

Soil Vapor Intrusion Study Report of Findings

Dutchess County Airport Hangar 32 Griffith Way Wappingers Falls, New York

Report Completed: January 2009

Prepared For:

MR. JOHN RASHAK

New York State Department of Environmental Conservation 31 South Putt Corners Road New Paltz, NY 12561

Prepared By:

PRECISION ENVIRONMENTAL SERVICES, INC.

Lot 28C, Curtis Industrial Park 831 Route 67 Ballston Spa, New York 12020

Table of Contents

1.0 Introduction	1
1.1 Site Description	1
2.0 Soil Vapor Study	1
2.1 Building Preparation	1
2.2 Collection of Samples	3
2.3 Sample Analysis	3
3.0 Conclusion	4
4.0 Standard of Limitations	5
Attachment A Figures	
Attachment B Laboratory Analytical Summary	
Attachment C Indoor Air Quality Questionnaire & Building inventory	
Attachment D Laboratory Analytical Report	
Attachment E	

Data Usability Summary Report

1.0 INTRODUCTION

Precision Environmental Services, Inc. (PES) has prepared this soil vapor intrusion study report to document the findings of the investigative work performed at the subject site (see Attachment A, Figure 1 for site location detail). PES was called out by the New York State Department of Environmental Conservation (NYS DEC) under contract number D400320, to conduct the work described within this report. The investigation work was completed in accordance with the work plan provided to the NYS DEC and the New York State Department of Health's Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.

<u>Please Note</u>: The following discussion is limited to PES's findings as they relate solely to the limits of the authorized scope of work. Specifically, information presented will address only those areas of the site where PES performed investigative work (i.e. – air sample locations) see Attachment A, Figure 2 for site plan details.

1.1 SITE DESCRIPTION

The subject facility is an aviation hangar located at 32 Griffith Way, Wappingers Falls, NY at the Dutchess County Airport (Figure 1 – Site Location Detail). The property and facility are owned by Dutchess County and operated by Associated Aircraft Group, Inc. (AAG). The hangar facility consists of a two-story, concrete block, wood, and steel frame building set on a concrete slab. Building use consists of office space, maintenance rooms, equipment and materials storage, and a large helicopter repair/service hangar. The majority of the area immediately surrounding the building is asphalt paved or grass covered. The property is situated in a mixed residential and commercial area. The facility is serviced by a private water well, on site septic system, and natural gas.

2.0 SOIL VAPOR INTRUSION STUDY

As directed by the NYS DEC, PES performed the Soil Vapor Intrusion (SVI) Study by conducting an interview with an AAG representative at the hangar, performing a pre-sampling inspection and building inventory, preparing the building for sample acquisition and collecting fifteen air samples. The fifteen air samples were collected from three different general locations; sub-slab, indoor, and outdoor. The approximate locations of each of the air samples, as determined by the NYS DEC and presented in PES's October 2008 Proposed Work Plan, are depicted in the attached Figure 2 (Air Sampling Detail). The protocol used for the SVI study was in accordance with the New York State Department of Health (NYS DOH) document entitled Guidance For Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 (Guidance Document).

2.1 BUILDING PREPARATION

As part of the SVI Study, PES conducted an interview with an AAG representative at the hangar. The basis for the interview was to complete the NYS DOH Indoor Air Quality Questionnaire and Building Inventory analysis. A general building investigation and an indoor air quality questionnaire were completed on November 7, 2008 (see Attachment B for questionnaire details). Existing building operations were reviewed in order to identify conditions that may affect or interfere with the proposed sampling. This included an evaluation of the type of structure, floor layout, physical conditions, and air flow in the building. Potential sources of chemicals of concern

were evaluated by completing a product inventory. Additionally, 24 hours prior to performing the air sampling the heating system was verified to be operational and functioning to maintain an indoor air temperature between 65° and 75°F.

a) BUILDING LAYOUT

The facility, which was reportedly built in 1957, has undergone recent renovation work, including the painting of walls and floors and the addition of carpet. The building is constructed on a concrete slab. Thickness of the concrete slab, which was identified at each sub-slab sample location, ranged from 8 to 10-inches. The building, which consists of office, storage, and maintenance/repair space, also includes a large hangar on the southwest side of the facility and accounts for the majority of the structure's square footage. Nearly one quarter of the exterior of the building is comprised of horizontal collapsing steel doors that permit the mobilization of aircraft in and out of the facility. Airflow within the main hangar was observed as being erratic. Outdoor air infiltration significantly increased with the opening of the hangar doors. The remaining portions of the building appeared to be relatively sealed. Portions of the concrete slab, which were visible throughout the majority facility other than in the office spaces, are sealed with epoxy; however, several cracks within the slab (of an undetermined depth) were noted at various locations.

b) HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

Heating within the office, storage, and maintenance portions of the building consists of hot water baseboard heat with electric fans at each heater to distribute the heat from the exchangers. Natural gas fired radiant heaters, which are mounted along the ceiling provide heat within the hangar.

Air conditioning is provided to the first floor office space by window units, central air in the second floor office space, and open windows/hangar doors in the hangar.

c) PRODUCT INVENTORY

At the time of the implementation of the SVI Study (November 17, 2008), a product inventory was completed as part of the building inspection/preparation (see Attachment C, page 8 and the included compact disc for detail of the product inventory). Chemicals utilized at the site were scrutinized during the inspection to determine their contents with respect to the target VOCs of concern.

Several potential sources of indoor air contamination were identified in the storage, maintenance, and hangar portions of the building. The majority of the potential sources are contained within product storage cabinets that are present within the chemical storage room and stock room, and are in use in the maintenance room and hangar. Additionally, off-site dry cleaning services are utilized to clean uniforms for employees and recent rehabilitation work (painting and re-carpeting) has been performed.

The sources of volatile organic compounds (VOCs) within the product storage cabinets were scrutinized and documented through photographs, collecting a copy of AAGs MSDS library (which is available from PES upon request), indoor air quality questionnaire, and the product

inventory. The product cabinets were screened with a photo-ionization detector (PID) capable of detecting VOCs in the parts per billion (ppb) range to determine their potential to interfere with the samples. PID readings from potential sources ranged from background levels to 15,000 ppb.

2.2 COLLECTION OF SAMPLES

From November 17-18, 2008 a total of fifteen air samples were collected in laboratory-supplied, clean, six-liter, stainless steel, Summa canisters. Each canister was equipped with a flow control regulator that was pre-calibrated by the laboratory to run for a 24-hour time period. Seven indoor, seven sub-slab, and one outdoor, up-wind air samples were obtained.

Approximate sample locations have been depicted in the attached Figure 2. Sub-slab samples were obtained from approximately two-inches beneath the base of the concrete slab and all indoor sample collection intakes were located approximately three-feet above the relative floor/ground surface to approximate breathing zones. All samples were collected for an approximate twenty-four hour time period.

As reported by the Dutchess County Airport, winds were reportedly out of the north-northwest at 7-9 mph during the sample event. As such, the outdoor sample, which has been identified as "Outdoor", was collected from the northwestern portion of the property in an apparent upwind location from the facility.

Each sub-slab sample implant was constructed in the same manner and each sub-slab sample was collected in similar fashion. In accordance with the Guidance Document, a helium-enriched shroud was employed over each sub-slab sample tube and bore hole to confirm sub-slab sample implant integrity. The sub-slab sample was then monitored in real time immediately before and after sample collection with a helium detector to ensure that a competent surface seal was maintained throughout the sample duration. This procedure promoted the collection of representative sub-slab air samples. Helium field screening indicated that the surface seals remained competent during the sampling.

2.3 SAMPLE ANALYSIS

Test America, Inc. of Knoxville, TN, (New York State ELAP certified laboratory No.: 10781) provided the sampling media and performed the analysis on the samples. Samples were analyzed for volatile organic compounds (VOCs) by EPA Method TO-15, which is capable of achieving a detection limit down to 1 μ g/m³ for the target compounds.

A summary of the results for VOCs has been included in Attachment C and presented in the attached Tables 1, 2, and 3. In accordance with NYS DOH protocol, with the exception of Tetrachloroethene (PCE) and Trichloroethene (TCE) compounds, the guidance values utilized to compare the results from the outdoor and indoor air sampling were from the US Environmental Protection Agency (USEPA) Building Assessment and Survey Evaluation (BASE) Database. The guidance values for PCE and TCE are as established by the NYS DOH.

As indicated in the attached Table 1, numerous VOCs were detected in each indoor air sample. Generally the concentrations reported were below the respective guidance values; however, the concentrations of 2-Butanone (MEK) within each indoor air sample ranged from 16µg/m³ to 6,600µg/m³, both of which exceed the guidance value of 12µg/m³. In addition to elevated MEK concentrations, indoor air samples VI 1A and VI 2A contained other constituents of concern including Ethylbenzene, n-Hexane, m,p-Xylene, and o-Xylene at levels above their respective guidance values. Please refer to Attachment A, Figure 2 for sample location details.

As indicated in the attached Table 2, a variety of VOCs were detected in each of the sub-slab samples. Significant concentrations (>1,000µg/m³) of 1,2,4-Trimethylbenzene, Dichloroflouromethane, Ethylbenzene, Methylene Chloride, Tetrachloroethene, m,p-Xylene, and o-Xylene were reported. Ethylbenzene, m,p-Xylene, and o-Xylene detections ranged up to 10,000µg/m³, 41,000µg/m³, and 23,000µg/m³ respectively. New York State currently does not have any standards, criteria or guidance values established for concentrations of compounds in sub-slab or subsurface vapors. Additionally, there are no databases available of background levels of volatile chemicals in soil vapor. Please refer to Attachment A, Figure 2 for sample location details.

As indicated in the attached Table 3, several VOCs, including Benzene, Carbon Tetrachloride, Chloromethane, n-Hexane, m&p-Xylene, MEK, and Toluene were detected in the outdoor air sample collected from the northwest side of the building. Each of the detected compounds was reported at concentrations below the guidance values.

The laboratory report for the air samples has been provided in Attachment D. The data report provided by Test America is equivalent to an Analytical Services Protocol Category B deliverable package. As such, a Data Usability Summary Report, which was prepared by an independent third party (Alpha Geoscience of Clifton Park, NY), has been provided in Attachment E. The reviewer considered all laboratory data presented usable.

3.0 CONCLUSIONS

From November 17 to November 18, 2008 a vapor intrusion study was performed at the subject site. Indoor, sub-slab, and exterior air samples were obtained as part of the study. All samples were collected in the same manner, for approximately the same duration, and at approximately the same time. All work was carried out in accordance with the NYS DOH Guidance Document.

1,2,-Dibromoethane, Ethylbenzene, n-Hexane, MEK, m,p-Xylene, and o-Xylene were detected in the indoor air above guidance values. The relatively high detections of MEK within these samples may be attributed to the chemical's widespread and frequent use as a part cleaner at the facility. MEK was documented as being in large supply and it use by hangar staff was documented by PES during the sample collection. Several other potential sources of indoor air contamination included stored aircraft within the hangar and multiple solvents, paints, oils, cleaners, etc. that were identified in the chemical storage and stock rooms.

Multiple compounds were detected in sub-slab vapors; however, the highest reported concentrations were predominantly associated with Ethylbenzene, m,p-Xylene, and o-Xylene.

Several compounds including Benzene, MEK, Toluene, and m&p-Xylene were detected in the outdoor air sample; however, none were reported above their respective guidance values.

4.0 STANDARD OF LIMITATIONS

Any statement or opinion contained in this Report prepared by Precision Environmental Services, Inc. (PES) shall not be construed to create any warranty or representation that the real or personal property on which the investigation was conducted is free of pollution or complies with any or all applicable regulatory or statutory requirements, or that the property is fit for any particular purpose. Unless otherwise indicated in this Report, PES did not independently determine the compliance of present or past owners of the site with federal, state or local laws and regulations. The conclusions presented in this Report were based upon the services described, within the time and budgetary constraints imposed by the client, and not on scientific tasks or procedures beyond the scope of those described services. PES shall not be responsible for conditions or consequences arising from any facts that were concealed, withheld or not fully disclosed by any person at the time the evaluation was performed.

Any person or entity considering the acquisition, use or other involvement or activity concerning the property that is the subject of this Report shall be solely responsible for determining the adequacy of the property for any and all such purposes. The person or entity should enter into any such acquisition or use relying solely on its own judgment and personal investigation of the property, and not upon reliance of any representation by PES regarding the property or the character, quality or value thereof.

Should you have any questions regarding the above report, please feel free to contact the undersigned at 518-885-4399.

SINCERELY,

PRECISION ENVIRONMENTAL SERVICES, INC.

Paul Sokolowski Project Manager

The M. Scholaush

Stephen Phelps Project Manager

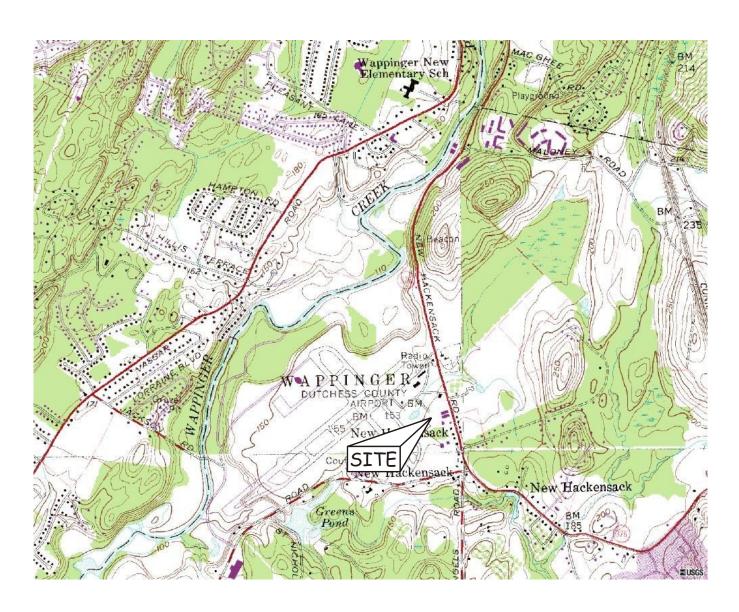
Enclosures:

Attachment A: Figures 1-2

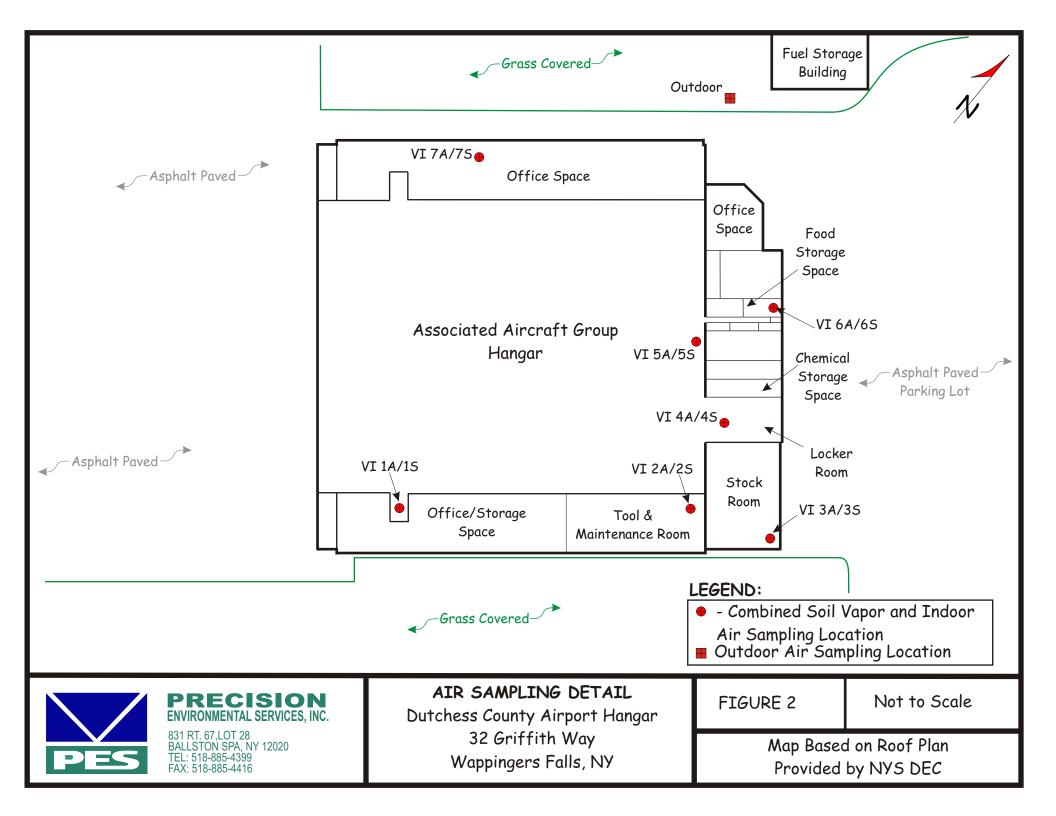
Attachment B: Vapor Intrusion Questionnaire

Attachment C: Air Sample Results Summary Tables 1-3

Attachment D: Laboratory Analytical Report Attachment E: Data Usability Summary Report



Attachment A: Figures


Figure 1: Site Location Detail Figure 2: Air Sampling Detail

Attachment B:

Laboratory Analytical Summary

Dutchess County Airport Hangar

Soil Vapor Intrusion Study

Table 1: Indoor Air Sample Analytical Summary									
		Sample Identification/Location							
Compound	VI 1A	VI 2A	VI 3A	VI 4A	VI 5A	VI 6A	VI 7A	Guidance Value (μg/m³) ^{*1}	
Volatiles - EPA TO15								•	
1,1,1-Trichloroethane	BRL	BRL	2.9	BRL	BRL	BRL	BRL	20.6	
1,1,2,2-Tetrachloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
1,1,2-Trichlorotrifluoroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
1,1,2-Trichloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.5	
1,1-Dichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.4	
1,2,4-Trichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<6.8	
1,2,4-Trimethylbenzene	6.4	7.4	0.47	BRL	5.4	BRL	0.74	9.5	
1,2-Dibromoethane	1.9	BRL	BRL	BRL	BRL	BRL	BRL	<1.5	
1,2-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.2	
1,2-Dichloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<0.9	
1,2-Dichloropropane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.6	
1,3,5-Trimethylbenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	3.7	
1,4-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	5.5	
1,4-Dioxane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
2-Butanone (MEK)	720 (D)	6600 (D)	110 (D)	610	500	530	16	12	
1,3-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<2.4	
2,2,4-Trimethylpentane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
Benzene	5.2	4.6	0.92	BRL	4.2	3.8	0.89	9.4	
Benzyl Chloride	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<6.8	
Bromodichloromethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
Bromoform	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA	
Bromomethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.7	
Carbon Tetrachloride	BRL	BRL	0.43	BRL	BRL	BRL	0.44	<1.3	
Chlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<0.9	
Chloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.1	
Chloroform	BRL	BRL	BRL	BRL	BRL	BRL	BRL	1.1	
Cyclohexane	3.4	BRL	BRL	BRL	BRL	BRL	BRL	NA	
Chloromethane	0.96	BRL	0.92	BRL	BRL	BRL	1	3.7	
cis-1,2-Dichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.9	

Dutchess County Airport Hangar

Soil Vapor Intrusion Study

Table 1: Indoor Air Sample Analytical Summary								
	Sample Identification/Location							Indoor Air
Compound	VI 1A	VI 2A	VI 3A	VI 4A	VI 5A	VI 6A	VI 7A	Guidance Value (µg/m³) ^{*1}
cis-1,3-Dichloropropene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<2.3
Dibromochloromethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA
Dichlorodifluoromethane	2.8	BRL	4.3	BRL	BRL	5.3	3.8	16.5
Ethanol	4.7	BRL	1.5	BRL	BRL	BRL	BRL	210
Ethylbenzene	4.2	12	1.1	BRL	4	BRL	0.91	5.7
Freon 114 (1,2-dichlorotetrafluoroethane)	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<6.8
n-Hexane	11	43	2.4	BRL	13	8.4	1.3	10.2
Hexachloro-1,3-butadiene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA
4-Methyl-2-pentanone (MIBK)	BRL	BRL	BRL	BRL	BRL	BRL	BRL	6
Methyl tert-butyl ether	BRL	BRL	BRL	BRL	BRL	BRL	BRL	11.5
Methylene Chloride	9.9	20	4.5	BRL	13	7.5	3.7	60 *2
Styrene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	1.9
t-Butyl Alcohol	13	BRL	BRL	BRL	BRL	BRL	BRL	NA
Tetrachloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	100 *4
Toluene	18	21	34	14	14	11	5.1	43
m,p-xylene	15	45	4	16	14	11	3.1	22.2
o-xylene	5.6	14	1.2	BRL	5.2	4	1.1	7.9
Trans-1,2-Dichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	NA
Trans-1,3-Dichloropropene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.3
Trichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	5 *3
Trichlorofluoromethane (Freon 11)	0.93	BRL	0.97	BRL	BRL	BRL	1.1	18.1
Vinyl Chloride	BRL	BRL	BRL	BRL	BRL	BRL	BRL	<1.9

NOTES:

- All results reported in µg/m³
- Analysis via EPA Method TO-15 SIM
- Analytical Facility: Test America of Knoxville, TN
- NA = Not Available
- ND = Not Detected Compound was analyzed for but not detected
- D = Diluted sample result presented. Detected above the Method Reporting Limit during initial analysis. Sample diluted and re-analyzed.
- *1 = Indoor air guidance value established by US EPA Building Assessment and Survey Evaluation (BASE '94-'98), except where noted otherwise
- *2 = NYSDOH, 1997, Tetrachloroethylene Ambient Air Document, Bureau of Toxic Substance Assessment
- *3 = NYSDOH, October 31, 2003 Letter from Kim D. Desnoyers, NYSDEC Div. Of Environmental Remediation
- ¹⁴ = NYSDOH, October 1997 Tetrachloroethene Ambient Air Criteria Document, Appendix 1 Tetrachloroethene Health Effects November 6, 1991

Dutchess County Airport Hangar Soil Vapor Intrusion Study

Table 2: Subslab Air Sample Analytical Summary							
	/Location						
Compound	VI 1S	VI 2S	VI 3S	VI 4S	VI 5S	VI 6S	VI 7S
Volatiles - EPA TO15			•	•	•	•	•
1,1,1-Trichloroethane	BRL	BRL	5.5	31	130	10	12
1,1,2,2-Tetrachloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,1,2-Trichlorotrifluoroethane	BRL	BRL	0.83	BRL	39	1.4	0.71
1,1,2-Trichloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,1-Dichloroethene	BRL	BRL	0.33	BRL	BRL	BRL	BRL
1,2,4-Trichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,2,4-Trimethylbenzene	BRL	720	2.1	1300	1700	0.56	1.4
1,2-Dibromoethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,2-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,2-Dichloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,2-Dichloropropane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,3,5-Trimethylbenzene	BRL	300	0.48	530	720	BRL	0.65
1,4-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL
1,4-Dioxane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
2-Butanone (MEK)	450 (D)	250	53	69	BRL	70	24
1,3-Dichlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL
2,2,4-Trimethylpentane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Benzene	0.91	BRL	0.42	BRL	BRL	1.3	1.2
Benzyl Chloride	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Bromodichloromethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Bromoform	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Bromomethane	12	BRL	BRL	BRL	BRL	BRL	BRL
Carbon Tetrachloride	BRL	BRL	0.37	BRL	BRL	BRL	0.31
Chlorobenzene	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Chloroethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Chloroform	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Cyclohexane	0.85	BRL	BRL	BRL	BRL	BRL	BRL
Chloromethane	0.77	BRL	BRL	BRL	BRL	BRL	BRL

Dutchess County Airport Hangar

Soil Vapor Intrusion Study

Table 2: Subslab Air Sample Analytical Summary								
	Sample Identification/Location							
Compound	VI 1S	VI 2S	VI 3S	VI 4S	VI 5S	VI 6S	VI 7S	
cis-1,2-Dichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
cis-1,3-Dichloropropene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
Dibromochloromethane	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
Dichlorodifluoromethane	86	BRL	50	5200	220	4700 (D)	2.7	
Ethanol	3.8	BRL	1.2	BRL	BRL	BRL	BRL	
Ethylbenzene	BRL	1300	4.7	7000 (D)	10000 (D)	6	5.5	
Freon 114 (1,2-dichlorotetrafluoroethane)	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
n-Hexane	1.8	BRL	BRL	BRL	BRL	BRL	2.5	
Hexachloro-1,3-butadiene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
4-Methyl-2-pentanone (MIBK)	BRL	BRL	1.3	BRL	BRL	BRL	1.1	
Methyl tert-butyl ether	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
Methylene Chloride	19	BRL	4.2	BRL	1800	8.9	2.7	
Styrene	BRL	BRL	BRL	BRL	BRL	BRL	0.58	
t-Butyl Alcohol	2.4	BRL	BRL	BRL	BRL	BRL	BRL	
Tetrachloroethene	BRL	100	42	260	1200	150 (D)	7.1	
Toluene	1.7	BRL	7.5	140	65	8.6	7.6	
m,p-xylene	0.51	5200	23	29000 (D)	41000 (D)	12	12	
o-xylene	BRL	3800	9.2	15000 (D)	23000 (D)	4.1	4.7	
Trans-1,2-Dichloroethene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
Trans-1,3-Dichloropropene	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
Trichloroethene	BRL	BRL	97	21	BRL	3.4	BRL	
Trichlorofluoromethane (Freon 11)	0.62	BRL	1.1	BRL	BRL	1.3	1.1	
Vinyl Chloride	BRL	BRL	BRL	BRL	BRL	BRL	BRL	

NOTES:

- All results reported in $\mu\text{g/m}^3$
- Analysis via EPA Method TO-15
- Analytical Facility: Test America of Knoxville, TN
- ND = Non Detect Compound was analyzed for but not detected
- D = Diluted sample result presented. Detected above the Method Reporting Limit during initial analysis. Sample diluted and re-analyzed.
- New York State currently does not have any standards, criteria or guidance values for concentrations of compounds in subsurface or sub slab vapors. Additionally, there are no databases available of background levels of volatile chemicals in soil vapor.

Dutchess County Airport Hangar Soil Vapor Intrusion Study

Table 3: Outdoor Air Sample Analytical Summary							
Compound	Sample Identification/Location Outdoor	Outdoor Air Guidance Value (μg/m³) ^{*1}					
Volatiles - EPA TO15							
1,1,1-Trichloroethane	BRL	2.6					
1,1,2,2-Tetrachloroethane	BRL	NA					
1,1,2-Trichloro-1,2,2-trifluoroethane	BRL	NA					
1,1,2-Trichloroethane	BRL	<1.6					
1,1-Dichloroethene	BRL	<1.4					
1,2,4-Trichlorobenzene	BRL	<6.4					
1,2,4-Trimethylbenzene	BRL	5.8					
1,2-Dibromoethane	BRL	<1.6					
1,2-Dichlorobenzene	BRL	<1.2					
1,2-Dichloroethane	BRL	<0.8					
1,2-Dichloropropane	BRL	<1.6					
1,3,5-Trimethylbenzene	BRL	2.7					
1,4-Dichlorobenzene	BRL	1.2					
1,4-Dioxane	BRL	NA					
2-Butanone (MEK)	1.4	11.3					
1,3-Dichlorobenzene	BRL	<2.2					
2,2,4-Trimethylpentane	BRL	NA					
Benzene	0.77	6.6					
Benzyl Chloride	BRL	<6.4					
Bromodichloromethane	BRL	NA					
Bromoform	BRL	NA					
Bromomethane	BRL	<1.6					
Carbon Tetrachloride	0.43	0.7					
Chlorobenzene	BRL	<0.8					
Chloroethane	BRL	<1.2					
Chloroform	BRL	0.6					
Cyclohexane	0.72	NA					
Chloromethane	0.87	3.7					
cis-1,2-Dichloroethene	BRL	<1.8					
cis-1,3-Dichloropropene	BRL	<2.2					
Dibromochloromethane	BRL	NA					
Dichlorodifluoromethane	2	8.1					
Ethanol	BRL	57					

Dutchess County Airport Hangar

Soil Vapor Intrusion Study

Table 3: Outdoor Air Sample Analytical Summary						
Compound	Sample Identification/Location	Outdoor Air Guidance Value				
·	Outdoor	(µg/m³) ^{*1}				
Ethylbenzene	BRL	3.5				
Freon 114 (1,2-dichlorotetrafluoroethane)	BRL	<6.4				
n-Hexane	1	6.4				
Hexachloro-1,3-butadiene	BRL	NA				
4-Methyl-2-pentanone (MIBK)	BRL	1.9				
Methyl tert-butyl ether	BRL	6.2				
Methylene Chloride	1.4	60 ^{*2}				
Styrene	BRL	1.3				
t-Butyl Alcohol	BRL	NA				
Tetrachloroethene	BRL	100 ^{*4}				
Toluene	2	33.7				
m,p-xylene	0.49	12.8				
o-xylene	BRL	4.6				
Trans-1,2-Dichloroethene	BRL	NA				
Trans-1,3-Dichloropropene	BRL	<1.4				
Trichloroethene	BRL	5 *3				
Trichlorofluoromethane (Freon 11)	1	4.3				
Vinyl Chloride	BRL	<1.8				

NOTES:

- All results reported in µg/m³
- Analysis via EPA Method TO-15 SIM
- Analytical Facility: Test America of Knoxville, TN
- NA = Not Available
- ND = Not Detected Compound was analyzed for but not detected
- ^{*1} = Indoor air guidance value established by US EPA Building Assessment and Survey Evaluation (BASE '94-'98), except where noted otherwise
- *2 = NYSDOH, 1997, Tetrachloroethylene Ambient Air Document, Bureau of Toxic Substance Assessment
- *3 = NYSDOH, October 31, 2003 Letter from Kim D. Desnoyers, NYSDEC Div. Of Environmental Remediation
- *4 = NYSDOH, October 1997 Tetrachloroethene Ambient Air Criteria Document, Appendix 1 Tetrachloroethene Health Effects November 6, 1991

Attachment C:

Indoor Air Quality Questionnaire & Building Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

· · · · · · · · · · · · · · · · · · ·
Preparer's Name Paul Sakolowski Brian Buls Date/Time Prepared 11/17/08 - 0930
Preparer's Affiliation Precision Environmental Service Phone No. 518-885-4399
Purpose of Investigation Determine if an contaminant plane is affecting air quality.
1 OCCUPANT.
1. OCCUPANT:
Interviewed: (Y) N
Address: AAG - 32 Griff the Way Waspiners Falls NY 17590
Address: AAG - 32 Griffith Way Waspiners Falls NY 17590
County: Datchess
Home Phone: 845-463-6500 Office Phone: Same
Number of Occupants/persons at this location ~70 Age of Occupants ~ 25 - 50
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: Datchess County First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

If the property is	residential,	type?	(Circle	appropriate	response)
--------------------	--------------	-------	---------	-------------	-----------

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	Colonial Mobile Home Townhouses/Condos Other:	
If multiple units, how ma			
If the property is comme	rcial, type?		
Business Type(s)	elicopter Flights +	Maintenance	
	ices (i.e., multi-use)? Y/		any?
Other characteristics:			
Number of floors 2	Build	ing age_5/ yrs	
Is the building insulate	d? Ø/ N How	air tight? Tight Average	ge / Not Tight
4. AIRFLOW Use air current tubes or t Airflow between floors	racer smoke to evaluate a	rflow patterns and qua	litatively describe:
Smoke tubes used	in each (2) Ha	I way. Smake	slowly rose up
Both stainvells			
Airflow near source Repir ted	on swingtie	Graph Sketchet	(Attacheel to) (Fireld Notes)
Outdoor air infiltration Frontin and of l	en - Man Wall sign. hantly over.	Lorge retractable	door changes
Infiltration into air ducts			

5. BASEMENT AND C	ONSTRUCT	3 ΓΙΟΝ CHARA		Circle all that ap	oply)
a. Above grade constr	uction:	wood frame	concrete	stone	brick Steel
b. Basement type:	Nore	full	crawlspace	slab	other
c. Basement floor:	None	concrete	dirt	stone	other
d. Basement floor:	None	uncovered	covered	covered with	
e. Concrete floor:		unsealed	sealed	sealed with E	poxy over ~ 25%
f. Foundation walls:	Unknown (Block	poured	block	stone	other
g. Foundation walls:	Unknown	unsealed	sealed	sealed with _	
h. The basement is:	NA	wet	damp	dry	moldy
i. The basement is:	NA	finished	unfinished	partially finish	hed
j. Sump present?		YIN			
k. Water in sump?	Y/N/	not applicable)		
Basement/Lowest level de	epth below g	rade: O	_(feet)		
Several thin crace	les thro	oughout co	nerete floo	r and f	enetrations for
6. HEATING, VENTING Type of heating system(s)				** **	rv)
Hot air circulation Space Heaters Electric baseboard	used in this	Heat pump Stream radiati Wood stove	Hot w	rater baseboard out floor our wood boiler	In Offices Other Notwood Gas fire
The primary type of fuel	used is:				Radiant Heater calony Hangar Ce
Natural Gas Electric Wood		Fuel Oil Propane Coal	Keros Solar	ene	
Domestic hot water tank i	fueled by: _	Natural	lons		
Boiler/furnace located in:	Baseme	ent Outdo	ors Main	Floor	Other

Window units Open Windows

Downshirs offices Hangar

None

Central Air

Air conditioning:

Are there air distribution ducts present?

YIN

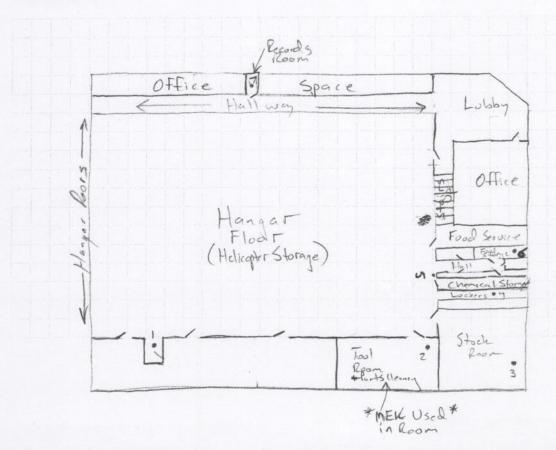
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

100	01	CCI	TED	A TAT	ME!
7.	6 36		JIP.	AIN	W. Y

Is basement	lowest level occupied? Full-time Occasionally Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyroom, bedroom, laundry, w	orkshop, storage)
Basement	NA	
1 st Floor	Office Space, Helicopter Storage - Maintenance	Anoduct Storeye
2 nd Floor	Office Space	
3 rd Floor		
4 th Floor		

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?	⑨/ N
b. Does the garage have a separate heating unit?	V) N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	YN/NA Please specify Helicopters
d. Has the building ever had a fire?	Y/ N When?
e. Is a kerosene or unvented gas space heater present?	Y/ Where?
f. Is there a workshop or hobby/craft area?	(Y) N Where & Type?
g. Is there smoking in the building?	Y/ N How frequently?
h. Have cleaning products been used recently?	N When & Type? 4-5 days/week
i. Have cosmetic products been used recently?	Y When & Type?


5	Stairway from 1st to 27.
j. Has painting/staining been done in the last 6 months?	Stairway from 1st to 22. Stairway from 1st to 22. Sevel off lobby 11/17. (Floor in hangar and 1000 off hangar by in last
k. Is there new carpet, drapes or other textiles?	(V) N Where & When? Carpets in SE corner of
I. Have air fresheners been used recently?	Y / When & Type?
m. Is there a kitchen exhaust fan?	N If yes, where vented? Vents outside
n. Is there a bathroom exhaust fan?	ON If yes, where vented? Vents outside
o. Is there a clothes dryer?	Y/ If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y / When & Type?
Are there odors in the building? If yes, please describe: Solvent - petroleum in hong	Ø/N yer + provintenque rooms,
Do any of the building occupants use solvents at work? e.g., chemical manufacturing or laboratory, auto mechanic or a poiler mechanic, pesticide application, cosmetologist	②/N auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used? MEK and N	toobols Macaly (See Logs + MSDS)
If yes, are their clothes washed at work?	Y/60
Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
s there a radon mitigation system for the building/structur s the system active or passive? Active/Passive	e? Y / Date of Installation:
. WATER AND SEWAGE	
Vater Supply: Public Water Drilled Well Driver	n Well Dug Well Other:
ewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
0. RELOCATION INFORMATION (for oil spill residentia	al emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to fri	iends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursemen	nt explained? Y/N
d. Relocation package provided and explained to reside	ents? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement: NA

First Floor:

1
(Wind From)
210 mph
25-35 pp 5 owlsid.

-61	e Location	1 Anbient A
	1	296
	2	14,200
-	3	827
	4	1 410
	5	1103
	6	785
	7	77
	Outdoor	114

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

* See Site Map*
+ Topo Map

(Wind from) North-wh 210 mph 25-35 pps

15. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	PPSRAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Chemical Storage Room	Sec MSDS + Pics	9-4- 55-gal	U + UO	See Photos; MSDS's Collected and Available	2300-15,000	Y
Janiforial Closed (Ho	· 11	< Igal	/1	71	780-450 Mb	Y
) II	3016-	//	//	670-630	Y
Stock)†	Pint - 1-Gal	11	11	470-5,300 Mb	Y
	,			·	"	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Attachment D:

Laboratory Analytical Report

H8K250101 Analytical Report	1
Sample Receipt Documentation	53
Volatiles	58
Raw Sample Data	59
Standards Data	451
Raw QC Data	562
Miscellaneous Data	613
Sample Receipt Documentation	626
Total Number of Pages	630

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 314078/117390

Dutchess County Airport

Lot #: H8K250101

John Rashak

New York State D.E.C. 21 South Putt Corners Road New Paltz, NY 12561

TESTAMERICA LABORATORIES, INC.

Jamie A. McKinney
Project Manager

December 4, 2008

ANALYTICAL METHODS SUMMARY

H8K250101

	ANALYTICAL
PARAMETER	METHOD
Volatile Organics by TO15	EPA-2 TO-15

References:

"Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", EPA-625/R-96/010b, January 1999.

SAMPLE SUMMARY

H8K250101

WO #_	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
K3K5V	001	VI 1A	11/18/08	16:00
K3K5X	002	VI 1S	11/18/08	16:00
K3K50	003	VI 2S	11/18/08	16:10
K3K51	004	VI 2A	11/18/08	16:10
K3K52	005	VI 3A	11/18/08	16:35
K3K53	006	VI 3S	11/18/08	16:35
K3K54	007	VI 4A	11/18/08	16:50
K3K55	008	VI 4S	11/18/08	16:50
K3K56	009	VI 5A	11/18/08	17:10
K3K57	010	VI 5S	11/18/08	17:10
K3K58	011	VI 6A	11/18/08	17:20
K3K59	012	VI 6S	11/18/08	17:20
КЗК6А	013	VI 7A	11/18/08	17:25
K3K6C	014	VI 7S	11/18/08	17:25
K3K6D	015	OUTDOOR	11/18/08	17:40
	_			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PROJECT NARRATIVE H8K250101

The results reported herein are applicable to the samples submitted for analysis only.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

There were no problems with the condition of the samples received.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

Due to an update to the laboratory procedure, batches 8338089, 8337098 and 8336265 contain only one surrogate, bromofluorobenzene. Note that the reference method does not require the use of surrogates for this analysis.

The concentration of 2-butanone in samples VI 1A, VI 1S, VI 2A and VI 3A exceeded the calibration level of the instrument. The samples were analyzed at a dilution to bring the concentration of the compound into the instrument calibration range. The results for both analyses are reported in order to provide the lowest possible reporting limits.

The concentration of ethylbenzene, m&p xylene and o-xylene in samples VI 4S and VI 5S exceeded the calibration level of the instrument. The samples were analyzed at a dilution to bring the concentration of the compound into the instrument calibration range. The results for both analyses are reported in order to provide the lowest possible reporting limits.

TestAmerica Knoxville maintains the following certifications, approvals and accreditations: Arkansas DEQ Lab #88-0688, California DHS ELAP Cert. #2423, Colorado DPHE, Connecticut DPH Lab #PH-0223, Florida DOH Lab #E87177, Georgia DNR Lab #906, Hawaii DOH, Illinois EPA Lab #200012, Indiana DOH Lab #C-TN-02, Iowa DNR Lab #375, Kansas DHE Cert. #E-10349, Kentucky DEP Lab #90101, Louisiana DEQ Cert. #03079, Louisiana DOHH, Maryland DOE Cert. #277, Michigan DEQ Lab #9933, Nevada DEP, New Jersey DEP Lab #TN001, New York DOH Lab #10781, North Carolina DPH Lab #21705, North Carolina DEHNR Cert. #64, Ohio EPA VAP Lab #CL0059, Oklahoma DEQ Lab #9415, Pennsylvania DEP Lab #68-00576, South Carolina DHEC Cert #84001001, Tennessee DOH Lab #02014, Texas CEQ, Utah DOH Lab # QUAN3, Virginia DGS Lab #00165, Washington DOE Lab #C1314, West Virginia DEP Cert. #345, West Virginia DHHR Cert #9955C, Wisconsin DNR Lab #998044300, Naval Facilities Engineering Service Center and USDA Soil Permit #S-46424. This list of approvals is subject to change and does not imply that laboratory certification is available for all parameters reported in this environmental sample data report.

PROJECT NARRATIVE H8K250101

The concentration of dichlorodifluoromethane and tetrachloroethene in sample VI 6S exceeded the calibration level of the instrument. The mass spectra was saturated with dichlorodifluoromethane resulting in a low estimated result. The sample was analyzed at a dilution to bring the concentration of the compound into the instrument calibration range. The results for both analyses are reported in order to provide the lowest possible reporting limits.

Sample Data Summary

New York State D.E.C. Client Sample ID: VI 1A GC/MS Volatiles

Lot-Sample # H8K250101 - 001 Work Order # K3K5V1AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date......:
 12/02/2008
 Analysis Date...
 12/03/2008

Prep Batch #....: 8338089

Dilution Factor.: 2 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULT: (ug/m3)	S	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.16	ND		0.73	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND				1.1	
ane			ND		•••	
1,4-Dioxane	ND	0.40	ND		1.4	
Ethylbenzene	0.98	0.16	4.2		0.69	
Trichlorofluoromethane	0.16	0.16	0.93		0.90	
Hexachlorobutadiene	ND	0.16	ND		1.7	
n-Hexane	3.1	0.40	11		1.4	
2,2,4-Trimethylpentane	ND	0.40	ND		1.9	
tert-Butyl alcohol	4.2	0.64	13		1.9	
Methylene chloride	2.9	0.40	9.9		1.4	
Benzene	1.6	0.16	5.2		0.51	
Benzyl chloride	ND	0.32	ND		1.7	
Styrene	ND	0.16	ND		0.68	
1,1,2,2-Tetrachloroethane	ND	0.16	ND		1.1	
Tetrachloroethene	ND	0.16	ND		1.1	
Toluene	4.7	0.16	18		0.60	
1,2,4-Trichlorobenzene	ND	0.16	ND		1.2	
1,1,1-Trichloroethane	ND	0.16	ND		0.87	
1,1,2-Trichloroethane	ND	0.16	ND		0.87	
Trichloroethene	ND	0.080	ND		0.43	
1,2,4-Trimethylbenzene	1.3	0.16	6.4		0.79	
1,3,5-Trimethylbenzene	0.38	0.16	1.9		0.79	
Vinyl chloride	ND	0.16	ND		0.41	
o-Xylene	1.3	0.16	5.6		0.69	
Methyl tert-butyl ether	ND	0.32	ND		1.2	
1,1,2-Trichlorotrifluoroethane	ND	0.16	ND		1.2	
m-Xylene & p-Xylene	3.4	0.16	15		0.69	
Bromodichloromethane	ND	0.16	ND		1.1	
1,2-Dibromoethane (EDB)	ND	0.16	ND		1.2	
2-Butanone (MEK)	240	0.64	720	E	1.9	
4-Methyl-2-pentanone (MIBK)	ND	0.40	ND		1.6	
Bromoform	ND	0.16	ND		1.7	
Bromomethane	ND	0.16	ND		0.62	
Carbon tetrachloride	ND	0.080	ND		0.50	
Chlorobenzene	ND	0.16	ND		0.74	
Dibromochloromethane	ND	0.16	ND		1.4	
Chloroethane	ND	0.16	ND		0.42	
Chloroform	ND	0.16	ND		0.78	
Chloromethane	0.46	0.40	0.96		0.83	
Cyclohexane	0.98	0.40	3.4		1.4	

TO-14 _rev5.rpt version 5.0.103 10/12/2006

New York State D.E.C. Client Sample ID: VI 1A GC/MS Volatiles

Lot-Sample # H8K250101 -	001	Work Order # K3K5V	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.16	ND	0.96
1,3-Dichlorobenzene	ND	0.16	ND	0.96
1,4-Dichlorobenzene	ND	0.16	ND	0.96
Dichlorodifluoromethane	0.56	0.16	2.8	0.79
1,1-Dichloroethane	ND	0.16	ND	0.65
1,2-Dichloroethane	ND	0.16	ND	0.65
1,1-Dichloroethene	ND	0.16	ND	0.63
cis-1,2-Dichloroethene	ND	0.16	ND	0.63
trans-1,2-Dichloroethene	ND	0.16	ND	0.63
1,2-Dichloropropane	ND	0.16	ND	0.74
cis-1,3-Dichloropropene	ND	0.16	ND	0.73
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT	aan den adal adal adal adal da	UNITS
Ethyl alcohol		4.7		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		99		70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Client Sample ID: VI 1A

GC/MS Volatiles

Lot-Sample # Work Order# K3K5V2AA Matrix....: AIR H8K250101 - 001 Date Sampled ...: 11/18/2008 Date Received ..: 11/24/2008 Prep Date....: Analysis Date... 12/01/2008 12/01/2008 Prep Batch #....: 8337098 45.45 Method..... TO-15 Dilution Factor .: REPORTING RESULTS REPORTING RESULTS **PARAMETER** (ppb(v/v))LIMIT (ppb(v/v)) (ug/m3) LIMIT (ug/m3) D 43 2-Butanone (MEK) 240 15 720 LABORATORY PERCENT CONTROL LIMITS (%) RECOVERY SURROGATE

88

Qualifiers

4-Bromofluorobenzene

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

70 - 130

New York State D.E.C. Client Sample ID: VI 1S GC/MS Volatiles

Lot-Sample # H8K250101 - 002 Work Order # K3K5X1AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date.......:
 12/02/2008
 Analysis Date...
 12/03/2008

Prep Batch #....: 8338089

Dilution Factor.: 1 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	ND	0.080	ND	0.56
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	0.11	0.080	0.62	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.51	0.20	1.8	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	0.79	0.32	2.4	0.97
Methylene chloride	5.6	0.20	19	0.69
Benzene	0.29	0.080	0.91	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	0.46	0.080	1.7	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	0.12	0.080	0.51	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	89	0.32	260 E	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	3.0	0.080	12	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	0.37	0.20	0.77	0.41

New York State D.E.C. Client Sample ID: VI 1S GC/MS Volatiles

Lot-Sample # H8K250101 -	002 V	Vork Order # K3K5X	IAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	0.25	0.20	0.85	0.69
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	17	0.080	86	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED C	OMPOUNDS	RESULT		UNITS
Ethyl alcohol		3.8		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	***************************************	93	understand the second s	70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 1S GC/MS Volatiles

Lot-Sample # H8	K250101 - 002		Work	Order#	K3K5X2	٩A		Matrix	:	AIR
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	11/18/2008 12/01/2008 8337098 20		Analy	Received: sis Date	11/24/200 12/01/200 TO-15					
PARAMETER		RESULTS (ppb(v/v))		REPORTI LIMIT (pr		RESULT (ug/m3)	rs		EPORTI	
2-Butanone (MEK)	·	150		6.4		450	D	1	9	
SURROGATE		**********		RCENT COVERY		-		LABO CONT LIMIT		*
4-Bromofluorobenze	ene		ç	93				70 - 1	130	

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 2S GC/MS Volatiles

Lot-Sample # H8K250101 - 003 Work Order # K3K501AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date.......:
 12/01/2008
 Analysis Date...
 12/01/2008

Prep Batch #....: 8337098

Dilution Factor.: 45.45 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	290	3.6	1300	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	NĐ	44
Methylene chloride	ND	9.1	ND	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	15	3.6	100	25
Toluene	ND	3.6	ND	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	ND	3.6	ND	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	ND	1.8	ND	9.8
1,2,4-Trimethylbenzene	150	3.6	720	18
1,3,5-Trimethylbenzene	62	3.6	300	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	870	3.6	3800	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	ND	3.6	ND	28
m-Xylene & p-Xylene	1200	3.6	5200	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	85	15	250	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19

New York State D.E.C. Client Sample ID: VI 2S GC/MS Volatiles

Lot-Sample # H8K250101	- 003	Work Order # K3K50	IAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	9.1	ND	31
1,2-Dichlorobenzene	ND	3.6	ND	22
1,3-Dichlorobenzene	ND	3.6	ND	22
1,4-Dichlorobenzene	ND	3.6	ND	22
Dichlorodifluoromethane	ND	3.6	ND	18
1,1-Dichloroethane	ND	3.6	ND	15
1,2-Dichloroethane	ND	3.6	ND	15
1,1-Dichloroethene	ND	3.6	ND	14
cis-1,2-Dichloroethene	ND	3.6	ND	14
trans-1,2-Dichloroethene	ND	3.6	ND	14
1,2-Dichloropropane	ND	3.6	ND	17
cis-1,3-Dichloropropene	ND	3.6	ND	17
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT	······································	UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	STORY ALLES AND	100		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 2A GC/MS Volatiles

Lot-Sample # H8K250101 - 004 Work Order # K3K511AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date.......:
 12/01/2008
 Analysis Date...
 12/01/2008

Prep Batch #....: 8337098

Dilution Factor.: 10 Method.....: TO-15

Dilution Factor.: 10	IVI			
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.80	ND	5.6
ane				
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	2.7	0.80	12	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	12	2.0	43	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	5.8	2.0	20	6.9
Benzene	1.4	0.80	4.6	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	5.7	0.80	21	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	1.5	0.80	7.4	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	3.3	0.80	14	3.5
Methyl tert-butyl ether	ND	1.6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	10	0.80	45	3.5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	2400	3.2	7000 E	9.4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
	ND ND	0.80	ND	3.1
Bromomethane	ND ND	0.40	ND	2.5
Carbon tetrachloride			ND ND	3.7
Chlorobenzene	ND	0.80		6.8
Dibromochloromethane	ND	0.80	ND	2.1
Chloroethane	ND	0.80	ND	3.9
Chloroform	ND	0.80	ND	
Chloromethane	ND	2.0	ND	4.1

New York State D.E.C. Client Sample ID: VI 2A GC/MS Volatiles

Lot-Sample # H8K250101	- 004 V	Vork Order # K3K511	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0	ND	6.9
1,2-Dichlorobenzene	ND	0.80	ND	4.8
1,3-Dichlorobenzene	ND	0.80	ND	4.8
1,4-Dichlorobenzene	ND	0.80	ND	4.8
Dichlorodifluoromethane	ND	0.80	ND	4.0
1,1-Dichloroethane	ND	0.80	ND	3.2
1,2-Dichloroethane	ND	0.80	ND	3.2
1,1-Dichloroethene	ND	0.80	ND	3.2
cis-1,2-Dichloroethene	ND	0.80	ND	3.2
trans-1,2-Dichloroethene	ND	0.80	ND	3.2
1,2-Dichloropropane	ND	0.80	ND	3.7
cis-1,3-Dichloropropene	ND	0.80	ND	3.6
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	Aparlamining metalen kalan keleman keman kema Keman keman ke	92		70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: VI 2A

GC/MS Volatiles

Lot-Sample # Work Order # H8K250101 - 004 K3K512AA Matrix....: **AIR** Date Sampled ...: 11/18/2008 Date Received ..: 11/24/2008 Prep Date....: 12/02/2008 Analysis Date... 12/02/2008 Prep Batch #: 8338089 Dilution Factor.: 168.18 Method..... TO-15 RESULTS REPORTING RESULTS REPORTING **PARAMETER** (ppb(v/v))LIMIT (ppb(v/v))(ug/m3) LIMIT (ug/m3) 54 D 2-Butanone (MEK) 2200 6600 160 LABORATORY PERCENT CONTROL RECOVERY LIMITS (%) **SURROGATE** 4-Bromofluorobenzene 92 70 - 130

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 3A GC/MS Volatiles

Lot-Sample # H8K250101 - 005 Work Order # K3K521AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date.......:
 11/29/2008
 Analysis Date...
 11/29/2008

Prep Batch #....: 8336265

Dilution Factor.: 1 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)		REPORTING LIMIT (ug/m3)	·····
trans-1,3-Dichloropropene	ND	0.080	ND		0.36	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND		0.56	
ane						
1,4-Dioxane	ND	0.20	ND		0.72	
Ethylbenzene	0.26	0.080	1.1		0.35	
Trichlorofluoromethane	0.17	0.080	0.97		0.45	
Hexachlorobutadiene	ND	0.080	ND		0.85	
n-Hexane	0.67	0.20	2.4		0.70	
2,2,4-Trimethylpentane	ND	0.20	ND		0.93	
tert-Butyl alcohol	ND	0.32	ND		0.97	
Methylene chloride	1.3	0.20	4.5		0.69	
Benzene	0.29	0.080	0.92		0.26	
Benzyl chloride	ND	0.16	ND		0.83	
Styrene	ND	0.080	ND		0.34	
1,1,2,2-Tetrachloroethane	ND	0.080	ND		0.55	
Tetrachloroethene	ND	0.080	ND		0.54	
Toluene	9.0	0.080	34		0.30	
1,2,4-Trichlorobenzene	ND	0.080	ND		0.59	
1,1,1-Trichloroethane	0.53	0.080	2.9		0.44	
1,1,2-Trichloroethane	ND	0.080	ND		0.44	
Trichloroethene	ND	0.040	ND		0.21	
1,2,4-Trimethylbenzene	0.096	0.080	0.47		0.39	
1,3,5-Trimethylbenzene	ND	0.080	ND		0.39	
Vinyl chloride	ND	0.080	ND		0.20	
o-Xylene	0.27	0.080	1.2		0.35	
Methyl tert-butyl ether	ND	0.16	ND		0.58	
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND		0.61	
m-Xylene & p-Xylene	0.92	0.080	4.0		0.35	
Bromodichloromethane	ND	0.080	ND		0.54	
1,2-Dibromoethane (EDB)	ND	0.080	ND		0.61	
2-Butanone (MEK)	56	0.32	160	\mathbf{E}	0.94	
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND		0.82	
Bromoform	ND	0.080	ND		0.83	
Bromomethane	ND	0.080	ND		0.31	
Carbon tetrachloride	0.068	0.040	0.43		0.25	
Chlorobenzene	ND	0.080	ND		0.37	
Dibromochloromethane	ND	0.080	ND		0.68	
Chloroethane	ND	0.080	ND		0.21	
Chloroform	ND	0.080	ND		0.39	
Chloromethane	0.45	0.20	0.92		0.41	
Cyclohexane	ND	0.20	ND		0.69	
				TO	1-14 _rev5.rpt version 5.0.103	10/12/20/

TO-14 _rev5.rpt version 5.0.103 10/12/2006

New York State D.E.C. Client Sample ID: VI 3A GC/MS Volatiles

Lot-Sample # H8K250101 - 0	005	Work Order # K	3K521AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	0.87	0.080	4.3	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED CO	OMPOUNDS	RESUL	Т	UNITS
Ethyl alcohol		1.5		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		96		70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: VI 3A

GC/MS Volatiles

Lot-Sample # H8K250101 - 005 Work Order # K3K522AA Matrix....: AIR Date Sampled ...: 11/18/2008 Date Received ..: 11/24/2008 Prep Date....: Analysis Date... 11/30/2008 11/29/2008 Prep Batch #....: 8336265 Method..... TO-15 Dilution Factor.: 10 RESULTS REPORTING RESULTS REPORTING **PARAMETER** LIMIT (ug/m3) (ppb(v/v)) LIMIT (ppb(v/v))(ug/m3) 2-Butanone (MEK) 36 3.2 110 D 9.4 LABORATORY CONTROL **PERCENT** LIMITS (%) RECOVERY **SURROGATE** 92 70 - 1304-Bromofluorobenzene

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 3S GC/MS Volatiles

Lot-Sample # H8K250101 - 006 Work Order # K3K531AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date.......:
 12/01/2008
 Analysis Date...
 12/01/2008

Prep Batch #....: 8337098

Dilution Factor.: 1 Method...........: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.1	0.080	4.7	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	1.2	0.20	4.2	0.69
Benzene	0.13	0.080	0.42	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	6.1	0.080	42	0.54
Toluene	2.0	0.080	7.5	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	1.0	0.080	5.5	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	18	0.040	97	0.21
1,2,4-Trimethylbenzene	0.42	0.080	2.1	0.39
1,3,5-Trimethylbenzene	0.097	0.080	0.48	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	2.1	0.080	9.2	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.11	0.080	0.83	0.61
m-Xylene & p-Xylene	5.2	0.080	23	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	18	0.32	53	0.94
4-Methyl-2-pentanone (MIBK)	0.32	0.20	1.3	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.059	0.040	0.37	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69
Сустопелине	+12	VV	. 120	TO-14 rev5 mt version 5 0 103 10/12/2

TO-14 _rev5.rpt version 5.0.103 10/12/2006

New York State D.E.C. Client Sample ID: VI 3S GC/MS Volatiles

Lot-Sample #	H8K250101 - 0	006	Work Order # K3K53	1AA	Matrix: AIR
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenz	ene	ND	0.080	ND	0.48
1,3-Dichlorobenz	ene	ND	0.080	ND	0,48
1,4-Dichlorobenz	tene	ND	0.080	ND	0.48
Dichlorodifluoro	omethane	10	0.080	50	0.40
1,1-Dichloroetha	ine	0.082	0.080	0.33	0.32
1,2-Dichloroetha	ne	ND	0.080	ND	0.32
1,1-Dichloroethe	ne	ND	0.080	ND	0.32
cis-1,2-Dichloroe	thene	ND	0.080	ND	0.32
trans-1,2-Dichlor	oethene	ND	0.080	ND	0.32
1,2-Dichloroprop	ane	ND	0.080	ND	0.37
cis-1,3-Dichlorop	propene	ND	0.080	ND	0.36
TENTATIVELY II	NDENTIFIED CO	OMPOUNDS	RESULT	***************************************	UNITS
Ethyl alcohol			1.2		ppb(v/v)
SURROGATE			PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobe	nzene		98	intrintrintrintrintrintrintrintrintrintr	70 - 130

Qualifiers

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 4A GC/MS Volatiles

Lot-Sample # H8K250101 - 007 Work Order # K3K541AA Matrix......: AIR

 Date Sampled...:
 11/18/2008

 Prep Date......:
 12/02/2008

 Prep Batch #....:
 8338089

Date Received..: 11/24/2008 **Analysis Date...** 12/02/2008

Dilution Factor.: 20 M.

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	1.6	ND	7.3
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	1.6	ND	11
ane				
1,4-Dioxane	ND	4.0	ND	14
Ethylbenzene	ND	1.6	ND	6.9
Trichlorofluoromethane	ND	1.6	ND	9.0
Hexachlorobutadiene	ND	1.6	ND	17
n-Hexane	ND	4.0	ND	14
2,2,4-Trimethylpentane	ND	4.0	ND	19
tert-Butyl alcohol	ND	6.4	ND	19
Methylene chloride	ND	4.0	ND	14
Benzene	ND	1.6	ND	5.1
Benzyl chloride	ND	3.2	ND	17
Styrene	ND	1.6	ND	6.8
1,1,2,2-Tetrachloroethane	ND	1.6	ND	11
Tetrachloroethene	ND	1.6	ND	11
Toluene	3.8	1.6	14	6.0
1,2,4-Trichlorobenzene	ND	1.6	ND	12
1,1,1-Trichloroethane	ND	1.6	ND	8.7
1,1,2-Trichloroethane	ND	1.6	ND	8.7
Trichloroethene	ND	0.80	ND	4.3
1,2,4-Trimethylbenzene	ND	1.6	ND	7.9
1,3,5-Trimethylbenzene	ND	1.6	ND	7.9
Vinyl chloride	ND	1.6	ND	4.1
o-Xylene	ND	1.6	ND	6.9
Methyl tert-butyl ether	ND	3.2	ND	12
1,1,2-Trichlorotrifluoroethane	ND	1.6	ND	12
m-Xylene & p-Xylene	3.6	1.6	16	6.9
Bromodichloromethane	ND	1.6	ND	11
1,2-Dibromoethane (EDB)	ND	1.6	ND	12
2-Butanone (MEK)	210	6.4	610	19
4-Methyl-2-pentanone (MIBK)	ND	4.0	ND	16
Bromoform	ND	1.6	ND	17
Bromomethane	ND	1.6	ND	6.2
Carbon tetrachloride	ND	0.80	ND	5.0
Chlorobenzene	ND	1.6	ND	7.4
Dibromochloromethane	ND	1.6	ND	14
Chloroethane	ND	1.6	ND	4.2
Chloroform	ND	1.6	ND	7.8
Chloromethane	ND	4.0	ND	8.3

New York State D.E.C. Client Sample ID: VI 4A GC/MS Volatiles

Lot-Sample # H8K250101	- 007 V	Work Order # K3K541	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	4.0	ND	14
1,2-Dichlorobenzene	ND	1.6	ND	9.6
1,3-Dichlorobenzene	ND	1.6	ND	9.6
1,4-Dichlorobenzene	ND	1.6	ND	9.6
Dichlorodifluoromethane	ND	1.6	ND	7.9
1,1-Dichloroethane	ND	1.6	ND	6.5
1,2-Dichloroethane	ND	1.6	ND	6.5
1,1-Dichloroethene	ND	1.6	ND	6.3
cis-1,2-Dichloroethene	ND	1.6	ND	6.3
trans-1,2-Dichloroethene	ND	1.6	ND	6.3
1,2-Dichloropropane	ND	1.6	ND	7.4
cis-1,3-Dichloropropene	ND	1.6	ND	7.3
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		92		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 4S **GC/MS Volatiles**

Lot-Sample # H8K250101 - 008 Work Order # K3K551AA Matrix....: AIR

Date Sampled...:

11/18/2008

Date Received..: 11/24/2008

Prep Date....:

12/01/2008

Analysis Date... 12/01/2008

Prep Batch #....:

8337098

Dilution Factor.:

45.45

Method....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	2200	3.6	9600 E	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	ND	44
Methylene chloride	ND	9.1	ND	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	39	3.6	260	25
Toluene	36	3.6	140	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	5.7	3.6	31	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	3.9	1.8	21	9.8
1,2,4-Trimethylbenzene	260	3.6	1300	18
1,3,5-Trimethylbenzene	110	3.6	530	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	4400	3.6	19000 E	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	ND	3.6	ND	28
m-Xylene & p-Xylene	6700	3.6	29000 E	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	23	15	69	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19

New York State D.E.C. Client Sample ID: VI 4S GC/MS Volatiles

Lot-Sample # H8K250101 - 008 Work Order# K3K551AA Matrix....: **AIR** RESULTS REPORTING **RESULTS** REPORTING PARAMETER (ppb(v/v))LIMIT (ppb(v/v))(ug/m3) LIMIT (ug/m3) Cyclohexane ND 9.1 ND 31 1,2-Dichlorobenzene ND 3.6 ND 22 1,3-Dichlorobenzene ND 3.6 ND 22 1,4-Dichlorobenzene ND 3.6 ND 22 Dichlorodifluoromethane 1100 3.6 5200 18 1.1-Dichloroethane ND 3.6 ND 15 1,2-Dichloroethane ND 3.6 ND 15 1,1-Dichloroethene ND 3.6 14 ND cis-1,2-Dichloroethene ND 3.6 ND 14 trans-1,2-Dichloroethene ND 3.6 ND 14 1,2-Dichloropropane ND 3.6 ND 17 cis-1,3-Dichloropropene ND 3.6 ND 17 TENTATIVELY INDENTIFIED COMPOUNDS RESULT UNITS ethyl alcohol ND ppb(v/v)LABORATORY PERCENT CONTROL RECOVERY LIMITS (%) SURROGATE 4-Bromofluorobenzene 110 70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: VI 4S

GC/MS Volatiles

Lot-Sample # H8K250101 - 008 Work Order # K3K552AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received..:
 11/24/2008

 Prep Date......:
 12/02/2008
 Analysis Date...
 12/02/2008

 Prep Batch #....:
 8338089

Dilution Factor.: 1041.36 Method...........: TO-15

RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULT (ug/m3)	S	REPORTING LIMIT (ug/m3)
1600	83	7000	D	360
3600	83	15000	D	360
6600	83	29000	D	360
				LABORATORY
	PERCENT			CONTROL
	RECOVERY			LIMITS (%)
	0.2			70 - 130
	(ppb(v/v)) 1600 3600	(ppb(v/v)) LIMIT (ppb(v/v)) 1600 83 3600 83 6600 83 PERCENT RECOVERY	(ppb(v/v)) LIMIT (ppb(v/v)) (ug/m3) 1600 83 7000 3600 83 15000 6600 83 29000 PERCENT	(ppb(v/v)) LIMIT (ppb(v/v)) (ug/m3) 1600 83 7000 D 3600 83 15000 D 6600 83 29000 D PERCENT RECOVERY

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 5A GC/MS Volatiles

Lot-Sample # H8K250101 - 009 Work Order # K3K561AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received...
 11/24/2008

 Prep Date.......:
 12/02/2008
 Analysis Date...
 12/02/2008

Prep Batch #....: 8338089

Dilution Factor.: 10 Method...... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.80	ND	5.6
ane				
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	0.92	0.80	4.0	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	3.6	2.0	13	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	3.6	2.0	13	6.9
Benzene	1.3	0.80	4.2	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	3.7	0.80	14	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	1.1	0.80	5.4	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	1.2	0.80	5.2	3.5
Methyl tert-butyl ether	ND	1.6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	3.1	0.80	14	3.5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	170	3.2	500	9.4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
Bromomethane	ND	0.80	ND	3.1
Carbon tetrachloride	ND	0.40	ND	2.5
Chlorobenzene	ND	0.80	ND	3.7
Dibromochloromethane	ND	0.80	ND	6.8
Chloroethane	ND	0.80	ND	2.1
Chloroform	ND	0.80	ND	3.9
Chloromethane	ND	2.0	ND	4.1

New York State D.E.C. Client Sample ID: VI 5A GC/MS Volatiles

Lot-Sample # H8K250101	- 009 V	Vork Order # K3K561	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0	ND	6.9
1,2-Dichlorobenzene	ND	0.80	ND	4.8
1,3-Dichlorobenzene	ND	0.80	ND	4.8
1,4-Dichlorobenzene	ND	0.80	ND	4.8
Dichlorodifluoromethane	ND	0.80	ND	4.0
1,1-Dichloroethane	ND	0.80	ND	3.2
1,2-Dichloroethane	ND	0.80	ND	3.2
1,1-Dichloroethene	ND	0.80	ND	3.2
cis-1,2-Dichloroethene	ND	0.80	ND	3.2
trans-1,2-Dichloroethene	ND	0.80	ND	3.2
1,2-Dichloropropane	ND	0.80	ND	3.7
cis-1,3-Dichloropropene	ND	0.80	ND	3.6
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT	**************	UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		94		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 5S GC/MS Volatiles

Lot-Sample # H8K250101 - 010 Work Order # K3K571AA Matrix......: AIR

 Date Sampled...:
 11/18/2008
 Date Received...
 11/24/2008

 Prep Date.......:
 12/01/2008
 Analysis Date...
 12/01/2008

Prep Batch #....: 8337098

Dilution Factor.: 45.45 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	2500	3.6	11000 E	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	ND	44
Methylene chloride	530	9.1	1800	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	170	3.6	1200	25
Toluene	17	3.6	65	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	23	3.6	130	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	ND	1.8	ND	9.8
1,2,4-Trimethylbenzene	350	3.6	1700	18
1,3,5-Trimethylbenzene	150	3.6	720	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	4800	3.6	21000 E	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	5.1	3.6	39	28
m-Xylene & p-Xylene	6800	3.6	29000 E	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	ND	15	ND	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19

New York State D.E.C. Client Sample ID: VI 5S GC/MS Volatiles

Lot-Sample # Work Order # AIR H8K250101 - 010 K3K571AA Matrix....: RESULTS REPORTING RESULTS REPORTING **PARAMETER** (ppb(v/v)) LIMIT (ppb(v/v)) (ug/m3) LIMIT (ug/m3) Cyclohexane ND 9.1 ND 31 ND 22 1.2-Dichlorobenzene ND 3.6 22 1,3-Dichlorobenzene ND 3.6 ND 1,4-Dichlorobenzene ND 3.6 ND 22 Dichlorodifluoromethane 44 3.6 220 18 ND 3.6 ND 15 1,1-Dichloroethane 1,2-Dichloroethane ND 3.6 ND 15 1,1-Dichloroethene ND 3.6 ND 14 14 cis-1,2-Dichloroethene ND 3.6 ND ND 3.6 ND 14 trans-1,2-Dichloroethene 17 ND 3.6 ND 1,2-Dichloropropane cis-1,3-Dichloropropene ND 3.6 ND 17 TENTATIVELY INDENTIFIED COMPOUNDS UNITS RESULT ND ppb(v/v)ethyl alcohol LABORATORY CONTROL PERCENT RECOVERY LIMITS (%) **SURROGATE** 106 70 - 1304-Bromofluorobenzene

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 5S GC/MS Volatiles

Lot-Sample # H8K250	101 - 010	Work Order#	K3K572A	.A		Matrix:	AIR
Prep Date: 12/ Prep Batch #: 833	18/2008 02/2008 38089 79.09	Date Received: Analysis Date Method	12/02/200	-			
PARAMETER	RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	S	REPORT LIMIT (u	
Ethylbenzene o-Xylene m-Xylene & p-Xylene	2300 5400 9400	86 86 86		10000 23000 41000	D D D	370 370 370	
SURROGATE		PERCENT RECOVERY				LABORATOR CONTROL LIMITS (%)	Y
4-Bromofluorobenzene		94		•		70 - 130	

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 6A GC/MS Volatiles

Lot-Sample # H8K250101 - 011 Work Order # K3K581AA Matrix......: AIR

 Date Sampled...:
 11/18/2008

 Prep Date......:
 11/29/2008

 Prep Batch #....:
 8336265

Date Received..: 11/24/2008 **Analysis Date...** 11/29/2008

Prep Batch #....: 8336265 Dilution Factor.: 10

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	ND	0.80	ND	5.6
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	ND	0.80	ND	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	2.4	2.0	8.4	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	2.1	2.0	7. 5	6.9
Benzene	1.2	0.80	3.8	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	2.9	0.80	11	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	ND	0.80	ND	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	0.93	0.80	4.0	3.5
Methyl tert-butyl ether	ND	1.6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	2.6	0.80	11	3.5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	180	3.2	530	9.4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
Bromomethane	ND	0.80	ND	3.1
Carbon tetrachloride	ND	0.40	ND	2.5
Chlorobenzene	ND	0.80	ND	3.7
Dibromochloromethane	ND	0.80	ND	6.8
Chloroethane	ND	0.80	ND	2.1
Chloroform	ND	0.80	ND	3.9
Chloromethane	ND	2.0	ND	4.1

New York State D.E.C. Client Sample ID: VI 6A GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0	ND	6.9
1,2-Dichlorobenzene	ND	0.80	ND	4.8
1,3-Dichlorobenzene	ND	0.80	ND	4.8
1,4-Dichlorobenzene	ND	0.80	ND	4.8
Dichlorodifluoromethane	1.1	0.80	5.3	4.0
1,1-Dichloroethane	ND	0.80	ND	3.2
1,2-Dichloroethane	ND	0.80	ND	3.2
1,1-Dichloroethene	ND	0.80	ND	3.2
cis-1,2-Dichloroethene	ND	0.80	ND	3.2
trans-1,2-Dichloroethene	ND	0.80	ND	3.2
1,2-Dichloropropane	ND	0.80	ND	3.7
cis-1,3-Dichloropropene	ND	0.80	ND	3.6
TENTATIVELY INDENTIFIED C	COMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		93		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 6S GC/MS Volatiles

Lot-Sample # H8K250101 - 012 Work Order # K3K591AA Matrix......: AIR

Date Sampled...: 11/18/2008
Prep Date......: 11/29/2008
Prep Batch # ... 8226265

Date Received..: 11/24/2008 **Analysis Date...** 11/29/2008

Prep Batch #....: 8336265

Dilution Factor.: 1 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroe	0.096	0.080	0.67	0.56
thane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.4	0.080	6.0	0.35
Trichlorofluoromethane	0.23	0.080	1.3	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	2.6	0.20	8.9	0.69
Benzene	0.41	0.080	1.3	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	32	0.080	220 E	0.54
Toluene	2.3	0.080	8.6	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	1.8	0.080	10	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	0.64	0.040	3.4	0.21
1,2,4-Trimethylbenzene	0.11	0.080	0.56	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	0.94	0.080	4.1	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.18	0.080	1.4	0.61
m-Xylene & p-Xylene	2.7	0.080	12	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	24	0.32	70	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69
~,	- 140	V	. 1	TO-14 _rev5.rpt version 5.0.103 10/12/200

TO-14 _rev5.rpt version 5.0.103 10/12/2006

New York State D.E.C. Client Sample ID: VI 6S GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULT (ug/m3)	ΓS	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.080	ND		0.48
1,3-Dichlorobenzene	ND	0.080	ND		0.48
1,4-Dichlorobenzene	ND	0.080	ND		0.48
Dichlorodifluoromethane	82	0.080	410	E	0.40
1,1-Dichloroethane	ND	0.080	ND		0.32
1,2-Dichloroethane	ND	0.080	ND		0.32
1,1-Dichloroethene	ND	0.080	ND		0.32
cis-1,2-Dichloroethene	ND	0.080	ND		0.32
trans-1,2-Dichloroethene	ND	0.080	ND		0.32
1,2-Dichloropropane	ND	0.080	ND		0.37
cis-1,3-Dichloropropene	ND	0.080	ND		0.36
TENTATIVELY INDENTIFIED C	COMPOUNDS	RESULT	indicated and a second		UNITS
Ethyl alcohol		ND			ppb(v/v)
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	da la fada da mana da mana da	96	anne.		70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: VI 6S

GC/MS Volatiles

Work Order# K3K593AA Matrix....: **AIR** Lot-Sample # H8K250101 - 012 Date Sampled ...: 11/18/2008 Date Received ..: 11/24/2008 Analysis Date... 12/02/2008 Prep Date....: 12/02/2008 Prep Batch #....: 8338089 Method..... TO-15 102.5 Dilution Factor .: REPORTING REPORTING RESULTS RESULTS LIMIT (ug/m3) **PARAMETER** LIMIT (ppb(v/v)) (ug/m3)(ppb(v/v))D 56 150 Tetrachloroethene 22 8.2 940 8.2 4700 D 41 Dichlorodifluoromethane LABORATORY CONTROL PERCENT LIMITS (%)

RECOVERY

90

Qualifiers

D

SURROGATE

4-Bromofluorobenzene

Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

70 - 130

Matrix....:

AIR

New York State D.E.C. Client Sample ID: VI 7A GC/MS Volatiles

Lot-Sample # H8K250101 - 013 Work Order # K3K6A1AA

 Date Sampled...:
 11/18/2008
 Date Received...
 11/24/2008

 Prep Date.......
 12/02/2008
 Analysis Date...
 12/02/2008

Prep Batch #....: 8338089

Dilution Factor.: 1 Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	0.21	0.080	0.91	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.36	0.20	1.3	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	1.1	0.20	3.7	0.69
Benzene	0.28	0.080	0.89	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	1.4	0.080	5.1	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	0.15	0.080	0.74	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	0.25	0.080	1.1	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	0.72	0.080	3.1	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	5.4	0.32	16	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.070	0.040	0.44	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	0.50	0.20	1.0	0.41

New York State D.E.C. Client Sample ID: VI 7A GC/MS Volatiles

Lot-Sample # H8K250101 - 013		Work Order # K3K6A1A		AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	0.20		ND	0.69
1,2-Dichlorobenzene	ND	0.080		ND	0.48
1,3-Dichlorobenzene	ND	0.080		ND	0.48
1,4-Dichlorobenzene	ND	0.080		ND	0.48
Dichlorodifluoromethane	0.76	0.080		3.8	0.40
1,1-Dichloroethane	ND	0.080		ND	0.32
1,2-Dichloroethane	ND	0.080		ND	0.32
1,1-Dichloroethene	ND	0.080		ND	0.32
cis-1,2-Dichloroethene	ND	0.080		ND	0.32
trans-1,2-Dichloroethene	ND	0.080		ND	0.32
1,2-Dichloropropane	ND	0.080		ND	0.37
cis-1,3-Dichloropropene	ND	0.080		ND	0.36
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT		UNITS	
Ethyl alcohol		ND			ppb(v/v)
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	0.000 (0.000 (0.000 (0.000 (0.000)	96		nteriorina (70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

New York State D.E.C. Client Sample ID: VI 7S **GC/MS** Volatiles

H8K250101 - 014 Lot-Sample #

Work Order # K3K6C1AA Matrix....: AIR

Date Sampled...: Prep Date....: 11/18/2008

Date Received..: 11/24/2008

Prep Batch #....:

11/29/2008

Analysis Date... 11/29/2008

8336265

Method.....: TO-15 Dilution Factor.:

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				0.770
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.3	0.080	5.5	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.70	0.20	2.5	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	0.77	0.20	2.7	0.69
Benzene	0.38	0.080	1.2	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	0.14	0.080	0.58	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	1.1	0.080	7.1	0.54
Toluene	2.0	0.080	7.6	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	2.2	0.080	12	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	0.28	0.080	1.4	0.39
1,3,5-Trimethylbenzene	0.13	0.080	0.65	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	1.1	0.080	4.7	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.092	0.080	0.71	0.61
m-Xylene & p-Xylene	2.8	0.080	12	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	8.0	0.32	24	0.94
4-Methyl-2-pentanone (MIBK)	0.27	0.20	1.1	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.049	0.040	0.31	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69
				TO-14 _rev5.rpt version 5.0.103 10/12/20

New York State D.E.C. Client Sample ID: VI 7S GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND ND	0.080	ND ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	0.54	0.080	2.7	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY A	97	interve	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

OUTDOOR Client Sample ID:

GC/MS Volatiles

Lot-Sample # H8K250101 - 015 Work Order # K3K6D1AA Matrix....: AIR

Date Sampled...:

11/18/2008

Date Received ..: 11/24/2008

Prep Date....:

11/29/2008

Prep Batch #....:

8336265

Analysis Date... 11/29/2008

Dilution Factor.:

Method..... TO-15

RESULTS REPORTING RESULTS REPORTING **PARAMETER** (ppb(v/v))LIMIT (ppb(v/v)) (ug/m3) LIMIT (ug/m3) ND trans-1,3-Dichloropropene 0.080 ND 0.36 1,2-Dichloro-1,1,2,2-tetrafluoroeth ND 0.080 ND 0.56 ane 1,4-Dioxane ND 0.20 ND 0.72 Ethylbenzene ND 0.080 ND 0.35 Trichlorofluoromethane 0.18 0.080 1.00 0.45 Hexachlorobutadiene ND 0.080 ND 0.85 n-Hexane 0.29 0.20 1.0 0.70 2,2,4-Trimethylpentane ND 0.20 ND 0.93 tert-Butyl alcohol ND 0.32 ND 0.97 Methylene chloride 0.40 0.20 1.4 0.69 Benzene 0.24 0.0800.77 0.26 Benzyl chloride ND 0.16 ND 0.83 Styrene ND 0.080 ND 0.34 1,1,2,2-Tetrachloroethane ND 0.080 ND 0.55 Tetrachloroethene ND 0.080 ND 0.54 Toluene 0.53 0.0800.30 2.0 1,2,4-Trichlorobenzene ND 0.080 0.59 ND 1,1,1-Trichloroethane ND 0.080 ND 0.44 1,1,2-Trichloroethane ND 0.080 ND 0.44 Trichloroethene ND 0.040 0.21 ND 1,2,4-Trimethylbenzene ND 0.080 ND 0.39 1,3,5-Trimethylbenzene ND 0.080 ND 0.39 Vinyl chloride ND 0.080 0.20 ND o-Xviene ND 0.080 ND 0.35 Methyl tert-butyl ether ND 0.16 ND 0.58 1,1,2-Trichlorotrifluoroethane ND 0.080 ND 0.61 m-Xylene & p-Xylene 0.11 0.0800.490.35 Bromodichloromethane ND 0.080 ND 0.54 1,2-Dibromoethane (EDB) ND 0.080 ND 0.61 2-Butanone (MEK) 0.46 0.32 1.4 0.94 4-Methyl-2-pentanone (MIBK) ND 0.20 ND 0.82 Bromoform ND 0.080 ND 0.83 ND Bromomethane 0.080 ND 0.31 Carbon tetrachloride 0.068 0.040 0.25 0.43Chlorobenzene ND 0.080 ND 0.37 Dibromochloromethane ND 0.080 ND 0.68 Chloroethane ND 0.080 ND 0.21 Chloroform ND 0.080 ND 0.39 Chloromethane 0.42 0.20 0.87 0.41

Client Sample ID: OUTDOOR

GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	0.21	0.20	0.72	0.69
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	0.41	0.080	2.0	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		92		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H8L010000 - 265B Work Order # K3VH21AA Matrix......: AIR

11/18/2008

11/29/2008

Date Received..: 11/24/2008 **Analysis Date...** 11/29/2008

Prep Batch #....: 8336265

Dilution Factor.:

Prep Date....:

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane	ND	0.000	110	0.50
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41

New York State D.E.C. Client Sample ID: INTRA-LAB BLANK GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	0.20	ND	0.69
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	ND	0.080	ND	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS
None				
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		91	***************************************	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H8	L010000 - 265C	Work Or	der# K3V	H21AC	Matrix	: AIR
Prep Date: Prep Batch #:	11/18/2008 11/29/2008 8336265		eived: 11/24 Date 11/29			
Dilution Factor.:	1	Method	: TO-1	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	2.50	2.32	8.0	7.4	93	70 - 130
Toluene	2.50	2.02	9.4	7.6	81	70 - 130
Trichloroethene	2,50	2.30	13	12	92	70 - 130
Chlorobenzene	2.50	2.01	12	9.3	80	70 - 130
1,1-Dichloroethene	2.50	2.19	9.9	8.7	88	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	=
4-Bromofluorobenze	ene	99		· · · · · · · · · · · · · · · · · · ·	70 - 13	30

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H8L020000 - 098B Work Order# K3WC51AA Matrix....: AIR

11/18/2008

Date Received..: 11/24/2008 Analysis Date... 12/01/2008 Prep Date....: 12/01/2008

Prep Batch #....: 8337098

Dilution Factor.: Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane	•			
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
				TO 11 5

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H8L020000	- 098B	Work Order #	K3WC5	lAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	0.20		ND	0.69
1,2-Dichlorobenzene	ND	0.080		ND	0.48
1,3-Dichlorobenzene	ND	0.080		ND	0.48
1,4-Dichlorobenzene	ND	0.080		ND	0.48
Dichlorodifluoromethane	ND	0.080		ND	0.40
1,1-Dichloroethane	ND	0.080		ND	0.32
1,2-Dichloroethane	ND	0.080		ND	0.32
1,1-Dichloroethene	ND	0.080		ND	0.32
cis-1,2-Dichloroethene	ND	0.080		ND	0.32
trans-1,2-Dichloroethene	ND	0.080		ND	0.32
1,2-Dichloropropane	ND	0.080		ND	0.37
cis-1,3-Dichloropropene	ND	0.080		ND	0.36
TENTATIVELY INDENTIFIED	COMPOUNDS	RES	SULT		UNITS
None					
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		89		nome.	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H8	L020000 - 098C	Work Or	der# K3W	C51AC	Matrix	: AIR
Prep Date: Prep Batch #:	11/18/2008 12/01/2008 8337098	Date Reco		4/2008 1/2008		
Dilution Factor.:	1	Method	: TO-1	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	2.50	2.27	8.0	7.3	91	70 - 130
Toluene	2.50	2.40	9.4	9.0	96	70 - 130
Trichloroethene	2.50	2.28	13	12	91	70 - 130
Chlorobenzene	2.50	2.31	12	11	92	70 - 130
1,1-Dichloroethene	2.50	2.25	9.9	8.9	90	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	
4-Bromofluorobenze	ene	96			70 - 13	30

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H8L030000 - 089B Work Order # K3X4A1AA Matrix...: AIR

11/18/2008

Date Received..: 11/24/2008 Prep Date....: 12/02/2008 Analysis Date... 12/02/2008

Prep Batch #....: 8338089

Dilution Factor.: Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
				TO 14 mus out sorrion 5.0 103 - 10/12/200

New York State D.E.C. Client Sample ID: INTRA-LAB BLANK GC/MS Volatiles

	RESULTS	REPORTING	RESULTS	REPORTING
PARAMETER	(ppb(v/v))	LIMIT (ppb(v/v))	(ug/m3)	LIMIT (ug/m3)
Cyclohexane	ND	0.20	ND	0.69
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	ND	0.080	ND	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS
None				
				LABORATORY
SURROGATE		PERCENT RECOVERY		CONTROL LIMITS (%)
4-Bromofluorobenzene		91		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H8	L030000 - 089C	Work Or	der# K3X	4A1AC	Matrix	: AIR
Prep Date: Prep Batch #:	11/18/2008 12/02/2008 8338089	Date Reco	Date 12/02	4/2008 2/2008		
Dilution Factor.:	1	Method	TO-1	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	2.50	2.30	8.0	7.3	92	70 - 130
Toluene	2.50	2.36	9.4	8.9	95	70 - 130
Trichloroethene	2.50	2.32	13	12	93	70 - 130
Chlorobenzene	2.50	2.28	12	10	91	70 - 130
1,1-Dichloroethene	2.50	2.34	9.9	9.3	94	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL
4-Bromofluorobenze	ne	100		and the second s	70 - 13	0

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Sample Receipt Documentation

Received by:

Date/Time:

Relinquished by:

TAL Knoxville

Knoxville, TN 37921

phone 865-291-3000 fax 865-584-4315 5815 Middlebrook Pike

্বিপ্তিমুখ্য। Canister Samples Chain of Custody Record

[estAmerico

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

Offier (Please specify in notes section) seo Illibus. Soll Gas 15 FLOWS TIA InsidmA COCs riA toobn CUSTODY SEALS INTACT REC. AT AMBIENT aqyT alqms2 ĺΛ Euvicenmated scroles, DHC # 82097914540 ŏ Other (Please specify in notes section) 9761-0 MTS# 3 BOXES EPA 25C DE A93 Baulin A41-01 Х X Х Canister ID 1238 1494 427 7446 66 78 52.77 Sampled By: Bun Pression Vacuum in Fleld, 'Hg | Flow Controller Y 235 5人23子 2723 July 3-74 大324 KZS とが Received by Temperature (Fahrenheit) (1) Rashale-Nisore Canistor ر. د Pressure (inches of Hg) -75 = اني) ز 7 Sekolows K Vacuum In Field, "Hg Detection Limit Canister -30 F - 3a r -29 4 (Start) Analysis Turnaround Time 1304 Ambient Ambient 25 30 (845) 256 3000 Rashuk Site Contact: John Rashuk TAL Contact: Jamic Mckingly 80/81/11 Timo Stop 100 300 [635 1635 1610 <u>ح</u> Standard (Specify) Project Manager: John Rush (Specify) infrafes - 16,00 Time Start 1605 1605 017 1610 10 = Interior Interior 89/6/// 15/8/11/8/21 Date/Time: Sample Date(s) Start Stop Start Phone: Stop Special Instructions/QC Requirements & Comments: SEL PES. Arout Address: 21 South Rut Curus Sample Identification Sampled by : Brint Bothersik Project Name: Dubluss (winty Phone: 445 256 3000 Site/location: Dubluss Land 2487 Client Contact Information Samples Relinquished by: Company: NYS DEC १८८ N 4 Canisters Shipped by VI 3A 2 Ž. ~ City/State/Zip 븻 ユン FA:

TAL Knoxville

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

HgKລ≲0)0\ Canister Samples Chain of Custody Record

TestAmerica

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

shipment of these samples. THE LEADER IN ENVIRONMENTAL TESTING

					15.07.				4								
Client Contact Information	Project Ma	Project Manager: (7)	Y.	Rashelk) 	Sampled By:	じば	7	. 1 ,		7	ō	ت ک	cocs			
Company: NVSDEC (200 \$	Phone: 545	S45 256	3000										No.				1
工	Site Conta	Site Contact: つるん	. Rashark	ير						ļ			30.75	-	-		
diZ/e	TAL Conta	TAL Contact: Tomice	Mulcinu	7/7								(00			,		(uo
FAX: GUE SEE SECTO												poes					ipoes
I Name: D. h. Lus		Analysis 7	Turnaround Time	nd Time								səjoi			+		səlo
₹	0,	Standard (Specify)	pecify)	X					***************************************			א וְיט ע	er. Ger		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		u uj A
1 1		Rush (Specify)	ify)		An eminore versional descendant en denines es en de				······································				reli Nes				jisəd
		9		Canister Vacuum in	Canistor Vacuum in					······································	9461-G N	s əssəld) .	edyT ela	Alk ent Alr		ill Gas	is əseəid) .
Sample Identification	Sample Date(s)	Time Start	Time Stop	Fleld, "Hg (Start)	Fletd, 'Hg (Stop)	Flow Controller ID	Canister ID	1-OT	FPA FPA	∀d∃	ATSA	garage of) IIOS	pueŋ	Other
V1-4A	श्रीम - श्रीस	1614	16.50	- 30	- 7.5	L284	92440	义									
۲۱ - ۲۱	1 1 1 1 1 1 1 1 1 1	1614	م دماا	-30	- لا	ドルチ	21019	メ									
VI-5A	-	529)	0171	-30	۱ ح	K230	95h1	义					e i				
VI-55		1625	01()	-30+	ر ا	K 284	! ይትር	人				1588					
41-6A		(635	1720	-30	& -	K 324	12187	ᆺ				34.63					
V1-65	>	0٤ ٦١	0761	-30+	レー	4380	1662	×				1					
Sampled by: R., m. Thusik TPES				Temperature	Temperature (Fahrenhelt)												Γ
1		Interior	***************************************	Amblent													
うべつかん	Start																,
	Stop																
				Pressure (inches of Hg)	ches of Hg)												Π
		Interior		Ambient													
	Start																
	Stop																
Special Instructions/QC Requirements & Comments:	: Ipwstci	6	Pres	Precision	FLVE	Furranmen	July 1	Q	Sevic es	Ž,							
	といれる) (Lim	1		1 mg/m	Μ,										
R.M.	Date/Time:	1	1600		Canistars F	Canisters Received by:		1/100	8	2000]
Samples Relinquished by:	Date/Time:			,	Received by	.kc											
Relinquished by:	Date/Time:				Received by:	.yc											
						***************************************			***************************************	***************************************							

TAL Knoxville

phone 865-291-3000 fax 865-584-4315 5815 Middlebrook Pike Knoxville, TN 37921

(গ্রেই))। |Canister Samples Chain of Custody Record

TestAmerica REFERENCE ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Manager: John	ager: Joh	<u>ت</u> ب	عاما		Sampled By:		7	V		د	of 3	SOCS	ģ			
ich >	Phone: 84	52 Shg	3020	_													
omus Rch	Site Contact: John	t: Clother	203	١.									SEC. 15.				
1e/Zip Miss Partz NY 12561	TAL Contact: Jamis	t: 1/244		Mikinm	3		•					(uo	. NI . E				/110
348												goəs				itaa	11000
1-AX: 545 - 2547 - XAT												se se	e a p				
Project Name:		Analysis	Analysis Turnaround Time	nd Time								nou	327				
Site/location:	St	Standard (Specify)	ecify)	ጾ								uı Aı	100			ni vi	111 6
PO#	R	Rush (Specify)	fy)	,								4°00.255	vale e			inan	nad
												S. S. C.		11/	W		e aer
rotter of the state of the stat	Sample Data(s)	11/17/8 Time Start		Canister Vacuum in Field, "Hg	Canister Vacuum in Fletd, 'Hg	Flow Controller	Canister ID	31-01 TO-14A	26 Aq	DSZ AG	t-O MT8/	:eld) tedio	المنظمة المناطقة الم	A tneldm.∕	sso llos	: D lilibus. : elq) 19riiC	selq) nedito
	()			, , ,				╫	╫╴		Щ	Щ=	Щ		╫	₩-	
H = 1	11/13/8-11/18/8/1635	635	1325	250	<u>ل</u>	200	PE 2.9	X					20			_	
SC-12		1635	1325	- 30+	و	6240	6349	メ			:						
	->	0691	0 KC	-21	7	2130	Shill	メ									
3000	***************************************							_	ļ		_		120			-	T
			10	L									25				$\frac{1}{1}$
		100	المحددة	7	7837	15											_
The state of the s			(A)			***************************************					<u> </u>		lares				
Sampled hv. 7 P.E.S.				Temperature	Temperature (Fahrenheit)												Т
John Sand		Interior		Ambient													
・となったっ	Start																
	Stop																
				Pressure (inches of Hg)	ches of Hg)												_
and the second		Interior		Ambient													
	Start																
	Stop																_
Special Instructions/QC Requirements & Comments:	nancost O	איניונטי	ternore,	رساسان ت	اسر	درم المعكم											Γ
(C. 1985)	Detatro	ر ر پ	4 , ~ ~	1)		12 July	M										
Canisters, Shipped by:	Date/Timg: ////19/8		-1600		Caniglers	Received by:	//	1/48/	2	0200							ĺ
by:	Daté/Time:				Regeived by	by:											
Relinquished by:	Date/Time:				Received by:	by:											
										٦							

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Client:	Pro	Project :		Lot Number: [48Kass010]
Review Items	Yes No	Ϋ́	If No, what was the problem?	Comments/Actions Taken
WWW.With a street when the street we street with the street will be street with the street with the street will be street with the street w	+		***************************************	PH-PH-PH-PH-PH-PH-PH-PH-PH-PH-PH-PH-PH-P
 Do sample container labels match COC? 			☐ 1a Do not match COC	
(IDs, Dates, Times)			11b Incomplete information	
			11 Markino smeared	
			☐ Id Label torn	
	<u> </u>		O 1e No label	
			☐ 1f COC not received	***************************************
			Olg Other:	
2. Is the cooler temperature within limits? (> freezing		,	□ 2a Temp Blank =	
temp. of water to 6 °C; NC, 1668, 1613B: 0-4°C;		/	□2b Cooler Temp =	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
VOST: 10°C; MA: 2-6 °C)		>	***************************************	
 Were samples received with correct chemical preservative (excluding Encore)? 		/	☐3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or			☐ 4a Not present	
containers?	Ź		□ 4b Not intact	
	>		4c Other:	
5. Were all of the samples listed on the COC received?	`.		☐ 5a Samples received-not on COC	
	>		☐ 5b Samples not received-on COC .	
6. Were all of the sample containers received intact?	Ž		□6a Leaking	
	`		□ 6b Broken	
7. Were VOA samples received without headspace?		7	☐7a Headspace (VOA only)	<u> </u>
 Were samples received in appropriate containers? 	7		☐8a Improper container	mana , a a a a a a a a a a a a a a a a a
9. Did you check for residual chlorine, if necessary?			☐ 9a Could not be determined due	
•		7	to matrix interference	
10. Were samples received within holding time?	7		☐ 10a Holding time expired	
11. For rad samples, was sample activity info. provided?		7	☐ Incomplete information	
12. For SOG water samples (1613B, 1668A, 8290, LR			If yes & appears to be >1%, was	
PAHs), do samples have visible solids present?		7	SOG notified?	
13. Are the shipping containers intact?			□ 13a Leaking	W
	7		113b Other:	
14. Was COC relinquished? (Signed/Dated/Timed)	7		☐ 14a Not relinquished	
15. Are tests/parameters listed for each sample?	/		☐ 15a Incomplete information	
16. Is the matrix of the samples noted?	/		☐ 15a Incomplete information	***************************************
17. Is the date/time of sample collection noted?	7		☐ 15a Incomplete information	
18. Is the client and project name/# identified?	/		15a Incomplete information	
19. Was the sampler identified on the COC?	7			
Quote #: PM Instructions:	***************************************	***		
			AND CONTRACTOR CONTRAC	
Committee A consister			Partie 11/211/ce	101000 L 011750 + C
Sample Receiving Associate: //dat/// //////		1	Date: 11/2/108	QAUZOK19.40C, U8U/U/
2				

Volatiles

Raw Sample Data

Client Sample ID: VI 1A

GC/MS Volatiles

Work Order # K3K5V1AA Lot-Sample # H8K250101 - 001 Matrix....: AIR

Date Sampled...: 11/18/2008 Prep Date....: 12/02/2008 Prep Batch #....: 8338089

Date Received ..: 11/24/2008 Analysis Date... 12/03/2008

Dilution Factor.: Method.....: TO-15 2

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.16	ND	0.73
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.16	ND	1.1
ane				
1,4-Dioxane	ND	0.40	ND	1.4
Ethylbenzene	0.98	0.16	4.2	0.69
Trichlorofluoromethane	0.16	0.16	0.93	0.90
Hexachlorobutadiene	ND	0.16	ND	1.7
n-Hexane	3.1	0.40	11	1.4
2,2,4-Trimethylpentane	ND	0.40	ND	1.9
tert-Butyl alcohol	4.2	0.64	13	1.9
Methylene chloride	2.9	0.40	9.9	1.4
Benzene	1.6	0.16	5.2	0.51
Benzyl chloride	ND	0.32	ND	1.7
Styrene	ND	0.16	ND	0.68
1,1,2,2-Tetrachloroethane	ND	0.16	ND	1.1
Tetrachloroethene	ND	0.16	ND	1.1
Toluene	4.7	0.16	18	0.60
1,2,4-Trichlorobenzene	ND	0.16	ND	1.2
1,1,1-Trichloroethane	ND	0.16	ND	0.87
1,1,2-Trichloroethane	ND	0.16	ND	0.87
Trichloroethene	ND	0.080	ND	0.43
1,2,4-Trimethylbenzene	1.3	0.16	6.4	0.79
1,3,5-Trimethylbenzene	0.38	0.16	1.9	0.79
Vinyl chloride	ND	0.16	ND	0.41
o-Xylene	1.3	0.16	5.6	0.69
Methyl tert-butyl ether	ND	0.32	ND	1.2
1,1,2-Trichlorotrifluoroethane	ND	0.16	ND	1.2
m-Xylene & p-Xylene	3.4	0.16	15	0.69
Bromodichloromethane	ND	0.16	ND	1.1
1,2-Dibromoethane (EDB)	ND	0.16	ND	1.2
2-Butanone (MEK)	240	0.64		E 1.9
4-Methyl-2-pentanone (MIBK)	ND	0.40	ND	1.6
Bromoform	ND	0.16	ND	1.7
Bromomethane	ND	0.16	ND	0.62
Carbon tetrachloride	ND	0.080	ND	0.50
Chlorobenzene	ND	0.16	ND	0.74
Dibromochloromethane	ND	0.16	ND	1.4
Chloroethane	ND	0.16	ND	0.42
Chloroform	ND	0.16	ND	0.78
Chloromethane	0.46	0.40	0.96	0.83
Cyclohexane	0.98	0.40	3.4	1.4
my make with more				TO-14 _rev5.rpt version 5.0.103 10/12/200

New York State D.E.C. Client Sample ID: VI 1A

GC/MS Volatiles

		(ug/m3)	REPORTING LIMIT (ug/m3)	
ND	A. T. C.) I D	0.00	
ND	0.16	ND	0.96	
			0.96	
			0.96	
			0.79	
			0.65	
			0.65	
			0.63	
			0.63	
			0.63	
· ·			0.74	
ND	0.16	ND	0.73	
OMPOUNDS	RESULT		UNITS	
	4.7	ppb(v/v)		
	PERCENT		LABORATORY CONTROL LIMITS (%)	
	ND ND 0.56 ND	ND 0.16 ND 0.16 0.56 0.16 ND 0.16	ND 0.16 ND ND 0.56 ND 0.56 0.16 ND ND 0.16 ND ND ND ND 0.16 ND	

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found (before rounding) * (Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k5v1aa.d
Lab Smp Id: K3K5V1AA Client Smp II
Inj Date: 03-DEC-2008 07:09
Operator: 7126 Inst ID: mg.:
Smp Info: ,2,0,,
Misc Info: G120208, T0155, nysdec.sub,,,,

Client Smp ID: VI 1A

Inst ID: mg.i

Comment :

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD
Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d
Als bottle: 16
Dil Factor: 2.00000
Integrator: HP RTE Compound Sublist: rarget Version: 3.50

Compound Sublist: nysdec.sub

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	2.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
Cond Variable		Local Compound Variable

	CONCENTRATIONS			TIONS			
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	REAM	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	****		*****			***	
* 1 Bromochloromethane	128	9.059	9.053 (1.000	445776	4.00000	4.000	
* 2 1,4-Difluorobenzene	114	11.200	11.194 (1.000	2226460	4.00000	4.000	
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000) 1631646	4.00000	4.000	
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103) 1033435	3.96038	3.960	
9 Dichlorodifluoromethane	85	3.963	3.963 (0.437) 136606	0.28082	0.5616	
10 Chloromethane	52	4.146	4.146 (0.458) 10924	0.23164	0.4633	
20 Trichlorofluoromethane	101	5.440	5.446 (0.601	38207	0.08247	0.1649	
29 tert-butanol	59	6.271	6.260 (0.692	592089	2.08323	4.166	
31 Methylene Chloride	84	6.514	6.514 (0.719) 199843	1.43210	2.864	
38 Hexane	56	8.288	8.288 (0.915) 251301	1.52761	3.055	
39 2-Butanone	72	8.293	8.304 (0.915) 5164895	121.861	243.7(A)	
42 Chloroform	83	9.355	9.059 (1.033) 31541	0.11671	0.2334)
46 Cyclohexane	69	10.655	10.655 (0.951	37745	0.48989	0.9798	14
47 Benzene	78	10.666	10.666 (0.952) 269759	0.81537	1.631	, -
61 Toluene	91	13.917	13.917 (0.877) 668705	2.34689	4.694	
62 1,1,2-Trichloroethane	97	14.187	14.004 (0.894) 25795	0.25608	0.5122	

Data File: /var/chem/gcms/mg.i/G120208.b/k3k5v1aa.d Report Date: 03-Dec-2008 09:10

				CONCENTRAT		TIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	***	==	****				
69 Ethylbenzene	91	16.204	16.204 (1.021)	157908	0.48879	0.9776	
70 m&p-Xylene	91	16.355	16.360 (1.030)	422728	1.71250	3.425	
74 o-Xylene	91	16.883	16.883 (1.064)	170842	0.64349	1.287	
75 1,1,2,2-Tetrachloroethane	83	17.562	17.217 (1.106)	26197	0.13899	0:2780	
81 1,3,5-Trimethylbenzene	120	18.210	18.215 (1.147)	25311	0.18868	0.3774	
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	168710	0.64939	1.299	

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Instrument ID: mg.1
Lab File ID: k3k5v1aa.d
Lab Smp Id: K3K5V1AA
Clien
Analysis Type: OTHER
Quant Type: ISTD
Operator: 7126
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,,

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: VI 1A

Level: LOW

Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	421439	1247147	592122	445776	5.77
2 1,4-Difluorobenze	2096045		2944943	2226460	6.22
3 Chlorobenzene-d5	1591085		2235474	1631646	2.55

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.06	0.06
2 1,4-Difluorobenze		10.86	11.52	11.20	0.05
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

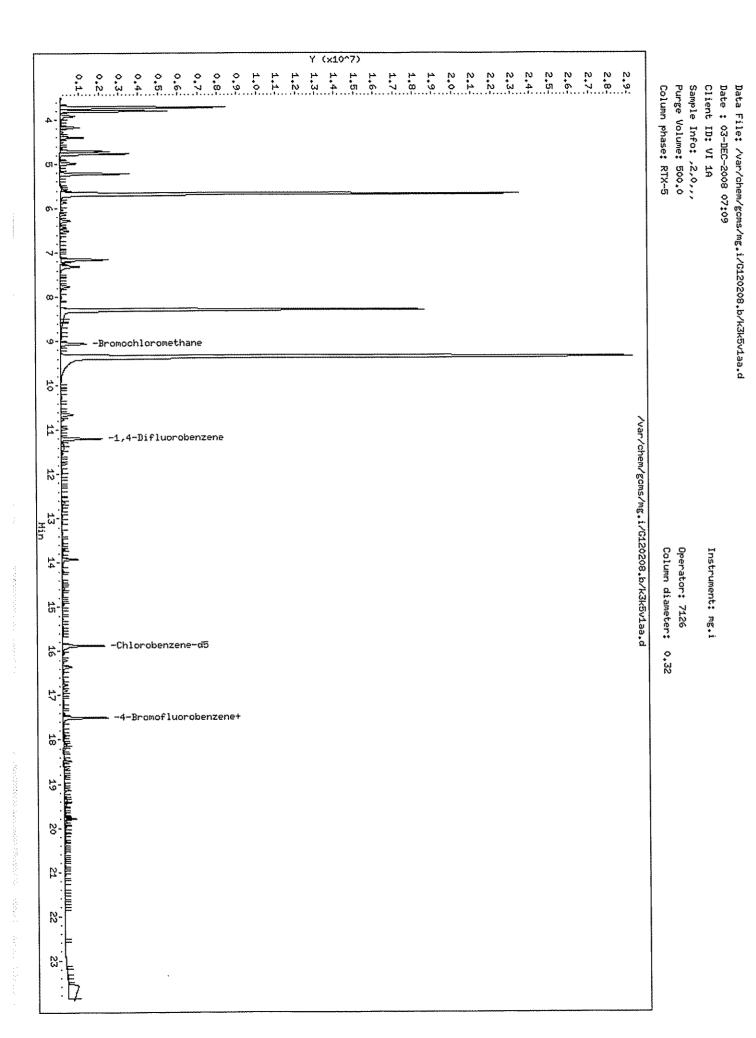
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120208.b/k3k5v1aa.d Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Sample Matrix: GAS Fraction: OTHER

Client Smp ID: VI 1A Operator: 7126

Sample Matrix: GAS
Lab Smp Id: K3K5V1AA
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.960	99.01	70-130

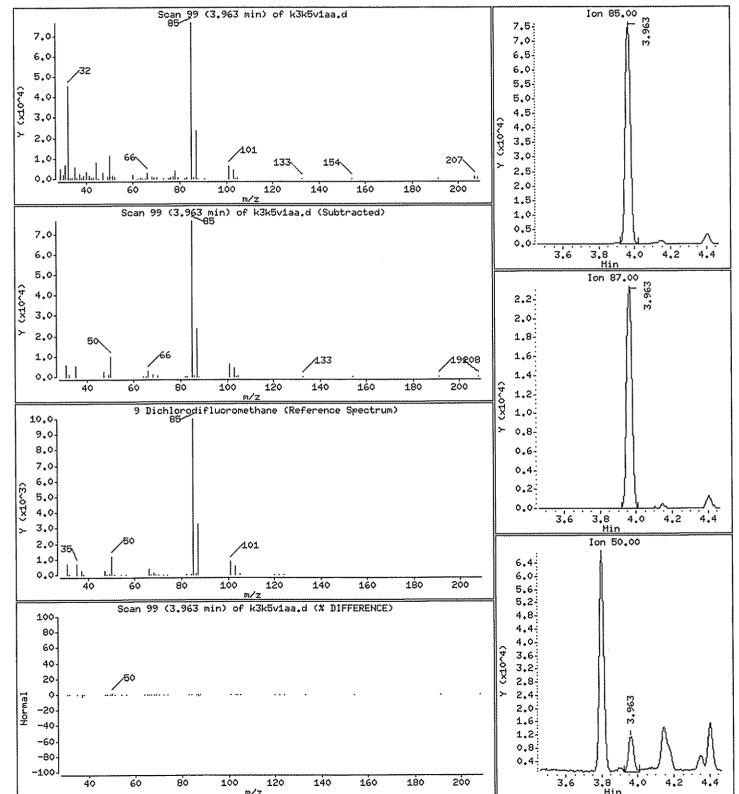
Date: 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

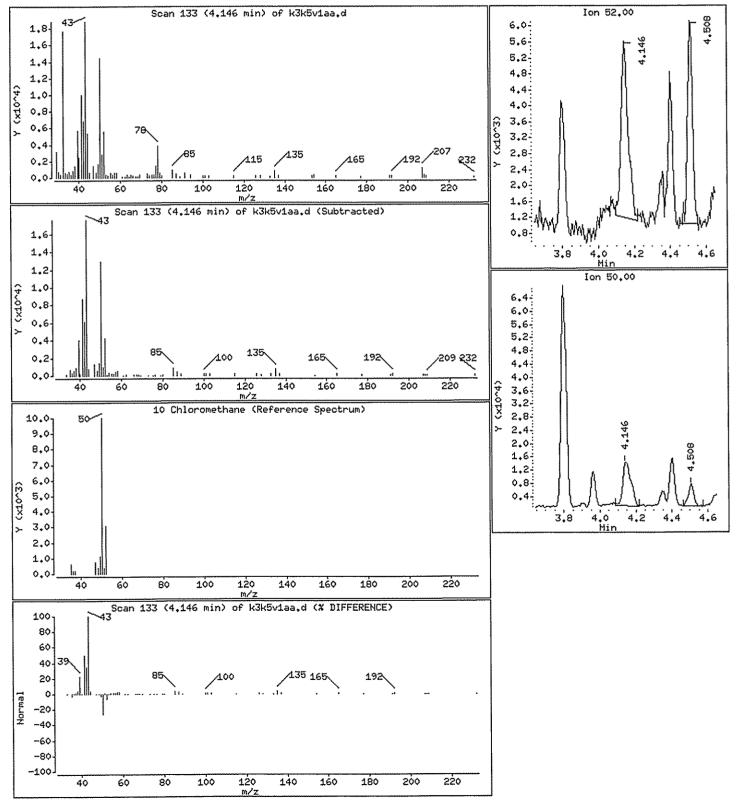
9 Dichlorodifluoromethane

Concentration: 0.5616 ppb(v/v)

Date: 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i


Sample Info: ,2,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

10 Chloromethane

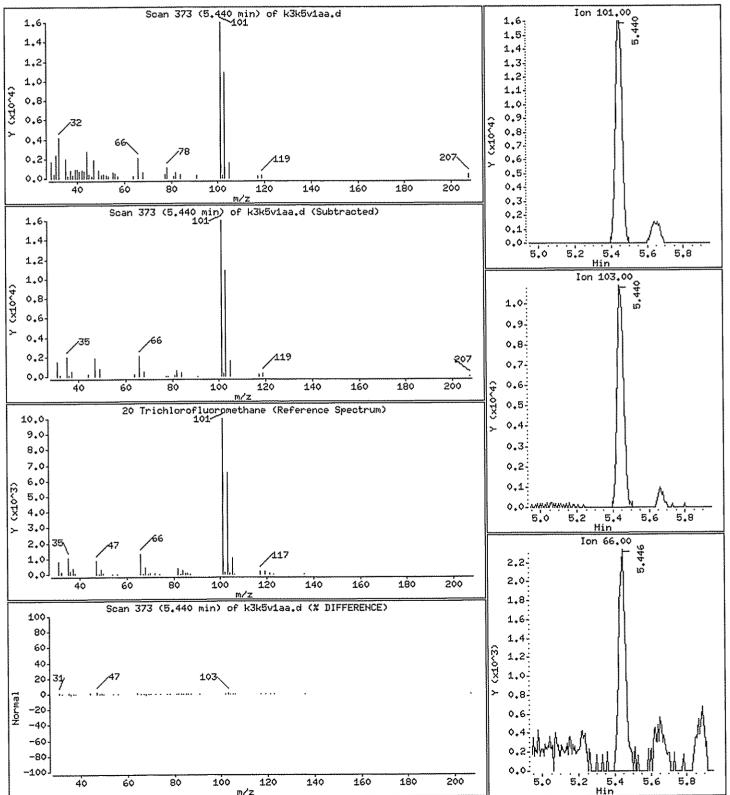
Concentration: 0.4633 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

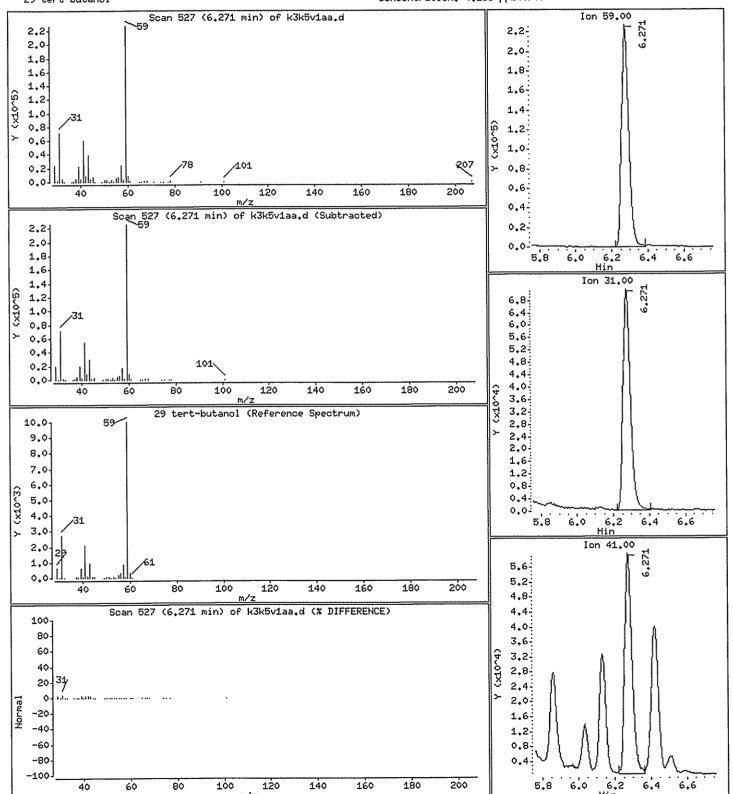
20 Trichlorofluoromethane

Concentration: 0.1649 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i


Sample Info: ,2,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

29 tert-butanol

Concentration: 4.166 ppb(v/v)

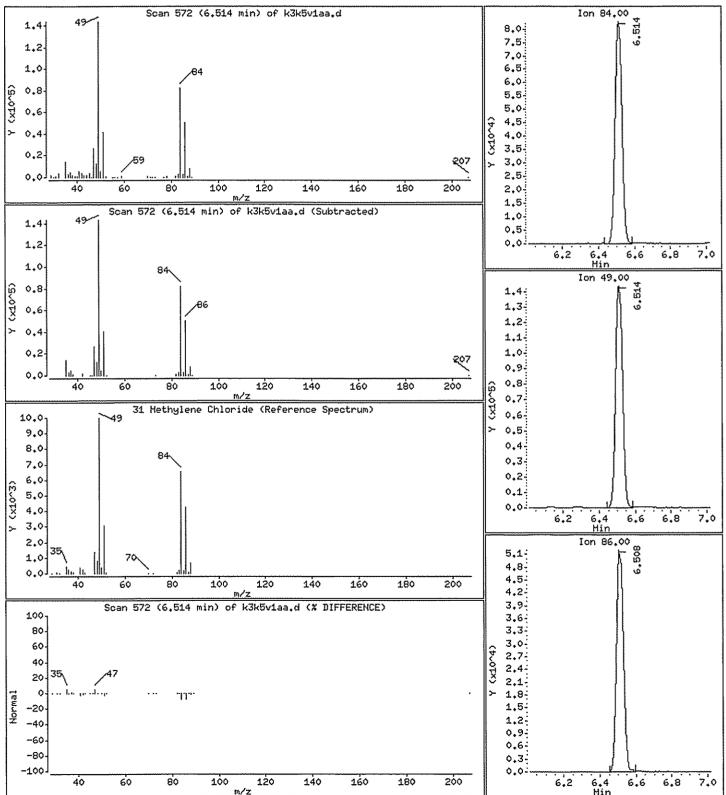
Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

31 Methylene Chloride

Concentration: 2.864 ppb(v/v)

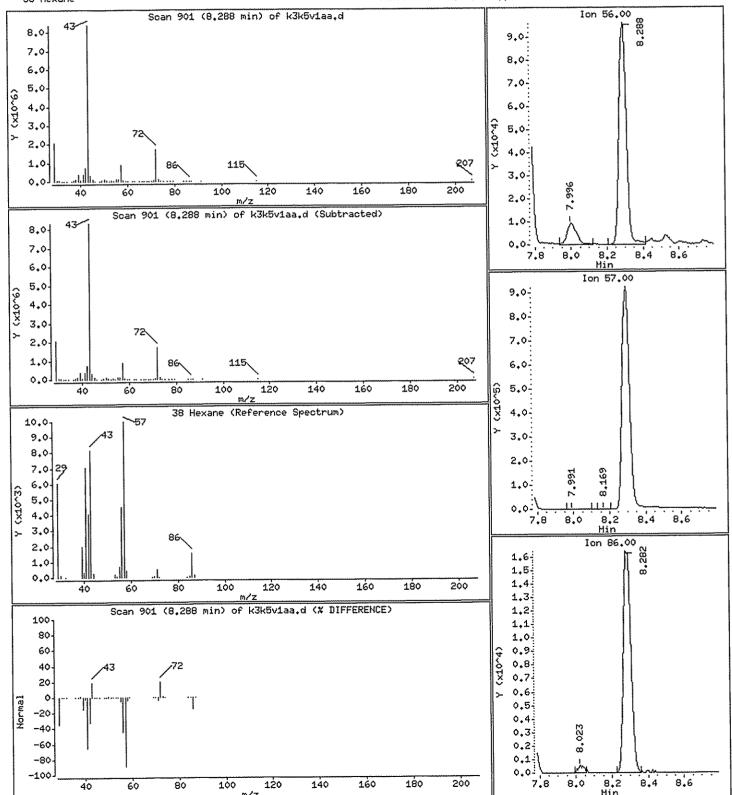
Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

38 Hexane

Concentration: 3.055 ppb(v/v)

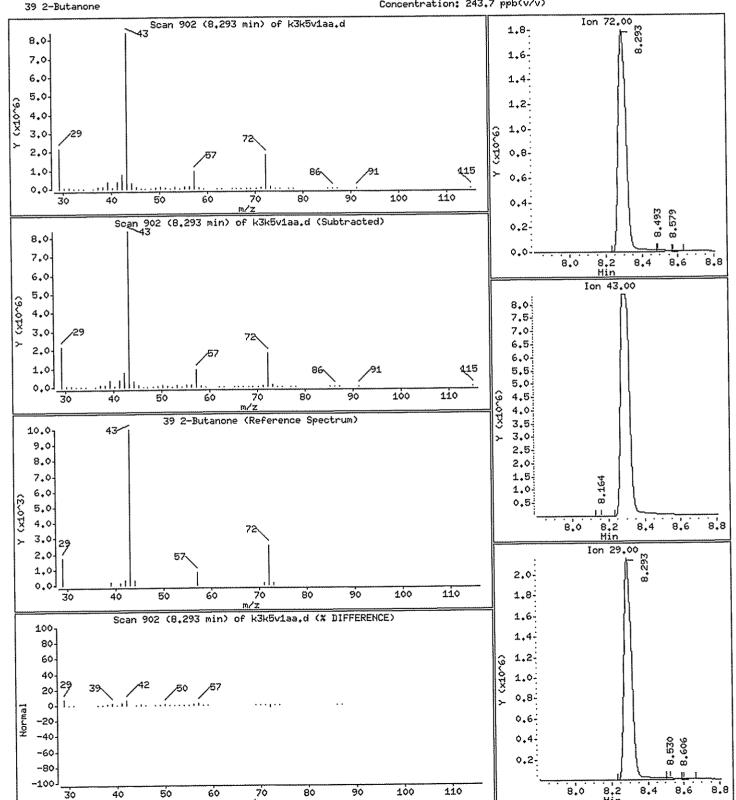
Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

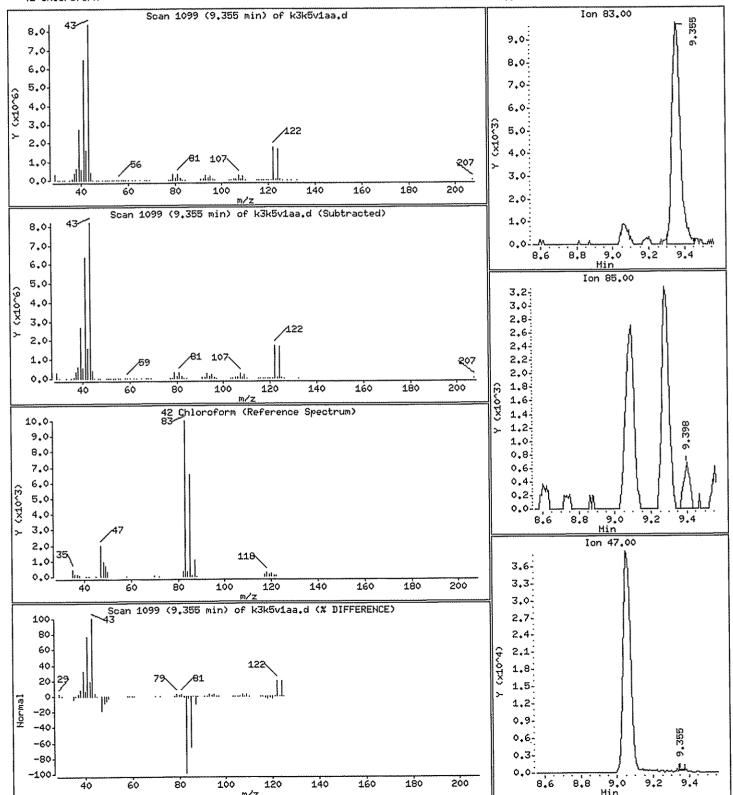
Concentration: 243.7 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

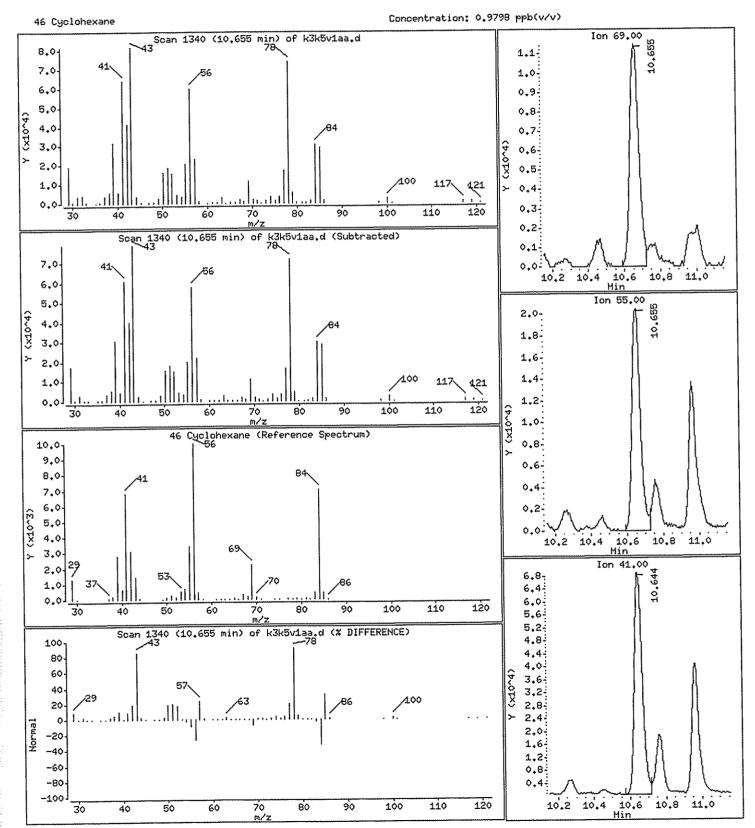
Column diameter: 0.32

42 Chloroform

Concentration: 0.2334 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A


Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0 Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

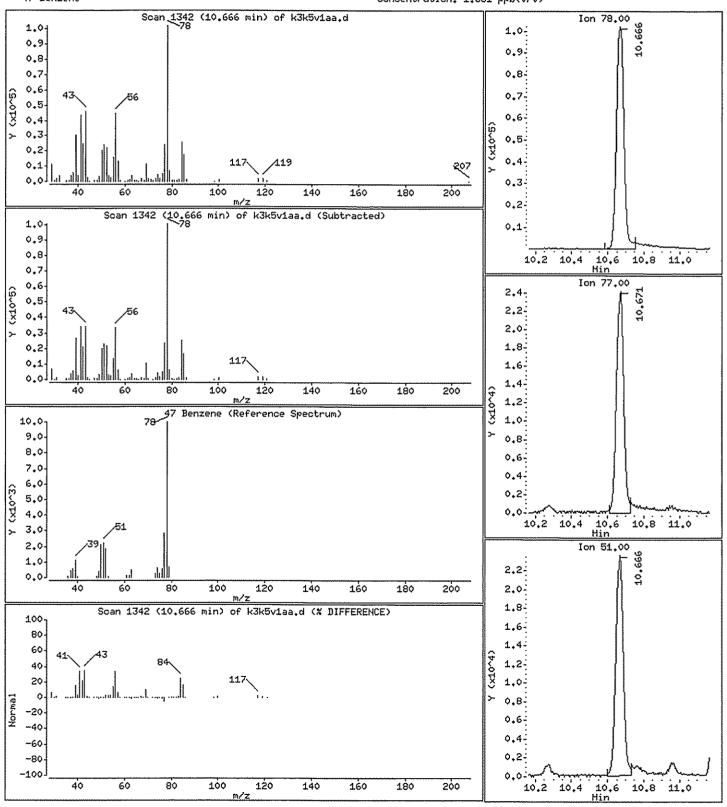
Date: 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 1.631 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 4.694 ppb(v/v)

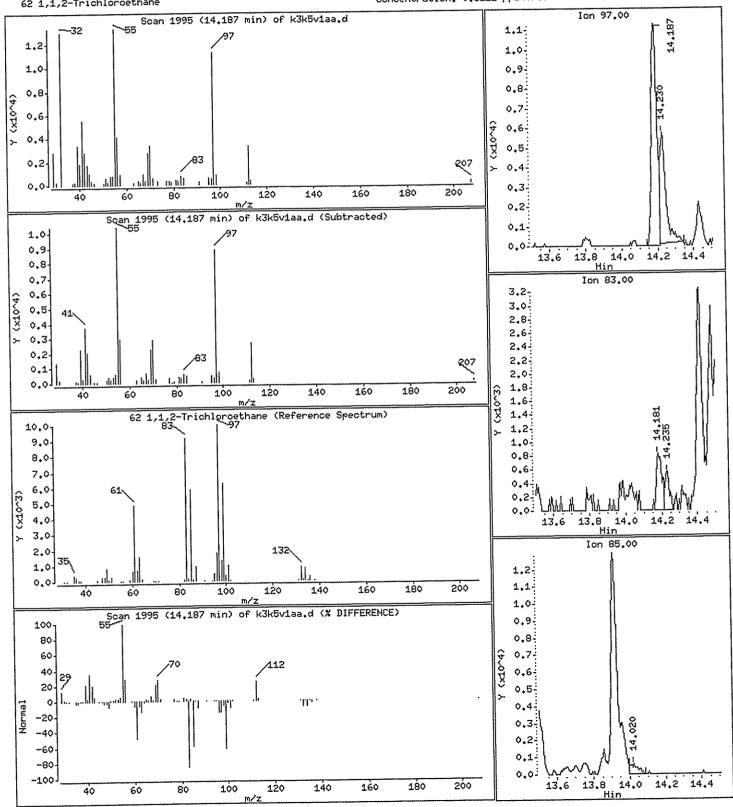
Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

62 1,1,2-Trichloroethane

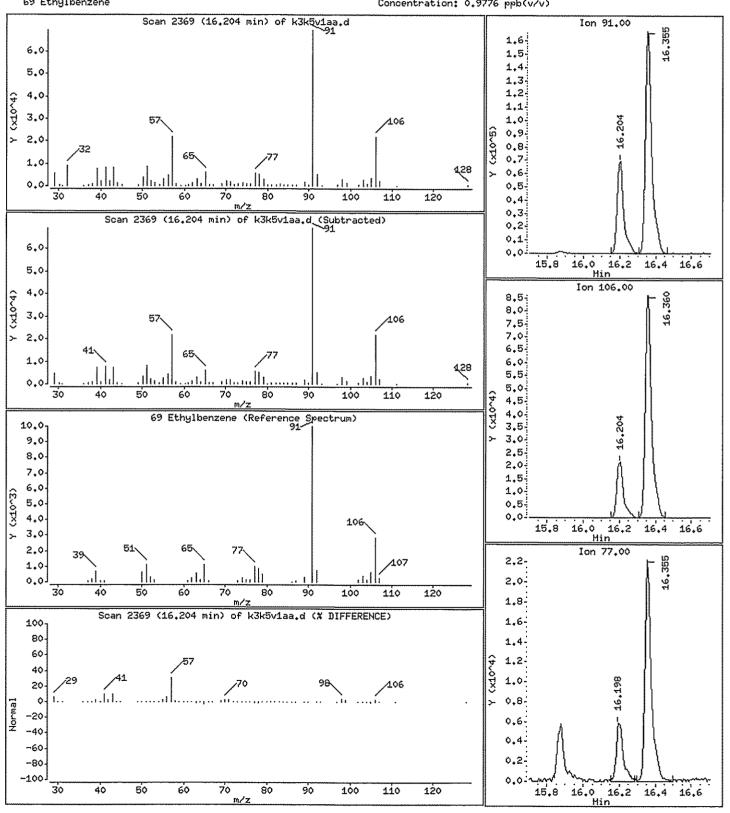
Concentration: 0.5122 ppb(v/v)

Date: 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

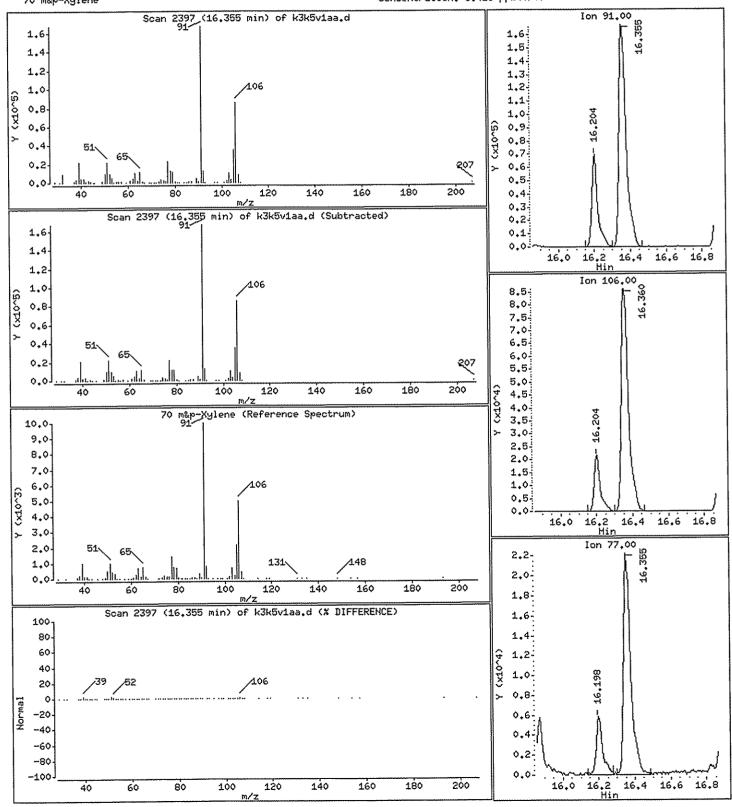
Concentration: 0.9776 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

70 m&p-Xylene

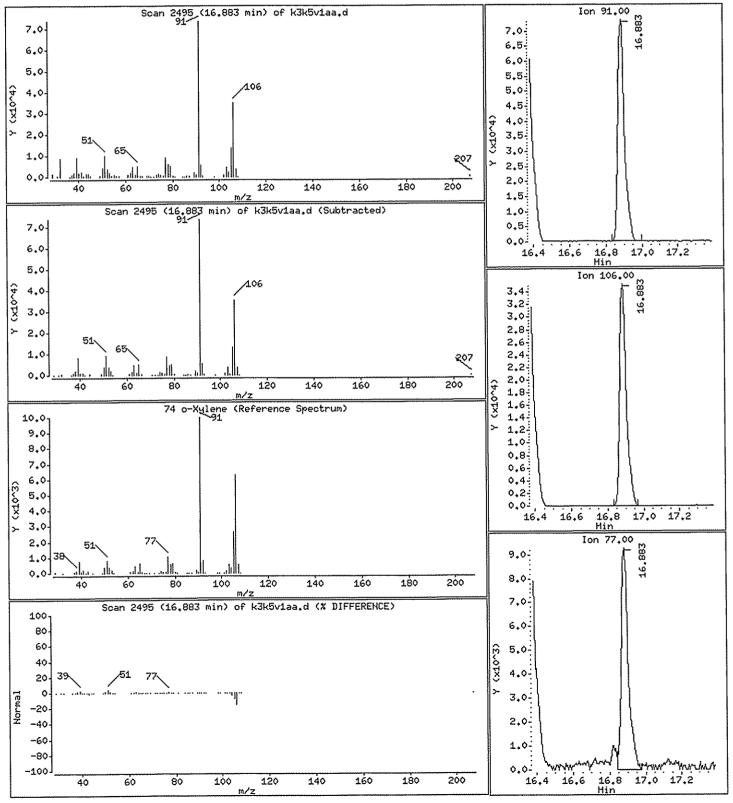
Concentration: 3.425 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,


Purge Volume: 500.0

Operator: 7126

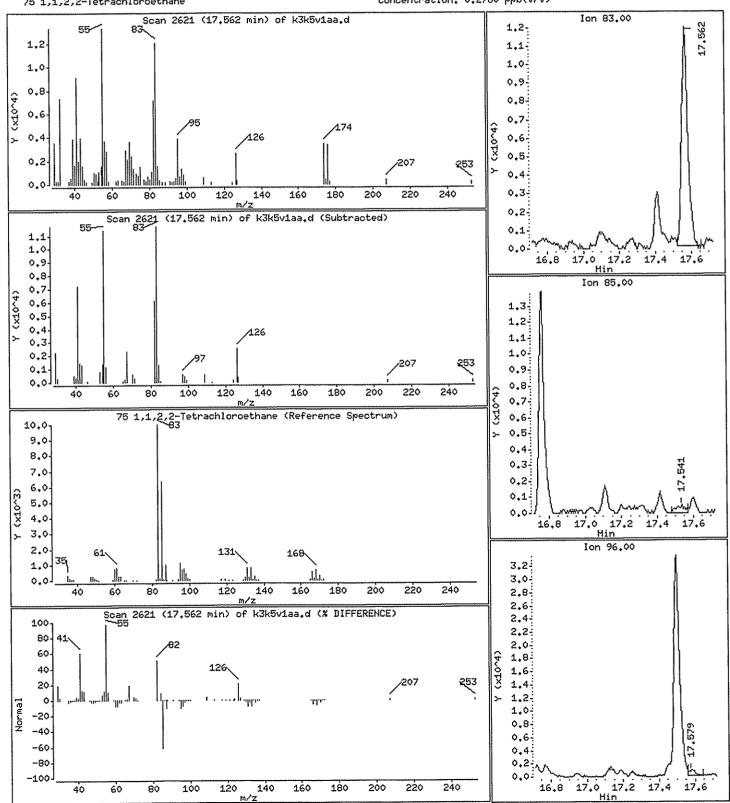
Column phase: RTX-5

74 o-Xylene

Concentration: 1.287 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A


Instrument: mg.i

Sample Info: ,2,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

75 1,1,2,2-Tetrachloroethane

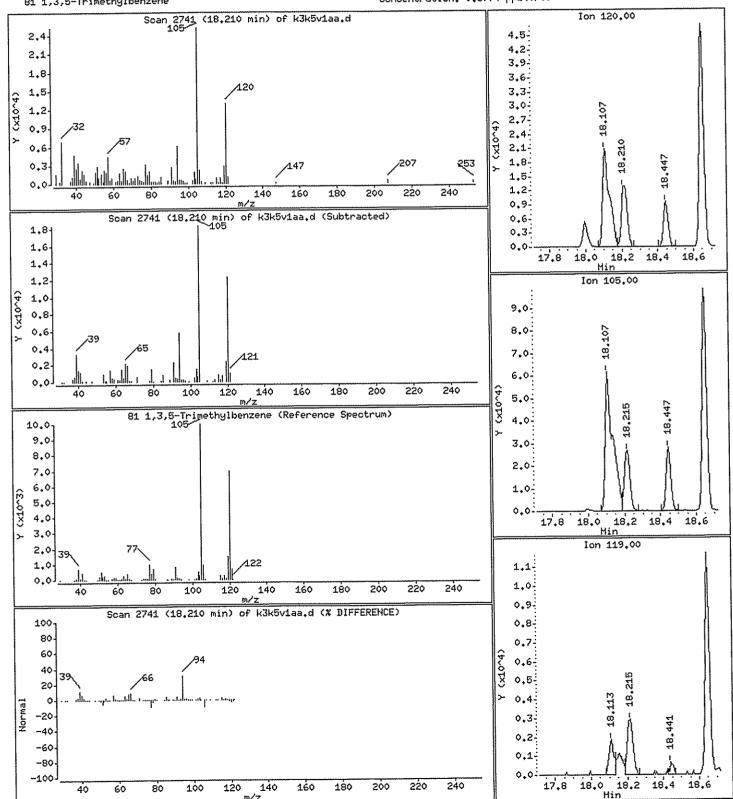
Concentration: 0.2780 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i

Sample Info: ,2,0,,,


Purge Volume: 500.0

Operator: 7126

Column diameter: 0.32 Column phase: RTX-5

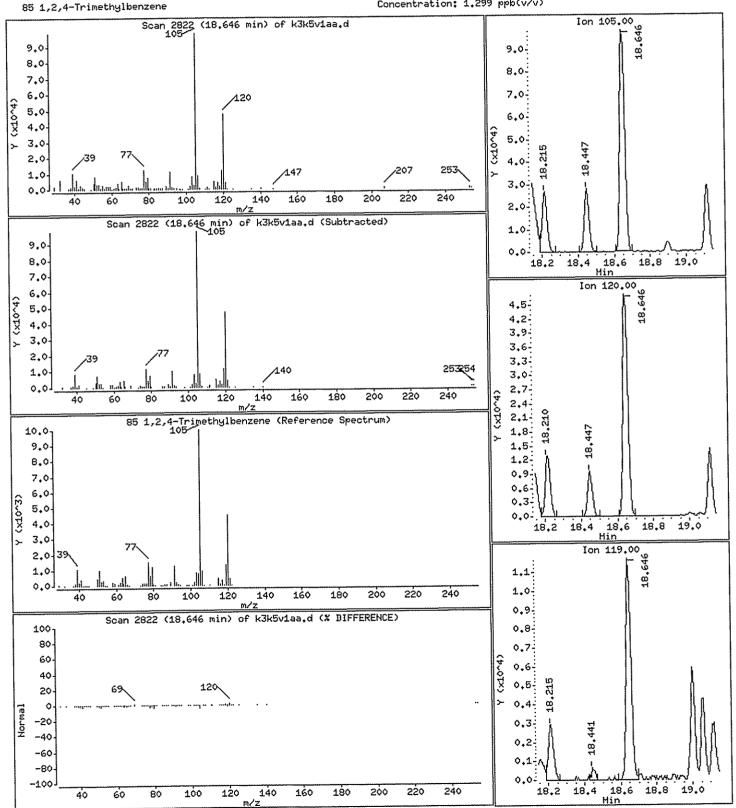
81 1,3,5-Trimethylbenzene

Concentration: 0.3774 ppb(v/v)

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i


Sample Info: ,2,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 1.299 ppb(v/v)

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k5v1aa.d
Lab Smp Id: K3K5V1AA Client Smp II
Inj Date: 03-DEC-2008 07:09
Operator: 7126
Smp Info : 2.0 Client Smp ID: VI 1A

Inst ID: mg.i

Smp Info : ,2,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m
Meth Date: 03-Dec-2008 09:07 tajh Quant Typ
Cal Date: 02-DEC-2008 10:05 Cal File:
Als bottle: 16
Dil Factor: 2.00000
Integrator: HP RTE Compound
Target Vergion: 2.50 Quant Type: ISTD Cal File: 1ptcal.d

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	2.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

IS	TD	RT	HEIGHT	AMOUNT
==:	=====	===	======	======
*	1 Bromochloromethane	9.059	1330400	4.000

		CONCENTRA	TIONS			QU	TMA			
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (v	/v))	LAUQ	LIBR	ARY LIB	ENTRY	CPND	#
***	======	=========			=			m = 4 = 2 =	•=	
Ethyl alco	aho]			CA	S #:	64-17-5				
4.987	786459	2.36457907	4.729	99		NISTO5.1	93		1(L)	

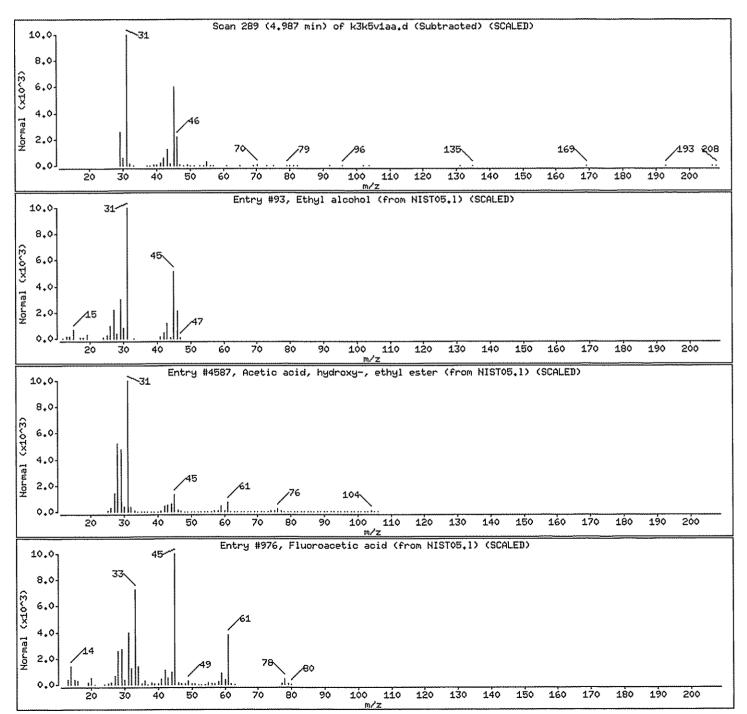
QC Flaq Legend

L - Operator selected an alternate library search match.

