sample Description	Clear liquid, single phase, slight amount of sediment	Dark, oily top phase of two-phase sample	Clear to amber tint: bottom layer of two-phase sample	Clear to amber color; water appearance	Dark, oily top layer of two phase sample		
2.	Specific Gravity	1	<1	1	1	<1		
3.	Water Reactivity	NEG	NEG	NEG	NEG	NEG		
4.	Solubility in Water	Soluble	Insoluble	Soluble	Soluble	Insoluble		
5.	рН	~7	NA	~6	~6	NA		
6.	Presence of Cyanides	NEG	NA	NEG	NEG	NA		
7.	Presence of Sulfides	NEG	NA	NEG	NEG	NA		
8.	Presence of Oxidizers	NEG	NEG	NEG	NEG	NEG		
9.	Presence of Chloridated Hydrocarbons	NEG	NEG	NEG	NEG	NEG		
10.	Flammability	NEG	Sustained Flame	NEG	NEG	Sustained Flame		

•

Key at end of table.

	Table 2-1 SUBTASK 2.2 HAZCAT RESULTS SUMMARY HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK							
		OB-HT-001-P4		Sample Number				
	HAZCAT Parameter	Bottom Layer	OB-HT-001-P5	OB-HT-001-P6	OB-HT-001-P7	OB-HT-001-P8		
1.	Sample Description	Amber colored water, bottom layer of two-phase sample	Clear liquid	Clear liquid with small floating oil particles	Clear liquid with floating oil particles	Clear liquid		
2.	Specific Gravity	1	1	1	1	1		
3.	Water Reactivity	NEG	NEG	NEG	NEG	NEG		
4.	Solubility in Water	Soluble	Soluble	Soluble	Soluble	Soluble		
5.	ρΗ	~9	6 to 7	6 to 7	6	~6		
6.	Presence of Cyanides	NEG	NEG	NEG	NEG	NEG		
7.	Presence of Sulfides	NEG	NEG	NEG	NEG	NEG		
8.	Presence of Oxidizers	NEG	NEG	NEG	NEG	NEG		
9.								
10.	Flammability	NEG	NEG	NEG	NEG	NEG		

Key at end of table.

J2:084901_D3900-06/09/92-D1

Page 3 of 5

	Table 2-1 SUBTASK 2.2 HAZCAT RESULTS SUMMARY HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK						
				Sample Number			
	HAZCAT Parameter	OB-HT-001-P9	OB-HT-001-P10	OB-HT-001-P11	OB-HT-001-P12	OB-HT-001-P13	
1.	Sample Description	Black sludge	Amber colored liquid with slight sediment	Clear liquid	Clear liquid with faint amber color	Dry black dirt with small debris	
2.	Specific Gravity	NA	1	1	1	NA	
3.	Water Reactivity	NEG	NEG	NEG	NEG	NEG	
4.	Solubility in Water	Insoluble	Soluble	Soluble	Soluble	Insoluble	
5.	рН	~6	6	6	6 to 7	6	
6.	Presence of Cyanides	NEG	NEG	NEG	NEG	NEG	
7.	Presence of Sulfides	NEG	NEG	NEG	NEG	NEG	
8.	Presence of Oxidizers	NEG	NEG	NEG	NEG	NEG	
9.	Presence of Chloridated Hydrocarbons	NEG	NEG	NEG	NEG	NEG	
10.	Flammability	NEG	NEG	NEG	NEG	NEG	

٠

Key at end of table.

•

2-11

	Table 2-1 SUBTASK 2.2 HAZCAT RESULTS SUMMARY HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-74 POUGHKEEPSIE, NEW YORK					
			Sample Number	r		
	HAZCAT Parameter	OB-HT-001-P14	OB-HT-001-P15	OB-HT-001-P16		
1.	Sample Description	Brown/black dirt	Black loose dirt	Brown, grey and black dirt		
2.	Specific Gravity	NA	NA	NA		
3.	Water Reactivity	NEG	NEG	NA		
4.	Solubility in Water	Insoluble	Insoluble	Insoluble		
5.	рН	6	8-9	6		
6.	Presence of Cyanides	NEG	NEG	NEG		
7.	Presence of Sulfides	NEG	NEG	NEG		
8.	Presence of Oxidizers	NEG	POS	NEG		
9.	Presence of Chloridated Hydrocarbons	NEG	NEG	NEG		
10.	Flammability	NEG	NEG	NEG		

Key at end of table.

02:084901_D3900-06/09/92-D1

Table 2-1 (Cont.)

Key:

..

- = Less than. v ł
- Approximate.

- NA = Not analyzed. NEG = Negative test results. POS = Positive test results.

Sample number format: OB-HT-001-P14

	Pit number	Sample round number	Heat Treatment Building	- E& E Job number prefix
HT-001-P14				

Source: Ecology and Environment Engineering, P.C. 1992.

Page 1 of 1

	Table 2-2						
s	SUBTASK 2.2 SUMMARY OF PHYSICAL CHARACTERISTICS TESTS HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK						
		Material	Category				
	Solids		Liquids				
Material Location	Soil/Dirt Solid	Oily Liquid	Clear Liquid	Brown Liquid			
Pit 1			x				
Pit 2		X ^a	Xª				
Pit 3			x				
Pit 4		Xª		Xª			
Pit 5			x				
Pit 6		=	x				
Pit 7				×			
Pit 8			X				
Pit 9	X						
Pit 10				X			
Pit 11				X			
Pit 12		×					
Pit 13	X						
Pit 14	x						
Pit 15	x						
Pit 16	x						

^a Two phases identified in the sample.

Source: Ecology and Environment Engineering, P.C. 1992.

02:084901_D3900-06/10/92-D1

SUBTASK 2.2 SUMMARY OF CHEMICAL CHARACTERISTICS TESTS HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK											
	Chemical Hazard Category										
Location/Material	Acid	Cyanide	Flammable	Oxidizer	Reactive						
Pit 1 - Clear liquid	No	No	No	No	No						
Pit 2 - Oily liquid	No	No	Yes	No	No						
Pit 2 - Clear liquid	No	No	No	No	No						
Pit 3 - Clear liquid	No	No	No	No	No						
Pit 4 - Oily liquid	No	No	Yes	No	No						
Pit 4 - Brown liquid	No	No									
Pit 5 - Clear liquid	No	No	No	No	No						
Pit 6 - Clear liquid	No	No	No	No	No						
Pit 7 - Brown liquid	No	No	No	No	No						
Pit 8 - Clear liquid	No	No	No	No	No						
Pit 9 - Soil/dirt	No	No	No	No	No						
Pit 10 - Brown liquid	No	No	No	No	No						
Pit 11 - Brown liquid	No	No	No	No	No						
Pit 12 - Clear liquid	No	No	No	No	No						
Pit 13 - Soil/dirt	No	No	No	No	No						
Pit 14 - Soil/dirt	No	No	No	No	No						
Pit 15 - Soil/dirt	No	No	No	Yes	No						
Pit 16 - Soil/dirt	No	No	No	No	No						

Source: Ecology and Environment Engineering, P.C. 1992.

02:084901_D3900-06/10/92-D1

Table 2-4 SUBTASK 2.2 FIRST ROUND WATER ANALYTICAL RESULTS - HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK											
	Water Analysis										
	Totał Cyanide (ppm)	BTU (BTU/Ib.)	Sulfide (ppm)	Totał Solids (ppm)	% Organic Suifur	Organic Chlorine (ppm)	Purgeables - TCLP (ppm)	TCLP - Extracts (ppm)			
Water Composite Sample No. 1 (HT-P1,P3,P5,P6,P8,P12)	0.11	а	ND	810	ND	ND	ND	ND			
Water Composite Sample No. 2 (HT-P7,P10,P11)	ND	8	1.3	430	ND	0.36	ND	72 Barium			

Notes:

a Did not ignite.

Key:

ND = Not detected.

ppm = mg/L, mg/kg.

Source: Ecology and Environment Engineering, P.C. 1992.

Table 2-5 SUBTASK 2.2 SECOND ROUND WATER ANALYTICAL RESULTS HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK									
	w	ater Analys/	is						
Sample Number	PCBs Total Petroleum μg/L (Aroclor) mg/L								
OB-HT-001-P1	1.0	(1254)	ND						
OB-HT-001-P3	ND ^a		1.4						
OB-HT-001-P5	0.80	(1254)	7.5						
OB-HT-001-P6	80	(1254)	1,400						
OB-HT-001-P7	ND ^b		600						
OB-HT-001-P8	1.0	(1254)	6.0						
OB-HT-001-P10	9.0	(1254)	1,900						
OB-HT-001-P11	ND ^c		6.1						
OB-HT-001-P12	ND		9.1						

^a Elevated quantitation limit of 2.5 μ g/L.

b Elevated quantitation limit of 400 μ g/L.

^C Elevated quantitation limit of 1.1 μ g/L.

Key:

(1254) =Aroclor-1254.

ND = Not detected above quantitation limit.

Source: Ecology and Environment Engineering, P.C. 1992.

.

			т	able 2-6						
SUBTASK 2.2 FIRST ROUND LIQUID ANALYTICAL RESULTS - HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK										
					Liquid Analysi	5				
	PCB- Liquid (ppm)	BTU (BTU/lb.)	% Organic Chiorine	% Organic Sulfur	Sulfide Releasable (ppm)	Cyanide Releasable (ppm)	Purgeables - TCLP (ppm)	TCLP - Extracts (ppm)		
Liquid Composite Sample No. 3 (HT-P2,P4)	ND ^a	19,000	ND	0.28	ND	ND	ND	0.29 Cadmium ^b		
OB-HT-001-P7 (oil)	ND ^a	NA	NA	NA	NA	NA	NA	NA		

Page 1 of 1

Notes:

- a Detection limits elevated due to matrix interference. Composite No. 3: Detection limit = 10 mg/kg.
 b Detection limits elevated due to matrix interference.

Key:

NA = Not applicable.

ND = Not detected.

ppm = mg/L, mg/kg.

Source: Ecology and Environment Engineering, P.C. 1992.

2-18

Table 2-7											
SUBTASK 2.2 SECOND ROUND LIQUID ANALYTICAL RESULTS - HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK											
	Liquid Analysis										
	PCBs		Р	etroleum Prod	ucts						
Sample Number	mg/kg (Arocior)										
OB-HT-001-P2	ND ^a	ND	ND P ^C ND ND ND								
OB-HT-001-P4	ND ^b	ND									

^a Elevated quantitation limit of 5.0 mg/kg.

b Elevated quantitation limit of 10 mg/kg.

^C Unidentified petroleum hydrocarbon pattern in range of motor/lube oil standard.

Key:

ND = Not detected above quantitation limit.

P = Present.

Sample number format: OB-HT-001-P2

Pit number Sample round number Heat Treatment Building E & E Job number prefix

Source: Ecology and Environment Engineering, P.C. 1992

Table 2-8												
TASK 2.2 FIRST ROUND SOIL ANALYTICAL RESULTS - HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK												
	Soil Analysis											
	PCB (ppm)	BTU (BTU/Ib.)	Bulk Density (gm/cm ³)	% Organic Matter	% Ash	% Chlorine	% Organic Sulfur	Total Sulfide (ppm)	Total Cyanide (ppm)	% Total Soiids	Purgeables - TCLP (ppm)	TCLP - Extracts (ppm)
Soil Composite Sample No. 4 (HT-P9,P13,P14,P16)	330 ^a	11,000	1.00	15	81	0.14	0.24	37	ND	94	NA	ND
OB-HT-001-P15	160	5,500	0.93	32	68	0.23	0.27	ND	9.5	97	NA	0.25 Cadmium

a Composites broken down by individual pit samples for further analysis - see Table 2-2.

.

Key:

NA = Not applicable.

ND = Not detected.

ppm = mg/L, mg/kg.

Source: Ecology and Environment Engineering, P.C. 1992.

Table 2-9 SUBTASK 2.2 SECOND ROUND SOIL ANALYTICAL RESULTS HEAT TREATMENT BUILDING SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK									
Soil Analysis									
Sample Number	SamplePCBTotal PetroTypemg/kg (Aroclor)mg/kg								
Comp. P9, P13, P14, P16	Composite	330	(1254)	54,000					
OB-HT-001-P15	Discrete	160	(1254)	69,000					
OB-HT-001-P9	Discrete	ND ^a	_	NA					
OB-HT-001-P13	Discrete	41	(1254)	NA					
OB-HT-001-P14	Discrete	6.7	(1254)	NA					
OB-HT-001-P16	Discrete	Pip	(1254)	NA					

a Elevated quantitation limit of 0.21 mg/kg.

b Elevated quantitation limit of 50 mg/kg.

Key:

(1254) =Aroclor-1254.

- NA = Not analyzed.
- ND = Not detected above quantitation limit.
 - P = Present below stated quantitation limit.

Source: Ecology and Environment Engineering, P.C. 1992.

Table 2-10 SUBTASK 2.2 HAZCAT RESULTS SUMMARY BUILDING NO. 3					
	Sample Number				
	HAZCAT Parameter	OB-BLDG#3-001-P1	OB-BLDG#3-001-P2		
1.	Sample Description	Black, oily dirt	Black, oily dirt		
2.	Specific Gravity	NA	NA		
3.	Water Reactivity	NEG	NEG		
4.	Solubility in Water	Insoluble	Insoluble		
5.	рН	6	6		
6.	Presence of Cyanides	NEG	NEG		
7.	Presence of Sulfides	NEG	NEG		
8.	Presence of Oxidizers	NEG	NEG		
9.	Presence of Chloridated Hydrocarbons	NEG	NEG		
10.	Flammability	NEG	NEG		

Source: Ecology and Environment Engineering, P.C. 1992.

.

Page 1 of 1

Table 2-11							
SUBTASK 2.2 SUMMARY OF CHEMICAL CHARACTERISTICS TESTS - BUILDING NO. 3 SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK							
Chemical Hazard Category							
Location/Material	Acid	Cyanide	Flammable	Oxidizer	Reactive		
OB-BLDG #3-001							
Pit 1 - Soil/dirt ND ND ND ND ND							
OB-BLDG #3-001							
Pit 2 - Soil/dirt	ND	ND	ND	ND	ND		

Source: Ecology and Environment Engineering, P.C. 1992.

.

Table 2-12 SECOND ROUND LIQUID ANALYTICAL RESULTS -**BUILDING NO. 3** SCHATZ PLANT SITE NO. 3-14-074 **POUGHKEEPSIE, NEW YORK** Liquid Analysis **Petroleum Products** PCBs Motor/ Diesel Sample Number mg/kg (Aroclor) Gasoline Lube Oil Kerosene Fuel Oil OB-BLDG3-001-P1 390 (1254) ND Ρ ND ND ND

Key:

ND = Not detected above quantitation limit.

P = Present below stated quantitation limit.

Source: Ecology and Environment Engineering, P.C. 1992.

02:084901_D3900-06/09/92-D1

Page 1 of 1

Table 2-13												
	FIRST RC	UND SOIL	ANALYTIC	SCHATZ	JLTS - PLANT	ASK 2.2 ELECTRIC/ SITE NO. SIE, NEW	3-14-074		and Buil	DING N	0. 3	
		Soil Analysis										
	PCB (ppm)	BTU (BTU/Ib.)	Bulk Density (gm/cm ³)	% Organic Matter	% Ash	% Chlorine	% Organic Suifur	Total Sulfide (ppm)	Totai Cyanide (ppm)	% Total Solids	Purgeables - TCLP (ppm)	TCLP - Extracts (ppm)
Soil Composite Sample No. 5 (EPR-F1,F2)	330 ^a	7,600	0.88	34	58	0.60	0.55	820	ND	98	0.17 Tetrachloro- ethylene	1.4 Cadmium
OB-BLDG3-001-P1	390	5,300	1.9	21	51	0.086	0.21	81	2.5	99	NA	ND
OB-BLDG3-001-P2	40	9,300	0.88	54	42	0.26	0.86	33	2.0	87	NA	4.6 Cadmium

^a Composites broken down by individual pit samples for further analysis - see Table 2-14.

Key:

NA = Not applicable.

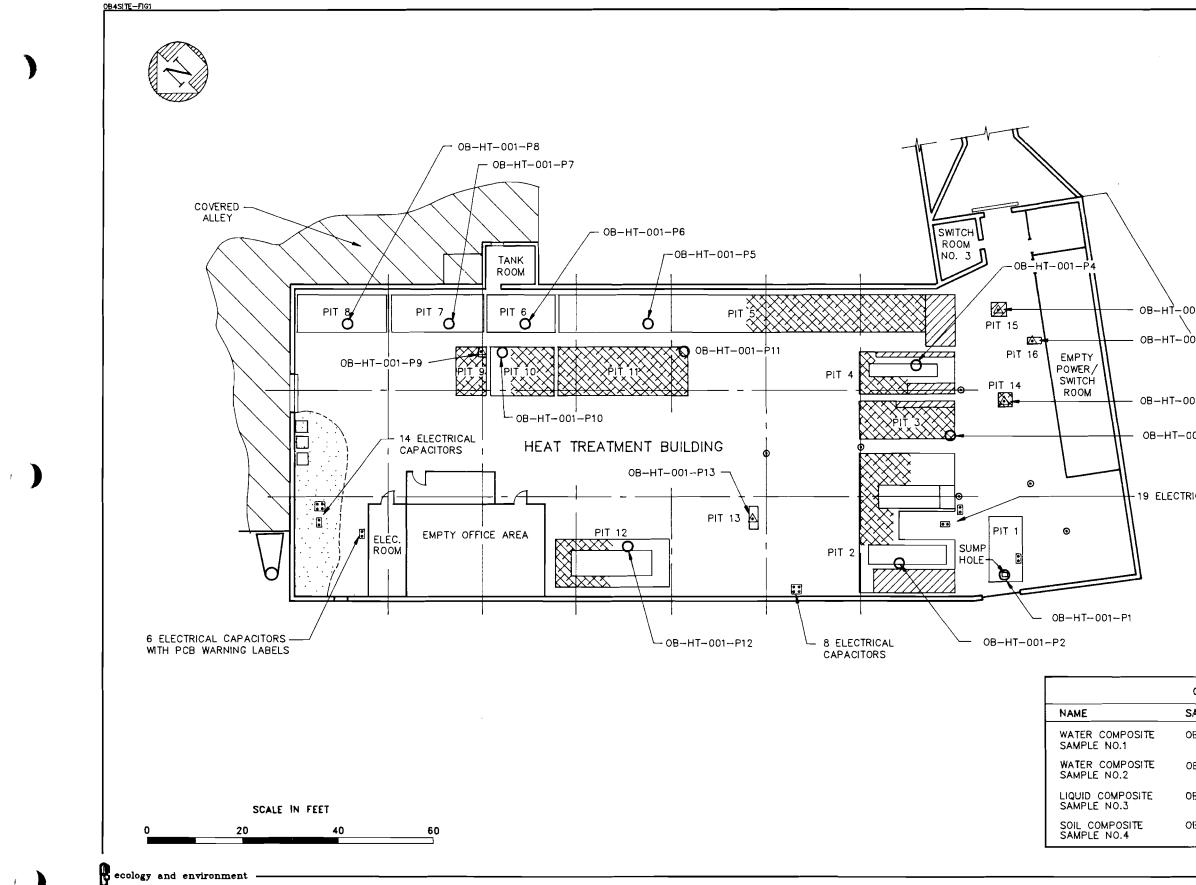
ND = Not detected.

ppm = mg/L, mg/kg.

Source: Ecology and Environment Engineering, P.C. 1992.

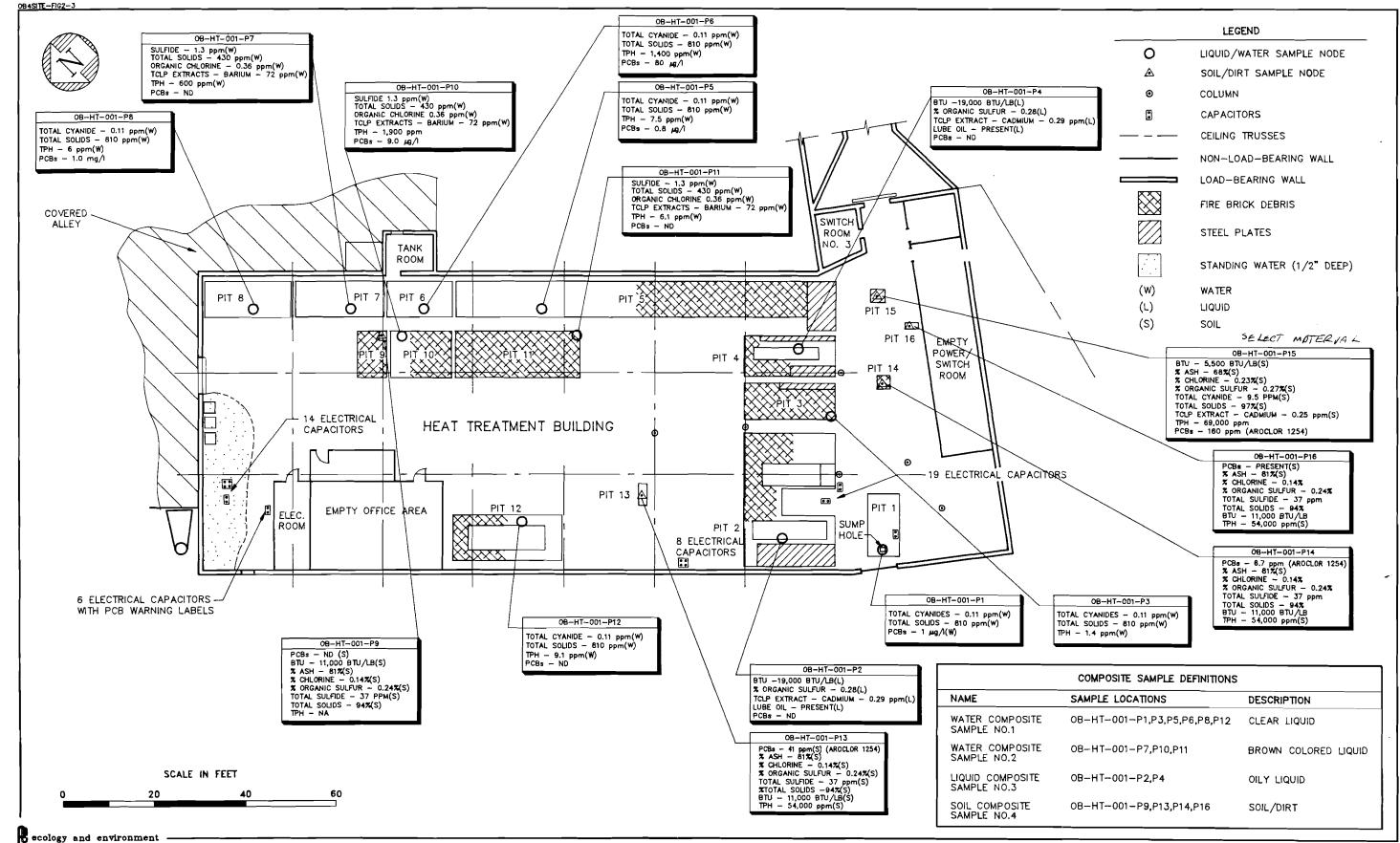
2-25

Table 2-14						
SUBTASK 2.2 SECOND ROUND SOIL ANALYTICAL RESULTS - ELECTRICAL PANEL ROOM AND BUILDING NO. 3 SCHATZ PLANT SITE NO. 3-14-074 POUGHKEEPSIE, NEW YORK						
Soil Analysis						
Sample Number	Sample Type	PCBs mg/kg (Aroclor)	Total Petroleum Hydrocarbons mg/kg			
Comp. EPR, F1, and F2	Composite	330 (1254)	60,000			
OB-EPR-001-F1	Discrete	ND ^a	NA			
OB-EPR-001-F2	Discrete	26 (1254)	NA			
OB-BLDG3-001-P2	Discrete	110 (1254)	80,000			


^a Elevated quantitation limit of 31 mg/kg.

Key:

NA = Not analyzed for particular parameter. ND = Not detected above quantitation limit.


Source: Ecology and Environment Engineering, P.C. 1992.

Page 1 of 1

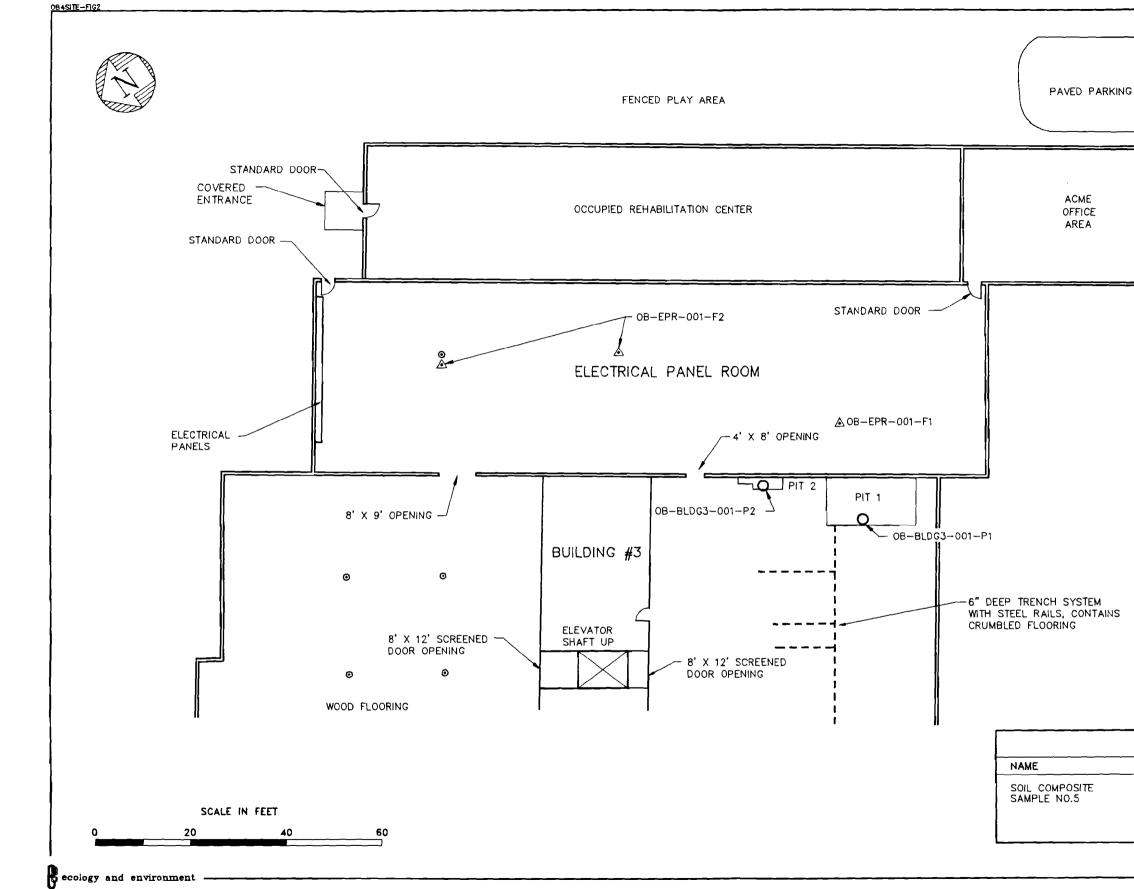
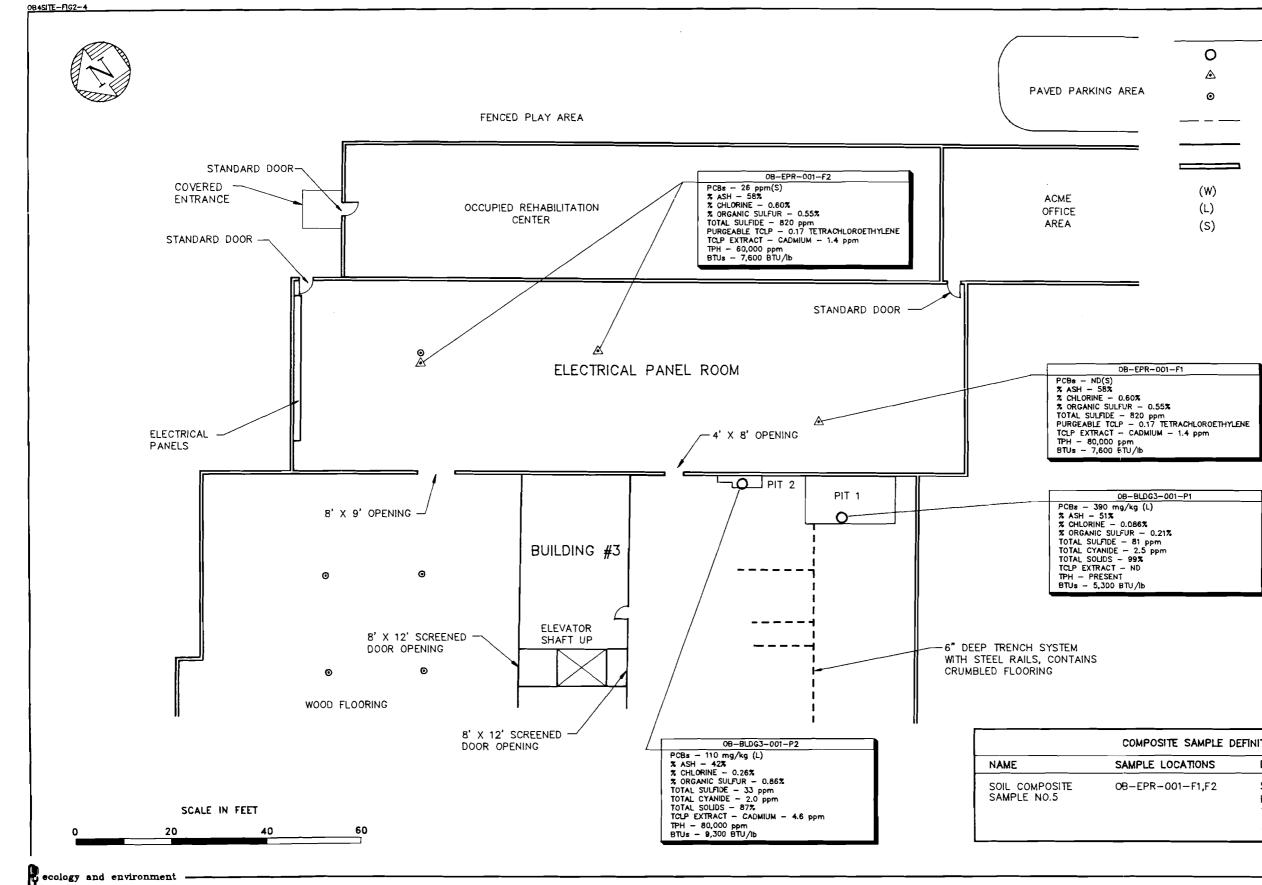

	LECEND
0	LIQUID/WATER SAMPLE NODE
ا	SOIL/DIRT SAMPLE NODE
۲	COLUMN
6	CAPACITORS
	CEILING TRUSSES
	NON-LOAD-BEARING WALL
	LOAD-BEARING WALL
\bigotimes	FIRE BRICK DEBRIS
	STEEL PLATES
01–P15	STANDING WATER (1/2" DEEP)
01–P16	
01-P14	
001-P3	
RICAL CAPACITORS	
NCAL CARACITORS	
COMPOSITE SAMPLE DEFINITI	
SAMPLE LOCATIONS	DESCRIPTION
DB-HT-001-P1,P3,P5,P6,P8,F	
DBHT-001-P7,P10,P11	BROWN COLORED LIQUID
DB-HT-001-P2,P4	OILY LIQUID
DB-HT-001-P9,P13,P14,P16	SOIL/DIRT

Figure 2.1 SCHATZ PLANT SITE SUBTASK 2.2 SAMPLE LOCATIONS HEAT TREATMENT BUILDING

SCHATZ PLANT SITE ANALYTICAL RESULTS HEAT TREATMENT BUILDING

Figure 2.2

•


1

i.

		LEGEND
	0	LIQUID/WATER SAMPLE NODE
IG AREA	۵	SOIL/DIRT SAMPLE NODE
	ø	COLUMN
		CEILING TRUSSES
		NON-LOAD-BEARING WALL
		LOAD-BEARING WALL

SAMPLE LOCATIONS	DESCRIPTION
08-EPR-001-F1,F2	SOIL/DIRT FOR F2 SAMPLE WAS COLLECTED IN TWO LOCATIONS TO PROVIDE AN ADEQUATE VOLUME.

Figure 2.3 SCHATZ PLANT SITE SUBTASK 2.2 SAMPLE LOCATIONS BUILDING NO. 3 AND ELECTRICAL PANEL ROOM

		LEGEND
	0	LIQUID/WATER SAMPLE NODE
	۲	SOIL/DIRT SAMPLE NODE
EA	٥	COLUMN
		CEILING TRUSSES
_		NON-LOAD-BEARING WALL
		LOAD-BEARING WALL
	(W)	WATER
	(L)	LIQUID
	(S)	SOIL

08-BLDG3-001-P1	
mg/kg (L)	
Χ	
- 0.086%	
ULFUR - 0.21%	
)E – 81 ppm	
DE - 2.5 ppm	
5 - 99%	
T - ND	
ENT	
0.811./16	

SAMPLE LOCATIONS	DESCRIPTION
08-EPR-001-F1,F2	SOIL/DIRT FOR
	F2 SAMPLE WAS COLLECTED IN
	TWO LOCATIONS TO PROVIDE
	AN ADEQUATE VOLUME.

Figure 2.4 SCHATZ PLANT SITE ANALYTICAL RESULTS BUILDING NO. 3 AND ELECTRICAL PANEL ROOM

3. INTERIM REMEDIAL ACTION RECOMMENDATIONS

This section discusses E & E's remedial action recommendations, which have been developed based on analytical results, regulatory requirements, previous discussions with the NYSDEC Project Officer regarding the remedial action, and a qualitative assessment of the risks of the wastes remaining at the site.

Upon approval of these recommendations (after discussion with NYSDEC), E & E is prepared to develop contract documents incorporating these remedial recommendations for public procurement of a responsible and qualified remedial contractor. The development of these documents is expected to follow the outline presented in the work plan and the public procurement requirements of NYSDEC.

3.1 GENERAL CLEANUP CRITERIA

The New York State Environmental Conservation Law (ECL) requires that waste site remedial actions be protective of human health and the environment, and comply with applicable standards, criteria, and guidelines (SCG). The various locations within the Schatz Plant site from which material, debris, and liquids are recommended to be extracted should meet applicable cleanup standards as determined either by ambient water quality standards and guidance documents on maximum soil concentration for exposure pathways or limits recommended or preestablished by NYSDEC.

Draft cleanup policy and guidelines were issued to interested parties by NYSDEC in October 1991 for state-wide review. E & E has used these initial standards as representative of worst case levels at which cost effective and feasible cleanup goals could be met for the site.

Where NYSDEC guidelines for cleanup of site contaminants were not established, E & E used EPA-accepted proposed standards (TSCA-PCBs) and RCRA corrective action goals (55FR Pg. 30798 dated 7/27/90) to establish cleanup levels that were obtainable, cost effective, and would be defendable for the site remediation.

