24 Davis Avenue, Poughkeepsie, NY 12603 phone 845.452.1658 | fax 845.485.7083 | ecosystemsstrategies.com

March 2, 2010

Neptune Capital Investors, LLC C/O Jeff Kane T.C. Development Corp. PO Box 1580 Poughkeepsie, New York, 12601-14

Poughkeepsie, New York 12601-1580 via EMAIL: jeffkane1@optonline.net

Re: Soil Gas Sampling at the Former IBM Facility located at Neptune Road

Town of Poughkeepsie, Dutchess County, New York

ESI Files: NP07096.60

Dear Mr. Kane:

This <u>Letter Report of Soil Gas Sampling</u> (<u>Letter Report</u>) summarizes fieldwork performed by Ecosystems Strategies, Inc. (ESI) on the above-referenced property (hereafter referred to as the "subject property"). This sub-slab and soil-vapor investigation was conducted by ESI to document concentrations of organic contaminants in sub-slab vapor and soil gas on-site.

Historical impacts to on-site soils and groundwater appear to be related to the use of the property for the manufacture of printed circuits by the IBM Corporation. A variety of hazardous chemicals, including chlorinated solvents, are known to have been discharged into a central holding tank located between the buildings (atrium area). Contamination of soil and groundwater by chlorinated solvents was believed to have originated from the central holding tank.

ESI's specific concerns were to document any potentially significant impacts to subsurface soils arising from the former tank release, or from discharges that occurred during other historical subject property activities (e.g., contamination at floor drains or other disposal/storage areas). An initial sampling event was conducted from October 31 to November 2, 2007, and a second round was conducted on March 18, 2008 in an attempt to delineate previously documented vapor concentrations. A Soil Gas Sampling Map indicating boring locations and associated selected site features is provided as an attachment to this Letter Report.

Current Subject Property Use and Proposed Subject Property Redevelopment

The subject property is presently improved with two vacant industrial buildings (B952 and B982; see Figure 1, attached); these buildings occupy approximately fifty percent of the subject property; the remainder of the property includes paved parking areas and loading docks, and a maintained area between the buildings (atrium area).

Proposed redevelopment plans for the subject property call for re-use of the subject property as a flex business park for research and development, manufacturing, and/or office space.

J. Kane March 2, 2010 ESI File: NP07096.60 Page 2 of 4

The frontage along Route 9 will be subdivided into two lots slated for commercial use (e.g., restaurants, banks, or other small retail uses). In order to accommodate the proposed development, building B952 will be demolished and this area is proposed as parking for the commercial structures located along Route 9; building B982 is proposed for reuse as office space.

Soil Gas Investigation

Eight (SG-52-1 to SG-52-4 and SG-82-1 to SG-82-4) sub-slab soil gas samples and three (HB-A1 to HB-A3) soil gas samples were collected throughout the subject property in October and November 2007. Sampling locations for soil gas samples were selected to provide a general screening of soil gas conditions at the subject property (see Figure 1, attached).

Soil gas data from 2007 documented the presence of VOCs beneath the slabs of the on-site buildings. In an attempt to determine the extent and magnitude of the VOCs previously detected beneath the buildings, additional sampling was conducted in March 2008 using a portable gas chromatograph (portable GC). A description of this testing and testing results are provided below.

Sample Collection Methodology

Sub-slab and Soil Gas Sampling (Summa Canisters)

Sub-slab soil gas sampling was conducted directly beneath the slab. The slab was breached utilizing a concrete drill and the hole was extended approximately two inches into the sub-grade material.

The end of the sample tubing (0.188 inch inner diameter Teflon) was attached to an "air stone" filter and inserted through the slab breach. Clean sand was poured into the void surrounding the air stone leaving approximately two inches of depth between the top of the sand and the surface of the concrete slab. The remaining space was sealed off with a non-VOC containing material (moistened bentonite) to prevent surface air from entering the system. Before purging, a properly calibrated PID was used to measure volatile organics by connecting the PID to the inserted Teflon tubing.

The space around the sampling point was enclosed and sealed (with a metal hemisphere and clay) in order to introduce a tracer gas (helium) into the area surrounding the probe point. Helium was introduced into the enclosure and a Radiodetection Multi-gas Leak Locator model MDG 2002 (helium detector) was utilized to determine when the interior atmosphere reached 80% helium. At this point, a vacuum pump was utilized to purge the standing air from the tubing and open the soil interval. At least three borehole and tubing volumes were purged prior to collection at a rate of 0.2 liters per minute. Following purging, the sub-slab and soil vapor samples were collected over a one-hour period using a six-liter stainless steel, laboratory supplied Summa canister with a one-hour calibrated flow controller.

Soil gas sampling was conducted utilizing the same methods as described above with the exception that hand boring equipment was utilized to open a 2-inch diameter hole into the soil column approximately 3 to 4 feet deep. The samples were then collected as described above.

For each sampling canister, the pre- and post-sample canister pressure, start and stop times, and location of each sampling point was recorded.

J. Kane March 2, 2010 ESI File: NP07096.60 Page 3 of 4

Sub-slab and Soil Gas Sampling (Gas Chromatograph)

Analysis of sub-slab gas samples was provided by Specialized Environmental Monitoring under direct supervision of ESI. Thirteen monitoring points (SG-52-5 to SG-52-14 and SG-82-5 to SG-82-7) were installed, as described above, inside of buildings B952 and B982 (see Figure 1, attached). Following purging of the monitoring points, dedicated tedlar bags were attached to the vacuum pump and a sample of sub-slab air was collected from each monitoring point. The tedlar bags were collected by the GC technician for analysis. The analysis was completed at a nearby hotel (where the temperature could be regulated) due to the low ambient temperature inside of the building on the day the samples were collected.

The portable GC analyzes gaseous samples and is capable of generating quantitative data specific to each compound. After injection into the instrument, the gaseous sample passes through a chromatographic column and a PID. The various VOCs pass through this column at different rates and thus reach the detector at different times after the injection. A strip-chart record of detector response versus time is obtained during each analysis and peaks on this strip-chart record manifest the presence of VOC's in the sample. Prior to the start of field activities, the instrument is calibrated to recognize retention times and convert peak areas into concentrations for the target VOCs.

The portable GC measures two parameters for each peak observed during an analysis. First, the length of time is measured between the initial injection of the sample and the detection of the peak. This time is known as the retention time and each VOC has a characteristic retention time relative to those of other compounds. For example, the retention time of toluene is greater than that for trichloroethylene (TCE). Retention times allow the identification of VOCs in the sample. Second, the portable GC integrates the VOCs in the detector response to measure the area under the peak. The area is measured in millivolt seconds (mv-s) and is proportional to the concentration of the compound in the sample.

Laboratory and Gas Chromatograph Results

Sub-slab and soil gas sampling conducted in October and November 2007 indicated the presence of VOCs beneath the slab of the two buildings. The VOCs were primarily chlorinated solvents and benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Higher concentrations were detected in the north-central portion of building B952; low-level concentrations were detected in building B982 and trace concentrations were detected in the atrium area.

Peak total VOC concentrations detected in B952 included 29,090 μ g/m³ at SG-52-3 (located near the west-central wall of the structure), 24,926 μ g/m³ at SG-52-4 (located in the east-central portion of the structure), and 5,084 μ g/m³ (located to the north of SG-52-3). Peak total VOC concentrations detected in B982 included 2,245 μ g/m³ at SG-82-4 (located near the center of the structure) and 2,197 μ g/m³ at SG-82-2 (located near the east-central wall of the structure. The peak total VOC concentration detected in the atrium area was 375 μ g/m³ at HB-A1 (located near the northern portion of the Atrium Area). VOCs in soil gas are summarized in Table 1, attached. Helium was detected between 2.0 and 2.5 percent for all samples, well below the 10 percent level which would indicate seal failure, so the samples were judged to be valid. Complete laboratory reports are provided as an attachment.

Sub-slab vapor sampling conducted in March 2008 indicated the presence of trichloroethylene (TCE) at two of the monitoring points in building B952, SG52-11 (152 parts per billion [ppb]; 832 μ g/m³) and SG52-12 (88.6 ppb; 485 μ g/m³); no other VOCs were detected at any of the other sampling points. Sampling data from the portable GC is provided as Table 2, attached.

J. Kane March 2, 2010 ESI File: NP07096.60

Page 4 of 4

Discussion of Findings

Soil gas data from both events showed relatively low levels of contaminants in soil vapor, consistent with the presence of low-level soil contamination beneath the building foundations. The soil gas levels detected were not indicative of a "hot spot" contributing to known groundwater contamination, and may represent a generalized condition originating from historical industrial operations.

No significant soil contamination has been found beneath the building slabs during historic soil investigations, previously submitted to the NYSDEC, and ESI's soil vapor results were not indicative of "hot spots" of soil contamination located beneath the buildings. If residual soil contamination is discovered during redevelopment activities, it can and will be properly managed.

Recommendations

It is recommended that a subslab depressurization system (SSDS) be installed under any structure on this Site. Existing buildings, if proposed to be retrofitted, should have an SSDS installed underneath prior to reuse.

Please review this document and call me at (845) 452-1658 should you have any questions or comments.

Sincerely,

ECOSYSTEMS STRATEGIES, INC.

Paul & Catto

Paul H. Ciminello

President

PHC:EDL:ndc

Attachments

A Soil Gas Sampling Map

B Data Tables

C Laboratory Reports

cc: File

Table 1: VOCs in Soil Gas (USEPA Method TO-15)- ESI File: NP07096.60 Results provided in $\mu g/m^3$.

Results provided in µg/m³.					0						
Compound	SG52-1	SG52-2	SG52-3	SG52-4		mple ID SG82-2	SG82-3	SG82-4	HB-A1	HR-A2	HB-A3
1,1,1-Trichloroethane	200	270	550	1,600	270	1400	60	1,500	1.6	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	40	ND	ND	ND	ND	57	2.6	21	ND	ND	ND
1,1-Dichloroethylene	44	75	59	340	ND	340	4.8	440	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	3,900	1,500	20	6.9	ND	11	18	7.4	5.4
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,2-Dichloroethane 1,2-Dichloroethene (total)	17	28	32	ND	ND	ND	ND	ND ND	ND ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorotetrafluroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	1,000	470	4.9	ND	ND	ND	5.4	2.4	1.6
1,3-Butadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane	51	170	360	1,400	6.1	ND	ND	ND	26	4.3	1.5
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloropropene 4-Ethyltoluene	ND ND	ND ND	ND 3,500	ND 1,600	ND 20	ND ND	ND ND	ND 11	ND 19	ND 7.4	ND 5.9
Acetone	260	ND ND	1,600	500	23	ND ND	20	ND	9.7	7.4 ND	ND
Benzene	19	58	77	180	19	13	ND	6.7	9.7	3.8	2.5
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	3.7	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cloroethane Chloroform	ND ND	ND ND	ND 54	ND ND	ND 2	ND 11	ND 1.5	ND ND	ND ND	ND ND	ND ND
Chloromethane	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND
cis-1,2-Dichloroethylene	17	28	32	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	25	76	96	450	ND	ND	ND	ND	14	3.8	1.9
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	21	12	ND	ND	2.8	ND
Ethylbenzene	17	34	1,800	1,400	36	20	ND	26	25	12	8.7
Freon-113	370	ND	71 ND	260	66	62	2.2	27	3.7	ND	ND
Hexachloro-1,3-Butadiene	ND 140	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropanol Methyl Butyl ketone	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND
Methyl Ethyl ketone	ND	ND	91	ND	4.7	ND	2.9	ND	2	2.3	1.4
Methyl Isobutyl ketone	ND	ND	390	ND	17	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Heptane	31	82	190	570	8.6	11	ND	ND	16	3.8	1.8
n-Hexane	56	190	88	700	7.8	ND	ND	ND	20	3.3	ND
o-Xylene	13	33	2,500	1,600	43	19	ND	31	25	12	8.7
p- & m-Xylenes	48 ND	100 ND	6,100 ND	4,100	140 ND	61 ND	ND ND	96 ND	78 ND	39 ND	29 ND
Styrene tert-Butyl Alcohol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Tetrachioroethylene Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	110	240	2,100	2,800	120	94	ND	75	98	53	34
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	1,400	3,700	4,500	5,400	ND	81	7.5	ND	1.9	ND	ND
Trichlorofluoromethane	ND	ND	ND	56	1.8	ND	1.5	ND	1.1	0.96	0.96
Vinyl Chloride	ND	ND 5.004	ND 00.000	ND	ND	ND 0.407	ND 445	ND 0.045	ND	ND 450	ND 400
Total VOCs	2,858	5,084	29,090	24,926	832	2,197	115	2,245	375	158	103
Notes:											

ND=Not Detected NE=Not Established

Table 2: VOCs in Soil Gas (Gas Chromatograph)- ESI File: NP07096.60

Results provided in ppb.

Compound							Sam	ple ID						
Compound	SG52-5	SG52-6	SG52-7	SG52-8	SG52-9	SG52-10	SG52-11	SG52-12	SG52-13	SG52-14	SG82-5	SG82-6	SG82-7	Control
1,1,1-TCA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene (5 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene (10 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene (10 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m & p xylene (15 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-xylene (15 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TCE (5 ppb)	ND	ND	ND	ND	ND	ND	152	88.6	ND	ND	ND	ND	ND	ND
PCE (5 ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOC'S	ND	ND	ND	ND	ND	ND	152	88.6	ND	ND	ND	ND	ND	ND

Compound (Approx. Maximum Detection Limit [MDL])

ND=Not Detected

TestAmerica South Burlington, VT

Sample Data Summary Package

SDG: NY122839

November 16, 2007

Mr. Scott Spitzer Ecosystems Strategies, Inc. 24 Davis Ave Poughkeepsie, NY 12603

Re: Laboratory Project No. 27000 Case: 27000; SDG: NY122839

Dear Mr. Spitzer:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on November 3rd, 2007. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client	Sample	Sample
	Sample ID	<u>Date</u>	<u>Matrix</u>
	Received: 11/03/07 ETR No:	122839	
731067 731068 731069 731070 731071 731072	HB-A1 HB-A2 HB-A3 SG52-1 SG82-1 SG82-2	11/01/07 11/01/07 11/01/07 11/01/07 10/31/07 10/31/07	AIR AIR AIR AIR AIR
731072	SG82-2	10/31/07	AIR
731073	SG82-3	10/31/07	AIR
731074	SG82-4	10/31/07	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organic analyses for certain of the samples referenced above were accomplished at dilution based on preliminary screening to ensure quantitation of all target constituents within the calibrated range.

The volatile organics analysis of the blank spike designated GA1207LCSD yielded a percent recovery for 1,2,4-Trichlorobenzene that was slightly below the lower control limit.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

Enclosure

CLIENT SAMPLE NO.

HB-A1

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731067

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1,1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.19	1	0.16	1.1		0.90
Freon TF	76-13-1	0.48		0.16	3.7		1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.1		4.0	9.7		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.48		0.40	1.7		1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	5.7	***************************************	0.40	20	r vannamistetek reskana.	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.69		0.40	2.0		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.30		0.16	1.6		0.87
Cyclohexane	110-82-7	4.1		0.16	14	n - n m m m m m m m m d de en de et en et et en en et en	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	5.6		0.16	26		0.75
Benzene	71-43-2	2.9		0.16	9.3	***************************************	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	3.9		0.16	16		0.66

CLIENT SAMPLE NO.

HB-A1

TAL Burlington Lab Name:

SDG Number: NY122839

Case Number:

Date Analyzed:

Lab Sample No.: 731067 11/10/07

Sample Matrix: AIR

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.36		0.16	1.9		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1,6	U	1.6
Toluene	108-88-3	26		0.16	98		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	5.7		0.16	25		0.69
Xylene (m,p)	1330-20-7	18	***************************************	0.40	78	************************	1.7
Xylene (o)	95-47-6	5.7		0.16	25		0.69
Xylene (total)	1330-20-7	24		0.16	100	1	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	3.9		0.16	19		0.79
1,3,5-Trimethylbenzene	108-67-8	1.1		0.16	5.4		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	3.7		0.16	18		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

CLIENT SAMPLE NO.

HB-A2

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731068

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
	75-71-8	0.57		0.40	2.8		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1,1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.17		0.16	0.96		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.93	***************************************	0.40	3.3	(A ₁ - (A1, A1, A1, A1, A1, A1, A1, A1, A1, A1,	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.77		0.40	2.3		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	1.1		0.16	3.8		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.91		0.16	4.3		0.75
Benzene	71-43-2	1.2		0.16	3.8		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.93		0.16	3.8		0.66

CLIENT SAMPLE NO.

HB-A2

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731068

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	υ	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	14		0.16	53		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	2.7		0.16	12		0.69
Xylene (m,p)	1330-20-7	9.0	**********	0.40	39		1.7
Xylene (o)	95-47-6	2.7		0.16	12		0.69
Xylene (total)	1330-20-7	12		0.16	52	1	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	1.5		0.16	7.4		0.79
1,3,5-Trimethylbenzene	108-67-8	0.48		0.16	2.4		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	1.5		0.16	7.4		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

CLIENT SAMPLE NO.

HB-A3

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731069

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.17		0.16	0.96		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9,8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.47		0.40	1.4		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.55		0.16	1.9		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.32		0.16	1.5		0.75
Benzene	71-43-2	0.79		0.16	2.5	***************************************	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.44		0.16	1.8		0.66

CLIENT SAMPLE NO.

HB-A3

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731069

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	9.1		0.16	34		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	2.0		0.16	8.7		0.69
Xylene (m,p)	1330-20-7	6.6	***********************	0.40	29		1.7
Xylene (o)	95-47-6	2.0		0.16	8.7		0.69
Xylene (total)	1330-20-7	8.9		0.16	39		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	1.2		0.16	5.9		0.79
1,3,5-Trimethylbenzene	108-67-8	0.32		0.16	1.6		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	1.1		0.16	5.4		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υ	0.16	1.7	U	1.7

CLIENT SAMPLE NO.

SG52-1

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731070

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	5.0	U	5.0	25	U	25
1,2-Dichlorotetrafluoroethane	76-14-2	2.0	U	2.0	14	U	14
Chloromethane	74-87-3	5.0	U	5.0	10	U	10
Vinyl Chloride	75-01-4	2.0	U	2.0	5.1	U	5.1
1,3-Butadiene	106-99-0	5.0	U	5.0	11	U	11
Bromomethane	74-83-9	2.0	U	2.0	7.8	U	7.8
Chloroethane	75-00-3	5.0	U	5.0	13	U	13
Bromoethene	593-60-2	2.0	U	2.0	8.7	U	8.7
Trichlorofluoromethane	75-69-4	2.0	U	2.0	11	U	11
Freon TF	76-13-1	48		2.0	370		15
1,1-Dichloroethene	75-35-4	11		2.0	44		7.9
Acetone	67-64-1	110		50	260		120
Isopropyl Alcohol	67-63-0	57	1	50	140		120
Carbon Disulfide	75-15-0	5.0	U	5.0	16	U	16
3-Chloropropene	107-05-1	5.0	U	5.0	16	U	16
Methylene Chloride	75-09-2	5.0	U	5.0	17	U	17
tert-Butyl Alcohol	75-65-0	50	U	50	150	U	150
Methyl tert-Butyl Ether	1634-04-4	5.0	υ	5.0	18	U	18
trans-1,2-Dichloroethene	156-60-5	2.0	υ	2.0	7.9	U	7.9
n-Hexane	110-54-3	16		5.0	56		18
1,1-Dichloroethane	75-34-3	10		2.0	40		8.1
1,2-Dichloroethene (total)	540-59-0	4.2		2.0	17		7.9
Methyl Ethyl Ketone	78-93-3	5.0	υ	5.0	15	υ	15
cis-1,2-Dichloroethene	156-59-2	4.2		2.0	17		7.9
Tetrahydrofuran	109-99-9	50	υ	50	150	υ	150
Chloroform	67-66-3	2.0	υ	2.0	9.8	U	9.8
1,1,1-Trichloroethane	71-55-6	37		2.0	200		11
Cyclohexane	110-82-7	7.2		2.0	25		6.9
Carbon Tetrachloride	56-23-5	2.0	υ	2.0	13	υ	13
2,2,4-Trimethylpentane	540-84-1	11		2.0	51		9.3
Benzene	71-43-2	6.1		2.0	19		6.4
1,2-Dichloroethane	107-06-2	2.0	U	2.0	8.1	U	8.1
n-Heptane	142-82-5	7.5		2.0	31		8.2

CLIENT SAMPLE NO.

SG52-1

Lab Name:

TAL Burlington

SDG Number: NY122839

Lab Sample No.: 731070

Case Number:

Date Analyzed:

11/10/07

Sample Matrix: AIR

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	260		2.0	1400		11
1,2-Dichloropropane	78-87-5	2.0	U	2.0	9.2	U	9.2
1,4-Dioxane	123-91-1	50	U	50	180	U	180
Bromodichloromethane	75-27-4	2.0	U	2.0	13	U	13
cis-1,3-Dichloropropene	10061-01-5	2.0	U	2.0	9.1	U	9.1
Methyl Isobutyl Ketone	108-10 - 1	5.0	U	5.0	20	U	20
Toluene	108-88-3	28		2.0	110		7.5
trans-1,3-Dichloropropene	10061-02-6	2.0	U	2.0	9.1	U	9.1
1,1,2-Trichloroethane	79-00-5	2.0	U	2.0	11	U	11
Tetrachloroethene	127-18-4	2.0	U	2.0	14	U	14
Methyl Butyl Ketone	591-78-6	5.0	U	5.0	20	U	20
Dibromochloromethane	124-48-1	2.0	U	2.0	17	U	17
1,2-Dibromoethane	106-93-4	2.0	U	2.0	15	U	15
Chlorobenzene	108-90-7	2.0	U	2.0	9.2	U	9.2
Ethylbenzene	100-41-4	3.8		2.0	17		8.7
Xylene (m,p)	1330-20-7	11		5.0	48	**************************************	22
Xylene (o)	95-47-6	3.1		2.0	13		8.7
Xylene (total)	1330-20-7	14		2.0	61		8.7
Styrene	100-42-5	2.0	U	2.0	8.5	U	8.5
Bromoform	75-25-2	2.0	U	2.0	21	U	21
1,1,2,2-Tetrachloroethane	79-34-5	2.0	U	2.0	14	U	14
4-Ethyltoluene	622-96-8	2.0	U	2.0	9.8	U	9.8
1,3,5-Trimethylbenzene	108-67-8	2.0	U	2.0	9.8	U	9.8
2-Chlorotoluene	95-49-8	2.0	U	2.0	10	U	10
1,2,4-Trimethylbenzene	95-63-6	2.0	U	2.0	9.8	U	9.8
1,3-Dichlorobenzene	541-73-1	2.0	U	2.0	12	U	12
1,4-Dichlorobenzene	106-46-7	2.0	U	2.0	12	U	12
1,2-Dichlorobenzene	95-50-1	2.0	U	2.0	12	U	12
1,2,4-Trichlorobenzene	120-82-1	5.0	U	5.0	37	U	37
Hexachlorobutadiene	87-68-3	2.0	U	2.0	21	U	21

CLIENT SAMPLE NO.

SG82-1

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731071

Date Analyzed: 11/10/07

			_	_	1		1
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.75	U	0.75	3.7	U	3.7
1,2-Dichlorotetrafluoroethane	76-14-2	0.30	U	0.30	2.1	U	2.1
Chloromethane	74-87-3	0.75	U	0.75	1.5	U	1.5
Vinyl Chloride	75-01-4	0.30	U	0.30	0.77	U	0.77
1,3-Butadiene	106-99-0	0.75	U	0.75	1.7	U	1.7
Bromomethane	74-83-9	0.30	U	0.30	1.2	U	1.2
Chloroethane	75-00-3	0.75	U	0.75	2.0	U	2.0
Bromoethene	593-60-2	0.30	U	0.30	1.3	U	1.3
Trichlorofluoromethane	75-69-4	0.32		0.30	1.8		1.7
Freon TF	76-13-1	8.6		0.30	66		2.3
1,1-Dichloroethene	75-35-4	0.30	U	0.30	1.2	Ū	1.2
Acetone	67-64-1	9.5		7.5	23	## ###################################	18
Isopropyl Alcohol	67-63-0	7.5	U	7.5	18	U	18
Carbon Disulfide	75-15-0	1.2		0.75	3.7		2.3
3-Chloropropene	107-05-1	0.75	U	0.75	2.3	U	2.3
Methylene Chloride	75-09-2	0.75	U	0.75	2.6	U	2.6
tert-Butyl Alcohol	75-65-0	7.5	U	7.5	23	U	23
Methyl tert-Butyl Ether	1634-04-4	0.75	U	0.75	2.7	U	2.7
trans-1,2-Dichloroethene	156-60-5	0.30	U	0.30	1.2	U	1.2
n-Hexane	110-54-3	2.2		0.75	7.8		2.6
1,1-Dichloroethane	75-34-3	0.30	U	0.30	1.2	U	1.2
1,2-Dichloroethene (total)	540-59-0	0.30	U	0.30	1.2	U	1.2
Methyl Ethyl Ketone	78-93-3	1.6		0.75	4.7		2.2
cis-1,2-Dichloroethene	156-59-2	0.30	U	0.30	1.2	U	1.2
Tetrahydrofuran	109-99-9	7.5	U	7.5	22	U	22
Chloroform	67-66-3	0.41		0.30	2.0		1.5
1,1,1-Trichloroethane	71-55-6	50		0.30	270		1.6
Cyclohexane	110-82-7	0.30	U	0.30	1.0	U	1.0
Carbon Tetrachloride	56-23-5	2.9		0.30	18		1.9
2,2,4-Trimethylpentane	540-84-1	1.3		0.30	6.1		1.4
Benzene	71-43-2	5.9		0.30	19		0.96
1,2-Dichloroethane	107-06-2	0.30	U	0.30	1.2	U	1.2
n-Heptane	142-82-5	2.1		0.30	8.6		1.2

CLIENT SAMPLE NO.

SG82-1

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731071

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.30	U	0.30	1.6	U	1.6
1,2-Dichloropropane	78-87-5	0.30	U	0.30	1.4	U	1.4
1,4-Dioxane	123-91-1	7.5	U	7.5	27	U	27
Bromodichloromethane	75-27-4	0.30	U	0.30	2.0	U	2.0
cis-1,3-Dichloropropene	10061-01-5	0.30	U	0.30	1.4	U	1.4
Methyl Isobutyl Ketone	108-10-1	4.2		0.75	17		3.1
Toluene	108-88-3	32		0.30	120		1.1
trans-1,3-Dichloropropene	10061-02-6	0.30	U	0.30	1.4	U	1.4
1,1,2-Trichloroethane	79-00-5	0.30	U	0.30	1.6	U	1.6
Tetrachloroethene	127-18-4	0.30	U	0.30	2.0	U	2.0
Methyl Butyl Ketone	591-78-6	0.75	U	0.75	3.1	U	3.1
Dibromochloromethane	124-48-1	0.30	U	0.30	2.6	U	2.6
1,2-Dibromoethane	106-93-4	0.30	U	0.30	2.3	U	2.3
Chlorobenzene	108-90-7	0.30	U	0.30	1.4	U	1.4
Ethylbenzene	100-41-4	8.3		0.30	36		1.3
Xylene (m,p)	1330-20-7	33	* 000,000,000,000,000	0.75	140	**************************************	3.3
Xylene (o)	95-47-6	10		0.30	43		1.3
Xylene (total)	1330-20-7	44		0.30	190		1.3
Styrene	100-42-5	0.30	U	0.30	1.3	U	1.3
Bromoform	75-25-2	0.30	U	0.30	3.1	U	3.1
1,1,2,2-Tetrachloroethane	79-34-5	0.30	U	0.30	2.1	U	2.1
1-Ethyltoluene	622-96-8	4.0		0.30	20		1.5
1,3,5-Trimethylbenzene	108-67-8	1.0		0.30	4.9		1.5
2-Chlorotoluene	95-49-8	0.30	U	0.30	1.6	U	1.6
I,2,4-Trimethylbenzene	95-63-6	4.0		0.30	20		1.5
I,3-Dichlorobenzene	541-73-1	0.30	U	0.30	1.8	U	1.8
,4-Dichlorobenzene	106-46-7	0.30	U	0.30	1.8	U	1.8
,2-Dichlorobenzene	95-50-1	0.30	U	0.30	1.8	U	1.8
,2,4-Trichlorobenzene	120-82-1	0.75	U	0.75	5.6	U	5.6
	87-68-3	0.30	U	0.30	3.2	U	3.2

CLIENT SAMPLE NO.

SG82-2

11/10/07

Lab Sample No.: 731072

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number: Date Analyzed:

Sample Matrix: AIR Date Received: 11/03/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	4.2		3.5	21		17
1,2-Dichlorotetrafluoroethane	76-14-2	1.4	U	1.4	9.8	U	9.8
Chloromethane	74-87-3	3.5	U	3.5	7.2	U	7.2
Vinyl Chloride	75-01-4	1.4	U	1.4	3.6	U	3.6
1,3-Butadiene	106-99-0	3.5	U	3.5	7.7	U	7.7
Bromomethane	74-83-9	1.4	U	1.4	5.4	U	5.4
Chloroethane	75-00-3	3.5	U	3.5	9.2	U	9.2
Bromoethene	593-60-2	1.4	U	1.4	6.1	U	6.1
Trichlorofluoromethane	75-69-4	1.4	U	1.4	7.9	U	7.9
Freon TF	76-13-1	8.1		1.4	62		11
1,1-Dichloroethene	75-35-4	85		1.4	340		5.6
Acetone	67-64-1	35	U	35	83	U	83
Isopropyl Alcohol	67-63-0	35	U	35	86	U	86
Carbon Disulfide	75-15-0	3.5	U	3.5	11	U	11
3-Chloropropene	107-05-1	3.5	U	3.5	11	U	11
Methylene Chloride	75-09-2	3.5	U	3.5	12	U	12
tert-Butyl Alcohol	75-65-0	35	U	35	110	U	110
Methyl tert-Butyl Ether	1634-04-4	3.5	U	3.5	13	U	13
trans-1,2-Dichloroethene	156-60-5	1.4	U	1.4	5.6	U	5.6
n-Hexane	110-54-3	3.5	U	3.5	12	U	12
1,1-Dichloroethane	75-34-3	14		1.4	57		5.7
1,2-Dichloroethene (total)	540-59-0	1.4	U	1.4	5.6	U	5.6
Methyl Ethyl Ketone	78-93-3	3.5	U	3.5	10	U	10
cis-1,2-Dichloroethene	156-59-2	1.4	U	1.4	5.6	U	5.6
Tetrahydrofuran	109-99-9	35	U	35	100	U	100
Chloroform	67-66-3	2.3	1	1.4	11	1	6.8
1,1,1-Trichloroethane	71-55-6	260	1	1.4	1400		7.6
Cyclohexane	110-82-7	1.4	U	1.4	4.8	U	4.8
Carbon Tetrachloride	56-23-5	1.4	U	1.4	8.8	U	8.8
2,2,4-Trimethylpentane	540-84-1	1.4	U	1.4	6.5	U	6.5
Benzene	71-43-2	4.1		1.4	13		4.5
1,2-Dichloroethane	107-06-2	1.4	U	1.4	5.7	U	5.7
n-Heptane	142-82-5	2.7		1.4	11		5.7

CLIENT SAMPLE NO.