Date : 03-DEC-2008 07:09

Client ID: VI 1A

Instrument: mg.i


Sample Info: ,2,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	93	99	C2H60	46
Acetic acid, hydroxy-, ethyl ester	623-50-7	NISTO5.1	4587	33	C4H803	104
Fluoroacetic acid	144-49-0	NISTO5.1	976	17	C2H3F02	78

New York State D.E.C.

Client Sample ID: VI 1A

GC/MS Volatiles

Lot-Sample # H8	3K250101 - 001		Work	Order# K3	K5V2.	4A		Matrix	·····:	AIR
Date Sampled: Prep Date: Prep Batch #:	11/18/2008 12/01/2008 8337098			Received: 11/ sis Date 12/						
Dilution Factor.:	45.45		Metho	od TC)- 15					
PARAMETER		RESULTS (ppb(v/v))		REPORTING LIMIT (ppb(v/	(v))	RESUL'	rs		REPORTI LIMIT (ug	_
2-Butanone (MEK)		240		15		720	D		43	
SURROGATE				RCENT				CON	ORATORY FROL FS (%)	Y
4-Bromofluorobenze	ene		8	8		•		70 -	130	

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 03-Dec-2008 07:54

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/k3k5vlaa.d
Lab Smp Id: K3K5V2AA
Thi Data 101 Data 1 Client Smp ID: VI 1A

Inj Date : 01-DEC-2008 13:59 Operator : 7126 Smp Info : K3K5V2AA, 45.45,0,,, Inst ID: mg.i

Misc Info: G120108, T0155, nysdec.sub,,,,

Comment :

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Method: //ai/chem/goms/mg.1/clastro./, Dethod: //ai/chem/

Als bottle: 2

Dil Factor: 45.45000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	45.45000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
		Taral Compound Variable

Cpnd Variable

Local Compound Variable

						CONCENTRA'	rions
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
**************************************	100 100 100 100	==		======		*******	****
1 Bromochloromethane	128	9.054	9.053	(1.000)	353356	4.00000	4.000
2 1.4-Difluorobenzene	114	11.200	11.200	(1.000)	1866827	4.00000	4.000
3 Chlorobenzene-d5	117	15.875	15.875	(1.000)	1382664	4.00000	4.000
6 4-Bromofluorobenzene	95	17.503	17.503	(1.103)	777937	3.51810	3.518
39 2-Butanone	72	8.299	8.309	(0.917)	180530	5.37350	244.2

112/3/2

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: VI 1A

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120108.b/k3k5v1aa.d

Report Date: 03-Dec-2008 07:54

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k5v1aa.d
Lab Smp Id: K3K5V2AA
Analysis Type: OTHER
Quant Type: ISTD
Operator: 7126

Misc Info: G120108, T0155, nysdec.sub, , , ,	

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		235760 1232215 935400	556712 2909685 2208800	353356 1866827 1382664	

COMPOUND 1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	RT I LOWER ======= 8.72 10.87 15.54	JIMIT UPPER ======= 9.38 11.53 16.20	SAMPLE ======== 9.05 11.20 15.87	%DIFF ====== 0.00 0.00 0.00
				li

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

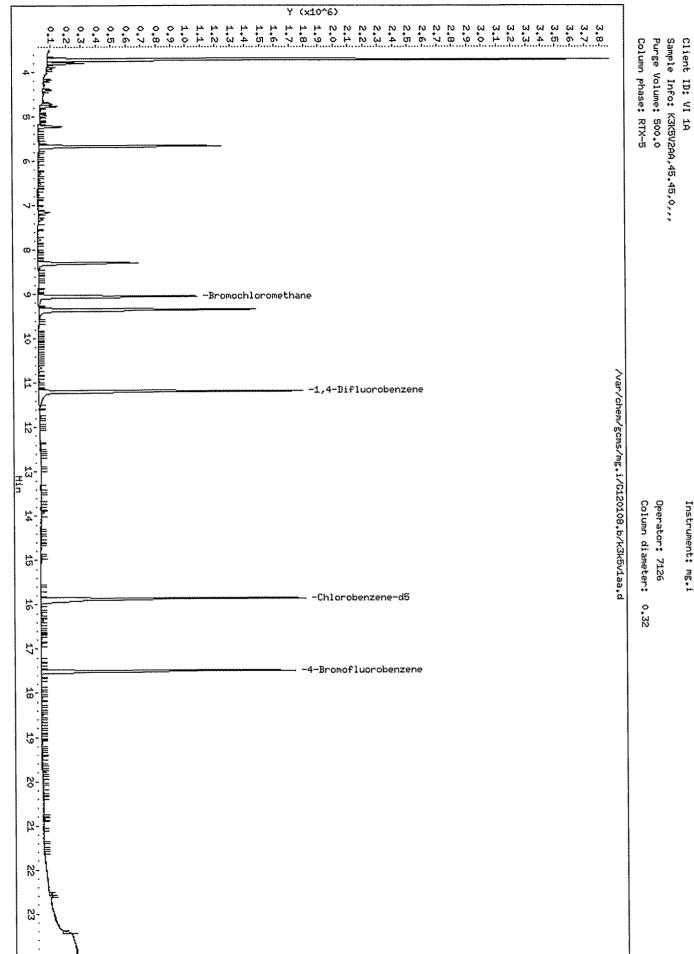
RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 07:54

TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101


Fraction: OTHER Sample Matrix: GAS

Client Smp ID: VI 1A Operator: 7126

Lab Smp Id: K3K5V2AA Level: LOW

SampleType: SAMPLE Quant Type: ISTD Data Type: MS DATA
SampleType:
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.518	87.95	70-130

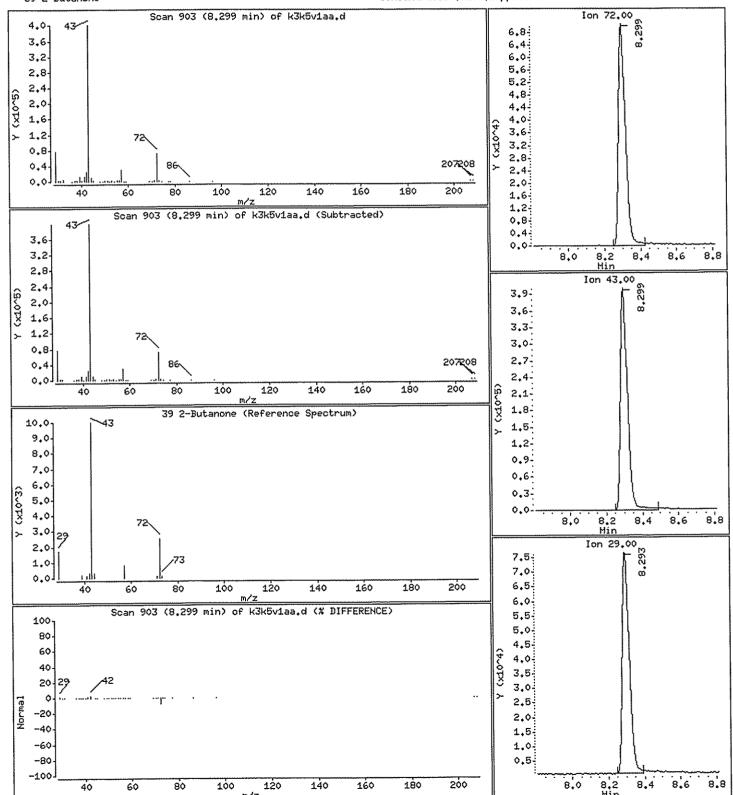
Date : 01-DEC-2008 13:59 Data File: /var/chem/gcms/mg.i/G120108.b/k3k5v1aa.d

Instrument; mg.i

Date : 01-DEC-2008 13:59

Client ID: VI 1A

Instrument: mg.i


Sample Info: K3K5V2AA,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

39 2-Butanone

Concentration: 244.2 ppb(v/v)

New York State D.E.C. Client Sample ID: VI 1S GC/MS Volatiles

Lot-Sample# H8K250101 - 002 Work Order # K3K5X1AA

AIR Matrix....:

Date Sampled...:

11/18/2008

Date Received ..: 11/24/2008

Prep Date....:

12/02/2008

Analysis Date... 12/03/2008

Prep Batch #....: Dilution Factor.: 8338089

Method..... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	0.11	0.080	0.62	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.51	0.20	1.8	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	0.79	0.32	2.4	0.97
Methylene chloride	5.6	0.20	19	0.69
Benzene	0.29	0.080	0.91	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	0.46	0.080	1.7	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	0.12	0.080	0.51	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	89	0.32	260 E	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	3.0	0.080	12	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	0.37	0.20	0.77	0.41

New York State D.E.C.

Client Sample ID: VI 1S GC/MS Volatiles

Lot-Sample # H8K250101 -	ple # H8K250101 - 002 Work Order #		K3K5X1	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (p _i		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Carlohovoro	0.25	0.20		0.85	0.69
Cyclohexane 1,2-Dichlorobenzene	0.23 ND	0.080		ND	0.48
1,3-Dichlorobenzene	ND	0.080		ND	0.48
1,4-Dichlorobenzene	ND	0.080		ND	0.48
Dichlorodifluoromethane	17	0.080		86	0.40
1,1-Dichloroethane	ND	0.080		ND	0.32
1,2-Dichloroethane	ND	0.080		ND	0.32
1,1-Dichloroethene	ND	0.080			0.32
cis-1,2-Dichloroethene			ND	0.32	
trans-1,2-Dichloroethene	ND	0.080	ND		0.32
1,2-Dichloropropane	ND	0.080		ND	0.37
cis-1,3-Dichloropropene	ND	0.080 ND		ND	0.36
TENTATIVELY INDENTIFIED (COMPOUNDS	RESULT			UNITS
Ethyl alcohol		3.8			ppb(v/v)
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		93		·····	70 - 130

Qualifiers

Estimated result. Result concentration exceeds the calibration range. Ε

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k5x1aa.d
Lab Smp Id: K3K5X1AA

Client Smp ID: VI 1S

Inj Date : 03-DEC-2008 07:51 Operator : 7126 Smp Info : ,,0,,, Misc Info : G120208, T0155, nysdec.sub,,,, Inst ID: mg.i

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD
Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d
Als bottle: 17
Dil Factor: 1.00000
Integrator: HP RTE Compound Sublist: no

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name Value		Description				
DF	1.00000	Dilution Factor				
Vt	500.00000	Default calibration vol				
Vo	500.00000	Default sample volume				

Cpnd Variable

Local Compound Variable

					CONCENTRA	TIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
****		==					
* 1 Bromochloromethane	128	9.059	9.053 (1.000)	412203	4.00000	4.000	
* 2 1,4-Difluorobenzene	114	11.200	11.194 (1.000)	2087204	4.00000	4.000	
* 3 Chlorobenzene-d5	117	15.869	15.875 (1.000)	1624435	4.00000	4.000	
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	970248	3.73474	3.735	,
9 Dichlorodifluoromethane	85	3.968	3.963 (0.438)	7813931	17.3713	17.37(A)	
10 Chloromethane	52	4.152	4.146 (0.458)	16201	0.37152	0.3715	()
16 Bromomethane	94	4.734	4.729 (0.523)	281534	3.00804	3.008	
20 Trichlorofluoromethane	101	5.451	5.446 (0.602)	47296	0.11040	0.1104	1 Rolal
29 tert-butanol	59	6.282	6.260 (0.693)	207074	0.78792	0.7879	113/081
31 Methylene Chloride	84	6.519	6.514 (0.720)	721079	5.58822	5.588	10.
38 Hexane	56	8.298	8.288 (0.916)	76882	0.50542	0.5054	
39 2-Butanone	72	8.293	8.304 (0.915)	3493196	89.1316	89.13(A)	
42 Chloroform	83	9.361	9.059 (1.033)	21591	0.08640	0.08640	人(1)
46 Cyclohexane	69	10.660	10.655 (0.952)	17869	0.24739	0.2474	15/10-
47 Benzene	78	10.671	10.666 (0.953)	88833	0.28642	0.2864	1.2
61 Toluene	91	13.917	13.917 (0.877)	129882	0.45786	0.4578	

Data File: /var/chem/gcms/mg.i/G120208.b/k3k5x1aa.d Report Date: 03-Dec-2008 09:10

					CONCENTRA	TIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(v/v) dqq)	(ppb(v/v))	
		m =	******				
69 Ethylbenzene	91	16.360	16.204 (1.031)	28828	0.08963	0.08963	
70 m&p-Xylene	91	16.360	16.360 (1.031)	29035	0.11814	0.1181	

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

12/3/08/

Calibration Date: 02-DEC-2008

Calibration Time: 09:11

Client Smp ID: VI 1S

Sample Type: AIR

Level: LOW

Data File: /var/chem/gcms/mg.i/G120208.b/k3k5x1aa.d

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k5x1aa.d Lab Smp Id: K3K5X1AA Analysis Type: OTHER

Quant Type: ISTD

Operator: 7126 Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec. sub, , , ,

COMPOUND ===================================		AREA LOWER ======== 250756 1247147	LIMIT UPPER ===================================	SAMPLE ====================================	%DIFF ====== -2.19 -0.42
2 1,4-Difluorobenze 3 Chlorobenzene-d5	1	1247147			

COMPOUND ====================================	LOWER ====================================	UPPER 9.38 11.52 16.20	SAMPLE ======= 9.06 11.20 15.87	%DIFF ====== 0.06 0.05 -0.03
---	---	---------------------------------	---	--

AREA UPPER LIMIT = +40% of internal standard area. AREA LOWER LIMIT = -40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120208.b/k3k5x1aa.d Report Date: 03-Dec-2008 09:10

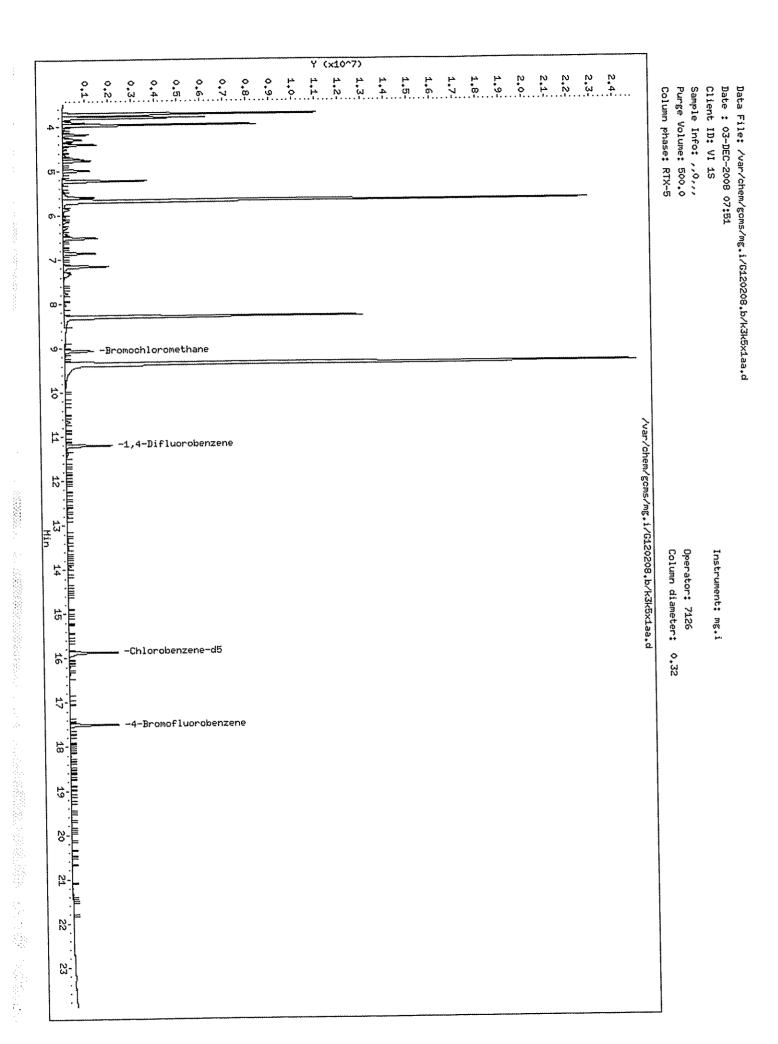
TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Sample Matrix: GAS Fraction: O

Client SDG: H8K250101

Fraction: OTHER


Client Smp ID: VI 1S Operator: 7126

SampleType: SAMPLE Quant Type: ISTD

Lab Smp Id: K3K5X1AA Client Smp
Level: LOW Operator: 7

Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	१ RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.735	93.37	70-130

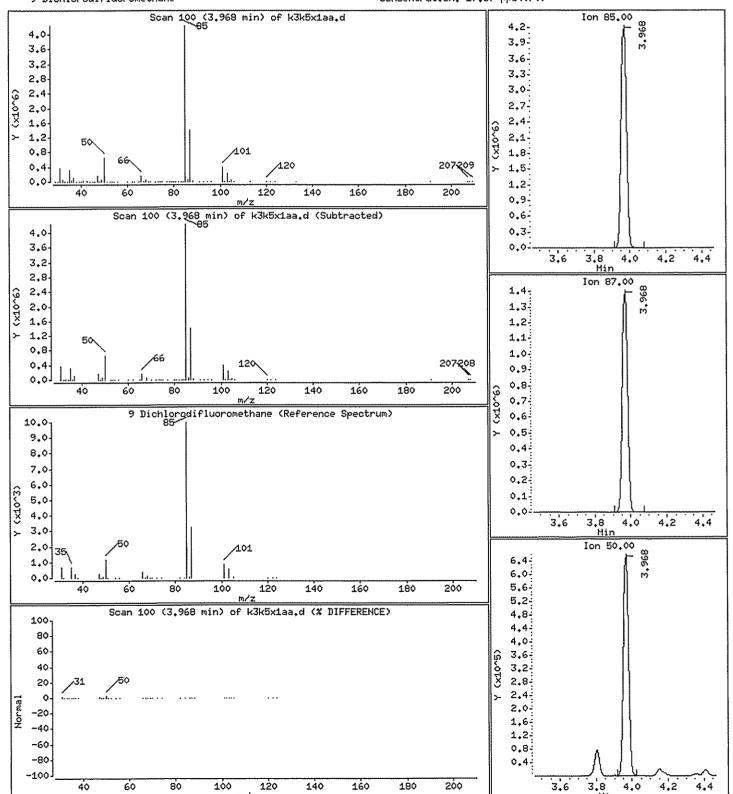
Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

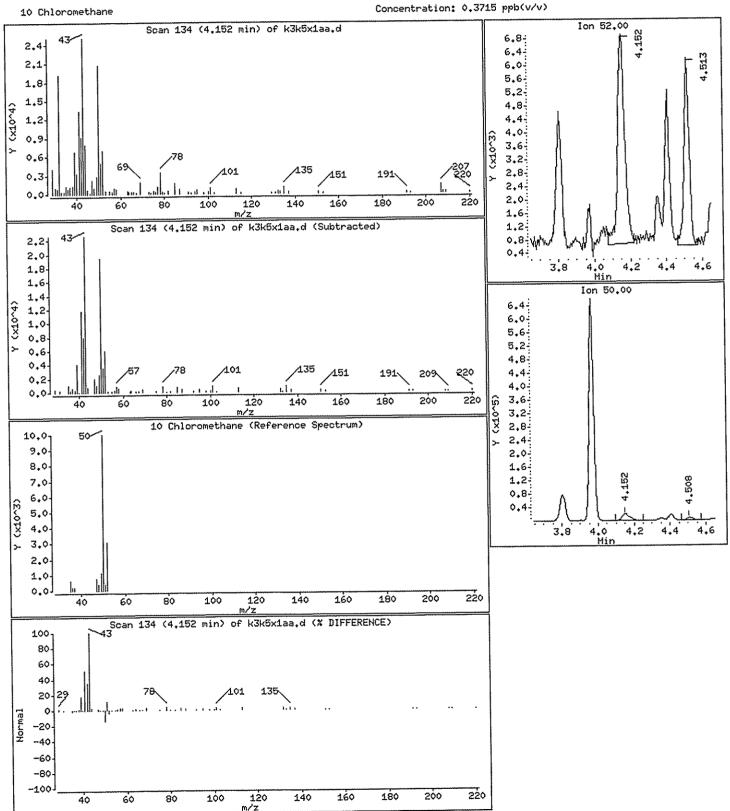
Column diameter: 0.32

9 Dichlorodifluoromethane

Concentration: 17.37 ppb(v/v)

Date : 03-DEC-2008 07:51

Client ID: VI 1S


Instrument: mg.i

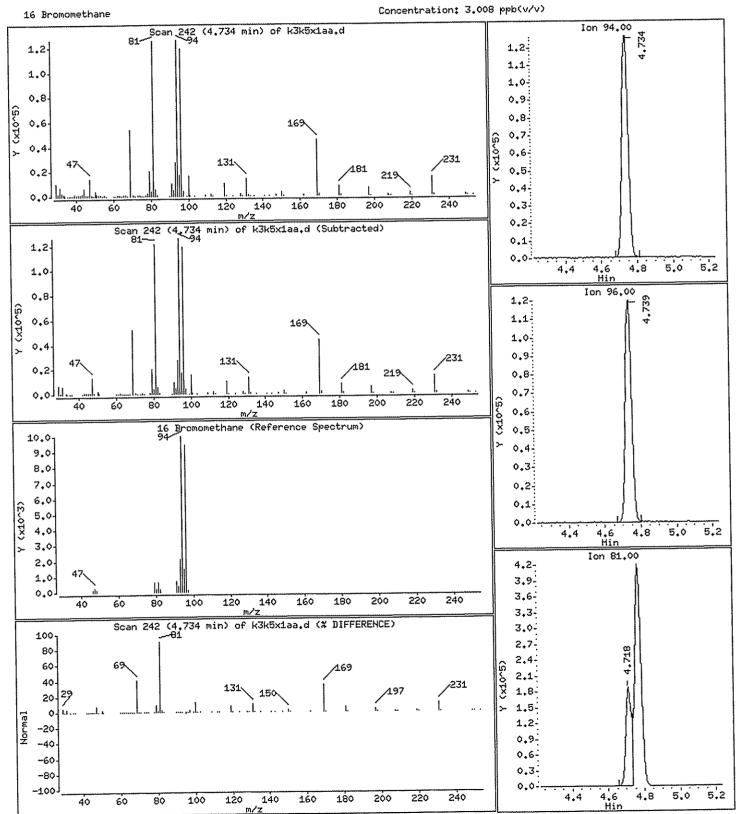
Operator: 7126

Sample Info: ,,0,,,

Purge Volume: 500.0

Column phase: RTX-5

Date : 03-DEC-2008 07:51


Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

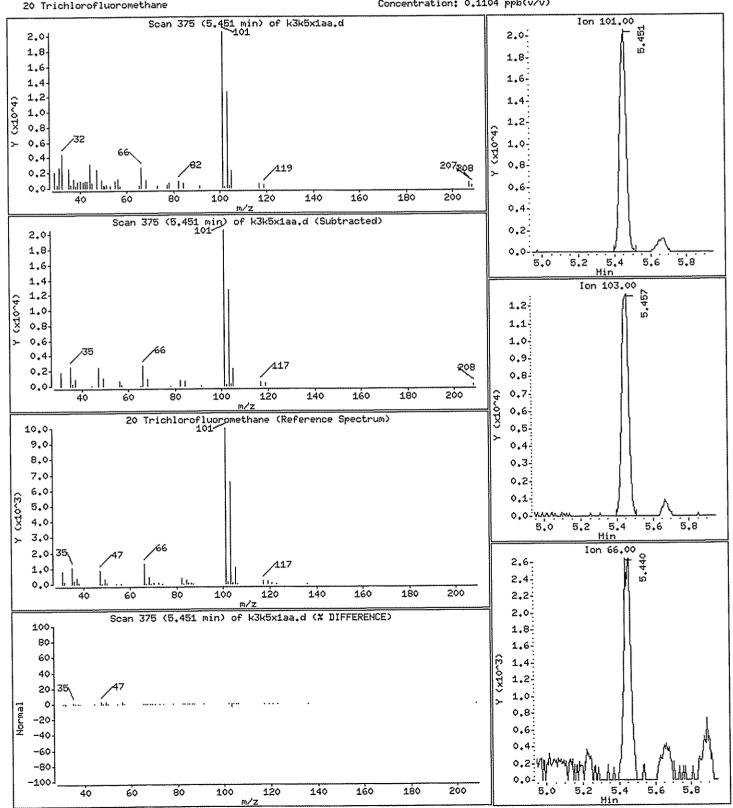
Operator: 7126

Column phase: RTX-5

Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column diameter: 0.32 Column phase: RTX-5

Concentration: 0.1104 ppb(v/v)

Date : 03-DEC-2008 07:51

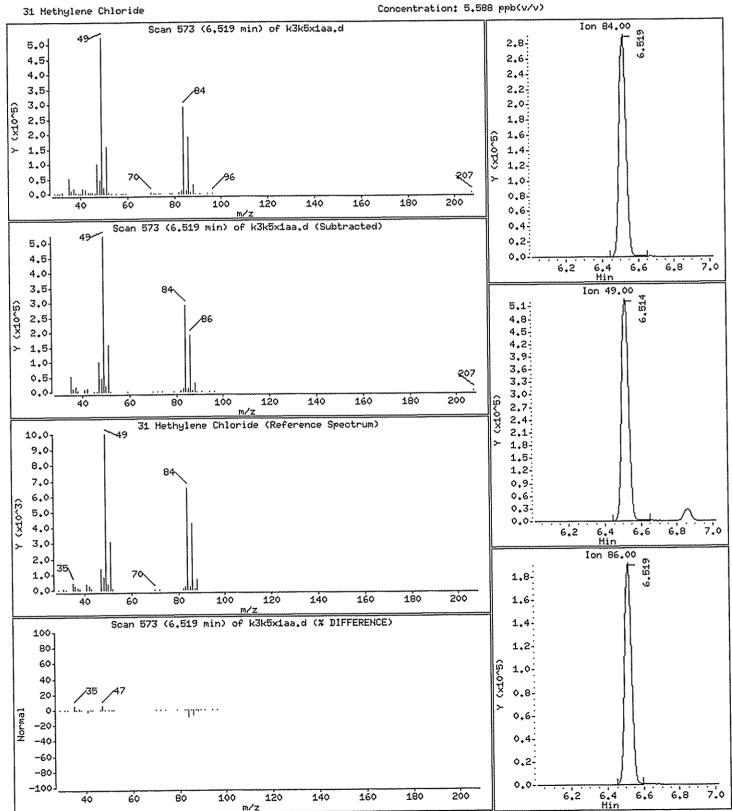
Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5


Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

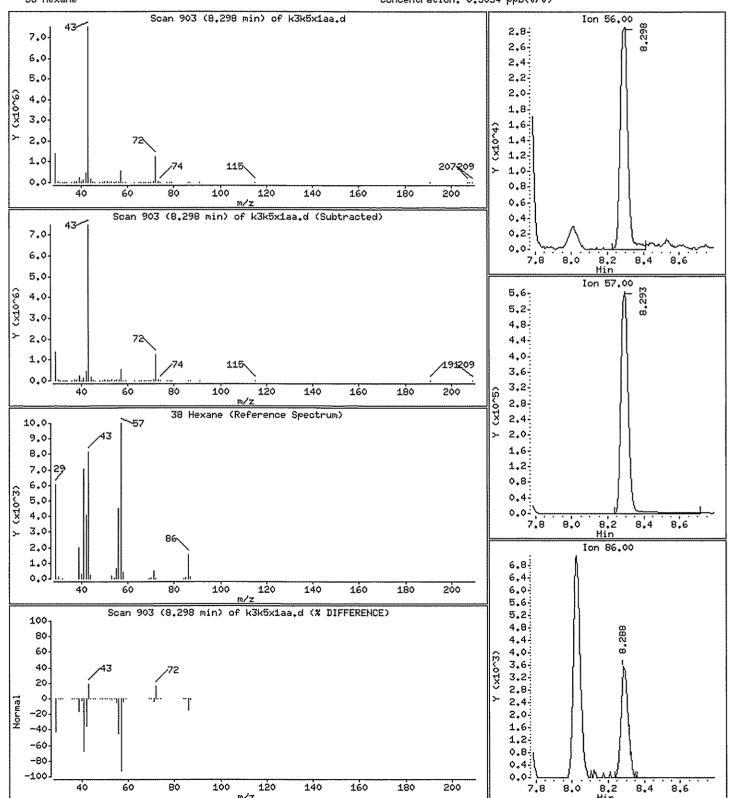
Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

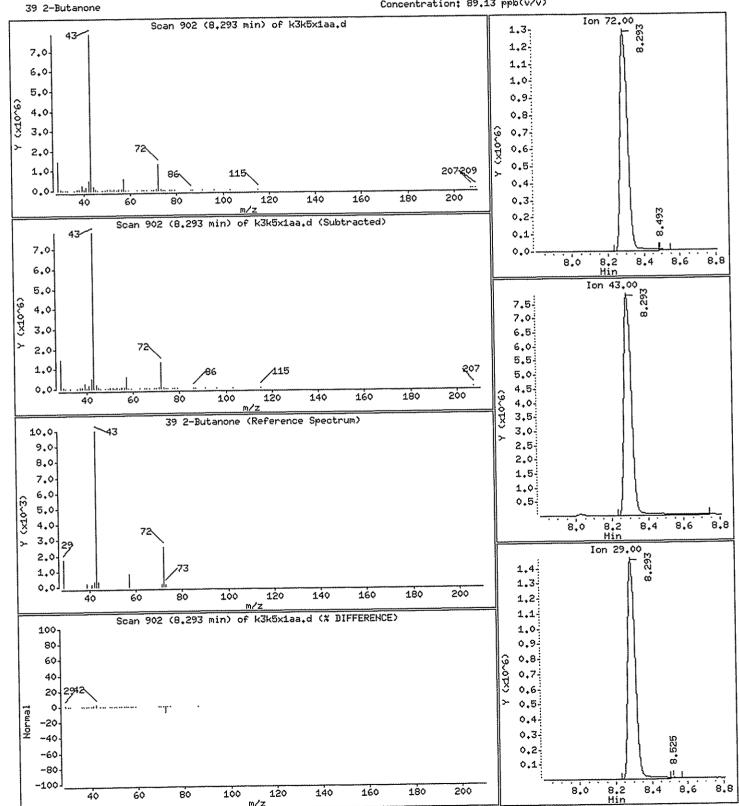
Column phase: RTX-5

Column diameter: 0.32

Concentration: 0.5054 ppb(v/v)

Date : 03-DEC-2008 07:51

Client ID: VI 1S


Instrument: mg.i

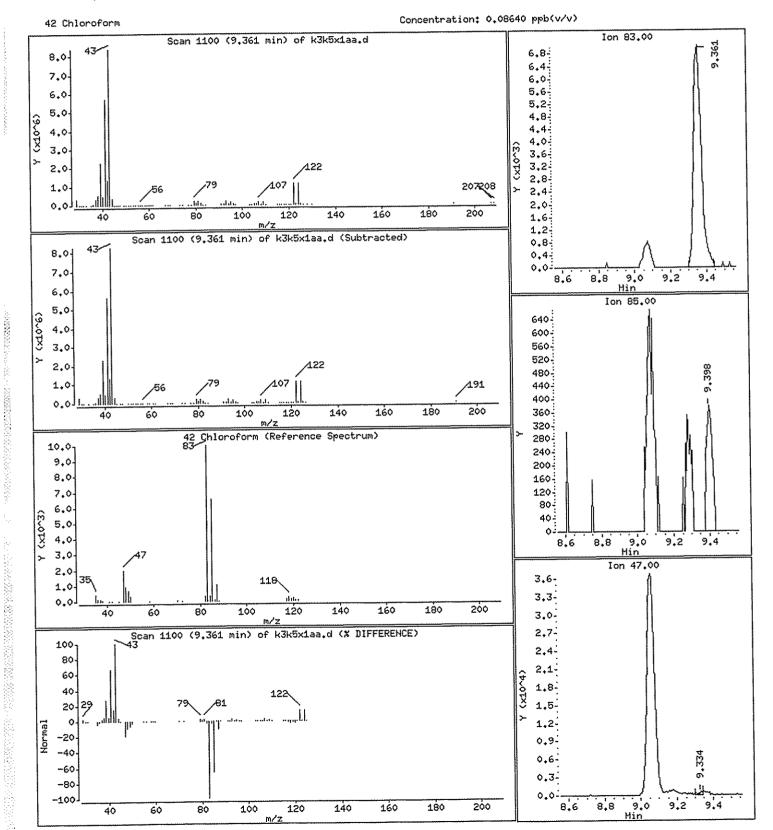
Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 89.13 ppb(v/v)

Date : 03-DEC-2008 07:51


Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

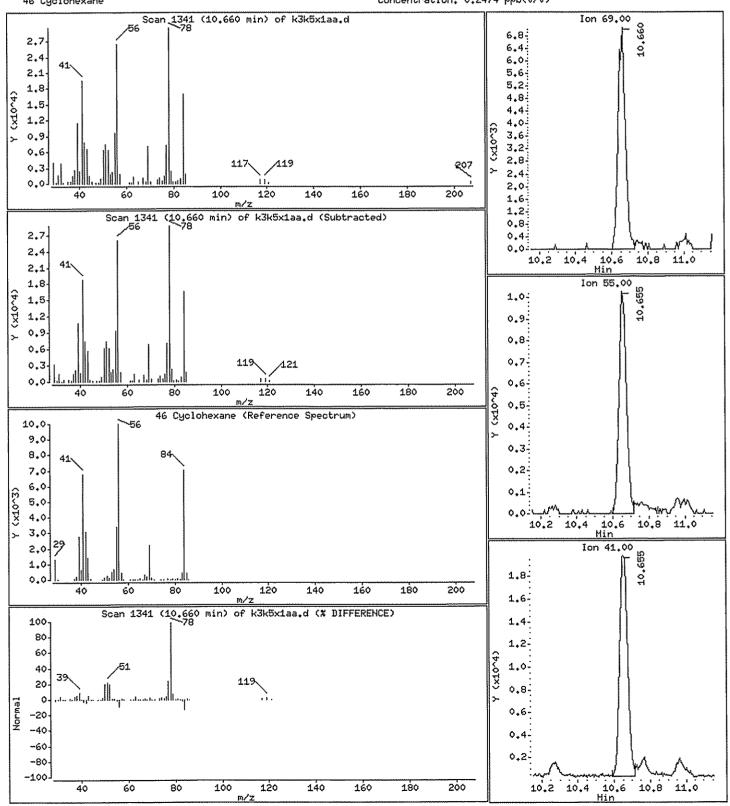
Column phase: RTX-5

Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

46 Cyclohexane

Concentration: 0.2474 ppb(v/v)

Date : 03-DEC-2008 07:51

Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

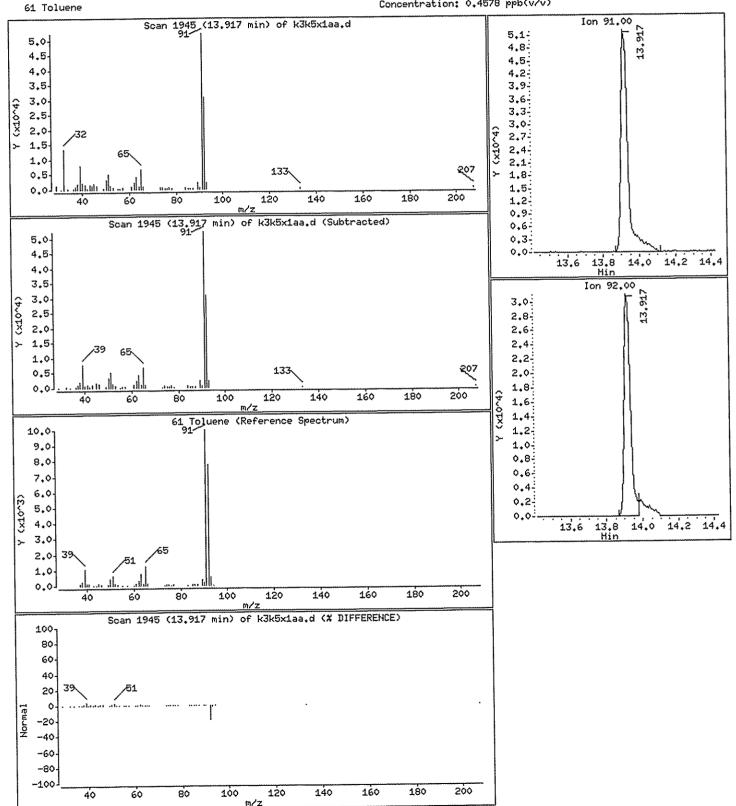
Column diameter: 0.32

47 Benzene

Concentration: 0.2864 ppb(v/v)

Date: 03-DEC-2008 07:51

Client ID: VI 1S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

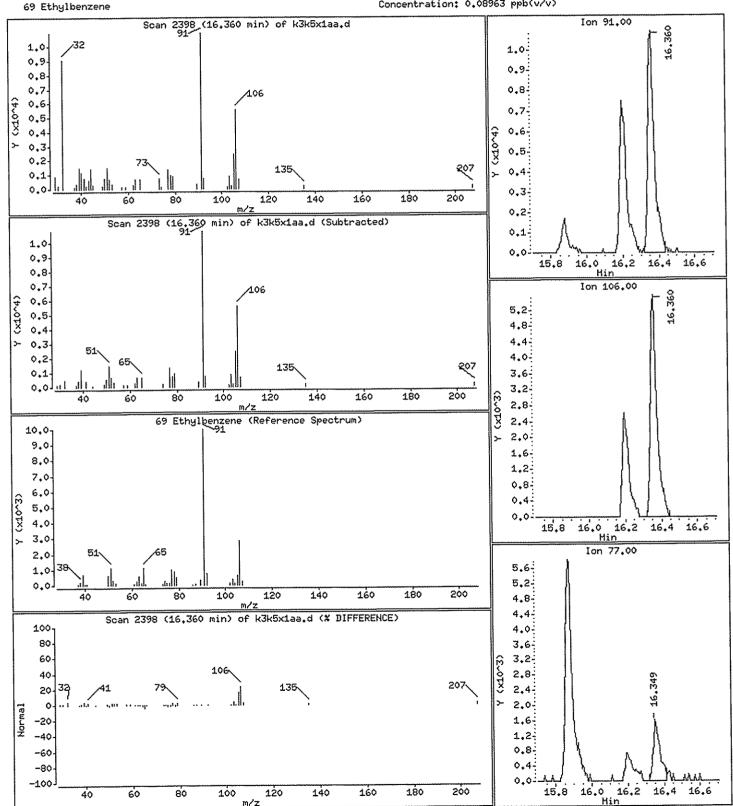
Operator: 7126

Column phase: RTX-5

Concentration: 0.4578 ppb(v/v)

Date : 03-DEC-2008 07:51

Client ID: VI 1S


Instrument: mg.i

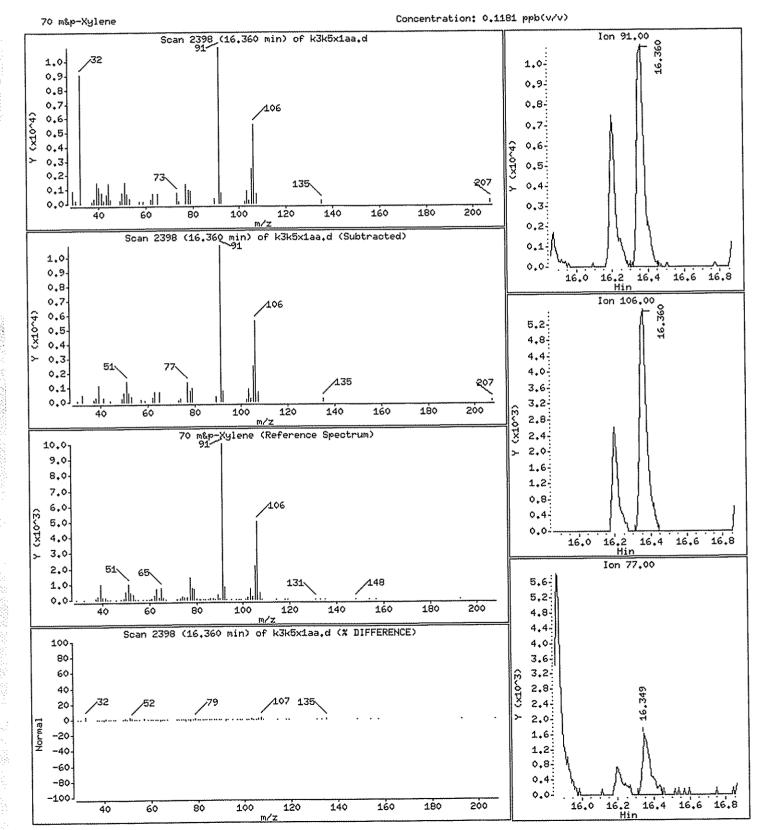
Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 0.08963 ppb(v/v)

Date : 03-DEC-2008 07:51


Client ID: VI 1S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Report Date: 03-Dec-2008 09:10

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k5x1aa.d

Lab Smp Id: K3K5X1AA Client Smp ID: VI 1S

Inj Date : 03-DEC-2008 07:51

Inst ID: mg.i Operator : 7126

Smp Info : ,,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 09:07 tajh Quant Tyr Quant Type: ISTD Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 17

Dil Factor: 1.00000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name Value		Description			
DF	1.00000	Dilution Factor			
Vt	500.00000	Default calibration vol			
Vo	500.00000	Default sample volume			

Cpnd Variable

Local Compound Variable

ISTD	RT	HEIGHT	AMOUNT
			======
* 1 Bromochloromethane	9.059	1261103	4.000

CONCENTRATIONS					QU					
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (v	//v))	QUAL	LIBR	ARY LIB	ENTRY	CPND	Ħ
====		**====**====			=	======	*****	====	==	
Ethyl alco	hol	V		C	AS #:	64-17-5				
4.993	1185007	3.75863669	3.759	99		NISTO5.1	93		1 (L)	

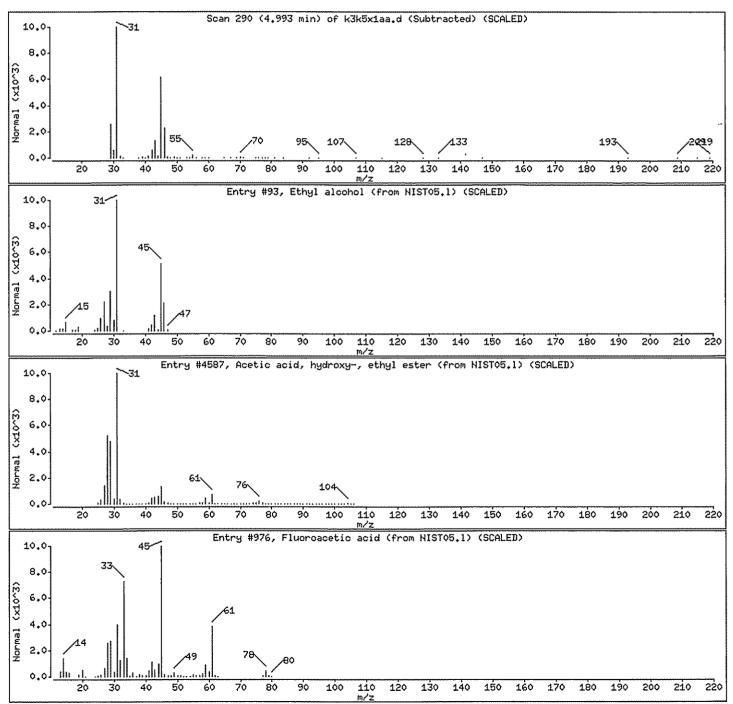
QC Flag Legend

L - Operator selected an alternate library search match.

Date : 03-DEC-2008 07:51

Client ID: VI 15

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	HISTO5.1	93	99	C2H60	46
Acetic acid, hydroxy-, ethyl ester	623-50-7	HISTO5.1	4587	33	C4H803	104
Fluoroacetic acid	144-49-0	NISTO5.1	976	17	C2H3F02	78

New York State D.E.C.

Client Sample ID: VI 1S

GC/MS Volatiles

AIR Work Order # K3K5X2AA Matrix....: Lot-Sample # H8K250101 - 002 Date Received ..: 11/24/2008 Date Sampled ...: 11/18/2008 Analysis Date... 12/01/2008 Prep Date....: 12/01/2008 8337098 Prep Batch #....: Method..... TO-15 20 Dilution Factor .: REPORTING REPORTING RESULTS RESULTS LIMIT (ug/m3) LIMIT (ppb(v/v)) (ug/m3) **PARAMETER** (ppb(v/v))

2-Butanone (MEK)	150	6.4	450	D	19
SURROGATE .		CENT COVERY		C	ABORATORY CONTROL JIMITS (%)
4-Bromofluorobenzene	9	3			70 - 130

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 03-Dec-2008 07:55

TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/k3k5xlaa.d
Lab Smp Id: K3K5X2AA
Ini Data

Client Smp ID: VI 1S

Inj Date : 01-DEC-2008 14:39

Operator: 7126 Inst ID: mg.i

Smp Info : K3K5X2AA,20,0,,,

Misc Info : G120108, T0155, nysdec.sub, , , ,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 03-Dec-2008 07:53 tajh Quant Type: ISTD Cal Date: 01-DEC-2008 11:14 Cal File: 1ptcal.d Cal Date : 01-DEC-2008 11:14

Als bottle: 3

Dil Factor: 20.00000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	20.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
Cpnd Variable		Local Compound Variable

					CONCENTRA:	LIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	22 23 22 33	==	*****		**=====	
* 1 Bromochloromethane	128	9.054	9.053 (1.000)	337198	4.00000	4.000
* 2 1.4-Difluorobenzene	114	11.200	11.200 (1.000)	1699333	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1309047	4.00000	4.000
s 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	782749	3.73893	3.739
39 2-Butanone	72	8.299	8.309 (0.917)	244248	7.61844	152.4

12/3/m

Data File: /var/chem/gcms/mg.i/G120108.b/k3k5x1aa.d Report Date: 03-Dec-2008 07:55

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k5x1aa.d Lab Smp Id: K3K5X2AA

Analysis Type: OTHER

Quant Type: ISTD Operator: 7126 Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m

Misc Info: G120108, T0155, nysdec. sub, , , ,

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: VI 1S Level: LOW

Sample Type: AIR

		AREA	T.TMTT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	=======	========	======
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	1	235760 1232215 935400	556712 2909685 2208800	337198 1699333 1309047	-14.90 -17.94 -16.73

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		======= 8.72 10.87 15.54	9.38 11.53 16.20	9.05 11.20 15.87	0.00 0.00 0.00
3 Chrorobenzene d3	15.07	13.31	10.20		

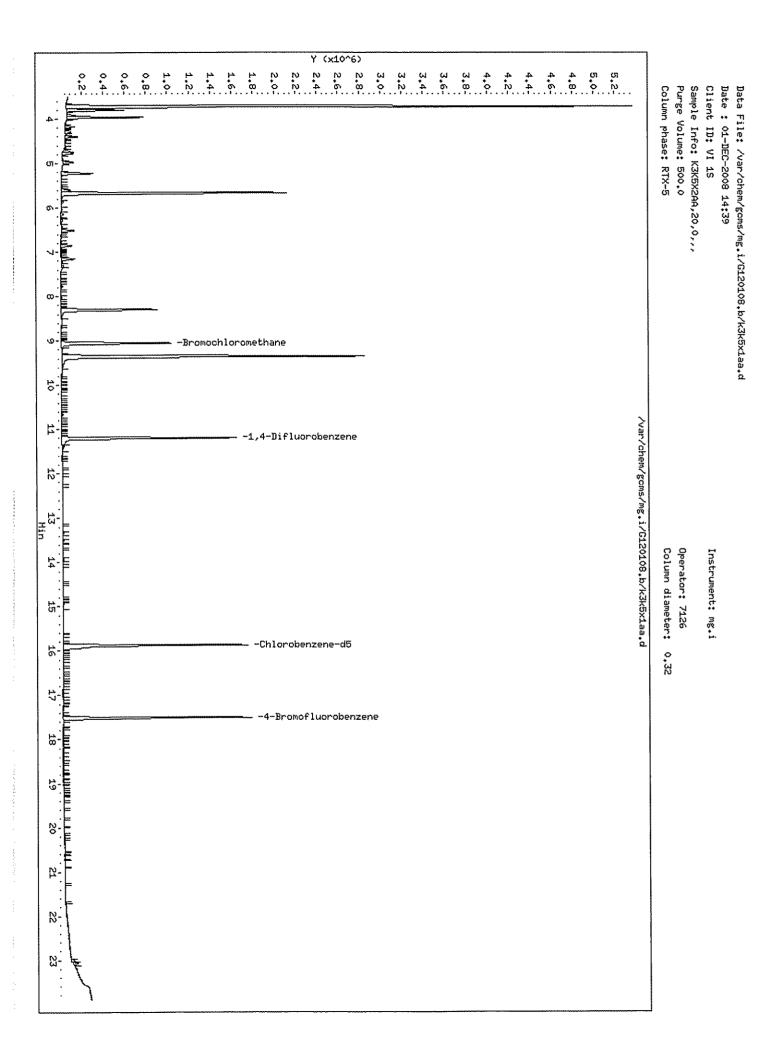
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 07:55

TestAmerica Knoxville

RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER

Client Smp ID: VI 1S Operator: 7126

Sample Matrix: GAS
Lab Smp Id: K3K5X2AA
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.739	93.47	70-130

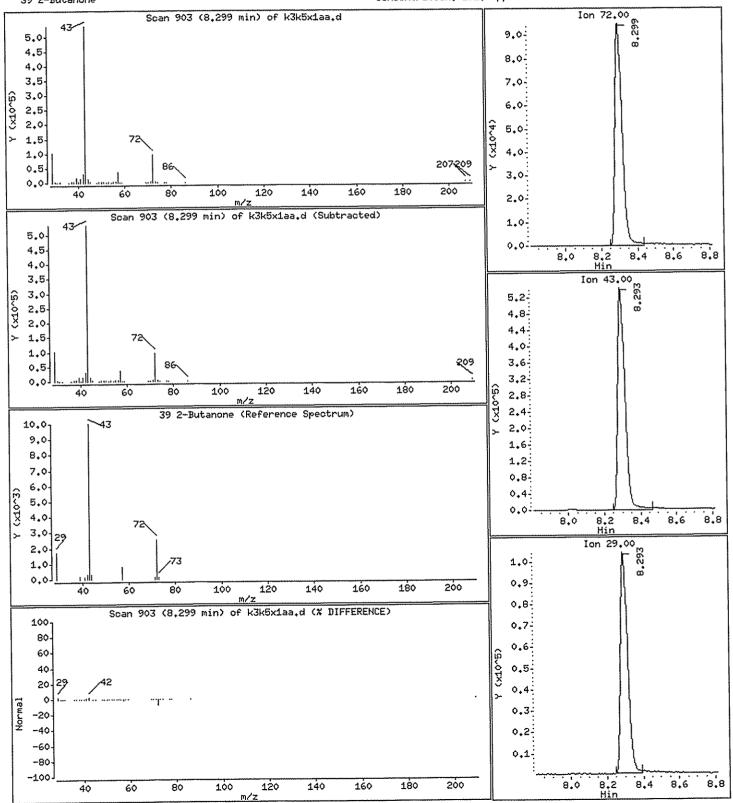
Date: 01-DEC-2008 14:39

Client ID: VI 1S

Instrument: mg.i

Sample Info: K3K5X2AA,20,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 152.4 ppb(v/v)

GC/MS Volatiles

Lot-Sample # H8K250101 - 003 Work Order # K3K501AA

Matrix....: AIR

Date Sampled ...:

11/18/2008

Prep Date....:

12/01/2008

Date Received..: 11/24/2008

Prep Batch #....:

8337098

Analysis Date... 12/01/2008

Dilution Factor .:

45.45

Method....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	290	3.6	1300	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	ND	44
Methylene chloride	ND	9.1	ND	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	15	3.6	100	25
Toluene	ND	3.6	ND	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	ND	3.6	ND	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	ND	1.8	ND	9.8
1,2,4-Trimethylbenzene	150	3.6	720	18
1,3,5-Trimethylbenzene	62	3.6	300	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	870	3.6	3800	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	ND	3.6	ND	28
m-Xylene & p-Xylene	1200	3.6	5200	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	85	15	250	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19
	· -			

New York State D.E.C.

Client Sample ID: VI 2S

GC/MS Volatiles

Lot-Sample # H8K250101	- 003 V	Work Order# K3K501	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	9.1	ND	31
1,2-Dichlorobenzene	ND	3.6	ND	22
1,3-Dichlorobenzene	ND	3.6	ND	22
1,4-Dichlorobenzene	ND	3.6	ND.	22
Dichlorodifluoromethane	ND	3.6	ND	18
1,1-Dichloroethane	ND	3.6	ND	15
1,2-Dichloroethane	ND	3.6	ND	15
1,1-Dichloroethene	ND	3.6	ND	14
cis-1,2-Dichloroethene	ND	3.6	ND	14
trans-1,2-Dichloroethene	ND	3.6	ND	14
1,2-Dichloropropane	ND	3.6	ND	17
cis-1,3-Dichloropropene	ND	3.6	ND	17
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		100		70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 02-Dec-2008 13:55

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k501aa.d Lab Smp Id: K3K501AA Client Smp I Client Smp ID: VI 2S

Inj Date : 01-DEC-2008 15:21

Operator: 7126 Inst ID: mg.i

Smp Info : ,45.45,0,,, Misc Info : G120108, T0155, nysdec.sub,,,,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 02-Dec-2008 13:51 tajh Quant Type: ISTD Cal Date: 01-DEC-2008 11:14 Cal File: 1ptcal. Cal File: 1ptcal.d

Als bottle: 4
Dil Factor: 45.45000
Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA'	rions
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
==		* * = =	==				
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	334370	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	1813765	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1381107	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	880255	3.98530	3.985
	39 2-Butanone	72	8.304	8.309 (0.917)	59567	1.87372	85.16
	67 Tetrachloroethene	129	15.050	15.050 (0.948)	40931	0.32854	14.93
	69 Ethylbenzene	91	16.204	16.204 (1.021)	1740926	6.36641	289.4 /NK
	70 m&p-Xylene	91	16.360	16.365 (1.031)	5459966	26.1311	1188 (A)
	73 Styrene	104	16.889	16.829 (1.064)	91804	0.62112	28.23
	74 o-Xylene	91	16.889	16.889 (1.064)	4305641	19.1594	870.8 (A) O
	81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	153712	1.35374	61.53
	85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	709799	3.22775	146.7
	88 Benzyl Chloride	91	18.646	18.997 (1.175)	72397	0.43423	19-14

Data File: /var/chem/gcms/mg.i/G120108.b/k3k501aa.d Report Date: 02-Dec-2008 13:55

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k501aa.d
Lab Smp Id: K3K501AA
Analysis Type: OTHER
Quant Type: ISTD
Operator: 7126

Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m Misc Info: G120108, T0155, nysdec.sub,,,,

Calibration Date: 01-DEC-2008 Calibration Time: 09:20

Client Smp ID: VI 2S Level: LOW

Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		1232215	556712 2909685 2208800	334370 1813765 1381107	-15.61 -12.42 -12.15

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	0.00
2 1,4-Difluorobenze		10.87	11.53	11.20	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

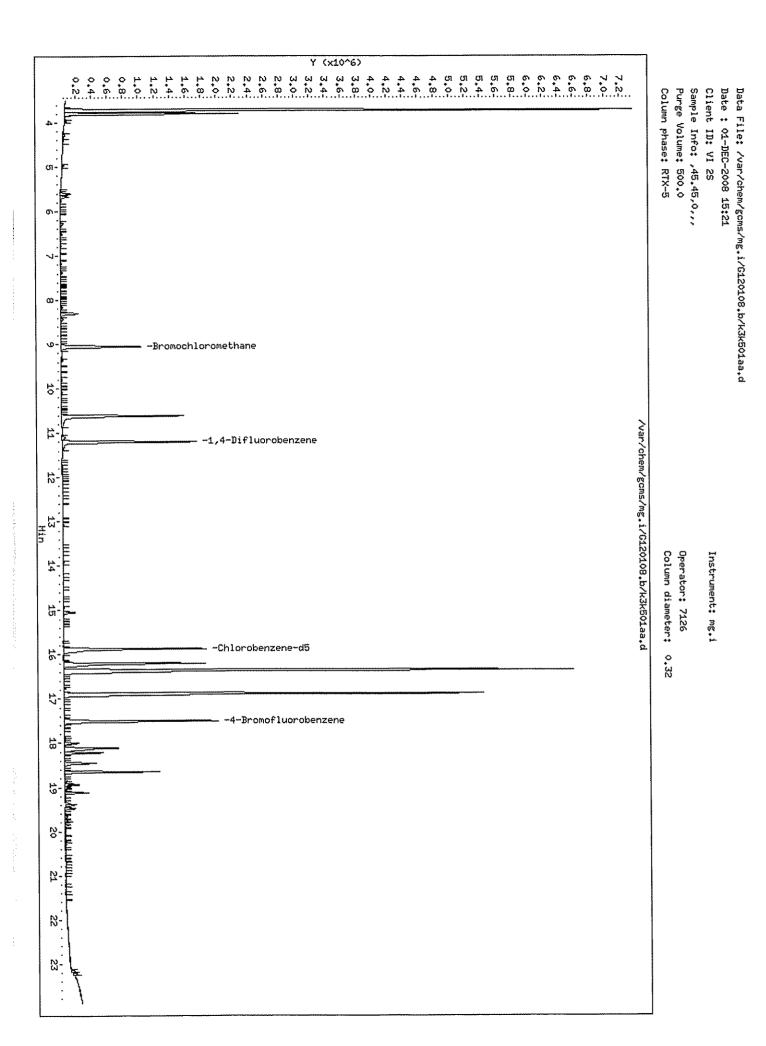
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 13:55

TestAmerica Knoxville

RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Sample Matrix: GAS Fraction: C Client SDG: H8K250101

Fraction: OTHER

Client Smp ID: VI 2S Operator: 7126

Sample Matrix: GAS
Lab Smp Id: K3K501AA
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.985	99.63	70-130

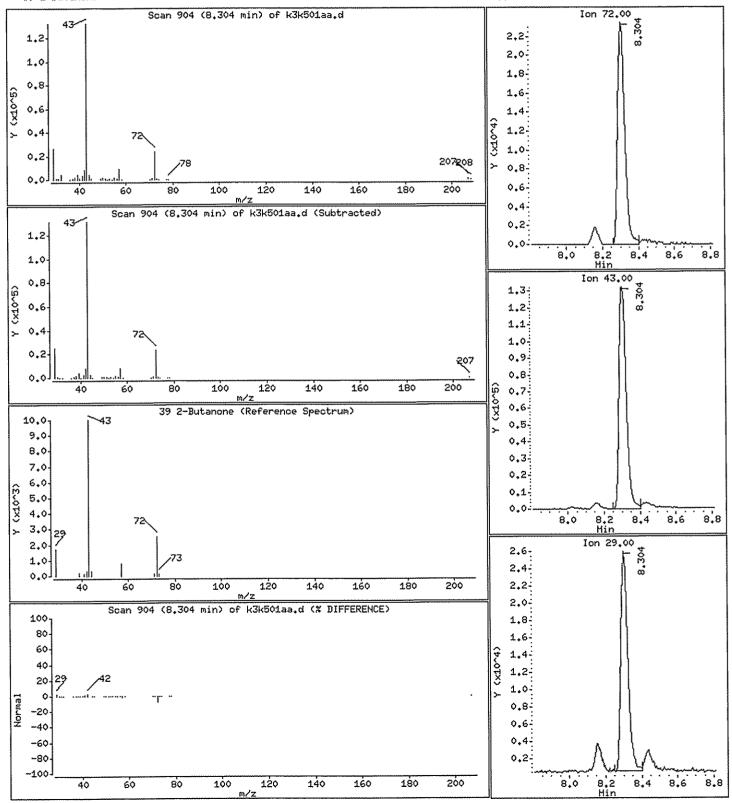
Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 85.16 ppb(v/v)

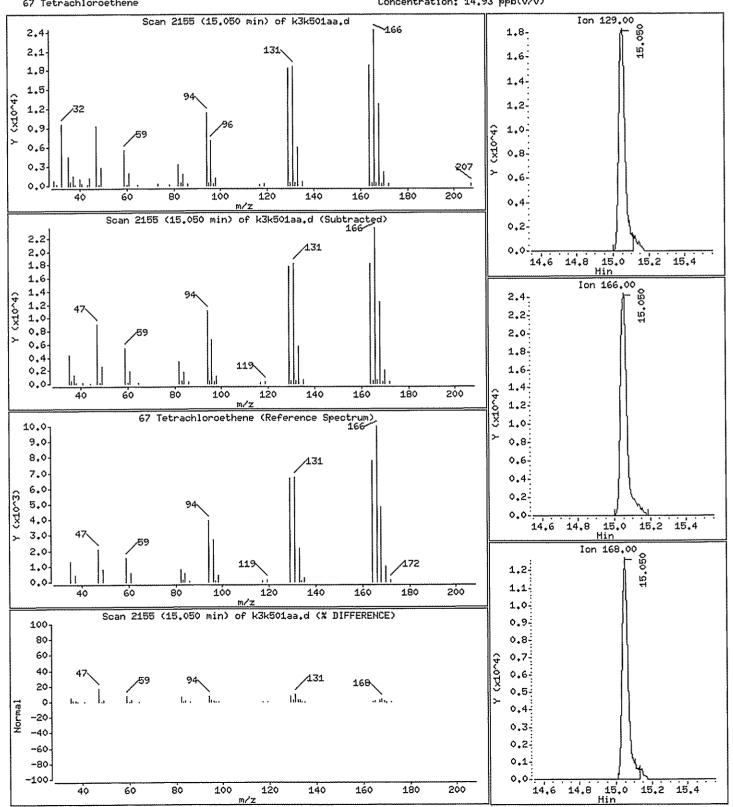
Date: 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

67 Tetrachloroethene

Concentration: 14.93 ppb(v/v)

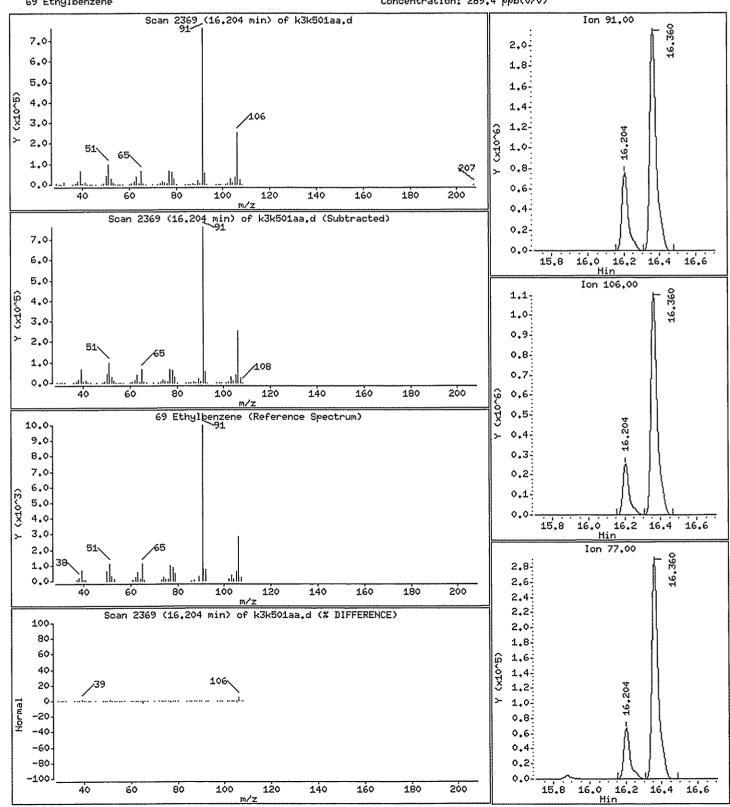
Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

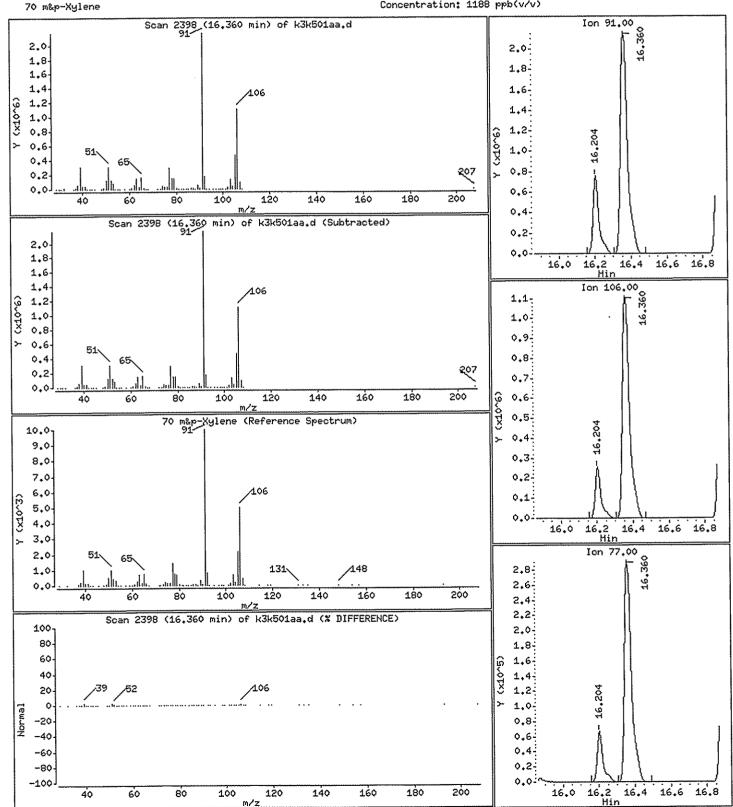
Concentration: 289,4 ppb(v/v)

Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45,45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 1188 ppb(v/v)

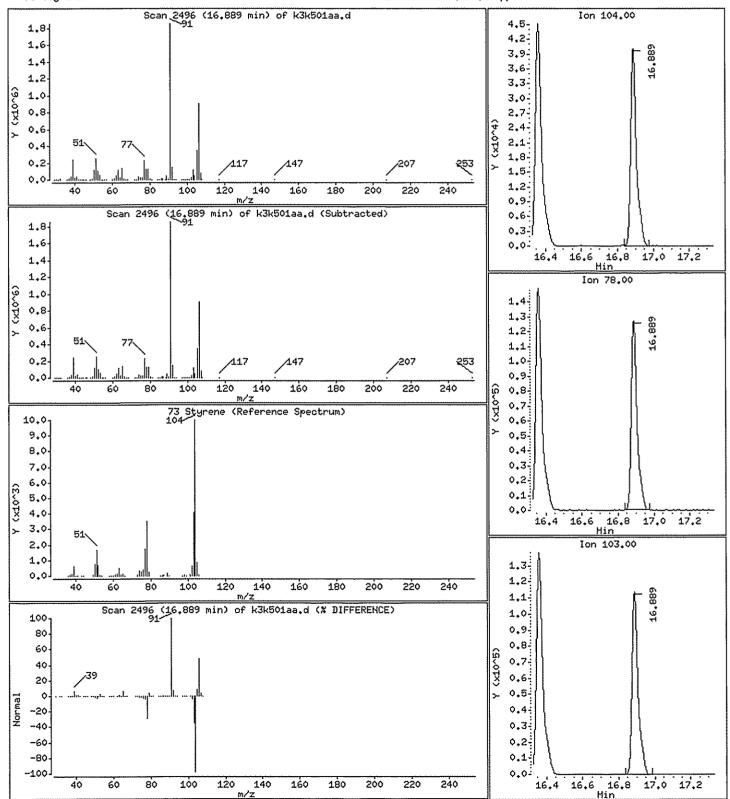
Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

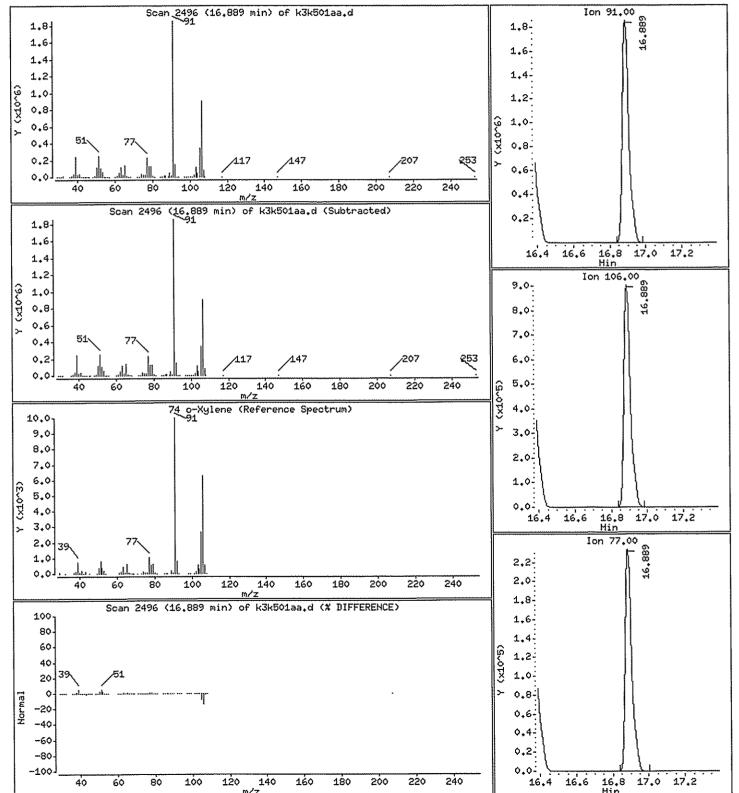
73 Styrene

Concentration: 28.23 ppb(v/v)

Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg,i


Sample Info: ,45.45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

74 o-Xylene

Concentration: 870.8 ppb(v/v)

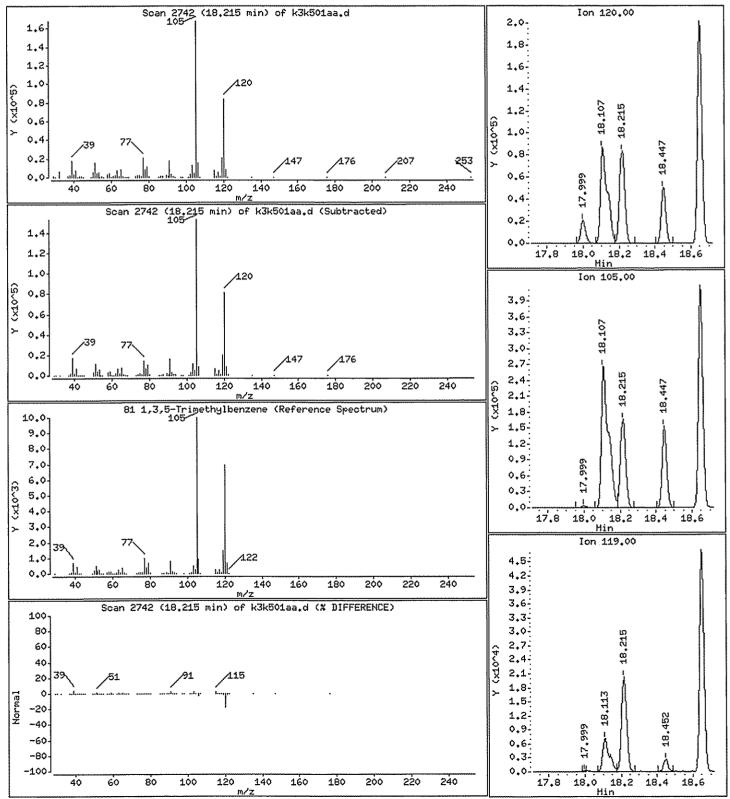
Date : 01-DEC-2008 15:21

Client IB: VI 2S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

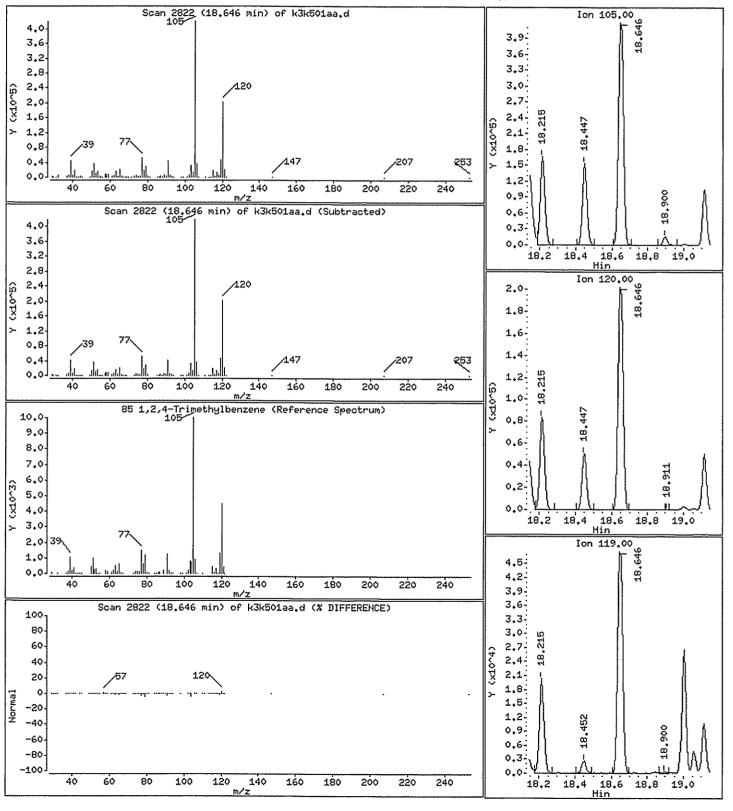
81 1,3,5-Trimethylbenzene

Concentration: 61.53 ppb(v/v)

Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

85 1,2,4-Trimethylbenzene

Concentration: 146.7 ppb(v/v)

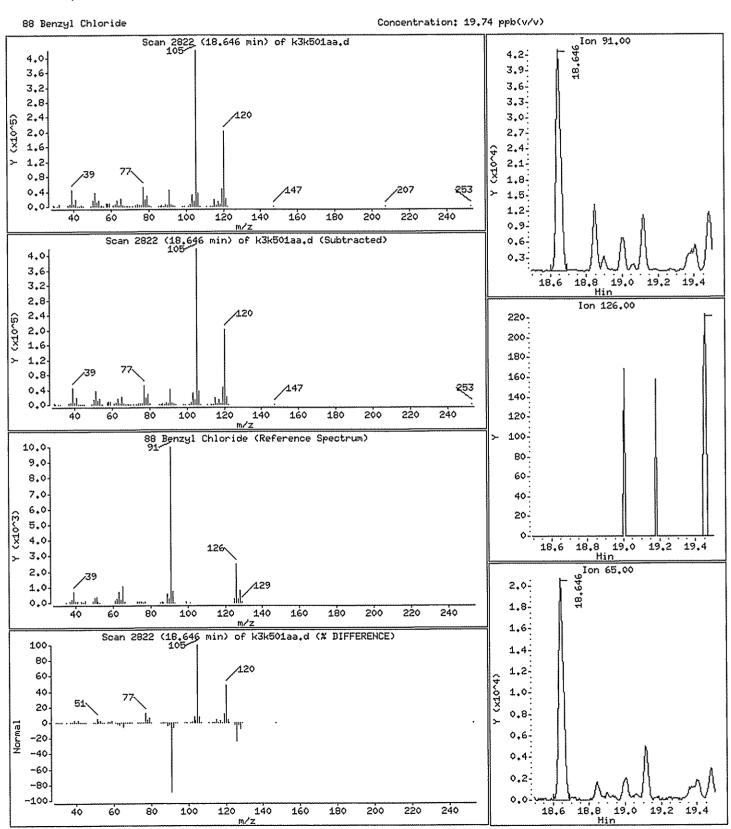
Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

88 Benzyl Chloride

Concentration: 19.74 ppb(v/v)

Report Date: 02-Dec-2008 14:37

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k501aa.d Lab Smp Id: K3K501AA Client Smp I Inj Date: 01-DEC-2008 15:21 Operator: 7126 Inst ID: mg. Smp Info: ,45.45,0,,, Misc Info: G120108, T0155, nysdec.sub,,,, Client Smp ID: VI 2S

Inst ID: mq.i

Comment

Method: /var/chem/gcms/mg.i/G120108.b/T0155.m Meth Date: 02-Dec-2008 14:37 tajh Quant Tyr Cal Date: 01-DEC-2008 11:14 Cal File: Quant Type: ISTD Cal File: 1ptcal.d

Als bottle: 4 Dil Factor: 45.45000 Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

IS	TD	RT	HEIGHT	AMOUNT
==	m = = = = =	====	=====	====
*	1 Bromochloromethane	9.053	1023168	4.000

CHANT CONCENTRATIONS

LIBRARY LIB ENTRY HEIGHT ON-COL(ppb(v/v)) FINAL(ppb(v/v)) QUAL CPND # ====

CAS #: 64-17-5 Ethyl alcohol 32284 0.12621192 5.736 99 NISTO5.1 94 1(L) 4.971

QC Flag Legend

L - Operator selected an alternate library search match.

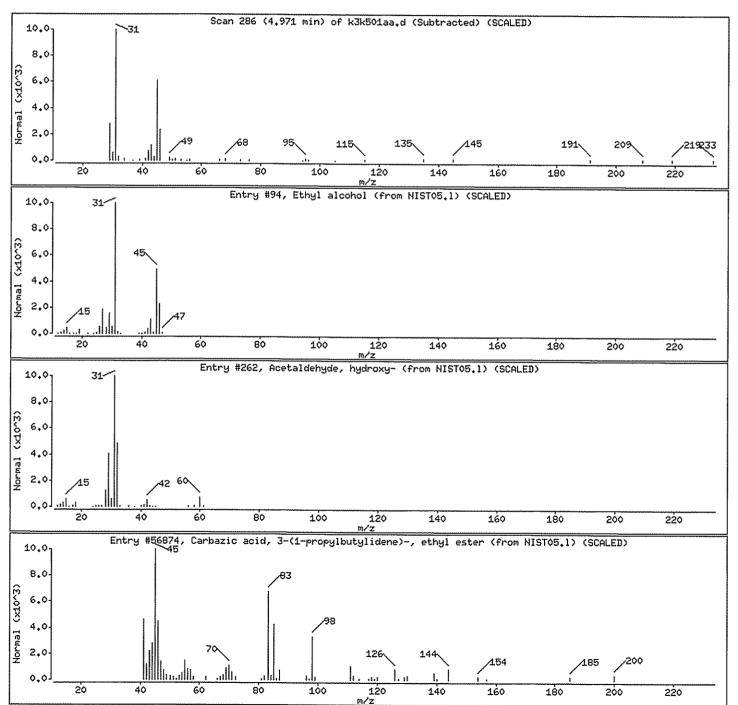
1250 volt

Date : 01-DEC-2008 15:21

Client ID: VI 2S

Instrument: mg.i

Sample Info: ,45,45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Library Search Compound Match	CAS Humber	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	94	99	C2H60	46
Acetaldehyde, hydroxy-	141-46-8	NISTO5.1	262	9	C2H4O2	60
Carbazic acid, 3-(1-propylbutylidene)-,	14702-39-7	NISTO5.1	56874	9	C10H20N2O2	200

New York State D.E.C.

Client Sample ID: VI 2A

GC/MS Volatiles

Lot-Sample # H8K250101 - 004 Work Order # K3K511AA Matrix......: AIR

 Date Sampled...:
 11/18/2008

 Prep Date......:
 12/01/2008

 Prep Batch #....:
 8337098

Date Received..: 11/24/2008 Analysis Date... 12/01/2008

Dilution Factor.: 10 Method..........: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.80	ND	5,6
ane		****		
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	2.7	0.80	12	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	12	2.0	43	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	5.8	2.0	20	6.9
Benzene	1.4	0.80	4.6	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	5.7	0.80	21	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	1.5	0.80	7.4	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	3.3	0.80	14	3.5
Methyl tert-butyl ether	ND	1.6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	10	0.80	45	3,5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	2400	3.2	7000 E	9,4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
Bromomethane	ND	0.80	ND	3.1
Carbon tetrachloride	ND	0.40	ND	2.5
Chlorobenzene	ND	0.80	ND	3.7
Dibromochloromethane	ND	0.80	ND	6.8
Chloroethane	ND	0.80	ND	2.1
Chloroform	ND	0.80	ND	3.9
Chloromethane	ND	2.0	ND	4.1

New York State D.E.C.

Client Sample ID: VI 2A

GC/MS Volatiles

Lot-Sample # H8K250101 - 004	4	Work Order #	K3K511	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0		ND	6.9
1,2-Dichlorobenzene	ND	0.80		ND	4.8
1,3-Dichlorobenzene	ND	0.80		ND	4.8
1,4-Dichlorobenzene	ND	0.80		ND	4.8
Dichlorodifluoromethane	ND	0.80		ND	4.0
1,1-Dichloroethane	ND	0.80		ND	3.2
1,2-Dichloroethane	ND	0.80		ND	3.2
1,1-Dichloroethene	ND	0.80		ND	3.2
cis-1,2-Dichloroethene	ND	0.80		ND	3.2
trans-1,2-Dichloroethene	ND	0.80		ND	3.2
1,2-Dichloropropane	ND	0.80		ND	3.7
cis-1,3-Dichloropropene	ND	0.80		ND	3.6
TENTATIVELY INDENTIFIED COM	IPOUNDS	RESU	JLT		UNITS
Ethyl alcohol		ND			ppb(v/v)
SURROGATE		PERCENT RECOVERY		······································	LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		92			70 - 130

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 14:00

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k511aa.d Lab Smp Id: K3K511AA Client Smp I

Client Smp ID: VI 2A

Inj Date : 01-DEC-2008 16:03

Operator : 7126 Smp Info : ,10,0,,, Misc Info : G120108, T0155, nysdec.sub,,,, Inst ID: mg.i

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 02-Dec-2008 13:51 tajh Quant Type: ISTD Cal Date : 01-DEC-2008 11:14 Cal File: 1ptcal.d

Als bottle: 5
Dil Factor: 10.00000
Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	10.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

			CONCENTRATIONS			
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
以 自由 自 非 经 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	22 22 20 III	==	*****	========	*****	
* 1 Bromochloromethane	128	9.064	9.053 (1.000)	316170	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.205	11.200 (1.000)	1652414	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1258880	4.00000	4.000
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	736855	3.65997	3.660
31 Methylene Chloride	84	6.514	6.514 (0.719)	57394	0.57990	5.799 /
38 Hexane	56	8.293	8.293 (0.915)	141378	1.21171	12.12
39 2-Butanone	72	8.304	8.309 (0.916)	7142745	237.610	2376 (A)
47 Benzene	78	10.671	10.666 (0.952)	35067	0.14282	1.428
61 Toluene	91	13.923	13.923 (0.877)	124806	0.56772	5.677
69 Ethylbenzene	91	16.204	16.204 (1.021)	68161	0.27346	2.735
70 m&p-Xylene	91	16.360	16.365 (1.031)	195638	1.02723	10.27
74 o-Xylene	91	16.888	16.889 (1.064)	67136	0.32775	3.278
81 1,3,5-Trimethylbenzene	120	18.107	18.215 (1.141)	10456	0.10103	1.010
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	30145	0.15039	1.504

Data File: /var/chem/gcms/mg.i/G120108.b/k3k511aa.d Report Date: 02-Dec-2008 14:00

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Report Date: 02-Dec-2008 14:00

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k511aa.d Lab Smp Id: K3K511AA

Analysis Type: OTHER Quant Type: ISTD

Operator: 7126
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: VI 2A

Level: LOW

Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	396236	235760	556712	316170	-20.21
2 1,4-Difluorobenze	2070950	1232215	2909685	1652414	-20.21
3 Chlorobenzene-d5	1572100	935400	2208800	1258880	-19.92

COMPOUND	STANDARD	RT I LOWER	IMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	9.05	8.72	9.38	9.06	0.12
2 1,4-Difluorobenze		10.87	11.53	11.20	0.05
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 14:00

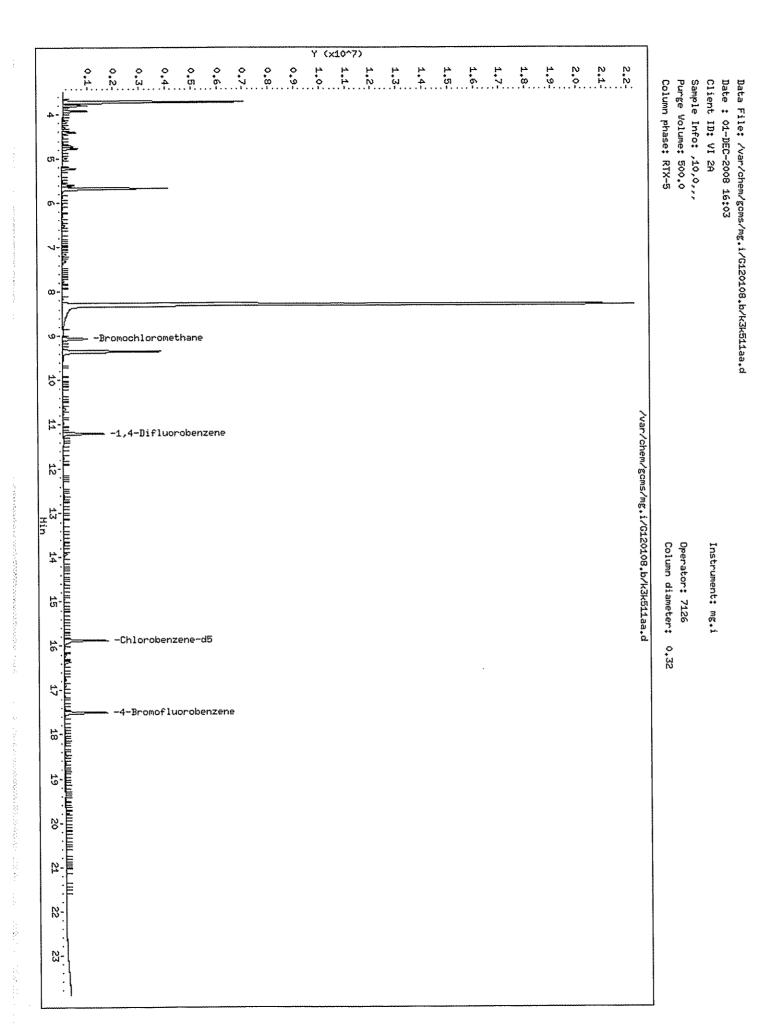
TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Sample Matrix: GAS

Fraction: OTHER


Lab Smp Id: K3K511AA

Client Smp ID: VI 2A Operator: 7126

SampleType: SAMPLE Quant Type: ISTD

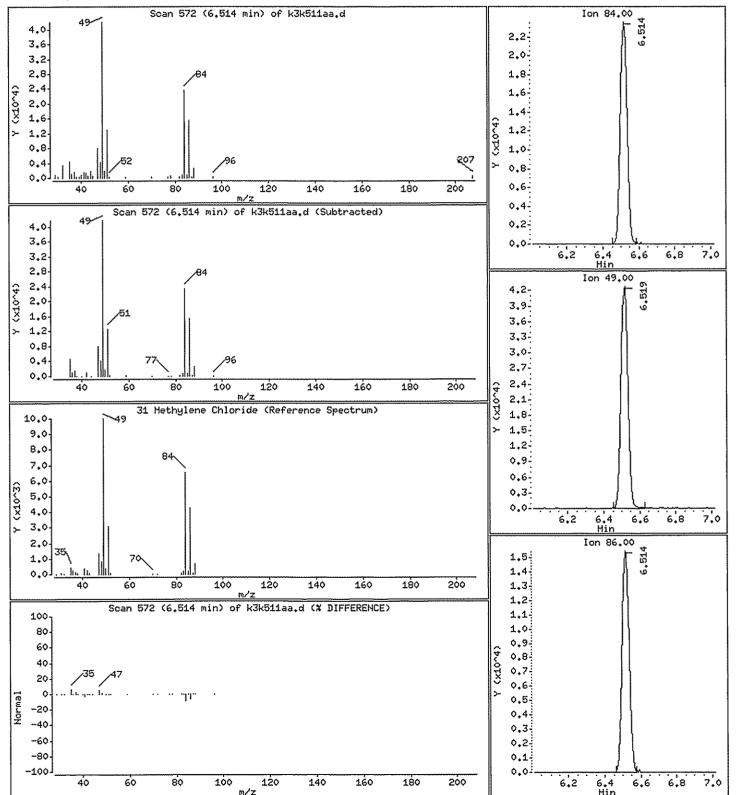
Level: LOW Operator: 7
Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.660	91.50	70-130

Date : 01-DEC-2008 16:03

Client ID; VI 2A

Instrument: mg.i


Sample Info: ,10,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

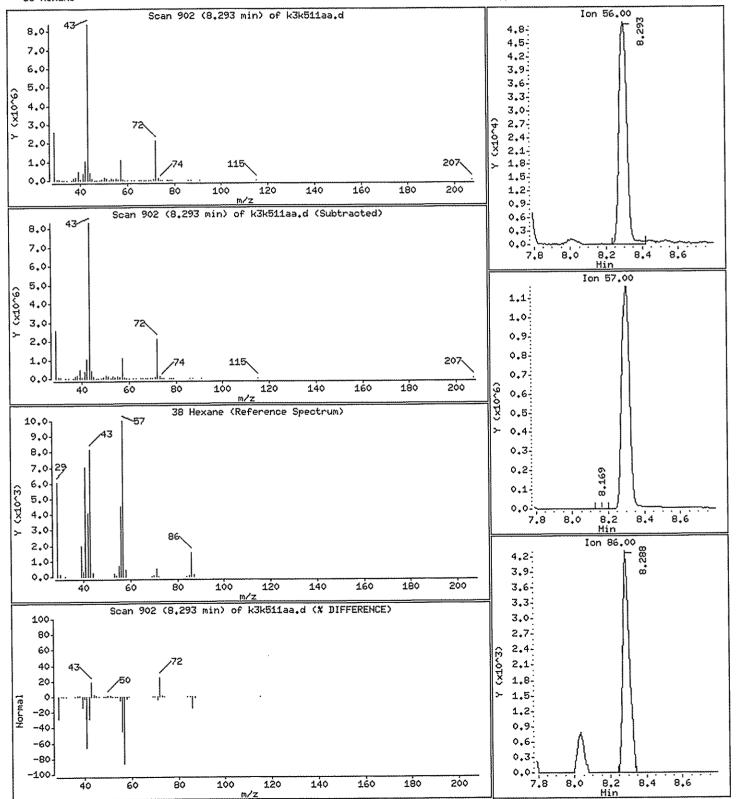
31 Hethylene Chloride

Concentration: 5.799 ppb(v/v)

Date : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i


Sample Info: ,10,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

38 Hexane

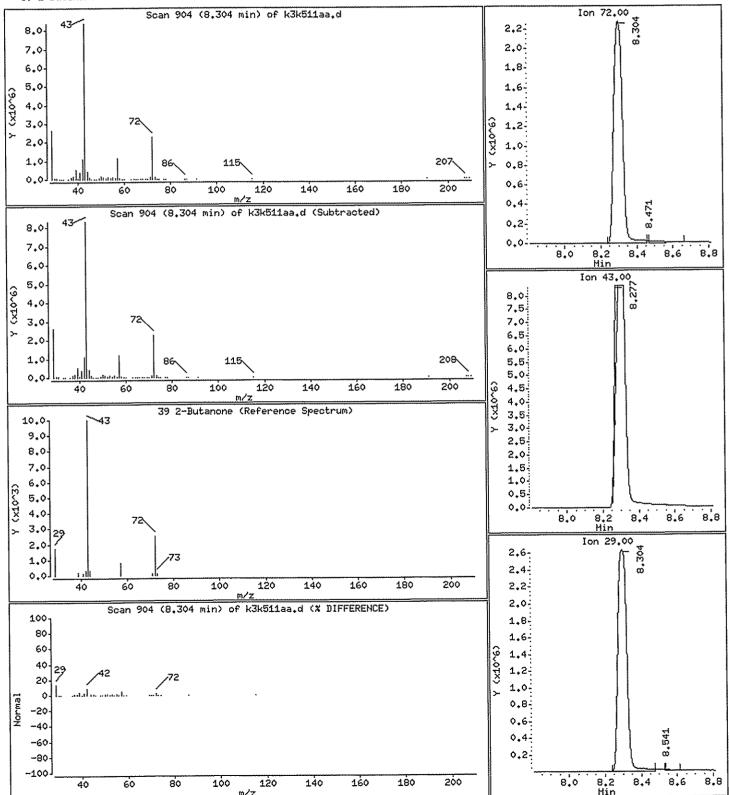
Concentration: 12.12 ppb(v/v)

Date : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

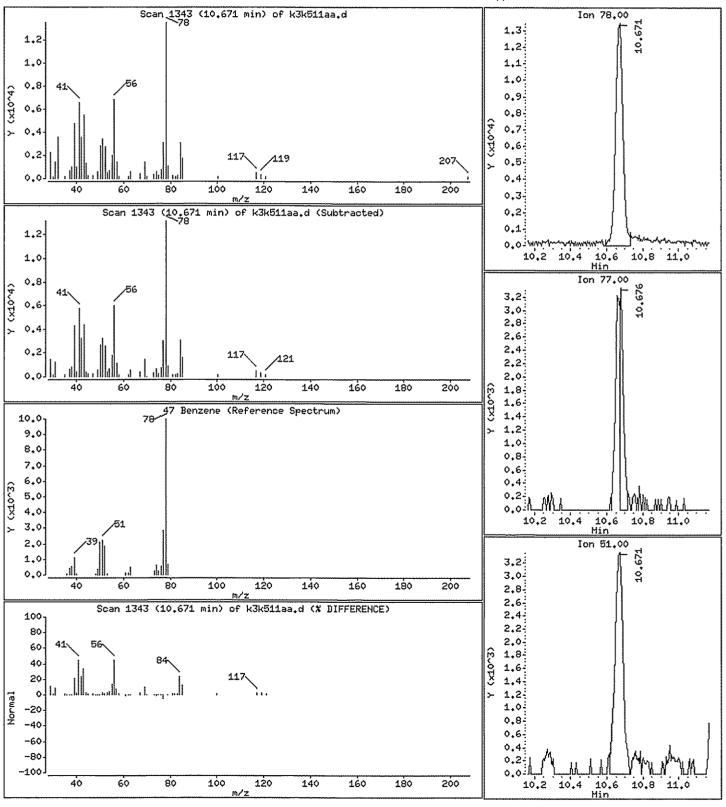
Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 2376 ppb(v/v)

Date : 01-DEC-2008 16:03


Client ID: VI 2A Instrument: mg.i

Sample Info: ,10,0,,,

Purge Volume: 500.0 Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

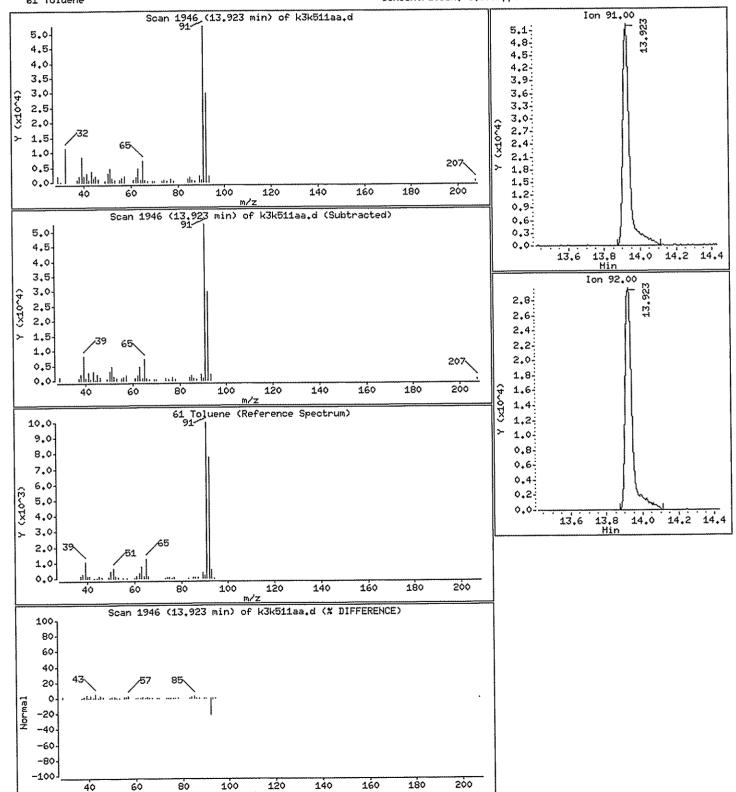
47 Benzene Concentration: 1.428 ppb(v/v)

Date: 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

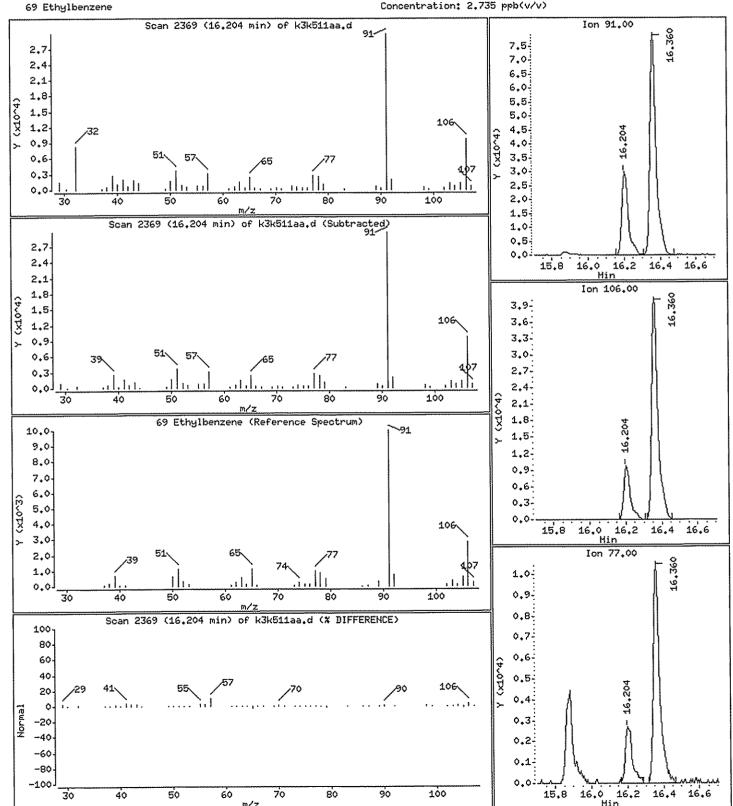
Column diameter: 0.32

Concentration: 5.677 ppb(v/v)

Date : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i


Sample Info: ,10,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

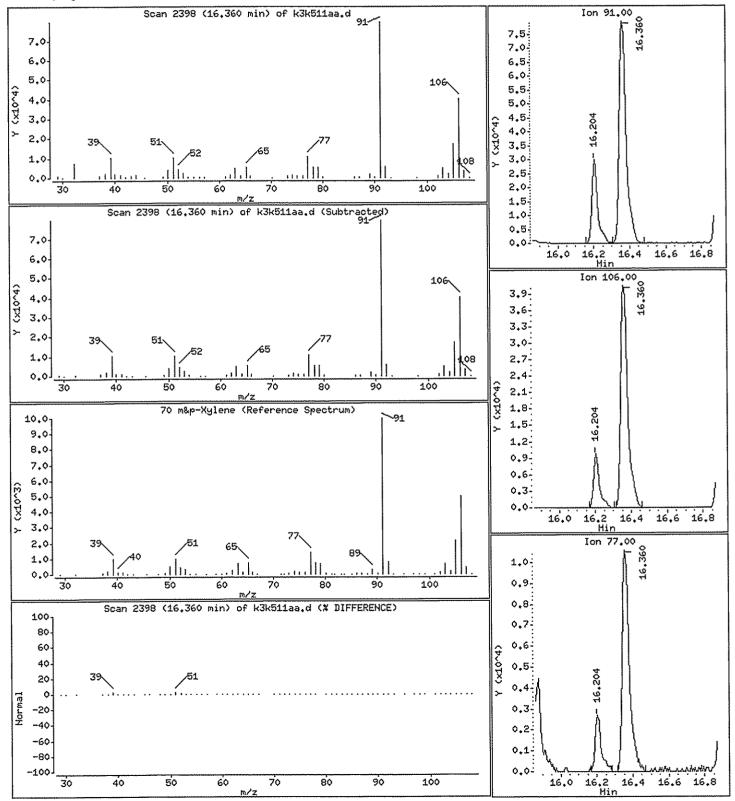
Concentration: 2.735 ppb(v/v)

Date: 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

70 m&p-Xylene

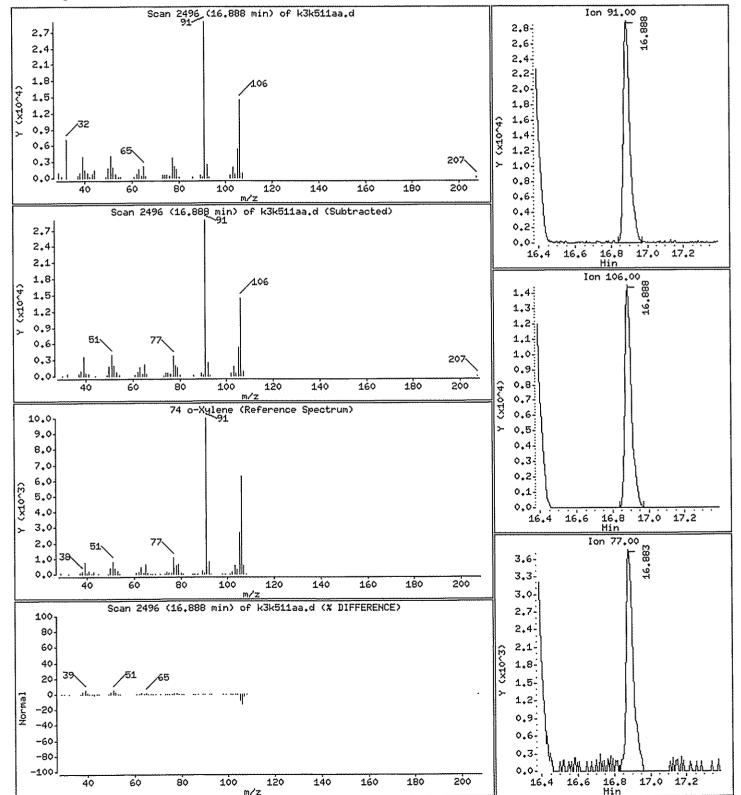
Concentration: 10.27 ppb(v/v)

Bate : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

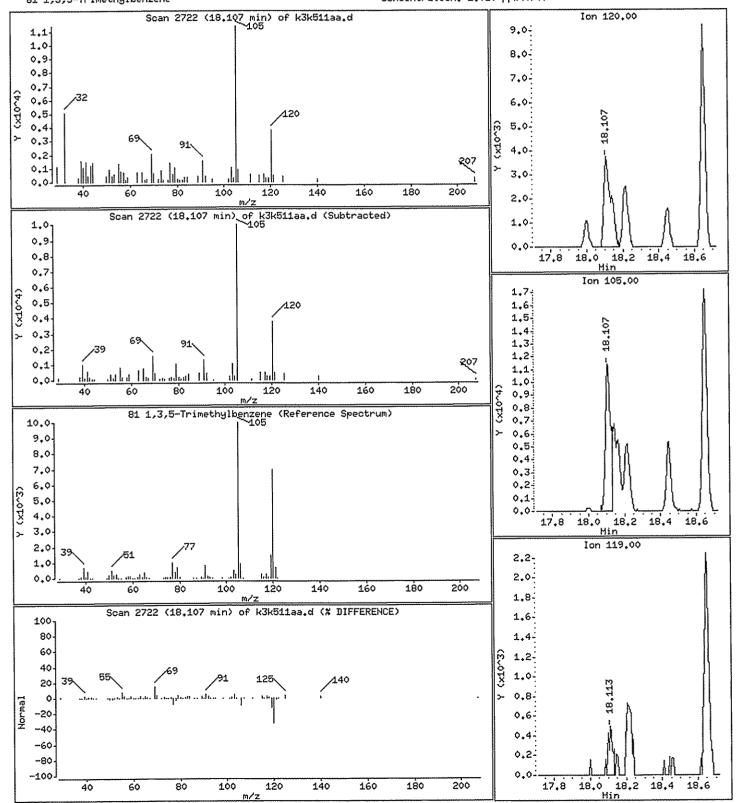
74 o-Xylene

Concentration: 3.278 ppb(v/v)

Date : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i


Sample Info: ,10,0,,,
Purge Volume: 500.0

Column phase: RTX-5

Operator: 7126

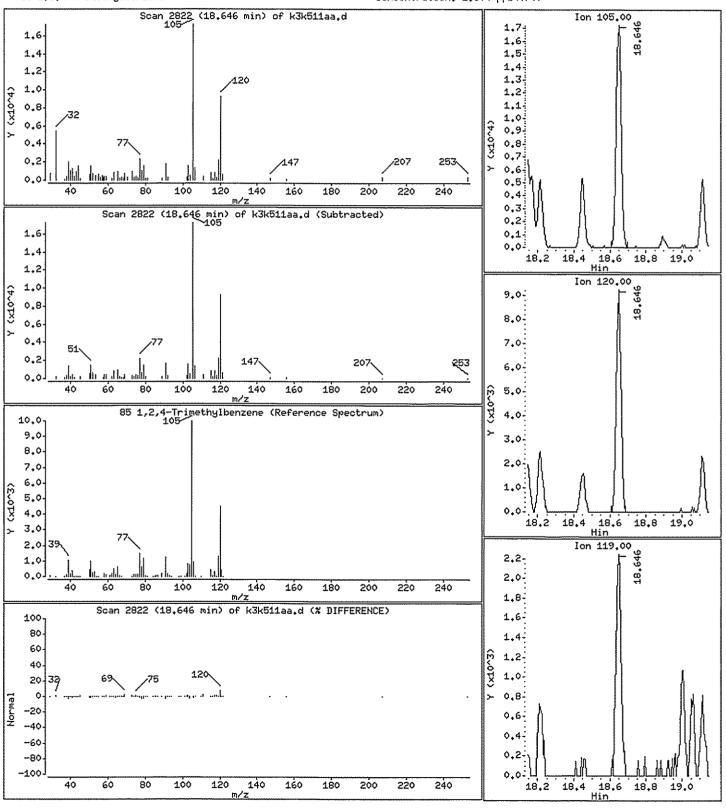
81 1,3,5-Trimethylbenzene

Concentration: 1.010 ppb(v/v)

Date : 01-DEC-2008 16:03

Client ID: VI 2A

Instrument: mg.i


Sample Info: ,10,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

85 1,2,4-Trimethylbenzene

Concentration: 1.504 ppb(v/v)

Report Date: 02-Dec-2008 14:38

TestAmerica Knoxville

Modified Method TO-14/TO-15

Client Smp ID: VI 2A

Data file: /var/chem/gcms/mg.i/Gl20108.b/k3k51laa.d Lab Smp Id: K3K51lAA Client Smp I Inj Date: 01-DEC-2008 16:03
Operator: 7126 Inst ID: mg. Smp Info: ,10,0,,
Misc Info: Gl20108, T0155, nysdec.sub,,,, Inst ID: mg.i

Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

Meth Date: 02-Dec-2008 14:37 tajh Quant Type: ISTD
Cal Date: 01-DEC-2008 11:14 Cal File: 1ptcal.

Als bottle: 5
Dil Factor: 10.00000
Integrator: HP RTE Compound Sublist: Cal File: 1ptcal.d

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	10.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume

Cpnd Variable

Local Compound Variable

ISTD	RT	HEIGHT	AMOUNT
* 1 Bromochloromethane	9.064	956127	4.000

		CONCENTRA	TIONS			QUA	NT			
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (v/v))	QUAL	LIBRA	RY LIB	ENTRY	CPND	#
====	******		=======================================	====		====		====	5 W S	
				,	750 # . E	4_1"E				

Ethyl alcohol

4.988 186228 0.77909315

7.791 99 NIST05.1

1(L)

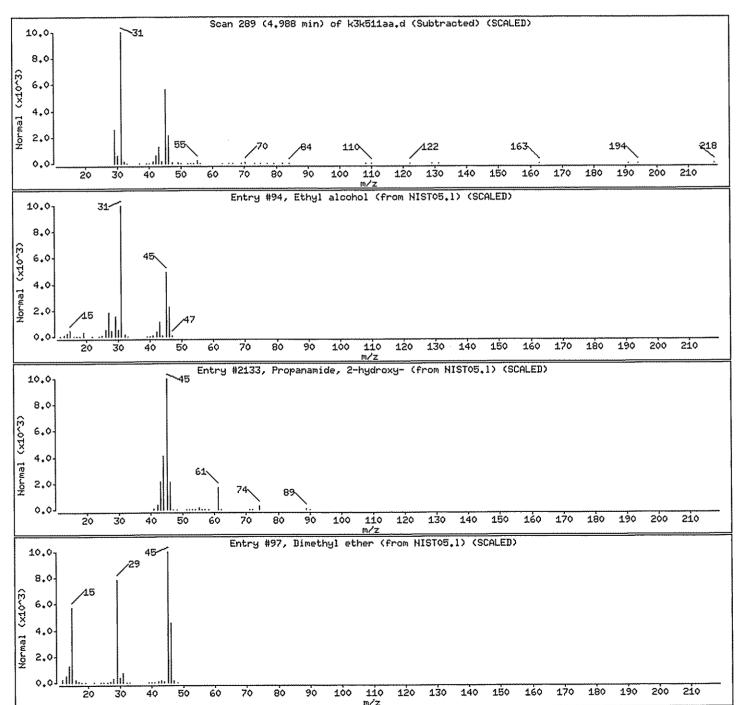
QC Flag Legend

L - Operator selected an alternate library search match.

Township To Work

Date : 01-DEC-2008 16:03

Client ID: VI 2A


Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Hatch	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	94	99	C2H60	46
Propanamide, 2-hydroxy-	2043-43-8	NISTO5.1	2133	7	C3H7N02	89
Dimethyl ether	115-10-6	NISTO5.1	97	7	C2H60	46

Report Date: 03-Dec-2008 09:08

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/k3k512aa.d Lab Smp Id: K3K512AA Client Smp I

Client Smp ID: VI 2A

Inj Date : 02-DEC-2008 15:49

Operator : 7126 Inst ID: mg.i

Smp Info : ,168.18,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment

Method

: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD Cal Date : 02-DEC-2008 10:05 Cal File: 1ptcal.d

Als bottle: 1

Dil Factor: 168.18000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	168.18000	Dilution Factor
٧t	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA!	rions
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
==	*****		==		*****	****	=====
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	373280	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.194 (1.000)	1914095	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1310987	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	772729	3.68560	3.686
	39 2-Butanone	72	8.288	8.304 (0.915)	472269	13.3068	2238 (A) O (C

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Report Date: 03-Dec-2008 09:08

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k512aa.d

Lab Smp Id: K3K512AA Analysis Type: OTHER

Quant Type: ISTD Operator: 7126

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: VI 2A

Level: LOW

Sample Type: AIR

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	421439	250756	592122	373280	-11.43
2 1,4-Difluorobenze	2096045	1247147	2944943	1914095	-8.68
3 Chlorobenzene-d5	1591085	946696	2235474	1310987	-17.60

	_	RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	=======		========	======
1 Bromochloromethan	9.05	8.72	9.38	9.05	0.00
2 1,4-Difluorobenze	11.19	10.86	11.52	11.20	0.05
3 Chlorobenzene-d5	15.87	15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 09:08

TestAmerica Knoxville

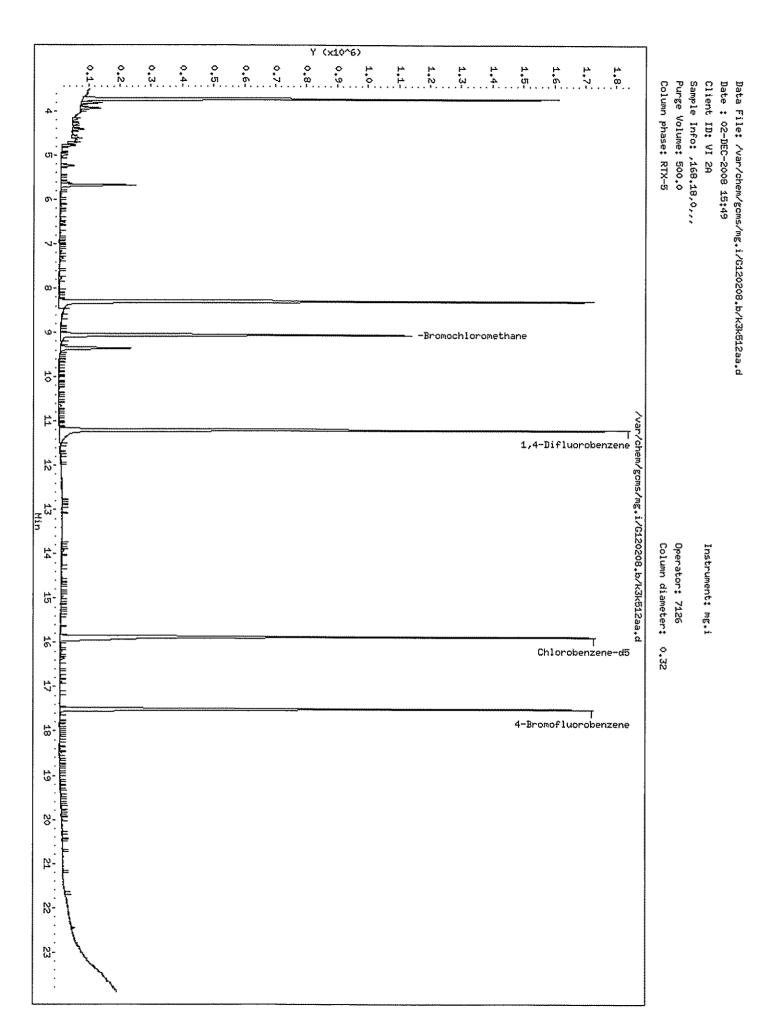
RECOVERY REPORT

Client SDG: H8K250101 Client Name: New York State D.E.C24-NOV-2008 00:00

Sample Matrix: GAS Fraction: OTHER

Client Smp ID: VI 2A

Lab Smp Id: K3K512AA


Operator: 7126

SampleType: SAMPLE

Quant Type: ISTD

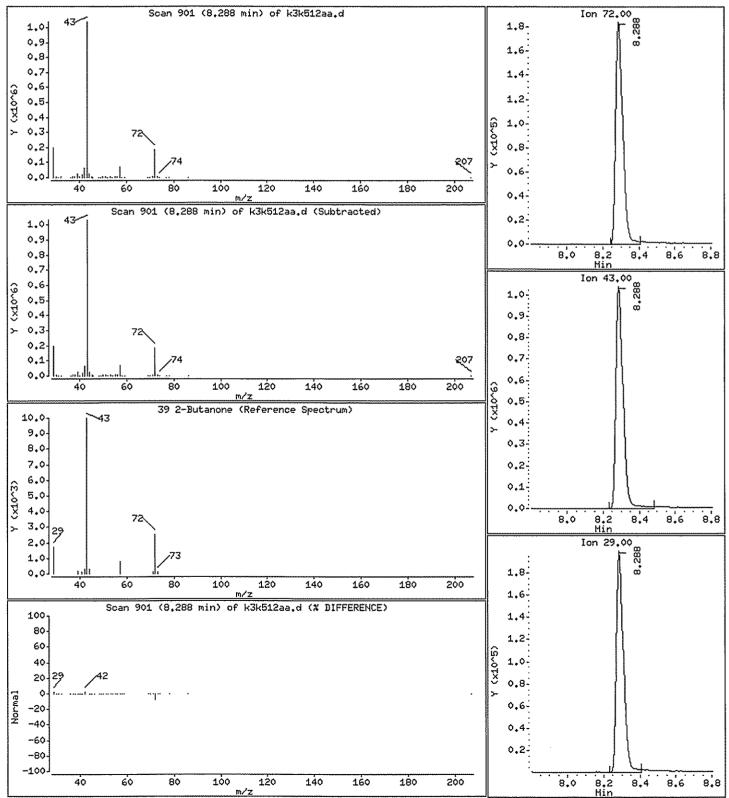
Level: LOW Operator: 7
Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.686	92.14	70-130

Date : 02-DEC-2008 15:49

Client ID: VI 2A

Instrument: mg.i


Sample Info: ,168.18,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

39 2-Butanone

Concentration: 2238 ppb(v/v)

Client Sample ID: VI 2A

GC/MS Volatiles

Lot-Sample # H8K250101 - 004 Work Order#

K3K512AA

Matrix....:

AIR

Date Sampled ...:

11/18/2008

Prep Date....:

12/02/2008

Date Received ..: 11/24/2008

Prep Batch #....:

8338089

Analysis Date... 12/02/2008

Dilution Factor .:

168.18

PARAMETER

RESULTS (ppb(v/v))

REPORTING LIMIT (ppb(v/v)) RESULTS (ug/m3)

REPORTING LIMIT (ug/m3)

2-Butanone (MEK)

2200

54

Method.....: TO-15

6600

D

160

SURROGATE

PERCENT RECOVERY LABORATORY CONTROL LIMITS (%)

4-Bromofluorobenzene

92

70 - 130

Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Client Sample ID: VI 3A

GC/MS Volatiles

Lot-Sample # H8K250101 - 005

Work Order # K3K521AA

Matrix....:

AIR

Date Sampled ...: Prep Date....:

11/18/2008 11/29/2008 Date Received..: 11/24/2008

Analysis Date... 11/29/2008

Prep Batch #....: Dilution Factor.:

8336265

1

Method..... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)		REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND		0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND		0.56
ane					
1,4-Dioxane	ND	0.20	ND		0.72
Ethylbenzene	0.26	0.080	1.1		0.35
Trichlorofluoromethane	0.17	0.080	0.97		0.45
Hexachlorobutadiene	ND	0.080	ND		0.85
n-Hexane	0.67	0.20	2.4		0.70
2,2,4-Trimethylpentane	ND	0.20	ND		0.93
tert-Butyl alcohol	ND	0.32	ND		0.97
Methylene chloride	1.3	0.20	4.5		0.69
Benzene	0.29	0.080	0.92		0.26
Benzyl chloride	ND	0.16	ND		0.83
Styrene	ND	0.080	ND		0,34
1,1,2,2-Tetrachloroethane	ND	0.080	ND		0.55
Tetrachloroethene	ND	0.080	ND		0.54
Toluene	9.0	0.080	34		0.30
1,2,4-Trichlorobenzene	ND	0.080	ND		0.59
1,1,1-Trichloroethane	0.53	0.080	2.9		0.44
1,1,2-Trichloroethane	ND	0.080	ND		0.44
Trichloroethene	ND	0.040	ND		0.21
1,2,4-Trimethylbenzene	0.096	0.080	0.47		0.39
1,3,5-Trimethylbenzene	ND	0.080	ND		0.39
Vinyl chloride	ND	0.080	ND		0.20
o-Xylene	0.27	0.080	1.2		0.35
Methyl tert-butyl ether	ND	0.16	ND		0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND		0.61
m-Xylene & p-Xylene	0.92	0.080	4.0		0.35
Bromodichloromethane	ND	0.080	ND		0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND		0.61
2-Butanone (MEK)	56	0.32	160	E	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	_	0.82
Bromoform	ND	0.080	ND		0.83
Bromomethane	ND	0.080	ND		0.31
Carbon tetrachloride	0.068	0.040	0.43		0.25
Chlorobenzene	ND	0.080	ND		0.37
Dibromochloromethane	ND	0.080	ND		0.68
Chloroethane	ND	0.080	ND		0.21
Chloroform	ND	0.080	ND		0.39
Chloromethane	0.45	0.20	0.92		0.41
Cyclohexane	ND	0.20	ND		0.69
C) vionerane	* towe	-	.	1	FO-14 _rev5.rpt version 5.0.103 10/12/200

TO-14 _rev5.rpt version 5.0.103 = 10/12/2006

Client Sample ID: VI 3A

GC/MS Volatiles

Lot-Sample # H8K250101 - 005		Work Order # K3K521AA		Matrix: All	
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
1,2-Dichlorobenzene	ND	0.080	ND	0.48	
1,3-Dichlorobenzene	ND	0.080	ND	0.48	
1,4-Dichlorobenzene	ND	0.080	ND	0.48	
Dichlorodifluoromethane	0.87	0.080	4.3	0.40	
1,1-Dichloroethane	ND	0.080	ND	0.32	
1,2-Dichloroethane	ND	0.080	ND	0.32	
1,1-Dichloroethene	ND	0.080	ND	0.32	
cis-1,2-Dichloroethene	ND	0.080	ND	0.32	
trans-1,2-Dichloroethene	ND	0.080	ND	0.32	
1,2-Dichloropropane	ND	0.080	ND	0.37	
cis-1,3-Dichloropropene	ND	0.080	ND	0.36	
TENTATIVELY INDENTIFIED C	OMPOUNDS	RESULT		UNITS	
Ethyl alcohol		1.5		ppb(v/v)	
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)	
4-Bromofluorobenzene		96		70 - 130	

Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:43

TestAmerica Knoxville

Client Smp ID: VI 3A

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/k3k521aa.d
Lab Smp Id: K3K521AA Client Smp II
Inj Date: 29-NOV-2008 16:44
Operator: 7126
Smp Info: Inst ID: mq.i

Smp Info : ,,0,,

Misc Info : G112908, T0155, 1-all. sub, , , ,

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 02-Dec-2008 11:42 tajh Quant Type: ISTD

Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d

Als bottle: 15

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist:

Target Version: 3 50

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Cor	apounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
==:		====	ea: 22			=======================================	
*	1 Bromochloromethane	128	9.070	9.053 (1.000)	453646	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.210	11.200 (1.000)	2277217	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.880	15.875 (1.000)	1720111	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.102)	1058271	3.84698	3.847
	9 Dichlorodifluoromethane	85	3.969	3.958 (0.438)	428510	0.86560	0.8656
	10 Chloromethane	52	4.152	4.136 (0.458)	21466	0.44730	0.4473
	20 Trichlorofluoromethane	101	5.462	5.446 (0.602)	81068	0.17194	0.1719
	31 Methylene Chloride	84	6.530	6.514 (0.720)	183104	1.28939	1289 0,1
	38 Hexane	56	B.304	8.293 (0.916)	112585	0.67251	(0.6725) LIZI D6725
	39 2-Butanone	72	8.304	8.315 (0.916)	2400802	55.6620	55.66(A)
	44 1,1,1-Trichloroethane	97	10.089	10.078 (1.112)	157524	0.52507	0.5251
	47 Benzene	78	10.677	10.671 (0.952)	97715	0.28877	0.2888
	49 Carbon Tetrachloride	117	10.693	10.682 (0.954)	22048	0.06756	0.06756
	60 trans-1,3-Dichloropropene	75	13.923	13.804 (0.877)	16649	0.13511	_D_1351
	61 Toluene	91	13.923	13.923 (0.877)	2697303	8.97961	8.980 \ \
							101
							, ,/\ / \ O \
							/ }/1 '
							* ·

Data File: /var/chem/gcms/mg.i/G112908.b/k3k521aa.d Report Date: 02-Dec-2008 11:43

				CO		TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	***	200 200			****	======
62 1,1,2-Trichloroethane	97	14.192	14.009 (0.894)	11547	0.10874	0.1087
69 Ethylbenzene	91	16.204	16.204 (1.020)	87447	0.25676	0.2568
70 m&p-Xylene	91	16.360	16.365 (1.030)	238668	0.91714	0.9171
74 o-Xylene	91	16.889	16.888 (1.063)	75473	0.26965	0.2696
85 1,2,4-Trimethylbenzene	105	18.647	18.646 (1.174)	26377	0.09631	0.09631 \
88 Benzyl Chloride	91	19.132	18.997 (1.205)	263304	1.26800	1.268

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

18/8/0/8/

Calibration Date: 29-NOV-2008

Calibration Time: 10:08

Client Smp ID: VI 3A

Sample Type: AIR

Level: LOW

Data File: /var/chem/gcms/mg.i/G112908.b/k3k521aa.d

Report Date: 02-Dec-2008 11:43

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k521aa.d Lab Smp Id: K3K521AA

Analysis Type: OTHER Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m Misc Info: G112908, T0155, 1-all.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	432126	257115	607137	453646	4.98
2 1,4-Difluorobenze	2140476	1273583	3007369	2277217	6.39
3 Chlorobenzene-d5	1639335	975404	2303266	1720111	4.93

COMPOUND	STANDARD	RT I LOWER	IMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.07	0.18
2 1,4-Difluorobenze		10.87	11.53	11.21	0.10
3 Chlorobenzene-d5		15.54	16.20	15.88	0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

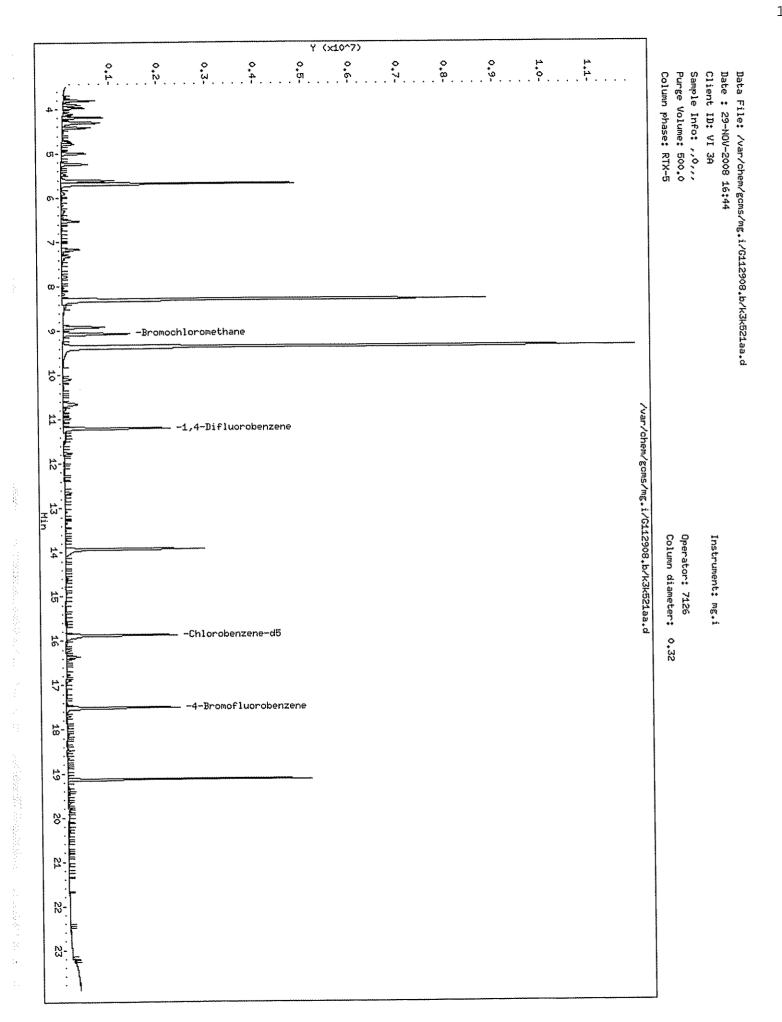
Data File: /var/chem/gcms/mg.i/G112908.b/k3k521aa.d Report Date: 02-Dec-2008 11:43

TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS


Client Smp ID: VI 3A Operator: 7126

Lab Smp Id: K3K521AA Level: LOW

SampleType: SAMPLE Quant Type: ISTD Data Type: MS DATA SpikeList File: all.spk

Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m Misc Info: G112908, T0155, 1-all.sub,,,,

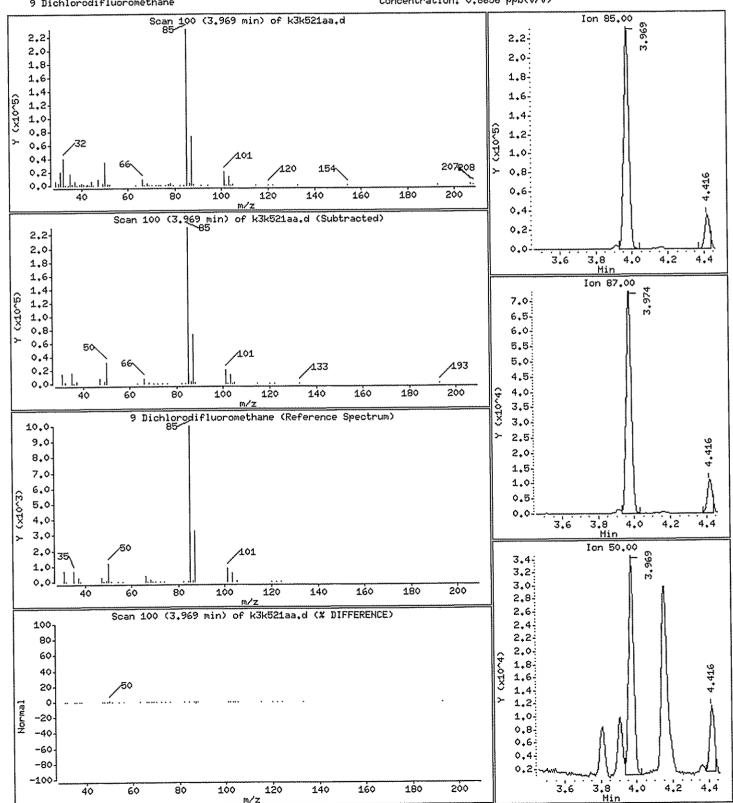
SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.847	96.17	70-130

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column diameter: 0.32 Column phase: RTX-5

9 Dichlorodifluoromethane

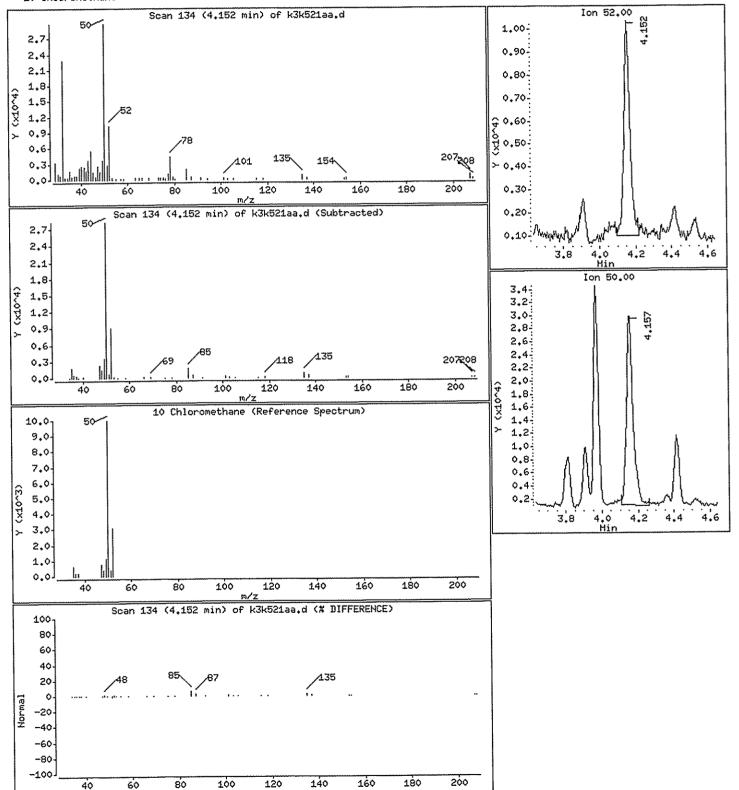
Concentration: 0.8656 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

10 Chloromethane

Concentration: 0,4473 ppb(v/v)

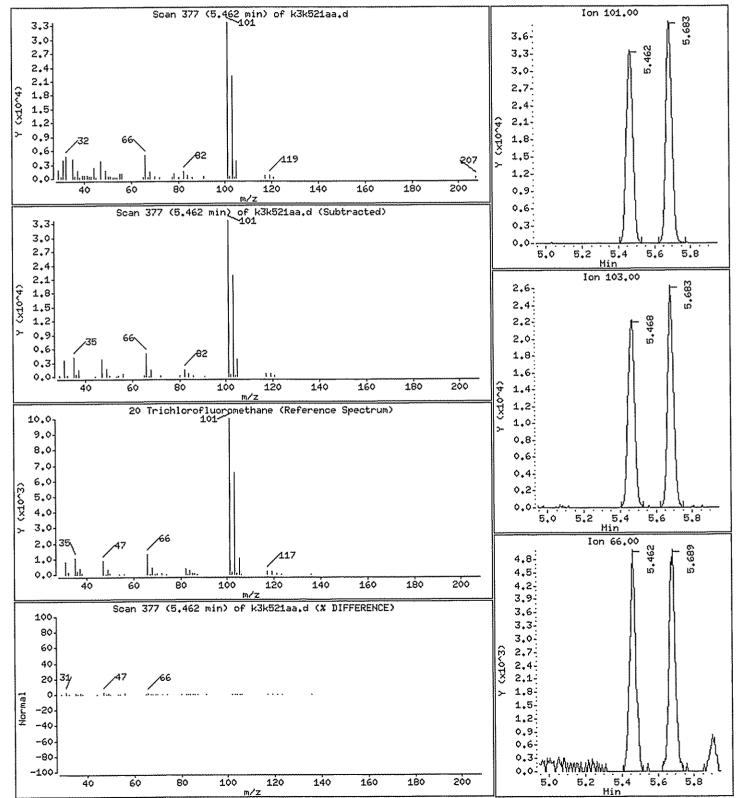
Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

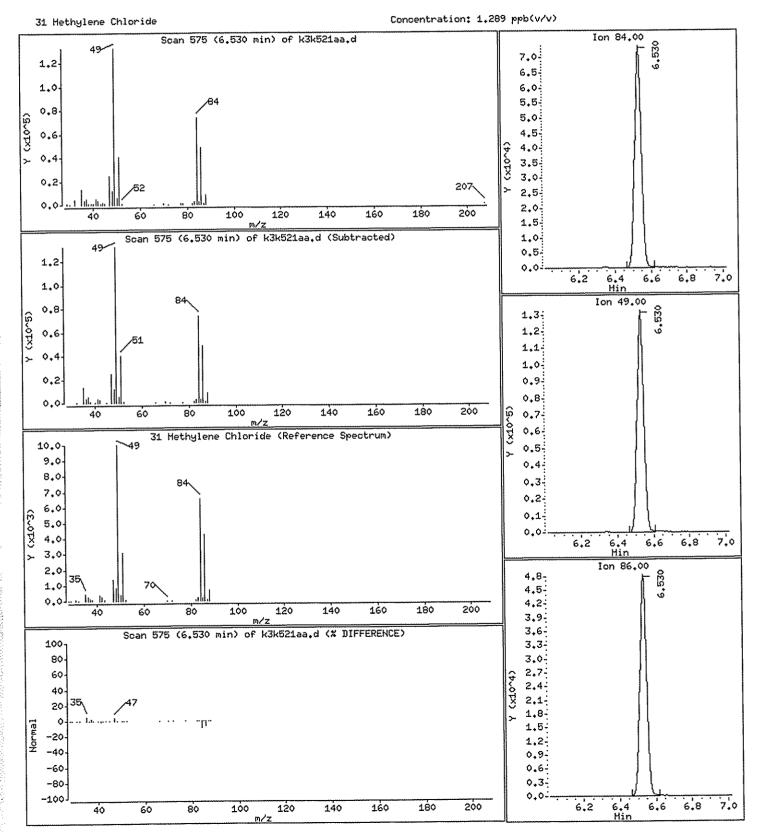
Column diameter: 0.32

20 Trichlorofluoromethane

Concentration: 0.1719 ppb(v/v)