3.2 IDENTIFICATION OF WASTE STREAMS

Based upon the HAZCAT and analytical data presented in Section 2, hazardous waste characteristics were reviewed and interpreted with respect to the New York State Environmental Conservation Law (ECL) 6NYCRR Part 371 for the Heat Treatment Building, Electrical Panel Room, and Building No. 3. Pursuant to NYSDEC Part 371 regulations, waste containing PCBs in excess of 500 ppm is considered hazardous.

As previously mentioned in Section 1.3, NYSDEC still recognizes the analytical procedure of EP Toxicity as a method for discovering a hazardous waste characteristic for an unknown waste stream. The TCLP was substituted because it covers a broader range of contaminants. In addition, most disposal firms are using data from TCLP analysis for determining treatment requirements for wastes.

Detailed below are the waste streams identified for the three designated locations within the Schatz Plant site. They are also summarized in Table 3-2 at the end of this section.

3.2.1 Site Wastes

Waste Stream No. 1 - PCB-Containing Electrical Capacitors (Heat Treatment Building)

Forty-nine large (45 to 60 pounds) deactivated electrical capacitors were scattered throughout the Heat Treatment Building. Manufacturer names and serial numbers were documented by E & E initially during the site survey. The manufacturers (i.e., General Electric) were called to confirm that the capacitors contained PCBs. Based on the information provided by the manufacturers, E & E has determined that the capacitors contain PCBs in excess of 500 ppm, making them both RCRA and TSCA wastes. The large capacitors contain solid bituminous type materials, which, in their present condition, would not sustain flame or cause an ignition problem. All of the capacitors seemed to be in good shape (no leaking casings) and could be properly containerized for transportation and disposal.

Waste Stream No. 2 - PCB-Contaminated Floor Solids (Electrical Panel Room)

In the Electrical Panel Room, soil/dirt solids from floor scrapings revealed PCBs after composite analysis at levels of 300 ppm and discrete analysis at levels of 26 ppm (see Table 2-14). The suggested area of cleanup is 140 feet by 40 feet, the entire room. In addition to PCBs, petroleum hydrocarbons were found in the sample at a concentration level between 60,000 and 80,000 ppm (see Table 2-14). The area is further suspect due to prior analysis per information of NYSDEC by the New York State Department of Health (NYSDOH) that found PCB levels in excess of 2,000 ppm in one sample from the floor.

3-2

02:084901 D3900-06/17/92-D2

Cadmium was also found in the composite sample and analyzed for TCLP at a level of 1.4 ppm (see Table 2-13), which is above the TCLP maximum concentration of contaminants for wastes containing heavy metals. Tetrachloroethylene (TCE) was also found at a level of 0.17 mg/L. This waste stream is a hazardous waste for two reasons: it is above 50 ppm for PCBs and it fails the TCLP test for cadmium and TCE. Under TCLP testing, this concentration exceeds the limit for nonwastewater concentration, which is 0.05 mg/L. Because TCLP limits are also used to establish treatment levels for TCLP wastes, pretreatment would be required prior to land disposal.

Waste Stream No. 3 - PCB-Contaminated Liquid, Pits 1 and 2 (Building No. 3)

In Building No. 3, the residual liquids and solids in Pits 1 and 2 on the first round of sampling contained 390 mg/kg and 40 mg/kg of PCBs, respectively (see Table 2-13). Along with PCBs, petroleum hydrocarbons were found at 80,000 ppm in Pit 2 (see Table 2-14), total cyanides at 2.0 and 2.5 ppm in Pits 1 and 2, respectively, and TCLP extracts for cadmium at 4.6 ppm in Pit 2.

The concentrations of cadmium are above TCLP values, making the wastes hazardous. The remaining constituents are the PCB liquids/solids above 50 ppm, but below the limit of 500 ppm, and cyanide, which is under 100 ppm for LDR.

The waste stream for the liquids in Pits 1 and 2 is hazardous for two reasons: it fails the TCLP test for cadmium and it is above 50 ppm for PCBs. If the waste is going to be land disposed, it should be pretreated to the cadmium standard of 1.0 ppm.

Waste Stream No. 4 - Solid PCB Debris, Pits 13, 14, 15, and 16 (Heat Treatment Building)

The initial analysis of the composite sample from these four small pits showed that they contained 330 mg/kg of PCBs, 54,000 mg/kg of petroleum hydrocarbons, and no cyanide.

Discrete analysis for PCBs in Pits 13, 14, 15, and 16 indicated PCBs present but below the stated quantitation limit in Pit 16, and concentrations of 6.7 mg/kg, 41 mg/kg, and 160 mg/kg in Pits 14, 13, and 15, respectively.

Discrete analysis showed the level of cyanides for Pit 15 was 9.5 ppm with no cyanides found in Pits 13, 14, and 16.

Cadmium was found in the TCLP extract at 0.25 ppm (mg/kg), which is below the EP Toxicity maximum concentration for NYSDEC and the LDR for wastes containing heavy metals.

The wastes in Pits 13 and 15 are determined to be hazardous because they exceed 50 ppm for PCBs. Pit 15 also has high levels of petroleum hydrocarbons. The wastes in Pits 14 and 16 are not hazardous because they are under the 50 ppm level for PCBs. The solid

materials do not contain any petroleum hydrocarbons, so the solids would be a nonregulated solid waste.

Due to the smallness of these pits and because these pits are suspicious for other PCB liquids, it would be cost effective to dispose of all the materials in the same manner. Bottom samples were also difficult to obtain from Pits 14 and 16.

Waste Stream No. 5 - Fire Brick/Solid Debris, Pits 2, 3, 4, 5, 9, 10, 11, and 12 (Heat Treatment Building)

No analytical information was obtained from the fire brick debris in Pits 2, 3, 4, 5, 9, 10, 11, and 12 in the Heat Treatment Building. However, based on site observations and previous work with similar materials, it is of E & E's opinion that the materials are regulated but are not a hazardous waste.

It is recommended in the waste stream identification section of this report and in Section 3.3 that all this debris be removed to above the liquid level (if encountered) in the pits and then disposed of at an authorized facility as a regulated industrial/commercial solid waste.

The balance of the solids will be removed after all free liquids have been removed for their respective treatment requirements.

Waste Stream No. 6A - Liquids Remaining in the Debris-Laden Quenching Pits 2, 3, 4, 5, 10, 11, and 12 (Heat Treatment Building)

Pits 2, 3, 4, 5, 10, 11, and 12 all have residual liquids below the remaining demolition debris mentioned in Waste Stream No. 5. The liquids remaining contain residue amounts of petroleum hydrocarbons from 1.4 to 1,900 ppm (see Tables 2-5 and 2-7), PCBs (Pit 5 at 0.8 μ g/L, and Pit 10 at 9.0 μ g/L), cyanides (Pits 3, 5, and 12 at 0.11 ppm) TCLP extract as cadmium (Pits 2 and 4 at 0.29 ppm) and TCLP-extract as barium (Pits 10 and 11 at 72 ppm) (see Tables 2-4 and 2-6).

The review of the individual constituent concentration in waste extract for barium (D005) and cadmium (D003) revealed that they are below the maximum concentration of 100 mg/L and 1 mg/L, respectively. The waste is nonhazardous because it does not exhibit characteristics above the EP Toxicity maximum concentration limits and is not a TCLP characteristic waste and subject to LDR. However, the cyanide concentration (0.11 mg/L) of this waste stream suggests that the waste may be classified as a hazardous waste from a nonspecific source (F010) because it fits a possible process description as a quenching bath sludge from oil baths from metal heat treating operations where cyanides are used. To be conservative, E & E has identified this waste stream as hazardous as treatment of the cyanide will be required prior to land disposal.

Waste Stream No. 6B - Liquids Only Remaining Pits 1, 6, 7, and 8 (Heat Treatment Building)

In Pits 1, 6, 7, and 8, only liquids remain to be cleaned up. The constituents of these pits include very low levels of PCBs and cyanides (PCBs at 1 μ g/L to 80 μ g/L, and cyanides at 0.11 ppm) (see Tables 2-4 and 2-5).

Barium is also present in the liquids in Pit 7 at 72 ppm. The maximum concentration for a characteristic of EP Toxicity is below the limit (100 mg/L) and not subject to LDR.

However, the cyanide concentration (0.11 mg/L) of this waste stream suggests that the waste may be classified as a hazardous waste from a nonspecific source (F010) because it fits a possible process description as a quenching bath sludge from oil baths from metal heat treating operations where cyanides are used. To be conservative, E & E has identified this waste stream as hazardous, as treatment of the cyanide will be required prior to land disposal.

Waste Stream No. 7 - Decon Water and Rinsate Solvent Resulting from Cleaning Each Pit or Surface for Clearance (All Buildings)

Water and a selected solvent will be used on site to decontaminate floor and pit surfaces to obtain clearance levels. The resultant water will be filtered, pumped out, and drummed for disposal.

The constituents of the wastes will be various mixes of all contaminants but are anticipated to be at low levels. The resultant liquid waste's suspected maximum concentrations will not trip the limits but are assumed to still be a restricted solid/liquid waste and offered for hazardous waste treatment by the remedial action and the disposal firm under the mixing rules. The mixing rules do not allow dilution of wastes as a result of mixing. Other materials in the wastes generated as a result of decon or rinsing are to be treated as the original analytical finding.

Waste Stream No. 8 - Steel Quenching Casing Pits 2, 4, and 12 (Heat Treatment Building)

The steel casings or quenching tanks in Pits 2, 4, and 12 are recommended to be removed and power washed to decontaminate all oil, debris, and contaminants and then to dispose of the waste in Waste Stream No. 7 as a regulated hazardous waste depending on the mixing rule. The quenching tanks are nonporous and can be cleaned to become a nonhazardous waste. Clearance wipe tests would be performed to allow the casings to be disposed of as nonregulated solid wastes.

The casings could then be shipped to a commercial/industrial solid waste facility for disposal or offered to recyclers with certification of decontamination for reuse or recycling.

3-5

Waste Stream 9 - Site Expendable Materials and Disposable Clothing (Both Buildings)

As a result of the cleaning and washing operations, standard personal protection, expendable materials, and disposable clothing will be expected to be used on site.

(strater uts

The resultant debris will be disposed of normally as nonhazardous regulated debris for land disposal. If concentrations of constituents rise in further analyses prior to disposal, the site expendables would be shipped as hazardous debris. The site generated debris with PCBs over 50 ppm will be shipped as a listed hazardous waste (B007). E & E has assumed that 50% of the SGD will be hazardous and the other 50% will be regulated nonhazardous.

Waste Stream 10 - Decon Water as a Result of Decontamination of Personnel and Equipment (Both Buildings)

of the operations. The resultant decon water will be drummed and analyzed for proper disposal. The major constituents will be water with about 1% to 5% solids. The concentrations of barium, cyanide, cadmium, PCBs, and petroleum hydrocarbons are expected to be very low. Water will be used on site to decontaminate personnel and equipment during all phases

This waste stream is expected to be nonhazardous but must be disposed of at an authorized facility.

3.3 FEASIBILITY REVIEW OF SURFACES CLEANING METHODS

For the areas in the Schatz Plant requiring remediation, the methods recommended for the removal of the site liquids, solids, debris, and surfaces may be unique to the site, but standard excavation, power washing, and high pressure vacuuming will most likely be used throughout the remediation. The conditions at the site will be unique, and special handling procedures and extra precautions will be necessary to protect the health and safety of the workers and the occupants of the adjoining buildings that are in close proximity to the active work area.

The recommended contaminant reduction techniques will be reviewed for each specific building and area.

The on-site decontamination techniques for surfaces and pits after debris removal considered for the remediation would fall into the following general categories:

- Vacuum extraction (with aqueous based solvents);
- High pressure flushing and washing; and

Dustless scabbing, scarifying or planning.

While all decontamination techniques have variations in different situations, depending on the uses and requirements of the cleanup, these methods will be evaluated individually to obtain a cost effective approach to cleanup at the Schatz Plant.

The criteria for cleanup must also be established by NYSDEC. Currently EPA states that PCB cleanup is required on areas as provided in 40 CFR 761.125, subpart G (see Table 3-3).

3.3.1 Vacuum Extraction (with Aqueous Based Solvents)

This approach uses aqueous based solvent or foams that are sprayed on surfaces where PCB materials are known to have been spilled previously. After the required waiting period with the foam on the contaminated surface, PCBs are vacuum extracted. Agitation or scrubbing of the surface prior to extraction increases the extraction efficiency. The PCB-laden foam is then removed by vacuuming the product from the surface. Excess residue is rinsed with water, which is also vacuumed from the surface. Highly contaminated surfaces or porous surfaces such as concrete may require multiple application with intermediate rinses to obtain the required level of decontamination. From information gathered, it seems these applications may result in higher initial concentrations of contaminants as they are extracted before the concentrations fall to acceptable cleanup levels. It would be anticipated that temporary diking or containment of areas be performed to limit the amounts of foam and water to be used.

Wastes would be containerized, sampled, and analyzed prior to disposal to provide accurate information on concentrations to the disposal facility for the appropriate disposal (landfilling or incineration).

Advantages to using vacuum extraction materials would be that no airborne dusts would be generated. Adequate containment control could be installed to effectively handle areas as needed. The product is environmentally safe to use and does have a medium BTU heating value (700 to 800 BTU/lb), making incineration less expensive. The ease in removal would have lower manpower requirements.

The disadvantage of vacuum extraction is the possibility of leach back over time. Also, multiple applications of material may be needed to achieve cleanup levels.

The order of magnitude cost per square foot (sf) for vacuum extraction on a typical 6,000 sf area containing concentrations between 50 and 500 ppm for PCBs would be:

Removal (6,000 sf) 4.25/sf	\$25,500
Transport of Wastes 0.38/sf	2,300
Disposal 1.60/sf	9,600
Total	37,400.00

3.3.2 High Pressure Flushing and Washing

This approach uses high pressure equipment with surfactant and solvents added to the water and then to scrub and wash down the area of contamination. This method usually requires diking or containing the area to collect all the rinsates and solids that result from the washing process.

The solvents and surfactant that are typically used are citrus-based turpenes which cause the release of the contaminated PCB materials from the surface. A wet vacuum pick-up is required with the vacuumed solids filtered and the water mixture reused.

The advantages of this process is a fast turnaround in confined cleanup areas such as subsurface pits; larger areas can also be cleaned effectively.

The disadvantages are that a large volume of liquid waste may be generated as a result of the use of water. Additional containment would be required on flat surfaces such as floors. The high potential of leach back is always a probability and it is even suggested that the use of pressure drives the PCBs back into the nonimpervious surface. On elevated contamination areas (above 3,000 ppm), difficulty is encountered in obtaining the 100 μ g/100 cm² clearance level by the EPA for indoor nonimpervious surfaces.

The order of magnitude costs per square foot for high pressure washing using solvents on a typical 6,000 sf area containing concentrations of between 50 and 500 ppm would be:

Removal (6,000 sf) 3.75/sf	\$22,500
Transportation 0.45/sf	2,700
Disposal 1.70/sf	10,200
Total	35,400

3.3.3 Dustless Scabbing, Scarifying, or Planing

This operation is the direct removal of contamination by mechanical removal of a specified depth of concrete off the floor surface. The considerations to be addressed before employing this method are the possibility of spreading contamination around through airborne

dust and determining what concrete depths should be removed to eliminate the majority of the contamination.

While improvements such as high pressure vacuum dust pickup and wetting or misting the area have been added to this method, containment controls should still be implemented to reduce the spread of area contaminants. This would include installing poly barriers on all external and internal openings, installing decontamination chambers, and providing ambient monitoring.

The advantages of scabbing, scarifying, and planing are in obtaining low clearance levels by exposing a clean surface. The area has a high possibility of being declassified if the clean surface is below the cleanup criteria pursuant to the cleanup wipe testing for PCB material.

The disadvantages of this method would be the need for added controls for contaminant dust spread, a heavier material for disposal, ambient air monitoring, unknown depth of reinforcing, and the need to decontaminate equipment.

The order of magnitude costs per cubic foot for scabbing, scarifying, and planing a depth to 0.5 inch on a typical 6,000 sf floor would be:

Removal - \$6.04/cf	\$7,700
Transportation - 6.25/cf	3,000
Disposal - 29.17/cf	14,000
Total	24,700

3.4 RECOMMENDATIONS FOR REMEDIATION, REMOVAL, TRANSPORTATION, AND DISPOSAL

The recommendations listed in this section have been developed based on the rationale of risk that remains at the Schatz Plant site.

Where cleanup goals are established such as those for PCBs, they have been utilized to measure performance of cleanup and as a means to monitor the cleanup.

In all cases within the locations of the scope of work, remediation and removal have been recommended by E & E.

Each waste stream is further developed below and in the matrix in Table 3-3.

3.4.1 Electrical Panel Room Floor (Waste Stream No. 2)

The recommendation for the removal of the hazardous wastes, PCBs, cadmium, petroleum hydrocarbons, and tetrachloroethylene at the electrical panel room is to perform concrete planing of the surface at incremental depths of 1/2 inch for a minimum of two passes or a total of 1-inch surface removal.

The reasons planing was selected are cost and the fact that the work could be performed quickly once containment and decontamination units are installed. For two passes on the entire area at 1/2 inch each, it should take two to four days. Pickup of the materials and cleaning will follow immediately behind as the process is performed. The entire schedule, except for waste pickup, should take two weeks for mobilization, prep, removal, cleaning, and demobilization.

The transport of the material will be in covered roll-off containers, which will be disposed of as a hazardous waste at a facility that accepts solid PCB debris.

With the assumptions that higher than 50 ppm levels of PCBs are expected and the area is to have restricted access, 40 CFR 761.125 requirements for PCB spill cleanup on low contact, indoor, nonimpervious solid surfaces are recommended. This allows that the area can be unrestricted if decontamination of the floor attains levels of 10 μ g/100 cm² after wipe testing. If 10 to 100 μ g/100 cm² is obtained, the floor must be encapsulated using epoxybased paints applied in two directions.

The cleanup levels shall be measured by standard wipe tests and using the EPA Office of Toxic Substances report "Field Manual for Grid Sampling of PCB Spill Sites to Verify Cleanup" (EPA 560/5-86-017, May 1986).

3.4.2 Building No. 3 - Pits 1 and 2 (Waste Stream No. 3)

The recommendation for the removal of the hazardous wastes, PCBs, cyanide, petroleum hydrocarbons, and cadmium liquids from the two pits located in Building No. 3 is a vacuum extraction technique with an aqueous based solvent.

The reason for this selection is that the pits are well defined with walls and can be cleaned as individual units. The residual PCB liquids would first be extracted and drummed for future incineration. The surface would then be sprayed with the solvent and repeatedly vacuumed until acceptable clearance is achieved for the established cleanup criteria. All liquids would be offered for disposal as B002 PCB waste if testing found contamination levels to be above 50 ppm and below 500 ppm. Except for waste disposal, the cleanup should take approximately one week. Mobilization and demobilization would be made a part of the overall project schedule.

The area is expected to be a restricted access area in the future, and pursuant to the requirements for PCB spill cleanup on a low contact, indoor, nonimpervious surface, is recommended to be decontaminated to a level of under 10 μ g/100 cm² to allow reuse and 10 to 100 μ g/100 cm² with an encapsulant. The cleanup levels shall be verified by the same standard wipe test as discussed for waste stream No. 2.

3.4.3 Heat Treatment Building

The recommendations for the various waste streams at the Heat Treatment Building consist of first removing solid waste (regulated-nonhazardous). Many waste streams have been characterized in the building by similarities of contaminants in each pit. In many cases, waste streams have been combined to reduce the number of specific items that would be generated as a result of the site remediation.

The recommended removal actions for each of the waste streams in the Heat Treatment Building are discussed below and are summarized in the matrix in Table 3-3.

Large PCB Capacitors (Waste Stream No. 1)

It is recommended that these large capacitors throughout the facility be collected and put in proper shipping containers, either drums or other approved containers. The capacitors will be disposed of either in a landfill or by incineration under the NYSDEC-designated B005 Hazardous Waste Code.

Removal of Solids from Pits 13, 14, 15, and 16 (Waste Stream No. 4)

Due to the small size of these pits and the economy in removal, it is recommended the solid materials from each pit be excavated and then drummed or containerized and offered for disposal as PCB solid wastes above 50 ppm. The excavated pits will then be solvent washed and wiped down or have the residual materials vacuum extracted. After wipe clearance checks, blocking would be installed in any remaining conduit holes or pipes by pouring a weak mix of concrete and finishing to grade.

Fire Brick/Solid Debris from Pits 2, 3, 4, 5, 9, 10, 11, and 12 (Waste Stream No. 5)

All solids and fire brick in the above-mentioned pits would be excavated, loaded into roll-off containers, and disposed of as regulated nonhazardous wastes at an acceptable commercial/industrial solid waste disposal facility.

The remaining liquids and steel quenching chambers are a part of other waste streams associated with the project.

Liquids Remaining in Pits 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12 (Waste Stream Nos. 6A and 6B)

After the demolition debris is removed from Pits 2, 3, 4, 5, 10, 11, and 12, the balance of the free liquids are recommended to be containerized with waste from Pits 1, 6, 7, and 8 for bulk transport as a regulated nonhazardous waste for waste water treatment.

The levels of petroleum hydrocarbons are low (1.4 to 1,900 ppm), meaning the heating values would not make it a candidate for incineration. All liquids would be removed as nonhazardous regulated materials. Each pit would then be washed down using an aqueous based solvent or detergent then vacuumed dry. The additional wash water generated would be combined with the initial liquids and disposed of in the same manner.

Since low level PCBs were in each pit, verification of cleanup guidelines would be by standard PCB wipe tests. Proposed guidance for cleanup of total cyanide has been available from EPA (55 FR30798 dated 7/27/90) and NYSDEC (October 1991 Cleanup Policy and Guidelines), and these were established for soil concentrations of 2,000 mg/kg. For ambient water quality standards, the limit for GA drinking water sources is 100 μ g/L. The initial liquids are 110,000 μ g/L. Since no liquids are to remain in the pits and no cleanup levels of cyanide are established for surfaces, only the cleanup guidelines for PCBs will apply.

Decon Water and Rinsate Solvents Resulting From Final Cleaning of Each Pit Surface for Clearance - All Buildings (Waste Stream No. 7)

The liquid wastes and solids generated as a result of cleaning all pits should not trip any of the limits for LDR and will be offered for hazardous waste treatment to the disposal firm under the mixing rules. It is recommended that the liquid waste be sampled and analyzed prior to disposal to have full knowledge of the constituents in the waste stream.

The waste stream is expected to be shipped as hazardous waste after confirmation analysis. The volume of waste will be such that a vacuum tank truck would be utilized for transport to an acceptable facility. The liquids, whether deemed hazardous or non-hazardous, should be treated using wastewater treatment technology.

A matrix of waste information is presented in Table 3-2.

Steel Quenching Casings (Pits 2, 4, and 12) - Heat Treatment Building (Waste Stream No. 8)

These steel quenching casings are recommended to be decontaminated using detergents and solvents used in cleaning the pits. No PCBs have been previously detected. After these casings are removed from the pits and cleaned, they will be visually inspected for debris. Once the approval is obtained, the casings will be shipped to a disposal facility or steel recycler as a nonhazardous solid material.

A matrix of waste information is presented in Table 3-2.

Figures 3-1 and 3-2 have been included to summarize the recommended remediation actions for all three locations at the Schatz Plant site.

3.4.4 Site Generated Debris (SGD)

Expendable Materials and Disposable Clothing - All Buildings (Waste Stream No. 9)

All disposable clothing and expendable materials used in the cleanup project will be disposed of as regulated nonhazardous or hazardous materials and would be drummed and landfilled. A matrix of waste information is presented in Table 3-2.

Decon Water Resulting from Decontamination of Personnel and Equipment - All Buildings (Waste Stream No. 10)

In all areas where decon of equipment and personnel is performed, the rinse water is expected to be treated as regulated nonhazardous waste. These liquid wastes would be drummed and recommended for wastewater treatment by the disposer.

A matrix of waste information is presented in Table 3-2.

3.5 SITE IMPROVEMENTS, ACCESS RESTRICTIONS, AND BUILDING SECURITY

To reiterate the goals for this project, E & E was to make recommendations for site improvements to handle the remediation of hazardous or toxic wastes at the Schatz Plant site. The site improvement recommendations included those items necessary to:

- Provide reasonable access to the facilities where wastes are to be removed.
- Provide access restrictions on those pits and surfaces to be secured for future inspections and studies; and
- Provide security improvements to the facility so that no unauthorized entry is gained by parties not involved with the project.

Improvements for access into the facility and access restrictions to the pits and surfaces, along with building security improvements are outlined on Figures 3-3 and 3-4.

The order of magnitude costs for the removal, transportation, and disposal along with the site improvements, access restrictions, and building security are discussed in Section 4.

	Table 3-1 CONCENTRATION LEVELS RESTRICTION AND NYS SCHATZ PLANT SITI	DEC PART 371	
Waste Contaminant	Land Disposal Restriction Limit	NYSDEC Identification of Hazardous Wastes	Schatz Maximum Concentration
Tetrachloroethylene	>0.7 mg/i ^a	d	0.17 ppm (mg/l)
Cadmium	1.0 mg/l ^a	1 mg/l	2.5 ppm
Barium	100 mg/l ^b	100 mg/l	72 ppm
Cyanide	> 1,000 mg/l ^c	8	0.11 ppm

- a 40 CFR 268.41(a)
- b 40 CFR 268.43
- C 40 CER 261.24
- d Constituents of an F001 nonspecific source waste.
- e Constituents of an F010 nonspecific source waste.

Source: Ecology and Environment Engineering, P.C. 1992.

	Table 3-2							
			ENTIFICATION OF WAS					
Waste Stream Number and Item	Locations ^a	Matrix/Phase	Constituents	Contaminant Levels (units as noted)	NYSDEC Maximum Concentration Exceedance or Land Disposal Restrictions (LDR)	Recommended Waste Hazard Code	Disposal Options ^b	
No. 1 - Capacitors (Large)	НТВ	Solids	PCBs	NA	No	B005	Incineration or landfilling	
No. 2 - Solid Phase Floor	EPR	Solids	PCBs Petroleum Hydrocarbons Cadmium Tetrachloroethylene	26 ppm 60,000-80,000 ppm 1.4 ppm 0.17 mg/L	Yes (tetrachloroethylene)	B007	Landfilling or Incineration	
No. 3 - Pits 1 and 2	B3	Liquids	PCBs Petroleum Hydrocarbons Total Cyanides Cadmium	110-390 ppm 80,000 ppm 2.0-2.5 ppm 4.6 ppm	Yes	B002 or D006	Incineration or Landfilling	
No. 4 - Pit 13	нтв	Solids	PCBs Petroleum Hydrocarbons	41 ppm 54,000 ppm	Yes	B007	Landfilling or Incineration	
No. 4 - Pit 14	НТВ	Solids	PCBs Petroleum Hydrocarbons	6.7 ppm 54,000 ppm	No	B007	Landfilling or Incineration	
No. 4 - Pit 15	НТВ	Solids	PCBs Petroleum Hydrocarbons Total Cyanides Cadmium	160 ppm 69,000 ppm 9.5 ppm 0.25 ppm	Yes	B007	Incineration or Landfilling	

Key at end of table.

12:084901_D3900-06/17/92-D2

3-16

Page 1 of 4

Page 2 of 4

			Tab	Table 3-2			
		IDE	IDENTIFICATION OF WASTE STREAMS - GENERAL SITE LAND DISPOSAL RESTRICTIONS AND DISPOSAL OPTIONS SCHATZ PLANT	ICATION OF WASTE STREAMS - GENERAL SITE POSAL RESTRICTIONS AND DISPOSAL OPTION SCHATZ PLANT	RAL SITE . OPTIONS		
Waste Stream Number and Item	Locations ^a	Metrix/Phase	Constituents	Contaminant Leveis (units as noted)	NYSDEC Maximum Concentration Exceedance or Lend Disposal Restrictions (LDR)	Recommended Waste Hazard Code	Disposal Options ^b
No. 4 - Pit 16	НТВ	Solids	PCBs Petroleum Hydrocarbons	330 ppm 54,000 ppm	Yes	B007	Incineration or Landfilling
No. 5 - Pits 2, 3, 4, 5, 9, 10, 11, and 12	НТВ	Solids	Fire bricks Miscellaneous Solids	100%	No	None	Regulated solid waste landfill
No. 6A - Pits 10 and 11	НТВ	Liquids	Barium PCBs Petroleum Hydrocarbons	72 ppm 9.0 μg/L 6.1-1,900 ppm	No	None	Regulated solid waste treatment
No. 6A - Pits 3, 5, and 12	НТВ	Liquids	Cyanides Petroleum Hydrocarbons PCBs	0.11 ppm 1.4-9.1 ppm 0.8 <i>μ</i> g/L	N	F010	Wastewater treatment or Incinerator
No. 6A - Pits 2, 4	НТВ	Liquids	Cadmium PCBs Petroleum Hydrocarbons	0.29 ppm ND Present	Ŷ	None	Wastewater treatment or Incinerator
No. 6B - Pits 1, 6, and 8	НТВ	Liquids	Total Cyanides PCBs Petroleum Hydrocarbons	0.11 ppm 1-80 µg/L 6-1,400 ppm	Ŷ	F010	Wastewater treatment or Incinerator

Key at end of table. 02:084901_D3900-06/17/82-D2

.

ecology and environment

			ENTIFICATION OF WAS		···· ·= +·· -		
Waste Stream Number and Item	Locations ^a	Matrix/Phase	Constituents	Contaminant Levels (units as noted)	NYSDEC Maximum Concentration Exceedance or Land Disposal Restrictions (LDR)	Recommended Waste Hazard Code	Disposal Options ^b
No. 6B - Pit 7	НТВ	Liquids	Barium PCBs Petroleum Hydrocarbons	72 ppm ND 600 ppm	No	None	Wastewater treatment or Incinerator
No. 7 - Decon Liquids - Cleaning Pits and Floors	HTB B3 EPR	Liquids	Decon Barium Cyanide PCBs Petroleum Hydrocarbons Cadmium	72 ppm 0.11 ppm 50 ppm 1,000 ppm 0.29 ppm	Depends on mixing rules	F010 or B002	Wastewater treatment
No. 8 - Quenching Basins	нтв	Solid	Steel casing quenching basin	Visual after cleaning	No	None	Solid waste facility or recycler
No. 9 - Expendable equipment and clothing	HTB B3 EPR	Solids	PCBs	0-50 ppm	No	None	Landfill

Key at end of table.

Page 4 of 4

			ENTIFICATION OF WAS D DISPOSAL RESTRICT				
Waste Stream Number and Item	Locations ^a	Matrix/Phase	Constituents	Contaminant Levels (units as noted)	NYSDEC Maximum Concentration Exceedance or Land Disposal Restrictions (LDR)	Recommended Waste Hazard Code	Disposal Options ^b
No. 10 - Decon Liquids Personnel Equipment	HTB B3 EPR	Liquids	Decon Water Barium Cyanide PCBs Petroleum Hydrocarbons Cadmium	Low Levels PCBs	Mixing Rule requirements	F010 or B005	Wastewater treatment

٠

a Locations: EPR = Electrical Panel Room, B3 = Building 3, HTB = Heat Treatment Building.
 b Final analysis needs to be performed.

Key:

NA = Not analyzed.

ND = Not detected.

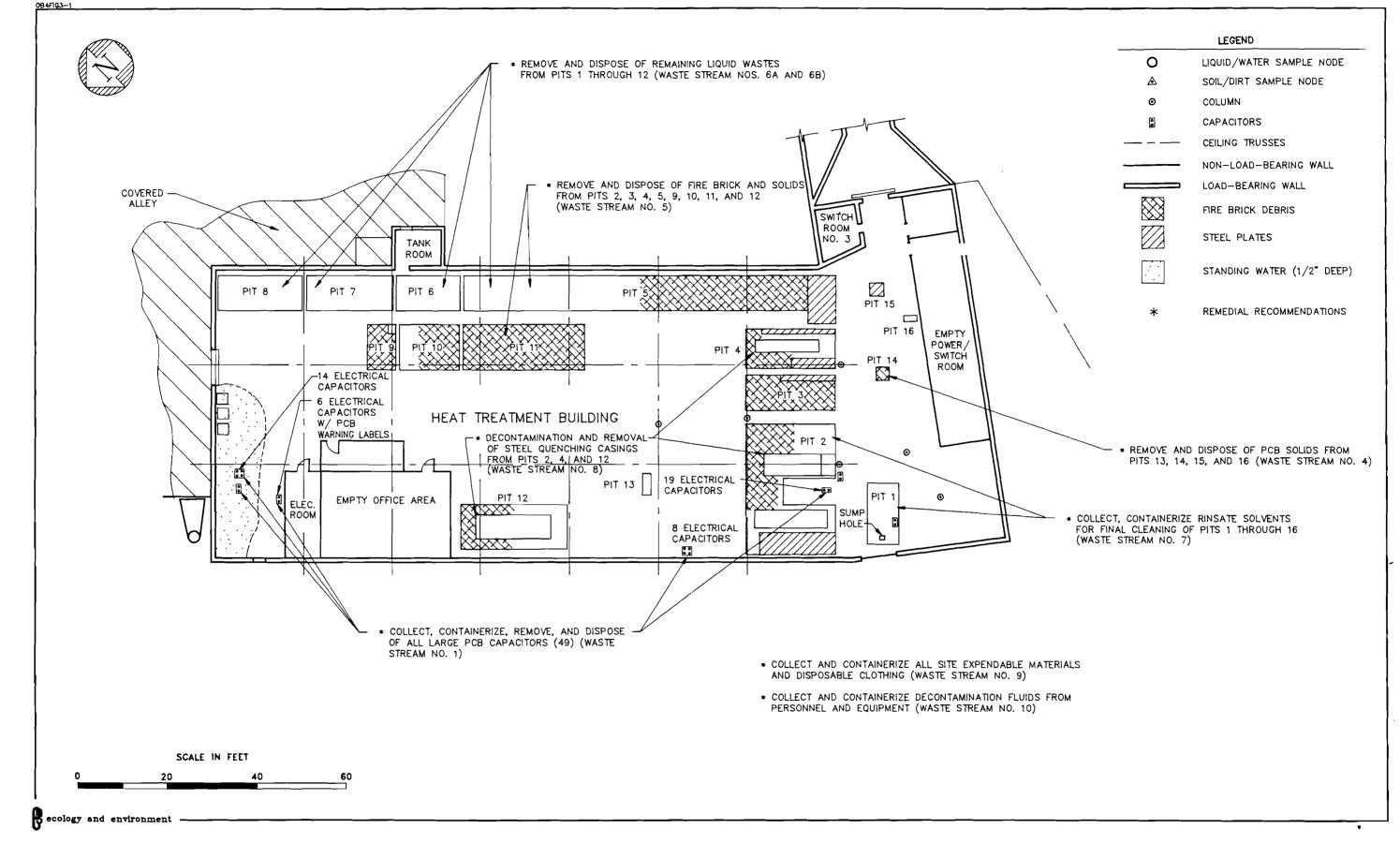
Source: Ecology and Environment Engineering, P.C. 1992.