SG82-2

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Date Analyzed: 11/10/07

Lab Sample No.: 731072

Sample Matrix: AIR			Date Re	eceived:	11/03/07
		-			

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	15		1.4	81		7.5
1,2-Dichloropropane	78-87-5	1.4	U	1.4	6.5	U	6.5
1,4-Dioxane	123-91-1	35	U	35	130	U	130
Bromodichloromethane	75-27-4	1.4	U	1.4	9.4	U	9.4
cis-1,3-Dichloropropene	10061-01-5	1.4	U	1.4	6.4	U	6.4
Methyl Isobutyl Ketone	108-10-1	3.5	U	3.5	14	U	14
Toluene	108-88-3	25		1.4	94		5.3
trans-1,3-Dichloropropene	10061-02-6	1.4	U	1.4	6.4	U	6.4
1,1,2-Trichloroethane	79-00-5	1.4	U	1.4	7.6	U	7.6
Tetrachloroethene	127-18-4	1.4	U	1.4	9.5	U	9.5
Methyl Butyl Ketone	591-78-6	3.5	U	3.5	14	U	14
Dibromochloromethane	124-48-1	1.4	U	1.4	12	U	12
1,2-Dibromoethane	106-93-4	1.4	U	1.4	11	U	11
Chlorobenzene	108-90-7	1.4	U	1.4	6.4	U	6.4
Ethylbenzene	100-41-4	4.5		1.4	20		6.1
Xylene (m,p)	1330-20-7	14		3.5	61		15
Xylene (o)	95-47-6	4.4		1.4	19		6.1
Xylene (total)	1330-20-7	19		1.4	83		6.1
Styrene	100-42-5	1.4	U	1.4	6.0	U	6.0
Bromoform	75-25-2	1.4	U	1.4	14	U	14
1,1,2,2-Tetrachloroethane	79-34-5	1.4	U	1.4	9.6	U	9.6
4-Ethyltoluene	622-96-8	1.4	U	1.4	6.9	U	6.9
1,3,5-Trimethylbenzene	108-67-8	1.4	U	1.4	6.9	U	6.9
2-Chlorotoluene	95-49-8	1.4	U	1.4	7.2	U	7.2
1,2,4-Trimethylbenzene	95-63-6	1.4		1.4	6.9		6.9
1,3-Dichlorobenzene	541-73-1	1.4	U	1.4	8.4	U	8.4
1,4-Dichlorobenzene	106-46-7	1.4	U	1.4	8.4	U	8.4
1,2-Dichlorobenzene	95-50-1	1.4	U	1.4	8.4	U	8.4
1,2,4-Trichlorobenzene	120-82-1	3.5	U	3.5	26	U	26
Hexachlorobutadiene	87-68-3	1.4	U	1.4	15	U	15

CLIENT SAMPLE NO.

SG82-3

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731073

Date Analyzed: 11/10/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	2.4		0.40	12		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	Ū	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.26		0.16	1.5		0.90
Freon TF	76-13-1	0.29		0.16	2.2		1.2
1,1-Dichloroethene	75-35-4	1.2		0.16	4.8		0.63
Acetone	67-64-1	8.6		4.0	20	*****************************	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.65		0.16	2.6		0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.98		0.40	2.9		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.30		0.16	1.5		0.78
1,1,1-Trichloroethane	71-55-6	11		0.16	60		0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	υ	0.75
Benzene	71-43-2	0.16	U	0.16	0.51	U	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

CLIENT SAMPLE NO.

SG82-3

11/10/07

Lab Sample No.: 731073

Date Analyzed:

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR Date Received: 11/03/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	1.4		0.16	7.5		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	0.16	U	0.16	0.60	U	0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.16	U	0.16	0.69	U	0.69
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	U	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	υ	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

CLIENT SAMPLE NO.

SG82-4

TAL Burlington Lab Name:

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731074

Date Analyzed: 11/12/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	4.0	U	4.0	20	U	20
1,2-Dichlorotetrafluoroethane	76-14-2	1.6	U	1.6	11	U	11
Chloromethane	74-87-3	4.0	U	4.0	8.3	U	8.3
Vinyl Chloride	75-01-4	1.6	U	1.6	4.1	U	4.1
1,3-Butadiene	106-99-0	4.0	U	4.0	8.8	U	8,8
Bromomethane	74-83-9	1.6	U	1.6	6.2	U	6.2
Chloroethane	75-00-3	4.0	U	4.0	11	U	11
Bromoethene	593-60-2	1.6	U	1.6	7.0	U	7.0
Trichlorofluoromethane	75-69-4	1.6	U	1.6	9.0	U	9.0
Freon TF	76-13-1	3.5	1	1.6	27	1	12
1,1-Dichloroethene	75-35-4	110		1.6	440	****************	6.3
Acetone	67-64-1	40	U	40	95	U	95
Isopropyl Alcohol	67-63-0	40	U	40	98	U	98
Carbon Disulfide	75-15-0	4.0	U	4.0	12	U	12
3-Chloropropene	107-05-1	4.0	υ	4.0	13	U	13
Methylene Chloride	75-09-2	4.0	υ	4.0	14	U	14
tert-Butyl Alcohol	75-65-0	40	U	40	120	U	120
Methyl tert-Butyl Ether	1634-04-4	4.0	U	4.0	14	U	14
trans-1,2-Dichloroethene	156-60-5	1.6	U	1.6	6.3	U	6.3
n-Hexane	110-54-3	4.0	U	4.0	14	U	14
1,1-Dichloroethane	75-34-3	5.3		1.6	21		6.5
1,2-Dichloroethene (total)	540-59-0	1.6	U	1.6	6.3	U	6.3
Methyl Ethyl Ketone	78-93-3	4.0	U	4.0	12	U	12
cis-1,2-Dichloroethene	156-59-2	1.6	U	1.6	6.3	U	6.3
Tetrahydrofuran	109-99-9	40	U	40	120	U	120
Chloroform	67-66-3	1.6	U	1.6	7.8	U	7.8
1,1,1-Trichloroethane	71-55-6	270		1.6	1500		8.7
Cyclohexane	110-82-7	1.6	U	1.6	5.5	U	5.5
Carbon Tetrachloride	56-23-5	1.6	U	1.6	10	U	10
2,2,4-Trimethylpentane	540-84-1	1.6	U	1.6	7.5	U	7.5
Benzene	71-43-2	2.1		1.6	6.7		5.1
1,2-Dichloroethane	107-06-2	1.6	U	1.6	6.5	U	6.5
n-Heptane	142-82-5	1.6	U	1.6	6.6	U	6.6

CLIENT SAMPLE NO.

SG82-4

11/12/07

Lab Sample No.: 731074

Date Analyzed:

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR Date Received: 11/03/07

Target Compound	CAS Number	Results in ppbv	q	RL in ppbv	Results in ug/m3	q	RL in ug/m3
Trichloroethene	79-01-6	1.6	U	1.6	8.6	U	8.6
1,2-Dichloropropane	78-87-5	1.6	U	1.6	7.4	U	7.4
1,4-Dioxane	123-91-1	40	U	40	140	U	140
Bromodichloromethane	75-27-4	1.6	U	1.6	11	U	11
cis-1,3-Dichloropropene	10061-01-5	1.6	U	1.6	7.3	U	7.3
Methyl Isobutyl Ketone	108-10-1	4.0	U	4.0	16	U	16
Toluene	108-88-3	20	**************	1.6	75		6.0
trans-1,3-Dichloropropene	10061-02-6	1.6	U	1.6	7.3	U	7.3
1,1,2-Trichloroethane	79-00-5	1.6	U	1.6	8.7	U	8.7
Tetrachloroethene	127-18-4	1.6	U	1.6	11	U	11
Methyl Butyl Ketone	591-78-6	4.0	U	4.0	16	U	16
Dibromochloromethane	124-48-1	1.6	U	1.6	14	U	14
1,2-Dibromoethane	106-93-4	1.6	U	1.6	12	U	12
Chlorobenzene	108-90-7	1.6	U	1.6	7.4	U	7.4
Ethylbenzene	100-41-4	6.0		1.6	26		6.9
Xylene (m,p)	1330-20-7	22	*************	4.0	96	*******************	17
Xylene (o)	95-47-6	7.1		1.6	31		6.9
Xylene (total)	1330-20-7	30		1.6	130		6.9
Styrene	100-42-5	1.6	U	1.6	6.8	U	6.8
Bromoform	75-25-2	1.6	U	1.6	17	U	17
1,1,2,2-Tetrachloroethane	79-34-5	1.6	U	1.6	11	U	11
4-Ethyltoluene	622-96-8	2.2		1.6	11		7.9
1,3,5-Trimethylbenzene	108-67-8	1.6	U	1.6	7.9	U	7.9
2-Chlorotoluene	95-49-8	1.6	U	1.6	8.3	U	8.3
1,2,4-Trimethylbenzene	95-63-6	2.3		1.6	11		7.9
1,3-Dichlorobenzene	541-73-1	1.6	U	1.6	9.6	U	9.6
1,4-Dichlorobenzene	106-46-7	1.6	Ū	1.6	9.6	U	9.6
1,2-Dichlorobenzene	95-50-1	1.6	U	1.6	9.6	U	9.6
1,2,4-Trichlorobenzene	120-82-1	4.0	U	4.0	30	U	30
Hexachlorobutadiene	87-68-3	1.6	U	1.6	17	U	17

CLIENT SAMPLE NO.

GA110907LCS

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: GA110907

Date Analyzed: 11/09/07

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	8.5		0.50	42		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	8.4		0.20	59		1.4
Chloromethane	74-87-3	8.6		0.50	18		1.0
Vinyl Chloride	75-01-4	8.5		0.20	22		0.51
1,3-Butadiene	106-99-0	9.0		0.50	20		1.1
Bromomethane	74-83-9	8.4		0.20	33		0.78
Chloroethane	75-00-3	8.9		0.50	23		1.3
Bromoethene	593-60-2	9.1		0.20	40		0.87
Trichlorofluoromethane	75-69-4	8.7		0.20	49		1.1
Freon TF	76-13-1	9.8		0.20	75		1.5
1,1-Dichloroethene	75-35-4	10		0.20	40		0.79
Acetone	67-64-1	10		5.0	24	***********************	12
Isopropyl Alcohol	67-63-0	9.0		5.0	22		12
Carbon Disulfide	75-15-0	9.4		0.50	29		1.6
3-Chloropropene	107-05-1	9.5		0.50	30		1.6
Methylene Chloride	75-09-2	9.9	* 500 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t 5	0.50	34	***********************	1.7
tert-Butyl Alcohol	75-65-0	9.0		5.0	27		15
Methyl tert-Butyl Ether	1634-04-4	10		0.50	36		1.8
trans-1,2-Dichloroethene	156-60-5	9.4		0.20	37		0.79
n-Hexane	110-54-3	9.6	************	0.50	34	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.8
1,1-Dichloroethane	75-34-3	9.3		0.20	38		0.81
1,2-Dichloroethene (total)	540-59-0	19		0.20	75		0.79
Methyl Ethyl Ketone	78-93-3	10		0.50	29		1.5
cis-1,2-Dichloroethene	156-59-2	9.8	*************	0.20	39	TO DOWNSTON THE BUSINESS OF THE STATE OF STREET	0.79
Tetrahydrofuran	109-99-9	10		5.0	29		15
Chloroform	67-66-3	9.1		0.20	44		0.98
1,1,1-Trichloroethane	71-55-6	9.0		0.20	49		1.1
Cyclohexane	110-82-7	9.6		0.20	33		0.69
Carbon Tetrachloride	56-23-5	9.0		0.20	57		1.3
2,2,4-Trimethylpentane	540-84-1	9.4		0.20	44		0.93
Benzene	71-43-2	9.4		0.20	30		0.64
1,2-Dichloroethane	107-06-2	9.0		0.20	36		0.81
n-Heptane	142-82-5	9.4		0.20	39		0.82

CLIENT SAMPLE NO.

GA110907LCS

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: GA110907

Date Analyzed: 11/09/07

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	9.1		0.20	49		1.1
1,2-Dichloropropane	78-87-5	8.9		0.20	41		0.92
1,4-Dioxane	123-91-1	8.7		5.0	31		18
Bromodichloromethane	75-27-4	9.5		0.20	64		1.3
cis-1,3-Dichloropropene	10061-01-5	9.2		0.20	42		0.91
Methyl Isobutyl Ketone	108-10-1	9.0		0.50	37		2.0
Toluene	108-88-3	9.1		0.20	34		0.75
trans-1,3-Dichloropropene	10061-02-6	9.1		0.20	41	7	0.91
1,1,2-Trichloroethane	79-00-5	8.8		0.20	48		1.1
Tetrachloroethene	127-18-4	8.9		0.20	60		1.4
Methyl Butyl Ketone	591-78-6	9.0		0.50	37		2.0
Dibromochloromethane	124-48-1	9.7		0.20	83		1.7
1,2-Dibromoethane	106-93-4	9.1		0.20	70		1.5
Chlorobenzene	108-90-7	8.9		0.20	41		0.92
Ethylbenzene	100-41-4	9.0		0.20	39		0.87
Xylene (m,p)	1330-20-7	19		0.50	83		2.2
Xylene (o)	95-47-6	9.0		0.20	39		0.87
Xylene (total)	1330-20-7	28		0.20	120		0.87
Styrene	100-42-5	9.8		0.20	42		0.85
Bromoform	75-25-2	9.9		0.20	100		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.9		0.20	61		1.4
4-Ethyltoluene	622-96-8	9.9		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	9.7		0.20	48		0.98
2-Chlorotoluene	95-49-8	9.3		0.20	48		1.0
1,2,4-Trimethylbenzene	95-63-6	9.5		0.20	47		0.98
1,3-Dichlorobenzene	541-73-1	8.7		0.20	52		1.2
1,4-Dichlorobenzene	106-46-7	8.7		0.20	52		1.2
1,2-Dichlorobenzene	95-50-1	8.5		0.20	51		1.2
1,2,4-Trichlorobenzene	120-82-1	7.4		0.50	55		3.7
Hexachlorobutadiene	87-68-3	8.9		0.20	95	[2.1

CLIENT SAMPLE NO.

GA110907LCSD

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: GA110907

11/09/07

Date Analyzed:

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.3		0.50	46		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.4		0.20	66		1.4
Chloromethane	74-87-3	9.7		0.50	20		1.0
Vinyl Chloride	75-01-4	9.7	~~~~~	0.20	25		0.51
1,3-Butadiene	106-99-0	11		0.50	24		1.1
Bromomethane	74-83-9	9.8		0.20	38		0.78
Chloroethane	75-00-3	11		0.50	29		1.3
Bromoethene	593-60-2	11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20	48	-	0.87
Trichlorofluoromethane	75-69-4	9.7		0.20	54		1,1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
Acetone	67-64-1	11		5.0	26		12
Isopropyl Alcohol	67-63-0	9.8		5.0	24		12
Carbon Disulfide	75-15-0	11		0.50	34		1.6
3-Chloropropene	107-05-1	11		0.50	34		1.6
Methylene Chloride	75-09-2	11		0.50	38		1.7
tert-Butyl Alcohol	75-65-0	9.5		5.0	29		15
Methyl tert-Butyl Ether	1634-04-4	11		0.50	40		1.8
trans-1,2-Dichloroethene	156-60-5	10		0.20	40		0.79
n-Hexane	110-54-3	11		0.50	39	na, na, na, na, na de seu en de destratado de destratado de destratado de destratado de destratado de destrata	1.8
1,1-Dichloroethane	75-34-3	10		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	21		0.20	83		0.79
Methyl Ethyl Ketone	78-93-3	12		0.50	35		1.5
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Tetrahydrofuran	109-99-9	12		5.0	35		15
Chloroform	67-66-3	9.9	1	0.20	48		0.98
1,1,1-Trichloroethane	71-55-6	9.8		0.20	53	1	1.1
Cyclohexane	110-82-7	11		0.20	38		0.69
Carbon Tetrachloride	56-23-5	9.7		0.20	61		1.3
2,2,4-Trimethylpentane	540-84-1	11		0.20	51		0.93
Benzene	71-43-2	10		0.20	32		0.64
1,2-Dichloroethane	107-06-2	9.7		0.20	39		0.81
n-Heptane	142-82-5	10		0.20	41		0.82

CLIENT SAMPLE NO.

GA110907LCSD

Lab Sample No.: GA110907

11/09/07

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number: Date Analyzed:

Sample Matrix: AIR Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	10		0.20	54		1.1
1,2-Dichloropropane	78-87-5	9.8		0.20	45		0.92
1,4-Dioxane	123-91-1	9.5		5.0	34		18
Bromodichloromethane	75-27-4	10		0.20	67		1.3
cis-1,3-Dichloropropene	10061-01-5	10		0.20	45		0.91
Methyl Isobutyl Ketone	108-10-1	11		0.50	45		2.0
Toluene	108-88-3	9.9		0.20	37		0.75
trans-1,3-Dichloropropene	10061-02-6	9.9		0.20	45		0.91
1,1,2-Trichloroethane	79-00-5	9.5		0.20	52		1.1
Tetrachloroethene	127-18-4	9.8		0.20	66		1.4
Methyl Butyl Ketone	591-78-6	10		0.50	41		2.0
Dibromochloromethane	124-48-1	11		0.20	94	1.0000000000000000000000000000000000000	1.7
1,2-Dibromoethane	106-93-4	9.9		0.20	76		1.5
Chlorobenzene	108-90-7	9.7		0.20	45		0.92
Ethylbenzene	100-41-4	9.9	***************************************	0.20	43		0.87
Xylene (m,p)	1330-20-7	21	***************	0.50	91		2.2
Xylene (o)	95-47-6	10		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130		0.87
Styrene	100-42-5	11		0.20	47		0.85
Bromoform	75-25-2	11	***************************************	0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	10		0.20	69		1.4
1-Ethyltoluene	622-96-8	12		0.20	59		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0.20	49		0.98
2-Chlorotoluene	95-49-8	10		0.20	52		1.0
1,2,4-Trimethylbenzene	95-63-6	11		0.20	54		0.98
1,3-Dichlorobenzene	541-73-1	9.8		0.20	59		1.2
1,4-Dichlorobenzene	106-46-7	10		0.20	60		1.2
I,2-Dichlorobenzene	95-50-1	9.8	******************	0.20	59	energia e energia e e energia en en	1.2
1,2,4-Trichlorobenzene	120-82-1	9.2		0.50	68		3.7
	87-68-3	11		0.20	120		2.1

CLIENT SAMPLE NO.

GA111207LCS

Lab Sample No.: GA111207

11/12/07

Date Analyzed:

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.8		0.50	48		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.8		0.20	69		1.4
Chloromethane	74-87-3	10		0.50	21		1.0
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,3-Butadiene	106-99-0	11		0.50	24		1.1
Bromomethane	74-83-9	9.7		0.20	38		0.78
Chloroethane	75-00-3	10		0.50	26		1.3
Bromoethene	593-60-2	10		0.20	44	***************************************	0.87
Trichlorofluoromethane	75-69-4	10		0.20	56		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11		0.20	44	***************************************	0.79
Acetone	67-64-1	11		5.0	26	ATATATA TATANCE TATANCANANCAN	12
Isopropyl Alcohol	67-63-0	11	•	5.0	27		12
Carbon Disulfide	75-15-0	11		0.50	34		1.6
3-Chloropropene	107-05-1	11		0.50	34		1.6
Methylene Chloride	75-09-2	11		0.50	38	*******************	1.7
tert-Butyl Alcohol	75-65-0	10		5.0	30		15
Methyl tert-Butyl Ether	1634-04-4	11	1	0.50	40		1.8
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
n-Hexane	110-54-3	11		0.50	39	r, m,	1.8
1,1-Dichloroethane	75-34-3	11		0.20	45		0.81
1,2-Dichloroethene (total)	540-59-0	22	[0.20	87		0.79
Methyl Ethyl Ketone	78-93-3	11		0.50	32		1.5
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Tetrahydrofuran	109-99-9	12		5.0	35		15
Chloroform	67-66-3	10		0.20	49		0.98
1,1,1-Trichloroethane	71-55-6	10		0.20	55		1.1
Cyclohexane	110-82-7	11		0.20	38		0.69
Carbon Tetrachloride	56-23-5	10		0.20	63		1.3
2,2,4-Trimethylpentane	540-84-1	11		0.20	51		0.93
Benzene	71-43-2	11		0.20	35		0.64
1,2-Dichloroethane	107-06-2	10		0.20	40		0.81
n-Heptane	142-82-5	11		0.20	45		0.82

CLIENT SAMPLE NO.

GA111207LCS

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Date Analyzed:

Lab Sample No.: GA111207

11/12/07

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	10		0.20	54		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
1,4-Dioxane	123-91-1	9.7		5.0	35		18
Bromodichloromethane	75-27-4	11		0.20	74		1.3
cis-1,3-Dichloropropene	10061-01-5	10		0.20	45		0.91
Methyl Isobutyl Ketone	108-10-1	10		0.50	41		2.0
Toluene	108-88-3	10		0.20	38		0.75
trans-1,3-Dichloropropene	10061-02-6	10		0.20	45		0.91
1,1,2-Trichloroethane	79-00-5	9.8		0.20	53		1.1
Tetrachloroethene	127-18-4	9.8		0.20	66		1.4
Methyl Butyl Ketone	591-78-6	10		0.50	41		2.0
Dibromochloromethane	124-48-1	11		0.20	94		1.7
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Chlorobenzene	108-90-7	9.9		0.20	46		0.92
Ethylbenzene	100-41-4	10		0.20	43		0.87
Xylene (m,p)	1330-20-7	20		0.50	87		2.2
Xylene (o)	95-47-6	9.9		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130		0.87
Styrene	100-42-5	11		0.20	47		0.85
Bromoform	75-25-2	11		0.20	110	. , , , , , , , , , , , , , , , , , , ,	2.1
1,1,2,2-Tetrachloroethane	79-34-5	9.8		0.20	67		1.4
4-Ethyltoluene	622-96-8	11		0.20	54		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0.20	49		0.98
2-Chlorotoluene	95-49-8	10		0.20	52		1.0
1,2,4-Trimethylbenzene	95-63-6	10		0.20	49		0.98
1,3-Dichlorobenzene	541-73-1	9.4		0.20	57		1.2
1,4-Dichlorobenzene	106-46-7	9.4		0.20	57		1.2
1,2-Dichlorobenzene	95-50-1	9.0		0.20	54		1.2
1,2,4-Trichlorobenzene	120-82-1	7.8		0.50	58		3.7
Hexachlorobutadiene	87-68-3	9.1		0.20	97		2.1

CLIENT SAMPLE NO.

GA111207LCSD

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Date Analyzed:

Lab Sample No.: GA111207 11/12/07

Sample Matrix: AIR

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.6		0.50	47		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.6		0.20	67		1.4
Chloromethane	74-87-3	10		0.50	21	1	1.0
Vinyl Chloride	75-01-4	9.9		0.20	25		0.51
1,3-Butadiene	106-99-0	11		0.50	24		1.1
Bromomethane	74-83-9	9.7		0.20	38		0.78
Chloroethane	75-00-3	10		0.50	26		1.3
Bromoethene	593-60-2	10		0.20	44	***********	0.87
Trichlorofluoromethane	75-69-4	9.9		0.20	56		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	12		0.20	48		0.79
Acetone	67-64-1	10		5.0	24	**************************************	12
Isopropyl Alcohol	67-63-0	10		5.0	25		12
Carbon Disulfide	75-15-0	11		0.50	34		1.6
3-Chloropropene	107-05-1	12		0.50	38	***************************************	1.6
Methylene Chloride	75-09-2	11	************	0.50	38	************	1.7
tert-Butyl Alcohol	75-65-0	10		5.0	30		15
Methyl tert-Butyl Ether	1634-04-4	10		0.50	36		1.8
trans-1,2-Dichloroethene	156-60-5	11		0.20	44		0.79
n-Hexane	110-54-3	11		0.50	39	**************************************	1.8
1,1-Dichloroethane	75-34-3	11		0.20	45		0.81
1,2-Dichloroethene (total)	540-59-0	22		0.20	87		0.79
Methyl Ethyl Ketone	78-93-3	10		0.50	29		1.5
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Tetrahydrofuran	109-99-9	10		5.0	29		15
Chloroform	67-66-3	10		0.20	49		0.98
1,1,1-Trichloroethane	71-55-6	10		0.20	55		1.1
Cyclohexane	110-82-7	11		0.20	38	\$1.00	0.69
Carbon Tetrachloride	56-23-5	10		0.20	63		1.3
2,2,4-Trimethylpentane	540-84-1	11		0.20	51		0.93
Benzene	71-43-2	10		0.20	32		0.64
1,2-Dichloroethane	107-06-2	10		0.20	40		0.81
n-Heptane	142-82-5	11		0.20	45	•••••••••••••••••••••••••••••••••••••••	0.82

CLIENT SAMPLE NO.

GA111207LCSD

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: GA111207

Date Analyzed: 11/12/07

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	10		0.20	54		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
1,4-Dioxane	123-91-1	9.3		5.0	34		18
Bromodichloromethane	75-27-4	11		0.20	74		1.3
cis-1,3-Dichloropropene	10061-01-5	10		0.20	45		0.91
Methyl Isobutyl Ketone	108-10-1	9.6		0.50	39		2.0
Toluene	108-88-3	10		0.20	38		0.75
trans-1,3-Dichloropropene	10061-02-6	10		0.20	45	*** ** ***********	0.91
1,1,2-Trichloroethane	79-00-5	9.6		0.20	52		1.1
Tetrachloroethene	127-18-4	9.7		0.20	66		1.4
Methyl Butyl Ketone	591-78-6	9.8		0.50	40		2.0
Dibromochloromethane	124-48-1	11		0.20	94	and the second s	1.7
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Chlorobenzene	108-90-7	9.8		0.20	45		0.92
Ethylbenzene	100-41-4	9.4		0.20	41		0.87
Xylene (m,p)	1330-20-7	19	* 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50	83	***************************************	2.2
Xylene (o)	95-47-6	9.2		0.20	40		0.87
Xylene (total)	1330-20-7	29		0.20	130		0.87
Styrene	100-42-5	10		0.20	43		0.85
Bromoform	75-25-2	11	************	0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	9.0		0.20	62		1.4
4-Ethyltoluene	622-96-8	10		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	8.9		0.20	44		0.98
2-Chlorotoluene	95-49-8	9.5		0.20	49		1.0
1,2,4-Trimethylbenzene	95-63-6	9.0		0.20	44		0.98
1,3-Dichlorobenzene	541-73-1	8.6		0.20	52		1.2
1,4-Dichlorobenzene	106-46-7	8.7		0.20	52		1.2
1,2-Dichlorobenzene	95-50-1	8.3		0.20	50	-	1.2
1,2,4-Trichlorobenzene	120-82-1	6.6		0.50	49		3.7
Hexachlorobutadiene	87-68-3	7.6		0.20	81		2.1

CLIENT SAMPLE NO.

MBLK110907GA

Lab Sample No.: MBLK1109

11/09/07

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number: Date Analyzed:

Sample Matrix: AIR Date Received: / /

_							
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0,50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82

CLIENT SAMPLE NO.

MBLK110907GA

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Sample Matrix: AIR

Lab Sample No.: MBLK1109

Date Analyzed:

11/09/07

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	υ	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	υ	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	υ	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

TO-14/15 **Result Summary**

CLIENT SAMPLE NO.

MBLK111207GA

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

Date Analyzed:

Lab Sample No.: MBLK1112

11/12/07

//

Sample Matrix: AIR Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	Ü	0.50	1.0	Ų	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	¹ 0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	Ų	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	Ū	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82

TO-14/15 Result Summary

CLIENT SAMPLE NO.

MBLK111207GA

Lab Name: TAL Burlington

SDG Number: NY122839

Case Number:

odoc rigilibol.