Date: 29-NOV-2008 16:44

Client ID: VI 3A


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

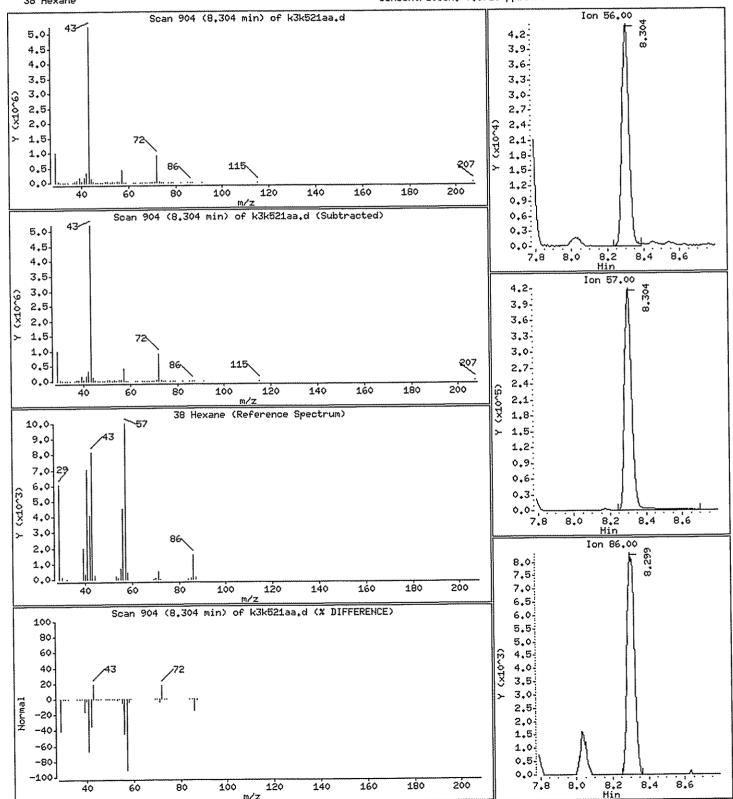
Column phase: RTX-5

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

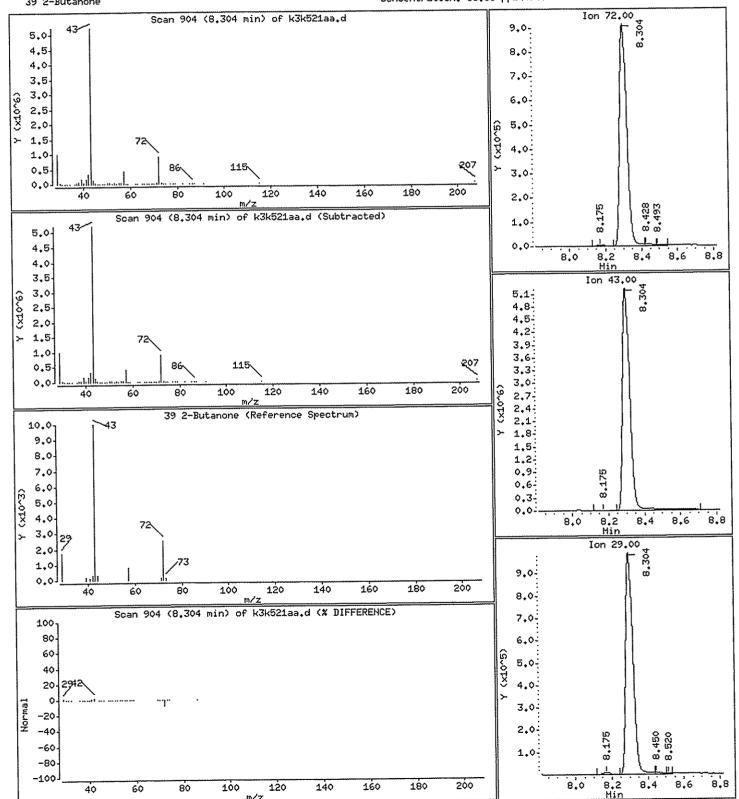
Concentration: 0.6725 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

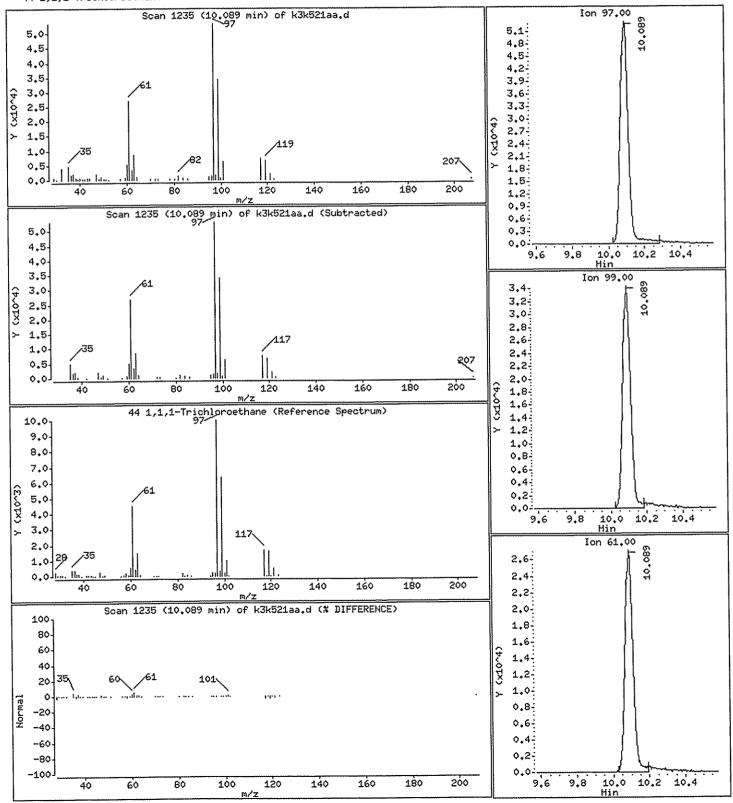
39 2-Butanone

Concentration: 55.66 ppb(v/v)

Date: 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

44 1,1,1-Trichloroethane

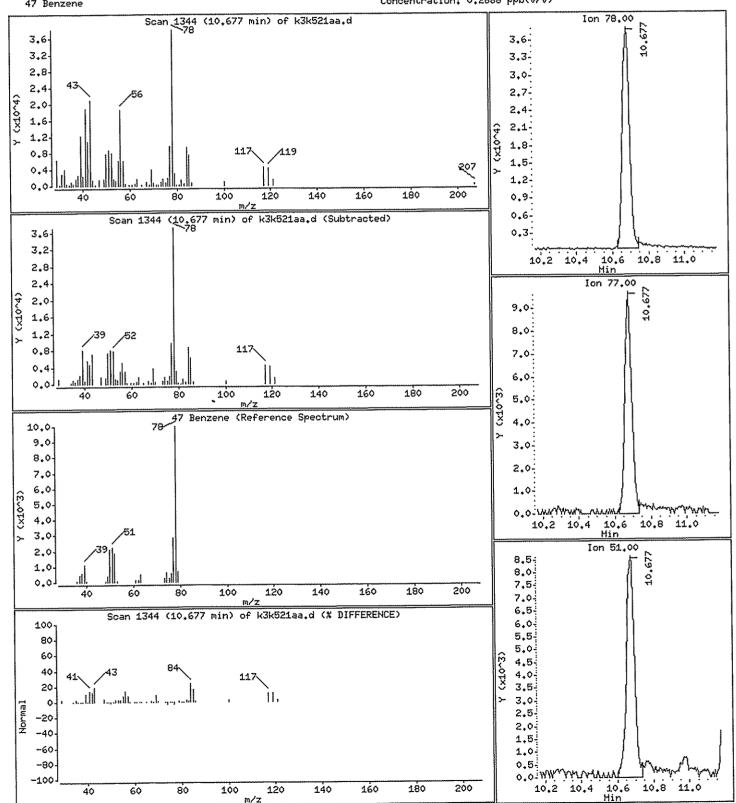
Concentration: 0.5251 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

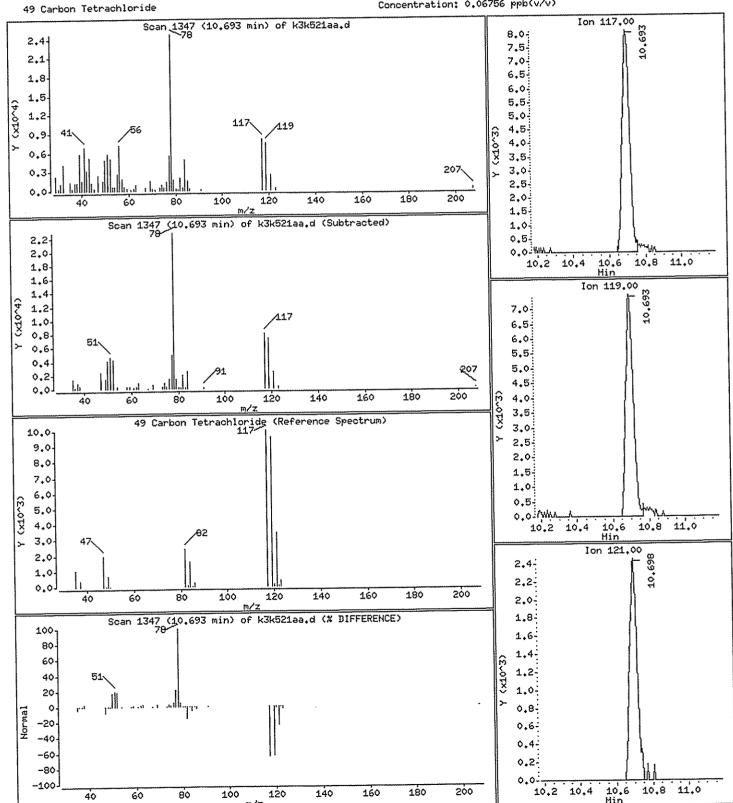
Column diameter: 0.32

47 Benzene

Concentration: 0.2888 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

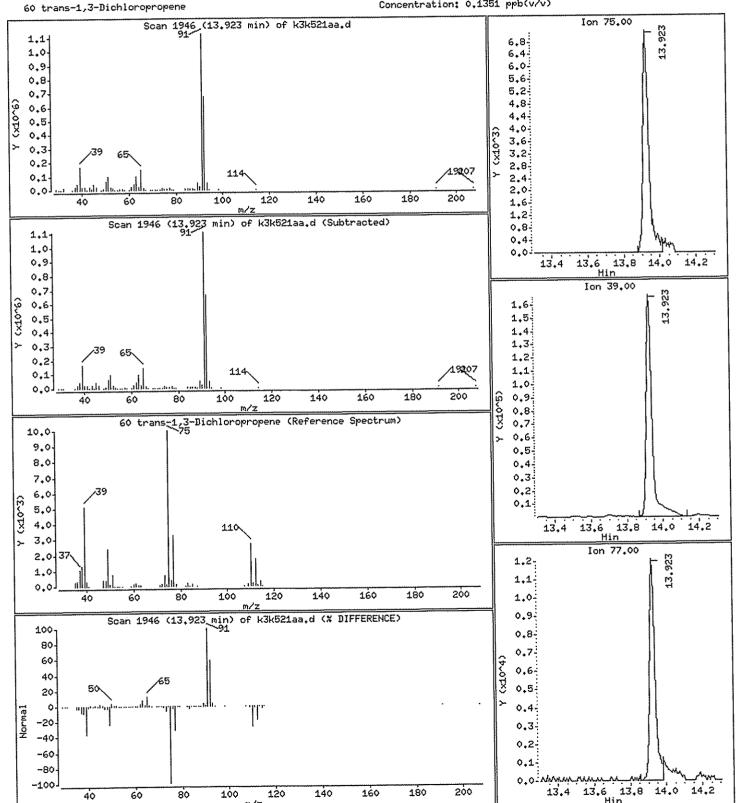
Operator: 7126

Column phase: RTX-5

Concentration: 0.06756 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5

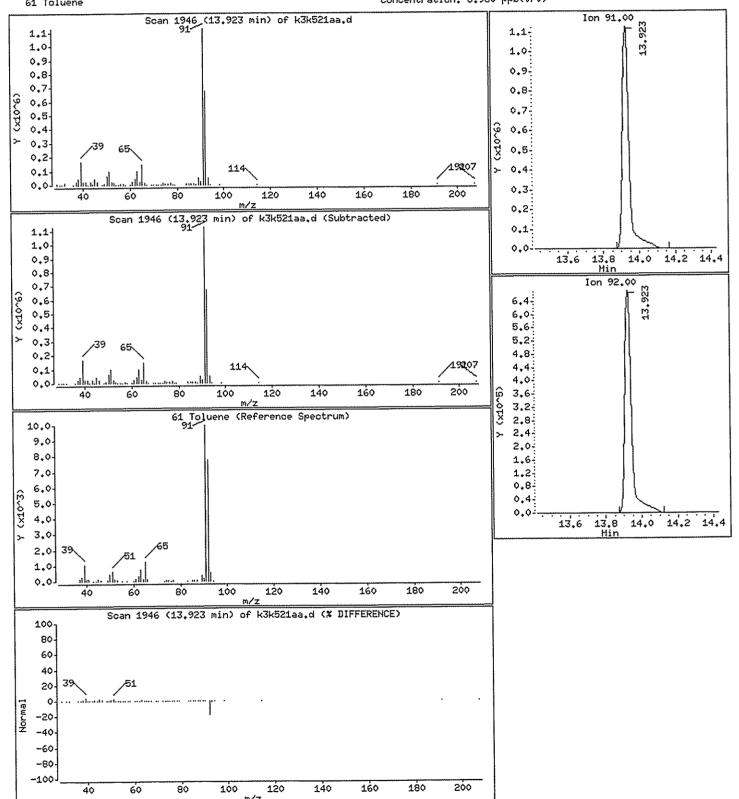
Operator: 7126

Concentration: 0.1351 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

61 Toluene

Concentration: 8.980 ppb(v/v)

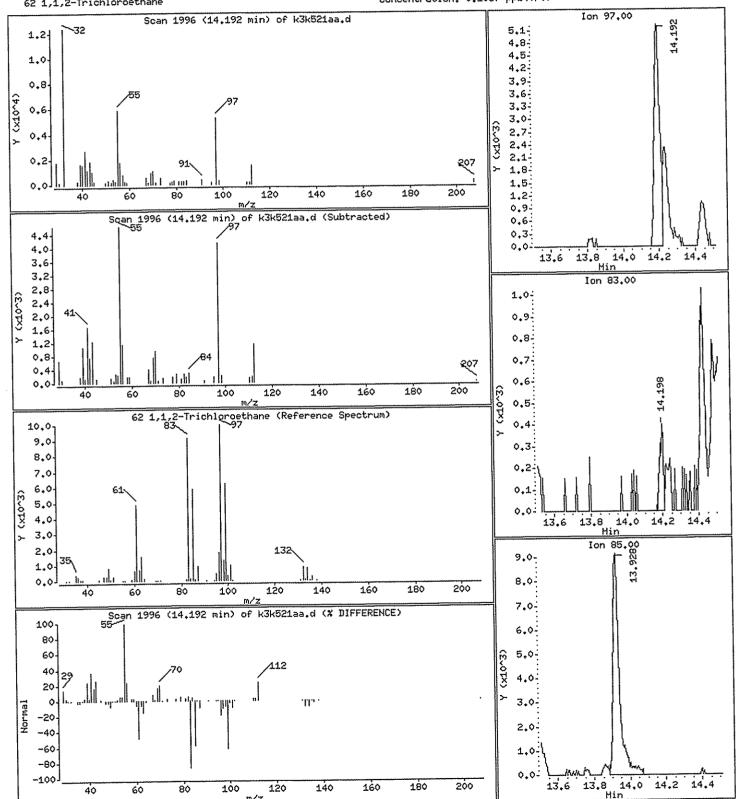
Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

62 1,1,2-Trichloroethane

Concentration: 0.1087 ppb(v/v)

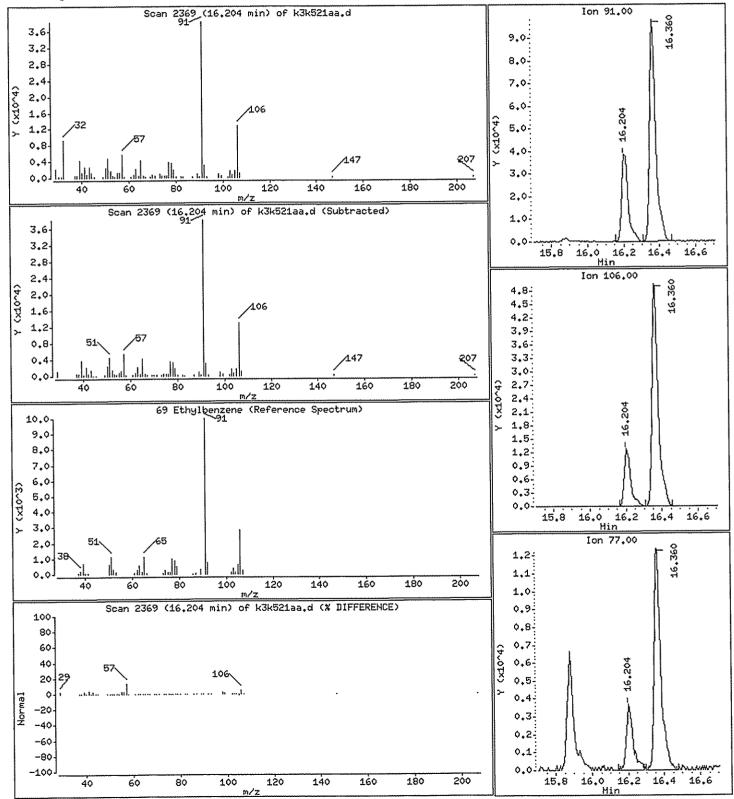
Date: 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

69 Ethylbenzene

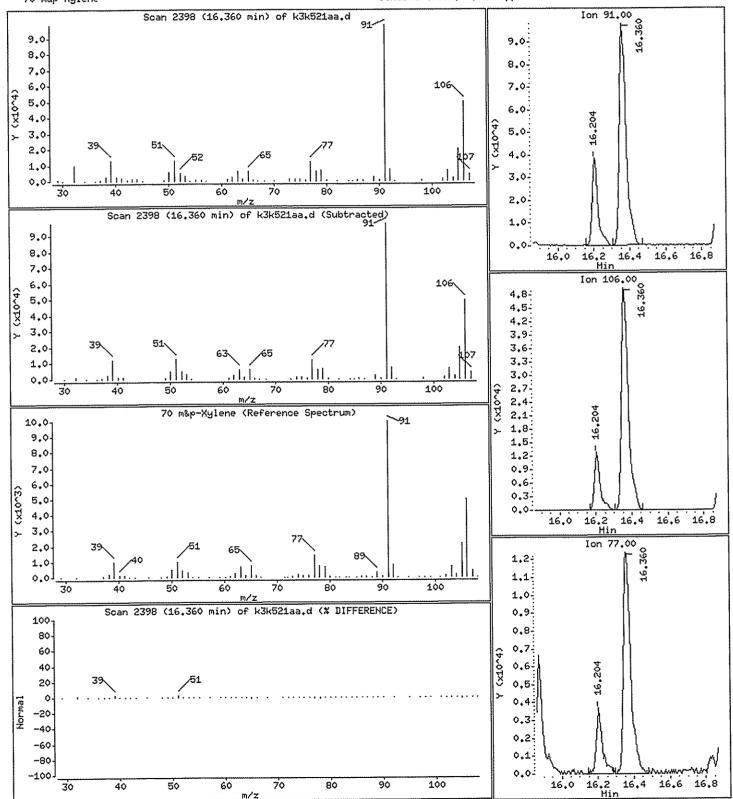
Concentration: 0,2568 ppb(v/v)

Date: 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

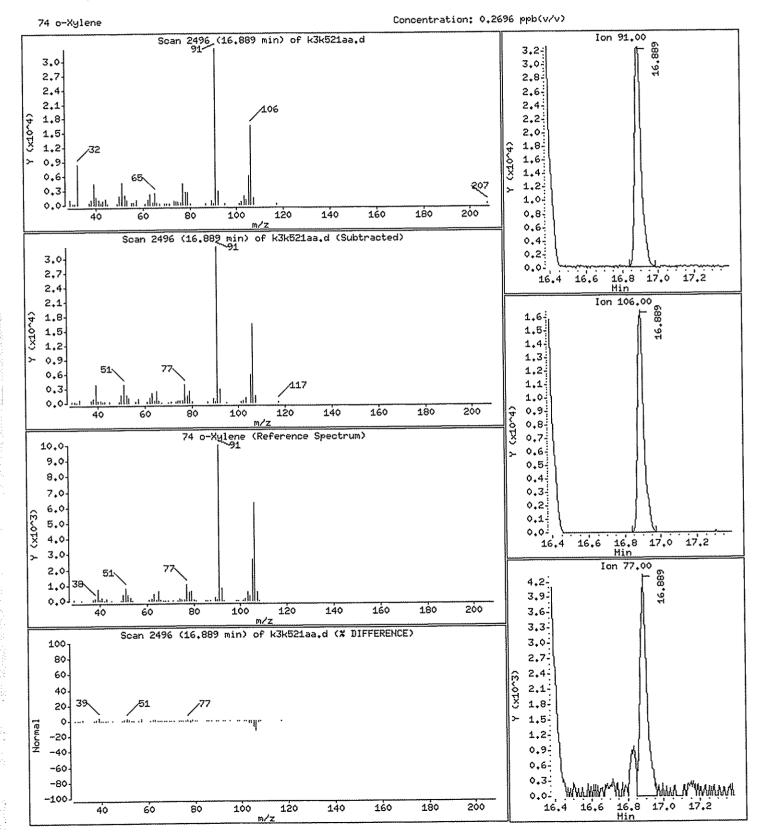
Column phase: RTX-5

Column diameter: 0.32

70 m&p-Xylene

Concentration: 0.9171 ppb(v/v)

Date : 29-NOV-2008 16:44


Client ID: VI 3A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

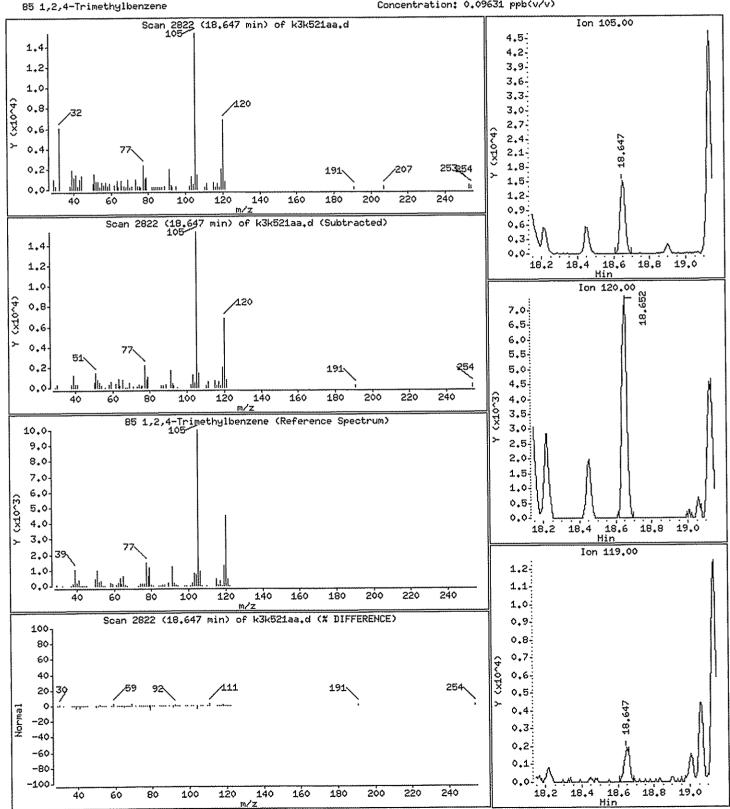
Operator: 7126

Column phase: RTX-5

Date : 29-NOV-2008 16:44

Client ID: VI 3A

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

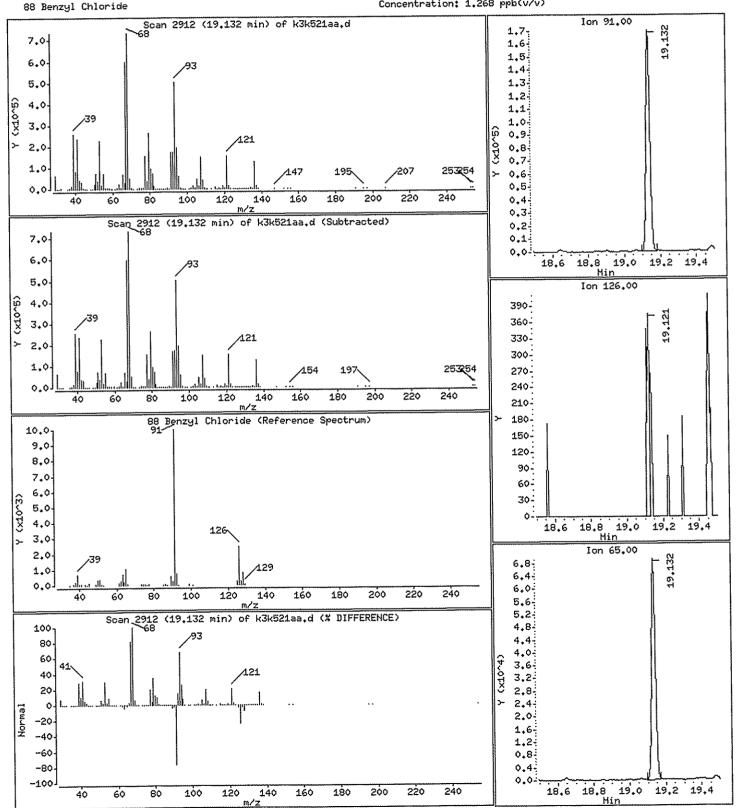
Operator: 7126

Column phase: RTX-5

Concentration: 0.09631 ppb(v/v)

Date : 29-NOV-2008 16:44

Client ID: VI 3A


Instrument: mg.i

Sample Info: ,, 0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 1.268 ppb(v/v)

Client Sample ID: VI 3A

GC/MS Volatiles

Lot-Sample # H8K250101 - 005 Work Order # K3K522AA

Matrix....: AIR

Date Sampled ...: Prep Date....: 11/18/2008 11/29/2008 Date Received ..: 11/24/2008 Analysis Date... 11/30/2008

Prep Batch #....:

8336265

Dilution Factor.:

10

Method.....: TO-15

	• • • • • • • • • • • • • • • • • • • •					
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)		REPORTING LIMIT (ug/m3)	
2-Butanone (MEK)	36	3.2	110	D	9.4	
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)	
4-Bromofluorobenzene		92	*******		70 - 130	

Qualifiers

Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:56

TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G112908.b/k3k521aa.d Client Smp ID: VI 3A

Lab Smp Id: K3K521AA

Inj Date : 29-NOV-2008 16:44 Operator : 7126 Inst ID: mg.i

Smp Info : ,,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 02-Dec-2008 11:55 tajh Quant Type: ISTD

Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d Cal Date : 26-NOV-2008 12:31