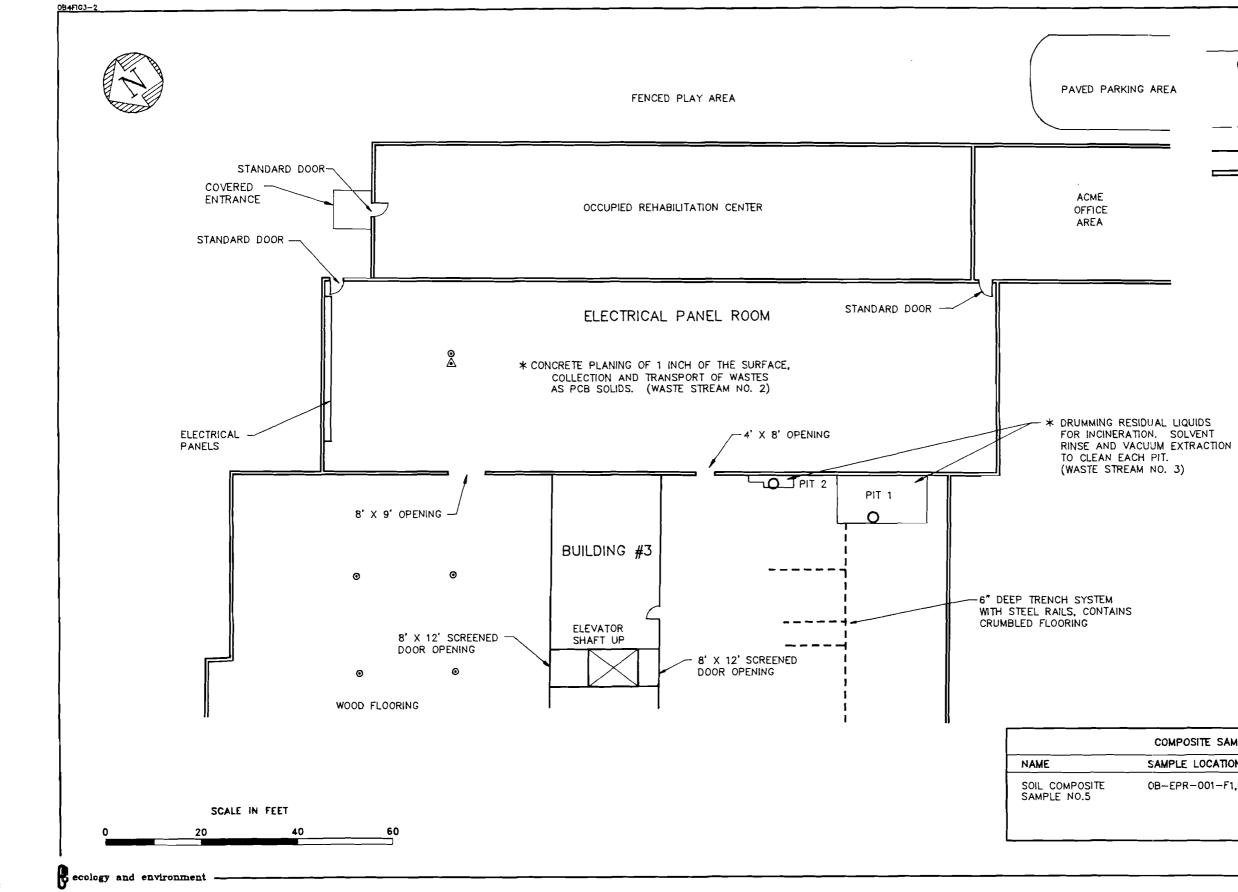
		Table 3-3		
<u> </u>	MATRI	C OF REMOVAL, TRANSPORT, AND DISP SCHATZ PLANT SITE		DNS
Location	Waste Stream	Removal Recommendations	Transport	Disposal
Electrical Panel Room	Solids (Waste Stream No. 2)	 Install containment and decontamination controls. Plane concrete surface up to 1 inch depending on visual surface contamination. Place wastes in covered roll-off dumpster. High-pressure vacuum residual materials. Standard wipe tests for clearance. 	30-cubic yard covered rolloff boxes	Disposal facilities able to accept NYS B007-PCB solid wastes other than liquids. Solids to be landfilled.
Building No. 3	Liquids (Waste Stream No. 3)	 Temporary control installed for decontamination and collection of liquids. Vacuum or scrape residual oils out of pits and place in drums. Apply layer(s) of aqueous solvents and then vacuum material. Reapply materials as standard wipe tests provide information on clearance. Sample and analyze liquids for disposal. 	PCB liquids and solvent placed in drums for transport	Liquids offered for incineration. Restricted PCB liquids over 50 ppm and under 500 ppm (B002) or cadmium wastes as D006.
Heat Treatment Building	Large PCB Capacitors (Waste Stream No. 1)	 Collect all large capacitors and place in drums or containerize. 	Tractor trailer	Landfilling or incineration as a restricted TSCA waste
Heat Treatment Building	PCB- Contaminated Solids, Pits 13, 14, 15, and 16 (Waste Stream No. 4)	 Excavate all solid wastes from the small pits. Containerize all wastes for shipment. Detergent or solvent wash the pits. Perform standard wipe tests for clearance criteria. Containerize all rinsate used. 	Drums and containers by truck transport	Solids for landfilling. Liquids below 500 ppm for landfilling. Liquids above 500 ppm for incineration (B007 wastes).

.

	MATRIX	X OF REMOVAL, TRANSPORT, AND DISP SCHATZ PLANT SIT		NS
Location	Waste Stream	Removal Recommendations	Transport	Disposal
Heat Treatment Building	Fire brick and Solid Debris Pits 2, 3, 4, 5, 9, 10, 11, and 12 (Waste Stream No. 5)	 Excavate all solid materials in the pits. Load in roll-off containers. 	Covered roll-off containers	Disposal at an approved industrial/commercial solid waste facility. Regulated nonhazardous waste.
Heat Treatment Building	Liquids in pits 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 (Waste Stream No. 6)	 Pump or vacuum remaining liquids from pits. Prepare for decon using aqueous solvents or detergents. 	Drum or containerize, or, if large enough volume, use tank truck	Either by wastewater treatment or incineration (if high enough BTU heating values). Wastes are regulated and nonhazardous.
All Buildings	Decon water and rinsates solvents as a result of final cleaning each pit of surface for clearance (Waste Stream No. 7)	 After cleaning all surfaces and pits, collect and filter all rinsate into approved containers. Sample liquids for accurate profile limits. 	Drum, container, or tank transport	Decon liquids below or above restricted levels to be wastewater treated.
Heat Treatment Building	Pits 2, 4, and 12 steel quenching casings (Waste Stream No. 8)	 Remove waste from quenching pits. Decon surfaces. Perform decontamination clearance testing. 	Tractor trailer and flat bed	Solid waste facility or scrap recycler
All Buildings	Site expendable materials and disposables (Waste Stream	 Pack all site expendable materials and disposable clothing in approved containers or drums. 	Drums or approved containers by tractor trailer	Materials to be landfilled. Wastes are regulated and nonhazardous wastes

•

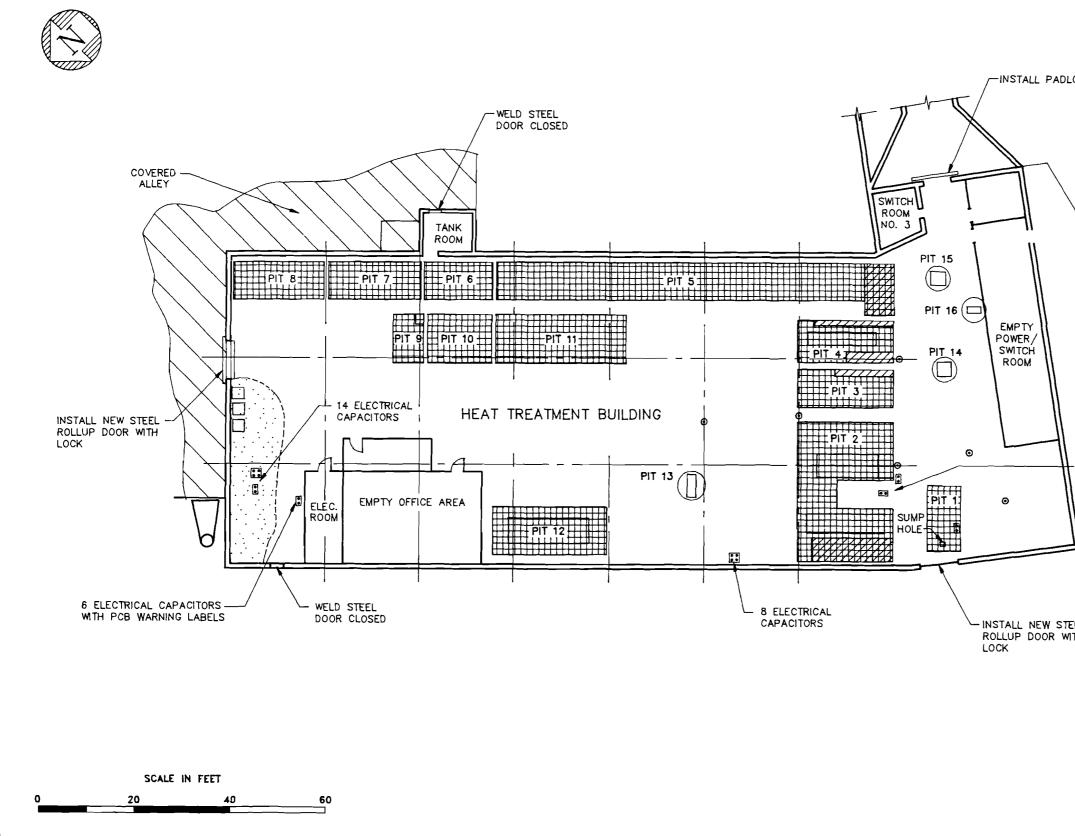

Table 3-3


No. 9)

Page 3 of 3

		Table 3-3		
	MATRIX	K OF REMOVAL, TRANSPORT, AND DI SCHATZ PLANT S		ONS
Location	Waste Stream	Removal Recommendations	Transport	Disposal
All Buildings	Decon waters - decontamination of personnel and equipment (Waste Stream No. 10)	Decon waters to be collected and containerized, liquids to be sampled and analyzed for typical contaminants.	Drummed as liquids for tractor trailer transport	Liquids below or above restricted levels to be wastewater treated.

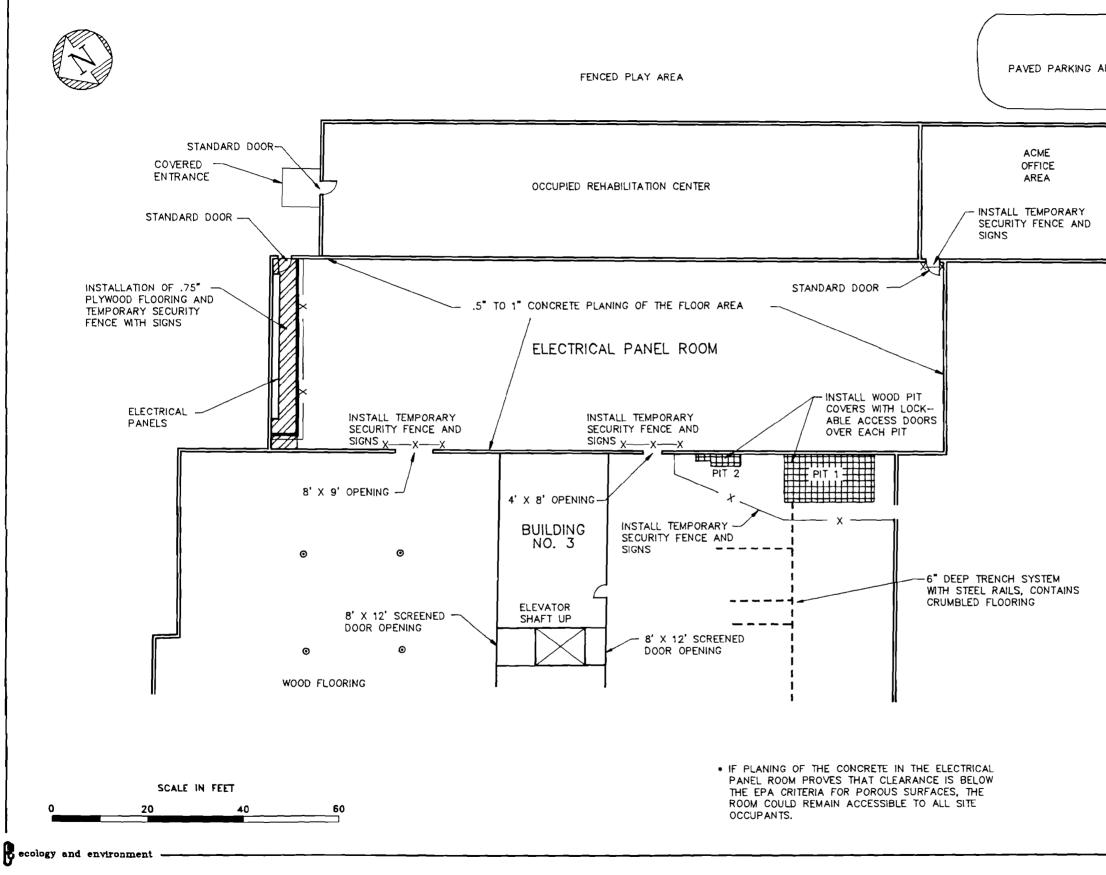
Source: Ecology and Environment Engineering, P.C. 1992.


_		LEGEND
	0	LIQUID/WATER SAMPLE NODE
EA	۸	SOIL/DIRT SAMPLE NODE
	٥	COLUMN
_		CEILING TRUSSES
		NON-LOAD-BEARING WALL
		LOAD-BEARING WALL
	*	REMEDIAL RECOMMENDATIONS

SAMPLE LOCATIONS	DESCRIPTION
0B-EPR-001-F1,F2	SOIL/DIRT FOR
	F2 SAMPLE WAS COLLECTED IN
	TWO LOCATIONS TO PROVIDE
	AN ADEQUATE VOLUME.

Figure 3.2 SCHATZ PLANT SITE BUILDING NO. 3 AND ELECTRICAL PANEL ROOM REMEDIAL RECOMMENDATIONS

٠



ecology and environment

	_
©	COLUMN
	CAPACITORS
	- CEILING TRUSSES
• <u> </u>	- NON-LOAD-BEARING WALL
	LOAD-BEARING WALL
\square	STEEL PLATES
	STANDING WATER (1/2" DEEP)
	WOOD PIT COVERS WITH IN- SPECTION DOORS AND LOCKS
	SMALL PITS FILLED WITH WEAK MIX OF CONCRETE TO GRADE AFTER CLEANING.
ECTRICAL CAPACITO	RS

Figure 3.3 SCHATZ PLANT SITE ACCESS RESTRICTIONS AND SECURITY IMPROVEMENTS HEAT TREATMENT BUILDING

LEGEND

	٥	COLUMN
AREA		CEILING TRUSSES
		NON-LOAD-BEARING WALL
		LOAD-BEARING WALL
		PLYWOOD FLOOR COVER
		WOOD PIT COVER
	X	TEMPORARY FENCE

Figure 3.4 SCHATZ PLANT SITE ACCESS RESTRICTIONS AND SECURITY IMPROVEMENTS BUILDING NO.3 AND ELECTRICAL PANEL ROOM

4. ORDER OF MAGNITUDE COST ESTIMATE AND PROJECT SCHEDULE

4.1 ORDER OF MAGNITUDE COST ESTIMATE

E & E has developed an order of magnitude cost estimate for the Schatz Plant site using assumptions for the hazardous and nonhazardous waste site remediation, transport, disposal, and temporary building improvements at both buildings, which encompass the three remediation areas. Table 4-1 contains the cost estimate for the initial remedial construction costs, transportation, disposal, and removal costs based on Means Building Data, vendor information, and costs related to previous work performed by E & E. Table 4-2 contains E & E's order of magnitude cost estimate for construction oversight and health and safety monitoring for the Schatz Plant remediation. Table 4-3 is a summary of all the construction work efforts that are suggested for the Schatz site.

4.1.1 Assumptions Related to Initial Remedial Order of Magnitude Construction Costs

General

- All areas will be addressed as one project with no breakout of individual areas;
- The project will be bid publicly; and
- Construction oversight will be required for the entire remediation period.

Electrical Panel Room/Building No. 3

- Due to the dark conditions encountered in the Electrical Panel Room and Building No. 3, construction lighting will be required during the cleanup.
- The floor planing work in the Electrical Panel Room will require setup of a temporary poly containment system on the walls, openings, and through wall penetrations to reduce particulate contamination. A

decontamination unit will be set up for personnel as well as equipment and load out decontamination.

- Ambient and personal air monitoring will be performed during active operation.
- Final wipe down and cleaning of all exposed surfaces will be performed. Standard wipe tests will be used for clearance.
- E & E recommends wipe tests for area clearance below $10 \mu g/100 \text{ cm}^2$. If above that level, encapsulating two-layer epoxy paint will be applied to the floor surface. If the level is below $10 \mu g/100 \text{ cm}^2$, the area can be accepted as clean and opened for general use instead of installing barriers.
- The clearance criteria for ambient air must not exceed the action guideline criteria (AGC). The AGC and action levels for the site contaminants are listed in Table 4-5. Due to the current low levels of contaminants, it is assumed that with proper precautions (wetting and surfacants) that no levels should be exceeded during remediation.
- Special precautions such as dust and watertight enclosure are needed around the switch gear in the work area.
- Personnel protection will be at modified Level C with Power Air Purifying Respirators (PAPR's) and dust cartridges.
- The Electrical Panel Room and Building No. 3 will need to have limited access during on-site efforts. This would mean sealing all external doors that access both facilities and designating a single point of entry/exit, assumed to be the west doorway opening.
- Daily 24-hour and weekend security will be set up in Building No. 3 and the Electrical Panel Room during remediation.
- Due to the low levels of PCBs in the Electrical Panel Room, floor planing will be performed on 1/2-inch lifts, with wipe testing to be performed on each lift. Two 1/2-inch planing lifts are assumed to be performed in order to provide clearance of the area.
- The selected solvent materials to be utilized for cleaning pits 1 and 2 in Building No. 3 will need to be applied a minimum of three times and vacuum extracted. Clearance initially will be by wipe testing. Performance wipe testing should be performed after three months to confirm clearance limits. Assumptions are that the clearance levels will be maintained due to the initial low levels of PCBs.
- Noise and vibration for floor planing may be a problem and the operation may need to be performed on the off-shift or weekend.
- Real time action levels would be set up with the use of a mini ram to observe contaminant levels to allow reduction in contractor operations if high levels are encountered.

- Flooring rebar is 2 inches or more below the original surface and will not be encountered. Coring to find the actual rebar depth will be conducted.
- Wooden covers with access hatches will be placed on Pits 1 and 2.
- Disposal of wastes will be within 300 miles of the site.
- Disposal costs include all state and local taxes and use fees.
- Due to the nature of a conceptual estimate, a 15% contingency has been added to the overall project cost estimate.
- Bonds and insurance are required for the project because it will be bid publicly. Bonds are assumed to cost 3% of the project and insurance at 5%.
- NYSDOL prevailing wage project.
- Decon, security, and lighting will be set up to cover both locations for remediation (Building No. 3 and Electrical Panel Room).
- General mobilization and demobilization costs include site trailers, sanitary service, phone and utilities, and mobilization and demobilization of all site equipment for the remediation of the three buildings.

Heat Treatment Building

- Site improvements will take place prior to beginning any remediation at the facility.
- For the solid debris in the pits, 2,000 lbs equals 1 cy.
- The liquids from the pits will be wastewater treated. All sample results indicate low hazard except petroleum hydrocarbons.
- Pits 3 and 11 are each 5 feet deep.
- Wooden covers with inspection hatches will be installed over all pits. The hatches will have clasps and locks.
- All access will be made through the southwest door for Heat Treatment Building remediation.
- Detergent or solvent wash will be required on all pits to be cleaned.
- All pits will be wipe tested to obtain clearance of 10 μ g/cm² or less.
- The facility will be vacuumed clean after completion of pit cleaning and after pit cover installation.

4.1.2 Assumptions Related to Construction Oversight Services

- Four meetings for preconstruction and progress will be performed prior to mobilization, and one construction manager and one health and safety person will be provided to support.
- Once the project mobilizes, a two-person field staff will be on site fulltime for construction and half-time for health and safety until project completion or 20 weeks.
- Sampling will be performed by staff on site, and analysis will be performed at an accredited lab. Sampling will be for airborne contaminants and wipes on surfaces for clearance.
- Travel to be on a two-week basis only.
- Per diem for Poughkeepsie applies at \$94/day.
- Assume year 2 contract rate.

4.2 PROJECT SCHEDULE

The remediation project schedule was developed in conjunction with the order of magnitude cost estimate. The schedule does not take into account any seasonal weather logistical problems because the time of bidding and remediation is unknown. Associated with the project schedule is a graph overlaying the schedule of estimated expenditures per month until completion. The graph indicates an average of 20% cost expenditures per month until disposal occurs in month 5. The schedule is presented in Figure 4-1.

Page 1 of 8

		Table	4-1						
	INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE								
				co	ST ESTIMATE WORK SHEET				
	C			DATE: 4-30-92	SHEET 1 OF 8				
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room	- <u></u>						
LOCAT	ION: Poughkeepsie, New York								
OWNE				- -					
ESTIM	ATED BY: MGS	CHECKED BY:	r	APPROVED BY:					
ITEM NO.	DESCRIPTION			UNIT PRICE MAT & LAB.					
A	Electrical Panel Room								
1	Special Conditions								
	Setup Containment	360	SF	5.00/sf	1,800.00				
	Setup decon unit for personnel	1	LS	200.00	200.00				
	Setup of decon unit for equipment	1	LS	500.00	500.00				
	Special enclosures for electrical panel switch gear, protection security	1	LS	300.00	300.00				
2	Exploration core drilling for depth of concrete and rebar.	1	LS	150.00	150.00				
3	Installation of temporary intrinsic lights	1	LS	500.00	500.00				
4	Decon support steam cleaning or water setup for decontamination	1	LS	300.00	300.00				
5	1" planing of concrete surface at 1/2" lifts, area - 140 x 40	470	CF	16.00/cf	7,520.00				
6	Loading of planing debris for disposal	34	Tons	50.00/ton	1,700.00				
7	Decon of equipment	1	LS	1,000.00	1,000.00				
8	Drumming of ninsate/decon waters	1	LS	300.00	300.00				
9	Drumming of expendable clothing and site-derived wastes	1	LS	300.00	300.00				
10	Transportation of planing wastes 3,50 mile x 300 miles	4	Truck	1,050.00/truck	4,200.00				

Page 2 of 8

		Table	4-1					
INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE								
				co	ST ESTIMATE WORK SHEET			
				DATE: 4-30-92	SHEET 2 OF 8			
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room						
LOCAT	ION: Poughkeepsie, New York							
OWNE	R: NYSDEC							
ESTIM	ATED BY: MGS	CHECKED BY:	I	APPROVED BY:				
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE MAT & LAB.	ESTIMATED AMOUNT			
11	Transportation of decon waters	10	Drums	50.00/drum	500.00			
12	Transportation of site-derived wastes	10	Drums	50.00/drum	500.00			
13	Disposal of planing waste	34	Tons	300.00/ton	10,200.00			
14	Disposal of decon water	10	Drums	180.00/drum	1,800.00			
15	Disposal of site-derived wastes	10	Drums	180.00/drum	1,800.00			
16	Remedial improvements				_			
	Electrical panel flooring 3/4" ply	160	SF	1.50/sf	240.00			
	Security fencing and signs	60	LF	8.00/lf	480.00			
	New hasps and locks	2	88	1 20.00	240.00			
	Electrical Panel Room Subtotal				35,530.00			
			I					
B	Building No. 3 - Pits 1 and 2							
1	Removal of residual liquids in Pit No. 1, 19 x 10 foot	20	Gallons	15.00/gal	300.00			
2	Removal of residual liquids in Pit No. 2	5	Gallons	15.00/gal	75.00			
3	Vacuum extraction, Pit 1 (small area)	420	SF	6.25/sf	2,625.00			
4	Vacuum extraction, Pit 2 (small area)	180	SF	6.25/sf	1,125.00			
5	Transportation of drummed liquid wastes - PCB	10	Drums	150.00/drum	1,500.00			
6	Transportation of site-derived wastes	5	Drums	50.00/drum	250.00			

Key at end of table.

Page 3 of 8

	Table 4-1								
	INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE								
	COST ESTIMATE WORK SHEET								
	DATE: 4-30-92 SHEET 3 OF 8								
PROJE	CT TITLE: Shetz Plant Site - Electr	ical Panel Room							
LOCAT	ION: Poughkeepsie, New York	. <u> </u>							
OWNE	R: NYSDEC								
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:					
ITEM NO.				UNIT PRICE MAT & LAB.	ESTIMATED AMOUNT				
7	Disposal drummed liquid wastes - PCB	10	Drums	300.00/drum	3,000.00				
8	Disposal of site-derived wastes	5	Drums	200.00/drum	1,000.00				
9	Remedial Improvements								
	Fencing and signs	50	LF	8.00/lf	400.00				
_	Pit covers and access covers	220	SF	8.50/sf	1,870.00				
	Hasps and locks	2	EA	50.00	100.00				
	Building No. 3 Subtotal				12,245.00				
c	Heat Treatment Building								
1	Building Improvements								
	8 x 10 rollup doors and lock	80	SF	8.25/sf	660.00				
	8 x 12 rollup doors and lock	96	SF	8.50/sf	812.00				
	Install new lock - east door	1	EA	100.00	100.00				
	Weld close existing doors	2	EA	175.00	350.00				
	Portable scale	3	Months	700.00/mo	2,100.00				
	Install temp traffic plate, Pit 1	91	SF	5.00/sf	455.00				
	Setup decon - personnel	1	LS	300.00					
	Setup decon - equipment	1	LS	500.00	500.00				
	Security	1	LS	5,000/ls	5,000.00				
2	Installation of temporary power and lighting	1	LS	1,800/ls	1,800.00				
S	Loading and drumming PCB wastes Pits 13, 14, 15, and 16	12	Drums	100.00/Drum	1,200.00				

Key at end of table. 02:084567_05506306717/92-D2

Page 4 of 8

		Table	4-1		
	INITIAL REMEDIAL OF	RDER OF MAG SCHATZ PL		STRUCTION COST	S
				co	ST ESTIMATE WORK SHEET
				DATE: 4-30-92	SHEET 4 OF 8
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room			
LOCAT	[ION: Poughkeepsie, New York				
OWNE	R: NYSDEC	r			
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:	
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE MAT & LAB.	ESTIMATED AMOUNT
4	Washing and drumming rinsate on Pits 13, 14, 15, and 16 for Disposal	3	Drums	100.00/Drum	300.00
5	Fill Pits 13, 14, 15, and 16 with concrete slurry and vibrate	5	CY	150.00/cy	750.00
6	Collect and containerize PCB capacitors, 45-60 pounds each	49	EA	25.00/ea	1,225.00
7	Removal of loading of solids and fire brick debris from Pits 2, 3, 4, 5, 9, 10, 11, and 12	_			
	Pit No. 2	40	Tons		
	Pit No. 3	30	Tons		
	Pit No. 4	20	Tons		
	Pit No. 5	70	Tons		
1	Pit No. 9	20	Tons	_	
	Pit No. 10	30	Tons		
	Pit No. 11	60	Tons		
	Pit No. 12	30	Tons		
	Debris Total	300	Tons	\$170.00/ton	51,000.00
8	Transport of on-site solids and fire brick debris from Pits 2, 3, 4, 5, 9, 10, 11, and 12. Fifteen tons/rolloff	20	Trucks	\$250.00/truck	5,000.00
9	Disposal of on-site solids and fire brick debris from Pits 2, 3, 4, 5, 9, 10, 11, and 12	300	Tons	185.00/ton	55,500.00

Page 5 of 8

Table 4-1								
	INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE							
COST ESTIMATE WORK SHEET								
	DATE: 4-30-92 SHEET 5 OF 8							
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room						
LOCAT	CION: Poughkeepsie, New York							
OWNE	R: NYSDEC			_	•			
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:				
ITEM NO.	DESCRIPTION			UNIT PRICE MAT & LAB.				
10	Removal of liquids and sludge remaining in Pits No. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12							
	Pit No. 1	150	Gallons					
	Pit No. 2	1,200	Gallons					
	Pit No. 3	200	Gallons					
	Pit No. 4	4,000	Gallons					
	Pit No. 5	4,800	Gallons					
	Pit No. 6	800	Gallons					
	Pit No. 7	1,600	Gallons					
	Pit No. 8	3,200	Gallons					
	Pit No. 10	1,200	Gallons					
	Pit No. 11	400	Gallons					
	Pit No. 12	9,600	Gallons					
	Totals	27,150	Gallons	.60/gal	16,290.00			
11	Cleaning and washing of all large pits within the Building 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12							
	Pit No. 1	273	CF					
	Pit No. 2	1,584	CF					
	Pit No. 3	800	CF					
	Pit No. 4	900	CF					
	Pit No. 5	2,980	CF					
	Pit No. 6	560	CF					

Key at end of table.

02:08480//C03900-06/17/92-D2

Page 6 of 8

		Table	4-1		
	INITIAL REMEDIAL OI	RDER OF MAG		ISTRUCTION COST	s
<u> </u>					ST ESTIMATE WORK SHEET
				DATE: 4-30-92	SHEET 6 OF 8
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room			
LOCAT	ION: Poughkeepsie, New York				
OWNE	R: NYSDEC				
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:	-
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE MAT & LAB.	
	Pit No. 7	665	CF		
	Pit No. 8	532	CF		
	Pit No. 9	350	CF		
	Pit No. 10	650	CF		
	Pit No. 11	1,350	CF		
	Pit No. 12	2,400	CF		
	Total	13,044	CF	2.25/cf	29,349.00
12	Transportation rinsate liquid generated for pit cleaning	5,000	Gallons	.20/gal	1,000.00
13	Disposal of rinsate from pit cleaning	5,000	Gallons	.40/gal	2,000.00
14	Cleaning, removal and decontamination of steel casings 2, 4, and 12	3	EA	500.00/ea	1,500.00
15	Installation of plywood covers on all pits/hatch openings and locks				
	Pit No. 1	91	SF		
	Pit No. 2	528	SF		
	Pit No 3	160	SF		
	Pit No. 4	180	SF		
	Pit No. 5	596	SF		
	Pit No. 6	112	SF		
	Pit No. 7	133_	SF		
	Pit No. 8	133	SF		
	Pit No. 9	70	SF		

Key at end of table.

Page 7 of 8

.

	Table 4-1							
	INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE							
	COST ESTIMATE WORK SHEET							
		<u> </u>		DATE: 4-30-92	SHEET 7 OF 8			
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room						
LOCAT	CION: Poughkeepsie, New York	-						
OWNE	R: NYSDEC							
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:				
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE MAT & LAB.	ESTIMATED AMOUNT			
	Pit No. 10	130	SF					
	Pit No. 11	270	SF					
	Pit No. 12	240	SF					
	Total	2,643	SF	6.25/sf	16,520.00			
16	Transportation and Disposal of site-derived wastes	15	Drums	230.00/drum	3,450.00			
17	Transport and dispose of PCB capacitors	1	Container	4,500.00	4,500.00			
18	Transport and dispose of solid/liquid wastes Pits 13, 14, 15, and 16	15	Drum	333.00/drum	5,000.00			
19	Remove decon and temporary equipment	1	LS	4,000.00	4,000.00			
	Subtotal				210,661.00			
	Subtotal Items A, B, & C				258,436.00			
	Mobilization/Demobilization 5%				12,922.00			
	Bonds 3% 7,753.0							
	Insurance 5%				12,922.00			
	Subtotal				292,031.00			

Page 8 of 8

	Table 4-1						
	INITIAL REMEDIAL ORDER OF MAGNITUDE CONSTRUCTION COSTS SCHATZ PLANT SITE						
	COST ESTIMA WORK SHI						
				DATE: 4-30-92	SHEET 8 OF 8		
PROJE	CT TITLE: Shatz Plant Site - Electr	ical Panel Room					
LOCAT	ION: Poughkeepsie, New York						
OWNE	R: NYSDEC						
ESTIM	ATED BY: MGS	CHECKED BY:		APPROVED BY:			
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE MAT & LAB.	ESTIMATED AMOUNT		
	Contingency 15%				43,805.00		
	Grand Total				335,836.00		

Key:

LF = Linear foot.

LS = Lump sum.

SF = Square foot.

Source: Ecology and Environment Engineering, P.C. 1992.

.

Table 4-2						
OR		FOR CONSTR IY MONITORI CHATZ PLAN	NG COSTS	ERSIGHT AND H	EALTH AND	
				C(ST ESTIMATE WORK SHEET	
	<u> </u>			DATE: 4-30-92	SHEET 1 OF 2	
PROJE	CT TITLE: Schatz Plant Site					
LOCAT	FION: Poughkeepsie, New York		_			
OWNE	R: NYSDEC			T		
ESTIM	ATED BY: MGS	CHECKED BY		APPROVED BY:		
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY		COST PER UNIT	ESTIMATED AMOUNT	
1	Labor Preconstruction - Engineer V	80	Hours	60.00/hr	4,800.00	
	H&S IV	80	Hours	50.00/hr	4,000.00	
2	Labor work in progress - Engineer V	900	Hours	60.00/hr	54,000.00	
	H&S IV	400	Hours	50.00/hr	20,000.00	
3	Labor E & E support staff - Engineer VII	200	Hours	80.70/hr	16,140.00	
	WP/Tech II	200	Hours	30.70/hr	6,150.00	
4	Travel/Per Diem					
	Flight - Precon	8	Flight	400.00/fit	3,200.00	
	Flight - Construction	15	Flight	400.00/flt	6,000.00	
	Rental car - Precon	4	Days	50.00/day	200.00	
	Rental car - Construction	. 5	Months	1,000.00/mo	5,000.00	
	Per Diem - Precon	- 8	Days	94.00/day	752.00	
	Per Diem - Construction	.* 220	Days	94.00/day	20,680.00	
5	Equipment Miniram	40	Days	38.00/day	1,520.00	
	High vot sampler	40	Days	13.00/day	520.00	
	OVA	10	Days	67.00/day	670.00	
6	Analysis					
	Clearance on surfaces - PCBs	150	Samples	110.00/ea	16,500.00	
	Ambient air - PCBs	50	Samples	100.00/ea	500.00	
7	Level of Protection					
	Level "D"	200	Days	15.00/day	3,000.00	
	Level "C"	20	Days	50.00/day	1,000.00	
8	Disposal Analyses	10,000	LS	10,000.00	10,000.00	
9	Shipping costs	3,000	LS	3,000.00	3,000.00	
10	Construction costs	1,000	LS	1,000.00	1,000.00	

ceology and environment

	Table 4-2					
OR	ORDER OF MAGNITUDE ESTIMATE FOR CONSTRUCTION OVERSIGHT AND HEALTH AND SAFETY MONITORING COSTS SCHATZ PLANT SITE					
				C	OST ESTIMATE WORK SHEET	
				DATE: 4-30-92	SHEET 2 OF 2	
PROJE	CT TITLE: Schatz Plant Site					
LOCAT	[ION: Poughkeepsie, New York					
OWNE	R: NYSDEC					
ESTIM	ATED BY: MGS	CHECKED BY:	:	APPROVED BY:		
ITEM NO.	DESCRIPTION	ESTIMATED QUANTITY	UNIT	COST PER UNIT	ESTIMATED AMOUNT	
	Total Construction Oversight Costs				178,632.00	

Source: Ecology and Environment Engineering, P.C. 1992.