Sample Matrix: AIR

Lab Sample No.: MBLK1112

Date Analyzed: 11/12/07

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U -	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	Ū	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: Greater than 40% difference for detected concentrations between two GC columns. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

STL Connecticut

128 Long Hill Cross Road

Chain of Custody Record

Shelton, CT 06484 phone 203-944-1318

shelton, CT 06484						•					Z T	SCREEN		
shone 203-944-1318											3	Severn Trent Laboratories, Inc.	ories, Inc.	
Client Contact	Project Manager: Scott Spitzer	Scott Spitzer			31	Site Contact:					<u>, , , , , , , , , , , , , , , , , , , </u>	JUC" No:		
cosystems Strategies, Inc.	Tel/Fax: 845-452-1658 fax 845-485-7083	1658 fax 845	-485-7083			Lab Contact:					!	1 of1 C	COCs	
24 Davis Ave		Analysis Tu	Analysis Turnaround Time	me	- Delited							Job No. NP07096.20		
Poughkeepsie, NY 12603	Calend	Calendar (C) or Work Days (W)	rk Days (W)											
845) 452-1658 Phone		TAT if different from Below	rom Below											
845) 485-7083 FAX		2	2 weeks				ш				0,	SDG No.		
IBM Neptune Site		1	1 week				niləl							
Site:		2	2 days			əjdia	H 'SI							
O # NP07096.20		1	1 day			s2 b:	-от							
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtere	soo.					Sample	Sample Specific Notes:	
SG82-1	10/31/2007	1307		AIR	1		×				0.	Summa Canister		
SG82-2	10/31/2007	1351		AIR	1		x				01	Summa Canister		
SG82-3	10/31/2007	15.57		AIR	1		x				01	Summa Canister		
SG82-4	10/31/2007	16:14		AIR	1		×				0,1	Summa Canister		
										-				
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	04; 4=HNO3; 5=N;	aOH; 6= Oth	er											
lentificatio				,		_	Sample Dis	sposal (A fe	e may be	ssessed ii	samples	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	an 1 month)	
Non-Hazard Flammable	Skin Irritant	Poison B	B	Unknown			Retu	Return To Client	1	Disposal By Lab	Lab	Archive For	Months	
special Instructions/QC Requirements & Comments:		NY Category B Deliverable	B Deliv	erables										
Relinguished to	Company	(Date/Time:		315 Pm	Received by:					Date/Time:	51:51	
Selfiquished by:	Company:			Date/Fime:			Received by:			1		Date/Time:		
Kelmkin	日日			112/12	The CC		MBIOC	HBIOCKEN FOR RMIT.	X R	133 1-		11/11/07	18:30	
Relinquished by:	Company:			Date/Time:	Date/Time:		Received by.	1				Date/Time:	1	_

STL Connecticut 128 Long Hill Cross Road

Shelton, CT 06484

Chain of Custody Record

phone 203-944-1318												Severn Trent Laboratories, Inc.
Client Contact	Project Manager: Scott Spitzer	Scott Spitzer				Site Contact:						COC No:
Ecosystems Strategies, Inc.	Tel/Fax: 845-452-1658 fax 845-485-7083	658 fax 845-	485-7083			Lab Contact:						1 of1 COCs
24 Davis Ave		Analysis Turnaround Time	rnaround Ti	me								Job No. NP07096.20
Poughkeepsie, NY 12603	Calend	Calendar (C) or Work Days (W)	k Days (W)									
(845) 452-1658 Phone		TAT if different from Below	ım Below									
(845) 485-7083 FAX		2 ,	2 weeks		0.00		ш					SDG No.
Project Name: IBM Neptune Site		1,	1 week				iniləl					
Site:		2	2 davs		and the second	əldu	н 's					
P O # NP07096.20					-costatild	ns2.1	I-OI					
	6	I	Sample) -19 1]	OC? J					
Sample Identification	Sample Date	Time	Type	Matrix	# of Cont.	ы	DA .					Sample Specific Notes:
				100								
HB-A1	11/1/2007	11:45		AIR	-		×					Summa Canister
HB-A2	11/1/2007	12:25		AIR	1		×					Summa Canister
HB-A3	11/1/2007	13:10		AIR	1		x					Summa Canister
SG52-1	11/1/2007	16:00		AIR	1		X					Summa Canister
Deconnection Vised: 1- Ice 2- UCL 3- U1S	04. 4-my02. 5-m											
rieservanon Oscu: 1- ICC, 2- nCl; 3- n23O4; 4-nivO3; 3-raOn; 0- Omer	04; 4=niv03; 3=iv;	IOH; 0= OING				T				1		
Possible Hazard Identification Non-Hazard Flammable	Skin Irritant	Poison B		Unknown			Sample Dis Retur	le Disposal (A fe Return To Client	e may be	assessed if san Disposal By Lab	if samples Lab	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months
Special Instructions/QC Requirements & Comments:		NY Category B Deliverables	B Deliv	erables								
						•					PASS	PASSED RAD SCREEN
Politonicho M				Ė		1						
Keninguished And Andrews	Company	(Date/Jime:	1	pidy	Received by:	lara	X	2	7	Date/Time: 11/2/67 1044
Kelinguished by: KELI CALL	Company:			Date/Fime: /(/2/ U	ne! 107 14	12 K	Received by:	Carre	* * * * * * * * * * * * * * * * * * * *			Date/Time: 11/2/07 /1040
Relinquished by: /	Company:			Date/Time:			Received by:		VI.			Date/Time: 1/3/7 0015
								1				

Sample Data Summary – TO-15 Volatile

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract: 27000

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731067

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731067

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV 75-71-8-----Dichlorodifluoromethane 0.40 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.16 U 74-87-3-----Chloromethane 0.40 U 75-01-4-----Vinyl Chloride 0.16 U 106-99-0----1,3-Butadiene 0.40 U 0.16 U 74-83-9-----Bromomethane 0.40 U 75-00-3-----Chloroethane 593-60-2-----Bromoethene 0.16 U 0.19 75-69-4-----Trichlorofluoromethane 0.48 76-13-1----Freon TF 0.16 U 75-35-4-----1,1-Dichloroethene 4.1 67-64-1-----Acetone $4.0\overline{\mathrm{U}}$ 67-63-0-----Isopropyl Alcohol 75-15-0-----Carbon Disulfide 0.40 U 0.40 U 107-05-1----3-Chloropropene 75-09-2-----Methylene Chloride 0.48 $4.0\,\overline{\mathrm{U}}$ 75-65-0-----tert-Butyl Alcohol 1634-04-4-----Methyl tert-Butyl Ether 0.40 U 156-60-5----trans-1,2-Dichloroethene 0.16 U 110-54-3----n-Hexane 5.7 75-34-3-----1,1-Dichloroethane 0.16 U 540-59-0----1,2-Dichloroethene (total) 0.16 U 78-93-3-----Methyl Ethyl Ketone 0.69 0.16 U 156-59-2----cis-1,2-Dichloroethene 109-99-9-----Tetrahydrofuran 4.0 U 0.16 U 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 0.30 110-82-7-----Cyclohexane 4.1 0.16 U 56-23-5-----Carbon Tetrachloride 540-84-1-----2,2,4-Trimethylpentane 5.6 71-43-2----Benzene 2.9 107-06-2----1,2-Dichloroethane 0.16|U 142-82-5----n-Heptane 3.9

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

HB-A1

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731067

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731067

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or uq/Kg) PPBV

79-01-6-----Trichloroethene 0.36 78-87-5-----1,2-Dichloropropane 0.16 U 123-91-1----1,4-Dioxane 4.0 U 75-27-4-----Bromodichloromethane 0.16 U 0.16 U 10061-01-5----cis-1,3-Dichloropropene 0.40 U 108-10-1-----Methyl Isobutyl Ketone 108-88-3-----Toluene 26 10061-02-6----trans-1,3-Dichloropropene 0.16 U 79-00-5-----1,1,2-Trichloroethane____ 0.16 U 127-18-4-----Tetrachloroethene 0.16 U 0.40 U 591-78-6-----Methyl Butyl Ketone 124-48-1-----Dibromochloromethane 0.16 U 0.16 U 106-93-4-----1,2-Dibromoethane 108-90-7-----Chlorobenzene 0.16 U 5.7 100-41-4-----Ethylbenzene 1330-20-7-----Xylene (m,p) 18 95-47-6-----Xylene (o) 5.7 1330-20-7-----Xylene (total) 24 100-42-5-----Styrene 0.16 U 75-25-2-----Bromoform 0.16 U 79-34-5-----1,1,2,2-Tetrachloroethane 0.16 U 622-96-8-----4-Ethyltoluene 3.9 108-67-8-----1,3,5-Trimethylbenzene 1.1 95-49-8-----2-Chlorotoluene 0.16 U 95-63-6-----1,2,4-Trimethylbenzene 3.7 541-73-1-----1,3-Dichlorobenzene 0.16 U 0.16 U 106-46-7----1,4-Dichlorobenzene 0.16 U 95-50-1-----1,2-Dichlorobenzene 120-82-1----1,2,4-Trichlorobenzene 0.40 U 87-68-3------Hexachlorobutadiene 0.16 U

SDG No.: NY122839

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

HB-A2

0

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.:

COMPOUND

Matrix: (soil/water) AIR Lab Sample ID: 731068

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731068

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 0.57 76-14-2----1,2-Dichlorotetrafluoroethan 0.16 U 74-87-3-----Chloromethane 0.40 U 75-01-4-----Vinyl Chloride 0.16 U 106-99-0-----1,3-Butadiene 0.40 U 74-83-9-----Bromomethane 0.16 U 75-00-3-----Chloroethane____ 0.40 U 0.16 U 593-60-2-----Bromoethene 0.17 75-69-4----Trichlorofluoromethane 0.16 U 76-13-1----Freon TF 75-35-4-----1,1-Dichloroethene 0.16 U 4.0 U 67-64-1-----Acetone 67-63-0-----Isopropyl Alcohol 4.0 U 75-15-0-----Carbon Disulfide 0.40 U 0.40 U 107-05-1-----3-Chloropropene 0.40 U 75-09-2-----Methylene Chloride 75-65-0----tert-Butyl Alcohol 4.0 U 1634-04-4-----Methyl tert-Butyl Ether 0.40 U 156-60-5----trans-1,2-Dichloroethene 0.16 U 0.93 110-54-3----n-Hexane 75-34-3-----1,1-Dichloroethane 0.16 U 540-59-0-----1,2-Dichloroethene (total) 0.16 U 0.77 78-93-3-----Methyl Ethyl Ketone 0.16 U 156-59-2----cis-1,2-Dichloroethene 109-99-9-----Tetrahydrofuran 4.0 U 0.16 U 67-66-3-----Chloroform 71-55-6-----1,1,1-Trichloroethane 0.16 U 110-82-7-----Cyclohexane 1.1 56-23-5-----Carbon Tetrachloride 0.16 U 540-84-1----2,2,4-Trimethylpentane 0.91 71-43-2-----Benzene 1.2 107-06-2----1,2-Dichloroethane 0.16 U 142-82-5----n-Heptane 0.93

ECOSTR SAMPLE NO.

HB-A2

SDG No.: NY122839

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

Matrix: (soil/water) AIR Lab Sample ID: 731068

Sample wt/vol: 250.0 (q/mL) ML Lab File ID: 731068

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

CAD NO.	CONTOONS (ag/ II OI ag	g/1(g/ 11bv	
79-01-6	Trichloroethene	0.16	U
	1,2-Dichloropropane	0.16	
	1,4-Dioxane	- 4.0	ı
	Bromodichloromethane	0.16	1
	cis-1,3-Dichloropropene	0.16	1
	Methyl Isobutyl Ketone	0.40	1
108-88-3		- 14	1
	trans-1,3-Dichloropropene	0.16	
79-00-5	1,1,2-Trichloroethane	0.16	1
127-18-4	Tetrachloroethene	0.16	1
	Methyl Butyl Ketone	0.40	
124-48-1	Dibromochloromethane	0.16	U
	1,2-Dibromoethane	0.16	
	Chlorobenzene	0.16	
	Ethylbenzene	2.7	
	Xylene (m,p)	9.0	
95-47-6	Xylene (o)	2.7	
1330-20-7	Xylene (total)	_ 12	
100-42-5	Styrene	0.16	U
	Bromoform	0.16	U
79-34-5	1,1,2,2-Tetrachloroethane	0.16	U
	4-Ethyltoluene	⁻ 1.5	
	1,3,5-Trimethylbenzene	0.48	
	2-Chlorotoluene	0.16	<u>U</u>
95-63-6	1,2,4-Trimethylbenzene	1.5	
541-73-1 -	1,3-Dichlorobenzene	0.16	Ū
106-46-7	1,4-Dichlorobenzene	0.16	U
95-50-1	1,2-Dichlorobenzene	0.16	U
	1,2,4-Trichlorobenzene	0.40	U
87-68-3	Hexachlorobutadiene	0.16	U

HB-A3

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731069

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731069

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 0.40 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.16 U 74-87-3-----Chloromethane 0.40 U 75-01-4-----Vinyl Chloride 0.16 U 106-99-0-----1,3-Butadiene 0.40 U 74-83-9-----Bromomethane 0.16 U 75-00-3-----Chloroethane____ 0.40 U 0.16 U 593-60-2-----Bromoethene 0.17 75-69-4-----Trichlorofluoromethane 0.16 U 76-13-1----Freon TF 75-35-4----1,1-Dichloroethene 0.16 U 4.0 U 67-64-1-----Acetone 4.0 U 67-63-0-----Isopropyl Alcohol 0.40 U 75-15-0-----Carbon Disulfide 0.40 U 107-05-1----3-Chloropropene 75-09-2----Methylene Chloride 0.40 U 75-65-0----tert-Butyl Alcohol 4.0 U 1634-04-4-----Methyl tert-Butyl Ether 0.40 U 156-60-5----trans-1,2-Dichloroethene 0.16 U 110-54-3----n-Hexane 0.40 U 75-34-3-----1,1-Dichloroethane 0.16 U 540-59-0----1,2-Dichloroethene (total) 0.16 U 0.47 78-93-3-----Methyl Ethyl Ketone 0.16 U 156-59-2----cis-1,2-Dichloroethene 109-99-9-----Tetrahydrofuran 4.0 U 67-66-3-----Chloroform 0.16 U 0.16 U 71-55-6----1,1,1-Trichloroethane 110-82-7-----Cyclohexane 0.55 0.16 U 56-23-5-----Carbon Tetrachloride 540-84-1----2,2,4-Trimethylpentane 0.32 71-43-2----Benzene 0.79 107-06-2----1,2-Dichloroethane 0.16 U 142-82-5----n-Heptane 0.44

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

A RIPLINCTON CORTRACT: 27000

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731069

Sample wt/vol: 250.0 (q/mL) ML Lab File ID: 731069

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6----Trichloroethene 0.16 U 78-87-5-----1,2-Dichloropropane 0.16 U 123-91-1----1,4-Dioxane 4.0 U 0.16 U 75-27-4----Bromodichloromethane 0.16 U 10061-01-5----cis-1,3-Dichloropropene 108-10-1-----Methyl Isobutyl Ketone 0.40 U 108-88-3-----Toluene 9.1 10061-02-6----trans-1,3-Dichloropropene 0.16 U 79-00-5----1,1,2-Trichloroethane -0.16 U 0.16 U 127-18-4-----Tetrachloroethene 0.40 U 591-78-6-----Methyl Butyl Ketone 0.16 U 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 0.16 U 108-90-7------Chlorobenzene 0.16 U 100-41-4-----Ethylbenzene 2.0 1330-20-7-----Xylene (m,p) 6.6 95-47-6------Xylene (o)_ 2.0 1330-20-7-----Xylene (total) 8.9 0.16 U 100-42-5-----Styrene 0.16 U 75-25-2-----Bromoform 79-34-5----1,1,2,2-Tetrachloroethane 0.16 U 622-96-8-----4-Ethyltoluene 1.2 108-67-8-----1,3,5-Trimethylbenzene 0.32 95-49-8-----2-Chlorotoluene 0.16 U 95-63-6-----1,2,4-Trimethylbenzene 1.1 541-73-1----1,3-Dichlorobenzene 0.16 T 106-46-7-----1,4-Dichlorobenzene 0.16 U 95-50-1-----1,2-Dichlorobenzene 0.16 U 120-82-1-----1,2,4-Trichlorobenzene 0.40 U 87-68-3-----Hexachlorobutadiene 0.16 U

SG52-1

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731070

Sample wt/vol: 20.00 (g/mL) ML Lab File ID: 731070D

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 10.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kq) PPBV

CAS NO. COMPOUND 5.0 U 75-71-8-----Dichlorodifluoromethane 76-14-2----1,2-Dichlorotetrafluoroethan 2.0 U 74-87-3-----Chloromethane 5.0 U 75-01-4-----Vinyl Chloride 2.0 U 106-99-0-----1,3-Butadiene 5.0 U 2.0 U 74-83-9-----Bromomethane 75-00-3-----Chloroethane 5.0 U 2.0 U 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 2.0 U 76-13-1----Freon TF 48 75-35-4-----1,1-Dichloroethene 11 67-64-1-----Acetone 110 67-63-0-----Isopropyl Alcohol 57 5.0 U 75-15-0-----Carbon Disulfide 107-05-1----3-Chloropropene 5.0 U 75-09-2-----Methylene Chloride 5.0 U 50 U 75-65-0-----tert-Butyl Alcohol 5.0 U 1634-04-4----Methyl tert-Butyl Ether 156-60-5-----trans-1,2-Dichloroethene 2.0 U 110-54-3----n-Hexane 16 75-34-3----1,1-Dichloroethane 10 540-59-0----1,2-Dichloroethene (total) 4.2 5.0 U 78-93-3----Methyl Ethyl Ketone 156-59-2----cis-1,2-Dichloroethene 4.2 50 | U 109-99-9----Tetrahydrofuran 2.0 U 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 37 110-82-7-----Cyclohexane 7.2 2.0|U 56-23-5-----Carbon Tetrachloride 540-84-1----2,2,4-Trimethylpentane 11 71-43-2----Benzene 6.1 2.0 T 107-06-2----1,2-Dichloroethane 142-82-5----n-Heptane 7.5

SDG No.: NY122839

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SG82-1

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

Lab Code: STLV Case No.: 27000 SAS No.:

CAS NO.

Matrix: (soil/water) AIR Lab Sample ID: 731071

Sample wt/vol: 133.0 (g/mL) ML Lab File ID: 731071D

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.5

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) PPBV

75-71-8-----Dichlorodifluoromethane 0.75 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.30 U 74-87-3-----Chloromethane 0.75 U 75-01-4-----Vinyl Chloride 0.30 U 0.75 U 106-99-0-----1,3-Butadiene 74-83-9-----Bromomethane 0.30 U 0.75 U 75-00-3-----Chloroethane 0.30 U 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 0.32 8.6 76-13-1----Freon TF 75-35-4-----1,1-Dichloroethene 0.30 U 67-64-1-----Acetone 9.5 $7.5\,\overline{\mathrm{U}}$ 67-63-0----Isopropyl Alcohol 75-15-0-----Carbon Disulfide 1.2 107-05-1----3-Chloropropene 0.75 T 75-09-2-----Methylene Chloride 0.75 U 75-65-0----tert-Butyl Alcohol 7.5 U 1634-04-4-----Methyl tert-Butyl Ether 0.75 U 156-60-5----trans-1,2-Dichloroethene 0.30 U 110-54-3----n-Hexane 2.2 75-34-3-----1,1-Dichloroethane 0.30 U 0.30 U 540-59-0----1,2-Dichloroethene (total) 78-93-3-----Methyl Ethyl Ketone 1.6 156-59-2----cis-1,2-Dichloroethene 0.30 U 109-99-9-----Tetrahydrofuran 7.5 U 67-66-3-----Chloroform 0.41 71-55-6----1,1,1-Trichloroethane 50 110-82-7-----Cyclohexane 0.30 T 56-23-5-----Carbon Tetrachloride 2.9 540-84-1----2,2,4-Trimethylpentane 1.3 71-43-2-----Benzene 5.9 107-06-2----1,2-Dichloroethane 0.30 U 142-82-5----n-Heptane 2.1

SG82-1

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731071

Sample wt/vol: 133.0 (g/mL) ML Lab File ID: 731071D

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. ____ Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.5

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

79-01-6	Trichloroethene	0.30	IJ
	1,2-Dichloropropane	0.30	_
123-91-1	1,4-Dioxane	7.5	
75-27-4	Bromodichloromethane	0.30	_
	cis-1,3-Dichloropropene	0.30	1
108-10-1	Methyl Isobutyl Ketone	4.2	1
108-88-3		32	
10061-02-6	trans-1,3-Dichloropropene	0.30	<u> </u>
	1,1,2-Trichloroethane	0.30	U
	Tetrachloroethene	0.30	
591-78-6	Methyl Butyl Ketone	0.75	U
124-48-1	Dibromochloromethane	0.30	U
	1,2-Dibromoethane	0.30	U
	Chlorobenzene	0.30	U
	Ethylbenzene	8.3	
1330-20-7	Xylene (m,p)	33	
	Xylene (o)	10	
	Xylene (total)	44	
100-42-5		0.30	
75-25-2		0.30	U
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U
622-96 - 8	4-Ethyltoluene	4.0	
108-67-8	1,3,5-Trimethylbenzene	1.0	
	2-Chlorotoluene	0.30	Ū
95-63-6 - -	1,2,4-Trimethylbenzene	4.0	
	1,3-Dichlorobenzene	0.30	
	1,4-Dichlorobenzene	0.30	_
95-50-1 -	1,2-Dichlorobenzene	0.30	ı
120-82-1	1,2,4-Trichlorobenzene	0.75	U
87-68-3 	Hexachlorobutadiene	0.30	U

SG82-2

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731072

Sample wt/vol: 29.00 (q/mL) ML Lab File ID: 731072D

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.9

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV 0 CAS NO. COMPOUND 4.2 75-71-8-----Dichlorodifluoromethane 76-14-2----1,2-Dichlorotetrafluoroethan 1.4 U 74-87-3-----Chloromethane 3.5 U 75-01-4-----Vinyl Chloride 1.4 U 106-99-0-----1,3-Butadiene 3.5 U 1.4 U 74-83-9-----Bromomethane 3.5 U 75-00-3------Chloroethane 593-60-2-----Bromoethene 1.4 U 75-69-4----Trichlorofluoromethane 1.4 U 76-13-1----Freon TF 8.1 75-35-4-----1,1-Dichloroethene 85 35 T 67-64-1-----Acetone 67-63-0-----Isopropyl Alcohol 35 U 75-15-0-----Carbon Disulfide 3.5 U 3.5 U 107-05-1----3-Chloropropene 3.5 U 75-09-2-----Methylene Chloride 75-65-0-----tert-Butyl Alcohol 35 U 3.5 U 1634-04-4-----Methyl tert-Butyl Ether 156-60-5----trans-1,2-Dichloroethene 1.4 U 3.5 U 110-54-3----n-Hexane 75-34-3----1,1-Dichloroethane 14 540-59-0----1,2-Dichloroethene (total) 1.4 U 3.5 U 78-93-3-----Methyl Ethyl Ketone 156-59-2----cis-1,2-Dichloroethene 1.4 U 109-99-9-----Tetrahydrofuran 35 U 2.3 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 260 110-82-7-----Cyclohexane 1.4 U 56-23-5-----Carbon Tetrachloride 1.4 U 540-84-1----2,2,4-Trimethylpentane 1.4 U 71-43-2----Benzene 4.1 107-06-2----1,2-Dichloroethane 1.4 T 142-82-5----n-Heptane 2.7

SG82-2

Q

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731072

Sample wt/vol: 29.00 (g/mL) ML Lab File ID: 731072D

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.9

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 15 78-87-5-----1,2-Dichloropropane 1.4 U 123-91-1-----1,4-Dioxane 35 U 75-27-4-----Bromodichloromethane 1.4 U 10061-01-5----cis-1,3-Dichloropropene 1.4 U 108-10-1-----Methyl Isobutyl Ketone 3.5 U 108-88-3-----Toluene 25 10061-02-6----trans-1,3-Dichloropropene $1.4|\overline{U}$ 79-00-5-----1,1,2-Trichloroethane 1.4 U 127-18-4----Tetrachloroethene 1.4 U 3.5 U 591-78-6-----Methyl Butyl Ketone 124-48-1-----Dibromochloromethane 1.4 U 106-93-4----1,2-Dibromoethane 1.4 U 108-90-7-----Chlorobenzene 1.4 U 100-41-4-----Ethylbenzene 4.5 1330-20-7-----Xylene (m,p) 14 95-47-6-----Xylene (o) 4.4 1330-20-7-----Xylene (total) 19 1.4 U 100-42-5----Styrene 75-25-2-----Bromoform 1.4 U 79-34-5----1,1,2,2-Tetrachloroethane 1.4 U 622-96-8----4-Ethyltoluene 1.4 U 108-67-8-----1,3,5-Trimethylbenzene 1.4 U 95-49-8----2-Chlorotoluene 1.4 U 95-63-6-----1,2,4-Trimethylbenzene 1.4 541-73-1----1,3-Dichlorobenzene $1.4\,\mathrm{U}$ 106-46-7----1,4-Dichlorobenzene 1.4 U 95-50-1----1,2-Dichlorobenzene 1.4 U 3.5 U 120-82-1----1,2,4-Trichlorobenzene 87-68-3-----Hexachlorobutadiene 1.4 U

0.30

11

0.16 U

0.16 U 0.16 U

0.16 U

0.16 U 0.16 U

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SG82-3

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

67-66-3-----Chloroform

110-82-7-----Cyclohexane

71-43-2----Benzene

71-55-6----1,1,1-Trichloroethane

540-84-1----2,2,4-Trimethylpentane

56-23-5-----Carbon Tetrachloride

107-06-2----1,2-Dichloroethane

142-82-5----n-Heptane

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731073

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731073

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. _____ Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 2.4 76-14-2----1,2-Dichlorotetrafluoroethan 0.16 U 0.40 U 74-87-3-----Chloromethane 75-01-4-----Vinyl Chloride 0.16 U 106-99-0-----1,3-Butadiene 0.40 U 74-83-9-----Bromomethane 0.16 U 75-00-3-----Chloroethane 0.40 U 593-60-2----Bromoethene 0.16 U 0.26 75-69-4----Trichlorofluoromethane 0.29 76-13-1----Freon TF 75-35-4-----1,1-Dichloroethene 1.2 67-64-1-----Acetone 8.6 4.0 U 67-63-0----Isopropyl Alcohol 0.40 U 75-15-0-----Carbon Disulfide 0.40 U 107-05-1----3-Chloropropene 0.40 U 75-09-2----Methylene Chloride 4.0 U 75-65-0----tert-Butyl Alcohol 0.40 U 1634-04-4-----Methyl tert-Butyl Ether 156-60-5----trans-1,2-Dichloroethene 0.16 U 110-54-3---n-Hexane 0.40 U 75-34-3----1,1-Dichloroethane 0.65 540-59-0-----1,2-Dichloroethene (total) 0.16 U 78-93-3----Methyl Ethyl Ketone 0.98 156-59-2----cis-1,2-Dichloroethene 0.16 U 109-99-9-----Tetrahydrofuran 4.0 U

SG82-3

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731073

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 731073

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. ____ Date Analyzed: 11/10/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

CAB NO.	COMPOSIND (ug/ H OI ug	// kg/ 115v	<u>~</u>
79-01-6	Trichloroethene	1.4	
	1,2-Dichloropropane	0.16	
	1,4-Dioxane	4.0	
	Bromodichloromethane	0.16	U
	cis-1,3-Dichloropropene	0.16	
	Methyl Isobutyl Ketone	0.40	
108-88-3		0.16	
	trans-1,3-Dichloropropene	0.16	U
79-00-5	1,1,2-Trichloroethane	0.16	U
	Tetrachloroethene	0.16	
	Methyl Butyl Ketone	0.40	U
	Dibromochloromethane	0.16	U
106-93-4	1,2-Dibromoethane	0.16	U
	Chlorobenzene	0.16	U
	Ethylbenzene	0.16	U
	Xylene (m,p)	0.40	U
95-47-6	Xylene (o)	0.16	U
1330-20-7	Xylene (total)	0.16	U
100-42-5		0.16	U
75-25-2	Bromoform	0.16	U
79-34-5	1,1,2,2-Tetrachloroethane	0.16	U
	4-Ethyltoluene	0.16	U
	1,3,5-Trimethylbenzene	0.16	U
95-49-8	2-Chlorotoluene	0.16	U
	1,2,4-Trimethylbenzene	0.16	U
	1,3-Dichlorobenzene	0.16	U
	1,4-Dichlorobenzene	0.16	
	1,2-Dichlorobenzene	0.16	
120-82-1	1,2,4-Trichlorobenzene	0.40	
87-68-3	Hexachlorobutadiene	0.16	

SG82-4

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731074

Sample wt/vol: 25.00 (g/mL) ML Lab File ID: 731074D2

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 8.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) PPBV

75-71-8------Dichlorodifluoromethane 4.0 U 76-14-2----1,2-Dichlorotetrafluoroethan 1.6 U 74-87-3-----Chloromethane 4.0 U 75-01-4-----Vinyl Chloride 1.6 U 106-99-0-----1,3-Butadiene 4.0 U 74-83-9-----Bromomethane 1.6 U 4.0 U 75-00-3-----Chloroethane 1.6 U 593-60-2-----Bromoethene 1.6 U 75-69-4-----Trichlorofluoromethane 3.5 76-13-1----Freon TF 110 75-35-4----1,1-Dichloroethene 40 U 67-64-1-----Acetone 67-63-0----Isopropyl Alcohol 40 U 75-15-0-----Carbon Disulfide 4.0 U 4.0 U 107-05-1----3-Chloropropene 75-09-2------Methylene Chloride 4.0 U 75-65-0----tert-Butyl Alcohol 40 U 4.0 U 1634-04-4-----Methyl tert-Butyl Ether 156-60-5-----trans-1,2-Dichloroethene 1.6 U 110-54-3----n-Hexane 4.0 U 75-34-3-----1,1-Dichloroethane 5.3 1.6 U 540-59-0-----1,2-Dichloroethene (total) 78-93-3----Methyl Ethyl Ketone 4.0 U 156-59-2----cis-1,2-Dichloroethene 1.6 U 109-99-9-----Tetrahydrofuran 40 U 67-66-3-----Chloroform 1.6 U 71-55-6----1,1,1-Trichloroethane 270 1.6 U 110-82-7-----Cyclohexane 1.6 U 56-23-5------Carbon Tetrachloride 540-84-1----2,2,4-Trimethylpentane 1.6 U 71-43-2-----Benzene 2.1 1.6 U 107-06-2----1,2-Dichloroethane 1.6 U 142-82-5----n-Heptane

ECOSTR SAMPLE NO.

SG82-4

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: 731074

Sample wt/vol: 25.00 (g/mL) ML Lab File ID: 731074D2

Level: (low/med) LOW Date Received: 11/03/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 8.0

COMPOUND

CAS NO.

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6----Trichloroethene 1.6 U 78-87-5-----1,2-Dichloropropane 1.6 U 123-91-1-----1,4-Dioxane 40 U 75-27-4-----Bromodichloromethane 1.6 U 10061-01-5----cis-1,3-Dichloropropene 1.6 U 108-10-1-----Methyl Isobutyl Ketone 4.0 U 108-88-3----Toluene 20 10061-02-6----trans-1,3-Dichloropropene 1.6 U 79-00-5----1,1,2-Trichloroethane 1.6 U 1.6 U 127-18-4-----Tetrachloroethene 591-78-6-----Methyl Butyl Ketone 4.0 U 124-48-1-----Dibromochloromethane 1.6 U 106-93-4-----1,2-Dibromoethane 1.6 U 108-90-7-----Chlorobenzene 1.6 U 100-41-4-----Ethylbenzene 6.0 1330-20-7-----Xylene (m,p) 22 7.1 95-47-6-----Xylene (o) 1330-20-7-----Xylene (total) 30 100-42-5-----Styrene 1.6 U 75-25-2-----Bromoform 1.6 U 79-34-5-----1,1,2,2-Tetrachloroethane 1.6 U 2.2 622-96-8----4-Ethyltoluene 1.6 U 108-67-8-----1,3,5-Trimethylbenzene 95-49-8----2-Chlorotoluene 1.6 U 95-63-6-----1,2,4-Trimethylbenzene 2.3 1.6 U 541-73-1----1,3-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene 1.6 U 95-50-1-----1,2-Dichlorobenzene 1.6 U 120-82-1-----1,2,4-Trichlorobenzene 4.0 U 87-68-3-----Hexachlorobutadiene 1.6 U

CLIENT SAMPLE NO.