Als bottle: 15

Dil Factor: 1.00000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

ISTD		RT ====	HEIGHT	AMOUNT
*	1 Bromochloromethane	9.070	1389750	4.000

	CONCENTRATIONS					QUANT				
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL(ppb(v/v))	QUAL	LIBRARY	LIB	ENTRY	CPND	#
	~~~~~		======================================	===	2202				=	

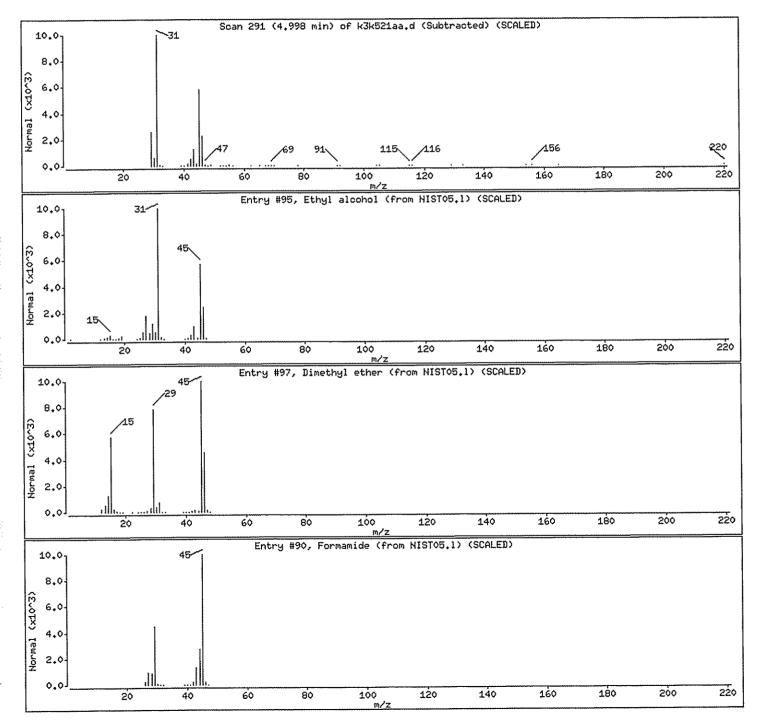
CAS #: 64-17-5 Ethyl alcohol 4.998 506487 1.45777874 1.458 99 NISTOS.1 95 1(L)

# QC Flag Legend

L - Operator selected an alternate library search match.

Date : 29-NOV-2008 16:44

Client ID: VI 3A


Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	95	99	C2H60	46
Dimethyl ether	115-10-6	NISTO5.1	97	7	C2H60	46
Formamide	75-12-7	NISTO5.1	90	5	CH3N0	45



Report Date: 01-Dec-2008 13:45

# TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G112908.b/k3k522aa.d

Client Smp ID: VI 3A Lab Smp Id: K3K522AA

Inj Date : 30-NOV-2008 04:08
Operator : 7126 Inst ID: mg.i

Smp Info : K3K522AA,10,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G112908.b/T0155.m Method

Method: /var/cnem/gcms/mg.1/G112500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/101500.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/1015000.5/ Cal Date : 26-NOV-2008 12:31

Als bottle: 15

Dil Factor: 10.00000

Compound Sublist: 1-all.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	10.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
		z 2 Games and Marsiable

Cpnd Variable

Local Compound Variable

						CONCENTRA	rions
		OUANT SIG				ON-COLUMN	FINAL
Compound	is	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
			200 100	医甲基苯酚基 医甲基磺基基	*****		****
* 1 Br	romochloromethane	128	9.053	9.053 (1.000)	377443	4.00000	4.000
* 21.	4-Difluorobenzene	114	11.199	11.200 (1.000)	1850205	4.00000	4.000
	lorobenzene-d5	117	15.875	15.875 (1.000)	1415990	4.00000	4.000
	-Bromofluorobenzene	95	17.503	17.503 (1.103)	837507	3.69835	3.698
	-Butanone	72	8.298	8.315 (0.917)	128510	3.58101	35.81 🗸

Calibration Date: 29-NOV-2008

Calibration Time: 10:08 Client Smp ID: VI 3A

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G112908.b/k3k522aa.d

Report Date: 01-Dec-2008 13:45

#### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k522aa.d Lab Smp Id: K3K522AA

Analysis Type: OTHER Quant Type: ISTD

Operator: 7126

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,,

COMPOUND  1 Bromochloromethan 2 1,4-Difluorobenze	2140476	1273583	LIMIT UPPER ===================================	SAMPLE ======== 377443 1850205	
3 Chlorobenzene-d5	1639335	975404	2303266	1415990	-13.62

COMPOUND  1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	RT I LOWER ======= 8.72 10.87 15.54	JIMIT UPPER ======= 9.38 11.53 16.20	SAMPLE ======= 9.05 11.20 15.87	%DIFF ====== 0.00 0.00 0.00
3 Chlorobenzene-d5	15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

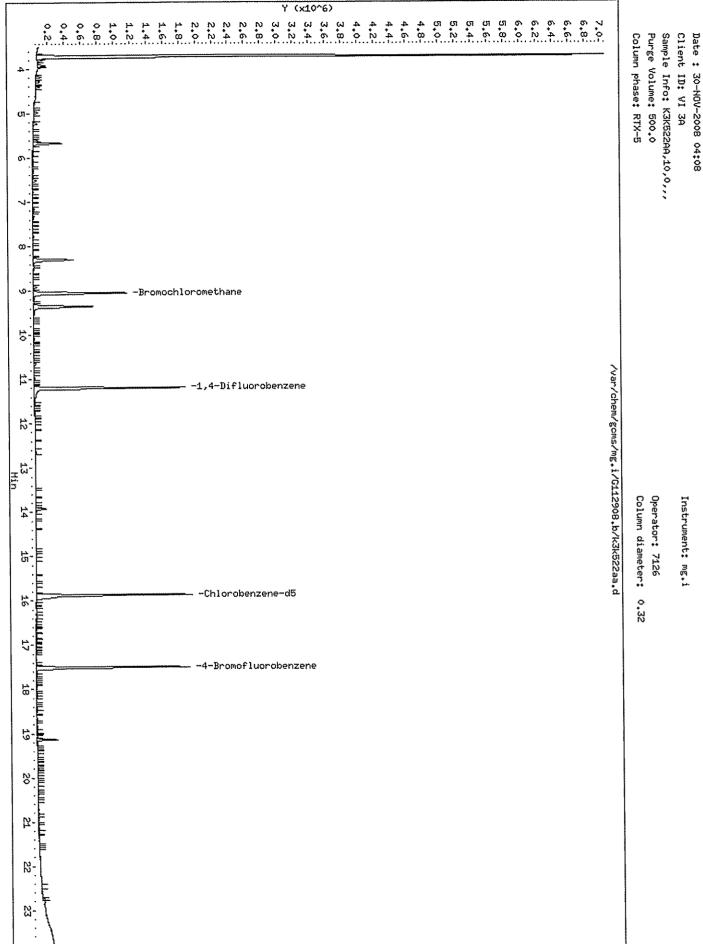
RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G112908.b/k3k522aa.d Report Date: 01-Dec-2008 13:45

### TestAmerica Knoxville

#### RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101


Fraction: OTHER Sample Matrix: GAS

Client Smp ID: VI 3A Operator: 7126

Lab Smp Id: K3K522AA Level: LOW

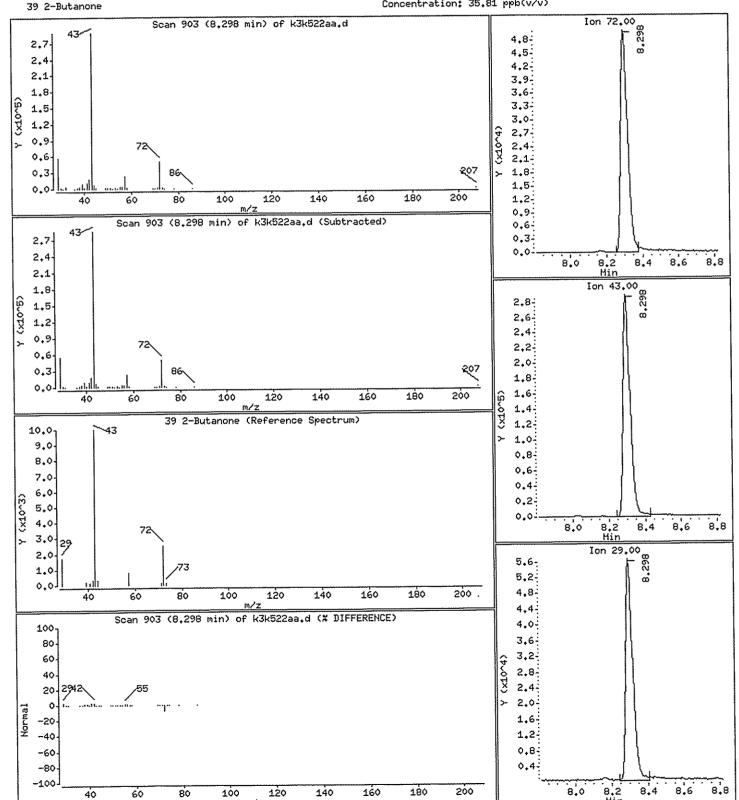
Data Type: MS DATA
SampleType:
SpikeList File: all.spk
Sublist File: 1-all.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.698	92.46	70-130



Date : 30-NOV-2008 04:08

Client ID: VI 3A


Instrument: mg.i

Sample Info: K3K522AA,10,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

Concentration: 35.81 ppb(v/v)



Lot-Sample # H8K250101 - 006

Work Order # K3K531AA

Matrix....:

AIR

Date Sampled...: Prep Date....: 11/18/2008

Date Received..: 11/24/2008

Prep Batch #....:

12/01/2008

Analysis Date... 12/01/2008

Dilution Factor.:

8337098

1

Method....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane	,,,,			
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.1	0.080	4.7	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	1.2	0.20	4.2	0.69
Benzene	0.13	0.080	0.42	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	6.1	0.080	42	0.54
Toluene	2.0	0.080	7.5	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	1.0	0.080	5.5	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	18	0.040	97	0.21
1,2,4-Trimethylbenzene	0.42	0.080	2.1	0.39
1,3,5-Trimethylbenzene	0.097	0.080	0.48	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	2.1	0.080	9.2	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.11	0.080	0.83	0.61
m-Xylene & p-Xylene	5.2	0.080	23	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	18	0.32	53	0.94
4-Methyl-2-pentanone (MIBK)	0.32	0.20	1.3	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.059	0.040	0.37	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69
w j didirozmiro				TO 14 ray5 rpt version 5.0.103 - 10/12/7

## New York State D.E.C.

## Client Sample ID: VI 3S

## GC/MS Volatiles

Lot-Sample # H8K250101 -	006 <b>\</b>	Work Order # K3K531	IAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	10	0.080	50	0.40
1,1-Dichloroethane	0.082	0.080	0.33	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED C	OMPOUNDS	RESULT		UNITS
Ethyl alcohol		1.2		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		98	- Verbrien	70 - 130

## Qualifiers

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24,45)

Report Date: 02-Dec-2008 13:55

# TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G120108.b/k3k531aa.d

Client Smp ID: VI 3S Lab Smp Id: K3K531AA

Inj Date : 01-DEC-2008 13:18

Inst ID: mg.i Operator : 7126

Smp Info : ,,0,,,
Misc Info : G120108,T0155,nysdec.sub,,,,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Quant Type: ISTD Cal File: 1ptcal.d Meth Date: 02-Dec-2008 13:51 tajh Cal Date : 01-DEC-2008 11:14

Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	1.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRATIONS	
	QUANT SIG					ON-COLUMN	FINAL
mpounds	MASS	RT	EXP RT I	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v)
	====	<b>**</b> **		***			======
1 Bromochloromethane	128	9.059	9.053	(1.000)	365116	4.00000	4.000
2 1,4-Difluorobenzene	114	11.205	11.200	(1.000)	1800480	4.00000	4.000
3 Chlorobenzene-d5	117	15.875	15.875	(1.000)	1393994	4.00000	4.000
6 4-Bromofluorobenzene	95	17.503	17.503	(1.103)	872711	3.91462	3.915
9 Dichlorodifluoromethane	85	3.968	3.963	(0.438)	4069298	10.2132	10.21
10 Chloromethane	52	3.807	4.146	(0.420)	60734	1.57238	-1:572
20 Trichlorofluoromethane	101	5.457	5.446	(0.602)	72372	0.19072	0.1907
30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.330	(0.699)	27593	0.10866	0.1087
31 Methylene Chloride	84	6.524	6.514	(0.720)	137994	1.20735	1.207
36 1,1-Dichloroethane	63	7.748	7.743	(0.855)	19469	0.08190	0.08190
39 2-Butanone	72	8.298	8.309	(0.916)	627416	18.0736	18.07(4)
44 1,1,1-Trichloroethane	97	10.083	10.078	(1.113)	242309	1.00352	1.004 V
45 1.2-Dichloroethane	62	10.083	10.197	(0.900)	16976	0.13044	D-1304 -
47 Benzene	78	10.666	10.666		35530	0.13280	0.1328
4) Carbon Tetrachloride	117	10.693	10.687		15160	0.05876	0.05876

Data File: /var/chem/gcms/mg.i/G120108.b/k3k531aa.d Report Date: 02-Dec-2008 13:55

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	{ppb(v/v)}
	m===	= =		=======================================	****	
52 1,2-Dichloropropane	63	11.895	11.874 (1.062)	10768	0.11221	Dr. 1122
53 Trichloroethene	130	11.900	11.895 (1.062)	2805002	17.9821	17.98(4)
55 Bromodichloromethane	83	11.895	12.132 (1.062)	30304	0.14633	8-1463.
58 4-Methyl-2-pentanone	43	13.065	13.060 (1.166)	71876	0.32199	0.3220
61 Toluene	91	13.923	13.923 (0.877)	481424	1.97766	1.978
62 1,1,2-Trichloroethane	97	14.192	14.009 (0.894)	9900	0.11505	_ <del>0.1130 </del>
67 Tetrachloroethene	129	15.050	15.050 (0.948)	770650	6.12848	6.128
69 Ethylbenzene	91	16.204	16.204 (1.021)	295557	1.07084	1.071
70 m&p-Xylene	91	16.360	16.365 (1.031)	1106726	5.24777	5.248
74 o-Xylene	91	16.888	16.889 (1.064)	482407	2.12679	2.127
81 1.3.5-Trimethylbenzene	120	18.220	18.215 (1.148)	11095	0.09682	0.09682
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	93955	0.42331	0.4233
88 Benzyl Chloride	91	19.132	18.997 (1.205)	84446	0.50181	0.5018

# QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



Report Date: 02-Dec-2008 13:55

#### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k531aa.d Lab Smp Id: K3K531AA

Analysis Type: OTHER Quant Type: ISTD

Calibration Date: 01-DEC-2008 Calibration Time: 09:20

Client Smp ID: VI 3S Level: LOW

Sample Type: AIR

Operator: 7126
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		1232215	556712 2909685 2208800	365116 1800480 1393994	-7.85 -13.06 -11.33

COMPOUND  ===================================	11.20	RT I LOWER ======= 8.72 10.87	JIMIT UPPER ======= 9.38 11.53 16.20	SAMPLE ======== 9.06 11.20 15.87	%DIFF ====== 0.06 0.05 0.00
3 Chlorobenzene-d5	15.87	15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 13:55

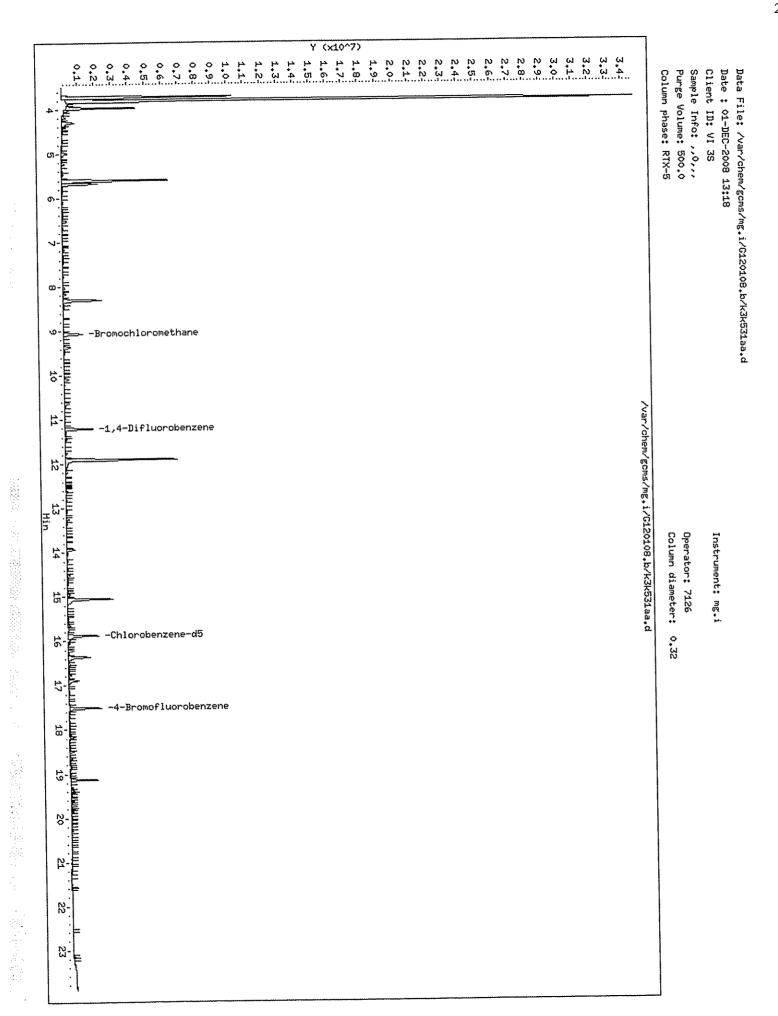
# TestAmerica Knoxville

#### RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00

Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS


Lab Smp Id: K3K531AA Level: LOW

Client Smp ID: VI 3S Operator: 7126

SampleType: SAMPLE Quant Type: ISTD

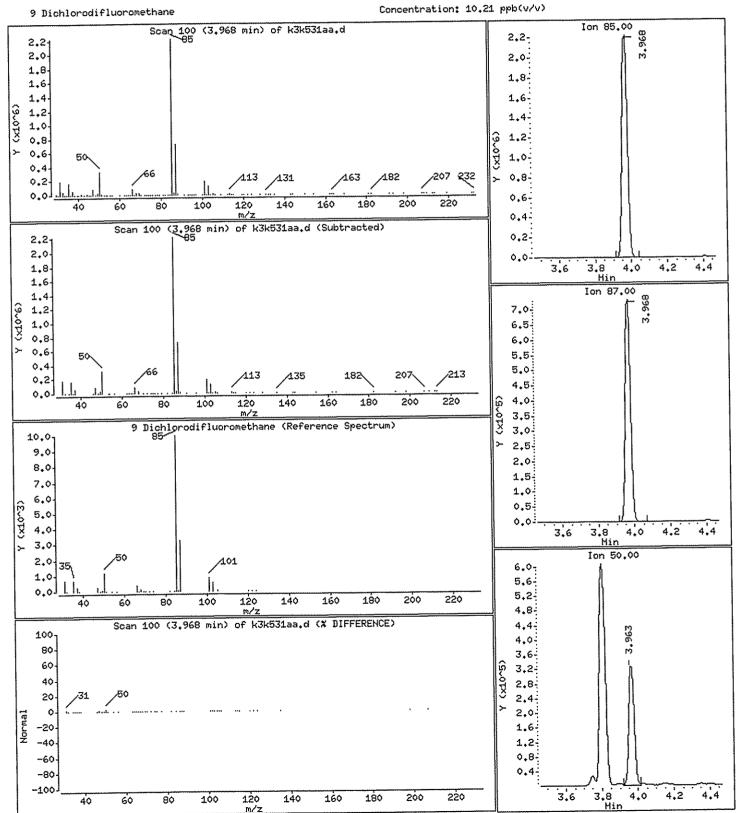
Data Type: MS DATA
SampleType:
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.915	97.87	70-130



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

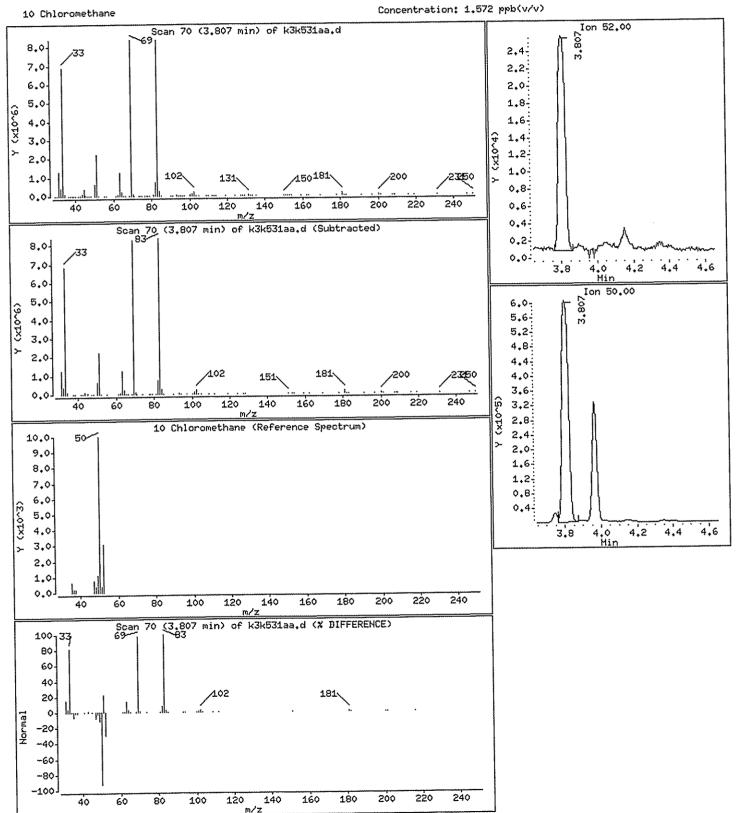
Column phase: RTX-5





Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

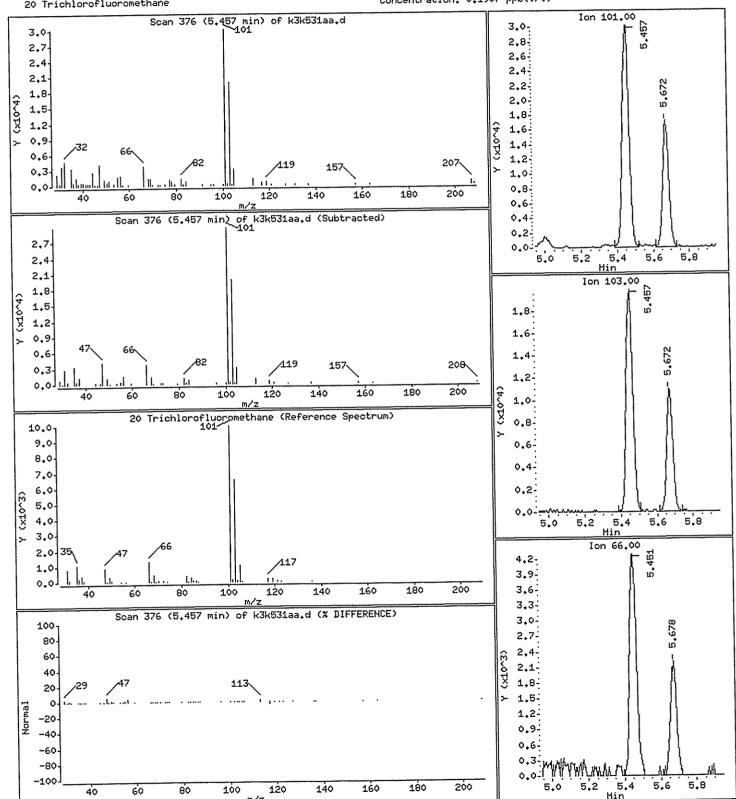


Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

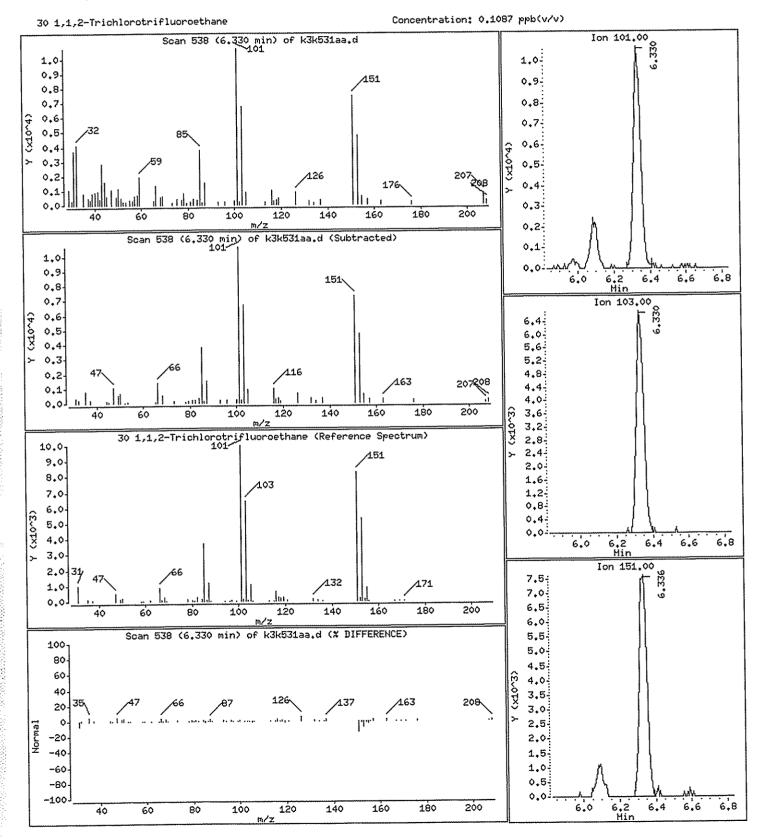
Column phase: RTX-5

20 Trichlorofluoromethane

Concentration: 0.1907 ppb(v/v)



Date : 01-DEC-2008 13:18


Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

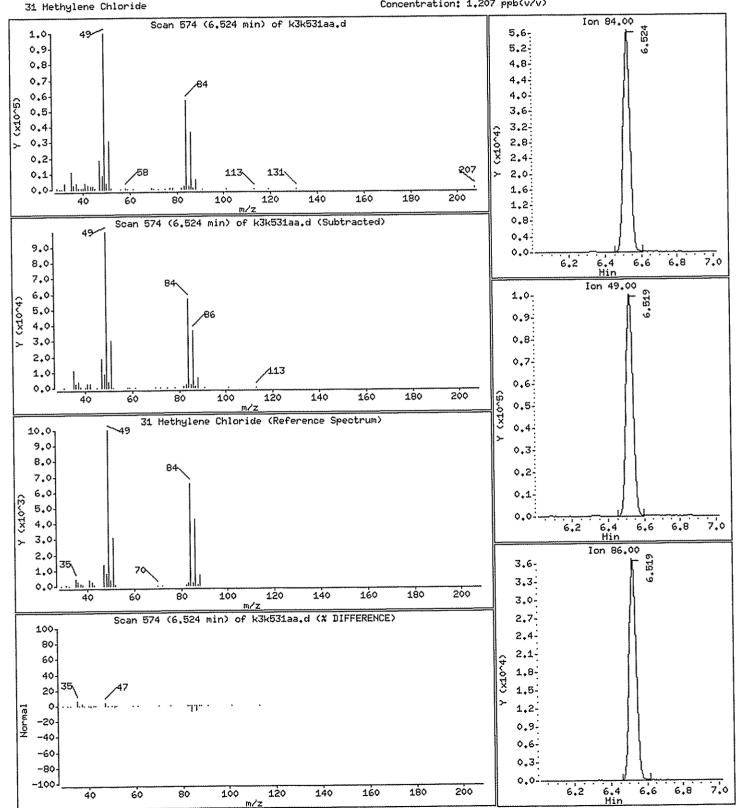
Column phase: RTX-5



Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

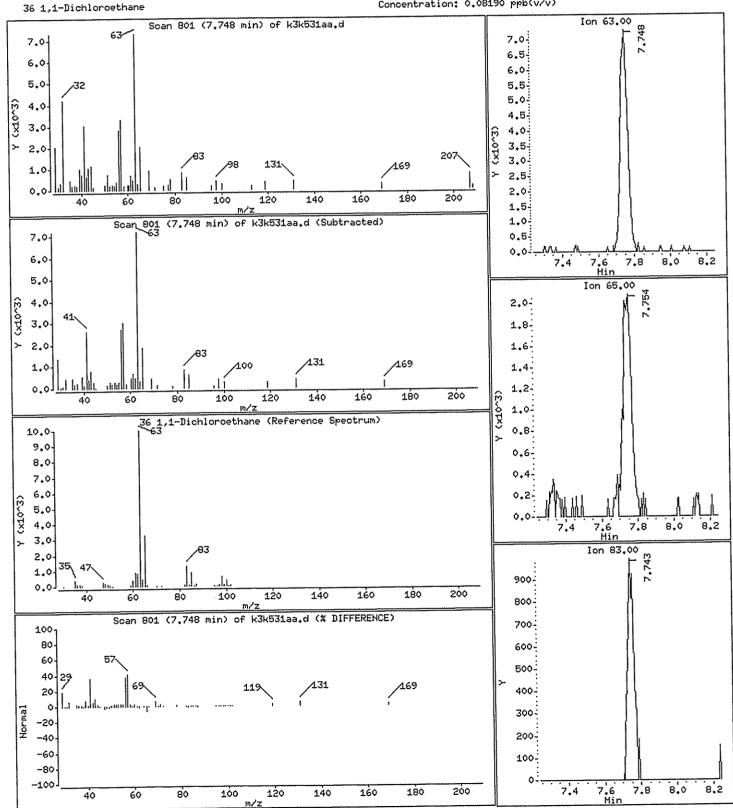
Operator: 7126

Column phase: RTX-5

Concentration: 1.207 ppb(v/v)



Date : 01-DEC-2008 13:18


Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,

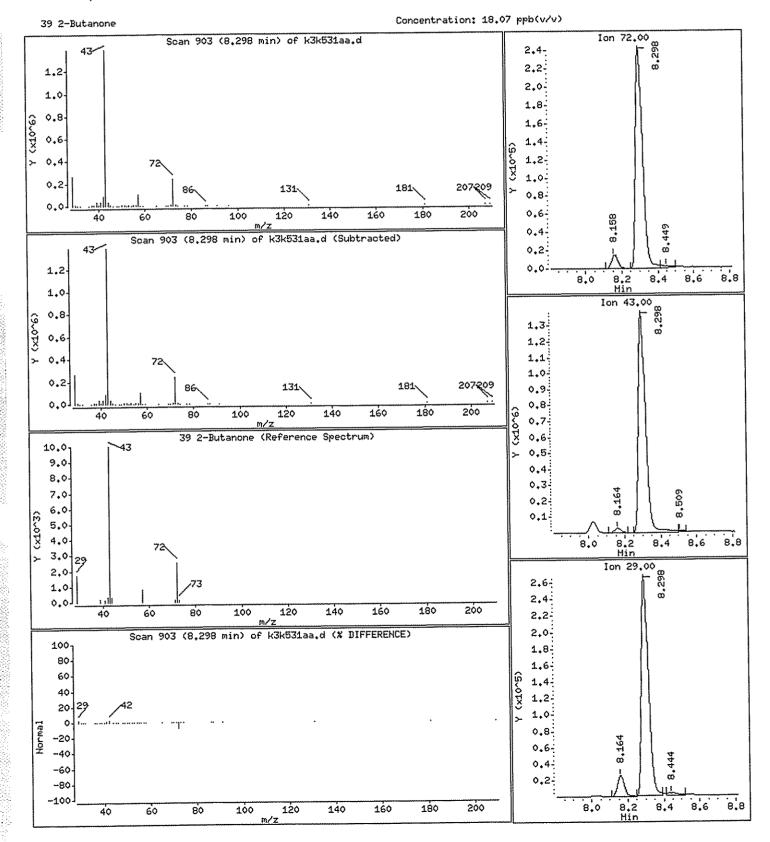
Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Concentration: 0.08190 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

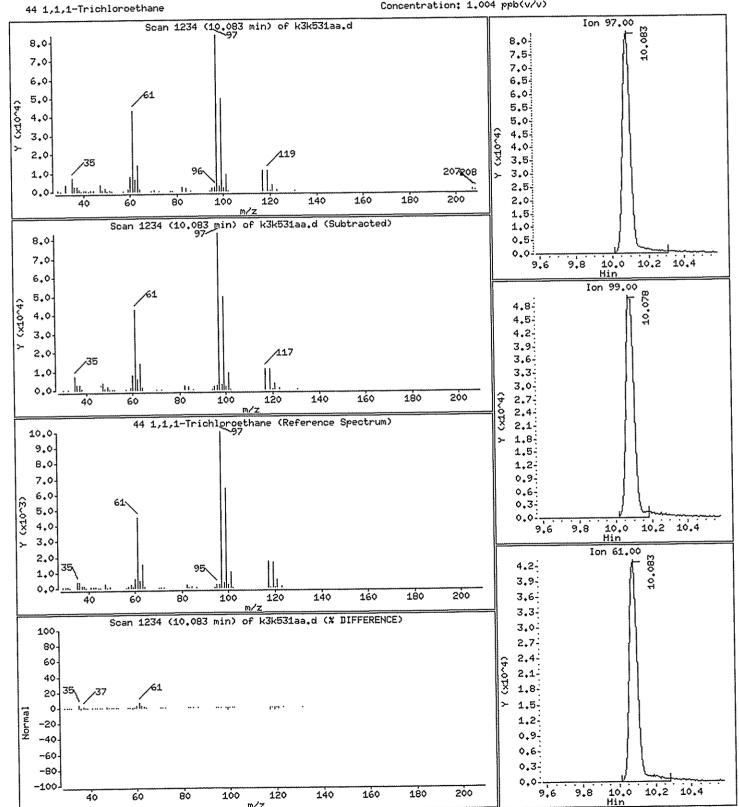
Operator: 7126

Column phase: RTX-5



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

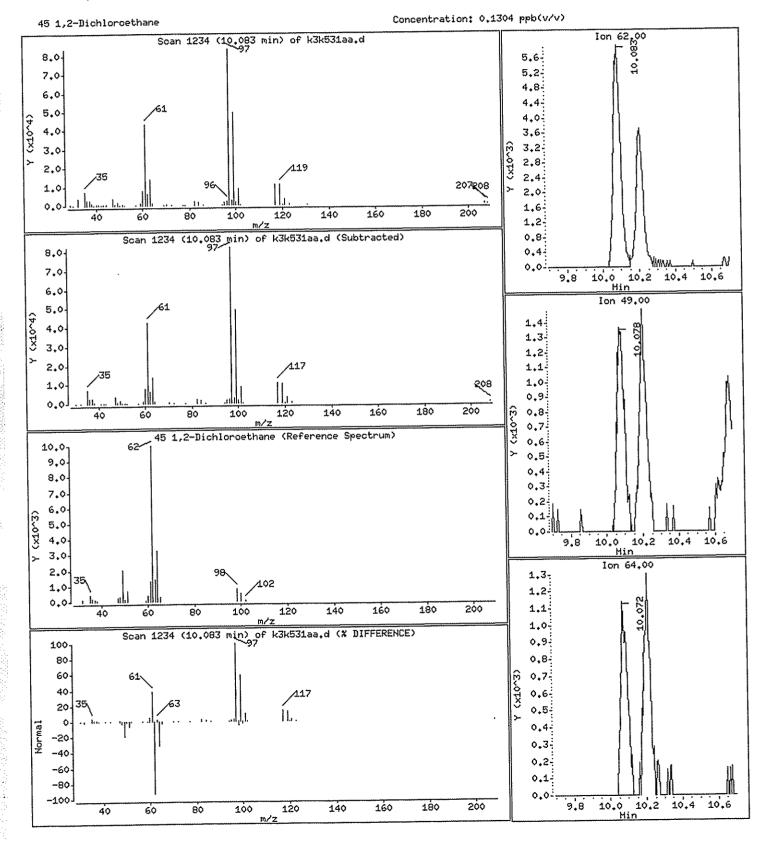
Column phase: RTX-5

Concentration: 1.004 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Sample Info: ,,0,,,

Purge Volume: 500.0

Column phase: RTX-5

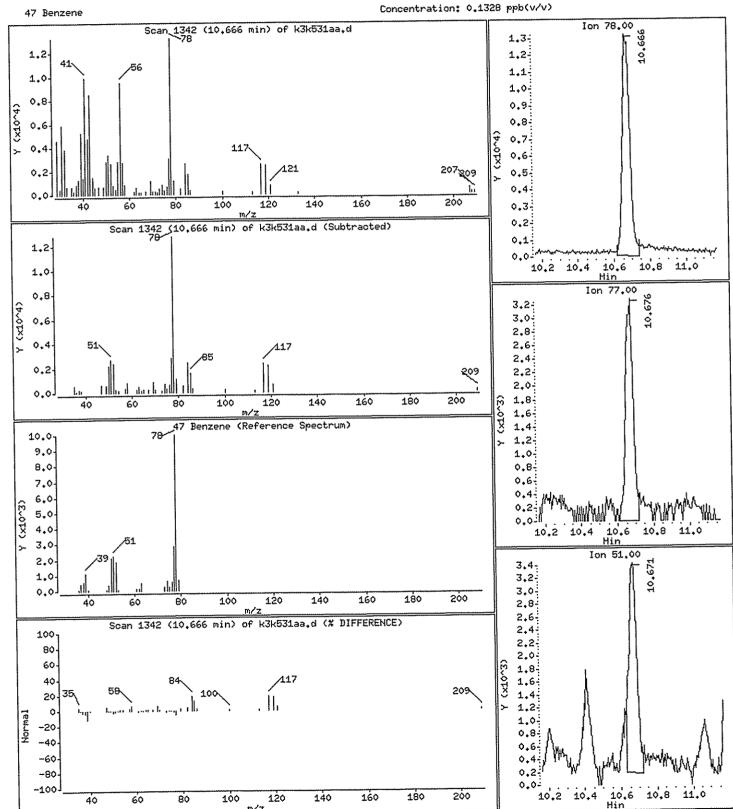
Instrument: mg.i

Operator: 7126



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Sample Info: ,,0,,,

Purge Volume: 500.0

Column phase: RTX-5

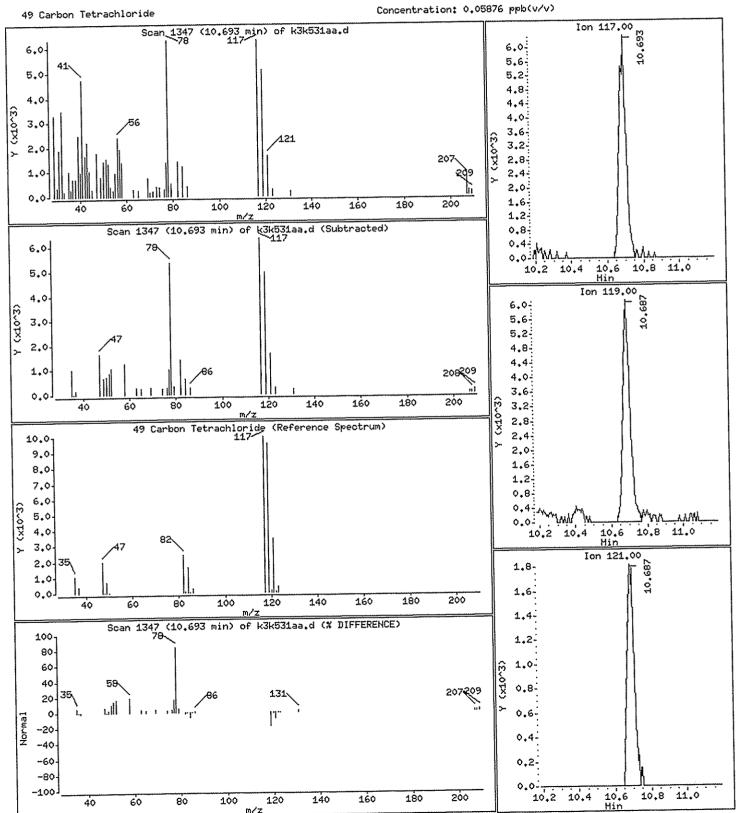
Instrument: mg.i

Operator: 7126



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Sample Info: ,,0,,,

Purge Volume: 500.0

Column phase: RTX-5

Instrument: mg.i

Operator: 7126

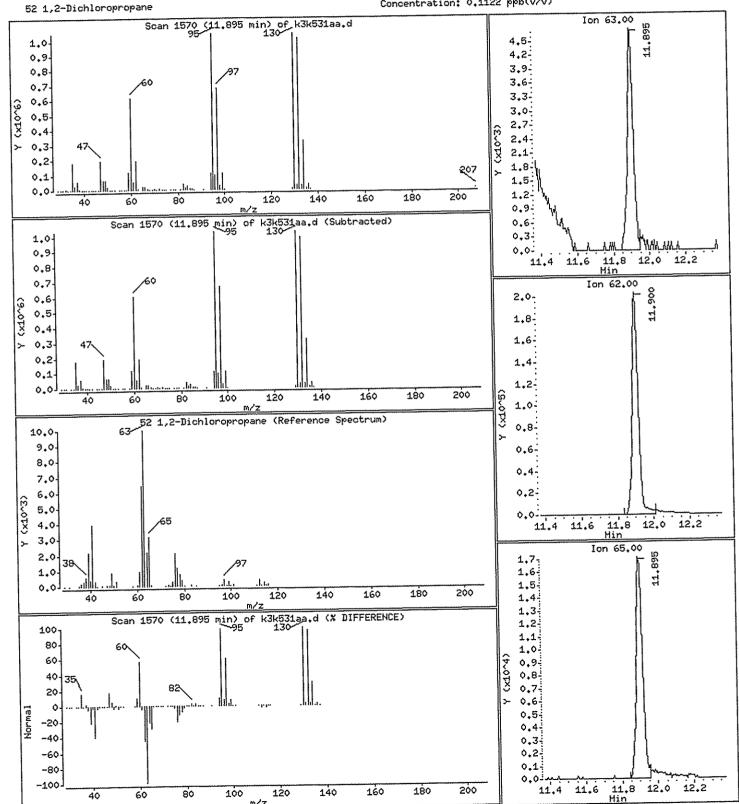


Date : 01-DEC-2008 13:18

Client ID: VI 3S

Sample Info: ,,0,,,

Purge Volume: 500.0


Column phase: RTX-5

Instrument: mg.i

Operator: 7126

Column diameter: 0.32

Concentration: 0.1122 ppb(v/v)

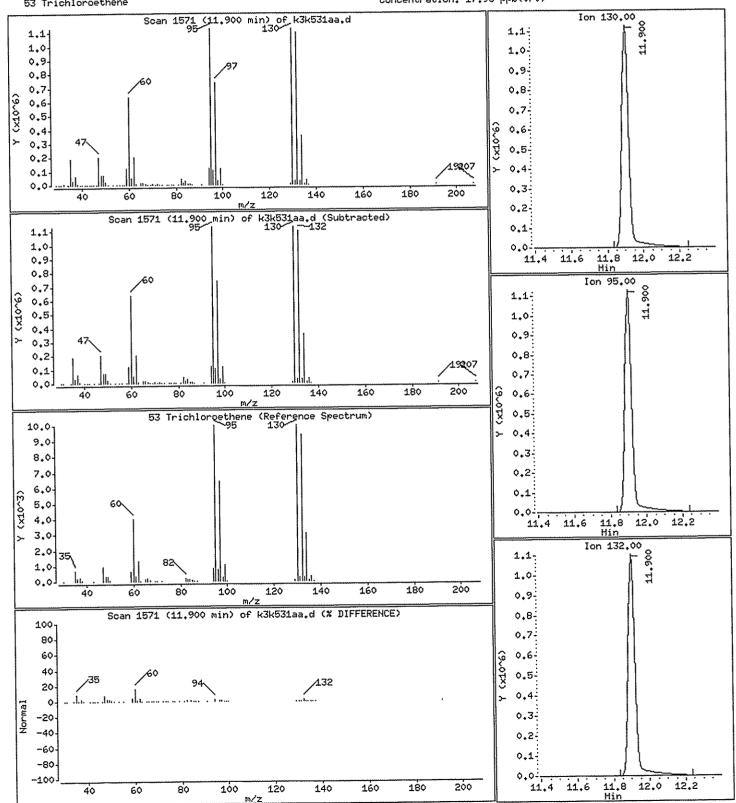


Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

53 Trichloroethene

Concentration: 17.98 ppb(v/v)



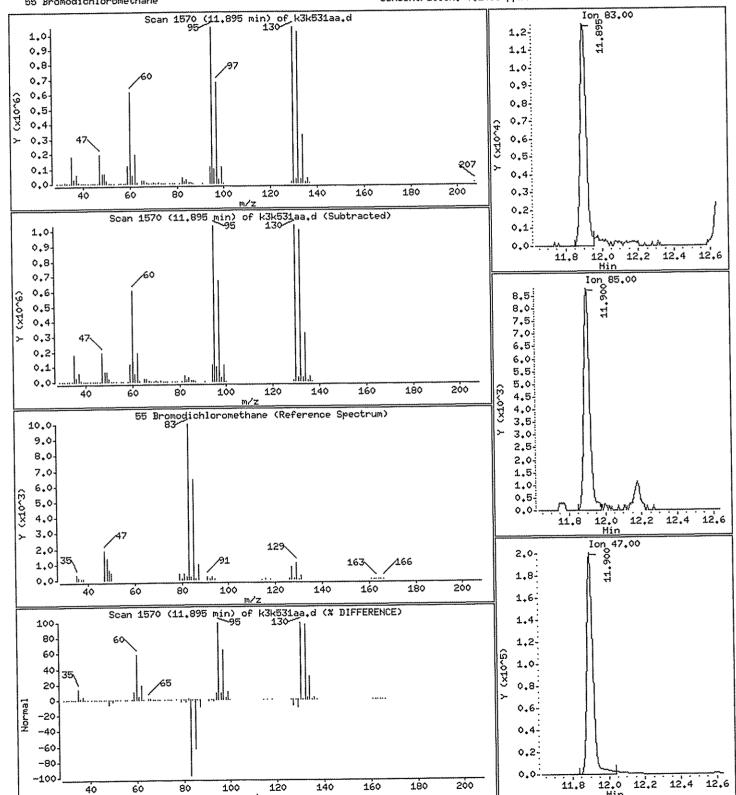
Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

55 Bromodichloromethane

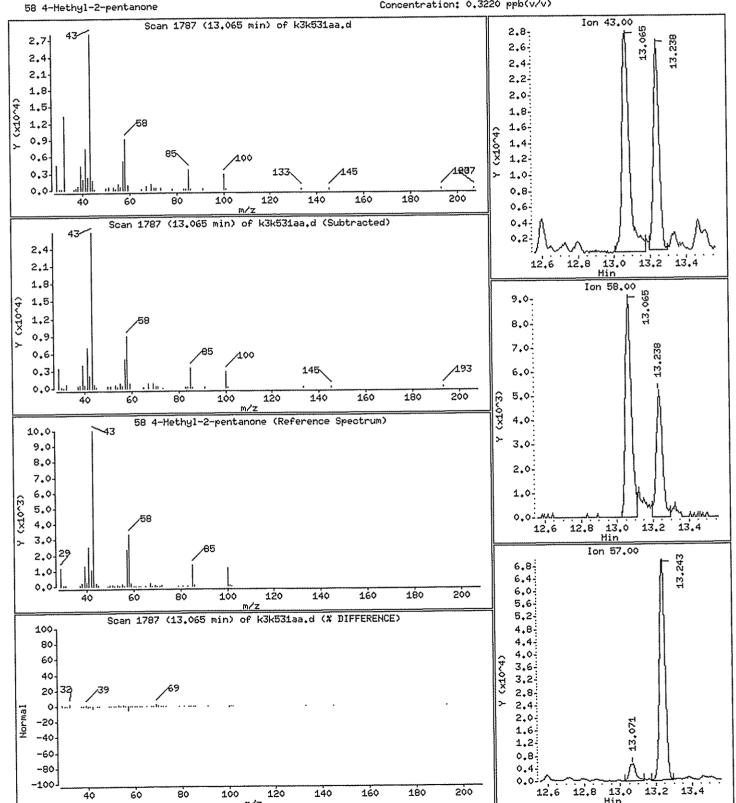
Concentration: 0.1463 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 0.3220 ppb(v/v)

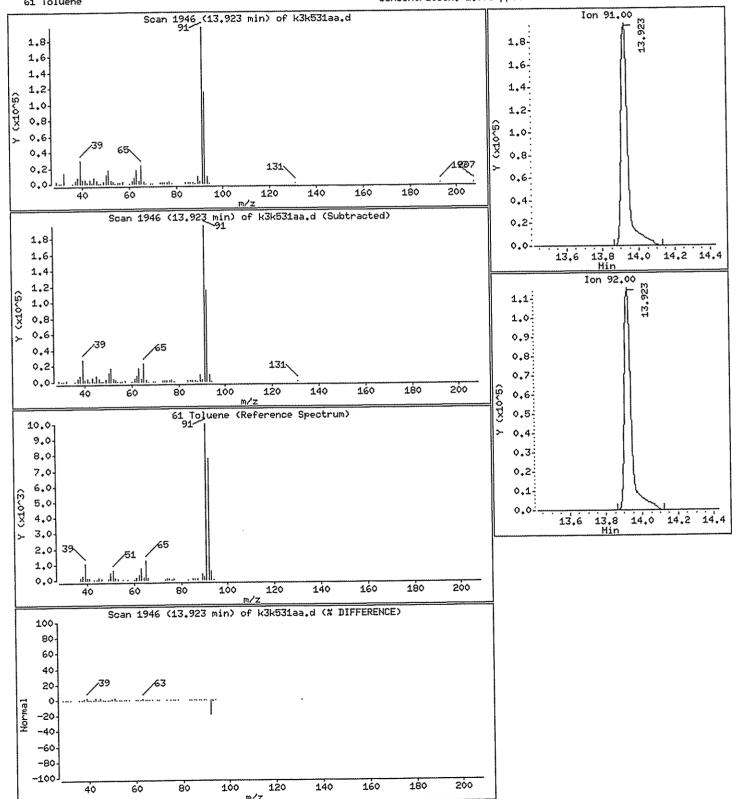


Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column diameter: 0.32 Column phase: RTX-5



Concentration: 1.978 ppb(v/v)



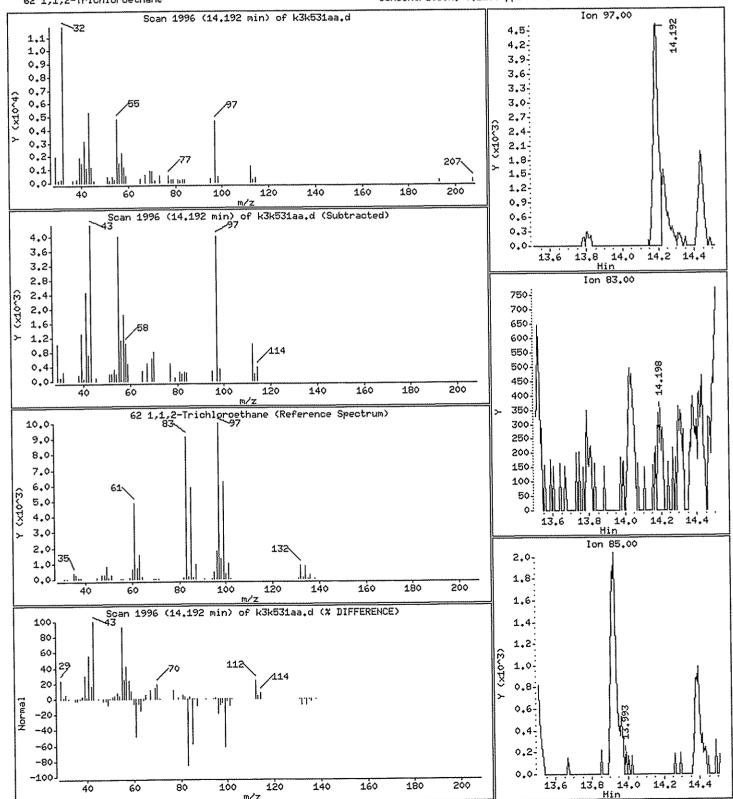
Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

62 1,1,2-Trichloroethane

Concentration: 0.1150 ppb(v/v)

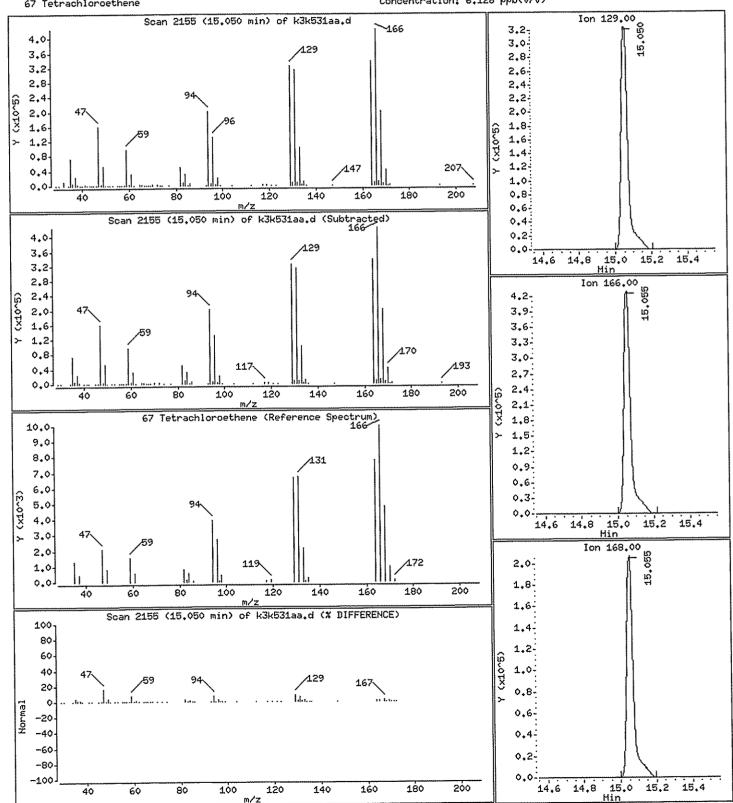


Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

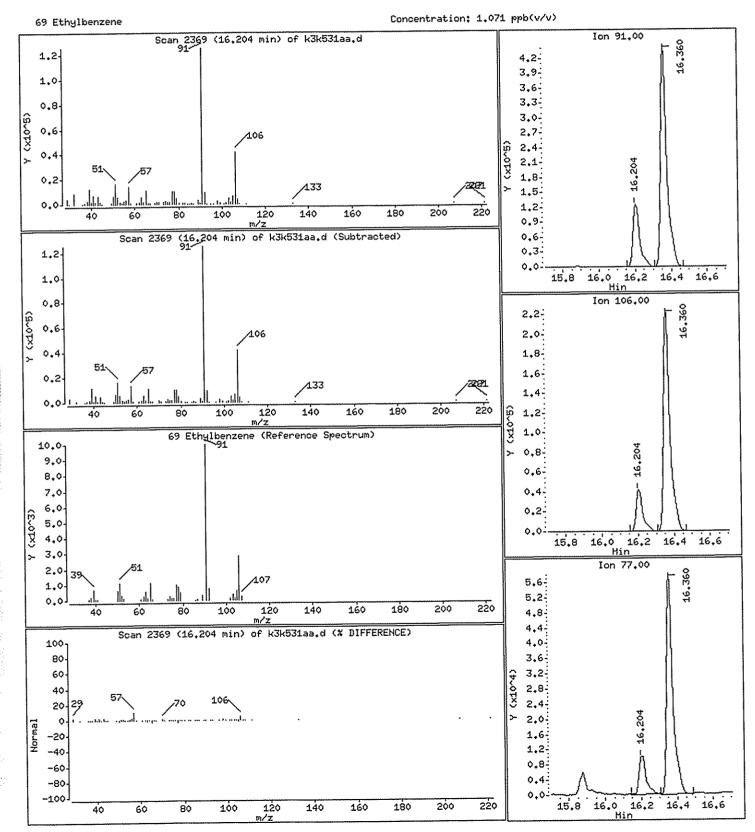
#### 67 Tetrachloroethene

Concentration: 6.128 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

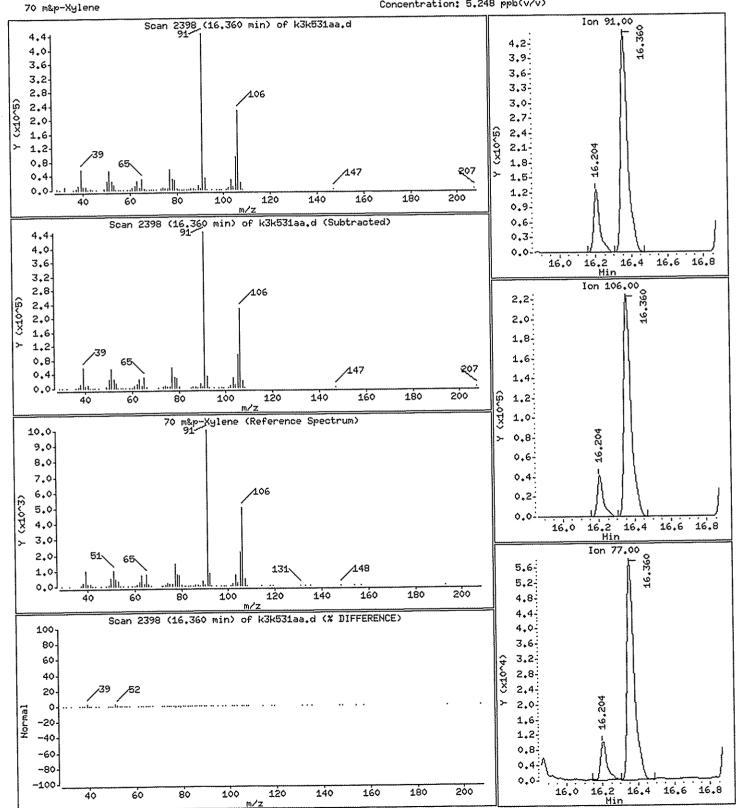
Operator: 7126

Column phase: RTX-5 Column diameter: 0.32



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

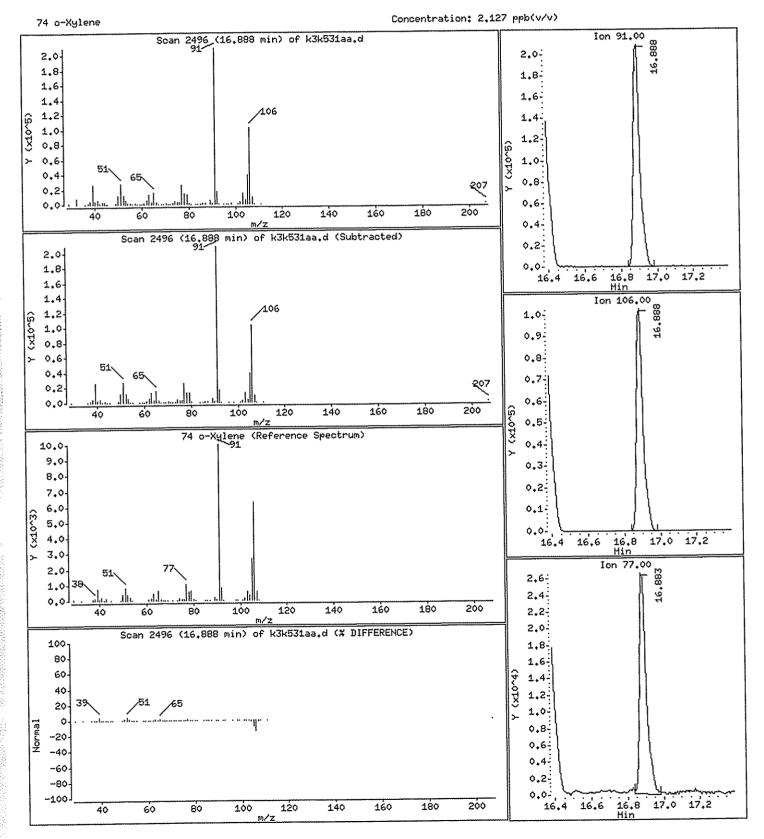
Column phase: RTX-5

Concentration: 5.248 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

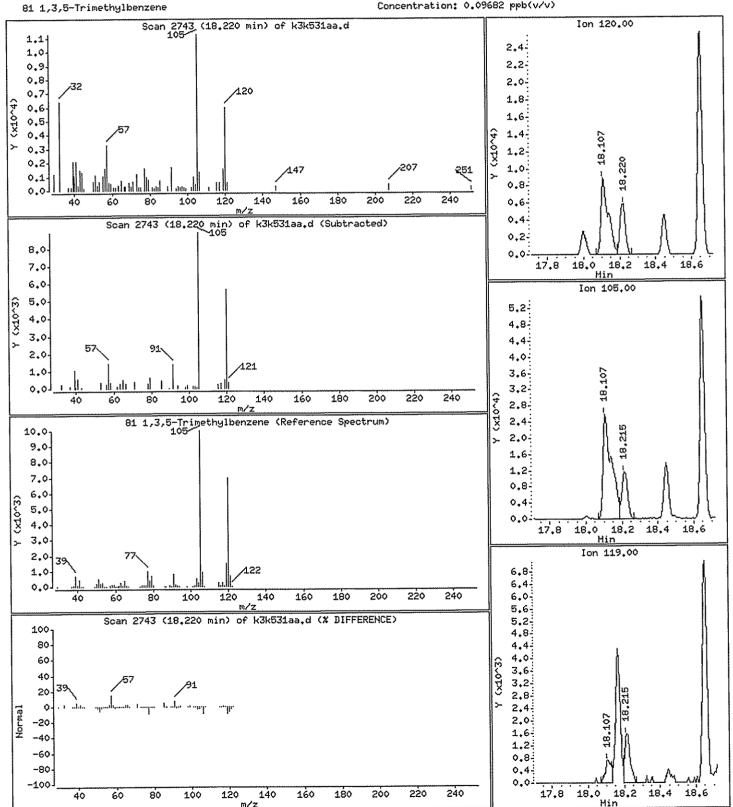
Column phase: RTX-5



Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

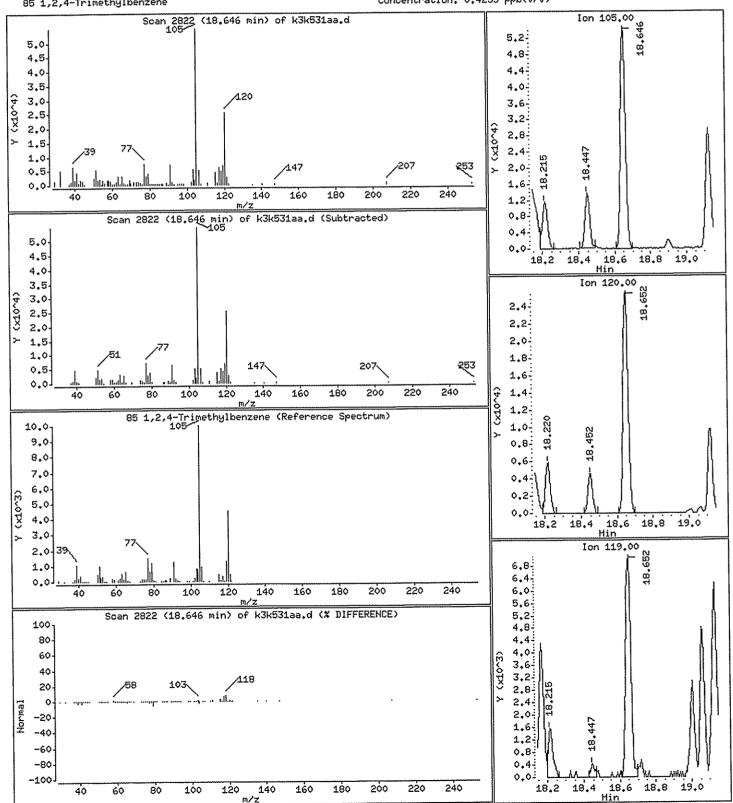
Concentration: 0.09682 ppb(v/v)



Date : 01-DEC-2008 13:18

Client ID: VI 3S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

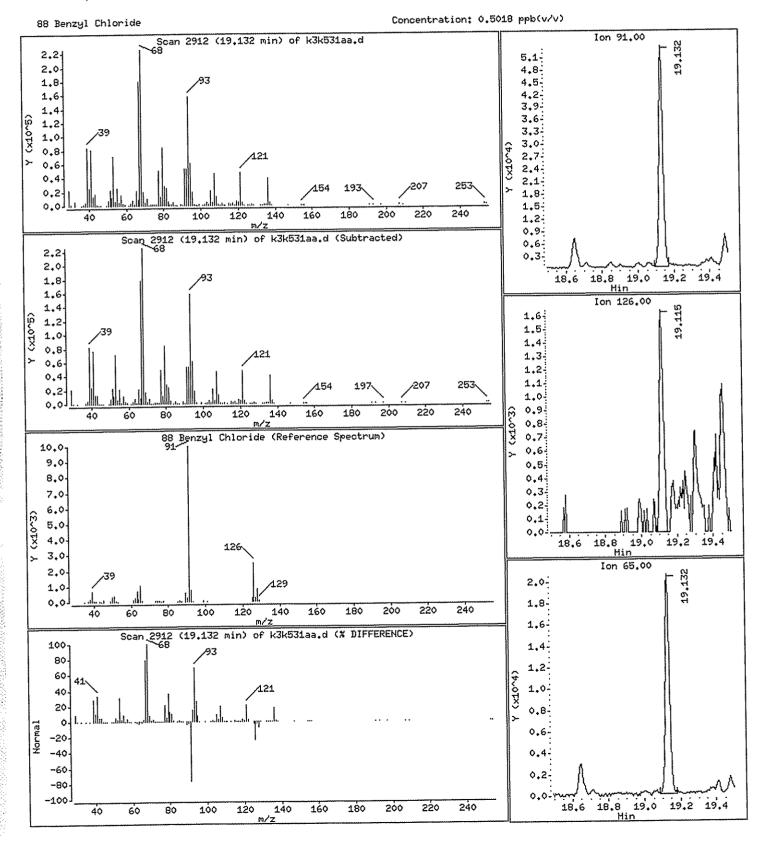
Column phase: RTX-5

85 1,2,4-Trimethylbenzene

Concentration: 0.4233 ppb(v/v)



Date : 01-DEC-2008 13:18


Client ID: VI 3S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



Report Date: 02-Dec-2008 14:38

# TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/k3k531aa.d
Lab Smp Id: K3K531AA
Ini Date : 01 DTG Client Smp ID: VI 3S

Inj Date : 01-DEC-2008 13:18

Inst ID: mg.i Operator: 7126

 $\overline{Smp}$  Info : ,,0,,,

Misc Info : G120108, TO155, nysdec.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120108.b/T0155.m

Meth Date : 02-Dec-2008 14:37 tajh Quant Type: ISTD

Cal Date : 01-DEC-2008 11:14 Cal File: 1ptcal.d Cal Date : 01-DEC-2008 11:14

Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description		
DF	1.00000	Dilution Factor		
Vt	500.00000	Default calibration vol		
Vo	500.00000	Default sample volume		

Cond Variable

Local Compound Variable

IST	TD	RT ====	HEIGHT	AMOUNT
*	1 Bromochloromethane	9.059	1137003	4.000

CONCENTRATIONS					QUANT			
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL(ppb(v/v))	QUAL	LIBRARY	LIB	ENTRY	CPND #
	~		*****	===			=====	==

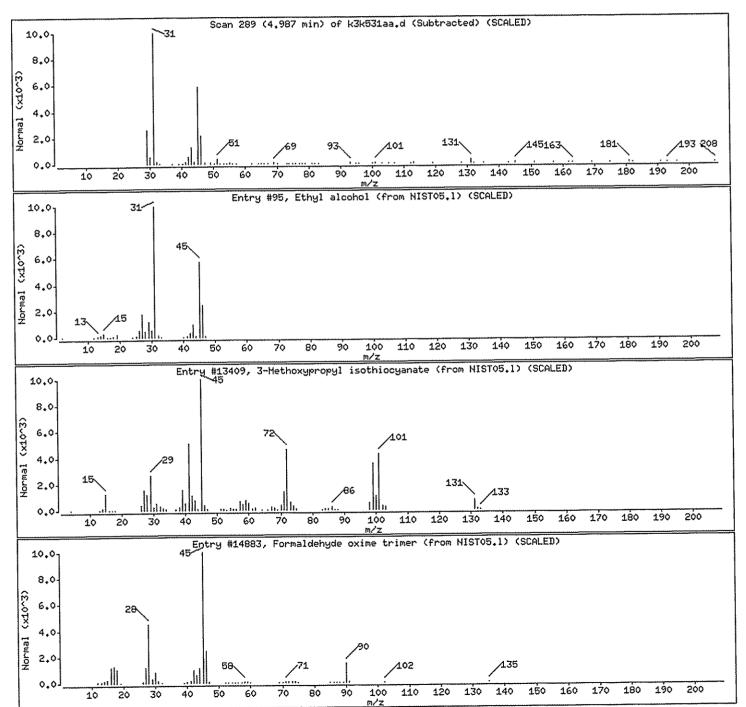
Ethyl alcoh	iol			CAS	#: 64-17-5		
4.987		1.19164857	1.192	99	NIST05.1	95	1 (L

QC Flag Legend

L - Operator selected an alternate library search match.

Date : 01-DEC-2008 13:18

Client ID: VI 35


Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Humber	Library	Entry	Quality	Formula	Weight
Ethyl alcohol 3-Methoxypropyl isothiocyanate Formaldehyde oxime trimer	64-17-5 17702-11-3 1000234-87-	NISTO5.1 NISTO5.1	95 13409 14883	99 10 9	C2H60 C5H9NOS C3H9N3O3	46 131 135



# New York State D.E.C. Client Sample ID: VI 4A GC/MS Volatiles

Lot-Sample# H8K250101 - 007 Work Order # K3K541AA

Matrix....: AIR

Date Sampled...: Prep Date....: 11/18/2008

Date Received ..: 11/24/2008

Prep Batch #....:

12/02/2008

Analysis Date... 12/02/2008

Dilution Factor.:

8338089 20

Method....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	1.6	ND	7.3
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	1.6	ND	11
ane				
1,4-Dioxane	ND	4.0	ND	14
Ethylbenzene	ND	1.6	ND	6.9
Trichlorofluoromethane	ND	1.6	ND	9.0
Hexachlorobutadiene	ND	1.6	ND	17
n-Hexane	ND	4.0	ND	14
2,2,4-Trimethylpentane	ND	4.0	ND	19
tert-Butyl alcohol	ND	6.4	ND	19
Methylene chloride	ND	4.0	ND	14
Benzene	ND	1.6	ND	5.1
Benzyl chloride	ND	3.2	ND	17
Styrene	ND	1.6	ND	6.8
1,1,2,2-Tetrachloroethane	ND	1.6	ND	11
Tetrachloroethene	ND	1.6	ND	11
Toluene	3.8	1.6	14	6.0
1,2,4-Trichlorobenzene	ND	1.6	ND	12
1,1,1-Trichloroethane	ND	1.6	ND	8.7
1,1,2-Trichloroethane	ND	1.6	ND	8.7
Trichloroethene	ND	0.80	ND	4.3
1,2,4-Trimethylbenzene	ND	1.6	ND	7.9
1,3,5-Trimethylbenzene	ND	1.6	ND	7.9
Vinyl chloride	ND	1.6	ND	4.1
o-Xylene	ND	1.6	ND	6.9
Methyl tert-butyl ether	ND	3.2	ND	12
1,1,2-Trichlorotrifluoroethane	ND	1.6	ND	12
m-Xylene & p-Xylene	3.6	1.6	16	6.9
Bromodichloromethane	ND	1.6	ND	11
1,2-Dibromoethane (EDB)	ND	1.6	ND	12
2-Butanone (MEK)	210	6.4	610	19
4-Methyl-2-pentanone (MIBK)	ND	4.0	ND	16
Bromoform	ND	1.6	ND	17
Bromomethane	ND	1.6	ND	6.2
Carbon tetrachloride	ND	0.80	ND	5.0
Chlorobenzene	ND	1.6	ND	7.4
Dibromochloromethane	ND	1.6	ND	14
Chloroethane	ND	1.6	ND	4.2
Chloroform	ND	1.6	ND	7.8
Chloromethane	ND	4.0	ND	8.3

# New York State D.E.C. Client Sample ID: VI 4A

# GC/MS Volatiles

Lot-Sample # H8K250101	- 007 <b>V</b>	Work Order # K3K541AA			Matrix: AIR	
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	<b>.</b>	REPORTING LIMIT (ug/m3)	
Cyclohexane	ND	4.0	ND		14	
1,2-Dichlorobenzene	ND	1.6	ND		9.6	
1,3-Dichlorobenzene	ND	1.6	ND		9.6	
1,4-Dichlorobenzene	ND	1.6	ND		9.6	
Dichlorodifluoromethane	ND	1.6	ND		7.9	
1,1-Dichloroethane	ND	1.6	ND		6.5	
1,2-Dichloroethane	ND	1.6	ND		6.5	
1,1-Dichloroethene	ND	1.6	ND		6.3	
cis-1,2-Dichloroethene	ИD	1.6	ND		6.3	
trans-1,2-Dichloroethene	ND	1.6	ND		6.3	
1,2-Dichloropropane	ND	1.6	ND		7.4	
cis-1,3-Dichloropropene	ND	1.6	ND		7.3	
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT	<del>dalamas sa cons</del>	<u> </u>	NITS	
Ethyl alcohol		ND		р	pb(v/v)	
SURROGATE		PERCENT RECOVERY		CO	ORATORY VTROL ITS (%)	
4-Bromofluorobenzene		92	<del>Addison</del>	70	- 130	

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:09

# TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k541aa.d
Lab Smp Id: K3K541AA
Ini Date : 02 Data Client Smp ID: VI 4A

Inj Date : 02-DEC-2008 12:11

Inst ID: mg.i Operator: 7126

Smp Info : ,20,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment

Comment:
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD
Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 6

Dil Factor: 20.00000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description			
DF	20.00000	Dilution Factor			
Vt	500.00000	Default calibration vol			
Vo	500.00000	Default sample volume			

Cpnd Variable

Local Compound Variable

						CONCENTRATIONS		
		QUANT SIG				ON-COLUMN	FINAL	
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	*********		==	=======================================	~~~~~	****	****	
* 1	Bromochloromethane	128	9.053	9.053 (1.000)	393556	4.00000	4.000	
* 2	1,4-Difluorobenzene	114	11.200	11.194 (1.000)	2105401	4.00000	4.000	
* 3	Chlorobenzene-d5	117	15.875	15.875 (1.000)	1545659	4.00000	4.000	
\$ 6	4-Bromofluorobenzene	95	17.503	17.503 (1.103)	908645	3.67587	3.676	
39	2-Butanone	72	8.293	8.304 (0.916)	385659	10.3066	206.1	
61	Toluene	91	13.917	13.917 (0.877)	50998	0.18894	3.779	
69	Ethylbenzene	91	16.360	16.204 (1.031)	41838	0.13671	2.734	
	m&p-Xylene	91	16.360	16.360 (1.031)	41838	0.17892	3.578	

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k541aa.d Lab Smp Id: K3K541AA

Quant Type: ISTD

Analysis Type: OTHER

Operator: 7126 Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, nysdec.sub,,,,

Calibration	Date:	02-DEC-2008
Calibration	Time:	09:11
Client Smp 3	ID: VI	4A
TOTTO I TOM		

Level: LOW Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		250756 1247147 946696	592122 2944943 2235474	393556 2105401 1545659	-6.62 0.45 -2.86
					l!

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	0.00
2 1,4-Difluorobenze		10.86	11.52	11.20	0.05
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

#### RECOVERY REPORT

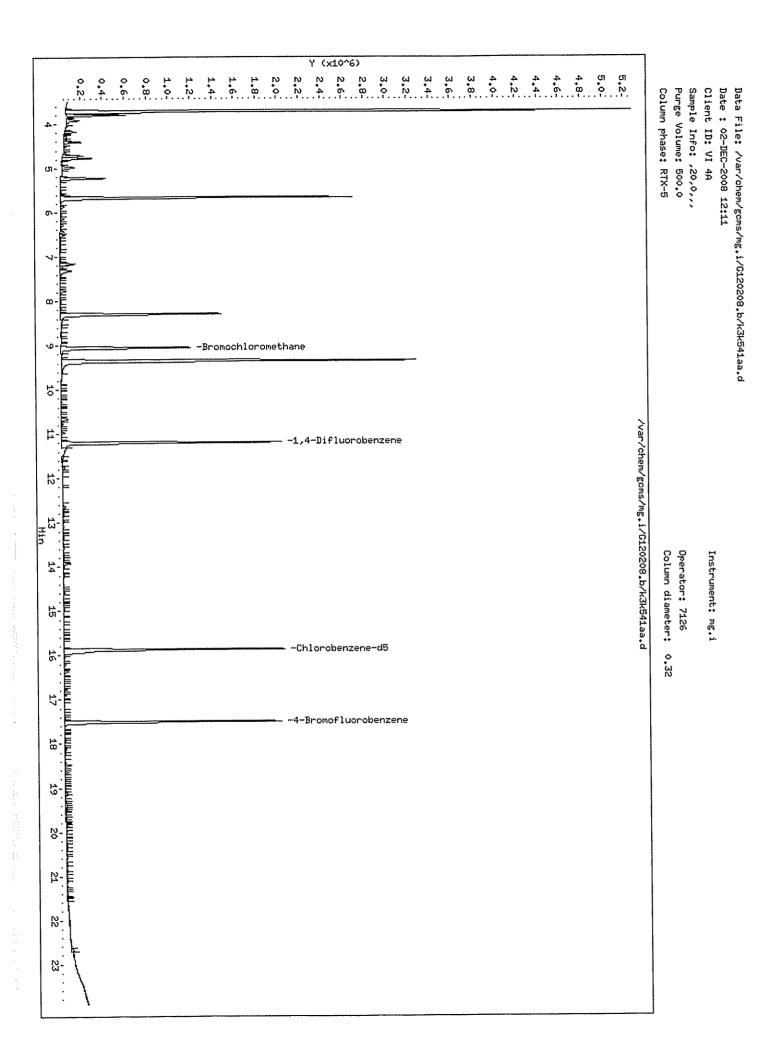
Client Name: New York State D.E.C24-NOV-2008 00:00

Client SDG: H8K250101

Sample Matrix: GAS

Fraction: OTHER

Lab Smp Id: K3K541AA Level: LOW


Client Smp ID: VI 4A Operator: 7126

Data Type: MS DATA SpikeList File: all.spk

SampleType: SAMPLE Quant Type: ISTD

Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 64-Bromofluorobenze	4.000	3.676	91.90	70-130

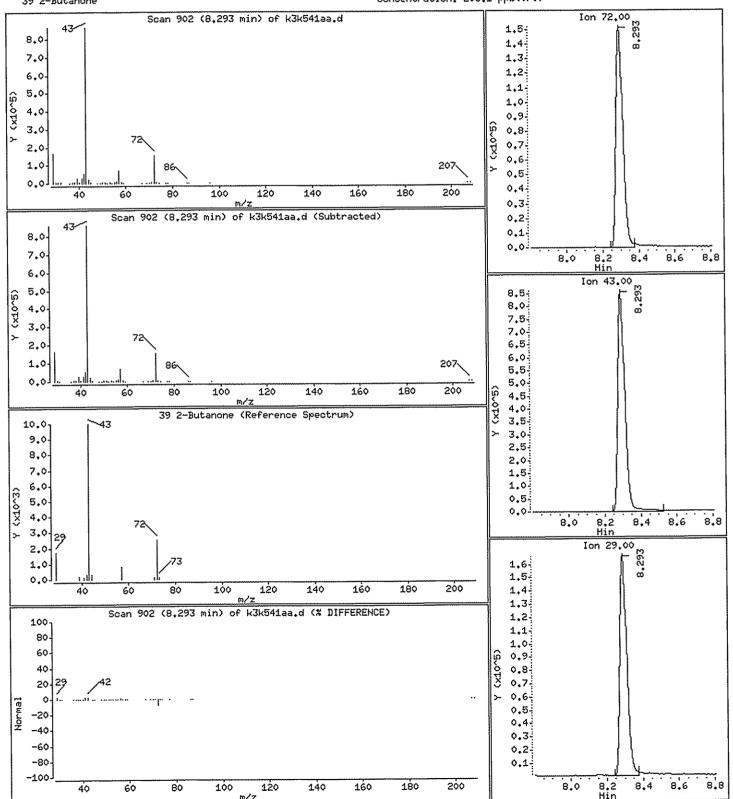


Date : 02-DEC-2008 12:11

Client ID: VI 4A

Instrument: mg.i

Sample Info: ,20,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 206.1 ppb(v/v)

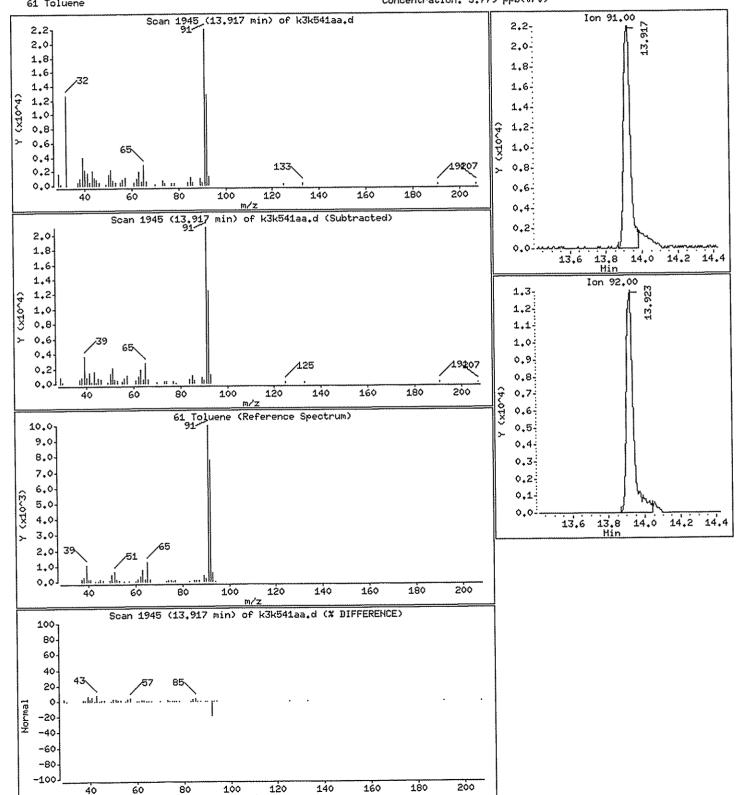


Date : 02-DEC-2008 12:11

Client ID: VI 4A

Instrument: mg.i

Sample Info: ,20,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 3.779 ppb(v/v)

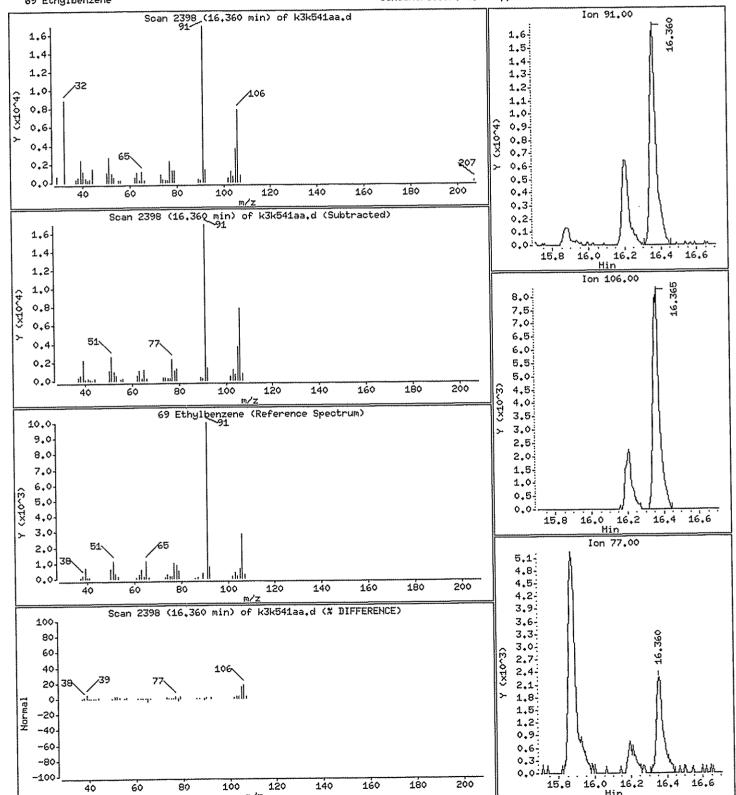


Date: 02-DEC-2008 12:11

Client ID: VI 4A

Instrument: mg.i

Sample Info: ,20,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

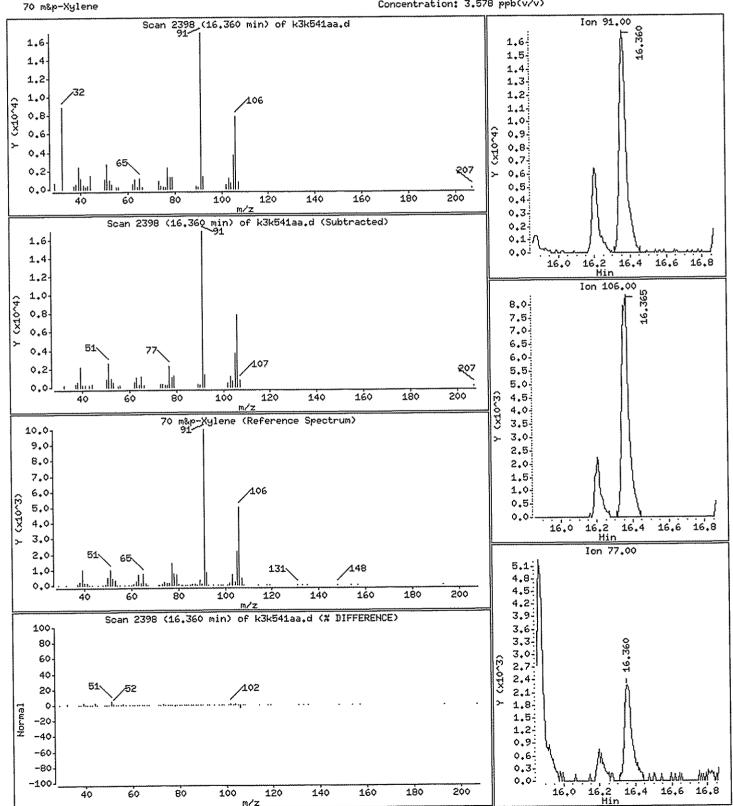


Concentration: 2.734 ppb(v/v)



Date : 02-DEC-2008 12:11

Client ID: VI 4A


Instrument: mg.i

Sample Info: ,20,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 3.578 ppb(v/v)



Report Date: 03-Dec-2008 09:09

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/k3k541aa.d Lab Smp Id: K3K541AA Client Smp

Client Smp ID: VI 4A

Inj Date : 02-DEC-2008 12:11

Operator : 7126 Smp Info : ,20,0,,, Misc Info : G120208, TO155, nysdec.sub,,,, Inst ID: mg.i

Comment

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date: 03-Dec-2008 09:07 tajh Quant Tyr Cal Date: 02-DEC-2008 10:05 Cal File: Quant Type: ISTD Cal File: 1ptcal.d

Als bottle: 6
Dil Factor: 20.00000
Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	20.00000	Dilution Factor
Vt Vo	500.00000 500.00000	Default calibration vol Default sample volume

Cpnd Variable

Local Compound Variable

IST	D'	RT	HEIGHT	AMOUNT
		====	======	=====
*	1 Bromochloromethane	9.053	1193022	4.000

		CONCENTRA	TIONS			QUANT			
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (	v/v))	QUAL	LIBRARY	LIB	ENTRY	CDND #
====	======				===	<b></b>		====	==

CAS #: 64-17-5 Ethyl alcohol 1(L) 7.967 99 NIST05.1 93 4.977 118808 0.39834303

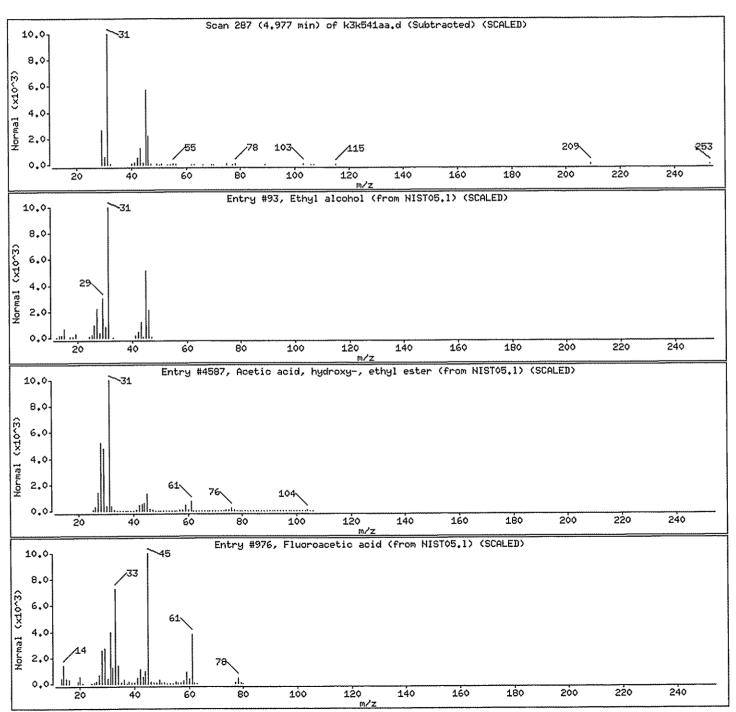
# QC Flag Legend

L - Operator selected an alternate library search match.

Lisas parabe

Date : 02-DEC-2008 12:11

Client ID: VI 4A


Instrument: mg.i

Sample Info: ,20,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	93	99	C2H60	46
Acetic acid, hydroxy-, ethyl ester	623-50-7	NISTO5.1	4587	33	C4H803	104
Fluoroacetic acid	144-49-0	NISTO5.1	976	17	C2H3F02	78



# New York State D.E.C.

# Client Sample ID: VI 4S

# GC/MS Volatiles

Lot-Sample # H8K250101 - 008 Work Order# K3K551AA Matrix....: AIR

Date Sampled ...: Prep Date....:

11/18/2008 12/01/2008 Date Received ..: 11/24/2008

Prep Batch #....:

8337098

**Analysis Date...** 12/01/2008

Dilution Factor.:

45.45

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	2200	3.6	9600 E	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	ND	44
Methylene chloride	ND	9.1	ND	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	39	3.6	260	25
Toluene	36	3.6	140	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	5.7	3.6	31	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	3.9	1.8	21	9.8
1,2,4-Trimethylbenzene	260	3.6	1300	18
1,3,5-Trimethylbenzene	110	3.6	530	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	4400	3.6	19000 E	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	ND	3.6	ND	28
m-Xylene & p-Xylene	6700	3.6	29000 E	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	23	15	69	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19
Chioromethane	אט	7.1	112	17

#### New York State D.E.C.

# Client Sample ID: VI 4S

#### GC/MS Volatiles

Lot-Sample # H8K250101 - 008		ork Order# K3K551	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	9.1	ND	. 31
1,2-Dichlorobenzene	ND	3.6	ND	22
1,3-Dichlorobenzene	ND	3.6	ND	22
1,4-Dichlorobenzene	ND	3.6	ND	22
Dichlorodifluoromethane	1100	3.6	5200	18
1,1-Dichloroethane	ND	3.6	ND	15
1,2-Dichloroethane	ND	3.6	ND	15
1,1-Dichloroethene	ND	3.6	ND	14
cis-1,2-Dichloroethene	ND	3.6	ND	14
trans-1,2-Dichloroethene	ND	3.6	ND	14
1,2-Dichloropropane	ND	3.6	ND	17
cis-1,3-Dichloropropene	ND	3.6	ND	17
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT		UNITS
ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		110	<del></del>	70 - 130

#### Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 14:00

# TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/k3k551aa.d
Lab Smp Id: K3K551AA
Ini Date : 01 DTC Cont

Client Smp ID: VI 4S

Inj Date : 01-DEC-2008 18:12

Operator : 7126 Smp Info : ,45.45,0,,, Misc Info : G120108, T0155, nysdec.sub,,,, Inst ID: mg.i

Method: /var/chem/gcms/mg.i/G120108.b/T0155.m
Meth Date: 02-Dec-2008 13:51 tajh Quant Typ
Cal Date: 01-DEC-2008 11:14 Cal File:
Als bottle: 7
Dil Factor: 45.45000
Integrator: HP RTE Compound
Target Version: 2 50 Quant Type: ISTD Cal File: 1ptcal.d

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	** ** **	<b>E E</b>	=======================================	****		
* 1 Bromochloromethane	128	9.053	9.053 (1.000)	291435	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.199	11.200 (1.000)	1517327	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1259496	4.00000	4.000
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	889104	4.41403	4.414
9 Dichlorodifluoromethane	85	3.963	3.963 (0.438)	7424928	23.3466	1061(4)
10 Chloromethane	52	3.801	4.146 (0.420)	12700	0.41195	20.72
39 2-Butanone	72	8.315	8.309 (0.918)	14182	0.51183	23.26
44 1,1,1-Trichloroethane	97	10.078	10.078 (1.113)	24254	0.12585	5.720
53 Trichloroethene	130	11.895	11.895 (1.062)	11170	0.08497	3.862
61 Toluene	91	13.923	13.923 (0.877)	175555	0.79818	36.28
67 Tetrachloroethene	129	15.050	15.050 (0.948)	96351	0.84804	38.54
69 Ethylbenzene	91	16.204	16.204 (1.021)	12140585	48.6837	2213 (A) t
70 m&p-Xylene	91	16.360	16.365 (1.031)	28221795	148.109	6732 (A)E
73 Styrene	104	16.888	16.829 (1.064)	443147	3.28768	149.4
74 o-Xylene	91	16.888	16.889 (1.064)	20057938	97.8724	4448 (A)
						13/12

Data File: /var/chem/gcms/mg.i/G120108.b/k3k551aa.d Report Date: 02-Dec-2008 14:00

					CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	*==*	==		**======		****	
75 1,1,2,2-Tetrachloroethane	83	17.562	17.217 (1.106)	15207	0.10453	A+731	
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	247423	2.38945	108.6	
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	1127987	5.62469	255.6	

# QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

18/01/81

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: VI 4S

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120108.b/k3k551aa.d

Report Date: 02-Dec-2008 14:00

# TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k551aa.d Lab Smp Id: K3K551AA

Analysis Type: OTHER Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	396236	235760	556712	291435	-26.73
2 1,4-Difluorobenze	2070950	1232215	2909685	1517327	
3 Chlorobenzene-d5	1572100	935400	2208800	1259496	

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF ======
1 Bromochloromethan		8.72	9.38	9.05	0.00
2 1,4-Difluorobenze		10.87	11.53	11.20	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

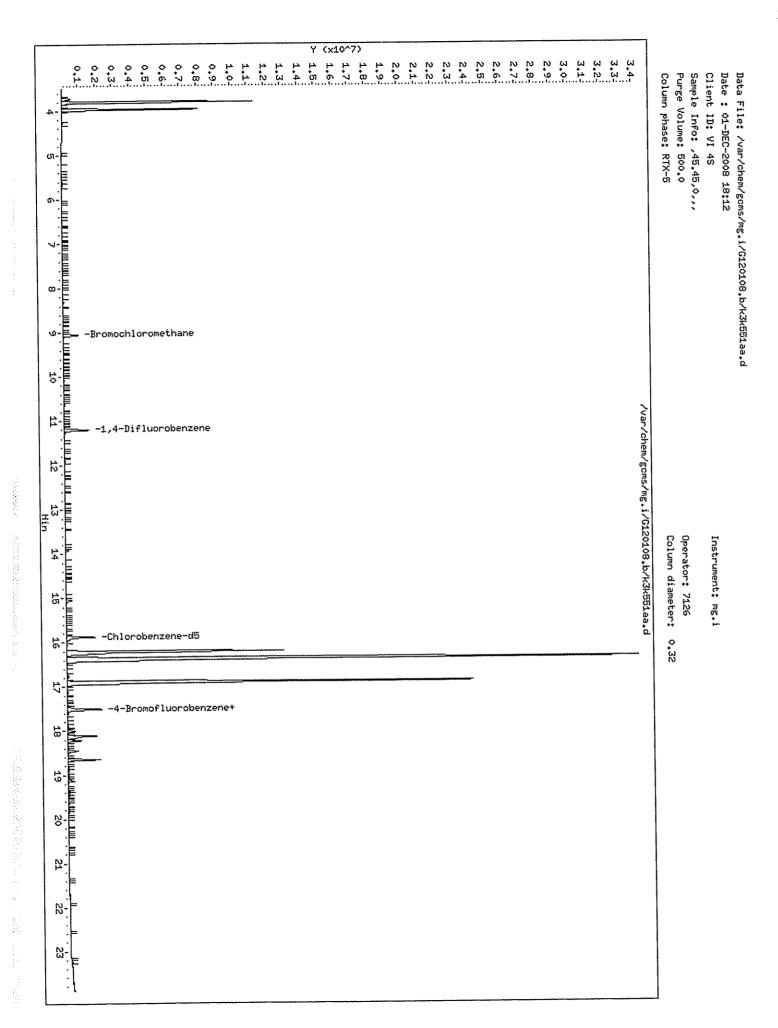
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 14:00

TestAmerica Knoxville

#### RECOVERY REPORT


Client SDG: H8K250101 Client Name: New York State D.E.C24-NOV-2008 00:00

Fraction: OTHER Sample Matrix: GAS

Client Smp ID: VI 4S Operator: 7126 SampleType: SAMPLE Quant Type: ISTD

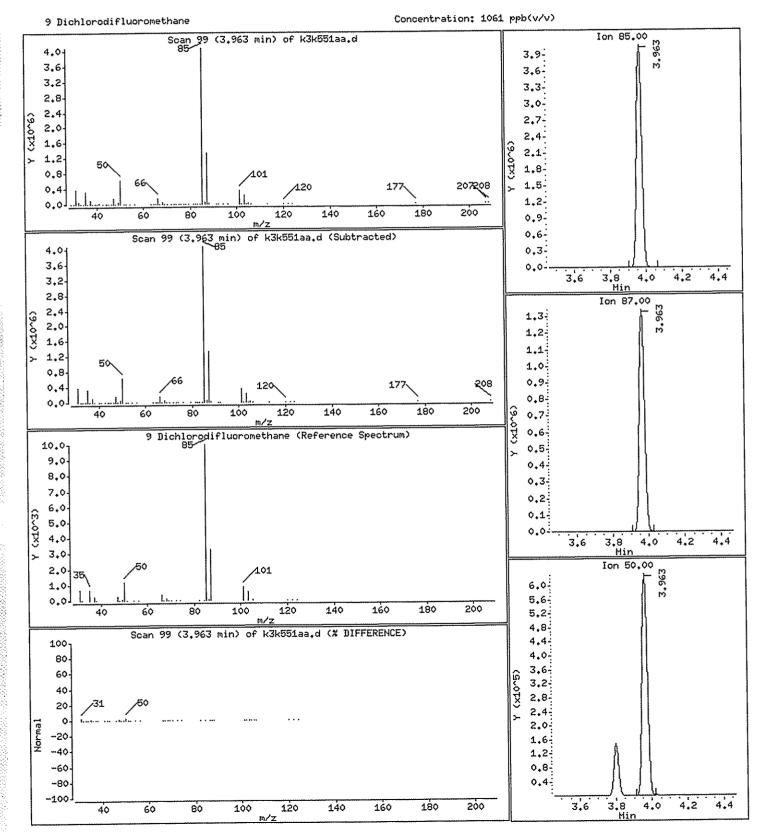
Sample Matrix: GAS
Lab Smp Id: K3K551AA
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	4.414	110.35	70-130



Date : 01-DEC-2008 18:12

Client ID: VI 4S


Instrument: mg.i

Sample Info: ,45.45,0,,,

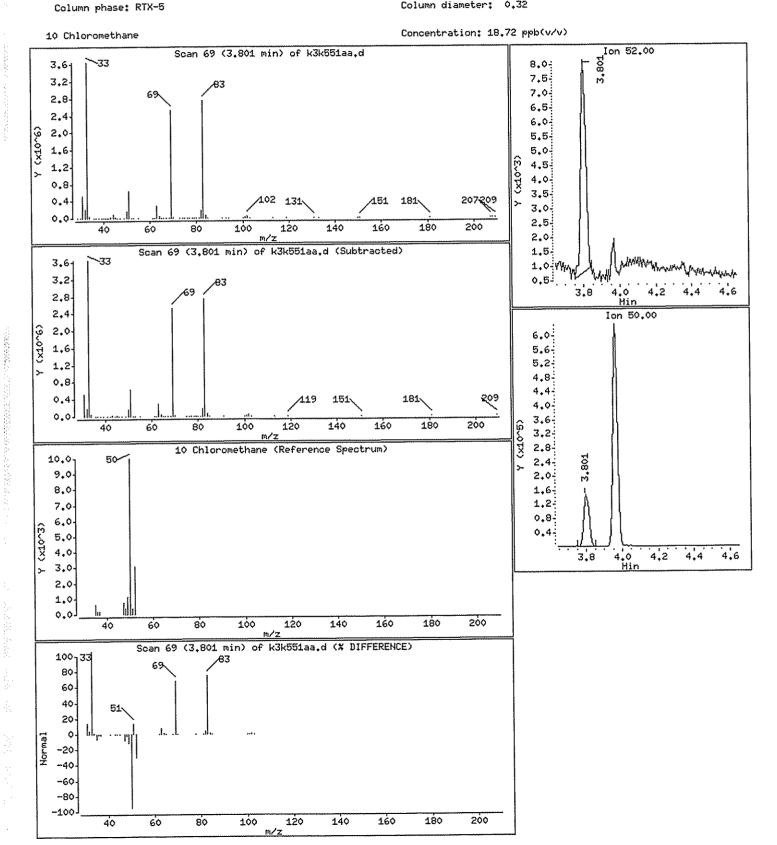
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



Date : 01-DEC-2008 18:12


Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0

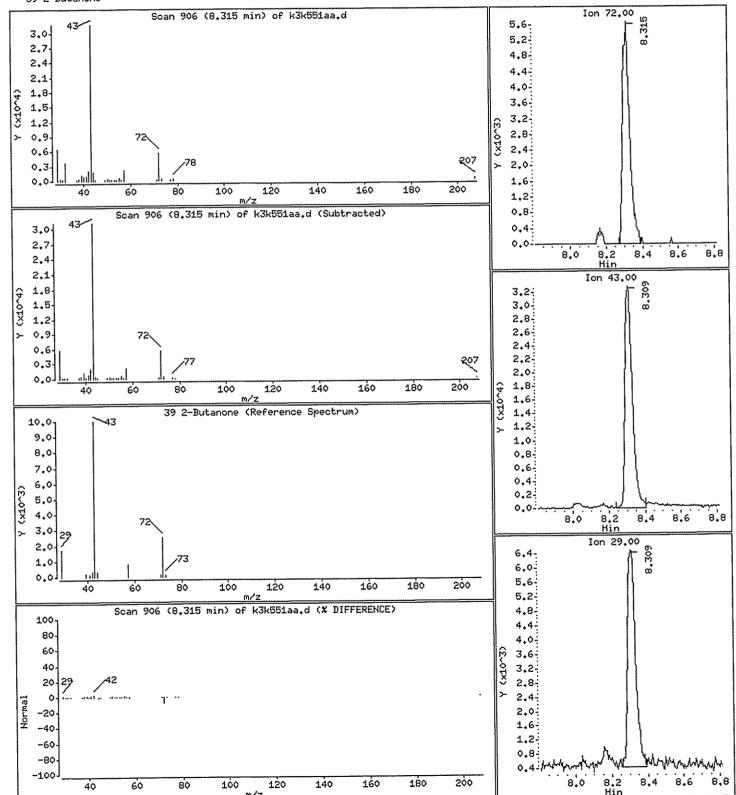
Operator: 7126



Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

39 2-Butanone

Concentration: 23.26 ppb(v/v)



Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

44 1,1,1-Trichloroethane

Concentration: 5.720 ppb(v/v)

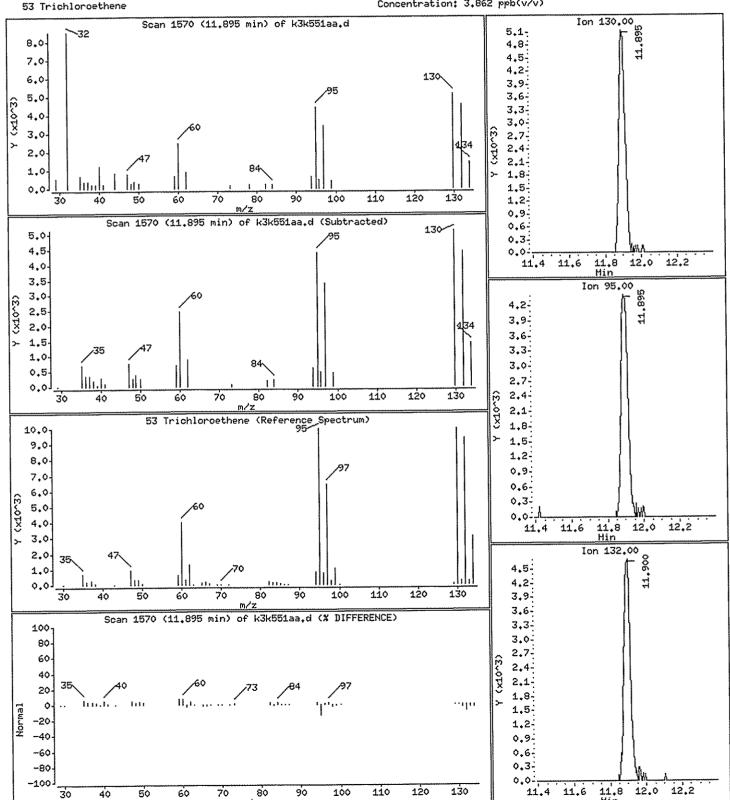


Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 3.862 ppb(v/v)



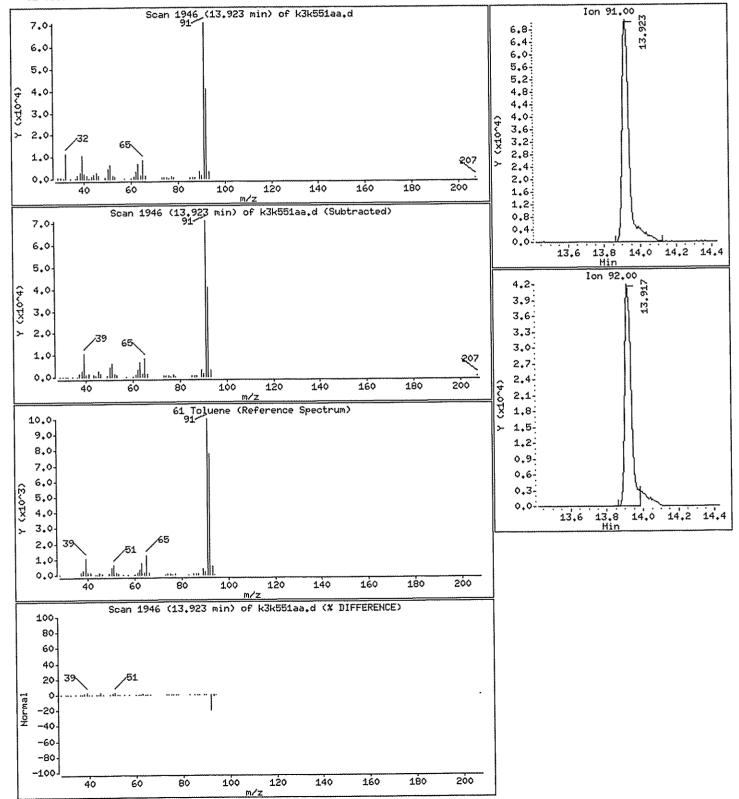
Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 36.28 ppb(v/v)



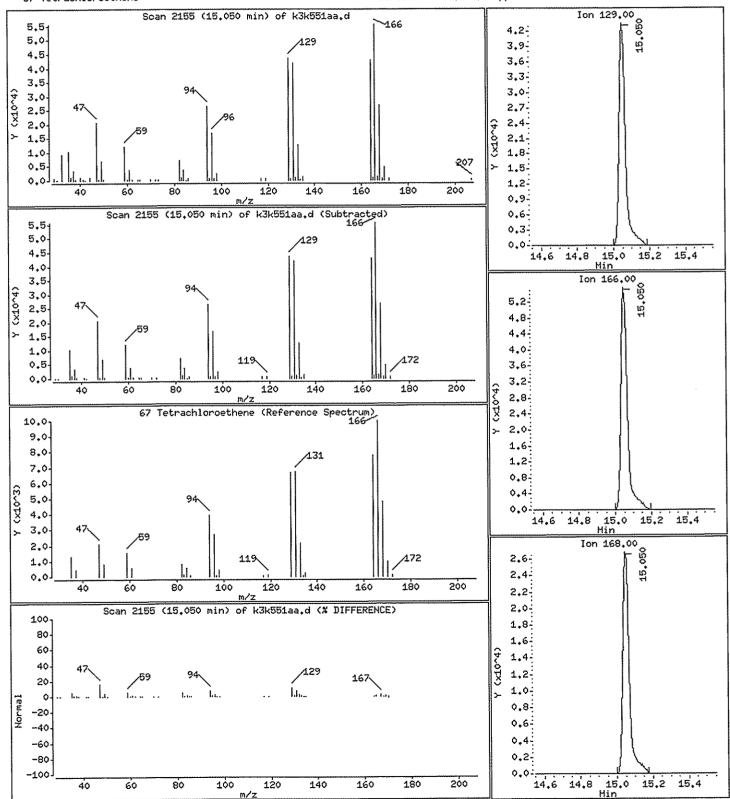
Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

#### 67 Tetrachloroethene

Concentration: 38.54 ppb(v/v)



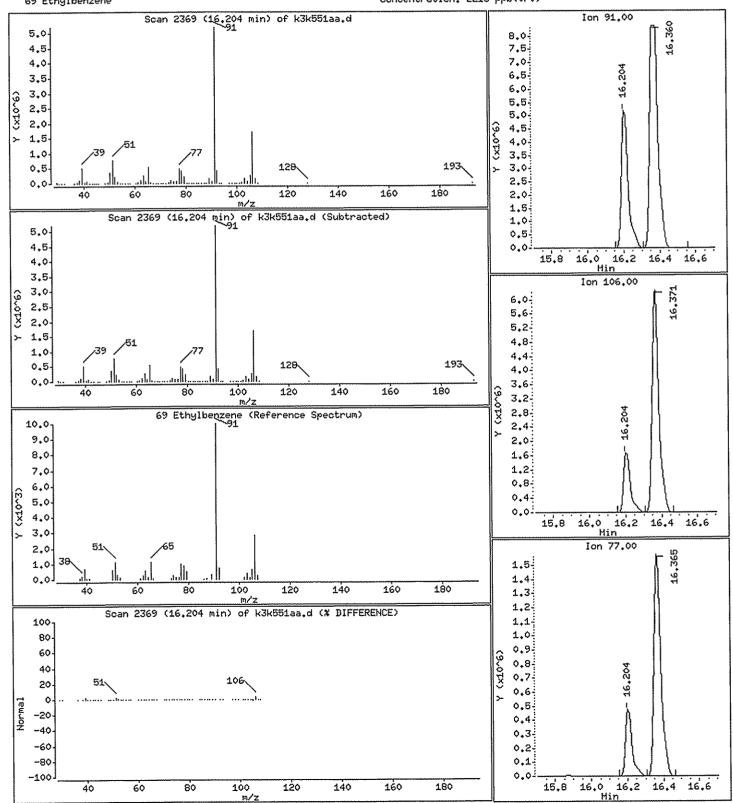
Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 2213 ppb(v/v)



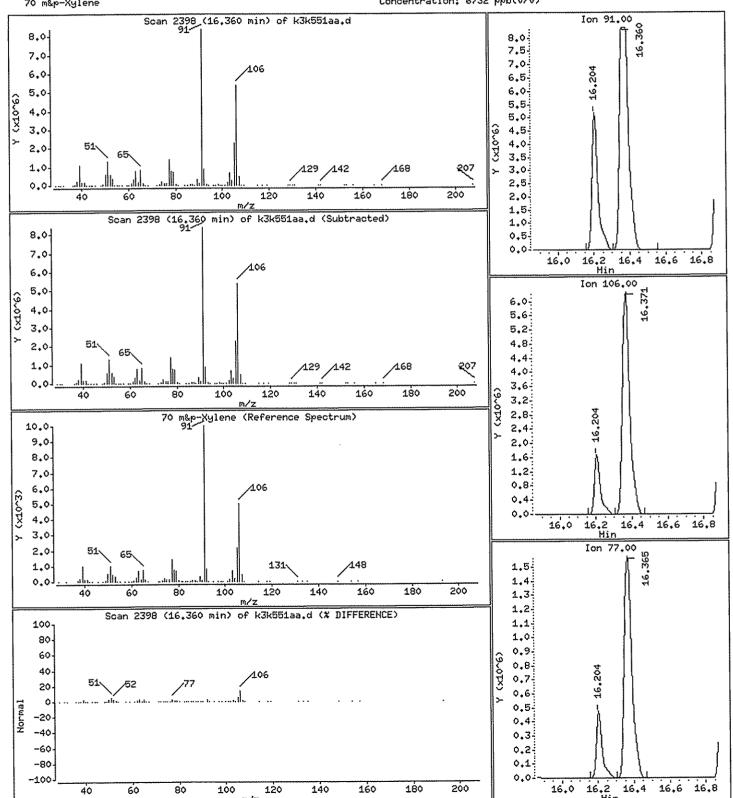
Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 6732 ppb(v/v)

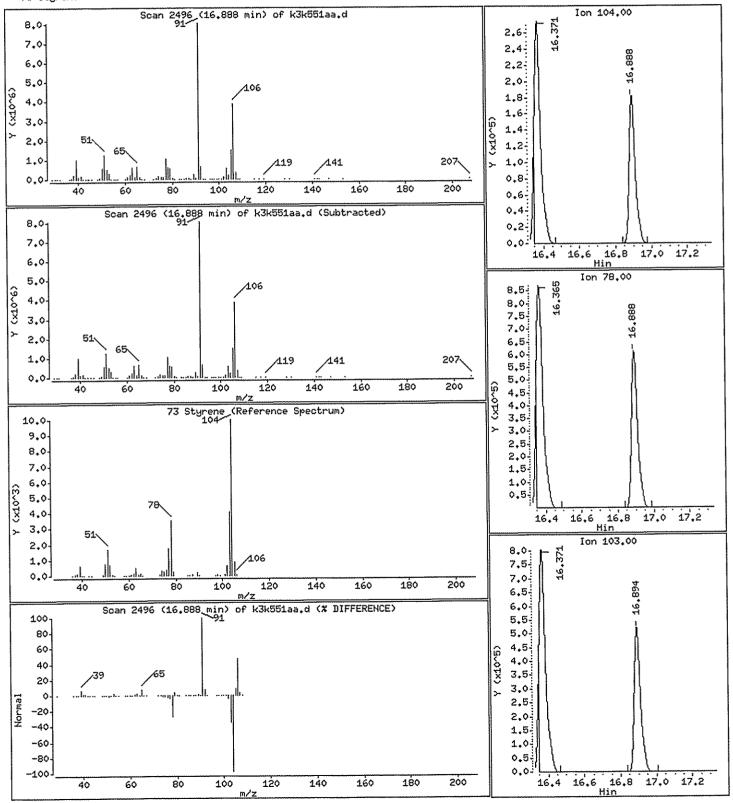


Date : 01-DEC-2008 18:12

Client IB: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

73 Styrene

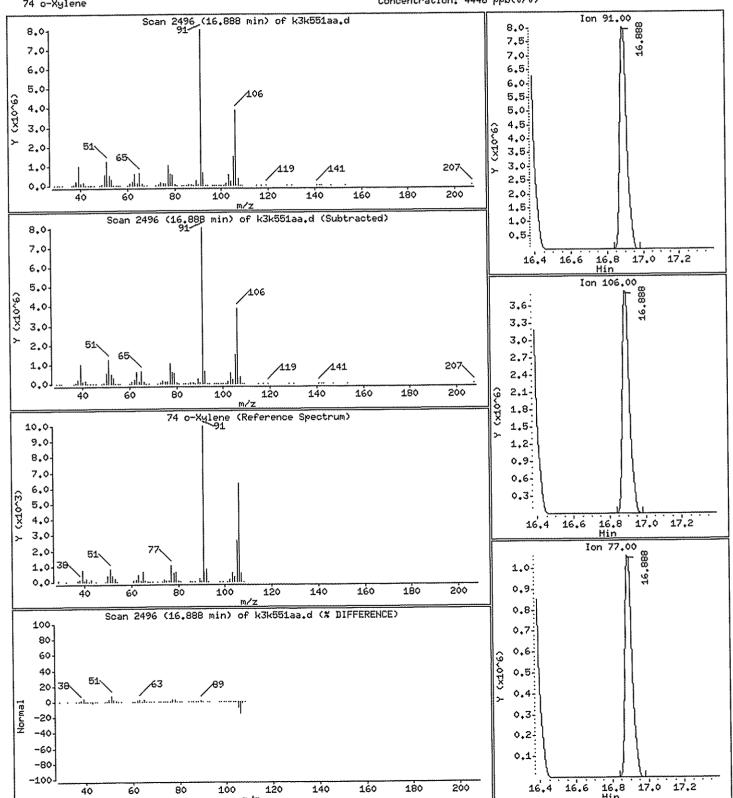
Concentration: 149.4 ppb(v/v)



Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

74 o-Xylene

Concentration: 4448 ppb(v/v)

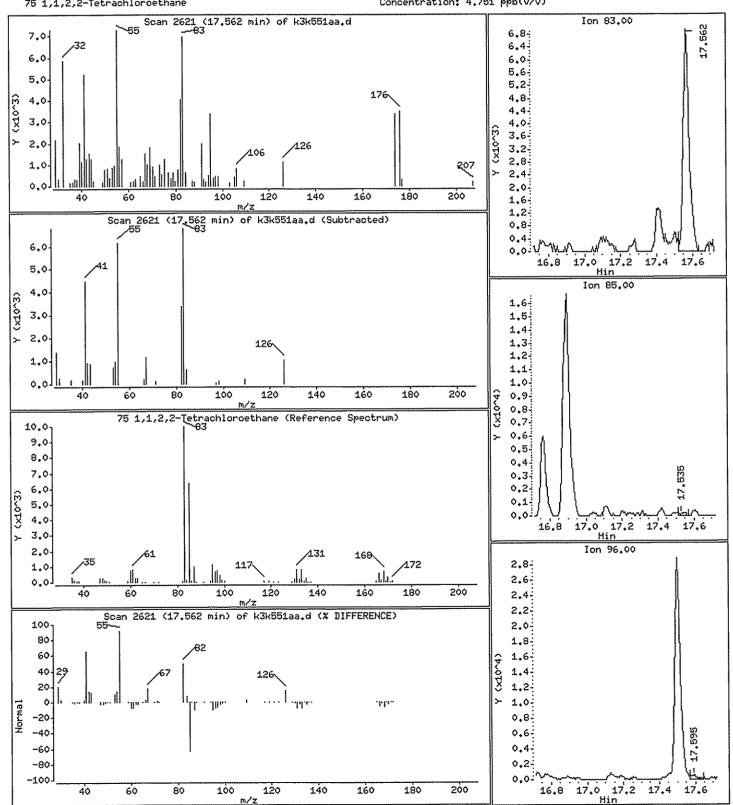


Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45,45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

75 1,1,2,2-Tetrachloroethane

Concentration: 4.751 ppb(v/v)

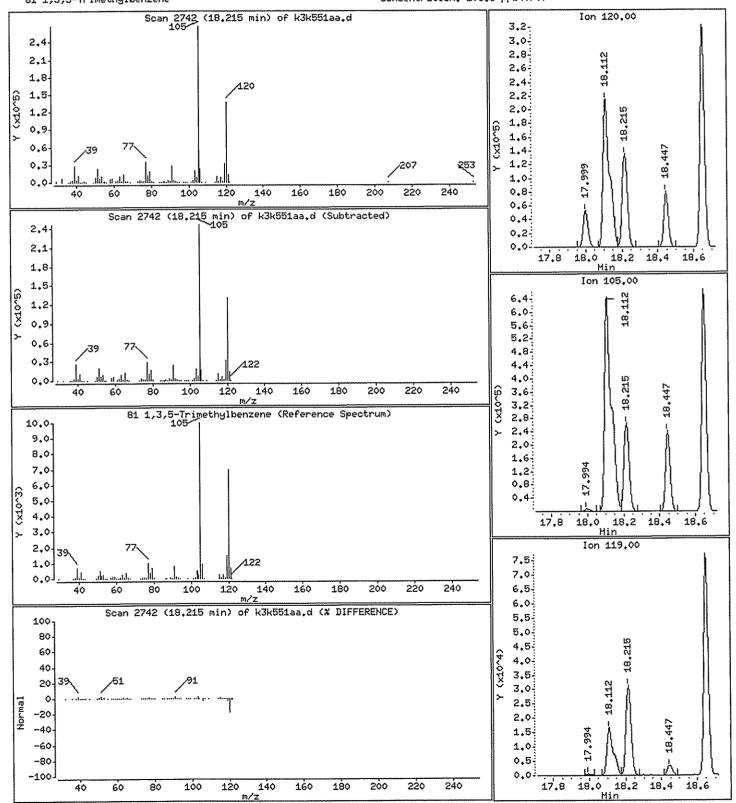


Date: 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45,45,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

81 1,3,5-Trimethylbenzene

Concentration: 108.6 ppb(v/v)



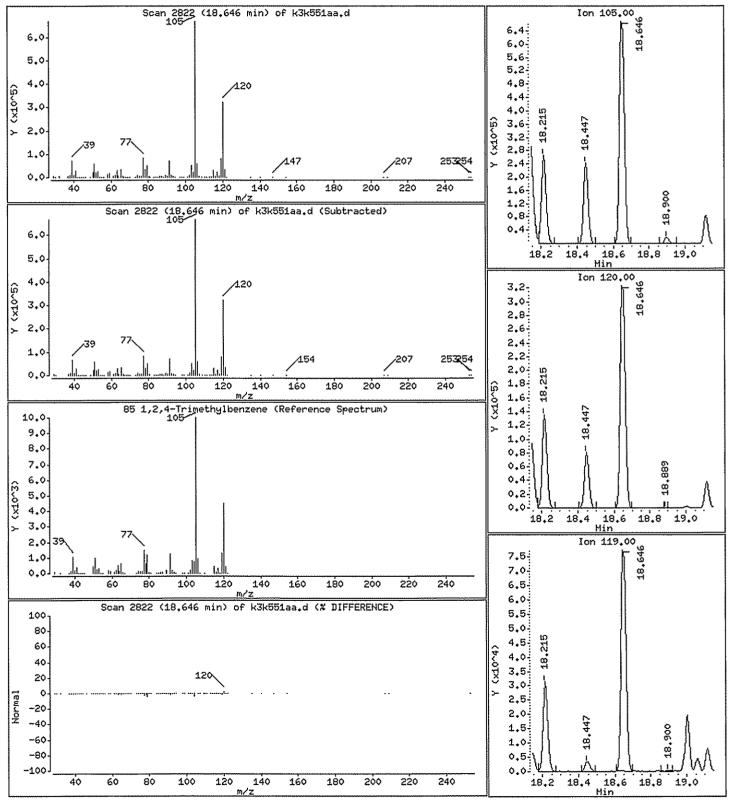
Date : 01-DEC-2008 18:12

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

85 1,2,4-Trimethylbenzene

Concentration: 255.6 ppb(v/v)



Report Date: 02-Dec-2008 14:10

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k551aa.d Lab Smp Id: K3K551AA Client Smp I

Client Smp ID: VI 4S

Inj Date : 01-DEC-2008 18:12

Inst ID: mg.i Operator: 7126

Smp Info : ,45.45,0,,, Misc Info : G120108, TO155, nysdec.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120108.b/T0155.m Meth Date : 02-Dec-2008 14:02 tajh Quant Tyr Quant Type: ISTD Cal Date : 01-DEC-2008 11:14 Cal File: 1ptcal.d

Als bottle: 7
Dil Factor: 45.45000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

ISTD ======		RT	HEIGHT	AMOUNT
*	1 Bromochloromethane	9.053	892907	4.000
*	3 Chlorobenzene-d5	15.875	1702523	4.000

		CONCENTRA	rions			QUAN:	r		
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (	v/v))	LAUQ	LIBRAR	A TIB	ENTRY	CPND #
====	======				===			======	
Carbon di 3.720	oxide 485149	2.17334616	98.78	5 5		124-38-9 NIST05.1	80	1	
Norfluran	e		X	C	AS #:	811-97-2			
3.801	11282303	50.5418952	2297 (	83		NISTO5.1	4081	1	

Data File: /var/chem/gcms/mg.i/G120108.b/k3k551aa.d Report Date: 02-Dec-2008 14:10

		CONCENTR	ATIONS			QUAN	r	
RT	HEIGHT	ON-COL(ppb(v/v)	) FINAL (ppb (	v/v))	QUAL	LIBRAR	Y LIB	ENTRY CPND #
====			=========	====	=	=======================================		*****
Benzene,	propyl-	Λ	A	C	\S #:	103-65-1		
17.994	459836	1.08036367	49.10	90		NISTO5.1	9111	3
Benzene,	1-ethyl-2-	-methyl-		C)	\S #:	611-14-3		
18.107	1684557	3.95778970	179.9	95		NISTO5.l	9129	3
Benzene,	1-ethyl-2	-methyl-	-	c	AS #:	611-14-3		
18.447	638222	1.49947343	68.15	94		NISTO5.1	9132	3

12/2/08/

#### New York State D.E.C.

## Client Sample ID: VI 4S

#### GC/MS Volatiles

Lot-Sample # H8	3K250101 - 008		Work	Order#	K3K552/	<b>A</b> A		Matrix:	AIR
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	11/18/2008 12/02/2008 8338089 1041.36		Analy	Received: sis Date	12/02/200				
PARAMETER		RESULTS (ppb(v/v))		REPORTI LIMIT (pj		RESULT: (ug/m3)	S	REPORT. LIMIT (u	
Ethylbenzene o-Xylene m-Xylene & p-Xyle		1600 3600 6600		83 83 83		7000 15000 29000	D D D	360 360 360	
SURROGATE				CENT				LABORATOR CONTROL LIMITS (%)	Y
4-Bromofluorobenze	ene		9	3		-		70 - 130	

## Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:09

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k552aa.d
Lab Smp Id: K3K552AA Client Smp ID: VI 4S

Inj Date : 02-DEC-2008 19:44

Inst ID: mg.i Operator: 7126

Smp Info : ,1041.36,0,,,

Misc Info : G120208, T0155, nysdec.sub, , , ,

Comment

Comment:
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD
Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 6

Dil Factor: 1041.36000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1041.36000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

					CONCENTRA'	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		==	<u> </u>			
* 1 Bromochloromethane	128	9.048	9.053 (1.000)	465361	4.00000	4.000
* 2 1.4-Difluorobenzene	114	11.194	11.194 (1.000)	2464543	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1815387	4.00000	4.000
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1078418	3.71448	3.714
69 Ethylbenzene	91	16.204	16.204 (1.021)	552776	1.53788	1601
70 m&p-Xylene	91	16.355	16.360 (1.030)	1738756	6.33089	6593
74 o-Xylene	91	16.883	16.883 (1.064)	1010949	3.42240	3564

Report Date: 03-Dec-2008 09:09

## TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k552aa.d Lab Smp Id: K3K552AA

Analysis Type: OTHER Quant Type: ISTD Operator: 7126

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: VI 4S Level: LOW

Sample Type: AIR

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		250756	592122	465361	10.42
2 1,4-Difluorobenze		1247147	2944943	2464543	17.58
3 Chlorobenzene-d5		946696	2235474	1815387	14.10

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	-0.06
2 1,4-Difluorobenze		10.86	11.52	11.19	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

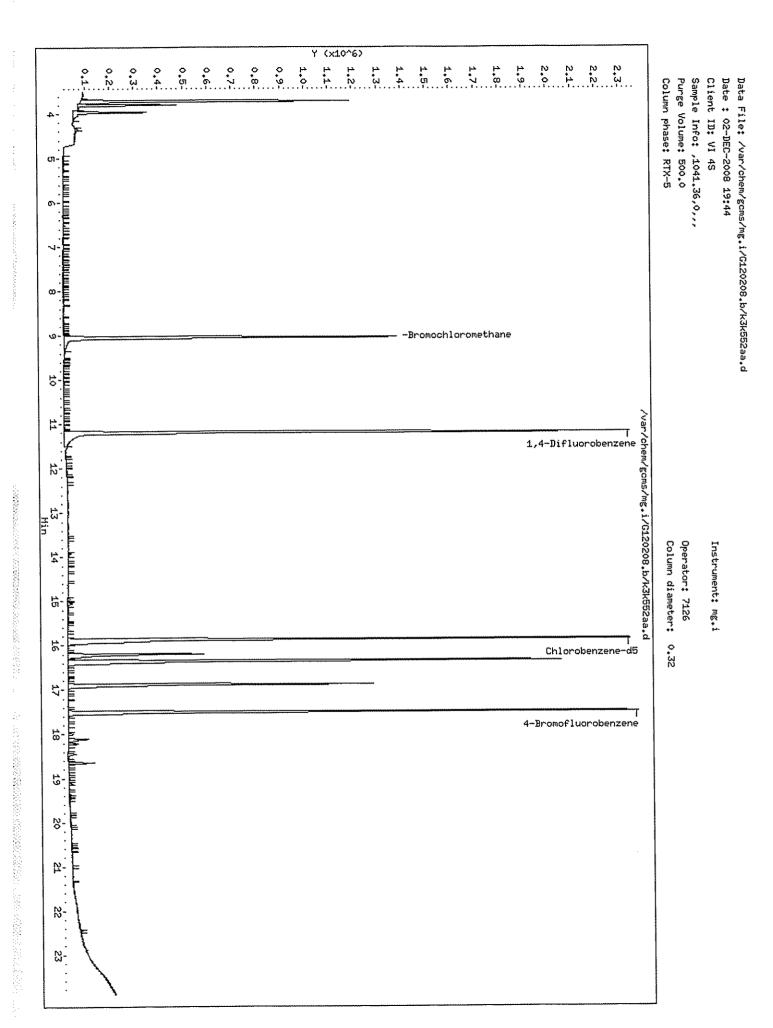
RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120208.b/k3k552aa.d Report Date: 03-Dec-2008 09:09

## TestAmerica Knoxville

#### RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101


Fraction: OTHER Sample Matrix: GAS

Client Smp ID: VI 4S Operator: 7126

Lab Smp Id: K3K552AA Level: LOW

Data Type: MS DATA
SampleType:
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,, SampleType: SAMPLE Quant Type: ISTD

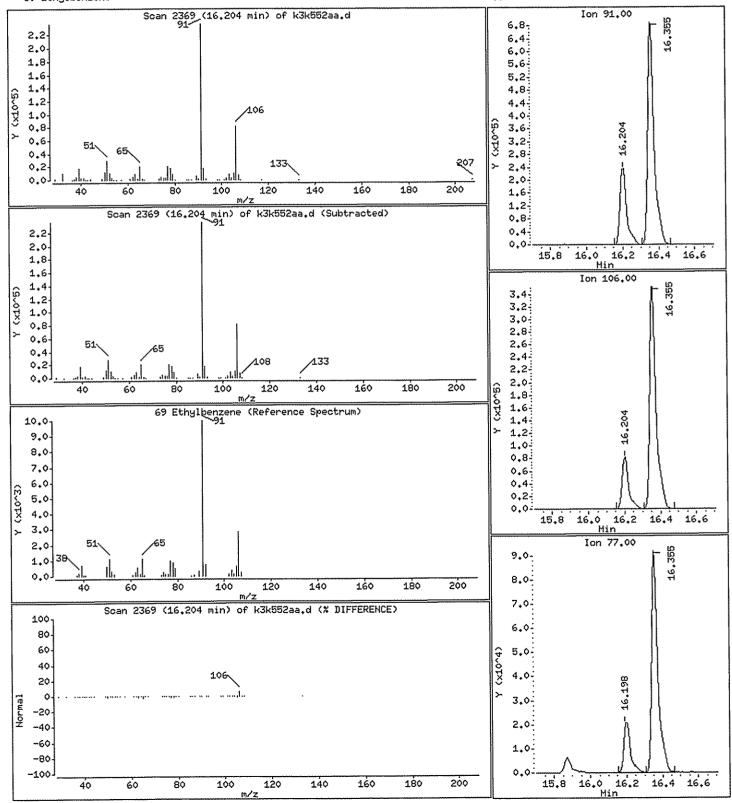
SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.714	92.86	70-130



Date : 02-DEC-2008 19:44

Client ID: VI 4S

Instrument: mg.i


Sample Info: ,1041.36,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0,32

#### 69 Ethylbenzene

#### Concentration: 1601 ppb(v/v)

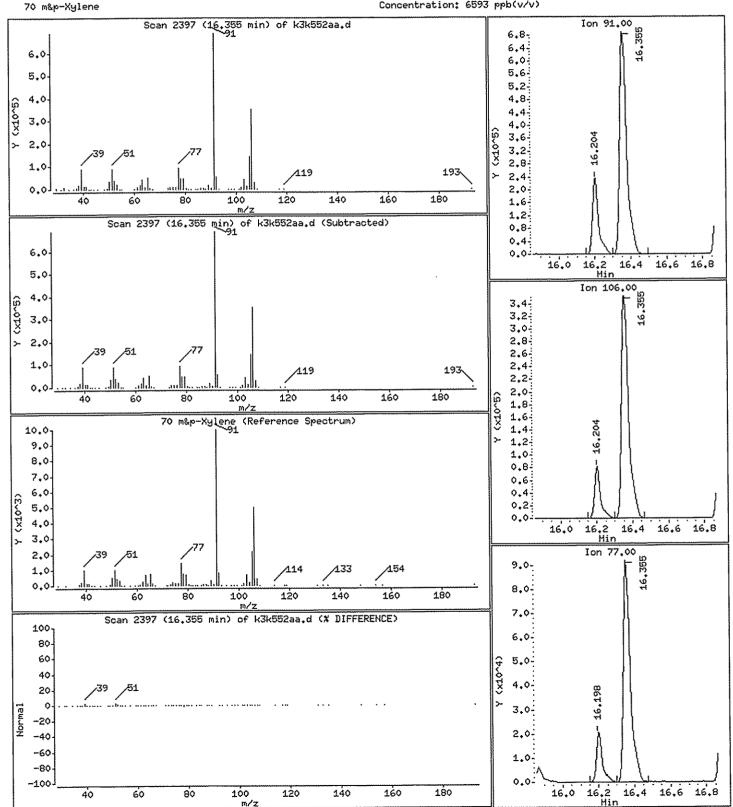


Date : 02-DEC-2008 19:44

Client ID: VI 4S

Instrument: mg.i

Sample Info: ,1041.36,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

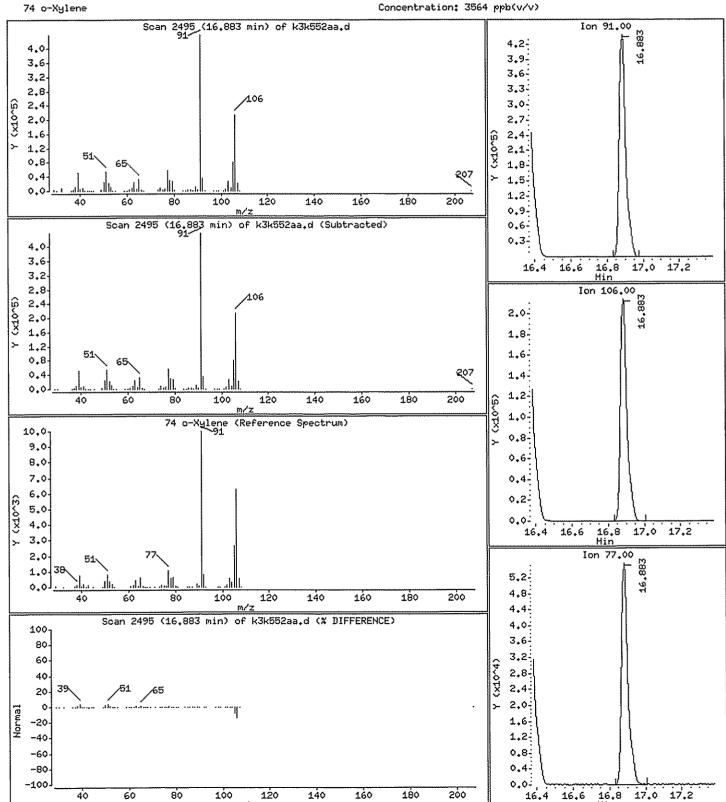
Concentration: 6593 ppb(v/v)



Date : 02-DEC-2008 19:44

Client ID: VI 4S

Instrument: mg.i


Sample Info: ,1041.36,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

74 o-Xylene



Lot-Sample #

H8K250101 - 009

Work Order # K3K561AA

Matrix....:

AIR

Date Sampled ...: Prep Date....: 11/18/2008

Date Received ..: 11/24/2008

Prep Batch #....:

12/02/2008

Analysis Date... 12/02/2008

8338089

Dilution Factor.:

COMMERCIAL CARRANT CONTROL CON

10

Method....: TO-15

Dilution ractor.: 10		ethou 10-15		
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.80	ND	5.6
ane				
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	0.92	0.80	4.0	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	3.6	2.0	13	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	3.6	2.0	13	6.9
Benzene	1.3	0.80	4.2	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	3.7	0.80	14	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	1.1	0.80	5.4	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	1.2	0.80	5.2	3.5
Methyl tert-butyl ether	ND	1.6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	3.1	0.80	14	3.5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	170	3.2	500	9.4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
Bromomethane	ND	0.80	ND	3.1
Carbon tetrachloride	ND	0.40	ND	2.5
Chlorobenzene	ND	0.80	ND	3.7
Dibromochloromethane	ND	0.80	ND	6.8
Chloroethane	ND	0.80	ND	2.1
Chloroform	ND ND	0.80	ND	3.9
	L 7 A/	0.00	A 1 4mm	

# New York State D.E.C. Client Sample ID: VI 5A GC/MS Volatiles

Lot-Sample # H8K250101	- 009 <b>\</b>	Work Order # K3K561	IAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0	ND	6.9
1,2-Dichlorobenzene	ND	0.80	ND	4.8
1,3-Dichlorobenzene	ND	0.80	ND	4.8
1,4-Dichlorobenzene	ND	0.80	ND	4.8
Dichlorodifluoromethane	ND	0.80	ND	4.0
1,1-Dichloroethane	ND	0.80	ND	3.2
1,2-Dichloroethane	ND	0.80	ND	3.2
1,1-Dichloroethene	ND	0.80	ND	3.2
cis-1,2-Dichloroethene	ND	0.80	ND	3.2
trans-1,2-Dichloroethene	ND	0.80	ND	3.2
1,2-Dichloropropane	ND	0.80	ND	3.7
cis-1,3-Dichloropropene	ND	0.80	ND	3.6
TENTATIVELY INDENTIFIED (	COMPOUNDS	RESULT	-	UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY	_	LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		94	•	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:09

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k561aa.d
Lab Smp Id: K3K561AA
Ini Date : 02 DBC 6667 Client Smp ID: VI 5A

Inj Date : 02-DEC-2008 12:54

Inst ID: mg.i Operator : 7126

Smp Info : ,10,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date : 03-Dec-2008 09:07 tajh Quant Type: ISTD

Cal Date : 02-DEC-2008 10:05 Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 8

Dil Factor: 10.00000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	10.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
Cpnd Variable		Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
==		222	***				
*	1 Bromochloromethane	128	9.054	9.053 (1.000)	378479	4.00000	4.000
*	2 1.4-Difluorobenzene	114	11.200	11.194 (1.000)	2032279	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1497271	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	897925	3.74990	3.750
,	31 Methylene Chloride	84	6.514	6.514 (0.719)	43165	0.36433	3.643
	38 Hexane	56	8.288	8.288 (0.915)	50821	0.36386	3.639
	39 2-Butanone	72	8.293	8.304 (0.916)	607134	16.8719	168.7(A)
	47 Benzene	78	10.671	10.666 (0.953)	39995	0.13244	1.324
	61 Toluene	91	13.917	13.917 (0.877)	96462	0.36893	3.689
	69 Ethylbenzene	91	16.198	16.204 (1.020)	27409	0.09246	0.9246
	70 m&p-Xylene	91	16.360	16.360 (1.031)	70874	0.31288	3.129
	74 o-Xylene	91	16.883	16.883 (1.064)	29234	0.11999	1.200
	85 1,2,4-Trimethylbenzene	105	18.647	18.646 (1.175)	26342	0.11049	1.105

Data File: /var/chem/gcms/mg.i/G120208.b/k3k561aa.d Report Date: 03-Dec-2008 09:09

## TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k561aa.d Lab Smp Id: K3K561AA Analysis Type: OTHER

Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub, , , ,

Calibration Date: 02-DEC-2008 Calibration Time: 09:11

Client Smp ID: VI 5A

Level: LOW Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5			592122 2944943 2235474	378479 2032279 1497271	-10.19 -3.04 -5.90

COMPOUND  ===================================	STANDARD ======== 9.05 11.19 15.87	RT I LOWER ====== 8.72 10.86 15.54	IMIT UPPER 9.38 11.52 16.20	SAMPLE  9.05 11.20 15.87	%DIFF ====== 0.00 0.05 0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 09:09

#### TestAmerica Knoxville

## RECOVERY REPORT

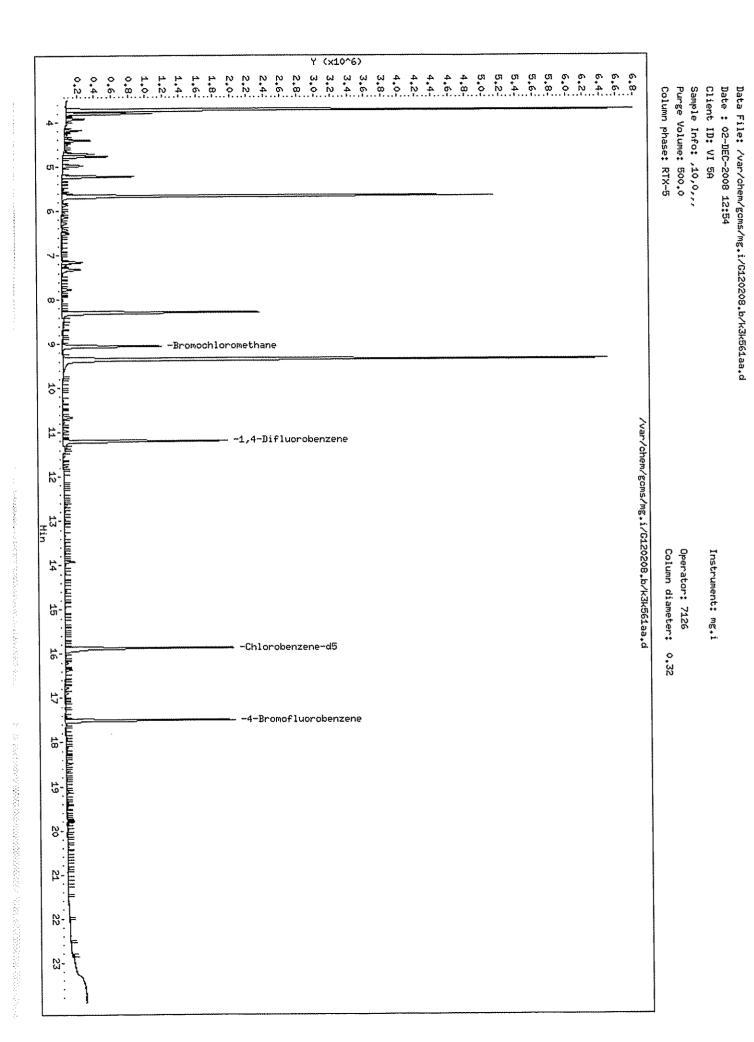
Client Name: New York State D.E.C24-NOV-2008 00:00

Client SDG: H8K250101

Sample Matrix: GAS

Fraction: OTHER

Lab Smp Id: K3K561AA Level: LOW


Client Smp ID: VI 5A Operator: 7126

SampleType: SAMPLE Quant Type: ISTD

Data Type: MS DATA
SampleType:
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub,,,,

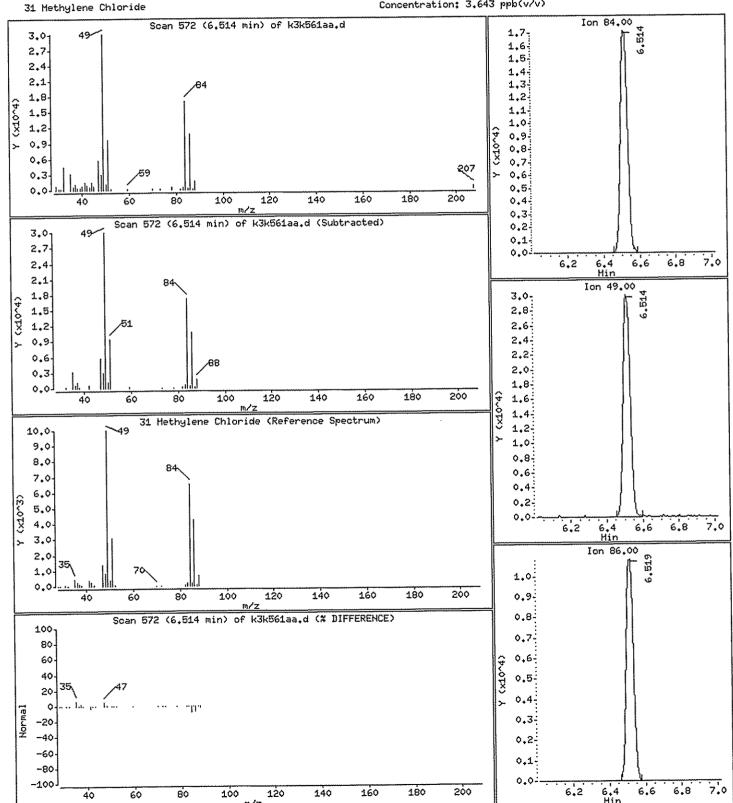
SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 64-Bromofluorobenze	4.000	3.750	93.75	70-130



Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i


Sample Info: ,10,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 3.643 ppb(v/v)

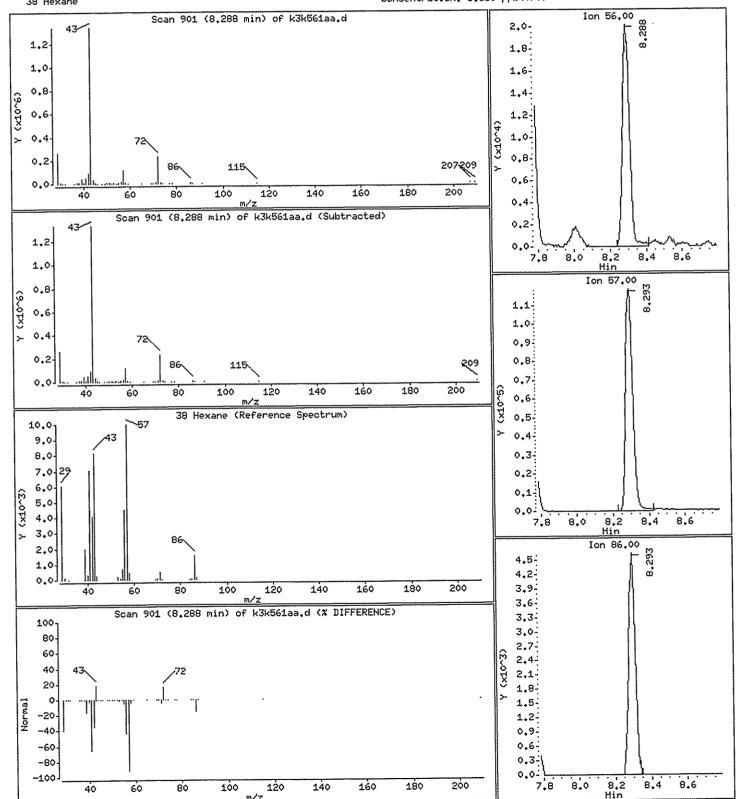


Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i

Sample Info: ,10,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 3.639 ppb(v/v)

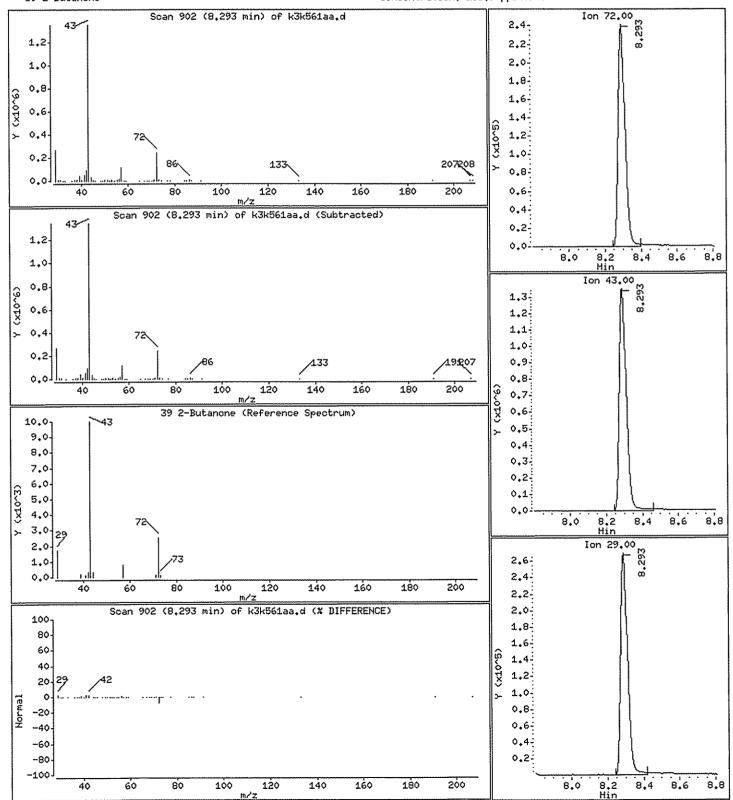


Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

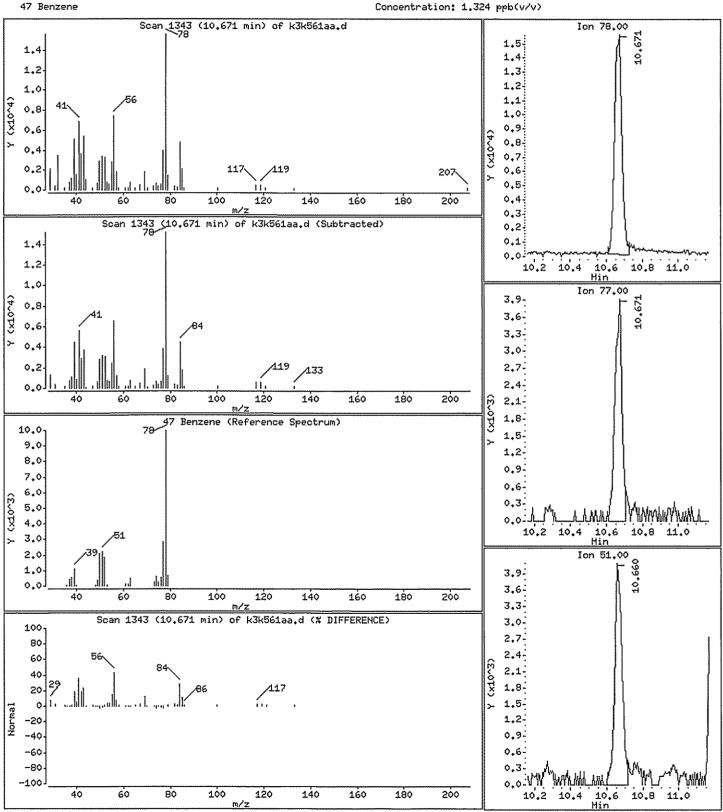
Column diameter: 0.32

39 2-Butanone

Concentration: 168.7 ppb(v/v)



Date: 02-DEC-2008 12:54


Client ID: VI 5A Instrument: mg.i

Sample Info: ,10,0,,,

Purge Volume: 500.0 Operator: 7126

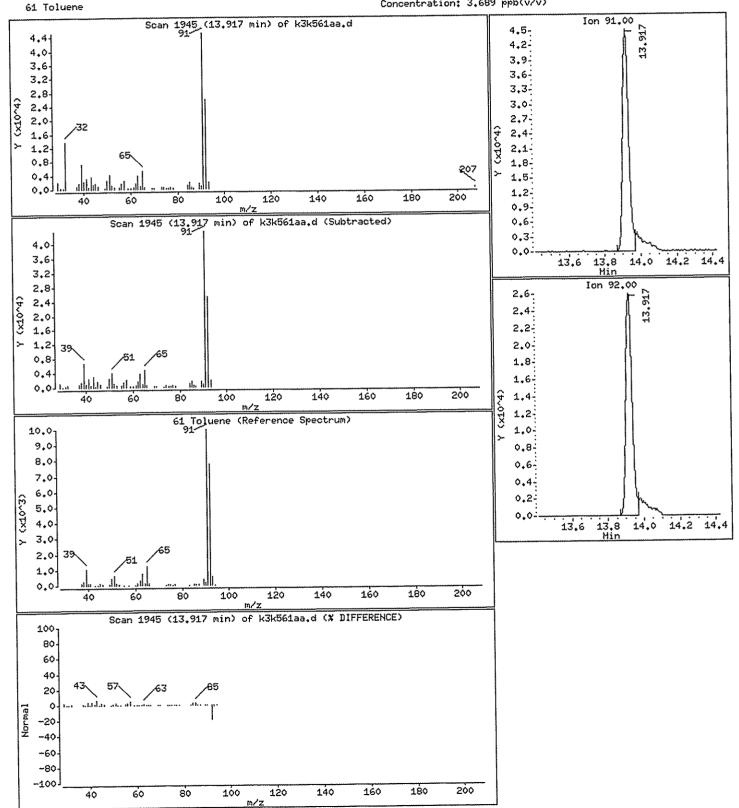
Column phase: RTX-5 Column diameter: 0.32

47 Benzene



Date: 02-DEC-2008 12:54

Client ID: VI 5A


Instrument: mg.i

Sample Info: ,10,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 3.689 ppb(v/v)

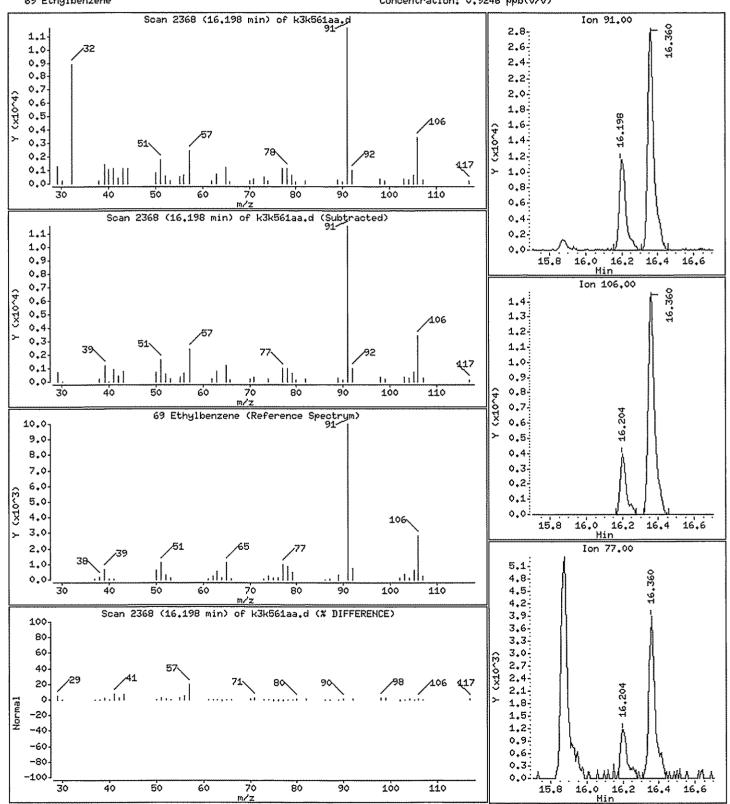


Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i

Sample Info: ,10,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

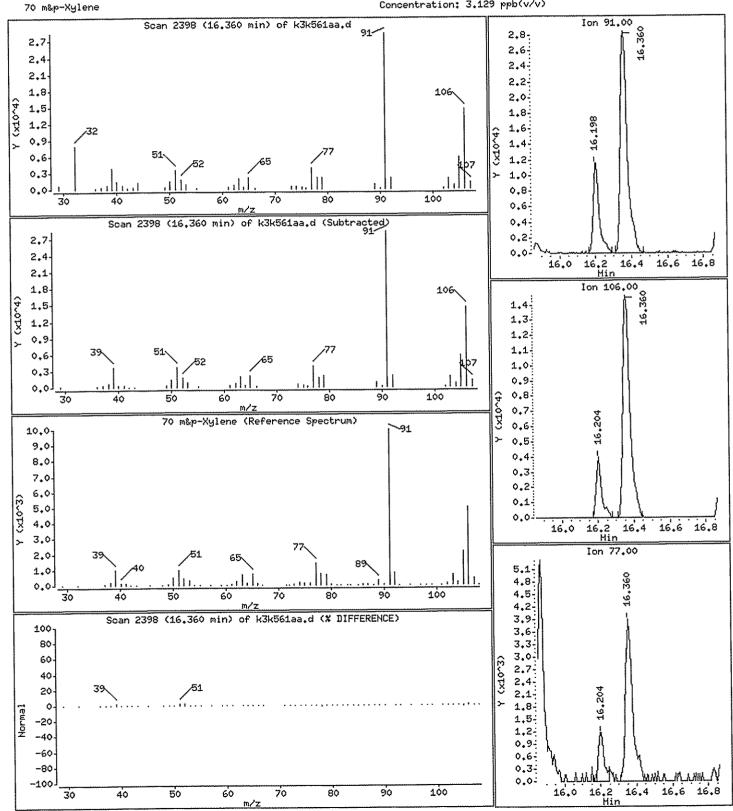


Concentration: 0.9246 ppb(v/v)



Date : 02-DEC-2008 12:54

Client ID: VI 5A


Instrument: mg.i

Sample Info: ,10,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

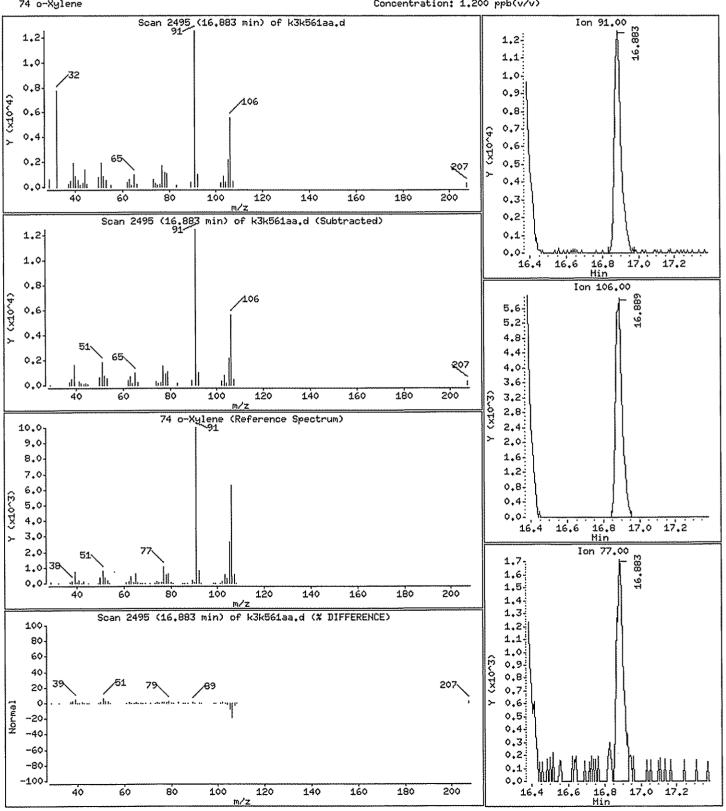
Concentration: 3.129 ppb(v/v)



Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i


Sample Info: ,10,0,,, Purge Volume: 500.0

Operator: 7126

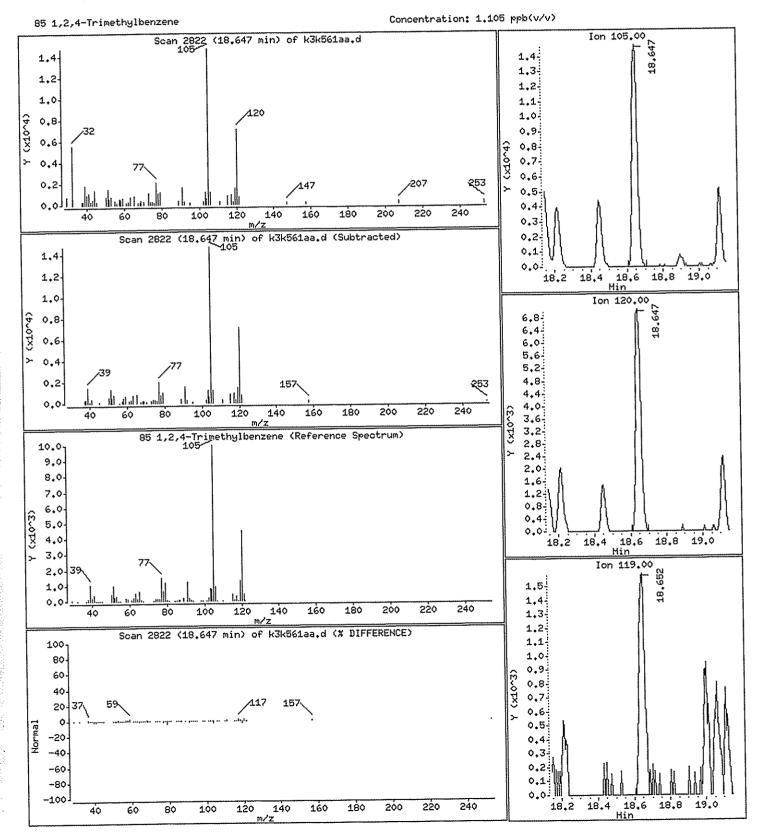
Column phase: RTX-5

74 o-Xylene

Concentration: 1.200 ppb(v/v)



Date : 02-DEC-2008 12:54


Client ID: VI 5A

Instrument: mg.i

Sample Info: ,10,0,,,

Operator: 7126

Purge Volume: 500.0 Column phase: RTX-5



Report Date: 03-Dec-2008 09:09

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/k3k561aa.d

Lab Smp Id: K3K561AA Client Smp ID: VI 5A

Inj Date : 02-DEC-2008 12:54 Operator : 7126 Smp Info : ,10,0,,, Misc Info : G120208, TO155, nysdec.sub,,,, Inst ID: mg.i

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 09:07 tajh Quant Typ Cal Date : 02-DEC-2008 10:05 Cal File: Quant Type: ISTD Cal File: 1ptcal.d

Als bottle: 8
Dil Factor: 10.00000
Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	10.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

ISTD ======	RT ====	HEIGHT	AMOUNT
* 1 Bromochloromethane	9.054	1168602	4.000

CONCENTRATIONS OUANT

LIBRARY LIB ENTRY CPND # HEIGHT ON-COL(ppb(v/v)) FINAL(ppb(v/v)) QUAL 

Ethyl alcohol

CAS #: 64-17-5

4.982 236256 0.80867909 8.087 99 NIST05.1

1(L) 93

QC Flag Legend

____

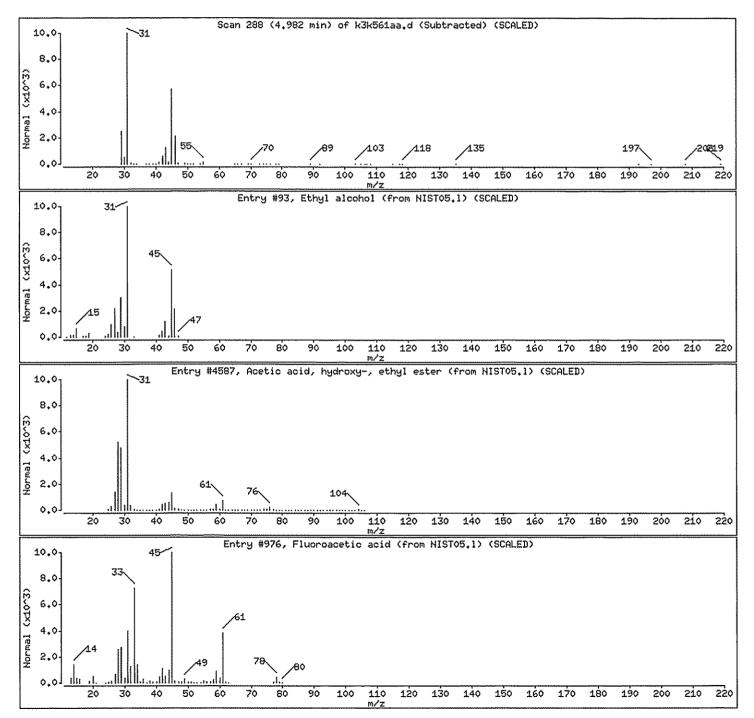
L - Operator selected an alternate library search match.

22500 neight ND 18/3/08

Date : 02-DEC-2008 12:54

Client ID: VI 5A

Instrument: mg.i


Sample Info: ,10,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	93	99	C2H60	46
Acetic acid, hydroxy-, ethyl ester	623-50-7	NISTO5.1	4587	33	C4H803	104
Fluoroacetic acid	144-49-0	NISTO5.1	976	17	C2H3F02	78



## GC/MS Volatiles

Lot-Sample # H8K250101 - 010 Work Order# K3K571AA Matrix....:

AIR

Date Sampled ...: Prep Date....: 11/18/2008 12/01/2008 Date Received ..: 11/24/2008

Prep Batch #....:

8337098

Analysis Date... 12/01/2008

Dilution Factor.:

45.45

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	3.6	ND	17
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.6	ND	25
ane				<del></del>
1,4-Dioxane	ND	9.1	ND	33
Ethylbenzene	2500	3.6	11000 E	16
Trichlorofluoromethane	ND	3.6	ND	20
Hexachlorobutadiene	ND	3.6	ND	39
n-Hexane	ND	9.1	ND	32
2,2,4-Trimethylpentane	ND	9.1	ND	42
tert-Butyl alcohol	ND	15	ND	44
Methylene chloride	530	9.1	1800	32
Benzene	ND	3.6	ND	12
Benzyl chloride	ND	7.3	ND	38
Styrene	ND	3.6	ND	15
1,1,2,2-Tetrachloroethane	ND	3.6	ND	25
Tetrachloroethene	170	3.6	1200	25
Toluene	17	3.6	65	14
1,2,4-Trichlorobenzene	ND	3.6	ND	27
1,1,1-Trichloroethane	23	3.6	130	20
1,1,2-Trichloroethane	ND	3.6	ND	20
Trichloroethene	ND	1.8	ND	9.8
1,2,4-Trimethylbenzene	350	3.6	1700	18
1,3,5-Trimethylbenzene	150	3.6	720	18
Vinyl chloride	ND	3.6	ND	9.3
o-Xylene	4800	3.6	21000 E	16
Methyl tert-butyl ether	ND	7.3	ND	26
1,1,2-Trichlorotrifluoroethane	5.1	3.6	39	28
m-Xylene & p-Xylene	6800	3.6	29000 E	16
Bromodichloromethane	ND	3.6	ND	24
1,2-Dibromoethane (EDB)	ND	3.6	ND	28
2-Butanone (MEK)	ND	15	ND	43
4-Methyl-2-pentanone (MIBK)	ND	9.1	ND	37
Bromoform	ND	3.6	ND	38
Bromomethane	ND	3.6	ND	14
Carbon tetrachloride	ND	1.8	ND	11
Chlorobenzene	ND	3.6	ND	17
Dibromochloromethane	ND	3.6	ND	31
Chloroethane	ND	3.6	ND	9.6
Chloroform	ND	3.6	ND	18
Chloromethane	ND	9.1	ND	19

## New York State D.E.C.

## Client Sample ID: VI 5S

#### GC/MS Volatiles

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	9.1	ND	31
1,2-Dichlorobenzene	ND	3.6	ND	22
1,3-Dichlorobenzene	ND	3.6	ND	22
1,4-Dichlorobenzene	ND	3.6	ND	22
Dichlorodifluoromethane	44	3.6	220	18
1,1-Dichloroethane	ND	3.6	ND	15
1,2-Dichloroethane	ND	3.6	ND	15
1,1-Dichloroethene	ND	3.6	ND	14
cis-1,2-Dichloroethene	ND	3.6	ND	14
trans-1,2-Dichloroethene	ND	3.6	ND	14
1,2-Dichloropropane	ND	3.6	ND	17
cis-1,3-Dichloropropene	ND	3.6	ND	17
TENTATIVELY INDENTIFIED (	COMPOUNDS	RESULT	tunturus and a second a second and a second	UNITS
ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		106	<del>tambin</del>	70 - 130

## Qualifiers

Estimated result. Result concentration exceeds the calibration range. E

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 14:00

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k571aa.d Lab Smp Id: K3K571AA Client Smp Client Smp ID: VI 5S

Inj Date : 01-DEC-2008 19:39

Operator: 7126 Inst ID: mg.i

: ,45.45,0,, Smp Info

Misc Info: G120108, T0155, nysdec.sub, , , ,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 02-Dec-2008 13:51 tajh Cal Date: 01-DEC-2008 11:14 Quant Type: ISTD Cal File: 1ptcal.d

Als bottle: 9
Dil Factor: 45.45000
Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
===			==	*****	***	****	***
*	1 Bromochloromethane	128	9.059	9.053 (1.000)	332678	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	1750796	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1355505	4.00000	4.000
ş	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	921273	4.24979	4.250
	9 Dichlorodifluoromethane	85	3.968	3.963 (0.438)	350214	0.96468	43.84
	30 1,1,2-Trichlorotrifluoroethane	101	6.336	6.330 (0.699)	26126	0.11292	5.132
	31 Methylene Chloride	84	6.519	6.514 (0.720)	1219557	11.7106	532.2
	39 2-Butanone	72	8.320	8.309 (0.918)	9573	0.30267	13.76
	44 1,1,1-Trichloroethane	97	10.083	10.078 (1.113)	113529	0.51603	23.45
	61 Toluene	91	13.923	13.923 (0.877)	89473	0.37799	17.18
	67 Tetrachloroethene	129	15.050	15.050 (0.948)	464589	3.79948	172.7
	69 Ethylbenzene	91	16.209	16.204 (1.021)	14720852	54.8495	2493 (A) (L)
	70 m&p-Xylene	91	16.360	16.365 (1.031)	30486843	148.664	6757 (A) <b>[</b>
	73 Styrene	104	16.894	16.829 (1.064)	552122	3.80603	123.0
	74 o-Xylene	91	16.888	16.889 (1.064)	23420458	106.185	4826 (A)E

18/8/W

Data File: /var/chem/gcms/mg.i/G120108.b/k3k571aa.d Report Date: 02-Dec-2008 14:00

				CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	~=~~=			
75 1,1,2,2-Tetrachloroethane	8.3	17.568	17.217 (1.107)	14018	0.08953	-A-069
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	359882	3.22933	146.8
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	1673730	7.75489	352.4
88 Benzyl Chloride	91	18.846	18.997 (1.187)	27227	0.16639	7-362- (
•						1

## QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Harley H

Report Date: 02-Dec-2008 14:00

#### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k571aa.d Lab Smp Id: K3K571AA

Analysis Type: OTHER Quant Type: ISTD

Operator: 7126
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, nysdec.sub,,,,

Calibration	Date:	01-DEC-2008

Calibration Time: 09:20 Client Smp ID: VI 5S

Level: LOW

Sample Type: AIR

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	396236	235760	556712	332678	-16.04
2 1,4-Difluorobenze	2070950	1232215	2909685	1750796	-15.46
3 Chlorobenzene-d5	1572100	935400	2208800	1355505	-13.78

		RTI	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	9.05 11.20 15.87	8.72 10.87 15.54	9.38 11.53 16.20	9.06 11.20 15.87	0.06 0.00 0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

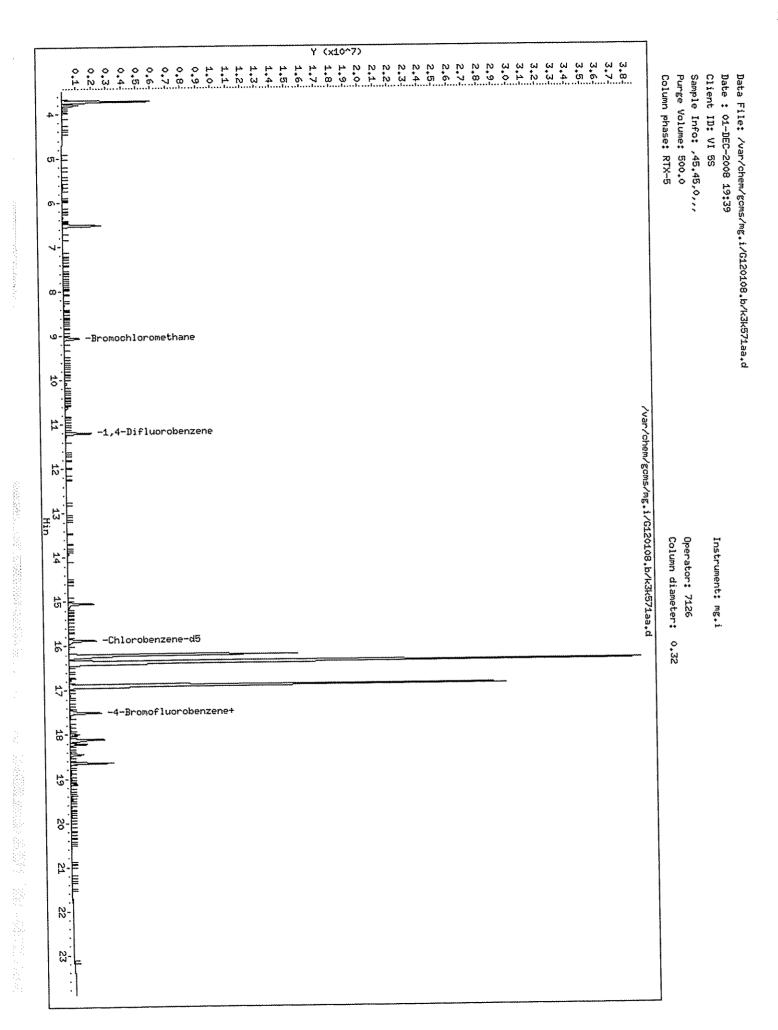
Data File: /var/chem/gcms/mg.i/G120108.b/k3k571aa.d Report Date: 02-Dec-2008 14:00

#### TestAmerica Knoxville

## RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS


Client Smp ID: VI 5S Operator: 7126

Lab Smp Id: K3K571AA Level: LOW

SampleType: SAMPLE Quant Type: ISTD Data Type: MS DATA SpikeList File: all.spk

Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m Misc Info: G120108, T0155, nysdec.sub,,,,

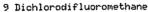
SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	4.250	106.24	70-130



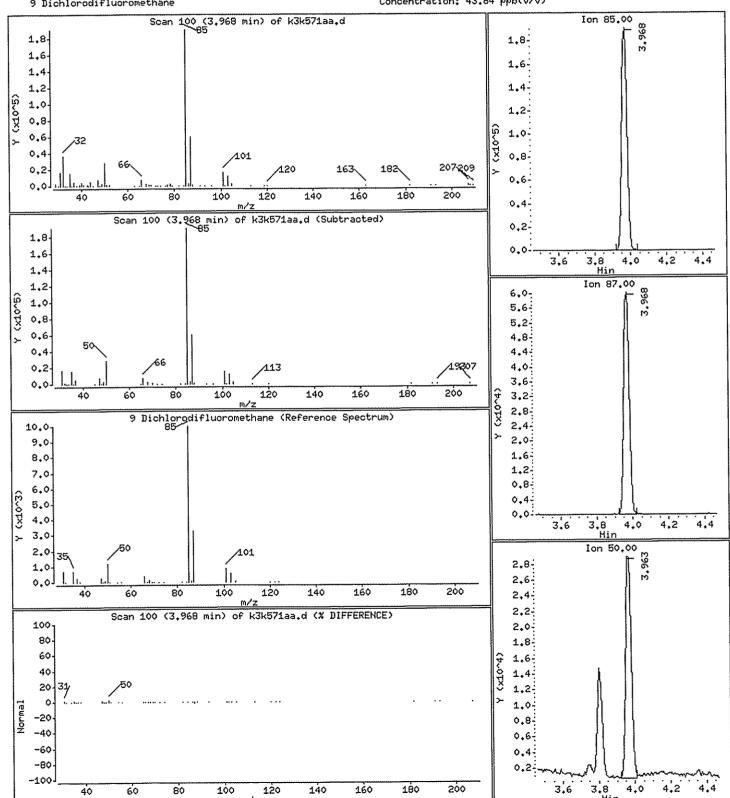
Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

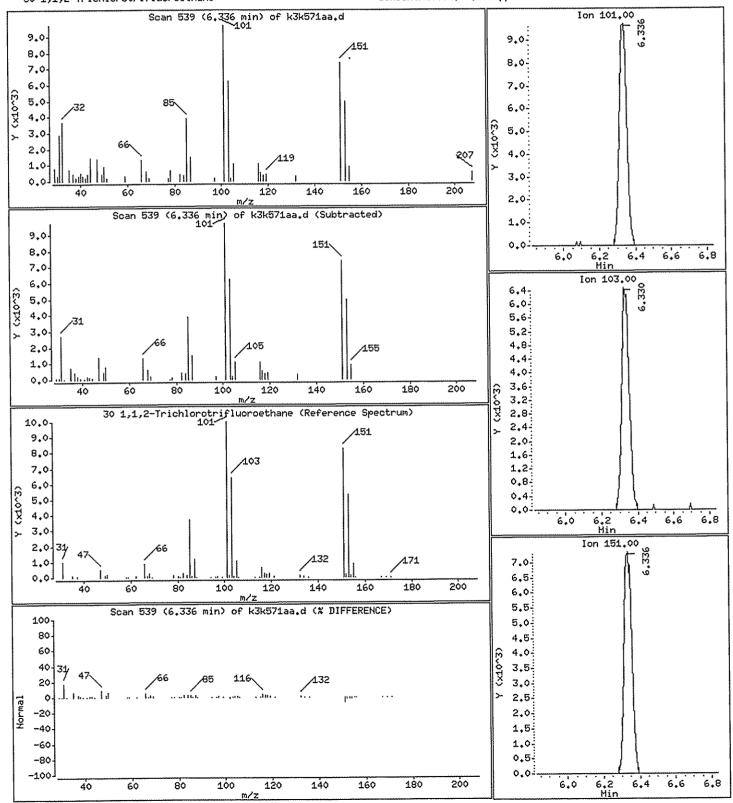


Concentration: 43.84 ppb(v/v)



Date: 01-DEC-2008 19:39

Client ID: VI 5S


Instrument: mg.i

Sample Info: ,45,45,0,,,

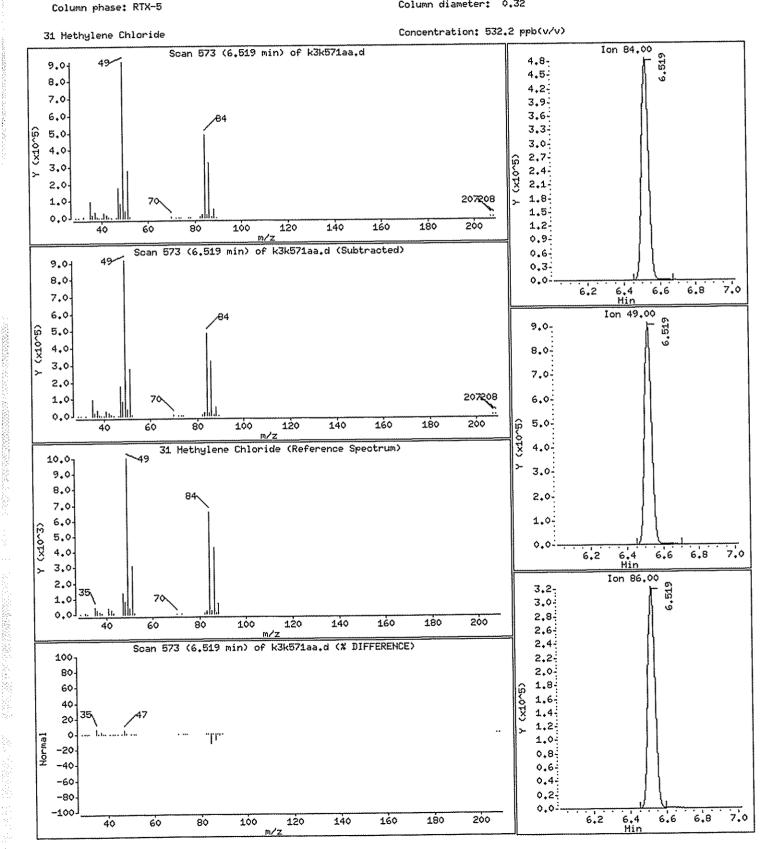
Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

30 1,1,2-Trichlorotrifluoroethane

Concentration: 5.132 ppb(v/v)



Date : 01-DEC-2008 19:39


Client ID: VI 5S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0

Operator: 7126



Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

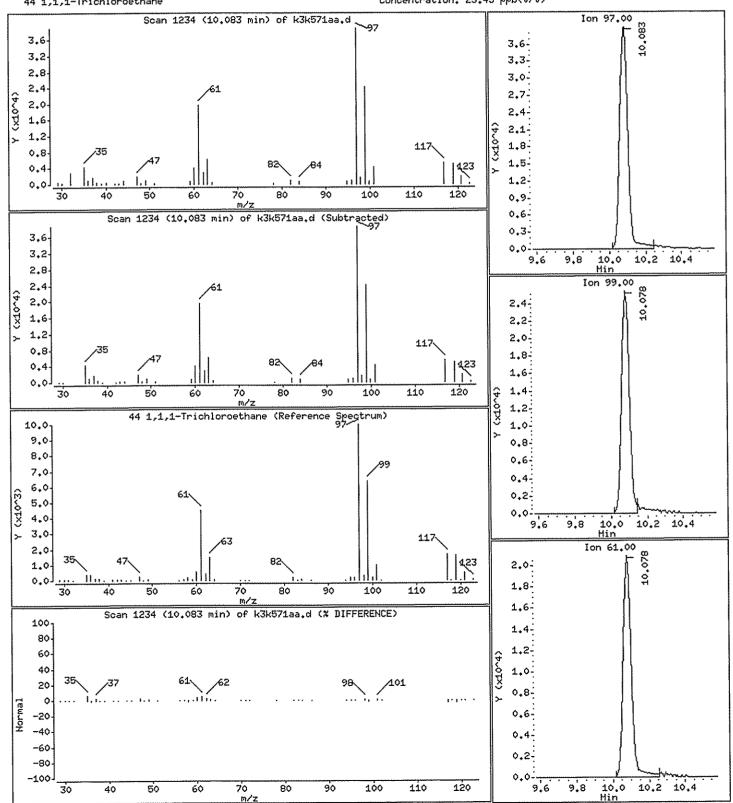
39 2-Butanone

Concentration: 13.76 ppb(v/v)



Date : 01-DEC-2008 19:39

Client ID: VI 5S


Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

44 1,1,1-Trichloroethane

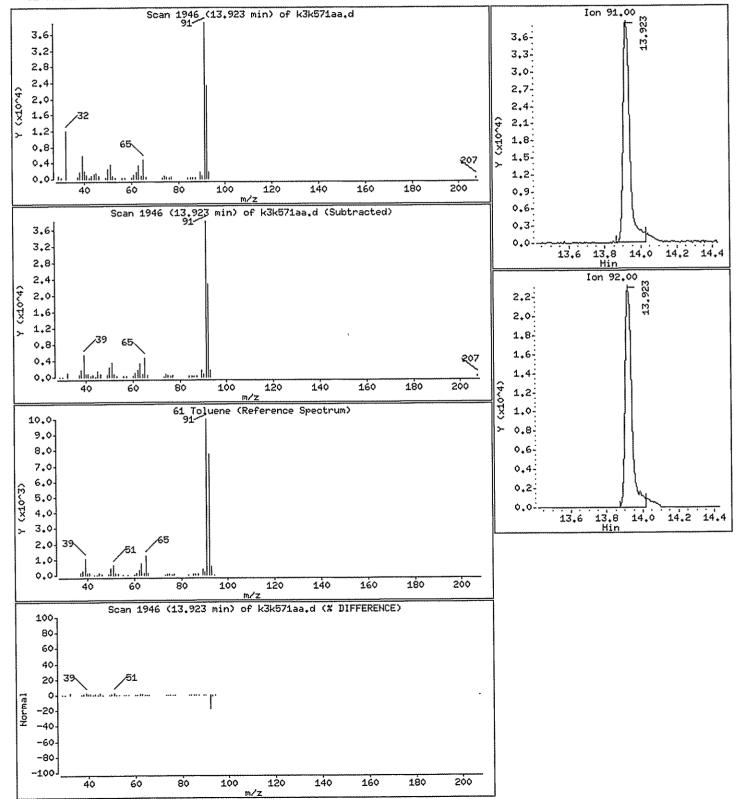
Concentration: 23.45 ppb(v/v)



Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

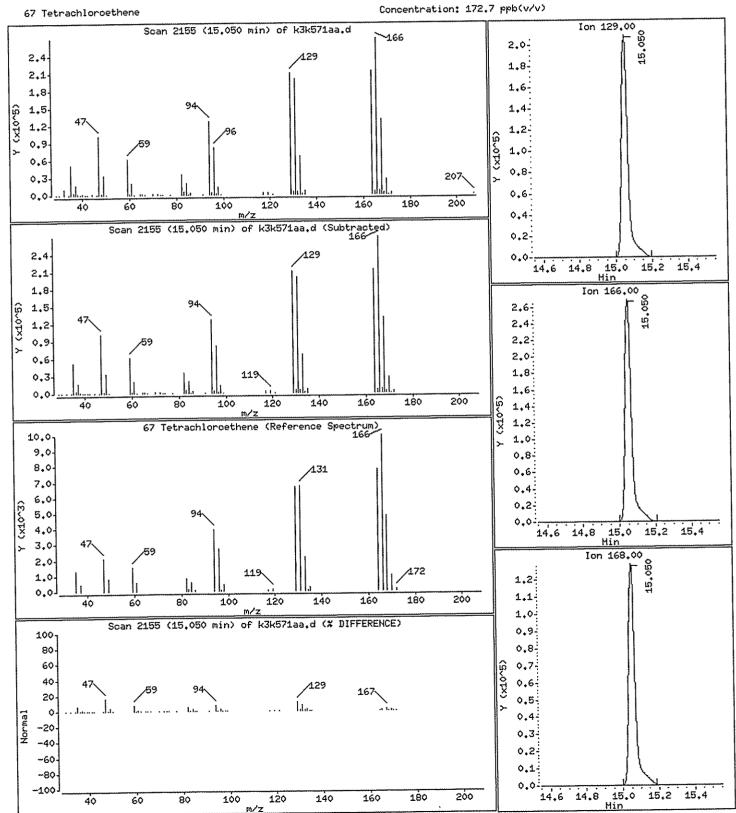
61 Toluene

Concentration: 17.18 ppb(v/v)



Date : 01-DEC-2008 19:39

Client ID: VI 5S


Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



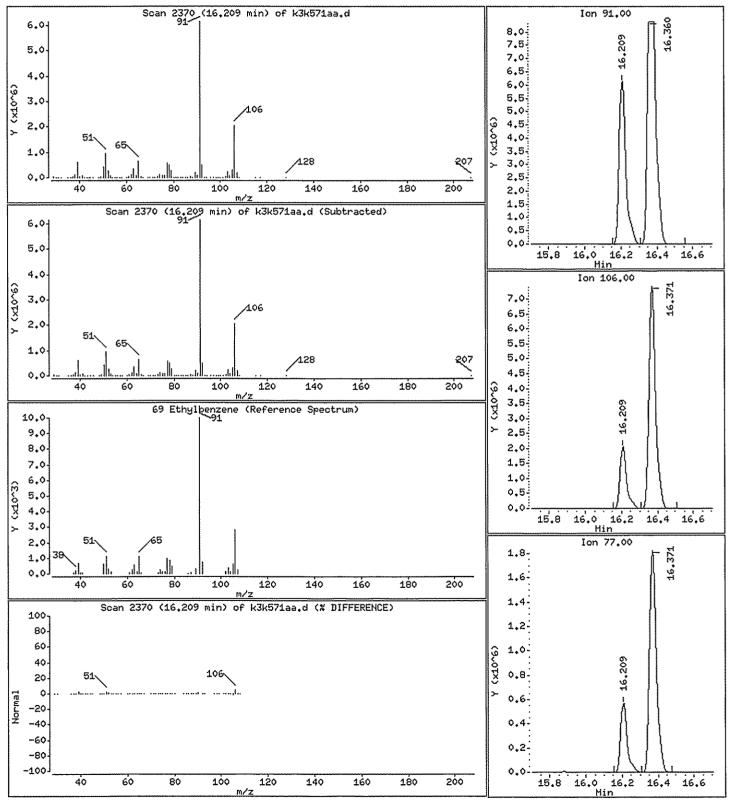
Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i

Sample Info: ,45.45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



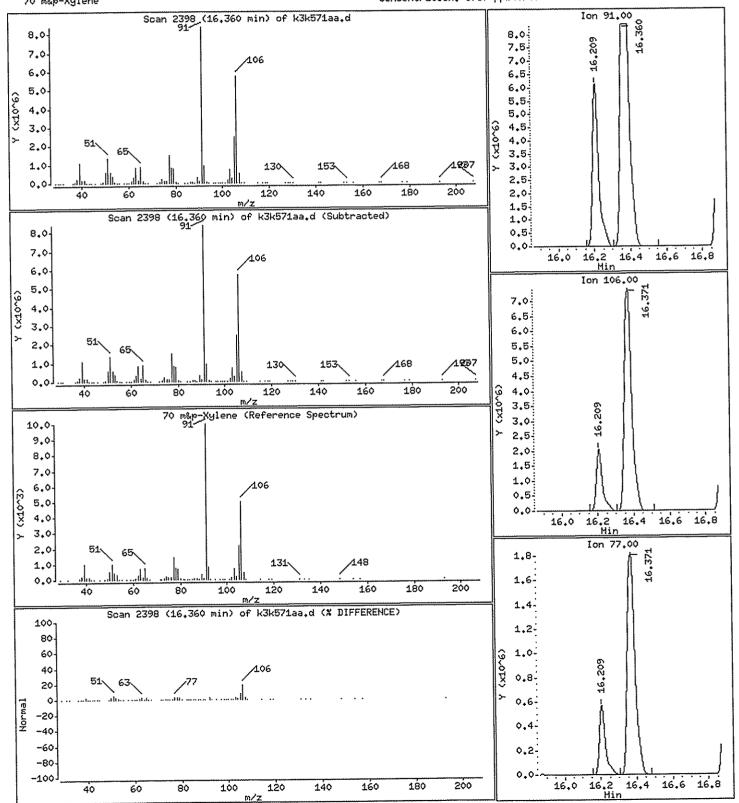
Concentration: 2493 ppb(v/v)



Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,45.45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

70 m&p-Xylene

Concentration: 6757 ppb(v/v)



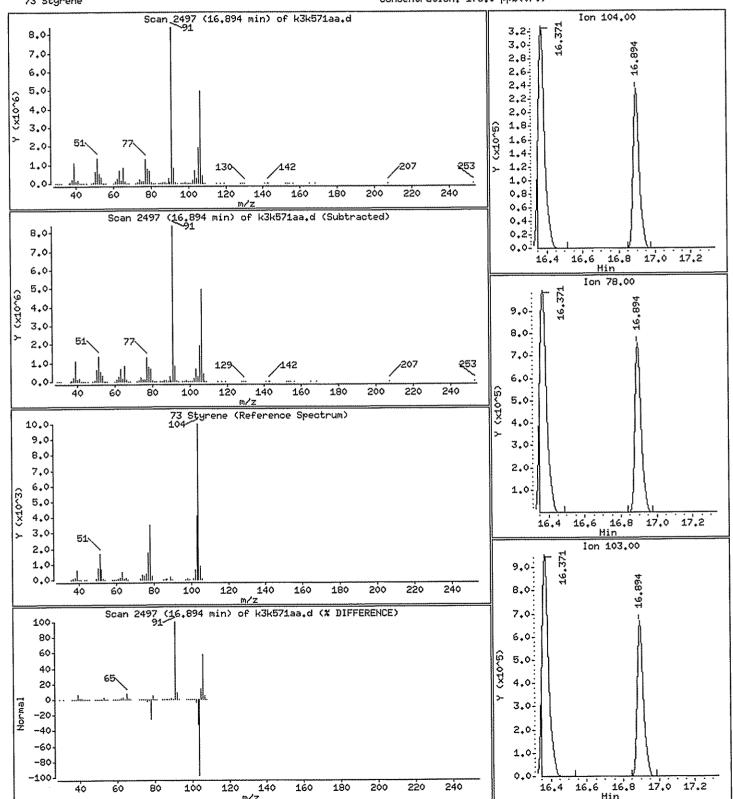
Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

73 Styrene

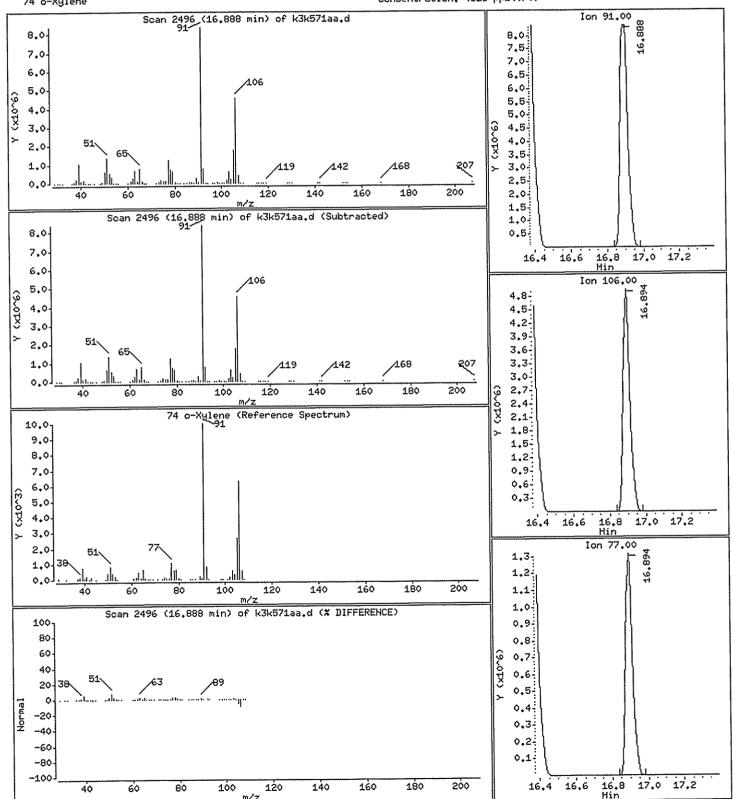
Concentration: 173.0 ppb(v/v)



Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

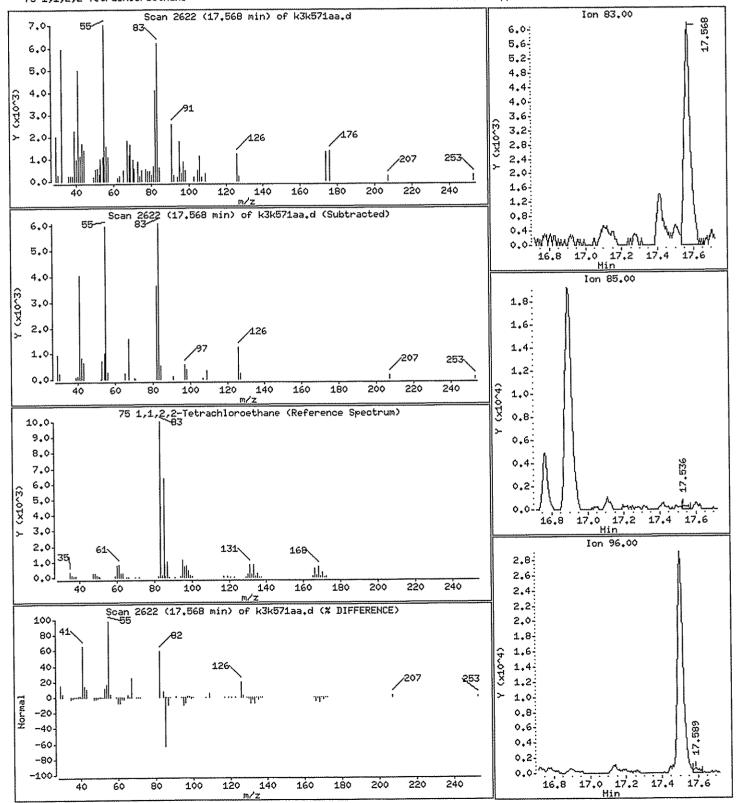
74 o-Xylene

Concentration: 4826 ppb(v/v)



Date: 01-DEC-2008 19:39

Client ID: VI 5S


Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

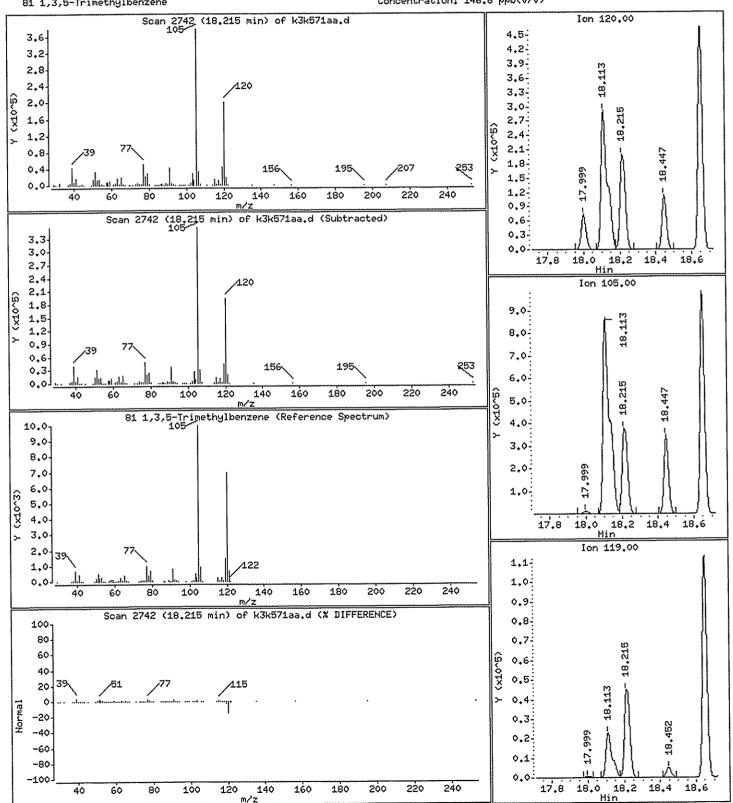
75 1,1,2,2-Tetrachloroethane

Concentration: 4.069 ppb(v/v)



Date: 01-DEC-2008 19:39

Client ID: VI 5S


Instrument: mg.i

Sample Info: ,45,45,0,,,

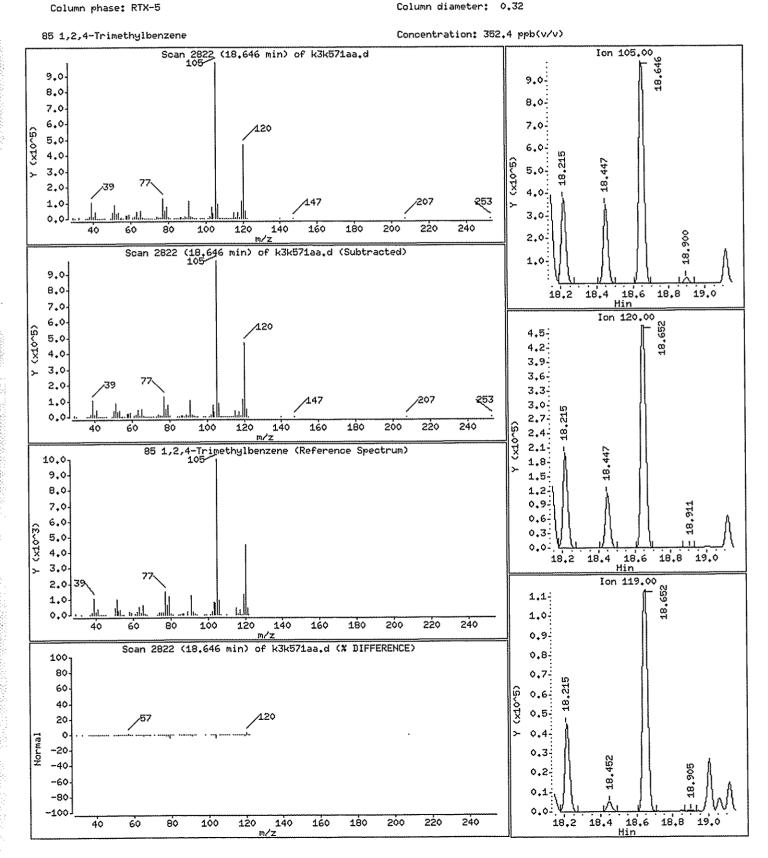
Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

81 1,3,5-Trimethylbenzene

Concentration: 146.8 ppb(v/v)



Date : 01-DEC-2008 19:39


Client ID: VI 5S

Instrument: mg.i

Sample Info: ,45,45,0,,,

Purge Volume: 500.0

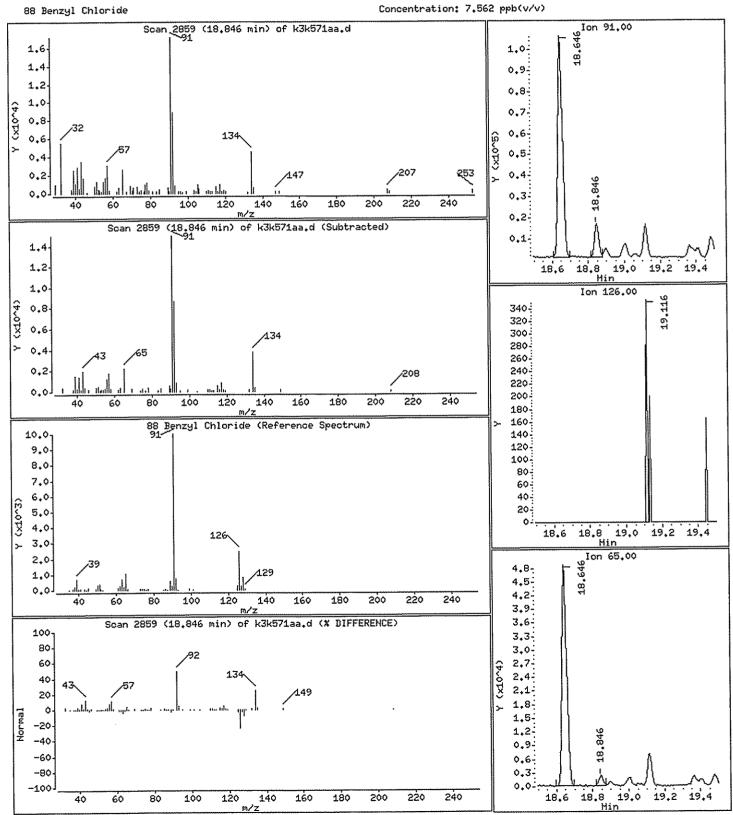
Operator: 7126



Date : 01-DEC-2008 19:39

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,45.45,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

88 Benzyl Chloride

Concentration: 7.562 ppb(v/v)



Report Date: 02-Dec-2008 14:11

### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/k3k571aa.d Lab Smp Id: K3K571AA Client Smp I

Client Smp ID: VI 5S

Inj Date : 01-DEC-2008 19:39

Operator : 7126 Smp Info : ,45.45,0,, Inst ID: mg.i

Misc Info : G120108, T0155, nysdec.sub, , , ,

Method: /var/chem/gcms/mg.i/G120108.b/T0155.m Meth Date: 02-Dec-2008 14:02 tajh Quant Typ Cal Date: 01-DEC-2008 11:14 Cal File: Als bottle: 9 Dil Factor: 45 4500 Quant Type: ISTD Cal File: 1ptcal.d

Dil Factor: 45.45000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	45.45000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

IS:	[D =====	RT ====	HEIGHT	TMUOMA
*	1 Bromochloromethane	9.059	1015735	4.000
*	3 Chlorobenzené-d5	15.875	1853391	4.000

		CONCENT	TRATION	s			QUA	NT			
RT	HEIGHT	ON-COL(ppb(v/v	/)) F	INAL (ppb (	v/v))	QUAL	LIBRA	RY LIB	ENTRY	CPND	#
====	=====									<b>=</b>	
Carbon dio	kide 5906027	23.2581411	NA	1057	5	'AS#:	124-38-9 NIST05.1	80		1	
Norflurane 3.807	1090198	4.29323790	4	195.1	91	eas #:	811-97-2 NIST05.1	4082		1	

1/30/6/6/

# Data File: /var/chem/gcms/mg.i/G120108.b/k3k571aa.d Report Date: 02-Dec-2008 14:11

		CONCEN	TRATION	IS			QUA	NT		
RT	HEIGHT	ON-COL (ppb (v/	v)) E	FINAL (ppb (	v/v))	QUAL	LIBRA	RY LIB	ENTRY CF	ND #
====	****		====			=	=====		=====	
Benzene,	propyl-		nA		CP	.S #:	103-65-1			
17.999	627160	1.35354062	ļļ,,	61.52	93		NISTO5.1	9111	3	
Benzene,	1-ethyl-2	-methyl-	1		C#	.s #:	611-14-3			
18.113	2284556	4.93054299		224.1	95		NISTO5.1	9132	3	
Benzene.	1-ethyl-2	-methvl-			C#	S#:	611-14-3			
18.447	919160	=	1	90.16	94	,, .	NISTO5.1	9129	.3	
10.447	213100	1.20272004	V	30.10	24		4940400-4	9129		

### New York State D.E.C.

### Client Sample ID: VI 5S

### GC/MS Volatiles

Lot-Sample # H8K250101 - 010 Work Order # K3K572AA Matrix....: AIR Date Sampled ...: 11/18/2008 Date Received ..: 11/24/2008 Prep Date....: 12/02/2008 Analysis Date... 12/02/2008 Prep Batch # ....: 8338089 1079.09 Dilution Factor .: Method..... TO-15 REPORTING **RESULTS** RESULTS REPORTING **PARAMETER** (ppb(v/v))LIMIT (ppb(v/v)) (ug/m3)LIMIT (ug/m3) Ethylbenzene 2300 86 10000 D 370 o-Xylene 5400 86 23000 D 370 m-Xylene & p-Xylene 9400 86 41000 D 370

SURROGATE	PERCENT RECOVERY	LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	94	70 - 130

### Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/k3k572aa.d

Lab Smp Id: K3K572AA Client Smp ID: VI 5S

Inj Date : 02-DEC-2008 20:26

Operator : 7126 Inst ID: mg.i

Smp Info : ,1079.09,0,,

Misc Info: G120208, T0155, nysdec.sub, , , ,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 09:07 tajh Quant Type: ISTD Cal Date : 02-DEC-2008 10:05 Cal File: 1ptcal.d

Als bottle: 7
Dil Factor: 1079.09000
Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1079.09000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	*******	====	==		******	======	
* 3	Bromochloromethane	128	9.048	9.053 (1.000)	500773	4.00000	4.000
* 2	1,4-Difluorobenzene	114	11.194	11.194 (1.000)	2647350	4.00000	4.000
* 3	Chlorobenzene-d5	117	15.875	15.875 (1.000)	1962138	4.00000	4.000
\$ 6	4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1175832	3.74710	3.747 n
65	Ethylbenzene	91	16.198	16.204 (1.020)	827300	2.12949	2298
70	m&p-Xylene	91	16.355	16.360 (1.030)	2591510	8.73009	9420
74	o-Xylene	91	16.883	16.883 (1.064)	1590664	4.98218	5376 <b>&lt;</b>

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: VI 5S

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120208.b/k3k572aa.d

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3K572aa.d Lab Smp Id: K3K572AA Analysis Type: OTHER

Quant Type: ISTD Sampl Operator: 7126 Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, nysdec.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	421439		592122	500773	18.82
2 1,4-Difluorobenze	2096045		2944943	2647350	26.30
3 Chlorobenzene-d5	1591085		2235474	1962138	23.32

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	-0.06
2 1,4-Difluorobenze		10.86	11.52	11.19	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

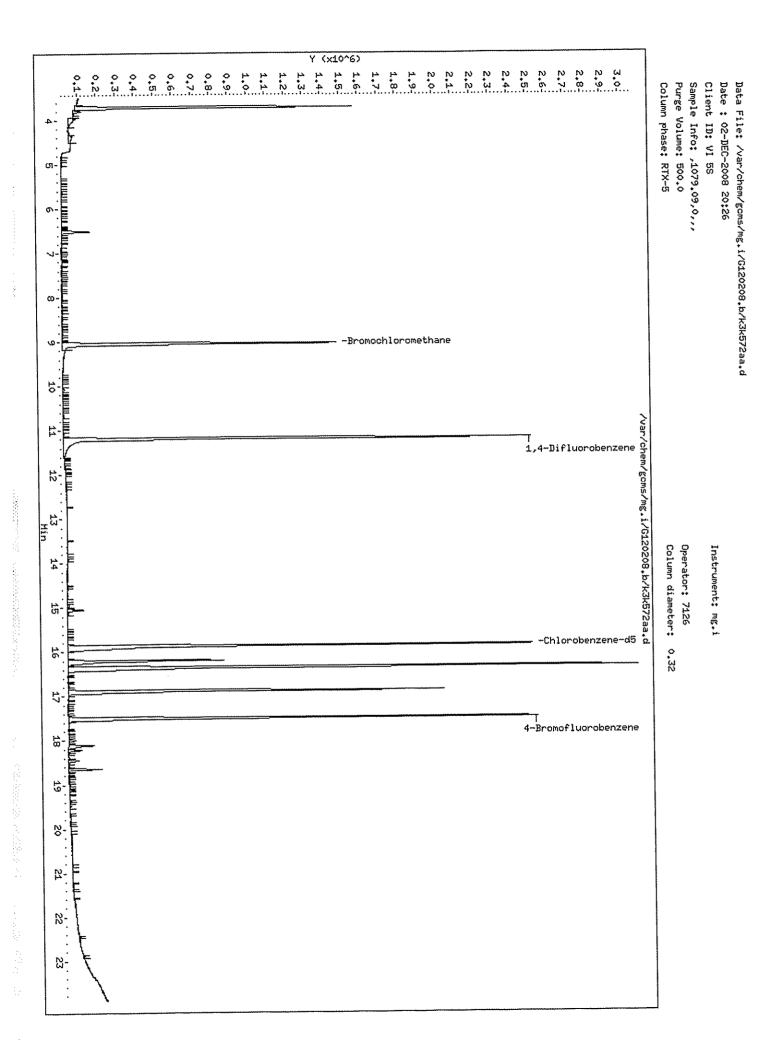
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

### RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Sample Matrix: GAS Fraction: OTHER

Client Smp ID: VI 5S Operator: 7126

Lab Smp Id: K3K572AA Client Smp
Level: LOW Operator: 7
Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, nysdec.sub,,,, SampleType: SAMPLE Quant Type: ISTD

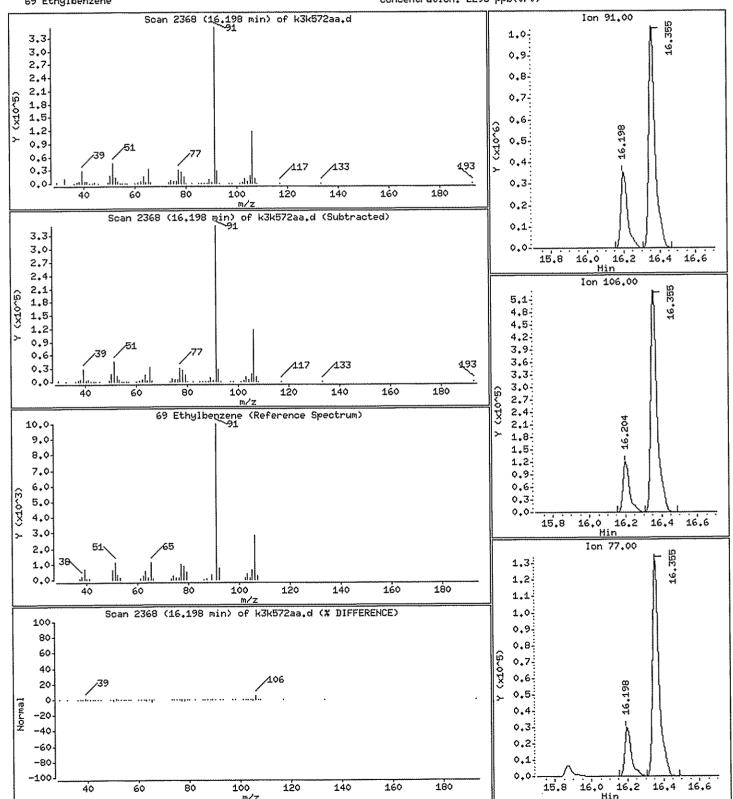
SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.747	93.68	70-130



Date : 02-DEC-2008 20:26

Client ID: VI 5S

Instrument: mg.i


Sample Info: ,1079.09,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

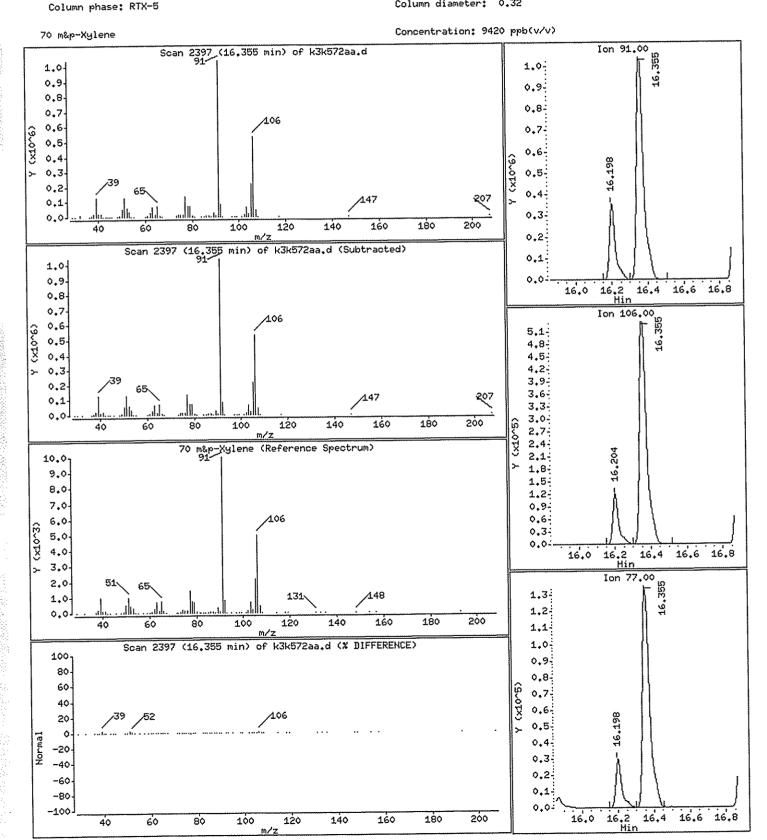
Column diameter: 0.32

69 Ethylbenzene

Concentration: 2298 ppb(v/v)



Date: 02-DEC-2008 20:26


Client ID: VI 5S

Instrument: mg.i

Sample Info: ,1079.09,0,,,

Purge Volume: 500.0

Operator: 7126



Date : 02-DEC-2008 20:26

Client ID: VI 5S

Instrument: mg.i

Sample Info: ,1079.09,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 5376 ppb(v/v)



### New York State D.E.C.

## Client Sample ID: VI 6A

**GC/MS** Volatiles

Work Order # K3K581AA Lot-Sample # H8K250101 - 011 Matrix....: AIR

Date Sampled...: 11/18/2008 Date Received ..: 11/24/2008 Prep Date....: 11/29/2008

Analysis Date... 11/29/2008

Prep Batch #....: 8336265 Dilution Factor .: 10

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.80	ND	3.6
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.80	ND	5.6
ane		0,00	. (2)	2.0
1,4-Dioxane	ND	2.0	ND	7.2
Ethylbenzene	ND	0.80	ND	3.5
Trichlorofluoromethane	ND	0.80	ND	4.5
Hexachlorobutadiene	ND	0.80	ND	8.5
n-Hexane	2.4	2.0	8.4	7.0
2,2,4-Trimethylpentane	ND	2.0	ND	9.3
tert-Butyl alcohol	ND	3.2	ND	9.7
Methylene chloride	2.1	2.0	7.5	6.9
Benzene	1.2	0.80	3.8	2.6
Benzyl chloride	ND	1.6	ND	8.3
Styrene	ND	0.80	ND	3.4
1,1,2,2-Tetrachloroethane	ND	0.80	ND	5.5
Tetrachloroethene	ND	0.80	ND	5.4
Toluene	2.9	0.80	11	3.0
1,2,4-Trichlorobenzene	ND	0.80	ND	5.9
1,1,1-Trichloroethane	ND	0.80	ND	4.4
1,1,2-Trichloroethane	ND	0.80	ND	4.4
Trichloroethene	ND	0.40	ND	2.1
1,2,4-Trimethylbenzene	ND	0.80	ND	3.9
1,3,5-Trimethylbenzene	ND	0.80	ND	3.9
Vinyl chloride	ND	0.80	ND	2.0
o-Xylene	0.93	0.80	4.0	3.5
Methyl tert-butyl ether	ND	1,6	ND	5.8
1,1,2-Trichlorotrifluoroethane	ND	0.80	ND	6.1
m-Xylene & p-Xylene	2.6	0.80	11	3.5
Bromodichloromethane	ND	0.80	ND	5.4
1,2-Dibromoethane (EDB)	ND	0.80	ND	6.1
2-Butanone (MEK)	180	3.2	530	9.4
4-Methyl-2-pentanone (MIBK)	ND	2.0	ND	8.2
Bromoform	ND	0.80	ND	8.3
Bromomethane	ND	0.80	ND	3.1
Carbon tetrachloride	ND	0.40	ND	2.5
Chlorobenzene	ND	0.80	ND	3.7
Dibromochloromethane	ND	0.80	ND	6.8
Chloroethane	ND	0.80	ND	2.1
Chloroform	ND	0.80	ND	3.9
Chloromethane	ND	2.0	ND	4.1

### New York State D.E.C.

### Client Sample ID: VI 6A

### **GC/MS** Volatiles

Lot-Sample # H8K250101 -	011	Work Order # K3K581	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	2.0	ND	6,9
1,2-Dichlorobenzene	ND	0.80	ND	4.8
1,3-Dichlorobenzene	ND	0.80	ND	4.8
1,4-Dichlorobenzene	ND	0.80	ND	4.8
Dichlorodifluoromethane	1.1	0.80	5.3	4.0
1,1-Dichloroethane	ND	0.80	ND	3.2
1,2-Dichloroethane	ND	0.80	ND	3.2
1,1-Dichloroethene	ND	0.80	ND	3.2
cis-1,2-Dichloroethene	ND	0.80	ND	3.2
trans-1,2-Dichloroethene	ND	0.80	ND	3,2
1,2-Dichloropropane	ND	0.80	ND	3.7
cis-1,3-Dichloropropene	ND	0.80	ND	3.6
TENTATIVELY INDENTIFIED C	OMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		93	,	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:43

### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/k3k581aa.d
Lab Smp Id: K3K581AA
Thi Data Client Smp ID: VI 6A

Inj Date : 29-NOV-2008 21:04

Inst ID: mg.i Operator: 7126

Smp Info : ,10,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G112908.b/T0155.m Method

Meth Date: 02-Dec-2008 11:42 tajh Quant Type: ISTD Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d Cal Date : 26-NOV-2008 12:31

Als bottle: 7

Dil Factor: 10.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	10.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
		Tour and able

Cpnd Variable

Local Compound Variable

						CONCENTRATIONS		
		QUANT SIG				ON-COLUMN	FINAL	
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
==	***************************************	22 22 32 32	==		****		= = = = = = = = = = = = = = = = = = =	
*	1 Bromochloromethane	128	9.059	9.053 (1.000)	351596	4.00000	4.000	
*	2 1,4-Difluorobenzene	114	11.205	11.200 (1.000)	1785112	4.00000	4.000	
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1361569	4.00000	4.000	
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	807942	3.71040	3.710	
	9 Dichlorodifluoromethane	85	3.963	3.958 (0.437)	41448	0.10803	1.080 / 12/3/m	
	31 Methylene Chloride	84	6.519	6.514 (0.720)	23647	0.21485	2.148	
	38 Hexane	56	8.299	8.293 (0.916)	31079	0.23953	7.395 M	
	39 2-Butanone	72	8.299	8.315 (0.916)	603399	18.0502	180.5(A)	
	47 Benzene	78	10.671	10.671 (0.952)	31682	0.11944	1.194 \	
	61 Toluene	91	13.923	13.923 (0.877)	69738	0.29330	2.933 / \	
	69 Ethylbenzene	91	16.360	16.204 (1.031)	53223	0.19743	1.974	
	70 m&p~Xylene	91	16.360	16.365 (1.031)	53223	0.25838	2.584	
	74 o-Xylene	91	16.889	16.888 (1.064)	20629	0.09311	0.9311	
							10	
							10,	

Calibration Date: 29-NOV-2008 Calibration Time: 10:08 Client Smp ID: VI 6A Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G112908.b/k3k581aa.d

Report Date: 02-Dec-2008 11:43

### TestAmerica Knoxville

### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k581aa.d Lab Smp Id: K3K581AA

Analysis Type: OTHER

Operator: 7126

Quant Type: ISTD

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m

Misc Info: G112908, T0155, 1-all.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	432126	257115	607137	351596	-18.64
2 1,4-Difluorobenze	2140476	1273583	3007369	1785112	-16.60
3 Chlorobenzene-d5	1639335	975404	2303266	1361569	-16.94

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		8.72 10.87 15.54	9.38 11.53 16.20	9.06 11.21 15.87	0.06 0.05 0.00

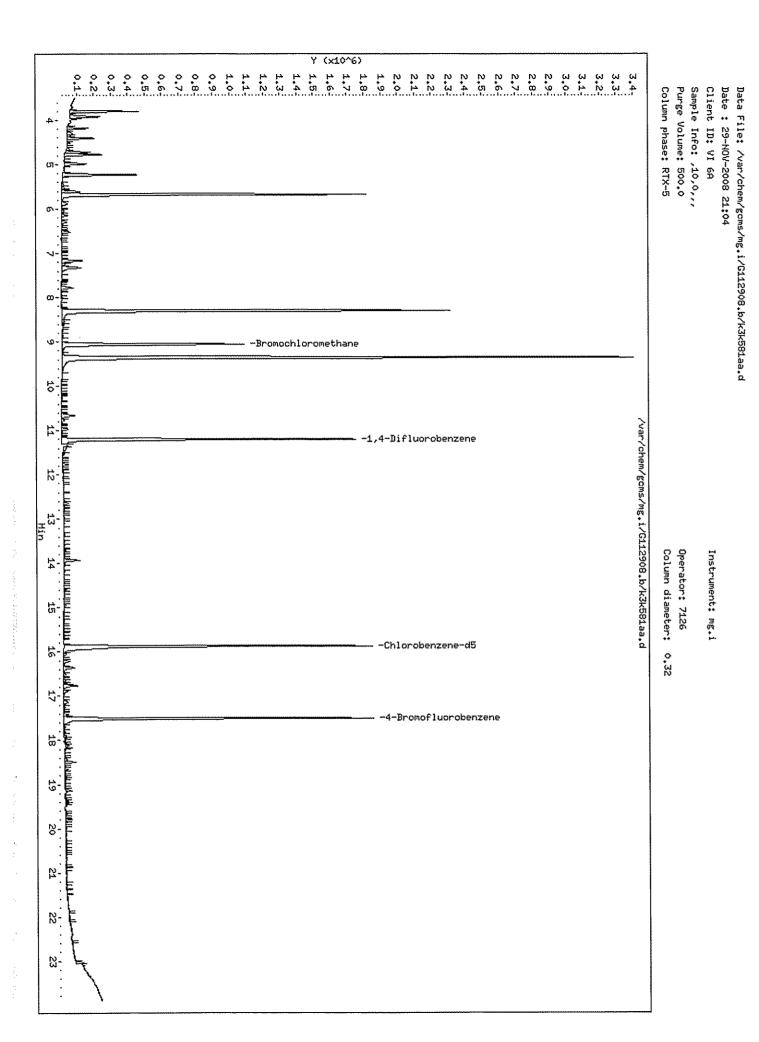
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 11:43

### TestAmerica Knoxville

### RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS

Client Smp ID: VI 6A Operator: 7126 Lab Smp Id: K3K581AA

Level: LOW Operator: 7
Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.710	92.76	70-130



Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

#### 9 Dichlorodifluoromethane

Concentration: 1.080 ppb(v/v)

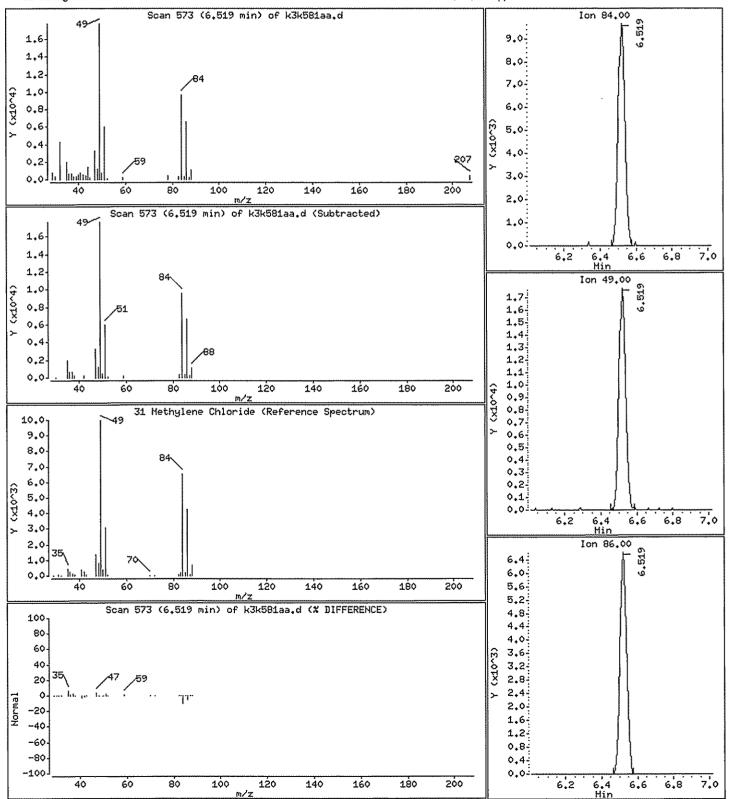


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,


Operator: 7126

Purge Volume: 500.0 Column phase: RTX-5

Column diameter: 0.32

31 Methylene Chloride

Concentration: 2.148 ppb(v/v)

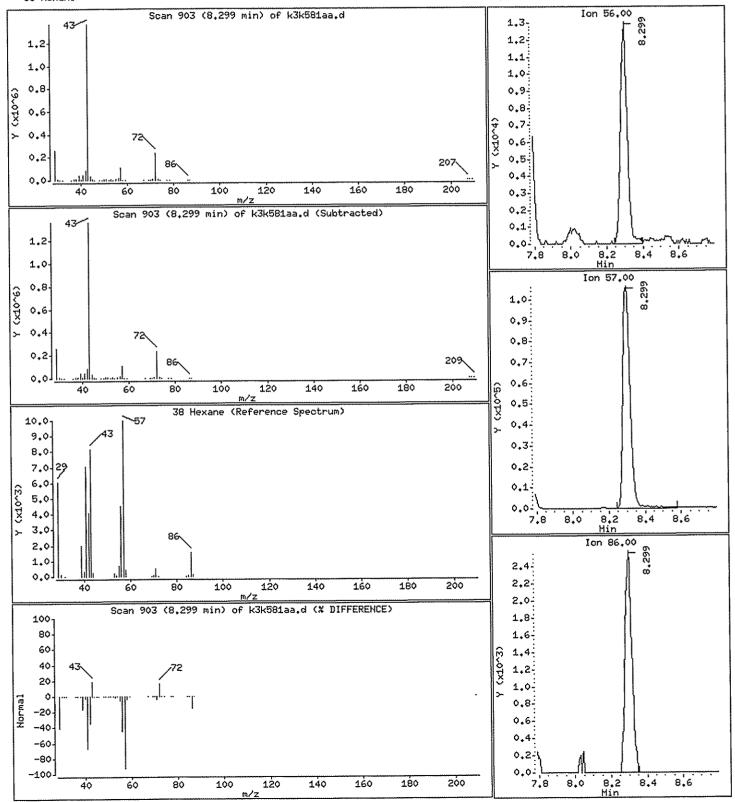


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

38 Hexane

Concentration: 2.395 ppb(v/v)

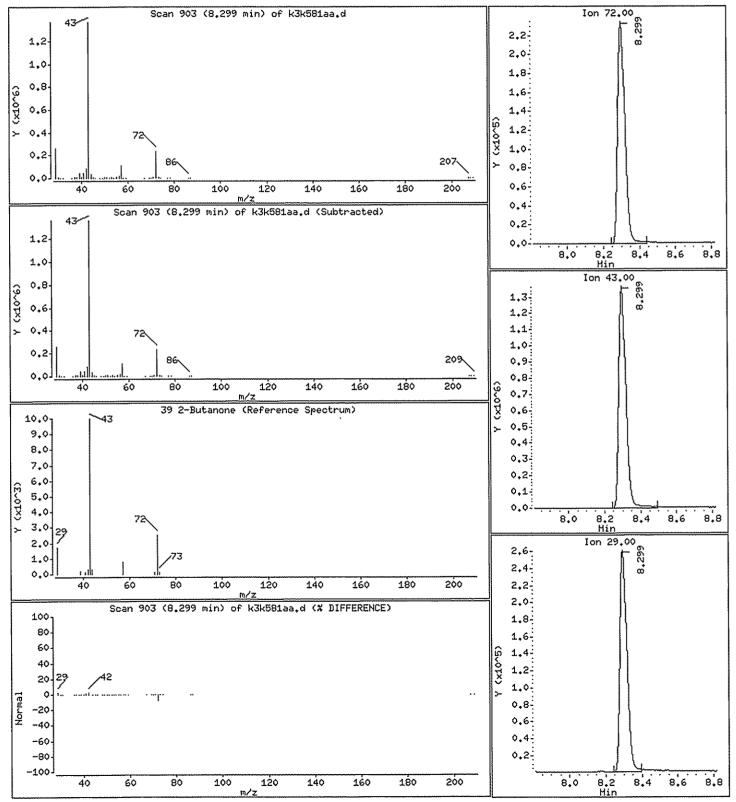


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,


Purge Volume: 500.0 Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 180.5 ppb(v/v)

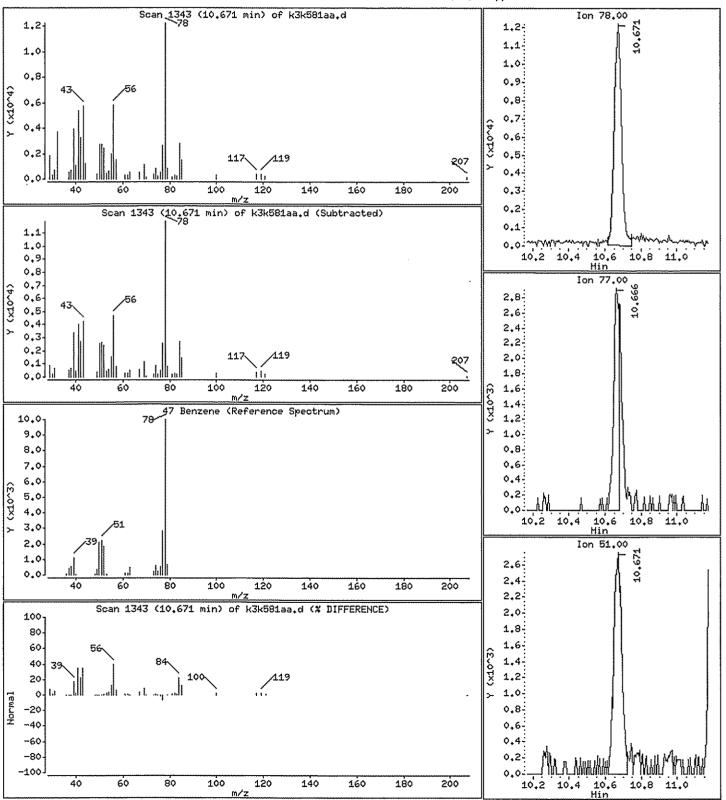


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

47 Benzene

Concentration: 1,194 ppb(v/v)

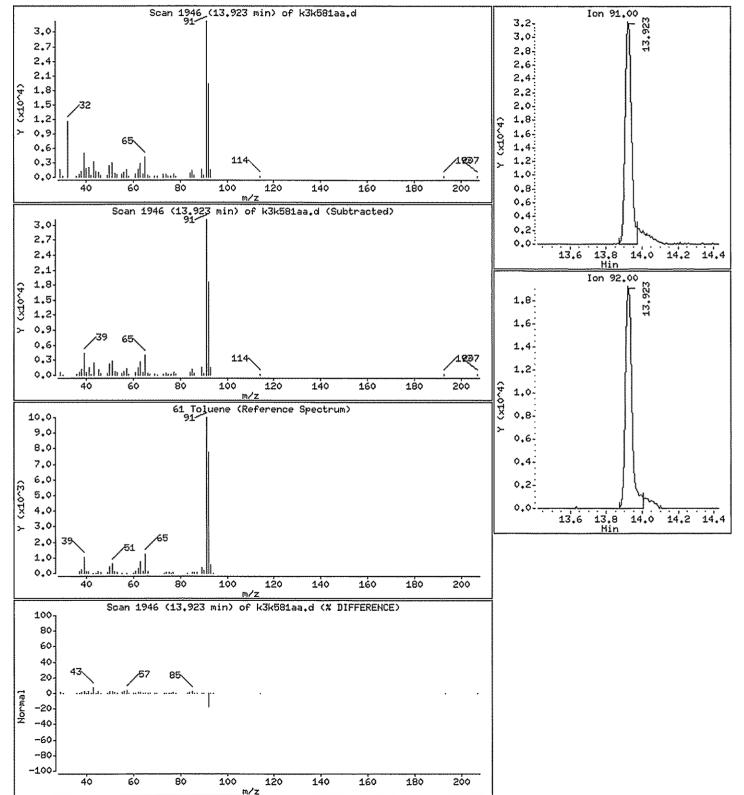


Date : 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

61 Toluene

Concentration: 2.933 ppb(v/v)

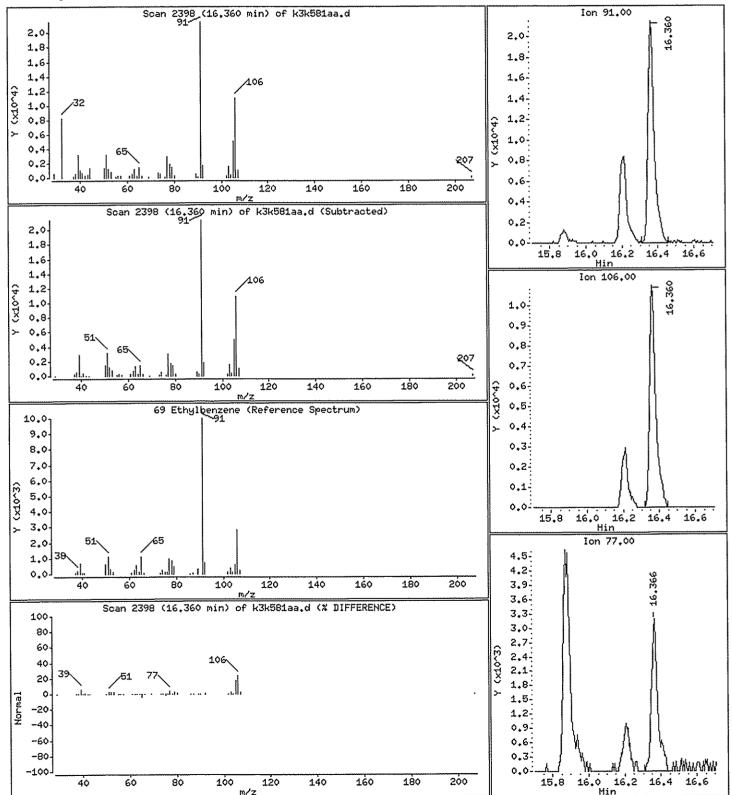


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

69 Ethylbenzene

Concentration: 1.974 ppb(v/v)

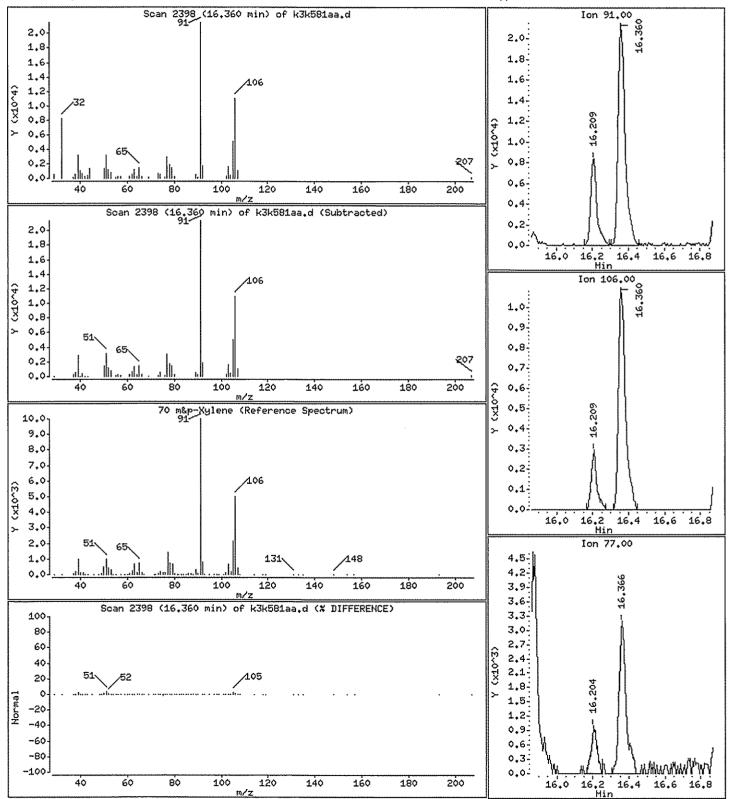


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

70 m&p-Xylene

Concentration: 2.584 ppb(v/v)

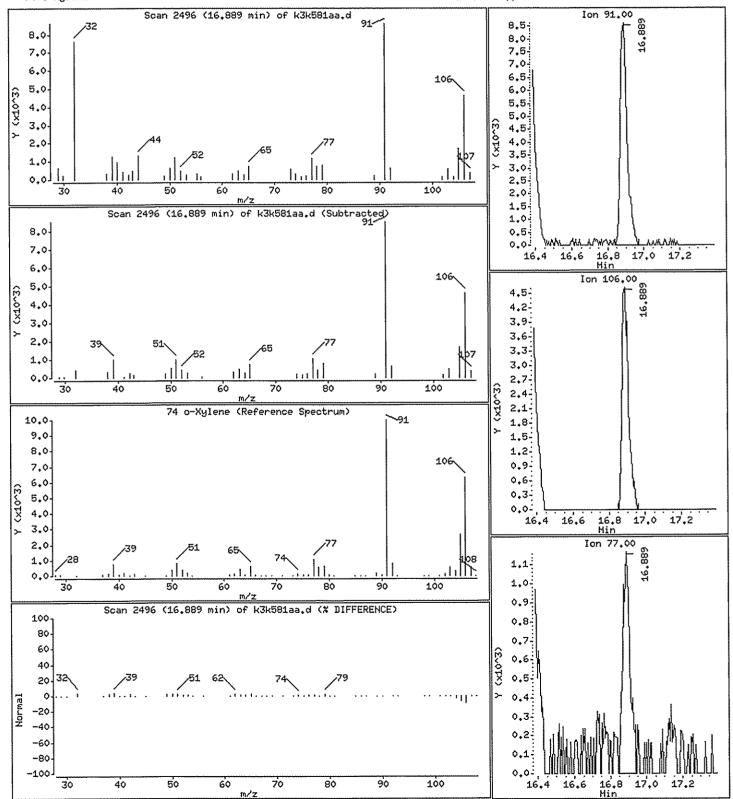


Date: 29-NOV-2008 21:04

Client ID: VI 6A

Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

74 o-Xylene

Concentration: 0.9311 ppb(v/v)



Report Date: 02-Dec-2008 11:56

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mg.i/G112908.b/k3k581aa.d Lab Smp Id: K3K581AA Client Smp I Client Smp ID: VI 6A

Inj Date : 29-NOV-2008 21:04

Inst ID: mq.i Operator: 7126

Smp Info : ,10,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G112908.b/T0155.m Meth Date : 02-Dec-2008 11:55 tajh Quant Type: ISTD Cal Date : 26-NOV-2008 12:31 Cal File: rlstd.d

Als bottle: 7

Dil Factor: 10.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description			
DF	10.00000	Dilution Factor			
Vt	500.00000	Default calibration vol			
Vo	500.00000	Default sample volume			

Cond Variable

Local Compound Variable

ISTD	RT	HEIGHT	TUOMA
	====		======
* 1 Bromochloromethane	9.059	1080144	4.000

CONCENTRATIONS					TKAUQ			
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL(ppb(v/v))	QUAL	LIBRARY	LIB	ENTRY	CPND #
====	======	*******					****	:

Ethyl alcohol

CAS #: 64-17-5

4.988 132225 0.48965693

4.896 99 NIST05.1 95

1(L)

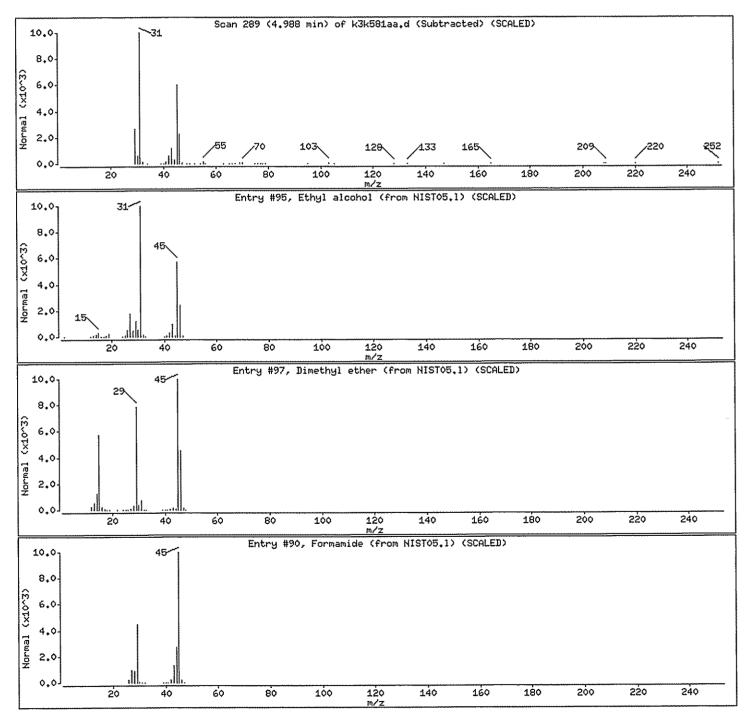
# QC Flag Legend

L - Operator selected an alternate library search match.

12/20 12/20 Jet 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12/20 12

Date : 29-NOV-2008 21:04

Client ID: VI 6A


Instrument: mg.i

Sample Info: ,10,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	HISTO5.1	95	99	C2H60	46
Dimethyl ether	115-10-6	NISTO5.1	97	7	C2H60	46
Formamide	75-12-7	HISTO5.1	90	5	CH3N0	45



# New York State D.E.C.

# Client Sample ID: VI 6S

# GC/MS Volatiles

Lot-Sample # H8K250101 - 012

Work Order # K3K591AA

Matrix..... AIR

Date Sampled...:
Prep Date....:

11/18/2008 11/29/2008 **Date Received..:** 11/24/2008 **Analysis Date...** 11/29/2008

Prep Batch #....:

8336265

Dilution Factor.: 1

Method..... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroe	0.096	0.080	0.67	0.56
thane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.4	0.080	6.0	0.35
Trichlorofluoromethane	0.23	0.080	1.3	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	2.6	0.20	8.9	0.69
Benzene	0.41	0.080	1.3	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	32	0.080	220 E	0.54
Toluene	2.3	0.080	8.6	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	1.8	0.080	10	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	0.64	0.040	3.4	0.21
1,2,4-Trimethylbenzene	0.11	0.080	0.56	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	0.94	0.080	4.1	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.18	0.080	1.4	0.61
m-Xylene & p-Xylene	2.7	0.080	12	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	24	0.32	70	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69

TO-14_rev5.rpt version 5.0.103 | 10/12/2006

#### New York State D.E.C.

# Client Sample ID: VI 6S

#### GC/MS Volatiles

Lot-Sample # H8K250101 - 012		Work Order # K3	Work Order # K3K591AA			
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v.	RESUL (ug/m3)		REPORTI LIMIT (uį	
1,2-Dichlorobenzene	ND	0.080	ND		75.4.0	
1,3-Dichlorobenzene	ND ND	0.080	ND		0.48	
1,4-Dichlorobenzene	ND ND	0.080	ND		0.48	
Dichlorodifluoromethane	82	0.080	ND	100	0.48	
1,1-Dichloroethane	ND	0.080	<b>410</b> ND	E	0.40	
1,2-Dichloroethane	ND	0.080	ND		0,32 0.32	
1,1-Dichloroethene	ND	0.080	ND		0.32	
cis-1,2-Dichloroethene	ND	0.080	ND		0.32	
trans-1,2-Dichloroethene	ND	0.080	ND		0.32	
1,2-Dichloropropane	ND	0.080	ND		0.37	
cis-1,3-Dichloropropene	ND	0.080	ND		0.36	
TENTATIVELY INDENTIFIED C	OMPOUNDS	RESULT			UNITS	
Ethyl alcohol		ND			ppb(v/v)	
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)	7
4-Bromofluorobenzene		96			70 - 130	

#### Qualifiers

E Estimated result. Result concentration exceeds the calibration range.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found (before rounding) * (Molecular Weight/24.45) * (

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:50

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/k3k591aa.d
Lab Smp Id: K3K591AA Client Smp II
Inj Date: 29-NOV-2008 18:10
Operator: 7126 Inst ID: mg.:
Smp Info: ,,0,,
Misc Info: G112908, TO155, 1-all.sub,,,,

Client Smp ID: VI 6S

Inst ID: mq.i

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 02-Dec-2008 11:45 tajh Quant Type: ISTD
Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d
Als bottle: 3
Dil Factor: 1.00000
Integrator: HP RTE Compound Sublist:
Target Version: 3.50

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	1.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
		# 3 @

Cpnd Variable

Local Compound Variable

		CONCENTRATIONS					rions		
		QUANT SIG					ON-COLUMN	FINAL	
Co	pmpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
==		===	<b>**</b> =	=====				*****	
*	1 Bromochloromethane	128	9.064	9.053	(1.000)	403284	4.00000	4.000	
*	2 1,4-Difluorobenzene	114	11.205	11.200	(1.000)	2062507	4.00000	4.000	
*	3 Chlorobenzene-d5	117	15.880	15.875	(1.000)	1542166	4.00000	4.000	
\$	6 4-Bromofluorobenzene	95	17.503	17.503	(1.102)	952116	3.86046	3.860	
	9 Dichlorodifluoromethane	85	3.947	3.958	(0.435)	36156103	82.1569	82.16(AM) £	
	11 1,2-Dichlorotetrafluoroethane	135	4.162	4.146	(0.459)	22377	0.09565	0.09565 ~~、,	۲.
	20 Trichlorofluoromethane	101	5.457	5.446	(0.602)	97561	0.23276	0.2328 代	₹/
	30 1,1,2-Trichlorotrifluoroethane	101	6.336	6.325	(0.699)	50537	0.18018	0.1802	10
	31 Methylene Chloride	84	6.524	6.514	(0.720)	324470	2.57019	2.570	•
	38 Hexane	56	8.293	8.293	(0.915)	75781	0.50920	0.5002 ~12/3/4	
	39 2-Butanone	72	8.298	8.315	(0.916)	911106	23.7617	23.76(A)	
	44 1,1,1-Trichloroethane	97	10.083	10.078	(1.112)	492604	1.84704	1.847	
	47 Benzene	78	10.671	10.671	(0.952)	126940	0.41419	0.4142	_
	53 Trichloroethene	130	11.900	11.900	(1.062)	113813	0.63693	0.6369	
	61 Toluene	91	13.923	13.923	(0.877)	614462	2.28165	2.282	100

Data File: /var/chem/gcms/mg.i/G112908.b/k3k591aa.d Report Date: 02-Dec-2008 11:50

					CONCENTRA	LIUNS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	<b>**</b> **				
67 Tetrachloroethene	129	15.055	15.050 (0.948)	4429984	31.8440	31.84(A)
69 Ethylbenzene	91	16.204	16.204 (1.020)	423188	1.38594	1.386
70 m&p-Xylene	91	16.360	16.365 (1.030)	639416	2.74061	2.741
74 o-Xylene	91	16.888	16.888 (1.063)	235941	0.94025	0.9402
85 1,2,4-Trimethylbenzene	105	18.652	18.646 (1.175)	28052	0.11424	0.1142

# QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
   M Compound response manually integrated.

Report Date: 02-Dec-2008 11:44

### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k591aa.d

Lab Smp Id: K3K591AA Analysis Type: OTHER

Quant Type: ISTD Sampl Operator: 7126 Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m

Calibration Date: 29-NOV-2008

Calibration Time: 10:08 Client Smp ID: VI 6S

Level: LOW

Sample Type: AIR

Misc Info:	G112908, T0155, 1-all.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	432126 2140476 1639335	257115 1273583 975404	607137 3007369 2303266	403284 2062507 1542166	-6.67 -3.64 -5.93
		***************************************			<del></del>

			LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
1 Bromochloromethan		8.72	9.38	9.06	0.12
2 1,4-Difluorobenze	11.20	10.87	11.53	11.20	0.05
3 Chlorobenzene-d5	15.87	15.54	16.20	15.88	0.03

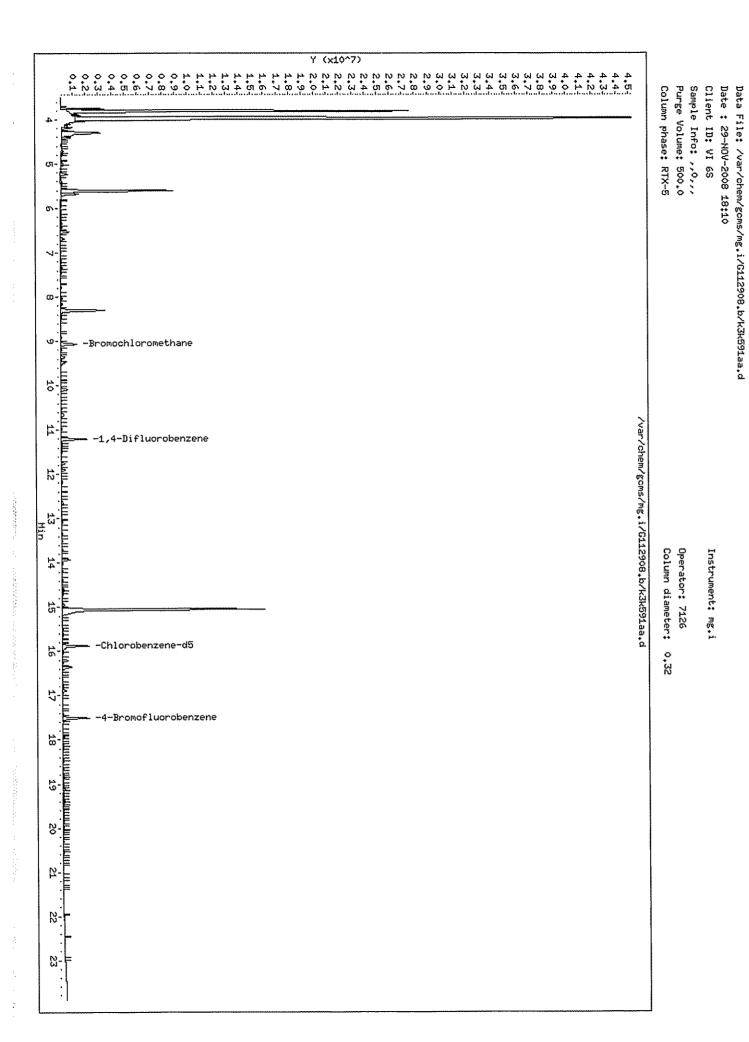
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 02-Dec-2008 11:44

# TestAmerica Knoxville

#### RECOVERY REPORT


Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Sample Matrix: GAS Fraction: OTHER

Client Smp ID: VI 6S Operator: 7126

Sample Matrix: GAS
Lab Smp Id: K3K591AA
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.860	96.51	70-130



Date : 29-NOV-2008 18:10

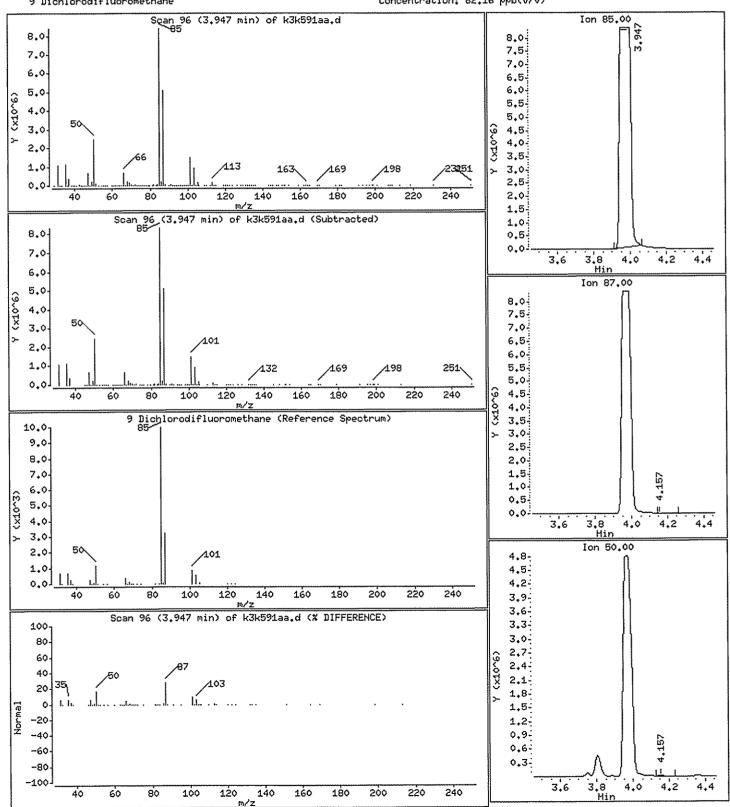
Client ID: VI 6S

Sample Info: ,,0,,,

Purge Volume: 500.0

Column phase: RTX-5

Instrument: mg.i


polo de

Operator: 7126

Column diameter: 0.32

#### 9 Dichlorodifluoromethane

#### Concentration: 82.16 ppb(v/v)

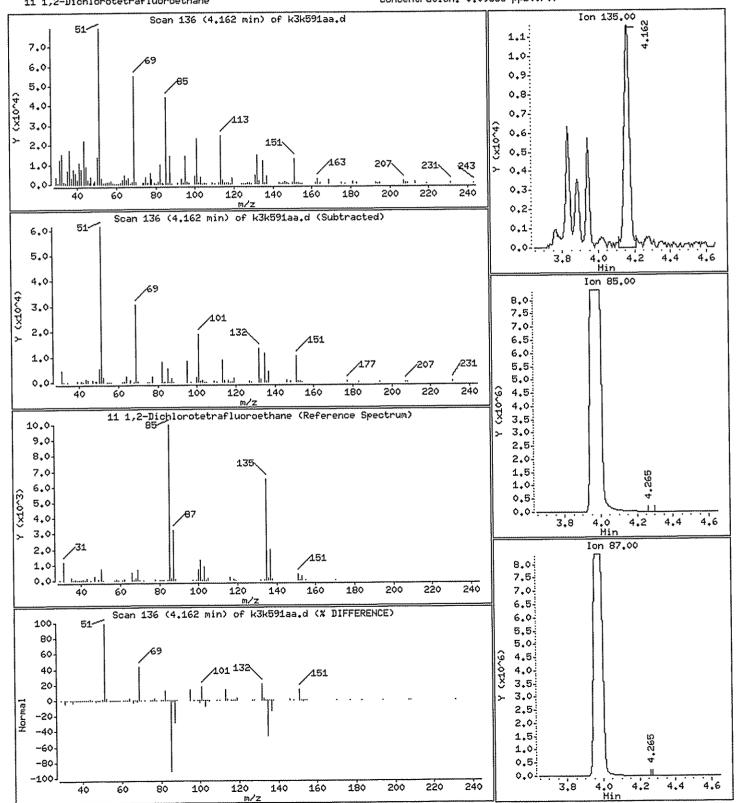


Date: 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

11 1,2-Dichlorotetrafluoroethane

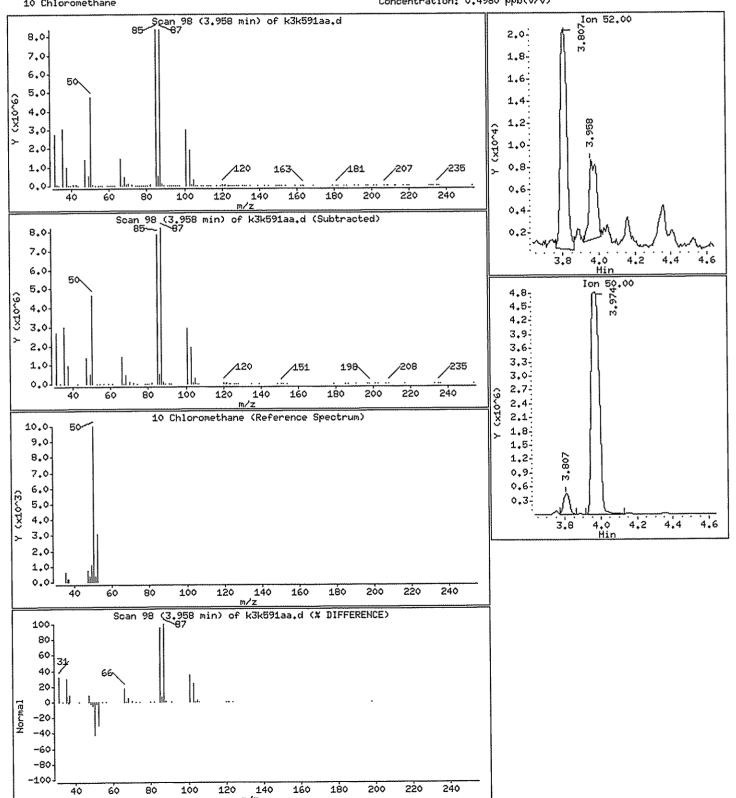
Concentration: 0.09566 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column diameter: 0.32 Column phase: RTX-5

#### 10 Chloromethane

#### Concentration: 0.4980 ppb(v/v)



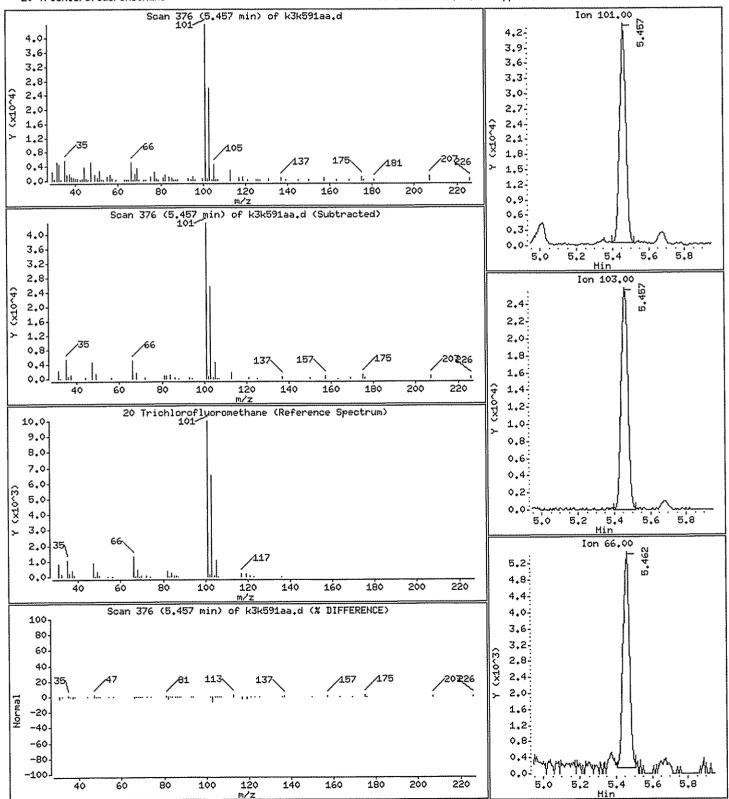
Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

20 Trichlorofluoromethane

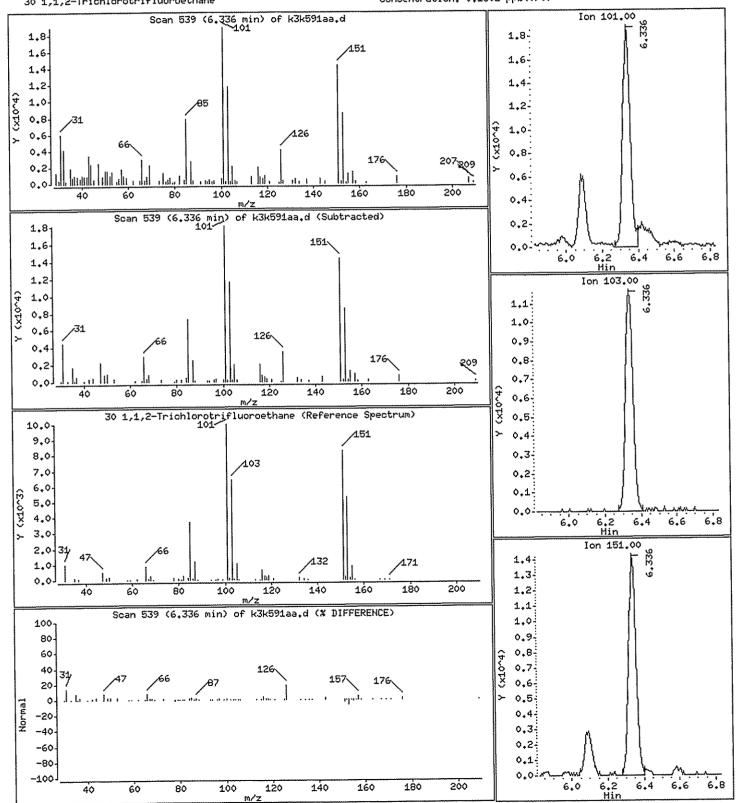
Concentration: 0.2328 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

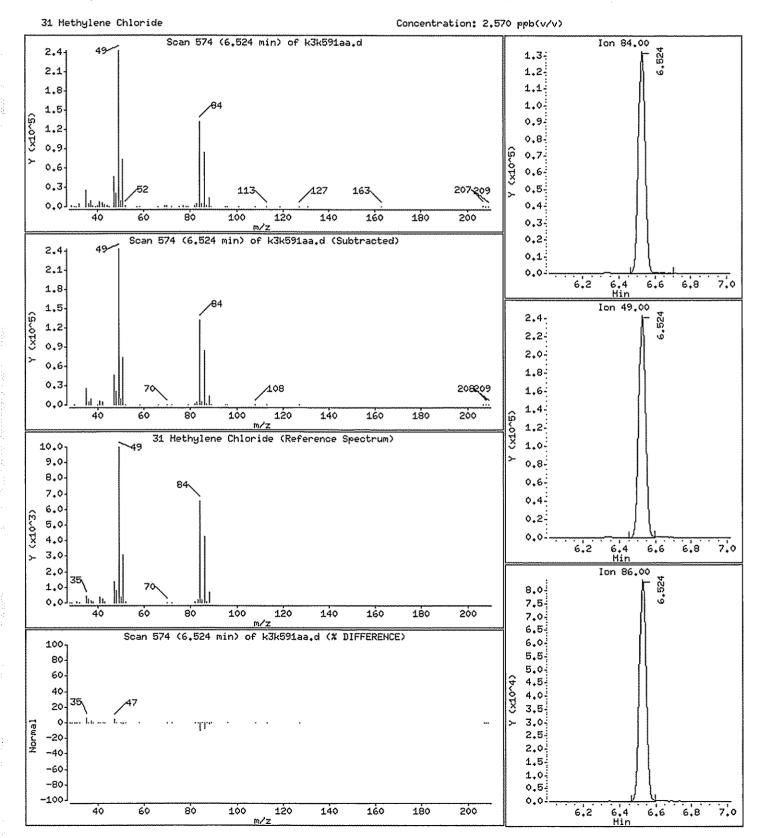
30 1,1,2-Trichlorotrifluoroethane

Concentration: 0.1802 ppb(v/v)



Date: 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

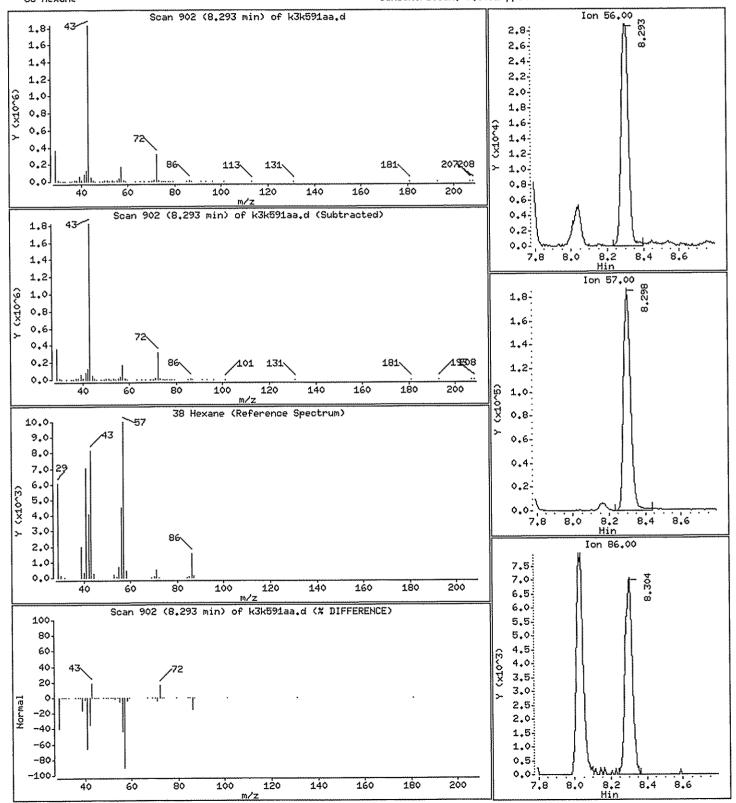


Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

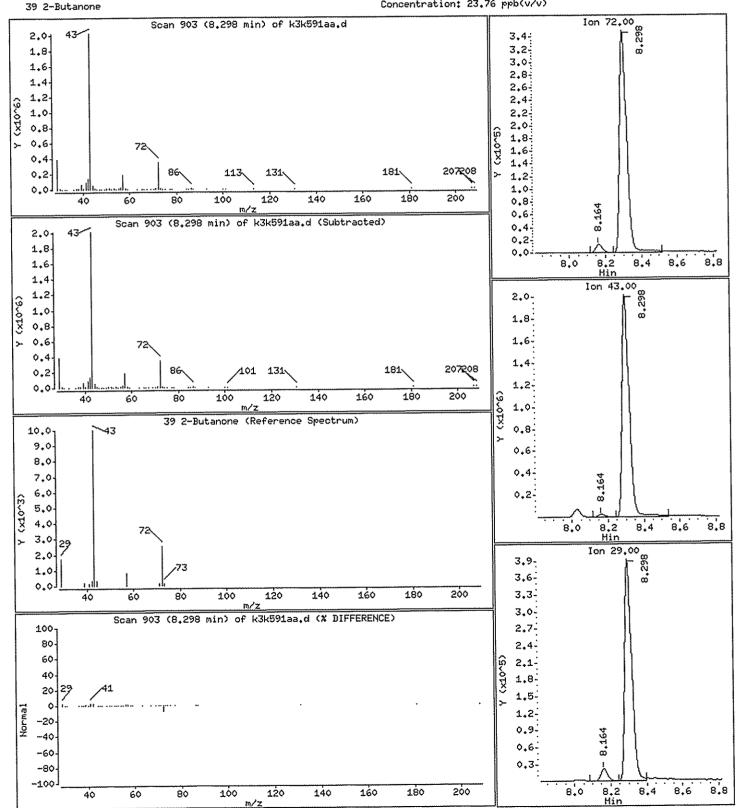
38 Hexane

Concentration: 0.5092 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,,

Operator: 7126 Purge Volume: 500.0

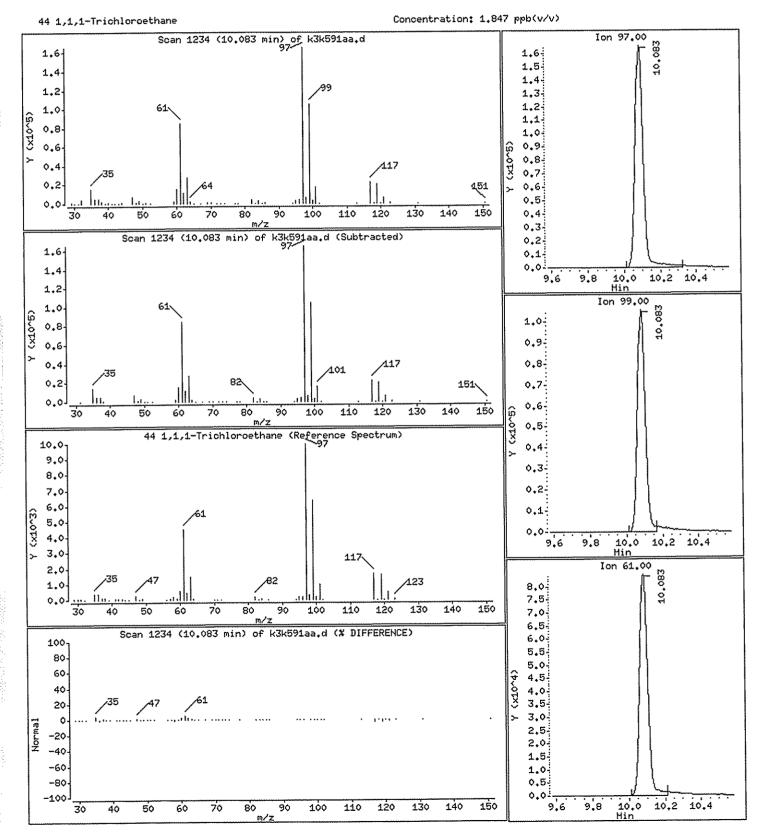
Column phase: RTX-5

Concentration: 23.76 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

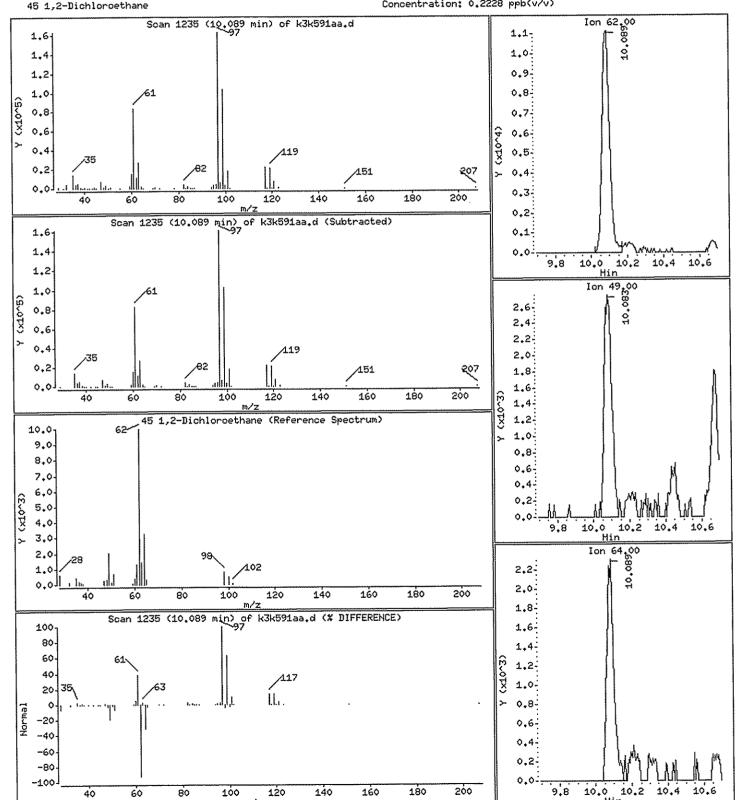


Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Concentration: 0.2228 ppb(v/v)

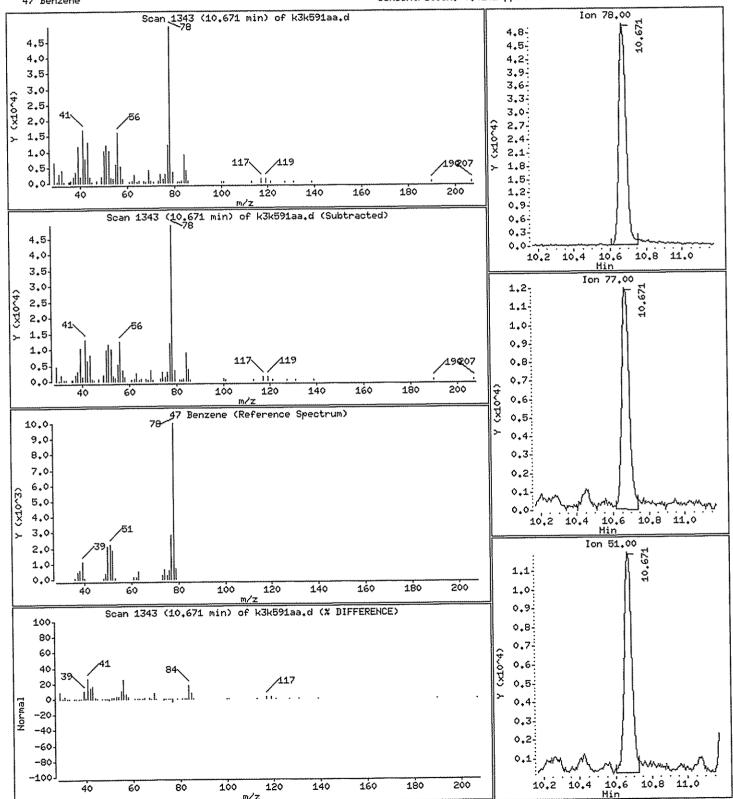


Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

47 Benzene

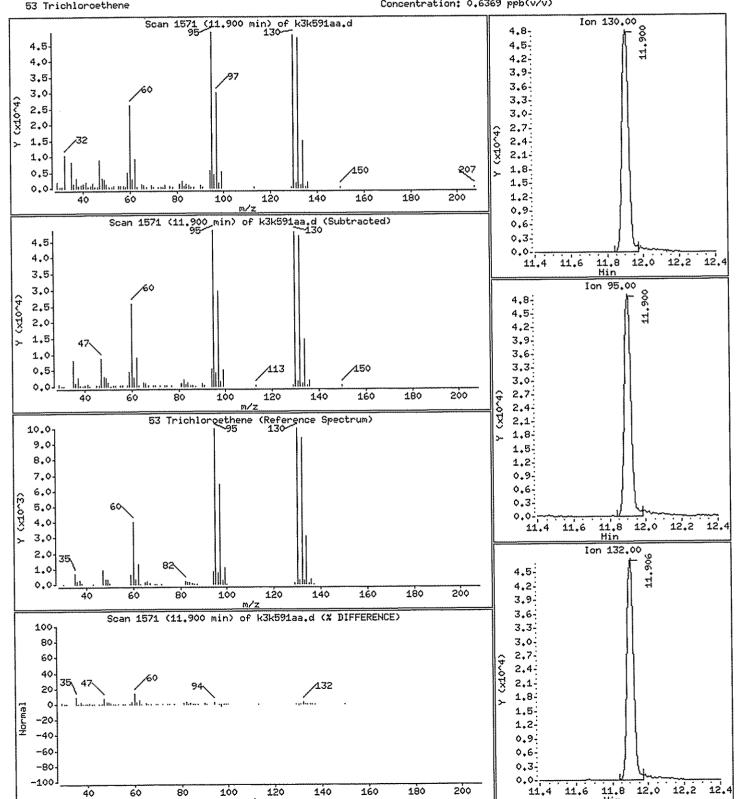
Concentration: 0.4142 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

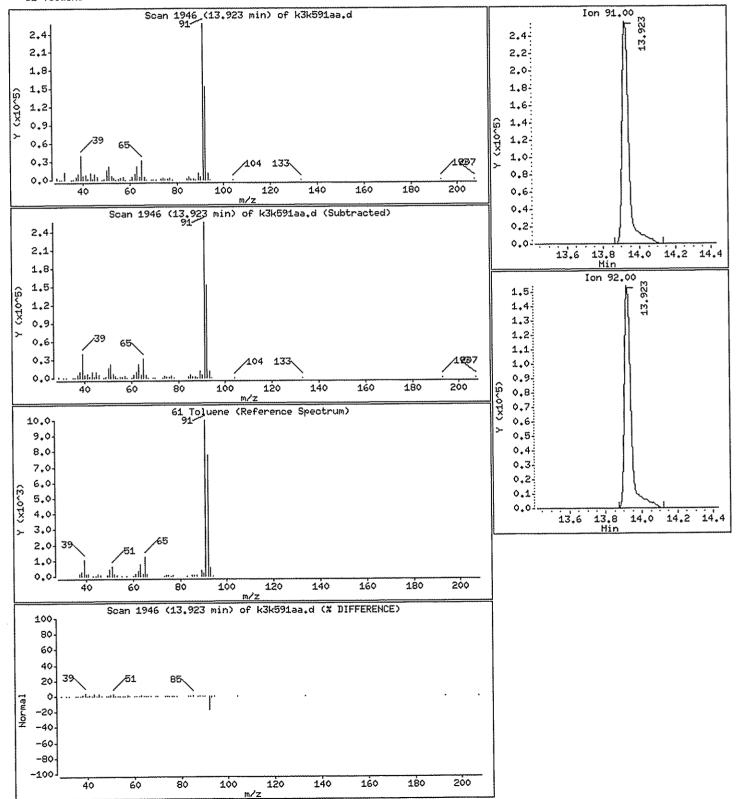
Concentration: 0.6369 ppb(v/v)



Date: 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

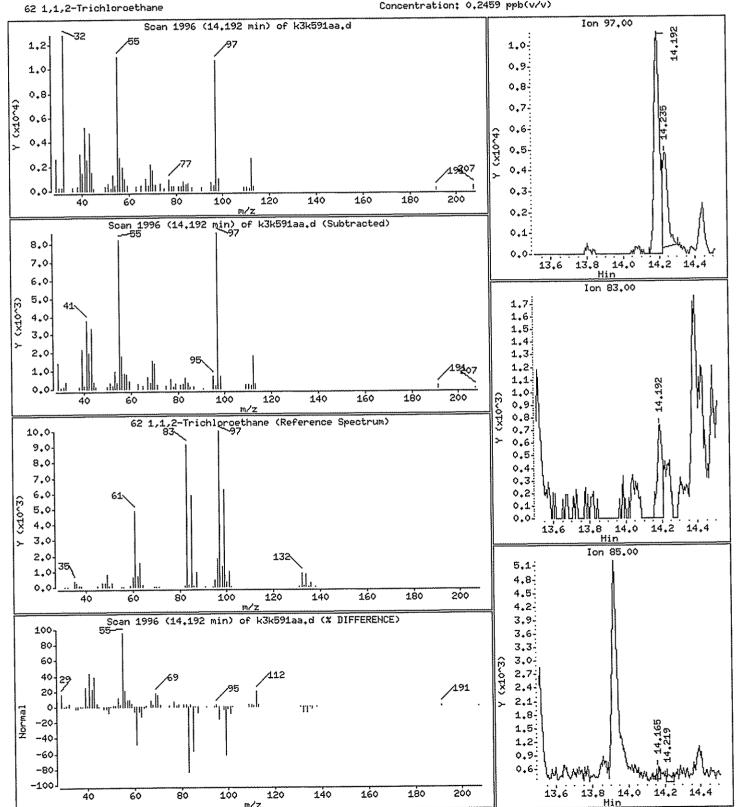
61 Toluene

Concentration: 2.282 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 0.2459 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

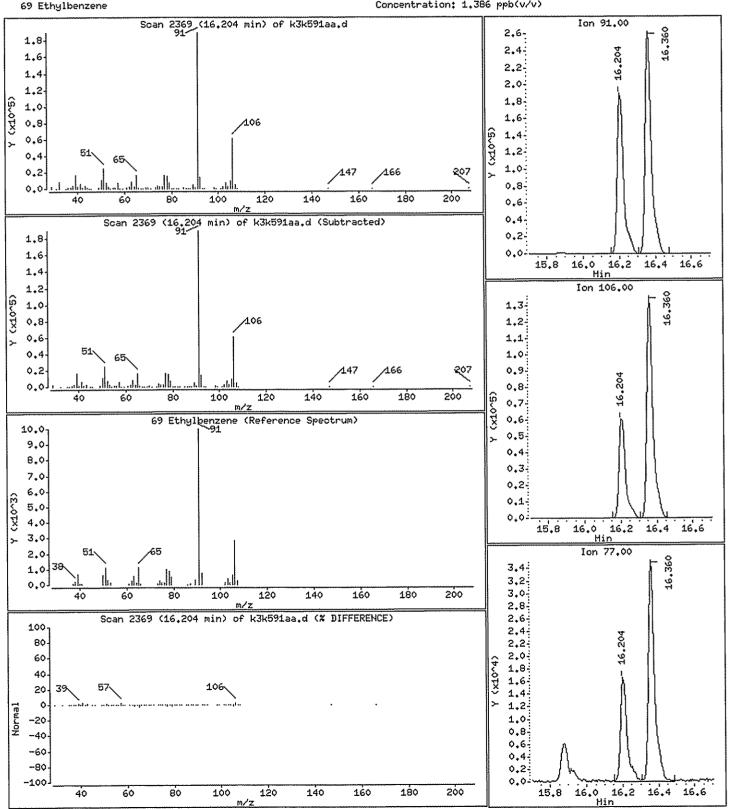
Column phase: RTX-5

Concentration: 31.84 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

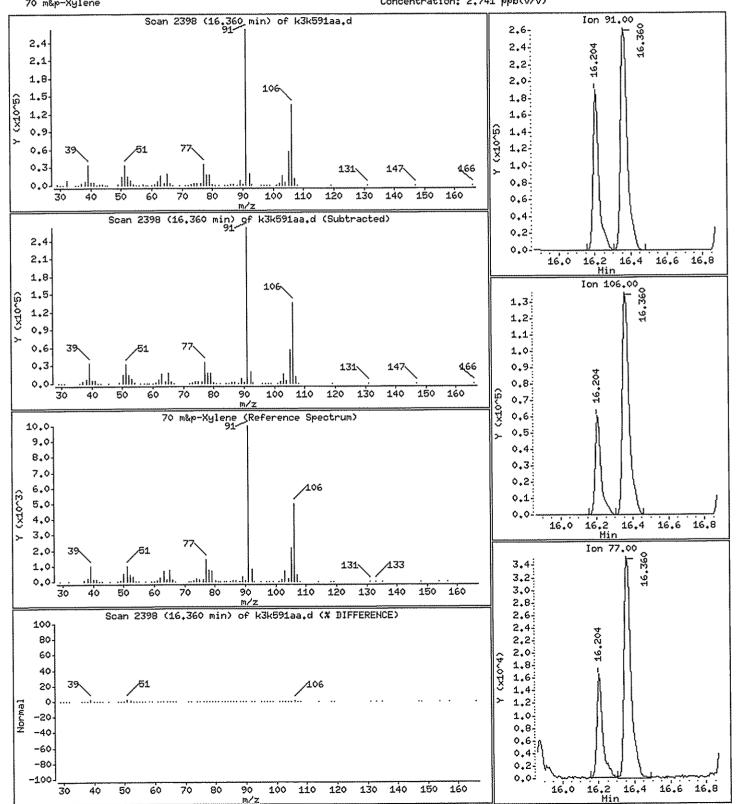
Concentration: 1.386 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

70 m&p-Xylene

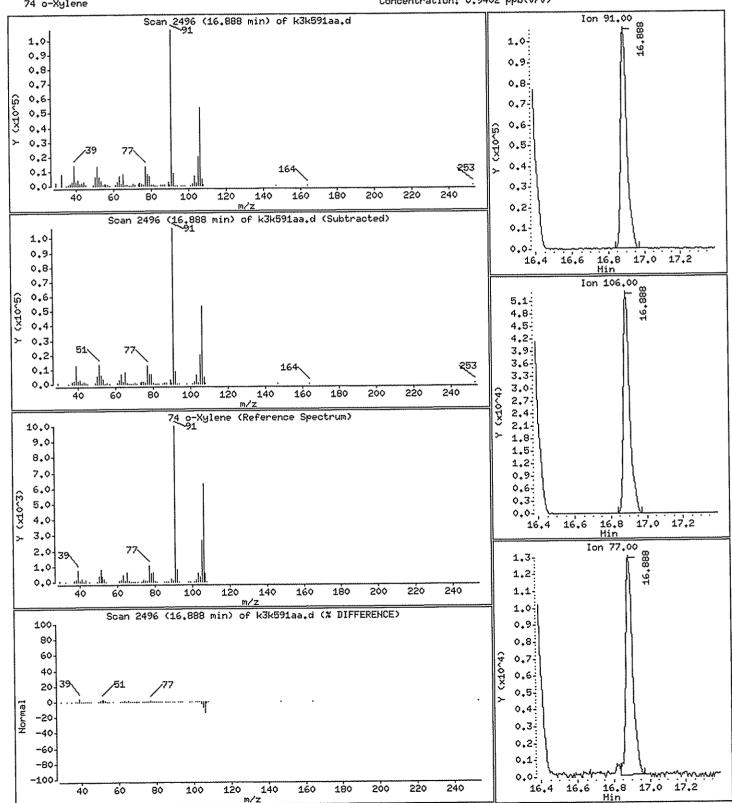
Concentration: 2.741 ppb(v/v)



Date : 29-NOV-2008 18:10

Client ID: VI 6S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

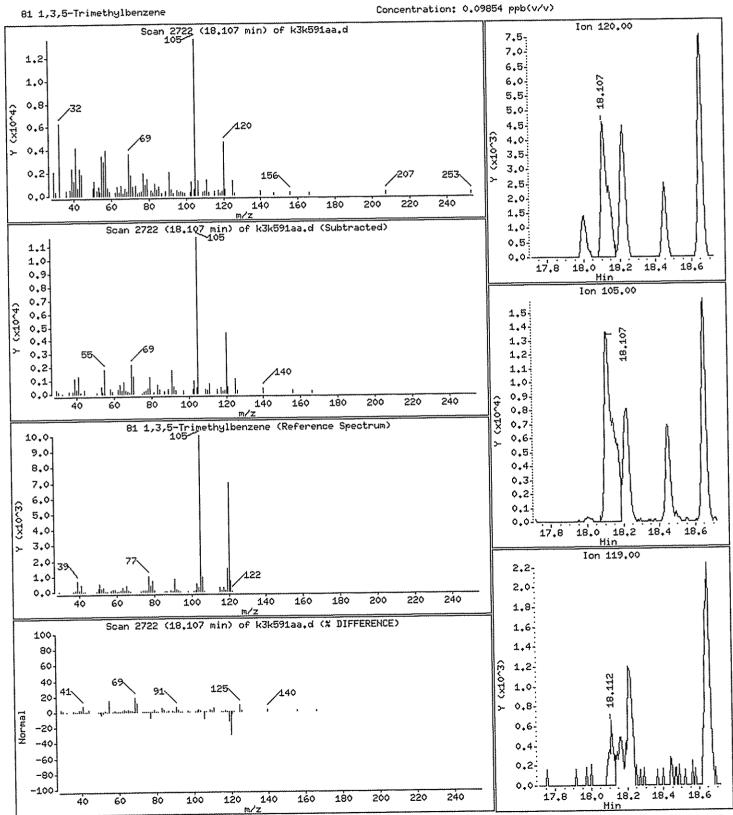
Column phase: RTX-5



Concentration: 0.9402 ppb(v/v)



Date : 29-NOV-2008 18:10


Client ID: VI 6S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

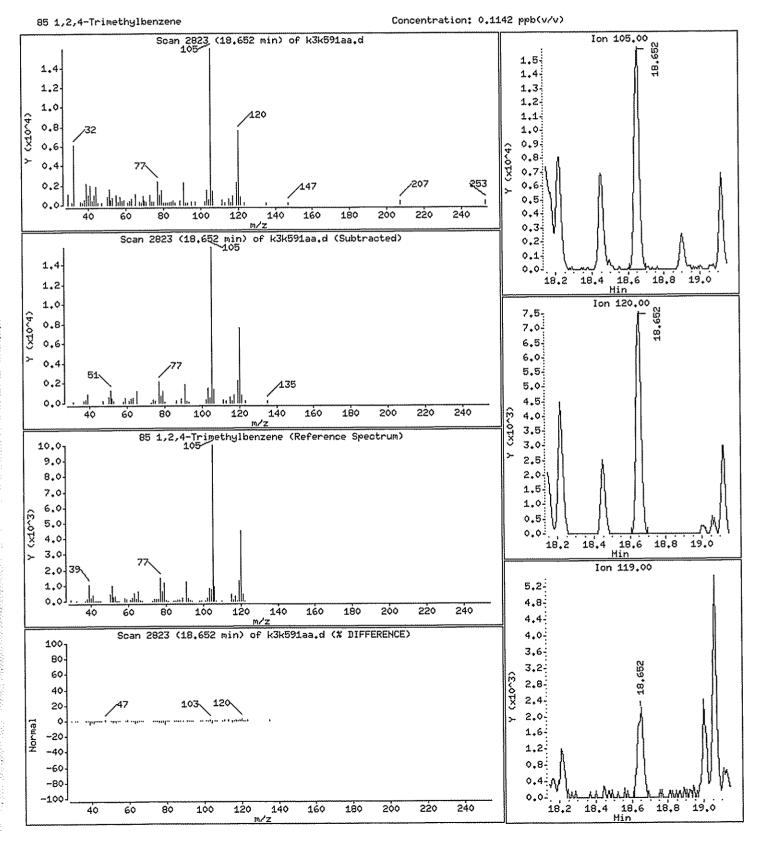
Operator: 7126

Column phase: RTX-5



Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



Report Date: 02-Dec-2008 11:57

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112908.b/k3k591aa.d Lab Smp Id: K3K591AA Client Smp I Client Smp ID: VI 6S

Inj Date : 29-NOV-2008 18:10

Inst ID: mq.i Operator: 7126

 $\tilde{Smp}$  Info : ,,0,,

Misc Info : G112908, T0155, 1-all. sub, , , ,

Comment

Method : /var/chem/gcms/mg.i/G112908.b/T0155.m Meth Date : 02-Dec-2008 11:55 tajh Quant Tyr Quant Type: ISTD Cal File: rlstd.d Cal Date : 26-NOV-2008 12:31

Als bottle: 3

Dil Factor: 1.00000

Compound Sublist: nysdec.sub Integrator: HP RTE

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

ISTD	RT	HEIGHT	TRUOMA	
	====	======		
* 1 Bromochloromethane	9.064	1270940	4.000	

OUANT

****				====			====		20	
RT	HEIGHT	ON-COL(ppb(v/v))	FINAL (ppb (	(v/v))	QUAL	LIBRARY	LIB	ENTRY	CPND	#
	CONCENTRATIONS				QUANT					

Ethyl alcohol

CAS #: 64-17-5

4.993 209527 0.65943947

0.6594 NISTO5.1 95

1(L)

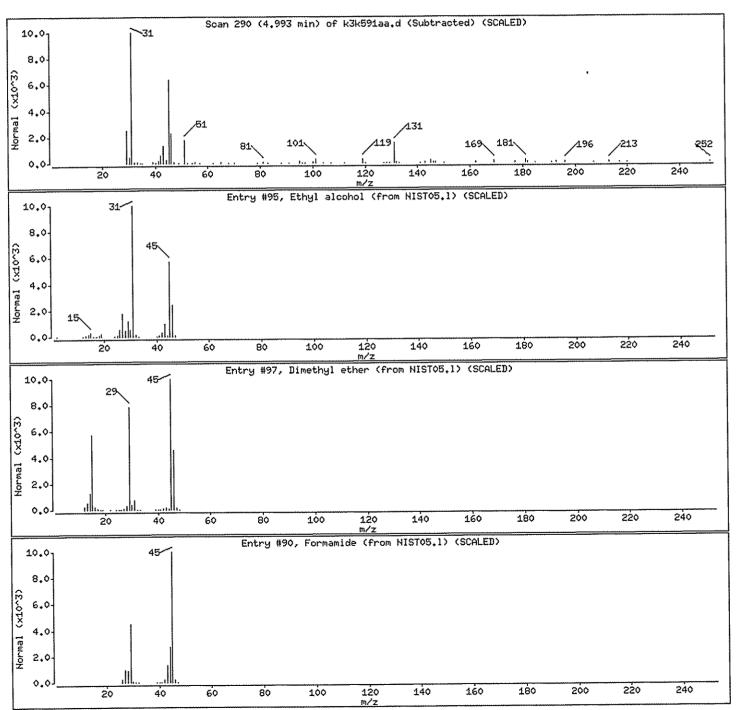
#### QC Flag Legend

L - Operator selected an alternate library search match.

Ber roll

Date : 29-NOV-2008 18:10

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	95	99	C2H60	46
Dimethyl ether	115-10-6	NISTO5.1	97	7	CSH60	46
Formamide	75-12-7	NISTO5.1	90	5	CH3N0	45



#### New York State D.E.C.

Client Sample ID: VI 6S

#### GC/MS Volatiles

Work Order # K3K593AA Matrix....: AIR Lot-Sample # H8K250101 - 012 Date Received ..: 11/24/2008 Date Sampled ...: 11/18/2008 Prep Date....: Analysis Date... 12/02/2008 12/02/2008 Prep Batch #....: 8338089 Method..... TO-15 102.5 Dilution Factor.:

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULT (ug/m3)	rs	REPORTING LIMIT (ug/m3)
Tetrachloroethene Dichlorodifluoromethane	22 940	8.2 8.2	150 4700	D D	56 41
SURROGATE		PERCEN'T RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		90	<del>,</del>		70 - 130

# Qualifiers

D Result was obtained from the analysis of a dilution.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:09

### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/k3k593aa.d Lab Smp Id: K3K593AA Client Smp I Client Smp ID: VI 6S

Inj Date : 02-DEC-2008 19:01

Inst ID: mg.i Operator : 7126

Smp Info : ,102.5,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment :

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD

Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 5

Dil Factor: 102.50000 Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	102.50000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume

Local Compound Variable Cond Variable

						CONCENTRA'	rions
		QUANT SIG				ON-COLUMN	FINAL
Cor	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		== m == m	==	*****			
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	472843	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.194 (1.000)	2501406	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1827254	4.00000	4.000
ş	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1048797	3.58899	3.589
	9 Dichlorodifluoromethane	85	3.968	3.963 (0.438)	4748404	9.20247	943.2
	67 Tetrachloroethene	129	15.050	15.050 (0.948)	34930	0.21191	^{21.72} D

Report Date: 03-Dec-2008 09:09

# TestAmerica Knoxville

# INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k593aa.d
Lab Smp Id: K3K593AA
Analysis Type: OTHER

Analysis Type: OTHER Quant Type: ISTD Operator: 7126

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: VI 6S

Level: LOW

Sample Type: AIR

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub, , , ,

2 1 4-Difluorobenze 2096045 1247147 2944943 2501406 19.	2 1,4-Difluorobenze	2096045	LOWER ====================================	2944943	2501406	%DIFF ====== 12.20 19.34 14.84
---------------------------------------------------------	---------------------	---------	-----------------------------------------------	---------	---------	--------------------------------------------

COMPOUND  ===================================	STANDARD ======= 9.05 11.19 15.87	RT I LOWER ======= 8.72 10.86 15.54	JIMIT UPPER ======= 9.38 11.52 16.20	SAMPLE ======= 9.05 11.20 15.87	%DIFF ====== 0.00 0.05 0.00

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT. Data File: /var/chem/gcms/mg.i/G120208.b/k3k593aa.d Report Date: 03-Dec-2008 09:09

# TestAmerica Knoxville

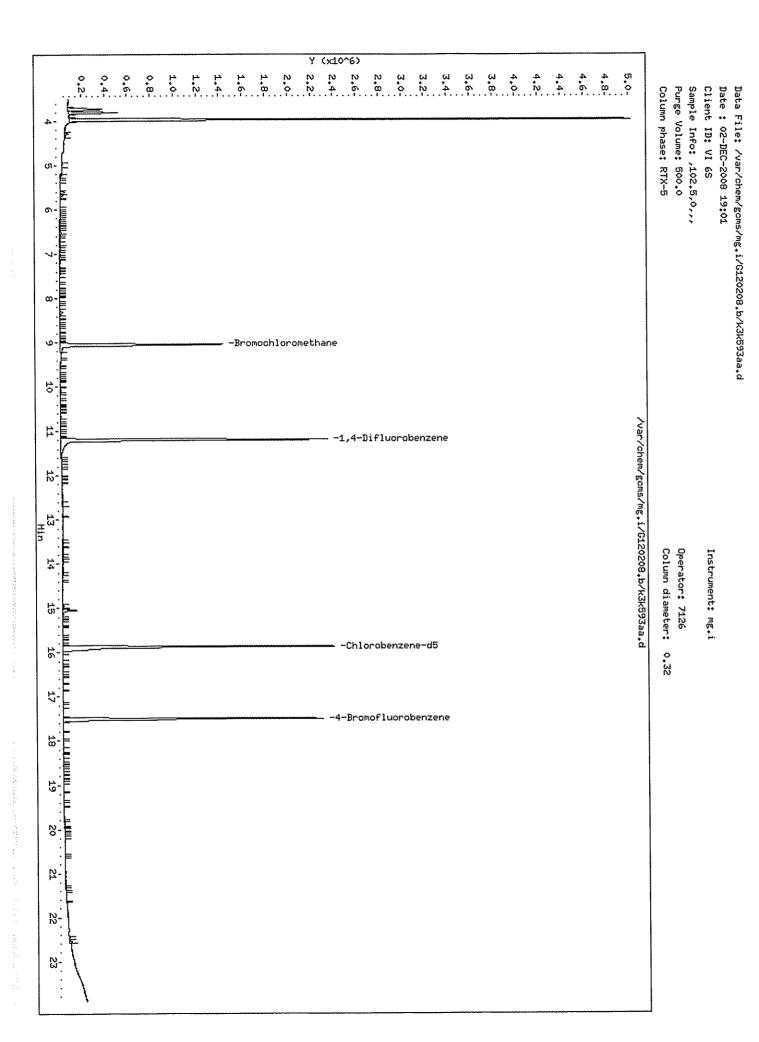
# RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00
Sample Matrix: GAS Fraction: O

Client SDG: H8K250101

Fraction: OTHER

Client Smp ID: VI 6S Operator: 7126


Lab Smp Id: K3K593AA Level: LOW

Data Type: MS DATA SpikeList File: all.spk

SampleType: SAMPLE Quant Type: ISTD

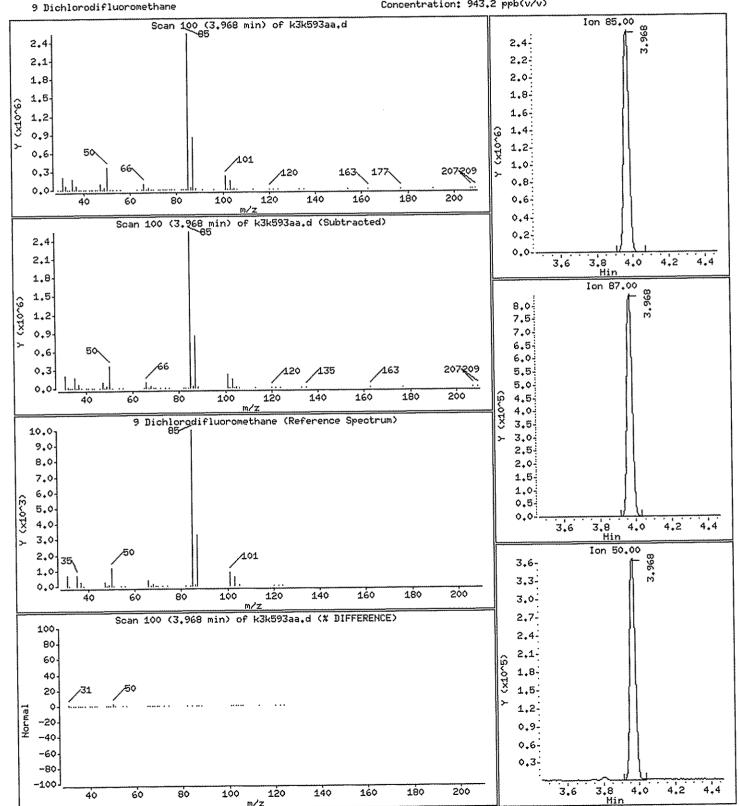
Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.589	89.72	70-130



Date : 02-DEC-2008 19:01

Client ID: VI 6S


Instrument: mg.i

Sample Info: ,102.5,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

Concentration: 943.2 ppb(v/v)

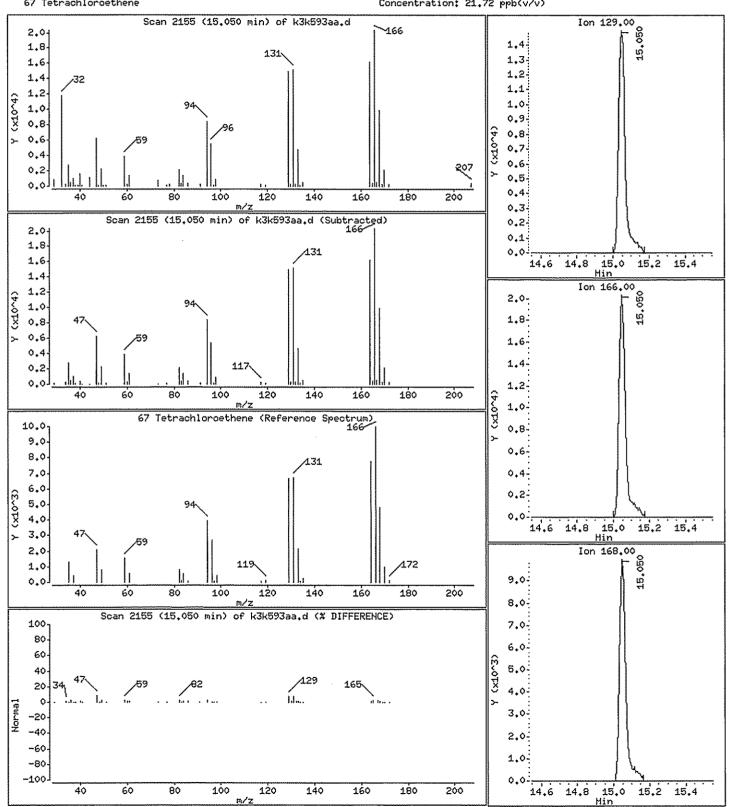


Date : 02-DEC-2008 19:01

Client ID: VI 6S

Instrument: mg.i

Sample Info: ,102.5,0,,,


Operator: 7126

Purge Volume: 500.0 Column phase: RTX-5

Column diameter: 0.32

67 Tetrachloroethene

Concentration: 21.72 ppb(v/v)



Lot-Sample # H8K250101 - 013

Work Order #

K3K6A1AA

Matrix...:

AIR

Date Sampled ...: Prep Date....: 11/18/2008 12/02/2008 Date Received ..: 11/24/2008

Prep Batch #....:

Analysis Date... 12/02/2008

Dilution Factor.:

8338089

1

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	0.21	0.080	0.91	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.36	0.20	1.3	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	1.1	0.20	3.7	0.69
Benzene	0.28	0.080	0.89	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	1.4	0.080	5.1	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	0.15	0.080	0.74	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	0.25	0.080	1.1	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	0.72	0.080	3.1	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	5.4	0.32	16	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.070	0.040	0.44	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	0.50	0.20	1.0	0.41

# New York State D.E.C.

# Client Sample ID: VI 7A

# GC/MS Volatiles

Lot-Sample # H8K250101 -	013 V	Vork Order# K3K6A	IAA	Matrix: AIR	
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
Cyclohexane	ND	0.20	ND	0.69	
1,2-Dichlorobenzene	ND	0.080	ND	0.48	
1,3-Dichlorobenzene	ND	0.080	ND	0.48	
1,4-Dichlorobenzene	ND	0.080	ND	0.48	
Dichlorodifluoromethane	0.76	0.080	3.8	0.40	
1,1-Dichloroethane	ND	0.080	ND	0.32	
1,2-Dichloroethane	ND	0.080	ND	0.32	
1,1-Dichloroethene	ND	0.080	ND	0.32	
cis-1,2-Dichloroethene	ND	0.080	ND	0.32	
trans-1,2-Dichloroethene	ND	0.080	ND	0.32	
1,2-Dichloropropane	ND	0.080	ND	0.37	
cis-1,3-Dichloropropene	ND	0.080	ND	0.36	
TENTATIVELY INDENTIFIED COMPOUNDS		RESULT		UNITS	
Ethyl alcohol		ND		ppb(v/v)	
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)	
4-Bromofluorobenzene		96	70 - 130		

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 03-Dec-2008 09:10

# TestAmerica Knoxville

Client Smp ID: VI 7A

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/k3k6a1aa.d
Lab Smp Id: K3K6A1AA Client Smp II
Inj Date: 02-DEC-2008 13:35
Operator: 7126 Inst ID: mg.i
Smp Info: ,0,,
Misc Info: G120208, T0155, nysdec.sub,,,, Inst ID: mq.i

Comment

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

Meth Date: 03-Dec-2008 09:07 tajh Quant Type: ISTD
Cal Date: 02-DEC-2008 10:05 Cal File: 1ptcal.d
Als bottle: 9
Dil Factor: 1.00000
Integrator: HP RTE Compound Sublist: no

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
С	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
æ	*************		==	=======================================			=======
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	355739	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.199	11.194 (1.000)	1698250	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1336742	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	817329	3.82322	3.823
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.438)	295490	0.76118	0.7612
	10 Chloromethane	52	4.152	4.146 (0.459)	18946	0.50343	0.5034
	20 Trichlorofluoromethane	101	5.451	5,446 (0.602)	69966	0.18924	0.1892
	31 Methylene Chloride	84	6.519	6.514 (0.720)	118451	1.06368	1.064
	38 Hexane	56	8.293	8.288 (0.916)	46861	0.35696	0.3570
	39 2-Butanone	72	8.298	8.304 (0.917)	183474	5.42454	5.424
	47 Benzene	78	10.666	10.666 (0.952)	70024	0.27749	0.2775
	49 Carbon Tetrachloride	117	10.687	10.682 (0.954)	17110	0.07030	0.07030
	61 Toluene	91	13.923	13.917 (0.877)	315628	1.35211	1.352
	62 1,1,2-Trichloroethane	97	14.187	14.004 (0.894)	23681	0.28696	0.3830
	69 Ethylbenzene	91	16.204	16.204 (1.021)	55205	0.20858	0.2086
	70 m&p-Xylene	91	16.360	16.360 (1.031)	145091	0.71744	0.7174

Data File: /var/chem/gcms/mg.i/G120208.b/k3k6a1aa.d Report Date: 03-Dec-2008 09:10

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		==	*****			
74 o-Xylene	91	16.883	16.883 (1.064)	53543	0.24616	0.2462
75 1,1,2,2-Tetrachloroethane	83	17.562	17.217 (1.106)	12811	0.08296	0:08296
81 1,3,5-Trimethylbenzene	120	18.112	18.215 (1.141)	12642	0.11503	0.1150-
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	31998	0.15034	0.1503
						12/00
						19000
81 1,3,5-Trimethylbenzene 85 1,2,4-Trimethylbenzene						_ <i>L N</i>

Report Date: 03-Dec-2008 09:10

## TestAmerica Knoxville

## INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k6alaa.d Lab Smp Id: K3K6A1AA

2 1,4-Difluorobenze

3 Chlorobenzene-d5

Analysis Type: OTHER Quant Type: ISTD

Operator: 7126

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m

Misc Info: G120208, T0155, nysdec.sub, , , ,

Calibration	Date:	02-DEC-2008

1698250

1336742

-18.98

-15.99

Calibration Time: 09:11 Client Smp ID: VI 7A

Level: LOW Sample Type: AIR

2944943

2235474

			AREA	LIMIT		
i	COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
		========	========	========	========	======
	1 Bromochloromethan	421439	250756	592122	355739	-15.59

1247147

946696

		Rii I	тмтт		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		8.72 10.86 15.54	9.38 11.52 16.20	9.05 11.20 15.87	0.00 0.05 0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

2096045

1591085

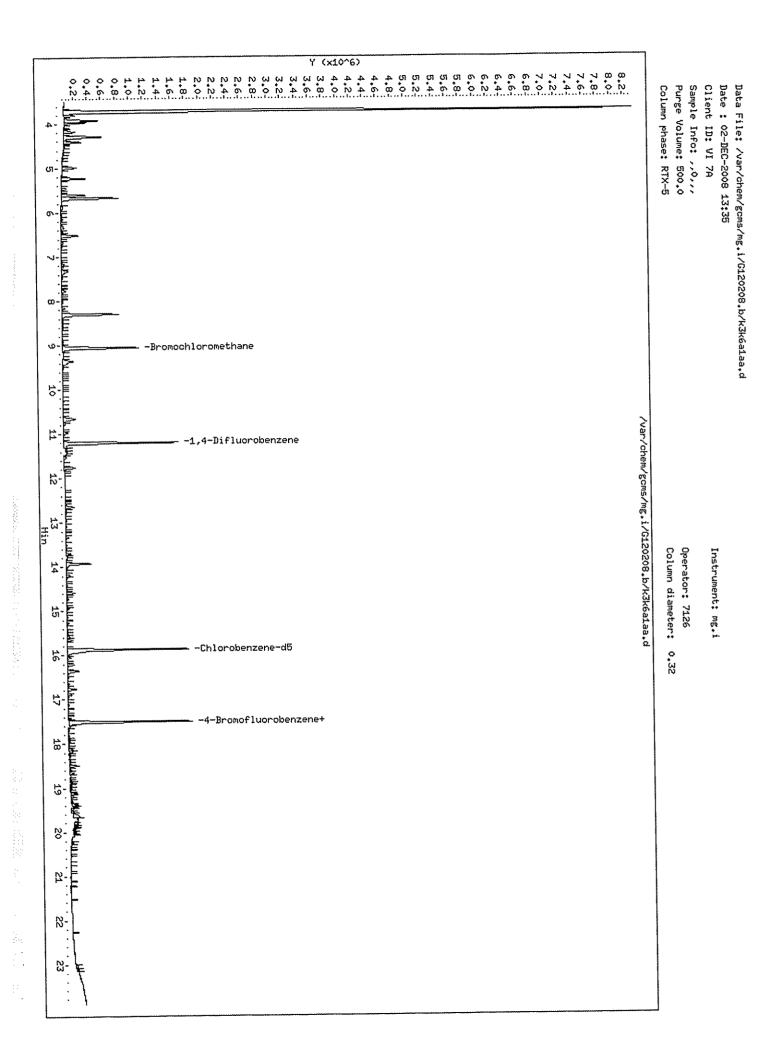
Data File: /var/chem/gcms/mg.i/G120208.b/k3k6a1aa.d Report Date: 03-Dec-2008 09:10

# TestAmerica Knoxville

# RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS


Client Smp ID: VI 7A Operator: 7126

Lab Smp Id: K3K6A1AA Level: LOW

SampleType: SAMPLE Quant Type: ISTD Data Type: MS DATA SpikeList File: all.spk

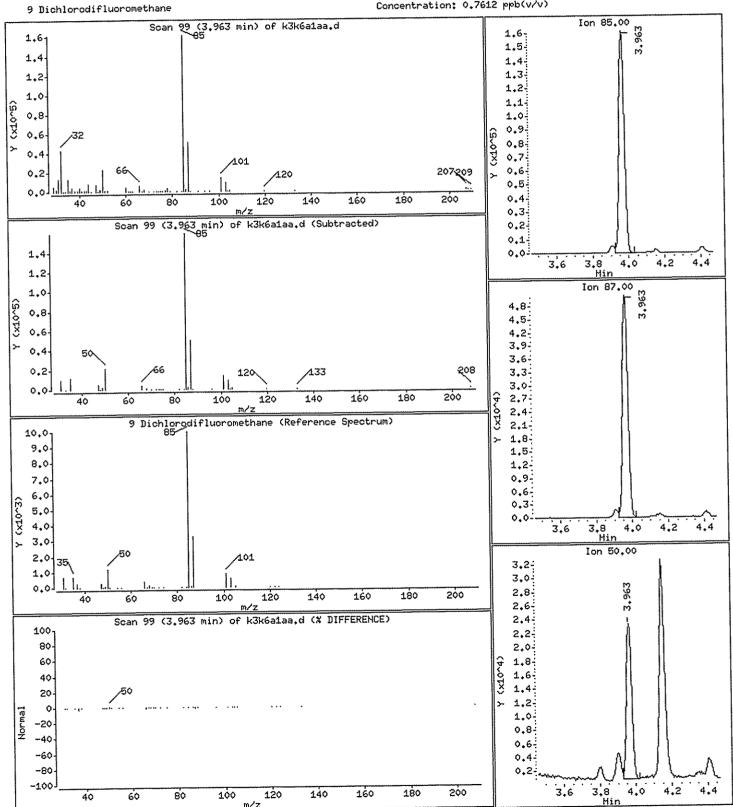
Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, nysdec.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 64-Bromofluorobenze	4.000	3.823	95.58	70-130



Date : 02-DEC-2008 13:35

Client ID: VI 7A


Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 0.7612 ppb(v/v)

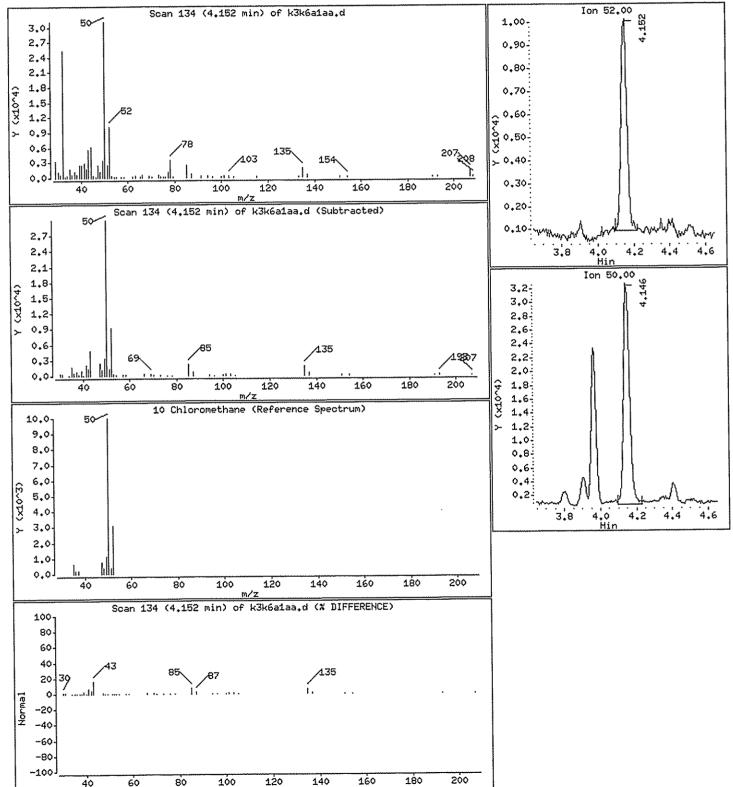


Date: 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

### 10 Chloromethane

Concentration: 0.5034 ppb(v/v)

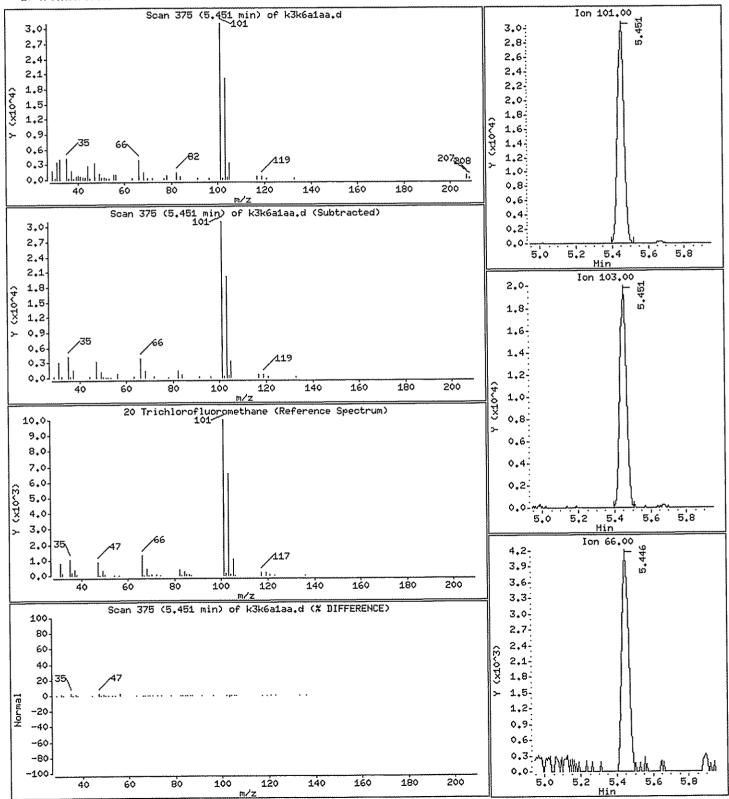


Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

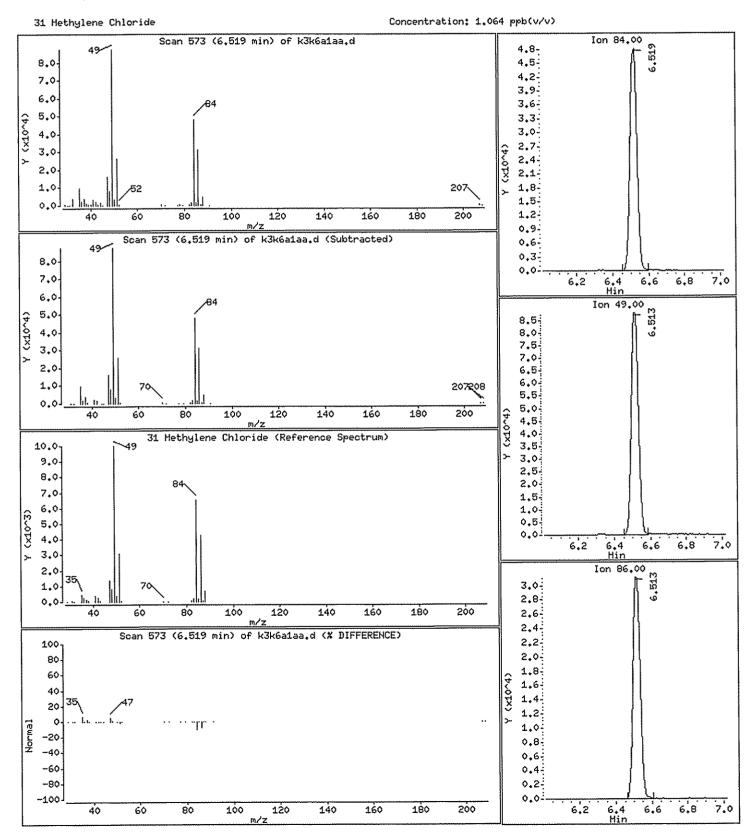
20 Trichlorofluoromethane

Concentration: 0.1892 ppb(v/v)



Date : 02-DEC-2008 13:35

Client ID: VI 7A


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

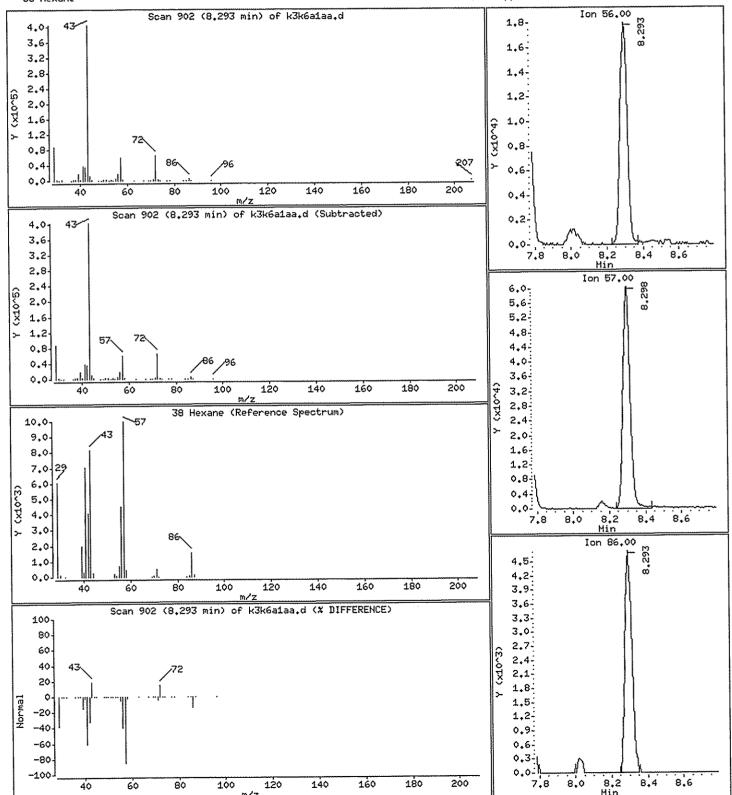


Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

38 Hexane

Concentration: 0.3570 ppb(v/v)

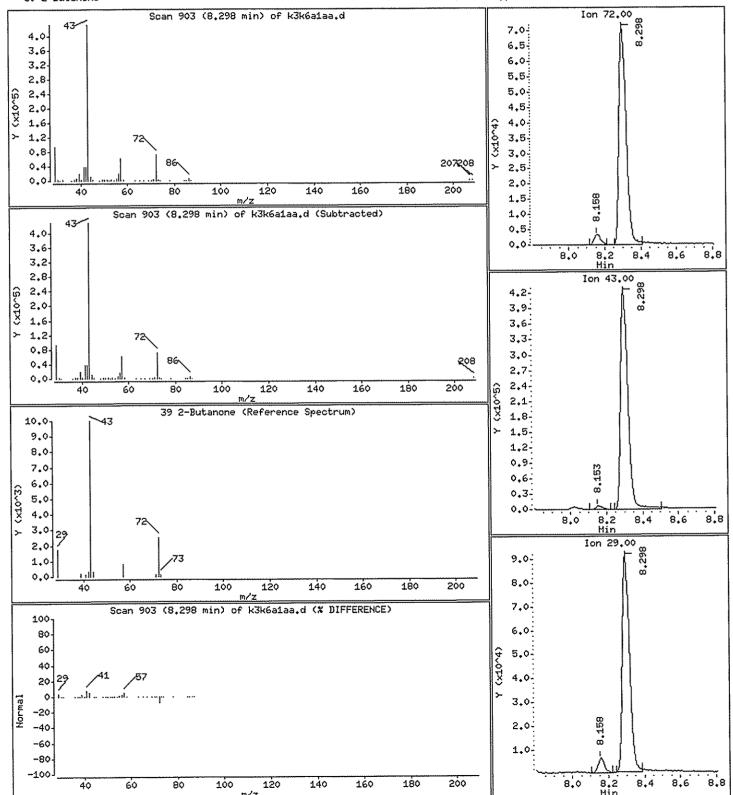


Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 5.424 ppb(v/v)



Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Column phase: RTX-5

Operator: 7126

Column diameter: 0.32

47 Benzene

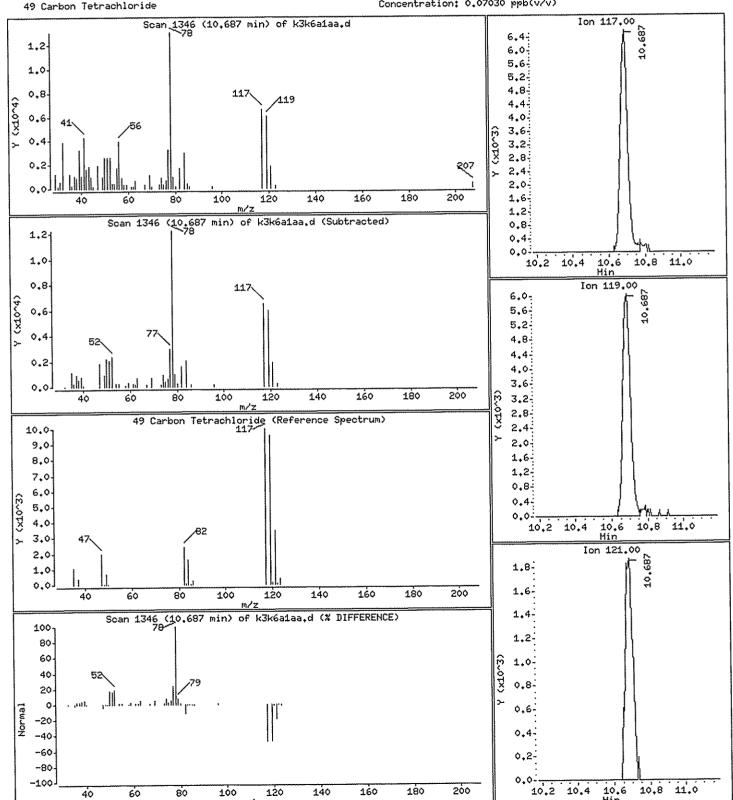
Concentration: 0.2775 ppb(v/v)



Date: 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Column phase: RTX-5

Operator: 7126

Column diameter: 0.32

Concentration: 0.07030 ppb(v/v)

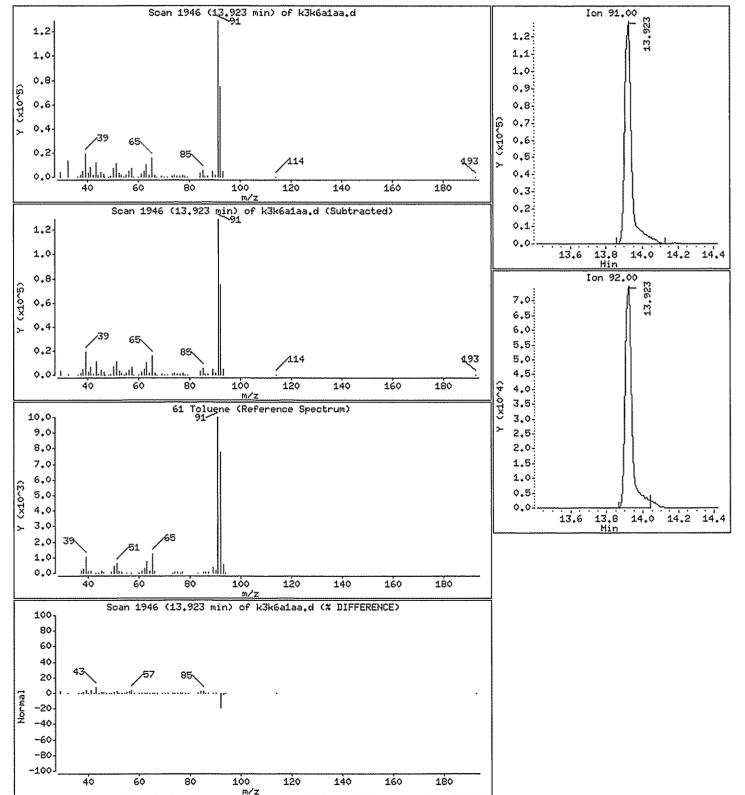


Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

61 Toluene

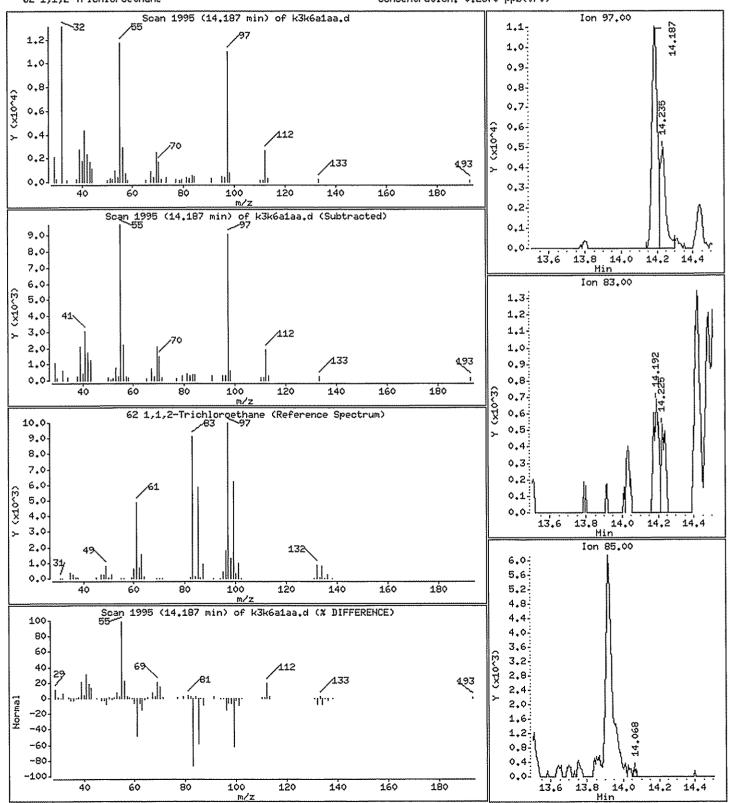
Concentration: 1.352 ppb(v/v)



Date: 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

62 1,1,2-Trichloroethane

Concentration: 0.2870 ppb(v/v)

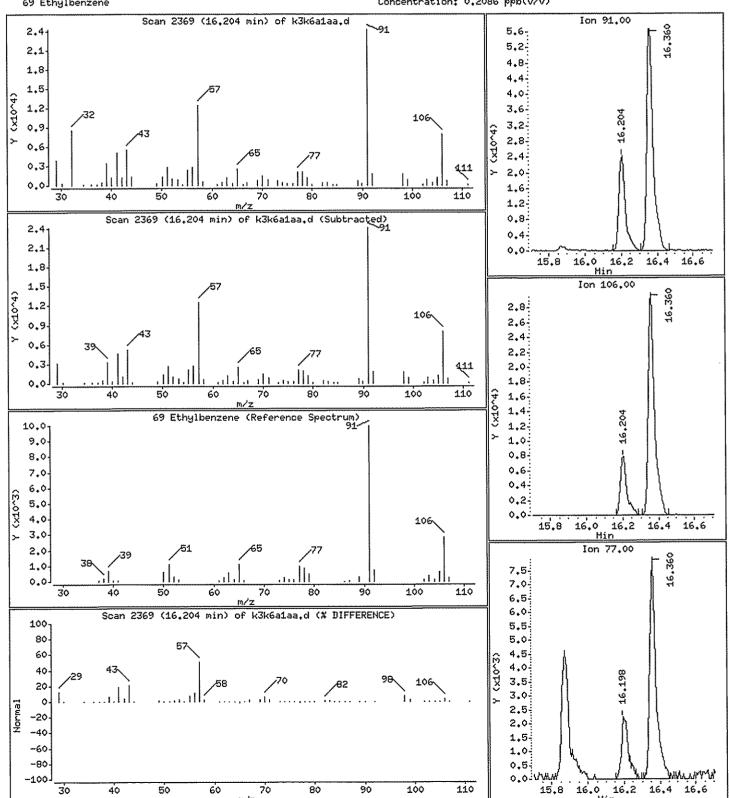


Date: 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 0.2086 ppb(v/v)

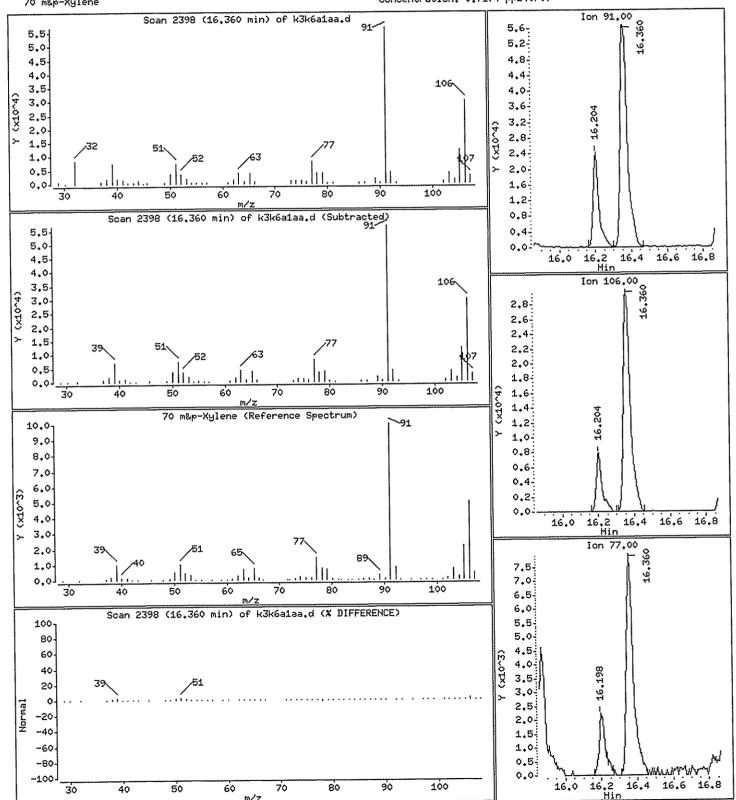


Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Column phase: RTX-5

Operator: 7126

Column diameter: 0.32

70 m&p-Xylene

Concentration: 0.7174 ppb(v/v)



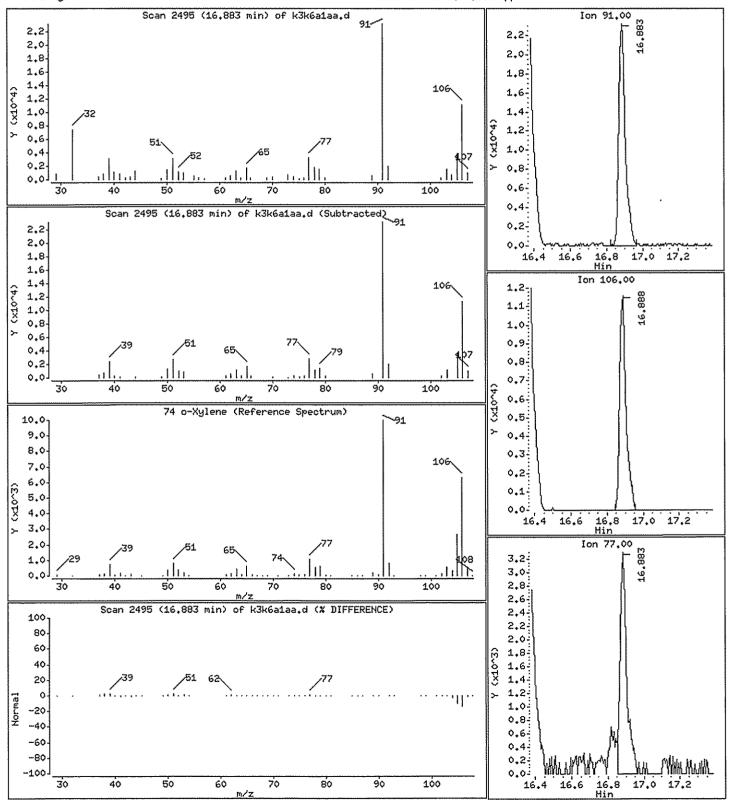
Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

74 o-Xylene

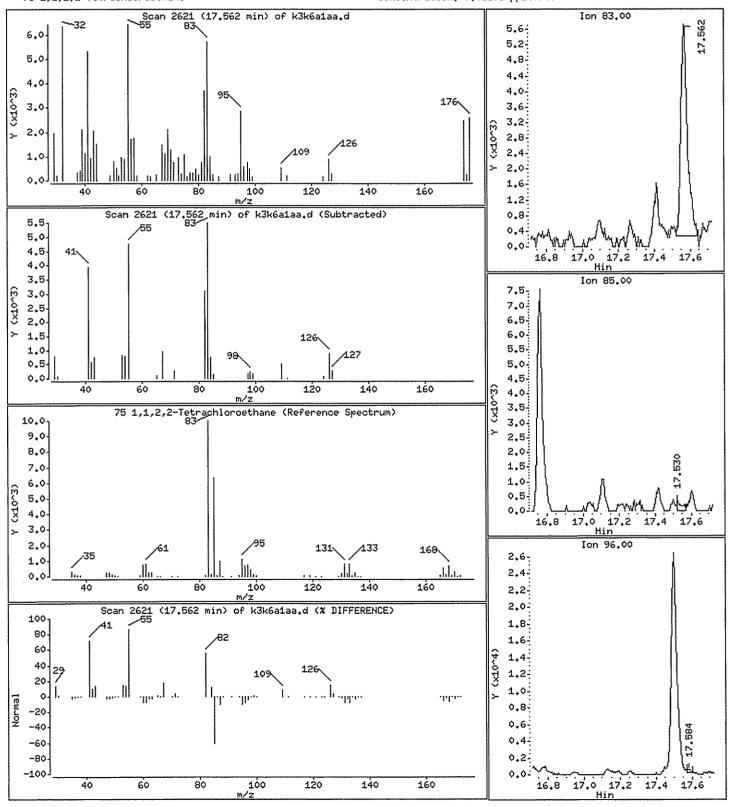
Concentration: 0.2462 ppb(v/v)



Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

75 1,1,2,2-Tetrachloroethane

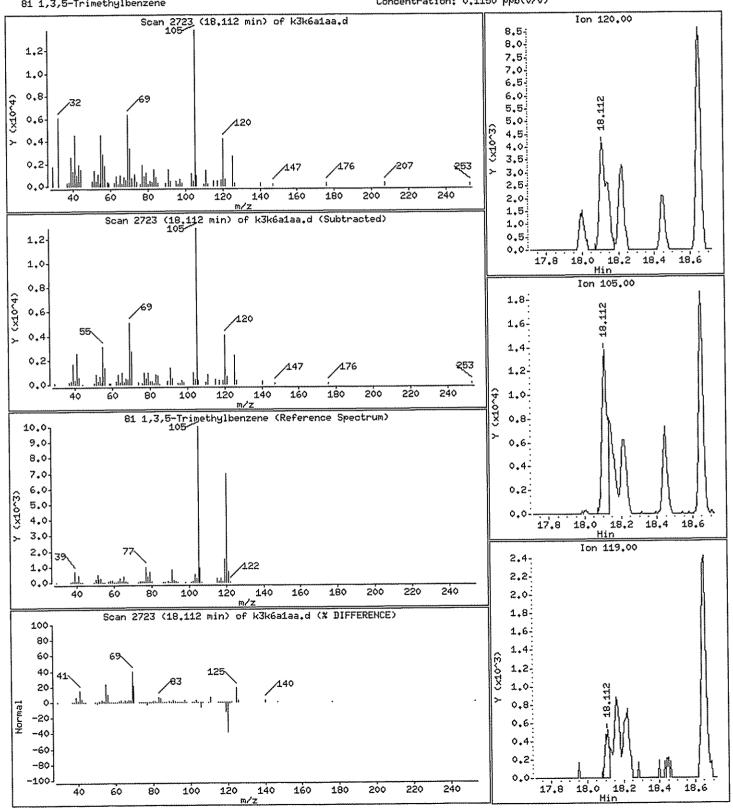
Concentration: 0.08296 ppb(v/v)



Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i


Sample Info: ,,0,,,

Operator: 7126

Purge Volume: 500.0 Column phase: RTX-5

81 1,3,5-Trimethylbenzene

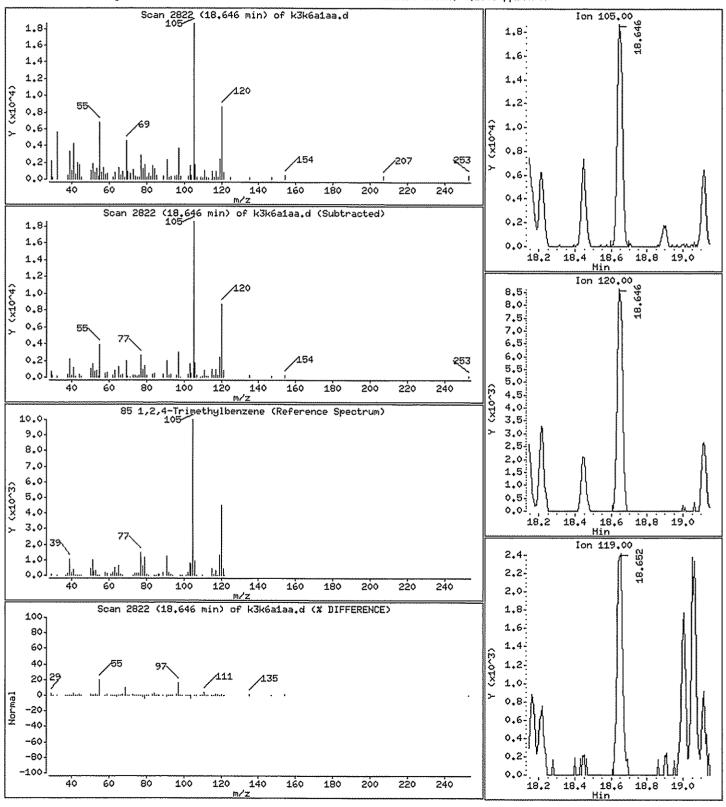
Concentration: 0.1150 ppb(v/v)



Date : 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg,i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

85 1,2,4-Trimethylbenzene

Concentration: 0.1503 ppb(v/v)



Report Date: 03-Dec-2008 09:10

## TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G120208.b/k3k6a1aa.d_

Client Smp ID: VI 7A Lab Smp Id: K3K6A1AA

Inj Date : 02-DEC-2008 13:35

Operator : 7126 Inst ID: mg.i

Smp Info : ,,0,,,
Misc Info : G120208,T0155,nysdec.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 09:07 tajh Quant Tyr Quant Type: ISTD Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 9

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

ISTD	RT	HEIGHT	AMOUNT
* 1 Bromochloromethane	9.053	1096907	4.000

Ethyl alcohol 4.982 220461 0.80393689 99 0.8039

CAS #: 64-17-5 NISTO5.1 93 1(L)

QC Flag Legend

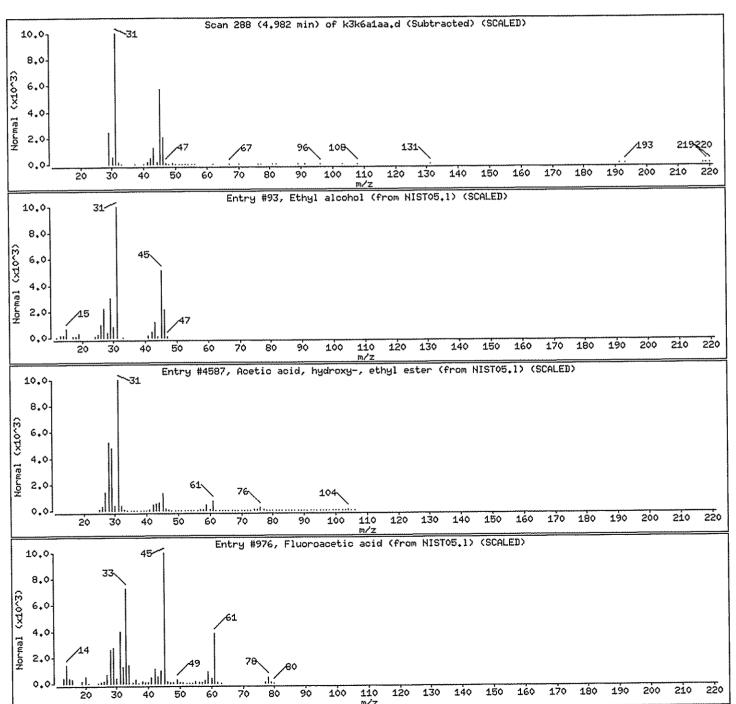
L - Operator selected an alternate library search match.

72590 height

Date: 02-DEC-2008 13:35

Client ID: VI 7A

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	93	99	C2H60	46
Acetic acid, hydroxy-, ethyl ester	623-50-7	NISTO5.1	4587	33	C4H8O3	104
Fluoroacetic acid	144-49-0	NISTO5.1	976	17	C2H3FO2	78



# GC/MS Volatiles

Lot-Sample # H8K250101 - 014

Work Order # K3K6C1AA

AIR Matrix....:

Date Sampled ...: Prep Date....: 11/18/2008 11/29/2008 Date Received ..: 11/24/2008

Prep Batch #....:

Analysis Date... 11/29/2008

Dilution Factor .:

8336265 1

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane		0.000		
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	1.3	0.080	5.5	0.35
Trichlorofluoromethane	0.19	0.080	1.1	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	0.70	0.20	2.5	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	0.77	0.20	2.7	0.69
Benzene	0.38	0.080	1.2	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	0.14	0.080	0.58	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	1.1	0.080	7.1	0.54
Toluene	2.0	0.080	7.6	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	2.2	0.080	12	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	0.28	0.080	1.4	0.39
1,3,5-Trimethylbenzene	0.13	0.080	0.65	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	1.1	0.080	4.7	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	0.092	0.080	0.71	0.61
m-Xylene & p-Xylene	2.8	0.080	12	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	8.0	0.32	24	0.94
4-Methyl-2-pentanone (MIBK)	0.27	0.20	1.1	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.049	0.040	0.31	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41
Cyclohexane	ND	0.20	ND	0.69
o joronomuna				TQ-14 rev5.rpt version 5.0.103 10/12/20

# New York State D.E.C.

# Client Sample ID: VI 7S

# GC/MS Volatiles

Lot-Sample # H8K250101 -	014 <b>V</b>	Vork Order# K3K6C	lAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,3-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dichlorobenzene	ND	0.080	ND	0.48
Dichlorodifluoromethane	0.54	0.080	2.7	0.40
1,1-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
TENTATIVELY INDENTIFIED (	COMPOUNDS	RESULT		UNITS
Ethyl alcohol		ND		ppb(v/v)
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		97	<del>mandarda</del>	70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found (before rounding) * (Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:44

# TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G112908.b/k3k6claa.d

Client Smp ID: VI 7S Lab Smp Id: K3K6C1AA

Inj Date : 29-NOV-2008 19:37

Inst ID: mq.i : 7126 Operator

Smp Info : ,,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G112908.b/T0155.m Method

Quant Type: ISTD Cal File: rlstd.d Meth Date: 02-Dec-2008 11:42 tajh Cal Date : 26-NOV-2008 12:31

Compound Sublist: nysdec.sub

Als bottle: 5
Dil Factor: 1.00000
Integrator: HP RTE
Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Default calibration vol Default sample volume

Cpnd Variable

Local Compound Variable

						COMPERATION	110110
		QUANT SIG				ON-COLUMN	FINAL
Cc	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	( (v/v) dqq)
		====	==	医医髓性结节 医性性结节	5555±	**=====	** ** ** ** ** **
*	1 Bromochloromethane	128	9.059	9.053 (1.000)	378104	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.205	11.200 (1.000)	1866942	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1444224	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	899819	3.89584	3.896
7	9 Dichlorodifluoromethane	85	3.968	3.958 (0.438)	221443	0.53669	0.5367
	17 Chloroethane	64	4.750	4.869 (0.524)	4119	0.08440	0.08410
	20 Trichlorofluoromethane	101	5.457	5.446 (0.602)	74979	0.19080	0.1908
	30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.325 (0.699)	24212	0.09208	0.09208
	31 Methylene Chloride	84	6.524	6.514 (0.720)	91525	0.77327	0.7733
	38 Hexane	56	8.298	8.293 (0.916)	97576	0.69931	0.6993
	39 2-Butanone	72	8.304	8.315 (0.917)	289212	8.04499	8.045
	44 1,1,1-Trichloroethane	97	10.083	10.078 (1.113)	552258	2.20862	2.209
	45 1,2-Dichloroethane	62	10.078	10.197 (0.899)	36592	0.27115	0.2712
	47 Benzene	78	10.671	10.671 (0.952)	106222	0.38290	0.3829
	47 Benzene 49 Carbon Tetrachloride	117	10.687	10.682 (0.954)	13219	0.04941	0.04941

CONCENTRATIONS

Data File: /var/chem/gcms/mg.i/G112908.b/k3k6claa.d Report Date: 02-Dec-2008 11:44

							CONCENTRA:	FIONS
		OUANT SIG					ON-COLUMN	FINAL
Compounds		MASS	RT	EXP RT RI	EL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
-			==			****		========
58 4-Methyl-	2-pentanone	43	13.065	13.065 (	1.166)	62943	0.27193	0.2719
61 Toluene		91	13.923	13.923 (	0.877)	509265	2.01927	2.019
62 1.1.2-Tri	chloroethane	97	14.192	14.009 (	0.894)	8586	0.09630	A-0963U
67 Tetrachlo		129	15.050	15.050 (	0.948)	137205	1.05316	1.053
69 Ethylbenz		91	16.204	16.204 (	1.021)	360169	1.25954	1.260
70 m&p-Xylen		91	16.360	16.365 (	1.031)	611007	2.79645	2.796
73 Styrene		104	16.829	16.829 (	1.060)	20892	0.13518	0.1352
74 o-Xylene		91	16.888	16.888 (	1.064)	252386	1.07400	1.074
•	methylbenzene	120	18.220	18.215 (	1.148)	15637	0.13170	0.1317
	methylbenzene	105	18.652	18.646 (	1.175)	63327	0.27539	0.2754

12/2084

Calibration Date: 29-NOV-2008

Calibration Time: 10:08 Client Smp ID: VI 7S

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G112908.b/k3k6claa.d

Report Date: 02-Dec-2008 11:44

# TestAmerica Knoxville

## INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: k3k6claa.d Lab Smp Id: K3K6C1AA

Analysis Type: OTHER

Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m Misc Info: G112908, T0155, 1-all.sub,,,,

COMPOUND  1 Bromochloromethan 2 1,4-Difluorobenze	2140476	1273583	LIMIT UPPER ======== 607137 3007369	SAMPLE ======= 378104 1866924	
3 Chlorobenzene-d5	1639335	975404	2303266	1444224	-11.90

COMPOUND  1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	RT I LOWER ======= 8.72 10.87 15.54	JIMIT UPPER ======== 9.38 11.53 16.20	SAMPLE ======= 9.06 11.20 15.87	%DIFF ====== 0.06 0.05 0.00
	 	Ī ,	·	

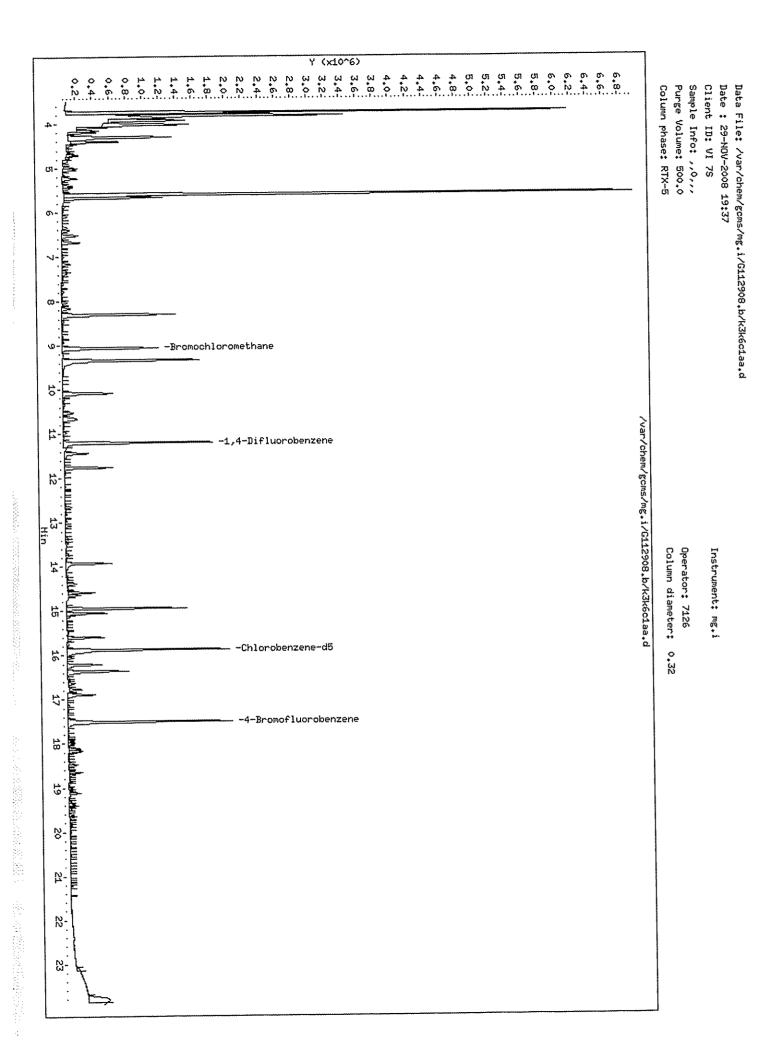
AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT. Data File: /var/chem/gcms/mg.i/G112908.b/k3k6claa.d Report Date: 02-Dec-2008 11:44

# TestAmerica Knoxville

# RECOVERY REPORT

Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS


Client Smp ID: VI 7S Operator: 7126

Lab Smp Id: K3K6C1AA Level: LOW

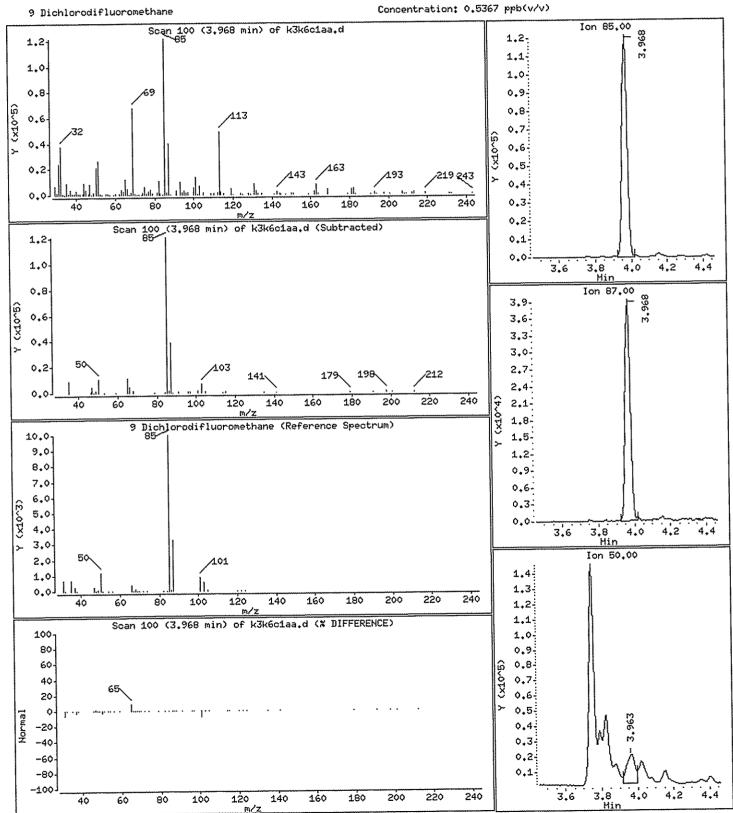
SampleType: SAMPLE Quant Type: ISTD Data Type: MS DATA SpikeList File: all.spk

Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 64-Bromofluorobenze	4.000	3.896	97.40	70-130



Date: 29-NOV-2008 19:37


Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

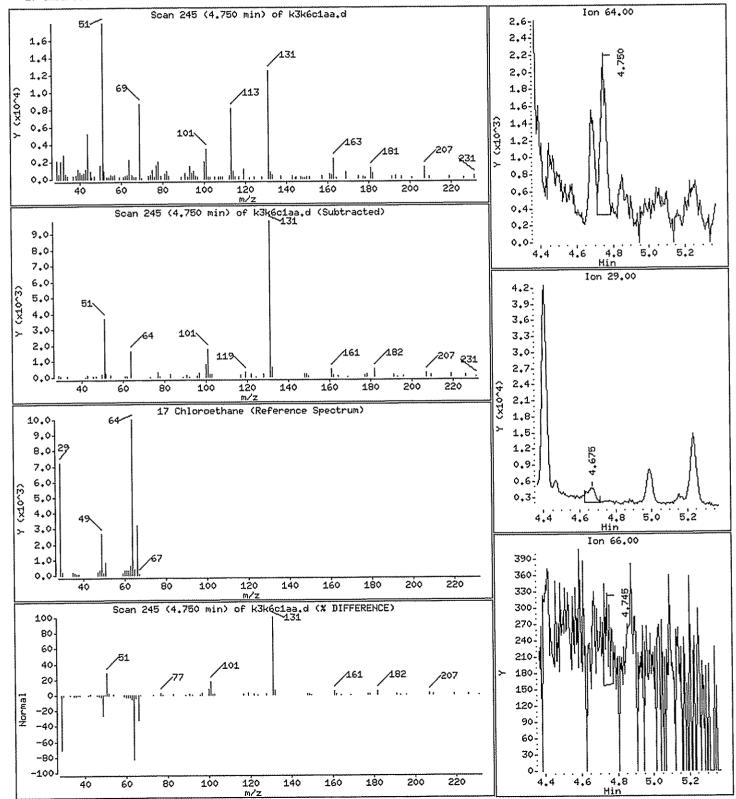


Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

#### 17 Chloroethane

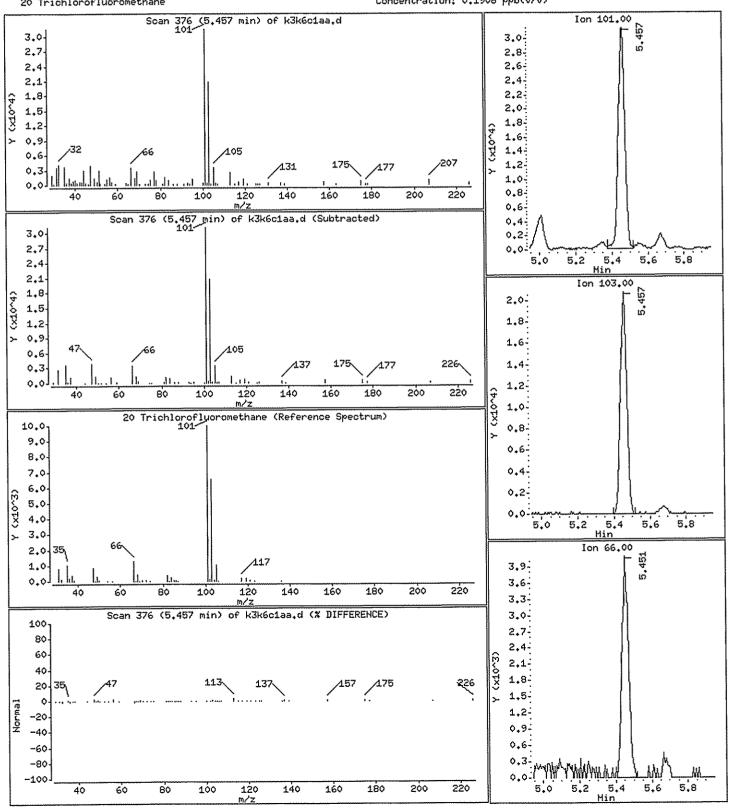
Concentration: 0.08440 ppb(v/v)



Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

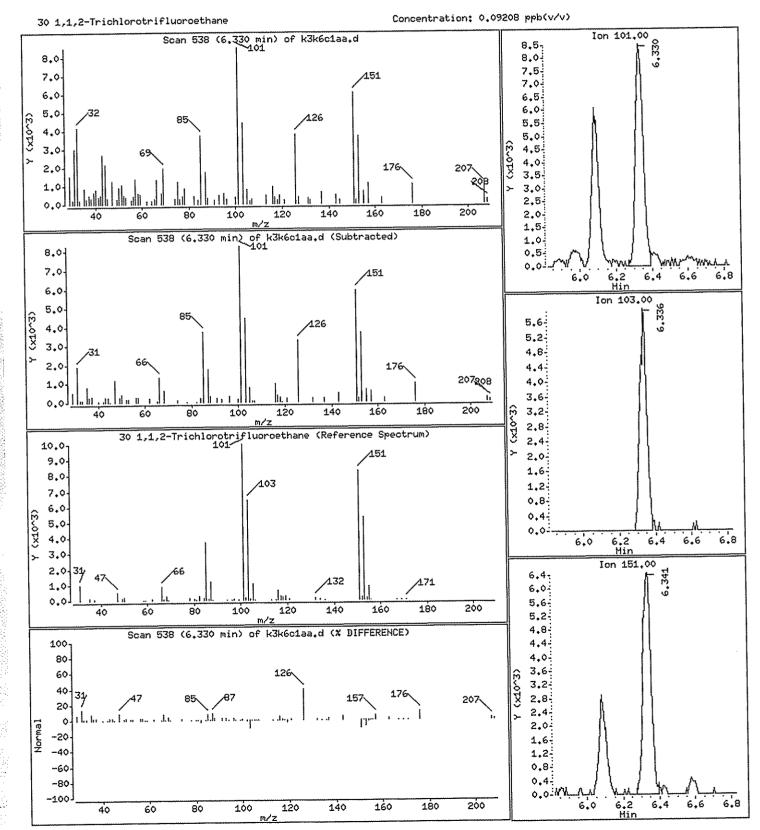
Column phase: RTX-5

20 Trichlorofluoromethane

Concentration: 0.1908 ppb(v/v)



Date : 29-NOV-2008 19:37


Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

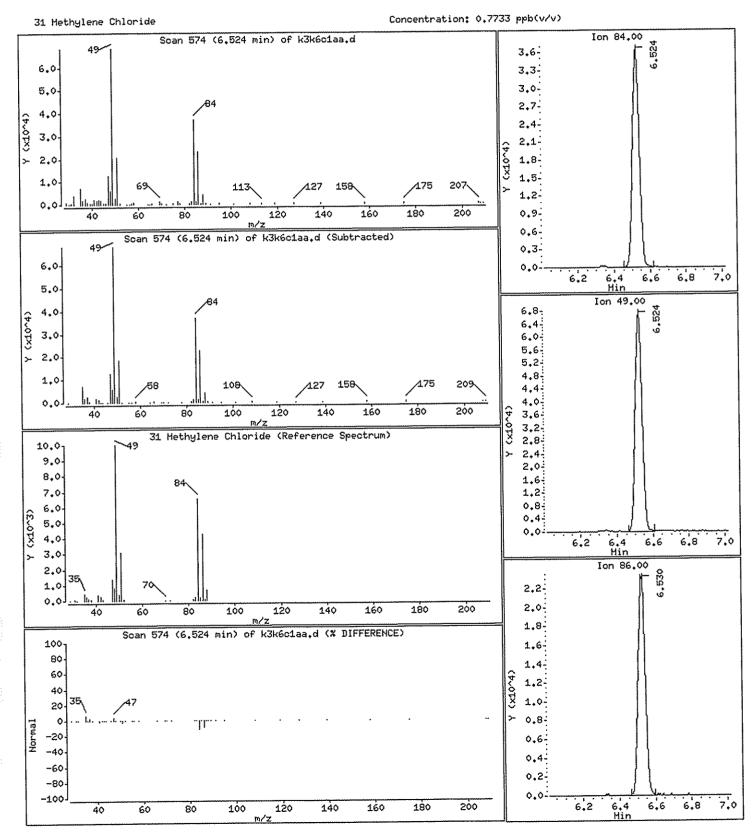
Operator: 7126

Column phase: RTX-5



Date : 29-NOV-2008 19:37

Client ID: VI 7S


Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

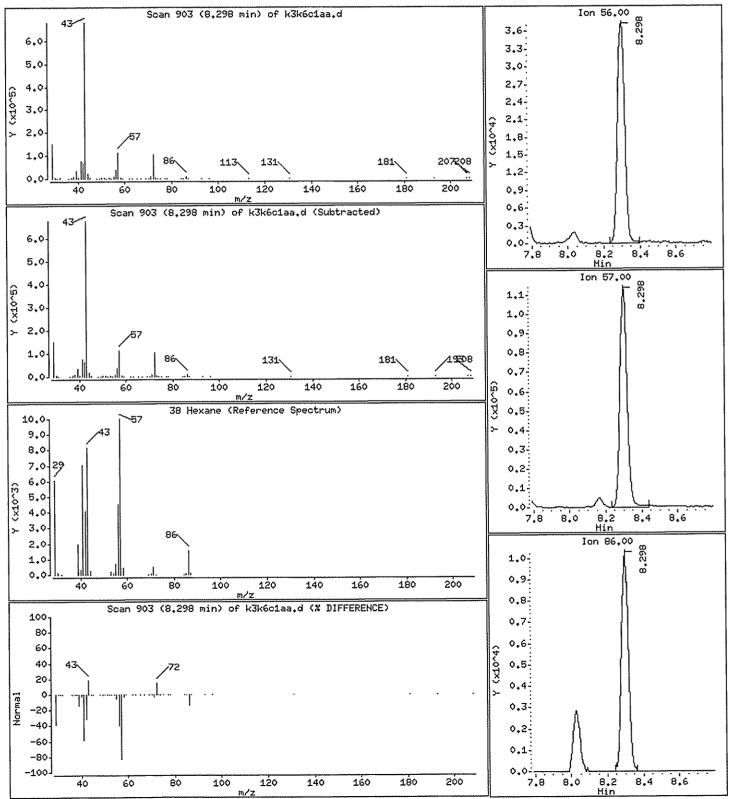


Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



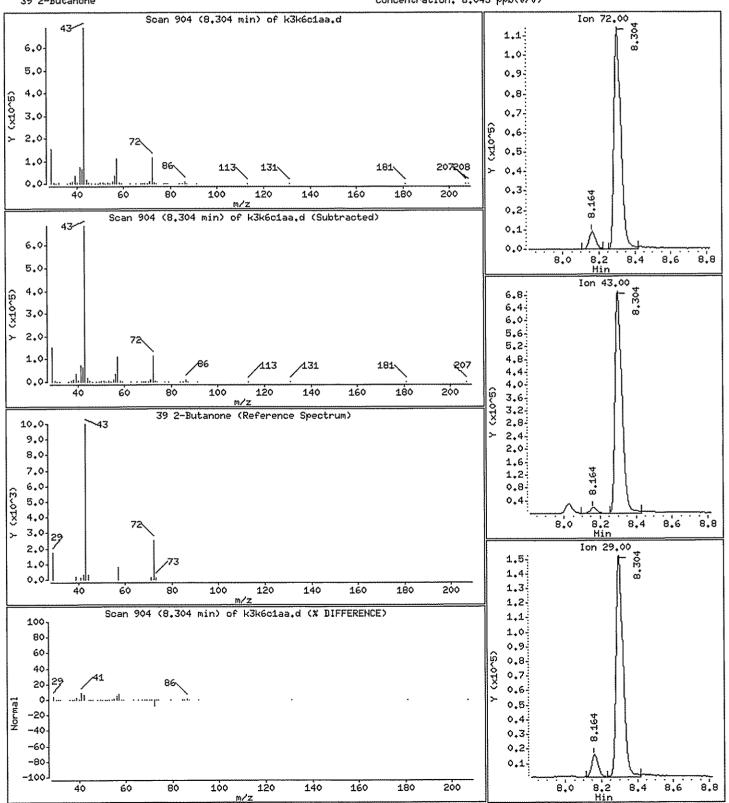
Concentration: 0.6993 ppb(v/v)



Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

39 2-Butanone

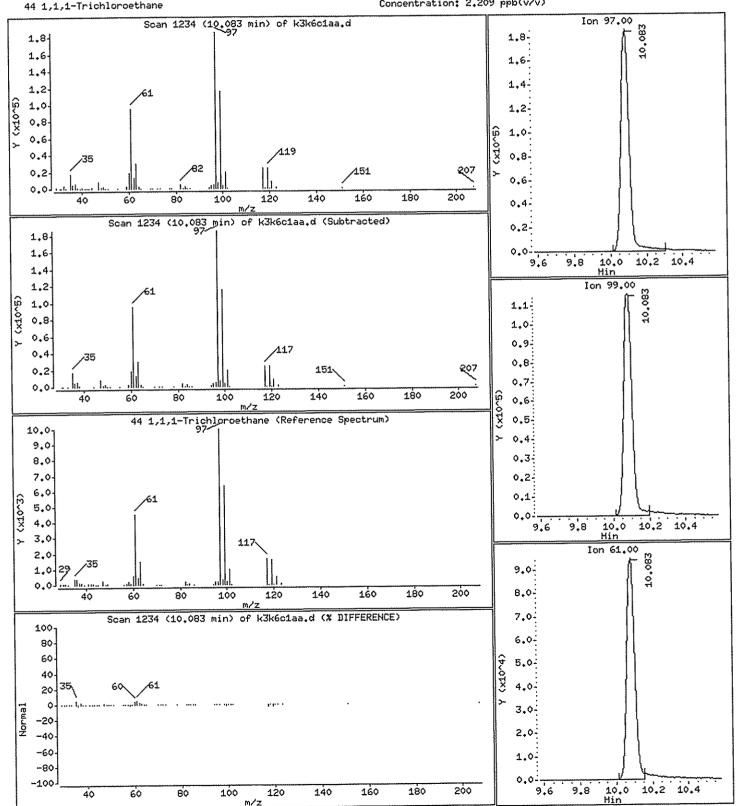
Concentration: 8.045 ppb(v/v)



Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Concentration: 2,209 ppb(v/v)

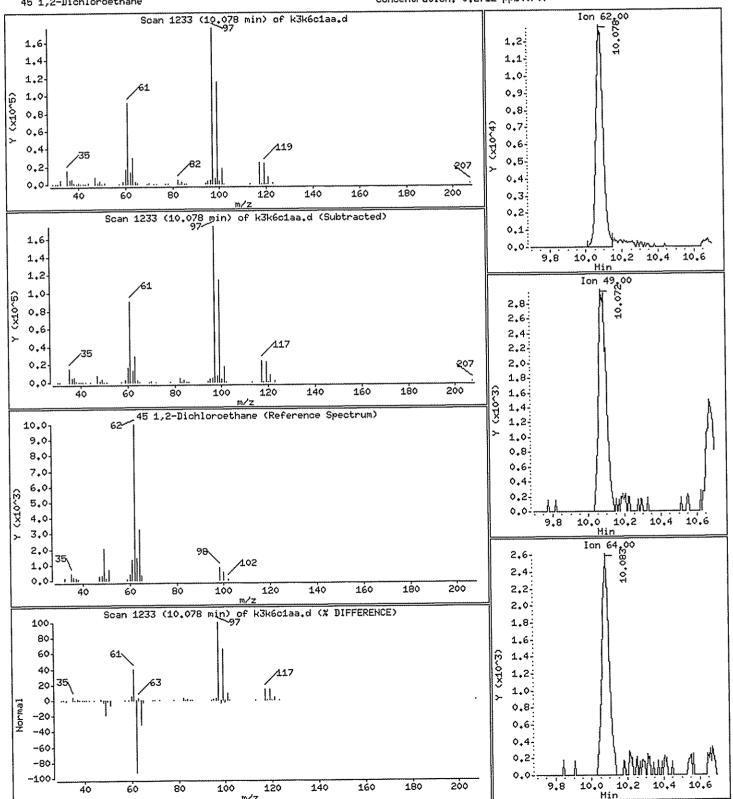


Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

45 1,2-Dichloroethane

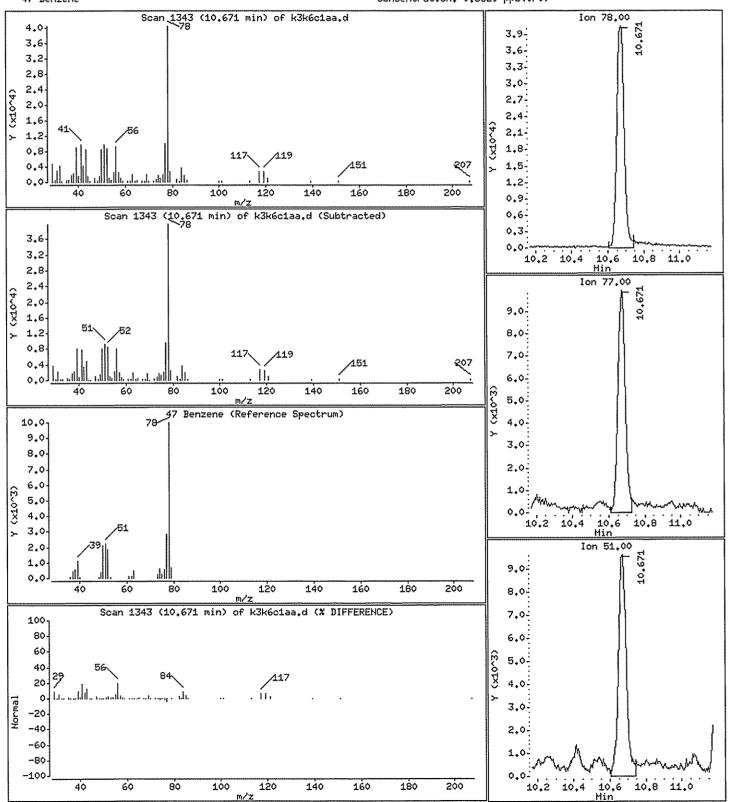
Concentration: 0.2712 ppb(v/v)



Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

47 Benzene

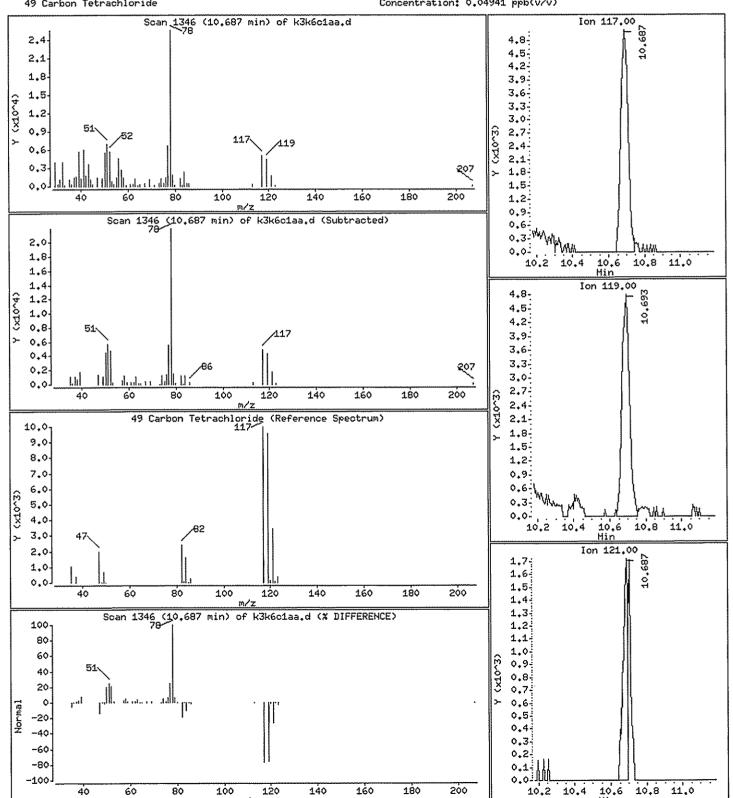
Concentration: 0.3829 ppb(v/v)



Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

49 Carbon Tetrachloride

Concentration: 0.04941 ppb(v/v)



Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

58 4-Methyl-2-pentanone

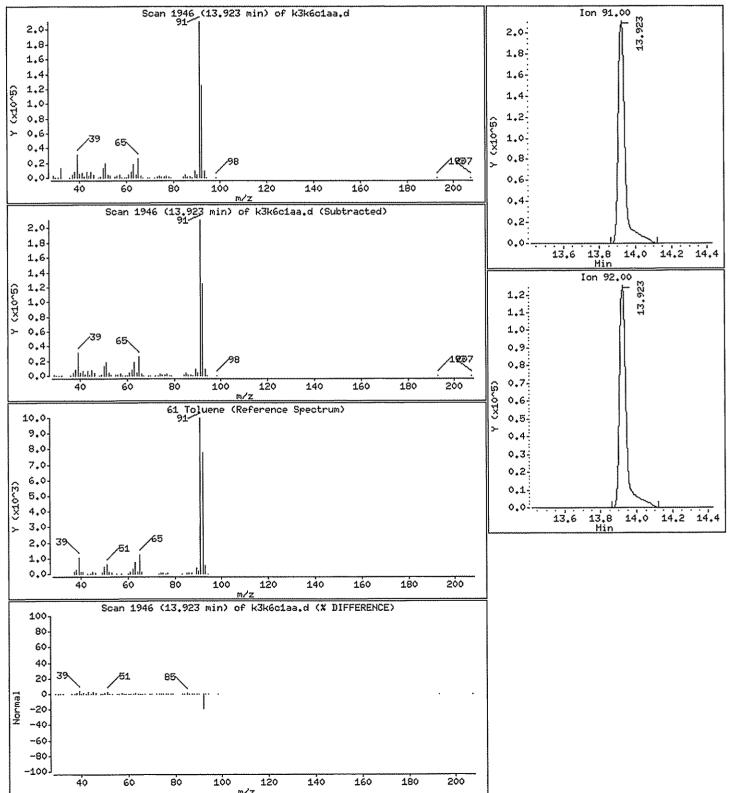
Concentration: 0.2719 ppb(v/v)



Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

61 Toluene

Concentration: 2.019 ppb(v/v)

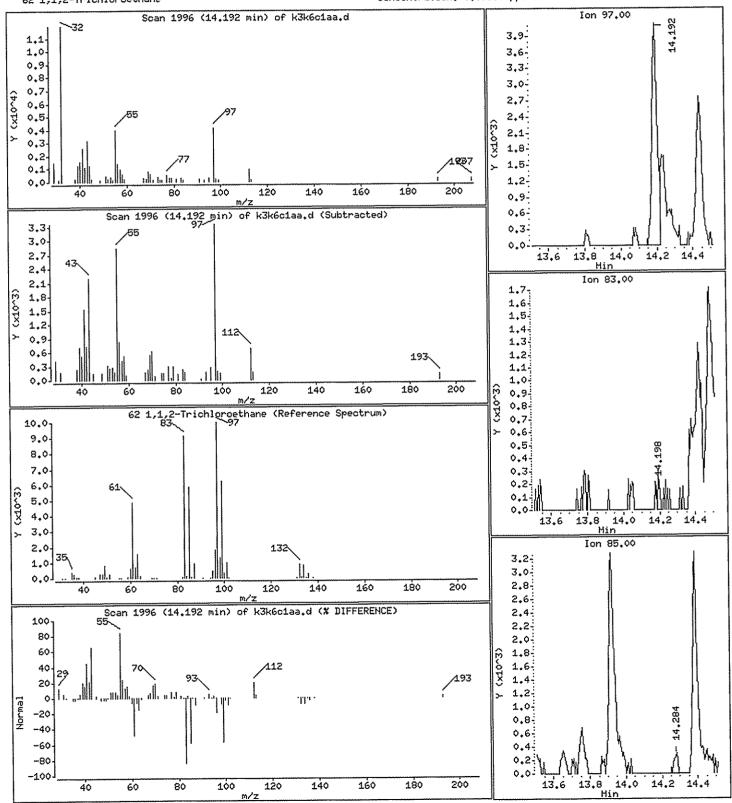


Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

62 1,1,2-Trichloroethane

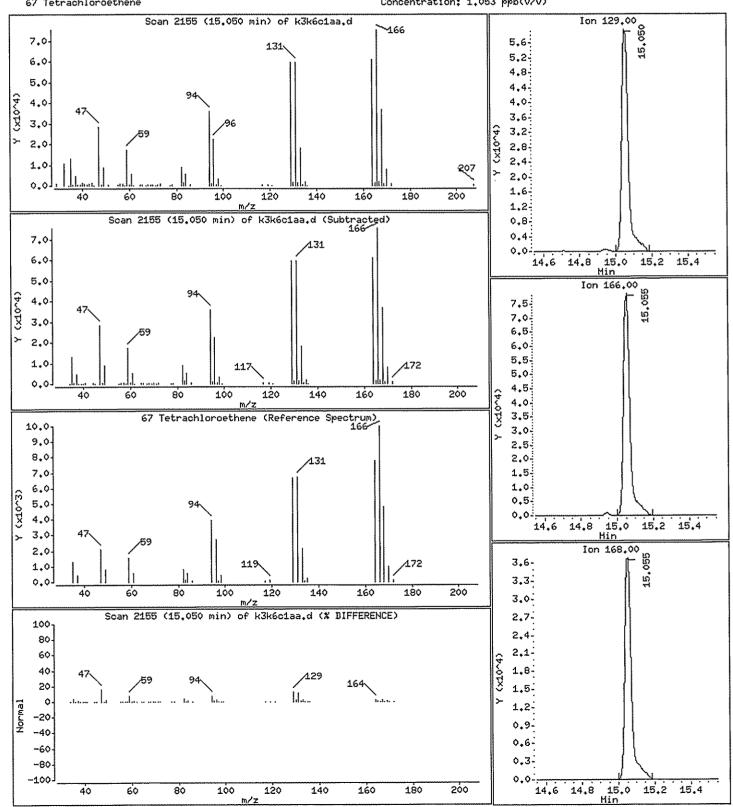
Concentration: 0.09630 ppb(v/v)



Date: 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

67 Tetrachloroethene

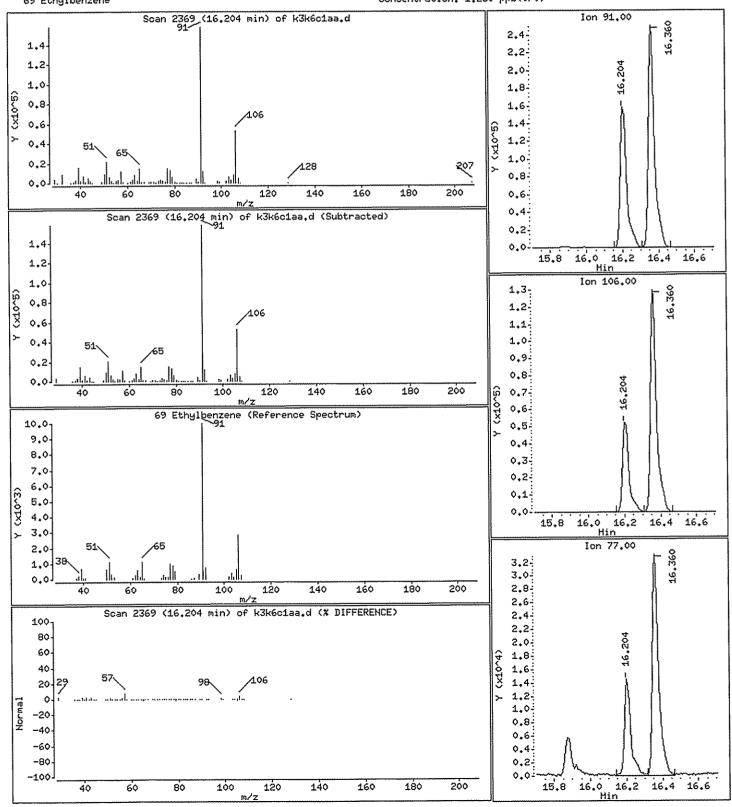
Concentration: 1.053 ppb(v/v)



Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

69 Ethylbenzene

Concentration: 1.260 ppb(v/v)

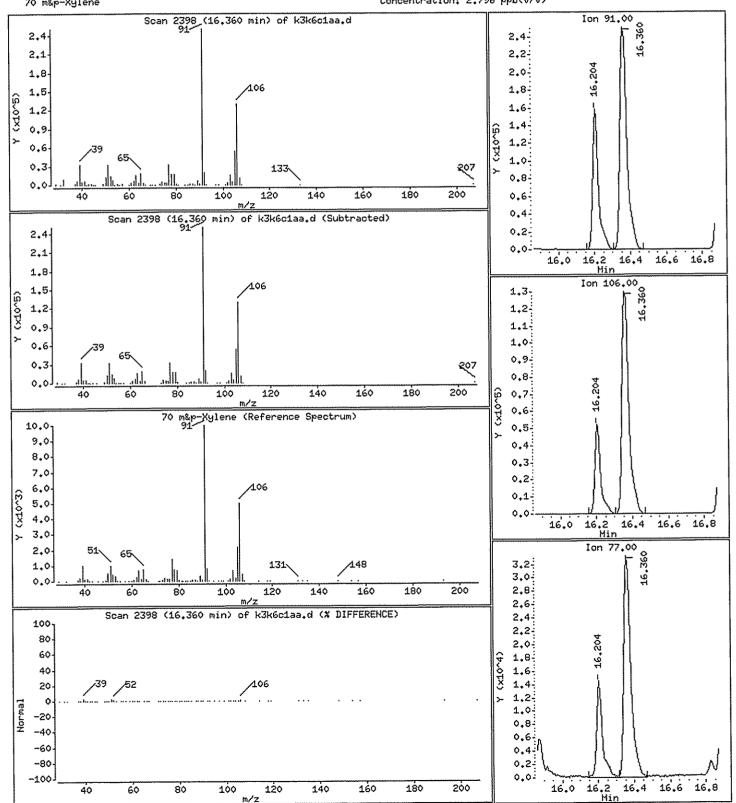


Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Column phase: RTX-5

Operator: 7126

Column diameter: 0.32

70 m&p-Xylene

Concentration: 2.796 ppb(v/v)

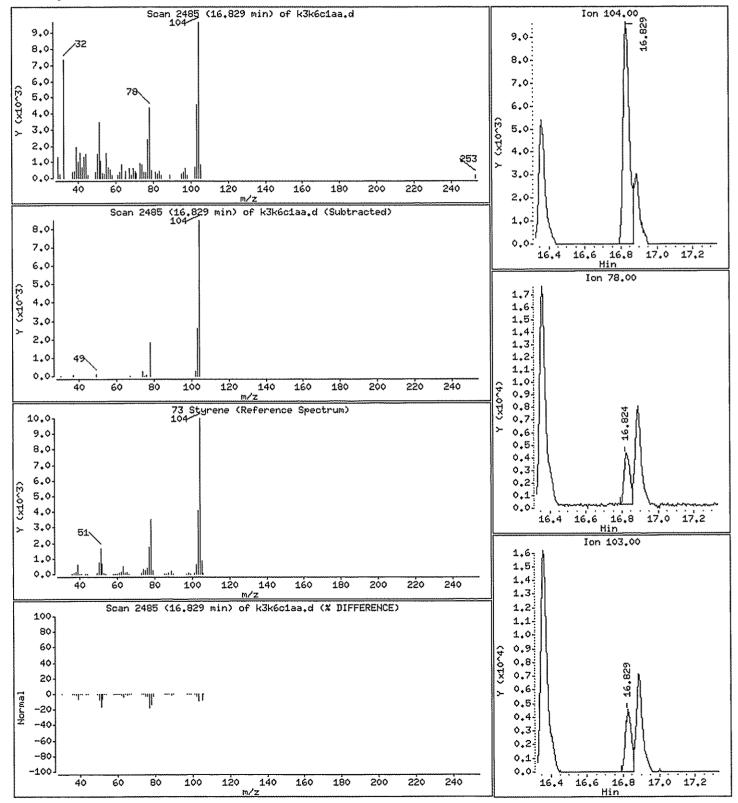


Date : 29-NOV-2008 19:37

Client IB; VI 7S

Instrument: mg.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5 Column diameter: 0.32

73 Styrene

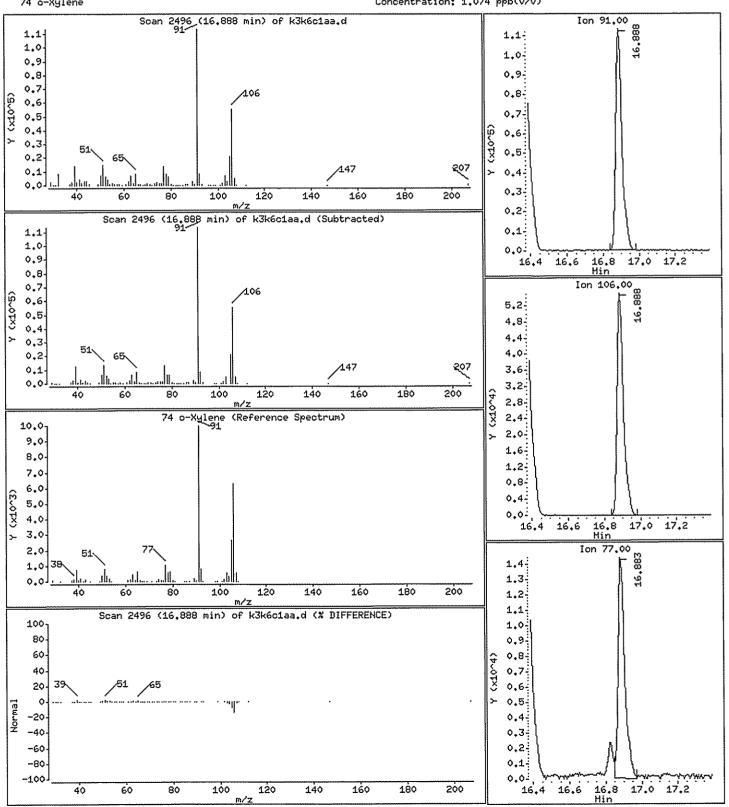
Concentration: 0.1352 ppb(v/v)



Date : 29-NOV-2008 19:37

Client ID: VI 7S

Instrument: mg.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 7126

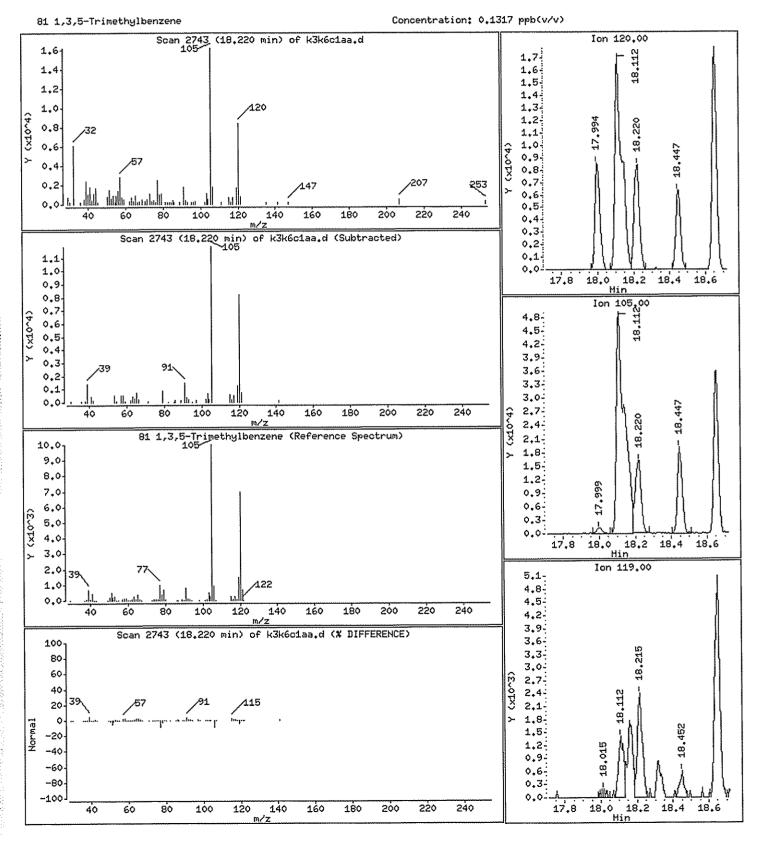
Column phase: RTX-5

74 o-Xylene

Concentration: 1.074 ppb(v/v)



Date: 29-NOV-2008 19:37


Client ID: VI 7S

Instrument: mg.i

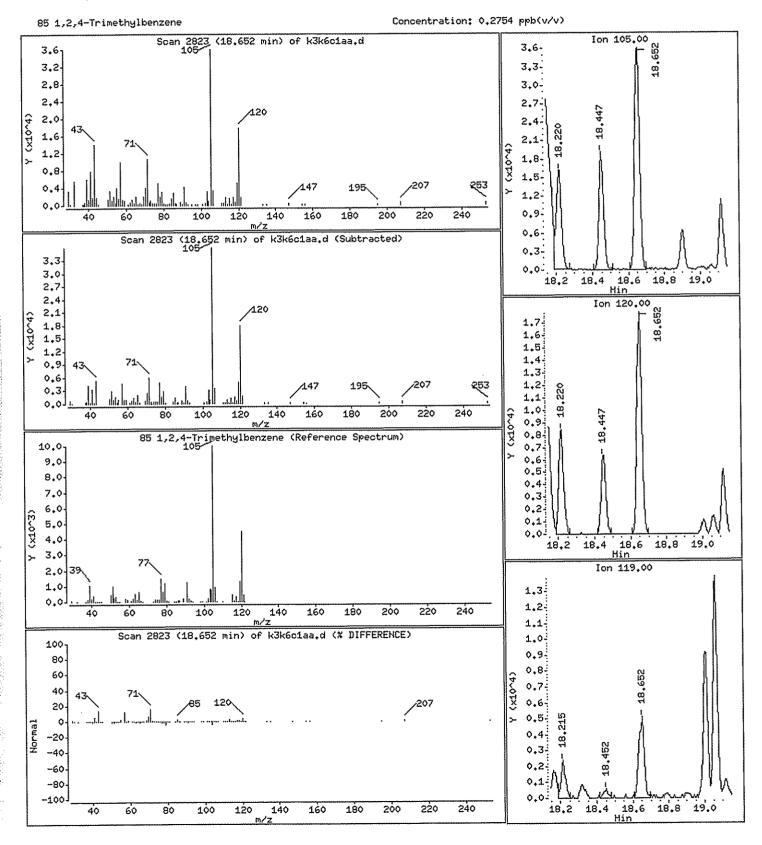
Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



Date : 29-NOV-2008 19:37


Client ID: VI 7S

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5



Report Date: 02-Dec-2008 11:57

### TestAmerica Knoxville

Modified Method TO-14/TO-15

Client Smp ID: VI 7S

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/k3k6claa.d
Lab Smp Id: K3K6ClAA Client Smp I
Inj Date: 29-NOV-2008 19:37
Operator: 7126 Inst ID: mg.
Smp Info: ,,0,,,
Misc Info: G112909 TO155 1 233 To Inst ID: mg.i

Misc Info : G112908, T0155, 1-all.sub, , , ,

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 02-Dec-2008 11:55 tajh Quant Type: ISTD

Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d

Als bottle: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist.

Target Version: 2 50 Cal File: rlstd.d

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

ISTD	RT	HEIGHT	AMOUNT
=======================================	====	=====	======
* 1 Bromochloromethane	9.059	1170647	4.000

TVAUO CONCENTRATIONS

HEIGHT ON-COL(ppb(v/v)) FINAL(ppb(v/v)) QUAL LIBRARY LIB ENTRY CPND # 

Ethyl alcohol

CAS #: 64-17-5

4.987 116698 0.39874702 0.3987 99 NISTO5.1 93 1(L)

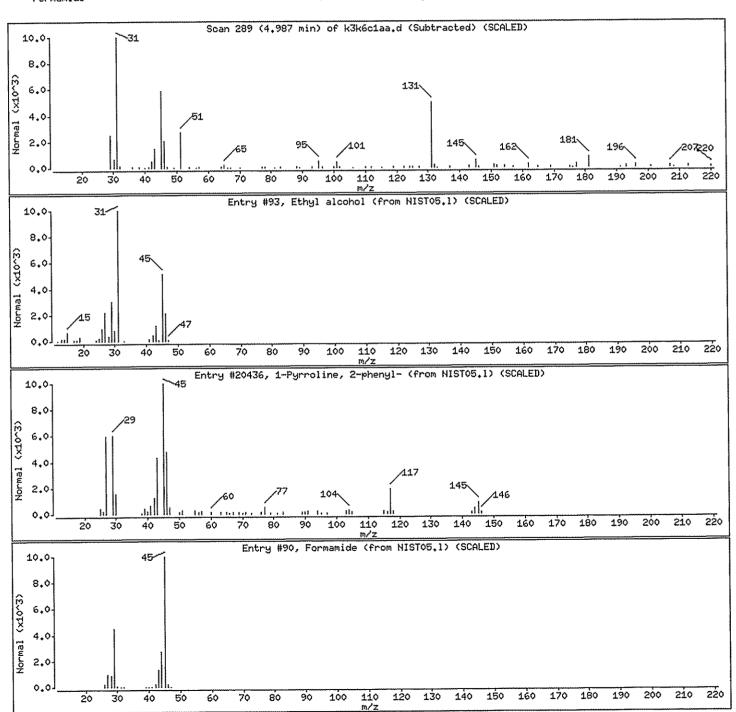
# QC Flag Legend

L - Operator selected an alternate library search match.

som by

Date : 29-NOV-2008 19:37

Client ID: VI 7S


Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	NISTO5.1	93	99	C2H6O	46
1-Pyrroline, 2-phenyl-	700-91-4	NISTO5.1	20436	10	C1OH11N	145
Formamide	75-12-7	NISTO5.1	90	5	CH3NO	45



#### New York State D.E.C.

#### **OUTDOOR** Client Sample ID:

#### GC/MS Volatiles

Lot-Sample # H8K250101 - 015 Work Order #

K3K6D1AA

Matrix....: AIR

Date Sampled ...: Prep Date....:

11/18/2008

Date Received ..: 11/24/2008

Prep Batch #....:

11/29/2008

Analysis Date... 11/29/2008

Dilution Factor .:

8336265

1

Method.....: TO-15

REPORTING REPORTING RESULTS RESULTS LIMIT (ug/m3) **PARAMETER** (ppb(v/v)) LIMIT (ppb(v/v)) (ug/m3) 0.080 ND 0.36 ND trans-1,3-Dichloropropene 0.56 0.080 ND ND 1,2-Dichloro-1,1,2,2-tetrafluoroeth ane 0.72 ND 0.20 ND 1,4-Dioxane 0.080 ND 0.35 ND Ethylbenzene 0.45 0.080 1.00 0.18 Trichlorofluoromethane 0.85 Hexachlorobutadiene ND 0.080 ND 0.70 0.29 0.20 1.0 n-Hexane 0.93 0.20 ND ND 2.2.4-Trimethylpentane 0.97 ND ND 0.32 tert-Butyl alcohol 0.69 0.400.201.4 Methylene chloride 0.26 0.77 0.24 0.080 Benzene 0.83 ND ND 0.16 Benzyl chloride 0.34 ND 0.080 ND Styrene 0.55 ND 0.080 ND 1,1,2,2-Tetrachloroethane 0.54 0.080 ND ND Tetrachloroethene 0.30 0.53 0.0802.0 Toluene 0.59 ND 1,2,4-Trichlorobenzene ND 0.080 0.44 ND 0.080 1,1,1-Trichloroethane ND 0.44 ND 0.080 ND 1,1,2-Trichloroethane 0.21 ND ND 0.040 Trichloroethene 0.39 0.080 ND 1,2,4-Trimethylbenzene ND 0.39 ND ND 0.080 1,3,5-Trimethylbenzene 0.20 ND Vinyl chloride ND 0.080 0.35 0.080 ND ND o-Xylene 0.58 ND ND 0.16 Methyl tert-butyl ether 0.61 0.080 ND 1,1,2-Trichlorotrifluoroethane ND 0.49 0.35 0.11 0.080 m-Xylene & p-Xylene 0.080 ND 0.54ND Bromodichloromethane 0.61 ND ND 0.080 1,2-Dibromoethane (EDB) 0.941.4 2-Butanone (MEK) 0.46 0.32 0.82 0.20 ND ND 4-Methyl-2-pentanone (MIBK) 0.83 ND ND 0.080 Bromoform 0.31 Bromomethane ND 0.080 ND 0.25 0.43 0.068 0.040 Carbon tetrachloride 0.37 0.080 ND ND Chlorobenzene 0.68 ND Dibromochloromethane ND 0.080 0.21 0.080 ND Chloroethane ND ND 0.39 0.080 Chloroform ND 0.41 0.20 0.87Chloromethane 0.42

TO-14_rev5.rpt version 5.0.103 10/12/2006

### New York State D.E.C.

# Client Sample ID: OUTDOOR

### GC/MS Volatiles

Lot-Sample # H8K250101 -	015	Work Order#	K3K6D1	AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	0.21	0.20		0.72	0.69
1,2-Dichlorobenzene	ND	0.080		ND	0.48
1,3-Dichlorobenzene	ND	0.080		ND	0.48
1,4-Dichlorobenzene	ND	0.080		ND	0.48
Dichlorodifluoromethane	0.41	0.080		2.0	0.40
1,1-Dichloroethane	ND	0.080		ND	0.32
1,2-Dichloroethane	ND	0.080		ND	0.32
1,1-Dichloroethene	ND	0.080		ND	0.32
cis-1,2-Dichloroethene	ND	0.080		ND	0.32
trans-1,2-Dichloroethene	ND	0.080		ND	0.32
1,2-Dichloropropane	ND	0.080		ND	0.37
cis-1,3-Dichloropropene	ND	0.080		ND	0.36
TENTATIVELY INDENTIFIED C	OMPOUNDS	RES	ULT	mmermin here evening	UNITS
Ethyl alcohol		ND			ppb(v/v)
SURROGATE		PERCENT RECOVERY		•••	LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		92			70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)  $\star$  (Molecular Weight/24.45)

Report Date: 02-Dec-2008 11:44

## TestAmerica Knoxville

Client Smp ID: OUTDOOR

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/k3k6dlaa.d
Lab Smp Id: K3K6D1AA Client Smp II
Inj Date: 29-NOV-2008 20:20
Operator: 7126
Smp Info: 0 Inst ID: mg.i

Smp Info : ,,0,,

Misc Info : G112908, T0155, 1-all. sub, , , ,

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m Meth Date: 02-Dec-2008 11:42 tajh Quant Tyr Cal Date: 26-NOV-2008 12:31 Cal Files Quant Type: ISTD Cal File: rlstd.d

Als bottle: 6
Dil Factor: 1.00000
Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cond Variable

Local Compound Variable

L
pb(v/v)}
== w=
00
00
00
93
175
18
76
78
19
78
186
20
771 [
98
500
7995047

Data File: /var/chem/gcms/mg.i/G112908.b/k3k6dlaa.d Report Date: 02-Dec-2008 11:44

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		==		======	*****	
69 Ethylbenzene	91	16.360	16.204 (1.031)	22862	0.08629	0.08629
70 m&p-Xylene	91	16.360	16.365 (1.031)	22862	0.11293	0.1129
						14
						10/1/

18/0/0/18/

-14.27

-18.38

Calibration Date: 29-NOV-2008

1835041

1338096

Calibration Time: 10:08

Client Smp ID: OUTDOOR

Level: LOW

3007369

2303266

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G112908.b/k3k6d1aa.d

Report Date: 02-Dec-2008 11:44

### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: k3k6dlaa.d Lab Smp Id: K3K6D1AA Analysis Type: OTHER

2 1,4-Difluorobenze

3 Chlorobenzene-d5

Quant Type: ISTD Sampl Operator: 7126 Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m Misc Info: G112908, T0155, 1-all.sub,,,,

۲.	TIBO IIIIO. GIIZJOO, IOI.	,,	-///			
ı			AREA	T,TMTT		
	COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	1 Bromochloromethan	432126	257115	607137	377722	-12.59

1273583

975404

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	=======	=======	======
1 Bromochloromethan	9.05	8.72	9.38	9.06	0.06
2 1,4-Difluorobenze	11.20	10.87	11.53	11.20	0.05
3 Chlorobenzene-d5	15.87	15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

2140476

1639335

Data File: /var/chem/gcms/mg.i/G112908.b/k3k6dlaa.d Report Date: 02-Dec-2008 11:44

TestAmerica Knoxville

### RECOVERY REPORT

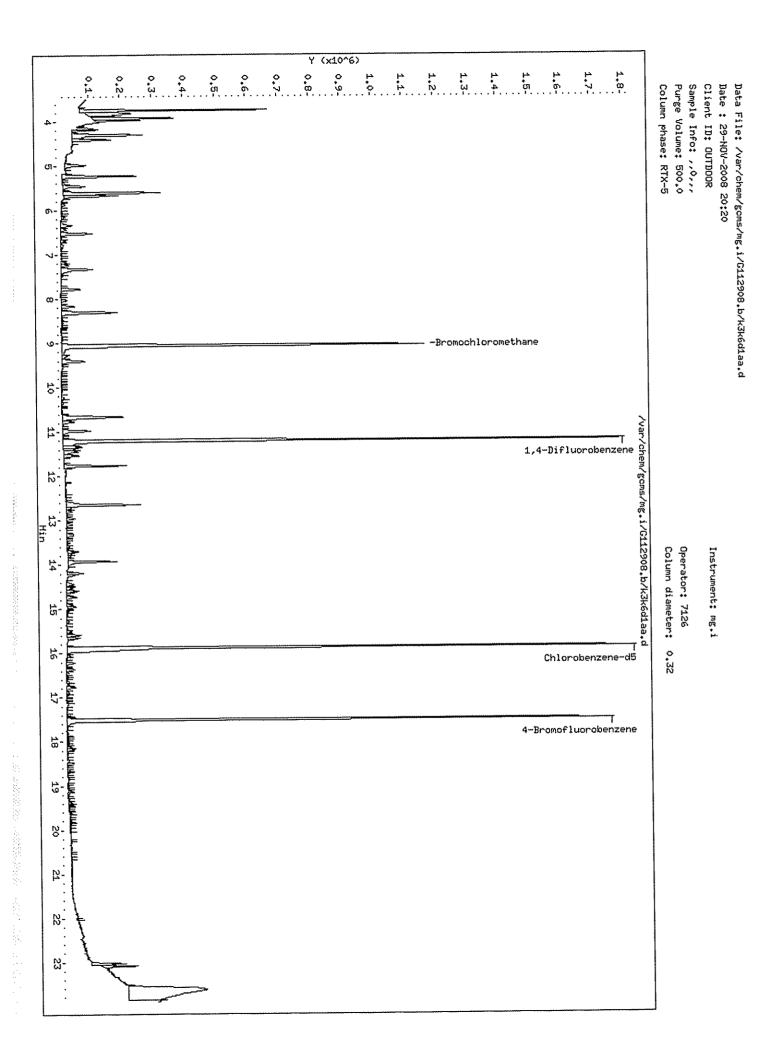
Client Name: New York State D.E.C24-NOV-2008 00:00 Client SDG: H8K250101

Fraction: OTHER Sample Matrix: GAS

Client Smp ID: OUTDOOR Operator: 7126 Lab Smp Id: K3K6D1AA

Level: LOW

Data Type: MS DATA


SampleType: SpikeList File: all.spk

Sublist File: nysdec.sub

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m

Misc Info: G112908, T0155, 1-all.sub,,,, SampleType: SAMPLE Quant Type: ISTD

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.693	92.32	70-130

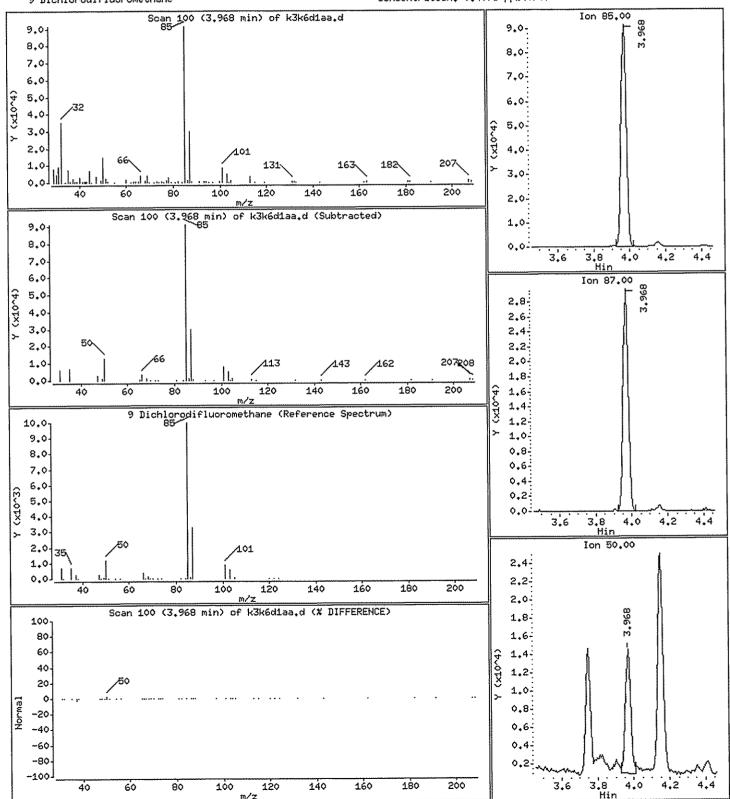


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

#### 9 Dichlorodifluoromethane

Concentration: 0.4075 ppb(v/v)



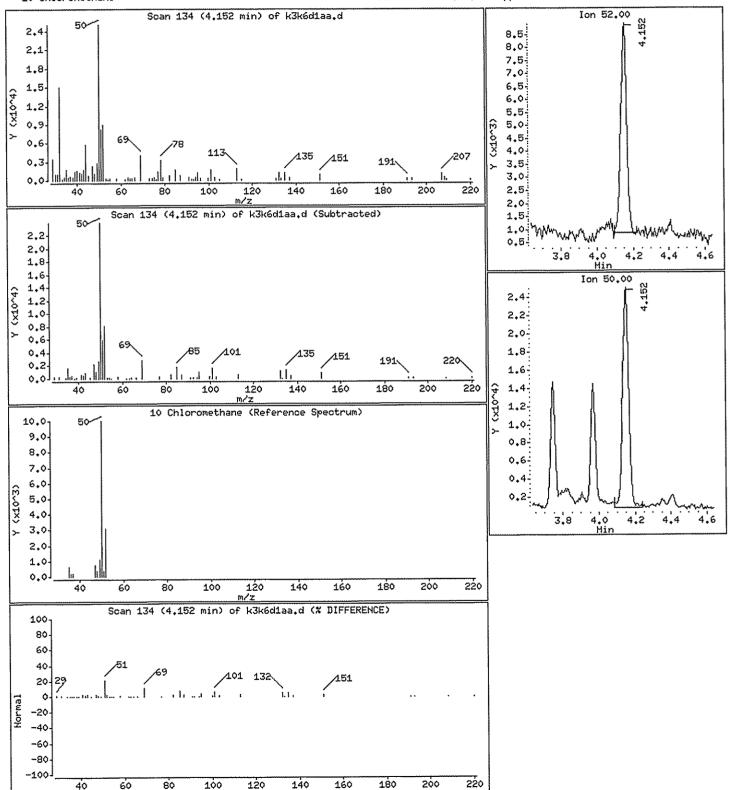
Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

#### 10 Chloromethane

Concentration: 0.4218 ppb(v/v)

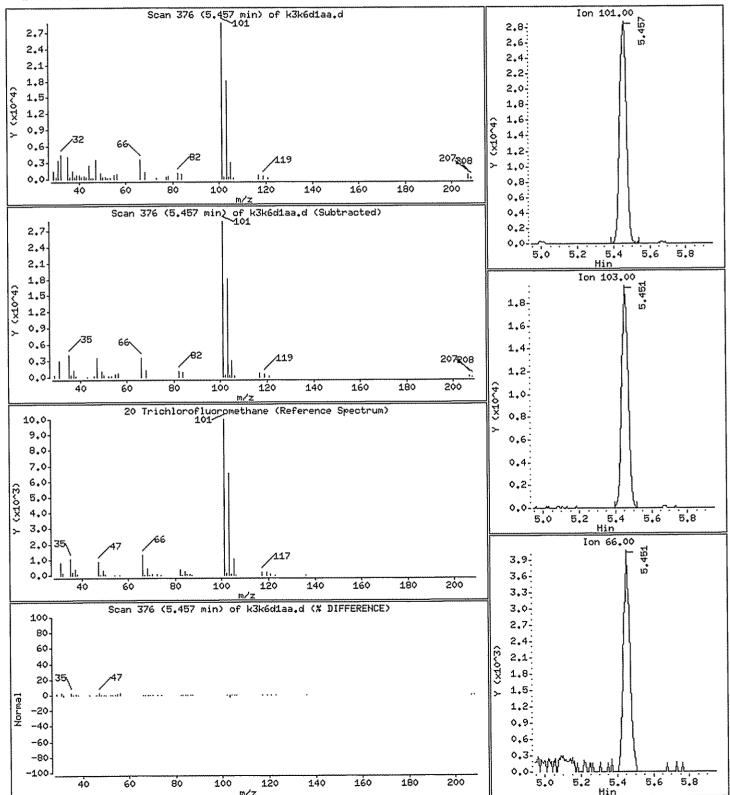


Date: 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

20 Trichlorofluoromethane

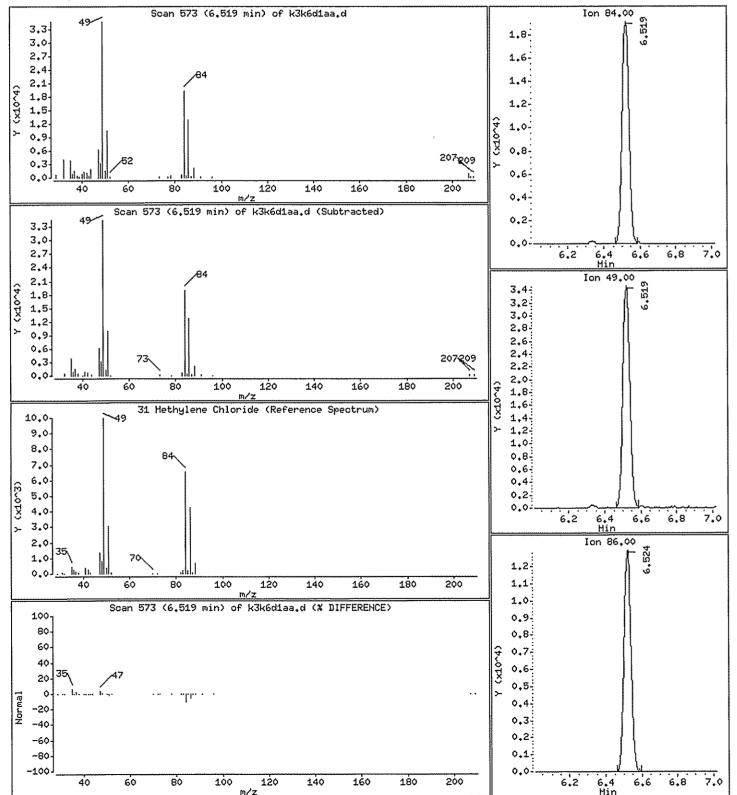
Concentration: 0.1776 ppb(v/v)



Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

31 Methylene Chloride

Concentration: 0.3978 ppb(v/v)



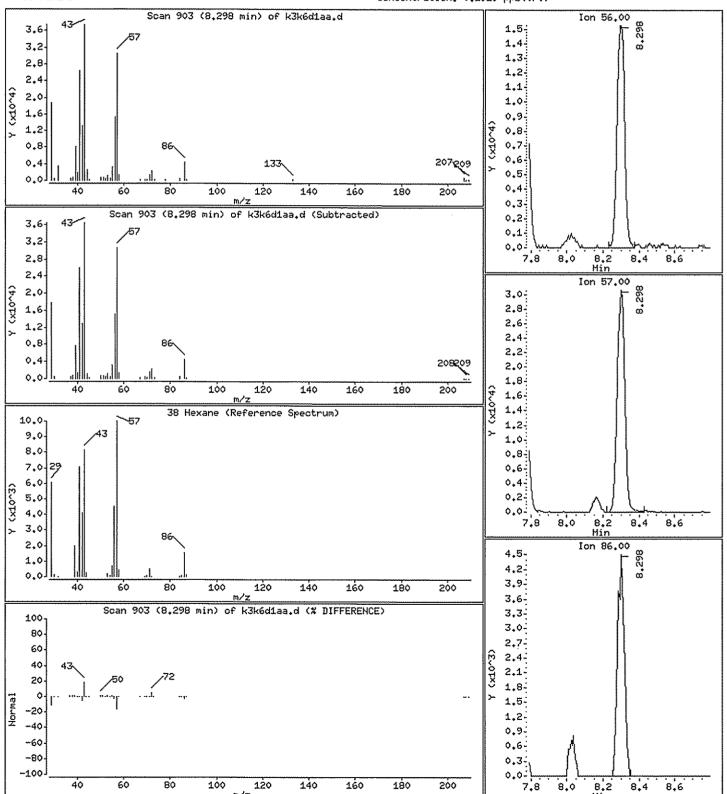
Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 0.2919 ppb(v/v)



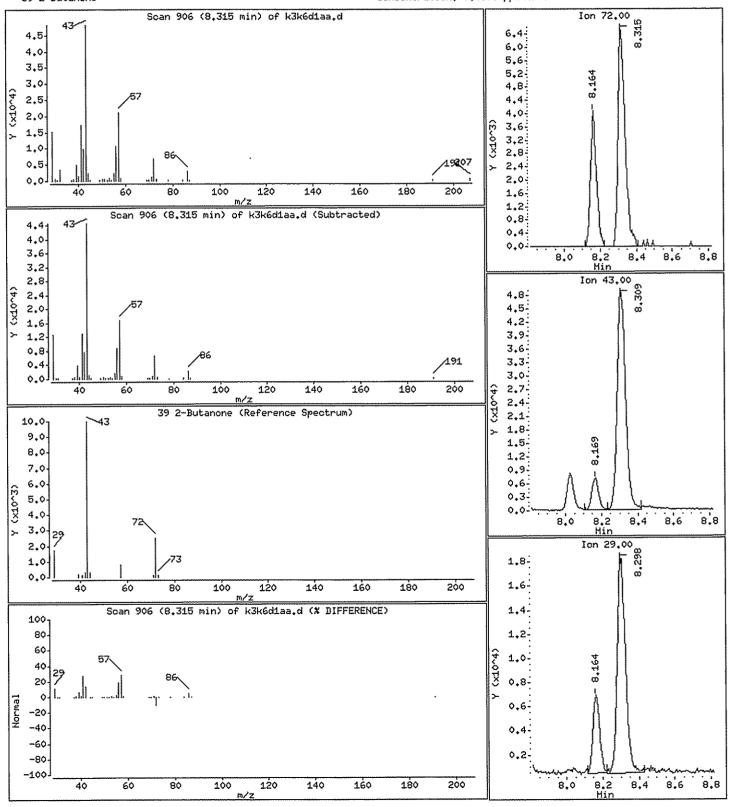
Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

39 2-Butanone

Concentration: 0.4578 ppb(v/v)

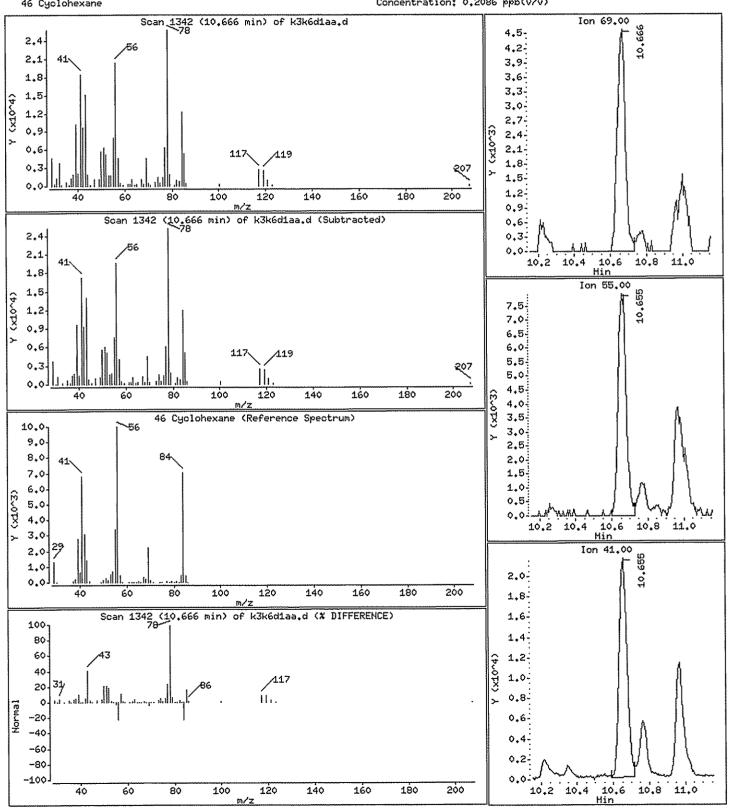


Date: 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

46 Cyclohexane

Concentration: 0.2086 ppb(v/v)

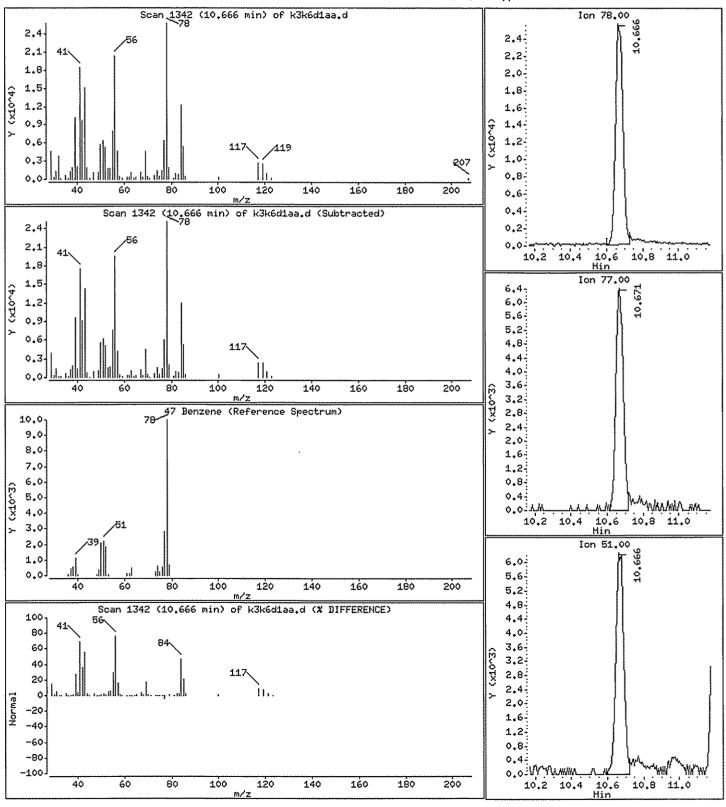


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32



Concentration: 0.2420 ppb(v/v)

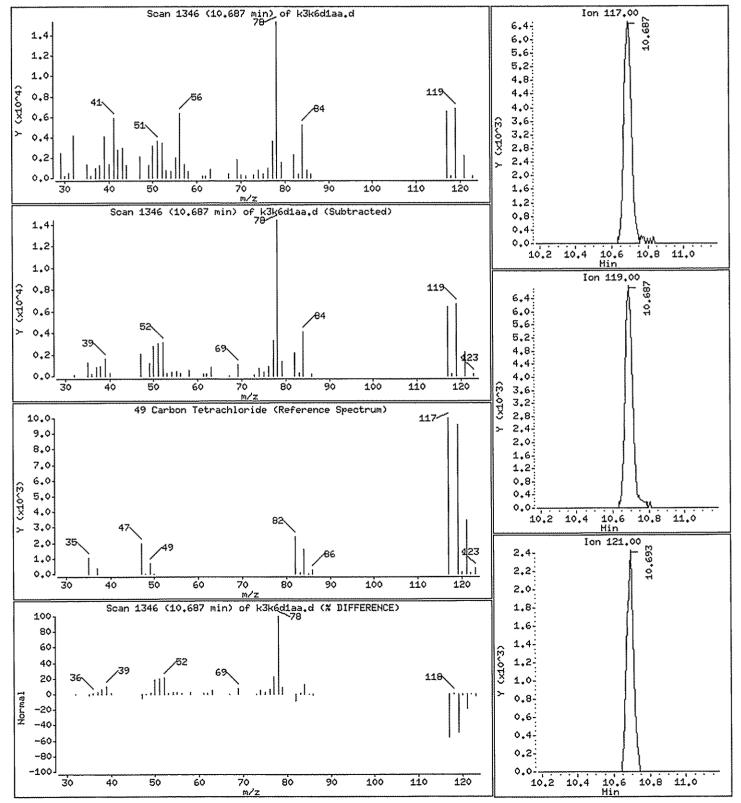


Date: 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column diameter: 0.32

49 Carbon Tetrachloride

Column phase: RTX-5

Concentration: 0.06771 ppb(v/v)

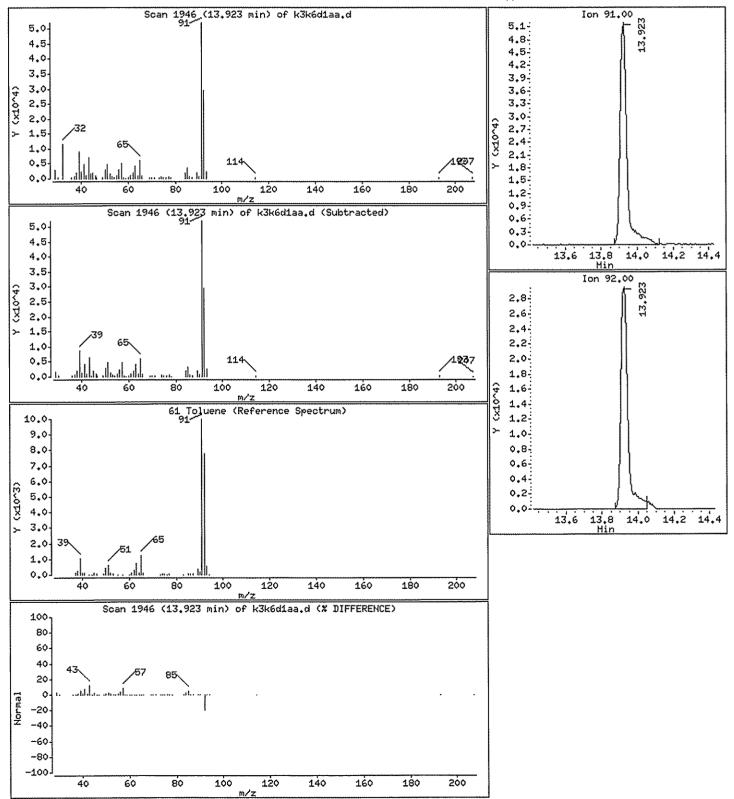


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

61 Toluene

Concentration: 0.5298 ppb(v/v)

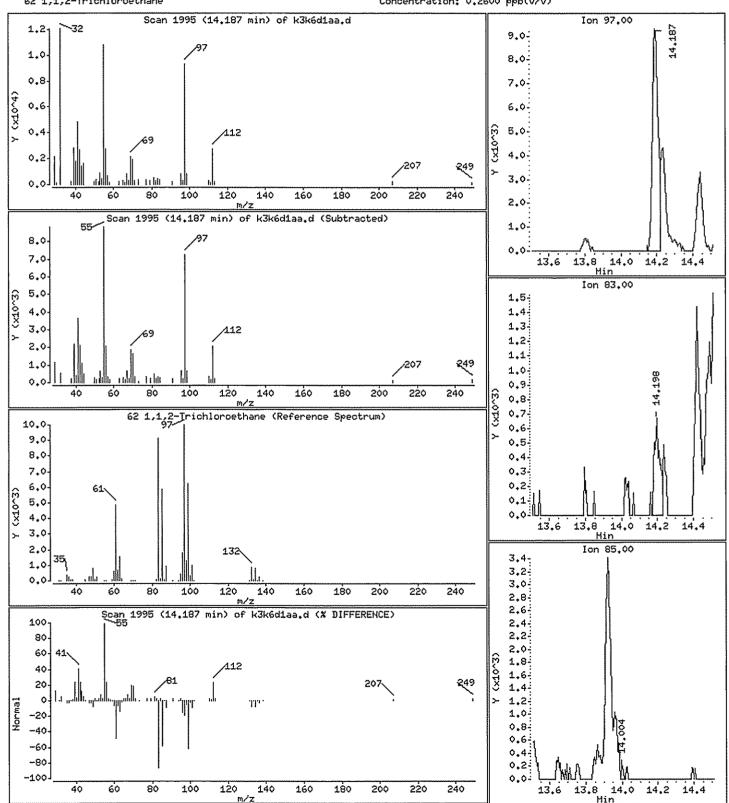


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,, Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

62 1,1,2-Trichloroethane

Concentration: 0.2600 ppb(v/v)

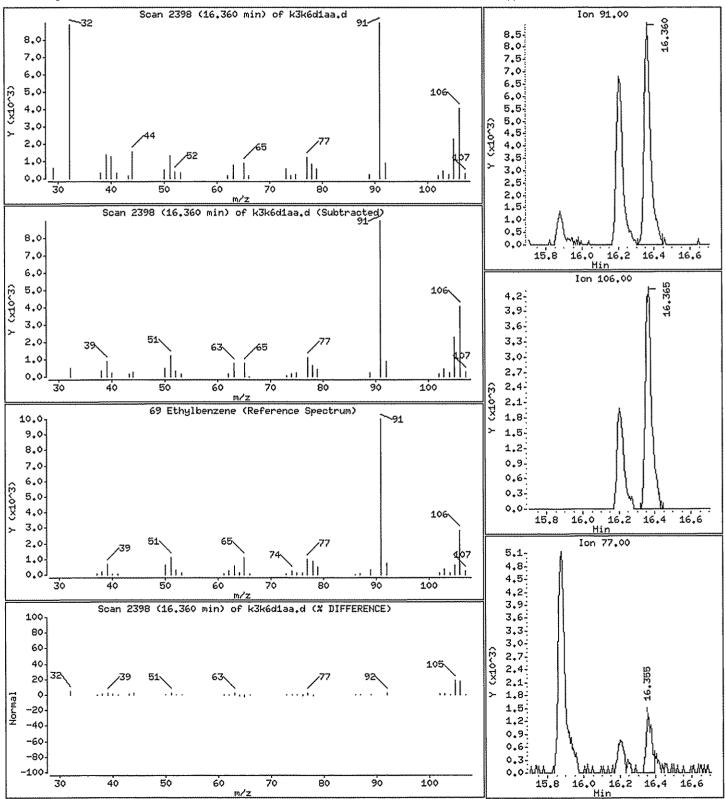


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

69 Ethylbenzene

Concentration: 0.08629 ppb(v/v)

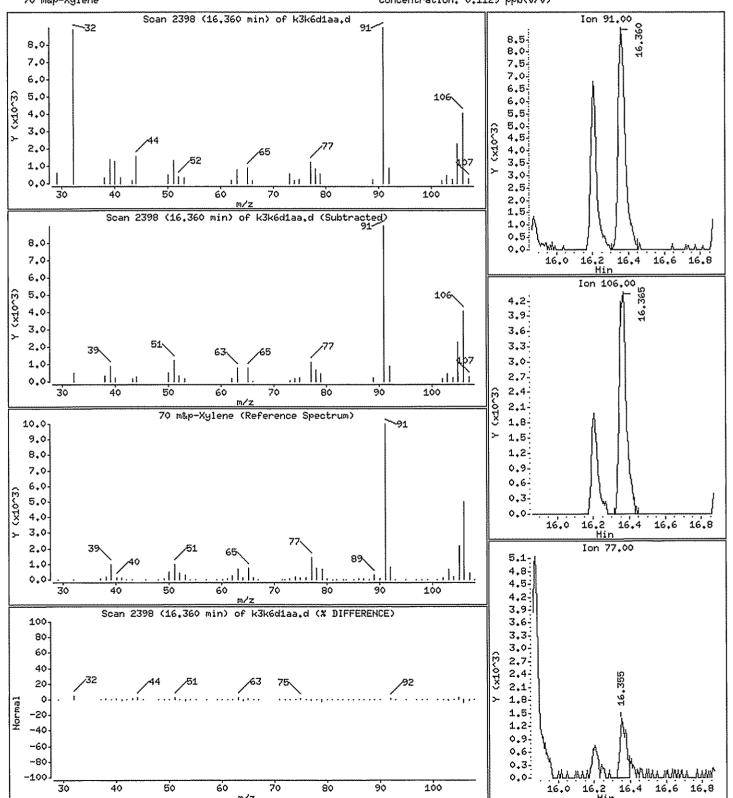


Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

70 m&p-Xylene

Concentration: 0.1129 ppb(v/v)



Report Date: 02-Dec-2008 11:57

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112908.b/k3k6d1aa.d Lab Smp Id: K3K6D1AA Client Smp I Inj Date: 29-NOV-2008 20:20 Client Smp ID: OUTDOOR

Operator: 7126 Inst ID: mq.i

Smp Info : ,,0,,,
Misc Info : G112908,T0155,1-all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G112908.b/T0155.m Method

Meth Date: 02-Dec-2008 11:55 tajh Cal Date: 26-NOV-2008 12:31 Quant Type: ISTD Cal File: rlstd.d

Als bottle: 6

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

IS:	TD ======	RT ====	HEIGHT	AMOUNT
*	1 Bromochloromethane	9.059	1157372	4.000

CONCENTRATIONS ייאבווס

		4017001714				201212				
RT	HEIGHT	ON-COL(ppb(v/v))	) FINAL (ppb (	v/v))	LAUQ	LIBRARY	LIB E	NTRY	CPND	##
====		=======================================		***	===			=====		

Ethyl alcohol

CAS #: 64-17-5

4.982 67580 0.23356363 0.2336 99 NIST05.1

1(L)

#### QC Flag Legend

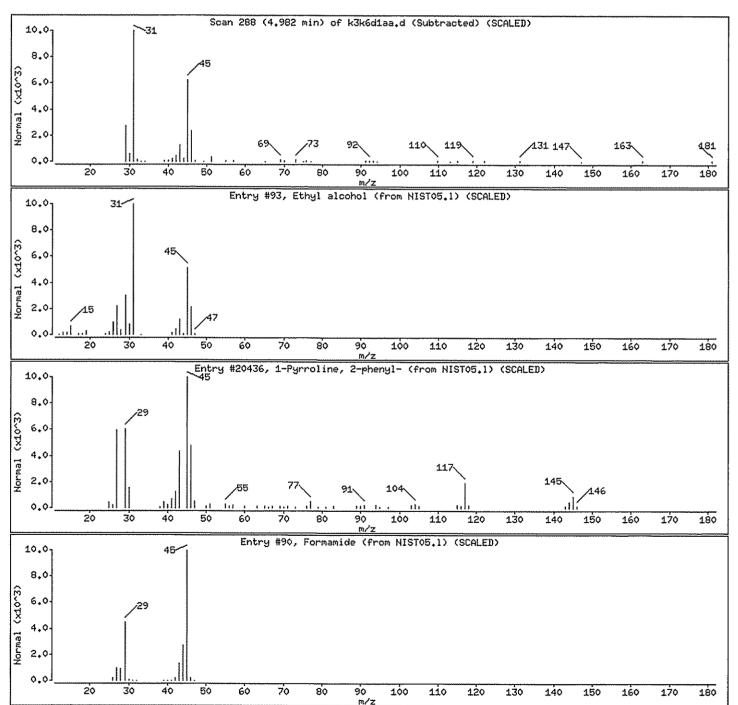
L - Operator selected an alternate library search match.

See 22/2 / See 28/2 /

Date : 29-NOV-2008 20:20

Client ID: OUTDOOR

Instrument: mg.i


Sample Info: ,,0,,,
Purge Volume: 500.0

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Ethyl alcohol	64-17-5	HISTO5.1	93	99	C2H60	46
1-Pyrroline, 2-phenyl-	700-91-4	NISTO5.1	20436	10	C10H11H	145
Formamide	75-12-7	HISTO5.1	90	5	CH3N0	45



# Standards Data

## TestAmerica Knoxville GC/MS Air Initial Calibration Data Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 9

Were all standards injected within 24 hr of BFB?  Was date/time of analysis verified between analysis header and logbook as correct?  Is low level std at or <rl 5="" analyzed?<="" and="" are="" at="" compound="" consecutive?="" each="" least="" levels="" of="" points="" remaining="" th="" the="" were=""><th>N/A</th><th>Yes /</th><th>No</th><th>If No, why is data reportable?</th><th>2n</th></rl>	N/A	Yes /	No	If No, why is data reportable?	2n
Were all standards injected within 24 hr of BFB?  Was date/time of analysis verified between analysis header and logbook as correct?  Is low level std at or <rl 5="" analyzed?<="" and="" are="" at="" compound="" consecutive?="" each="" least="" levels="" of="" points="" remaining="" th="" the="" were=""><th></th><th>/</th><th></th><th></th><th>/</th></rl>		/			/
Was date/time of analysis verified between analysis header and logbook as correct?  Is low level std at or <rl 5="" analyzed?<="" and="" are="" at="" compound="" consecutive?="" each="" least="" levels="" of="" points="" remaining="" td="" the="" were=""><td></td><td>/</td><td></td><td></td><td>i</td></rl>		/			i
and logbook as correct?  Is low level std at or <rl 5="" analyzed?<="" and="" are="" at="" compound="" consecutive?="" each="" least="" levels="" of="" points="" remaining="" td="" the="" were=""><td></td><td>/</td><td>1</td><td></td><td></td></rl>		/	1		
Is low level std at or <rl 5="" analyzed?<="" and="" are="" at="" compound="" consecutive?="" each="" least="" levels="" of="" points="" remaining="" td="" the="" were=""><td></td><td>ļ</td><td></td><td></td><td></td></rl>		ļ			
Were at least 5 levels of each compound analyzed?		/		,	
T 0/D 0D 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Is %RSD for all target analytes $\leq$ 30%? (with up to 2 compounds with RSD $\leq$ 40%)		/		100, htholine 319, 1237C1152 = 332	
Have all peaks been auto identified? If not, list:		1			
If curves were used, is correlation coefficient ≥0.990?	<b>V</b>			<u>.</u>	N
At least 6 consecutive points used for quadratic curves,	TV				/\/
and at least 5 consecutive points for linear curves?  For linear or quadratic: is a tangent's slope to the curve	V /				70-
entirely positive or negative and continuous.					M
. For linear or quadratic: origin NOT included or forced?	1				W
. Is the "Y" intercept less than the RL for each curve?	·	V			
RT for each IS ±20 sec avg. RT?		1			
Area for each IS ± 40% avg. area?	-				
Each analyte ± 0.06 RRT of avg. RRT?  If manual integrations were performed, are they clearly	+	/		Reasons: 1)Corrected split peak; 2)Unresolv	red neak:
identified, initialed, dated and reason given?				3)tailing; 4)RT shift; 5)wrong peak selected;	6)other
. Have alternate hits/manual integrations been verified as correct and are correct RFs listed in ICAL summary?	1				Ý
. Was ICAL summary form processed using correct methods and files?		1		,	
Are the ICAL start and end dates/times correct on ICAL summary?		/			/
Elution order checked on isomeric pairs?			·		
• dichlorodifluoromethane / 1,2-dichlorotetrafluoroethane					
• trichlorofluoromethane / 1,1,2-trichlorotrifluoroethane		/			
• vinyl acetate / hexane		/			
• cis- and trans- isomers					
• ethyl benzene / m/p-xylene / o-xylene	-	_			
<ul> <li>4-ethyl toluene/1,3,5-trimethylbenzene/1,2,4- trimethylbenzene</li> </ul>		/			-
• 1,3- , 1,4- , and 1,2-dichlorobenzene	<u> </u>	1			
. Is the second source analysis of a reference standard within limits? (65-135% R; 20-180% for benzyl chloride)		V			
If criteria were not met, was a NCM generated, approved by supervisor, and copy included in folder?	1				A
b. Does the ICAL folder contain complete data in the following order: Data review checklist, a complete runlog, Entech report, BFB info, ICAL summary, curves, followed by [Quan reports, chromatograms, manual integrations] in increasing amount order.		~			
	11.	- 12	1 *		101/1
	Hor		d Lev mme	rel Reviewer: Dat	e: 4 6 6 0
omments:		100	iiime		

			CAI	VISTER I	RUN	LOG		•
GCM	S Ana	llysis: AIR					•	Inst: MG
Analy	st:)		Qtims Batch: _		<del></del>			<i>y</i> *
Date:_	11	125/W ICAI	L Batch: 6-1125	OYI Tar	get B	atch:_	-112508I	IS #1 Area: 4 1484)
Surr/I	SID	& Vol.:404	System Date	e/Time ok	(y/n):	: -	:	
		Maintenance Perf						
Time	Use		File ID	Can #	Pos	Vol*	Can DF	C
	050			Can "		(mL)	Can Di	Comments
1232	7	Time	G-070123		16	200	1	SampleNam
1305	7	MOTCHIC	BIKI 1	CX-1841	12	70		MOLCHIC
1347		ICALO.04	MOLCHK			40		GILK251
1128		0-08	G-IUCS)		_	80	·	2 True 14:21
1509		0-16	2	Ψ	V	160		3
1551	· _	V.0	3	CX-185P	13	40	·	4
1632		1.0	4			aal		5
1715		2.0	5	· W	1	500		6
1755		5.0	6	CX-1855	14.	50		1 7
1836		10	7			100		8
1918	V	25	8	W.	1	250		W 9
2000	2	BIKZ	W 9		16	500		BIKZ
2043	7	ICV	BIKZ	CX-1884.	15	40.	V	6-ICVK25
								·
	•			, / ,				<u> </u>
				11/1	W			
			·		1			
				;		<u> </u>		
•								

* Entech programmed Volume. If the Entech report amount differs from the programmed amount by >5%, the Entech report amount is used for calculations.

Analyst: _

## Test America - Knoxville Entech Autosampler Log

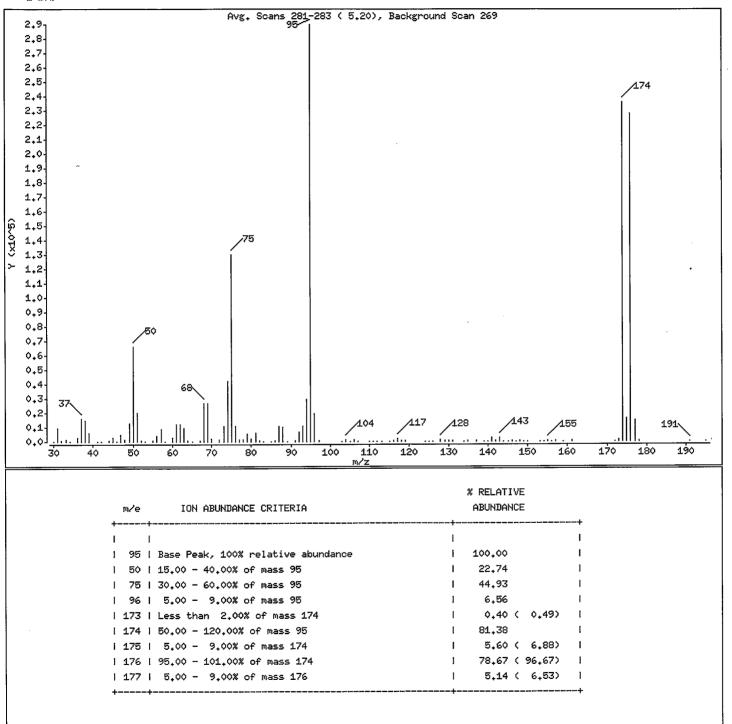
Sample	Position	Volume	AnDate	AnTime
BLK	16	201	11/25/2008	12:32
MDLCHK	12	21	11/25/2008	13:05
ICAL1	12	40	11/25/2008	13:47
ICAL2	12	81	11/25/2008	14:28
ICAL3	12	161	11/25/2008	15:09
ICAL4	13	40	11/25/2008	15:51
ICAL5	13	101	11/25/2008	16:32
ICAL6	13	201	11/25/2008	17:13
ICAL7	14	50	11/25/2008	17:55
ICAL8	14	101	11/25/2008	18:36
ICAL9	14	250	11/25/2008	19:18
BLK	16	201	11/25/2008	20:00
ICV	15	40	11/25/2008	20:43

Data File: /chem/gcms/mg.i/G112508I.b/gbfbk25.d

Date : 25-NOV-2008 12:32

Client ID: BFB

Instrument: mg.i


Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

1 bfb



Data File: /chem/gcms/mg.i/G112508I.b/gbfbk25.d

Date : 25-NOV-2008 12:32

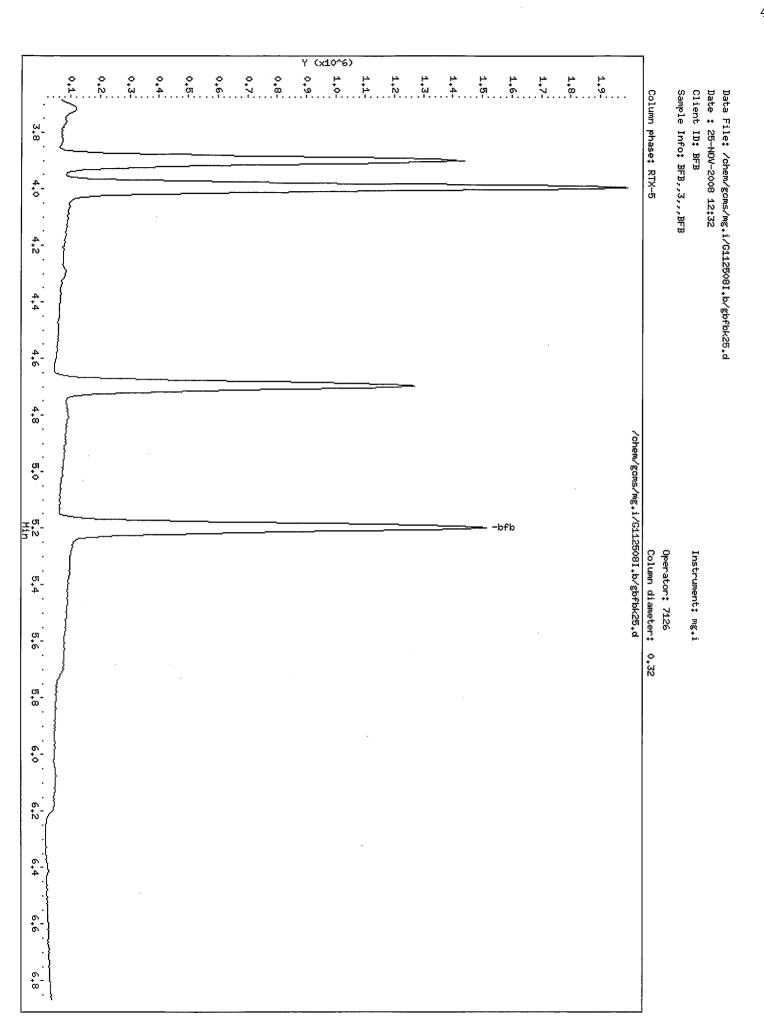
Client ID: BFB

Instrument: mg.i

Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5


Column diameter: 0.32

Data File: gbfbk25.d

Spectrum: Avg. Scans 281-283 ( 5,20), Background Scan 269

Location of Maximum: 95.00 Number of points: 111

	m/z	Y	m/z	Y	m/z	Y	m/z	Y
1	30,00	20	1 63,00	9415	! 95,00	290304	I 140.00	208
ı	31,00	9652	1 64,00	828	1 96,00	19048	141.00	2534
- [	32,00	374	I 65₊00	140	97,00	695	142,00	352
Ī	33,00	1492	1 67,00	720	103.00	180	143,00	2599
i	34,00	59	68₊00 	26568	1 104,00	1099	I 144.¢¢	129
1	36,00	2520	1 69.00	26496	105.00	330	I 145,00	258
ı	37,00	16156	70.00	2048	106,00	1034	146.00	437
1	38,00	14908	1 72,00	1380	1 107,00	287	147,00	139
ı	39,00	5918	1 73,00	10438	110.00	74	148,00	683
1	41,00	21	I 74.00	42048	111,00	191	I 149,00	284
1	42,00	174	+   75₊00	130424	1 112,00	131	150.00	285
1	44.00	726	1 76,00	10858	113,00	162	153.00	243
I	45.00	2954	1 77,00	1155	115,00	313	154,00	235
I	46,00	313	I 78,00	1081	116,00	842	155.00	640
l	47,00	4601	I 79.00	5616	117,00	1720	I 156.00	162
l	48,00	1573	1 80.00	1840	118.00	768	157₊00	471
I	49,00	12594	I 81,00	6250	119,00	790	159,00	301
I	50,00	66000	1 82,00	335	124,00	168	161,00	350
ı	51,00	19872	1 83,00	261	125,00	142	1 172,00	210
!	52,00	997	1 85,00	114	126,00	62	1 173,00	1153
1	53,00	31	I 86.00	347	I 128.00	1007	174.00	236224
1	55,00	557	1 87,00	10689	129,00	505	175.00	16250
1	56,00	4196	1 88,00	9769	1 130,00	994	176,00	228352
1	57,00	8402	1 89,00	152	131,00	415	177,00	14912
1	58,00	29	91.00	802	1 134,00	111	178.00	454
1	60.00	2440	1 92.00	<b></b> 6918	135.00	466	191,00	219
ı	61.00	11937	1 93,00	10915	137,00	520	195,00	57
I	62,00	12311	1 94,00	29376	139,00	55	I	



#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50
Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

#### Calibration File Names:

Level 1: /var/chem/gcms/mg.i/G112508I.b/mdlchk.d Level 2: /var/chem/gcms/mg.i/G112508I.b/gick251.d Level 3: /var/chem/gcms/mg.i/G112508I.b/gick252.d Level 4: /var/chem/gcms/mg.i/G112508I.b/gick253.d Level 5: /var/chem/gcms/mg.i/G112508I.b/gick254.d Level 6: /var/chem/gcms/mg.i/G112508I.b/gick255.d Level 7: /var/chem/gcms/mg.i/G112508I.b/gick256.d Level 8: /var/chem/gcms/mg.i/G112508I.b/gick257.d Level 9: /var/chem/gcms/mg.i/G112508I.b/gick258.d

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
								[
	5.000	10.000	25.000				l .	
	Level 7	Level 8	Level 9	]				
				=======		=======	=======	
7 Chlorodifluoromethane	0.56508	0.46442	0.40892	0.50593	0.44027	0.44502		
	0.40554	0.38801	0.38033			l , l	0.44484	13.49
8 Propene	2.11272	1.84741	1.69937	2.04090	1.85745	1.86325		
	1.69388	1.66260	1.66728				1.82721	9.00
9 Dichlorodifluoromethane	4.69085	4.27130	4.19391	5.15030	4.60426	4.55873		
	4.04216	3.98754	3.78614	1		l l	4.36502	9.71
10 Chloromethane	.++++	0.55538	0.43455	0.51752	0.44232	0.40528	I	
1	0.36577	0.37028	0.29422	l			0.42316	19.95
11 1,2-Dichlorotetrafluoroethane	2.74140	2.47085	2.25827	2.63335	2.46599	2.28281	I	
	2.13134	2.08410	1.81487	١	1	I	2.32033	12.48

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD
Origin : Disabled

Target Version : 3.50

Integrator : HP RTE
Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha
Curve Type : Average

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	l	1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
								l
	5.000	10.000	25.000	1	1			1
	Level 7	Level 8	Level 9	1	1		[	
					=======			
· 12 Methanol	+++++	. +++++	+++++	0.33363	0.37444	0.31211		_ 
	0.23208	0.25297	0.21103	I			0.28604	22.325
' 					, 	 		
13 Vinyl Chloride	1.34871	ı	1	•	1.19076	'   1.12236	1	, 
	1.02501		'	•	1	<b>1.122</b> 50	1.16004	10.630
l 1	1.02501	•			 	 	1 1.16004	10.630
						<u>.</u>		
14 n-Butane	2.39228	•			2.39824	2.13917	•	
	1.94539	2.09073	1.59681	ŀ		l .	2.18020	12.755
				[				
15 1,3-Butadiene	1.25836	1.13503	1.11109	1.19175	1.11964	1.03775	1	]
	0.95376	1.01454	0.86349	l		l	1.07616	11.315
16 Bromomethane	+++++	0.96627	0.96766	1.03104	0.90641	0.89932	İ	
	0.84071	0.86477	0.78966	1	1	i .	0.90823	8.586
17 Chloroethane	+++++	0.58517	0.51561	0.60698	0.51793	0.50399	1	I I
1, 5,120200114110	0.48056	•	•	•	1	1	0.51633	10.598
	0.40000				 	! !	0.52055	
18 Vinyl Bromide		1.41013	'		1	1.37664	! !	! !
18 vinyi bromide	+++++		'	•	1.40349	1 1.3/004	•	0.624
	1.27675				1		1.35953	
			!					
19 2-methyl butane	+++++	2.71817	'	•	2.78974	2.76364		
	2.61490	2.57983	2.52678		[		2.71024	8.176
20 Trichlorofluoromethane	4.49569	4.20674	3.92809	4.92170	4.26383	4.27926		ļ I
	3.88368	3.80263	3.63398		1		4.15729	9.526
		· [		I	I			
		\ <del></del>	·		·			·

### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18 Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

			<del></del>					
	0.04000	0.08000	0.16000	0.40000	1.000	2.000		•
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
•	5.000	10.000	25.000					
	Level 7	Level 8	Level 9			i , I	1	
				=======			=======	
21 Acrolein	+++++	+++++	0.37485	0.29874	0.37916	0.40570	• 1	
	0.33824	0.27005	0.39389		]	l	0.35152	14.523
					-			
22 Acetonitrile	+++++	+++++	0.46589	0.43609	0.53402	0.53098	1	
	0.41178	0.35029	0.48825		j	1	0.45961	14.400
23 Acetone	+++++	+++++	+++++	0.47935	0.55147	0.57342	1	
	0.37667	0.35295	0.42029				0.45903	19.867
24 Pentane	+++++	0.33096	0.30387	0.39090	0.32976	0.32618	[	
	0.30170	0.29909	0.27463				0.31964	10.818
25 Isopropyl Alcohol		+++++	2.39336	2.47629	2.64060	2.73834	i	
	2.34918	2.33765	2.49245			i	2.48969	6.068
					· 			
26 Ethyl Ether	,   +++++	1.46557	'		1.71050	1.85350		
	1.36939	•		'		1	1.54237	11.739
		1.20022  			 	ا ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ		
27 1,1-Dichloroethene	1 1.77866		'		1.35683	1.34143		
27 1,1-bichioloethene	1.19877	•			1.33003	1.34143	1.39014	14.564
	1.196//	1.21600  	1.18339		 			
20 Zemilonituilo							1	<b></b>
28 Acrylonitrile	+++++	+++++	0.65381		0.73219	0.78370	0 5507.51	15 504
	0.62393	0.53564					0.66016]	15.584
29 tert-butanol	++++	+++++	•	'	2.70777	2.76848		
	2.46831	2.40853				, ,	2.55031	6.857
		li					!	

### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18 Quant Method : ISTD

Origin : Disabled Target Version : 3.50 : HP RTE Integrator

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	0.04000	l 0.08000	l 0.16000	0.40000	1.000	2.000	<u> </u>	
Compound	0.04000   Level 1	'	0.16000   Level 3		Level 5	•	RRF	I 8 RSD
Compound		   rever z	   reser 2		   rever 2		RRF	ו פיציטר
	   5.000	   10.000	25.000	•				]
		,	,	[ 1	<b> </b> 	<b> </b> 		
	Level 7		Level 9	1	1	[		
								<b>===</b> ====: :
30 1,1,2-Trichlorotrifluoroethan					2.94494	2.75894		
•	2.30185	<u>'</u>		•			2.78190	12.83
				1				
31 Methylene Chloride	+++++	1.69805	•	•	1.28421	1.20180		
	0.95006	1.02205	0.98895	•		, ,	1.25215	21.0
				1				
32 3-Chloropropene	+++++	1.64653	1.58859	1.73881	1.71657	1.69869		
	1.42615	1.53856	1.57352	1			1.61593	6.5
33 Carbon Disulfide	+++++	+++++	4.29765	5.29857	4.68643	4.64468		
	4.16139	4.21284	4.04109				4.47752	9.7
34 trans-1,2-Dichloroethene	2.05942	1.82801	1.55741	1.80278	1.62704	1.53238		
	1.18533	1.29366	1.30995			1	1.57733	18.1
35 Methyl-t-Butyl Ether	++++	2.16830	2.11145	2.27110	1 2.50053	2.58779	·	
	2.03667		•				2.21964	10.3
				•	: !	! 		
36 1,1-Dichloroethane	3.28013			•	1 2 71406	   2.71648		
36 1,1-Dichioroethane				•	1 2.71400	2./1040		
	2.13849	2.13764	2.32983		l		2.60441	13.7
37 Vinyl Acetate	++++	+++++	+++++	1.68014	2.46163	2.77665		
	2.09591	2.03594	2.72324	Į.	l		2.29558	18.7
38 Hexane	+++++	1.63709	1.56957	1.70574	1.60032	1.53594	1	
	1.19365	1.24599	1.32073		1		1.47613	13.1
!		l		l	1	ll		

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD
Origin : Disabled

Target Version : 3.50
Integrator : HP RTE
Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m
Cal Date : 26-Nov-2008 16:54 barlozha
Curve Type : Average

	1			1	<u>.</u>			
	0.04000	•	0.16000	0.40000	1.000	2.000	!	
Compound	Level 1			Level 4	Level 5	Level 6	RRF	% RSD
•					,			,
	5.000	10.000	25.000				ĺ	
	Level 7	Level 8	Level 9					
	-							
39 2-Butanone	+++++	++++	0.36526	0.36213	0.41276	0.46831	[	
	0.32806	0.35096	0.37471				0.38031	12.22
	-							
40 cis 1,2-Dichloroethene	1.83533	1.30412	1.34016	1.29715	1.31461	1.30100	1	
•	0.99428	1.00801	1.15155				1.28291	19.22
	-							
41 Ethyl acetate	2.22644	1.72889	1.97200	1.88118	2.36793	2.69302	. 1	
	1.85042	2.02255	2.44250	, 		·	2.13166	15.00
	-							
42 Chloroform	3.04593	2.47233	2.48963	2.50382	2.55671	2.57544		
	2.01736	1.96740	'   2.19585		' , 	i	2.42494	13.57
	-			<u>'</u>	! !	' 		
43 Tetrahydrofuran	1 +++++	1.10853	1.14958	l 1.12159	1.35085	1.47004	' 	
	1.13359	•	•	'			1.22158	11.35
			<u>'</u>	<u>'</u>	 	 		
44 1,1,1-Trichloroethane	3.27478	ı	1	   2.74210	'			
44 1,1,1-111Chiordelhane	2.15394				2.76 <del>4</del> 03	2.00030	2.64527	13.74
· •	2.15394					·	2.0452/	13.74
	-			ı				
45 1,2-Dichloroethane	0.29642	•	•	0.24609	0.32548	0.35543	· ·	
	0.22042	0.24800	0.32120	<u> </u>			0.28914	15.16
	-							
46 Cyclohexane	++++	++++	0.15759	0.16784	0.16093	0.15823		
	0.10777	0.10895	0.10765				0.13842	20.61
	-							
47 Benzene	0.70525	0.63312	0.64190	0.51697	0.63872	0.70953	1	
	0.45569	0.49263	0.55560			. I	0.59438	15.55
	-							
				l	<u>                                     </u>			

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD
Origin : Disabled

Target Version : 3.50
Integrator : HP RTE
Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m
Cal Date : 26-Nov-2008 16:54 barlozha
Curve Type : Average

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	i	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	5.000	10.000	25.000	 		 		
	Level 7	Level 8	Level 9	<u> </u>	[	 		
48 1-Butanol	+++++		0.14907		0.14787			
	0.12857	•		<u>'</u>			0.14310	10.71
49 Carbon Tetrachloride	0.66287	0.62383	0.59514	0.63336	   0.62331	   0.63787		
·	0.44445			I.			0.57323	15.16
50 2,2,4-trimethylpentane			   1.75993	'	   1.64327	   1.70193		
, ,	1.23858	'	'	•			1.49308	15.30
51 Heptane	0.70960	0.61842	0.67827	0.60887	   0:71780	   0.75360		
	0.54999		!	<u>'</u>			0.64473	11.5
52 1,2-Dichloropropane	0.20570	0.19537	0.23478	   0.18116	[]   0.23414	0.27759		
	0.17149			<u>'</u>		1	0.21319	15.9
53 Trichloroethene	0.42679	0.35689	0.35690	0.35140	   0.38088	0.38330		
	0.29130	'	'		0.30000	0.50550	0.34655	14.32
54 Dibromomethane		0.26081	0.28551	0.22211	   0.28143	0.29402		
34 DIDIOMOMECHANE	0.19158				0.28143	0.23402	0.24733	15.6
		0.44150	0.46437	0.42536	   0.49323	0.57740		
55 Bromodichloromethane	0.44008		'	•	0.49323	0.57740	0.46010	11.4
56 1,4-dioxane	+++++     0.09747	+++++ 0.10191	0.10908	'	0.13228	0.13290  	0.11292	12.4
				l				

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47

End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD
Origin : Disabled

Target Version : 3.50

Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	0.04000	l 0.08000	0.16000	0.40000	1.000	2.000 l	1	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
•					· 		1	
	5.000	10.000	25.000				1	
	Level 7	Level 8	Level 9			[	I	
		'	'		' '			
57 methyl methacrylate	0.19680	•	•		0.26934	0.31179		
	0.21240	0.23948	0.31805  	 	· 		0.24043	20.190
58 4-Methyl-2-pentanone	+++++		'	0.39750	'	0.62111		
50 4-Methy1-2-pentanone	0.45259	' _	'		0.54052	0.02111	0.49593	17.634
	-			 		 		
59 cis-1,3-Dichloropropene	0.24392	0.21438	0.24207	0.21279	0.28865	0.34747	i	
	0.21573	0.25417	0.32502	. 1			0.26047	18.995
	-							
60 trans-1,3-Dichloropropene	0.27270	0.25014	0.25898	0.25025	0.32988	0.36028	1	
	0.24210	0.27237	0.34240				0.28657	15.706
	-	•	,					
61 Toluene	0.69282				0.76141	0.88763		
	0.59175					]	0.69851	13.917
CO 1 1 2 Weighlamanhama	+++++	   0.21830	'	0.20040	0.28247	0.31816		
62 1,1,2-Trichloroethane	0.20958				0.20247	0.31616	0.24694	15.759
·	-	•						
63 2-Hexanone	0.24137	0.20890	'   0.23653	0.19619	0.26878	0.31102	i	
	0.22080	0.22747	0.28230	j		į	0.24371	15.190
	-	<b></b>						
64 Octane	0.24656	0.21916	0.23839	0.22783	0.31495	0.38549	[	
	0.27943	0.30272	0.30620	l			0.28008	19.071
	-							
65 Dibromochloromethane	0.37974				0.53417	0.61675	[	
	0.42260	0.48121	0.55198	ļ	!		0.46797	17.701
	-		 					
	_	l	Il				l.	

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	0.04000		0.16000			2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		1	[					
	5.000	10.000	25.000				1	
	Level 7	Level 8	Level 9					
	•	•	•					
66 1,2-Dibromoethane	0.38380	•	•		0.42042	0.45035		
	0.29463						0.36881	13.705
		[	[					
67 Tetrachloroethene	•	0.34617			0.40030	0.42244		
	0.30225					ļ	0.36083	13.190
co di l		'	'					
68 Chlorobenzene	0.58640	'	'	'	0.62839	0.68937	ļ	
	0.47208					ļ	0.56583	11.989
		ı		'				
69 Ethylbenzene	0.79747	•			0.89590	0.98749		
	0.74865	<u>'</u>	0.82342	'	,		0.79199	12.130
·								
70 m&p-Xylene	0.58801				0.69592	0.77731	!	
	0.59475	'	<u>'</u>			]	0.60515	13.460
			'					
71 Nonane	0.53968	'	'		0.57951	0.64056	•	
	0.49254	0.52553	0.63816	•			0.54285	11.511
72 Bromoform	+++++	0.27030	0.25824	0.31480	0.39405	0.45580	1	
	0.34731	0.36838	0.44782				0.35709	20.811
73 Styrene	0.42329	0.35025	0.36969	0.38444	0.48644	0.53927	1	
	0.41958	0.41603	0.46370	I			0.42808	13.980
74 o-Xylene	0.64288	0.59834	0.58959	0.61088	0.73471	0.81971	1	
	0.63222	0.58572	0.64373	1	l l	1	0.65086	11.945
						1		
							1	

### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18 Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	1	1						
	0.04000	0.08000	0.16000	0.40000	1.000	2.000	!	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		•	1					
	5.000	10.000	25.000	ļ				
	Level 7	Level 8	Level 9		-			
		•		' .			'	
75 1,1,2,2-Tetrachloroethane	0.48320	•	'		0.51939	0.55791	' '	
	0.42712	0.40455	0.45591				0.46207	10.805
	-						[	
76 1,2,3-Trichloropropane	0.13713	0.12302	0.12509	0.12383	0.14240	0.15003		
	0.11749	0.11377	0.13296				0.12953	9.230
	-					[	'	
77 Cumene	+++++	0.76991	0.74253	0.75710	0.92750	1.03461		
	0.82862	0.77904	0.86252				0.83773	12.033
	-					[- <u>-</u>		
78 n-Propylbenzene	+++++	0.20685	0.21175	0.20860	0.25496	0.27877	l	
	0.21843	0.21504	0.24698		·	Į l	0.23017	11.581
	-							
79 2-chlorotoluene	+++++	0.21156	0.21222	0.21117	0.25103	0.27209	l , l	
	0.20984	0.19770	0.22715	l			0.22410	11.192
	-							
80 4-Ethyltoluene	+++++	0.76215	0.69583	0.76269	0.90768	0.99018		
•	0.77122	0.73705	0.85400	l			0.81010	12.196
	-							
81 1,3,5-Trimethylbenzene	0.31521	0.28516	0.29449	0.31798	0.36995	0.40279		
	0.32019	0.30475	0.34919		. 1	i 1	0.32886	11.589
	-							
82 Alpha-Methylstyrene	+++++	0.26708	0.26054	0.27712	0.34896	0.38961		
	0.31200	0.29713	0.36760		·		0.31501	15.418
						   <b></b>		
83 Decane	+++++	+++++	0.53964	0.59966	0.67518	0.72379		
	0.55740	0.47667	'	'		1	0.59460	13.995
	.							
	1	· 	· '	' ' 			i	
	-1	· ———						

#### TestAmerica Knoxville

### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47

End Cal Date : 25-NOV-2008 19:18
Quant Method : ISTD
Origin : Disabled Target Version : 3.50

Integrator : HP RTE

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	1							
	0.04000	•	1	0.40000	'	2.000	!	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF ]	% RSD
!							!	
	5.000	10.000	25.000	<u> </u>				
	Level 7	Level 8	Level 9	<u> </u>			<u> </u>	
		•	•					========
84 tert-butylbenzene	+++++	0.65638	•	•	0.82306	0.89630		
	0.70303	0.65721	0.72649				0.73087	11.665
							[	
85 1,2,4-Trimethylbenzene	0.65447	0.57737	•	•	0.72913	0.78442	ļ	
	0.60242	0.54654	0.62306		ا ِ ا	I	0.63690	11.920
86 sec-butylbenzene	++++	0.84030	0.87134	0.90226	1.03628	1.11619	ļ	
	0.85579	0.78151	0.89708				0.91259	12.035
87 1,3-Dichlorobenzene	+++++	0.49864	0.45424	0.43683	0.49402	0.52442		ļ
I	0.38761	0.35353	0.43615	1		1	0.44818	12.900
	[							
88 Benzyl Chloride	+++++	0.47884	0.43502	0.42968	0.54583	0.61174	1	i
1	0.44339	0.41117	0.50740		-	I	0.48288	14.220
89 1,4-Dichlorobenzene	+++++	0.48458	0.45298	0.41894	0.48279	0.50601		I
	0.37298	0.33925	0.42028			ĺ	0.43473	13.355
90 p-Cymene	+++++	0.70716	0.69741	0.74762	0.87469	0.93782	1	i
, <u> </u>	0.70974	0.62656	0.76638		I I	į	0.75842	13.372
' 			' 					I
91 1,2-Dichlorobenzene	++++	0.44789	0.42184	0.40908	0.45274	0.48021	, j	
	0.34727						0.40785	13.832
ı 				: 	!	!		
92 n-butylbenzene	+++++	++++	0.67675		۱   0.80099	0.84877	' 	' 
J2 n-bacytbenzene	0.62928				0.00099	1	0.68980	15.667
1	1 0.02328	U.53U56		! !	 	ا ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ		15.007
				 	- <b></b>   			
I	I	I	l	·	ıl			

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18 Quant Method : ISTD

Origin : Disabled Target Version : 3.50 : HP RTE Integrator

Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m Cal Date : 26-Nov-2008 16:54 barlozha

Curve Type : Average

	0.04000	0.08000	0.16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
							[	[
	5.000	10.000	25.000		l .		1	
	Level 7	Level 8	Level 9		ļ ,	1	1	1
		======						=======
93 Undecane	0.63633	0.56381	0.47025	0.57485	0.66905	0.70421		
	0.56484	0.44556	0.53557				0.57383	14.94
94 Dodecane	+++++	+++++	+++++	0.43049	0.42317	0.35710	'	
	0.38567	0.29652					0.35962	18.74
95 1,2,4-Trichlorobenzene	+++++	0.36797			0.29837	0.29998		
	0.18425				.	 	0.25388	
96 Napthalene .				0.57367	0.65752			
96 Naprharene .	+++++ 0.38390	0.84975		•	0.05/52 	0.66166	0.56372	   31.19
	0.38390  	0.33877  		 	 	 	1	[ 31.19
97 Hexachlorobutadiene	0.42573			ļ	0.33402	!		
of Hexaciiolobucatione	0.22742				0.33 <del>1</del> 02	l 0.55055	l 0.30102	l 25.00:
	0.22742	0.10700		 	i 		1	
98 1.2.3-trichlorobenzene	   +++++	0.35738		0.24404	0.27114	0.25585		
	0.16361				012/222		0.22902	33.14
					 	' 		
99 ~ Thiophene	+++++	+++++	+++++	+++++	'   +++++	+++++		
•	+++++	·   +++++	+++++		' 	' 	+++++	++++
.00 ~ 1,2,3-Trimethylbenzene	+++++	+++++	+++++	+++++	+++++	++++	· 	
- ·	+++++	+++++	+++++			· [	+++++	+++++
.01 ~ Indane	+++++	+++++	+++++	+++++	+++++	+++++		
	++++	+++++	+++++			l .	+++++	+++++
	<b> </b>				l	I		

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 25-NOV-2008 13:47 End Cal Date : 25-NOV-2008 19:18 Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE
Method file : /var/chem/gcms/mg.i/G112508I.b/T0155.m
Cal Date : 26-Nov-2008 16:54 barlowbo

Curve Type : Average

								<del></del>
1	0.04000	0.08000	0.16000	0.40000	1.000	2.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	8 RSD
								l
	5.000	10.000	25.000		L.	1	1	]
	Level 7	Level 8	Level 9			1		l
_======================================	-		=======	=======			=======	
102 ~ Indene	++++	+++++	+++++	+++++	+++++	++++		
· ·	++++	+++++	+++++	1		[	+++++	+++++
	-		[	1				
103 ~ 2-Methylnaphthalene	+++++	+++++	+++++	+++++	+++++	++++		]
	+++++	+++++	+++++	1	1	1	+++++	+++++
	-					Í		
104 ~ 1-methylnaphthalene	++++	+++++	+++++	£++++	+++++	+++++		l I
	+++++	+++++	+++++		1		++++	+++++
							========	
\$ 6 4-Bromofluorobenzene	0.62088	0.63143	0.63021	0.61986	0.65604	0.66239		
I	0.64110	0.64492	0.65052	]	!	l	0.63971	2.367
	.1	l	1	l	1		l	

Report Date:11/26/2008 Page 1

### INITIAL CALIBRATION RT and RRT REPORT

STD 1 = /var/chem/gcms/mg.i/G112508I.b/mdlchk.d STD 2 = /var/chem/gcms/mg.i/G112508I.b/gick251.d STD 3 = /var/chem/gcms/mg.i/G112508I.b/gick252.d STD 4 = /var/chem/gcms/mg.i/G112508I.b/gick253.d STD 5 = /var/chem/gcms/mg.i/G112508I.b/gick254.d STD 6 = /var/chem/gcms/mg.i/G112508I.b/gick255.d STD 7 = /var/chem/gcms/mg.i/G112508I.b/gick256.d STD 8 = /var/chem/gcms/mg.i/G112508I.b/gick257.d STD 9 = /var/chem/gcms/mg.i/G112508I.b/gick258.d

4-Bromofiluorobenzene   1.103   1.103   1.102   1.103   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.10	COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN	1
Chlorobenzene-d5		.l <u></u>	<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	l		.1
Bromochloromethane				•	•	•	•		•	•		•
4-Bromofiluorobenzene   1.103   1.103   1.102   1.103   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.102   1.10	Chlorobenzene-d5	15.875	15.875	15.875	15.875	15.875	15.875	15.880	15.880	15.880	15.877	
Benzyl Chloride	Bromochloromethane	9.059	9.059	9.059	9.059	9.059	9.053	9.059	9.064	9.064	9.059	
Chlorodifluoromethane	4-Bromofluorobenzene	1.103	1.103	1.102	1.103	1.102	1.102	1.102	1.102	1.102	1.102	1
1.4-Dichlorobenzene	Benzyl Chloride	NA	1.197	1.197	1.197	1.197	1.197	1.196	1.196	1.197	1.197	1
Dichlorodifiluoromethame	Chlorodifluoromethane	0.431	0.431	0.431	0.430	0.430	0.430	0.430	0.431	0.430	0.430	
Chloromethane	1,4-Dichlorobenzene	NA	1.197	1.197	1.197	1.197	1.197	1.197	1.197	1.197	1.197	
1,2-Dichlorotetrafluoroethan   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458   0.458	Dichlorodifluoromethane	0.437	0.437	0.437	0.437	0.437	0.438	0.437	0.437	0.437	0.437	1
Methanol	Chloromethane	NA	0.458	0.457	0.458	0.458	0.458	0.458	0.457	0.457	0.458	
Vinyl Chloride	1,2-Dichlorotetrafluoroethan	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.457	0.458	ļ
n-Butane	Methanol	NA.	NA.	NA	0.472	0.472	0.472	0.472	0.472	0.472	0.472	1
1,3-Butadiene	Vinyl Chloride	0.477	0.477	0.477	0.476	0.477	0.477	0.477	0.476	0.476	0.477	1
Bromomethane	n-Butane	0.486	0.486	0.487	0.486	0.486	0.486	0.486	0.486	0.485	0.486	
Chloroethane	1,3-Butadiene	0.487	0.487	0.486	0.486	0.486	0.486	0.486	0.486	0.486	0.486	
Vinyl Bromide	Bromomethane	NA.	0.523	0.523	0.523	0.523	0.523	0.523	0.523	0.522	0.523	
P-Cymene	Chloroethane	NA	0.538	0.539	0.538	0.539	0.538	0.539	0.538	0.538	0.538	
Trichlorofluoromethane   0.602   0.602   0.602   0.601   0.602   0.602   0.602   0.602   0.601   0.602     Acrolein   NA   NA   0.605   0.604   0.605   0.604   0.604   0.604   0.604   0.604   0.604     Acetonitrile   NA   NA   0.612   0.612   0.612   0.613   0.612   0.613   0.613   0.613   0.612     Acetone   NA   NA   NA   0.618   0.618   0.618   0.618   0.617   0.617   0.618     Pentane   NA   0.626   0.627   0.626   0.626   0.626   0.626   0.626   0.626   0.625   0.626     1,2-Dichlorobenzene   NA   1.220   1.220   1.220   1.220   1.219   1.219   1.220   1.220     Ethyl Ether   NA   0.647   0.646   0.646   0.645   0.646   0.645   0.645   0.645   0.645   0.646     1,1-Dichloroethene   0.681   0.680   0.680   0.680   0.680   0.680   0.680   0.680   0.680   0.680   0.680     Acrylonitrile   NA   NA   0.694   0.693   0.694   0.693   0.693   0.694   0.694   0.694     1,1,2-Trichlorotrifluoroetha   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.699   0.691   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.737   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.808   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0	Vinyl Bromide	NA	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	1
Acrolein   NA   NA   0.605   0.604   0.605   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.604   0.602   0.613   0.613   0.613   0.612   0.612   0.612   0.613   0.613   0.613   0.613   0.613   0.612   0.614   0.618   0.618   0.618   0.618   0.617   0.617   0.618   0.618   0.618   0.618   0.618   0.618   0.617   0.617   0.618   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0	p-Cymene	NA	1.201	1.201	1.201	1.201	1.201	1.200	1.200	1.200	1.201	1
Acetonitrile   NA   NA   0.612   0.612   0.613   0.613   0.613   0.613   0.613   0.612   0.613   0.612   0.613   0.612   0.613   0.612   0.613   0.612   0.613   0.612   0.613   0.612   0.613   0.612   0.618   0.618   0.618   0.618   0.618   0.618   0.617   0.618   0.618   0.618   0.618   0.618   0.617   0.618   0.618   0.618   0.618   0.618   0.618   0.617   0.618   0.618   0.617   0.618   0.618   0.618   0.618   0.618   0.618   0.618   0.617   0.618   0.618   0.618   0.618   0.618   0.618   0.618   0.617   0.618   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.626   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866   0.866	Trichlorofluoromethane	0.602	0.602	0.602	0.601	0.602	0.602	0.602	0.602	0.601	0.602	1
NA	Acrolein	NA	NA	0.605	0.604	0.605	0.604	0.604	0.604	0.604	0.604	
Pentane	Acetonitrile	NA	NA	0.612	0.612	0.612	0.613	0.612	0.613	0.613	0.612	
1,2-Dichlorobenzene	Acetone	NA	NA	NA.	0.618	0.618	0.618	0.618	0.617	0.617	0.618	
Ethyl Ether	Pentane	NA	0.626	0.627	0.626	0.626	0.626	0.626	0.626	0.625	0.626	
1,1-Dichloroethene	1,2-Dichlorobenzene	NA	1.220	1.220	1.220	1.220	1.220	1.219	1.219	1.220	1.220	
Acrylonitrile	Ethyl Ether	NA.	0.647	0.646	0.646	0.645	0.646	0.645	0.645	0.645	0.646	]
tert-butanol   NA   NA   0.693   0.692   0.691   0.691   0.690   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691   0.691	1,1-Dichloroethene	0.681	0.680	0.680	0.680	0.680	0.680	0.680	0.680	0.680	0.680	1
1,1,2-Trichlorotrifluoroetha	Acrylonitrile	NA	NA	0.694	0.693	0.694	0.693	0.693	0.694	0.694	0.694	1
Methylene Chloride         NA           0.720   0.720   0.719   0.720   0.719   0.720   0.719   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.720   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721   0.721	tert-butanol	NA	NA.	0.693	0.692	0.691	0.691	0.690	0.691	0.691	0.691	1
3-Chloropropene	1,1,2-Trichlorotrifluoroetha	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.698	0.699	
Carbon Disulfide	Methylene Chloride	NA	0.720	0.720	0.719	0.720	0.719	0.720	0.720	0.719	0.720	
trans-1,2-Dichloroethene	3-Chloropropene	NA	0.721	0.721	0.721	0.721	0.721	0.721	0.721	0.721	0.721	
Methyl-t-Butyl Ether         NA           0.824   0.824   0.823   0.823   0.823   0.822   0.821   0.822   0.821   0.822             1,1-Dichloroethane           0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855             Vinyl Acetate           NA   NA   NA   0.866   0.867   0.866   0.866   0.866   0.866   0.866   0.866	Carbon Disulfide	NA	NA	0.737	0.737	0.737	0.737	0.737	0.737	0.737	0.737	l
1,1-Dichloroethane	trans-1,2-Dichloroethene	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	
Vinyl Acetate   NA   NA   NA   0.866   0.867   0.866   0.866   0.866   0.866	Methyl-t-Butyl Ether	NA	0.824	0.824	0.823	0.823	0.822	0.821	0.822	0.821	0.822	
	1,1-Dichloroethane	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	0.855	
Hexane   NA   0.916   0.916   0.915   0.916   0.916   0.916   0.916   0.916   0.916	Vinyl Acetate	NA	NA	NA	0.866	0.867	0.866	0.866	0.866	0.866	0.866	l
	Hexane	NA.	0.916	0.916	0.915	0.916	0.916	0.916	0.916	0.916	0.916	

Evaluation Criteria

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean

Note: IS data is RT, SS and Target Compound Data is RRT.

Report Date: 11/26/2008

Page 2

#### INITIAL CALIBRATION RT and RRT REPORT

STD 1 = /var/chem/gcms/mg.i/G112508I.b/mdlchk.d

STD 2 = /var/chem/gcms/mg.i/G112508I.b/gick251.d

STD 3 = /var/chem/gcms/mg.i/G112508I.b/gick252.d

STD 4 = /var/chem/gcms/mg.i/G112508I.b/gick253.d

STD 5 = /var/chem/gcms/mg.i/G112508I.b/gick254.d

STD 6 = /var/chem/gcms/mg.i/G112508I.b/gick255.d

STD 7 = /var/chem/gcms/mg.i/G112508I.b/gick256.d

STD 8 = /var/chem/gcms/mg.i/G112508I.b/gick257.d

STD 9 = /var/chem/gcms/mg.i/G112508I.b/gick258.d

COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN
	_	.	_1	_	_i	_l	_1	.	.1	_
2-Butanone	NA	NA	0.918	0.918	0.917	0.917	0.917	0.916	0.916	0.917
cis 1,2-Dichloroethene	0.963	0.962	0.963	0.963	0.963	0.963	0.963	0.963	0.962	0.963
n-butylbenzene	NA.	NA.	1.228	1.228	1.228	1.228	1.227	1.227	1.227	1.228
Chloroform	1.000	1.000	1.000	1.000	1.000	1.001	1.000	]1.000	1.000	1.000
Undecane	1.246	1.246	1.246	1.246	1.246	1.246	1.246	1.246	1.246	1.246
1,1,1-Trichloroethane	1.114	1.113	1.113	1.112	1.113	1.114	1.113	1.112	1.112	1.113
1,2-Dichloroethane	0.910	0.910	0.911	0.911	0.910	0.911	0.910	0.911	0.911	0.910
Cyclohexane	NA	NA.	0.951	0.952	0.951	0.952	0.951	0.952	0.951	0.951
Benzene	0.952	0.953	0.952	0.953	0.952	0.953	0.952	0.953	0.953	0.952
1-Butanol	NA.	NA	0.949	0.949	0.948	0.948	0.947	0.948	0.947	0.948
Carbon Tetrachloride	0.954	0.955	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954
2,2,4-trimethylpentane	NA.	NA.	1.017	1.017	1.017	1.017	1.017	1.017	1.017	1.017
Heptane	1.050	1.050	1.050	1.050	1.050	1.050	1.050	1.050	1.050	1.050
Hexachlorobutadiene	1.350	1.350	1.350	1.350	1.350	1.350	1.349	1.349	1.349	1.350
1,2-Dichloropropane	1.060	1.060	1.060	1.060	1.060	1.060	1.060	1.060	1.060	1.060
Frichloroethene	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062
Dibromomethane	NA	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071
Bromodichloromethane	1.083	1.083	1.083	1.084	1.083	1.083	1.083	1.083	1.083	1.083
Napthalene	NA	1.336	1.336	1.336	1.336	1.336	1.336	1.336	1.336	1.336
1,2,4-Trichlorobenzene	NA	1.327	1.327	1.327	1.327	1.327	1.327	1.327	1.327	1.327
4-Methyl-2-pentanone	NA	NA.	1.167	1.167	1.166	1.166	1.166	1.166	1.166	1.166
cis-1,3-Dichloropropene	1.171	1.171	1.171	1.171	1.171	1.171	1.171	1.171	1.171	1.171
trans-1,3-Dichloropropene	0.870	0.870	0.870	0.870	0.870	0.870	0.870	0.870	0.870	0.870
Toluene	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877
1,1,2-Trichloroethane	NA	0.883	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882
2-Hexanone	0.906	0.906	0.906	0.906	0.906	0.906	0.905	0.906	0.906	0.906
Octane	0.919	0.919	0.919	0.919	0.919	0.919	0.918	0.918	0.919	0.919
Dibromochloromethane	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926
1,2-Dibromoethane	0.944	0.945	0.945	0.945	0.945	0.945	0.944	0.944	0.945	0.945
Tetrachloroethene	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948
Chlorobenzene	1.003	1.003	1.003	1.003	1.003	1.003	1.003	1.003	1.003	1.003
Ethylbenzene	1.021	1.021	1.021	1.021	1.021	1.021	1.020	1.021	1.021	1.021
m&p-Xylene	1.031	1.031	1.031	1.031	1.031	1.031	1.030	1.030	1.030	1.031
Nonane	1.056	1.056	1.056	1.056	1.056	1.056	1.056	1.056	<u> </u> 1.056	1.056
Bromoform	NA.	1.059	1.060	1.060	1.060	1.060	1.060	1.060	1.060	1.060
Styrene	1.060	1.060	1.060					1.060		
- o-Xylene	11.064	11.064	1.064	1.064	11.064	11.064	11.063	11.063	1.064	1.064

Evaluation Criteria

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean Note: IS data is RT, SS and Target Compound Data is RRT.

Report Date:11/26/2008

Page 3

#### INITIAL CALIBRATION RT and RRT REPORT

STD 1 = /var/chem/gcms/mg.i/G112508I.b/mdlchk.d STD 2 = /var/chem/gcms/mg.i/G112508I.b/gick251.d STD 3 = /var/chem/gcms/mg.i/G112508I.b/gick252.d STD 4 = /var/chem/gcms/mg.i/G112508I.b/gick253.d STD 5 = /var/chem/gcms/mg.i/G112508I.b/gick254.d STD 6 = /var/chem/gcms/mg.i/G112508I.b/gick255.d STD 7 = /var/chem/gcms/mg.i/G112508I.b/gick256.d STD 8 = /var/chem/gcms/mg.i/G112508I.b/gick257.d STD 9 = /var/chem/gcms/mg.i/G112508I.b/gick258.d

-				-						
COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN
	_,	_1	_1		_	.	.	.		.11
1,1,2,2-Tetrachloroethane	1.084	1.084	1.084	1.084	1.084	1.084	1.084	1.084	1.084	1.084
1,2,3-Trichloropropane	1.095	1.094	1.095	1.094	1.095	1.095	1.094	1.094	1.094	1.094
Cumene	NA.	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100
n-Propylbenzene	NA	1.134	1.134	1.134	1.134	1.134	1.133	1.133	1.133	1.134
2-chlorotoluene	NA	1.136	1.137	1.137	1.137	1.137	1.136	1.136	1.136	1.136
4-Ethyltoluene	NA	1.143	1.143	1.143	1.143	1.143	1.143	1.143	1.143	1.143
1,3,5-Trimethylbenzene	1.148	1.147	1.148	1.147	1.148	1.148	1.147	1.147	1.147	1.147
Alpha-Methylstyrene	NA.	1.162	1.162	1.162	1.162	1.162	1.162	1.162	1.162	1.162
Decane	NA.	NA	1.165	1.164	1.165	1.165	1.164	1.164	1.164	1.164
Dodecane	NA	AN	NA	1.313	1.313	1.313	1.313	1.313	1.313	1.313
1,2,4-Trimethylbenzene	1.175	1.175	1.175	1.175	1.175	1.175	1.174	1.174	1.174	1.175
sec-butylbenzene	NA	1.190	1.190	1.190	1.190	1.190	1.190	1.190	1.190	1.190
1,3-Dichlorobenzene	NA	1.192	1.192	1.192	1.192	1.192	1.192	1.192	1.192	1.192
Propene	0.432	0.432	0.432	0.432	0.432	0.432	0.432	0.432	0.431	0.432
2-methyl butane	NA	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0.576	0.577
Isopropyl Alcohol	NA	NA.	0.627	0.626	0.626	0.625	0.625	0.626	0.625	0.626
Ethyl acetate	0.985	0.985	0.984	0.984	0.983	0.984	0.983	0.983	0.983	0.984
Tetrahydrofuran	NA	1.049	1.049	1.049	1.048	1.047	1.046	1.045	1.045	1.047
1,4-dioxane	NA ·	NA	1.087	1.087	1.086	1.085	1.085	1.085	1.085	1.086
methyl methacrylate	1.091	1.092	1.091	1.091	1.090	1.091	1.090	1.090	1.090	1.091
tert-butylbenzene	NA.	1.174	1.174	1.174	1.174	1.174	1.174	1.174	1.174	1.174
1.2.3-trichlorobenzene	NA.	1.355	1.355	1.355	1.355	1.355	1.354	1.354	1.354	1.355

Evaluation Criteria

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean Note: IS data is RT, SS and Target Compound Data is RRT.

Data File: /var/chem/gcms/mg.i/G112508I.b/mdlchk.d

Report Date: 26-Nov-2008 17:01

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mg.i/G112508I.b/mdlchk.d Lab Smp Id: ICAL1

Inj Date : 25-NOV-2008 13:47

Operator : 7126 Inst ID: mg.i

Smp Info : ICAL1,,1,1,,,0.04

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:01 barlozha Quant Type: ISTD Cal Date : 25-NOV-2008 13:47 Cal File: mdlchk.d

Als bottle: 12 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable

					AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v) )	(ppb(v/v))
=======================================		====	==		======	======	======
* 1	l Bromochloromethane	128	9.059	9.059 (1.000)	504706	4.00000	4.000
* 2	2 1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2527489	4.00000	4.000
* 3	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1924460	4.00000	4.000
\$ 6	4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1194866	4.00000	3.882
7	7 Chlorodifluoromethane	67	3.904	3.898 (0.431)	2852	0.04000	0.05081
8	3 Propene	41	3.914	3.915 (0.432)	10663	0.04000	0.04625
9	Dichlorodifluoromethane	85	3.963	3.963 (0.437)	23675	0.04000	0.04298
13	1 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	13836	0.04000	0.04726
13	3 Vinyl Chloride	62	4.319	4.319 (0.477)	6807	0.04000	0.04650
14	1 n-Butane	43	4.405	4.405 (0.486)	12074	0.04000	0.04389
15	5 1,3-Butadiene	54	4.410	4.405 (0.487)	6351	0.04000	0.04677
16	5 Bromomethane	94	4.739	4.734 (0.523)	5694	0.04000	0.04969
17	7 Chloroethane	64	4.880	4.880 (0.539)	3127	0.04000	0.04800
18	3 Vinyl Bromide	106	5.187	5.182 (0.573)	8313	0.04000	0.04846
19	9 2-methyl butane	43	5.230	5.230 (0.577)	17092	0.04000	0.04998

Data File: /var/chem/gcms/mg.i/G112508I.b/mdlchk.d Report Date: 26-Nov-2008 17:01

Compounds   Comp						AMOUNTS		
20 Trichlorofluoromethane		QUANT SIG				CAL-AMT	ON-COL	
20 Trichlorofluoromethane	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
24 Pentame 72	=======================================	====	==			======	======	
25 Isopropyl Alcohol 45 5.883 5.867 (0.627) 12505 0.04000 0.03931 26 2thyl Ether 31 5.861 5.485 (0.647) 7469 0.04000 0.03838 27 1.1-Dichloroethane 96 6.168 6.163 (0.691) 8977 0.04000 0.03838 29 text-hutanol 59 6.292 6.260 (0.693) 12447 0.04000 0.03838 29 text-hutanol 101 6.330 6.336 (0.699) 15935 0.04000 0.03868 31 0.1.1.2 747 0.04000 0.03868 31 0.1.1.2 747 0.04000 0.03868 32 3-Chloropropene 39 6.530 (0.721) 10110 0.04000 0.08568 32 3-Chloropropene 39 6.530 (0.721) 10110 0.04000 0.08567 34 trans-1,2-Dichloroethane 63 7.743 7.732 (0.098) 10394 0.04000 0.08567 34 trans-1,2-Dichloroethane 63 7.743 7.742 (0.855) 16555 0.04000 0.05038 38 Hexture 56 6.298 8.299 (0.216) 9347 0.04000 0.05038 38 Hexture 56 6.298 8.299 (0.216) 9347 0.04000 0.05038 38 Hexture 43 8.944 8.906 (0.985) 1237 0.04000 0.05038 34 Etherhoroethane 96 8.734 8.725 (0.963) 9263 0.04000 0.05038 34 Etherhoroethane 96 8.734 8.725 (0.963) 9263 0.04000 0.05038 34 Etherhoroethane 97 0.04000 0.08518 32 24 8.900 (0.985) 1237 0.04000 0.05038 34 Etherhoroethane 97 0.0400 0.08518 32 30 0.04000 0.05038 34 Etherhoroethane 97 0.0400 0.08518 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.04538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.05338 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 16528 0.04000 0.03538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 10.090 0.04000 0.03538 34 1.1-Trichloroethane 97 10.099 10.093 (1.134) 10.090 0.04000 0.03538 34 1.1-Trichloroethane 97 11.099 10.090 0.0900 0.0900 0.03595 35 1.00000 0.03595 35 1.00000 0.03595	20 Trichlorofluoromethane	101	5.451	5.451 (0.602)	22690	0.04000	0.04326	