.

	Table 4-3	
	SUMMARY OF PROJECT COSTS SCHATZ PLANT SITE	
item No.	Description	Estimated Amount
A	Electrical Panel Room	35,530.00
в	Building No. 3	12,245.00
с	Heat Treatment Building	210,661.00
	Subtotal	258,436.00
	Mobilization/Demobilization 5%	12,922.00
	Bonds 3%	7,753.00
	Insurance 5%	12,922.00
	Subtotal	292,031.00
	Contingency 15%	43,805.00
	Total Construction Costs	375,836.00
	Total Construction Oversight and H&S Costs	178,632.00
	Grand Total	514,468.00

Source: Ecology and Environment Engineering, P.C. 1992.

Table 4-4								
AMBIENT CONTAMINANT GUIDELINES (ACG)/ACTION LEVELS SCHATZ PLANT SITE								
	Waste Solids Concentrations	Air Cleanup Standards (µg/m ³)	Toxicity	Action Limits (µg/m ³)				
Electrical Panel Room	Building No. 3							
PCBs	26 ppm - 390 ppm	4.5 x 10 ⁻⁴ a, b	High	0.02				
Cadmium	1.4 ppm - 4.6	5.0 x 10 ^{-4 c, b}	High					
Tetrachloroethylene	0.17 ppm	7.5 x 10 ^{-2 b, d}	Moderate	6,700				
Particulates	Unknown		1	150				
Total Hydrocarbons	60,000 ppm - 80,000 ppm		**	5 ppm				
Cyanide	2.0 - 2.5 ppm	12.0 °	High					
Heat Treatment Buildi	ng							
PCBs	.8 μg/L - 160 ppm	4.5 x 10 ⁻⁴ a, e	High	0.02				
Cyanides	0.11 ppm - 9.5 ppm	12.0 •	High					
Barium	72 ppm		Moderate					
Total Hydrocarbons	54,000 - 69,000			5 ppm				
Particulates				150				
Cadmium	0.25 - 0.29 ppm	5.4 x 10 ^{-4 c, b}	High					

^a ACG based on derivation by EPA.

b ACG based on ambient air concentration equal to cancer risk of 1 in 1 million after lifelong exposure.

^C ACG derived from NYSDOH.

d ACG derived from NYSDEC.

e ACG derived from AGCIH - TLV-TWA (1990-1991).

Source: Ecology and Environment Engineering, P.C. 1992.

084SHATZ-PROJSCHED

																				CAL	ENC	AR	PEI	RIOD)										
								_													W	/EEK	S			_		_		_		-			
NO.	DESCRIPTION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30				
	NOTICE TO PROCEED										=			╞		=			╞═							-	=	=	╞━	╞═	=	=	=	4	Ξ
	PRECONSTRUCTION AND SUBMITTAL REVIEW					=	-	=		=	-	-		╞═		-	=	╞_	+=				===	<u> </u>	=	-	╞═	╞═	+	╞═	 	=	=	=	Ξ
[<u> </u>	╞═		_	=	╞─	-	-	+	╞═	+	=		-	=				===	_		100		=	╞	╞═	==	#	≢	+	Ξ
	MOBILIZATION - PROJECT	====	===	==					╞	╞	=		-	╪═			<u> </u>	╞═	+=					=		ŧ	ŧ	ŧ	╞	╞═╡	Ħ	=	≢	====	Ξ
^	EPR AND BUILDING NO. 3 PREP	===		_	-				-	╞	+	⊨	+	╪═	╪═	=	=	-	╪═		_		=		F	╞	╪═	拝一	+	╪═	\models	=	≢	=	Ξ
	EPR FLOOR PLANING		<u> </u>		-	╞===	==				╞	+	-	╞═	1	╞═	-	╞	╪═		85.5		\neq	-		╞	╞═	╪═	╪=	╞═	Ħ	=	=	╪	=
	EPR DISPOSAL OF WASTES	===			=	=	=	-	=	╞─	=			╡	=	-	=	╞	+=		85.5 -/	K	=	==	_	╞	╞	╪=	+	╞═	╞═╡	=	=	=	=
	EPR INSTALL IMPROVEMENTS			==	-	==	-	╞━	-	╞	+			╡═	╞══			+-	╪═		\neq		=	<u> </u>		-	╪═	╞═	╞=	╞	╞═╡	≡‡	=	=	=
В	BLDG. NO. 3 PIT CLEANOUT LIQUIDS						╞━	-	-	-		-	-	╞═	=		=	╞	4==		/		_	<u> </u>	_	-	╪==	╞═	╪═	╪==	╞═╪	≡	====	=	=
	BLDG. NO. 3 PIT VACUUM EXTRACTION					╞═╕	-		=	╞				╞	╞==			╞=	=			=				╞	╞	╞	╞	╞═	╞═╡	≡	=	=	=
	EPR/BLDG. NO. 3 INSTALL IMPROVEMENTS							L	-	╞	-	_	-	╡═	=	=	<u> </u> =	╞	#		_	╞━			-	ŧ=	╞	╪═	╞═	╞═	╞═╡	≠	=	=	Ξ
С	HTB INSTALL ACCESS AND DECON CONTROLS						=	-	-					╞	╞━	<u> </u>	=	╞	\downarrow						=	╞	╞	╪═	╞═	╞	╞═╡	≠	=	_	Ξ
	HTB PICKUP AND CONTAINERIZE WASTES								-					▙	<u> </u>	-	<u> </u>	₽	4					<u> </u>	-		╞	╞	╪═	╞		=	=	\neq	=
	HTB REMOVAL OF PIT SOLID WASTES								-		-		-	┿━╸	-		50.7		+=					╞──	_	╞	╞	╞══	╪	╞		≡	_	╪	-
	HTB REMOVAL OF PIT LIQUID WASTES							-		╞═		 ==	-	╞	╞═	-	\leq					-	⊨⊴	-	-	╞	╪═	╪=	╪	╞		≓	=	_	Ξ
	HTB DECON PITS						_			╞	-	-					<u> </u>	-						<u> </u>		╞_	╪═	╞	∔=	╞	╞═╡	≡	<u></u>	_	=
	HTB TRANSPORT/DISPOSAL NON HAZ WASTES	==							-		-	-		36.9			-								-	=	╪=	╞	∔=	╞		=	╪	≠	=
	HTB TRANSPORT/DISPOSAL HAZ/TSCA WASTES							_		-	╞		\neq	1	<u> </u>	-	╞──	-							╞	╞	+	╞	╞	₽	=	≡	≠	=	=
	HTB REMOVE DECON CONTROLS					=	=	-	-	╞		\swarrow		╞	╪==	╞=		╞	==						-	╞	╪═	╪=	∔=	╞		===	=ŧ	╪	=
	HTB INSTALL PIT COVERS AND HATCHES						 			19.8		_	<u> </u>	╞	╞==	-	-	-								-	╞	╞	╞	╞	╞═╡	==	≡	=	=
	HTB SLURRY CONCRETE SMALL PITS					_==				Ł	=	=	-	╞			-	╞	=					-	-	╞	╞	╪=	╞	╞		=	⊒	╪	=
	HTB FINAL INSPECTION						_		1					╞═		-	<u> </u>	L	+==			L	=			-	╞══	╞	╞	╞		;=	=∔	\Rightarrow	=
	PROJECT DEMOBILIZATION	_				=	4		=	-	_		=	╞	╞═			_				=	F				╞	╪=	╪=	╞		=	=	=	=
_					0	\angle				<u> </u>	-		-	╞	<u> </u>		-	L	==			L	╞			∔	╞	╞	╞	╞		⊨	_	=	=
	TOTALS					_		_				_		\downarrow	-						_					-	╞	╞	╞	╞			=	_	=
						_								╞		_									_	╞	่่่่่่	╞	+	╞			=	\Rightarrow	=
															_											L			╞	▙				=	_
	MONTHS	==	0)				2				3		╞		争		-		(2) 				<u>6</u>	_	L	_	<u>_</u>	+	╞		F=		_	-
										L	-			╞	╡_			╞	=		<u> </u>		F	-	<u> </u>	╞	╞	╞	╪=	╞	╞═╡	╞═╡	_	<u></u>	-
	\$ COMPLETE BY MONTH		C)			65,	824	*		58,	,100	_	\mathbf{T}	46,	,345			116	,871	•	1	48	,696	•		-			335	,836				_

ecology and environment -

	% (OMPL	ETE	COST(\$)	COST(%)
_					
=					
_		_	≡ 100 %	50,340	15%
_				4,750	1.4
==	┇═╡		= 90	10,820	3.2
====		_		19,000	5.7
			80	1,500	0.4
	╞═╡		#	4,875	1.5
		==	70	5,000	1.5
	╞	_	=	2,370	0.7
==	╞═╡	_	60	12,577	3.7
		-	=	2,725	0.8
==			= 50	51,000	15.2
		_		16,290	4.9
		=	= 40	29,349	8.7
	╞	_	=	67,95 0	20.3
	╉═╪	_	= 30	9,500	2.8
_	╉═╡		=	4,000	1.2
=	╉═╡	_	= 20	16,520	4.9
	╞	=	=	750	0.2
		=	= 10	1,000	0.3
		=		25,520	7.7
		=	= 0		
		_	=	335,836	100
			=		
					<u> </u>
			_		
	+		_1		

Figure 4.1

SCHATZ PLANT SITE ESTIMATED PROJECT SCHEDULE

5. CONSTRUCTION OVERSIGHT

E & E's original work plan did not include construction oversight of the remediation because it was unknown whether the project was going to be bid publicly or procured by E & E. Since the costs developed herein would exceed the mutual accepted level for procurement by E & E (\$100,000), it is recommended that the project be bid publicly.

As a part of the construction oversight function, E & E would provide liaison support to NYSDEC by reviewing the performance of all aspects of the contractor's remediation work. These services would include liaison work between NYSDEC and the Contractor on all issues related to the project, quality assurance of construction, monitoring of health and safety conditions, and complete documentation of all construction activities. The general tasks provided to NYSDEC from E & E as a result of the State Standby Services Contract (SSSC) and as expected for the Schatz Plan remediation would be:

Task 1: Attend Pre-Construction Meeting

The pre-construction meeting will consist of a thorough review of the scope of work, health and safety plan, plans requested to be submitted with the bid, and project schedule. E & E would also initiate lines of communication and provide meeting minutes.

Task 2: Review of Contractor Submissions

E & E will obtain and review contractor submissions, monitor the progress of the contractor, review contractor's schedule, notify contractor of status, and propose actions to get back on schedule, if necessary.

Task 3: Project Inspection

E & E will provide experienced inspectors during all construction activities and notify NYSDEC of failure of the contractor to perform work specified in the contract. The engineer shall issue instructions, field orders, and interpretation and clarification of contract language to the contractor. The engineer will negotiate, develop, and submit change orders and recommendations with specific developed information as needed by NYSDEC. The Engineer will document, evaluate, and recommend a course of action in cases of all disputes and claims by the contractor.

Task 4: Construction Records and Reports

The engineer will maintain complete and detailed records of all construction related activities during the project duration at the site project office.

Task 5: Quality Assurance

The engineer will provide regular inspection of the work, determine if the work complies with the requirements of the contract, and evaluate the amount of satisfactory work completed by the contractor. The engineer also will provide final inspection of the work to see if it is complete and meets the requirements of the construction contract.

Task 6: Final Remediation Report

A final report submittal describing variations from the contract documents and the overall extent and quantities of the work performed will be developed.

The construction oversight, which may be specific to the work performed at the Schatz site, could include:

- Perimeter ambient air monitoring prior to, during, and after completion of the remediation;
- Wipe or clearance sampling on the various affected areas of waste and mixed liquid removal;
- Monitoring of confined space entry in the pits on the project and other safety items;
- Public or community relations meetings as the project proceeds; and
- Scheduling of closure of access areas to area occupants.

While it is difficult to anticipate the schedule of the contractor, E & E has provided an order of magnitude estimate of oversight costs, which anticipates the schedule presented at the end of Section 4.

These cost estimates would be expected to be refined during the design phases of the project (Subtask 2.4) and finalized upon completion of the design. All work performed by E & E under the current work authorization will be completed upon review of bids and recommendation of award. Work performed after that point will be considered construction

oversight services and would be performed under a new work authorization or a budget modification to the existing work authorization. The construction oversight cost assumptions are listed in Table 4-2. •

6. ISSUES OF CONCERN

While analytical results supports the recommendations that were developed in Section 3, there remain some issues of concern. These issues may impact the project cost and should be considered and discussed thoroughly. Their evaluation should also be critical on how the project will proceed.

6.1 ASBESTOS REMAINING IN THE HEAT TREATMENT FACILITY

During the initial survey of the facility, Subtask 2.1, asbestos-containing material (ACM) was suspected throughout the Heat Treatment Building after NYSDEC and E & E were told that a firm removed incidental ACM and cleared the building by air clearance testing. These clearance tests were submitted for the storeroom only; the building in total did not have any air clearance tests. During the survey, 11 bulk and 1 duplicate samples were taken of suspect ACM remaining in the pits and on the floor in the Heat Treatment Building. Ten of the 11 analyses indicated that ACM debris remained in the facility. While gross debris could still be mixed in the wastes of the pits during the excavation and the large amount of silica fire brick could give confusing readings to ambient monitoring results, additional removal considerations should be reviewed.

In general, this facility is a difficult setting in which to obtain any kind of air clearance. Other difficulties are that adjacent buildings have active operations continuing daily. While the Asbestos Hazardous Emergency Response Act (AHERA) does not apply because it is not a school setting, many of the methodologies contained therein have become industry standards. New York State Department of Labor (NYSDOL), Industrial Code Rule 56 the National Emissions Standards for Hazardous Air Pollutants (NESHAPs) enforced by EPA and OSHA for work standards for asbestos would govern the Schatz Plant project if the asbestos debris removal is performed.

It is uncertain if a separate subcontract would be entered into for ACM removal, if complete removal could occur. Another uncertainty is whether ACM debris will be uncovered in the excavation of the pits. A consideration for the project may be to bid for contractors that hold OSHA hazardous worker certificates and are certified for asbestos removal, thus fulfilling the obligations of all agencies during the remediation. Initial gross pickup and clearance could be performed, or, it would be possible to protect all workers during the project and perform a clearance at the end.

In addition, knowing asbestos may be in some of the debris, the material must be handled in a different manner and possibly kept wet to reduce visible emissions. A spray lockdown of materials and a final air clearance test could be part of the facility closure.

The current regulatory climate is that NYSDOL and OSHA are critically reviewing all projects and are enforcing all regulations under their direct jurisdiction.

6.1.1 Cost and Schedule

An initial order of magnitude cost for dual certifications for subcontractor billing is expected to be around \$15,000 to \$20,000 and impact the schedule by two to three weeks.

The assumptions provided for this estimate are that only ACM debris will be picked up initially and cleanup areas will be HEPA vacuumed. This effort would require only remote decontamination units, personal air monitoring, area air monitoring, and lockdown of remaining materials.

The schedule assumes less than one week for setup, one week for area removal, and less than a week for clearance.

E & E recommends that discussions be developed with NYSDOL and OSHA that the facility be allowed to proceed with gross pickup of remaining materials and provide an air clearance.

6.2 SUBSURFACE EXCAVATION

As previously surveyed, eight of 16 pits in the Heat Treatment Building contain demolition debris that was backfilled, reducing previous off-site disposal.

This backfill, we assume, was provided from inside the complex and was not from outside sources. While PCB capacitors and asbestos were defined in the original scope of work, there may also be other unknowns uncovered as excavation and removal of debris occur.

It is difficult to put cost quantification on these items because of the unknown factors. Any additional items to an existing waste stream (e.g., PCB capacitors) can be added or the unit price line items can be extended. If other items are uncovered, we assume that they would be packaged and placed in a secure area until a waste stream approval could be obtained for removal and disposal. The impact of unknowns in the subsurface excavation are in time delays and increased transportation and disposal costs. Construction oversight would also be affected for procurement negotiation and additional oversight monitoring with these wastes.

At this point, the waste streams have been established for the project but new items may be found and increase the project costs.

6.3 PUBLICLY BID PROJECTS

In our past discussions with P. David Smith of NYSDEC, it was decided that if project costs are over the \$100,000 limit for subcontracted E & E work, they should be procured publicly. In the case of the Schatz site, the extent of the reduction required by the site is over \$100,000. This project, if publicly procured as recommended by E & E, would take an additional six to eight weeks to allow for bidding and selection of qualified and responsible bidders.

APPENDIX A

.

.

٩

ĩ

、 -.

.

-

P-1

(DOC	DJECT NAME): CUMENT CONTROL NUMBER):
(SAN	APLE I.D. NUMBER): 08-HT-00 - Pl DATE: 12/11/91
1.	SAMPLE DESCRIPTION / Lpily. Clear "ulter-like" liquid No
	block porticulate at cottom of sample soltle.
2.	SPECIFIC GRAVITY: = $() / < 1 / > 1$
3.	WATER REACTIVITY: NEG/ POS
4.	SOLUBILITY: Johnsle w/wofer
5.	PH: ~7 (poper)
6.	PRESENCE OF CYANIDES: (NED / POS slight ppt.
7.	PRESENCE OF SULFIDES: (NEG) / POS
8.	PRESENCE OF OXIDIZERS: NEG/ POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>Ney</u> A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

· · ...

P2 Top

	OJECT NAME): Cument Control Number):
(SAI	MPLE I.D. NUMBER): 08-HT-001- P2 (101 layer) DATE: 12/11/91
1. \$	SAMPLE DESCRIPTION /- lpdy. Tophayer Viscour dork oile ubst. Looks just like used instar oil.
	This top layer of two phosed cample
2.	SPECIFIC GRAVITY: = $1 / (1) / >1$ floct
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Floch on when
5.	PH: <u>N/A</u>
6.	PRESENCE OF CYANIDES: NEG / POS Sign presence as
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: (NEC) / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: How are a Flower B. BIC SUSTAINCO a Flower
11.	HAZARD CLASS ASSIGNED:(Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

12 Bottom

	OJECT NAME): Cument Control Number):
(SAI	MPLE I.D. NUMBER): 08-HT-001-P2 (Bottom _ DATE: 12/11/51
1.	SAMPLE DESCRIPTION / lody Bottom Layer of two plased sample Clear liquid, slight Tomber fint - color. Aguers to
	be la wettom aqueous layer.
2.	SPECIFIC GRAVITY: -1/ <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: <u>Soluble</u> inwefer
5.	PH: Nb (a-per)
б.	PRESENCE OF CYANIDES: NEG/ POS 51.5 ht ppt.
7.	PRESENCE OF SULFIDES: NEG/ POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test:
10.	FLAMMABILITY: Neg. Policed Yellow Flame bot nordel entructoria A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:(Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

•

. .

P3

	DJECT NAME): CUMENT CONTROL NUMBER):
(SAM	IPLE I.D. NUMBER): <u>DB-HT-001-P3</u> DATE: <u>[2/11/91</u>
1.	SAMPLE DESCRIPTION 802 64005 Clear like d' - voter-like d' Applerona of viscosity. Slight / ander color fint.
2.	SPECIFIC GRAVITY: (1)/ <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Saluble in water
5.	PH: 16 (popur)
6.	PRESENCE OF CYANIDES: NEG/ POS
7.	PRESENCE OF SULFIDES: NEG/ POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Nep A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

.

A-6

P4 Top

Caser of a crait rate

HAZCAT

(SAN	APLE I.D. NUMBER): OB-HT-ON-P4 (Proyer) DATE: 12/11/58
1.	SAMPLE DESCRIPTION Boz-Glass Top Lover of fur phesod som Viscous dork oily somples. Appendes to look just
	like used motor (vil.
2.	SPECIFIC GRAVITY: = $1/(1)/>1$
3,	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Flats on water
5.	PH: N/A
	<u> </u>
6.	PRESENCE OF CYANIDES: NEG / POS man color change
7.	
8.	PRESENCE OF OXIDIZERS: NEG / POS N/A
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: (NEG)/ POS
	B. Chlor-n-oil Test Kit: NEG / POS PPM
	C. PCB Field Test Kit: NEG / POSPPM
10	FLAMMABILITY: Suspringble Plane
10.	A. HNU
	B. BIC
L L •	HAZARD CLASS ASSIGNED:(Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

A-7

-

14 Bottom

	OJECT NAME): Cument Control Number):
(SAI	MPLE I.D. NUMBER): OB-HT-001-14 (Boston DATE: 12/11/81
1.	SAMPLE DESCRIPTION 802. Gkar Bottom Lover of two phosed somple. Water like in viscosity of a queronice except
	liquid has a dark amber brown color.
2.	SPECIFIC GRAVITY: -()/ <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Soluble in water
5.	PH: <u>vg</u> (paper)
6.	PRESENCE OF CYANIDES: NEG/ POS pt; edurchange
7.	PRESENCE OF SULFIDES: NEC / POS
8.	PRESENCE OF OXIDIZERS: (NEC / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>Ny</u> , But <u>produced</u> yellow flame - mtrustainable. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:
12.	LABELING:
13.	1.D. NUMBER:

A-8

.

ecology and environment

.

.

•

PS

•	OJECT NAME): Cument Control Number):
(SAI	MPLE I.D. NUMBER): 08-HT-001 - P5 DATE: 12/11/81
1.	SAMPLE DESCRIPTION 802 6/65 Char liquid while hos mut alor. Applars to be more viscous than woter.
2.	SPECIFIC GRAVITY: = 1 / <1 / >1
3.	WATER REACTIVITY: NEC/ POS
4.	SOLUBILITY: Suble in unter
5.	PH: -6-7 (pope)
6.	PRESENCE OF CYANIDES: NEG/ POS pot., color change
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Nachie A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

.

.

•

ecology and environment

.

Pb

	OJECT NAME): CUMENT CONTROL NUMBER):
(SA	MPLE I.D. NUMBER): 08-HT-001-P6 DATE: 12/11/51
1.	SAMPLE DESCRIPTION 1-2 pdy, Clear to stightly cloudy interlike
	which strike to top of butte.
2.	SPECIFIC GRAVITY: = $(1)/(1)/(1)$
3.	WATER REACTIVITY: NEO / POS
4.	SOLUBILITY: Soluble in Water
5.	PH: 16-7 (roge)
6.	PRESENCE OF CYANIDES: NEG/ POS //t., edor change
	PRESENCE OF SULFIDES: NEG POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Neg. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

.

-

P7

	ROJECT NAME): DCUMENT CONTROL NUMBER):
(SA	MPLE I.D. NUMBER): 08-HT-001- 197 DATE: 12/11/51
1.	SAMPLE DESCRIPTION 1-l dy. Clear to slightly landy "water-like" lignid! some viscouity of water. Symple I has small an on a f of flating "notur
	ail" like substance on top Not esting her sample
2.	SPECIFIC GRAVITY: $(1)/(1)/(1)$
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: <u>Soluble in white with exception of minor amount of</u> ".!!"
5.	PH: ~b(mptr) which flow /s
6.	PRESENCE OF CYANIDES: NEG/ POS ppt. Eulorchange
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>Nec.</u> - Iroduced aversudairollegeter Mann A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:
12.	LABELING:
13.	I.D. NUMBER:

A-11

ecology and environment

*

PP

	DJECT NAME): Cument Control Number):
(SAM	IPLE I.D. NUMBER): 08-HT-001-98 DATE: 12/11/51
1.	SAMPLE DESCRIPTION (-lol, Clear "voter-like" lignish
2.	SPECIFIC GRAVITY: (1) / <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Soluble in water
5.	PH: V6 (reper)
6.	PRESENCE OF CYANIDES: NED / POS Only = light part.
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG/ POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Nec. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

-

ecology and environment

P9

	OJECT NAME): Cument Control Number):
(SA	MPLE I.D. NUMBER): 08-HT-001-P9 DATE: 12/11/5/
1.	SAMPLE DESCRIPTION Black smooth sludge like material. mu have sit and ar socked it
	=moista moterial (oil?) - poste like
2.	SPECIFIC GRAVITY: = 1 / <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Not rolube - solide at hottom, slightly cloudy weter
5.	SOLUBILITY: Not rolube -solide at hottom, slightly cloudy web- PH: <u>6 (paper)</u> a least & prime niedle (?) are opporent in the comple.
6.	PRESENCE OF CYANIDES: NEG / POS ppt. & color change
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: (NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>NY</u> . A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

.

.

crology and environment

.

210

-	DJECT NAME): Cument Control Number):
(SAN	APLE I.D. NUMBER): 08-HT-00/- PIO DATE: 12/11/41
1.	SAMPLE DESCRIPTION & OZ. Colors Cloudy slightly amber coloral
mine	a trange to fist the some precipitate factionent settled
2.	SPECIFIC GRAVITY: (1) <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Soluble in woter
5.	PH: ~6 per-)
6.	PRESENCE OF CYANIDES: (NEG) POS
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG/ POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>Nov - stight gellow Planne</u> not sustainable A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:
12.	LABELING:
13.	I.D. NUMBER:

.

ecology and environment

•

PII

(DO	OJECT NAME): CUMENT CONTROL NUMBER):
(SAI	MPLE I.D. NUMBER): 08-HT-00/- All DATE: 12/11/51
1.	APLE I.D. NUMBER): OB-HT-00/- All DATE: 12/11/81 SAMPLE DESCRIPTION /- Rolf, Clear "unter-lite" liquid u) similar riscosity to enter.
2.	SPECIFIC GRAVITY: =
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: <u>Subble</u> in water
5.	PH: ~6 (paper)
6.	PRESENCE OF CYANIDES: NEC / POS
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG/ POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: NK. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:
12.	LABELING:
13.	I.D. NUMBER:

A-15

•

-

...

ecology and environment

.

PIZ

-	DJECT NAME): Cument Control Number):	
(SAN	19LE I.D. NUMBER): 08-HT-001- P12 DAT	E: 12/11/91
1.	SAMPLE DESCRIPTION 802. Glass. Clor "weter with similar viscosite as water. Compar color tint.	r-like " liquid Very slif by
	- comper color tint. 1	
2.	SPECIFIC GRAVITY: $+ 1 / > 1$	
3.	WATER REACTIVITY: NEG / POS	
4.	SOLUBILITY: Soluble in water.	
5.	PH: 46-7 (paper)	
6.	PRESENCE OF CYANIDES: NEC / POS	
7.	PRESENCE OF SULFIDES: NEG/ POS	
8.	PRESENCE OF OXIDIZERS: NEG/ POS	
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS C. PCB Field Test Kit: NEG / POS	
10.	FLAMMABILITY: Neg. A. HNU B. BIC	
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)	
12.	LABELING:	
13.	• I.D. NUMBER:	

.

ecology and environment

•

•

(PROJECT NAME): (DOCUMENT CONTROL NUMBER): (SAMPLE I.D. NUMBER): 03-HT-001 P13 DATE: 12/11/81 black moterial SAMPLE DESCRIPTION lorge neteral, star-SPECIFIC GRAVITY: = $1 / \langle 1 \rangle$ 2. WATER REACTIVITY: (NEG // POS з. SOLUBILITY: <u>Solids remain of 20thang water</u> Suspended mat'l cloudy PH: <u>Nb (poper)</u> Sreg/Slade color Comple Placking presence OF CYANIDES: (NEG), POS ppt. & color change 4. 5. 6. PRESENCE OF SULFIDES: (NEG) / POS 7. PRESENCE OF OXIDIZERS: (NEG) / POS 8. 9. PRESENCE OF CHLORINATED HYDROCARBONS: Copper Wire Test: NEG / POS Α. Chlor-n-oil Test Kit: NEG / POS PPM Β. PCB Field Test Kit: NEG / POS PPM c. 10. FLAMMABILITY: HNU Α. BIC Β. 11. HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101) 12. LABELING: 13. I.D. NUMBER:

PN

(PROJECT NAME): (DOCUMENT CONTROL NUMBER): (SAMPLE I.D. NUMBER): DB-HT - OOI - PI4 DATE: 12/11/51SAMPLE DESCRIPTION Bown/ Slock soil-like maternal, 1. Dry-loss. 2. SPECIFIC GRAVITY: = $1 / \langle 1 \rangle$ WATER REACTIVITY: (NEG) / POS 3. SOLUBILITY: <u>Solids at bottom of water</u>. Water slightly cloudy PH: <u>cl(peper)</u> grey color. 4. PH: Ul (peper) 5. PRESENCE OF CYANIDES: NEGI POS pot & alor change 6. PRESENCE OF SULFIDES: (NEG) / POS 7. PRESENCE OF OXIDIZERS: /NEG / POS 8. 9. PRESENCE OF CHLORINATED HYDROCARBONS: NEG / POS Copper Wire Test: A. Chlor-n-oil Test Kit: NEG / POS в. PPM PCB Field Test Kit: NEG / POS **PPM** c. 10. FLAMMABILITY: / A. HNU BIC в. 11. HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101) 12. LABELING: 13. I.D. NUMBER:

(PROJECT NAME): (DOCUMENT CONTROL NUMBER): (SAMPLE I.D. NUMBER): 08-HT-001- P15 ____ DATE: 12/11/91 Dry black critty material, likea SAMPLE DESCRIPTION 1. soil-sla miktare Loose 1 SPECIFIC GRAVITY: = $1 / \langle 1 \rangle$ 2. WATER REACTIVITY: (NEG / POS 3. SOLUBILITY: <u>Solids at Sottom</u>, Woterslightly cloudy greep PH: <u>18-9 (poper)</u> Freen color 4. 5. PRESENCE OF CYANIDES: NEGI POS pot & color change 6. PRESENCE OF SULFIDES: (NEG) / POS 7. PRESENCE OF OXIDIZERS: NEG 8. 9. PRESENCE OF CHLORINATED HYDROCARBONS: Copper Wire Test: (NEG / POS Chlor-n-oil Test Kit: NEG / POS A. PPM в. PCB Field Test Kit: NEG / POS PPM C. FLAMMABILITY: Neg. 10. Α. HNU Β. BIC HAZARD CLASS ASSIGNED: 11. (Ref. 49 CFR 172.101) 12. LABELING: 13. I.D. NUMBER:

A-19

recreativeled paper

PIC

	OJECT NAME): CUMENT CONTROL NUMBER):
(SA	MPLE I.D. NUMBER): <u>OB-HT-DOI-PIG</u> DATE: 12/11/91
1.	SAMPLE DESCRIPTION Brun Grey Black Fine sained loope material -1-tressel of with never debris (slass)
	Day.
2.	SPECIFIC GRAVITY: = 1 / <1 / >1
	· ·
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: Deck Fold portion on mostly of bottom some
5.	SOLUBILITY: <u>Seck solid portion la mosthy at bottom</u> some PH: <u>No (paper)</u> Suspended & flocting. Water is clear.
6.	PRESENCE OF CYANIDES: NEGI POS ppt. & color charge.
7.	PRESENCE OF SULFIDES: NEG POS
8.	PRESENCE OF OXIDIZERS: NEG/ POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Nog. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:(Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

.

APPENDIX B

•

.

, .	OJECT NAME): Cument Control Number):
(SA)	MPLE I.D. NUMBER): 08-BLDG3-001 P1 DATE: 12/11/91
1.	SAMPLE DESCRIPTION Trible solid sample saked in (Scharched)
2.	SPECIFIC GRAVITY: = 1 / <1 / >1
3.	WATER REACTIVITY: NEG POS
4.	SOLUBILITY: Not soluble - Flocking oil, Sulids sink to bottom
5.	PH: 16 (Ampr)
б.	PRESENCE OF CYANIDES: NEC 1 POS ppt. + color change
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: (NEG) / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: <u>250 Sustains - flome</u> A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED: (Ref. 49 CFR 172.101)
12.	LABELING:
13.	I.D. NUMBER:

B-3

.

.

ecology and environment

.

.

, ·	OJECT NAME): Cument Control Number):
(SAI	MPLE I.D. NUMBER): UB-BLDG 3-001- PZ DATE: 12/11/51
1.	SAMPLE DESCRIPTION Black -> Brown solid, light weight- meterial -reg moist. (moisture ?) Search almost like
	saturated pape- palp paste.
2.	SPECIFIC GRAVITY: = 1 / <1 / >1
3.	WATER REACTIVITY: NEG / POS
4.	SOLUBILITY: olide at lotton - wohr turns cloudy bound alor -
5.	PH: - 6 (paper) Suspended in terial
6.	PRESENCE OF CYANIDES: NEGI POS mt & color change
7.	PRESENCE OF SULFIDES: NEG / POS
8.	PRESENCE OF OXIDIZERS: NEG / POS
9.	PRESENCE OF CHLORINATED HYDROCARBONS: A. Copper Wire Test: NEG / POS B. Chlor-n-oil Test Kit: NEG / POS PPM C. PCB Field Test Kit: NEG / POS PPM
10.	FLAMMABILITY: Neg. A. HNU B. BIC
11.	HAZARD CLASS ASSIGNED:
12.	LABELING:
13.	I.D. NUMBER:

ecology and environment

-

.

.

;

7

Ţ

• .

.

APPENDIX C

.

.

OUALITY /	ASSURANCE PROTOCO	DL REVIEW
Job No.: 9/1(3.637. Report Title: 9 Client: 9	Site Task -	Date: 1/14/19
Laboratory Data Review	Supervisor FA	Date
Gen. Chem.		
<u>GC</u>		
<u>GC/MS)</u>		<u> </u>
Micro, Asbestos		
ist Draft Reviewed by { U.C.L.	<u> </u>	
Final Review by Author:		······································
ASC Manager:	4h	· · · · · · · · · · · · · · · · · · ·
QA Officer: Corp. Project Manager: ///St (Internal Job) Lign, Actu	an to ASC	
All QA Protocol Review Forms Signed and in File (to be signed by report write	er)	<u> </u>
Copies of Report Sent to:(Invoices Sent to Accounting	Client Via Miteffan	<u> </u>
	<u> </u>	

· · · ·

reavered haps

4 15

 $\frac{1}{C}$

The part of the second second

;

۰.

•

TO: Mike Steffan Gobala/SK Gary Hahn FROM: January 15, 1992 DATE: OB-4000 Schatz Site Task 21 Report SUBJECT: 9103.037 REF: Lab File CC:

Attached is the laboratory report of the analysis conducted on twelve samples received at the Analytical Services Center on December 19, 1991. Analysis was performed according to the procedures set forth in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, U.S. EPA, 1986.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report, unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH:tms enclosure

MEMORANDUM

TO:

Mike Steffan, Gary Hahn Stata / FROM: DATE: January 31, 1992 SUBJECT: OB-4000 Schatz Site Task 21 Report 9103.037 **REF:** CC: Lab File

Enclosed are revised pages for Schatz report 9103.037. The client sample id. has been amended on the purgeable-TCLP pages to read as follows:

LAB SAMPLE ID:	CLIENT SAMPLE ID:
EE-91-29727	COMP. P1, P3, P5, P6, P8, P12
EE-91-29734	Composite P7, P10, P11
EE-91-29739	Composite P2, P4

An amended tracking page is also included.