0.20 U

MBLK110907GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: MBLK110907GA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBRB02

Level: (low/med) LOW Date Received:

% Moisture: not dec. ____ Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

COMPOUND

CAS NO.

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV

0.50 U 75-71-8-----Dichlorodifluoromethane 76-14-2----1,2-Dichlorotetrafluoroethan 0.20 U 74-87-3-----Chloromethane 0.50 U 0.20 U 75-01-4-----Vinyl Chloride 106-99-0----1,3-Butadiene 0.50 U 0.20 U 74-83-9-----Bromomethane 75-00-3-----Chloroethane 0.50 U 0.20 U 593-60-2-----Bromoethene 0.20 U 75-69-4-----Trichlorofluoromethane 0.20 U 76-13-1----Freon TF 0.20 U 75-35-4-----1,1-Dichloroethene 5.0 U 67-64-1------Acetone 67-63-0-----Isopropyl Alcohol____ 5.0 U 75-15-0-----Carbon Disulfide 0.50 U 0.50 U 107-05-1----3-Chloropropene 75-09-2-----Methylene Chloride 0.50 U 5.0 U 75-65-0----tert-Butyl Alcohol 1634-04-4-----Methyl tert-Butyl Ether 0.50 U 0.20 U 156-60-5----trans-1,2-Dichloroethene 110-54-3----n-Hexane 0.50 U 75-34-3-----1,1-Dichloroethane 0.20 U 540-59-0----1,2-Dichloroethene (total) 0.20 U 78-93-3-----Methyl Ethyl Ketone 0.50 U 156-59-2----cis-1,2-Dichloroethene 0.20 U 109-99-9-----Tetrahydrofuran 5.0 U 67-66-3-----Chloroform 0.20 U 71-55-6-----1,1,1-Trichloroethane 0.20 U 0.20 U 110-82-7------Cyclohexane 56-23-5-----Carbon Tetrachloride_____ 0.20 U 0.20 U 540-84-1----2,2,4-Trimethylpentane 0.20 U 71-43-2----Benzene 107-06-2----1,2-Dichloroethane_____ 0.20 U

142-82-5----n-Heptane

CLIENT SAMPLE NO.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

MBLK110907GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: MBLK110907GA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBRB02

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 0.20 U 78-87-5-----1,2-Dichloropropane 0.20 U 123-91-1-----1,4-Dioxane 5.0 U 75-27-4-----Bromodichloromethane 0.20 U 10061-01-5----cis-1,3-Dichloropropene 0.20 U 108-10-1-----Methyl Isobutyl Ketone 0.50 U 0.20 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 0.20 U 79-00-5----1,1,2-Trichloroethane____ 0.20 U 0.20 U 127-18-4-----Tetrachloroethene 591-78-6-----Methyl Butyl Ketone 0.50 U 0.20 U 124-48-1-----Dibromochloromethane 0.20 U 106-93-4----1,2-Dibromoethane 108-90-7-----Chlorobenzene 0.20 U 0.20 U 100-41-4-----Ethylbenzene 1330-20-7-----Xylene (m,p) 0.50 U 95-47-6-----Xylene (o) -0.20 U 1330-20-7-----Xylene (total) 0.20 U 100-42-5----Styrene 0.20 U 75-25-2-----Bromoform 0.20 U 79-34-5----1,1,2,2-Tetrachloroethane 0.20 U 0.20 U 622-96-8-----4-Ethyltoluene 0.20 U 108-67-8-----1,3,5-Trimethylbenzene 95-49-8----2-Chlorotoluene 0.20 U 95-63-6----1,2,4-Trimethylbenzene 0.20 U 541-73-1----1,3-Dichlorobenzene 0.20 U 106-46-7----1,4-Dichlorobenzene 0.20 U 95-50-1-----1,2-Dichlorobenzene 0.20 U 120-82-1----1,2,4-Trichlorobenzene 0.50 U 87-68-3-----Hexachlorobutadiene 0.20 U

MBLK111207GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: MBLK111207GA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBRB01A

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. _____ Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

CAS NO. COMPOUND 75-71-8------Dichlorodifluoromethane 0.50 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.20 U 74-87-3------Chloromethane 0.50 U 75-01-4-----Vinyl Chloride 0.20 U 106-99-0----1,3-Butadiene 0.50 U 74-83-9-----Bromomethane 0.20 U 75-00-3-----Chloroethane 0.50 U 0.20 U 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 0.20 U 76-13-1-----Freon TF 0.20 U 75-35-4-----1,1-Dichloroethene____ 0.20 U 5.0 U 67-64-1-----Acetone 67-63-0----Isopropyl Alcohol 5.0 U 75-15-0-----Carbon Disulfide 0.50 U 0.50 U 107-05-1----3-Chloropropene 75-09-2----Methylene Chloride 0.50 U 75-65-0-----tert-Butyl Alcohol 5.0 U 1634-04-4----Methyl tert-Butyl Ether 0.50 U 156-60-5-----trans-1,2-Dichloroethene 0.20 U 110-54-3----n-Hexane 0.50 U 75-34-3-----1,1-Dichloroethane 0.20 U 540-59-0----1,2-Dichloroethene (total)___ 0.20 U 78-93-3-----Methyl Ethyl Ketone 0.50 U 0.20 U 156-59-2----cis-1,2-Dichloroethene 109-99-9-----Tetrahydrofuran 5.0 U 67-66-3-----Chloroform 0.20 U 71-55-6----1,1,1-Trichloroethane 0.20 U 110-82-7----**--**Cyclohexane 0.20 U 56-23-5-----Carbon Tetrachloride 0.20 U 540-84-1----2,2,4-Trimethylpentane 0.20 U 71-43-2----Benzene 0.20 U 107-06-2-----1,2-Dichloroethane 0.20 U 142-82-5----n-Heptane_____ 0.20 U

CLIENT SAMPLE NO.

MBLK111207GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: MBLK111207GA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBRB01A

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

0.20 U 79-01-6-----Trichloroethene 78-87-5-----1,2-Dichloropropane 0.20 U 123-91-1----1,4-Dioxane 5.0 U 0.20 U 75-27-4----Bromodichloromethane 10061-01-5----cis-1,3-Dichloropropene 0.20 U 108-10-1-----Methyl Isobutyl Ketone 0.50 U 0.20 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 0.20 U 79-00-5----1,1,2-Trichloroethane 0.20 U 0.20 U 127-18-4-----Tetrachloroethene 0.50 U 591-78-6-----Methyl Butyl Ketone 124-48-1-----Dibromochloromethane 0.20 U 106-93-4----1,2-Dibromoethane 0.20 U 108-90-7-----Chlorobenzene 0.20 U 100-41-4----Ethylbenzene 0.20 U 1330-20-7-----Xylene (m,p) 0.50 U 95-47-6-----Xylene (o) 0.20 U 1330-20-7-----Xylene (total) 0.20 U 100-42-5-----Styrene 0.20 U 75-25-2-----Bromoform 0.20 U 0.20 U 79-34-5----1,1,2,2-Tetrachloroethane 622-96-8-----4-Ethyltoluene 0.20 U 0.20 U 108-67-8-----1,3,5-Trimethylbenzene 95-49-8----2-Chlorotoluene 0.20 U 95-63-6----1,2,4-Trimethylbenzene 0.20 U 0.20 U 541-73-1-----1,3-Dichlorobenzene 106-46-7-----1,4-Dichlorobenzene 0.20 U 95-50-1-----1,2-Dichlorobenzene 0.20 U 120-82-1----1,2,4-Trichlorobenzene 0.50 U 87-68-3------Hexachlorobutadiene 0.20 U

CLIENT SAMPLE NO.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

GA110907LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA110907LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10Q

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

CAS NO. COMPOUND 75-71-8-----Dichlorodifluoromethane 8.5 76-14-2----1,2-Dichlorotetrafluoroethan 8.4 74-87-3-----Chloromethane 8.6 75-01-4-----Vinyl Chloride 8.5 106-99-0-----1,3-Butadiene 9.0 74-83-9-----Bromomethane 8.4 75-00-3-----Chloroethane 8.9 593-60-2-----Bromoethene 9.1 75-69-4----Trichlorofluoromethane 8.7 76-13-1-----Freon TF 9.8 75-35-4-----1,1-Dichloroethene 10 67-64-1-----Acetone 10 67-63-0----Isopropyl Alcohol 9.0 75-15-0-----Carbon Disulfide 9.4 107-05-1----3-Chloropropene 9.5 75-09-2----Methylene Chloride 9.9 75-65-0----tert-Butyl Alcohol 9.0 1634-04-4-----Methyl tert-Butyl Ether 10 156-60-5----trans-1,2-Dichloroethene 9.4 110-54-3----n-Hexane 9.6 75-34-3-----1,1-Dichloroethane 9.3 540-59-0----1,2-Dichloroethene (total) 19 78-93-3------Methyl Ethyl Ketone 10 156-59-2----cis-1,2-Dichloroethene 9.8 109-99-9-----Tetrahydrofuran 10 67-66-3-----Chloroform 9.1 71-55-6-----1,1,1-Trichloroethane 9.0 110-82-7------Cyclohexane 9.6 56-23-5-----Carbon Tetrachloride 9.0 9.4 540-84-1-----2,2,4-Trimethylpentane 71-43-2----Benzene 9.4 107-06-2----1,2-Dichloroethane 9.0 9.4 142-82-5----n-Heptane

CLIENT SAMPLE NO.

GA110907LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA110907LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10Q

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

79-01-6Trichloroethene 78-87-51,2-Dichloropropane	9.1
123-91-11,4-Dioxane	8.7
75-27-4Bromodichloromethane	9.5
10061-01-5cis-1,3-Dichloropropene	9.2
108-10-1Methyl Isobutyl Ketone	9.0
108-88-3Toluene	9.1
10061-02-6trans-1,3-Dichloropropene	9.1
79-00-51,1,2-Trichloroethane	8.8
127-18-4Tetrachloroethene	8.9
591-78-6Methyl Butyl Ketone	9.0
124-48-1Dibromochloromethane	9.7
106-93-41,2-Dibromoethane	9.1
108-90-7Chlorobenzene	8.9
100-41-4Ethylbenzene	9.0
1330-20-7Xylene (m,p)	19
95-47 - 6Xylene (o)	9.0
1330-20-7Xylene (total)	28
100-42-5Styrene	9.8
75-25-2Bromoform	9.9
79-34-51,1,2,2-Tetrachloroethane	8.9
622-96-84-Ethyltoluene	9.9
108-67-81,3,5-Trimethylbenzene	9.7
95-49-82-Chlorotoluene	9.3
95-63-61,2,4-Trimethylbenzene	9.5
541-73-11,3-Dichlorobenzene	8.7
106-46-71,4-Dichlorobenzene	8.7
95-50-11,2-Dichlorobenzene	8.5
120-82-11,2,4-Trichlorobenzene	7.4
87-68-3Hexachlorobutadiene	8.9

CLIENT SAMPLE NO.

GA110907LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA110907LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10QD

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 9.3 76-14-2-----1,2-Dichlorotetrafluoroethan 9.4 74-87-3-----Chloromethane 9.7 75-01-4-----Vinyl Chloride 9.7 106-99-0----1,3-Butadiene 11 74-83-9-----Bromomethane 9.8 75-00-3-----Chloroethane 11 593-60-2-----Bromoethene 11 75-69-4-----Trichlorofluoromethane 9.7 76-13-1-----Freon TF 11 75-35-4-----1,1-Dichloroethene 11 67-64-1-----Acetone 11 67-63-0----Isopropyl Alcohol 9.8 75-15-0-----Carbon Disulfide 11 107-05-1----3-Chloropropene 11 75-09-2-----Methylene Chloride 11 75-65-0-----tert-Butyl Alcohol 9.5 1634-04-4-----Methyl tert-Butyl Ether 11 156-60-5----trans-1,2-Dichloroethene 10 110-54-3----n-Hexane 11 75-34-3-----1,1-Dichloroethane 10 540-59-0----1,2-Dichloroethene (total) 21 78-93-3-----Methyl Ethyl Ketone 12 156-59-2----cis-1,2-Dichloroethene 11 109-99-9----**Tetrahydrofuran** 12 9.9 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 9.8 110-82-7-----Cyclohexane 11 56-23-5-----Carbon Tetrachloride 9.7 540-84-1-----2,2,4-Trimethylpentane 11 71-43-2-----Benzene 10 107-06-2----1,2-Dichloroethane 9.7 142-82-5----n-Heptane 10

CLIENT SAMPLE NO.

10

9.8

9.2

11

GA110907LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

87-68-3-----Hexachlorobutadiene

120-82-1----1,2,4-Trichlorobenzene

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA110907LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10QD

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/09/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 10 78-87-5-----1,2-Dichloropropane_ 9.8 123-91-1-----1,4-Dioxane 9.5 75-27-4-----Bromodichloromethane 10 10061-01-5----cis-1,3-Dichloropropene 10 108-10-1-----Methyl Isobutyl Ketone 11 108-88-3-----Toluene 9.9 9.9 10061-02-6----trans-1,3-Dichloropropene 79-00-5----1,1,2-Trichloroethane 9.5 127-18-4-----Tetrachloroethene 9.8 591-78-6-----Methyl Butyl Ketone 10 124-48-1-----Dibromochloromethane 11 106-93-4----1,2-Dibromoethane 9.9 108-90-7-----Chlorobenzene 9.7 100-41-4-----Ethylbenzene 9.9 1330-20-7-----Xylene (m,p) 21 95-47-6-----Xylene (o) 10 1330-20-7-----Xylene (total) 31 100-42-5----Styrene 11 75-25-2-----Bromoform 11 79-34-5----1,1,2,2-Tetrachloroethane 10 622-96-8-----4-Ethyltoluene 12 108-67-8-----1,3,5-Trimethylbenzene 10 95-49-8----2-Chlorotoluene 10 95-63-6-----1,2,4-Trimethylbenzene 11 541-73-1----1,3-Dichlorobenzene 9.8

CLIENT SAMPLE NO.

GA111207LCS

0

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA111207LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10AQD

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) PPBV

75-71-8-----Dichlorodifluoromethane 9.8 76-14-2----1,2-Dichlorotetrafluoroethan 9.8 74-87-3-----Chloromethane 10 75-01-4-----Vinyl Chloride 10 106-99-0-----1,3-Butadiene 11 74-83-9-----Bromomethane 9.7 75-00-3-----Chloroethane 10 593-60-2-----Bromoethene 10 75-69-4-----Trichlorofluoromethane 10 76-13-1----Freon TF 11 75-35-4----1,1-Dichloroethene 11 67-64-1-----Acetone 11 67-63-0-----Isopropyl Alcohol 11 75-15-0-----Carbon Disulfide 11 107-05-1----3-Chloropropene 11 75-09-2-----Methylene Chloride 1.1 75-65-0----tert-Butyl Alcohol 10 1634-04-4-----Methyl tert-Butyl Ether 11 156-60-5----trans-1,2-Dichloroethene 11 110-54-3---n-Hexane 11 75-34-3-----1,1-Dichloroethane 11 540-59-0----1,2-Dichloroethene (total) 22 78-93-3-----Methyl Ethyl Ketone 11 156-59-2----cis-1,2-Dichloroethene 11 109-99-9----Tetrahydrofuran 12 67-66-3-----Chloroform 10 71-55-6-----1,1,1-Trichloroethane 10 110-82-7-----Cyclohexane 11 56-23-5-----Carbon Tetrachloride 10 540-84-1----2,2,4-Trimethylpentane 11 71-43-2----Benzene 11 107-06-2----1,2-Dichloroethane 10 142-82-5----n-Heptane 11

CLIENT SAMPLE NO.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

GA111207LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix: (soil/water) AIR Lab Sample ID: GA111207LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10AQD

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(uq/L or uq/Kq) PPBV CAS NO. COMPOUND 79-01-6-----Trichloroethene 10 78-87-5-----1,2-Dichloropropane 10 123-91-1----1,4-Dioxane 9.7 75-27-4-----Bromodichloromethane 11 10061-01-5----cis-1,3-Dichloropropene 10 108-10-1-----Methyl Isobutyl Ketone 10 108-88-3-----Toluene 10 10061-02-6----trans-1,3-Dichloropropene 10 79-00-5----1,1,2-Trichloroethane 9.8 127-18-4-----Tetrachloroethene 9.8 591-78-6-----Methyl Butyl Ketone 10 124-48-1-----Dibromochloromethane 11 106-93-4----1,2-Dibromoethane 10 108-90-7-----Chlorobenzene 9.9 100-41-4-----Ethylbenzene 10 1330-20-7-----Xylene (m,p) 20 95-47-6-----Xylene (o) 9.9 1330-20-7-----Xylene (total) 31 11 100-42-5----Styrene 75-25-2-----Bromoform 11 79-34-5----1,1,2,2-Tetrachloroethane 9.8 622-96-8-----4-Ethyltoluene 11 108-67-8-----1,3,5-Trimethylbenzene 10 95-49-8----2-Chlorotoluene 10 95-63-6----1,2,4-Trimethylbenzene 10 541-73-1----1,3-Dichlorobenzene 9.4 106-46-7-----1,4-Dichlorobenzene 9.4 95-50-1-----1,2-Dichlorobenzene 9.0 120-82-1----1,2,4-Trichlorobenzene 7.8 87-68-3-----Hexachlorobutadiene 9.1

CLIENT SAMPLE NO.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

GA111207LCSD

SDG No.: NY122839

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

Matrix: (soil/water) AIR Lab Sample ID: GA111207LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10AQ2

Level: (low/med) LOW Date Received:

% Moisture: not dec. _____ Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

CAS NO. COMPOUND 75-71-8-----Dichlorodifluoromethane 9.6 76-14-2----1,2-Dichlorotetrafluoroethan 9.6 74-87-3------Chloromethane 10 75-01-4-----Vinyl Chloride 9.9 106-99-0----1,3-Butadiene 11 74-83-9-----Bromomethane 9.7 75-00-3-----Chloroethane 10 593-60-2-----Bromoethene 10 75-69-4-----Trichlorofluoromethane 9.9 76-13-1-----Freon TF 11 75-35-4-----1,1-Dichloroethene 12 67-64-1----Acetone 10 67-63-0-----Isopropyl Alcohol 10 75-15-0-----Carbon Disulfide 11 12 107-05-1----3-Chloropropene 75-09-2----Methylene Chloride 11 75-65-0-----tert-Butyl Alcohol 10 1634-04-4-----Methyl tert-Butyl Ether 10 156-60-5-----trans-1,2-Dichloroethene 11 110-54-3----n-Hexane 11 75-34-3-----1,1-Dichloroethane 11 540-59-0-----1,2-Dichloroethene (total) 22 78-93-3-----Methyl Ethyl Ketone 10 156-59-2----cis-1,2-Dichloroethene 11 109-99-9-----Tetrahydrofuran 10 67-66-3-----Chloroform 10 71-55-6-----1,1,1-Trichloroethane 10 110-82-7-----Cyclohexane 11 56-23-5-----Carbon Tetrachloride 10 540-84-1----2,2,4-Trimethylpentane 11 71-43-2-----Benzene 10 107-06-2----1,2-Dichloroethane 10 142-82-5----n-Heptane 11

CLIENT SAMPLE NO.

SDG No.: NY122839

GA111207LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

Matrix: (soil/water) AIR Lab Sample ID: GA111207LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: GBR10AQ2

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) PPBV

CAS NO. COMPOUND 79-01-6-----Trichloroethene 10 78-87-5-----1,2-Dichloropropane 10 123-91-1----1,4-Dioxane 9.3 75-27-4-----Bromodichloromethane 11 10061-01-5----cis-1,3-Dichloropropene 10 108-10-1-----Methyl Isobutyl Ketone 9.6 108-88-3----Toluene 10 10061-02-6----trans-1,3-Dichloropropene 10 79-00-5-----1,1,2-Trichloroethane 9.6 127-18-4-----Tetrachloroethene 9.7 591-78-6----Methyl Butyl Ketone 9.8 124-48-1-----Dibromochloromethane 11 106-93-4----1,2-Dibromoethane 10 108-90-7-----Chlorobenzene 9.8 100-41-4-----Ethylbenzene 9.4 1330-20-7-----Xylene (m,p) 19 95-47-6-----Xylene (o) 9.2 1330-20-7-----Xylene (total) 29 100-42-5----Styrene 10 75-25-2-----Bromoform 11 79-34-5----1,1,2,2-Tetrachloroethane 9.0 622-96-8-----4-Ethyltoluene 10 108-67-8-----1,3,5-Trimethylbenzene 8.9 95-49-8----2-Chlorotoluene 9.5 95-63-6----1,2,4-Trimethylbenzene 9.0 541-73-1----1,3-Dichlorobenzene 8.6 106-46-7----1,4-Dichlorobenzene 8.7 95-50-1-----1,2-Dichlorobenzene 8.3 120-82-1-----1,2,4-Trichlorobenzene 6.6 87-68-3-----Hexachlorobutadiene 7.6

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: GA110907LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	=======================================	=======================================	=====	=====
Dichlorodifluoromethane	10		8.5	85	70-130
1,2-Dichlorotetrafluoro	10		8.4	84	70-130
Chloromethane	10		8.6	86	70-130
Vinyl Chloride	10		8.5	85	70-130
1,3-Butadiene	10		9.0	90	70-130
Bromomethane	10		8.4	84	70-130
Chloroethane	10		8.9	89	70-130
Bromoethene	10		9.1	91	70-130
Trichlorofluoromethane	10		8.7	87	70-130
Freon TF	10		9.8	98	70-130
1,1-Dichloroethene	10		10	100	70-130
Acetone	10		10	100	70-130
Isopropyl Alcohol	10		9.0	90	70-130
Carbon Disulfide	10		9.4	94	70-130
3-Chloropropene	10		9.5	95	70-130
Methylene Chloride	10		9.9	99	70-130
tert-Butyl Alcohol	10		9.0	90	70-130
Methyl tert-Butyl Ether	10		10	100	70-130
trans-1,2-Dichloroethen	10		9.4	94	70-130
n-Hexane	10		9.6	96	70-130
1,1-Dichloroethane	10		9.3	93	70-130
1,2-Dichloroethene (tot	20		19	95	70-130
Methyl Ethyl Ketone	10		10	100	70-130
cis-1,2-Dichloroethene	10		9.8	98	70-130
Tetrahydrofuran	10		10	100	70-130
Chloroform	10		9.1	91	70-130
1,1,1-Trichloroethane	10		9.0	90	70-130
Cyclohexane	10		9.6	96	70-130
Column to be used to fla					

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:			

^{*} Values outside of QC limits

AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: GA110907LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(vdqq)	(uq/L)	(vdqq)	REC #	REC.
=======================================	=======	=========	==========	=====	=====
Carbon Tetrachloride	10		9.0	90	70-130
2,2,4-Trimethylpentane	10		9.4	94	70-130
Benzene	10		9.4	94	70-130
1,2-Dichloroethane	10		9.0	90	70-130
n-Heptane	10		9.4	94	70-130
Trichloroethene	10		9.1	91	70-130
1,2-Dichloropropane	10		8.9	89	70-130
1,4-Dioxane	10		8.7	87	70-130
Bromodichloromethane	10		9.5	95	70-130
cis-1,3-Dichloropropene	10		9.2	92	70-130
Methyl Isobutyl Ketone	10		9.0	90	70-130
Toluene	10		9.1	91	70-130
trans-1,3-Dichloroprope	10		9.1	91	70-130
1,1,2-Trichloroethane	10		8.8	88	70-130
Tetrachloroethene	10		8.9	89	70-130
Methyl Butyl Ketone	10		9.0	90	70-130
Dibromochloromethane	10		9.7	97	70-130
1,2-Dibromoethane	10		9.1	91	70-130
Chlorobenzene	10		8.9	89	70-130
Ethylbenzene	10		9.0	90	70-130
Xylene (m,p)	20		19	95	70-130
Xylene (o)	10		9.0	90	70-130
Xylene (total)	30		28	93	70-130
Styrene	10		9.8	98	70-130
Bromoform	10		9.9	99	70-130
1,1,2,2-Tetrachloroetha	10		8.9	89	70-130
4-Ethyltoluene	10		9.9	99	70-130
1,3,5-Trimethylbenzene	10		9.7	97	70-130
Column to be used to fla		- and DDD realise			

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:				

^{*} Values outside of QC limits

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: GA110907LCS

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
2-Chlorotoluene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene	10 10 10 10 10 10 10	=======================================	9.3 9.5 8.7 8.7 8.5 7.4 8.9	93 95 87 87 85 74 89	70-130 70-130 70-130 70-130 70-130 70-130 70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:				
	_			

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:			_	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

-	SPIKE	LCSD CONCENTRATION	LCSD %	%	OC I	IMITS
COMPOLIND	ADDED (ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
COMPOUND	(ppbv)	(ppbv)	TEC #	======	=====	=====
Carbon Tetrachloride	10	9.7	97	7	25	70-130
2,2,4-Trimethylpentane	10	11	110	16	25	70-130
Benzene	10	10	100	6	25	70-130
1,2-Dichloroethane	10	9.7	97	7	25	70-130
n-Heptane	10	10	100	6	25	70-130
Trichloroethene	10	10	100	9	25	70-130
1,2-Dichloropropane	10	9.8	98	10	25	70-130
1,4-Dioxane	10	9.5	95	9	25	70-130
Bromodichloromethane	10	10	100	5	25	70-130
cis-1,3-Dichloropropene	10	10	100	8	25	70-130
Methyl Isobutyl Ketone	10	11	110	20	25	70-130
Toluene	10	9.9	99	8	25	70-130
trans-1,3-Dichloroprope	10	9.9	99	8	25	70-130
1,1,2-Trichloroethane	10	9.5	95	8	25	70-130
Tetrachloroethene	10	9.8	98	10	25	70-130
Methyl Butyl Ketone	10	10	100	10	25	70-130
Dibromochloromethane	10	11	110	12	25	70-130
1,2-Dibromoethane	10	9.9	99	8	25	70-130
Chlorobenzene	10	9.7	97	9	25	70-130
Ethylbenzene	10	9.9	99	10	25	70-130
Xylene (m,p)	20	21	105	10	25	70-130
Xylene (o)	10	10	100	10	25	70-130
Xylene (total)	30	31	103	10	25	70-130
Styrene	10	11	110	12	25	70-130
Bromoform	10	11	110	10	25	70-130
1,1,2,2-Tetrachloroetha	10	10	100	12	25	70-130
4-Ethyltoluene	10	12	120	19	25	70-130
1,3,5-Trimethylbenzene	10	10	100	3	25	70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:			_	
	 	_		

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: GA110907LCS

COMPOUND	SPIKE ADDED (ppbv)	LĈSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD #	QC LIMITS RPD REC.	
=======================================	=======	=========	======	======	=====	=====
2-Chlorotoluene	10	10	100	7	25	70-130
1,2,4-Trimethylbenzene	10	11	110	15	25	70-130
1,3-Dichlorobenzene	10	9.8	98	12	25	70-130
1,4-Dichlorobenzene	10	10	100	14	25	70-130
1,2-Dichlorobenzene	10	9.8	98	14	25	70-130
1,2,4-Trichlorobenzene	10	9.2	92	22	25	70-130
Hexachlorobutadiene	10	11	110	21	25	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 63 outside limits

Spike Recovery: 0 out of 126 outside limits

COMMENTS:				_	
	 		_		

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
Dichlorodifluoromethane	10	=========	9.8	98	70-130
1,2-Dichlorotetrafluoro	10		9.8	98	70-130
Chloromethane	10		10	100	70-130
Vinyl Chloride	10		10	100	70-130
1,3-Butadiene	10		11	110	70-130
Bromomethane	10		9.7	97	70-130
Chloroethane	10		10	100	70-130
Bromoethene	10		10	100	70-130
Trichlorofluoromethane	10		10	100	70-130
Freon TF	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
Acetone	10		11	110	70-130
Isopropyl Alcohol	10		11	110	70-130
Carbon Disulfide	10		11	110	70-130
3-Chloropropene	10		11	110	70-130
Methylene Chloride	10		11	110	70-130
tert-Butyl Alcohol	10		10	100	70-130
Methyl tert-Butyl Ether	10		11	110	70-130
trans-1,2-Dichloroethen	10		11	110	70-130
n-Hexane	10		11	110	70-130
1,1-Dichloroethane	10		11	110	70-130
1,2-Dichloroethene (tot	20		22	110	70-130
Methyl Ethyl Ketone	10		11	110	70-130
cis-1,2-Dichloroethene	10		11	110	70-130
Tetrahydrofuran	10		12	120	70-130
Chloroform	10		10	100	70-130
1,1,1-Trichloroethane	10		10	100	70-130
Cyclohexane	10		11	110	70-130
		- and DDDlive			

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:			_		

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

 	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(vdqq)	REC #	REC.
	(PPDV)		\PP~\/	======	======
Carbon Tetrachloride	10		10	100	70-130
2,2,4-Trimethylpentane	10		11	110	70-130
Benzene	10		11	110	70-130
1,2-Dichloroethane	10		10	100	70-130
n-Heptane	10		11	110	70-130
Trichloroethene	10		10	100	70-130
1,2-Dichloropropane	10		10	100	70-130
1,4-Dioxane	10		9.7	97	70-130
Bromodichloromethane	10		11	110	70-130
cis-1,3-Dichloropropene	10		10	100	70-130
Methyl Isobutyl Ketone	10		10	100	70-130
Toluene	10		10	100	70-130
trans-1,3-Dichloroprope	10		10	100	70-130
1,1,2-Trichloroethane	10		9.8	98	70-130
Tetrachloroethene	10		9.8	98	70-130
Methyl Butyl Ketone	10		10	100	70-130
Dibromochloromethane	10		11	110	70-130
1,2-Dibromoethane	10		10	100	70-130
Chlorobenzene	10		9.9	99	70-130
Ethylbenzene	10		10	100	70-130
Xylene (m,p)	20		20	100	70-130
Xylene (o)	10		9.9	99	70-130
Xylene (total)	30		31	103	70-130
Styrene	10		11	110	70-130
Bromoform	10		11	110	70-130
1,1,2,2-Tetrachloroetha	10		9.8	98	70-130
4-Ethyltoluene	10		11	110	70-130
1,3,5-Trimethylbenzene	10		10	100	70-130
			I		