26 Ethyl Ether 31 5.861 5.865 (0.647) 7469 0.04000 0.03838   27 1,1-Dichloroethene 96 6.168 6.163 (0.647) 7469 0.04000 0.0318   28 tert-butanol 59 6.292 6.260 (0.695) 12447 0.04000 0.03186   30 1,1.2-Tichlorotrifluoroethane 101 6.330 6.336 (0.699) 15938 0.04000 0.04540   31 Methylane Chloride 84 6.519 6.519 (0.720) 11230 0.04000 0.04540   32 3-Chloropropene 39 6.530 6.530 (0.721) 10110 0.04000 0.04958   33 Carbon Disulfide 76 6.681 6.681 (0.737) 2503 0.04000 0.04567   34 trans-1,2-Dichloroethane 96 7.317 7.323 (0.808) 10394 0.04000 0.05522   36 1,1-Dichloroethane 96 7.317 7.323 (0.808) 10394 0.04000 0.05538   38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05538   38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05538   38 Hexane 43 8.924 8.906 (0.985) 11237 0.04000 0.05722   41 Ethyl acetate 43 8.924 8.906 (0.985) 11237 0.04000 0.05722   42 Chloroform 93 9.064 9.064 (1.001) 15373 0.04000 0.05722   43 Tetrahydrofuran 42 9.522 9.499 (1.051) 6995 0.04000 0.04538   44 1,1-Tichloroethane 97 10.099 10.083 (1.114) 15538 0.04000 0.04538   45 1,2-Dichloroethane 69 10.666 10.660 (0.952) 4645 0.04000 0.04538   46 1,1-Dichloroethane 69 10.666 10.660 (0.952) 4645 0.04000 0.04538   47 Benzene 78 10.697 10.697 (0.952) 17825 0.04000 0.04538   48 1-Butanol 31 10.649 10.623 (0.950) 4845 0.04000 0.04538   49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16794 0.04000 0.05338   49 Carbon Tetrachloride 117 10.687 10.697 (0.954) 17935 0.04000 0.05338   49 Carbon Tetrachloride 117 10.687 10.691 (0.954) 17935 0.04000 0.05338   50 1,4-dioxane 83 12.138 12.338 (1.083) 11333 0.04000 0.05338   51 Heptane 83 11.998 11.998 (1.071) 7817 0.04000 0.05390   51 Heptane 83 11.998 11.998 (1.071) 7825 0.04000 0.05390   51 Heptane 93 11.998 11.998 (1.071) 7825 0.04000 0.05393   52 1,4-dichloropethane 97 14.09 14.996 (1.050) 17935 0.04000 0.05393   53 Trichloroethane 99 10.686 (1.660) 17930 0.04000 0.03393   54 Dibromomethane 99 13.1998 (1.071) 18133 0.04000 0.03393   54 Dibromomethane 99 13.1998 (1.071) 18133 0.04000 0.03393   54 Dibromomethane 129	24 Pentane	72	5.678	5.667 (0.627)	1709	0.04000	0.04237	
27 1,1-Dichloroetheme	25 Isopropyl Alcohol	45	5.683	5.667 (0.627)	12505	0.04000	0.03981	
29 text-butanol   59	26 Ethyl Ether	31	5.861	5.845 (0.647)	7469	0.04000	0.03838	
30 1,1,2-Trichlorotrifluoroethane 101 6.330 6.336 (0.699) 15935 0.04000 0.04506 31 Methylene Chloride 84 6.519 6.519 (0.720) 11230 0.04000 0.04988 32 3-Chloropropene 93 9.530 6.530 (0.731) 10110 0.04000 0.04988 33 Carbon Disulfide 76 6.681 6.681 (0.737) 25803 0.04000 0.04567 34 trans-1,2-Dichloroethene 96 7.317 7.323 (0.808) 10394 0.04000 0.05222 38 Hexane 56 1,1-Dichloroethane 56 8.298 8.299 (0.916) 9347 0.04000 0.05232 38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05722 41 Ethyl acetate 43 8.724 8.725 (0.963) 9263 0.04000 0.05722 42 Chloroform 83 9.064 9.064 (1.001) 15937 0.04000 0.05724 42 Chloroform 83 9.064 9.064 (1.001) 15937 0.04000 0.05234 43 Tetrahydrofuran 42 9.522 9.490 (1.051) 6995 0.04000 0.04538 44 1,1,1-Trichloroethane 56 10.089 10.083 (1.114) 16528 0.04000 0.04538 45 1,2-Dichloroethane 56 10.066 10.666 (0.952) 4645 0.04000 0.04101 46 Cyclobrane 59 10.666 10.660 (0.952) 14635 0.04000 0.04101 47 Benzene 48 1-Butanol 49 Carbon Tetrachloride 117 10.667 10.667 (0.952) 17825 0.04000 0.05311 47 Benzene 43 11.766 11.760 (1.057) 1.9782 0.04000 0.05311 47 Benzene 43 11.766 11.760 (1.057) 1.9782 0.04000 0.05389 51 Hightane 43 11.766 11.760 (1.057) 1.9783 0.04000 0.05389 53 Trichloroethene 130 11.998 11.894 (1.057) 17837 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 11.994 (1.050) 17935 0.04000 0.05899 53 Trichloroethene 130 11.998 11.998 (1.071) 7817 0.04000 0.03899 53 Trichloroethene 130 11.998 11.998 (1.071) 7817 0.04000 0.03899 53 Trichloroethene 130 11.998 11.998 (1.071) 7817 0.04000 0.03967 54 Hibromomethane 83 12.192 12.165 (1.088) 2334 0.04000 0.03972 55 Bromodichloromethane 83 12.192 12.165 (1.088) 2334 0.04000 0.03967 56 1,4-dioxane 88 12.192 12.165 (1.088) 2339 0.04000 0.03967 56 1,4-dioxane 88 12.192 12.165 (1.088) 2330 0.04000 0.03967 56 1,4-dioxane 88 12.192 12.165 (1.088) 2330 0.04000 0.03967 56 1.1-2-Dibromoethane 97 14.009 14.009 (0.088) 2335 0.04000 0.03967 56 1.1-2-Dibromoethane 19 11.998 11.998 (1.071) 11.555 0.04000 0.03967 56 1.1-2-Dibromoethane 19 11.504 16.004 17.991 14.996 (	27 1,1-Dichloroethene	96	6.168	6.163 (0.681)	8977	0.04000	0.05118	
31 Methylene Chloride 84 6.519 6.519 (0.720) 11230 0.04000 0.07108 32 3-Chloropropene 39 6.530 6.530 (0.721) 10110 0.04000 0.04958 32 3-Chloropropene 96 7.317 7.323 (0.808) 10394 0.04000 0.04567 34 trans-1,2-Dichloroethane 96 7.317 7.323 (0.808) 10394 0.04000 0.05222 36 1,1-Dichloroethane 63 7.743 7.743 (0.805) 16555 0.04000 0.05518 38 Hexane 56 8.298 8.329 (0.916) 9947 0.04000 0.05518 40 cis 1,2-Dichloroethane 96 8.724 9.725 (0.953) 9263 0.04000 0.05518 40 cis 1,2-Dichloroethane 96 8.724 9.725 (0.953) 9263 0.04000 0.05722 41 Ethyl acetate 43 8.924 8.906 (0.985) 11237 0.04000 0.04578 42 Chloroform 83 9.064 9.064 (1.001) 1.5373 0.04000 0.04578 42 Chloroform 42 9.522 9.490 (1.051) 6995 0.04000 0.04528 44 1,1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04552 45 1,2-Dichloroethane 62 10.202 (10.202 (0.902) 7492 0.04000 0.04552 45 1,2-Dichloroethane 62 10.202 (10.202 (0.903) 7492 0.04000 0.05314 45 Cyclohexane 69 10.665 (0.660 (0.952) 4645 0.04000 0.05314 47 Benzene 78 10.671 (0.697 (0.952) 17825 0.04000 0.04566 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 (0.954) 16754 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.050) 17935 0.04000 0.04626 51 1.2-Dichloroepropane 63 11.879 11.984 (1.060) 17935 0.04000 0.05500 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04626 52 1,2-Dichloropropane 63 11.879 11.984 (1.060) 17935 0.04000 0.05500 55 Trichloroethane 93 11.394 11.394 (1.050) 17935 0.04000 0.05502 55 Trichloroepropane 75 13.193 13.194 (1.050) 17935 0.04000 0.05502 55 Trichloroepropane 75 13.193 13.194 (1.050) 17935 0.04000 0.05502 55 Trichloroepropane 75 13.193 13.194 (1.050) 17935 0.04000 0.05502 55 Trichloropropane 75 13.193 13.194 (1.071) 7517 0.04000 0.05502 55 Trichloroepropane 75 13.193 13.194 (1.071) 7517 0.04000 0.05502 55 1.4-dioxane 85 14.566 14.586 (0.959) 4455 0.04000 0.03574 56 12.4-Journal of the state o	29 tert-butanol	59	6.292	6.260 (0.695)	12447	0.04000	0.03868	
32 3-Chloropropene 39 6.530 6.530 (0.721) 10110 0.04000 0.04958 33 Carbon Disulfide 76 6.681 6.681 (0.737) 25803 0.04000 0.04567 45 trans-1,2-Dichloroethene 96 7.317 7.323 (0.888) 10394 0.04000 0.05222 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 16555 0.04000 0.05222 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 16555 0.04000 0.05038 38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05012 40 0.68 1,2-Dichloroethane 96 8.724 8.725 (0.963) 9263 0.04000 0.05722 41 Ethyl acetate 43 8.924 8.908 (0.985) 11237 0.04000 0.05172 42 Chloroform 93 9.064 9.064 (1.001) 15373 0.04000 0.05124 42 Chloroform 93 9.064 9.064 (1.001) 15373 0.04000 0.05024 43 Tetrahydrofuran 42 9.522 9.490 (1.051) 6995 0.04000 0.04538 44 1,1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04538 44 1,1,1-Trichloroethane 62 10.202 10.202 (0.910) 7492 0.04000 0.04101 46 Cyclohexane 69 10.666 10.660 (0.952) 4645 0.04000 0.04511 47 Benzene 78 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.668 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.687 (0.954) 16754 0.04000 0.05358 49 Carbon Tetrachloride 117 10.667 10.687 (0.954) 16754 0.04000 0.05358 49 Carbon Tetrachloride 117 10.667 10.687 (0.954) 16754 0.04000 0.05358 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.057) 55668 0.04000 0.05502 51 Hoptane 43 11.766 11.760 (1.050) 17935 0.04000 0.05502 51 Hoptane 43 11.766 11.760 (1.050) 17935 0.04000 0.05502 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03927 53 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03927 53 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03926 65 1,4-dioxane 88 12.132 12.165 (1.088) 2334 0.04000 0.03927 53 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03926 66 1,4-dioxane 88 12.132 12.165 (0.088) 2334 0.04000 0.03926 66 1.4-dioxane 88 12.132 12.138 (1.083) 11123 0.04000 0.03926 66 1.4-dioxane 88 12.132 12.136 (1.080) 13133 0.04000 0.03926 66 1.4-dioxane 88 12.132 12.138 (1.080) 13133 0	30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.336 (0.699)	15935	0.04000	0.04540	
33 Carbon Disulfide 76 6.681 6.681 (0.737) 25803 0.04000 0.04567 34 trans-1,2-Dichloroethene 96 7.317 7.323 (0.808) 10394 0.04000 0.05222 36 1,1-Dichloroethane 63 7.743 (0.855) 16555 0.04000 0.05038 38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05018 40 cis 1,2-Dichloroethene 96 8.724 8.725 (0.963) 9263 0.04000 0.05722 41 Ethyl acetate 43 8.994 (0.985) 11237 0.04000 0.05724 42 Chloroform 83 9.064 9.064 (1.001) 15373 0.04000 0.05024 43 Tetrahydrofuran 42 9.532 9.490 (1.051) 6999 0.04000 0.05024 43 Tetrahydrofuran 42 9.532 9.490 (1.051) 6999 0.04000 0.04538 44 1,1,1-Trichloroethane 62 10.202 10.202 (0.910) 7492 0.04000 0.04518 45 1,2-Dichloroethane 69 10.666 10.660 (0.952) 4645 0.04000 0.05311 46 Cyclobexane 69 10.666 10.660 (0.952) 4645 0.04000 0.05311 47 Bensene 78 10.691 10.671 (0.954) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.652 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.667 (0.954) 17835 0.04000 0.05358 49 Carbon Tetrachlorydene 63 11.766 11.760 (1.050) 17935 0.04000 0.04626 50 2.2,4-t-insethylpentane 57 11.394 (1.071) 55666 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04626 52 1,2-Dichloroethane 83 11.998 11.998 (1.071) 7817 0.04000 0.05900 51 Heptane 93 11.998 11.998 (1.071) 7817 0.04000 0.05902 55 Bromodichloromethane 83 12.138 (1.931 1113) 0.04000 0.03826 56 1,4-dlocane 88 12.192 12.155 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03972 58 4-Mothyl-2-pentamone 43 13.081 13.065 (1.167) 10018 0.04000 0.03972 58 d-Mothyl-2-pentamone 43 13.081 13.065 (1.167) 10018 0.04000 0.03972 59 d-1-1-3-Dichloropropene 75 13.890 13.890 (0.870) 5248 0.04000 0.03976 60 trans-1,3-Dichloroethane 85 14.586 (0.999) 4745 0.04000 0.03962 61 Toluene 91 13.933 13.923 (0.877) 13333 0.04000 0.03962 64 Otane 85 14.456 (0.999) 4745 0.04000 0.03962 65 Chloromoethane 199 16.680 (0.944) 7386 0.04000 0.03962 65 Chloromoethane 199 16.680 (0.944) 7386 0.04000 0.03962 66 Chloroberame 191 16.565 (0.946) 7380 0.04000 0.03962 67 Tetrachloroethane 191	31 Methylene Chloride	84	6.519	6.519 (0.720)	11230	0.04000	0.07108	
34 trans-1,2-Dichloroethane 63 7.743 7.323 (0.808) 10334 0.04000 0.05222 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 15555 0.04000 0.05038 38 Hexane 56 8.298 8.299 (0.916) 9347 0.04000 0.05018 40 cis 1,2-Dichloroethane 95 8.724 8.725 (0.963) 3263 0.04000 0.05732 41 Ethyl acetate 43 8.924 8.735 (0.963) 3263 0.04000 0.05732 41 Ethyl acetate 43 8.924 8.798 (0.985) 11237 0.04000 0.05732 41 Ethyl acetate 43 8.924 8.798 (0.985) 11237 0.04000 0.05024 43 Tetrahydrofuran 42 9.532 9.490 (1.051) 6995 0.04000 0.04538 44 1,1,1-Trichloroethane 97 10.069 10.063 (1.114) 15528 0.04000 0.04538 44 1,1,1-Trichloroethane 62 10.202 (0.910) 7492 0.04000 0.04952 45 1,2-Dichloroethane 62 10.202 (0.910) 7492 0.04000 0.04511 46 Cyclohexane 69 10.666 (10.660 (0.952) 4645 0.04000 0.05311 47 Bensene 78 10.671 10.671 (0.952) 17825 0.04000 0.05311 47 Bensene 78 10.671 10.671 (0.952) 17825 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 (0.954) 16734 0.04000 0.05358 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05358 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04626 50 2,2,4-trimethylpentane 59 11.898 11.998 (1.071) 7817 0.04000 0.04926 51 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.04926 52 1,2-Dichloropropane 63 11.879 11.874 (1.063) 10787 0.04000 0.03859 53 Trichloroethane 88 12.138 (1.083) 11123 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.216 (1.083) 11123 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03976 63 1.4-dioxane 88 12.138 (1.083) 11.39 (1.171) 6165 0.04000 0.03967 64 Octane 85 14.586 (0.919) 41.099 (0.882) 4259 0.04000 0.03967 65 1,1-2-Trichloroethane 97 14.009 (0.882) 4259 0.04000 0.03967 65 1,1-2-Trichloroethane 97 14.009 (0.892) 4259 0.04000 0.03967 65 1,1-2-Trichloroethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03967 65 1,1-2-Trichloroethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03967 65 11.2-Dibro	32 3-Chloropropene	39	6.530	6.530 (0.721)	10110	0.04000	0.04958	
36 1,1-Dichloroethane	33 Carbon Disulfide	76	6.681	6.681 (0.737)	25803	0.04000	0.04567	
38   Hexane	34 trans-1,2-Dichloroethene	96	7.317	7.323 (0.808)	10394	0.04000	0.05222	
40 cis 1,2-Dichloroethene 96 8.724 8.725 (0.963) 9263 0.04000 0.05722 1 Ethyl acetate 43 8.924 8.908 (0.985) 11237 0.04000 0.04178 42 Chloroform 83 9.064 9.064 (1.001) 15373 0.04000 0.04528 42 Chloroform 42 9.522 9.490 (1.051) 6995 0.04000 0.04538 44 1,1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04538 44 1,1,1-Trichloroethane 62 10.202 10.202 (0.910) 7492 0.04000 0.04952 45 1,2-Dichloroethane 69 10.666 (0.952) 4645 0.04000 0.04511 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04511 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.05588 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.05388 05 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05389 53 Trichloroethene 30 11.909 11.908 (1.901) (1.053) 17935 0.04000 0.04826 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03889 53 Trichloroethene 30 11.998 11.998 (1.071) 7817 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.03826 55 1,4-dioxane 88 12.128 12.138 (1.083) 11123 0.04000 0.03326 55 1,4-dioxane 88 12.129 12.165 (1.088) 2834 0.04000 0.03374 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03374 59 cis-1,3-Dichloropropene 75 13.189 13.191 (1.171) 6165 0.04000 0.03374 59 cis-1,3-Dichloropropene 75 13.189 13.191 (1.171) 6165 0.04000 0.03386 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03386 63 2-Hexanone 58 14.586 (1.586 (1.919) 4745 0.04000 0.03386 63 2-Hexanone 59 14.099 (1.999 (1.991) 4745 0.04000 0.03386 65 1,2-Dibromomethane 107 14.990 14.991 (1.991) 4745 0.04000 0.03386 66 1,2-Dibromomethane 107 14.990 14.991 (1.996 (0.944) 7386 0.04000 0.03386 66 1,2-Dibromomethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03386 66 1,2-Dibromomethane 129 15.055 (0.948) 7379 0.04000 0.03387 66 21,1,2-Trichloroethane 129 15.055 (0.948) 7379 0.04000 0.03387 66 21,1,2-Trichloroethane 129 15.055 (0.948) 7308 0.04000 0.03387 66 0	36 1,1-Dichloroethane	63	7.743	7.743 (0.855)	16555	0.04000	0.05038	
41 Ethyl acetate	38 Hexane	56	8.298	8.299 (0.916)	9347	0.04000	0.05018	
42 Chloroform 83 9.064 9.064 (1.001) 15373 0.04000 0.05024 43 Tetrahydrofuran 42 9.522 9.490 (1.051) 6995 0.04000 0.04538 44 1,1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04952 45 1,2-Dichloroethane 62 10.202 10.202 (0.910) 7492 0.04000 0.04511 46 Cyclohexane 69 10.666 10.660 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.05558 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04462 50 2,2,4-trimethylpentane 130 11.906 11.901 (1.063) 10787 0.04000 0.04425 51 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichloroethane 130 11.906 11.901 (1.063) 10787 0.04000 0.05902 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05902 55 Bromodichloromethane 83 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.155 (1.088) 2834 0.04000 0.03872 57 methyl methacrylate 41 12.229 12.215 (1.089) 4974 0.04000 0.03972 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03972 59 cis-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03967 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03866 62 1,1,2-Trichloroethane 85 14.386 (0.919) 4745 0.04000 0.03866 63 2-Hexanone 88 14.392 14.391 (0.997) 4645 0.04000 0.03866 64 Octane 85 14.586 (0.919) 4745 0.04000 0.03866 65 12-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.03866 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.03876 67 Tetrachloroethane 119 15.055 (1.055 (0.948) 7377 0.04000 0.04457 68 Chlorobenzene 112 15.959 15.955 (0.948) 7377 0.04000 0.04457 68 Chlorobenzene 112 15.959 15.955 (0.948) 7377 0.04000 0.040457 68 Chlorobenzene 112 15.059 15.055 (0.948) 7377 0.04000 0.040457 78 Etmylbenzene 91 16.365 16.3	40 cis 1,2-Dichloroethene	96	8.724	8.725 (0.963)	9263	0.04000	0.05722	
43 Tetrahydrofuran 42 9.522 9.490 (1.051) 6995 0.04000 0.04538 44 1.1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04952 45 1,2-Dichloroethane 62 10.202 10.202 (0.910) 7492 0.04000 0.04101 46 Cyclohexane 69 10.665 10.666 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 (0.954) 1673 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 (1.037) 55668 0.04000 0.05900 51 Heptane 43 11.766 (1.760 (1.050) 17935 0.04000 0.05900 51 Heptane 43 11.766 (1.160) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.04926 53 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.04926 54 Dibromomethane 93 11.998 (1.991) 7817 0.04000 0.05902 55 Bromodichloromethane 93 11.998 (1.071) 7817 0.04000 0.05902 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03177 59 cis-1,3-Dichloropropene 75 13.191 13.119 (1.171) 6165 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03374 60 trans-1,3-Dichloropropene 75 13.809 13.933 (0.877) 1333 0.04000 0.03585 63 2-Hexanone 85 14.392 14.381 (0.907) 4645 0.04000 0.03585 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03585 65 1-Texanone 129 14.004 14.705 (0.926) 7308 0.04000 0.03582 66 17.0 1.7 14.9 14.9 14.9 14.9 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	41 Ethyl acetate	43	8.924	8.908 (0.985)	11237	0.04000	0.04178	
44 1,1,1-Trichloroethane 97 10.089 10.083 (1.114) 16528 0.04000 0.04952 45 1,2-Dichloroethane 62 10.202 (10.202 (0.910) 7492 0.04000 0.04101 46 Cyclohexane 69 10.666 10.660 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.05318 48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 (10.687 (0.954) 16754 0.04000 0.05900 51 Heptane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.766 (1.766) 17935 0.04000 0.05900 51 Heptane 43 11.766 11.766 (1.766) 17935 0.04000 0.05859 53 Trichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichlorocethane 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.03826 55 1,4-dioxane 88 12.192 12.183 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cie-1,3-Dichloropropene 75 13.191 13.119 (1.171) 5165 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03806 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03585 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 (14.705 (0.926) 7308 0.04000 0.03521 65 Dibromochloromethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachlorocethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachlorocethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachlorocethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachlorocethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachlorocethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 T	42 Chloroform	83	9.064	9.064 (1.001)	15373	0.04000	0.05024	
45 1,2-Dichloroethane 62 10.202 (0.910) 7492 0.04000 0.04101 46 Cyclohexane 69 10.666 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.669 10.687 (0.952) 4645 0.04000 0.05318 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.04526 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.04626 51 Leptane 43 11.766 (1.050) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.04926 53 Trichloroethene 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05902 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.122 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.215 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03274 58 4-Methyl-2-pentanone 75 13.809 13.810 (0.870) 5248 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.932 (0.877) 13333 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03962 64 Octane 85 14.586 (1.939) 4745 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03521 65 Dibromochloromethane 129 15.055 15.055 (0.948) 7737 0.04000 0.03466 66 1,2-Dibromochlane 129 15.055 15.055 (0.948) 7737 0.04000 0.03466 66 1,2-Dibromochlane 129 15.055 15.055 (0.948) 7737 0.04000 0.03466 67 Tetrachloroethane 129 15.055 15.055 (0.948) 7737 0.04000 0.03466 66 1,2-Dibromochlane 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.03466 69 Ethylbenzene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.755 (1.056) 10386 0.04000 0.03140	43 Tetrahydrofuran	42	9.522	9.490 (1.051)	6995	0.04000	0.04538	
46 Cyclohexane 69 10.666 10.660 (0.952) 4645 0.04000 0.05311 47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Buttanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05590 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.04926 54 Dibromomethane 93 11.998 (1.071) 7817 0.04000 0.05900 55 Trichloroethane 93 11.998 (1.071) 7817 0.04000 0.05902 55 Promodichloromethane 83 12.138 (1.083) 11.123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03766 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03766 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03585 63 2-Hexanone 88 14.392 14.381 (0.907) 4645 0.04000 0.03565 63 2-Hexanone 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 65 Dibromochloromethane 129 15.055 15.055 (0.948) 7737 0.04000 0.03521 66 Chance 129 15.055 15.055 (0.948) 7737 0.04000 0.03521 66 Chlorobenzene 112 15.929 15.933 (1.003) 11285 0.04000 0.03466 61.2-Dibromochlane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 66 Chlorobenzene 112 15.929 15.935 (0.944) 7386 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.935 (1.003) 11285 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.935 (1.003) 11285 0.04000 0.04162 67 Tetrachloroethane 57 16.759 16.765 (1.056) 10386 0.04000 0.04162 67 Tetrachloroethane 57 16.759 16.765 (1.056) 10386 0.04000 0.04162 67 Tetrachloroethane 57 16.759 16.765 (1.056) 10386 0.04000 0.04162 67 Tetrachloroethane 57 16.759 16.765 (1.056) 10386 0.04000 0.04162 67 Tetrachloroethane 57 16.759 16.765 (1.056) 10386 0.04000 0.04162	44 1,1,1-Trichloroethane	97	10.089	10.083 (1.114)	16528	0.04000	0.04952	
47 Benzene 78 10.671 10.671 (0.952) 17825 0.04000 0.04746 48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05358 49 Carbon Tetrachloride 117 10.687 (0.954) 16754 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 (1.017) 55668 0.04000 0.05900 51 Reptane 43 11.766 11.760 (1.050) 17935 0.04000 0.0402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichlorocethene 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05002 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.2165 (1.088) 2834 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03376 60 trans-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03966 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03967 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 4259 0.04000 0.03967 64 Toluene 85 14.586 14.586 (0.919) 4745 0.04000 0.03585 65 2-Hexanone 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 66 1,2-Dibromoethane 129 15.055 15.055 (0.948) 7737 0.04000 0.03467 66 Charane 129 15.055 15.055 (0.948) 7737 0.04000 0.03467 67 Tetrachloroethene 129 15.055 16.366 (1.031) 12285 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.055 16.366 (1.031) 12285 0.04000 0.04457 70 Mgp-Xylene 91 16.365 16.366 (1.031) 122632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03470	45 1,2-Dichloroethane	62	10.202	10.202 (0.910)	7492	0.04000	0.04101	
48 1-Butanol 31 10.649 10.628 (0.950) 4845 0.04000 0.05338 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 16754 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichloroethene 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05002 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.19 13.119 (1.171) 6165 0.04000 0.03197 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03866 61 Toluene 58 14.392 14.381 (0.907) 4645 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4786 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromochlane 129 15.055 15.055 (0.948) 7377 0.04000 0.03246 66 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.03446 68 Chlorobenzene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.755 (1.056) 10386 0.04000 0.03977 72 Bromoform	46 Cyclohexane	69	10.666	10.660 (0.952)	4645	0.04000	0.05311	
49 Carbon Tetrachloride 117 10.687 (0.954) 16754 0.04000 0.04626 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichloroethene 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05802 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03826 56 1,4-dioxane 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.199 13.119 (1.171) 6165 0.04000 0.03466 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03565 63 2-Hexanone 85 14.392 14.381 (0.997) 4645 0.04000 0.03565 63 2-Hexanone 85 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 107 14.990 (1.882) 4259 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.03246 66 1,2-Dibromoethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 129 15.055 (5.948) 7337 0.04000 0.04162 67 Tetrachloroethene 129 15.055 (5.948) 7337 0.04000 0.04162 67 Tetrachloroethene 129 15.055 (1.565 (1.056) 1386 0.04000 0.04145 69 Ethylbenzene 91 16.365 16.366 (1.051) 1286 0.04000 0.04145 69 Ethylbenzene 91 16.365 16.366 (1.051) 1286 0.04000 0.04145 69 Ethylbenzene 91 16.365 16.366 (1.051) 1286 0.04000 0.04077 773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform	47 Benzene	78	10.671	10.671 (0.952)	17825	0.04000	0.04746	
50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 55668 0.04000 0.05900 51 Heptane 43 11.766 11.760 (1.050) 17935 0.04000 0.04402 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 5199 0.04000 0.03859 53 Trichloroethene 130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05002 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03466 61 Toluene 91 13.923 13.923 (0.877) 1333 0.04000 0.03866 61 Toluene 91 13.923 13.923 (0.877) 1333 0.04000 0.03967 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 4259 0.04000 0.03967 62 1,1,2-Trichloroethane 58 14.392 14.381 (0.907) 4645 0.04000 0.03962 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03521 66 1,2-Dibromochlane 129 15.055 15.055 (0.948) 737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04457 68 Chlorobenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04457 68 Ethylbenzene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.755 (1.056) 10386 0.04000 0.03977 72 Bromoform	48 1-Butanol	31	10.649	10.628 (0.950)	4845	0.04000	0.05358	
51 Heptane       43       11.766       11.760       (1.050)       17935       0.04000       0.04402         52 1,2-Dichloropropane       63       11.879       11.874       (1.060)       5199       0.04000       0.03859         53 Trichloroethene       130       11.906       11.901       (1.063)       10787       0.04000       0.04926         54 Dibromomethane       93       11.998       11.998       (1.071)       7817       0.04000       0.05002         55 Bromodichloromethane       83       12.138       (1.083)       11123       0.04000       0.03826         56 1,4-dioxane       88       12.192       (1.091)       4974       0.04000       0.03972         57 methyl methacrylate       41       12.229       (1.091)       4974       0.04000       0.03274         58 4-Methyl-2-pentanone       43       13.081       13.065       (1.167)       10018       0.04000       0.03197         59 cis-1,3-Dichloropropene       75       13.119       13.111       13.111       6165       0.04000       0.03746         60 trans-1,3-Dichloropropene       75       13.809       13.810       (0.870)       5248       0.04000       0.03866         61 Toluene <td>49 Carbon Tetrachloride</td> <td>117</td> <td>10.687</td> <td>10.687 (0.954)</td> <td>16754</td> <td>0.04000</td> <td>0.04626</td>	49 Carbon Tetrachloride	117	10.687	10.687 (0.954)	16754	0.04000	0.04626	
52 1,2-Dichloropropane         63         11.879         11.874         (1.060)         5199         0.04000         0.03859           53 Trichloroethene         130         11.906         11.901         (1.063)         10787         0.04000         0.04926           54 Dibromomethane         93         11.998         11.998         (1.071)         7817         0.04000         0.05002           55 Bromodichloromethane         83         12.138         (1.083)         11123         0.04000         0.03826           56 1,4-dioxane         88         12.192         12.165         (1.088)         2834         0.04000         0.03972           57 methyl methacrylate         41         12.229         12.219         (1.091)         4974         0.04000         0.03274           58 4-Methyl-2-pentanone         43         13.081         13.065         (1.167)         10018         0.04000         0.03197           59 cis-1,3-Dichloropropene         75         13.809         13.819         (1.171)         6165         0.04000         0.03306           61 Toluene         91         13.923         13.923         (0.870)         5248         0.04000         0.03366           61 Toluene         91         13	50 2,2,4-trimethylpentane	57	11.394	11.394 (1.017)	55668	0.04000	0.05900	
130 11.906 11.901 (1.063) 10787 0.04000 0.04926 54 Dibromomethane 93 11.998 11.998 (1.071) 7817 0.04000 0.05002 55 Bromodichloromethane 83 12.138 12.138 (1.083) 11123 0.04000 0.03826 56 1,4-dioxane 88 12.192 12.165 (1.088) 2834 0.04000 0.03972 57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03806 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03562 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03524 66 1,2-Dibromethane 129 15.055 15.055 (0.948) 7737 0.04000 0.03457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04457 68 Chlorobenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	51 Heptane	43	11.766	11.760 (1.050)	17935	0.04000	0.04402	
54 Dibromomethane         93         11.998 11.998 (1.071)         7817 0.04000 0.05002           55 Bromodichloromethane         83         12.138 12.138 (1.083)         11123 0.04000 0.03826           56 1,4-dioxane         88         12.192 12.165 (1.088)         2834 0.04000 0.03972           57 methyl methacrylate         41         12.229 12.219 (1.091) 4974 0.04000 0.03274           58 4-Methyl-2-pentanone         43         13.081 13.065 (1.167) 10018 0.04000 0.03197           59 cis-1,3-Dichloropropene         75         13.119 13.119 (1.171) 6165 0.04000 0.03746           60 trans-1,3-Dichloropropene         75         13.809 13.810 (0.870) 5248 0.04000 0.03806           61 Toluene         91 13.923 13.923 (0.877) 13333 0.04000 0.03967           62 1,1,2-Trichloroethane         97 14.009 14.009 (0.882) 4259 0.04000 0.03965           63 2-Hexanone         58 14.392 14.381 (0.907) 4645 0.04000 0.03962           64 Octane         85 14.586 14.586 (0.919) 4745 0.04000 0.03521           65 Dibromochloromethane         129 14.704 14.705 (0.926) 7308 0.04000 0.03246           66 1,2-Dibromoethane         107 14.990 14.996 (0.944) 7386 0.04000 0.04162           67 Tetrachloroethene         129 15.055 15.055 (0.948) 7737 0.04000 0.04162           67 Tetrachloroethene         129 15.055 15.055 (0.948) 7737 0.04000 0.04162           67 Ethylbenzene         91 16.204 16.204 (1.0	52 1,2-Dichloropropane	63	11.879	11.874 (1.060)	5199	0.04000	0.03859	
55 Bromodichloromethane       83       12.138       12.138       12.138       12.138       0.04000       0.03826         56 1,4-dioxane       88       12.192       12.165       (1.088)       2834       0.04000       0.03972         57 methyl methacrylate       41       12.229       12.219       (1.091)       4974       0.04000       0.03274         58 4-Methyl-2-pentanone       43       13.081       13.065       (1.167)       10018       0.04000       0.03197         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       6165       0.04000       0.03746         60 trans-1,3-Dichloropropene       75       13.809       13.810       (0.870)       5248       0.04000       0.03806         61 Toluene       91       13.923       13.923       (0.877)       13333       0.04000       0.03967         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       4259       0.04000       0.03585         63 2-Hexanone       58       14.392       14.381       (0.907)       4645       0.04000       0.03521         65 Dibromochloromethane       129       14.704       14.705       (0.926)       7308       0.04000 <td>53 Trichloroethene</td> <td>130</td> <td>11.906</td> <td>11.901 (1.063)</td> <td>10787</td> <td>0.04000</td> <td>0.04926</td>	53 Trichloroethene	130	11.906	11.901 (1.063)	10787	0.04000	0.04926	
56 1,4-dioxane       88       12.192       12.165 (1.088)       2834       0.04000       0.03972         57 methyl methacrylate       41       12.229       12.219 (1.091)       4974       0.04000       0.03274         58 4-Methyl-2-pentanone       43       13.081       13.065 (1.167)       10018       0.04000       0.03197         59 cis-1,3-Dichloropropene       75       13.119       13.119 (1.171)       6165       0.04000       0.03746         60 trans-1,3-Dichloropropene       75       13.809       13.810 (0.870)       5248       0.04000       0.03806         61 Toluene       91       13.923       13.923 (0.877)       13333       0.04000       0.03967         62 1,1,2-Trichloroethane       97       14.009       14.099 (0.882)       4259       0.04000       0.03585         63 2-Hexanone       58       14.392       14.381 (0.907)       4645       0.04000       0.03585         64 Octane       85       14.586       14.586 (0.919)       4745       0.04000       0.03521         65 Dibromochloromethane       129       14.704       14.705 (0.926)       7308       0.04000       0.03246         66 1,2-Dibromoethane       107       14.990       14.996 (0.944)       738	54 Dibromomethane	93	11.998	11.998 (1.071)	7817	0.04000	0.05002	
57 methyl methacrylate 41 12.229 12.219 (1.091) 4974 0.04000 0.03274 58 4-Methyl-2-pentanone 43 13.081 13.065 (1.167) 10018 0.04000 0.03197 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 6165 0.04000 0.03746 60 trans-1,3-Dichloropropene 75 13.809 13.810 (0.870) 5248 0.04000 0.03806 61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03967 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 4259 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03962 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.03246 66 1,2-Dibromoethane 129 15.055 15.055 (0.948) 7737 0.04000 0.04162 67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03140	55 Bromodichloromethane	83	12.138	12.138 (1.083)	11123	0.04000	0.03826	
58 4-Methyl-2-pentanone       43       13.081       13.065 (1.167)       10018       0.04000       0.03197         59 cis-1,3-Dichloropropene       75       13.119       13.119 (1.171)       6165       0.04000       0.03746         60 trans-1,3-Dichloropropene       75       13.809       13.810 (0.870)       5248       0.04000       0.03806         61 Toluene       91       13.923       13.923 (0.877)       13333       0.04000       0.03967         62 1,1,2-Trichloroethane       97       14.009       14.009 (0.882)       4259       0.04000       0.03585         63 2-Hexanone       58       14.392       14.381 (0.907)       4645       0.04000       0.03962         64 Octane       85       14.586 (1.586 (0.919)       4745       0.04000       0.03521         65 Dibromochloromethane       129       14.704 (1.705 (0.926)       7308 (0.04000)       0.03246         66 1,2-Dibromoethane       107       14.990 (14.996 (0.944)       7386 (0.04000)       0.04162         67 Tetrachloroethene       129       15.055 (0.948)       7737 (0.04000)       0.04457         68 Chlorobenzene       112       15.929 (15.024)       15.347 (0.04000)       0.04028         70 m&p-Xylene       91       16.204	56 1,4-dioxane	88	12.192	12.165 (1.088)	2834	0.04000	0.03972	
59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       6165       0.04000       0.03746         60 trans-1,3-Dichloropropene       75       13.809       13.810       (0.870)       5248       0.04000       0.03806         61 Toluene       91       13.923       13.923       (0.877)       13333       0.04000       0.03967         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       4259       0.04000       0.03585         63 2-Hexanone       58       14.392       14.381       (0.907)       4645       0.04000       0.03962         64 Octane       85       14.586       14.586       (0.919)       4745       0.04000       0.03521         65 Dibromochloromethane       129       14.704       14.705       (0.926)       7308       0.04000       0.03246         66 1,2-Dibromoethane       107       14.990       14.996       (0.944)       7386       0.04000       0.04162         67 Tetrachloroethene       129       15.055       15.055       (0.948)       7737       0.04000       0.04457         68 Chlorobenzene       91       16.204       16.204       (1.021)       15347       0.04000       0.0	57 methyl methacrylate	41	12.229	12.219 (1.091)	4974	0.04000	0.03274	
60 trans-1,3-Dichloropropene       75       13.809       13.810 (0.870)       5248       0.04000       0.03806         61 Toluene       91       13.923       13.923 (0.877)       13333       0.04000       0.03967         62 1,1,2-Trichloroethane       97       14.009       14.009 (0.882)       4259       0.04000       0.03585         63 2-Hexanone       58       14.392       14.381 (0.907)       4645       0.04000       0.03962         64 Octane       85       14.586       14.586 (0.919)       4745       0.04000       0.03521         65 Dibromochloromethane       129       14.704       14.705 (0.926)       7308       0.04000       0.03246         66 1,2-Dibromoethane       107       14.990       14.996 (0.944)       7386       0.04000       0.04162         67 Tetrachloroethene       129       15.055       15.055 (0.948)       7737       0.04000       0.04457         68 Chlorobenzene       112       15.929       15.923 (1.003)       11285       0.04000       0.04145         69 Ethylbenzene       91       16.204 (1.021)       15347       0.04000       0.04028         70 m&p-Xylene       91       16.365 (1.056)       16.366 (1.031)       22632 (0.08000       0.077	58 4-Methyl-2-pentanone	43	13.081	13.065 (1.167)	10018	0.04000	0.03197	
61 Toluene 91 13.923 13.923 (0.877) 13333 0.04000 0.03967 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 4259 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03962 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.04162 67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03140	59 cis-1,3-Dichloropropene	75		•	6165	0.04000	0.03746	
62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 4259 0.04000 0.03585 63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03962 64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.04162 67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03140	60 trans-1,3-Dichloropropene	75	13.809	13.810 (0.870)	5248	0.04000	0.03806	
63 2-Hexanone 58 14.392 14.381 (0.907) 4645 0.04000 0.03962 64 Octane 85 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.04162 67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03140	61 Toluene	91	13.923	13.923 (0.877)	13333	0.04000	0.03967	
64 Octane 85 14.586 14.586 (0.919) 4745 0.04000 0.03521 65 Dibromochloromethane 129 14.704 14.705 (0.926) 7308 0.04000 0.03246 66 1,2-Dibromoethane 107 14.990 14.996 (0.944) 7386 0.04000 0.04162 67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	62 1,1,2-Trichloroethane	97	14.009	14.009 (0.882)	4259	0.04000	0.03585	
65 Dibromochloromethane       129       14.704       14.705       (0.926)       7308       0.04000       0.03246         66 1,2-Dibromoethane       107       14.990       14.996       (0.944)       7386       0.04000       0.04162         67 Tetrachloroethene       129       15.055       15.055       (0.948)       7737       0.04000       0.04457         68 Chlorobenzene       112       15.929       15.923       (1.003)       11285       0.04000       0.04145         69 Ethylbenzene       91       16.204       16.204       (1.021)       15347       0.04000       0.04028         70 m&p-Xylene       91       16.365       16.366       (1.031)       22632       0.08000       0.07773         71 Nonane       57       16.759       16.765       (1.056)       10386       0.04000       0.03977         72 Bromoform       173       16.829       16.824       (1.060)       5395       0.04000       0.03140	63 2-Hexanone	58	14.392	14.381 (0.907)	4645	0.04000	0.03962	
66 1,2-Dibromoethane       107       14.990       14.996 (0.944)       7386       0.04000       0.04162         67 Tetrachloroethene       129       15.055       15.055 (0.948)       7737       0.04000       0.04457         68 Chlorobenzene       112       15.929       15.923 (1.003)       11285       0.04000       0.04145         69 Ethylbenzene       91       16.204       16.204 (1.021)       15347       0.04000       0.04028         70 m&p-Xylene       91       16.365       16.366 (1.031)       22632       0.08000       0.07773         71 Nonane       57       16.759       16.765 (1.056)       10386       0.04000       0.03977         72 Bromoform       173       16.829       16.824 (1.060)       5395       0.04000       0.03140	64 Octane	85	14.586	14.586 (0.919)	4745	0.04000	0.03521	
67 Tetrachloroethene 129 15.055 15.055 (0.948) 7737 0.04000 0.04457 68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	65 Dibromochloromethane	129	14.704	14.705 (0.926)	7308	0.04000	0.03246	
68 Chlorobenzene 112 15.929 15.923 (1.003) 11285 0.04000 0.04145 69 Ethylbenzene 91 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	66 1,2-Dibromoethane	107	14.990	14.996 (0.944)	7386	0.04000	0.04162	
69 Ethylbenzene 91 16.204 16.204 (1.021) 15347 0.04000 0.04028 70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140		129	15.055	15.055 (0.948)	7737	0.04000	0.04457	
70 m&p-Xylene 91 16.365 16.366 (1.031) 22632 0.08000 0.07773 71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	68 Chlorobenzene	112	15.929	15.923 (1.003)	11285	0.04000	0.04145	
71 Nonane 57 16.759 16.765 (1.056) 10386 0.04000 0.03977 72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	69 Ethylbenzene	91	16.204	16.204 (1.021)	15347	0.04000	0.04028	
72 Bromoform 173 16.829 16.824 (1.060) 5395 0.04000 0.03140	70 m&p-Xylene	91	16.365	16.366 (1.031)	22632	0.08000	0.07773	
		57			10386	0.04000	0.03977	
73 Styrene 104 16.829 16.829 (1.060) 8146 0.04000 0.03955	72 Bromoform	173	16.829	16.824 (1.060)	5395	0.04000	0.03140	
	73 Styrene	104	16.829	16.829 (1.060)	8146	0.04000	0.03955	

Data File: /var/chem/gcms/mg.i/G112508I.b/mdlchk.d Report Date: 26-Nov-2008 17:01

AMOUNTS

	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==		======	======	======
74 o-Xylene	91	16.888	16.889 (1.064)	12372	0.04000	0.03951
75 1,1,2,2-Tetrachloroethane	83	17.217	17.218 (1.085)	9299	0.04000	0.04183
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	2639	0.04000	0.04235
77 Cumene	105	17.471	17.466 (1.101)	16864	0.04000	0.04184
78 n-Propylbenzene	120	17.999	17.999 (1.134)	4356	0.04000	0.03934
79 2-chlorotoluene	126	18.048	18.048 (1.137)	4661	0.04000	0.04323
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	15827	0.04000	0.04061
81 1,3,5-Trimethylbenzene	120	18.220	18.221 (1.148)	6066	0.04000	0.03834
82 Alpha-Methylstyrene	118	18.452	18.447 (1.162)	5627	0.04000	0.03713
83 Decane	57	18.490	18.490 (1.165)	12319	0.04000	0.04306
84 tert-butylbenzene	119	18.636	18.636 (1.174)	14269	0.04000	0.04058
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	12595	0.04000	0.04110
86 sec-butylbenzene	105	18.905	18.900 (1.191)	18148	0.04000	0.04133
87 1,3-Dichlorobenzene	146	18.921	18.922 (1.192)	10576	0.04000	0.04905
88 Benzyl Chloride	91	18.997	18.997 (1.197)	10312	0.04000	0.04439
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	10879	0.04000	0.05201
90 p-Cymene	119	19.062	19.062 (1.201)	15363	0.04000	0.04210
91 1,2-Dichlorobenzene	146	19.363	19.364 (1.220)	10202	0.04000	0.05199
92 n-butylbenzene	91	19.493	19.488 (1.228)	15011	0.04000	0.04523
93 Undecane	57	19.784	19.784 (1.246)	12246	0.04000	0.04436
94 Dodecane	57	20.846	20.847 (1.313)	11961	0.04000	0.06913
95 1,2,4-Trichlorobenzene	180	21.067	21.068 (1.327)	9221	0.04000	0.07549
96 Napthalene	128	21.213	21.213 (1.336)	21574	0.04000	0.07955
97 Hexachlorobutadiene	225	21.429	21.424 (1.350)	8193	0.04000	0.05657
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	9044	0.04000	0.08208



Data File: /var/chem/gcms/mg.i/G112508I.b/gick251.d

Report Date: 26-Nov-2008 17:01

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick251.d

Lab Smp Id: ICAL2

Inj Date : 25-NOV-2008 14:28 Operator : 7126 Inst ID: mg.i

Smp Info : ICAL2,,1,1,,,0.04

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m Meth Date : 26-Nov-2008 17:01 barlozha Quant Type: ISTD

Cal Date : 25-NOV-2008 14:28 Cal File: gick251.d

Als bottle: 12 Calibration Sample, Level: 2

Dil Factor: 1.00000

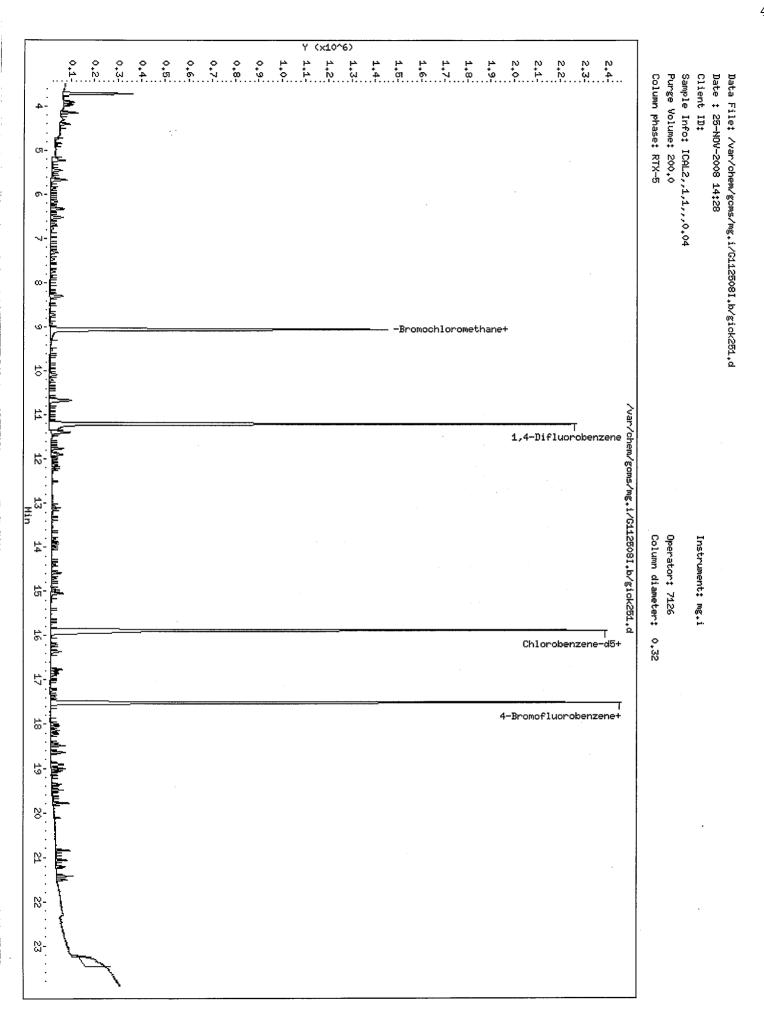
Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

_	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	500.00000	Default calibration vol
	Vo	200.00000	Default sample volume

Local Compound Variable Cpnd Variable


						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
==		====	==		=======	======	======
*	1 Bromochloromethane	128	9.059	9.059 (1.000)	471660	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.199	11.205 (1.000)	2357053	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1802997	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1138474	4.00000	3.948
	7 Chlorodifluoromethane	67	3.904	3.898 (0.431)	4381	0.08000	0.08352
	8 Propene	41	3.909	3.915 (0.432)	17427	0.08000	0.08088
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	40292	0.08000	0.07828
	10 Chloromethane	52	4.152	4.146 (0.458)	5239	0.08000	0.1050
	11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	23308	0.08000	0.08519
	13 Vinyl Chloride	62	4.324	4.319 (0.477)	11578	0.08000	0.08464
	14 n-Butane	43	4.405	4.405 (0.486)	21838	0.08000	0.08495
	15 1,3-Butadiene	54	4.410	4.405 (0.487)	10707	0.08000	0.08438
	16 Bromomethane	94	4.739	4.734 (0.523)	9115	0.08000	0.08511
	17 Chloroethane	64	4.874	4.880 (0.538)	5520	0.08000	0.09066
	18 Vinyl Bromide	106	5.187	5.182 (0.573)	13302	0.08000	0.08298

Data File: /var/chem/gcms/mg.i/G112508I.b/gick251.d Report Date: 26-Nov-2008 17:01

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT RE	L RT RESPONSE	(ppb (v/v))	(ppb (v/v))
	====	==	==========	========		======
19 2-methyl butane	43	5.225	5.230 (0	25641	0.08000	0.08023
20 Trichlorofluoromethane	101	5.451	5.451 (0	.602) 39683	0.08000	0.08095
21 Acrolein	56	5.473	5.478 (0	.604) 3382	0.08000	0.08159
24 Pentane	72	5.667	5.667 (0	.626) 3122	0.08000	0.08283
25 Isopropyl Alcohol	45	5.672	5.667 (0	.626) 23132	0.08000	0.07879
26 Ethyl Ether	31	5.861	5.845 (0	.647) 13825	0.08000	0.07602
27 1,1-Dichloroethene	96	6.158	6.163 (0	.680) 14351	0.08000	0.08755
29 tert-butanol	59	6.282	6.260 (0	.693) 21852	0.08000	0.07266
30 1,1,2-Trichlorotrifluoroethane	101	6.336	6.336 (0	.699) 27842	0.08000	0.08488
31 Methylene Chloride	84	6.519	6.519 (0	.720) 16018	0.08000	0.1085
32 3-Chloropropene	39	6.530	6.530 (0	.721) 15532	0.08000	0.08151
33 Carbon Disulfide	76	6.681	6.681 (0	.737) 43209	0.08000	0.08184
34 trans-1,2-Dichloroethene	96	7.322	7.323 (0	.808) 17244	0.08000	0.09271
35 Methyl-t-Butyl Ether	73	7.463	7.452 (0	.824) 20454	0.08000	0.07815
36 1,1-Dichloroethane	63	7.743	7.743 (0	.855) 25595	0.08000	0.08334
37 Vinyl Acetate	43	7.851	7.851 (0	.867) 15724	0.08000	0.05809
38 Hexane	56	8.298	8.299 (0	.916) 15443	0.08000	0.08872
40 cis 1,2-Dichloroethene	96	8.719	8.725 (0	.962) 12302	0.08000	0.08132
41 Ethyl acetate	43	8.924	8.908 (0	.985) 16309	0.08000	0.06488
42 Chloroform	83	9.059	9.064 (1	.000) 23322	0.08000	0.08156
43 Tetrahydrofuran	42	9.506	9.490 (1	.049) 10457	0.08000	0.07260
44 1,1,1-Trichloroethane	97	10.083	10.083 (1	.113) 26410	0.08000	0.08467
45 1,2-Dichloroethane	62	10.196	10.202 (0	.910) 13347	0.08000	0.07834
46 Cyclohexane	69	10.666	10.660 (0	.952) 7531	0.08000	0.09233
47 Benzene	78	10.671	10.671 (0	.953) 29846	0.08000	0.08521
48 1-Butanol	31	10.644	10.628 (0	.950) 7426	0.08000	0.08807
49 Carbon Tetrachloride	117	10.693	10.687 (0	.955) 29408	0.08000	0.08706
50 2,2,4-trimethylpentane	57	11.394	11.394 (1	.017) 77842	0.08000	0.08847
51 Heptane	43	11.760	11.760 (1	.050) 29153	0.08000	0.07674
52 1,2-Dichloropropane	63	11.873	11.874 (1	.060) 9210	0.08000	0.07331
53 Trichloroethene	130	11.900	11.901 (1	.063) 16824	0.08000	0.08239
54 Dibromomethane	93	11.998	11.998 (1	.071) 12295	0.08000	0.08436
55 Bromodichloromethane	83	12.132	12.138 (1	.083) 20813	0.08000	0.07677
56 1,4-dioxane	88	12.192	12.165 (1	.089) 4732	0.08000	0.07111
57 methyl methacrylate	41	12.229	12.219 (1	.092) 10420	0.08000	0.07355
58 4-Methyl-2-pentanone	43	13.076	13.065 (1	.168) 18345	0.08000	0.06278
59 cis-1,3-Dichloropropene	75	13.119	13.119 (1.	.171) 10106	0.08000	0.06584
60 trans-1,3-Dichloropropene	75	13.809	13.810 (0.	.870) 9020	0.08000	0.06983
61 Toluene	91	13.923	13.923 (0	.877) 22581	0.08000	0.07172
62 1,1,2-Trichloroethane	97	14.014	14.009 (0.	.883) 7872	0.08000	0.07072
63 2-Hexanone	58	14.392	14.381 (0.	.907) 7533	0.08000	0.06857
64 Octane	85	14.586	14.586 (0.	.919) 7903	0.08000	0.06260
65 Dibromochloromethane	129	14.699	14.705 (0.	.926) 14155	0.08000	0.06710
66 1,2-Dibromoethane	107	14.996	14.996 (0.	.945) 11906	0.08000	0.07162
67 Tetrachloroethene	129	15.050	15.055 (0.	.948) 12483	0.08000	0.07675
68 Chlorobenzene	112	15.923	15.923 (1.	.003) 19405	0.08000	0.07608
69 Ethylbenzene	91	16.204	16.204 (1.	.021) 25489	0.08000	0.07140

Data File: /var/chem/gcms/mg.i/G112508I.b/gick251.d Report Date: 26-Nov-2008 17:01

					AMOUNT	s
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==			======	======
70 m&p-Xylene	91	16.365	16.366 (1.031)	37717	0.16000	0.1383
71 Nonane	57	16.764	16.765 (1.056)	17607	0.08000	0.07196
72 Bromoform	173	16.818	16.824 (1.059)	9747	0.08000	0.06056
73 Styrene	104	16.829	16.829 (1.060)	12630	0.08000	0.06546
74 o-Xylene	91	16.888	16.889 (1.064)	21576	0.08000	0.07354
75 1,1,2,2-Tetrachloroethane	83	17.217	17.218 (1.085)	15163	0.08000	0.07280
76 1,2,3-Trichloropropane	110	17.374	17.379 (1.094)	4436	0.08000	0.07598
77 Cumene	105	17.471	17.466 (1.101)	27763	0.08000	0.07352
78 n-Propylbenzene	120	17.999	17.999 (1.134)	7459	0.08000	0.07189
79 2-chlorotoluene	126	18.042	18.048 (1.137)	7629	0.08000	0.07553
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	27483	0.08000	0.07526
81 1,3,5-Trimethylbenzene	120	18.215	18.221 (1.147)	10283	0.08000	0.06937
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	9631	0.08000	0.06783
83 Decane	57	18.485	18.490 (1.164)	20082	0.08000	0.07493
84 tert-butylbenzene	119	18.636	18.636 (1.174)	23669	0.08000	0.07184
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	20820	0.08000	0.07252
86 sec-butylbenzene	105	18.900	18.900 (1.191)	30301	0.08000	0.07366
87 1,3-Dichlorobenzene	146	18.921	18.922 (1.192)	17981	0.08000	0.08901
88 Benzyl Chloride	91	18.997	18.997 (1.197)	17267	0.08000	0.07933
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	17474	0.08000	0.08917
90 p-Cymene	119	19.062	19.062 (1.201)	25500	0.08000	0.07459
91 1,2-Dichlorobenzene	146	19.369	19.364 (1.220)	16151	0.08000	0.08786
92 n-butylbenzene	91	19.488	19.488 (1.228)	25070	0.08000	0.08063
93 Undecane	57	19.784	19.784 (1.246)	20331	0.08000	0.07860
94 Dodecane	57	20.846	20.847 (1.313)	17759	0.08000	0.1096
95 1,2,4-Trichlorobenzene	180	21.067	21.068 (1.327)	13269	0.08000	0.1160
96 Napthalene	128	21.213	21.213 (1.336)	30642	0.08000	0.1206
97 Hexachlorobutadiene	225	21.423	21.424 (1.350)	12780	0.08000	0.09419
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	12887	0.08000	0.1248



Data File: /var/chem/gcms/mg.i/G112508I.b/gick252.d

Report Date: 26-Nov-2008 17:01

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mg.i/G112508I.b/gick252.d

Lab Smp Id: ICAL3

Inj Date : 25-NOV-2008 15:09

Operator : 7126 Inst ID: mg.i

Smp Info : ICAL3,,1,2,,,0.16

Misc Info : G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:01 barlozha Quant Type: ISTD Cal Date: 25-NOV-2008 15:09 Cal File: gick252.d

Als bottle: 12 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

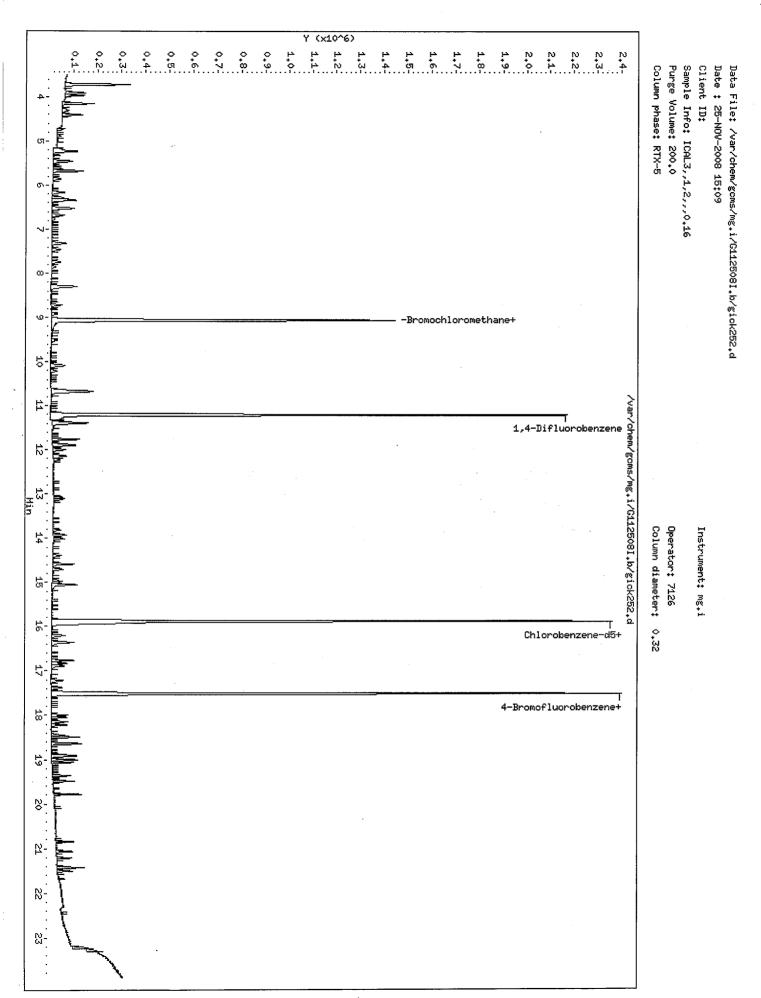
Target Version: 3.50
Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable

Local Compound Variable


							AMOUNT	S	
			QUANT SIG				CAL-AMT	ON-COL	:
Co	oqmo	ınds	MASS	RT	EXP RT REI	RT RESPONSE	(ppb(v/v))	(ppb (v/v))	
=:			====	==			======	======	
*	1	Bromochloromethane	128	9.059	9.059 (1.	.000) 458582	4.00000	4.000	
*	2	1,4-Difluorobenzene	114	11.205	11.205 (1.	.000) 2202835	4.00000	4.000	
*	3	Chlorobenzene-d5	117	15.875	15.875 (1.	.000) 1747330	4.00000	4.000	
\$	6	4-Bromofluorobenzene	95	17.503	17.503 (1.	.103) 1101186	4.00000	3.941	
	7	Chlorodifluoromethane	67	3.904	3.898 (0.	.431) 7501	0.16000	0.1471	
	8	Propene	41	3.915	3.915 (0.	.432) 31172	0.16000	0.1488	
	9	Dichlorodifluoromethane	85	3.963	3.963 (0.	.437) 76930	0.16000	0.1537	
	10	Chloromethane	52	4.141	4.146 (0.	.457) 7971	0.16000	0.1643	
	11	1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.	.458) 41424	0.16000	0.1557	
	12	Methanol	31	4.276	4.276 (0.	.472) 17024	0.16000	0.5191	
	13	Vinyl Chloride	62	4.324	4.319 (0.	.477) 21720	0.16000	0.1633	
	14	n-Butane	43	4.411	4.405 (0.	.487) 41297	0.16000	0.1652	
	15	1,3-Butadiene	54	4.405	4.405 (0.	.486) 20381	0.16000	0.1652	
	16	Bromomethane	94	4.734	4.734 (0.	.523) 17750	0.16000	0.1705	
	17	Chloroethane	64	4.880	4.880 (0.	.539) 9458	0.16000	0.1598	

Data File: /var/chem/gcms/mg.i/G112508I.b/gick252.d Report Date: 26-Nov-2008 17:01

					AMOUNT	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=========	====	==	=======================================			
18 Vinyl Bromide	106	5.182	5.182 (0.572)	24484	0.16000	0.1571
19 2-methyl butane	43	5.230	5.230 (0.577)	45839	0.16000	0.1475
20 Trichlorofluoromethane	101	5.451	5.451 (0.602)	72054	0.16000	0.1512
21 Acrolein	56	5.478	5.478 (0.605)	6876	0.16000	0.1706
22 Acetonitrile	40	5.548	5.548 (0.612)	8546	0.16000	0.1622
24 Pentane	72	5.678	5.667 (0.627)	5574	0.16000	0.1521
25 Isopropyl Alcohol	45	5.678	5.667 (0.627)	43902	0.16000	0.1538
26 Ethyl Ether	31	5.850	5.845 (0.646)	28455	0.16000	0.1609
27 1,1-Dichloroethene	96	6.163	6.163 (0.680)	24222	0.16000	0.1520
28 Acrylonitrile	53	6.287	6.287 (0.694)	11993	0.16000	0.1585
29 tert-butanol	59	6.276	6.260 (0.693)	42327	0.16000	0.1448
30 1,1,2-Trichlorotrifluoroethane	101	6.336	6.336 (0.699)	50332	0.16000	0.1578
31 Methylene Chloride	84	6.519	6.519 (0.720)	26003	0.16000	0.1811
32 3-Chloropropene	39	6.535	6.530 (0.721)	29140	0.16000	0.1573
33 Carbon Disulfide	76	6.681	6.681 (0.737)	78833	0.16000	0.1536
34 trans-1,2-Dichloroethene	96	7.323	7.323 (0.808)	28568	0.16000	0.1580
35 Methyl-t-Butyl Ether	73	7.463	7.452 (0.824)	. 38731	0.16000	0.1522
36 1,1-Dichloroethane	63	7.749	7.743 (0.855)	50224	0.16000	0.1682
37 Vinyl Acetate	43	7.851	7.851 (0.867)	34951	0.16000	0.1328
38 Hexane	56	8.299	8.299 (0.916)	28791	0.16000	0.1701
39 2-Butanone	72	8.320	8.309 (0.918)	6700	0.16000	0.1537
40 cis 1,2-Dichloroethene	96	8.725	8.725 (0.963)	24583	0.16000	0.1671
41 Ethyl acetate	43	8.919	8.908 (0.985)	36173	0.16000	0.1480
42 Chloroform	83	9.064	9.064 (1.001)	45668	0.16000	0.1643
43 Tetrahydrofuran	42	9.506	9.490 (1.049)	21087	0.16000	0.1506
44 1,1,1-Trichloroethane	97	10.083	10.083 (1.113)	50234	0.16000	0.1656
45 1,2-Dichloroethane	62	10.207	10.202 (0.911)	26968	0.16000	0.1694
46 Cyclohexane	69	10.660	10.660 (0.951)	13886	0.16000	0.1822
47 Benzenè	78	10.671	10.671 (0.952)	56560	0.16000	0.1728
48 1-Butanol	31	10.639	10.628 (0.949)	13135	0.16000	0.1667
49 Carbon Tetrachloride	117	10.687	10.687 (0.954)	52440	0.16000	0.1661
50 2,2,4-trimethylpentane	57	11.394	11.394 (1.017)	155073	0.16000	0.1886
51 Heptane	43	11.760	11.760 (1.050)	59765	0.16000	0.1683
52 1,2-Dichloropropane	63	11.874	11.874 (1.060)	20687	0.16000	0.1762
53 Trichloroethene	130	11.901	11.901 (1.062)	31448	0.16000	0.1648
54 Dibromomethane	93	11.998	11.998 (1.071)	25157	0.16000	0.1847
55 Bromodichloromethane	83	12.138	12.138 (1.083)	40917	0.16000	0.1615
56 1,4-dioxane	88	12.181	12.165 (1.087)	9611	0.16000	0.1545
57 methyl methacrylate	41	12.224	12.219 (1.091)	18154	0.16000	0.1371
58 4-Methyl-2-pentanone	43	13.076	13.065 (1.167)	37516	0.16000	0.1374
59 cis-1,3-Dichloropropene	75	13.119	13.119 (1.171)	21330	0.16000	0.1487
60 trans-1,3-Dichloropropene	75	13.810	13.810 (0.870)	18101	0.16000	0.1446
61 Toluene	91	13.923	13.923 (0.877)	52620	0.16000	0.1724
62.1,1,2-Trichloroethane	97	14.009	14.009 (0.882)	16867	0.16000	0.1564
63 2-Hexanone	58	14.387	14.381 (0.906)	16532	0.16000	0.1553
64 Octane	85	14.586	14.586 (0.919)	16662	0.16000	0.1362
65 Dibromochloromethane	129	14.705	14.705 (0.926)	28270	0.16000	0.1383

Data File: /var/chem/gcms/mg.i/G112508I.b/gick252.d Report Date: 26-Nov-2008 17:01

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
=======================================	====	==	=======================================			======
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	26054	0.16000	0.1617
67 Tetrachloroethene	129	15.055	15.055 (0.948)	27880	0.16000	0.1769
68 Chlorobenzene	112	15.929	15.923 (1.003)	38992	0.16000	0.1578
69 Ethylbenzene	91	16.204	16.204 (1.021)	51249	0.16000	0.1481
70 m&p-Xylene	. 91	16.366	16.366 (1.031)	76684	0.32000	0.2901
71 Nonane	57	16.765	16.765 (1.056)	34225	0.16000	0.1443
72 Bromoform	173	16.824	16.824 (1.060)	18049	0.16000	0.1157
73 Styrene	104	16.829	16.829 (1.060)	25839	0.16000	0.1382
74 o-Xylene	91	16.889	16.889 (1.064)	41208	0.16000	0.1449
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.085)	30508	0.16000	0.1511
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	8743	0.16000	0.1545
77 Cumene	105	17.471	17.466 (1.101)	51898	0.16000	0.1418
78 n-Propylbenzene	120	17.999	17.999 (1.134)	14800	0.16000	0.1472
79 2-chlorotoluene	126	18.053	18.048 (1.137)	14833	0.16000	0.1515
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	48634	0.16000	0.1374
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.148)	20583	0.16000	0.1433
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	18210	0.16000	0.1323
83 Decane	57	18.490	18.490 (1.165)	37717	0.16000	0.1452
84 tert-butylbenzene	119	18.636	18.636 (1.174)	47577	0.16000	0.1490
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	41148	0.16000	0.1479
86 sec-butylbenzene	105	18.900	18.900 (1.191)	60901	0.16000	0.1528
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	31748	0.16000	0.1622
88 Benzyl Chloride	91	18.997	18.997 (1.197)	30405	0.16000	0.1441
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	31660	0.16000	0.1667
90 p-Cymene	119	19.062	19.062 (1.201)	48744	0.16000	0.1471
91 1,2-Dichlorobenzene	146	19.369	19.364 (1.220)	29484	0.16000	0.1655
92 n-butylbenzene	91	19.488	19.488 (1.228)	47300	0.16000	0.1570
93 Undecane	57	19.784	19.784 (1.246)	32867	0.16000	0.1311
94 Dodecane	57	20.847	20.847 (1.313)	21168	0.16000	0.1347
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	19462	0.16000	0.1755
96 Napthalene	128	21.213	21.213 (1.336)	45039	0.16000	0.1829
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	21011	0.16000	0.1598
98 1.2.3-trichlorobenzene	180	21.505	21.504 (1.355)	18194	0.16000	0.1818



Data File: /var/chem/gcms/mg.i/G112508I.b/gick253.d

Report Date: 26-Nov-2008 17:01

# TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick253.d

Lab Smp Id: ICAL4

Inj Date : 25-NOV-2008 15:51

Operator: 7126 Inst ID: mg.i

Smp Info : ICAL4,,1,4,,,0.4

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date : 26-Nov-2008 17:01 barlozha Quant Type: ISTD Cal Date : 25-NOV-2008 15:51 Cal File: gick253.d

Als bottle: 12 Calibration Sample, Level: 4

Dil Factor: 1.00000

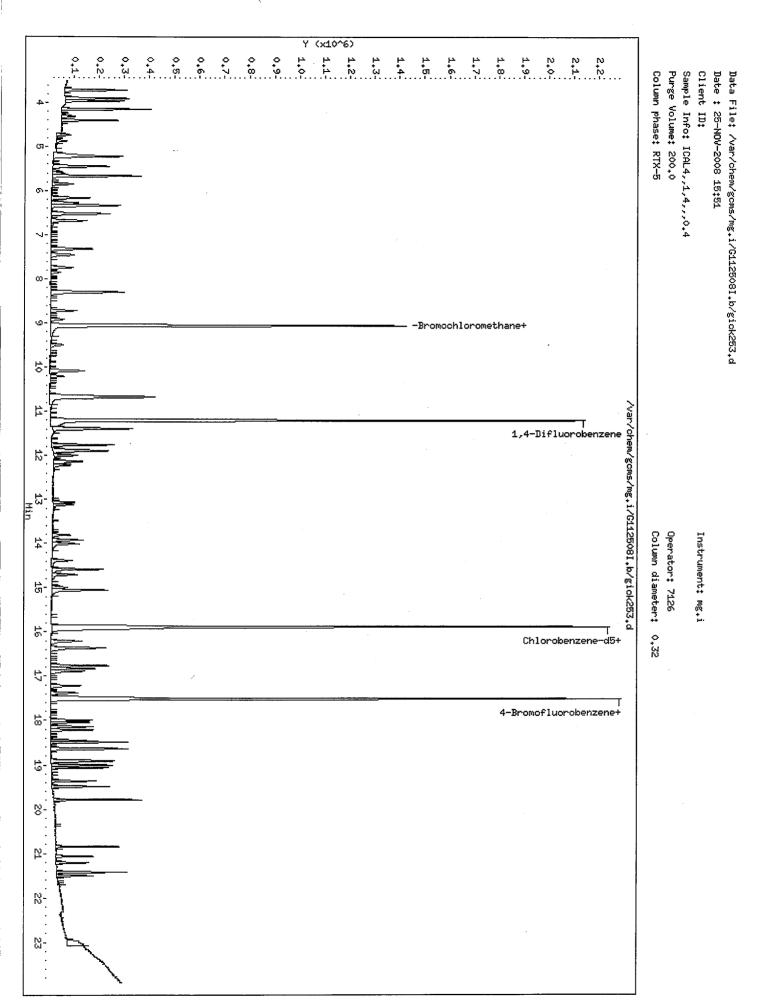
Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50
Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable


						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
==	=======================================	====	==	=======================================		======	======
*	1 Bromochloromethane	128	9.059	9.059 (1.000)	429703	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.205 (1.000)	2205067	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1691927	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1048757	4.00000	3.876
	7 Chlorodifluoromethane	67	3.898	3.898 (0.430)	21740	0.40000	0.4549
	8 Propene	41	3.909	3.915 (0.432)	87698	0.40000	0.4468
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	221310	0.40000	0.4720
	10 Chloromethane	52	4.146	4.146 (0.458)	22238	0.40000	0.4892
	11 1,2-Dichlorotetrafluoroethane	135	4.146	4.152 (0.458)	113156	0.40000	0.4540
	13 Vinyl Chloride	62	4.314	4.319 (0.476)	55529	0.40000	0.4456
	14 n-Butane	43	4.405	4.405 (0.486)	107118	0.40000	0.4574
	15 1,3-Butadiene	54	4.405	4.405 (0.486)	51210	0.40000	0.4430
	16 Bromomethane	94	4.734	4.734 (0.523)	44304	0.40000	0.4541
	17 Chloroethane	64	4.874	4.880 (0.538)	26082	0.40000	0.4702
	18 Vinyl Bromide	106	5.182	5.182 (0.572)	69729	0.40000	0.4774

Data File: /var/chem/gcms/mg.i/G112508I.b/gick253.d Report Date: 26-Nov-2008 17:01

						AMOUNT	3
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==	=====		======	======	======
19 2-methyl butane	43	5.225	5.230	(0.577)	137070	0.40000	0.4708
20 Trichlorofluoromethane	101	5.446	5.451	(0.601)	211487	0.40000	0.4735
21 Acrolein	56	5.473	5.478	(0.604)	12837	0.40000	0.3399
22 Acetonitrile	40	5.543	5.548	(0.612)	18739	0.40000	0.3795
23 Acetone	58	5.597	5.602	(0.618)	20598	0.40000	0.4177
24 Pentane	72	5.667	5.667	(0.626)	16797	0.40000	0.4892
25 Isopropyl Alcohol	45	5.667	5.667	(0.626)	106407	0.40000	0.3978
26 Ethyl Ether	31	5.850	5.845	(0.646)	65063	0.40000	0.3927
27 1,1-Dichloroethene	96	6.163	6.163	(0.680)	68511	0.40000	0.4588
28 Acrylonitrile	53	6.282	6.287	(0.693)	22876	0.40000	0.3226
29 tert-butanol	59	6.266	6.260	(0.692)	107119	0.40000	0.3910
30 1,1,2-Trichlorotrifluor	oethane 101	6.330	6.336	(0.699)	143809	0.40000	0.4812
31 Methylene Chloride	84	6.514	6.519	(0.719)	62502	0.40000	0.4646
32 3-Chloropropene	39	6.530	6.530	(0.721)	74717	0.40000	0.4304
33 Carbon Disulfide	76	6.675	6.681	(0.737)	227681	0.40000	0.4733
34 trans-1,2-Dichloroethen	e 96	7.317	7.323	(0.808)	77466	0.40000	0.4572
35 Methyl-t-Butyl Ether	73	7.452	7.452	(0.823)	97590	0.40000	0.4093
36 1,1-Dichloroethane	63	7.743	7.743	(0.855)	114805	0.40000	0.4103
37 Vinyl Acetate	43	7.846	7.851	(0.866)	72196	0.40000	0.2928
38 Hexane	56	8.293	8.299	(0.915)	73296	0.40000	0.4622
39 2-Butanone	72	8.320	8.309	(0.918)	15561	0.40000	0.3809
40 cis 1,2-Dichloroethene	96	8.725	8.725	(0.963)	55739	0.40000	0.4044
41 Ethyl acetate	43	8.913	8.908	(0.984)	80835	0.40000	0.3530
42 Chloroform	83	9.059	9.064	(1.000)	107590	0.40000	0.4130
43 Tetrahydrofuran	42	9.501	9.490	(1.049)	48195	0.40000	0.3672
44 1,1,1-Trichloroethane	97	10.078	10.083	(1.113)	117829	0.40000	0.4146
45 1,2-Dichloroethane	62	10.202	10.202	(0.911)	54265	0.40000	0.3404
46 Cyclohexane	69	10.660	10.660	(0.952)	37009	0.40000	0.4850
47 Benzene	78	10.671	10.671	(0.953)	113996	0.40000	0.3479
48 1-Butanol	31	10.633	10.628	(0.949)	27411	0.40000	0.3475
49 Carbon Tetrachloride	117	10.687	10.687	(0.954)	139661	0.40000	0.4420
50 2,2,4-trimethylpentane	57	11.394	11.394	(1.017)	343168	0.40000	0.4169
51 Heptane	43	11.760	11.760	(1.050)	134259	0.40000	0.3778
52 1,2-Dichloropropane	63	11.874	11.874	(1.060)	39948	0.40000	0.3399
53 Trichloroethene	130	11.901	11.901	(1.063)	77486	0.40000	0.4056
54 Dibromomethane	93	11.992	11.998	(1.071)	48977	0.40000	0.3592
55 Bromodichloromethane	83	12.138	12.138	(1.084)	93795	0.40000	0.3698
56 1,4-dioxane	88	12.170	12.165	(1.087)	24274	0.40000	0.3899
57 methyl methacrylate	41	12.219	12.219	(1.091)	41665	0.40000	0.3144
58 4-Methyl-2-pentanone	43	13.071	13.065	(1.167)	87652	0.40000	0.3206
59 cis-1,3-Dichloropropene	75	13.119	13.119	(1.171)	46921	0.40000	0.3268
60 trans-1,3-Dichloroproper	ne 75	13.810	13.810	(0.870)	42340	0.40000	0.3493
61 Toluene	91	13.923	13.923	(0.877)	102433	0.40000	0.3467
62 1,1,2-Trichloroethane	97	14.009	14.009	(0.882)	35445	0.40000	0.3393
63 2-Hexanone	58	14.387	14.381	(0.906)	33194	0.40000	0.3220
64 Octane	85	14.586	14.586	(0.919)	38548	0.40000	0.3254
65 Dibromochloromethane	129	14.705	14.705	(0.926)	72456	0.40000	0.3660

Data File: /var/chem/gcms/mg.i/G112508I.b/gick253.d Report Date: 26-Nov-2008 17:01

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=======================================	====	==			======	
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	55998	0.40000	0.3590
67 Tetrachloroethene	- 129	15.050	15.055 (0.948)	61386	0.40000	0.4022
68 Chlorobenzene	112	15.923	15.923 (1.003)	86151	0.40000	0.3600
69 Ethylbenzene	91	16.204	16.204 (1.021)	120193	0.40000	0.3588
70 m&p-Xylene	91	16.366	16.366 (1.031)	186463	0.80000	0.7285
71 Nonane	57	16.765	16.765 (1.056)	83196	0.40000	0.3623
72 Bromoform	173	16.829	16.824 (1.060)	53262	0.40000	0.3526
73 Styrene	104	16.829	16.829 (1.060)	65044	0.40000	0.3592
74 o-Xylene	91	16.889	16.889 (1.064)	103356	0.40000	0.3754
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.085)	76738	0.40000	0.3926
76 1,2,3-Trichloropropane	110	17.374	17.379 (1.094)	20951	0.40000	0.3824
77 Cumene	105	17.466	17.466 (1.100)	128095	0.40000	0.3615
78 n-Propylbenzene	120	17.999	17.999 (1.134)	35293	0.40000	0.3625
79 2-chlorotoluene	126	18.048	18.048 (1.137)	35728	0.40000	0.3769
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	129042	0.40000	0.3766
81 1,3,5-Trimethylbenzene	120	18.215	18.221 (1.147)	53800	0.40000	0.3868
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	46887	0.40000	0.3519
83 Decane	57	18.485	18.490 (1.164)	101458	0.40000	0.4034
84 tert-butylbenzene	119	18.636	18.636 (1.174)	119079	0.40000	0.3852
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	105905	0.40000	0.3931
86 sec-butylbenzene	105	18.900	18.900 (1.191)	152656	0.40000	0.3955
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	73909	0.40000	0.3899
88 Benzyl Chloride	91	18.997	18.997 (1.197)	72698	0.40000	0.3559
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	70882	0.40000	0.3855
90 p-Cymene	119	19.062	19.062 (1.201)	126492	0.40000	0.3943
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	69214	0.40000	0.4012
92 n-butylbenzene	91	19.488	19.488 (1.228)	119604	0.40000	0.4099
93 Undecane	57	19.784	19.784 (1.246)	97261	0.40000	0.4007
94 Dodecane	57	20.847	20.847 (1.313)	72836	0.40000	0.4788
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	43102	0.40000	0.4014
96 Napthalene	128	21.213	21.213 (1.336)	97061	0.40000	0.4071
97 Hexachlorobutadiene	225.	21.424	21.424 (1.350)	50636	0.40000	0.3977
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	41289	0.40000	0.4262



Data File: /var/chem/gcms/mg.i/G112508I.b/gick254.d

Report Date: 26-Nov-2008 17:01

# TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick254.d

Lab Smp Id: ICAL5
Inj Date : 25-NOV-2008 16:32

Operator : 7126 Inst ID: mq.i

Smp Info : ICAL5,,1,5,,,1.0

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:01 barlozha Quant Type: ISTD Cal Date : 25-NOV-2008 16:32 Cal File: gick254.d

Als bottle: 12 Calibration Sample, Level: 5

Dil Factor: 1.00000

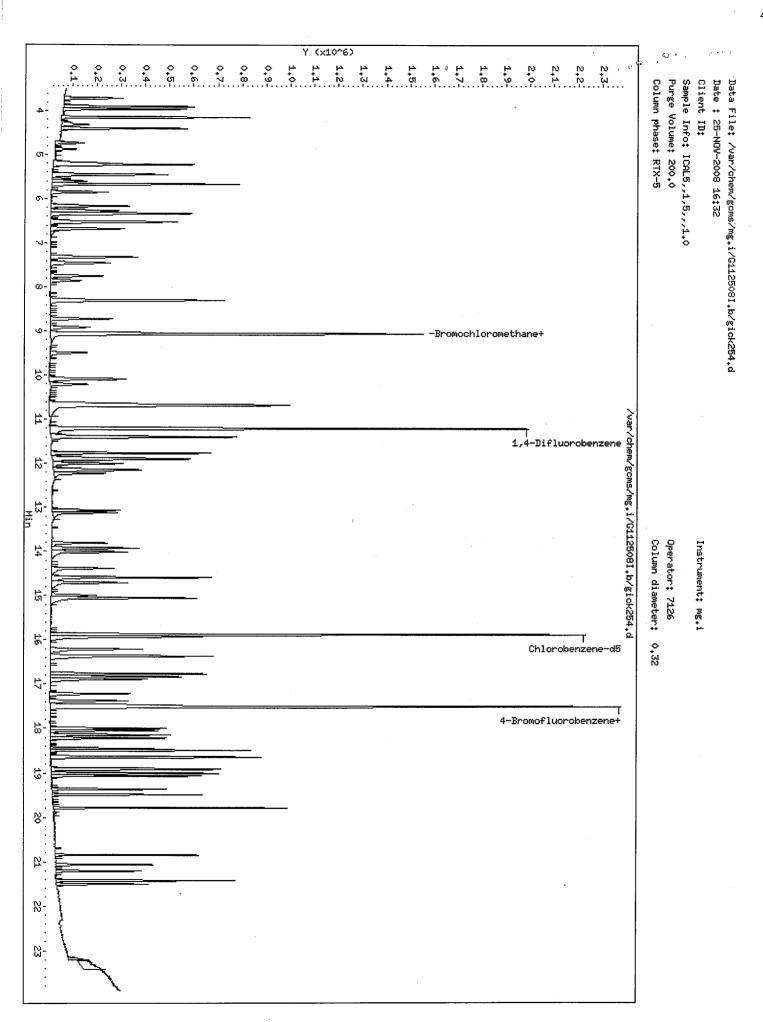
Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable


						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Com	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
===		====	==	======	=======	======	======
*	1 Bromochloromethane	128	9.059	9.059 (1.000)	414841	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2050012	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1634847	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1072517	4.00000	4.102
	7 Chlorodifluoromethane	67	3.898	3.898 (0.430)	45660	1.00000	0.9897
	8 Propene	41	3.915	3.915 (0.432)	192637	1.00000	1.016
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	477509	1.00000	1.055
	10 Chloromethane	52	4.146	4.146 (0.458)	45873	1.00000	1.045
	11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	255748	1.00000	1.063
	12 Methanol	31	4.276	4.276 (0.472)	38833	1.00000	1.309
	13 Vinyl Chloride	62	4.319	4.319 (0.477)	123494	1.00000	1.026
	14 n-Butane	43	4.405	4.405 (0.486)	248722	1.00000	1.100
	15 1,3-Butadiene	54	4.405	4.405 (0.486)	116118	1.00000	1.040
	16 Bromomethane	94	4.734	4.734 (0.523)	94004	1.00000	0.9980
	17 Chloroethane	64	4.880	4.880 (0.539)	53715	1.00000	1.003

Data File: /var/chem/gcms/mg.i/G112508I.b/gick254.d Report Date: 26-Nov-2008 17:01

					AMOUNTS	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
=======================================	8222	==	======	======	*=====	======
18 Vinyl Bromide	106	5.182	5.182 (0.572)	145556	1.00000	1.032
19 2-methyl butane	43	5.230	5.230 (0.577)	289325	1.00000	1.029
20 Trichlorofluoromethane	101	5.451	5.451 (0.602)	442203	1.00000	1.026
21 Acrolein	56	5.478	5.478 (0.605)	39323	1.00000	1.079
22 Acetonitrile	40	5.548	5.548 (0.612)	55383	1.00000	1.162
23 Acetone	58	5.602	5.602 (0.618)	57193	1.00000	1.201
24 Pentane	72	5.667	5.667 (0.626)	34200	1.00000	1.032
25 Isopropyl Alcohol	45	5.667	5.667 (0.626)	273857	1.00000	1.061
26 Ethyl Ether	31	5.845	5.845 (0.645)	177396	1.00000	1.109
27 1,1-Dichloroethene	96	6.163	6.163 (0.680)	140717	1.00000	0.9760
28 Acrylonitrile	53	6.287	6.287 (0.694)	75936	1.00000	1.109
29 tert-butanol	59	6.260	6.260 (0.691)	280823	1.00000	1.062
30 1,1,2-Trichlorotrifluoroethane	101	6.336	6.336 (0.699)	305420	1.00000	1.059
31 Methylene Chloride	84	6.519	6.519 (0.720)	133186	1.00000	1.026
32 3-Chloropropene	39	6.530	6.530 (0.721)	178026	1.00000	1.062
33 Carbon Disulfide	76	6.681	6.681 (0.737)	486031	1.00000	1.047
34 trans-1,2-Dichloroethene	96	7.323	7.323 (0.808)	168741	1.00000	1.032
35 Methyl-t-Butyl Ether	73	7.452	7.452 (0.823)	259331	1.00000	1.126
36 1,1-Dichloroethane	63	7.743	7.743 (0.855)	281476	1.00000	1.042
37 Vinyl Acetate	43	7.851	7.851 (0.867)	255296	1.00000	1.072
38 Hexane	56	8.299	8.299 (0.916)	165970	1.00000	1.084
39 2-Butanone	72	8.309	8.309 (0.917)	42807	1.00000	1.085
40 cis 1,2-Dichloroethene	96	8.725	8.725 (0.963)	136339	1.00000	1.025
41 Ethyl acetate	43	8.908	8.908 (0.983)	245579	1.00000	1.111
42 Chloroform	83	9.064	9.064 (1.001)	265157	1.00000	1.054
43 Tetrahydrofuran	42	9.490	9.490 (1.048)	140097	1.00000	1.106
44 1,1,1-Trichloroethane	97	10.083	10.083 (1.113)	288732	1.00000	1.052
45 1,2-Dichloroethane	62	10.202	10.202 (0.910)	166810	1.00000	1.126
46 Cyclohexane	69	10.660	10.660 (0.951)	82476	1.00000	1.162
47 Benzene	78	10.671	10.671 (0.952)	327345	1.00000	1.074
48 1-Butanol	31	10.628	10.628 (0.948)	75786	1.00000	1.033
49 Carbon Tetrachloride	117	10.687	10.687 (0.954)	319450	1.00000	1.087
50 2,2,4-trimethylpentane	57	11.394	11.394 (1.017)	842182	1.00000	1.100
51 Heptane	43	11.760	11.760 (1.050)	367877	1.00000	1.113
52 1,2-Dichloropropane	63	11.874	11.874 (1.060)	119996	1.00000	1.098
53 Trichloroethene	130		11.901 (1.062)	195204	1.00000	1.099
54 Dibromomethane	93	11.998	11.998 (1.071)	144232	1.00000	1.138
55 Bromodichloromethane	83	12.138		252781	1.00000	1.072
56 1,4-dioxane	88	12.165		67793	1.00000	1.171
57 methyl methacrylate	41	12.219		138039	1.00000	1.120
58 4-Methyl-2-pentanone	43	13.065		277020	1.00000	1.090
59 cis-1,3-Dichloropropene	75	13.119		147934	1.00000	1.108
60 trans-1,3-Dichloropropene	75	13.810	13.810 (0.870)	134827	1.00000	1.151
61 Toluene	91	13.923		311198	1.00000	1.090
62 1,1,2-Trichloroethane	97	14.009	14.009 (0.882)	115450	1.00000	1.144
63 2-Hexanone	58	14.381	14.381 (0.906)	109852	1.00000	1.103
64 Octane	85	14.586	14.586 (0.919)	128724	1.00000	1.124

Data File: /var/chem/gcms/mg.i/G112508I.b/gick254.d Report Date: 26-Nov-2008 17:01

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	ŔŦ	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
	====	==	======	=======	======	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	218320	1.00000	1.141
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	171832	1.00000	1.140
67 Tetrachloroethene	129	15.055	15.055 (0.948)	163609	1.00000	1.109
68 Chlorobenzene	112	15.923	15.923 (1.003)	256830	1.00000	1.110
69 Ethylbenzene	91	16.204	16.204 (1.021)	366166	1.00000	1.131
70 m&p-Xylene	91	16.366	16.366 (1.031)	568865	2.00000	2.300
71 Nonane	57	16.765	16.765 (1.056)	236854	1.00000	1.068
72 Bromoform	173	16.824	16.824 (1.060)	161052	1.00000	1.104
73 Styrene	104	16.829	16.829 (1.060)	198815	1.00000	1.136
74 o-Xylene	91	16.889	16.889 (1.064)	300283	1.00000	1.129
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.085)	212282	1.00000	1.124
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	58202	1.00000	1.099
77 Cumene	105	17.466	17.466 (1.100)	379079	1.00000	1.107
78 n-Propylbenzene	120	17.999	17.999 (1.134)	104204	1.00000	1.108
79 2-chlorotoluene	126	18.048	18.048 (1.137)	102600	1.00000	1.120
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	370981	1.00000	1.120
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.148)	151201	1.00000	1.125
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	142626	1.00000	1.108
83 Decane	57	18.490	18.490 (1.165)	275956	1.00000	1.136
84 tert-butylbenzene	119	18.636	18.636 (1.174)	336396	1.00000	1.126
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	298002	1.00000	1.145
86 sec-butylbenzene	105	18.900	18.900 (1.191)	423539	1.00000	1.136
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	201913	1.00000	1.102
88 Benzyl Chloride	91	18.997	18.997 (1.197)	223087	1.00000 .	1.130
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	197320	1.00000	1.110
90 p-Cymene	119	19.062	19.062 (1.201)	357498	1.00000	1.153
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	185042	1.00000	1.110
92 n-butylbenzene	91	19.488	19.488 (1.228)	327373	1.00000	1.161
93 Undecane	57	19.784	19.784 (1.246)	273450	1.00000	1.166
94 Dodecane	57	20.847	20.847 (1.313)	172953	1.00000	1.177