Please replace the original pages in your report with these revised pages.

If there are any questions, please contact me. Thank you.

GH:gk enclosure

MEMORANDUM

TO: Mike Steffan

FROM:

DATE: January 24, 1992

SUBJECT: OB-4000 Schatz Site Task 21 Report

Gary Hahn Hahn / SK

REF: 9103.037

CC: Lab File

Enclosed are the results for the PCB reanalysis of sample EE-91-29738 [Client Id. OB-HT-001-P7 OIL] for Schatz Site Report 9103.037. The original detection limit was 1000 mg/kg for this sample. The detection limit for the reanalysis has been lowered to 15 mg/kg.

Please replace the original pages in your report with these revised pages.

If there are any questions, please contact me. Thank you.

Corrected pages were inserted in report. JMM 3/10/92

GH:gk enclosure

MEMORANDUM

TO: Mike Steffan

FROM:

DATE: January 24, 1992

SUBJECT: 0B-4000 Schatz Site Task 21 Report

Gary Hahn & Halin p

REF: 9103.037

CC: Lab File

Enclosed are amended pages for job 9103.037.

-Corrected TRACKING for Herbicides - Date Extracted should be 01/02/92.

-Mercury QC.

If there are any questions, please contact me. Thank you.

Corrected pages were inserted in report. JMM 3/10/92

GH:jp enclosure

CHAIN-OF-CUSTODY RECORD

. الاور

-500

234055 FOR WOSTE CHOROGTERZOTIAN 6-7-8 8 2 3 SAUPLES Ξ 3 ÷ = REMARKS **X** Z 3 Ŷ ÷ 5 \$ 5 7 COMES COMESSITE ¢ \$ ~ \$ " " " Ξ F ANDLY515 **BL/Arrbill Numbe** s 0 ¥ ~ 3 -\$ * Ship Via: $\boldsymbol{\times}$ \prec X メ × × X N × × × × × χ × X × X × 7 Received For Laboratory By: (Signature) > × (Signature) Received By: (Signature) Х, x X × X X メ X × × ××× × × X × × X × X × × Received By NUMBER OF CON: TAINERS ŝ ю n ŝ ŝ 5 Ś Ś ELECTURCAL PANEL ROOM ELECTENCA POULL BOOM Oate/Time: STATION LOCATION Date/Time Date/Time HEAT TREAT BLDG \$ ~ \$ ~ ÷ 5 * BUD6 53 PLD6 #3 3 2 \$ \$ • Ş \$ Relinquished By (Signature) Relinquished By: (Signature) Relinquished By: (Signature) Project Manager: M. STEFFAN 2 \$ ٠ 4 2 3 \$ K. SHIJJ Field Team Leader: EXPECTED COMPOUNDS (Concentration)⁺ SAMPLE INFORMATION Received For Laboratory BV: (Signature) Received By: (Signature) Received By: (Signature) Distribution: Original Accompanies Shipment: Copy to Coordinator Field Files •See CONCENTRATION RANGE on back of form. UUKNOWU 2 \$ × \$ \$ 4 5.1 = -\$ <u>|2/||6/</u> Date/Time Date/Time Date/Time SCHATZ PLOUT RIA SAMPLE Ŋ x 8AAD X X Х λ У x × X X Project Name × x COMP × × Rinia 001-P7 13/4/1 16:00 2100: 91 10-00 00:31 1/1/1/ 20-100 Relinquished By: (Signature) -001-F2 12/4 10-00 83 -001-F1 14/1 16:00 00 - 22 12/0/41 16:00 001- P3 "7/41 16:00 (ince) 00:-74 14/4/ 16:00 001 - B 13/1/1 16:00 001-PG 13/11/41 16:06 STATION DATE TIME Samplers: (Sfgnatures) 1243-001-PI 7441 Relinguished By : UI Danished IV 14-100 3 084000 Project No. EPR 8 5-5-5

0

									Project Manager: M. STEFFAN								los k	100 to the second	7		
Samplers: (Signatures)					Field Team Lea	Field Team Leader:						/			entrube	*					
								К. 5МГ	て					K	5%	s/.	V () / / / / / /	9	R	EMAR	S
	DATE	TIME	SA				SAMPLE INFORMATION		STATIO	NLOCATION	NUMBER OF			AND T	4V/		201-11000 101-101-00 10-101-00 10-101-00 10-101-00 10-101-00 10-10-00 10				
NUMBER			COMP	GRAB	AIR	EXP	ECTED COMPOUNDS (Concente	ration)*			CON- TAINERS	/	5/2		3 / 4		1945 10 F				
001 - P9	12/18/4	H:40		×		UNKNOWN	,		NENT TRED	T BLDG	1	×		۶		x	x ANOLYSI	S FOR U	uoste c	CHORO	TERIZOTI
001-P10	12/17/91	1140		*		U				. <u></u>	_ 5_	۶	x		×	×			1		
N-PI	17/1/2	1140		X					+ $+$		<u>5</u>	×	X		×	X			- 		
01-P12	17.7/4	↓↓_	-	Y					┨		5	×	X		X	X			∔,	,	
01-P13	-+	-		×					+			×	•	X	-	X	<u>y</u>				
61-P14				×								×		×		X	×				
of-Pis	1 \ 1			×								×	$\left - \right $	×		×	×		\downarrow —		
01-P16	–	–		×								×		×		×					
	l																- OH	POSITE	45 N	eces	SARY
																					RMOTION
		ļ																			
Relinguish					ate/	fime: 17/9/	Received By: (Signature)	Relinquished	By: (Signature)	Date/Time:	Received	t By :	(Sign	ature) e)		Ship Via:		=		
Relinquish		Signature)	ť	are/	Time:	Received By: (Signature)	Relinquished (By: (Signature)	Date/Time:	Received	By:	(Signa	ature	}						
Relinquish	ed By: (Signature)		ate/	Relinquished By: (Signature) Date/Time: (Received For Laboratory By: (Signature)		Relinguished I	Relinquished By: (Signature) Date/Time:			eived For Laboratory By:					BL/Airbill Nu	imber:			Date:

.

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

*See CONCENTRATION RANGE on back of form.

ecology and environment, inc. 388 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14086, TEL. 716/684-8080 International Specialists in the Environment

CHAIN-OF-CUSTODY RECORD

Page <u>1 of 2</u>.

.

roject No.	:	Project	Name:				Project Manager:					_	7	777777	·
B. 4000 Schalz					M;K	C. St.	<u>fran</u>				/ /				
amplers:	(Signatur	. R) \ 0 -	ь J	1 Jan	ry Roed	Field Team Lead	er:							REMARKS
		TIME	SAM T	IPLE IPE IPE IE IE IE IE IE IE IE IE IE IE IE IE IE		SAMPLE INFORMATION		STATIO	NLOCATION	NUMBER OF					
			Ś	AII GR	EX	PECTED COMPOUNDS (Concentrat	tion)*				//		//		
	11.21.91						-	UB-H	T- 001-P1	• 1				<u>) </u>	
	11-21-1							00-14-	r - 001-P3	· I				/	
	11-21-91							0B-41	- 001-P5	· 1					
	1-21-4(OB . H.	T. 031 - P6	• 1				Comp. Fr	×51. # 1
	11-21-7								T- 01- P8	· 1					
	11-21-91							<u> 03 - H</u>	F= 00(- PI2 Pripiz	<u>ι</u>)	
	12.19 9							6B-HT.Oal.	24, 24, 21, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	3				<u> </u>	
	11.21.31							0B.HT.001.	.,,	1]	
	1(-2141							00. HT. 00	1 - PO	1				Comp. First	
	11-21-91							0B .HT.							
	12-19-51							OB. HT. OO	(- comp. 27, pro, pl	2				#2	
	12.19.71								01 - P7 011	1				-(01L)	
	11-21-71							OB. HT.	001- 72	1				Comp. First	·
	1 4 91				_			UB.HT.		1					#5
elinquish	ed By: {S	lignature) _	Date/	Time:	Received By: (Signature)	Relinguished By	: (Signature)	Date/Time:	Received	l By: (Sign	ature)	s	Ship Via:	
Relinquished By: (Signature))	Date/Time:		Received By: (Signature)	Relinquished By	: (Signature)	Date/Time:	Received	By: (Signa	ature)				
Relinquish	ed By: (S	Signature)	Date/	Time:	Received For Laboratory By: (Signature)	Relinquished By	t By: (Signature) Date/Time: Received (Signatur			For Labore)	ratory By:		BL/Airbill Number:	Date: - 1219.9

• . .

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files *See CONCENTRATION RANGE on back of form.

.

1

CODORY AND ENVIRONMENT, INC. 188 PLEASANTVIEW DATA ENVIRONMENT, INC. 188 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 716/664-8080

				Inemnolivo	g øy	h ni t	uteilei o	eds
	100061	NUC4	4436	JUDICWOWS	n 'a		1 4431.	

				Inemnorivna	eų:	uį	81
 	10000-1	NU.04	44764	11121040404	1.1.1.1		~

ОЯОСЭЯ	YOOTSUD-	CHAIN-OF
--------	----------	----------

534026							to Coordinator Field Files	AdoD : Inemqi	S seined	Original Accom	uongenn
16.61.01		KB VIOTEIOOE	Received Fo (Signature)	:emiT\ere	(enutengi2) :yB	bertsiupnileA	Seived For Laboratory By: (Signature)	:emiT\steQ	<u> </u>		
:0900	:19dmuN IlidiiA\J8	1	Í							- ·	
· ••••		(einsengis) :	Received By	:emiT\sig	By: (Signature)	bertziupnileR	(anitengi2) : V8 bevieteR	:emiT\ereC	<u> </u>	(enutengi2) : yB b	
	BIV GIAS	(ระยังชุมชุม (ร. (ระยังชุม (ร.	Received By	:emiT \eseQ	(Signature) : Y8	berkiupnileA	(annangis) : (Signature)	:emiT\ereG		(antengi2) : yB t	Matin puil
<u> </u>											
											1
		╶╉╌╉╼╋╌╄╌╂							+	i – – – – – – – – – – – – – – – – – – –	1
		┼┼┼┼		ł					++	F	+
									-+-+		
		╶╄╌╄═╄═╞								┌──┤──	
			3		1H 20					1×12.1	_
			ح		69a19 . 110					1522-1	
			3		69918.810					5.00	
	p tt		िष्ट	nidhidi Eld 160 . 1 mas	08.147.601.					16.61.2	1
	514			ET 13 amos. 1	00.893.00			-	++	16 51 2	1
	EF.			Hoted . Due 2. 100				╺──┟─┼	+	15.517	1
	/		SHINERS	└────		• (uo	EXPECTED COMPOUNDS (Concentrati	> 7	COMP		
		/////	OF				NOITAMRORINI 3J9MA2			BMIT BTAC	
2XHAM3H				•		ľ,	ا م ق ا			Ker	hine
		///	1			Field Team Le	160.				a
		//			Xe Stella	NW		Star	175	seinies)	204.5
	_ / / / / / /	/	J			6euew 10eloud					

-mot to aped on BONAR NOTARTHEOR of torm.

.

bege 2 of 2

C-11

JOB NUMBER : 9103.037

LAB SAMPLE ID	CLIENT SAMPLE ID	TEST CODE	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZEI
9727.01		WTCPRG1	11/21/91	01/02/92	01/06/92
9733.01	COMP. P1,P3,P5,P6,P8,P12	WCNT 1	12/19/91		01/07/92
		WORGCL1	12/19/91		01/08/92
		WORGS 1	12/19/91		01/08/92
		WSULFD1	12/19/91		12/26/91
		WTS 1	12/19/91		12/26/91
9733.02	COMP. P1,P3,P5,P6,P8,P12	WTCAP 1	12/19/91	01/02/92	01/06/92
		WTCBN 1	12/19/91	01/02/92	01/06/92
		WTCHG 1	12/19/91	01/02/92	01/03/92
		WTCHRB1	12/19/91	01/02/92	01/06/92
		WTCICP1	12/19/91	01/02/92	01/02/92
		WTCPST1	12/19/91	01/02/92	01/08/92
9734.01	COMPOSITE P7, P10, P11	WTCPRG1	11/21/91	01/02/92	01/06/92
9737.01	COMPOSITE P7, P10, P11	WCNT 1	12/19/91		01/07/92
		WORGCL1 WORGS 1	12/19/91 12/19/91		01/08/92
		WORGS 1 WSULFD1	12/19/91		12/26/9
		WTS 1	12/19/91		12/26/9
9737.02	COMPOSITE P7, P10, P11	WTCAP 1	12/19/91	01/02/92	01/06/92
3131.02	comostie i/, iio, iii	WTCBN 1	12/19/91	01/02/92	01/06/92
		WTCHG 1	12/19/91	01/02/92	01/03/92
		WTCHRB1	12/19/91	01/02/92	01/06/92
		WTCICP1	12/19/91	01/02/92	01/02/92
		WTCPST1	12/19/91	01/02/92	01/10/92
9738.01	OB-HT-001-P7 OIL	LPCB 1	11/21/91		01/20/92
9739.01	COMPOSITE P2, P4	LTCPRG1	11/21/91	12/30/91	01/07/92
9741.01	COMPOSITE P2, P4	LBTU 1	12/19/91		01/06/92
		LCNREA1	12/19/91		01/02/92
		LORGCL1	12/19/91		01/06/92
		LORGS 1	12/19/91		01/06/92
		LPCB 1	12/19/91		01/02/92
		LSULRA1	12/19/91		01/02/92
		LTCAP 1	12/19/91		01/06/92
		LTCBN 1	12/19/91	01 (02 (02	01/06/92
		LTCHG 1	12/19/91 12/19/91	01/02/92 01/02/92	01/03/92
		LTCICP1 LTCPST1	12/19/91	01/02/92	01/02/92
9742.01	COMPOSITE F1, F2	SASH 1	12/19/91	01/13/92	01/02/92
<i>7142</i> .01	CONFOSITE FI, F2	SBKDEN1	12/19/91		01/02/92
		SBRUENI SBTU 1	12/19/91		01/02/92
		SCNT 1	12/19/91		12/31/91
		SORGCL1	12/19/91		01/08/92
		SORGE 1	12/19/91		01/08/92
		SORMAT1	12/19/91		01/02/92
		SSULFD1	12/19/91		01/09/92
		SSULRA1	12/19/91		01/10/92
		STCAP 1	12/19/91	01/02/92	01/06/92
		STCBN 1	12/19/91	01/02/92	01/06/92

.

JOB NUMBER : 9103.037

Ecology and Environment, Inc. SAMPLE TRACKING REPORT

•

LAB SAMPLE ID	CLIENT SAMPLE ID	TEST CODE	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED
29742.01	COMPOSITE F1, F2	STCHG 1	12/19/91	01/02/92	01/03/92
	,	STCHRB1	12/19/91	01/02/92	01/06/92
		STCICP1	12/19/91	01/02/92	01/02/92
		STCPRG1	12/19/91	12/30/91	01/02/92
		STCPST1	12/19/91	01/02/92	01/08/92
		STS 1	12/19/91		01/06/92
29743.01	COMP. P9, P13, P14, P16	SASH 1	12/19/91		01/02/92
	- , - , ,	SBKDEN1	12/19/91		01/02/92
		SBTU 1	12/19/91		01/08/92
		SCNT 1	12/19/91		12/31/91
		SORGCL1	12/19/91		01/08/92
		SORGS 1	12/19/91		01/08/92
		SORMAT1	12/19/91		01/02/92
	•	SSULFD1	12/19/91		01/09/92
		STCAP 1	12/19/91	01/02/92	01/06/92
		STCBN 1	12/19/91	01/02/92	01/06/92
		STCHG 1	12/19/91	01/02/92	01/03/92
		STCHRB1	12/19/91	01/02/92	01/06/92
		STCICP1	12/19/91	01/02/92	01/02/92
		STCPRG1	12/19/91	12/30/91	01/02/92
		STCPST1	12/19/91	01/02/92	01/08/92
		STS 1	12/19/91		01/06/92
29744.01	0B-HT-001-P15	SASH 1	11/21/91		01/02/92
		SBKDEN1	11/21/91		01/02/92
		SBTU 1	11/21/91		01/06/92
		SCNT 1	11/21/91		12/31/91
		SORGCL1	11/21/91		01/06/92
		SORGS 1	11/21/91		01/06/92
		SORMAT1	11/21/91		01/02/92
		SSULFD1	11/21/91		01/09/92
		STS 1	11/21/91		01/06/92
29744.02	0B-HT-001-P15	STCAP 1	11/21/91	01/02/92	01/06/92
		STCBN 1	11/21/91	01/02/92	01/06/92
		STCHG 1	11/21/91	01/02/92	01/03/92
		STCHRB1	11/21/91	01/02/92	01/06/92
		STCICP1	11/21/91	01/02/92	01/02/92
		STCPRG1	11/21/91	12/30/91	01/02/92
		STCPST1	11/21/91	01/02/92	01/08/92
29745.01	0B-BLDG3-001-P1	SASH 1	11/21/91		01/02/92
		SBKDEN1	11/21/91		01/02/92
		SBTU 1	11/21/91		01/06/92
		SCNT 1	11/21/91		12/31/91
		SORGCL1	11/21/91		01/06/92
		SORGS 1	11/21/91		01/06/92
		SORMAT1	11/21/91		01/02/92
		SSULFD1	11/21/91		01/09/92
		STS 1	11/21/91		01/06/92

JOB NUMBER : 9103.037

Ecology and Environment, Inc. SAMPLE TRACKING REPORT

.*

LAB SAMPLE ID	CLIENT SAMPLE ID	TEST CODE	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED
29745.02	0B-BLDG3-001-P1	STCAP 1	11/21/91	01/02/92	01/06/92
		STCBN 1	11/21/91	01/02/92	01/06/92
		STCHG 1	11/21/91	01/02/92	01/03/92
		STCHRB1	11/21/91	01/02/92	01/06/92
		STCICP1	11/21/91	01/02/92	01/02/92
		STCPRG1	11/21/91	12/30/91	01/02/92
		STCPST1	11/21/91	01/02/92	01/10/92
29746.01	0B-BLDG3-001-P2	SASH 1	11/21/91	•=••=	01/02/92
		SBKDEN1	11/21/91		01/02/92
		SBTU 1	11/21/91		01/08/92
		SCNT 1	11/21/91		01/07/92
		SORGCL1	11/21/91		01/08/92
		SORGS 1	11/21/91		01/08/92
		SORMAT1	11/21/91		01/02/92
		SSULFD1	11/21/91		01/09/92
		STS 1	11/21/91		01/06/92
29746.02	OB-BLDG3-001-P2	STCAP 1	11/21/91	01/02/92	01/06/92
		STCBN 1	11/21/91	01/02/92	01/06/92
		STCHG 1	11/21/91	01/02/92	01/03/92
		STCHRB1	11/21/91	01/02/92	01/06/92
		STCICP1	11/21/91	01/02/92	01/02/92
		STCPRG1	11/21/91	12/30/91	01/02/92
		STCPST1	11/21/91	01/02/92	01/10/92

Ecology and Environment, Inc. SAMPLE COMMENT REPORT _____ TEST NAME : BTU -WATER LAB SAMPLE ID: 29733 TEST CODE:WBTU 1 CLIENT SAMPLE ID: COMP. P1, P3, P5, P6, P8, P12 COMMENT: Did not ignite. _____ -WATER TEST NAME : BTU LAB SAMPLE ID: 29737 TEST CODE:WBTU 1 CLIENT SAMPLE ID: COMPOSITE P7, P10, P11 COMMENT: Did not ignite. TEST NAME : BASE NEUTRAL-TCLP -LIQUID LAB SAMPLE ID: 29741 **TEST CODE:LTCBN 1** CLIENT SAMPLE ID: COMPOSITE P2, P4 COMMENT: Detection limits elevated due to matrix interference. ______ TEST NAME : PCB IN LIQUID -LIQUID LAB SAMPLE ID: 29738 RA TEST CODE:LPCB 1 CLIENT SAMPLE ID: OB-HT-001-P7 OIL COMMENT: Detection limits elevated due to sample matrix interference. ______ TEST NAME : PCB IN LIQUID -LIQUID LAB SAMPLE ID: 29741 TEST CODE:LPCB 1 CLIENT SAMPLE ID: COMPOSITE P2, P4 COMMENT: Detection limits elevated due to sample matrix interference. _____

TEST CODE :STS 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SOLIDS-TOTAL UNITS : % PARAMETER : Solids-Total RESULTS Q SAMPLE ID -----_____ -EE-91-29742 98 COMPOSITE F1, F2 _____ EE-91-29743 COMP. P9, P13, P14, P16 94 EE-91-29744 OB-HT-001-P15 97 EE-91-29745 0B-BLDG3-001-P1 99 EE-91-29746 87 OB-BLDG3-001-P2 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WCNT 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center : OB-4000 SCHATZ SITE TASK 21 CLIENT TEST NAME : CYANIDE TOTAL UNITS : MG/L PARAMETER : Cyanide Total SAMPLE ID RESULTS Q QNT. LIMIT _____ _____ _ _____ EE-91-29733 COMP. P1, P3, P5, P6, P8, P12 0.11 0.010 _____ EE-91-29737 COMPOSITE P7, P10, P11 ND 0.010 _____ L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

-

TEST CODE :LCNREA1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : CYANIDE-RELEASABLE UNITS : MG/L PARAMETER : Cyanide SAMPLE ID RESULTS Q QNT. LIMIT _____ EE-91-29741 COMPOSITE P2, P4 ND 0.010 _____ _______ L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SCNT 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : CYANIDE TOTAL UNITS : MG/KG PARAMETER : Total Cyanide RESULTS Q QNT. LIMIT SAMPLE ID _____ EE-91-29742 COMPOSITE F1, F2 ND 1.0 _____ EE-91-29743 COMP. P9, P13, P14, P16 ND 1.0 _____ EE-91-29744 OB-HT-001-P15 9.5 1.0 _____ EE-91-29745 1.0 0B-BLDG3-001-P1 2.5 EE-91-29746 OB-BLDG3-001-P2 2.0 1.0 QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :WSULFD1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SULFIDE UN UNITS : MG/L PARAMETER : Sulfide RESULTS Q QNT. LIMIT SAMPLE ID _____ EE-91-29733 COMP. P1, P3, P5, P6, P8, P12 ND 1.0 _____ EE-91-29737 COMPOSITE P7, P10, P11 1.3 1.0 _____ _____ QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

.

TEST CODE :LSULRA1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SULFIDE RELEASABLE UNITS : MG/L PARAMETER : Sulfide SAMPLE ID RESULTS Q QNT. LIMIT _____ EE-91-29741 COMPOSITE P2, P4 ND 1.0 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

JOB NUMBER :9103.037 TEST CODE :SSULRA1 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SULFIDE RELEASABLE UNITS : MG/KG PARAMETER : Sulfide RESULTS Q QNT. LIMIT SAMPLE ID -----EE-91-29742 COMPOSITE F1, F2 ND 4.0 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

-

TEST CODE :SSULFD1

Ecology and Environment, Inc. Analytical Services Center

: OB-4000 SCHATZ SITE TASK 21 CLIENT TEST NAME : SULFIDE TOTAL UNITS : MG/KG PARAMETER : Sulfide RESULTS Q QNT. LIMIT SAMPLE ID ______ EE-91-29742 COMPOSITE F1, F2 820 4.0 EE-91-29743 COMP. P9, P13, P14, P16 37 4.0 EE-91-29744 OB-HT-001-P15 ND 8.0 EE-91-29745 0B-BLDG3-001-P1 81 4.0 EE-91-29746 OB-BLDG3-001-P2 33 4.0 QUALIFIERS: C = COMMENTJ = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

÷ 1

TEST CODE :WORGS 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC SULFUR UNITS : % PARAMETER : Organic Sulfur RESULTS Q QNT. LIMIT SAMPLE ID -----EE-91-29733 COMP. P1, P3, P5, P6, P8, P12 ND 0.025 EE-91-29737 COMPOSITE P7, P10, P11 ND 0.025 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :LORGS 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC SULFUR UNITS : % . PARAMETER : Sulfur SAMPLE ID RESULTS Q QNT. LIMIT EE-91-29741 COMPOSITE P2, P4 0.28 0.025 _____ L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SORGS 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC SULFUR % UNITS : % PARAMETER : Organic Sulfur RESULTS Q QNT. LIMIT SAMPLE ID _____ ------ ------EE-91-29742 COMPOSITE F1, F2 0.025 0.55 _____ EE-91-29743 COMP. P9, P13, P14, P16 0.24 0.025 EE-91-29744 OB-HT-001-P15 0.27 0.025 _____ EE-91-29745 OB-BLDG3-001-P1 0.21 0.025 EE-91-29746 0.86 OB-BLDG3-001-P2 0.025 L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

- -

TEST CODE :WORGCL1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC CHLORINE UNITS : MG/L PARAMETER : Organic Chlorine RESULTS Q QNT. LIMIT SAMPLE ID _____ EE-91-29733 COMP. P1, P3, P5, P6, P8, P12 ND 0.050 _____ EE-91-29737 COMPOSITE P7, P10, P11 0.36 0.025 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :LORGCL1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC CHLORINE UNITS : % PARAMETER : Chlorine SAMPLE ID RESULTS Q QNT. LIMIT -----EE-91-29741 COMPOSITE P2, P4 ND 0.050 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SORGCL1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : CHLORINE % UI UNITS : % PARAMETER : Chlorine % RESULTS Q QNT. LIMIT SAMPLE ID EE-91-29742 0.60 0.050 COMPOSITE F1, F2 _____ EE-91-29743 COMP. P9, P13, P14, P16 0.14 0.050 _____ EE-91-29744 OB-HT-001-P15 0.23 0.050 _____ EE-91-29745 0.086 0.050 OB-BLDG3-001-P1 _____ EE-91-29746 OB-BLDG3-001-P2 0.26 0.050 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SASH 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ASH UNITS : % PARAMETER : Ash SAMPLE ID RESULTS Q QNT. LIMIT _____ EE-91-29742 58 COMPOSITE F1, F2 1.0 EE-91-29743 COMP. P9, P13, P14, P16 81 1.0 _____ EE-91-29744 0B-HT-001-P15 68 1.0 _____ EE-91-29745 51 1.0 0B-BLDG3-001-P1 EE-91-29746 0B-BLDG3-001-P2 42 1.0 0B-BLDG3-001-P2 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SORMAT1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : ORGANIC MATTER % UNITS : % PARAMETER : Organic Matter RESULTS Q QNT. LIMIT SAMPLE ID ------------ -----EE-91-29742 COMPOSITE F1, F2 34 1.0 _____ EE-91-29743 COMP. P9, P13, P14, P16 15 1.0 EE-91-29744 32 OB-HT-001-P15 1.0 EE-91-29745 OB-BLDG3-001-P1 21 1.0 _____ EE-91-29746 54 OB-BLDG3-001-P2 1.0 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

. .

TEST CODE :SBKDEN1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : BULK DENSITY UN UNITS : GM/CM3 PARAMETER : Bulk Density SAMPLE ID RESULTS Q QNT. LIMIT EE-91-29742 0.88 COMPOSITE F1, F2 0.10 _____ EE-91-29743 COMP. P9, P13, P14, P16 1.00 0.10 EE-91-29744 OB-HT-001-P15 0.93 0.10 EE-91-29745 0.10 1.9 OB-BLDG3-001-P1 EE-91-29746 OB-BLDG3-001-P2 0.88 0.10 _____ L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :LBTU 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : BTU UNITS : BTU/LB. PARAMETER : BTU RESULTS Q QNT. LIMIT SAMPLE ID _____ _____ - -----EE-91-29741 COMPOSITE P2, P4 19000 10 _____ L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :SBTU 1 JOB NUMBER :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : BTU UNITS : BTU/LB. PARAMETER : BTU SAMPLE ID RESULTS Q QNT. LIMIT _____ EE-91-29742 7600 COMPOSITE F1, F2 10 _____ EE-91-29743 COMP. P9, P13, P14, P16 11000 10 EE-91-29744 0B-HT-001-P15 5500 10 EE-91-29745 OB-BLDG3-001-P1 5300 10 ______ EE-91-29746 OB-BLDG3-001-P2 9300 10 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE

TEST CODE :WTS 1	JO	B NUMBER :9103.037					
Ecology and Environment, Inc. Analytical Services Center							
CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SOLIDS TOTAL UNITS : MG/L PARAMETER : Solids Total							
SAMPLE ID	RESULTS	Q QNT. LIMIT					
EE-91-29733 COMP. P1,P3,P5,P6,P8,P12	81 0	10					
EE-91-29737 COMPOSITE P7, P10, P11	430	10					
QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT NA = NOT APPLICABLE							

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

(mg/kg)								
Parameter	E & E Laboratory No. 91-	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)				
Total Solids,	%							
	Batch QC Batch QC	83 83	82 81	1.5 2.5				
Total Cyanide	Batch QC	ND	ND	NC				
Bulk Density, g/cm3	29743	1.0	1.0	3.2				
Ash, %	29743	81	80	0.75				
Organic Matte: %	r, 29744	32	32	0				
BTU, 1b.	29746	9300	9800	6.0				
Organic Sulfu %	r, 29746	0.86	0.68	24				
Chlorine, %	29746	0.26	0.051	107				
Total Sulfide	29744	ND	ND	NC				
Releasable Sulfide	29742	ND	ND	NC				

9103.037

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPDs ARE CALCULATED DIRECTLY FROM THE RAW DATA.

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9103.037

(mg/kg)								
Parameter	E & E Laboratory No. 91-	Original Value	Amount Added	Amount Determined	Percent Recovery			
Total Cyan	ide Batch QC	0.22	0.10	1.4	120			

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

C-37

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF LIQUID SAMPLES

9103.037

		(mg/kg)		
Parameter	E & E Laboratory No. 91-	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)
BTU, 1b.	29741	19000	19000	2.0
Chlorine, %	29741	ND	ND	NC
Releasable Cyanide	29741	ND	ND	NC
Releasable Sulfide	29741	ND	ND	NC
Organic Sulfur %	29741	0.28	0.27	0.7

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPDs ARE CALCULATED DIRECTLY FROM THE RAW DATA.

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF WATER SAMPLES

9103.037

(mg/L)							
Parameter	E & E Laboratory No. 91-	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)			
Total Solids	29733	810	840	3.6			
Sulfide	29737	1.3	1.2	8.8			

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPDs ARE CALCULATED DIRECTLY FROM THE RAW DATA.

C-39

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29733 MATRIX: WATER SAMPLE ID CLIENT: COMP. P1,P3,P5,P6,P8,P12UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Mercury	 ND	-	0.0002	0.20
Arsenic	ND		1.0	5.0
Barium	ND		10	100
Cadmium	ND		0.20	1.0
Chromium	ND		1.0	5.0
Lead	ND		1.0	5.0
Selenium	ND		1.0	1.0
Silver	ND		1.0	5.0
QUALIFIERS:	C = COMMENT J = ESTIMATED VALUE	ND = B =	NOT DETECTED ALSO PRESENT	IN BLANK

.

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29737MATRIX: WATERSAMPLE ID CLIENT: COMPOSITE P7, P10, P11UNITS : MG/L

.

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Mercury Arsenic Barium Cadmium Chromium Lead Selenium Silver	ND ND 72 ND ND ND ND ND ND ND	-	$\begin{array}{c} 0.0002\\ 1.0\\ 10\\ 0.20\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\end{array}$	$\begin{array}{c} 0.20 \\ 5.0 \\ 100 \\ 1.0 \\ 5.0 \\ 5.0 \\ 1.0 \\ 5.0 \\ 1.0 \\ 5.0 \end{array}$
QUALIFIERS:	C = COMMENT J = ESTIMATED VALUE		NOT DETECTED	 IN BLANK

Ecology and Environment, Inc. Analytical Services Center

: OB-4000 SCHATZ SITE TASK 21 CLIENT SAMPLE ID LAB :EE-91-29741 MATRIX: LIQUID SAMPLE ID CLIENT: COMPOSITE P2, P4 UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Mercury	 ND	-	0.020	0.20
Arsenic	ND		1.0	5.0
Barium	ND		10	100
Cadmium	0.29		0.20	1.0
Chromium	ND		1.0	5.0
Lead	ND		1.0	5.0
Selenium	ND		1.0	1.0
Silver	ND		1.0	5.0
QUALIFIERS: C = COM	MENT	ND =	NOT DETECTED	

ND = NOT DETECTEDJ = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center : OB-4000 SCHATZ SITE TASK 21 CLIENT SAMPLE ID LAB :EE-91-29742 MATRIX: SOLID SAMPLE ID CLIENT: COMPOSITE F1, F2 UNITS : MG/L QUANTITATION REGULATORY PARAMETER RESULTS Q LIMIT LEVEL _____ ----------- -----Mercury ND 0.020 0.20 Arsenic ND 1.0 5.0 Barium ND 10 100 Cadmium 0.20 1.0 1.4 ND Chromium 1.0 5.0 Lead ND 1.0 5.0 Selenium ND 1.0 1.0 Silver ND 1.0 5.0 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

C-43

.

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29743 MATRIX: SOLID SAMPLE ID CLIENT: COMP. P9, P13, P14, P16 UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
Mercury	ND		0.020	0.20
Arsenic	ND		1.0	5.0
Barium	ND		10	100
Cadmium	ND		0.20	1.0
Chromium	ND		1.0	5.0
Lead	ND		1.0	5.0
Selenium	ND		1.0	1.0
Silver	ND		1.0	5.0

QUALIFIERS: C = COMMENT

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29744 MATRIX: SOLID SAMPLE ID CLIENT: OB-HT-001-P15 UNITS : MG/L QUANTITATION REGULATORY PARAMETER RESULTS Q LIMIT LEVEL ____ -----------_ 0.020 0.20 ND Mercury Arsenic ND 1.0 5.0 ND 100 Barium 10 0.25 0.20 1.0 Cadmium 5.0 Chromium ND 1.0 ND 1.0 5.0 Lead Selenium ND 1.0 1.0 Silver ND 1.0 5.0 ______ QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT

.....

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29745SAMPLE ID CLIENT: OB-BLDG3-001-P1UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Mercury	ND	-	0.020	0.20
Arsenic Barium	ND ND		1.0 10	5.0 100
Cadmium	ND		0.20	1.0
Chromium	ND		1.00	5.0
Lead	ND		1.00	5.0
Selenium	ND		1.00	1.0
Silver	ND		1.00	5.0
QUALIFIERS: C = COMMENT		ND =	NOT DETECTED	

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29746 MATRIX: SOLID SAMPLE ID CLIENT: OB-BLDG3-001-P2 UNITS : MG/L QUANTITATION REGULATORY PARAMETER RESULTS Q LIMIT LEVEL _____ _____ _____ -_____ 0.020 1.0 0.20 5.0 ND Mercury 1.0 Arsenic ND 100 Barium ND 10 Cadmium 0.20 1.0 4.6 Chromium ND 1.00 5.0 Lead ND 1.00 5.0 Selenium ND 1.00 1.0 Silver ND 1.00 5.0 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT	:	0B-4000	SCHATZ	SITE	TASK	21	
SAMPLE ID LAB		: METHOD	BLANK			MATRIX:	SOLID
						UNITS :	MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Mercury	ND	-	0.0002	0.20
Arsenic	ND		0.50	5.0
Barium	ND		5.0	100
Cadmium	ND		0.10	1.0
Chromium	ND		0.50	5.0
Lead	ND		0.50	5.0
Selenium	ND		0.50	1.0
Silver	ND		0.50	5.0

QUALIFIERS: C = COMMENT

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF WATER SAMPLES

9103.037

		(mg/L)	·	
Parameter	E & E Laboratory No. 91- 29733	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)
Mercury		ND	ND	NC

ND = NOT DETECTED

.