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:					
				_	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

COMPOUND	SPIKE ADDED (ppbv)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ppbv)	LCS % REC #	QC. LIMITS REC.
=======================================	=======	=========	=========	======	=====
2-Chlorotoluene	10		10	100	70-130
1,2,4-Trimethylbenzene	10		10	100	70-130
1,3-Dichlorobenzene	10		9.4	94	70-130
1,4-Dichlorobenzene	10		9.4	94	70-130
1,2-Dichlorobenzene	10		9.0	90	70-130
1,2,4-Trichlorobenzene	10		7.8	78	70-130
Hexachlorobutadiene	10		9.1	91	70-130

# (Column	to	be	used	to	flag	recovery	and	RPD	values	with	an	asterisk
-----	--------	----	----	------	----	------	----------	-----	-----	--------	------	----	----------

COMMENTS:			
		-	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

	SPIKE	LCSD	LCSD			
	ADDED	CONCENTRATION	%	્ર	OC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
=====================================	========	=====================================	======	======	=====	=====
Dichlorodifluoromethane	10	9.6	96	2	25	70-130
1,2-Dichlorotetrafluoro	10	9.6	96	2	25	70-130
Chloromethane	10	10	100	0	25	70-130
Vinyl Chloride	10	9.9	99	1	25	70-130
1,3-Butadiene	10	11	110	0	25	70-130
Bromomethane	10	9.7	97	0	25	70-130
Chloroethane	10	10	100	0	25	70-130
Bromoethene	10	10	100	0	25	70-130
Trichlorofluoromethane	10	9.9	99	1	25	70-130
Freon TF	10	11	110	0	25	70-130
1,1-Dichloroethene	10	12	120	9	25	70-130
Acetone	10	10	100	10	25	70-130
Isopropyl Alcohol	10	10	100	10	25	70-130
Carbon Disulfide	10	11	110	0	25	70-130
3-Chloropropene	10	12	120	9	25	70-130
Methylene Chloride	10	11	110	0	25	70-130
tert-Butyl Alcohol	10	10	100	0	25	70-130
Methyl tert-Butyl Ether	10	10	100	10	25	70-130
trans-1,2-Dichloroethen	10	11	110	0	25	70-130
n-Hexane	10	11	110	0	25	70-130
1,1-Dichloroethane	10	11	110	0	25	70-130
1,2-Dichloroethene (tot	20	22	110	0	25	70-130
Methyl Ethyl Ketone	10	10	100	10	25	70-130
cis-1,2-Dichloroethene	10	11	110	0	25	70-130
Tetrahydrofuran Chloroform	10 10	10	100	18	25	70-130
		10	100	0	25 25	70-130 70-130
1,1,1-Trichloroethane Cyclohexane	10 10	10 11	100 110	0	25 25	70-130
Cyclonexane	10		110	U	23	10-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:			

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

·		7.000	T GGD		Ī	
	SPIKE	LCSD	LCSD	0	00.7	TN/TENC
	ADDED	CONCENTRATION	% 557 !!	8		IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
=======================================	========	==========	=====	=====	=====	=====
Carbon Tetrachloride	10	10	100	0	25	70-130
2,2,4-Trimethylpentane	10	11	110	0	25	70-130
Benzene	10	10	100	10	25	70-130
1,2-Dichloroethane	10	10	100	0	25	70-130
n-Heptane	10	11	110	0	25	70-130
Trichloroethene	10	10	100	0	25	70-130
1,2-Dichloropropane	10	10	100	0	25	70-130
1,4-Dioxane	10	9.3	93	4	25	70-130
Bromodichloromethane	10	11	110	0	25	70-130
cis-1,3-Dichloropropene	10	10	100	0	25	70-130
Methyl Isobutyl Ketone	10	9.6	96	4	25	70-130
Toluene	10	10	100	0	25	70-130
trans-1,3-Dichloroprope	10	10	100	0	25	70-130
1,1,2-Trichloroethane	10	9.6	96	2	25	70-130
Tetrachloroethene	10	9.7	97	1	25	70-130
Methyl Butyl Ketone	10	9.8	98	2	25	70-130
Dibromochloromethane	10	11	110	0	25	70-130
1,2-Dibromoethane	10	10	100	0	25	70-130
Chlorobenzene	10	9.8	98	1	25	70-130
Ethylbenzene	10	9.4	94	6	25	70-130
Xylene (m,p)	20	19	95	5	25	70-130
Xylene (o)	10	9.2	92	7	25	70-130
Xylene (total)	30	29	97	6	25	70-130
Styrene	10	10	100	10	25	70-130
Bromoform	10	11	110	0	25	70-130
1,1,2,2-Tetrachloroetha	10	9.0	90	8	25	70-130
4-Ethyltoluene	10	10	100	10	25	70-130
1,3,5-Trimethylbenzene	10	8.9	89	12	25	70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:	_		

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: GA111207LCS

COMPOUND	SPIKE ADDED (ppbv)	LCSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD #	QC L:	IMITS REC.
=======================================	========	==========	=====	=====	=====	=====
2-Chlorotoluene	10	9.5	95	5	25	70-130
1,2,4-Trimethylbenzene	10	9.0	90	10	25	70-130
1,3-Dichlorobenzene	10	8.6	86	9	25	70-130
1,4-Dichlorobenzene	10	8.7	87	8	25	70-130
1,2-Dichlorobenzene	10	8.3	83	8	25	70-130
1,2,4-Trichlorobenzene	10	6.6	66*	17	25	70-130
Hexachlorobutadiene	10	7.6	76	18	25	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of OC limits

RPD: 0 out of 63 outside limits

Spike Recovery: 1 out of 126 outside limits

COMMENTS:		

MBLK110907GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

SDG No.: NY122839

Lab File ID: GBRB02

Lab Sample ID: MBLK110907GA

Date Analyzed: 11/09/07

Time Analyzed: 1721

GC Column: RTX-624 ID: 0.32 (mm)

Heated Purge: (Y/N) N

Instrument ID: G

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	=========	=========	=======
01	GA110907LCS	GA110907LCS	GBR10Q	1540
02	GA110907LCSD	GA110907LCSD	GBR10QD	1630
03	HB-A1	731067	731067	0057
04	HB-A2	731068	731068	0147
05	HB-A3	731069	731069	0237
06	SG52-1	731070	731070D	0327
07 08	SG82-1 SG82-2	731071	731071D	0417
08	SG82-2 SG82-3	731072 731073	731072D 731073	0507 0557
10	5002-5	731073	731073	0557
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21 22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:		

MBLK111207GA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

SDG No.: NY122839

Lab File ID: GBRB01A

Lab Sample ID: MBLK111207GA

Date Analyzed: 11/12/07

Time Analyzed: 1318

GC Column: RTX-624 ID: 0.32 (mm)

Heated Purge: (Y/N) N

Instrument ID: G

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	==========	=======================================	=======
01	GA111207LCS	GA111207LCS	GBR10AQD	1138
02	GA111207LCSD		GBR10AQ2	1228
03	SG82-4	731074	731074D2	1408
04				
05				
06				
07				
80				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:			

COMMENTED -

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Lab File ID: GBR01PV BFB Injection Date: 11/09/07

Instrument ID: G BFB Injection Time: 0808

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	11.8 42.3 100.0 6.8 0.4 (0.5)1 84.1 5.7 (6.8)1 81.6 (97.0)1 5.2 (6.4)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	=========	=======================================	========	=======
01	ASTD0002	ASTD0002	GBR002V	11/09/07	0859
02	ASTD0005	ASTD0005	GBR005V	11/09/07	0949
03	ASTD005	ASTD005	GBR05V	11/09/07	1039
04	ASTD010	ASTD010	GBR10V	11/09/07	1129
05	ASTD015	ASTD015	GBR15V	11/09/07	1219
06	ASTD020	ASTD020	GBR20V	11/09/07	1310
07	ASTD040	ASTD040	GBR40V	11/09/07	1400
80	GA110907LCS	GA110907LCS	GBR10Q	11/09/07	1540
09	GA110907LCSD	GA110907LCSD	GBR10QD	11/09/07	1630
10	MBLK110907GA	MBLK110907GA	GBRB02	11/09/07	1721
11	HB-A1	731067	731067	11/10/07	0057
12	HB-A2	731068	731068	11/10/07	0147
13	HB-A3	731069	731069	11/10/07	0237
14	SG52-1	731070	731070D	11/10/07	0327
15	SG82-1	731071	731071D	11/10/07	0417
16	SG82-2	731072	731072D	11/10/07	0507
17	SG82-3	731073	731073	11/10/07	0557
18					
19					
20					
21					
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Lab File ID: GBR02PV BFB Injection Date: 11/12/07

Instrument ID: G BFB Injection Time: 0910

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	==========
50	8.0 - 40.0% of mass 95	12.0
75	30.0 - 66.0% of mass 95	43.1
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.3 (0.4)1
174	50.0 - 120.0% of mass 95	83.9
175	4.0 - 9.0% of mass 174	5.7 (6.8)1
176	93.0 - 101.0% of mass 174	81.4 (96.9)1
177	5.0 - 9.0% of mass 176	5.2 (6.3)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	TIDA -	LAB	LAB	DATE	TIME
	EPA				
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========	=========		========	=========
01	ASTD010	ASTD010	GBR10AV	11/12/07	1000
02	GA111207LCS	GA111207LCS	GBR10AQD	11/12/07	1138
03	GA111207LCSD	GA111207LCSD	GBR10AQ2	11/12/07	1228
04	MBLK111207GA	MBLK111207GA	GBRB01A	11/12/07	1318
05	SG82-4	731074	731074D2	11/12/07	1408
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date(s): 11/09/07 11/09/07

Heated Purge: (Y/N) N Calibration Time(s): 0859 1400

LAB FILE ID: RRF0.	2=GBR002	2V	RRF0	.5=GBR00	05V		
RRF2 = RRF5	=GBR05	V	RRF1	0 = GBR1	VC		
							~ જ
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	RSD
	=====	=====	=====	======	=====	======	=====
Dichlorodifluoromethane		2.555		2.311	1.919		
1,2-Dichlorotetrafluoroethan	2.874	2.934		2.754	2.255		
Chloromethane		0.577		0.521	0.445		
Vinyl Chloride	0.842	0.816		0.802	0.690		
1,3-Butadiene		0.523		0.519	0.458		
Bromomethane	1.256	1.195		1.122			
Chloroethane		0.510		0.477			
Bromoethene	1.323			1.240	1.144		
Trichlorofluoromethane	3.920			3.737			
Freon TF	2.699			2.465			
1,1-Dichloroethene	1.152	1.164		1.083	1.012		
Acetone				0.777			
Isopropyl Alcohol				0.699	0.692		
Carbon Disulfide		3.090		3.065	2.811		
3-Chloropropene		0.871		0.824	0.818		
Methylene Chloride		0.954		0.817			
tert-Butyl Alcohol		0.232		1.268	1.214		
Methyl tert-Butyl Ether		2.357		2.160	2.036		
trans-1,2-Dichloroethene	1.450			1.444	1.304		
n-Hexane		1.386		1.412	1.300		
1,1-Dichloroethane	± 1.859	1.859		1.850	1.651		
1,2-Dichloroethene (total)	1.353	1.355		1.348	1.227		
Methyl Ethyl Ketone	1.555	0.347		0.338	0.324		
cis-1,2-Dichloroethene	1.256	1.257		1.251	1.150		
Tetrahydrofuran	1.230	1.23,		0.105	0.099		
Chloroform	2.812	2.718		2.689	2.314		
1,1,1-Trichloroethane	0.595			0.586	0.497		
Cyclohexane	0.302	0.305		0.303	0.277		
Carbon Tetrachloride	0.648	0.637		0.641	0.549		
2,2,4-Trimethylpentane	0.817			0.846	0.790		
Benzene	0.680			0.666	0.611		
1,2-Dichloroethane	0.317			0.312	0.262		
n-Heptane	0.254			0.271	0.245		
Trichloroethene	0.361	0.341		0.358	0.311		
1,2-Dichloropropane	0.232	0.223		0.219	0.197		
1,4-Dioxane	0.232	0.223		0.075	0.078		
Bromodichloromethane	0.540	0.546		0.574	0.495		
DI SINOGICIII OI ONECHANE	0.540	0.540		0.5/4	0.493		
Compounds with required min	!		· — — ,				

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date(s): 11/09/07 11/09/07

Heated Purge: (Y/N) N Calibration Time(s): 0859 1400

GC Column: RTX-624 ID: 0.32 (mm)

				0 =GBR1(
COMPOUND	1	RRF0.5	1	RRF5	RRF10	RRF	% RSD
cis-1,3-Dichloropropene	0.365	1	1	0.403	l		
Methyl Isobutyl Ketone	- 0.303	0.208		0.226			
Toluene	0.596			0.565			
trans-1,3-Dichloropropene	0.413			0.437			
1,1,2-Trichloroethane	$- \begin{vmatrix} 0.413 \\ 0.272 \end{vmatrix}$			0.266			
Tetrachloroethene	0.515			0.509			
Methyl Butyl Ketone	- 0.313	0.207		0.232			
Dibromochloromethane	- 0.580			0.656			
1,2-Dibromoethane	0.519			0.552			
Chlorobenzene	* 0.874	0.864		0.847			
Ethylbenzene	1.434	1.385		1.189	1		
Xylene (m,p)	0.513			0.454			
Xylene (o)	0.489			0.436			
Xylene (o) Xylene (total) Styrene	0.489			0.436			
Styrene	0.607			0.700			
Bromoform	0.527			0.631			
1,1,2,2-Tetrachloroethane	0.591			0.566			
4-Ethyltoluene	1.158			1.207			
1,3,5-Trimethylbenzene	0.985			1.049			
2-Chlorotoluene	1.215			1.121			
1,2,4-Trimethylbenzene	0.839			0.968			
1,3-Dichlorobenzene	0.834			0.795			
1,4-Dichlorobenzene	0.825			0.770			
1,2-Dichlorobenzene	0.776			0.733			
1,2,4-Trichlorobenzene	_	0.340		0.421			
Hexachlorobutadiene	0.338			0.337			
	_						
	_						
	_						
	_						
-	_						
	-						
-	_						
	_						
	_						
_	-						
-	-						
	_						

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date(s): 11/09/07 11/09/07

Heated Purge: (Y/N) N Calibration Time(s): 0859 1400

LAB FILE ID: RRF15 RRF40 =GBR40V	=GBR15V	J	RRF2	GBR20	V	_	
COMPOUND	RRF15	RRF20	RRF40			RRF	% RSD
Dichlorodifluoromethane	=====	1.589	1.670	======		2.009	20.7
1,2-Dichlorotetrafluoroethan		1.893				2.443	19.3
Chloromethane		0.384				0.468	17.0
Vinyl Chloride		0.604				0.732	13.7
1,3-Butadiene		0.406		l		0.467	11.3
Bromomethane		0.400				1.081	12.2
		0.416		l ———		0.459	8.0
Chloroethane	\	1.031				1.173	9.1
Bromoethene				l		3.406	15.1
Trichlorofluoromethane		2.770		l		2.325	
Freon TF		2.003		l			8.7
1,1-Dichloroethene		0.940				1.055	
Acetone	0.733					0.748	9.3
Isopropyl Alcohol	0.719					0.676	7.8
Carbon Disulfide	l	2.675				2.896	6.1
3-Chloropropene		0.823				0.842	3.3
Methylene Chloride		0.722				0.800	11.6
tert-Butyl Alcohol	1.291					1.216	7.1
Methyl tert-Butyl Ether		1.916				2.182	10.0
trans-1,2-Dichloroethene	l	1.229				1.364	7.1
n-Hexane	l	1.269				1.344	4.4
1,1-Dichloroethane	*	1.554				1.738	7.7
1,2-Dichloroethene (total)		1.163				1.280	6.4
Methyl Ethyl Ketone		0.316				0.341	7.4
cis-1,2-Dichloroethene		1.097	1.169			1.197	5.7
Tetrahydrofuran	0.104	0.093	0.115			0.103	8.1
Chloroform		2.111	2.224			2.478	12.0
1,1,1-Trichloroethane		0.449	0.476			0.535	12.8
Cyclohexane		0.268				0.290	5.4
Carbon Tetrachloride		0.495	0.528			0.583	11.5
2,2,4-Trimethylpentane		0.781				0.820	3.5
Benzene		0.594				0.644	5.3
1,2-Dichloroethane		0.234				0.281	13.7
n-Heptane		0.235				0.253	6.0
Trichloroethene		0.291				0.328	8.9
1,2-Dichloropropane		0.187				0.210	8.4
1,4-Dioxane	0.080	0.066	1			0.075	7.4
Bromodichloromethane	0.000	0.451	0.075			0.514	9.0
promodiciiioromethane		0.451	0.479			0.514	9.0
Company of the second main	l		<u></u>	l			

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date(s): 11/09/07 11/09/07

Heated Purge: (Y/N) N Calibration Time(s): 0859 1400

	=GBR15	V	RRF2) =GBR2(V		
RRF40 =GBR40V							
COMPOUND	RRF15	DDE20	RRF40			RRF	RSD
COMPOUND		RRF20	RRF40		=====	======	====
cis-1,3-Dichloropropene		0.338	0.367			0.370	6.
Methyl Isobutyl Ketone	-	0.215				0.219	5.
Toluene	-	0.496				0.552	6.
trans-1,3-Dichloropropene	-	0.342				0.392	8.
1,1,2-Trichloroethane	-	0.225				0.253	7.
Tetrachloroethene	-	0.457				0.495	4.
Methyl Butyl Ketone	-	0.219				0.221	4.
Dibromochloromethane	-	0.555				0.596	5.
	-	0.478			l ———	0.518	4.
1,2-Dibromoethane Chlorobenzene	-¦	0.712				0.801	8.
Ethyl benzene		0.945				1.182	16.
EthylbenzeneXylene (m,p)	-	0.365				0.442	12.
Xylene (0)	-	0.345		l		0.426	13.
Xylene (o) Xylene (total)	<u>-</u>	0.345				0.426	13.
xylene (total)	_	0.585				0.644	6.
Styrene	-	0.509				0.554	7.
Bromoform_	-					0.550	10.
1,1,2,2-Tetrachloroethane	-	0.462				1.225	10.
4-Ethyltoluene	-	1.036					6.
1,3,5-Trimethylbenzene	-	0.874				0.970	14.
2-Chlorotoluene	_	0.852				1.059	
1,2,4-Trimethylbenzene	_	0.812	1.014			0.920	8.
1,3-Dichlorobenzene	_	0.641				0.769	9.
1,4-Dichlorobenzene	_	0.636				0.754	9.
1,2-Dichlorobenzene	_	0.586				0.712	10.
1,2,4-Trichlorobenzene	_	0.374				0.404	15.
Hexachlorobutadiene	_	0.262	0.346		l	0.316	10.
	_						
		l					
		l					
<u>-</u>							
·							
_							
-	-						
<u>-</u>							
	-						
-	-						

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date: 11/12/07 Time: 1000

Heated Purge: (Y/N) N Init. Calib. Times: 0859 1400

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	2.009	2.142	0.01	6.6	
1,2-Dichlorotetrafluoroethan	2.443	2.506			30.0
Chloromethane	0.468	0.467	0.01		30.0
Vinyl Chloride	0.732	0.717	0.01		30.0
1,3-Butadiene	0.467	0.475	0.01	1.7	
Bromomethane	1.081	1.026		5.1	
Chloroethane	0.459	0.448			30.0
Bromoethene	1.173	1.143	0.01		30.0
Trichlorofluoromethane	3.406	3.502	0.01	2.8	
Freon TF	2.325	2.327	0.01	0.1	
1,1-Dichloroethene	1.055	1.040	0.01	1.4	
Acetone	0.748	0.844	0.01		30.0
Isopropyl Alcohol	0.676	0.703	0.01		30.0
Carbon Disulfide	2.896	2.931	0.01		30.0
3-Chloropropene	0.842	0.798	0.01		30.0
Methylene Chloride	0.800	0.767	0.01	4.1	30.0
tert-Butyl Alcohol	1.216	1.268	0.01		30.0
Methyl tert-Butyl Ether	2.182	2.390	0.01	9.5	30.0
trans-1,2-Dichloroethene	1.364	1.380	0.01		30.0
n-Hexane	1.344	1.347	0.01	0.2	30.0
1,1-Dichloroethane	1.738	1.755	0.1	1.0	30.0
1,2-Dichloroethene (total)	1.280	1.300	0.01	1.6	30.0
Methyl Ethyl Ketone	0.341	0.354	0.01	3.8	30.0
cis-1,2-Dichloroethene	1.197	1.220	0.01	1.9	30.0
Tetrahydrofuran	0.103	0.108	0.01	4.8	30.0
Chloroform	2.478	2.562	0.01	3.4	30.0
1,1,1-Trichloroethane	0.535	0.560	0.01	4.7	30.0
Cyclohexane	0.290	0.290	0.01	0.0	30.0
Carbon Tetrachloride	0.583	0.610	0.01	4.6	30.0
2,2,4-Trimethylpentane	0.820	0.817	0.01	0.4	30.0
Benzene	0.644	0.635	0.01	1.4	30.0
1,2-Dichloroethane	0.281	0.294	0.01	4.6	30.0
n-Heptane	0.253	0.254	0.01		30.0
Trichloroethene	0.328	0.335	0.01	2.1	30.0
1,2-Dichloropropane	0.210	0.206	0.01	1.9	30.0
1,4-Dioxane	0.075	0.080	0.01	6.7	30.0
Bromodichloromethane	0.514	0.549	0.01	6.8	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: G Calibration Date: 11/12/07 Time: 1000

Heated Purge: (Y/N) N Init. Calib. Times: 0859 1400

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
cis-1,3-Dichloropropene	0.370	0.383	0.01	3.5	1
Methyl Isobutyl Ketone	0.219	0.214	0.01	ı	30.0
Toluene	0.552	0.551	0.01	ı	30.0
trans-1,3-Dichloropropene	0.392	0.418	0.01	ı	30.0
1,1,2-Trichloroethane	0.253	0.249	0.01		30.0
Tetrachloroethene	0.495	0.484	0.01		
Methyl Butyl Ketone	0.221	0.216	0.01	2.3	30.0
Dibromochloromethane	0.596	0.630	0.01		
1,2-Dibromoethane	0.518	0.532	0.01	2.7	30.0
Chlorobenzene	0.801	0.793	0.3	1.0	30.0
Ethylbenzene	1.182	1.171	0.01		
Xylene (m,p)	0.442	0.457	0.01		30.0
Xylene (o)	0.426	0.441	0.01		
Xylene (total)	0.426	0.441	0.01		30.0
Styrene	0.644	0.710			30.0
Bromoform	0.554	0.605	0.01		30.0
1,1,2,2-Tetrachloroethane	0.550	0.583	0.01		30.0
4-Ethyltoluene	1.225	1.448	0.01		30.0
1,3,5-Trimethylbenzene	0.970	1.042	0.01		30.0
2-Chlorotoluene	1.059	1.090	0.01		30.0
1,2,4-Trimethylbenzene	0.920	1.058	0.01		30.0
1,3-Dichlorobenzene	0.769	0.790	0.01		30.0
1,4-Dichlorobenzene	0.754	0.784	0.01		30.0
1,2-Dichlorobenzene	0.712	0.732	0.01		30.0
1,2,4-Trichlorobenzene	0.404	0.394	0.01		30.0
Hexachlorobutadiene	0.316	0.323	0.01	2.2	30.0

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Lab File ID (Standard): GBR40V Date Analyzed: 11/09/07

Instrument ID: G Time Analyzed: 1400

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	=======	======	========	= =====
	12 HOUR STD	809540	8.85	4250448	9.63	3849210	11.94
	UPPER LIMIT	1133356	9.18	5950627	9.96	5388894	12.27
	LOWER LIMIT	485724	8.52	2550269	9.30	2309526	11.61
	=========	========	======	========	======	=======	=====
	CLIENT						
	SAMPLE NO.						
01	GA110907LCS	763607	8.84	4007306		2061152	11 04
02	GA110907LCS	731560	8.84	4087286 3902840	9.63 9.63	3861153 3688090	11.94 11.93
03	MBLK110907GA	705877	8.84	3786292	9.63	3349370	11.93
04	HB-A1	614265	8.84	3356616	9.63	3370592	11.93
05	HB-A2	724030	8.84	3887233	9.62	3621813	11.93
06	HB-A3	709074	8.84	3822150	9.62	3547563	11.93
07	SG52-1	679033	8.84	3659808	9.63	3380267	11.93
80	SG82-1	629175	8.84	3444317	9.63	3249070	11.93
09	SG82-2	685727	8.84	3689674	9.63	3441247	11.93
10	SG82-3	606623	8.84	3239694	9.62	3139683	11.93
11							
12							
13 14							
15							
16			.——				
17							
18							
19							
20							
21							
22							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area
AREA LOWER LIMIT = - 40% of internal standard area
RT UPPER LIMIT = + 0.33 minutes of internal standard RT
RT LOWER LIMIT = - 0.33 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Lab File ID (Standard): GBR10AV Date Analyzed: 11/12/07

Instrument ID: G Time Analyzed: 1000

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

	IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR ST		8.84 9.17	3214131 4499783	9.62 9.95	3178320 4449648	11.93 12.26
LOWER LIMI		8.51	1928479	9.29	1906992	11.60
CLIENT SAMPLE NO.	=========		========	======	=======	======
01 GA111207LCS 02 GA111207LCSI 03 MBLK111207G 04 SG82-4 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20		8.85 8.84 8.84 8.84	3694275 3733710 3593193 3248349	9.63 9.63 9.62 9.63	3500826 3526287 3177778 3076368	11.94 11.93 11.93 11.93
21 22						

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area

RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Sample Data Summary – ASTM D1946

ECOSTR SAMPLE NO.

			HB-A1
Lab Name: TESTAMERIO	CA BURLINGTON	Contract: 27000	
Lab Code: STLV	Case No.: 27000	SAS No.: SDG	No.: NY122839
Matrix: (soil/water)	AIR	Lab Sample ID	: 731067
Sample wt/vol:	(g/mL) ML	Lab File ID:	15NOV071027-R011
Level: (low/med)	LOW	Date Received	: 11/03/07
% Moisture: not dec.	·	Date Analyzed	: 11/15/07
GC Column: CTR-1	ID: 6.35 (mm)	Dilution Facto	or: 1.3
Soil Extract Volume:	:(uL)	Soil Aliquot V	Volume:(uL
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) %.V,	_
7440-59-7	Helium		2.3 U

ECOSTR SAMPLE NO.

HB-A2 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Lab Sample ID: 731068 Matrix: (soil/water) AIR Sample wt/vol: ____ (g/mL) ML Lab File ID: 15NOV071312-R011 Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.4 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V 7440-59-7-----Helium 2.3 U

ECOSTR SAMPLE NO.

HB-A3 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Matrix: (soil/water) AIR Lab Sample ID: 731069 (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071312-R021 Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. ____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) %.V/V COMPOUND 7440-59-7-----Helium 2.0 U

ECOSTR SAMPLE NO.

SG52-1 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 SDG No.: NY122839 Lab Code: STLV Case No.: 27000 SAS No.: Matrix: (soil/water) AIR Lab Sample ID: 731070 Lab File ID: 15NOV071027-R041 Sample wt/vol: (g/mL) ML LOW Level: (low/med) Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.3 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V 7440-59-7-----Helium 2.3 U

ECOSTR SAMPLE NO.

SG82-1 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Matrix: (soil/water) AIR Lab Sample ID: 731071 ____ (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071027-R051 Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) %.V/V 7440-59-7-----Helium 2.1 U

ECOSTR SAMPLE NO.

SG82-2 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Lab Sample ID: 731072 Matrix: (soil/water) AIR ____ (g/mL) ML Lab File ID: 15NOV071027-R061 Sample wt/vol: Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: (uq/L or uq/Kq) %.V/V CAS NO. COMPOUND 7440-59-7-----Helium 2.1 U

ECOSTR SAMPLE NO.

SG82-3 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Matrix: (soil/water) AIR Lab Sample ID: 731073 (g/mL) ML Lab File ID: 15NOV071027-R071 Sample wt/vol: Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.5 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. (uq/L or uq/Kq) %.V/V COMPOUND 7440-59-7-----Helium 2.5 U

ECOSTR SAMPLE NO.

SG82-4 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Matrix: (soil/water) AIR Lab Sample ID: 731074 ____ (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071027-R081 Level: (low/med) LOW Date Received: 11/03/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V 7440-59-7-----Helium 2.1 U

7440-59-7-----Helium

CLIENT SAMPLE NO.

1.7 U

MBLKC111507A Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839 Matrix: (soil/water) AIR Lab Sample ID: MBLKC111507A (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071010-R021 LOW Level: (low/med) Date Received: % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V

CLIENT SAMPLE NO.