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	121947	1.00000	1.175
96 Napthalene	128	21.213	21.213 (1.336)	268735	1.00000	1.166
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	136517	1.00000	1.110
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	110818	1.00000	1.184



Data File: /var/chem/gcms/mg.i/G112508I.b/gick255.d

Report Date: 26-Nov-2008 17:01

# TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick255.d

Lab Smp Id: ICAL6
Inj Date : 25-NOV-2008 17:13

Operator : 7126 Inst ID: mq.i

Smp Info : ICAL6,,1,6,,,2.0

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment :

Method: /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:01 barlozha Quant Type: ISTD Cal Date : 25-NOV-2008 17:13 Cal File: gick255.d

Als bottle: 13 Calibration Sample, Level: 6

Dil Factor: 1.00000

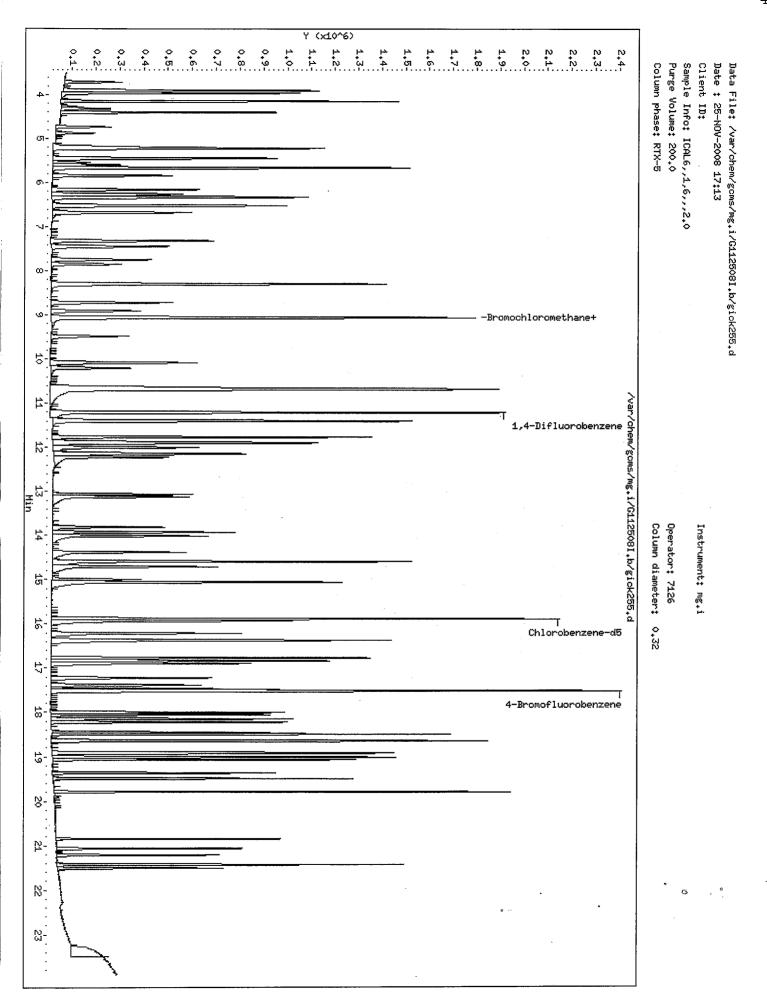
Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable


						AMOUNT	<u>ș</u>
		QUANT SIG			o 4	CAL-AMI	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
==		===	==	=======	=======		======
*	1 Bromochloromethane	128	9.053	9.059 (1.000)	406481	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.205 (1.000)	1968741	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1568056	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1038668	4.00000	4.142
	7 Chlorodifluoromethane	67	3.898	3.898 (0.431)	90447	2.00000	2.001
	8 Propene	41	3.909	3.915 (0.432)	378687	2.00000	2.039
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.438)	926519	2.00000	2.089
	10 Chloromethane	52	4.146	4.146 (0.458)	82369	2.00000	1.915
	11 1,2-Dichlorotetrafluoroethane	135	4.146	4.152 (0.458)	463960	2.00000	1.968
	12 Methanol	31	4.270	4.276 (0.472)	63433	2.00000	2.182
	13 Vinyl Chloride	62	4.319	4.319 (0.477)	228110	2.00000	1.935
	14 n-Butane	43	4.405	4.405 (0.487)	434766	2.00000	1.962
	15 1,3-Butadiene	54	4.400	4.405 (0.486)	210913	2.00000	1.929
	16 Bromomethane	94	4.734	4.734 (0.523)	182779	2.00000	1.980
	17 Chloroethane	64	4.874	4.880 (0.538)	102431	2.00000	1.952

Data File: /var/chem/gcms/mg.i/G112508I.b/gick255.d Report Date: 26-Nov-2008 17:01

						AMOUNT	5
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==	=====	=====	=======	======	
18 Vinyl Bromide	106	5.182	5.182	(0.572)	279789	2.00000	2.025
19 2-methyl butane	43	5.225	5.230	(0.577)	561684	2.00000	2.039
20 Trichlorofluoromethane	101	5.446	5.451	(0.602)	869719	2.00000	2.059
21 Acrolein	56	5.473	5.478	(0.604)	82454	2.00000	2.308
22 Acetonitrile	40	5.548	5.548	(0.613)	107916	2.00000	2.310
23 Acetone	58	5.597	5.602	(0.618)	116543	2.00000	2.498
24 Pentane	72	5.667	5.667	(0.626)	66292	2.00000	2.041
25 Isopropyl Alcohol	45	5.662	5.667	(0.625)	556541	2.00000	2.200
26 Ethyl Ether	31	5.845	5.845	(0.646)	376707	2.00000	2.403
27 1,1-Dichloroethene	96	6.158	6.163	(0.680)	272632	2.00000	1.930
28 Acrylonitrile	53	6.276	6.287	(0.693)	159280	2.00000	2.374
29 tert-butanol	59	6.255	6.260	(0.691)	562668	2.00000	2.171
30 1,1,2-Trichlorotrifluoroethane	101	6.325	6.336	(0.699)	560728	2.00000	1.983
31 Methylene Chloride	84	6.514	6.519	(0.719)	244254	2.00000	1.920
32 3-Chloropropene	39	6.524	6.530	(0.721)	345243	2.00000	2.102
33 Carbon Disulfide	76	6.675	6.681	(0.737)	943987	2.00000	2.075
34 trans-1,2-Dichloroethene	96	7.317	7.323	(0.808)	311441	2.00000	1.943
35 Methyl-t-Butyl Ether	73	7.441	7.452	(0.822)	525943	2.00000	2.332
36 1,1-Dichloroethane	63	7.743	7.743	(0.855)	552098	2.00000	2.086
37 Vinyl Acetate	43	7.846	7.851	(0.867)	564328	2.00000	2.419
38 Hexane	56	8.293	8.299	(0.916)	312166	2.00000	2.081
39 2-Butanone	72	8.304	8.309	(0.917)	95180	2.00000	2.463
40 cis 1,2-Dichloroethene	96	8.719	8.725	(0.963)	264415	2.00000	2.028
41 Ethyl acetate	43	8.908	8.908	(0.984)	547330	2.00000	2.527
42 Chloroform	83	9.064	9.064	(1.001)	523434	2.00000	2.124
43 Tetrahydrofuran	42	9.479	9.490	(1.047)	298771	2.00000	2.407
44 1,1,1-Trichloroethane	97	10.083	10.083	(1.114)	570371	2.00000	2.122
45 1,2-Dichloroethane	62	10.202	10.202	(0.911)	349876	2.00000	2.458
46 Cyclohexane	69	10.660	10.660	(0.952)	155754	2.00000	2.286
47 Benzene	78	10.671	10.671	(0.953)	698437	2.00000	2.387
48 1-Butanol	31	10.617	10.628	(0.948)	160929	2.00000	2.285
49 Carbon Tetrachloride	117	10.687	10.687	(0.954)	627897	2.00000	2.226
50 2,2,4-trimethylpentane	57	11.394	11.394	(1.017)	1675331	2.00000	2.280
51 Heptane	43	11.760	11.760	(1.050)	741822	2.00000	2.338
52 1,2-Dichloropropane	63	11.874	11.874	(1.060)	273252	2.00000	2.604
53 Trichloroethene	130	11.901	11.901	(1.063)	377309	2.00000	2.212
54 Dibromomethane	93	11.998	11.998	(1.071)	289423	2.00000	2.378
55 Bromodichloromethane	83	12.133	12.138	(1.083)	568373	2.00000	2.510
56 1,4-dioxane	88	12.154	12.165	(1.085)	130824	2.00000	2.354
57 methyl methacrylate	41	12.219	12.219	(1.091)	306913	2.00000	2.594
58 4-Methyl-2-pentanone	43	13.060	13.065	(1.166)	611402	2.00000	2.505
59 cis-1,3-Dichloropropene	75	13.119	13.119	(1.171)	342042	2.00000	2.668
60 trans-1,3-Dichloropropene	75	13.810	13.810	(0.870)	282468	2.00000	2.514
61 Toluene	91	13.923	13.923	(0.877)	695924	2.00000	2.541
62 1,1,2-Trichloroethane	97	14.009	14.009	(0.882)	249450	2.00000	2.577
63 2-Hexanone	58	14.381	14.381	(0.906)	243846	2.00000	2.552
64 Octane	85	14.586	14.586	(0.919)	302237	2.00000	2.753

Data File: /var/chem/gcms/mg.i/G112508I.b/gick255.d Report Date: 26-Nov-2008 17:02

			•		AMOUNT	5
•	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
=======================================	====	==			======	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	483546	2.00000	2.636
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	353089	2.00000	2.442
67 Tetrachloroethene	129	15.050	15.055 (0.948)	331205	2.00000	2.341
68 Chlorobenzene	112	15.923	15.923 (1.003)	540486	2.00000	2.437
69 Ethylbenzene	91	16.204	16.204 (1.021)	774219	2.00000	2.494
70 m&p-Xylene	91	16.366	16.366 (1.031)	1218868	4.00000	5.138
71 Nonane	57	16.765	16.765 (1.056)	502215	2.00000	2.360
72 Bromoform	173	16.824	16.824 (1.060)	357361	2.00000	2.553
73 Styrene	104	16.829	16.829 (1.060)	422804	2.00000	2.520
74 o-Xylene	91	16.889	16.889 (1.064)	642677	2.00000	2.519
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.085)	437419	2.00000	2.415
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	117629	2.00000	2.317
77 Cumene	105	17.466	17.466 (1.100)	811160	2.00000	2.470
78 n-Propylbenzene	120	17.999	17.999 (1.134)	218564	2.00000	2.422
79 2-chlorotoluene	126	18.048	18.048 (1.137)	213327	2.00000	2.428
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	776328	2.00000	2.444
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.148)	315799	2.00000	2.450
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	305463	2.00000	2.474
83 Decane	57	18.490	18.490 (1.165)	567473	2.00000	2.434
84 tert-butylbenzene	119	18.636	18.636 (1.174)	702726	2.00000	2.453
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	615004	2.00000	2.463
86 sec-butylbenzene	105	18.900	18.900 (1.191)	875124	2.00000	2.446
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	411160	2.00000	2.340
88 Benzyl Chloride	91	18.997	18.997 (1.197)	479618	2.00000	2.534
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	396726	2.00000	2.328
90 p-Cymene	119	19.062	19.062 (1.201)	735275	2.00000	2.473
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	376501	2.00000	2.355
92 n-butylbenzene	91	19.488	19.488 (1.228)	665461	2.00000	2.461
93 Undecane	57	19.784	19.784 (1.246)	552124	2.00000	2.454
94 Dodecane	57	20.841	20.847 (1.313)	279976	2.00000	1.986
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	235194	2.00000	2.363
96 Napthalene	128	21.213	21.213 (1.336)	518757	2.00000	2.347
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	274823	2.00000	2.329
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	200594	2.00000	2.234



Data File: /var/chem/gcms/mg.i/G112508I.b/gick256.d

Report Date: 26-Nov-2008 17:02

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick256.d

Lab Smp Id: ICAL7

Inj Date : 25-NOV-2008 17:55

Operator: 7126 Inst ID: mg.i

Smp Info : ICAL7,,1,7,,,5.0

Misc Info : G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:02 barlozha Quant Type: ISTD Cal Date: 25-Nov-2008 17:55 Cal File: gick256.d

Als bottle: 13 Calibration Sample, Level: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50
Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable

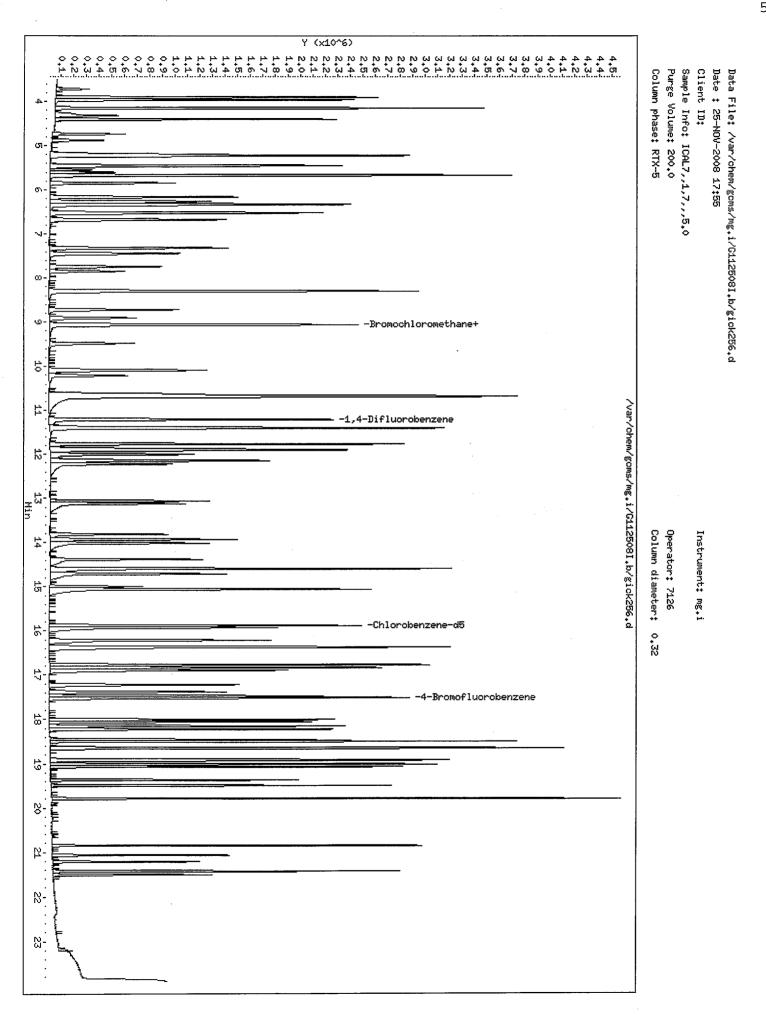
					AMOUNT	rs	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))	
	====	==	=====		======	======	
* 1 Bromochloromethane	128	9.059	9.059 (1.000)	436118	4.00000	4.000	
* 2 1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2294633	4.00000	4.000	
* 3 Chlorobenzene-d5	117	15.880	15.875 (1.000)	1833580	4.00000	4.000	
\$ 6 4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1175505	4.00000	4.009	
7 Chlorodifluoromethane	67	3.898	3.898 (0.430)	221080	5.00000	4.558	
8 Propene	41	3.915	3.915 (0.432)	923413	5.00000	4.635	
9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	2203575	5.00000	4.630	
10 Chloromethane	52	4.146	4.146 (0.458)	199396	5.00000	4.322	
11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	1161893	5.00000	4.593	
12 Methanol	31	4.276	4.276 (0.472)	126517	5.00000	4.057	
13 Vinyl Chloride	62	4.319	4.319 (0.477)	558784	5.00000	4.418	
14 n-Butane	43	4.405	4.405 (0.486)	1060527	5.00000	4.461	
15 1,3-Butadiene	54	4.405	4.405 (0.486)	519938	5.00000	4.431	
16 Bromomethane	94	4.734	4.734 (0.523)	458311	5.00000	4.628	
17 Chloroethane	64	4.880	4.880 (0.539)	261976	5.00000	4.654	

Data File: /var/chem/gcms/mg.i/G112508I.b/gick256.d Report Date: 26-Nov-2008 17:02

						AMOUNT	3
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT RE	EL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=======================================	====	==	===== ==		======	======	======
18 Vinyl Bromide	106	5.182	5.182 (0	572)	696018	5.00000	4.696
19 2-methyl butane	43	5.225	5.230 (0	577)	1425507	5.00000	4.824
20 Trichlorofluoromethane	101	5.451	5.451 (0	.602)	2117181	5.00000	4.671
21 Acrolein	56	5.473	5.478 (0	.604)	184392	5.00000	4.811
22 Acetonitrile	40	5.548	5.548 (0	.612)	224482	5.00000	4.480
23 Acetone	58	5.597	5.602 (0	.618)	205339	5.00000	4.103
24 Pentane	72	5.667	5.667 (0	).626)	164471	5.00000	4.719
25 Isopropyl Alcohol	45	5.662	5.667 (0	.625)	1280649	5.00000	4.718
26 Ethyl Ether	31	5.845	5.845 (0	.645)	746522	5.00000	4.439
27 1,1-Dichloroethene	96	6.163	6.163 (0	.680)	653504	5.00000	4.312
28 Acrylonitrile	53	6.282	6.287 (0	.693)	340134	5.00000	4.726
29 tert-butanol	59	6.255	6.260 (0	).690)	1345591	5.00000	4.839
30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.336 (0	(699)	1254850	5.00000	4.137
31 Methylene Chloride	84	6.519	6.519 (0	.720)	517925	5.00000	3.794
32 3-Chloropropene	39	6.530	6.530 (0	.721)	777461	5.00000	4.413
33 Carbon Disulfide	76	6.681	6.681 (0	.737)	2268572	5.00000	4.647
34 trans-1,2-Dichloroethene	96	7.323	7.323 (0	.808)	646182	5.00000	3.757
35 Methyl-t-Butyl Ether	73	7.441	7.452 (0	.821)	1110285	5.00000	4.588
36 1,1-Dichloroethane	63	7.743	7.743 (0	.855)	1165794	5.00000	4.106
37 Vinyl Acetate	43	7.846	7.851 (0	.866)	1142578	5.00000	4.565
38 Hexane	56	8.299	8.299 (0	.916)	650714	5.00000	4.043
39 2-Butanone	72	8.304	8.309 (0	.917)	178839	5.00000	4.313
40 cis 1,2-Dichloroethene	96	8.725	8.725 (0	.963)	542029	5.00000	3.875
41 Ethyl acetate	43	8.908	8.908 (0	).983)	1008750	5.00000	4.340
42 Chloroform	83	9.064	9.064 (1	.001)	1099757	5.00000	4.160
43 Tetrahydrofuran	42	9.474	9.490 (1	046)	617976	5.00000	4.640
44 1,1,1-Trichloroethane	97	10.083	10.083 (1	113)	1174213	5.00000	4.071
45 1,2-Dichloroethane	62	10.202	10.202 (0	.910)	632241	5.00000	3.812
46 Cyclohexane	69	10.660	10.660 (0	.951)	309106	5.00000	3.893
47 Benzene	78	10.671	10.671 (0	.952)	1307054	5.00000	3.833
48 1-Butanol	31	10.612	10.628 (0	.947)	368776	5.00000	4.492
49 Carbon Tetrachloride	117	10.687	10.687 (0	.954)	1274818	5.00000	3.877
50 2,2,4-trimethylpentane	57	11.394	11.394 (1	.017)	3552599	5.00000	4.148
51 Heptane	43	11.760	11.760 (1	.050)	1577530	5.00000	4.265
52 1,2-Dichloropropane	63	11.874	11.874 (1	060)	491888	5.00000	4.022
53 Trichloroethene	130	11.901	11.901 (1	.062)	835546	5.00000	4.203
54 Dibromomethane	93	11.998	11.998 (1	.071)	549500	5.00000	3.873
55 Bromodichloromethane	83	12.138	12.138 (1	083)	1133381	5.00000	4.294
56 1,4-dioxane	88	12.154	12.165 (1	085)	279585	5.00000	4.316
57 methyl methacrylate	41	12.219	12.219 (1	090)	609234	5.00000	4.417
58 4-Methyl-2-pentanone	43	13.060	13.065 (1	.166)	1298173	5.00000	4.563
59 cis-1,3-Dichloropropene	75	13.119	13.119 (1	171)	618764	5.00000	4.141
60 trans-1,3-Dichloropropene	75	13.810	13.810 (0	.870)	554893	5.00000	4.224
61 Toluene	91	13.923	13.923 (0	.877)	1356286	5.00000	4.236
62 1,1,2-Trichloroethane	97	14.009	14.009 (0	.882)	480359	5.00000	4.244
63 2-Hexanone	58	14.376	14.381 (0	.905)	506077	5.00000	4.530

85

64 Octane


14.586 14.586 (0.918)

640436 5.00000

4.988

Data File: /var/chem/gcms/mg.i/G112508I.b/gick256.d Report Date: 26-Nov-2008 17:02

				AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v) )	(ppb (v/v))
	====	==	=======================================	=======	======	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	968593	5.00000	4.515
66 1,2-Dibromoethane	107	14.996	14.996 (0.944)	675285	5.00000	3.994
67 Tetrachloroethene	129	15.055	15.055 (0.948)	692744	5.00000	4.188
68 Chlorobenzene	112	15.929	15.923 (1.003)	1081998	5.00000	4.172
69 Ethylbenzene	91	16.204	16.204 (1.020)	1715889	5.00000	4.726
70 m&p-Xylene	91	16.366	16.366 (1.031)	2726301	10.0000	9.828
71 Nonane	57	16.765	16.765 (1.056)	1128892	5.00000	4.537
72 Bromoform	173	16.829	16.824 (1.060)	796031	5.00000	4.863
73 Styrene	104	16.829	16.829 (1.060)	961656	5.00000	4.901
74 o-Xylene	91	16.889	16.889 (1.063)	1449024	5.00000	4.857
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.084)	978947	5.00000	4.622
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.094)	269289	5.00000	4.535
77 Cumene	105	17.471	17.466 (1.100)	1899185	5.00000	4.946
78 n-Propylbenzene	120	17.999	17.999 (1.133)	500636	5.00000	4.745
79 2-chlorotoluene	126	18.048	18.048 (1.137)	480943	5.00000	4.682
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	1767606	5.00000	4.760
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.147)	733857	5.00000	4.868
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	715093	5.00000	4.952
83 Decane	57	18.490	18.490 (1.164)	1277551	5.00000	4.687
84 tert-butylbenzene	119	18.636	18.636 (1.174)	1611325	5.00000	4.810
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	1380727	5.00000	4.729
86 sec-butylbenzene	105	18.900	18.900 (1.190)	1961450	5.00000	4.689
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	888401	5.00000	4.324
88 Benzyl Chloride	91	18.997	18.997 (1.196)	1016242	5.00000	4.591
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	854860	5.00000	4.290
90 p-Cymene	119	19.062	19.062 (1.200)	1626695	5.00000	4.679
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.219)	795931	5.00000	4.257
92 n-butylbenzene	91	19.488	19.488 (1.227)	1442283	5.00000	4.561
93 Undecane	57	19.784	19.784 (1.246)	1294588	5.00000	4.922
94 Dodecane	57	20.847	20.847 (1.313)	883945	5.00000	5.362
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	422290	5.00000	3.629
96 Napthalene	128	21.213	21.213 (1.336)	879880	5.00000	3.405
97 Hexachlorobutadiene	225	21.424	21.424 (1.349)	521243	5.00000	3.777
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.354)	374983	5.00000	3.572



Data File: /var/chem/gcms/mg.i/G112508I.b/gick257.d

Report Date: 26-Nov-2008 17:02

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick257.d

Lab Smp Id: ICAL8

Inj Date : 25-NOV-2008 18:36

Operator : 7126 Inst ID: mg.i

Smp Info : ICAL8,,1,8,,,10

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:02 barlozha Quant Type: ISTD Cal Date: 25-NOV-2008 18:36 Cal File: gick257.d

Als bottle: 13 Calibration Sample, Level: 8

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50
Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable

Local Compound Variable

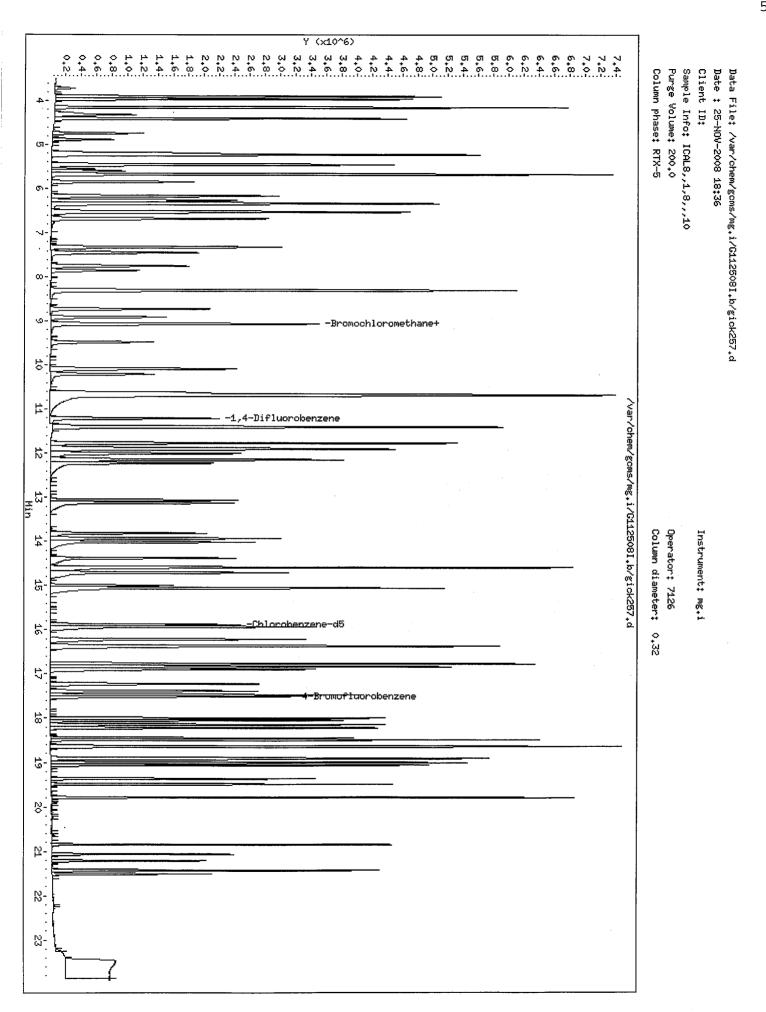
						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
==		====	==	======	=======	======	======
*	1 Bromochloromethane	128	9.064	9.059 (1.000)	437948	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2271150	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.880	15.875 (1.000)	1803966	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1163405	4.00000	4.032
	7 Chlorodifluoromethane	67	3.904	3.898 (0.431)	424825	10.0000	8.723
	8 Propene	41	3.915	3.915 (0.432)	1820330	10.0000	9.099
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	4365835	10.0000	9.135
	10 Chloromethane	52	4.146	4.146 (0.457)	405408	10.0000	8.750
	11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	2281822	10.0000	8.982
	12 Methanol	31	4.281	4.276 (0.472)	276971	10.0000	8.844
	13 Vinyl Chloride	62	4.319	4.319 (0.476)	1183784	10.0000	9.320
	14 n-Butane	43	4.405	4.405 (0.486)	2289078	10.0000	9.590
	15 1,3-Butadiene	54	4.411	4.405 (0.487)	1110785	10.0000	9.427
	16 Bromomethane	94	4.740	4.734 (0.523)	946810	10.0000	9.521
	17 Chloroethane	64	4.880	4.880 (0.538)	516509	10.0000	9.137

Data File: /var/chem/gcms/mg.i/G112508I.b/gick257.d Report Date: 26-Nov-2008 17:02

AMOUNTS QUANT SIG CAL-AMT ON-COL Compounds MASS RTEXP RT REL RT RESPONSE (ppb (v/v)) (ppb(v/v))== ====== ===== ==== ======= ====== -----18 Vinyl Bromide 106 5.187 5.182 (0.572) 1383309 10.0000 9.293 19 2-methyl butane 5.230 (0.577) 2824582 43 5.230 10,0000 9.519 20 Trichlorofluoromethane 5.451 (0.602) 101 5.457 4163383 10,0000 9.147 21 Acrolein 56 5.478 5.478 (0.604) 295672 10.0000 7.682 22 Acetonitrile 40 5.554 5.548 (0.613) 383517 10.0000 7.621 23 Acetone 58 5.597 5.602 (0.617) 386431 10.0000 7.689 24 Pentane 5.672 5.667 (0.626) 327466 10.0000 72 9.357 25 Isopropyl Alcohol 45 5.672 5.667 (0.626) 2559419 10.0000 9.389 26 Ethyl Ether 5.845 (0.645) 31 5.850 1408244 10,0000 8.339 27 1,1-Dichloroethene 96 6.169 6.163 (0.681) 1331363 10.0000 8.747 28 Acrylonitrile 6.287 6.287 (0.694) 10.0000 53 586461 8.114 29 tert-butanol 6.260 (0.691) 6.260 2637030 10.0000 9.444 30 1,1,2-Trichlorotrifluoroethane 6.336 (0.699) 6.336 2698570 10,0000 101 8.860 31 Methylene Chloride 6.524 6.519 (0.720) 1119009 10,0000 8.162 32 3-Chloropropene 39 6.535 6.530 (0.721) 1684520 10.0000 9.521 33 Carbon Disulfide 76 6.681 6.681 (0.737) 10.0000 9.409 4612511 34 trans-1,2-Dichloroethene 96 7.328 7.323 (0.808) 1416386 10.0000 8.202 35 Methyl-t-Butyl Ether 7.452 (0.822) 73 7.447 2083381 10.0000 8.573 36 1,1-Dichloroethane 63 7.749 7.743 (0.855) 2340434 10.0000 8.208 37 Vinyl Acetate 43 7.851 7.851 (0.866) 2229088 10.0000 8.869 38 Hexane 56 8.299 8.299 (0.916) 1364202 10.0000 8.441 39 2-Butanone 72 8.309 (0.916) 8.304 384251 10.0000 9.228 40 cis 1,2-Dichloroethene 8.730 8.725 (0.963) 7.857 1103636 10.0000 41 Ethyl acetate 8.908 (0.983) 43 8.908 2214425 10,0000 9.488 42 Chloroform 9.064 (1.001) 83 9.070 2154042 10,0000 8.113 43 Tetrahydrofuran 9.474 9.490 (1.045) 10.0000 9.151 42 1223930 44 1,1,1-Trichloroethane 97 10.083 10.083 (1.112) 2340562 10.0000 8.081 45 1,2-Dichloroethane 10.207 10.202 (0.911) 62 1408140 10.0000 8.577 46 Cyclohexane 69 10.666 10.660 (0.952) 618622 10.0000 7.871 47 Benzene 78 10.677 10.671 (0.953) 2797118 10.0000 8.288 48 1-Butanol 31 10.617 10.628 (0.948) 741382 10.0000 9.125 49 Carbon Tetrachloride 117 10.693 10.687 (0.954) 2549069 10.0000 7.832 50 2,2,4-trimethylpentane 11.399 11.394 (1.017) 6794183 10.0000 8.014 57 11.766 11.760 (1.050) 3073735 10.0000 8.397 51 Heptane 43 52 1,2-Dichloropropane 11.879 11.874 (1.060) 8.773 63 1062019 10.0000 53 Trichloroethene 130 11.906 11.901 (1.063) 1593254 10.0000 8.097 12.003 11.998 (1.071) 10.0000 8.352 54 Dibromomethane 93 1172942 55 Bromodichloromethane 83 12.138 12.138 (1.083) 2433576 10.0000 9.316 56 1,4-dioxane 88 12.154 12.165 (1.085) 578660 10.0000 9.025 10.0000 9.960 57 methyl methacrylate 41 12,219 12,219 (1,090) 1359755 13.060 13.065 (1.166) 2517150 10.0000 8.939 58 4-Methyl-2-pentanone 43 13.119 13.119 (1.171) 59 cis-1,3-Dichloropropene 10,0000 9.758 75 1443146 60 trans-1,3-Dichloropropene 75 13.810 13.810 (0.870) 1228377 10.0000 9.505 8.937 13.928 13.923 (0.877) 2815493 10.0000 61 Toluene 91 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 1039832 10.0000 9.337 63 2-Hexanone 58 14.381 14.381 (0.906) 1025881 10.0000 9.334 14.586 14.586 (0.918) 1365251 10.0000 10.81 64 Octabe 85

Data File: /var/chem/gcms/mg.i/G112508I.b/gick257.d Report Date: 26-Nov-2008 17:02

180


98 1.2.3-trichlorobenzene

					AMOUNTS	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==		======	*****	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	2170236	10.0000	10.28
66 1,2-Dibromoethane	107	14.996	14.996 (0.944)	1501948	10.0000	9.030
67 Tetrachloroethene	129	15.055	15.055 (0.948)	1367730	10.0000	8.405
68 Chlorobenzene	112	15.929	15.923 (1.003)	2299183	10.0000	9.010
69 Ethylbenzene	91	16.209	16.204 (1.021)	3267273	10.0000	9.147
70 m&p-Xylene	91	16.366	16.366 (1.031)	5063551	20.0000	18.55
71 Nonane	57	16.765	16.765 (1.056)	2370096	10.0000	9.681
72 Bromoform	173	16.829	16.824 (1.060)	1661362	10.0000	10.32
73 Styrene	104	16.829	16.829 (1.060)	1876258	10.0000	9.718
74 o-Xylene	91	16.889	16.889 (1.063)	2641538	10.0000	8.999
75 1,1,2,2-Tetrachloroethane	83	17.218	17.218 (1.084)	1824475	10.0000	8.755
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.094)	513092	10.0000	8.784
77 Cumene	105	17.471	17.466 (1.100)	3513395	10.0000	9.299
78 n-Propylbenzene	120	17.999	17.999 (1.133)	969831	10.0000	9.343
79 2-chlorotoluene	126	18.048	18.048 (1.137)	891611	10.0000	8.822
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	3324028	10.0000	9.098
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.147)	1374419	10.0000	9.267
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	1340032	10.0000	9.432
83 Decane	57	18.490	18.490 (1.164)	2149729	10.0000	8.017
84 tert-butylbenzene	119	18.636	18.636 (1.174)	2963982	10.0000	8.992
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	2464833	10.0000	8.581
86 sec-butylbenzene	105	18.900	18.900 (1.190)	3524531	10.0000	8.564
87 1,3-Dichlorobenzene	146	18.922	18.922 (1.192)	1594380	10.0000	7.888
88 Benzyl Chloride	91	18.997	18.997 (1.196)	1854358	10.0000	8.515
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	1529993	10.0000	7.804
90 p-Cymene	119	19.062	19.062 (1.200)	2825712	10.0000	8.261
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.219)	1404110	10.0000	7.634
92 n-butylbenzene	91	19.488	19.488 (1.227)	2392798	10.0000	7.692
93 Undecane	57	19.784	19.784 (1.246)	2009428	10.0000	7.765
94 Dodecane	57	20.847	20.847 (1.313)	1337278	10.0000	8.245
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	715698	10.0000	6.251
96 Napthalene	128	21.213	21.213 (1.336)	1527838	10.0000	6.010
97 Hexachlorobutadiene	225	21.429	21.424 (1.349)	846967	10.0000	6.239

21.510 21.504 (1.355)

620391 10.0000

6.006



Data File: /var/chem/gcms/mg.i/G112508I.b/gick258.d

Report Date: 26-Nov-2008 17:02

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112508I.b/gick258.d

Lab Smp Id: ICAL9

Inj Date : 25-NOV-2008 19:18

Operator: 7126 Inst ID: mg.i

Smp Info : ICAL9,,1,9,,,25

Misc Info: G112508I, T0155, 1-all.sub, , , ,

Comment:

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 17:02 barlozha Quant Type: ISTD Cal Date: 25-NOV-2008 19:18 Cal File: gick258.d

Als bottle: 14 Calibration Sample, Level: 9

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50
Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable Local Compound Variable

						AMOUNT	5	
		QUANT SIG				CAL-AMT	ON-COL	
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
		====	==		=======	======	======	
* 1	Bromochloromethane	128	9.064	9.059 (1.000)	402634	4.00000	4.000	
* 2	1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2035265	4.00000	4.000	
* 3	Chlorobenzene-d5	117	15.880	15.875 (1.000)	1724086	4.00000	4.000	
\$ 6	4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1121554	4.00000	4.068	
7	Chlorodifluoromethane	67	3.898	3.898 (0.430)	957084	25.0000	21.37	
8	Propene	41	3.909	3.915 (0.431)	4195655	25.0000	22.81	
9	Dichlorodifluoromethane	85	3.963	3.963 (0.437)	9527684	25.0000	21.68	
10	Chloromethane	52	4.146	4.146 (0.457)	740391	25.0000	17.38	
11	1,2-Dichlorotetrafluoroethane	135	4.146	4.152 (0.457)	4567064	25.0000	19.55	
12	Methanol	31	4.276	4.276 (0.472)	531045	25.0000 ,01	18.44	
13	Vinyl Chloride	62	4.319	4.319 (0.476)	2437476	25.0000	20.87	
14	n-Butane	43	4.400	4.405 (0.485)	4018325	25.0000	18.31	
15	1,3-Butadiene	54	4.405	4.405 (0.486)	2172938	25.0000	20.06	
16	Bromomethane	94	4.734	4.734 (0.522)	1987153	25.0000	21.74	
17	Chloroethane	64	4.880	4.880 (0.538)	1128979	25.0000	21.72	

AMOITHITE

Data File: /var/chem/gcms/mg.i/G112508I.b/gick258.d Report Date: 26-Nov-2008 17:02

AMOUNTS QUANT SIG CAL-AMT ON-COL Compounds MASS EXP RT REL RT RT RESPONSE (v/v) dqq(ppb(v/v)) -----======= ====== 18 Vinyl Bromide 106 5.182 5.182 (0.572) 2990309 25.0000 21.85 19 2-methyl butane 43 5.225 5.230 (0.576) 6358550 25,0000 23.31 20 Trichlorofluoromethane 5.451 (0.601) 21.85 101 5.451 9144781 25.0000 21 Acrolein 5.478 5.478 (0.604) 991202 25.0000 28.01(A) 22 Acetonitrile 5.548 (0.613) 40 5.554 1228662 25,0000 26.56(A) 23 Acetone 58 5.597 5,602 (0,617) 1057649 25.0000 22.89 24 Pentane 72 5.667 5.667 (0.625) 691089 25,0000 21.48 25 Isopropyl Alcohol 5.667 (0.625) 25.0000 25.03(A) 45 5.667 6272163 26 Ethyl Ether 31 5.845 5.845 (0.645) 3997102 25.0000 25.74(A) 27 1,1-Dichloroethene 6.163 (0.680) 6.163 2977960 25,0000 21,28 96 28 Acrylonitrile 53 6.287 6.287 (0.694) 1911225 25.0000 28,76(A) 29 tert-butanol 6.260 6.260 (0.691) 6791186 25.0000 26.45(A) 59 30 1,1,2-Trichlorotrifluoroethane 6.336 (0.698) 6.330 5957102 25,0000 21.27 31 Methylene Chloride 6.519 6.519 (0.719) 25,0000 19.74 84 2488661 32 3-Chloropropene 39 6.535 6.530 (0.721) 3959699 25.0000 24.34(A) 33 Carbon Disulfide 76 6.681 6.681 (0.737) 10169251 25.0000 22.56 34 trans-1,2-Dichloroethene 96 7.323 7.323 (0.808) 3296439 25.0000 20.76 35 Methyl-t-Butyl Ether 73 7.441 7.452 (0.821) 5481961 25.0000 24.54(A) 36 1,1-Dichloroethane 7.743 (0.855) 63 7.749 5862933 25.0000 22.36 37 Vinyl Acetate 43 7.851 7.851 (0.866) 6852924 25.0000 29.66(A) 38 Hexane 8.299 (0.916) 22.37 56 8.299 3323576 25.0000 39 2-Butanone 72 8.304 8.309 (0.916) 942953 25.0000 24.63(A) 40 cis 1.2-Dichloroethene 8.725 8.725 (0.963) 96 2897820 25.0000 22.44 41 Ethyl acetate 8.908 (0.983) 28.64(A) 43 8.908 6146448 25.0000 42 Chloroform 9.064 (1.001) 22.64 83 9.070 5525775 25,0000 43 Tetrahydrofuran 9.490 (1.045) 27.03(A) 42 9.469 3323199 25,0000 44 1,1,1-Trichloroethane 97 10.083 10.083 (1.112) 5964607 25.0000 22.40 45 1.2-Dichloroethane 62 10.207 10.202 (0.911) 4085840 25.0000 27.77(A) 46 Cyclohexane 69 10.660 10.660 (0.951) 1369406 25.0000 19.44 47 Benzene 78 10.677 10.671 (0.953) 7067504 25.0000 23.37 48 1-Butanol 31 10.612 10.628 (0.947) 2007225 25.0000 27.57(A) 49 Carbon Tetrachloride 21.34 117 10.693 10.687 (0.954) 6223640 25,0000 50 2,2,4-trimethylpentane 11.399 11.394 (1.017) 25.0000 22.69 57 17236254 11.766 11.760 (1.050) 24.22(A) 51 Heptane 43 7945429 25.0000 52 1,2-Dichloropropane 63 11.879 11.874 (1.060) 2944448 25,0000 27.14(A) 11.906 11.901 (1.063) 53 Trichloroethene 25,0000 20.98 130 3699948 54 Dibromomethane 93 12.003 11.998 (1.071) 3010096 25.0000 55 Bromodichloromethane 12.138 12.138 (1.083) 25.82(A) 83 6044503 25.0000 56 1,4-dioxane 12.154 12.165 (1.085) 1357836 25.0000 23.63 88 57 methyl methacrylate 12.219 12.219 (1.090) 4045701 25.0000 33.07(A) 41 29.78(A) 58 4-Methyl-2-pentanone 13.060 13.065 (1.166) 25,0000 43 7513318 59 cis-1,3-Dichloropropene 75 13.125 13.119 (1.171) 4134360 25.0000 31.20(A) 29.87(A) 60 trans-1,3-Dichloropropene 13.815 13.810 (0.870) 25.0000 75 3689567 61 Toluene 91 13.928 13.923 (0.877) 8019560 25,0000 26.64(A) 26.89(A) 62 1,1,2-Trichloroethane 97 14.014 14.009 (0.882) 2861992 25.0000 63 2-Hexanone 14.381 14.381 (0.906) 25.0000 28.96(A) 58 3041943

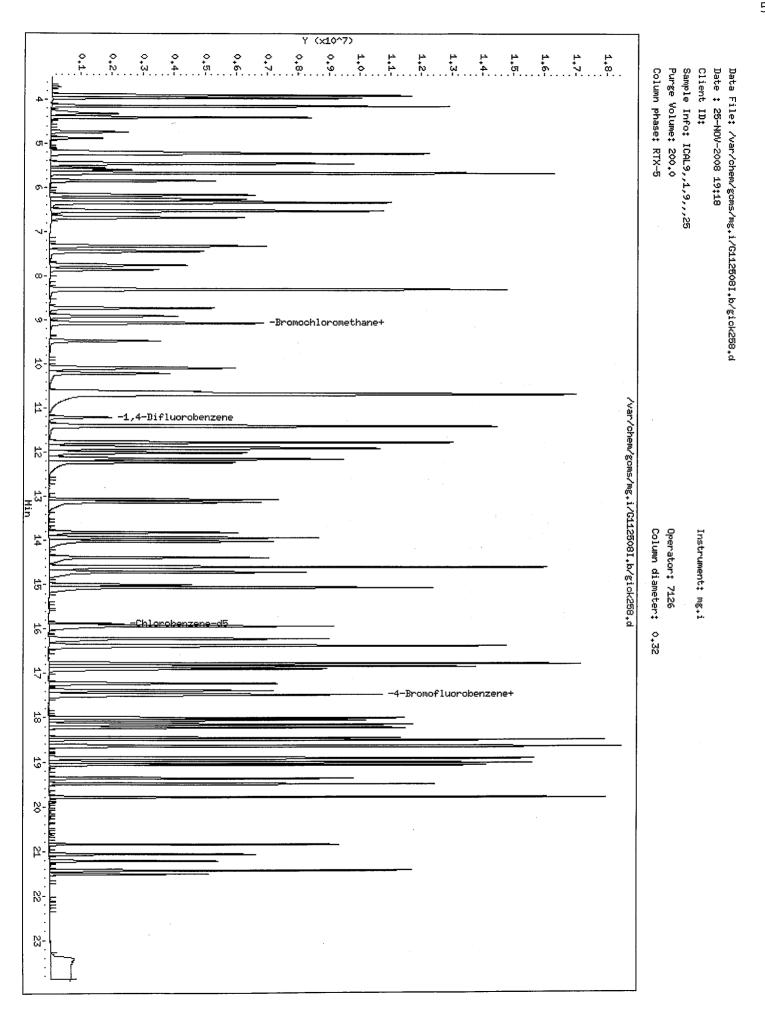
85

14.591 14.586 (0.919)

3299489

25.0000

27.33(A)


64 Octane

Data File: /var/chem/gcms/mg.i/G112508I.b/gick258.d Report Date: 26-Nov-2008 17:02

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==				======
65 Dibromochloromethane	129	14.710	14.705 (0.926)	5947866	25.0000	29.49(A)
66 1,2-Dibromoethane	107	15.001	14.996 (0.945)	4344063	25.0000	27.33(A)
67 Tetrachloroethene	129	15.055	15.055 (0.948)	3332807	25.0000	21.43
68 Chlorobenzene	112	15.929	15.923 (1.003)	6478463	25.0000	26.56(A)
69 Ethylbenzene	91	16.209	16.204 (1.021)	8872836	25.0000	25.99(A)
70 m&p-Xylene	91	16.366	16.366 (1.031)	13068641	50.0000	50.10(A)
71 Nonane	57	16.765	16.765 (1.056)	6876464	25.0000	29.39(A)
72 Bromoform	173	16.829	16.824 (1.060)	4825452	25.0000	31.35(A)
73 Styrene	104	16.835	16.829 (1.060)	4996642	25.0000	27.08(A)
74 o-Xylene	91	16.894	16.889 (1.064)	6936514	25.0000	24.72(A)
75 1,1,2,2-Tetrachloroethane	83	17.223	17.218 (1.085)	4912689	25.0000	24.67(A)
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.094)	1432749	25.0000	25.66(A)
77 Cumene	105	17.471	17.466 (1.100)	9294091	25.0000	25.74(A)
78 n-Propylbenzene	120	17.999	17.999 (1.133)	2661328	25.0000	26.82(A)
79 2-chlorotoluene	126	18.048	18.048 (1.137)	2447703	25.0000	25.34(A)
80 4-Ethyltoluene	105	18.150	18.145 (1.143)	9202263	25.0000	26.35(A)
81 1,3,5-Trimethylbenzene	120	18.221	18.221 (1.147)	3762744	25.0000	26.54(A)
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	3961050	25.0000	29.17(A)
83 Decane	57	18.490	18.490 (1.164)	6356052	25.0000	24.80(A)
84 tert-butylbenzene	119	18.636	18.636 (1.174)	7828359	25.0000	24.85(A)
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	6713803	25.0000	24.46(A)
86 sec-butylbenzene	105	18.905	18.900 (1.190)	9666516	25.0000	24.58(A)
87 1,3-Dichlorobenzene	146	18.927	18.922 (1.192)	4699739	25.0000	24.33(A)
88 Benzyl Chloride	91	19.002	18.997 (1.197)	5467455	25.0000	26.27(A)
89 1,4-Dichlorobenzene	146	19.013	19.008 (1.197)	4528704	25.0000	24.17(A)
90 p-Cymene	119	19.062	19.062 (1.200)	8258206	25.0000	25.26(A)
91 1,2-Dichlorobenzene	146	19.369	19.364 (1.220)	4228266	25.0000	24.05(A)
92 n-butylbenzene	91	19.488	19.488 (1.227)	6846541	25.0000	23.03
93 Undecane	57	19.784	19.784 (1.246)	5771098	25.0000	23.33
94 Dodecane	57	20.847	20.847 (1.313)	2853154	25.0000	18.41
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	2031738	25.0000	18.57
96 Napthalene	128	21.219	21.213 (1.336)	4311225	25.0000	17.74
97 Hexachlorobutadiene	225	21.429	21.424 (1.349)	2472000	25.0000	19.05
98 1.2.3-trichlorobenzene	180	21.510	21.504 (1.355)	1533451	25.0000	15.53

# QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d

Report Date: 26-Nov-2008 16:51

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Inst ID: mg.i

Data file: /var/chem/gcms/mg.i/G112508I.b/blk2.d

Lab Smp Id: BLANK Client Smp ID: BLANK

Inj Date : 25-NOV-2008 20:43

Operator: 7126

Smp Info : BLANK, , 3, , , BLANK

Misc Info : G112508I, T0155, 1-all.sub, , , ,

Comment :

Method : /var/chem/gcms/mg.i/G112508I.b/T0155.m

Meth Date: 26-Nov-2008 16:50 barlozha Quant Type: ISTD

Als bottle: 16 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
=======================================	====	==		======	======	======
* 1 Bromochloromethane	128	9.059	9.059 (1.000)	454165	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.205	11.205 (1.000)	2371971	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.880	15.875 (1.000)	1920416	4.00000	4.000
\$ 6 4-Bromofluorobenzene	95	17.509	17.503 (1.103)	1220931	3.97535	3.975
7 Chlorodifluoromethane	67	3.904	3.898 (0.431)	183601	3.63513	3.635
8 Propene	41	3.914	3.915 (0.432)	779737	3.75844	3.758
9 Dichlorodifluoromethane	85	3.963	3.963 (0.437)	1779102	3.58972	3.590
10 Chloromethane	52	4.152	4.146 (0.458)	156172	3.25044	3.250
11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.458)	954962	3.62479	3.625
12 Methanol	31	4.276	4.276 (0.472)	119411	3.67673	3.677
13 Vinyl Chloride	62	4.319	4.319 (0.477)	449915	3.41588	3.416
14 n-Butane	43	4.405	4.405 (0.486)	860230	3.47507	3.475
15 1,3-Butadiene	54	4.411	4.405 (0.487)	450198	3.68447	3.684
16 Bromomethane	94	4.739	4.734 (0.523)	367273	3.56156	3.562
17 Chloroethane	64	4.880	4.880 (0.539)	217324	3.70704	3.707

Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d Report Date: 26-Nov-2008 16:51

						CONCENTRAT	IONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT R	EL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==	=======	====		======	=====
18 Vinyl Bromide	106	5.187	5.182 (	0.573)	628588	4.07215	4.072
19 2-methyl butane	43	5.230	5.230 (	0.577)	1225343	3.98196	3.982
20 Trichlorofluoromethane	101	5.451	5.451 (	0.602)	1834641	3.88676	3.887
21 Acrolein	56	5.478	5.478 (	0.605)	156133	3.91194	3.912
22 Acetonitrile	40	5.548	5.548 (	0.612)	234666	4.49680	4.497
23 Acetone	58	5.597	5.602 (	0.618)	187319	3.59411	3.594
24 Pentane	72	5.672	5.667 (	0.626)	142783	3.93430	3.934
25 Isopropyl Alcohol	45	5.667	5.667 (	0.626)	1103095	3.90223	3.902
26 Ethyl Ether	31	5.845	5.845 (	0.645)	629333	3.59367	3.594
27 1,1-Dichloroethene	96	6.163	6.163 (	0.680)	707738	4.48394	4.484
28 Acrylonitrile	53	6.282	6.287 (	0.693)	361879	4.82791	4.828
29 tert-butanol	59	6.260	6.260 (	0.691)	1102559	3.80764	3.808
30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.336 (	0.699)	1454723	4.60559	4.606
31 Methylene Chloride	84	6.519	6.519 (	0.720)	705565	4.96279	4.963
32 3-Chloropropene	39	6.530	6.530 (	0.721)	838387	4.56951	4.570
33 Carbon Disulfide	76	6.681	6.681 (	0.737)	2063516	4.05898	4.059
34 trans-1,2-Dichloroethene	96	7.322	7.323 (	0.808)	706934	3.94732	3.947
35 Methyl-t-Butyl Ether	73	7.446	7.452 (	0.822)	968693	3.84370	3.844
36 1,1-Dichloroethane	63	7.743	7.743 (	0.855)	1385353	4.68488	4.685
37 Vinyl Acetate	43	7.845	7.851 (	0.866)	1061349	4.07204	4.072
38 Hexane	56	8.298	8.299 (	0.916)	727392	4.34001	4.340
39 2-Butanone	72	8.304	8.309 (	0.917)	167233	3.87283	3,873
40 cis 1,2-Dichloroethene	96	8.724	8.725 (	0.963)	679161	4.66254	4.662
41 Ethyl acetate	43	8.908	8.908 (	0.983)	907887	3.75112	3.751
42 Chloroform	83	9.064	9.064 (	1.001)	1264902	4.59412	4.594
43 Tetrahydrofuran	42	9.474	9.490 (	1.046)	580337	4.18413	4.184
44 1,1,1-Trichloroethane	97	10.083	10.083 (	1.113)	1381195	4.59866	4.599
45 1,2-Dichloroethane	62	10.202	10.202 (	0.910)	798156	4.65514	4.655
46 Cyclohexane	69	10.660	10.660 (	0.951)	339928	4.14124	4.141
47 Benzene	78	10.671	10.671 (	0.952)	1610508	4.56930	4.569
48 1-Butanol	31	10.617	10.628 (	0.948)	311987	3.67670	3.677
49 Carbon Tetrachloride	117	10.693	10.687 (	0.954)	1446838	4.25641	4.256
50 2,2,4-trimethylpentane	57	11.394	11.394 (1	1.017)	3765098	4.25248	4.252
51 Heptane	43	11.766	11.760 (	1.050}	1661789	4.34662	4.347
52 1,2-Dichloropropane	63	11.874	11.874 (1	1.060)	543756	4.30109	4.301
53 Trichloroethene	130	11.901	11.901 (1	1.062)	906257	4.40999	4.410
54 Dibromomethane	93	11.998	11.998 (	1.071)	579868	3.95363	3.954
55 Bromodichloromethane	83	12.138	12.138 (1	1.083)	1147934	4.20744	4.207
56 1,4-dioxane	88	12.154	12.165 (1	1.085)	233614	3.48868	3.489
57 methyl methacrylate	41	12.219	12.219 (1	1.090)	534150	3.74648	3.746
58 4-Methyl-2-pentanone	43	13.060	13.065 (1	1.166)	1083368	3.68392	3.684
59 cis-1,3-Dichloropropene	75	13.119	13.119 (1	1.171)	630172	4.07999	4.080
60 trans-1,3-Dichloropropene	75	13.809	13.810 (0	0.870)	526698	3.82825	3.828
61 Toluene	91	13.923	13.923 (0	0.877)	1306806	3.89673	3.897
62 1,1,2-Trichloroethane	97	14.009	14.009 (0	0.882)	431105	3.63629	3.636
63 2-Hexanone	58	14.376	14.381 (0	0.905)	433782	3.70739	3.707
64 Octane	85	14.586	14.586 (0	0.918)	552565	4.10924	4.109

Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d Report Date: 26-Nov-2008 16:51

· ·					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=======================================	====	==		======	======	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	878047	3.90811	3.908
66 1,2-Dibromoethane	107	14.996	14.996 (0.944)	634832	3.58526	3.585
67 Tetrachloroethene	129	15.055	15.055 (0.948)	647310	3.73657	3.736
68 Chlorobenzene	112	15.923	15.923 (1.003)	974240	3.58629	3.586
69 Ethylbenzene	91	16.204	16.204 (1.020)	1489260	3.91667	3.917
70 m&p-Xylene	91	16.365	16.366 (1.031)	2314619	7.96672	7.967
71 Nonane	57	16.764	16.765 (1.056)	896975	3.44164	3.442
72 Bromoform	173	16.829	16.824 (1.060)	672924	3.92516	3.925
73 Styrene	104	16.829	16.829 (1.060)	814398	3.96260	3.962
74 o-Xylene	91	16.888	16.889 (1.063)	1210453	3.87368	3.874
75 1,1,2,2-Tetrachloroethane	83	17.217	17.218 (1.084)	811381	3.65748	3.657
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.094)	222768	3.58231	3.582
77 Cumene	105	17.471	17.466 (1.100)	1520430	3.78032	3.780
78 n-Propylbenzene	120	17.999	17.999 (1.133)	402422	3.64161	3.642
79 2-chlorotoluene	126	18.048	18.048 (1.137)	392162	3.64498	3.645
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	1412059	3.63061	3.631
81 1,3,5-Trimethylbenzene	120	18.220	18.221 (1.147)	601034	3.80677	3.807
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	567394	3.75173	3.752
83 Decane	57	18.490	18.490 (1.164)	995401	3.48689	3.487
84 tert-butylbenzene	119	18.636	18.636 (1.174)	1271714	3.62419	3.624
85 1,2,4-Trimethylbenzene	105	18.652	18.652 (1.175)	1111716	3.63572	3.636
86 sec-butylbenzene	105	18.900	18.900 (1.190)	1541221	3.51765	3.518
87 1,3-Dichlorobenzene	146	18.921	18.922 (1.192)	732466	3.40408	3.404
88 Benzyl Chloride	91	18.997	18.997 (1.196)	849788	3.66550	3.666
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	705130	3.37846	3.378
90 p-Cymene	119	19.062	19.062 (1.200)	1298369	3.56576	3.566
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.219)	654674	3.34343	3.343
92 n-butylbenzene	91	19.488	19.488 (1.227)	1162666	3.51070	3.511
93 Undecane	57	19.784	19.784 (1.246)	1028611	3.73363	3.734
94 Dodecane	57	20.846	20.847 (1.313)	805158	4.66338	4.663
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	401899	3.29729	3.297
96 Napthalene	128	21.213	21.213 (1.336)	825180	3.04895	3.049
97 Hexachlorobutadiene	225	21.429	21.424 (1.349)	469458	3.24834	3.248
98 1.2.3-trichlorobenzene	180	21.510	21.504 (1.355)	373049	3.39273	3.393

Calibration Date: 25-NOV-2008

Calibration Time: 16:32

Client Smp ID: BLANK

Sample Type: AIR

Level: LOW

Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d

Report Date: 26-Nov-2008 16:51

#### TestAmerica Knoxville

# INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: blk2.d

Lab Smp Id: BLANK

Analysis Type: OTHER

Quant Type: ISTD

Operator: 7126

Method File: /var/chem/gcms/mg.i/G112508I.b/T0155.m

Misc Info: G112508I, T0155, 1-all.sub, , , ,

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
1 Bromochloromethan	414841	246830	582852	454165	9.48
2 1,4-Difluorobenze	2050012	1219757	2880267	2371971	15.71
3 Chlorobenzene-d5	1634847	972734	2296960	1920416	17.47

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	=======	======
1 Bromochloromethan	9.06	8.73	9.39	9.06	0.00
2 1,4-Difluorobenze	11.21	10.88	11.54	11.20	0.00
3 Chlorobenzene-d5	15.87	15.54	16.20	15.88	0.03
<u> </u>					

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d

Report Date: 26-Nov-2008 16:51

#### TestAmerica Knoxville

#### RECOVERY REPORT

Client SDG: G112508I

Client Smp ID: BLANK

Fraction: OTHER

Operator: 7126

SampleType: LCS

Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Lab Smp Id: BLANK

Level: LOW

Data Type: MS DATA

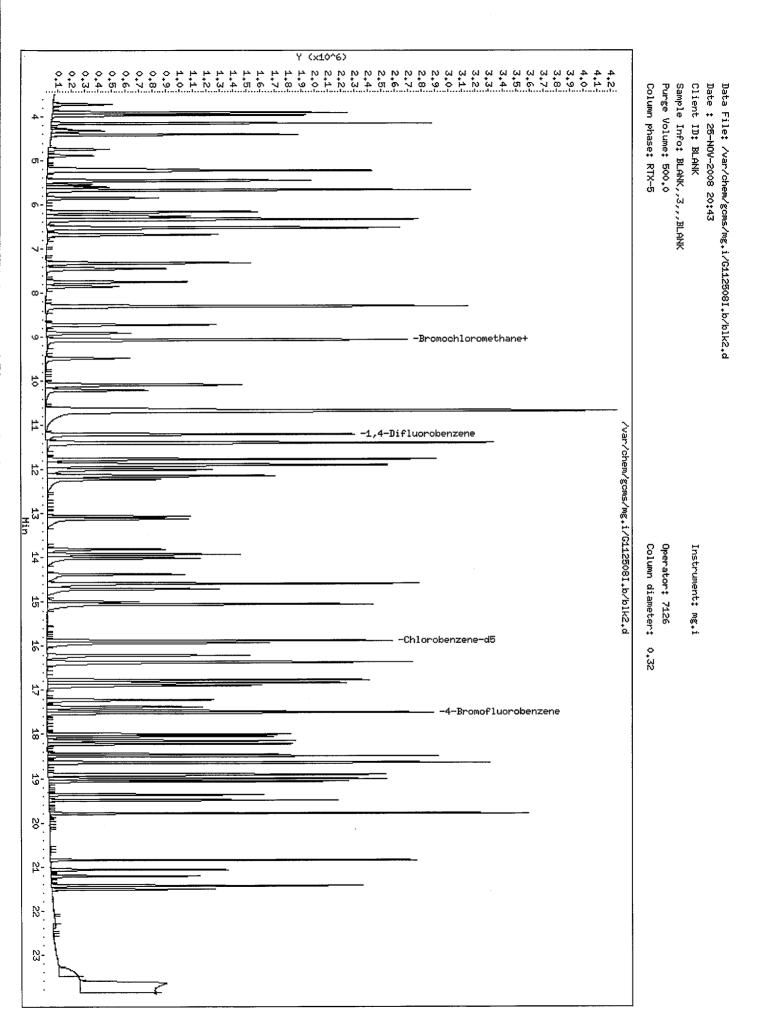
SpikeList File: icv.spk

Sublist File: 1-all.sub

Method File: /var/chem/gcms/mg.i/G112508I.b/T0155.m

Misc Info: G112508I, T0155, 1-all.sub, , , ,

SPIKE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
7 Chlorodifluorometh	4.000	3.635	90.88	65-135
8 Propene	4.000	3.758	93.96	65-135
9 Dichlorodifluorome	4.000	3.590	89.74	65-135
10 Chloromethane	4.000	3.250	81.26	65-135
11 1,2-Dichlorotetraf	4.000	3.625	90.62	65-135
12 Methanol	4.000	3.677	91.92	65-135
13 Vinyl Chloride	4.000	3.416	85.40	65-135
14 n-Butane	4.000	3.475	86.88	65-135
15 1,3-Butadiene	4.000	3.684	92.11	65-135
16 Bromomethane	4.000	3.562	89.04	65-135
17 Chloroethane	4.000	3.707	92.68	65-135
18 Vinyl Bromide	4.000	4.072	101.80	65-135
19 2-methyl butane	4.000	3.982	99.55	65-135
20 Trichlorofluoromet	4.000	3.887	97.17	65-135
21 Acrolein	4.000	3.912	97.80	65-135
22 Acetonitrile	4.000	4.497	112.42	65-135
23 Acetone	4.000	3.594	89.85	65-135
24 Pentane	4.000	3.934	98.36	65-135
25 Isopropyl Alcohol	4.000	3.902	97.56	65-135
26 Ethyl Ether	4.000	3.594	89.84	65-135
27 1,1-Dichloroethene	4.000	4.484	112.10	65-135
28 Acrylonitrile	4.000	4.828	120.70	65-135
29 tert-butanol	4.000	3.808	95.19	65-135
30 1,1,2-Trichlorotri	4.000	4.606	115.14	65-135
31 Methylene Chloride	4.000	4.963	124.07	65-135
32 3-Chloropropene	4.000	4.570	114.24	65-135
33 Carbon Disulfide	4.000	4.059	101.47	65-135
34 trans-1,2-Dichloro	4.000	3.947	98.68	65-135
35 Methyl-t-Butyl Eth	4.000	3.844	96.09	65-135
36 1,1-Dichloroethane	4.000	4.685	117.12	65-135
37 Vinyl Acetate	4.000	4.072	101.80	65-135
38 Hexane	4.000	4.340	108.50	65-135
39 2-Butanone	4.000	3.873	96.82	65-135
			l	l l


Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d Report Date: 26-Nov-2008 16:51

	CONC	CONC	ે	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb(v/v)	ppb(v/v)		
				.
40 cis 1,2-Dichloroet	4.000	4.662	116.56	65-135
41 Ethyl acetate	4.000	3.751	93.78	65-135
42 Chloroform	4.000	4.594	114.85	65-135
43 Tetrahydrofuran	4.000	4.184	104.60	65-135
44 1,1,1-Trichloroeth	4.000	4.599	114.97	65-135
45 1,2-Dichloroethane	4.000	4.655	116.38	65-135
46 Cyclohexane	4.000	4.141	103.53	65-135
47 Benzene	4.000	4.569	114.23	65-135
48 1-Butanol	4.000	3.677	91.92	65-135
49 Carbon Tetrachlori	4.000	4.256	106.41	65-135
50 2,2,4-trimethylpen	4.000	4.252	106.31	65-135
51 Heptane	4.000	4.347	108.67	65-135
52 1,2-Dichloropropan	4.000	4.301	107.53	65-135
53 Trichloroethene	4.000	4.410	110.25	65-135
54 Dibromomethane	4.000	3.954	98.84	65-135
55 Bromodichlorometha	4.000	4.207	105.19	65-135
56 1,4-dioxane	4.000	3.489	87.22	65-135
57 methyl methacrylat	4.000	3.746	93.66	65-135
58 4-Methyl-2-pentano	4.000	3.684	92.10	65-135
59 cis-1,3-Dichloropr	4.000	4.080	102.00	65-135
60 trans-1,3-Dichloro	4.000	3.828	95.71	65-135
61 Toluene	4.000	3.897	97.42	65-135
62 1,1,2-Trichloroeth	4.000	3.636	90.91	65-135
63 2-Hexanone	4.000	3.707	92.68	65-135
64 Octane	4.000	4.109	102.73	65-135
65 Dibromochlorometha	4.000	3.908	97.70	65-135
66 1,2-Dibromoethane	4.000	3.585	89.63	65-135
67 Tetrachloroethene	4.000	3.736	93.41	65-135
68 Chlorobenzene	4.000	3.586	89.66	65-135
69 Ethylbenzene	4.000	3.917	97.92	65-135
70 m&p-Xylene	8.000	7.967	99.58	65-135
71 Nonane	4.000	3.442	86.04	65-135
72 Bromoform	4.000	3.925	98.13	65-135
73 Styrene	4.000	3.962	99.06	65-135
74 o-Xylene	4.000	3.874	96.84	65-135
75 1,1,2,2-Tetrachlor	4.000	3.657	91.44	65-135
76 1,2,3-Trichloropro	4.000	3.582	89.56	65-135
77 Cumene	4.000	3.780	94.51	65-135
78 n-Propylbenzene	4.000	3.642	91.04	65-135
79 2-chlorotoluene	4.000	3.645	91.12	65-135
80 4-Ethyltoluene	4.000	3.631	90.77	65-135
81 1,3,5-Trimethylben	4.000	3.807	95.17	65-135
82 Alpha-Methylstyren	4.000	3.752	93.79	65-135
83 Decane	4.000	3.487	87.17	65-135
84 tert-butylbenzene	4.000	3.624	90.60	65-135
85 1,2,4-Trimethylben	4.000	3.636	90.89	65-135
86 sec-butylbenzene	4.000	3.518	87.94	65-135
				<u> </u>

Data File: /var/chem/gcms/mg.i/G112508I.b/blk2.d Report Date: 26-Nov-2008 16:51

	CONC	CONC	%	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb (v/v)	ppb (v/v)		
87 1,3-Dichlorobenzen	4.000	3.404	85.10	65-135
		]		
88 Benzyl Chloride	4.000	3.666	91.64	65-135
89 1,4-Dichlorobenzen	4.000	3.378	84.46	65-135
90 p-Cymene	4.000	3.566	89.14	65-135
91 1,2-Dichlorobenzen	4.000	3.343	83.59	65-135
92 n-butylbenzene	4.000	3.511	87.77	65-135
93 Undecane	4.000	3.734	93.34	65-135
94 Dodecane	4.000	4.663	116.58	65-135
95 1,2,4-Trichloroben	4.000	3.297	82.43	65-135
96 Napthalene	4.000	3.049	76.22	65-135
97 Hexachlorobutadien	4.000	3.248	81.21	65-135
98 1.2.3-trichloroben	4.000	3.393	84.82	65-135
	İ			

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.975	99.38	70-130



# TestAmerica Knoxville GC/MS Air Continuing Calibration Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 9

Analysis Date:	11/29/08	CCAL Batch/ Scan Name:	6112908	Ins	trument		16	ICAL Batch/ Scan Name:	611208E	Scanned	
									The second of the second		2nd
Review I	- +			N/A	Yes	No	If I	No, why is data	reportable?		-
1. Did B	BFB meet tune	criteria?									
		injected within 24									
3. Have	the Entech po	sition no. & vol. 1	peen verified with run		/						
log &	sample vol. c	corrected if actual	amount differs >5%?				L .				
	date/time of ar		tween analysis header								/
		npared to the corr	ect ICAL?								
			es? Up to 4 analytes		/						1/
		out ≤ 40% D (Nar			′		}	U			
		auto identified?			/						/
			d, are they clearly						ed split peak; 2)Unres		W
		, dated and reason		<u> </u>			3)ta	ailing; 4)RT shif	t; 5)wrong peak select	ed; 6)other	1///
		manual integratio ect RFs listed in (	ns been verified as CCAL summary?								W
		nented correctly o									
		time on the CCA			/			ok - vodate	1 11/26 For Ny on	ly	
		ed on isomeric pa				<u> </u>		- F			
			lorotetrafluoroethane		'						
		•	lorotrifluoroethane		7						1
	yl acetate / he										1
	and trans- isc						<del> </del>		<del></del>		1/
			· · · ·				<del>                                     </del>				+-
, -		n/p-xylene / o-xyle				_	<del>                                     </del>				+
		,3,5-trimethylben	zene/1,2,4-		/						/
	nethylbenzene						├				+
		,2-dichlorobenzer			/		<del>  _ ,</del>	loofi I CC analyta	(s) flagged as being outside	do control	+-
			target analytes 70-						s 2 polars and 2 nonpolars		
		nonpolars 60-140			/			16, out 501 anow 1%R.	3 2 potats and 2 nonpotate	Touiside 70"	/
anaiy	tes 60-140%,	with up to 2 polar	8 43-13370)!								
		met, was a NCM copy included in f	generated, approved	/							M
		der contain comp		<u> </u>							ļ
			st, a complete runlog,		/						1/
		pass/fail page, m									
		get CCAL summa									
			ind leak check report.						è		
				· · · · · ·					7./		
Analyst:			Date: 12/1	8010				viewer :	m D	)ate: (U//C	<u> </u>
Commen	nts		. 1	<u> </u>	Co	mme	nts:				
									···		
					·						
									<del> </del>		
					_						
		·-······									

### TestAmerica Knoxville CANISTER RUN LOG

0010011:17		XO X ELIC IX COL 1 DO C		
GCMS Analysis: AIR		(7M)	It	nst: MG
Analyst: #	Qtims Batch:	8336265 K3VH2	8336270	K3 VJ K
Date: 11/2/108	ICAL Batch: 611250	85 Target Batch: (-1129	08 IS #1 Area:	432126
Surr/IS ID & Vol.: 4000	LV326 System Date	Time ok (y/n):		
Preventive Maintenance		· /		

Time	Use	Lot No.	File ID	Can #	Pos	Vol* (mL)	Can DF	Comments
0848		ture	GBRBX29		16	200		
0916	N	ccv	GCCV K29	CX1856	13	100		
1008	V	cov	GCCV KZ9 A	4	١	1		
1008	V	les	GLCSK29A	4	4			
1216	N	BIK	Blank		16	1000	dont	
1524	/	4	GB14K29		đ	4.45	108	
1644	1 / P.	PH8K250101	K3KSZIAA	6678	1	<i>5</i> 00	. (	"E" 2 but
1726		<u> </u>	1531	6627	ા	. \	1	
1810	VR	4	59	7991 87	3			2991 PCC
1853			6A	6374	4			
1937			60	6349	5			
2020	<u>.</u>		6 D	1148	6	₹		
2104	~	4	4 58 4	12187	7	50 '	4	1000
2148	~	H8K240147	K3KFI14D	7494	8	200	1	toly naphay
2316			FY I	12153	9	1		
2358			F5	6599	ાડ			
0039		4	4 ts +	1/155	ι/	4	4	·
	~	H8K250114	K3 LEMIAA	25178	16	23	,	8.70
0202			EN	L5142	13	_ 1		1
0244			EP	SU1234	14			
0325	~	4	& ER +	L5702	15	4		
2732	dys	H8K240147	K3KFID	7494	8	200	+	
0408		H8K250101	K3K522AA	6678	]	50	1	2-but.
0449			53	6627	2			2- put only c/o?
0531	V.,		59	2991	3			Ple
F	noth	leder	6A	6374	4			
0628			60	6349	5		1	
1240	4	*	160	1148	6	4	4	( )
					$\Box$	·		nount is used for calulations.

MS027r16.DOC, 010908

## Test America - Knoxville Entech Autosampler Log

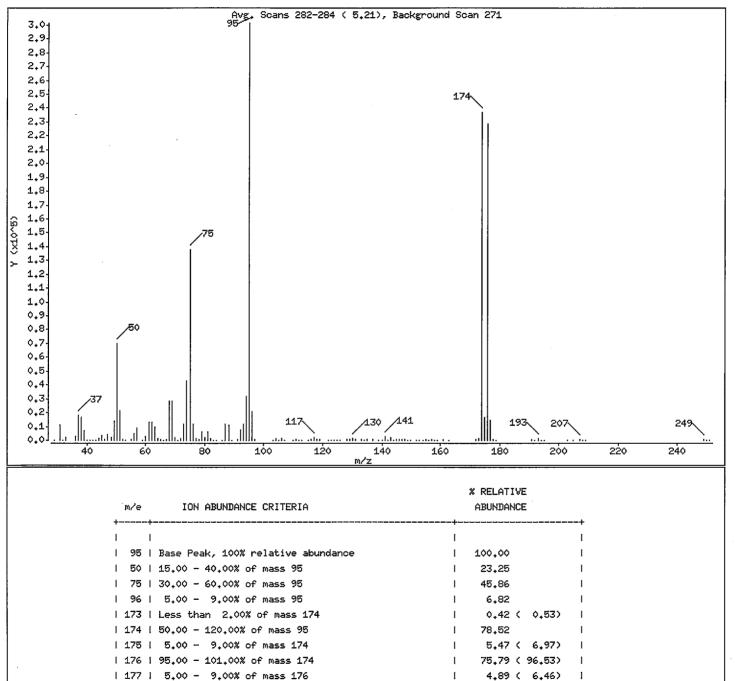
Sample	Position	Volume	AnDate	AnTime
BFB	16	13	11/29/2008	8:48
CCV	13	100	11/29/2008	9:16
CCV	13	100	11/29/2008	10:08
BLK	16	501	11/29/2008	14:40
BLK	16	501	11/29/2008	15:24
K3K52	1	500	11/29/2008	16:44
K3K53	2	500	11/29/2008	17:26
K3K59	3	500	11/29/2008	18:10
K3K6A	4	500	11/29/2008	18:53
K3K6C	5	500	11/29/2008	19:36
K3K6D	6	500	11/29/2008	20:20
K3K58	7	50	11/29/2008	21:04
K3KF1	8	201	11/29/2008	21:48
K3KF1	8	200	11/29/2008	22:32
K3KF4	9	201	11/29/2008	23:16
K3KF5	10	201	11/29/2008	23:58
K3KF7	11	201	11/30/2008	0:39
K3LEM	12	23	11/30/2008	1:21
K3LEN	13	23	11/30/2008	2:02
K3LEP	14	23	11/30/2008	2:44
K3LER	15	23	11/30/2008	3:25
K3K52	1	51	11/30/2008	4:08
K3K53	2	51	11/30/2008	4:49
K3K59	3	51	11/30/2008	5:31
K3K6A	4	51	11/30/2008	6:14
K3K6C	5	50	11/30/2008	6:57
K3K6D	6	50	11/30/2008	7:41

Data File: /chem/gcms/mg.i/G112908.b/gbfbk29.d

Date : 29-NOV-2008 08:48

Client ID: BFB

Instrument: mg.i


Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

1 bfb



Data File: /chem/gcms/mg.i/G112908.b/gbfbk29.d

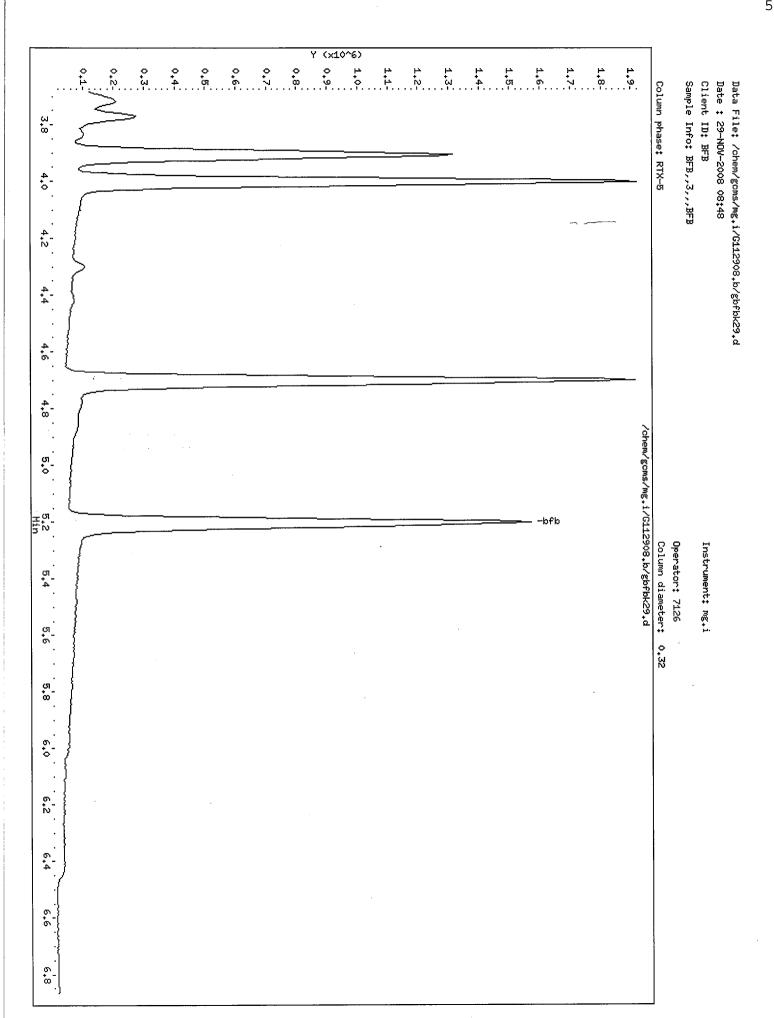
Date : 29-NOV-2008 08:48

Client ID: BFB

Instrument: mg.i

Sample Info: BFB,,3,,,BFB

Operator: 7126


Column phase: RTX-5 Column diameter: 0.32

Data File: gbfbk29.d

Spectrum: Avg. Scans 282-284 ( 5.21), Background Scan 271

Location of Maximum: 95.00 Number of points: 132

.1	m/z	Y	m/z	Y	m/z	Y	m/z	Υ
1	29,00	28	68,00	28456	111.00	364	,   153.¢¢	 268 I
į	31,00	10752	69.00	28176	112,00	281	154.00	122
l	32,00	190	70,00	2308	113,00	305	155,00	628 I
į	33.00	1787	71,00	61	115,00	192	156,00	125 I
į	36,00	3069	72,00	1184	116.00	938	157,00	547 I
+-			+		·		+ <b>-</b>	+
1	37,00	18312	73.00	11756	117,00	1903	158,00	122 I
1	38₊◊◊	16504	74.00	43128	118,00	874	159.00	342 I
ı	39,00	6666	75,00	138112	119,00	1008	161.00	362 I
1	40.00	172	76.00	11788	122,00	51	163,00	94 I
I	41,00	28	77,00	1405	123,00	54	172,00	601 l
+-			<b></b>		<del></del>		+	+
I	42,00	236	78,00	959	124.00	177	173,00	1251
I	43,00	207	79,00	6281	125,00	315	1 174.00	236544 I
I	44,00	1506	80,00	1872	126,00	119	175.00	16472 I
I	45,00	3418	81,00	6255	128,00	1003	176.00	228352 (
!	46,00	356	82,00	1668	129,00	504	177,00	14748 I
+-			+ <b></b>		+		+	+
1	47,00	4462	83.00	48	130,00	1182	178,00	487 I
1	48,00	1943	84,00	59	131,00	383	179,00	221 I
1	49,00	13600	86,00	298	133,00	965	191.00	699 I
1	50,00	70040	87,00	11781	134,00	209	192,00	141
1	51,00	21792	I 88₊00	10764	135,00	503	193,00	1063 I
+-			+		+ <del></del>		+	+
I	52,00	641	89,00	64	137,00		194.00	108 I
I	53,00	58	91,00	821		58	•	122 I
I	55,00	640		7580		218	• • • •	53 I
1	56,00	4693	93,00	11546	141,00	2727	1 205,00	292 I
I	57,00	8671	94,00	31712	142,00	243	1 207,00	646 I
+-			+		+	0774	+	+
1	59,00	256			143,00		1 208,00	275
!	60,00	2621		20552		142	•	108
	61,00	13087		703		352		640 I
1	62,00	12979	•	292			1 250,00	71
	63,00	9833	1 104.00	1104	147.00	381	1 251,00	260 I
+-	64.00	4440	+   105.00	242	148.00	614	,	
	=		•		1 148.00	201		1
1	65,00	482	•		-			ı İ
1	66,00	198	•	333	=	316		
1	67,00	,,,o	110 ₊ 00		152,00	116	l 	
-					, <b>_</b>		, <del></del>	



Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d Report Date: 01-Dec-2008 12:04

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

26-NOV-2008 12:31 OK-283 WHO HILLO LOS (MP ds an 1)20 LOS (MP ds an 1)20 LOS

Instrument ID: mg.i Injection Date: 29-NOV-2008 10:08
Lab File ID: gccvk29a.d Init. Cal. Date(s): 25-NOV-2008 2
Analysis Type: AIR Init. Cal. Times: 13:47
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

	l		MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF1	•		%D / %DRIFT	!
\$ 6 4-Bromofluorobenzene	0.63971		•		•	•
7 Chlorodifluoromethane	0.44484	0.39957	0.000	10.17559	30.00000	Averaged
8 Propene	1.82721	1.77318	0.000	2.95680	30.00000	Averaged
9 Dichlorodifluoromethane	4.36502	4.32263	0.000	0.97126	30.00000	1
10 Chloromethane	0.42316	0.36015	0.000	14.89193	30.00000	Averaged
11 1,2-Dichlorotetrafluoroetha	2.32033	1.95411	0.000	15.78334	30.00000	Averaged
12 Methanol	0.28604	0.26107	0.000	8.73177	30.00000	Averaged
13 Vinyl Chloride	1.16004	0.96353	0.000	16.93996	30.00000	Averaged
14 n-Butane	2.18020	1.82526	0.000	16.28039	30.00000	Averaged
15 1,3-Butadiene	1.07616	0.89562	0.000	16.77588	30.00000	Averaged
16 Bromomethane	0.90823	0.80873	0.000	10.95577	30.00000	Averaged
17 Chloroethane	0.51633	0.45067	0.000	12.71615	30.00000	Averaged
18 Vinyl Bromide	1.35953	0.83123	0.000	38.85903	30.00000	Averaged
19 2-methyl butane	2.71024	1.47448	0.000	45.59605	30.00000	Averaged
20 Trichlorofluoromethane	4.15729	3.59715	0.000	13.47376	30.00000	Averaged
21 Acrolein	0.35152	0.27350	0.000	22.19469	30.00000	Averaged
22 Acetonitrile	0.45961	0.40576	0.000	11.71814	30.00000	Averaged
23 Acetone	0.45903	0.44817	0.000	2.36524	30.00000	Averaged
24 Pentane	0.31964	0.29810	0.000	6.73757	30.00000	Averaged
25 Isopropyl Alcohol	2.48969	2.14447	0.000	13.86629	30.00000	Averaged
26 Ethyl Ether	1.54237	1.36035	0.000	11.80147	30.00000	Averaged
27 1,1-Dichloroethene	1.39014	,		,	30.00000	Averaged
28 Acrylonitrile	0.66016	0.51380	0.000	22.17060	30.00000	Averaged
29 tert-butanol	2.55031	2.05612	0.000	19.37752	30.00000	Averaged
30 1,1,2-Trichlorotrifluoroeth	2.78190	2.65429	0.000	4.58703	30.00000	Averaged
31 Methylene Chloride	1.25215	1.17609	0.000	6.07449	30.00000	Averaged
32 3-Chloropropene	1.61593	1.65013	0.000	-2.11697	30.00000	Averaged
33 Carbon Disulfide	4.47752		•	•	•	
34 trans-1,2-Dichloroethene	1.57733	1.45768	0.000	7.58555	30.00000	Averaged
35 Methyl-t-Butyl Ether	2.21964	1.81461	0.000	18.24765	30.00000	
36 1,1-Dichloroethane	2.60441	2.62716	0.000	-0.87367		, ,
37 Vinyl Acetate	2.29558	1.65803	0.000	27.77282	!	
38 Hexane	1.47613	1.42462	0.000	3.48956	•	
39 2-Butanone	0.38031	0.32475	0.000	14.61039	30.00000	Averaged
40 cis 1,2-Dichloroethene	1.28291	•		•	30.00000	Averaged
41 Ethyl acetate	2.13166	1.70960	0.000	19.79967	30.00000	Averaged

Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d Report Date: 01-Dec-2008 12:04

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

			MIN		MAX	
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
			=====	=======		
42 Chloroform	2.42494	2.26720	0.000	6.50484	30.00000	Averaged
43 Tetrahydrofuran	1.22158	0.99721	0.000	18.36709	30.00000	Averaged
44 1,1,1-Trichloroethane	2.64527	2.58415	0.000	2.31065	30.00000	Averaged
45 1,2-Dichloroethane	0.28914	0.25506	0.000	11.78512	30.00000	Averaged
46 Cyclohexane	0.13842	0.13395	0.000	3.23094	30.00000	Averaged
47 Benzene	0.59438	0.55032	0.000	7.41209	30.00000	Averaged
48 1-Butanol	0.14310	0.11541	0.000	19.34496	30.00000	Averaged
49 Carbon Tetrachloride	0.57323	0.54588	0.000	4.77083	30.00000	Averaged
50 2,2,4-trimethylpentane	1.49308	1.36384	0.000	8.65590	30.00000	Averaged
51 Heptane	0.64473	0.56735	0.000	12.00062	30.00000	Averaged
52 1,2-Dichloropropane	0.21319	0.17192	0.000	19.35784	30.00000	Averaged
53 Trichloroethene	0.34655	0.31932	0.000	7.85588	30.00000	Averaged
54 Dibromomethane	0.24733	0.22957	0.000	7.18070	30.00000	Averaged
55 Bromodichloromethane	0.46010	0.40639	[0.000	11.67294	30.00000	Averaged
56 1,4-dioxane	0.11292	0.09419	0.000	16.58852	30.00000	Averaged
57 methyl methacrylate	0.24043	0.17725	0.000	26.27801	30.00000	Averaged
58 4-Methyl-2-pentanone	0.49593	0.36371	0.000	26.65970	30.00000	Averaged
59 cis-1,3-Dichloropropene	0.26047	0.19386	0.000	25.57265	30.00000	Averaged
60 trans-1,3-Dichloropropene	0.28657	0.20647	0.000	27.95156	30.00000	Averaged
61 Toluene	0.69851	0.56558	0.000	19.03133	30.00000	Averaged
62 1,1,2-Trichloroethane	0.24694	0.19742	0.000	20.05412	30,00000	Averaged
63 2-Hexanone	0.24371	0.17076	0.000	29.93329	30.00000	Averaged
64 Octane	0.28008	0.23212	0.000	17.12441	30.00000	Averaged
65 Dibromochloromethane	0.46797	0.40632	0.000	13.17348	30.00000	Averaged
66 1,2-Dibromoethane	0.36881	0.28554	0.000	22.57849	30.00000	Averaged
67 Tetrachloroethene	0.36083	0.32556	0.000	9.77593	30.00000	Averaged
68 Chlorobenzene	0.56583	0.45490	0.000	19.60432	30.00000	Averaged
69 Ethylbenzene	0.79199	0.58836	0.000	25.71129	30.00000	Averaged
70 m&p-Xylene	0.60515	0.46287	0.000	23.51124	30.00000	Averaged
71 Nonane	0.54285	0.36343	0.000	33.05093	30.00000	Averaged
72 Bromoform	0.35709	0.27661	0.000	22.53650	30.00000	Averaged
73 Styrene	0.42808	0.30969	0.000	27.65549	30.00000	Averaged
74 o-Xylene	0.65086	0.49719	0.000	23.60985	30.00000	Averaged
75 1,1,2,2-Tetrachloroethane	0.46207	0.35648	0.000	22.85117	30.00000	Averaged
76 1,2,3-Trichloropropane	0.12953	0.09574	0.000	26.08007	30.00000	Averaged

Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d Report Date: 01-Dec-2008 12:04

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

			MIN	]	MAX	
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=============			=============	=======	=====
7 Cumene	0.83773	0.60443	0.000	27.84921	30.00000	
8 n-Propylbenzene	0.23017	0.15987	0.000	30.54540	30.00000	Averaged <-
9 2-chlorotoluene	0.22410	0.16612	0.000	25.87143	30.00000	Averaged
0 4-Ethyltoluene	0.81010	0.57749	0.000	28.71319	30.00000	Averaged
1 1,3,5-Trimethylbenzene	0.32886	0.24159	0.000	26.53720	30.00000	Averaged
2 Alpha-Methylstyrene	0.31501	0.21398	0.000	32.07155	30.00000	Averaged <-
3 Decane	0.59460	0.43451	0.000	26.92332	30.00000	Averaged
4 tert-butylbenzene	0.73087	0.53289	0.000	27.08909	30.00000	Averaged
5 1,2,4-Trimethylbenzene	0.63690	0.47471	0.000	25.46533	30.00000	Averaged
6 sec-butylbenzene	0.91259	0.65785	0.000	27.91399	30.00000	Averaged
7 1,3-Dichlorobenzene	0.44818	0.33971	0.000	24.20313	30.00000	Averaged
8 Benzyl Chloride	0.48288	0.34259	0.000	29.05400	30.00000	Averaged
9 1,4-Dichlorobenzene	0.43473	0.32148	0.000	26.04937	30.00000	Averaged
0 p-Cymene	0.75842	0.54962	0.000	27.53067	30.00000	Averaged
1 1,2-Dichlorobenzene	0.40785	0.30472	0.000	25.28630	30.00000	Averaged
2 n-butylbenzene	0.68980	0.50896	0.000	26.21710	30.00000	Averaged
3 Undecane	0.57383	0.41286	0.000	28.05192	30.00000	Averaged
4 Dodecane	0.35962	0.26522	0.000	26.25144	30.00000	Averaged
5 1,2,4-Trichlorobenzene	0.25388	0.19070	0.000	24.88456	30.00000	Averaged
6 Napthalene	0.56372	0.42712	0.000	24.23156	30.00000	Averaged
7 Hexachlorobutadiene	0.30102	0.22294	0.000	25.94091	30.00000	Averaged
8 1.2.3-trichlorobenzene	0.22902	0.18116	0.000	20.90094	30.00000	Averaged

Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d

Report Date: 01-Dec-2008 12:04

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d
Lab Smp Id: CCV Client Smp II
Inj Date: 29-NOV-2008 10:08
Operator: 7126 Inst ID: mg.:
Smp Info: CCV,,2,5,,CCV/LCS
Misc Info: G112708,T0155,1-all.sub,,,, Client Smp ID: CCV/LCS

Inst ID: mg.i

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 01-Dec-2008 12:04 tajh Quant Tyr
Cal Date: 26-NOV-2008 12:31 Cal File:
Als bottle: 13 Continuin
Dil Factor: 1.00000
Integrator: HP RTE Compound
Target Version: 3.50 Quant Type: ISTD Cal File: rlstd.d

Continuing Calibration Sample

Compound Sublist: 1-all.sub

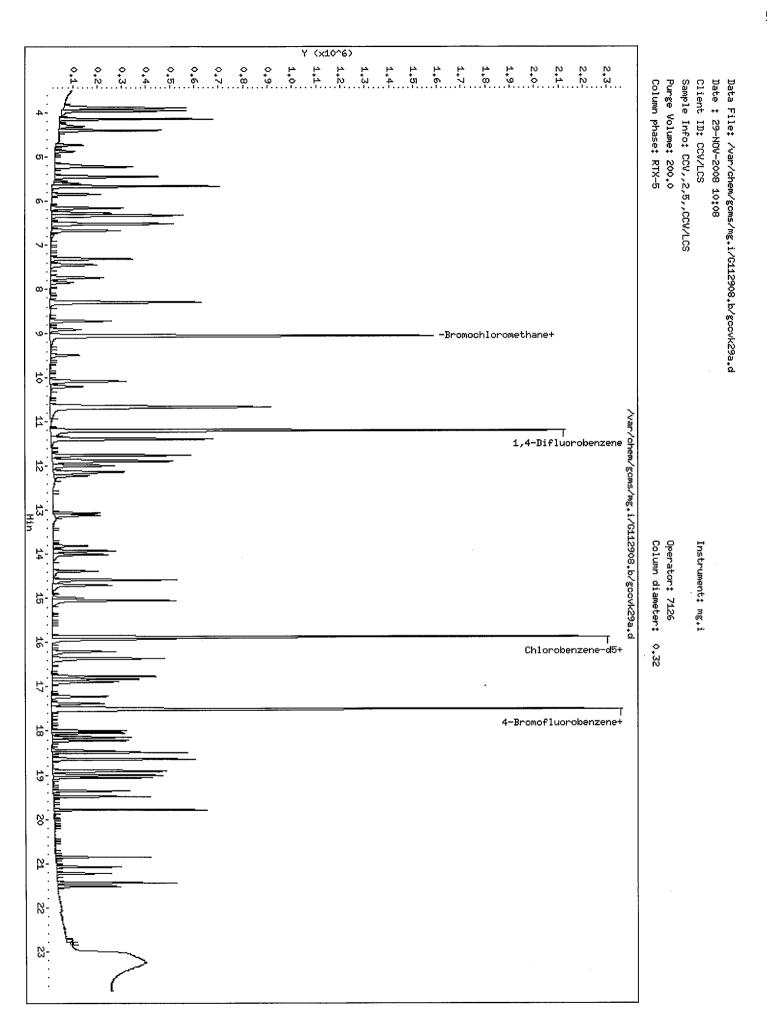
Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	1.00000 500.00000 200.00000	Dilution Factor Default calibration vol Default sample volume

Cpnd Variable

Local Compound Variable


						AMOUNT	s
		QUANT SIG				CAL-AMT	ON-COL
Cor	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		====		======	=======	======	======
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	432126	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	2140476	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1639335	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1033805	4.00000	3.943
	7 Chlorodifluoromethane	67	3.893	3.893 (0.430)	43166	1.00000	0.8982
	8 Propene	41	3.893	3.893 (0.430)	191559	1.00000	0.9704
	9 Dichlorodifluoromethane	85	3.958	3.958 (0.437)	466980	1.00000	0.9903
	10 Chloromethane	52	4.136	4.136 (0.457)	38907	1.00000	0.8511
	11 1,2-Dichlorotetrafluoroethane	135	4.146	4.146 (0.458)	211105	1.00000	0.8422
	12 Methanol	31	4.270	4.270 (0.472)	28203	1.00000	0.9127
	13 Vinyl Chloride	62	4.313	4.313 (0.476)	104091	1.00000	0.8306
	14 n-Butane	43	4.400	4.400 (0.486)	197185	1.00000	0.8372
	15 1,3-Butadiene	54	4.400	4.400 (0.486)	96755	1.00000	0.8322
	16 Bromomethane	94	4.729	4.729 (0.522)	87367	1.00000	0.8904
	17 Chloroethane	64	4.869	4.869 (0.538)	48686	1.00000	0.8728

Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d Report Date: 01-Dec-2008 12:04

						AMOUNTS	5
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==		=====	=======	======	======
18 Vinyl Bromide	106	5.176	5.176	(0.572)	89799	1.00000	0.6114
19 2-methyl butane	43	5.225	5.225	(0.577)	159289	1.00000	0.5440
20 Trichlorofluoromethane	101	5.446	5.446	(0.602)	388605	1.00000	0.8653
21 Acrolein	56	5.478	5.478	(0.605)	29546	1.00000	0.7780
22 Acetonitrile	40	5.543	5.543	(0.612)	43834	1.00000	0.8828
23 Acetone	58	5.602	5.602	(0.619)	48416	1.00000	0.9763
24 Pentane	72	5.662	5.662	(0.625)	32204	1.00000	0.9326
25 Isopropyl Alcohol	45	5.672	5.672	(0.627)	231670	1.00000	0.8613
26 Ethyl Ether	31	5.845	5.845	(0.646)	146960	1.00000	0.8820
27 1,1-Dichloroethene	96	6.158	6.158	(0.680)	131801	1.00000	0.8776
28 Acrylonitrile	53	6.282	6.282	(0.694)	55506	1.00000	0.7783
29 tert-butanol	59	6.271	6.271	(0.693)	222125	1.00000	0.8062
30 1,1,2-Trichlorotrifluoroethane	101	6.325	6.325	(0.699)	286747	1.00000	0.9541
31 Methylene Chloride	84	6.514	6.514	(0.719)	127055	1.00000	0.9392
32 3-Chloropropene	39	6.524	6.524	(0.721)	178266	1.00000	1.021
33 Carbon Disulfide	76	6.670	6.670	(0.737)	456696	1.00000	0.9441
34 trans-1,2-Dichloroethene	96	7.317	7.317	(0.808)	157475	1.00000	0.9241
35 Methyl-t-Butyl Ether	73	7.452	7.452	(0.823)	196035	1.00000	0.8175
36 1,1-Dichloroethane	ຼ 63	7.743	7.743	(0.855)	283816	1.00000	1.009
37 Vinyl Acetate	43	7.845	7.845	(0.867)	179120	1.00000	0.7223
38 Hexane	56	8.293	8.293	(0.916)	153903	1.00000	0.9651
39 2-Butanone	72	8.315	8.315	(0.918)	35082	1.00000	0.8539
40 cis 1,2-Dichloroethene	96	8.719	8.719	(0.963)	132365	1.00000	0.9550
41 Ethyl acetate	43	8.913	8.913	(0.984)	184690	1.00000	0.8020
42 Chloroform	83	9.059	9.059	(1.001)	244929	1.00000	0.9350
43 Tetrahydrofuran	42	9.485	9.485	(1.048)	107730	1.00000	0.8163
44 1,1,1-Trichloroethane	97	10.078	10.078	(1.113)	279169	1.00000	0.9769
45 1,2-Dichloroethane	62	10.197	10.197	(0.910)	136489	1.00000	0.8821
46 Cyclohexane	69	10.655	10.655	(0.951)	71679	1.00000	0.9677
47 Benzene	78	10.671	10.671	(0.953)	294488	1.00000	0.9259
48 1-Butanol	31	10.628	10.628	(0.949)	61760	1.00000	0.8066
49 Carbon Tetrachloride	117	10.682	10.682	(0.954)	292110	1.00000	0.9523
50 2,2,4-trimethylpentane	57	11.388	11.388	(1.017)	729819	1.00000	0.9134
51 Heptane	43	11.760		(1.050)	303602	1.00000	0.8800
52 1,2-Dichloropropane	63	11.874	11.874	(1.060)	92000	1.00000	0.8064
53 Trichloroethene	130	11.900	11.900	(1.063)	170876	1.00000	0.9214
54 Dibromomethane	93	11.992	11.992	(1.071)	122849	1.00000	0.9282
55 Bromodichloromethane	83	12.132	12.132	(1.083)	217467	1.00000	0.8833
56 1,4-dioxane	88	12.165	12.165	(1.086)	50403	1.00000	0.8341
57 methyl methacrylate	41	12.219	12.219	(1.091)	94850	1.00000	0.7372
58 4-Methyl-2-pentanone	43	13.065	13.065	(1.167)	194629	1.00000	0.7334
59 cis-1,3-Dichloropropene	75	13.119		(1.171)	103737	1.00000	0.7443
60 trans-1,3-Dichloropropene	75	13.804	13.804	(0.870)	84617	1.00000	0.7205
61 Toluene	91	13.923	13.923	(0.877)	231793	1.00000	0.8097
62 1,1,2-Trichloroethane	97	14.009	14.009	(0.882)	80908	1.00000	0.7994
63 2-Hexanone	58	14.381		(0.906)	69982	1.00000	0.7007
64 Octane	85	14.586	14.586	(0.919)	95130	1.00000	0.8288

Data File: /var/chem/gcms/mg.i/G112908.b/gccvk29a.d Report Date: 01-Dec-2008 12:04

						AMOUNTS	3
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
	2222	==	=====			======	======
65 Dibromochloromethane	129	14.699	14.699	(0.926)	166523	1.00000	0.8683
66 1,2-Dibromoethane	107	14.996	14.996	(0.945)	117023	1.00000	0.7742
67 Tetrachloroethene	129	15.050	15.050	(0.948)	133424	1.00000	0.9022
68 Chlorobenzene	112	15.923	15.923	(1.003)	186434	1.00000	0.8040
69 Ethylbenzene	91	16.204	16.204	(1.021)	241128	1.00000	0.7429
70 m&p-Xylene	91	16.365	16.365	(1.031)	379402	2.00000	1.530
71 Nonane	57	16.764	16.764	(1.056)	148947	1.00000	0.6695
72 Bromoform	173	16.824	16.824	(1.060)	113364	1.00000	0.7746
73 Styrene	104	16.829	16.829	(1.060)	126921	1.00000	0.7234
74 o-Xylene	91	16.888	16.888	(1.064)	203767	1.00000	0.7639
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217	(1.085)	146098	1.00000	0.7715
76 1,2,3-Trichloropropane	110	17.374	17.374	(1.094)	39239	1.00000	0.7392
77 Cumene	105	17.465	17.465	(1.100)	247714	1.00000	0.7215
78 n-Propylbenzene	120	17.999	17.999	(1.134)	65518	1.00000	0.6945
79 2-chlorotoluene	126	18.048	18.048	(1.137)	68081	1.00000	0.7413
80 4-Ethyltoluene	105	18.145	18.145	(1.143)	236676	1.00000	0.7129
81 1,3,5-Trimethylbenzene	120	18.215	18.215	(1.147)	99010	1.00000	0.7346
82 Alpha-Methylstyrene	118	18.447	18.447	(1.162)	87695	1.00000	0.6793
83 Decane	57	18.485	18.485	(1.164)	178078	1.00000	0.7308
84 tert-butylbenzene	119	18.636	18.636	(1.174)	218395	1.00000	0.7291
85 1,2,4-Trimethylbenzene	105	18.646	18.646	(1.175)	194551	1.00000	0.7453
86 sec-butylbenzene	105	18.900	18.900	(1.191)	269610	1.00000	0.7209
87 1,3-Dichlorobenzene	146	18.921	18.921	(1.192)	139223	1.00000	0.7580
88 Benzyl Chloride	91	18.997	18.997	(1.197)	140403	1.00000	0.7094
89 1,4-Dichlorobenzene	146	19.008	19.008	(1.197)	131754	1.00000	0.7395
90 p-Cymene	119	19.062	19.062	(1.201)	225254	1.00000	0.7247
91 1,2-Dichlorobenzene	146	19.364	19.364	(1.220)	124883	1.00000	0.7471
92 n-butylbenzene	91	19.488	19.488	(1.228)	208588	1.00000	0.7378
93 Undecane	57	19.784	19.784	(1.246)	169204	1.00000	0.7195
94 Dodecane	57	20.857	20.857	(1.314)	108694	1.00000	0.7375
95 1,2,4-Trichlorobenzene	180	21.084	21.084	(1.328)	78155	1.00000	0.7512
96 Napthalene	128	21.229	21.229	(1.337)	175048	1.00000	0.7577
97 Hexachlorobutadiene	225	21.440	21.440	(1.351)	91366	1.00000	0.7406
98 1.2.3-trichlorobenzene	180	21.520	21.520	(1.356)	74243	1.00000	0.7910



# TestAmerica Knoxville GC/MS Air Continuing Calibration Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 9

Analysis Date:	12/1/08	CCAL Batch/ Scan Name:	6120108	Ins	trument		μG	ICAL Batch/ Scan Name:	6-112508	[	Scanned A
						l .					2nd
Review It			unio di Santa de Latino de la Companio de la Companio de la Companio de la Companio de la Companio de la Compa	N/A	Yes	No	111	No, why is dat	a reportable?	1 / 1 / 1	
	FB meet tune	njected within 24	hr of RER?								
			een verified with run			<del></del>					
			amount differs >5%?		/						
			tween analysis header								
	gbook as corr		- -		/						
		pared to the corre									
allowe	d over 30% b	ut ≤ 40% D (Nari			/						/
		auto identified?			\						
		ns were performe dated and reason	d, are they clearly given?	1			<u>Rea</u> 3)ta	asons: 1)Corrections: 1)RT sh	cted split peak; 2) lift; 5)wrong peak	Unresolved selected; 6)	peak; NY other
9. Have a	alternate hits/		is been verified as	1							NA
		nented correctly or									
		time on the CCAl			\						
12. Elution	n order check	ed on isomeric pa	irs?								
			orotetrafluoroethane								
			lorotrifluoroethane						·		
	l acetate / hex				-						
	and trans- iso	<del>-</del>		<u> </u>							
		/p-xylene / o-xyle									
		,3,5-trimethylben:	zene/1,2,4-		/						
	ethylbenzene										
		,2-dichlorobenzer	arget analytes 70-					IceAl I CS analy	te(s) flagged as being	outside con	
130%,	with up to 2	nonpolars 60-140 with up to 2 polars	%; polar target		/		limi		ws 2 polars and 2 nor		
		met, was a NCM goopy included in f	generated, approved older?	_				*******			PIN
		der contain comp		*							
Entech	report, tune	ta review checklis pass/fail page, m/ get CCAL summa									
			nd leak check report.								,
			7 7	-15	1-2-					1	<del>- 1-1</del>
Analyst:	-1	$\overline{}$	Date:	268	_			viewer :		Date:	72/2/01
Comment	ts:	· ·			<u>Co</u>	mmer	nts:		<del></del>		
	ι '										
				~							
1	"		·- · · · · · · · · · · · · · · · · · ·								
			·								
				·	-			77	<del> </del>		
											P
					_						
		1									

#### TestAmerica Knoxville CANISTER RUN LOG

Inst: MG

Analyst: HW Qtims Batch: <u>833798</u> K3WC5

Date: 10/108 ICAL Batch: 6 1/2508 Target Batch: 6120108 IS #1 Area: 396236

Surr/IS ID & Vol.: 40µc V320 System Date/Time ok (y/n): 4

Preventive Maintenance Performed 

Daily

	Time	Use	Lot No.	File ID	Can #	Pos	Vol*	Can DF	Comments
	0852		ture	GBIKLOI		16	200	-	
	0920	V	cev	GCCV COI	CX1856	15	100	1	
Н	0920	~	les	GLCS LOI	1	4	4		
ľ	1156	OK	Blu	Blank	_ ·	16	SOO		
	1237	_	4	GBIKLOI	-	ł	4		-1
	1318	~	H8K250101	K3 K531AA	6627	1	500	1	nysdec
	1359			1 5V 1	SIY9Y	2	U	(	10mc
	1439	1		5×	1328	3	38	1.51	1/20
	1501	V	needs (V)	50	3277	4	IJ	1	10mc
	603	~	MC COD PRI	51	7466	5	25/8	<b>b</b> \   \	420
-	1729	~RY		54	04426	<i>Ь</i> .	2856	Mork	1/6
-	1812	Nego	2 RKIOM	55	66 15	7	1120	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TÖMC
	1856	amt	OK-RR SOML	56	1456	8	255		
	1939 1929 123106	MEED	erionic	1 571	7481	9	120/		10mc
ig	2020	RY	H8K2S0303	XK3M541AA	7471	10	500	4	gei.sub
	2105	N		1751	326711	Ph	845	1.69	Ch ID
	2147	DK	<u> </u>	. 7H	1536	12	500	(	USe as K3M\$41AA
	2229	Valent N		7K	12648	13	12/0/2		DNU pos #10
Ľ	2312	4		7R	1140	14			1:
-	2358	1	. 4	1 7× 1	12636	45	4	1	
+	1114	<u> </u>	lptcae	1 pt cal	CX1848A	500	40	(	OK \
1	0044	47	HXK250101	K3K6A1AA	6324	10	500	1	nysdec.
-	0129	4)	H8K250303	K3 M741AA	1490	2\	500	<b>{</b>	aei.
-	0216	5.11		79	2971	<b>3</b>			
L	0304	it h	+	4 84 4	6595	34	4	4	
L	0433 5	-	H8K250101	K3K593AA	2991	5	10	1	ione pr
4	)350	14	HOK 250303	K3M 8AD	6548	44	500		<b>A</b> +
-							121	10 X	
L Inte		/1	luba 164 - F	110			10/1	<del></del>	mount is used for calulations.

* Er

Date:  $/\gamma/\gamma/\delta$  &

## Test America - Knoxville Entech Autosampler Log

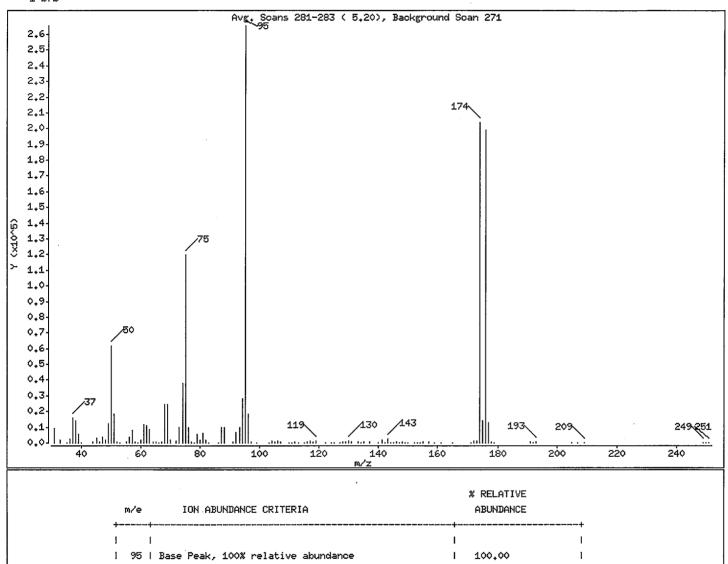
Sample	Posit	on	Volume	AnDate	AnTime
BFB	16		201	12/1/2008	8:52
CCV	15		101	12/1/2008	9:20
1PTCAL	1		0	12/1/2008	11:14
BLK	16		501	12/1/2008	11:55
BLK	16		500	12/1/2008	12:37
K3K53	1		500	12/1/2008	13:18
K3K5V	2		11	12/1/2008	13:59
K3K5X	3		39	12/1/2008	14:39
K3K50	4		11	12/1/2008	15:21
K3K51	5		50	12/1/2008	16:03
— K3K54	6		25	12/1/2008	16:47
K3K54	6	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	25	12/1/2008	17:29
K3K55	7		11	12/1/2008	18:12
K3K56	8		25	12/1/2008	18:56
K3K57	9		11	12/1/2008	19:39
K3M54	10		500	12/1/2008	20:20
К3М7Е	10		845	12/1/2008	21:05
К3М7Н	use as K3MS4 10		501	12/1/2008	21:47
K3M7K	10	DN4	501	12/1/2008	22:29
K3M7R	10		500 sol	12/1/2008	23:12
K3M7X	10	4		12/1/2008	23:58
K3K6A	10		241	12/2/2008	0:44
K3M74	10		151	12/2/2008	1:29
K3M79	10		104	12/2/2008	2:16
K3M8A	10		74	12/2/2008	3:04
K3M8A	10		54	12/2/2008	3:50
K3593	10	+	10	12/2/2008	4:33

Data File: /chem/gcms/mg.i/G120108.b/gbfbl01.d

Date : 01-DEC-2008 08:52

Client ID: BFB

Instrument: mg.i


Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32

1 bfb



m/e	ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE	
<del>1</del> 1				+ I
1 95 1	Base Peak, 100% relative abundance	ı	100,00	1
1 50 1	15.00 - 40.00% of mass 95	1	23,26	1
1 75 1	30.00 - 60.00% of mass 95	I	44,99	- 1
1 96 1	5.00 - 9.00% of mass 95	I	6.84	i
173	Less than 2.00% of mass 174	1	0,40 ( 0,52)	1
1 174 1	50.00 - 120.00% of mass 95	1	76,78	1
175	5.00 - 9.00% of mass 174	I	5,33 ( 6,94)	1
i 176 i	95,00 - 101,00% of mass 174	1	74,84 ( 97,47)	1
1 177 1	5.00 - 9.00% of mass 176	1	4,85 ( 6,48)	1

Data File: /chem/gcms/mg.i/G120108.b/gbfbl01.d

Date : 01-DEC-2008 08:52

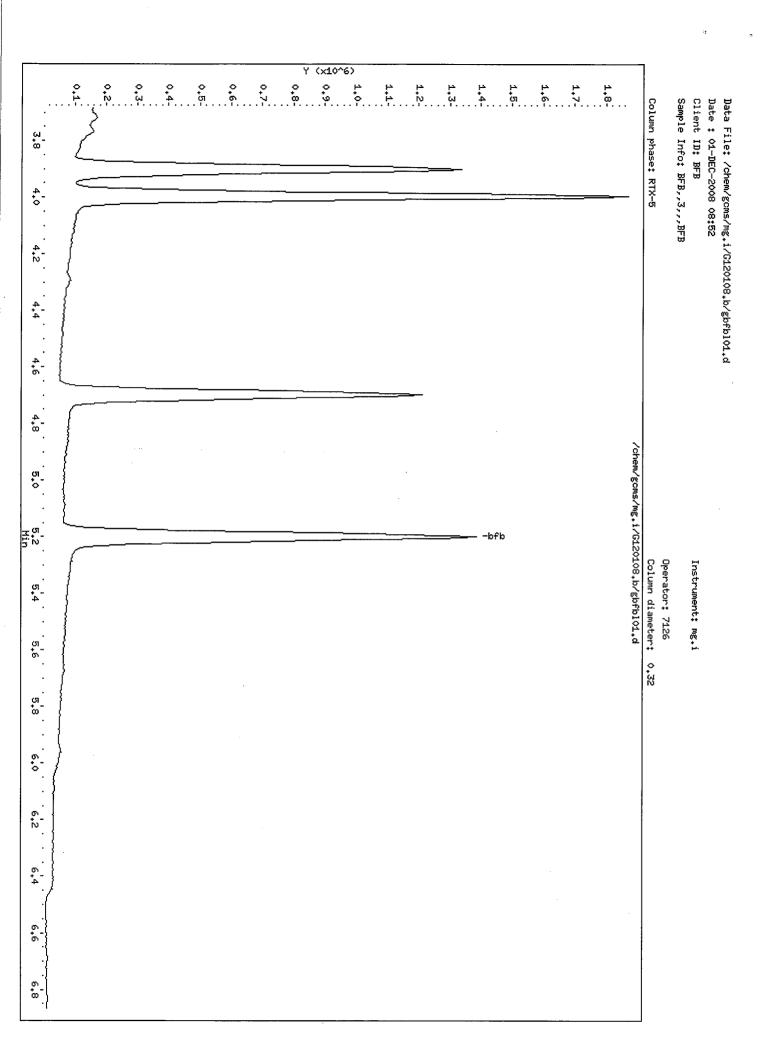
Client ID: BFB

Instrument: mg.i

Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5


Column diameter: 0.32

Data File: gbfb101.d

Spectrum: Avg. Scans 281-283 ( 5.20), Background Scan 271

Location of Maximum: 95.00 Number of points: 120

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ .
1	31,00	9453	I 68.00	24632	110.00	168	150.00	267 I
1	33,00	1614	1 69,00	24200	111.00	97	152,00	59 I
1	35,00	53	1 70,00	2067	112,00	318	153,00	122
ŀ	36,00	2689	I 72₊00	1348	113,00	143	154,00	66 I
Ī	37,00	16142	1 73,00	9910	115,00	100	155,00	593
+-	38.00	14086	+   74.00	37936	116.00	813	+   157.00	+ 458 l
i	39.00	5482		119448	•		159.00	300 I
i	40.00	301			118.00		161.00	276 I
i	44.00	355	•		119.00		165.00	66 I
1	45.00	3200	•		122.00		171.00	56 I
+-			<b></b> 				 +	
1	46,00	337	1 79.00	5688	124.00	102	172,00	1228
1	47,00	3694	I 80₊00	1944	125,00	155	173,00	1058 I
1	48,00	1798	I 81.¢¢	5873	127,00	53	174.00	203840
1	49,00	12230	82,00	1721	128,00	676	175.00	14154 I
I	50,00	61760	83,00	109	129,00	384	176,00	198720 I
+-			+				t	+
	51,00	18112	•		130,00		177,00	12878
!	52,00	880			131.00		178,00	468 I
į,	53.00	110	• • • •		133,00		179,00	50 1
	55.00	555			134,00		191.00	424
+-	56,00 	3813	l 92,00 ⊦	6476	135.00 	444	192.00 <del> </del>	62 I +
1	57,00	7629	93,00	9984	137,00	496	193,00	522
1	58,00	567	94,◊◊	27960	140,00	124	205.00	53 (
1	59,00	165	95,00	265472	141,00	2101	207,00	26 I
1	60,00	2119	96,00	18160	142,00	241	209,00	83 I
1	61,00	11590	97,00	591	143,00	2501	249,00	267
+-	62,00	10929	⊦   99.00	 50 I	144,00	126	   250.00	
ı	63.00		103.00		145.00		251.00	53 I
	64.00	842	•		146.00	393	•	1
i	65.00		105.00		147.00	251		
ı	66,00	147			148.00	551		i
+- i +-	67,00	473	+   107.00 	339   	149,00	200	   	



Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d Report Date: 02-Dec-2008 09:57

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 01-DEC-2008 09:20
Lab File ID: gccvl01.d Init. Cal. Date(s): 25-NOV-2008 01-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 11:14
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

			MIN		MAX	l
COMPOUND	RRF / AMOUNT	RF1		%D / %DRIFT		•
\$ 6 4-Bromofluorobenzene	0.63971	0.61259			1	
7 Chlorodifluoromethane	0.44484	0.41265				
8 Propene	1.82721	1.80500			30.00000	
9 Dichlorodifluoromethane	4.36502	4.42193	0.000	-1.30365	30.00000	Average
10 Chloromethane	0.42316	0.41586	0.000	1.72653	30.00000	Average
11 1,2-Dichlorotetrafluoroetha	2.32033	2.21916	0.000	4.35998	30.00000	Average
12 Methanol	0.28604	0.35688	0.000	-24.76471	30.00000	Average
13 Vinyl Chloride	1.16004	1.05238	0.000	9.28089	30.00000	Average
14 n-Butane	2.18020	2.10311	0.000	3.53621	30.00000	Average
15 1,3-Butadiene	1.07616	0.99129	0.000	7.88644	30.00000	Average
16 Bromomethane	0.90823	0.85735	0.000	5.60236	30.00000	Average
17 Chloroethane	0.51633	0.46405	0.000	10.12445	30.00000	Average
18 Vinyl Bromide	1.35953	1.25101	0.000	7.98193	30.00000	Average