•

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9103.037

(mg/L)							
Parameter	E & E Laboratory No. 91- 29733	Original Value	Amount Added	Amount Determined	Percent Recovery		
Mercury		ND	1.0	0.98	98		

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF LIQUID SAMPLES

9103.037

		(mg/L)		
Parameter	E & E Laboratory No. 91- 29741	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)
Mercury		ND	ND	NC

ND = NOT DETECTED

recycled paper

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR POST SPIKED LIQUID SAMPLES

9103.037

(ug/L)							
Parameter	E & E Laboratory No. 91- 29741	Original Value	Amount Added	Amount Determined	Percent Recovery		
Mercury		ND	1.0	0.34	34		

ND = NOT DETECTED

•

.

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center : OB-4000 SCHATZ SITE TASK 21 CLIENT SAMPLE ID LAB :EE-91-29741 MATRIX: LIQUID SAMPLE ID CLIENT: COMPOSITE P2, P4 UNITS : MG/KG QUANTITATION REGULATORY PARAMETER RESULTS Q LIMIT LEVEL(MG/L) _____ -----______ _____ -Chlordane ND 24 0.030 Endrin ND 6.0 0.020 Heptachlor ND 3.0 0.0080 ND 3.0 gamma-BHC (Lindane) 0.40 Methoxychlor ND 48 10 Heptachlor epoxide ND 0.0080 3.0 ND 150 0.50 Toxaphene QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANKL = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

#

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29733 MATRIX: WATER SAMPLE ID CLIENT: COMP. P1,P3,P5,P6,P8,P12UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
2,4-D	ND		0.25	10
2,4,5-TP (Silvex)	ND		0.025	1.0
Chlordane	ND		0.010	0.030
Endrin	ND		0.0025	0.020
Heptachlor	ND		0.0012	0.0080
gamma-BHC (Lindane)	ND		0.0012	0.40
Methoxychlor	ND		0.020	10
Heptachlor Epoxide	ND		0.0025	0.0080
Toxaphene	ND		0.050	0.50
QUALIFIERS: C = COMMEN		ND =	NOT DETECTED	

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29737MATRIX: WATERSAMPLE ID CLIENT: COMPOSITE P7, P10, P11UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
 2 / D	ND	-	0.25	
2,4-D			0.20	
2,4,5-TP (Silvex)	ND		0.025	1.0
Chlordane	ND		0.050	0.030
Endrin	ND		0.012	0.020
Heptachlor	ND		0.0062	0.0080
gamma-BHC (Lindane)	ND		0.0062	0.40
Methoxychlor	ND		0.10	10
Heptachlor Epoxide	ND		0.012	0.0080
Toxaphene	ND		0.25	0.50
OUALIFIERS: C = COMMENT		ND =	NOT DETECTED	
QUALIFIERS: C = COMMENT	L		INOI DEIECIED	

RS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29742 MATRIX: SOLID SAMPLE ID CLIENT: COMPOSITE F1, F2 UNITS : MG/L QUANTITATION REGULATORY RESULTS Q LIMIT LEVEL PARAMETER ---------- - ------- --------0.25 2,4-D ND 10 2,4,5-TP (Silvex) ND 0.025 1.0 0.030 Chlordane ND 0.010 ND 0.0025 Endrin 0.020 ND 0.0012 0.0080 Heptachlor gamma-BHC (Lindane) ND 0.0012 0.40 Methoxychlor ND 0.020 10 0.0080 0.50 Heptachlor epoxide ND 0.0025 0.050 Toxaphene ND 0.50 L = PRESENT BELOW STATED DETECTION LIMIT

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29743 MATRIX: SOLID SAMPLE ID CLIENT: COMP. P9, P13, P14, P16 UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
2,4-D	 ND	-	0.25	10
2,4,5-TP (Silvex)	ND		0.025	1.0
Chlordane	ND		0.010	0.030
Endrin	ND		0.0025	0.020
Heptachlor	ND		0.0012	0.0080
gamma-BHC (Lindane)	ND		0.0012	0.40
Methoxychlor	ND		0.020	10
Heptachlor epoxide	ND		0.0025	0.0080
Toxaphene	ND		0.050	0.50

QUALIFIERS: C = COMMENT L = PRESENT BELOW STATED DETECTION LIMIT

.

Ecology and Environment, Inc. Analytical Services Center

•••

••

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29744MATRIX: SOLIDSAMPLE ID CLIENT: OB-HT-001-P15UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
2,4-D	ND		0.25	10
2,4,5-TP (Silvex)	ND		0.025	1.0
Chlordane	ND		0.010	0.030
Endrin	ND		0.0025	0.020
Heptachlor	ND		0.0012	0.0080
gamma-BHC (Lindane)	ND		0.0012	0.40
Methoxychlor	ND		0.020	10
Heptachlor epoxide	ND		0.0025	0.0080
Toxaphene	ND		0.050	0.50
QUALIFIERS: C = COMMENT	•	ND =	NOT DETECTED	
J = ESTIMAT	ED VALUE	B =	ALSO PRESENT	IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29745 MATRIX: SOLID SAMPLE ID CLIENT: OB-BLDG3-001-P1 UNITS : MG/L

RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
	-		
ND		0.25	10
ND		0.025	1.0
ND		0.010	0.030
ND		0.0025	0.020
ND		0.0012	0.0080
ND		0.0012	0.40
ND		0.020	10
ND		0.0025	0.0080
ND		0.050	0.50
	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	RESULTS Q LIMIT ND 0.25 ND 0.025 ND 0.010 ND 0.0025 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.020 ND 0.020

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29746 MATRIX: SOLID SAMPLE ID CLIENT: OB-BLDG3-001-P2 UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
2,4-D	ND		0.25	10
2,4,5-TP (Silvex)	ND		0.025	1.0
Chlordane	ND		0.010	0.030
Endrin	ND		0.0025	0.020
Heptachlor	ND		0.0012	0.0080
gamma-BHC (Lindane)	ND		0.0012	0.40
Methoxychlor	ND		0.020	10
Heptachlor epoxide	ND		0.0025	0.0080
Toxaphene	ND		0.050	0.50

QUALIFIERS: C = COMMENT

ND = NOT DETECTED

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED TCLP SOIL SAMPLES

9103.037

		(mg/L)			
Parameter	E & E Laboratory No. 91– 29745	Original Value	Amount Added	Amount Determined	Percent Recovery
2,4-D 2,4,5-TP(Si]	lvex)	ND ND	3.0 0.40	2.2 0.35	73 88

ND = NOT DETECTED

C-61

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF WATER MATRIX SPIKE (Sample # 29744)

9103.037	9	1	03	•	037
----------	---	---	----	---	-----

:

Compound	Original Result	Amount Added	Amount Determined	Percent Recovery
		(mg/L)		
Lindane	ND	0.010	0.0087	87
Heptachlor	ND	0.010	0.0090	90
Heptachlor Epoxid	e ND	0.010	0.0080	80
Endrin	ND	0.025	0.025	100
Methoxychlor	ND	0.050	0.040	80

ND = NOT DETECTED

9103.037

Compound	E & E Laboratory No. 91-	Percent Recovery	
Dibutylchlorendate	29733	62	
	29737	DL	
	29742	80	
	29743	84	
	29744	76	
	29744 MS	74	
	29745	90	
	29746	80	
	Method Blank	76	

DL = DILUTED OUT

•

-

. .

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :METHOD BLANK MATRIX: SOLID UNITS : MG/L

QUANTITATION REGULATORY PARAMETER RESULTS Q LIMIT LEVEL _____ _____ _____ _____ -ND 0.25 10 2,4-D 2,4,5-TP (Silvex) 0.025 ND 1.0 Chlordane ND 0.010 0.030 Endrin ND 0.0025 0.020 0.0012 0.0080 Heptachlor ND gamma-BHC (Lindane) ND 0.0012 0.40 Methoxychlor ND 0.020 10 Heptachlor epoxide ND 0.0025 0.0080 Toxaphene ND 0.050 0.50 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE : LPCB1JOB NUMBER : 9103.037							
Ecology and Environment, Inc Analytical Services Center							
CLIENT :OB-4000 SCHATZ SIT TEST NAME:PCB IN LIQUID		UNIT	S : MG/KG				
LAB SAMPLE ID: EE-91-29738 RA							
CLIENT SAMPLE ID: 0B-HT-001-	27 OIL						
PARAMETER	RESULTS	Q	DET.LIMIT				
PCB-1242	ND	С	15				
PCB-1254	ND	č	15				
PCB-1221	ND	č	15				
PCB-1232	ND	C	15				
PCB-1248	ND	С	15				
PCB-1260	ND	С	15				
PCB-1016	ND	С	15				
LAB SAMPLE ID: EE-91-29741							
CLIENT SAMPLE ID: COMPOSITE I	P2, P4						
PARAMETER	RESULTS	Q	DET.LIMIT				
PCB-1242	ND	С	10				
PCB-1254	ND	č	10				
PCB-1221	ND	Ċ	10				
PCB-1232	ND	C	10				
PCB-1248	ND	С	10				
PCB-1260	ND	С	10				
PCB-1016	ND	С	10				
QUALIFIERS: C = COMMENT J = ESTIMATED VAI L = PRESENT BELOW	ND == JUE B =	ALSO 1	PRESENT IN BLANK				

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED OIL SAMPLES

9103.037

(mg/kg)								
Parameter	E & E Laboratory No. 91- 29741	Original Value		Amount Determined	Percent Recovery			
	·	ND	1000	1000	100			

ND = NOT DETECTED

TEST CODE :WTCPRG1

Ser Julas pater

Ecology and Environment, Inc. Analytical Services Center

: OB-4000 SCHATZ SITE TASK 21 CLIENT TEST NAME : PURGABLES-TCLP UNITS : MG/L SAMPLE ID LAB : EE-91-29727 MATRIX: WATER SAMPLE ID CLIENT: COMP. P1,P3,P5,P6,P8,P12

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
Benzene	ND		0.050	0.50
Carbon Tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl Ethyl Ketone	ND		0.10	200
Tetrachloroethylene	ND		0.050	0.70
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT		ND = NO	T DETECTED	
J = ESTIMATED V	VALUE	$\mathbf{B} = \mathbf{AL}$	SO PRESENT IN	BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WTCPRG1

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21TEST NAME: PURGABLES-TCLPUNITS : MG/LSAMPLE ID LAB: EE-91-29734MATRIX: WATERSAMPLE ID CLIENT: COMPOSITE P7, P10, P11

PARAMETER	RESULT	5 Q	QUANTITATION LIMIT	REGULATORY LEVEL
Benzene	ND		0.050	0.50
Carbon Tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl Ethyl Ketone	ND		0.10	200
Tetrachloroethylene	ND		0.050	0.70
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT J = ESTIMATED)T DETECTED LSO PRESENT IN	BLANK

ang A.

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29739MATRIX: LIQUIDSAMPLE ID CLIENT: COMPOSITE P2, P4UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL		
Benzene	ND	_	0.62	0.50		
Carbon tetrachloride	ND		0.62	0.50		
Chlorobenzene	ND		0.62	100		
Chloroform	ND		0.62	6.0		
1,2-Dichloroethane	ND		0.62	0.50		
1,1-Dichloroethylene	ND		0.62	0.70		
Methyl ethyl ketone	ND		1.2	200		
Tetrachloroethylene	ND		0.62	0.70		
Trichloroethylene	ND		0.62	0.50		
Vinyl Chloride	ND		1.2	0.20		
QUALIFIERS: C = COMMENT ND = NOT DETECTED						
J = ESTIMATH L = PRESENT		_	ALSO PRESENT TECTION LIMIT	IN BLANK		

Results of Analysis of TCLP Extracts Job Number :9103.037 Ecology and Environment, Inc. Analytical Services Center : OB-4000 SCHATZ SITE TASK 21 CLIENT SAMPLE ID LAB :EE-91-29741 MATRIX: LIQUID SAMPLE ID CLIENT: COMPOSITE P2, P4 UNITS : MG/L QUANTITATION REGULATORY RESULTS PARAMETER Q LIMIT LEVEL _____ _____ _ ------25 Pentachlorophenol С 100 ND 2,4,5-Trichlorophenol С 25 ND 400 5.0 2,4,6-Trichlorophenol ND С 2.0 2-Methyl phenol С ND 5.0 200 3-Methyl phenol С 200 ND 5.0 . 4-Methyl phenol С 5.0 ND 200 2,4-Dinitrotoluene ND С 5.0 0.13 Hexachlorobenzene ND С 5.0 0.13 Hexachlorobutadiene ND С 5.0 0.50 С Hexachloroethane ND 5.0 3.0 Nitrobenzene ND С 5.0 2.0 1,4-Dichlorobenzene С ND 5.0 7.5 ND Pyridine С 50 5.0 QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

TEST CODE :WTCBN 1

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME: BASE NEUTRAL-TCLPUNITS : MG/LSAMPLE ID LAB: EE-91-29733MATRIX: WATER SAMPLE ID CLIENT: COMP. P1, P3, P5, P6, P8, P12

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
2,4-Dinitrotoluene	ND		0.10	0.13
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
1,4-Dichlorobenzene	ND		0.10	7.5
Pyridine	ND		1.0	5.0
OHALTETERS: C - COMMENT		ND – N	IOT DETECTED	

QUALIFIERS: C = COMMENT

TEST CODE :WTCAP 1

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21TEST NAME: ACID PHENOL-TCLPUNITS : MG/LSAMPLE ID LAB: EE-91-29733MATRIX: WATERSAMPLE ID CLIENT: COMP. P1,P3,P5,P6,P8,P12

PARAMETER	RESULTS	Q	QUANTITATI LIMIT	ON REGULATORY LEVEL
		-		
Pentachlorophenol	ND		0.50	100
2,4,5-Trichlorophenol	PRESENT	L	0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl Phenol	ND		0.10	200
3-Methyl Phenol	ND		0.10	200
4-Methyl Phenol	ND		0.10	200
QUALIFIERS: C = COMMENT	•••		DETECTED	

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

TEST CODE :WTCBN 1

Ecology and Environment, Inc. Analytical Services Center

: OB-4000 SCHATZ SITE TASK 21 CLIENT TEST NAME : BASE NEUTRAL-TCLP UNITS : MG/L SAMPLE ID LAB : EE-91-29737 MATRIX: WATER SAMPLE ID CLIENT: COMPOSITE P7, P10, P11

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		-		
2,4-Dinitrotoluene	ND		0.10	0.13
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
1,4-Dichlorobenzene	ND		0.10	7.5
Pyridine	ND		1.0	5.0
QUALIFIERS: C = COMMENT		ND = N	OT DETECTED	

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

.

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME: ACID PHENOL-TCLPUNITS : MG/LSAMPLE ID LAB: EE-91-29737MATRIX: WATER SAMPLE ID CLIENT: COMPOSITE P7, P10, P11

PARAMETER	RESULTS	5 Q	QUANTITATION LIMIT	REGULATORY LEVEL
			·	
Pentachlorophenol	PRESENT	L 1	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl Phenol	ND		0.10	200
3-Methyl Phenol	ND		0.10	200
4-Methyl Phenol	ND ·		0.10	200
QUALIFIERS: C = COMMENT J = ESTIMATED V L = PRESENT BEL		B = ALS	C DETECTED SO PRESENT IN	BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT	: OB-4000 SCH	ATZ SITE TASK	21	
SAMPLE ID	LAB :EE-91-29742	2	MATRIX:	SOLID
SAMPLE ID	CLIENT: COMPOSITE	F1, F2	UNITS :	MG/L

PARAMETER	RESULTS	5 Q	QUANTITATION LIMIT	REGULATORY LEVEL
Pentachlorophenol	 ND		0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,4-Dichlorobenzene	ND		0.10	7.5
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Pyridine	ND		1.0	5.0
Tetrachloroethylene	0.	17	0.050	0.70
2,4-Dinitrotoluene	ND		0.10	0.13
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT		ND :	= NOT DETECTED	

J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

C-75

and the second second

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29743MATRIX: SOLIDSAMPLE ID CLIENT: COMP. P9, P13, P14, P16 UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Pentachlorophenol	ND	-	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,4-Dichlorobenzene	ND		0.10	7.5
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Pyridine	ND		1.0	5.0
Tetrachloroethylene	ND		0.050	0.70
2,4-Dinitrotoluene	ND		0.10	0.13
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20

Ecology and Environment, Inc. Analytical Services Center

• ?

CLIENT		:	0B-4000	SCHATZ	SITE	TASK	21		
SAMPLE	ID	LAB	:EE-91-2	29744			MATRIX	:	SOLID
SAMPLE	ID	CLIEN	r: ob-Ht-	-001-P15	5		UNITS	:	MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Pentachlorophenol	ND	-	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,4-Dichlorobenzene	ND		0.10	7.5
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Pyridine	ND		1.0	5.0
Tetrachloroethylene	ND		0.050	0.70
2,4-Dinitrotoluene	ND		0.10	0.13
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT J = ESTIMAT	ED VALUE	B =	NOT DETECTED ALSO PRESENT	IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

C-77

•

Ecology and Environment, Inc. Analytical Services Center

CLIENT: OB-4000 SCHATZ SITE TASK 21SAMPLE ID LAB:EE-91-29745MATRIX: SOLIDSAMPLE ID CLIENT: OB-BLDG3-001-P1UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Pentachlorophenol	 ND	-	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,4-Dichlorobenzene	ND		0.10	7.5
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Pyridine	ND		1.0	5.0
Tetrachloroethylene	ND		0.050	0.70
2,4-Dinitrotoluene	ND		0.10	0.13
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :EE-91-29746 MATRIX: SOLID SAMPLE ID CLIENT: OB-BLDG3-001-P2 UNITS : MG/L

ND ND ND ND	-	0.50	100
			100
ND		0.50	400
		0.10	2.0
ND		0.10	200
ND		0.10	200
ND		0.10	200
ND		0.10	0.13
ND		0.10	0.50
ND		0.10	3.0
ND		0.10	2.0
ND		0.050	0.50
ND		0.050	0.50
ND		0.050	100
ND		0.050	6.0
ND		0.10	7.5
ND		0.050	0.50
ND		0.050	0.70
ND		0.10	200
ND		1.0	5.0
ND		0.050	0.70
ND		0.10	0.13
ND		0.050	0.50
ND		0.10	0.20
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.050 ND 0.050

QUALIFIERS: C = COMMENT L = PRESENT BELOW STATED DETECTION LIMIT

C-79

9103.037

	E & E			
Compound	Laboratory No. 91-	Amount Added	Amount Determined	Percent Recovery
	(mį	g/L)		
,2-Dichloroethane-d4	29727	0.05	0 0.048	96
	29734	0.05	0 0.051	102
	29739	0.05	0 0.048	96
	29741	0.05	0	NA
	29742	0.05	0 0.050	100
	29743	0.05	0 0.054	104
	29744	0.05	0 0.051	102
	29745	0.05	0 0.053	106
	29746	0.05		104
	Method Bla			90
	Method Bla			102
	Method Bla	ank 3 0.05	0 0.054	108
oluene-d8	29727	0.05	0 0.048	96
	29734	0.05	0 0.052	104
	29739	0.05	0 0.053	106
	29741	0.05	0	NA
	29742	0.05	0 0.054	108
	29743	0.05	0 0.054	108
	29744	0.05	0 0.053	106
	29745	0.05		106
	29746	0.05		106
	Method Bla			96
	Method Bla			100
	Method Bla	ink 3 0.05	0 0.055	110
romofluorobenzene	29727	0.05		90
	29734	0.05		96
	29739	0.05		9 0
	29741	0.05		NA
	29742	0.05		100
	29743	0.05		102
	29744	0.05		94
	29745	0.05		96
	29746	0.05		96
	Method Bla			86
	Method Bla			92
	Method Bla	ink 3 0.05	0 0.049	98

These recoveries are acceptable to E & E, Inc. guidelines. NA = NOT APPLICABLE

Compound	E & E Laboratory No. 91-	Amount Added	Amount Determined	Percent Recovery
	(mį	g/L)		
nitrobenzene-D5	29733	0.10	0.08	80
	29737	0.10		**
	29741	0.10		NA
	29742	0.10	0.08	80
	29743	0.10	0.08	80
	29744	0.10	0.08	80
	29745	0.10	0.09	9 0
	29746	0.10	0.06	60
	Method Bla	ank 4 0.10	0.07	70
2-fluorobiphenyl	29733	0.10	0.06	60
	29737	0.10	0.06	60
	29741	0.10		NA
	29742	0.10	0.06	60
	29743	0.10	0.07	70
	29744	0.10	0.07	70
	29745	0.10	0.07	70
	29746	0.10	0.06	60
	Method Bla	ank 4 0.10	0.06	60
terphenyl-D14	297 33	0.10	0.08	80
	29737	0.10	0.07	70
	29741	0.10		NA
	29742	0.10	0.07	70
	29743	0.10	0.06	60
	29744	0.10	0.06	60
	29745	0.10	0.06	60
	29746	0.10	0.06	60
	Method Bla	ank 4 0.10	0.07	70

9103.037

These recoveries are acceptable to E & E, Inc. guidelines.

** Not found dut to matrix interference.

NA = NOT APPLICABLE

Compound	E & E Laboratory No. 91-	Amount Added	Amount Determined	Percent Recovery
	(m;	g/L)		
phenol-D5	29733	0.20	0.07	35
•	29737	0.20	0.04	20
	29741	0.20		NA
	29742	0.20	0.05	25
	29743	0.20	0.05	25
	29744	0.20	0.04	20
	29745	0.20	0.05	25
	29746	0.20	0.06	30
	Method Bla	ank 4 0.20	0.06	30
2-fluorophenol	29733	0.20	0.08	40
	29737	0.20		**
	29741	0.20		NA
	29742	0.20	0.07	35
	29743	0.20	0.05	25
	29744	0.20	0.03	15
	29745	0.20	0.06	30
	29746	0.20	0.06	30
	Method Bla	ank 4 0.20	0.07	35
2,4,6-tribromophenol	29733	0.20	0.16	80
	29737	0.20	0.12	60
	29741	0.20		NA
	29742	0.20	0.12	60
	29743	0.20	0.12	60
	29744	0.20	0.05	25
	29745	0.20	0.16	80
	29746	0.20	0.13	65
	Method Bla	ank 4 0.20	0.13	65

9103.037

These recoveries are acceptable to E & E, Inc. guidelines.

NA = NOT APPLICABLE

-

** Not found due to matrix interference.

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF TCLP SOIL MATRIX SPIKE (Sample # 29734)

9103.037	1
----------	---

	(
Compound	Original Result	Amount Added	Amount Determined	Percent Recovery
enzene	ND	0.050	0.060	120
arbon Tetrachloride	ND	0.050	0.040	80
Chlorobenzene	ND	0.050	0.040	80
Chloroform	ND	0.050	0.040	80
,2-Dichloroethane	ND	0.050	0.040	80
,1-Dichloroethylene	ND	0.050		**
ethyl Ethyl Ketone	ND	0.050	0.030	60
'etrachloroethylene	ND	0.050	0.050	100
'inyl Chloride	ND	0.050	0.090	180
richloroethylene	ND	0.050	0.040	80

ND = NOT DETECTED

** Compound missing due to matrix.

C-83

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF TCLP SOIL MATRIX SPIKE (Sample # 29745)

(mg)							
Compound	Original Result	Amount Added	Amount Determined	Percent Recovery			
2,4-Dinitrotoluene	ND	0.10	0.070	70			
Hexachlorobutadiene	ND	0.10	0.030	30			
Nitrobenzene	ND	0.10	0.050	50			
2,4,5-Trichlorophenol	ND	0.20	0.090	45			
Pentachlorophenol	ND	0.20	0.110	55			
2-Methyl Phenol	ND	0.20	0.070	35			

ND = NOT DETECTED

.

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF TCLP SOIL MATRIX SPIKE (Sample # 29746)

	(mg)		
Compound	Original Result	Amount Added	~Amount Determined	Percent Recovery
Benzene	ND	0.050	0.040	80
Carbon Tetrachloride	ND	0.050	0.040	80
Chlorobenzene	ND	0.050	0.040	80
Chloroform	ND	0.050	0.040	80
1,2-Dichloroethane	ND	0.050	0.030	60

0.050

0.050

0.050

0.050

0.050

ND

ND

ND

ND

ND

0.040

0.050

0.020

0.030

0.030

80

40

60

60

100

ND = NOT DETECTED

Trichloroethylene

1,1-Dichloroethylene

Methyl Ethyl Ketone

Tetrachloroethylene

Vinyl Chloride

9103.037

Station and the

Ecology and Environment, Inc. Analytical Services Center

-

•

: OB-4000 SCHATZ SITE TASK 21 CLIENT SAMPLE ID LAB :METHOD BLANK 1 MATRIX: SOLID UNITS : MG/L

QUANTITATION REGULATORY RESULTS Q LIMIT LEVEL PARAMETER _____ _____ -------0.050 0.050 0.50 Benzene ND ND 0.50 Carbon tetrachloride Chlorobenzene ND 0.050 100 ND Chloroform 0.050 6.0 1,2-Dichloroethane ND 0.050 0.50 0.050 1,1-Dichloroethylene ND 0.70 Methyl ethyl ketone ND 200 0.10 0.70 Tetrachloroethylene ND 0.050 Trichloroethylene ND 0.050 0.50 Vinyl Chloride ND 0.10 0.20 QUALIFIERS: C = COMMENT J = ESTIMATED VALUE ND = NOT DETECTED B = ALSO PRESENT IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :METHOD BLANK 2 MATRIX: SOLID UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
		_		
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Tetrachloroethylene	ND		0.050	0.70
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT		ND =	NOT DETECTED	
J = ESTIMATI	ED VALUE	B =	ALSO PRESENT	IN BLANK

Ecology and Environment, Inc. Analytical Services Center

CLIENT : OB-4000 SCHATZ SITE TASK 21 SAMPLE ID LAB :METHOD BLANK 3 MATRIX: SOLID UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
Pentachlorophenol	ND	-	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
Benzene	ND		0.050	0.50
Carbon tetrachloride	ND		0.050	0.50
Chlorobenzene	ND		0.050	100
Chloroform	ND		0.050	6.0
1,4-Dichlorobenzene	ND		0.10	7.5
1,2-Dichloroethane	ND		0.050	0.50
1,1-Dichloroethylene	ND		0.050	0.70
Methyl ethyl ketone	ND		0.10	200
Pyridine	ND		1.0	5.0
Tetrachloroethylene	ND		0.050	0.70
2,4-Dinitrotoluene	ND		0.10	0.13
Trichloroethylene	ND		0.050	0.50
Vinyl Chloride	ND		0.10	0.20
QUALIFIERS: C = COMMENT J = ESTIMAT			NOT DETECTED ALSO PRESENT	IN BLANK

L = PRESENT BELOW STATED DETECTION LIMIT

ŧ,

Ecology and Environment, Inc. Analytical Services Center

-

CLIENT: OB-4000SCHATZ SITE TASK 21SAMPLE ID LAB:METHOD BLANK 4MATRIX: SOLID

UNITS : MG/L

PARAMETER	RESULTS	Q	QUANTITATION LIMIT	REGULATORY LEVEL
 Pentachlorophenol	 ND	-	0.50	100
2,4,5-Trichlorophenol	ND		0.50	400
· · ·				
2,4,6-Trichlorophenol	ND		0.10	2.0
2-Methyl phenol	ND		0.10	200
3-Methyl phenol	ND		0.10	200
4-Methyl phenol	ND		0.10	200
Hexachlorobenzene	ND		0.10	0.13
Hexachlorobutadiene	ND		0.10	0.50
Hexachloroethane	ND		0.10	3.0
Nitrobenzene	ND		0.10	2.0
1,4-Dichlorobenzene	ND		0.10	7.5
Pyridine	ND		1.0	5.0
2,4-Dinitrotoluene	ND		0.10	0.13
QUALIFIERS: C = COMMENT J = ESTIMAT L = PRESENT		B =	NOT DETECTED ALSO PRESENT TECTION LIMIT	IN BLANK

C-89

.

.

.

.

-

APPENDIX D

.

D-1

ICAL FRATES . 1 1. 1 ecology and environment, inc. QUALITY ASSURANCE PROTOCOL REVIEW Job No.: 9200.109 Date: Report Title: Client: Laboratory Data Review Supervisor Date Metals 5 Gen. Chem GC, GC/MS Micro, Asbestos Other Date Signature Report Written by: 1at Draft Reviewed by: i. cisculated : 2nd Draft Reviewed by: (If needed) Final Review by Author: ASC Manager: QA Officer: Corp. Project Manager: Michie Steffic X (Internal Job) Marcher Stight & Status X to — All QA Protocol Review Forms ASC Signed and in File Signed and in File (to be signed by report writer) Copies of Report Sent to: Che it vila Invoices Sent to Accounting ax Comments/Notes: ---Copy Distribution: White - Report to Project File; Canary - Project Manager; Pink - Project File. 407064

المتحربين والمتحد المتحد

MEMORANDUM

T0:	Mike Steffan
FROM:	Gary Hahn
DATE:	February 6, 1992
SUBJECT:	Schatz Site Task 21 Report
REF:	9200.109
CC:	Lab File

Attached is the laboratory report of the analysis conducted on sixteen samples received at the Analytical Services Center on January 17, 1992. Analysis was performed according to the procedures set forth in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, U.S. EPA, 1986.

A facsimile of PCB draft results was sent to you on 1/30/92 by Gayle Kroetsch.