C111507ALCS

Lab Name: TESTAMERIC	A BURLINGTON	Contract: 27000)		
Lab Code: STLV	Case No.: 27000	SAS No.:	SDG 1	No.: NY1228	39
Matrix: (soil/water)	AIR	Lab Sa	ample ID:	C111507ALC	S
Sample wt/vol:	(g/mL) ML	Lab Fi	le ID:	15NOV07101	.0-R011
Level: (low/med)	LOW	Date R	Received:		
% Moisture: not dec.		Date A	malyzed:	11/15/07	
GC Column: CTR-1	ID: 6.35 (mm)	Diluti	on Factor	r: 1.0	
Soil Extract Volume:	(uL)	Soil A	liquot Vo	olume:	(uL
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/		V Q	
7440-59-7	Helium			8.7	-

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Matrix Spike - Sample No.: C111507ALCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(%.v/v)	(ug/L)	(%.v/v)	REC #	REC.
=======================================	=======	=========	==========	======	=====
Helium	8.3		8.7	105	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits

Spike Recovery: 0 out of 1 outside limits

COMMENTS:				
			<u>=</u>	

MBLKC111507A

SDG No.: NY122839

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

Lab File ID: 15NOV071010-R021 Lab Sample ID: MBLKC111507A

Date Analyzed: 11/15/07 Time Analyzed: 1015

GC Column: CTR-1 ID: 6.35 (mm) Heated Purge: (Y/N) N

Instrument ID: 2866 2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

1			THE PARTY OF THE P
			TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
========	==========	=========	=======
			1011
	1	15NOV071027-	1027
SG52-1	731070	15NOV071027-	1041
SG82-1	731071	15NOV071027-	1045
SG82-2	731072	15NOV071027-	1049
SG82-3	731073	15NOV071027-	1054
SG82-4	731074	15NOV071027-	1058
HB-A2	731068	15NOV071312-	1315
HB-A3	731069	15NOV071312-	1319
	_		
<u> </u>			
	-		
	C111507ALCS HB-A1 SG52-1 SG82-1 SG82-2 SG82-3 SG82-4 HB-A2	C111507ALCS C111507ALCS HB-A1 731067 SG52-1 731070 SG82-1 731071 SG82-2 731072 SG82-3 731073 SG82-4 731074 HB-A2 731068	SAMPLE NO. SAMPLE ID FILE ID ====================================

COMMENTS:			
_	_		

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: 2866_2 Calibration Date(s): 11/06/07 11/06/07

Column: CTR-1 ID: 6.35 (mm) Calibration Time(s): 1035 1055

LAB FILE ID: RF1.7: 06NOV071027RF5: 06NOV071027-RRF8.3: 06NOV071027

RF12.5: 06NOV07102RF16.7: 06NOV07102

COMPOUND	RF1.7	RF5	RF8.3	RF12.5	RF16.7
Helium	138217.06	158415.40	160131.08	156651.20	160714.43

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: 2866_2 Calibration Date(s): 11/06/07 11/06/07

Column: CTR-1 ID: 6.35 (mm) Calibration Time(s): 1035 1055

COMPOUND	CURVE	COEFFICENT A1	%RSD OR R^2
Helium	AVRG	154825.835	6.1

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: 2866_2 Calibration Date: 11/15/07 Time: 0958

Lab File ID: 15NOV070957-R0 Init. Calib. Date(s): 11/06/07 11/06/07

Heated Purge: (Y/N) N Init. Calib. Times: 1035 1055

GC Column: CTR-1 ID: 6.35 (mm)

COMPOUND	RRF	RRF8.3	MIN RRF	%D	MAX %D
Helium	154825.83	153427.83		0.9	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

Instrument ID: 2866_2 Calibration Date: 11/15/07 Time: 1334

Lab File ID: 15NOV071333-R0 Init. Calib. Date(s): 11/06/07 11/06/07

Heated Purge: (Y/N) N Init. Calib. Times: 1035 1055

GC Column: CTR-1 ID: 6.35 (mm)

COMPOUND	RRF	RRF8.3	MIN RRF	%D	MAX %D
Helium	154825.83	157110.84	=======	1.5	30.0

FORM 8 VOLATILE ANALYTICAL SEQUENCE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122839

GC Column: CTR-1 ID: 6.35 (mm) Init. Calib. Date(s): 11/06/07 11/06/07

Instrument ID: 2866 2

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM I	NITIAL CAL	BRATION				
	CLIENT	LAB	DATE	TIME				_
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT	#	RT	#
01	CAL1	======= CAL1	11/06/07	1035	=====	==	=====	==
02	CAL2	CAL2	11/06/07	1043				
03	CAL3	CAL3	11/06/07	1047		[
04	CAL4	CAL4	11/06/07	1051				
05	CAL5	CAL5	11/06/07	1055		l.		
06	CCV	CCV	11/15/07	0958		l.		
07	C111507ALCS	C111507ALCS	11/15/07	1011		—I.		
80	MBLKC111507A	MBLKC111507A	11/15/07	1015		— -		
	HB-A1	731067	11/15/07 11/15/07	1027 1041		— ·		
10 11	SG52-1 SG82-1	731070 731071	11/15/07	1041		-		
12	SG82-1 SG82-2	731071	11/15/07	1049		— ·		
13	SG82-2 SG82-3	731072	11/15/07	1054		— ·		
14	SG82-4	731073	11/15/07	1058		-		
	HB-A2	731068	11/15/07	1315		— ·		
	HB-A3	731069	11/15/07	1319		— ·		
17	CCV	CCV	11/15/07	1334		— I		
18						— I.		
19	_							
20								
21						I.		
22						l.		
23						—I.		
24						l.		
25						-		—
26						-		
27						— -		
28 29						-		
30						-		—
31						-		
32						-		
32						I.		

QC LIMITS

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.

TestAmerica South Burlington, VT

Sample Data Summary Package

SDG: NY122879

November 19, 2007

Mr. Scott Spitzer Ecosystems Strategies, Inc. 24 Davis Ave Poughkeepsie, NY 12603

Re: Laboratory Project No. 27000 Case: 27000; SDG: NY122879

Dear Mr. Spitzer:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on November 7th, 2007. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client	Sample	Sample
	Sample ID	<u>Date</u>	<u>Matrix</u>
	Received: 11/07/07 ETR No:	122879	
731289	SG52-2	11/01/07	AIR
731290	SG52-3	11/02/07	AIR
731291	SG52-4	11/02/07	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organic analyses for the samples referenced above were accomplished at dilution based on preliminary screening to ensure quantitation of all target constituents within the calibrated range.

The analysis of the blank spike samples associated with this delivery group yielded acceptable recoveries for all target analytes. However, select analytes exhibited Relative Percent Differences (RPD) that exceeded control criteria in the inter-analysis comparison.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

Enclosure

CLIENT SAMPLE NO.

SG52-2

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731289

Date Analyzed:

11/12/07

Date Received: 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10	U	10	49	U	49
1,2-Dichlorotetrafluoroethane	76-14-2	4.0	U	4.0	28	U	28
Chloromethane	74-87-3	10	U	10	21	U	21
Vinyl Chloride	75-01-4	4.0	U	4.0	10	U	10
1,3-Butadiene	106-99-0	10	U	10	22	U	22
Bromomethane	74-83-9	4.0	U	4.0	16	U	16
Chloroethane	75-00-3	10	U	10	26	U	26
Bromoethene	593-60-2	4.0	U	4.0	17	U	17
Trichlorofluoromethane	75-69-4	4.0	U	4.0	22	U	22
Freon TF	76-13-1	4.0	U	4.0	31	U	31
1,1-Dichloroethene	75-35-4	19		4.0	75		16
Acetone	67-64-1	100	U	100	240	U	240
Isopropyl Alcohol	67-63-0	100	U	100	250	U	250
Carbon Disulfide	75-15-0	10	U	10	31	U	31
3-Chloropropene	107-05-1	10	U	10	31	U	31
Methylene Chloride	75-09-2	10	U	10	35	U	35
tert-Butyl Alcohol	75-65-0	100	U	100	300	U	300
Methyl tert-Butyl Ether	1634-04-4	10	U	10	36	U	36
trans-1,2-Dichloroethene	156-60-5	4.0	U	4.0	16	U	16
n-Hexane	110-54-3	55		10	190		35
1,1-Dichloroethane	75-34-3	4.0	U	4.0	16	U	16
1,2-Dichloroethene (total)	540-59-0	7.0		4.0	28		16
Methyl Ethyl Ketone	78-93-3	10	U	10	29	U	29
cis-1,2-Dichloroethene	156-59-2	7,0		4.0	28	***********	16
Tetrahydrofuran	109-99-9	100	U	100	290	U	290
Chloroform	67-66-3	4.0	U	4.0	20	U	20
1,1,1-Trichloroethane	71-55-6	49		4.0	270		22
Cyclohexane	110-82-7	22		4.0	76		14
Carbon Tetrachloride	56-23-5	4.0	U	4.0	25	U	25
2,2,4-Trimethylpentane	540-84-1	36		4.0	170		19
Benzene	71-43-2	18		4.0	58		13
1,2-Dichloroethane	107-06-2	4.0	U	4.0	16	U	16
n-Heptane	142-82-5	20		4.0	82		16

CLIENT SAMPLE NO.

SG52-2

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731289

Date Analyzed: 11/12/07

Date Received: 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	680		4.0	3700		21
1,2-Dichloropropane	78-87-5	4.0	U	4.0	18	U	18
1,4-Dioxane	123-91-1	100	U	100	360	U	360
Bromodichloromethane	75-27-4	4.0	U	4.0	27	U	27
cis-1,3-Dichloropropene	10061-01-5	4.0	U	4.0	18	U	18
Methyl Isobutyl Ketone	108-10-1	10	U	10	41	U	41
Toluene	108-88-3	64		4.0	240		15
trans-1,3-Dichloropropene	10061-02-6	4.0	U	4.0	18	U	18
1,1,2-Trichloroethane	79-00-5	4.0	U	4.0	22	U	22
Tetrachloroethene	127-18-4	4.0	U	4.0	27	U	27
Methyl Butyl Ketone	591-78-6	10	U	10	41	U	41
Dibromochloromethane	124-48-1	4.0	U	4.0	34	U	34
1,2-Dibromoethane	106-93-4	4.0	U	4.0	31	U	31
Chlorobenzene	108-90-7	4.0	U	4.0	18	U	18
Ethylbenzene	100-41-4	7.8		4.0	34		17
Xylene (m,p)	1330-20-7	24	***************************************	10	100	************************	43
Xylene (o)	95-47-6	7.5		4.0	33		17
Xylene (total)	1330-20-7	31		4.0	130	1	17
Styrene	100-42-5	4.0	U	4.0	17	U	17
Bromoform	75-25-2	4.0	U	4.0	41	U	41
1,1,2,2-Tetrachloroethane	79-34-5	4.0	U	4.0	27	U	27
4-Ethyltoluene	622-96-8	4.0	U	4.0	20	U	20
1,3,5-Trimethylbenzene	108-67-8	4.0	U	4.0	20	U	20
2-Chlorotoluene	95-49-8	4.0	U	4.0	21	U	21
1,2,4-Trimethylbenzene	95-63-6	4.0	U	4.0	20	U	20
1,3-Dichlorobenzene	541-73-1	4.0	U	4.0	24	U	24
1,4-Dichlorobenzene	106-46-7	4.0	U	4.0	24	U	24
1,2-Dichlorobenzene	95-50-1	4.0	U	4.0	24	U	24
1,2,4-Trichlorobenzene	120-82-1	10	U	10	74	U	74
Hexachlorobutadiene	87-68-3	4.0	U	4.0	43	U	43

Printed: 11/19/07 2:04:55 PM Page 2 of 2

CLIENT SAMPLE NO.

SG52-3

Lab Sample No.: 731290

Lab Name: TAL Burlington

SDG Number: NY122879

Date Analyzed: 11/12/07 Case Number:

Date Received: Sample Matrix: AIR 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	20	U	20	99	U	99
1,2-Dichlorotetrafluoroethane	76-14-2	8.0	U	8.0	56	U	56
Chloromethane	74-87-3	20	U	20	41	U	41
Vinyl Chloride	75-01-4	8.0	U	8.0	20	U	20
1,3-Butadiene	106-99-0	20	U	20	44	U	44
Bromomethane	74-83-9	8.0	U	8.0	31	U	31
Chloroethane	75-00-3	20	U	20	53	U	53
Bromoethene	593-60-2	8.0	U	8.0	35	U	35
Trichlorofluoromethane	75-69-4	8.0	U	8.0	45	U	45
Freon TF	76-13-1	9.2		8.0	71	1	61
1,1-Dichloroethene	75-35-4	15		8.0	59		32
Acetone	67-64-1	670		200	1600		480
Isopropyl Alcohol	67-63-0	200	U	200	490	U	490
Carbon Disulfide	75-15-0	20	U	20	62	U	62
3-Chloropropene	107-05-1	20	U	20	63	U	63
Methylene Chloride	75-09-2	20	U	20	69	U	69
tert-Butyl Alcohol	75-65-0	200	U	200	610	U	610
Methyl tert-Butyl Ether	1634-04-4	20	U	20	72	U	72
trans-1,2-Dichloroethene	156-60-5	8.0	U	8.0	32	U	32
n-Hexane	110-54-3	25		20	88		70
1,1-Dichloroethane	75-34-3	8.0	U	8.0	32	U	32
1,2-Dichloroethene (total)	540-59-0	8.1		8.0	32		32
Methyl Ethyl Ketone	78-93-3	31		20	91		59
cis-1,2-Dichloroethene	156-59-2	8.1		8.0	32		32
Tetrahydrofuran	109-99-9	200	U	200	590	U	590
Chloroform	67-66-3	11	1	8.0	54		39
1,1,1-Trichloroethane	71-55-6	100		8.0	550		44
Cyclohexane	110-82-7	28		8.0	96		28
Carbon Tetrachloride	56-23-5	8.0	U	8.0	50	U	50
2,2,4-Trimethylpentane	540-84-1	77		8.0	360		37
Benzene	71-43-2	24		8.0	77		26
1,2-Dichloroethane	107-06-2	8.0	U	8.0	32	U	32
n-Heptane	142-82-5	46	[8.0	190		33

Printed: 11/19/07 2:04:56 PM Page 1 of 2

CLIENT SAMPLE NO.

SG52-3

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731290

Date Analyzed: 11/12/07

Date Received: 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	840		8.0	4500		43
1,2-Dichloropropane	78-87-5	8.0	U	8.0	37	υ	37
1,4-Dioxane	123-91-1	200	υ	200	720	U	720
Bromodichloromethane	75-27-4	8.0	U	8.0	54	U	54
cis-1,3-Dichloropropene	10061-01-5	8.0	υ	8.0	36	U	36
Methyl Isobutyl Ketone	108-10-1	94		20	390		82
Toluene	108-88-3	560		8.0	2100		30
trans-1,3-Dichloropropene	10061-02-6	8.0	υ	8.0	36	U	36
1,1,2-Trichloroethane	79-00-5	8.0	U	8.0	44	υ	44
Tetrachloroethene	127-18-4	8.0	U	8.0	54	υ	54
Methyl Butyl Ketone	591-78-6	20	U	20	82	U	82
Dibromochloromethane	124-48-1	8.0	U	8.0	68	U	68
1,2-Dibromoethane	106-93-4	8.0	U	8.0	61	U	61
Chlorobenzene	108-90-7	8.0	U	8.0	37	υ	37
Ethylbenzene	100-41-4	420		8.0	1800		35
Xylene (m,p)	1330-20-7	1400		20	6100		87
Xylene (o)	95-47-6	570		8.0	2500		35
Xylene (total)	1330-20-7	2000		8.0	8700		35
Styrene	100-42-5	8.0	U	8.0	34	U	34
Bromoform	75-25-2	8.0	U	8.0	83	U	83
1,1,2,2-Tetrachloroethane	79-34-5	8.0	υ	8.0	55	U	55
4-Ethyltoluene	622-96-8	710		8.0	3500		39
1,3,5-Trimethylbenzene	108-67-8	210		8.0	1000		39
2-Chlorotoluene	95-49-8	8.0	U	8.0	41	U	41
1,2,4-Trimethylbenzene	95-63-6	790	1	8.0	3900		39
1,3-Dichlorobenzene	541-73-1	8.0	U	8.0	48	U	48
1,4-Dichlorobenzene	106-46-7	8.0	U	8.0	48	U	48
1,2-Dichlorobenzene	95-50-1	8.0	U	8.0	48	U	48
1,2,4-Trichlorobenzene	120-82-1	20	U	20	150	U	150
Hexachlorobutadiene	87-68-3	8.0	υ	8.0	85	U	85

CLIENT SAMPLE NO.

SG52-4

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731291

Date Analyzed: 11/12/07

Date Received: 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	20	U	20	99	U	99
1,2-Dichlorotetrafluoroethane	76-14-2	8.0	U	8.0	56	U	56
Chloromethane	74-87-3	20	U	20	41	U	41
Vinyl Chloride	75-01-4	8.0	U	8.0	20	U	20
1,3-Butadiene	106-99-0	20	U	20	44	U	44
Bromomethane	74-83-9	8.0	U	8.0	31	U	31
Chloroethane	75-00-3	20	U	20	53	U	53
Bromoethene	593-60-2	8.0	U	8.0	35	U	35
Trichlorofluoromethane	75-69-4	10		8.0	56		45
Freon TF	76-13-1	34	1	8.0	260	1	61
1,1-Dichloroethene	75-35-4	87		8.0	340		32
Acetone	67-64-1	210		200	500	***************************************	480
Isopropyl Alcohol	67-63-0	200	U	200	490	U	490
Carbon Disulfide	75-15-0	20	U	20	62	U	62
3-Chloropropene	107-05-1	20	U	20	63	U	63
Methylene Chloride	75-09-2	20	U	20	69	U	69
tert-Butyl Alcohol	75-65-0	200	U	200	610	U	610
Methyl tert-Butyl Ether	1634-04-4	20	U	20	72	U	72
trans-1,2-Dichloroethene	156-60-5	8.0	U	8.0	32	υ	32
n-Hexane	110-54-3	200		20	700		70
1,1-Dichloroethane	75-34-3	8.0	U	8.0	32	U	32
1,2-Dichloroethene (total)	540-59-0	8.0	U	8.0	32	U	32
Methyl Ethyl Ketone	78-93-3	20	U	20	59	U	59
cis-1,2-Dichloroethene	156-59-2	8.0	U	8.0	32	U	32
Tetrahydrofuran	109-99-9	200	U	200	590	U	590
Chloroform	67-66-3	8.0	U	8.0	39	U	39
1,1,1-Trichloroethane	71-55-6	290		8.0	1600		44
Cyclohexane	110-82-7	130		8.0	450		28
Carbon Tetrachloride	56-23-5	8.0	U	8.0	50	U	50
2,2,4-Trimethylpentane	540-84-1	310		8.0	1400		37
Benzene	71-43-2	56		8.0	180		26
1,2-Dichloroethane	107-06-2	8.0	U	8.0	32	U	32
n-Heptane	142-82-5	140		8.0	570	••••••	33

Printed: 11/19/07 2:04:57 PM Page 1 of 2

CLIENT SAMPLE NO.

SG52-4

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: 731291

Date Analyzed: 11/12/07

Date Received: 11/07/07

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	1000		8.0	5400		43
1,2-Dichloropropane	78-87-5	8.0	U	8.0	37	U	37
1,4-Dioxane	123-91-1	200	U	200	720	U	720
Bromodichloromethane	75-27-4	8.0	U	8.0	54	U	54
cis-1,3-Dichloropropene	10061-01-5	8.0	U	8.0	36	U	36
Methyl Isobutyl Ketone	108-10-1	20	U	20	82	U	82
Toluene	108-88-3	740		8.0	2800		30
trans-1,3-Dichloropropene	10061-02-6	8.0	U	8.0	36	U	36
1,1,2-Trichloroethane	79-00-5	8.0	U	8.0	44	U	44
Tetrachloroethene	127-18-4	8.0	U	8.0	54	U	54
Methyl Butyl Ketone	591-78-6	20	U	20	82	U	82
Dibromochloromethane	124-48-1	8.0	U	8.0	68	U	68
1,2-Dibromoethane	106-93-4	8.0	U	8.0	61	U	61
Chlorobenzene	108-90-7	8.0	U	8.0	37	U	37
Ethylbenzene	100-41-4	320		8.0	1400		35
Xylene (m,p)	1330-20-7	950		20	4100		87
Xylene (o)	95-47-6	360		8.0	1600		35
Xylene (total)	1330-20-7	1300		8.0	5600		35
Styrene	100-42-5	8.0	U	8.0	34	U	34
Bromoform	75-25-2	8.0	U	8.0	83	U	83
1,1,2,2-Tetrachloroethane	79-34-5	8.0	U	8.0	55	U	55
4-Ethyltoluene	622-96-8	330		8.0	1600		39
1,3,5-Trimethylbenzene	108-67-8	95		8.0	470		39
2-Chlorotoluene	95-49-8	8.0	U	8.0	41	U	41
1,2,4-Trimethylbenzene	95-63-6	310		8.0	1500		39
1,3-Dichlorobenzene	541-73-1	8.0	U	8.0	48	U	48
1,4-Dichlorobenzene	106-46-7	8.0	U	8.0	48	U	48
1,2-Dichlorobenzene	95-50-1	8.0	υ	8.0	48	U	48
1,2,4-Trichlorobenzene	120-82-1	20	U	20	150	U	150
Hexachlorobutadiene	87-68-3	8.0	υ	8.0	85	U	85

CLIENT SAMPLE NO.

CA111207LCS

Lab Sample No.: CA111207

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Date Analyzed: 11/12/07

Sample Matrix: AIR Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	10		0.20	70		1.4
Chloromethane	74-87-3	9.4		0.50	19		1.0
Vinyl Chloride	75-01-4	9.7		0.20	25		0.51
1,3-Butadiene	106-99-0	11		0.50	24		1.1
Bromomethane	74-83-9	9.6		0.20	37		0.78
Chloroethane	75-00-3	9.5		0.50	25		1.3
Bromoethene	593-60-2	9.3		0.20	41		0.87
Trichlorofluoromethane	75-69-4	9.3		0.20	52		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
Acetone	67-64-1	9.8		5.0	23		12
Isopropyl Alcohol	67-63-0	9.3		5.0	23		12
Carbon Disulfide	75-15-0	10		0.50	31		1.6
3-Chloropropene	107-05-1	9.7		0.50	30		1.6
Methylene Chloride	75-09-2	9.9		0.50	34		1.7
tert-Butyl Alcohol	75-65-0	9.5		5.0	29		15
Methyl tert-Butyl Ether	1634-04-4	11		0.50	40	1	1.8
trans-1,2-Dichloroethene	156-60-5	9.8		0.20	39		0.79
n-Hexane	110-54-3	9.9		0.50	35		1.8
1,1-Dichloroethane	75-34-3	9.8		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	20		0.20	79		0.79
Methyl Ethyl Ketone	78-93-3	10		0.50	29		1.5
cis-1,2-Dichloroethene	156-59-2	10	***************************************	0.20	40	***************************************	0.79
Tetrahydrofuran	109-99-9	9.5		5.0	28		15
Chloroform	67-66-3	9.9		0.20	48		0.98
1,1,1-Trichloroethane	71-55-6	9.7		0.20	53		1.1
Cyclohexane	110-82-7	10	·	0.20	34		0.69
Carbon Tetrachloride	56-23-5	10		0.20	63		1.3
2,2,4-Trimethylpentane	540-84-1	9.7		0.20	45		0.93
Benzene	71-43-2	9.7		0.20	31		0.64
1,2-Dichloroethane	107-06-2	9.5		0.20	38		0.81
n-Heptane	142-82-5	9.3		0.20	38	[0.82

CLIENT SAMPLE NO.

CA111207LCS

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: CA111207

Date Analyzed: 11/12/07

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	9.7		0.20	52		1.1
1,2-Dichloropropane	78-87-5	9.5		0.20	44		0.92
1,4-Dioxane	123-91-1	8.5		5.0	31		18
Bromodichloromethane	75-27-4	10		0.20	67		1.3
cis-1,3-Dichloropropene	10061-01-5	9.8		0.20	44		0.91
Methyl Isobutyl Ketone	108-10-1	9.5		0.50	39		2.0
Toluene	108-88-3	9.9		0.20	37		0.75
trans-1,3-Dichloropropene	10061-02-6	10		0.20	45		0.91
1,1,2-Trichloroethane	79-00-5	9.4		0.20	51		1.1
Tetrachloroethene	127-18-4	10		0.20	68		1.4
Methyl Butyl Ketone	591-78-6	9.8		0.50	40		2.0
Dibromochloromethane	124-48-1	11		0.20	94	*****************************	1.7
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Chlorobenzene	108-90-7	9.6		0.20	44		0.92
Ethylbenzene	100-41-4	9.8		0.20	43		0.87
Xylene (m,p)	1330-20-7	20		0.50	87		2.2
Xylene (o)	95-47-6	9.5		0.20	41		0.87
Xylene (total)	1330-20-7	29	,	0.20	130		0.87
Styrene	100-42-5	9.8		0.20	42		0.85
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	9.1		0.20	62		1.4
4-Ethyltoluene	622-96-8	10		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	9.3		0.20	46		0.98
2-Chlorotoluene	95-49-8	9.5		0.20	49		1.0
1,2,4-Trimethylbenzene	95-63-6	9.5		0.20	47		0.98
1,3-Dichlorobenzene	541-73-1	9.0		0.20	54		1.2
1,4-Dichlorobenzene	106-46-7	8.8		0.20	53		1.2
1,2-Dichlorobenzene	95-50-1	8.7		0.20	52		1.2
1,2,4-Trichlorobenzene	120-82-1	8.2		0.50	61		3.7
Hexachlorobutadiene	87-68-3	8.2		0.20	87		2.1

CLIENT SAMPLE NO.

CA111207LCSD

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: CA111207

Date Analyzed: 11/12/07

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9,9		0.20	69		1.4
Chloromethane	74-87-3	9.8		0.50	20		1.0
Vinyl Chloride	75-01-4	9.9		0.20	25		0.51
1,3-Butadiene	106-99-0	11		0.50	24		1.1
Bromomethane	74-83-9	9.7		0.20	38		0.78
Chloroethane	75-00-3	9.6		0.50	25		1.3
Bromoethene	593-60-2	9.4	• • • • • • • • • • • • • • • • • • • •	0.20	41	***************************************	0.87
Trichlorofluoromethane	75-69-4	9.2		0.20	52		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11	***************************************	0.20	44		0.79
Acetone	67-64-1	8.3		5.0	20		12
Isopropyl Alcohol	67-63-0	9.9		5.0	24		12
Carbon Disulfide	75-15-0	10		0.50	31		1.6
3-Chloropropene	107-05-1	9.7		0.50	30		1.6
Methylene Chloride	75-09-2	9.9		0.50	34	***********	1.7
tert-Butyl Alcohol	75-65-0	9.9		5.0	30		15
Methyl tert-Butyl Ether	1634-04-4	9.4		0.50	34		1.8
trans-1,2-Dichloroethene	156-60-5	9.8		0.20	39		0.79
n-Hexane	110-54-3	9.9		0.50	35		1.8
1,1-Dichloroethane	75-34-3	9.8		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	20		0.20	79		0.79
Methyl Ethyl Ketone	78-93-3	9.9		0.50	29		1.5
cis-1,2-Dichloroethene	156-59-2	10	***************************************	0.20	40		0.79
Tetrahydrofuran	109-99-9	10		5.0	29		15
Chloroform	67-66-3	9.8		0.20	48	· · · · · · · · · · · · · · · · · · ·	0.98
1,1,1-Trichloroethane	71-55-6	11		0.20	60		1.1
Cyclohexane	110-82-7	11		0.20	38	, e	0.69
Carbon Tetrachloride	56-23-5	11		0.20	69		1.3
2,2,4-Trimethylpentane	540-84-1	11		0.20	51		0,93
3enzene	71-43-2	10		0.20	32		0.64
I,2-Dichloroethane	107-06-2	10		0.20	40		0.81
n-Heptane	142-82-5	10		0.20	41		0.82

CLIENT SAMPLE NO.

CA111207LCSD

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Lab Sample No.: CA111207

Date Analyzed:

11/12/07

Sample Matrix: AIR Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	11		0.20	59		1.1
1,2-Dichloropropane	78-87-5	9.6		0.20	44		0.92
1,4-Dioxane	123-91-1	11		5.0	40		18
Bromodichloromethane	75-27-4	11		0.20	74		1.3
cis-1,3-Dichloropropene	10061-01-5	9.9		0.20	45		0.91
Methyl Isobutyl Ketone	108-10-1	12		0.50	49		2.0
Toluene	108-88-3	10		0.20	38		0.75
trans-1,3-Dichloropropene	10061-02-6	10	**************	0.20	45		0.91
1,1,2-Trichloroethane	79-00-5	10		0.20	55		1.1
Tetrachloroethene	127-18-4	11		0.20	75		1.4
Methyl Butyl Ketone	591-78-6	13		0.50	53		2.0
Dibromochloromethane	124-48-1	12		0.20	100		1.7
1,2-Dibromoethane	106-93-4	11		0.20	85	1	1.5
Chlorobenzene	108-90-7	10		0.20	46	1	0.92
Ethylbenzene	100-41-4	10		0.20	43		0.87
Xylene (m,p)	1330-20-7	21	******************	0.50	91		2.2
Xylene (o)	95-47-6	10		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130	1	0.87
Styrene	100-42-5	11		0.20	47		0.85
Bromoform	75-25-2	12		0.20	120		2.1
1,1,2,2-Tetrachloroethane	79-34-5	10		0.20	69		1.4
4-Ethyltoluene	622-96-8	11		0.20	54		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0.20	49		0.98
2-Chlorotoluene	95-49-8	10	**********	0.20	52		1.0
1,2,4-Trimethylbenzene	95-63-6	11		0.20	54		0.98
1,3-Dichlorobenzene	541-73-1	10		0.20	60	1	1.2
1,4-Dichlorobenzene	106-46-7	10		0.20	60		1.2
1,2-Dichlorobenzene	95-50-1	9.8		0.20	59		1.2
1,2,4-Trichlorobenzene	120-82-1	11		0.50	82		3.7
Hexachlorobutadiene	87-68-3	9.7		0.20	100		2.1

CLIENT SAMPLE NO.

MBLK111207CA

Lab Name: TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: MBLK1112

Date Analyzed: 11/12/07

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82

Printed: 11/19/07 2:04:59 PM Page 1 of 2

CLIENT SAMPLE NO.