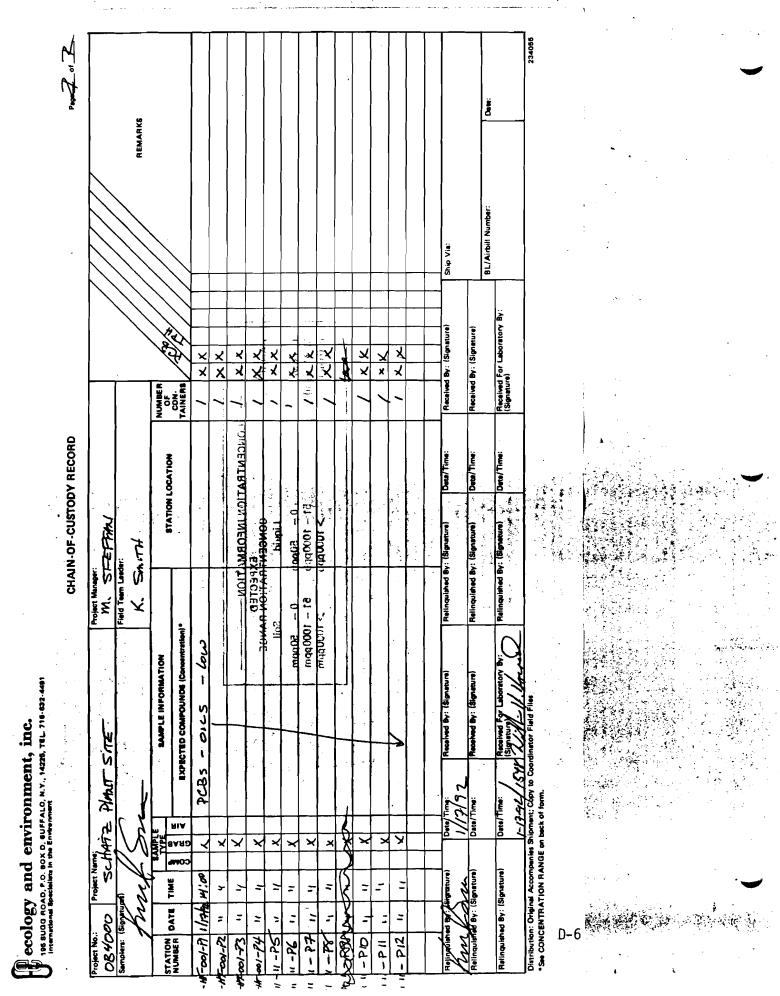
All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report, unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/kr Enclosure

Ŧ

ecology and environment, inc. 1428. TEL 716 523 4491 ther)

CHAIN-OF-CUSTODY RECORD


101.0029

Ľ

Z"7"

6852

· · ·	. '								ار بای کار میکند. (دومه دی استان میکند) ارزور بای میکند در دیگر							
•													. : -			
					۰.						and the second		х 			c.
								al an								D-5
						الله بي الي الم الي					ئە ر س.	to xoec	id no 301	IAR NOL	TAATUB	SNO2
							e de la companya de l		Tana	· · · · · · · · · · · · · · · · · · ·	145/12			dmoooA 1	nigin0 :	nolrudițisi
		: / 🖪 / 🗸	0101000	0) FOLT	beviece?F	Setter Time:	· · · · · · · ·			oterode.1 107 beviezeF (enuteropi2		T/ereC	1	(autru6)	s): Ag pi	eritiupnile
:sea0 :sadmuN IlidsiA	18	_		• •			an an the second se Second second	en de la companya de La companya de la comp								
	-	(•	กมระหย่	(\$) : Ag	Received				<u>)</u>	utengis) : va beviece?	26/0	1/0340	귀	(BURLINE)	(a): ^8/	antinprila
	us	(untengi	s) : Ag	Peviese	:emiT/exeC	(eunseuðis) :		<u>ы</u> (ө.	insengit) : Vă beviecef		1/000		(e)(1)(0)	Part	
							A A SHARE	an star		a series and a series of the			⊢_	<u> </u>	Ľ	ľ
Sister House	++		_			States & Arg	a a the States	Net Contraction			The state	5A	No	<u> </u>		
Snows (2) and ssapl wory	↓ ↓_	+		(×			1	- 1.13 	01	Jours 1	y crico	۲		"		23-10
MAKE ONE COMPOSIBE SAMPLE	4	4	^	' ^		يوه الحالي ال الاستعمال التي ال	and the second	Rogel an Arda		n na			\square^{C}	<u> </u>	<u> </u>	H-100
		+					s a garage gara tarrit. An anna an tarrit					╽╎	- 1	- ,,	-	21-100
	+	-	_		· / ···	<u> </u>	- cond]		+		- <i>"</i>		V Jpa S
		┼┼	43		(*1)	Sud	E-2018					╉╌┤	\vdash			
		+++	-	/ *	· · ·	· · · · ·	<u>Vi - 1000pp</u>		<u>- 50арт</u> - - 1000ррго -	· · · ·	{	╋╾┥	x -	- H	\bot	<u>9. 19</u>
		┥┽	+	-			Liquid		Seil				<u>-</u> +-	-	<u> </u>	F
	++	++	-++++++	Hr.			A BOUCEN	HECLED	HVHER	A	<u> </u>	\pm	┢┼╴	1 1		918-
STERATE TO STERATE	Σ	+		+		COUCENTRAT			-ON no	45 200	<u>a En L6</u>	2		10	1	14-
nows (n) and save way)	+	- X	(X	· ··· ·		apart	· ·····				┼╼╡	<u>+ </u> +×	\$ "	n	E16 -
nous encount and gunu				\top		200-	1079 17	States and a second	ef le transforment.	moj - 7	10-971	Π		[cohi	240/	68-1
	1//	1	7.	$\overline{7}$	CON.		the free to the state		e (notratheone)	LED COMPOUNDS (oadxa 🖯	۸IR	GRAB	T	•	1,70,000
		/ ^\$	¥¢	7	10 10	LOCATION	NOITAT2		NOILI	WHOINI B'LINYS			Jamas Jayra	- 3MIT	9TAG	NOI 541
иемаяка							puin		· · · ·		•		<u>Serv</u>	R 9	w	US
	[]]					·		- 🔨 meeT bi	Ma la						uniques	1 sueldin
	///						144121S	·M		JUS	JANE	S	wyo	S	a	20/80
					L		· /	:neganaM 700[<u> </u>			<u>`</u>	:ew	IN Joelor		:.0N 706[01

JOB NUMBER : 9200.109

Ecology and Environment, Inc. SAMPLE TRACKING REPORT

LAB	CLIENT				
SAMPLE	SAMPLE	TEST	DATE	DATE	DATE
ID	ID	CODE	SAMPLED	EXTRACTED	ANALYZED
30863.01	 COMP. P9, P13, P14, P16	SPCB 1	01/17/92	01/22/92	01/24/92
50005001		SPETHY1	01/17/92	01, 22, 72	01/23/92
		STSCLP1	01/17/92		01/22/92
30864.01	0B-HT-001-P15	SPCB 1	01/17/92	01/22/92	01/24/92
5000	02 MI 001 112	SPETHY1	01/17/92	01/22/72	01/23/92
		STSCLP1	01/17/92		01/22/92
30865.01	0B-BLDG3-001-P1	LPCB 1	01/17/92		01/20/92
30003101		LPETPD1	01/17/92		01/22/92
30866.01	0B-BLDG3-001-P2	SPCB 1	01/17/92	01/22/92	01/24/92
		SPETHY1	01/17/92	02,00,70	01/23/92
		STSCLP1	01/17/92		01/22/92
30867.01	COMPOSIT F1, F2	SPCB 1	01/17/92	01/22/92	01/24/92
		SPETHY1	01/17/92		01/30/92
		STSCLP1	01/17/92		01/22/92
30868.01	0B-HT-001-P1	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/23/92
30869.01	0B-HT-001-P2	LPCB 1	01/17/92		01/20/92
		LPETPD1	01/17/92		01/21/92
30870.01	0B-HT-001-P3	WPCB 1	01/17/92	01/21/92	01/23/92
		WPETHY1	01/17/92		01/23/92
30871.01	0B-HT-001-P4	LPCB 1	01/17/92		01/21/92
		LPETPD1	01/17/92		01/22/92
30872.01	0B-HT-001-P5	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92
30873.01	0B-HT-001-P6	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92
30874.01	0B-HT-001-P7	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92
30875.01	0B-HT-001-P8	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92
30876.01	0B-HT-001-P10	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92
30877.01	OB-HT-001-P11	WPCB 1		01/21/92	01/22/92
30878.01	OB-HT-001-P12	WPCB 1	01/17/92	01/21/92	01/22/92
		WPETHY1	01/17/92		01/28/92

D-7

Ecology and Environment, Inc. SAMPLE COMMENT REPORT LAB SAMPLE ID: 30870 TEST CODE: WPCB 1 CLIENT SAMPLE ID: OB-HT-001-P3 COMMENT: Detection limit elevated due to matrix interference. _____ TEST NAME: PCB-WATERLAB SAMPLE ID:30874 TEST CODE:WPCB 1 CLIENT SAMPLE ID: OB-HT-001-P7 COMMENT: Detection limit elevated due to matrix interference. _____ TEST NAME: PCB-WATERLAB SAMPLE ID:30877 TEST CODE:WPCB 1 CLIENT SAMPLE ID: OB-HT-001-P11 COMMENT: Detection limit elevated due to matrix interference. _____

TEST CODE :STSCLP1 JOB NUMBER :9200.109 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SOLIDS - TOTAL UNITS : % PARAMETER : SOLIDS - TOTAL SAMPLE ID RESULTS Q ____ EE-92-30863 COMP. P9, P13, P14, P16 92 ____ EE-92-30864 96 0B-HT-001-P15 _____ EE-92-30866 OB-BLDG3-001-P2 73 EE-92-30867 97 COMPOSIT F1, F2 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED QNT. LIMIT

JOB NUMBER :9200.109 TEST CODE :WPETHY1 Ecology and Environment, Inc. Analytical Services Center : OB-4000 SCHATZ SITE TASK 21 CLIENT TEST NAME : TRPH UNITS : MG/L PARAMETER : Petroleum Hydrocarbons RESULTS Q QNT. LIMIT SAMPLE ID _____ EE-92-30868 0B-HT-001-P1 ND 1.0 _____ EE-92-30870 OB-HT-001-P3 1.4 1.0 _____ EE-92-30872 OB-HT-001-P5 7.5 1.0 ____ EE-92-30873 1400 OB-HT-001-P6 1.0 EE-92-30874 0B-HT-001-P7 600 1.0 _____ EE-92-30875 OB-HT-001-P8 6.0 1.0 EE-92-30876 OB-HT-001-P10 1900 1.0 _____ EE-92-30877 OB-HT-001-P11 6.1 1.0 EE-92-30878 9.1 OB-HT-001-P12 1.0 _____ QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED QNT. LIMIT NA = NOT APPLICABLE

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9200.109

		(mg/L)			
Parameter	E & E Laboratory No. 92-	Original Value	Amount Added	Amount Determined	Percent Recovery
T. Recovera					
Petroleur Hydroca	-				
	Spiked Blan	k ND	1.6	1.8	113
	Batch QC	ND	1.6	1.8	113

ND = NOT DETECTED

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA. TEST CODE :WPETHY1 JOB NUMBER :9200.109 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : TRPH UNITS : MG/L PARAMETER : Petroleum Hydrocarbons SAMPLE ID RESULTS Q QNT. LIMIT _____ _------------_ ND METHOD BLANK 1.0 QUALIFIERS: C = COMMENT ND = NOT DETECTEDJ = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED QNT. LIMIT NA = NOT APPLICABLE

- .

TEST CODE :SPETHY1 JOB NUMBER :9200.109 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 **RESULTS IN DRY WEIGHT** TEST NAME : TRPH UNITS : MG/KG PARAMETER : Petroleum Hydrocarbons RESULTS Q QNT. LIMIT SAMPLE ID ------ ----------EE-92-30863 COMP. P9, P13, P14, P16 54000 5.4 ____ EE-92-30864 OB-HT-001-P15 69000 5.2 _____ EE-92-30866 80000 OB-BLDG3-001-P2 6.8 EE-92-30867 COMPOSIT F1, F2 60000 5.2 QUALIFIERS: C = COMMENT L = PRESENT BELOW STATED QNT. LIMIT

NA = NOT APPLICABLE

QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOLID SAMPLES

9200.109

		(mg/kg)		
Parameter	E & E Laboratory No. 92-	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)
T. Recoveral Petroleum Hydrocal				

ND = NOT DETECTED

NC = NOT CALCULABLE

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, RPDs ARE CALCULATED DIRECTLY FROM THE RAW DATA.

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOLID SAMPLES

9200.109

		(mg/kg)	1		
Parameter	E & E Laboratory No. 92-	Original Value	Amount Added	Amount Determined	Percent Recovery
			- <u> </u>		
T. Recovera					
T. Recovera Petroleu Hydroca	n				
Petroleu	n	59000	150	89000	**
Petroleu	n arbons	59000 2200	150 140	89000 2400	** **
Petroleu	arbons 30866		•		
Petroleu	arbons 30866 Batch QC	2200	140	2400	**

ND = NOT DETECTED

****** = RECOVERY NOT DETERMINED BECAUSE SAMPLE AMOUNT IS FOUR OR MORE TIMES GREATER THAN SPIKE AMOUNT.

NOTE: ALTHOUGH RESULTS ARE REPORTED AS ROUNDED VALUES, PERCENT RECOVERIES ARE CALCULATED DIRECTLY FROM THE RAW DATA.

an estimate a second

Analytical Services Ce			
CLIENT :OB-4000 SCHA TEST NAME:PCB	TZ SITE TASK 21 -WATER	UNI	TTS : UG/L
LAB SAMPLE ID: EE-92-3	 0868		
CLIENT SAMPLE ID: OB-H	T-001-P1		
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		0.50
PCB-1242	ND		0.50
PCB-1254	1.0		0.50
PCB-1221	ND		0.50
PCB-1232	ND		0.50
PCB-1248	ND		0.50
PCB-1260	ND		0.50
LAB SAMPLE ID: EE-92-3 CLIENT SAMPLE ID: OB-H			
		•	
PARAMETER	RESILTS	0	ONT LIMIT
PARAMETER	RESULTS	Q	QNT.LIMIT
	RESULTS	Q C	QNT.LIMIT 2.5
PCB-1016		-	-
PCB-1016 PCB-1242	ND	С	2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221	ND ND ND ND	C C C C	2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232	ND ND ND ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248	ND ND ND ND ND	C C C C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248	ND ND ND ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260	ND ND ND ND ND ND	C C C C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND	C C C C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND ND ND ND 0872 F-001-P5	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND 0872 T-001-P5 RESULTS	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND ND ND ND 0872 F-001-P5	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1260 	ND ND ND ND ND ND 0872 T-001-P5 RESULTS ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1260 	ND ND ND ND ND ND ND 0872 F-001-P5 RESULTS ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1260 	ND ND ND ND ND ND ND 0872 F-001-P5 RESULTS ND ND ND 0.80	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND 0.80 ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.50 0.50
PARAMETER PCB-1016 PCB-1242 PCB-1254 PCB-1252 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND 0.80 ND ND ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.50 0.50
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND ND ND RESULTS ND ND ND ND ND ND ND ND ND ND ND ND ND	C C C C C C C	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

73 001-P6		
RESULTS	Q	QNT.LIMIT
ND		50
ND		50
80		50
ND		50
ND ND ND ND	с с с с	400 400 400 400 400
75 001-P8		
RESULTS	Q	QNT.LIMIT
ND		1.0
ND		1.0
1.0		1.0
ND		1.0
	RESULTS ND ND 80 ND ND ND ND ND ND ND ND ND ND	RESULTS Q ND ND ND ND ND ND ND ND ND ND

-

-

TEST CODE :WPCB 1		NUMBEF	8 :9200.109
Ecology and Environment, I Analytical Services Center			
CLIENT :0B-4000 SCHATZ S TEST NAME:PCB		UNII	'S : UG/L
LAB SAMPLE ID: EE-92-30876 CLIENT SAMPLE ID: OB-HT-OC			
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		5.0
PCB-1242	ND		5.0
PCB-1254	9.0		5.0
PCB-1221	ND		5.0
PCB-1232	ND		5.0
PCB-1248	ND		5.0
PCB-1260	ND		5.0
LAB SAMPLE ID: EE-92-30877 CLIENT SAMPLE ID: OB-HT-OO PARAMETER		0	QNT.LIMIT
	RESOURS	ų	QIVITELINIT
PCB-1016	ND	С	1.1
PCB-1242	ND	С	1.1
PCB-1254	ND	С	1.1
PCB-1221	ND	С	1.1
PCB-1232	ND	C	1.1
PCB-1248 PCB-1260	ND	C C	1.1
	ND		1.1
LAB SAMPLE ID: EE-92-30878 CLIENT SAMPLE ID: OB-HT-00			
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		0.50
PCB-1242	ND		0.50
PCB-1254	ND		0.50
PCB-1221	ND		0.50
PCB-1232	ND		0.50
PCB-1248	ND		0.50
PCB-1260	ND		0.50
QUALIFIERS: C = COMMENT	ND =	NOT D	ETECTED
J = ESTIMATED	VALUE B =	ALS0	PRESENT IN BLAN
L = PRESENT BE	LOW STATED QN	r. lim	IT

D-18

,

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9200.109

		(ug/L)			
Parameter	E & E Laboratory No. 92- 30873 MS	Original Value	Amount Added	Amount Determined	Percent Recovery
PCB-1242		ND	50	50	100

ND = NOT DETECTED

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

9200.109

		(ug/L)			
Parameter	E & E Laboratory No. 92- Spiked Blank	Original Value	Amount Added	Amount Determined	Percent Recovery
PCB-1242		ND	50	45	90

ND = NOT DETECTED

•

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF HEXABROMOBENZENE SURROGATE SPIKES

	(ug/L)		
E & E Laboratory No. 92-	Amount Added	Amount Determined	Percent Recovery
30868	2.5	1.5	60
30870	2.5		INF C
30872	2.5	2.2	88
30873	2.5		DL /
30874	2.5		DL
30875	2.5	1.8	72
30876	2.5		INF
30877	2.6	2.6	100
30878	2.5	1.6	64

9200.109

These recoveries are within E & E quality control limits (37-138%).

DL = SURROGATE DILUTED OUT

INF = SURROGATE CONTAINS MATRIX INTERFERENCE

1997 C (1997 C

	000 SCHATZ SITE TASK 21 -WATER	UNITS : UG/L
	- WILL DI	
LAB SAMPLE ID:	METHOD BLANK #1	
PARAMETER	RESULI	S Q QNT.LIMIT
PCB-1016	ND	0,50
PCB-1242	ND	0.50
PCB-1254	ND	0.50
PCB-1221	ND	0.50
PCB-1232	ND	0.50
PCB-1248	ND	0.50
PCB-1260	ND	0.50
LAB SAMPLE ID: PARAMETER	METHOD BLANK #2 RESULT	TS Q QNT.LIMIT
PCB-1016	ND	0.50
PCB-1242	ND	0.50
	ND	0.50
PCB-1254		0.50
PCB-1221	ND	A = A
PCB-1221 PCB-1232	ND	0.50
PCB-1221		0.50 0.50 0.50

Analytical Services (
CLIENT :0B-4000 SCI TEST NAME:PCB IN LIQ		UNI	TS : MG/KG
LAB SAMPLE ID: EE-92-			
CLIENT SAMPLE ID: OB-	-BLDG3-001-P1		
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1242	ND		25
PCB-1254	3 9 0		25
PCB-1221	ND		25
PCB-1232	ND		25
PCB-1248	ND		25
PCB-1260	ND		25
PCB-1016	ND		25
LAB SAMPLE ID: EE-92-	-30869		
CLIENT SAMPIE TO. OR	_HT_001_P2		
CLIENT SAMPLE ID: OB-			
CLIENT SAMPLE ID: OB- PARAMETER		Q	QNT.LIMIT
PARAMETER PCB-1242	RESULTS ND	Q	5.0
PARAMETER PCB-1242 PCB-1254	RESULTS ND ND	Q	5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221	RESULTS ND ND ND	Q	5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232	RESULTS ND ND ND ND	Q	5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248	RESULTS ND ND ND ND ND	Q	5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260	RESULTS ND ND ND ND ND ND	Q	5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248	RESULTS ND ND ND ND ND	Q	5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016	RESULTS ND ND ND ND ND ND ND	Q	5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260	RESULTS ND ND ND ND ND ND ND ND ND	Q	5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4		5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4		5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4 RESULTS		5.0 5.0 5.0 5.0 5.0 5.0 5.0
PARAMETER PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4 RESULTS ND ND		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
PARAMETER PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 LAB SAMPLE ID: EE-92- CLIENT SAMPLE ID: OB- PARAMETER PCB-1242 PCB-1254 PCB-1221	RESULTS ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4 RESULTS ND ND ND ND		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10
PARAMETER PCB-1242 PCB-1254 PCB-1254 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND ND ND RESULTS ND ND ND ND ND ND ND ND ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 0 0 0 10 10 10 10
PARAMETER PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 LAB SAMPLE ID: EE-92- CLIENT SAMPLE ID: OB- PARAMETER PCB-1242 PCB-1254 PCB-1221	RESULTS ND ND ND ND ND ND ND ND ND -30871 -HT-001-P4 RESULTS ND ND ND ND		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10
PARAMETER PCB-1242 PCB-1254 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 PCB-1016 	RESULTS ND ND ND ND ND ND ND ND ND ND RESULTS ND ND ND ND ND ND ND ND ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 0 0 0

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED OIL SAMPLES

9200.109

(mg/kg)								
Parameter	E & E Laboratory No. 92- 30869 MS	Original Value	Amount Added	Amount Determined	Percent Recovery			
PCB-1242		ND	1800	2100	117			

ND = NOT DETECTED

. .

-

LAB SAMPLE ID: EE-92-30863 CLIENT SAMPLE ID: COMP. P9				GH -
	, 113, 114, 1	16		
PARAMETER	RESULTS	Q	QNT.LIMIT	
PCB-1016	ND		54	
PCB-1242	ND		54	
PCB-1254	330		54	
PCB-1221	ND		54	
PCB-1232	ND		54	
PCB-1248	ND		54	
PCB-1260	ND		54	
PCB-1242 PCB-1254 PCB-1221	ND 160		62 62	
PCB-1232 PCB-1248	ND ND ND ND		62 62 62 62 	_
PCB-1232 PCB-1248 PCB-1260 	ND ND ND		62 62	_
PCB-1232 PCB-1248 PCB-1260 	ND ND ND -001-P2	Q	62 62	-
PCB-1232 PCB-1248 PCB-1260 	ND ND ND -001-P2	Q	62 62 62	_
PCB-1232 PCB-1248 PCB-1260 	ND ND -001-P2 RESULTS	Q	62 62 62 	_
PCB-1232 PCB-1248 PCB-1260 LAB SAMPLE ID: EE-92-30866 CLIENT SAMPLE ID: OB-BLDG3- PARAMETER PCB-1016 PCB-1242	ND ND -001-P2 RESULTS ND	Q	62 62 62 QNT.LIMIT 27	_
PCB-1232 PCB-1248 PCB-1260 	ND ND -001-P2 RESULTS ND ND	Q	62 62 62 QNT.LIMIT 27 27	_
PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND -001-P2 RESULTS ND ND 110 ND ND	Q	62 62 62 QNT.LIMIT 27 27 27 27 27 27 27 27	
PCB-1232 PCB-1248 PCB-1260 	ND ND ND -001-P2 RESULTS ND ND 110 ND	Q	62 62 62 QNT.LIMIT 27 27 27 27 27	

.

· •

CLIENT :0B-4000 SCHATZ TEST NAME:PCB-SOIL	-SOLID	UNITS : MG/KG RESULTS IN DRY WEIGHT
LAB SAMPLE ID: EE-92-3086 CLIENT SAMPLE ID: COMPOSI	7	
PARAMETER	RESULTS	Q QNT.LIMIT
PCB-1016	ND	62
PCB-1242	ND	62
PCB-1254	330	62
PCB-1221	ND	62
PCB-1232	ND	62
PCB-1248	ND	62
PCB-1260	ND	62

QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample # 30863)

9200.109

(mg/kg)									
	Original Parameter Result	Amount Added		Amount Determined		Percent Recovery			
Parameter		MS	MSD	MS	MSD	MS	MSD	RPD	
PCB-1242	ND	1.7	1.7					**	

ND = NOT DETECTED

۳ſ

****** = SPIKE DILUTED OUT

D-27

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9200.109

(mg/kg)									
Parameter	E & E Laboratory No. 92- Spiked Blank	Original Value	Amount Added	Amount Determined	Percent Recovery				
PCB-1242		ND	1.7	1.9	112				

ND = NOT DETECTED

-

TEST CODE :SPCB 1 JOB NUMBER :9200.109 Ecology and Environment, Inc. Analytical Services Center CLIENT :0B-4000 SCHATZ SITE TASK 21 TEST NAME: PCB-SOIL -SOLID UNITS : MG/KG LAB SAMPLE ID: METHOD BLANK PARAMETER RESULTS Q QNT.LIMIT PCB-1016 ND 0.020 0.020 PCB-1242 ND

PCB-1254 ND 0.020 PCB-1221 ND 0.020 PCB-1232 ND 0.020 PCB-1248 ND 0.020 ND PCB-1260 0.020 _____ L = PRESENT BELOW STATED QNT. LIMIT

٩

LAB SAMPLE ID: EE-92-30865			
CLIENT SAMPLE ID: OB-BLDG3			
PARAMETER	RESULTS	Q	QNT.LIMIT
Gasoline	ND		NA
Lube Oil	PRESENT	*	NA
Kerosene	ND		10000
Fuel Oil	ND		10000
Diesel Fuel	ND		10000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER	1-P2 RESULTS	Q	QNT.LIMIT
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline	1-P2 RESULTS ND		NA
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil	1-P2 RESULTS ND PRESENT		NA NA
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene	1-P2 RESULTS ND PRESENT ND		NA NA 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil	1-P2 RESULTS ND PRESENT		NA NA
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel	1-P2 RESULTS ND PRESENT ND ND ND		NA NA 50000 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	1-P2 RESULTS ND PRESENT ND ND ND		NA NA 50000 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	1-P2 RESULTS ND PRESENT ND ND ND 1-P4	*	NA NA 50000 50000
LAB SAMPLE ID: EE-92-30869 CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	ND RESULTS ND PRESENT ND ND 1-P4 RESULTS ND	* Q	NA NA 50000 50000 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	ND RESULTS ND PRESENT ND ND 1-P4 RESULTS	* Q *	NA NA 50000 50000 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	ND RESULTS ND PRESENT ND ND 1-P4 RESULTS ND	* Q *	NA NA 50000 50000 50000
CLIENT SAMPLE ID: OB-HT-OO PARAMETER Gasoline Lube Oil Kerosene Fuel Oil Diesel Fuel 	ND RESULTS ND PRESENT ND ND 1-P4 RESULTS ND PRESENT	* Q *	NA NA 50000 50000 50000

TEST CODE :LPETPD1	JOB NUMBE	R :9200.109
Ecology and Environment, Inc. Analytical Services Center		
CLIENT :OB-4000 SCHATZ SITE TEST NAME:PETROLEUM PRODUCTS-	LIQUID UNI	
LAB SAMPLE ID: METHOD BLANK #		
PARAMETER	RESULTS Q	QNT.LIMIT
Gasoline	ND	NA
Lube Oil	ND	NA
Kerosene	ND	10000
	ND	10000
Diesel Fuel	ND 	10000
LAB SAMPLE ID: METHOD BLANK #	2	
PARAMETER	RESULTS Q	QNT.LIMIT
Gasoline	ND	NA
Lube Oil	ND	NA
Kerosene	ND	10000
Fuel Oil	ND	10000
Diesel Fuel	ND	10000
QUALIFIERS: C = COMMENT		DETECTED
J = ESTIMATED VAL	UE B = ALSO	PRESENT IN BLANK
L = PRESENT BELOW		
NA = NOT APPLICABL		

.

APPENDIX E

,

•

۱

۲

•

MEMORANDUM

TO: M. Steffan

FROM: J. McMullan

DATE: March 12, 1992

SUBJECT: Data Review of Job Nos. 9103.037 and 9200.109, NYSDEC Schatz Site

cc: J. Wilcox, M. Meredith, K. Smith

A total of nine samples (five soils, two oils, and two waters) were collected by Ecology and Environment Engineering, P.C. (E & E) at the NYSDEC Schatz site on November 21 and December 19, 1991. A total of 16 samples (four soils, three oils, and nine waters) were collected by E & E at this site on January 17, 1992. The 12 sampling locations or composites from sampling locations from the previous round were sampled. The two sets of samples were analyzed for different parameters by E & E's Analytical Services Center (ASC) and the results were reported as Job Nos. 9103.037 and 9200.109.

Although the parameters varied, all samples were analyzed for PCBs and either total petroleum hydrocarbons (TPH) or petroleum products. Most of the samples were analyzed for TCLP (Total), while three were analyzed for TCLP (purgeables only) and one was analyzed for TCLP (Total, except herbicides). Other parameters analyzed for in one or more samples included BTU, cyanide (total or releasable), sulfide (total or releasable), organic chlorine, organic sulfur, organic matter, ash, and bulk density. Analyses were performed according to the procedures set forth in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, Third Edition, EPA, September 1986.

All data have been reviewed for useability and quality assurance/quality control (QA/QC) concerns are noted below along with any data qualifications. The analytical results reported in Job Nos. 9103.037 and 9200.109 are summarized on Data Summary Forms given in Appendix B with the glossary of data qualifiers presented in Appendix A. Positive results are summarized in Tables 1 through 6, attached. All data are considered valid and useable with any exceptions noted below in QA/QC comments.

QA/QC COMMENTS

- The percent spike recovery for mercury in the TCLP analysis of oils was low at 34%. The TCLP mercury quantitation limit in oil sample Comp. P2,P4 is qualified "UJ" as estimated with a low bias.
- Some relative percent difference (RPD) values were high, notably 67% for TPH in waters and 107% for organic chlorine in soils. In both

02:D3900-M_STEFF-06/17/92-D1

M. Steffan March 12, 1992 Page 2

instances, the results for the duplicate analyses were very low values, so the high RPDs are acceptable.

- Surrogate and matrix spike recoveries (except for mercury as noted above) were within QC limits.
- Method blank results indicated no laboratory contamination by the analytes of concern.

Attachments:

Table 1 - Soil Samples, Inorganic Results

Table 2 - Soil Samples, Organic Results

Table 3 - Water and Oil Samples, Inorganic Results

Table 4 - Water Samples, Organic Results

Table 5 - Oil Samples, Organic Results

Table 6 - TCLP Extract Results, All Samples.

dlw

Table 1 SOIL SAMPLES INORGANIC RESULTS (Results expressed in mg/kg, except as noted)								
Comp. Comp. P9, Building 3- Building 3- Parameter F1, F2 P13, P14, P16 HT-001-P15 001-P1 001-P2								
Cyanide, total	<1.0	<1.0	9.5	2.5	2.0			
Sulfide, total	820	37	< 8.0	81	33			
Sulfide, releasable	<4.0	NA	NA	NA	NA			
% Organic sulfur	0.55	0.24	0.27	0.21	0.86			
% Organic chlorine	0.60	0.14	0.23	0.086	0.26			
% Ash	58	81	68	51	42			
% Organic Matter	34	15	32	21	54			
Bulk Density (g/cm ³)	0.88	1.00	0.93	1.90	0.88			
BTU/lb.	7,600	11,000	5,500	5,300	9,300			
% Solids (1/17/92)	97	92	96	NA	73			
% Solids (11/21/91, 12/19/91)	98	94	97	99	87			

Key:

NA = Not analyzed.

•

.

2

E-5

Table 2									
SOIL SAMPLES ORGANIC RESULTS (results expressed in mg/kg)									
	Sample								
Parameter	Composite Composite HT-001- Buil F1, F2 P9, P13, P14, P16 P15 0								
ТРН	60,000	54,000	69,000	80,000					
PCB - 1254	330	330	160	110					

Page 1 of 1

Table 3								
WATER AND OIL SAMPLES INORGANIC RESULTS (results expressed in mg/L, except as noted)								
	Sample							
Parameter	Composite Composite Composite P1, P3, P5, P6, P8, P12 P7, P10, P11 P2							
Cyanide, total	0.11	<0.10	NA					
Cyanide, releasable	NA	NA	<0.01					
Sulfide, total	<1.0	1.3	NA					
Sulfide, releasable	NA	NA	< 1.0					
% Organic sulfur	< 0.025	< 0.025	0.28					
% Organic chlorine	<0.050	0.36	< 0.050					
BTU/lb	NA	NA	19,000					
Total solids	810	430	NA					

Key:

NA = Not analyzed.

02:D3900-06/10/92-D1

E-7

	Table 4								
WATER SAMPLES ORGANIC RESULTS (results expressed in µg/L)									
					Sample				
Parameter	HT-001-P1	HT-001-P3	HT-001-P5	HT-001-P6	HT-001-P7	HT-001-P8	HT-001-P10	HT-001-P11	HT-001-P12
ТРН	< 1.0	1.4	7.5	1,400	600	6.0	1,900	6.1	9.1
PCB - 1254	1.0	<0.50	0.80	80	< 0.50	1.0	9.0	< 0.50	< 0.50

F

Page 1 of 1

Table 5							
OIL SAMPLES ORGANIC RESULTS (results expressed in mg/kg)							
	Sample						
Parameter	Bldg. 3-001-P1	HT-001-P2	HT-001-P4				
Lube/motor oil	P	Р	P				
РСВ - 1254	390	<5.0	<5.0				

Key:

P = Present, but unidentified pattern.

.

Page 1 of 1

Table 6 TCLP EXTRACT RESULTS ALL SAMPLES (results expressed in <i>µ</i> g/L extract)								
Parameter	Composite P1, P3, P5, P6, P8, P12	Composite P7, P10, P11	Composite P2, P4	Composite F1, F2	Composite P9, P13, P14, P16	HT-001-P15	Bldg.3-001-P1	Bldg.3-001-P2
Organics								
Tetrachloroethene	< 0.05	< 0.05	< 0.62	0.17	< 0.05	< 0.05	< 0.05	< 0.05
Pentachlorophenol	< 0.50	Р	<25	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	P	< 0.50	<25	<0.50	<0.50	<0.50	< 0.50	< 0.50
Metals								
Barium	<10	72	<10	<10	<10	<10	<10	<10
Cadmium	<0.20	< 0.20	0.29	1.4	<0.20	0.25	< 0.20	4.6

1

Key:

P = Present below quantitation limit.

02:03800-06/17/92-01

Page 1 of 1

APPENDIX A

GLOSSARY OF DATA QUALIFIERS

02;084901_D3900-06/10/92-D2

•...

E-11

· · · · ·

GLOSSARY OF DATA QUALIFIER CODES

CODES RELATING TO IDENTIFICATION

(Confidence concerning presence or absence of compounds):

- U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.
- (NO CODE) = Confirmed Identification.
 - B = Not detected substantially above the level reported in laboratory or field blanks.
 - R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
 - N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION

(Can be used for both positive results and sample quantitation limits):

- J = Analyte present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- UL = Not detected, quantitation limit is probably higher.
- []= Inorganic analyte present. As values approach IDL, quantitation may not be accurate.

OTHER CODES

Q = No analytical result.

kvk/Y03060 [SEC]172

APPENDIX B

DATA SUMMARY FORMS

B-1

-

в-1 Е-13

DATA SUMMARY FORM: O R G A W I C S

Case #: 9200,109 Sampling Date(s): 1/17/92

To calculate sample quantitation limit:

(QL * Dilution Factor) / ((100 - % moisture)/ $\frac{3}{2}$ 00)

(by/bm) -(51/57) 50/0005 1:0 STLENVS 7105

9 Хc ed bar 10001 an an AN Dirsel Fue 0000 an ON aN Jonosono 00901 ON QN an **HN** 10 2017 ð d ð an an ON NA GOSO MA COMPOUND E-1/ Location -enusation X 100-14 22-100-14 -2 100 - 5 1915 -103381 noi3uli@ . .oN sigme?

SEE NEKETIVE FOR CODE DEFINITIOUS

OL = QUARTETERTOR LIMIT P = Presont ; Unidonfit.ed pettorn NO= Not applicable NO= Not letected

COLLO DOSITVON

				E PERTI	1 .D.E.S. A.W.D. P	св' 5	(
te N se d	Name: <u>Schatz</u> 1: <u>9200.10</u> 9 Sampling Dat				(CRQL + D	To calculate sa	aple quantitation limit ((100 - % moisture)/100
	Sample No.	Bldg. 3-	HT-004	HT-001-P4			
	Dilucion Factor Location	001-PI		<u> </u>	· ·		
	Olub Ede	5.0	1.0	2.0			
	ហ						
	COMPOUND						
	alpha-BKC	NA	NA	NA			
4	beta-BHC						
-	delta-BHC	∦					
2	game-BHC (Lindane)						
	Heptachlor					── ──┼──╂ ───┾	
	Aldrin		╢╼┽╴┤──				
8	Heptachlor Epoxide Endosulfan 1	╫──┼─┼─		╫─┼╶┠─		╧╼╾┼╴╫╌━╾┼	
6	Dieldrin	╢──┼──┼─			<u>{</u>		
6	4,4*-DDE			╫─┼┤╴╟━			
6	Endrin			╢┼┤╢─			
6	Endosulfan II	+ $+$ $+$	╫─┼─┼				
6	4,4'-DDD						
	Endosulfan Sulfate						
16	4,4'-DDT						
6 6 8 8 16	Methoxychlor						
16	Endrin Ketone						
8	alpha-Chlordane						
80	gamma-Chlordane						
<u>160</u>	Toxaphene	<u> </u>					
160	Aroclor-1016	ND	ND	NP NP	┦┦┫┛┛┥┛┦		<u></u> <u>_</u>
10 5	Aroclor-1221	NP	NO				╶━╫───┤╶╢╺━─┼
<u>10</u> 2	Aroclor-1232	<u>dh</u>	NP NP	NP			╶─╫───┼─╫───┼
05	Aroclor-1242	NO			━━━┼━╫━━━┼━╫		╶╫──┼
10.5	Aroclor-1248	NO	ND ND				─╫──┼─
00000000000000000000000000000000000000	Aroclor-1254	390		NP NP			

NQL = Contract Required Quantitation Limit<math>NA = Nut applicable ND = Nut detected

SEE NARRATIVE FOR CODE DEFINITIONS

jo ____ efea

+Due to dilution, sample quantitation limit is affected.

A Sample OL Was 2 +1 2 del 12 del defected . SEE NARRATIVE FOR d' 2 DEFINITIONS NA Sample del and a see unrender a on 100 - 10 σ 430 018 7:15 1402 HN 91 1 22 00061 AV. -HV 07 100 10 0 5CO.A ON 98.0 JON 2000 0/0 01000 800 TN DN ppyms CV ON **H**N AN 144 may ms 01 दग NU Υ¥ Veresson AN ND *YN* MAN WWW NO 110 an ₩N ANALYTE ٦đ x1 47 W Maton 1:0 Water E-16 Location 1 au Pitucion ractor .oN sigme? PA CAM see dilution table for specifics.