MBLK111207CA

Lab Name:

TAL Burlington

SDG Number: NY122879

Case Number:

Sample Matrix: AIR

Lab Sample No.: MBLK1112

Date Analyzed:

11/12/07

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chiorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: Greater than 40% difference for detected concentrations between two GC columns. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

STL Connecticut

128 Long Hill Cross Road

Chain of Custody Record

Shelton, CT 06484 phone 203-944-1318

phone 203-944-1318											9 1	Severn Trent Laboratories, Inc.	tories, Inc.	
Client Contact	Project Manager: Scott Spitzer	Scott Spitzer			S	Site Contact:)	COC No:		
Ecosystems Strategies, Inc.	Tel/Fax: 845-452-1658 fax 845-485-7083	658 fax 845-	485-7083		1	Lab Contact:						_l ofl (COCs	
24 Davis Ave		Analysis Tu	Analysis Turnaround Time	me							,	Job No. NP07096.20	20	
Poughkeepsie, NY 12603	Calenda	Calendar (C) or Work Days (W)	k Days (W)											
(845) 452-1658 Phone	1	TAT if different from Below	nn Below		oderalisi V									
(845) 485-7083 FAX		2,	2 weeks		ett skill		ш				<i>5)</i>	SDG No.		
Project Name: IBM Neptune Site		1,	1 week		e problem		uitəl							
Site:		2	2 days		NAME OF	əldu	H 'SI							
P O # NP07096.20		1	l day			is2 b	1-OT							
Sample Identification	Sample Date	Sample	Sample	Matrix	# of Cont.	era)lí	NOC?					Sample	Sample Specific Notes:	
	1000			1 Sale										
SG52-2	11/1/2007	16:27		AIR	-		×				91	Summa Canister		
SG52-3	11/2/2007	11:15		AIR	-		×				93	Summa Canister		
SG52-4	11/2/2007	10:35		AIR	1		×				5,	Summa Canister		
														_
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	04; 4=HNO3; 5=Na	OH; 6= Othe												
Possible Hazard Identification Non-Hazard Flammable	Skin Irritant	Poison B		Unknown			Sample Dis, Returi	le Disposal (A fe Return To Client	e may be	assessed if san Disposal By Lab	samples Lab	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Month	han 1 month) Months	
ns/OC Rec		NY Category B Deliverables	B Delive	rables										
		616931												
Relinquished by: {	Company:	100		Date/Time: $11/5/5$, (g	130	Received by:			<i>\f</i>	*	Date/Time: \\\\Syd+	16.30	
Relinquished by:	Company:	i		Date/Time	1 CO	00:31	Received by:	11		460		Date/Time:	09.25	
Relinquished by:	Company:			Date/Time:			Received by:					•	2	
														_

Sample Data Summary – TO-15 Volatile

SG52-2

0

20

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

CAS NO. COMPOUND

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: 731289

Sample wt/vol: 10.00 (g/mL) ML Lab File ID: 731289D

Level: (low/med) LOW Date Received: 11/07/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 20.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 10 U 76-14-2----1,2-Dichlorotetrafluoroethan 4.0 U 74-87-3-----Chloromethane 10 U 75-01-4------Vinyl Chloride 4.0 U 106-99-0-----1,3-Butadiene 10 | U 74-83-9-----Bromomethane 4.0 U 75-00-3-----Chloroethane 10 U 4.0 U 593-60-2-----Bromoethene 75-69-4----Trichlorofluoromethane 4.0 U 76-13-1----Freon TF 4.0 U 75-35-4----1,1-Dichloroethene 19 100 U 67-64-1-----Acetone 67-63-0-----Isopropyl Alcohol 100 U 75-15-0------Carbon Disulfide 10 U 10 U 107-05-1----3-Chloropropene 75-09-2-----Methylene Chloride 10 U 75-65-0-----tert-Butyl Alcohol 100 U 1634-04-4-----Methyl tert-Butyl Ether 10 U 156-60-5-----trans-1,2-Dichloroethene 4.0 U 110-54-3----n-Hexane 55 75-34-3-----1,1-Dichloroethane 4.0 U 540-59-0-----1,2-Dichloroethene (total) 7.0 10 U 78-93-3-----Methyl Ethyl Ketone 7.0 156-59-2----cis-1,2-Dichloroethene 109-99-9------Tetrahydrofuran 100 U 67-66-3-----Chloroform 4.0 U 71-55-6----1,1,1-Trichloroethane 49 110-82-7-----Cyclohexane 22 4.0 U 56-23-5-----Carbon Tetrachloride 540-84-1-----2,2,4-Trimethylpentane 36 71-43-2----Benzene 18 4.0 U 107-06-2----1,2-Dichloroethane

142-82-5----n-Heptane

SDG No.: NY122879

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SG52-2

0

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.:

Lab Sample ID: 731289 Matrix: (soil/water) AIR

Sample wt/vol: 10.00 (g/mL) ML Lab File ID: 731289D

Date Received: 11/07/07 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 20.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

CAS NO. COMPOUND 680 l 79-01-6-----Trichloroethene 78-87-5-----1,2-Dichloropropane $4.0\overline{\mathrm{U}}$ 100 U 123-91-1----1,4-Dioxane 75-27-4-----Bromodichloromethane 4.0 U 10061-01-5----cis-1,3-Dichloropropene 4.0 U 108-10-1-----Methyl Isobutyl Ketone 10 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 64 4.0 T 79-00-5-----1,1,2-Trichloroethane 4.0 U 127-18-4----Tetrachloroethene 4.0 U 591-78-6-----Methyl Butyl Ketone 10 U 124-48-1-----Dibromochloromethane 4.0 U 106-93-4----1,2-Dibromoethane____ 4.0 U 108-90-7-----Chlorobenzene 4.0 U 100-41-4-----Ethylbenzene 7.8 1330-20-7-----Xylene (m,p)24 95-47-6-----Xylene (o) 7.5 1330-20-7-----Xylene (total) 31 4.0 U 100-42-5-----Styrene 75-25-2-----Bromoform 4.0 U 79-34-5----1,1,2,2-Tetrachloroethane 4.0 U 622-96-8-----4-Ethyltoluene 4.0 U 108-67-8-----1,3,5-Trimethylbenzene 4.0 U 4.0 U 95-49-8----2-Chlorotoluene 95-63-6-----1,2,4-Trimethylbenzene 4.0 U 4.0 U 541-73-1-----1,3-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene 4.0 U 95-50-1----1,2-Dichlorobenzene 4.0 U 120-82-1----1,2,4-Trichlorobenzene 10 U 87-68-3-----Hexachlorobutadiene 4.0 U

Q

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SG52-3

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: 731290

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 731290

Level: (low/med) LOW Date Received: 11/07/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 40.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 20 U 76-14-2----1,2-Dichlorotetrafluoroethan 8.0 U 74-87-3-----Chloromethane 20 U 75-01-4-----Vinyl Chloride 8.0 U 106-99-0-----1,3-Butadiene 20 U 74-83-9-----Bromomethane 8.0 U 75-00-3-----Chloroethane 20 U 593-60-2-----Bromoethene 8.0 U 75-69-4-----Trichlorofluoromethane 8.0 U 76-13-1----Freon TF 9.2 75-35-4----1,1-Dichloroethene 15 l 67-64-1-----Acetone 670 67-63-0----Isopropyl Alcohol 200 U 75-15-0-----Carbon Disulfide 20 U 107-05-1----3-Chloropropene 20 U 75-09-2-----Methylene Chloride 20 U 75-65-0----tert-Butyl Alcohol 200 U 1634-04-4-----Methyl tert-Butyl Ether 20 U 156-60-5----trans-1,2-Dichloroethene 8.0 U 110-54-3----n-Hexane 25 75-34-3-----1,1-Dichloroethane 8.0 U 540-59-0----1,2-Dichloroethene (total) 8.1 78-93-3-----Methyl Ethyl Ketone 31 156-59-2----cis-1,2-Dichloroethene 8.1 200 U 109-99-9----Tetrahydrofuran 67-66-3-----Chloroform 11 71-55-6----1,1,1-Trichloroethane 100 110-82-7-----Cyclohexane 28 56-23-5-----Carbon Tetrachloride 8.0 U 77 540-84-1----2,2,4-Trimethylpentane 71-43-2----Benzene 24 107-06-2-----1,2-Dichloroethane 8.0 U 142-82-5----n-Heptane 46

SG52-3

Q

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

CAS NO.

COMPOUND

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: 731290

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 731290

Level: (low/med) LOW Date Received: 11/07/07

% Moisture: not dec. ____ Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 40.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (uq/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 840 78-87-5------1,2-Dichloropropane 8.0 U 200 U 123-91-1----1,4-Dioxane 8.0 U 75-27-4-----Bromodichloromethane 10061-01-5----cis-1,3-Dichloropropene 8.0 U 108-10-1-----Methyl Isobutyl Ketone 94 108-88-3-----Toluene 560 10061-02-6----trans-1,3-Dichloropropene 8.0|U 79-00-5-----1,1,2-Trichloroethane 8.0 U 127-18-4-----Tetrachloroethene 8.0 U 20 U 591-78-6-----Methyl Butyl Ketone 8.0 U 124-48-1-----Dibromochloromethane 8.0 U 106-93-4----1,2-Dibromoethane 108-90-7-----Chlorobenzene 8.0 U 100-41-4-----Ethylbenzene 420 1330-20-7-----Xylene (m,p) 1400 95-47-6-----Xylene (o) 570 1330-20-7-----Xylene (total) 2000 8.0 U 100-42-5-----Styrene 75-25-2-----Bromoform 8.0 U 79-34-5----1,1,2,2-Tetrachloroethane 8.0 ΙU 622-96-8-----4-Ethyltoluene 710 210 108-67-8-----1,3,5-Trimethylbenzene 95-49-8----2-Chlorotoluene 8.0 U 95-63-6-----1,2,4-Trimethylbenzene 790 541-73-1-----1,3-Dichlorobenzene 8.0 U 106-46-7----1,4-Dichlorobenzene 8.0 U 95-50-1-----1,2-Dichlorobenzene 8.0 U 120-82-1----1,2,4-Trichlorobenzene 20 U 87-68-3-----Hexachlorobutadiene 8.0 U

SG52-4

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: 731291

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 731291D

Level: (low/med) LOW Date Received: 11/07/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 40.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV 0 75-71-8-----Dichlorodifluoromethane 20 U 76-14-2----1,2-Dichlorotetrafluoroethan 8.0 U 74-87-3-----Chloromethane 20 U 75-01-4-----Vinyl Chloride 8.0 U 106-99-0-----1,3-Butadiene 20 U 74-83-9-----Bromomethane 8.0 U 75-00-3------Chloroethane 20 U 8.0 U 593-60-2----Bromoethene 75-69-4-----Trichlorofluoromethane 10 76-13-1-----Freon TF 34 87 75-35-4----1,1-Dichloroethene 67-64-1-----Acetone 210 200 T 67-63-0----Isopropyl Alcohol 75-15-0-----Carbon Disulfide 20 U 107-05-1----3-Chloropropene 20 U 75-09-2----Methylene Chloride 20 U 75-65-0-----tert-Butyl Alcohol 200 U 1634-04-4-----Methyl tert-Butyl Ether 20 U 156-60-5-----trans-1,2-Dichloroethene 8.0 U 110-54-3----n-Hexane 200 75-34-3-----1,1-Dichloroethane 8.0 U 540-59-0----1,2-Dichloroethene (total) 8.0 U 78-93-3-----Methyl Ethyl Ketone 20 U 156-59-2----cis-1,2-Dichloroethene 8.0 U 109-99-9----Tetrahydrofuran 200 U 8.0 U 67-66-3-----Chloroform 71-55-6-----1,1,1-Trichloroethane 290 110-82-7-----Cyclohexane 130 56-23-5-----Carbon Tetrachloride 8.0 U 540-84-1----2,2,4-Trimethylpentane 310 71-43-2----Benzene 56 107-06-2----1,2-Dichloroethane 8.0 142-82-5----n-Heptane 140

SDG No.: NY122879

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SG52-4

0

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV

CAS NO.

COMPOUND

Case No.: 27000

Matrix: (soil/water) AIR Lab Sample ID: 731291

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 731291D

Level: (low/med) LOW Date Received: 11/07/07

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 40.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

SAS No.:

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6----Trichloroethene 1000 78-87-5----1,2-Dichloropropane 8.0 U 123-91-1----1,4-Dioxane 200 U 75-27-4-----Bromodichloromethane 8.0 U 10061-01-5----cis-1,3-Dichloropropene 8.0 U 108-10-1-----Methyl Isobutyl Ketone 20 U 108-88-3-----Toluene 740 10061-02-6----trans-1,3-Dichloropropene 8.0 Ū 79-00-5----1,1,2-Trichloroethane 8.0 U 127-18-4----Tetrachloroethene 8.0 U 591-78-6-----Methyl Butyl Ketone 20 U 124-48-1-----Dibromochloromethane 8.0 U 106-93-4----1,2-Dibromoethane 8.0 U 108-90-7-----Chlorobenzene 8.0 U 100-41-4-----Ethylbenzene 320 1330-20-7-----Xylene (m,p) 950 95-47-6-----Xylene (o) 360 1330-20-7-----Xylene (total) 1300 100-42-5-----Styrene 8.0 U 75-25-2-----Bromoform 8.0 U 79-34-5----1,1,2,2-Tetrachloroethane 8.0 ΙU 622-96-8----4-Ethyltoluene 330 108-67-8-----1,3,5-Trimethylbenzene 95 95-49-8----2-Chlorotoluene 8.0 U 95-63-6----1,2,4-Trimethylbenzene 310 541-73-1----1,3-Dichlorobenzene 8.0 \u
\overline{U} 106-46-7----1,4-Dichlorobenzene 8.0 U 95-50-1----1,2-Dichlorobenzene 8.0 U 120-82-1----1,2,4-Trichlorobenzene 20 U 87-68-3-----Hexachlorobutadiene 8.0 U

MBLK111207CA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: MBLK111207CA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFXB01G

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q 75-71-8-----Dichlorodifluoromethane 0.50 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.20 U 0.50 U 74-87-3-----Chloromethane 75-01-4-----Vinyl Chloride_____ 0.20 U 106-99-0-----1,3-Butadiene_____ 0.50 U 74-83-9-----Bromomethane 0.20 U 75-00-3-----Chloroethane 0.50 U 0.20 U 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 0.20 U 0.20 U 76-13-1-----Freon TF 0.20 U 75-35-4----1,1-Dichloroethene 5.0 U 67-64-1-----Acetone 67-63-0----Isopropyl Alcohol 5.0 U 75-15-0-----Carbon Disulfide 0.50 U 107-05-1----3-Chloropropene 0.50 U 75-09-2----Methylene Chloride 0.50 U 75-65-0-----tert-Butyl Alcohol 5.0 U 1634-04-4-----Methyl tert-Butyl Ether 0.50 U 156-60-5-----trans-1,2-Dichloroethene 0.20 U 0.50 U 110-54-3----n-Hexane 75-34-3-----1,1-Dichloroethane 0.20 U 540-59-0-----1,2-Dichloroethene (total) 0.20 U 0.50 U 78-93-3-----Methyl Ethyl Ketone 156-59-2----cis-1,2-Dichloroethene 0.20 U 5.0 U 109-99-9-----Tetrahydrofuran_____ 0.20 U 67-66-3------Chloroform 71-55-6----1,1,1-Trichloroethane 0.20 U 110-82-7-----Cyclohexane 0.20 U 56-23-5-----Carbon Tetrachloride 0.20 U 0.20 U 540-84-1----2,2,4-Trimethylpentane 71-43-2-----Benzene 0.20 U 0.20 U 107-06-2----1,2-Dichloroethane 142-82-5----n-Heptane 0.20 U

CLIENT SAMPLE NO.

MBLK111207CA

O

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

CAS NO. COMPOUND

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: MBLK111207CA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFXB01G

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. _____ Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 0.20 U 78-87-5-----1,2-Dichloropropane 0.20 U 123-91-1----1,4-Dioxane 5.0 U 75-27-4-----Bromodichloromethane 0.20 U 10061-01-5----cis-1,3-Dichloropropene 0.20 U 0.50 U 108-10-1-----Methyl Isobutyl Ketone 108-88-3-----Toluene 0.20 U 10061-02-6----trans-1,3-Dichloropropene 0.20 U 79-00-5-----1,1,2-Trichloroethane 0.20 U 0.20 U 127-18-4----Tetrachloroethene 591-78-6-----Methyl Butyl Ketone 0.50 U 0.20 U 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 0.20 U 108-90-7-----Chlorobenzene 0.20 U 100-41-4----Ethylbenzene 0.20 U 0.50 U 1330-20-7-----Xylene (m,p) 95-47-6-----Xylene (o) 0.20 U 1330-20-7-----Xylene (total) 0.20 U 100-42-5-----Styrene 0.20 U 75-25-2-----Bromoform 0.20 U 79-34-5----1,1,2,2-Tetrachloroethane 0.20 U 622-96-8-----4-Ethyltoluene 0.20 U 108-67-8-----1,3,5-Trimethylbenzene 0.20 U 95-49-8-----2-Chlorotoluene 0.20 U 95-63-6----1,2,4-Trimethylbenzene 0.20 U 541-73-1-----1,3-Dichlorobenzene 0.20 U 106-46-7----1,4-Dichlorobenzene 0.20 U 95-50-1-----1,2-Dichlorobenzene 0.20 U 120-82-1----1,2,4-Trichlorobenzene 0.50 U 87-68-3-----Hexachlorobutadiene 0.20 U

CA111207LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: CA111207LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFX10GQ

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND 75-71-8-----Dichlorodifluoromethane 10 76-14-2----1,2-Dichlorotetrafluoroethan 10 74-87-3-----Chloromethane 9.4 9.7 75-01-4-----Vinyl Chloride 106-99-0-----1,3-Butadiene 11 9.6 74-83-9-----Bromomethane 9.5 75-00-3-----Chloroethane 9.3 593-60-2----Bromoethene 75-69-4----Trichlorofluoromethane 9.3 76-13-1----Freon TF 11 75-35-4----1,1-Dichloroethene 11 67-64-1-----Acetone 9.8 67-63-0----Isopropyl Alcohol 9.3 75-15-0-----Carbon Disulfide 10 107-05-1----3-Chloropropene 9.7 75-09-2----Methylene Chloride 9.9 75-65-0-----tert-Butyl Alcohol 9.5 1634-04-4-----Methyl tert-Butyl Ether 11 9.8 156-60-5----trans-1,2-Dichloroethene 110-54-3----n-Hexane 9.9 75-34-3----1,1-Dichloroethane 9.8 20 540-59-0-----1,2-Dichloroethene (total) 78-93-3-----Methyl Ethyl Ketone 10 156-59-2----cis-1,2-Dichloroethene 10 9.5 109-99-9-----Tetrahydrofuran 67-66-3-----Chloroform 9.9 71-55-6----1,1,1-Trichloroethane 9.7 110-82-7-----Cyclohexane 10 56-23-5-----Carbon Tetrachloride 10 540-84-1----2,2,4-Trimethylpentane 9.7 71-43-2----Benzene 9.7 107-06-2----1,2-Dichloroethane 9.5 142-82-5----n-Heptane 9.3

CLIENT SAMPLE NO.

CA111207LCS

Q

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: CA111207LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFX10GQ

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6----Trichloroethene 9.7 78-87-5----1,2-Dichloropropane 9.5 123-91-1----1,4-Dioxane 8.5 75-27-4-----Bromodichloromethane 10 10061-01-5----cis-1,3-Dichloropropene 9.8 108-10-1-----Methyl Isobutyl Ketone 9.5 108-88-3----Toluene 9.9 10061-02-6----trans-1,3-Dichloropropene 10 79-00-5-----1,1,2-Trichloroethane 9.4 127-18-4----Tetrachloroethene 10 591-78-6-----Methyl Butyl Ketone 9.8 124-48-1-----Dibromochloromethane 11 106-93-4-----1,2-Dibromoethane 10 108-90-7-----Chlorobenzene 9.6 100-41-4-----Ethylbenzene 9.8 1330-20-7-----Xylene (m,p) 20 95-47-6-----Xylene (o) 9.5 1330-20-7-----Xylene (total) 29 100-42-5-----Styrene 9.8 75-25-2-----Bromoform 11 79-34-5----1,1,2,2-Tetrachloroethane 9.1 622-96-8-----4-Ethyltoluene 10 108-67-8-----1,3,5-Trimethylbenzene 9.3 95-49-8----2-Chlorotoluene 9.5 95-63-6----1,2,4-Trimethylbenzene 9.5 541-73-1----1,3-Dichlorobenzene 9.0 106-46-7----1,4-Dichlorobenzene 8.8 95-50-1-----1,2-Dichlorobenzene 8.7 120-82-1----1,2,4-Trichlorobenzene 8.2 87-68-3-----Hexachlorobutadiene 8.2

CLIENT SAMPLE NO.

CA111207LCSD

Q

11 10

10

10

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

CAS NO. COMPOUND

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: CA111207LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFX10GQD

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 10 76-14-2----1,2-Dichlorotetrafluoroethan 9.9 74-87-3-----Chloromethane 9.8 75-01-4-----Vinyl Chloride 9.9 106-99-0----1,3-Butadiene 11 74-83-9-----Bromomethane 9.7 75-00-3-----Chloroethane 9.6 593-60-2-----Bromoethene 9.4 75-69-4-----Trichlorofluoromethane 9.2 76-13-1----Freon TF 11 75-35-4----1,1-Dichloroethene 11 67-64-1-----Acetone 8.3 67-63-0-----Isopropyl Alcohol 9.9 75-15-0-----Carbon Disulfide 10 107-05-1----3-Chloropropene 9.7 75-09-2----Methylene Chloride 9.9 75-65-0----tert-Butyl Alcohol 9.9 1634-04-4-----Methyl tert-Butyl Ether 9.4 156-60-5----trans-1,2-Dichloroethene 9.8 110-54-3----n-Hexane 9.9 75-34-3-----1,1-Dichloroethane 9.8 540-59-0-----1,2-Dichloroethene (total) 20 78-93-3-----Methyl Ethyl Ketone 9.9 156-59-2----cis-1,2-Dichloroethene 10 109-99-9-----Tetrahydrofuran 10 67-66-3-----Chloroform 9.8 71-55-6----1,1,1-Trichloroethane 11 110-82-7-----Cyclohexane 11 56-23-5-----Carbon Tetrachloride 11

540-84-1----2,2,4-Trimethylpentane

142-82-5----n-Heptane

107-06-2----1,2-Dichloroethane

71-43-2----Benzene

CLIENT SAMPLE NO.

CA111207LCSD

0

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

COMPOUND

CAS NO.

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix: (soil/water) AIR Lab Sample ID: CA111207LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CFX10GQD

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. Date Analyzed: 11/12/07

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

79-01-6-----Trichloroethene 11 78-87-5-----1,2-Dichloropropane 9.6 123-91-1----1,4-Dioxane 11 75-27-4-----Bromodichloromethane 11 9.9 10061-01-5----cis-1,3-Dichloropropene 108-10-1-----Methyl Isobutyl Ketone 12 108-88-3-----Toluene 10 10061-02-6----trans-1,3-Dichloropropene 10 79-00-5-----1,1,2-Trichloroethane 10 127-18-4----Tetrachloroethene 11 591-78-6-----Methyl Butyl Ketone 13 124-48-1-----Dibromochloromethane 12 106-93-4-----1,2-Dibromoethane 11 108-90-7-----Chlorobenzene 10 100-41-4-----Ethylbenzene 10 1330-20-7-----Xylene (m,p) 21 95-47-6-----Xylene (o) 10 1330-20-7-----Xylene (total) 31 100-42-5----Styrene 11 12 75-25-2-----Bromoform 79-34-5----1,1,2,2-Tetrachloroethane 10 622-96-8-----4-Ethyltoluene 11 108-67-8-----1,3,5-Trimethylbenzene 10 95-49-8-----2-Chlorotoluene 10 95-63-6-----1,2,4-Trimethylbenzene 11 541-73-1-----1,3-Dichlorobenzene 10 106-46-7-----1,4-Dichlorobenzene 10 95-50-1----1,2-Dichlorobenzene 9.8 120-82-1----1,2,4-Trichlorobenzene 11 87-68-3-----Hexachlorobutadiene 9.7

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
	========	========	1.0	100	70 120
Dichlorodifluoromethane	10		10	100	70-130
1,2-Dichlorotetrafluoro	10		10	100	70-130
Chloromethane	10		9.4	94	70-130
Vinyl Chloride	10		9.7	97	70-130
1,3-Butadiene	10		11	110	70-130
Bromomethane	10		9.6	96	70-130
Chloroethane	10		9.5	95	70-130
Bromoethene	10		9.3	93	70-130
Trichlorofluoromethane	10		9.3	93	70-130
Freon TF	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
Acetone	10		9.8	98	70-130
Isopropyl Alcohol	10		9.3	93	70-130
Carbon Disulfide	10		10	100	70-130
3-Chloropropene	10		9.7	97	70-130
Methylene Chloride	10		9.9	99	70-130
tert-Butyl Alcohol	10		9.5	95	70-130
Methyl tert-Butyl Ether	10		11	110	70-130
trans-1,2-Dichloroethen	10		9.8	98	70-130
n-Hexane	10		9.9	99	70-130
1,1-Dichloroethane	10		9.8	98	70-130
1,2-Dichloroethene (tot	20		20	100	70-130
Methyl Ethyl Ketone	10		10	100	70-130
cis-1,2-Dichloroethene	10		10	100	70-130
Tetrahydrofuran	10		9.5	95	70-130
Chloroform	10		9.9	99	70-130
1,1,1-Trichloroethane	10		9.7	97	70-130
Cyclohexane	10		10	100	70-130
Column to be used to fla					

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:				
	_	 _		

^{*} Values outside of QC limits

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	========	===========	=====	=====
Carbon Tetrachloride	10		10	100	70-130
2,2,4-Trimethylpentane	10		9.7	97	70-130
Benzene	10		9.7	97	70-130
1,2-Dichloroethane	10		9.5	95	70-130
n-Heptane	10		9.3	93	70-130
Trichloroethene	10		9.7	97	70-130
1,2-Dichloropropane	10		9.5	95	70-130
1,4-Dioxane	10		8.5	85	70-130
Bromodichloromethane	10		10	100	70-130
cis-1,3-Dichloropropene	10		9.8	98	70-130
Methyl Isobutyl Ketone	10		9.5	95	70-130
Toluene	10		9.9	99	70-130
trans-1,3-Dichloroprope	10		10	100	70-130
1,1,2-Trichloroethane	10		9.4	94	70-130
Tetrachloroethene	10		10	100	70-130
Methyl Butyl Ketone	10		9.8	98	70-130
Dibromochloromethane	10		11	110	70-130
1,2-Dibromoethane	10		10	100	70-130
Chlorobenzene	10		9.6	96	70-130
Ethylbenzene	10		9.8	98	70-130
Xylene (m,p)	20		20	100	70-130
Xylene (o)	10		9.5	95	70-130
Xylene (total)	30		29	97	70-130
Styrene	10		9.8	98	70-130
Bromoform	10		11	110	70-130
1,1,2,2-Tetrachloroetha	10		9.1	91	70-130
4-Ethyltoluene	10		10	100	70-130
1,3,5-Trimethylbenzene	10		9.3	93	70-130
. Calumn to be used to file		1 DDD1			

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:		
	-	

^{*} Values outside of QC limits

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

COMPOUND	SPIKE ADDED (ppbv)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ppbv)	LCS % REC #	QC. LIMITS REC.
2-Chlorotoluene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	10 10 10 10 10		9.5 9.5 9.0 8.8 8.7 8.2	95 95 90 88 87	70-130 70-130 70-130 70-130 70-130
1,2,4-Trichlorobenzene Hexachlorobutadiene	10 10		8.2	82 82	70-130 70-130

‡	Column	to	be	used	to	flaq	recovery	and	\mathtt{RPD}	values	with	an	asterisk

COMMENTS:	_

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	%	OC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD#	RPD	REC.
Dichlorodifluoromethane 1,2-Dichlorotetrafluoro	10 10	10 9.9	100 99	0	25 25	70-130 70-130
Chloromethane Vinyl Chloride	10 10	9.8 9.9	98 99	4 2	25 25	70-130
1,3-Butadiene Bromomethane Chloroethane	10 10 10	11 9.7 9.6	110 97 96	0 1 1	25 25 25	70-130 70-130 70-130
Bromoethene Trichlorofluoromethane	10	9.4 9.2	94 92	1 1	25 25 25	70-130 70-130 70-130
Freon TF 1,1-Dichloroethene	10 10	11 11	110 110	0	25 25	70-130 70-130
Acetone Isopropyl Alcohol	10 10	8.3 9.9	83 99	16 6	25 25	70-130 70-130
Carbon Disulfide 3-Chloropropene Methylene Chloride	10 10 10	10 9.7 9.9	100 97 99	0 0 0	25 25 25	70-130 70-130 70-130
tert-Butyl Alcohol Methyl tert-Butyl Ether	10 10 10	9.9 9.4	99 94	4 16	25 25 25	70-130 70-130 70-130
trans-1,2-Dichloroethen n-Hexane	10 · 10	9.8 9.9	98 99	0	25 25	70-130 70-130
1,1-Dichloroethane 1,2-Dichloroethene (tot	10 20	9.8 20	98 100	0	25 25	70-130 70-130
Methyl Ethyl Ketone cis-1,2-Dichloroethene Tetrahydrofuran	10 10 10	9.9 10 10	99 100 100	1 0 5	25 25	70-130
Chloroform 1,1,1-Trichloroethane	10 10 10	9.8 11	98 110	1 12	25 25 25	70-130 70-130 70-130
Cyclohexane	10	11	110	10	25	70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:	_	
	_	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	o ₀	QC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #		RPD	REC.
COMPOUND ===================================		(ppbv) ====================================	REC # ====== 110 110 100 100 100 110 96 110 110 99 120 100 100 100 110 130	% RPD # ====== 10 12 3 5 7 12 1 26* 10 1 23 1 0 6 10 28*	RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	REC. ====== 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (m,p) Xylene (o) Xylene (total) Styrene Bromoform 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene	10 10 10 10 20 10 30 10 10 10	12 11 10 10 21 10 31 11 12 10 11	120 110 100 100 105 100 103 110 120 100 110	9 10 4 2 5 6 12 9 10 7	25 25 25 25 25 25 25 25 25 25 25	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limit	varues	Outside	OT	\circ	エエニエ
------------------------------	--------	---------	----	---------	------

COMMENTS:		_	

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: CA111207LCS

COMPOUND	SPIKE ADDED (ppbv)	LCSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD #	QC LI	IMITS REC.
=======================================	========	=======================================	=====	======	=====	=====
2-Chlorotoluene	10	10	100	5	25	70-130
1,2,4-Trimethylbenzene	10	11	110	15	25	70-130
1,3-Dichlorobenzene	10	10	100	10	25	70-130
1,4-Dichlorobenzene	10	10	100	13	25	70-130
1,2-Dichlorobenzene	10	9.8	98	12	25	70-130
1,2,4-Trichlorobenzene	10	11	110	29*	25	70-130
Hexachlorobutadiene	10	9.7	97	17	25	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 3 out of 63 outside limits

Spike Recovery: 0 out of 126 outside limits

COMMENTS:			

FORM 4 VOLATILE METHOD BLANK SUMMARY

MBLK111207CA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Lab File ID: CFXB01G Lab Sample ID: MBLK111207CA

Date Analyzed: 11/12/07 Time Analyzed: 1202

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: C

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
				1005
01	CA111207LCS	CA111207LCS	CFX10GQ	1025
02	CA111207LCSD	CA111207LCSD	CFX10GQD	1113
03	SG52-2	731289	731289D	1558
04	SG52-3	731290	731290	1646
05	SG52-4	731291	731291D	1735
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24	l			
25		l		
26				
27				
28				
29				
30				

COMMENTS:			
	-	 	

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Lab File ID: CFX02PV BFB Injection Date: 11/01/07

Instrument ID: C BFB Injection Time: 1332

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	
50	8.0 - 40.0% of mass 95	24.6
75	30.0 - 66.0% of mass 95	59.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.4 (0.6)1
174	50.0 - 120.0% of mass 95	61.9
175	4.0 - 9.0% of mass 174	4.2 (6.8)1
176	93.0 - 101.0% of mass $\overline{174}$	59.7 (96.4)1
177	5.0 - 9.0% of mass 176	4.0 (6.7)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	==========	==========	=======================================	========
01	ASTD0002	ASTD0002	CFX002V	11/01/07	1421
02	ASTD0005	ASTD0005	CFX005V	11/01/07	1509
03	ASTD005	ASTD005	CFX05V	11/01/07	1558
	ASTD010	ASTD010	CFX10V	11/01/07	1647
05	ASTD015	ASTD015	CFX15V	11/01/07	1735
	ASTD020	ASTD020	CFX20V	11/01/07	1824
07	ASTD040	ASTD040	CFX40V	11/01/07	1912
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22	-				

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Lab File ID: CFX10PV BFB Injection Date: 11/12/07

Instrument ID: C BFB Injection Time: 0851

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	========
50	8.0 - 40.0% of mass 95	23.3
75	30.0 - 66.0% of mass 95	57.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.3 (0.5)1
174	50.0 - 120.0% of mass 95	62.3
175	4.0 - 9.0% of mass 174	$ 4.4 \overline{(7.1)1} $
176	93.0 - 101.0% of mass 174	59.6 (95.8)1
177	5.0 - 9.0% of mass 176	3.9 (6.5)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	SAMPLE NO.	SAMPLE ID	LIDE ID	AMADIZED	ANALIZED
01	ASTD010	ASTD010	CFX10GV	11/12/07	0941
02	CA111207LCS	CA111207LCS	CFX10GV CFX10GQ	11/12/07	1025
03	CA111207LCSD	CA111207LCSD	CFX10GQD	11/12/07	1113
04	MBLK111207CA		CFXB01G	11/12/07	1202
05	SG52-2	731289	731289D	11/12/07	1558
06	SG52-3	731290	731290	11/12/07	1646
07	SG52-4	731291	731291D	11/12/07	1735
08					
09					
10					
11					
12					
13					
14					
15					
16					
17 18					
19					
20					
21					
22	-				
22					

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date(s): 11/01/07 11/01/07

Heated Purge: (Y/N) N Calibration Time(s): 1421 1912

LAB FILE ID: RRF0.	2=CFX002	2V	RRF0	.5=CFX0	05V		
RRF2 = RRF5	=CFX05	J	RRF1	0 =CFX1	VC		
							용
COMPOUND	RRF0.2	RRF0.5	RRF2	RRF5	RRF10	RRF	RSD
=======================================	=====		=====	1		=====	=====
Dichlorodifluoromethane		5.389	l	4.792	3.906		
1,2-Dichlorotetrafluoroethan	4.776	1	l	4.462			
Chloromethane		1.636		1.295			
Vinyl Chloride	1.564			1.499	1.233		
1,3-Butadiene		1.217		1.136	0.917		
Bromomethane	1.647	1.722		1.496			
Chloroethane		1.008		0.890	0.718		
Bromoethene	1.407			1.288	1.178		
Trichlorofluoromethane	5.616	5.686		4.973	4.319		
Freon TF	2.886	2.826		2.500	2.462		
1,1-Dichloroethene	1.153	1.177		1.050			
Acetone				2.502	2.032		
Isopropyl Alcohol				1.871	1.961		
Carbon Disulfide		4.033		3.633			
3-Chloropropene		2.472		2.139			
Methylene Chloride]	2.460	-	1.829			-
tert-Butyl Alcohol				2.545			
Methyl tert-Butyl Ether		3.232		3.749			-
trans-1,2-Dichloroethene	2.482	2.648		2.412			-
n-Hexane		2.766		2.435			
	* 3.164	3.229		2.910			
1,2-Dichloroethene (total)	1.955	2.038		1.852			
Methyl Ethyl Ketone		0.524		0.542			
cis-1,2-Dichloroethene	$\frac{1.427}{}$	1.428		1.292			
Tetrahydrofuran				0.334			
Chloroform	3.556	3.714	-	3.351	3.251		
1,1,1-Trichloroethane	0.792	0.802		0.769			
Cyclohexane	0.376			0.380			
Carbon Tetrachloride	0.762	0.796		0.768			
2,2,4-Trimethylpentane	1.645			1.529	1.650		
Benzene	0.897			0.791	0.850		
1,2-Dichloroethane	0.593	0.602	· ———	0.566	0.571		
n-Heptane	0.711	0.688		0.669	0.706		
Trichloroethene	0.405	0.395		0.378			
1,2-Dichloropropane	0.332	0.352		0.338		[
1,4-Dioxane	0.552	0.552		0.109	0.126		
Bromodichloromethane	0.691	0.731		0.754	0.756		
DI SUIDAT CITTO TOUG CHATIC	0.051	0.751		0./54	0.750		
			l , ,	DGD		l	

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date(s): 11/01/07 11/01/07

Heated Purge: (Y/N) N Calibration Time(s): 1421 1912

	2=CFX002			.5=CFX00			
RRF2 = RRF5	=CFX05	V	RRFT	0 =CFX1	JV		
COMPOUND	1	RRF0.5	l	RRF5	RRF10	RRF	% RSD
aig 1 2 Dighloropropos	0.496	0.514	=====	1	0.502	=====	====
cis-1,3-Dichloropropene Methyl Isobutyl Ketone	0.496	0.514		0.522			
Toluene	0.628			0.569			
trans-1,3-Dichloropropene	0.412			0.574			
1,1,2-Trichloroethane	0.322			0.305	0.356		
Tetrachloroethene	0.429			0.303			
Methyl Butyl Ketone	0.425	0.495		0.585	0.990		
Dibromochloromethane	0.580			0.641	0.786		
1,2-Dibromoethane	0.505			0.534			
Chlorobenzene	* 0.853	0.820		0.790	0.838		
Ethyl henzene	1.418	1.204		1.341	1.625		
Ethylbenzene Xylene (m,p)	0.452			0.474	0.598		
	0.458			0.471	0.592		
Xylene (total)	0.458			0.471	0.592		
Styrene	0.609		<u> </u>	0.687			-
Bromoform	0.437			0.576	0.740		
1,1,2,2-Tetrachloroethane	0.832	0.690		0.800	0.995		
4-Ethyltoluene	1.434			1.427	1.951		
1,3,5-Trimethylbenzene	1.388	1.027		1.365	1.702		
2-Chlorotoluene	1.415	1.386		1.399	1.695		
1,2,4-Trimethylbenzene	1.185	0.958		1.261	1.649		
1,3-Dichlorobenzene	0.748	0.690		0.737	0.977		
1,4-Dichlorobenzene	0.768	0.726		0.731	0.983		
1,2-Dichlorobenzene	0.743	0.671		0.739	0.942	·	
1,2,4-Trichlorobenzene	0.713	0.397		0.519	0.792		
Hexachlorobutadiene	0.523	0.359		0.547	0.703		
	0.323	0.335		0.317	0.703		
	l ———	 					
						l ————————————————————————————————————	
							
							
·							
-							
Compounds with required min]		DCD]		[

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date(s): 11/01/07 11/01/07

Heated Purge: (Y/N) N Calibration Time(s): 1421 1912

LAB FILE ID: RRF15 RRF40 = CFX40V	=CFX15	J	RRF2	CFX2	OV		
COMPOUND	RRF15	RRF20	RRF40			RRF	
=======================================	=====			=====	=====	======	====
Dichlorodifluoromethane		3.449	2.960			4.099	24.3
1,2-Dichlorotetrafluoroethan		3.232	2.725		l	3.981	23.2
Chloromethane		0.955	0.820			1.157	27.6
Vinyl Chloride		1.044				1.318	23.8
1,3-Butadiene		0.796	0.683			0.950	23.7
Bromomethane	l	1.120	0.971			1.368	22.0
Chloroethane	l	0.651	0.564			0.766	
Bromoethene		1.155	1.061			1.251	11.5
Trichlorofluoromethane		4.096	3.663			4.726	17.6
Freon TF		2.455	2.246			2.562	9.6
1,1-Dichloroethene		1.085	1.004			1.089	6.0
Acetone	1.889		1.795			2.052	13.2
Isopropyl Alcohol	1.655	1.311	1.404			1.640	17.3
Carbon Disulfide		3.682	3.410			3.677	6.1
3-Chloropropene		2.111	1.979			2.159	8.6
Methylene Chloride		1.703	1.559			1.856	18.9
tert-Butyl Alcohol	2.340	1.828	1.955			2.275	16.6
Methyl tert-Butyl Ether		3.539	3.231			3.397	7.0
trans-1,2-Dichloroethene		2.352	2.164			2.402	6.7
n-Hexane		2.435	2.259			2.461	7.5
1,1-Dichloroethane	*	2.825	2.582			2.923	8.2
1,2-Dichloroethene (total)		1.841	1.711			1.870	6.1
Methyl Ethyl Ketone		0.536	0.502			0.535	4.9
cis-1,2-Dichloroethene		1.330	1.258			1.337	5.5
Tetrahydrofuran	0.285	0.314				0.313	7.4
Chloroform		3.218				3.329	8.7
1,1,1-Trichloroethane		0.714	0.685			0.759	6.3
Cyclohexane		0.387				0.390	4.1
Carbon Tetrachloride		0.747		l 		0.766	4.6
2,2,4-Trimethylpentane		1.565	1.468			1.579	4.6
Benzene		0.814				0.832	5.7
1,2-Dichloroethane		0.531	0.500			0.560	6.9
n-Heptane		0.665	0.625			0.677	4.7
Trichloroethene		0.382	0.365			0.388	4.1
1,2-Dichloropropane		0.335	0.314			0.333	3.8
1,4-Dioxane	0.097	0.074	0.083			0.098	21.3
Bromodichloromethane	0.05/	0.735	0.678			0.724	4.5
DI SHOWI CITIOI SHIE CITATIC		0.755	0.070			0.72-1	7.0
	ļ	<u> </u>	. ــــــــــــــــــــــــــــــــــــ	l	!		

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date(s): 11/01/07 11/01/07

Heated Purge: (Y/N) N Calibration Time(s): 1421 1912

	RRF15	RRF20 ===== 0.537 0.591 0.546 0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.435 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.566 0.558 0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.471 0.724 0.526 0.691		RRF ===== 0.510 0.601 0.598 0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780 1.448	% RSD ====== 3.6 15.8 8.2 12.3 11.6 11.1 11.1 11.1 11.1 11.1 11.1 11
ris-1,3-Dichloropropene Methyl Isobutyl Ketone Toluene Trans-1,3-Dichloropropene Trans-1,3-Dichl		 0.537 0.591 0.546 0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.435 0.435 0.435 0.663 0.544 0.669 1.281 1.178	 0.488 0.566 0.558 0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.471 0.724 0.526 0.691 1.427		0.510 0.601 0.598 0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	3.6 15.8 8.2 12.9 10.8 12.3 11.6 11.1 13.0 12.6 12.3 17.4 19.8
ris-1,3-Dichloropropene Rethyl Isobutyl Ketone Foluene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene retrachloroethane Retrachloroethene Rethyl Butyl Ketone Ribromochloromethane rans-1,2-Dibromoethane rans-1,3-Dichloropropene rans-1,2-Trichloroethane rans-1,3-Dichloropropene rans-1,3-		0.537 0.591 0.546 0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.435 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.488 0.566 0.558 0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.471 0.464 0.471 0.526 0.691 1.427		0.510 0.601 0.598 0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	3.6 15.8 8.2 12.9 10.8 12.3 11.6 11.1 13.0 12.6 12.3 17.4 19.8
Methyl Isobutyl Ketone Toluene Trans-1,3-Dichloropropene The strachloroethane Tetrachloroethene Tetrachloromethane Tetrachloromethane The strachloromethane The strachloroethane		0.591 0.546 0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.566 0.558 0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.601 0.598 0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	15.8 8.2 10.8 12.3 11.6 11.3 12.6 12.3 17.4 19.8 16.0
coluene crans-1,3-Dichloropropene crans-1,3-Dichloropropene crans-1,3-Dichloropropene crans-1,3-Dichloropropene crans-1,3-Dichloropene crans-1,2-Trichloroethane crans-1,3-Dichloropene crans-1,2-Dibromoethane crans-1,2-Dibromoethane crans-1,2-Tetrachloroethane crans-1,2,2-Tetrachloroethane crans-1,3-Dichloropene crans-1,		0.546 0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.558 0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.598 0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.693 0.547 0.780	8. 12. 10. 12. 31. 11. 9. 13. 12. 12. 17. 19. 16.
rans-1,3-Dichloropropene ,1,2-Trichloroethane letrachloroethene lethyl Butyl Ketone libromochloromethane ,2-Dibromoethane lethylbenzene lethylbenzene lylene (m,p) lylene (total) lyrene leromoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.584 0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.518 0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.516 0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.693 0.547 0.780	12. 10. 31. 11. 9. 13. 12. 12. 17. 19.
retrachloroethane retrachloroethene retrachloroethene rethyl Butyl Ketone ribromochloromethane rethylbenzene rethylbenzene rylene (m,p) rylene (total) retrene romoform rethyltoluene		0.276 0.425 0.546 0.619 0.507 0.742 1.183 0.453 0.435 0.663 0.544 0.669 1.281 1.178	0.266 0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.308 0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.693 0.547 0.780	10. 12. 31. 11. 11. 9. 13. 12. 12. 17. 19.
Tetrachloroethene Tethyl Butyl Ketone Tibromochloromethane Tillian (2-Dibromoethane The Top		0.425 0.546 0.619 0.507 0.742 1.183 0.453 0.435 0.663 0.544 0.669 1.281 1.178	0.451 0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.456 0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.693 0.547 0.780	12. 31. 11. 9. 13. 12. 12. 17. 19.
Methyl Butyl Ketone Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromoform Diverse Districted Stromoform Districted		0.546 0.619 0.507 0.742 1.183 0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.577 0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.639 0.641 0.541 0.813 1.329 0.479 0.477 0.693 0.547 0.780	31. 11. 9. 13. 12. 12. 17. 19.
pibromochloromethane ,2-Dibromoethane thlorobenzene thylbenzene tylene (m,p) tylene (o) tylene (total) tyrene tromoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.619 0.507 0.742 1.183 0.453 0.435 0.663 0.544 0.669 1.281 1.178	0.616 0.496 0.739 1.204 0.464 0.471 0.724 0.526 0.691 1.427		0.641 0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	11. 9. 13. 12. 12. 17. 19.
.,2-Dibromoethane Thlorobenzene Tthylbenzene Tylene (m,p) Tylene (o) Tylene (total) Tyrene Tromoform The complete of the compl		0.507 0.742 1.183 0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.496 0.739 1.204 0.464 0.471 0.471 0.724 0.526 0.691 1.427		0.541 0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	11. 9. 13. 12. 12. 17. 19. 16.
thlorobenzene thylbenzene ylene (m,p) ylene (o) tyrene tryrene romoform 1,2,2-Tetrachloroethane -Ethyltoluene 3,5-Trimethylbenzene -Chlorotoluene 1,2,4-Trimethylbenzene		0.742 1.183 0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.739 1.204 0.464 0.471 0.471 0.724 0.526 0.691 1.427		0.813 1.329 0.479 0.477 0.477 0.693 0.547 0.780	9. 13. 12. 12. 17. 19.
thylbenzene ylene (m,p) ylene (o) ylene (total) tyrene romoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		1.183 0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	1.204 0.464 0.471 0.471 0.724 0.526 0.691 1.427		1.329 0.479 0.477 0.477 0.693 0.547 0.780	13. 12. 12. 17. 19.
ylene (total) tyrene romoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.453 0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.464 0.471 0.471 0.724 0.526 0.691 1.427		0.479 0.477 0.477 0.693 0.547 0.780	12. 12. 17. 19.
ylene (total) tyrene romoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.435 0.435 0.663 0.544 0.669 1.281 1.178	0.471 0.471 0.724 0.526 0.691 1.427		0.477 0.477 0.693 0.547 0.780	12. 12. 17. 19.
ylene (total) tyrene romoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.435 0.663 0.544 0.669 1.281 1.178	0.471 0.724 0.526 0.691 1.427		0.477 0.693 0.547 0.780	12. 17. 19. 16.
tyrene cromoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.663 0.544 0.669 1.281 1.178	0.724 0.526 0.691 1.427		0.693 0.547 0.780	17. 19. 16.
romoform ,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.544 0.669 1.281 1.178	0.526 0.691 1.427		0.547 0.780	19. 16.
,1,2,2-Tetrachloroethane -Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		0.669 1.281 1.178	0.691 1.427		0.780	16.
-Ethyltoluene ,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		1.281 1.178	1.427			
,3,5-Trimethylbenzene -Chlorotoluene ,2,4-Trimethylbenzene		1.178			1.448	18
-Chlorotoluene ,2,4-Trimethylbenzene						
,2,4-Trimethylbenzene				 	1.303	18.
		1.166		 	1.377	13.
.3-Dichlorobenzene		1.085		 	1.214	19.
		0.656		 	0.755	15.
,4-Dichlorobenzene		0.644		 	0.761	15.
,2-Dichlorobenzene		0.626		 	0.736	14.
,2,4-Trichlorobenzene		0.468		 	0.534	28.
exachlorobutadiene		0.461	0.434	 	0.504	23.
				 ·		
			·	 		

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date: 11/12/07 Time: 0941

Heated Purge: (Y/N) N Init. Calib. Times: 1421 1912

_	T		MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
	=======	=======	=======	======	====
Dichlorodifluoromethane	4.099	4.440	0.01	8.3	30.0
1,2-Dichlorotetrafluoroethan	3.981	4.160	0.01	4.5	30.0
Chloromethane	1.157	1.168	0.01	1.0	30.0
Vinyl Chloride	1.318	1.394	0.01	5.8	30.0
1,3-Butadiene	0.950	1.037	0.01	9.2	30.0
Bromomethane	1.368	1.395	0.01	2.0	30.0
Chloroethane	0.766	0.759	0.01	0.9	30.0
Bromoethene	1.251	1.125	0.01	10.1	30.0
Trichlorofluoromethane	4.726	4.262	0.01	9.8	30.0
Freon TF	2.562	2.422	0.01	5.5	30.0
1,1-Dichloroethene	1.089	1.049	0.01	3.7	30.0
Acetone	2.052	2.192	0.01	6.8	30.0
Isopropyl Alcohol	1.640	1.478	0.01	9.9	30.0
Carbon Disulfide	3.677	3.532	0.01	3.9	30.0
3-Chloropropene	2.159	1.964	0.01	9.0	30.0
Methylene Chloride	1.856	1.666	0.01	10.2	30.0
tert-Butyl Alcohol	2.275	2.100	0.01	7.7	30.0
Methyl tert-Butyl Ether	3.397	3.505	0.01	3.2	30.0
trans-1,2-Dichloroethene	2.402	2.302	0.01	4.2	30.0
n-Hexane	2.461	2.338	0.01	5.0	30.0
1,1-Dichloroethane	2.923	2.782	0.1		30.0
1,2-Dichloroethene (total)	1.870	1.801	0.01	3.7	30.0
Methyl Ethyl Ketone	0.535	0.531	0.01	0.7	30.0
cis-1,2-Dichloroethene	1.337	1.299	0.01	2.8	
Tetrahydrofuran	0.313	0.300	0.01		30.0
Chloroform	3.329	3.210	0.01		30.0
1,1,1-Trichloroethane	0.759	0.730	0.01	3.8	30.0
Cyclohexane	0.390	0.379	0.01	2.8	
Carbon Tetrachloride	0.766	0.761	0.01		30.0
2,2,4-Trimethylpentane	1.579	1.482	0.01		30.0
Benzene	0.832	0.803	0.01	3.5	30.0
1,2-Dichloroethane	0.560	0.524	0.01	6.4	30.0
n-Heptane	0.677	0.620	0.01	8.4	
Trichloroethene	0.388	0.376	0.01		30.0
1,2-Dichloropropane	0.333	0.322	0.01	3.3	
1,4-Dioxane	0.098	0.087	0.01	11.2	
Bromodichloromethane	0.724	0.727	0.01	0.4	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: C Calibration Date: 11/12/07 Time: 0941

Heated Purge: (Y/N) N Init. Calib. Times: 1421 1912

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
cis-1,3-Dichloropropene	0.510	0.512	0.01	0.4	30.0
Methyl Isobutyl Ketone	0.601	0.513	0.01		30.0
Toluene	0.598	0.566			
trans-1,3-Dichloropropene	0.516	0.557			30.0
1,1,2-Trichloroethane	0.308	0.291			30.0
Tetrachloroethene	0.456	0.422	0.01		
Methyl Butyl Ketone	0.639	0.507	0.01		30.0
Dibromochloromethane	0.641	0.636	0.01	0.8	30.0
1,2-Dibromoethane	0.541	0.525	0.01	3.0	30.0
Chlorobenzene	0.813	0.773	0.3	4.9	30.0
Ethylbenzene	1.329	1.255	0.01	5.6	30.0
Xylene (m,p)	0.479	0.451	0.01	5.8	30.0
Xylene (o)	0.477	0.442	0.01	7.3	30.0
Xylene (total)	0.477	0.442	0.01		30.0
Styrene	0.693	0.664	0.01	4.2	30.0
Bromoform	0.547	0.556	0.01		30.0
1,1,2,2-Tetrachloroethane	0.780	0.690	0.01		30.0
4-Ethyltoluene	1.448	1.374	0.01		30.0
1,3,5-Trimethylbenzene	1.303	1.130	0.01		30.0
2-Chlorotoluene	1.377	1.230			30.0
1,2,4-Trimethylbenzene	1.214	1.109	0.01		30.0
1,3-Dichlorobenzene	0.755	0.653			30.0
1,4-Dichlorobenzene	0.761	0.642	0.01		30.0
1,2-Dichlorobenzene	0.736	0.638	0.01		30.0
1,2,4-Trichlorobenzene	0.534	0.437	0.01		30.0
Hexachlorobutadiene	0.504	0.430	0.01	14.7	30.0

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Lab File ID (Standard): CFX10GV Date Analyzed: 11/12/07

Instrument ID: C Time Analyzed: 0941

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	=======	=======	=======	======	========	======
	12 HOUR STD	395087	8.83	1999348	9.76	1940953	12.24
	UPPER LIMIT	553122	9.16	2799087	10.09	2717334	12.57
	LOWER LIMIT	237052	8.50	1199609	9.43	1164572	11.91
	======================================	========	======	========	======	=======	======
	CLIENT						
	SAMPLE NO.						
01	CA111207LCS	408588	8.83	2076088	9.76	1835496	12.24
02	CA111207LCSD	412581	8.83	1899079	9.76	1601164	12.24
03	MBLK111207CA	412669	8.83	2128114	9.75	1901422	12.24
04	SG52-2	358942	8.83	1909445	9.76	1628253	12.24
05	SG52-3	292496	8.83	1499176	9.76	1243885	12.24
06	SG52-4	393638	8.83	2061314	9.76	1924393	12.24
07							
80	-						
09							
10							
11							
12							
13							
14 15							
16							
17							
18							
19							
20							
21							
22							

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area
AREA LOWER LIMIT = - 40% of internal standard area
RT UPPER LIMIT = + 0.33 minutes of internal standard RT
RT LOWER LIMIT = - 0.33 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Sample Data Summary – ASTM D1946

ECOSTR SAMPLE NO.

SG52-2 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879 Matrix: (soil/water) AIR Lab Sample ID: 731289 ____ (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071106-R011 Level: (low/med) LOW Date Received: 11/07/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.3 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) %.V/V COMPOUND 7440-59-7-----Helium 2.2 U

ECOSTR SAMPLE NO.

SG52-3 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879 Lab Sample ID: 731290 Matrix: (soil/water) AIR ____ (g/mL) ML Lab File ID: 15NOV071106-R021 Sample wt/vol: Level: (low/med) LOW Date Received: 11/07/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V Q
7440-59-7-----Helium 2.1 U

ECOSTR SAMPLE NO.

SG52-4 Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879 Matrix: (soil/water) AIR Lab Sample ID: 731291 ____ (g/mL) ML Sample wt/vol: Lab File ID: 15NOV071106-R031 Level: (low/med) LOW Date Received: 11/07/07 % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.2 Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V 7440-59-7-----Helium 2.0 U

CLIENT SAMPLE NO.

MBLKC111507A

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879 Lab Sample ID: MBLKC111507A Matrix: (soil/water) AIR ____ (g/mL) ML Lab File ID: 15NOV071010-R021 Sample wt/vol: Level: (low/med) LOW Date Received: % Moisture: not dec. _____ Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V CAS NO. COMPOUND 7440-59-7-----Helium_____ 1.7 U

CLIENT SAMPLE NO.

C111507ALCS

Lab Name: TESTAMERICA BURLINGTON Contract: 27000 Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879 Lab Sample ID: C111507ALCS Matrix: (soil/water) AIR ____ (g/mL) ML Lab File ID: 15NOV071010-R011 Sample wt/vol: Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 11/15/07 GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V CAS NO. COMPOUND 7440-59-7-----Helium 8.7

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Matrix Spike - Sample No.: C111507ALCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	જ	LIMITS
COMPOUND	(%.v/v)	(ug/L)	(%.v/v)	REC #	REC.
=======================================	=======	=========	===========	=====	
Helium	8.3		8.7	105	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 1 outside limits

COMMENTS:		

MBLKC111507A

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Lab File ID: 15NOV071010-R021 Lab Sample ID: MBLKC111507A

Date Analyzed: 11/15/07 Time Analyzed: 1015

GC Column: CTR-1 ID: 6.35 (mm) Heated Purge: (Y/N) N

Instrument ID: 2866_2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01 02 03 04 05	C111507ALCS SG52-2 SG52-3 SG52-4	C111507ALCS 731289 731290 731291	15NOV071010- 15NOV071106- 15NOV071106- 15NOV071106-	1011 1107 1112 1117
06 07 08 09				
10 11 12 13 14				
15 16 17 18				
19 20 21 22				
23 24 25 26				
27 28 29 30				

COMMENTS:			

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: 2866_2 Calibration Date(s): 11/06/07 11/06/07

Column: CTR-1 ID: 6.35 (mm) Calibration Time(s): 1035 1055

LAB FILE ID: RF1.7: 06NOV071027RF5: 06NOV071027-RRF8.3: 06NOV071027

RF12.5: 06NOV07102RF16.7: 06NOV07102

COMPOUND	RF1.7	RF5	RF8.3	RF12.5	RF16.7
Helium	138217.06	158415.40	160131.08	156651.20	160714.43

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: 2866_2 Calibration Date(s): 11/06/07 11/06/07

Column: CTR-1 ID: 6.35 (mm) Calibration Time(s): 1035 1055

COMPOUND	CURVE	COEFFICENT A1	%RSD OR R^2
Helium	AVRG	154825.835	6.1

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: 2866_2 Calibration Date: 11/15/07 Time: 0958

Lab File ID: 15NOV070957-R0 Init. Calib. Date(s): 11/06/07 11/06/07

Heated Purge: (Y/N) N Init. Calib. Times: 1035 1055

GC Column: CTR-1 ID: 6.35 (mm)

COMPOUND	RF8.3	MIN RRF	%D	MAX %D
Helium1548	25.83 153427.83	======	0.9	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

Instrument ID: 2866_2 Calibration Date: 11/15/07 Time: 1334

Lab File ID: 15NOV071333-R0 Init. Calib. Date(s): 11/06/07 11/06/07

Heated Purge: (Y/N) N Init. Calib. Times: 1035 1055

GC Column: CTR-1 ID: 6.35 (mm)

COMPOUND	RRF	RRF8.3	MIN RRF	%D	MAX %D
Helium_	154825.83	157110.84		1.5	30.0

FORM 8 VOLATILE ANALYTICAL SEQUENCE

Lab Name: TESTAMERICA BURLINGTON Contract: 27000

Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY122879

GC Column: CTR-1 ID: 6.35 (mm) Init. Calib. Date(s): 11/06/07 11/06/07

Instrument ID: 2866 2

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROGATE RT FROM INITIAL CALIBRATION							
	CLIENT	LAB	DATE	TIME				
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT	#	RT	#
01	CAL1	CAL1	11/06/07	1035				
	CAL2	CAL2	11/06/07	1043				
03	CAL3	CAL3	11/06/07	1047		<u> </u>		
	CAL4	CAL4	11/06/07	1051		I		
05	CAL5	CAL5	11/06/07	1055		l.		
06	CCV	CCV	11/15/07	0958		.		
07	C111507ALCS	C111507ALCS	11/15/07	1011		.		
80	MBLKC111507A	MBLKC111507A	11/15/07	1015		.		l
09	SG52-2	731289	11/15/07	1107				—
10 11	SG52-3 SG52-4	731290 731291	11/15/07	1112 1117		—- -		
12	CCV	CCV	11/15/07 11/15/07	1334		— ·		—
13	CCV	CCV	11/13/07	1334		— ·		
14						-		
15								
16						— ·		—[
17						— ·		
18						— ·		
19								
20						— ·	_	
21								
22								
23								
24						l.		
25						.		
26						-		
27						.		<u>—</u> [
28						-		—
29 30						-		—
31						-		—
32						-		
32						I_		

QC LIMITS

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.