6.1 MATER SAMPLES

DATA SUMMARY FORM: I N O R G A N I C S

DL = Dete cion Limit

ite Name: <u>Schatz</u> ase #:9200.109 Sampling Date(s): <u>1/17/92</u> WATER SAMPLES $(\mu q/L)$ To calculate sample quantitation limit: (GROL * Dilution Factor) HT-001-PI HT-001-P3 HT-001-PS HT-001-PG HT-001-P7 HT-001-P8 HT-001-P10 HT-001-P11 HT-001-P12 Sample No. с С 5.0 3.0 1.0 1.0 100 800 2.2 Dilution Factor 11 1.0 Location гπ È COMPOUND CROL NA 0105 NA alpha-BHC NA A/A AIA AIA A/A A LA NA 0 05 beta-BHC 0.05 delta-BHC 0 05 *gamma-BHC (Lindane) 0.05 *Neptachlor 0.05 Aldrin 0.b5 Heptachlor Epoxide 0.05 Endosul fan 1 0 10 Dieldrin 0 10 4.4'-DDE 0 10 *Endrin 0 10 Endosulfan II 0 10 4 4 -000 0110 Endosulfan Sulfate 0 10 4.4'-DDT 0 50 *Methoxychlor 010 Endrin Ketone 0 50 *alpha-Chlordane 0 50 *gamma-Chlordane 10 *Toxaphene νĿ v IV V v٧ NC ND NO ND ND ٨ID 0.50 *Aroclor-1016 ND ND ٨IJ NØ 0.50 *Aroclor-1221 ND NN ND ND NŊ NN ΛĺØ ND NÓ 0.50 *Aroclor-1232 ND ND ND NŊ Nn No NØ ND NŌ ND Nn Nn ND NI () NO ND 0.50 *Aroclor-1242 ND NO NO ŃŊ NI (ND ND 0.50 *Aroclor-1248 ND ND NØ ND 0.80 ND 4.90. *Aroclor-1254 ND 80 1.0 9.0 ND 1.0 4-0.60 *Aroclor-1260 ND ND ND ND ND ND N ND NΥ

RQL = Contract Required Quantitation Limit Action La ND= Not detected NA= Not analyzed

Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS revised 07/90

Page_

__ of

		on limit: n Factor)	TT-00-71					4.1
		To calculate sample quantitation limit: (QL * Dilution Factor)	-001-95 HT-001-14 HT-001-P7 HT-001-P8 HT-001-90 HT-001-P11 HT-001-P11					(a. 1
	:	late sample (Q	HT-00-PID					1960
		To calcu	HT-00-74					10,0
NICS	3 [1-)		HT-00-P7					1009
ORGA	HATER SAMPLES 449/12) (Mg (L)		4T-001-PB					1400
DATA SUMMARY FORM: O R G A N I C S	4 HATEI		1-100-74		:			7.5
DATA SU	42	ł	45-001-73					1.4
	(s)		HT-001-P1 HT-001-P3 HT					GN
	te Name: Schafz' se #:9200.09 Sampling Date(s): 1/17/92-		Sample No. Dilution Factor	Location				o eum
	3200.109 s				E-1	.8	COMPOUND	1.0 Tatel Retroleum
	te Name: 18e #:92						or	· lo·

No -	E DEFINITION: revised 07/90		SEE NARRATIVE FOR	Ø		_		feefad	ND = Not defected	= Quantitation Limit NQ :	-
<u> </u>						-					
							_				
_											
<u> </u>											
ř—											
T											
T											
T											
	+										
											{
		1.0		2	2					n troca	
_	41	7.11	1961	10.1	1000	10011	7.8	1.4	ION	1 Total De tro lecona	ò
										COMPOUND	ម
										18	
										Location	
							•			Dilution Factor	

Page of

.

.

Schat te Name: se #: 9200,109 Sampling Date(s): _____17/92

SOIL SAMPLES -(mg/kg)-(mg/kg)

> To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - % moisture)/100)

							ilution Factor)	/ ((100 - % =	oisture)/100)
	Sample No.	Comp Pg	HT-001-915	R14.3-	Comp.FI,F2				
	Ditution Partor	P3 P14 P16		009-P2		 			
ť	Location Dilution								
	n Dilution	2.0	3.0	1.0	3.0	I II			
	- Factor			<u> </u>					
	Q								
	COMPOUND				<u> </u>				
	alpha-BHC	NA	NA		NA				
	beta-BHC								
	deita-BHC								
4	gamma-BHC (Lindane)			▋┣┨					╶━╫───┤╴╢
¶₽	Heptachlor	∦		┨──┤──┤──		<u> </u>			╶──┼╶┨
┛╢	Aldrin				╫──┾──┼──┥	├─── ├ ── ∦			╺──┼──┤┨
4	Heptachlor Epoxide				╂╾╴┼──┼──┤	<u> </u>		}_}	
	Endosulfan I			╢──┤──					╶─╫───┼╶╏
10	Dieldrin '								╼╫━━─┼╶┨
10	4,4'-DDE								
14	Endrin					▌】▋			
14	Endosulfan II				$\ - - -$	╡			
14	4,4'-DDD								
14	Endosulfan Sulfate					<u>↓</u>			
14	4,41-DDT					↓ ↓↓			
80	Methoxychlor								
<u>80</u> 10	Endrin Ketone					<u> </u>			
80	alpha-Chlordane					∦↓			┝──╫───┼╴┦
80 80 160	gamma-Chlordane					┦			
160	Toxaphene	V							
80 2	Aroclor-1016	NO	ND	AD	NP ND				
80 2	7 Aroclor-1221	NO	ND	ND	ND				
80 2	7 Aroclor-1232		NP NQ NQ	NP	ND				
	7 Aroclor-1242	ND NO 330	NO	ND					
1 1	7 Aroclor-1248	ND	NO	NP	ND				
100 a	Aroclor-1254	330	160	1/0	330 WD				
160 2	Aroclor-1016 7 Aroclor-1221 7 Aroclor-1232 7 Aroclor-1242 7 Aroclor-1242 7 Aroclor-1248 7 Aroclor-1254 7 Aroclor-1260	ND	760 ND	ND ND ND ND ND 110 ND					

PDL = Contract Required Quantitation Limit NA = Not applicable ND = Not defected

SEE NARRATIVE FOR CODE DEFINITIONS revised 07/90

DATA SUMMARY FORM: O R G A N I C S

ito Namo: Schatz: ase #: 9200.109 Sampling Date(s): ____/17/92

• •

SOIL SAMPLES -(+9/#9) (mg | kg)

To calculate sample quantitation limit:

(QL * Dilution Factor) / ((100 - % moisture)/\$00)

۰.

Sample No Bilution Facto - X Hoistur Locatio J N	•	HT-001-F	DB Bldg.3 DDP P	- CongiFl			· · · · · · · · · · · · · · · · · · ·	edotozy
al compound 3.0 Total Petroleum Hydrocarbons 1.0 To Solids	<u> </u>	69,000	89000	60,000				
1.0 70 Solids	92	96	73	97	 ┥╌╣╴			
								L L L L L L L L L L L L L L L L L L L
								ecycled pap

QL = Quantitation Limit

-evised 07/90

ານຈະນະ	is affected. r specifics.		oja												Jac	eq bet	jo/.oe.		FOR CODE DEFINITION:
	on limit table fo	,						-											
÷ .	e quantitatic See dilution																		SEE NARRATIVE
5	cion, sample Se																-	_	
IL SAMPLES (====================================	+Due to dilution,																		
AMPLES Kg) un/en	ц +	R142 -	CG-100	87		02	33	NA	0.86		or-in	42	54	0.88		9300			was 8 mg kg
S		B 40.3-	19-180	. 66		5.5	81	MA	120		1.056	51	12	<i>ub'l</i>		5300			, PL
10/0/51.10/11		HT-001-	SId	67		6.5	AD*	NA	0.27		66.0	89	32	200		5 5m			2-fold: + hu
1	-	(Come Pd.	P13, PH 01	94		QN	37	NA	hC.0		0.14	8/	12	QU 1		au /1			ups diluted 2
Schatz ¹ B ³ sampling Date		Pane. FI.F3		86		NP	830	e ND	0.55		0910	58	34	0.89		7600			t und
9105.			Sample No.	X Solids	LOCATION .	Cynide, total	Sulfile the	4,0 Sulfide, released	- itistu of Stop	sultur	1201 10 64/0LINE	070 ash	of manic	Bull density	Am/cn3/m	<u>674/16</u>	-		= Detection Limit
Site Name: Case #: 9	losper		4	E-	21 -21 		20%	4,0 3,	202		7 000	10 01	01			9	11.2		DL = Det

DATA SUMMARY FORM: I N O R G A N I C S

| 8 | Page

INTA SUMMARY FORM: 8

(En/lm) -(5x/5++) 50/lms /! 0 -551,5+++ -500

16/6//c1/2013 10/11 : (=) = 20 BUTIQUES (20. 2016 : # =

rdimit noidstidnaup elquas edsiuciacion limit:

(CRQL * Dilution Factor) / ((100 - % moisture)/100)

			1								l		l				E-22	
			1	╘╼╍┲╍╼		<u></u>			- <u> </u>				╺──╎┝╼═	<u></u>			соньопир	<u></u> זר
∦			╫—	<u> </u>	#										-₩	H/V		
			#	<u> </u>				┼	-#	╏────				┼╌╄╌╼	╢──┤	┝╌┼╌		╶╢╌
		┞────	╫	 	-∦	 	╫──			+				┼┼┼╌╴		┝╾╌┨╼╌╴	_	-#-]
<u> </u>			╢		∦	 	╫	┣		<u> </u>		+		- ┨╌╶┨╺╼╸	-#	┝━╌╂━╌		-∦-]
#			₩		-#		╢──	<u> </u>		<u> </u>				╶┟╾┥╾╸	-#	┝──┼──		╶╫╌┨
			∦			ļ	₽	<u> </u>	-#	<u> </u>				┿╌╄──	#	┝━┼━━		_#_*
			∦		#	ļ	╢	 	_∦		_ #			┽╌╄╼╾	-∦	┝╼╌╄╼╍		_#_!
			I		-		∦			<u> </u>				┽╌┾╼╼		┞╂		_∦_1
			<u> </u>				-	L				+	#	┹╌╄╼╾	-	┝──┟──		_∦_╏
			∥		∦		∦	ļ		<u> </u>				╶╁──┢───		┝┈┥─╸		
								l		L				╞╌┝╼╾		 	11	_#_1
	_																	
													-					
					1		1											
				· · · · · · · · · · · · · · · · · · ·	1		1											
							1		-#									
					1		╫───					1					Toxephene	7
					#		#──		╢──					1 DN		ON	Aroclor-1016	0/0
							#							ON		ON	Aroctor-1221	0/0
					∦		╢──			[ON		ON	Aroclor-1232	17/0
	-+				#		∦			<u> </u>				an	╫╼╼╂		Arocior-1242	079
					╫──		╫┈─		╫──					an	#+	an	Aroclor-1248	0/0 0/0
							╫──				-#			1 81	╫──┼			0/ d
																		Усова-159 МО МО МО Vicefol-1525 MO MO

south Side the Michie A State

10N = Contrag Partupe +oN = HN +oN = NIN

2 turs

ash e

06/10 Pestas.

SEE NARRATIVE FOR CODE DEFINITION! revised 07/90

= quantitation Limit ND= Not defected.

	Sample No. Bitution factor	Cont PI B	Come.P7	Camp Fle	FJEZ Compage 13	-100-TH	61de.3- 801-PI	BIA4.3-		
	E-23	Water	Water	5e.7		Soi /	Sari/	Ser]		
ಕ	COMPORIND									
050	1	ND R		ON	ON	NO R	NOR	XIDN		
32			0N 01V	82	NO	2 S S	ON NN			
Ś	1~	ON I	ON I			an l	NO			
950	5	ON I	ON		0N	an.	NO	alv.		
050	1'1 - Dichloro	I ON I	QN		an 1	I ON	ON	1 ON		
0/	Meth	ON	an	0N	NO	ON	DN	NO I		
8	Tethalchlands	1 ON	0N	0.17	DIN	ION	1 an	NO		
050		1 ON 1	DN	I an	ON I	an I	I QN	NOV I		
075	Vinue Chloride	N ON	ON	No I	IND	V UN I	r QN	A ON		
		•								
										_
							•			
									-	
T										-
]										
1	= Omantitation Limit							SEE NARRATIVE FOR CODE DEFINITION		DEFINITIO

DATA SUMMARY FORM: O R G A'N I C S

HATER SAMPLES TCLP EXtracts- Purgeables 149727 (mg/c) To calculate sample quantitation limit: ie #0103.037 Sampling Date(s): 11/21+12/19/94

HO Page (QL * Dilution Factor)

te Name:	ite Name: Schufz . ase #: <u>7103.03</u> / Sampling Date(s):		DATA SUMMARY		ORGA	ANICS + 766 M	NICS TCLPEKtracts (mg/L) To calcula		BNA Extractables sample quantitation limit: (QL * Dilution Factor)	S on limit: n Factor)
	Sample No. Ditution Factor Location	CARRIE BARRIE	Come. PT	Comp FIF3	Bart Pic	HT-201- P15	Bldg. 3- 061-P1	BIA.3- BDI-P2		
E-24 DT	Medrick	Water	Water	Soil	Se i	Sei	So:{	So i l		
00000	Pentrch front ere 0,4,5 - Trich brophene 2,4,6 - Trich brophene 2- Methy phene		d d d d d d d d d d d d d d d d d d d	an an an an an an an an an an an an an a	ACC			A A A A A A A A A A A A A A A A A A A		
	4-Merry provol 4-Dinitroto luene exachioropenzene exachioro ethene ditrobenzene	255555 2555555	8 2333333	222222	222322	222222 222222		222222 2222222 2		
	fridthe	8	8		8		2 8 8			
L = Quantita	Quantitation Limit	ND= Not det P= Presen	- 3+	below g	v gut ititition limit.	truct		SEE NARRATIVE FOR		5 DEFINITIONS revised 07/90

DATA SUMMARY FORM: O R G A N I C S

ite Name: Schutz !

Page of

							E-:
		-			ייאינוו	erster outes	
C9-160	1d-100	210	I DIE DIE DI		Pin Dil	erdra to to	
D44.3-	HT-001- BId4.5- D	- HT- 001-	Cone. P	Carly amo	Vorus P7	Como. P. 23.	Sample the Car
To calculate sample quantitation limit: (QL * Dilution Factor)	To calc					~	990 0604r
Pesticides	(7/ bu	٠ <u>ئ</u>			16/6/61+	14/11 :(3)0	ase 4: 9/03.037sampling Date(s): ///2/*/3/9/9/
WATER SAMPLES TCLP Extracts - Hearly, docard	D Extract	1707 ·	ER SAMPLES	CKM	ł		ite Name: Schafz
		ANICS	DATA SUMMARY FORM: O R G A N I C S	SUMMARY FOR	DATA (
Page of			,				•

		Sample No.	Kan UB	(10,01)	Comp FIF3	Pla. Pla. Pll	HT-001- P15	Bldg. 3-	- Cullo		
	E-25	Matrix	Weder	Wayer	Soil	5 or 7	Sai/	/:10S	Soil		
5	Compound	r								-	
0.25	24-0		DON	QN	ND	NO	ND R	ND K	ND R		
500	\$ 2,45-TP	(Silver)	ND	an	QN	ND	T ON	ND N	TON		
0.010	Chlordene		07	MOW	0 IV	ND	ND R	ND R	NDR		
NO.			QN	*ON	QN	0N	I an		I ON		
<u>dion.</u>	D Hes		QN	NON	UN.	ON	I ON	AD	ND		
1.0012	Brinne B	HC LIMIN	ON N	A0V	QN	QN	ND	d N	A		
0500	Mexhow c	المرام	I NO	NO*	0N	QN	an	AD	av		
2.002	& Hentachlor	EDOXIDE	ON	NO	ND	NO	ND	AN	- ON		
2.05	Toxa han			NOT	UN.	ON	v ov	r an	> ON		
	-										
ι. φ										-	-
								_			
					·	_	_				
H	. = Quantitation Li	Actes	r pestrites	rs s NA *	trues list Not ana	i listed QL, due to di lution of sample. NARRATIVE FOR CODE DEFINITIONS analyzed	. todiluti	an of sample	E NARRATIVE	E FOR CODE I revis	JEFINITIONS 1907/90

.

Page ____ of

DATA SUMMARY FORM: ORGANICS

site Name: Schatz TCLP Extracts - Purgables (mg/L) SOIL SAMPLES $\left(\mu q/Kq\right)$ Case #:9/03.037 Sampling Date(s): 11/21+12/19/91 To calculate sample quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/300)

		_	 						_							`	
Sample No.	Cong. Pa	204														2	
Dilution Factor		ר יו		1				[
	<u> </u>		 	#		╢───────				i — —	_						
X Hotscore	·		 -	╫─────		H				<u> </u>			_		· ·		
Location			 	∦		┢─────								 -			
				ł –								*					- 11
5 Matriz	01			9													
		Í		1						1							
QLCOMPOUND		•		íl –										ļ			ĺ
0.62 Banzene		R		í 				<u> </u>				<u>_</u> _		r	—		F
0.62 Bonzene 0.62 Carbon tetrachloride 0.62 Chlorobenzene		───┤		∦	t		<u> </u>										┢──╢
Une Caroon terricitorial			 <u> </u>	╫───					-	 _		<u> </u>			├──┨		┢─╢
0.62 Chlorobenzene	NO		 I	₩	<u> </u> '	l — — —				·							┢─┨
0.62 Chloroform				 	<u> </u>												_∥
0.62 Chloroform 0.62 Chloroform 0.62 I.2-Dichloroethene I.2 Methyl Ethyl Ketone 0.62 Tetrachloroethene 0.62 Trichloroethene 1.2 Vinyl Chloride	ND		 														
0.62 1.1-Dicklorgethene	NO			D.													
1.2 Method Ethyl Ketone	NO NO																
0.62 Tetrachloroethene	1	+#	 	li								i		1			
0.62 Trichloroethene	ND			H		ł — — —											
0.02 I VICTIOYDE REAL	NO	— H#	 	 		 		 						<u> </u>			├
1.2 Vinyl Chloride	 ///			╬────		I				l							-1
/_				∥								Į		<u> </u>			\square
																	\square
╟───╫──────	<u> </u> ł			<u> </u>						l				╂────			\parallel
╟──╫─────┤	├───					<u>├</u>								<u>-</u>	┝──┥		+ - 1
┣━━━╋━━━━━━━━━━━━━━━━━━	┟╌━━─╴╂	#	 	 								───					┟─╢
 	L															pap	\square
																eq	
																cyc	
																e e	
╟───╫──────────────────												<u>+</u>					
╟──╫─────┤	├──			u	<u> </u>					┨────┤		¥		╀─────			+-1
┠╶──╫─────		—-#	 						-	<u> </u>							┝╌╢
<u> </u>	L			L	<u> </u>	L						L		L			∟

QL = Quantitation Limit

.

NA · Not detected.

SEE NARRATIVE FOR CODE DEFINITIONS

DATA SUMMARY FORM: O R G A N I C S

UIGHEST TELP Extracts - BNA (UIGHES) (mg/L) BNA Extractables (QL * Dilution Factor) / ((100 - % moisture)/400) Con P2 PL Sample No. . Dilution Factor X_Noioture Location E-27 Matriz 0:1 COMPOUND Pentachlorophenol ND J.4 5-Trichlorophenol Nn 2.4. 6- Trichloron Land ŇĎ 5.0 2-Methyl phone ND 3-Methil sheno NZ 4-Methi NΛ 5.0 2.4- Dinitratolnene ND Hexachlorobenzene NO 5.0 ND exach lorobutadiene Herachloroethane_ ND NO Nitrobenzene 5,0 1.4 - Dichlorobenzene NL 5.0 NO 5Ö Puridine а eq <u>X</u>C ē

QL = Quantitation Limit ND: Not detected. SEE NARRATIVE FOR CODE DEFINITIONS

Page ____ of ____

DATA SUMMARY FORM: OR G A N I C S

Case #:9<u>103,03</u>7 Sampling Date(s): <u>11/21/91</u> 212//9/ site Name: Schatz

soit sauries TCLP Extracts - Pestroides Lugiry (my 1/g) To calculate sample guantitation 11mit: (QL * Dilution Factor) / ((100 - 8 moisture)/200)

	Com PD						<u> </u>					pu	_
	1			-		-			-	.	-	B Á	ī
A Noister									╞			aloi	<u> </u>
									_			цэ	[
28	(0:/												
al compound													
24 approved	DN												
	NO												_1
3.0 Hestachlor	ØN												
0	an C	-							_				
48 0 Methory chlor	ON												-1
2,0 Heatach by epoxide													-
Toxabhene	ON												
					 -						_		
				_					_				
									_				_
												ъ	_
												ded	
												pə	T
			-		 							۶Ac	
							_					red	-
				_									
							 						i
													العد
DL = Quantitation Limit							SEE	NARRAT	IVE	POR COD	E DEF	SEE NARRATIVE FOR CODE DEFINITIONS	SN
ND = Not defected	cted										revis	revised 07/90	90
				-									

Page of

SEE NARRATIVE FOR CODE DEFINITIONS revised 07/90

> ND = Not detected. DL = Detection Limit

	N 10 20	6	TA AN		N 2040	LH-AAL DR	-5-110	21.0-	
Sample No. Ditution factor	C10 20 0 70	PINDIN'	Config.					Cd-190	
29	Water	Weter	0:1	Soil	Soil	50i/	51:1	Sor]	
DL ANALYTE									
Anna Merrury	QN	QN	IN UN	CN	ØN	dN	an	an	
10 Arsonic	QN	QN	٩N	QN	ØN	NO	QN	ØN	
10 Barium	QN	62	QN	QN	ØN	QN	ØN	0N	
0.20 Cadminan	QN	QN	65.0	74	QN	550	qv	46	
1.0 Chromium	QN	QN	an	<u>d</u> N	aN	QN	ØN	ØN	
1.0 Lead	QM	QN	МО	ØN	QN	đ	dN	QN	
1.0 Se lenium	QN	QN	av	QN	ON	QN	aw	ØN	
10 Silver	٩Ŋ	ND	ND	QN	DN	QN	٩N	DN D	
					-				
								•	
			,						

+Due to dilution, sample quantitation limit is affected.

See dilution table for specifics.

MATER SAMPLES TCLP Extracts - Metals 149/2) (mg/L)

site Name: Schutz

Case #: 9103.037 Sampling Date(s): 11/2/ 12/19/5/

DATA SUMMARY FORM: I N O R G A N I C S

Page

0f

.

APPENDIX F

02:084901_D3900-06/16/92-F1 ಗರ್ಗಳುಗಳಿಗೆ ಭಿನ್ನರಕ್ಕ

-

ecology and environment, inc. QUALITY ASSURANCE PROTOCOL REVIEW Job No .: 9200.466 3/18/92 Date: Report Title: SCHATZ SITE TASK **Z I** Client: Laboratory Data Review Supervisor Date Metals Gen. Chem. 3-18-92 1 GC) GC/MS Micro, Asbestos Other Signature Date Report Written by: 1st Draft Reviewed by: CIRCULATED: 2nd Draft Reviewed by: (If needed) 1 $\mathcal{L} \varphi$ Final Review by Author: ASC Manager: QA Officer: Corp. Project Manager: M. STEFFAN (Internal Job) ALL QA Protocol Review Forms Signed and in File (to be signed by report writer) Copies of Report Sent to: VI M.S7E Invoices Sent to Accounting Comments/Notes: Copy Diatribution: White - Report to Project File; Canary - Project Manager; 407064 Pink - Project File.

المراجع فالمحقيق ويؤهدن فيترج والمدكرات والمقاربة والمتعقق

10.912

CONTRACTOR AND AND AND A CONTRACTOR

MEMORANDUM

TO: Mike Steffan

FROM: Gary Hahn & Hablp

DATE: March 19, 1992

SUBJECT: OB-4000 Schatz Site Task 21 Report

RE: 9200.466

CLIENT: 1672

CC: Lab File

Attached is the laboratory report of the analysis conducted on six samples received at the Analytical Services Center on March 04, 1992. Analysis was performed according to the procedures set forth in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, U.S. EPA, 1986.

All samples on which this report is based will be retained by E & E for a period of 30 days from the date of this report, unless otherwise instructed by the client. If additional storage of samples is requested by the client, a storage fee of \$1.00 per sample container per month will be charged for each sample, with such charges accruing until destruction of the samples is authorized by the client.

GH/jp Enclosure

ecology and environment, inc. 388 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14088, TEL. 718/884-8080 International Specialists in the Environment Q^{20}

CHAIN-OF-CUSTODY RECORD

Project No		Project	Name;		DL	,	SITE			Pr	roject Mana										7	77	//	7	7		
OB40 Samplers		res)	2000	112	· ria	NOT	5112			- Fi	W.	STEF	MN							/.	//	///	///	//			
\$ 2	m		.5	z	~						KS		*						hj	Ì			//		REM	ARKS	
STATION NUMBER	DATE	TIME	1 TY	APLE (PE BIA		EVDE			MATION 	tion)*		-	STATIC	DN LOCATION		NUMBER OF CON- FAINERS		AV)	i'								
P9	3/4	630		<u>;</u> X			- 10					TOR	-117-0	01-P9	+'	AINERS	ŕ	\leq		_							
PI3		1030		x	<u> ''</u>	<u>ر مح</u> ا	<u> </u>	<u> </u>						201-PB		<u> </u>	X			-		_					
P14	3/4	1030		X								OB	-Hr-	001 - PI4	l I	1	X										
P16	3/4	1030		X					_			OB-	-Hr-	001 - PIL		١	X										
F/	3/4	1030		КĹ										001 - FI			×					*	-	Th a	Labled	<u>cs 01</u>	<u>]-EPR-001-F</u>
F2	3/4	1030		\mathbf{X}		4	7	;						001 - FZ			*	:								<u>'' où</u>	1- EPR-001-FI
		 			<u> </u>				<u> </u>				·	<u>.</u>							\downarrow	_					
			┞─┝		-														 _								
			+	-+-											{						+						
L		<u> </u>	┼─┼	+	+															-+-	+	_					
																					+-						
					1																						
	2	0																									
Retinquish)		7 Time:		Received By	/: (Signat	ure)	۹ 	Relinquished	By: (Signa	ature)	Date/Time	:	Received	8y:	(Signa	ture)			Ship Via	a: ·				
Relinquish		Signature			<u> 4[/ / </u> /Time:		Received By	: (Signat	ure)		lelinquished	By: (Signa	ature)	Date/Time:	:	Received	By: (Signat	ure)								<u> </u>
Relinquish	ed By: (S	Signature)	Date	/ Time:		Received Fo	or Labora	Hory By:	-+ 2	Relinquished	By: (Signa	ature)	Date/Time:	 :	Received (Signatur		_ Labora	atory	By:	_	BL/Airt	oill Numb	ber:	-	Date	

.

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

*See CONCENTRATION RANGE on back of form.

.

F-5

234055

Page _____ot ____.

Ecology and Environment, Inc. SAMPLE COMMENT REPORT _____ TEST NAME : PCB-SOIL -SOLID LAB SAMPLE ID: 34310 CLIENT SAMPLE ID: 08-HT-001-P9 TEST CODE: SPCB 1 COMMENT: Quantitation limits elevated due to sample matrix interference. _____ TEST NAME : PCB-SOIL -SOLID CLIENT SAMPLE ID: 34313 COMMENT: Quantitation TEST CODE: SPCB 1 COMMENT: Quantitation limits elevated due to sample matrix interference. _____ TEST NAME : PCB-SOIL -SOLID LAB SAMPLE ID: 34314 TEST CODE: SPCB 1 CLIENT SAMPLE ID: OB-EPR-001-F1 COMMENT: Quantitation limits elevated due to sample matrix interference. Ecology and Environment, Inc. SAMPLE TRACKING REPORT

LAB SAMPLE	CLIENT SAMPLE	TEST	DATE	DATE	DATE
ID	ID 	CODE	SAMPLED	EXTRACTED	ANALYZED
34310.01	OB-HT-001-P9	SPCB 1 STSCLP1	03/04/92	03/13/92	03/17/92 03/13/92
34311.01	OB-HT-001-P13	SPCB 1 STSCLP1	03/04/92 03/04/92	03/13/92	03/16/92 03/13/92
34312.01	OB-HT-001-P14	SPCB 1 STSCLP1	03/04/92 03/04/92	03/13/92	03/17/92 03/13/92
34313.01	OB-HT-001-P16	SPCB 1 STSCLP1	03/04/92 03/04/92	03/13/92	03/17/92 03/13/92
34314.01	OB-EPR-001-F1	SPCB 1 STSCLP1	03/04/92 03/04/92	03/13/92	03/16/92 03/13/92
34315.01	OB-EPR-001-F2	SPCB 1 STSCLP1	03/04/92 03/04/92	03/13/92	03/16/92 03/13/92

TEST CODE :STSCLP1 JOB NUMBER :9200.466 Ecology and Environment, Inc. Analytical Services Center CLIENT : OB-4000 SCHATZ SITE TASK 21 TEST NAME : SOLIDS - TOTAL UNITS : % PARAMETER : SOLIDS - TOTAL SAMPLE ID RESULTS Q _____ ------EE-92-34310 0B-HT-001-P9 96 EE-92-34311 0B-HT-001-P13 93 _____ EE-92-34312 OB-HT-001-P14 93 EE-92-34313 0B-HT-001-P16 98 EE-92-34314 0B-EPR-001-F1 98 _____ EE-92-34315 OB-EPR-001-F2 97 QUALIFIERS: C = COMMENT ND = NOT DETECTED J = ESTIMATED VALUE B = ALSO PRESENT IN BLANK L = PRESENT BELOW STATED QNT. LIMIT

TEST CODE :SPCB 1		JOB N	NUMBER	:9200.466	
Ecology and Environment, Inc Analytical Services Center	•				
CLIENT :0B-4000 SCHATZ SIT TEST NAME:PCB-SOIL	-	-		S : MG/KG LTS IN DRY	WEIGHT
LAB SAMPLE ID: EE-92-34310 CLIENT SAMPLE ID: OB-HT-001-	.P9				
PARAMETER	RES	ULTS	Q	QNT.LIMIT	
PCB-1016	ND		С	0.21	
PCB-1242	ND		Ċ	0.21	
PCB-1254	ND		Č	0.21	
PCB-1221	ND		č	0.21	
PCB-1232	ND		c	0.21	
PCB-1248	ND		C	0.21	
PCB-1240 PCB-1260	ND		C	0.21	
LAB SAMPLE ID: EE-92-34311					
CLIENT SAMPLE ID: OB-HT-001-	P13				
PARAMETER	RESU	JLTS	Q	QNT.LIMIT	
PCB-1016	ND			4.3	
PCB-1242	ND			4.3	
PCB-1254	4	41		4.3	
PCB-1221	ND			4.3	
PCB-1232	ND			4.3	
PCB-1248	ND			4.3	
PCB-1260	ND			4.3	
LAB SAMPLE ID: EE-92-34312					
CLIENT SAMPLE ID: OB-HT-001-	P14				
PARAMETER	RESU	JLTS	Q	QNT.LIMIT	
PCB-1016	ND			5.4	
PCB-1242	ND			5.4	
PCB-1254		6.7		5.4	
PCB-1221	ND	5.7		5.4	
PCB-1221 PCB-1232	ND			5.4	
PCB-1232	ND			5.4	
PCB-1248	ND			5.4	
QUALIFIERS: C = COMMENT					
J = ESTIMATED VAC	LUE	B =	ALSO B	RESENT IN	BLANK
L = PRESENT BELOV	W STATE	ED QNT	. LIMI	T	
	г	0			

٠

TEST CODE :SPCB 1	JOB	NUMBE	R :9200.466
Ecology and Environment, In Analytical Services Center	c.		
CLIENT :0B-4000 SCHATZ SI TEST NAME:PCB-SOIL			TS : MG/KG ULTS IN DRY WEIGH
LAB SAMPLE ID: EE-92-34313 CLIENT SAMPLE ID: OB-HT-001-	 -P16		
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND	С	50
PCB-1242	ND		
PCB-1254	PRESENT		
PCB-1221	ND		50
PCB-1232	ND		50
PCB-1248	ND		50
PCB-1260	ND	С	50
CLIENT SAMPLE ID: OB-EPR-OO PARAMETER		Q	QNT.LIMIT
PCB-1016	ND	с	31
PCB-1242	ND		31
PCB-1254	ND	С	31
PCB-1221	ND		31
PCB-1232	ND		31
PCB-1248	ND	C	31
PCB-1260	ND	C	31
LAB SAMPLE ID: EE-92-34315			
CLIENT SAMPLE ID: OB-EPR-001	L-F2		
PARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		3.1
PCB-1242	ND		3.1
CB-1254	26		3.1
PCB-1221	ND		3.1
CB-1232	ND		3.1
PCB-1248	ND		3.1
PCB-1260	ND		3.1
QUALIFIERS: C = COMMENT J = ESTIMATED VA L = PRESENT BELC	LUE B =	ALS0	PRESENT IN BLANK

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9200.466

	(mg/kg as r	eceived)		
Parameter	E & E Laboratory No. 92- 34310	Original Value	Amount Added	Amount Determined	Percent Recovery
PCB-1242		ND	1.7	1.3	76

ND = NOT DETECTED

-

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED SOIL SAMPLES

9200.466

	()	ng/kg as r	eceived)		
Parameter		Original Value	Amount Added	Amount Determined	Percent Recovery
PCB-1242		ND	1.7	1.6	94

ND = NOT DETECTED

-

۰.

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY OF HEXABROMOBENZENE SURROGATE SPIKES

9200.466

			- <u> </u>
E & E aboratory No. 92-	Amount Added	Amount Determined	Percent Recovery
34310	0.83	0.60	72
34311	0.83		DL
34312	0.83		DL
34313	0.83		DL
34314	0.83		DL
34315	0.83		DL

These recoveries are within E & E quality control limits (37-138%). DL = Surrogate diluted out of sample.

PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260	1 RESULTS ND ND ND ND ND ND ND ND	RES 	QNT.LIMIT 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
PARAMETER PCB-1016 PCB-1242 PCB-1254 PCB-1254 PCB-1232 PCB-1248 PCB-1260 PCB-1	RESULTS ND ND ND ND ND ND ND		0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
PCB-1016 PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 LAB SAMPLE ID: METHOD BLANK 2	ND ND ND ND ND ND ND		0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
PCB-1242 PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND ND		0.020 0.020 0.020 0.020 0.020 0.020 0.020
PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND		0.020 0.020 0.020 0.020 0.020 0.020 0.020
PCB-1254 PCB-1221 PCB-1232 PCB-1248 PCB-1260 	ND ND ND ND ND		0.020 0.020 0.020 0.020 0.020 0.020
PCB-1221 PCB-1232 PCB-1248 PCB-1260 AB SAMPLE ID: METHOD BLANK 2	ND ND ND		0.020 0.020 0.020 0.020
PCB-1232 PCB-1248 PCB-1260 LAB SAMPLE ID: METHOD BLANK 2	ND ND ND		0.020 0.020 0.020
PCB-1248 PCB-1260 LAB SAMPLE ID: METHOD BLANK 2	ND ND		0.020 0.020
CB-1260 LAB SAMPLE ID: METHOD BLANK 2	ND		0.020
AB SAMPLE ID: METHOD BLANK 2			
PARAMETER			
	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		0.020
PCB-1242	ND		0.020
PCB-1254	ND		0.020
PCB-1221	ND		0.020
PCB-1232	ND		0.020
PCB-1248	ND		0.020
PCB-1260	ND		0.020
AB SAMPLE ID: METHOD BLANK 3	3		
ARAMETER	RESULTS	Q	QNT.LIMIT
PCB-1016	ND		0.020
CB-1242	ND		0.020
PCB-1254	ND		0.020
CB-1221	ND		0.020
CB-1232	ND		0.020
CB-1248	ND		0.020
CB-1260	ND		0.020

.