19 2-methyl butane	2.71024	2.54980	0.000	5.91977	30.00000	Average
20 Trichlorofluoromethane	4.15729	3.81420	0.000	8.25267	30.00000	Average
21 Acrolein	0.35152	0.33053	0.000	5.97145	30.00000	Average
22 Acetonitrile	0.45961	0.46876	0.000	-1.98987	30.00000	Average
23 Acetone	0.45903	0.50930	0.000	-10.95295	30.00000	Average
24 Pentane	0.31964	0.30443	0.000	4.75588	30.00000	Average
25 Isopropyl Alcohol	2.48969	2.34095	0.000	5.97444	30.00000	Average
26 Ethyl Ether	1.54237	1.60576	0.000	-4.11005	30.00000	Average
27 1,1-Dichloroethene	1.39014	1.25199	0.000	9.93821	30.00000	Average
28 Acrylonitrile	0.66016	0.64704	0.000	1.98723	30.00000	Average
29 tert-butanol	2.55031	2.33941	0.000	8.26957	30.00000	Average
30 1,1,2-Trichlorotrifluoroeth	2.78190	2.51285			30.00000	_
31 Methylene Chloride	1.25215	1.10369	0.000	11.85655	30.00000	Average
32 3-Chloropropene	1.61593	1.42068	0.000	12.08240	30.00000	Average
33 Carbon Disulfide	4.47752	4.34078	0.000	3.05404	30.00000	
34 trans-1,2-Dichloroethene	1.57733	1.36828	0.000	13.25359	30.00000	_
35 Methyl-t-Butyl Ether	2.21964	2.09863	,	,		_
36 1,1-Dichloroethane	2.60441	2.35938	,	'	'	
37 Vinyl Acetate	2.29558	2.06652	•		30.00000	_
38 Hexane	1.47613	1.30011		•		
39 2-Butanone	0.38031	0.37371				
40 cis 1,2-Dichloroethene	1.28291	1.12527		•		_
41 Ethyl acetate	2.13166	2.02552	,	4.97917	30.00000	_
ii bonyi acetate	1 5.131001	2.02352	0.000	4.3/31/	30.000001	Average

Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d Report Date: 02-Dec-2008 09:57

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 01-DEC-2008 09:20
Lab File ID: gccvl01.d Init. Cal. Date(s): 25-NOV-2008 01-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 11:14
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

			MIN		MAX	İ
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	1	========	'	•	'	•
42 Chloroform	2.42494	•	,	,	•	, ,
43 Tetrahydrofuran	1.22158			•	•	:
44 1,1,1-Trichloroethane	2.64527	•		•	•	
45 1,2-Dichloroethane	0.28914	•		,	•	
46 Cyclohexane	0.13842	'			•	,
47 Benzene	0.59438	•	•	•	•	
48 1-Butanol	0.14310	•		•	•	, ,
49 Carbon Tetrachloride	0.57323	0.46545	0.000	18.80109	30.00000	Averaged
50 2,2,4-trimethylpentane	1.49308	1.33089	0.000	10.86313	30.00000	Averaged
51 Heptane	0.64473	0.54982	0.000	14.71990	30.00000	Averaged
52 1,2-Dichloropropane	0.21319	0.19061	0.000	10.59507	30.00000	Averaged
53 Trichloroethene	0.34655	0.31553	0.000	8.94966	30.00000	Averaged
54 Dibromomethane	0.24733	0.21004	0.000	15.07910	30.00000	Averaged
55 Bromodichloromethane	0.46010	0.38514	0.000	16.29077	30.00000	Averaged
56 1,4-dioxane	0.11292	0.09644	0.000	14.59683	30.00000	Averaged
57 methyl methacrylate	0.24043	0.19883	0.000	17.30178	30.00000	Averaged
58 4-Methyl-2-pentanone	0.49593	0.43523	0.000	12.23931	30.00000	Averaged
59 cis-1,3-Dichloropropene	0.26047	0.21177	0.000	18.69711	30.00000	Averaged
60 trans-1,3-Dichloropropene	0.28657	0.24593	0.000	14.18220	30.00000	Averaged
61 Toluene	0.69851	0.67084	0.000	3.96250	30.00000	Averaged
62 1,1,2-Trichloroethane	0.24694	0.23857	0.000	3.38791	30.00000	Averaged
63 2-Hexanone	0.24371	0.20062	0.000	17.67835	30.00000	Averaged
64 Octane	0.28008	0.25000	0.000	10.74120	30.00000	Averaged
65 Dibromochloromethane	0.46797	0.42402	0.000	9.39116	30.00000	Averaged
66 1,2-Dibromoethane	0.36881	0.33435	0.000	9.34382	30.00000	Averaged
67 Tetrachloroethene	0.36083	0.33928	0.000	5.97373	30.00000	Averaged
68 Chlorobenzene	0.56583	0.52267	0.000	7.62769	30.00000	Averaged
69 Ethylbenzene	0.79199	0.70048	0.000	11.55401	30.00000	Average
70 m&p-Xylene	0.60515	0.54714	0.000	9.58599	30.00000	Average
71 Nonane	0.54285	0.45903	0.000	15.44027	30.00000	Average
72 Bromoform	0.35709	0.30881	0.000	13.51859	30.00000	Averaged
73 Styrene	0.42808	0.37688	0.000	11.95907	30.00000	Average
74 o-Xylene	0.65086	0.58475	0.000	10.15712	30.00000	Average
75 1,1,2,2-Tetrachloroethane	0.46207	0.43576	•	•	30.00000	Averaged
76 1,2,3-Trichloropropane	0.12953	•	•	•	30.00000	

Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d Report Date: 02-Dec-2008 09:57

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 01-DEC-2008 09:20

Lab File ID: gccvl01.d Init. Cal. Date(s): 25-NOV-2008 01-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 11:14
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

	l <u></u>		MIN	ļ	MAX	1
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPI
	<u>.</u>	=========		•	========	
77 Cumene	0.83773					,
78 n-Propylbenzene	0.23017	•		,		
79 2-chlorotoluene	0.22410	'		•	30.00000	Average
30 4-Ethyltoluene	0.81010	0.71553	0.000	11.67353	30.00000	Average
31 1,3,5-Trimethylbenzene	0.32886	0.30934	0.000	5.93563	30.00000	Average
32 Alpha-Methylstyrene	0.31501	0.26016	0.000	17.41086	30.00000	Average
33 Decane	0.59460	0.56254	0.000	5.39214	30.00000	Average
34 tert-butylbenzene	0.73087	0.67249	0.000	7.98898	30.00000	Average
35 1,2,4-Trimethylbenzene	0.63690	0.59958	0.000	5.85909	30.00000	Average
36 sec-butylbenzene	0.91259	0.83083	0.000	8.95894	30.00000	Average
37 1,3-Dichlorobenzene	0.44818	0.41957	0,000	6.38384	30.00000	Average
38 Benzyl Chloride	0.48288	0.42350	0.000	12.29804	30.00000	Average
39 1,4-Dichlorobenzene	0.43473	0.39982	0.000	8.03018	30.00000	Average
90 p-Cymene	0.75842	0.71162	0.000	6.17065	30.00000]	Average
91 1,2-Dichlorobenzene	0.40785	0.38327	0.000	6.02724	30.00000	Average
92 n-butylbenzene	0.68980	0.63914	0.000	7.34466	30.00000	Average
93 Undecane	0.57383	0.56138	0.000	2.17059	30.00000	Average
94 Dodecane	0.35962	0.35543	0.000	1.16612	30.00000	Average
95 1,2,4-Trichlorobenzene	0.25388		0.000	9.01911	30.00000	
96 Napthalene	0.56372		0.000			
97 Hexachlorobutadiene	0.30102					
98 1.2.3-trichlorobenzene	0.22902					

Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d

Report Date: 02-Dec-2008 09:57

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/gccvl01.d

Lab Smp Id: CCV Client Smp ID: CCV/LCS

Inj Date : 01-DEC-2008 09:20

Operator: 7126 Inst ID: mg.i

Smp Info : CCV,,2,5,,CCV/LCS
Misc Info : G120108,T0155,1-all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 02-Dec-2008 09:57 tajh Quant Type: ISTD Cal File: 1ptcal.d Cal Date : 01-DEC-2008 11:14

Als bottle: 13 Dil Factor: 1.00000 Integrator: HP RTE Continuing Calibration Sample

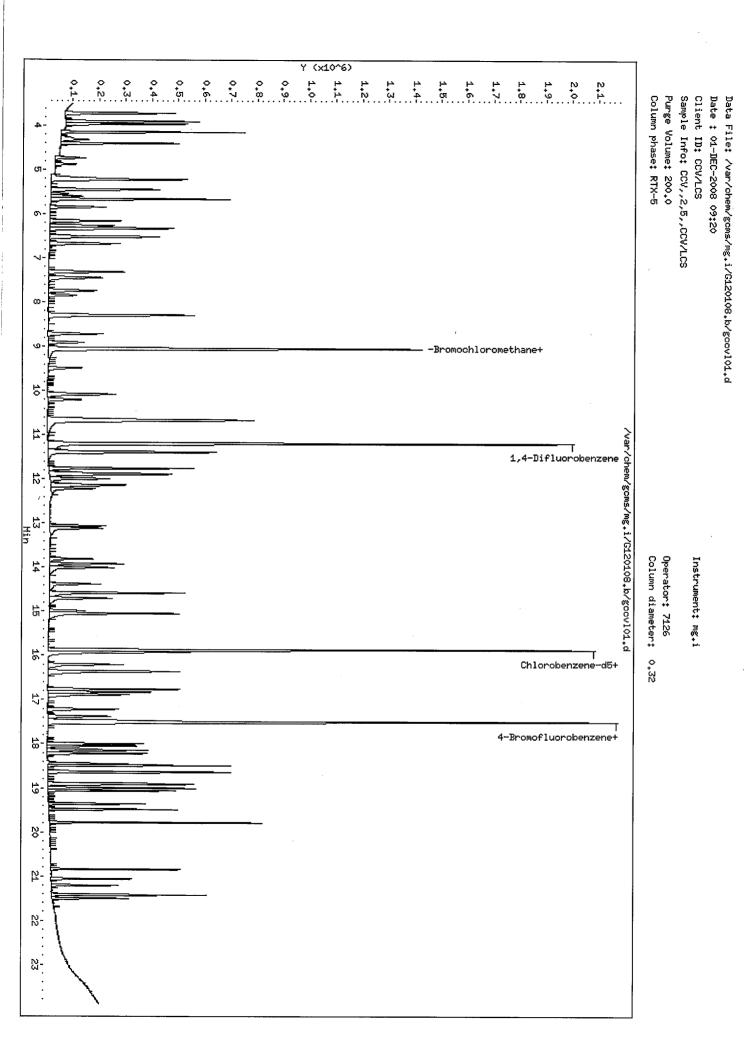
Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt	1.00000	Dilution Factor Default calibration vol
Vo	200.00000	Default sample volume

Local Compound Variable Cpnd Variable


							TMUOMA	S
			QUANT SIG				CAL-AMT	ON-COL
C	Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=		*******	====	==		=======		======
4	٠ ]	l Bromochloromethane	128	9.053	9.053 (1.000)	396236	4.00000	4.000
4	. 2	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	2070950	4.00000	4.000
4	+ 3	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1572100	4.00000	4.000
\$	5 6	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	963056	4.00000	3.830
	-	7 Chlorodifluoromethane	67	3.898	3.898 (0.431)	40876	1.00000	0.9276
	8	8 Propene	41	3.914	3.914 (0.432)	178801	1.00000	0.9878
	9	9 Dichlorodifluoromethane	85	3.963	3.963 (0.438)	438032	1.00000	1.013
	10	O Chloromethane	52	4.146	4.146 (0.458)	41194	1.00000	0.9827
	11	1 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.459)	219828	1.00000	0.9564
	12	2 Methanol	31	4.281	4.281 (0.473)	35352	1.00000	1.248
	1.3	3 Vinyl Chloride	62	4.319	4.319 (0.477)	104247	1.00000	0.9072
	14	4 n-Butane	43	4.405	4.405 (0.487)	208331	1.00000	0.9646
	19	5 1,3-Butadiene	54	4.405	4.405 (0.487)	98195	1.00000	0.9211
	16	6 Bromomethane	94	4.734	4.734 (0.523)	84928	1.00000	0.9440
	17	7 Chloroethane	64	4.874	4.874 (0.538)	45968	1.00000	0.8988

Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d Report Date: 02-Dec-2008 09:57

CENTRY   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTION   CONSTRUCTI							AMOUNTS	3
18 Viny  Brownide		QUANT SIG					CAL-AMT	ON-COL
18 Viayl Exemide	Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
19 2-methyl butane		====	==			======= \		
Trichlorofluoromethane	18 Vinyl Bromide	106	5.182	5.182	(0.572)	123924	1.00000	0.9202
21 Acrolein	19 2-methyl butane	43	5.225	5.225	(0.577)	252580	1.00000	0.9408 .
22 Acetomitrile	20 Trichlorofluoromethane	101	5.446	5.446	(0.602)	377831	1.00000	0.9175
23 Acetone 58 5.597 5.597 (0.618) 50451 1.00000 1.110 24 Pentane 72 5.667 5.667 (0.626) 30156 1.00000 0.9524 25 Isopropyl Alcohol 45 5.667 5.667 (0.626) 21892 1.00000 0.9402 26 Ethyl Ether 31 5.845 5.667 5.667 (0.626) 21892 1.00000 1.041 27 1,1-Dichloroethene 96 6.158 6.158 (0.646) 159065 1.00000 0.9002 28 Acrylonitrile 53 6.282 6.282 (0.694) 64095 1.00000 0.9001 29 text-butanol 59 6.266 6.266 (0.692) 231739 1.00000 0.9173 30 1,1,2-Trichloroethine 101 6.330 (3.639) 248920 1.00000 0.9933 31 Methylene Chloride 84 6.514 6.514 (0.719) 109330 1.00000 0.9933 31 Methylene Chloride 84 6.514 6.514 (0.719) 109330 1.00000 0.8814 23 3-Chloropropene 39 6.530 (6.591) 140731 1.00000 0.9693 34 trans-1,2-Dichloroethene 96 6.675 6.675 (0.737) 42993 1.00000 0.9694 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 135540 1.00000 0.9653 35 Methyl-t-Butyl Ether 73 7.446 (0.822) 20788 1.00000 0.9655 36 1,1-Dichloroethane 63 7.743 7.743 (0.885) 233718 1.00000 0.9655 36 1,1-Dichloroethane 63 7.743 7.846 (0.827) 204708 1.00000 0.9655 37 Vinyl Acetate 43 7.846 7.846 (0.857) 204707 0.0000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9826 40 cis 1,2-Dichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.9826 41 Chloroforn 83 8.913 8.913 (0.994) 200466 1.00000 0.9902 42 Chloroforn 83 8.905 9.405 (1.001) 228787 1.00000 0.9826 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9808 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9808 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9808 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.9808 45 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9808 46 Cyclohexane 69 10.655 [1.065 (0.951) 228575 1.00000 0.9808 47 Pentane 78 10.066 (0.952) 279833 1.00000 0.9808 48 1-Butanol 31 10.623 10.623 (0.948) 39473 1.00000 0.9808 49 Carbon Tetrachloride 117 10.667 10.6970 1.9971 1.00000 0.9808 49 Carbon Tetrachloride 117 10.667 1	21 Acrolein	56	5.478	5.478	(0.605)	32741	1.00000	0.9403
24 Pentane 72 5.667 5.667 (0.626) 30156 1.0000 0.9524 25 Isopropyl Alcohol 45 5.667 5.667 (0.626) 231892 1.0000 0.902 26 Ethyl Ether 31 5.845 5.845 (0.646) 159065 1.0000 0.902 26 Ethyl Ether 96 6.158 6.158 (0.680) 12402 1.0000 0.906 27 1,1-Dichloroethene 96 6.158 6.189 (0.680) 12402 1.0000 0.906 28 Acrylonitrile 53 6.282 (6.694) 64095 1.0000 0.906 29 tert-butanol 59 6.266 6.266 (0.692) 231739 1.0000 0.913 30 1,1,2-Trichlorotrifluoroethane 101 6.33 6.330 (0.699) 28920 1.0000 0.903 31 Methylene Chloride 84 6.514 (0.719) 109330 1.0000 0.9033 31 Methylene Chloride 84 6.514 (0.719) 109330 1.0000 0.9033 31 Carbon Disulfide 76 6.675 (6.675 (0.737) 429993 1.00000 0.8792 30 Carbon Disulfide 76 6.675 (6.757 (0.737) 429993 1.00000 0.8792 31 Carbon Disulfide 77 7.317 (0.808) 135540 1.00000 0.8675 35 Methyl-t-Butyl Ether 73 7.446 (7.822) 20788 1.00000 0.9654 36 1,-Dichloroethane 63 7.743 7.741 (0.855) 233718 1.00000 0.9655 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9059 38 Hexane 56 8.293 8.293 (0.918) 37019 1.00000 0.9022 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9526 40 Cis 1,2-Dichloroethane 97 8.709 9.059 (1.001) 225757 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9502 43 Tetrahydrofuran 42 9.485 9.485 (1.084) 11636 1.00000 0.9502 44 (1.1,1-Trichloroethane 97 10.073 10.073 (1.017) 127551 1.00000 0.9503 45 (1.1,2-Dichloroethane 97 10.073 10.073 (1.017) 127551 1.00000 0.9503 46 (2)clohexane 69 10.655 (0.656 (0.952) 27983 1.00000 0.9503 47 Heythyloropane 63 11.874 11.874 (1.050) 38684 1.00000 0.8681 47 Benzene 78 10.667 (0.954) 2.9466 1.00000 0.9503 48 1-Butanol 31 10.623 (0.948) 59473 1.00000 0.9503 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 2.9466 1.00000 0.9503 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 2.9463 1.00000 0.9503 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 2.9468 1.00000 0.9503 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 2.9468 1.00000 0.9503 49 Carbon Tetrachloride 117 10	22 Acetonitrile	40	5.548	5.548	(0.613)	46434	1.00000	1.020
25 Isopropyl Alcohol 45 5.667 (0.626) 231892 1.00000 0.9402 26 Ethyl Ether 31 5.845 5.845 (0.646) 159065 1.00000 0.9006 27 1,1-Dichloroethene 96 6.158 (0.680) 12402 1.00000 0.9006 28 Acrylonitrile 53 6.282 6.282 (0.694) 64095 1.00000 0.9301 29 tert-butanol 59 6.266 6.265 (0.692) 231739 1.00000 0.9301 30 1,1,2-Trichlorotrifluoroethane 101 6.330 6.330 (0.699) 248920 1.00000 0.9303 31 Methylene Chloride 84 6.514 6.514 (0.719) 109330 1.00000 0.8814 32 3-Chloropropene 39 6.530 (0.721) 140731 1.00000 0.8814 32 3-Chloropropene 39 6.530 (0.721) 140731 1.00000 0.8814 33 3-Carbon Disulfide 76 6.675 6.675 (0.737) 429993 1.00000 0.9694 34 trans-1,2-Dichloroethane 67 7.317 7.317 (0.808) 135540 1.00000 0.9654 36 1,1-Dichloroethane 63 7.743 7.743 (0.825) 233718 1.00000 0.9655 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9655 37 Vinyl Acetate 43 7.846 (0.822) 207888 1.00000 0.9005 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9826 40 cls 1,2-Dichloroethane 96 8.719 8.719 (0.963) 111467 1.00000 0.9826 40 cls 1,2-Dichloroethane 96 8.719 8.719 (0.963) 111467 1.00000 0.9826 41 Cls 1,2-Dichloroethane 96 8.719 8.719 (0.963) 111467 1.00000 0.9826 42 Chloroforn 83 9.059 9.059 (1.001) 225757 1.00000 0.9833 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9836 44 1,1,1-Trichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.9833 45 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9833 46 Cyclohexane 69 10.655 [0.655 (0.951) 62214 1.00000 0.9833 47 Henrene 78 10.666 (0.666 (0.952) 27833 1.00000 0.9836 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8832 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8832 49 Carbon Tetrachloride 117 10.687 (1.665) 284663 1.00000 0.8934 49 Carbon Tetrachloride 117 10.687 (1.665) 284663 1.00000 0.8934 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8934 52 1,2-Dichloroperpopen 75 13.139 13.199 (1.001) 109700 0.8935 51 Trichloroethane 93 11.998 (1.001) 109701 100000 0.8936 51 Trichlor	23 Acetone	58	5.597	5.597	(0.618)	50451	1.00000	1.110
26 Ethyl Ether   31	24 Pentane	72	5.667	5.667	(0.626)	30156	1.00000	0.9524
27 1.1-Dichloroethene 96 6.158 6.158 (0.680) 124020 1.00000 0.9906 28 Acrylonitrile 53 6.282 6.282 (0.684) 64095 1.00000 0.9801 29 tert-butanol 59 6.266 6.266 (0.692) 231739 1.00000 0.9801 30 1.1,2-Trichlorocrifluoroethane 101 6.330 6.330 (0.699) 248920 1.00000 0.9933 31 Methylene Chloride 84 6.514 6.514 (0.719) 109330 1.00000 0.8814 32 3-Chloropropene 39 6.530 6.530 (0.721) 140731 1.00000 0.8814 32 3-Chloropropene 39 6.530 6.530 (0.721) 140731 1.00000 0.8873 32 3-Chloropropene 39 6.530 6.530 (0.721) 140731 1.00000 0.8675 33 Carbon Disulfide 76 6.675 6.675 (0.737) 429993 1.00000 0.9694 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 135540 1.00000 0.9675 35 Methyl-t-Butyl Ether 73 7.446 (0.822) 207888 1.00000 0.9455 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9655 37 Vinyl Acetate 43 7.846 (0.822) 207888 1.00000 0.9655 37 Vinyl Acetate 43 7.846 (0.826) 204707 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9802 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.965) 111467 1.00000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.965) 111467 1.00000 0.9802 42 Chloroform (83 9.059 9.059 (0.01) 225757 1.00000 0.9502 42 Chloroform (83 9.059 9.485) (1.001) 225757 1.00000 0.9502 42 Chloroform (83 9.059 9.485) (1.001) 225757 1.00000 0.9502 42 Chloroform (83 9.059 9.485) (1.001) 225757 1.00000 0.9502 42 Chloroform (83 9.059 9.485) (1.001) 225757 1.00000 0.9503 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.9503 45 1,2-Dichloroethane 62 10.197 (0.197 (0.910) 127551 1.00000 0.9503 45 1,2-Dichloroethane 62 10.197 (0.910) 127551 1.00000 0.9803 45 1,2-Dichloroethane 63 10.0000 0.9606 1.00000 0.9803 45 1,2-Dichloroethane 63 11.874 11.874 (1.060) 98684 1.00000 0.9803 45 1,2-Dichloroethane 63 11.874 11.874 (1.060) 98684 1.00000 0.8803 50 1.00000 0.9803 50 1.00000 0.9803 50 1.00000 0.9803 50 1.00000 0.9804 50 1.00000 0.9804 50 1.00000 0.9804 50 1.00000 0.9804 50 1.00000 0.9804 50 1.00000 0.9804 50 1.00000 0.9804 50 1.0		45	5.667			231892	1.00000	0.9402
28 Acrylonitrile 53 6.282 (0.694) 64095 1.00000 0.9801 29 tert-butanol 59 6.266 (6.265 (0.692) 231739 1.00000 0.9903 30 1,1,2-Trichlorotrifluoroethane 101 6.330 6.330 (0.699) 248920 1.00000 0.9033 31 Methylene Chloride 84 6.514 (6.514 (0.719) 109330 1.00000 0.8814 32 3-Chloropropene 39 6.530 6.530 (0.721) 140731 1.00000 0.8792 33 Carbon Disulfide 76 6.675 6.675 (0.737) 429993 1.00000 0.9694 34 trans-1,2-Dichloroethane 96 7.317 7.317 (0.808) 135540 1.00000 0.8675 35 Methyl-t-Butyl Ether 73 7.446 7.446 (0.822) 207888 1.00000 0.9654 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9003 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.8808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.8808 39 2-Butanone 96 8.719 8.719 (0.963) 111467 1.00000 0.8711 41 Ethyl acetate 43 8.913 8.913 (0.984) 20646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9398 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.9513 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 10.665 (0.952) 279833 1.00000 0.8520 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.8520 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8520 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 249893 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 249893 1.00000 0.8028 51 1,2-Dichloropropane 63 11.874 11.874 (1.050) 284663 1.00000 0.8520 52 1,2-Dichloropropane 63 11.874 11.874 (1.050) 284663 1.00000 0.8520 51 1,2-Dichloropropane 63 11.874 11.874 (1.050) 284663 1.00000 0.8520 52 1,2-Dichloropropane 75 13.809 11.991 11.991 1.00000 0.8520 51 1,4-dioxane 88 12.139 11.993 (1.091) 10.9940 1.00000 0.8520 52 1,2-Dichloropropane 75 13.809 13.909 (0.820) 9.9355 1.00000 0.8520 51 1,4-dioxane 88 12.139 11.993 (1.091) 10.9940 1.00000 0.8520 51 1,4-dioxane 91 11.993 11.993 11.990 (0.820) 9.9565 1.00000 0.9661 51 11.2-Trichloroethane 91 11.9	-	31	5.845	5.845	(0.646)	159065	1.00000	1.041
29 tert-butanol   59   6.266   6.266   (0.692)   231739   1.00000   0.9173   30 1,1,2-Trichlorotrifluoroethane   101   6.330   (6.699)   248920   1.00000   0.9033   1.00000   0.9033   1.00000   0.8814   32 3-Chloropropene   39   6.530   6.530   (0.721)   140731   1.00000   0.8792   33 Carbon Disulfide   76   6.675   6.675   (6.757   0.737)   249993   1.00000   0.9644   34 trans-1,2-Dichloroethene   96   7.317   7.317   (8.08)   135540   1.00000   0.8675   35 Methyl-t-Butyl Ether   73   7.446   7.446   (0.822)   207888   1.00000   0.9455   36 1,1-Dichloroethane   63   7.743   7.743   (0.855)   233718   1.00000   0.9059   37 Vinyl Acetate   43   7.846   7.846   (0.867)   204707   1.00000   0.9002   38 Hexane   56   8.293   8.293   (0.916)   128788   1.00000   0.8808   39 2-Butanone   72   8.309   8.309   (0.918)   37019   1.00000   0.8808   39 2-Butanone   72   8.309   8.309   (0.918)   37019   1.00000   0.8771   41 Ethyl acetate   43   8.913   8.913   (0.984)   200646   1.00000   0.9502   42 Chloroform   42   9.485   9.455   (1.048)   11667   1.00000   0.9502   43 Tetrahydrofuran   42   9.485   9.485   (1.048)   116363   1.00000   0.9538   43 Tetrahydrofuran   42   9.485   9.485   (1.048)   116363   1.00000   0.8530   44   1.1.1-Trichloroethane   69   10.655   10.655   (0.951)   62214   1.00000   0.8530   47 Benzene   78   10.666   10.666   (0.952)   279933   1.00000   0.8614   47 Benzene   78   10.666   10.666   (0.952)   279933   1.00000   0.8928   49 Carbon Tetrachloride   117   10.667   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   117   10.687   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   117   10.687   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   117   10.687   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   117   10.687   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   117   10.687   10.687   (0.954)   240983   1.00000   0.8928   49 Carbon Tetrachloride   118   118   118		96	6.158	6.158	(0.680)	124020	1.00000	0.9006
30 1,1,2-Trichlorotrifluoroethane	28 Acrylonitrile	53	6.282	6.282	(0.694)	64095	1.00000	0.9801
Methylene Chloride		59	6.266	6.266	(0.692)	231739	1.00000	0.9173
32 3-Chloropropene 39 6.530 6.530 (0.721) 140731 1.0000 0.8792 31 Carbon Disulfide 76 6.675 (6.675 (0.737) 429993 1.00000 0.9694 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 1.55540 1.00000 0.9655 35 Methyl-t-Butyl Ether 73 7.446 7.446 (0.822) 207888 1.00000 0.9455 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.9808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.9871 41 Ethyl acetate 43 8.913 8.913 (0.984) 20646 1.00000 0.9502 42 Chloroform 883 9.059 9.059 (1.001) 225757 1.00000 0.9502 42 Chloroform 883 9.059 9.059 (1.001) 225757 1.00000 0.9502 42 Chloroform 89 7 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8534 45 1,2-Dichloroethane 69 10.655 [0.655 (0.951) 62214 1.00000 0.8520 46 Cyclohexane 69 10.655 [0.955] 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8681 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8528 51 1,2-Dichloropropane 63 11.874 11.874 (1.050) 284663 1.00000 0.8528 51 1,2-Dichloropropane 63 11.874 11.895 (1.060) 284663 1.00000 0.8940 53 Trichloroethane 88 12.159 12.159 (1.068) 49931 1.00000 0.8540 55 Bromodichloromethane 83 12.32 12.32 (1.083) 199403 1.00000 0.8528 51 1.00000 0.8540 55 Eromodichloropropene 75 13.189 11.1991 (1.191) 10.994 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 10.994 1.00000 0.8520 65 cis-1, 3-Dichloropropene 75 13.809 13.809 (0.870) 9655 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 10.994 1.00000 0.8582 61 Toluene 91 13.923 (1.9090 (0.870) 9655 1.00000 0.8582 61 Toluene 91 13.923 (1.9090 (0.870) 9655 1.00000 0.		101	6.330			248920	1.00000	0.9033
33 Carbon Disulfide 76 6.675 6.675 (0.737) 42993 1.0000 0.9694 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 135540 1.00000 0.8675 35 Methyl-t-Butyl Ether 73 7.446 7.446 (0.822) 207888 1.00000 0.9455 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9059 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.8808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 8.913 (0.984) 200646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.076 10.078 (1.113) 223600 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8520 47 Benzene 78 10.666 (0.562) 279833 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8214 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8120 52 1,2-Dichloroptopane 63 11.874 11.874 (1.050) 284663 1.00000 0.8120 53 Trichloroethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8528 54 Dibromomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8311 55 Hydnomomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8311 56 1,4-dioxane 88 12.159 12.159 (1.083) 199403 1.00000 0.8370 58 4-Methyl-2-pentanone 43 13.000 13.000 (1.166) 225333 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.189 13.199 (1.071) 108743 1.00000 0.8520 60 trans-1,3-Dichloropropene 75 13.189 13.199 (1.071) 109639 1.00000 0.8520 61 Toluene 91 13.923 (1.987) 263655 1.00000 0.8532	<u>-</u>	84	6.514	6.514	(0.719)	109330	1.00000	0.8814
34 trans-1,2-Dichloroethene         96         7.317         7.317         7.317         1.0000         0.8675           35 Methyl-t-Butyl Ether         73         7.446         7.446         (0.822)         207888         1.00000         0.9455           36 1,1-Dichloroethane         63         7.743         7.743         (0.855)         233718         1.00000         0.9059           37 Vinyl Acetate         43         7.846         7.846         (0.867)         204707         1.00000         0.9002           38 Hexane         56         8.293         8.293         (0.916)         128788         1.00000         0.8808           39 2-Butanone         72         8.309         8.309         (0.916)         128788         1.00000         0.9826           40 cis 1,2-Dichloroethene         96         8.719         8.719         (0.963)         111467         1.00000         0.8771           41 Ethyl acetate         43         8.913         8.913         (0.984)         200646         1.00000         0.9502           42 Chloroform         83         9.059         9.059         (1.001)         225757         1.00000         0.9516           44 1,1,1-Trichloroethane         97         10.078		39	6.530	6.530	(0.721)	140731	1.00000	0.8792
35 Methyl-t-Butyl Ether 73 7.446 7.446 (0.822) 207888 1.00000 0.9455 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.8808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 8.913 (0.994) 200646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9516 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8533 45 1,2-Dichloroethane 69 10.655 10.655 (0.951) 62214 1.00000 0.8661 47 Benzene 78 10.666 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8528 51,2-Dichloropropane 63 11.874 11.874 (1.050) 98644 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.050) 98644 1.00000 0.8914 55 Bromodichloromethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8370 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8876 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8882 61 Toluene 91 13.923 13.923 (0.877) 96655 1.00000 0.9664 62 1,1,2-Trichloroethane 97 14.009 (0.882) 93765 1.00000 0.9664 62 1,1,2-Trichloroethane 97 14.009 (0.882) 93765 1.00000 0.9664 63 2-Hexanone 98 14.881 14.381 (1.0906) 78850 1.00000 0.9664 63 2-Hexanone 98 14.381 14.381 (1.0906) 78850 1.00000 0.9664 63 2-Hexanone 98 14.381 14.381 (1.0906) 78850 1.00000 0.9664		76	6.675	6.675	(0.737)	429993	1.00000	0.9694
36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 233718 1.00000 0.9059 37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.8808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.8926 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 8.913 (0.984) 200646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9938 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8681 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.8093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.667 10.667 (0.954) 24.9983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 (1.017) 689051 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8914 51 Heptane 43 11.760 (1.050) 284663 1.00000 0.8928 52 1,2-Dichloropropane 63 11.874 (1.060) 98684 1.00000 0.8928 52 1,2-Dichloropropane 63 11.874 (1.060) 98684 1.00000 0.8928 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.8929 54 Dibromomethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8940 53 Trichloroethene 88 12.159 12.159 (1.066) 49931 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.159 (1.066) 49931 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.8661 62 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8061	·					135540	1.00000	0.8675
37 Vinyl Acetate 43 7.846 7.846 (0.867) 204707 1.00000 0.9002 38 Hexane 56 8.293 8.293 (0.916) 128788 1.00000 0.8808 39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.00000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 8.913 (0.984) 200646 1.00000 0.9802 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8533 45 1,2-Dichloroethane 69 10.655 (0.655 (0.951) 62214 1.00000 0.8631 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8528 52 1,2-Dichloropropane 83 11.998 (1.070) 10.687 (1.062) 163363 1.00000 0.9105 54 Dibromomethane 93 11.998 (1.071) 10.8744 1.00000 0.8940 55 Bromodichloromethane 83 12.332 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.085) 49931 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 91 13.923 13.093 (0.870) 96655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9604 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8032	- <del>-</del>					207888	1.00000	0.9455
38   Hexane		63		7.743	(0.855)	233718	1.00000	0.9059
39 2-Butanone 72 8.309 8.309 (0.918) 37019 1.0000 0.9826 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 (0.984) 200646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9516 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 (0.655 (0.951) 62214 1.00000 0.8681 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8914 51 Heptane 43 11.760 (1.050) 284663 1.00000 0.8914 51 Heptane 43 11.760 (1.050) 284663 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.8940 53 Trichloroethene 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8270 58 4-Methyl-2-pentanone 43 13.060 13.060 (1.166) 225333 1.00000 0.8270 59 4-Methyl-2-pentanone 75 13.809 13.809 (0.870) 96655 1.00000 0.8270 50 1,1,2-Trichloroethane 97 14.009 (0.882) 93765 1.00000 0.8130 60 trans-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8232		43	7.846	7.846	(0.867)	204707	1.00000	0.9002
40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 111467 1.00000 0.8771 41 Ethyl acetate 43 8.913 (0.984) 200646 1.00000 0.9502 42 Chloroform 83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8661 47 Benzene 78 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8528 51 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8914 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8928 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8270 58 4-Methyl-2-pentanone 43 13.060 13.060 (1.166) 225333 1.00000 0.8270 58 4-Methyl-2-pentanone 75 13.199 13.199 (1.071) 109639 1.00000 0.8270 58 4-Methyl-2-pentanone 75 13.199 13.199 (1.171) 109639 1.00000 0.8270 58 1-1,3-Dichloropropene 75 13.199 13.199 (1.171) 109639 1.00000 0.8270 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 (0.882) 93765 1.00000 0.9604 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232						128788	1.00000	0.8808
41 Ethyl acetate						37019	1.00000	0.9826
42 Chloroform (83 9.059 9.059 (1.001) 225757 1.00000 0.9398 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8533 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8661 47 Benzene 78 10.666 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8914 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.8940 54 Dibromomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8570 58 4-Methyl-2-pentanone 43 13.060 13.060 (1.166) 225333 1.00000 0.8270 58 4-Methyl-2-pentanone 75 13.199 13.199 (1.171) 109639 1.00000 0.8376 59 cis-1,3-Dichloropropene 75 13.199 13.923 (0.877) 263655 1.00000 0.8382 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9604 63 2-Hexanone	•					111467	1.00000	0.8771
43 Tetrahydrofuran 42 9.485 9.485 (1.048) 116363 1.00000 0.9616 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 223600 1.00000 0.8533 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8681 47 Benzene 78 10.666 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8914 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8928 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.9105 54 Dibromomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 102942 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.19 13.119 (1.171) 109639 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9661 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232						200646	1.00000	0.9502
44 1,1,1-Trichloroethane       97       10.078       10.078       (1.113)       223600       1.00000       0.8533         45 1,2-Dichloroethane       62       10.197       10.197       (0.910)       127551       1.00000       0.8520         46 Cyclohexane       69       10.655       10.655       (0.951)       62214       1.00000       0.8681         47 Benzene       78       10.666       10.666       (0.952)       279833       1.00000       0.9993         48 1-Butanol       31       10.623       10.623       (0.948)       59473       1.00000       0.8028         49 Carbon Tetrachloride       117       10.687       10.687       (0.954)       240983       1.00000       0.8120         50 2,2,4-trimethylpentane       57       11.394       11.394       (1.017)       689051       1.00000       0.8914         51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.8492 </td <td>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	)							
45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 127551 1.00000 0.8520 46 Cyclohexane 69 10.655 10.655 (0.951) 62214 1.00000 0.8681 47 Benzene 78 10.666 10.666 (0.952) 279833 1.00000 0.9093 48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 (1.060) 284663 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.8940 54 Dibromomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 102942 1.00000 0.8270 58 4-Methyl-2-pentanone 43 13.060 13.060 (1.166) 225333 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.19 13.119 (1.171) 109639 1.00000 0.8130 60 trans-1,3-Dichloropropene 75 13.809 (0.870) 96655 1.00000 0.8562 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.8582 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.8532	<del>-</del>							0.9616
46 Cyclohexane       69       10.655       10.655       (0.951)       62214       1.00000       0.8681         47 Benzene       78       10.666       10.666       (0.952)       279833       1.00000       0.9093         48 1-Butanol       31       10.623       10.623       (0.948)       59473       1.00000       0.8028         49 Carbon Tetrachloride       117       10.687       10.687       (0.954)       240983       1.00000       0.8120         50 2,2,4-trimethylpentane       57       11.394       11.394       (1.017)       689051       1.00000       0.8914         51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.8492         55 Bromodichloromethane       93       11.998       11.071)       108744       1.00000       0.8371         56 1,4-dioxane       88       12.132       12.132       (1.083)       199403       1.00000       0.8540         <								
47 Benzene       78       10.666       10.666       (0.952)       279833       1.00000       0.9093         48 1-Butanol       31       10.623       10.623       (0.948)       59473       1.00000       0.8028         49 Carbon Tetrachloride       117       10.687       10.687       (0.954)       240983       1.00000       0.8120         50 2,2,4-trimethylpentane       57       11.394       11.394       (1.017)       689051       1.00000       0.8914         51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.8492         54 Dibromomethane       93       11.998       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       12.086)       49931       1.00000       0.8540         57 methyl methac								
48 1-Butanol 31 10.623 10.623 (0.948) 59473 1.00000 0.8028 49 Carbon Tetrachloride 117 10.687 10.687 (0.954) 240983 1.00000 0.8120 50 2,2,4-trimethylpentane 57 11.394 11.394 (1.017) 689051 1.00000 0.8914 51 Heptane 43 11.760 11.760 (1.050) 284663 1.00000 0.8528 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 98684 1.00000 0.8940 53 Trichloroethene 130 11.895 11.895 (1.062) 163363 1.00000 0.9105 54 Dibromomethane 93 11.998 11.998 (1.071) 108744 1.00000 0.8492 55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 102942 1.00000 0.8270 58 4-Methyl-2-pentanone 43 13.060 13.060 (1.166) 225333 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 109639 1.00000 0.8130 60 trans-1,3-Dichloropropene 75 13.809 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9664 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9661 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232				~				
49 Carbon Tetrachloride       117       10.687       10.687       (0.954)       240983       1.00000       0.8120         50 2,2,4-trimethylpentane       57       11.394       11.394       (1.017)       689051       1.00000       0.8914         51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       (1.062)       163363       1.00000       0.9105         54 Dibromomethane       93       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dic								
50 2,2,4-trimethylpentane       57       11.394       11.394       (1.017)       689051       1.00000       0.8914         51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       (1.062)       163363       1.00000       0.9105         54 Dibromomethane       93       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75								
51 Heptane       43       11.760       11.760       (1.050)       284663       1.00000       0.8528         52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.9105         54 Dibromomethane       93       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
52 1,2-Dichloropropane       63       11.874       11.874       (1.060)       98684       1.00000       0.8940         53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.9105         54 Dibromomethane       93       11.998       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923       13.923       (0.877)       263655       1.00000       0.9661         62 1,1,2-Trichloroethane	· · · · · · · · · · · · · · · · ·							
53 Trichloroethene       130       11.895       11.895       (1.062)       163363       1.00000       0.9105         54 Dibromomethane       93       11.998       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923       13.923       (0.877)       263655       1.00000       0.9604         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       93765       1.00000       0.8232 <td><del>-</del></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<del>-</del>							
54 Dibromomethane       93       11.998       11.998       (1.071)       108744       1.00000       0.8492         55 Bromodichloromethane       83       12.132       12.132       (1.083)       199403       1.00000       0.8371         56 1,4-dioxane       88       12.159       (1.086)       49931       1.00000       0.8540         57 methyl methacrylate       41       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923       13.923       (0.877)       263655       1.00000       0.9604         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       93765       1.00000       0.8232         63 2-Hexanone       58       14.381       14.381       (0.906)       78850       1.00000       0.8232	<del>-</del> -							
55 Bromodichloromethane 83 12.132 12.132 (1.083) 199403 1.00000 0.8371 56 1,4-dioxane 88 12.159 12.159 (1.086) 49931 1.00000 0.8540 57 methyl methacrylate 41 12.219 12.219 (1.091) 102942 1.00000 0.8270 58 4-Methyl-2-pentanone 43 13.060 (1.166) 225333 1.00000 0.8776 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 109639 1.00000 0.8130 60 trans-1,3-Dichloropropene 75 13.809 (0.870) 96655 1.00000 0.8582 61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 (0.882) 93765 1.00000 0.9661 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232								
56 1,4-dioxane       88       12.159 12.159 (1.086)       49931 1.00000 0.8540         57 methyl methacrylate       41       12.219 12.219 (1.091) 102942 1.00000 0.8270         58 4-Methyl-2-pentanone       43       13.060 13.060 (1.166) 225333 1.00000 0.8776         59 cis-1,3-Dichloropropene       75       13.119 13.119 (1.171) 109639 1.00000 0.8130         60 trans-1,3-Dichloropropene       75       13.809 (0.870) 96655 1.00000 0.8582         61 Toluene       91       13.923 13.923 (0.877) 263655 1.00000 0.9604         62 1,1,2-Trichloroethane       97       14.009 14.009 (0.882) 93765 1.00000 0.9661         63 2-Hexanone       58       14.381 14.381 (0.906) 78850 1.00000 0.8232								
57 methyl methacrylate       41       12.219       12.219       (1.091)       102942       1.00000       0.8270         58 4-Methyl-2-pentanone       43       13.060       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923       13.923       (0.877)       263655       1.00000       0.9604         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       93765       1.00000       0.9661         63 2-Hexanone       58       14.381       14.381       (0.906)       78850       1.00000       0.8232								
58 4-Methyl-2-pentanone       43       13.060       13.060       (1.166)       225333       1.00000       0.8776         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       109639       1.00000       0.8130         60 trans-1,3-Dichloropropene       75       13.809       13.809       (0.870)       96655       1.00000       0.8582         61 Toluene       91       13.923       13.923       (0.877)       263655       1.00000       0.9604         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       93765       1.00000       0.9661         63 2-Hexanone       58       14.381       14.381       (0.906)       78850       1.00000       0.8232								
59 cis-1,3-Dichloropropene       75       13.119 13.119 (1.171) 109639 1.00000 0.8130         60 trans-1,3-Dichloropropene       75       13.809 13.809 (0.870) 96655 1.00000 0.8582         61 Toluene       91 13.923 13.923 (0.877) 263655 1.00000 0.9604         62 1,1,2-Trichloroethane       97 14.009 14.009 (0.882) 93765 1.00000 0.9661         63 2-Hexanone       58 14.381 14.381 (0.906) 78850 1.00000 0.8232								
60 trans-1,3-Dichloropropene       75       13.809 13.809 (0.870) 96655 1.00000 0.8582         61 Toluene       91       13.923 13.923 (0.877) 263655 1.00000 0.9604         62 1,1,2-Trichloroethane       97       14.009 14.009 (0.882) 93765 1.00000 0.9661         63 2-Hexanone       58       14.381 14.381 (0.906) 78850 1.00000 0.8232								
61 Toluene 91 13.923 13.923 (0.877) 263655 1.00000 0.9604 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9661 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232								
62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 93765 1.00000 0.9661 63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232								
63 2-Hexanone 58 14.381 14.381 (0.906) 78850 1.00000 0.8232								
	64 Octane							
64 Octane 85 14.586 14.586 (0.919) 98255 1.00000 0.8926	or octaine	Ço	14.200	14.200	(0.313)	90455	1.00000	0.0920

Data File: /var/chem/gcms/mg.i/G120108.b/gccvl01.d Report Date: 02-Dec-2008 09:57

					AMOUNTS	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	=======================================	=======	======	======
65 Dibromochloromethane	129	14.705	14.705 (0.926)	166650	1.00000	0.9061
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	131407	1.00000	0.9066
67 Tetrachloroethene	129	15.050	15.050 (0.948)	133343	1.00000	0.9403
68 Chlorobenzene	112	15.923	15.923 (1.003)	205422	1.00000	0.9237
69 Ethylbenzene	91	16.204	16.204 (1.021)	275306	1.00000	0.8844
70 m&p-Xylene	91	16.365	16.365 (1.031)	430081	2.00000	1.808
71 Nonane	57	16.765	16.765 (1.056)	180411	1.00000	0.8456
72 Bromoform	173	16.824	16.824 (1.060)	121371	1.00000	0.8648
73 Styrene	104	16.829	16.829 (1.060)	148124	1.00000	0.8804
74 o-Xylene	91	16.889	16.889 (1.064)	229822	1.00000	0.8984
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217 (1.085)	171265	1.00000	0.9431
76 1,2,3-Trichloropropane	110	17.374	17.374 (1.094)	44915	1.00000	0.8823
77 Cumene	105	17.465	17.465 (1.100)	284902	1.00000	0.8653
78 n-Propylbenzene	120	17.999	17.999 (1.134)	80391	1.00000	0.8887
79 2-chlorotoluene	126	18.048	18.048 (1.137)	81237	1.00000	0.9224
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	281222	1.00000	0.8833
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	121577	1.00000	0.9406
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	102249	1.00000	0.8259
83 Decane	57	18.485	18.485 (1.164)	221091	1.00000	0.9461
84 tert-butylbenzene	119	18.636	18.636 (1.174)	264303	1.00000	0.9201
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	235650	1.00000	0.9414
86 sec-butylbenzene	105	18.900	18.900 (1.191)	326538	1.00000	0.9104
87 1,3-Dichlorobenzene	146	18.921	18.921 (1.192)	164901	1.00000	0.9362
88 Benzyl Chloride	91	18.997	18.997 (1.197)	166445	1.00000	0.8770
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	157137	1.00000	0.9197
90 p-Cymene	119	19.056	19.056 (1.200)	279685	1.00000	0.9383
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	150633	1.00000	0.9397
92 n-butylbenzene	91	19.488	19.488 (1.228)	251198	1.00000	0.9266
93 Undecane	57	19.784	19.784 (1.246)	220634	1.00000	0.9783
94 Dodecane	57	20.841	20.841 (1.313)	139691	1.00000	0.9883
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	90780	1.00000	0.9098
96 Napthalene	128	21.213	21.213 (1.336)	192803	1.00000	0.8702
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	108193	1.00000	0.9145
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	86847	1.00000	0.9648



Data File: /var/chem/gcms/mg.i/G120108.b/1ptcal.d Report Date: 01-Dec-2008 11:54

#### TestAmerica Knoxville

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 01-DEC-2008 11:14
Lab File ID: 1ptcal.d Init. Cal. Date(s): 25-NOV-2008 01-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 11:14
Lab Sample ID: 1PTCAL Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

	[		MIN		MAX	 
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
					========	=======
99 ~ Thiophene	0.44846	0.44846	0.000	-6.780e-09	25.00000	Averaged
100 ~ 1,2,3-Trimethylbenzene	0.39220	0.39220	0.000	-8.692e-08	25.00000	Averaged
101 ~ Indane	0.38662	0.38662	0.000	-4.861e-08	25.00000	Averaged
102 ~ Indene	0.09063	0.09063	0.000	2.974e-08	25.00000	Averaged
103 ~ 2-Methylnaphthalene	0.00366	0.00366	0.000	-9.113e-08	25.00000	Averaged
104 ~ 1-methylnaphthalene	0.00445	0.00445	0.000	-5.158e-08	25.00000	Averaged
	li		li		l <u></u>	l <u></u> .

Data File: /var/chem/gcms/mg.i/G120108.b/1ptcal.d

Report Date: 01-Dec-2008 11:54

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/1ptcal.d

Lab Smp Id: 1PTCAL Client Smp ID: 1PTCAL

Inj Date : 01-DEC-2008 11:14

Operator : 7126 Inst ID: mg.i

Smp Info : 1PTCAL,,3,5,,1PTCAL Misc Info : G120108,T0155,newyork.sub,,,,

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Quant Type: ISTD Cal File: 1ptcal.d Meth Date: 01-Dec-2008 11:54 tajh Cal Date : 01-DEC-2008 11:14

Als bottle: 13 Continuing Calibration Sample

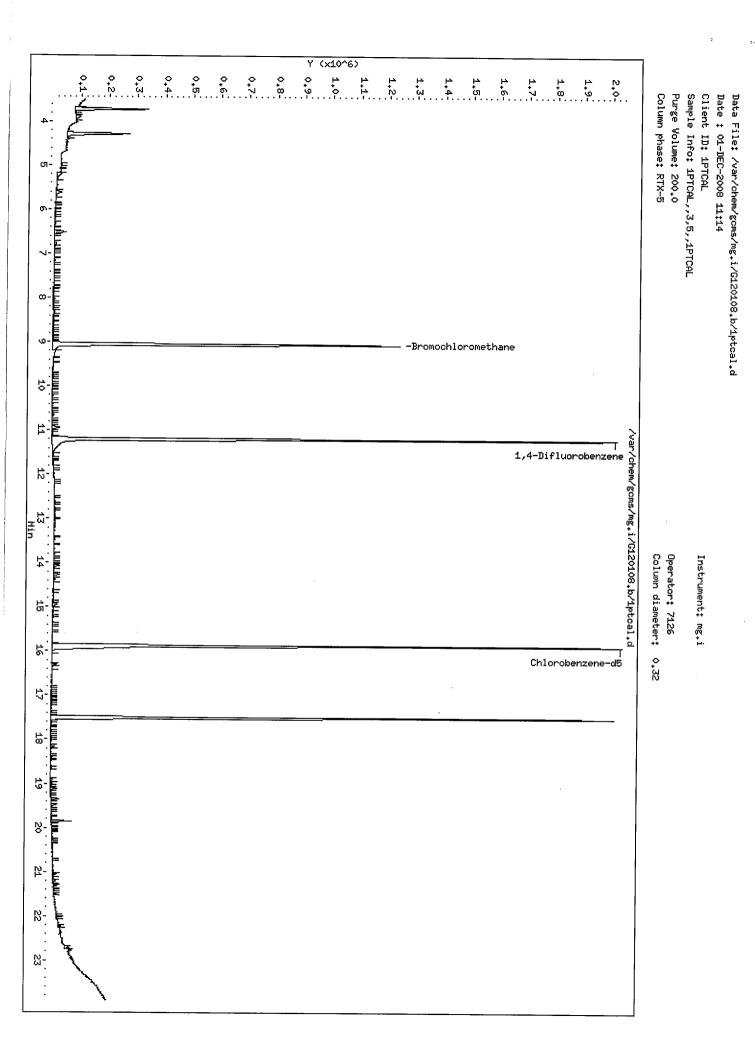
Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: newyork.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume


Cpnd Variable

Local Compound Variable

					AMOUNT	?S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==		======	======	======
* 1 Bromochloromethane	128	9.059	9.059 (1.000)	410763	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	2079461	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1523470	4.00000	4.000
99 ~ Thiophene	84	10.941	10.941 (0.977)	18651	0.08000	0.08000(A)
100 ~ 1,2,3-Trimethylbenzene	105	19.116	19.116 (1.204)	11950	0.08000	0.08000(A)
101 ~ Indane	117	19.364	19.364 (1.220)	11780	0.08000	0.08000(A)
102 ~ Indene	116	19.488	19.488 (1.228)	5523	0.16000	0.1600(A)
103 ~ 2-Methylnaphthalene	142	22.232	22.232 (1.400)	1393	1.00000	1.000(A)
104 ~ 1-methylnaphthalene	142	22.389	22.389 (1.410)	1694	1.00000	1.000(A)

#### QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



## TestAmerica Knoxville GC/MS Air Continuing Calibration Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 9

Analysis Date:	12/2/0	8	CCAL Batch/ Scan Name:	G120208		trument		MG Scan Name: G1125085 Scann	ed □
	-						F		2nd
Review I	tems				N/A	Yes	No	If No, why is data reportable?	=
	FB meet tu	ine o	criteria?		1022		1,10		1
			jected within 24	hr of BFB?					1
				peen verified with run		/			
				amount differs >5%?		1			
				tween analysis header				10	
and lo	ogbook as c	orre	ct?	·				1pt cal	
5. Was t	he CCAL	omj	pared to the corre	ect ICAL?	l		<u> </u>		
6. Is the	%D ≤ 30%	6 for	all target analyt	es? Up to 4 analytes		_			
			ıt ≤ 40% D (Narı						
7. Have	all peaks b	een	auto identified?	If not, list:		•			
									-
				d, are they clearly				Reasons: 1)Corrected split peak; 2)Unresolved peak;	\ \X\)
			dated and reason					3)tailing; 4)RT shift; 5)wrong peak selected; 6)other	
				ns been verified as	/				NA
				CCAL summary?					
			ented correctly o				<u> </u>		<del>                                     </del>
			ime on the CCA			/	<u> </u>		<del>-                                     </del>
			ed on isomeric pa						
				lorotetrafluoroethane		/	-		<del>                                     </del>
				lorotrifluoroethane					+
	yl acetate /					-			+
	and trans-					ļ	ļ		+ -
	•		p-xylene / o-xyle				ļ		<del></del>
	•		3,5-trimethylben	zene/1,2,4-		/			
	methylbenz				<u> </u>		<u> </u>		$\rightarrow$
			2-dichlorobenzer				ļ	The City CO. 14 ( ) Co. 14 being autoide control	
130%	6, with up to	o 2 r	riteria (nonpolar nonpolars 60-140 vith up to 2 polar			/		☐ [lcs6] LCS analyte(s) flagged as being outside control limits, but SOP allows 2 polars and 2 nonpolars outside 70-130%R.	1
			net, was a NCM opy included in t	generated, approved folder?	-				Mi
			ler contain comp						
follo	wing order:	data	a review checklis	st, a complete runlog,		1 /	1		/
Ented	ch/report, ti	ine p	pass/fail page, m	z list, tune					
				ary, Quan report,	1				
chror	natogram, i	nhan	ual integrations a	and leak check report.	<u> </u>	ļ	<u> </u>		
A 14-		$\vdash$		Date: 7	3/07	/   20	d T or	vel Reviewer: Date: 23	עול
Analyst:				Date: 10 1	210 x		mme		SI VV
Comme	iits:					-   -	, iii iii e	3165	
									<del></del>
						+			
			-			_			
						_			
					<del></del>				
		-				-			
						-			*
					.,,	$\dashv$			
						-			
						$\dashv$			
						$\dashv$			-
						<del></del>			

### TestAmerica Knoxville CANISTER RUN LOG

OLL (EDIER ROLL EOG		
GCMS Analysis: AIR	Ir	st: MG
Analyst: HW Qtims Batch: 8338054 K3XOW	8 338089	<u> </u>
Date: 12/2/08 ICAL Batch: G12508 Target Batch: G120208	_ IS #1 Area:	421439
Surr/IS ID & Vol.: 40ML V320 System Date/Time ok (y/n): 4	•	
Preventive Maintenance Performed Daily	•	

	Time	Use	Lot No.	File ID	Can#	Pos	Vol*	Can DF	Comments
	0844		ture	GBGB LOZ		16	200	-	
	0911	V	cev	GCCV LOZ	CX1856	15	100		
	0911	V	Les	GLC3 LO2	4	4	4		
	1005	~	IPTCAR	IPECAL	CX 1848A	15	40		
	1049	N	BILL	Blank	. ^ .	16	500		
	1130	~	4	GBILLO2	-	4	4	4	
	1211.	V	H8K250101	K3K541AA	04426	6	25	1	nysdec.
1	1254	V	4	1 56 1	1456	8	50	. 1	
	2332	P	H8K250303	K3M7EIAA	3267N	11	845	1,69	gei can closed
-	1600	14	<i>(</i>	74 1	1536	12	500	,	
	0110	14	plae	7K	12648	13			
L	0159	143	6	7R	1140	14			
_	0248	14	+	* 7x *	12636	ıs	₹* '		+
	1335		H8K250101	K3K6AIAA	6374	1	500	+	
*	1901		9	+ 593AA	2991	25	20	4.10	IDMC
L	1639	N feir	H8K250303	K3M741AA	1490	2\$	مري الحرال		Can closed
Ŀ	1729	8		79	2971	34		1	
\$	1819	1	4	4 8A d	6598	48/	4	4	4
L	1549		H8K250101	K3 KS12AA	7466	-1	11	3.70	10MC
	1944	-	1	1 55 1	6615	6	γt	2291	1
1	2016	~	4	7 57 1	7481	7	. II	23.74	1
-	2108	~	H8L020113	K3 WGL IAH	bag.	8	20	1	to14m
	2150	V	HEL020116	K3WGZIAH	. \	9	(1	1	10mc
Ŀ	2233	-	4	1061	+	10	10	1 .	
$\mu$	)330	N	10+ Chik	7864	L5105	16	200	1	Medi7RC
	0411	~	4	7863	1134	500)	500		
1	076	~	H8K250101	K3K5VIAA	1494	9	250	J	E 2-bur
	757		+	45x+	1328	10	<i>9</i> 00	(	4 (/
L									amount is used for calulations.

ech programmed Volume. If the Entech report amount differs from the programmed amount by >5%, the Entech report amount is used for calulations.

## Test America - Knoxville Entech Autosampler Log

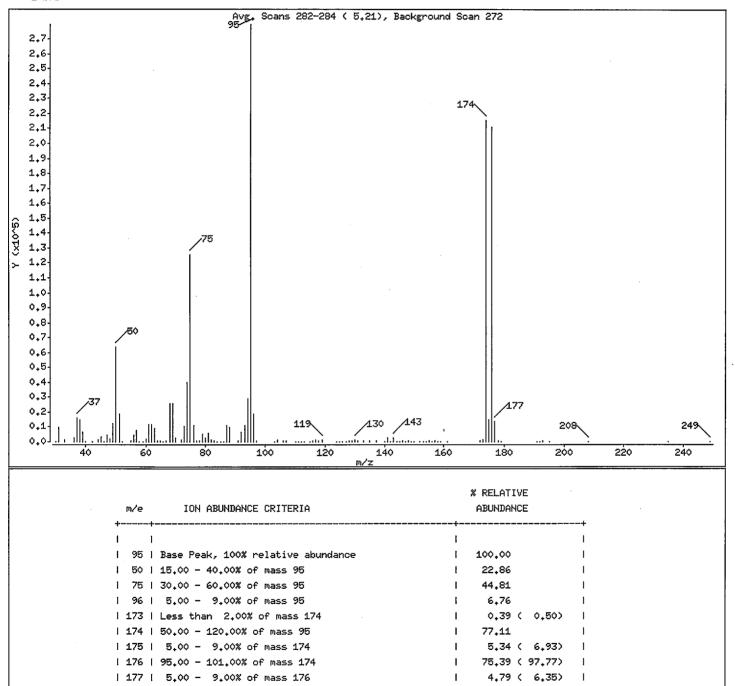
Sample	Position	Volume	me AnDate AnTim		
BFB	16	201	12/2/2008	8:44	
CCV	15	100	12/2/2008	9:11	•
1PTCAL	15	40	12/2/2008	10:05	
BLK	16	501	12/2/2008	10:49	
BLK	16	501	12/2/2008	11:30	
K3K54	6	25	12/2/2008	12:11	
K3K56	8	50	12/2/2008	12:54	
K3K6A	1	500	12/2/2008	13:35	
K3K51	1	11	12/2/2008	15:48	
K3M74	2	8	12/2/2008	16:39	
K3M79	3	11	12/2/2008	17:29	
K3M8A	4	12	12/2/2008	18:19	
K3K59	5	21	12/2/2008	19:01	
K3K55	6	11	12/2/2008	19:44	
K3K57	. 7	11	12/2/2008	20:26	
K3WGL	8	21	12/2/2008	21:08	
K3WG2	9	11 .	12/2/2008	21:50	
K3WG6	10	10	12/2/2008	22:33	
K3M7E	11	17	12/2/2008	23:31	
К3М7Н	12	12	12/3/2008	0:21	
K3M7K	13	13	12/3/2008	1:10	
K3M7R	14	12	12/3/2008	1:59	
K3M7X	15	15	12/3/2008	2:48	
7864	16	200	12/3/2008	3:30	
7863	16	500mc	12/3/2008	4:11 حم	2/3/14
K3K5V	9	251	12/3/2008	7:09	2/3/14 57/19/16
K3K5X	10	500	12/3/2008	7:51	

Data File: /chem/gcms/mg.i/G120208.b/gbfb102.d

Date : 02-DEC-2008 08:44

Client ID: BFB

Instrument: mg.i


Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5

Column diameter: 0.32





Data File: /chem/gcms/mg.i/G120208.b/gbfb102.d

Date : 02-DEC-2008 08:44

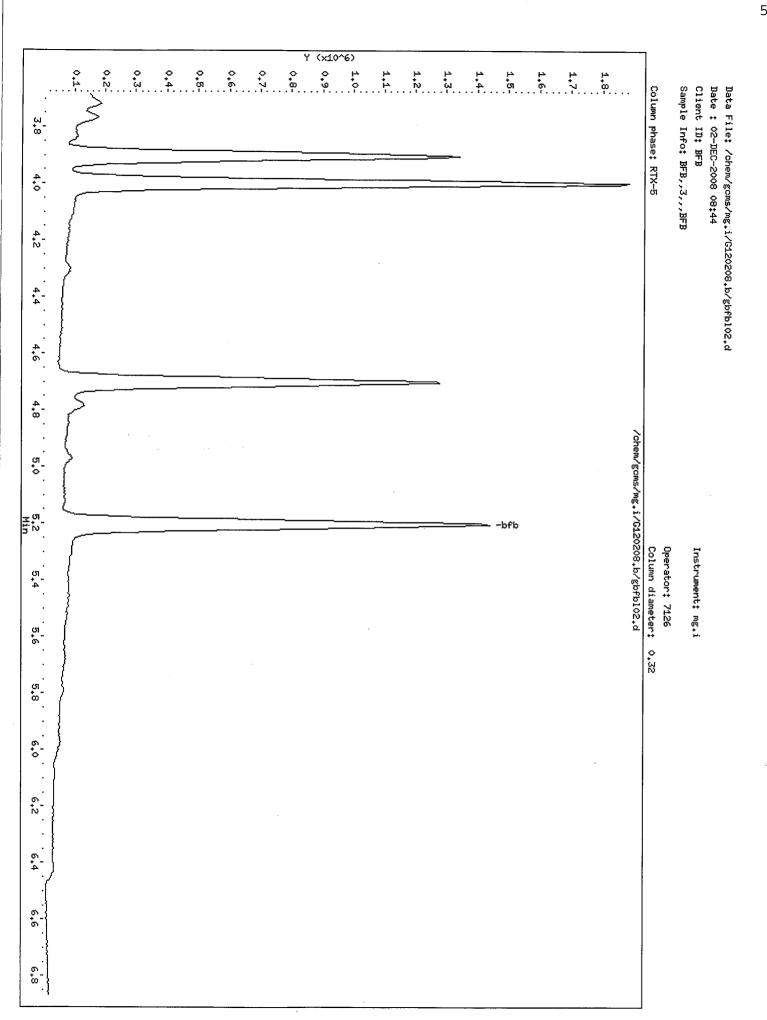
Client ID: BFB

Instrument: mg.i

Sample Info: BFB,,3,,,BFB

Operator: 7126

Column phase: RTX-5


Column diameter: 0.32

Data File: gbfb102.d

Spectrum: Avg. Scans 282-284 ( 5,21), Background Scan 272

Location of Maximum: 95.00 Number of points: 117

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ .
1	30,00	124	1 67,00	518	106.00	858	148.00	548 I
ı	31,00	9397	1 68,00	25704	107,00	367	149,00	209 I
ı	33,00	1593	1 69,00	25864	110,00	222	150,00	215 I
ı	36,00	2878	70,00	2386	111.00	189	I 152.00	176 I
1	37,00	16006	1 72,00	1152	112,00	304	153,00	81
1	38,00	14778	1 73.00	10586	113.00	193	1 154₊00	15¢ I
1	39,00	6419	74.00	39688	115,00	172	155,00	711 I
1	40,00	203	75.00	125344	116,00	758	156,00	163 I
1	42,00	209	76,00	10627	117.00	1254	157,00	438 I
1	44,00	1164	77,00	862	118,00	686	158,00	68 I
+-			+		<del></del>		+	+
1	45,00	3292	i 78,00	857	119,00	1345	1 159,00	178 I
1	46,00	96	79,00	5466	124,00	110	161,00	298
1	47.00	4311	80,00	2442	125,00	198	172,00	862
l	48,00	1951	81,00	5879	126,00	60	173,00	1080 I
1	49,00	12480	I 82₊00	1468	127,00	68	174,00	215680 l
1	50,00	63944	83.00	337	128,00	708	175.00	14940 I
I	51,00	18728	I 84₊00	56	129,00	388	176,00	210880
I	52,00	142	I 85₊00	56	130,00	1074	177,00	13395
į	55.00	447	I 86.00	308	131,00	388	178,00	369 I
1	56,00	4218	I 87₊00	10747	133,00	333	1 179,00	72
1	57,00	7737	1 88,00	9721	135,00	498	191,00	196 l
i	58,00	222	91.00	875	137,00	425	192,00	5¢ I
ı	59,00	155	1 92,00	6235	140.00	66	1 193,00	498 I
ĺ	60,00	2213	93,00	11078	141.00	2256	195,00	53 I
ı	61.00	11653	94,00	28880	142,00	296	1 208,00	247 I
+-	62,00	11884	+ I 95₊≎¢	279744	143,00	2348	1 235.00	60 I
1	63,00	8712	96,00	18912	144.00	137	1 249,00	217 I
ı	64,00	808	97,00	514	145,00	260		1
ı	65,00	472	103,00	65	146,00	353	l	1
ı	66,00	65	1 104,00	1235	147,00	232	Ī	1
+-			+		<b></b>		<b>+</b>	



Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d Report Date: 03-Dec-2008 07:31

# TestAmerica Knoxville

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 02-DEC-2008 09:11

Lab File ID: gccvl02.d Init. Cal. Date(s)
Analysis Type: AIR Init. Cal. Times:
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

	1		MIN		MAX	
COMPOUND	RRF / AMOUNT	RF1			%D / %DRIFT	
6 4-Bromofluorobenzene	0.63971	0.63651   0.63651		'		
Chlorodifluoromethane	0.44484	0.41343		'	•	
Propene	1.82721	1.79857				
Dichlorodifluoromethane	4.36502	4.41148		'	•	
0 Chloromethane	0.42316	0.38814		'	'	
1 1,2-Dichlorotetrafluoroetha	2.32033	2.14120		'		
2 Methanol	0.28604	0.32319		'		
3 Vinyl Chloride	1.16004	1.05230				
4 n-Butane	2.18020	2.06732		•	•	
5 1,3-Butadiene	1.07616	0.97747		•		
6 Bromomethane	0.90823	0.83744		•		
7 Chloroethane	0.51633	0.46668		•	'	
8 Vinyl Bromide	1.35953	1.17829		•	!	
9 2-methyl butane	2.71024	2.52586		•		
0 Trichlorofluoromethane	4.15729	3.85980		!	<u>'</u>	
1 Acrolein	0.35152	0.29289	•	•	'	
2 Acetonitrile	0.45961	0.41097			•	,
3 Acetone	0.45903	0.46408			•	
4 Pentane	0.31964	0.30573	•	•		,
5 Isopropyl Alcohol	2.48969	2.19132	•	•	!	,
6 Ethyl Ether	1.54237	1.45887	,	•	!	
7 1.1-Dichloroethene	1.39014	1.30213	,	•	•	
8 Acrylonitrile	0.66016	0.57340	'	•		
9 tert-butanol	2.55031	2.18879		•		
0 1.1.2-Trichlorotrifluoroeth	2.78190	2.71899		:		, -
1 Methylene Chloride	1.25215	1.20254	•	•		
2 3-Chloropropene	1.61593	1.50644	,	•	•	
3 Carbon Disulfide	4.47752	4.49713	•	•	•	
4 trans-1,2-Dichloroethene	1.57733	1.51620	•	•	•	
5 Methyl-t-Butyl Ether	2.21964	2.03474		1		
6 1,1-Dichloroethane	2.60441	2.40595	'	•		
7 Vinyl Acetate	2.29558	1.91821	•	•	•	
8 Hexane	1.47613	1.41495	•	•		•
9 2-Butanone	0.38031	0.35645	•	•		•
0 cis 1,2-Dichloroethene	1.28291	1.20840		•		: -
1 Ethyl acetate	2.13166	1.90952	•	•		!

Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d Report Date: 03-Dec-2008 07:31

#### TestAmerica Knoxville

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 02-DEC-2008 09:11
Lab File ID: gccvl02.d Init. Cal. Date(s): 25-NOV-2008 02-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 10:05
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

	<u> </u>		MIN	1	XAM	
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
=======================================				•	'	•
42 Chloroform	2.42494	•			'	
43 Tetrahydrofuran	1.22158			•		
44 1,1,1-Trichloroethane	2.64527			•		
45 1,2-Dichloroethane	0.28914	0.25453	0.000	11.96836	30.00000	_
46 Cyclohexane	0.13842	0.14103	0.000	-1.88544	30.00000	Averaged
47 Benzene	0.59438	0.54649	0.000	8.05759	30.00000	Averaged
48 1-Butanol	0.14310	0.11039	0.000	22.85313	30.00000	Averaged
49 Carbon Tetrachloride	0.57323	0.52665	0.000	8.12489	30.00000	Averaged
50 2,2,4-trimethylpentane	1.49308	1.39252	0.000	6.73511	30.00000	Averaged
51 Heptane	0.64473	0.59573	0.000	7.59897	30.00000	Averaged
52 1,2-Dichloropropane	0.21319	0.19475	0.000	8.65093	30.00000	Averaged
53 Trichloroethene	0.34655	0.32152	0.000	7.22224	30.00000	Averaged
54 Dibromomethane	0.24733	0.23176	0.000	6.29577	30.00000	Average
55 Bromodichloromethane	0.46010	0.41980	0.000	8.75806	30.00000	Average
56 1,4-dioxane	0.11292	0.09724	0.000	13.89092	30.00000	Average
57 methyl methacrylate	0.24043	0.19057	0.000	20.73809	30.00000	Average
58 4-Methyl-2-pentanone	0.49593	0.41406	0.000	16.50849	30.00000	Average
59 cis-1,3-Dichloropropene	0.26047	0.21705	0.000	16.66740	30.00000	Average
60 trans-1,3-Dichloropropene	0.28657	0.23676	0.000	17.38106	30.00000	Average
61 Toluene	0.69851	0.66072	0.000	5.41010	30.00000	Average
62 1,1,2-Trichloroethane	0.24694	•	0.000	10.43251	30.00000	Average
63 2-Hexanone	0.24371	0.19642	0.000	19.40288	30.00000	Average
64 Octane	0.28008	•	•	•	30.00000	Averaged
65 Dibromochloromethane	0.46797	•	,	•	:	Averaged
66 1,2-Dibromoethane	0.36881	•	•	•	•	
67 Tetrachloroethene	0.36083				:	
68 Chlorobenzene	0.56583		•	•	!	
69 Ethylbenzene	0.79199	•	•	•	•	
70 m&p-Xylene	0.60515		•	•	,	
71 Nonane	0.54285		•	•	!	
72 Bromoform	0.35709	•	•		!	,
73 Styrene	0.42808	•	•		•	
74 o-Xylene	0.65086	•	•	•	•	,
75 1,1,2,2-Tetrachloroethane	0.46207	•	•	•		
	0.12953	•		•	•	
76 1,2,3-Trichloropropane	0.12953	1 0.10004	0.000	10.12423	30.00000	Average

Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d Report Date: 03-Dec-2008 07:31

# TestAmerica Knoxville

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 02-DEC-2008 09:11
Lab File ID: gccvl02.d Init. Cal. Date(s): 25-NOV-2008 02-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 10:05
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

	l		MIN		MAX	
COMPOUND	RRF / AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
		========		======	========	
7 Cumene	0.83773	0.71101	0.000	15.12598	30.00000	Average
8 n-Propylbenzene	0.23017	0.18965	0.000	17.60527	30.00000	Average
9 2-chlorotoluene	0.22410	0.19475	0.000	13.09653	30.00000	Average
0 4-Ethyltoluene	0.81010	0.66330	0.000	18.12072	30.00000	Average
1 1,3,5-Trimethylbenzene	0.32886	0.28252	0.000	14.08934	30.00000	Average
2 Alpha-Methylstyrene	0.31501	0.23513	0.000	25.35727	30.00000	Average
3 Decane	0.59460	0.50281	0.000	15.43705	30.00000	Average
4 tert-butylbenzene	0.73087	0.61374	0.000	16.02630	30.00000	Average
5 1,2,4-Trimethylbenzene	0.63690	0.54196	0.000	14.90613	30.00000	Average
6 sec-butylbenzene	0.91259	0.77242	0.000	15.36035	30.00000	Average
7 1,3-Dichlorobenzene	0.44818	0.37142	0.000	17.12819	30.00000	Average
88 Benzyl Chloride	0.48288	0.38676	0.000	19.90657	30.00000	Average
39 1,4-Dichlorobenzene	0.43473	0.35457	0.000	18.43791	30.00000	Average
0 p-Cymene	0.75842	0.63722	0.000	15.98134	30.00000	Average
21 1,2-Dichlorobenzene	0.40785	0.33777	0.000	17.18194	30.00000	Average
2 n-butylbenzene	0.68980	0.57120	0.000	17.19431	3,0.00000	Average
3 Undecane	0.57383	0.50053	0.000	12.77428	30.00000	Average
94 Dodecane	0.35962	0.33766	0.000	6.10787	30.00000	Average
95 1,2,4-Trichlorobenzene	0.25388	0.20375	0.000	19.74531	30.00000	Average
96 Napthalene	0.56372	0.45715	0.000	18.90501	30.00000	Average
7 Hexachlorobutadiene	0.30102	0.24164	0.000	19.72798	30.00000	Average
98 1.2.3-trichlorobenzene	0.22902	0.19259	0.000	15.90706	30.00000	Average

Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d

Report Date: 03-Dec-2008 07:31

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/gccvl02.d
Tab Smp Id: CCV Client Smp ID: CCV/LCS

Inj Date : 02-DEC-2008 09:11

: 7126 Operator Inst ID: mg.i

Smp Info : CCV,,2,5,,CCV/LCS
Misc Info : G120208,T0155,1-all.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 07:31 tajh Quant Tyr Quant Type: ISTD Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 13 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: HP RTE

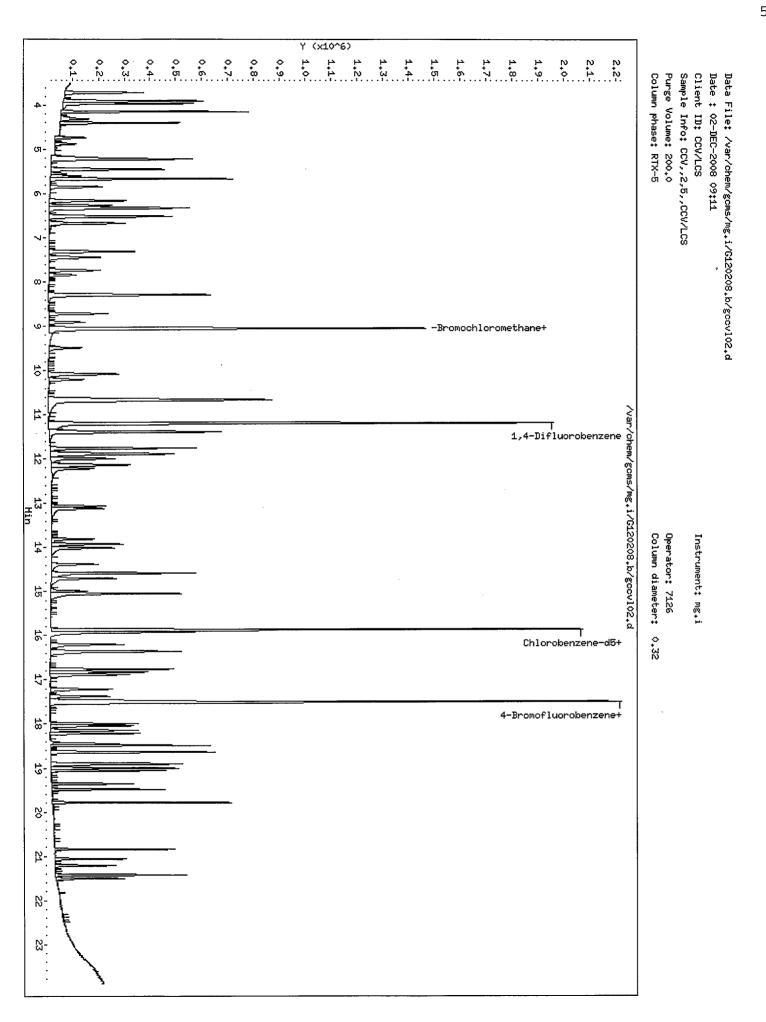
Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt Vo	500.00000 200.00000	Default calibration vol Default sample volume

Local Compound Variable Cpnd Variable


								AMOUNT	3
			QUANT SIG					CAL-AMT	ON-COL
Com	Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
===	==:	=======================================	====	==	======		=======	======	8888888
*	1	Bromochloromethane	128	9.053	9.053	(1.000)	421439	4.00000	4.000
*	2	1,4-Difluorobenzene	114	11.194	11.194	(1.000)	2096045	4.00000	4.000
*	3	Chlorobenzene-d5	117	15.875	15.875	(1.000)	1591085	4.00000	4.000
\$	б	4-Bromofluorobenzene	95	17.503	17.503	(1.103)	1012740	4.00000	3.980
	7	Chlorodifluoromethane	67	3.898	3.898	(0.431)	43558	1.00000	0.9294
	8	Propene	41	3.909	3.909	(0.432)	189497	1.00000	0.9843
	9	Dichlorodifluoromethane	85	3.963	3.963	(0.438)	464793	1.00000	1.011
	10	Chloromethane	52	4.146	4.146	(0.458)	40894	1.00000	0.9172
	11	1,2-Dichlorotetrafluoroethane	135	4.146	4.146	(0.458)	225596	1.00000	0.9228
	12	Methanol	31	4.276	4.276	(0.472)	34051	1.00000	1.130
	13	Vinyl Chloride	62	4.314	4.314	(0.476)	110870	1.00000	0.9071
	14	n-Butane	43	4.400	4.400	(0.486)	217813	1.00000	0.9482
	15	1,3-Butadiene	54	4.400	4.400	(0.486)	102986	1.00000	0.9083
	16	Bromomethane	94	4.729	4.729	(0.522)	88232	1.00000	0.9220
	17	Chloroethane	64	4.874	4.874	(0.538)	49169	1.00000	0.9038

Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d Report Date: 03-Dec-2008 07:31

						AMOUNTS	3
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==			======	======	======
18 Vinyl Bromide	106	5.182	5.182	(0.572)	124144	1.00000	0.8667
19 2-methyl butane	43	5.219	5.219	(0.577)	266124	1.00000	0.9320
20 Trichlorofluoromethane	101	5.446	5.446	(0.602)	406668	1.,00000	0.9284
21 Acrolein	56	5.473	5.473	(0.604)	30858	1.00000	0.8332
22 Acetonitrile	40	5.543	5.543	(0.612)	43300	1.00000	0.8942
23 Acetone	58	5.597	5.597	(0.618)	48895	1.00000	1.011
24 Pentane	72	5.662	5.662	(0.625)	32212	1.00000	0.9565
25 Isopropyl Alcohol	45	5.667	5.667	(0.626)	230877	1.00000	0.8802
26 Ethyl Ether	31	5.845	5.845	(0.646)	153706	1.00000	0.9459
27 1,1-Dichloroethene	96	6.158	6.158	(0.680)	137192	1.00000	0.9367
28 Acrylonitrile	53	6.276	6.276	(0.693)	60413	1.00000	0.8686
29 tert-butanol	59	6.260	6.260	(0.691)	230611	1.00000	0.8582
30 1,1,2-Trichlorotrifluoroethane	101	6.325	6.325	(0.699)	286473	1.00000	0.9774
31 Methylene Chloride	84	6.514	6.514	(0.719)	126699	1.00000	0.9604
32 3-Chloropropene	39	6.524	6.524	(0.721)	158718	1.00000	0.9322
33 Carbon Disulfide	76	6.670	6.670	(0.737)	473817	1.00000	1.004
34 trans-1,2-Dichloroethene	96	7.317	7.317	(0.808)	159747	1.00000	0.9612
35 Methyl-t-Butyl Ether	73	7.447	7.447	(0.822)	214380	1.00000	0.9167
36 1,1-Dichloroethane	63	7.738	7.738	(0.855)	253490	1.00000	0.9238
37 Vinyl Acetate	43	7.840	7.840	(0.866)	202102	1.00000	0.8356
38 Hexane	56	8.288	8.288	(0.915)	149079	1.00000	0.9586
39 2-Butanone	72	8.304	8.304	(0.917)	37555	1.00000	0.9372
40 cis 1,2-Dichloroethene	96	8.714	8.714	(0.962)	127316	1.00000	0.9419
41 Ethyl acetate	43	8.908	8.908	(0.984)	201186	1.00000	0.8958
42 Chloroform	83	9.059	9.059	(1.001)	231085	1.00000	0.9045
43 Tetrahydrofuran	42	9.479	9.479	(1.047)	120583	1.00000	0.9369
44 1,1,1-Trichloroethane	97	10.073	10.073	(1.113)	247910	1.00000	0.8895
45 1,2-Dichloroethane	62	10.197	10.197	(0.911)	133378	1.00000	0.8803
46 Cyclohexane	69	10.655	10.655	(0.952)	73902	1.00000	1.019
47 Benzene	78	10.666	10.666	(0.953)	286365	1.00000	0.9194
48 1-Butanol	31	10.623	10.623	(0.949)	57847	1.00000	0.7715
49 Carbon Tetrachloride	117	10.682	10.682	(0.954)	275972	1.00000	0.9188
50 2,2,4-trimethylpentane	57	11.388	11.388	(1.017)	729698	1.00000	0.9326
51 Heptane	43	11.755	11.755	(1.050)	312170	1.00000	0.9240
52 1,2-Dichloropropane	63	11.874	11.874	(1.061)	102051	1.00000	0.9135
53 Trichloroethene	130	11.895	11.895	(1.063)	168480	1.00000	0.9278
54 Dibromomethane	93	11.992	11.992	(1.071)	121446	1.00000	0.9370
55 Bromodichloromethane	83	12.132	12.132	(1.084)	219980	1.00000	0.9124
56 1,4-dioxane	88	12.159	12.159	(1.086)	50953	1.00000	0.8611
57 methyl methacrylate	41	12.219	12.219	(1.092)	99860	1.00000	0.7926
58 4-Methyl-2-pentanone	43	13.060	13.060	(1.167)	216969	1.00000	0.8349
59 cis-1,3-Dichloropropene	75	13.114	13.114	(1.171)	113738	1.00000	0.8333
60 trans-1,3-Dichloropropene	75	13.804	13.804	(0.870)	94175	1.00000	0.8262
61 Toluene	91	13.917	13.917	(0.877)	262817	1.00000	0.9459
62 1,1,2-Trichloroethane	97	14.004	14.004	(0.882)	87977	1.00000	0.8957
63 2-Hexanone	58	14.381	14.381	(0.906)	78130	1.00000	0.8060
64 Octane	85	14.581	14.581	(0.918)	110236	1.00000	0.9895

Data File: /var/chem/gcms/mg.i/G120208.b/gccvl02.d Report Date: 03-Dec-2008 07:31

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
=======================================	====	==	*****	======	======	
65 Dibromochloromethane	129	14.699	14.699 (0.926)	174752	1.00000	0.9388
66 1,2-Dibromoethane	107	14.990	14.990 (0.944)	130874	1.00000	0.8921
67 Tetrachloroethene	129	15.050	15.050 (0.948)	139432	1.00000	0.9715
68 Chlorobenzene	112	15.923	15.923 (1.003)	204842	1.00000	0.9101
69 Ethylbenzene	91	16.204	16.204 (1.021)	281557	1.00000	0.8937
70 m&p-Xylene	91	16.360	16.360 (1.031)	444359	2.00000	1.846
71 Nonane	57	16.759	16.759 (1.056)	175750	1.00000	0.8139
72 Bromoform	173	16.824	16.824 (1.060)	116269	1.00000	0.8186
73 Styrene	104	16.824	16.824 (1.060)	143128	1.00000	0.8406
74 o-Xylene	91	16.883	16.883 (1.064)	237977	1.00000	0.9192
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217 (1.085)	160299	1.00000	0.8722
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	43213	1.00000	0.8388
77 Cumene	105	17.466	17.466 (1.100)	282820	1.00000	0.8487
78 n-Propylbenzene	120	17.994	17.994 (1.133)	75437	1.00000	0.8239
79 2-chlorotoluene	126	18.043	18.043 (1.137)	77464	1.00000	0.8690
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	263843	1.00000	0.8188
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	112379	1.00000	0.8591
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	93527	1.00000	0.7464
83 Decane	57	18.485	18.485 (1.164)	200004	1.00000	0.8456
84 tert-butylbenzene	119	18.630	18.630 (1.174)	244129	1.00000	0.8397
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	215576	1.00000	0.8509
86 sec-butylbenzene	105	18.900	18.900 (1.191)	307244	1.00000	0.8464
87 1,3-Dichlorobenzene	146	18.921	18.921 (1.192)	147738	1.00000	0.8287
88 Benzyl Chloride	91	18.997	18.997 (1.197)	153841	1.00000	0.8009
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	141038	1.00000	0.8156
90 p-Cymene	119	19.056	19.056 (1.200)	253466	1.00000	0.8402
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	134355	1.00000	0.8282
92 n-butylbenzene	91	19.488	19.488 (1.228)	227206	1.00000	0.8280
93 Undecane	57	19.784	19.784 (1.246)	199095	1.00000	0.8722
94 Dodecane	57	20.841	20.841 (1.313)	134309	1.00000	0.9389
95 1,2,4-Trichlorobenzene	180	21.062	21.062 (1.327)	81045	1.00000	0.8025
96 Napthalene	128	21.213	21.213 (1.336)	181840	1.00000	0.8109
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	96116	1.00000	0.8027
98 1.2.3-trichlorobenzene	180	21.499	21.499 (1.354)	76607	1.00000	0.8409



Data File: /var/chem/gcms/mg.i/G120208.b/1ptcal.d Report Date: 02-Dec-2008 10:54

# TestAmerica Knoxville

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mg.i Injection Date: 02-DEC-2008 10:05
Lab File ID: 1ptcal.d Init. Cal. Date(s): 25-NOV-2008 02-DEC-2008
Analysis Type: AIR Init. Cal. Times: 13:47 10:05
Lab Sample ID: 1PTCAL Quant Type: ISTD
Method: /var/chem/gcms/mg.i/G120208.b/T0155.m

	I			MIN		XAM	
COMPOUND	RRF	/ AMOUNT	RF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	====			=====	=======	========	
99 ~ Thiophene		0.34074	0.34074	0.000	0.000e+00	25.00000	Averaged
100 ~ 1,2,3-Trimethylbenzene		0.50322	0.50322	0.000	0.000e+00	25.00000	Averaged
101 ~ Indane		0.49419	0.49419	0.000	1.123e-14	25.00000	Averaged
102 ~ Indene	1	0.11775	0.11775	0.000	0.000e+00	25.00000	Averaged
103 ~ 2-Methylnaphthalene	1	0.03488	0.03488	0.000	0.000e+00	25.00000	Averaged
104 ~ 1-methylnaphthalene	!	0.03678	0.03678	0.000	0.000e+00	25.00000	Averaged
	l			l			

Data File: /var/chem/gcms/mg.i/G120208.b/1ptcal.d

Report Date: 02-Dec-2008 10:54

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/1ptcal.d
Lab Smp Id: 1PTCAL

Client Smp ID: 1PTCAL

Inj Date : 02-DEC-2008 10:05

: 7126 Inst ID: mg.i Operator

Smp Info : 1PTCAL,,3,5,,1PTCAL Misc Info : G120208,T0155,newyork.sub,,,,

Comment

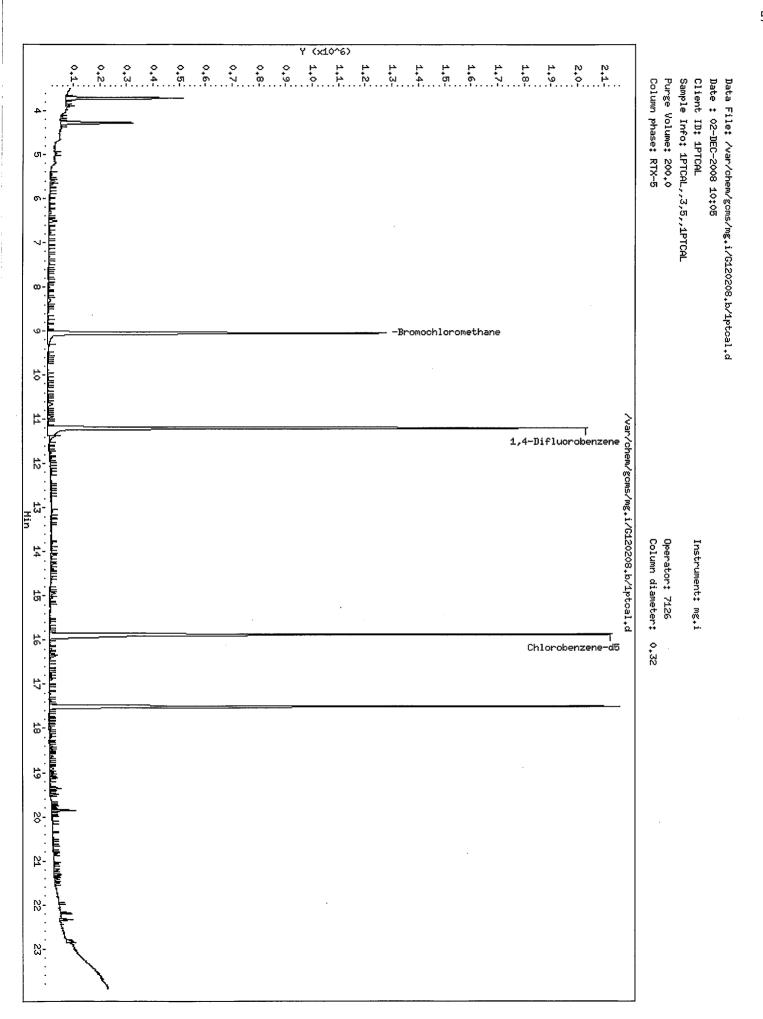
Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 02-Dec-2008 10:54 tajh Quant Typ Quant Type: ISTD Cal File: 1ptcal.d Cal Date : 02-DEC-2008 10:05

Als bottle: 13 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: newyork.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable


Name	Value	Description				
DF	1.00000	Dilution Factor				
Vt	500.00000	Default calibration vol				
Vo	200.00000	Default sample volume				

Cpnd Variable Local Compound Variable

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	======		======	======
* 1 Bromochloromethane	128	9.048	9.048 (1.000)	418824	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.194	11.194 (1.000)	2097207	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1605666	4.00000	4.000
99 ~ Thiophene	84	10.935	10.935 (0.977)	14292	0.08000	0.08000(A)
100 ~ 1,2,3-Trimethylbenzene	105	19.110	19.110 (1.204)	16160	0.08000	(A)00080.0
101 ~ Indane	117	19.358	19.358 (1.219)	15869	0.08000	(A)00080.0
102 ~ Indene	116	19.488	19.488 (1.228)	7562	0.16000	0.1600(A)
103 ~ 2-Methylnaphthalene	142	22.195	22.195 (1.398)	14002	1.00000	1.000(A)
104 ~ 1-methylnaphthalene	142	22.335	22.335 (1.407)	14764	1.00000	1.000(A)

# QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



# Raw QC Data

# New York State D.E.C.

# Client Sample ID: INTRA-LAB BLANK

# **GC/MS Volatiles**

Lot-Sample # H8L010000 - 265B

Work Order # K3VH21AA Matrix....:

AIR

11/18/2008 Prep Date....:

11/29/2008

Date Received ..: 11/24/2008 Analysis Date... 11/29/2008

Prep Batch #....: 8336265

Dilution Factor.:

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane		***************************************	112	0.50
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41

# New York State D.E.C.

# Client Sample ID: INTRA-LAB BLANK

# GC/MS Volatiles

Lot-Sample # H8L010000 - 265B		Work Order # K3VH2	Matrix AIR		
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
Cyclohexane	<i>2</i> (17)	0.00		***************************************	
1,2-Dichlorobenzene	ND	0.20	ND	0.69	
1,3-Dichlorobenzene	ND	0.080	ND	0.48	
•	ND	0.080	ND	0.48	
1,4-Dichlorobenzene Dichlorodifluoromethane	ND	0.080	ND	0.48	
	ND	0.080	ND	0.40	
I,1-Dichloroethane	ND	0.080	ND	0.32	
1,2-Dichloroethane	ND	0.080	ND	0.32	
1,1-Dichloroethene	ND	0.080	ND	0.32	
cis-1,2-Dichloroethene	ND	0.080	ND	0.32	
trans-1,2-Dichloroethene	ND	0.080	ND	0.32	
1,2-Dichloropropane	ND	0.080	ND	0.37	
cis-1,3-Dichloropropene	ND	0.080	ND	0.36	
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS	
None					
SURROGATE		PERCENT RECOVERY	_	LABORATORY CONTROL LIMITS (%)	
4-Bromofluorobenzene		91	norman (	70 - 130	

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G112908.b/gblkk29.d

Report Date: 01-Dec-2008 13:38

#### TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G112908.b/gblkk29.d
Lab Smp Id: K3VH21AA

Client Smp ID: BLANK

Inj Date : 29-NOV-2008 15:24

Operator : 7126 Smp Info : BLANK, 3, , , BLANK Inst ID: mg.i

Misc Info: G112908, T0155, 1-all. sub, , , ,

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m

Meth Date: 01-Dec-2008 13:14 tajh Quant Type: ISTD Cal Date: 26-NOV-2008 12:31 Cal File: rlstd.d QC Sample: BLANK

Als bottle: 14
Dil Factor: 1.00000
Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	1.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
Cpnd Variable		Local Compound Variable

					CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
		==		=======		****	
<ul> <li>1 Bromochloromethane</li> </ul>	128	9.053	9.053 (1.000)	435810	4.00000	4.000	
* 2 1,4-Difluorobenzene	114	11.199	11.200 (1.000)	2176471	4.00000	4.000	
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1622220	4.00000	4.000	
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	949278	3.65901	3.659	

Calibration Date: 29-NOV-2008

Calibration Time: 10:08

Client Smp ID: BLANK

Sample Type: AIR

Level: LOW

Data File: /var/chem/gcms/mg.i/G112908.b/gblkk29.d

Report Date: 01-Dec-2008 13:38

#### TestAmerica Knoxville

#### INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: gblkk29.d Lab Smp Id: K3VH21AA

Analysis Type: OTHER Quant Type: ISTD

Operator: 7126

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m

Misc Info: G112908, T0155, 1-all.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT	SAMPLE	SDTFF
COMPOUND	SIANDARD	LOWER ====		SWILDE	======= DILL
1 Bromochloromethan	432126	257115	607137	435810	0.85
2 1,4-Difluorobenze	2140476		3007369		1.68
3 Chlorobenzene-d5	1639335	975404	2303266	1622220	-1.04

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	9.05	8.72	9.38	9.05	0.00
2 1,4-Difluorobenze	11.20	10.87	11.53	11.20	
3 Chlorobenzene-d5	15.87	15.54	16.20	15.87	

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G112908.b/gblkk29.d Report Date: 01-Dec-2008 13:38

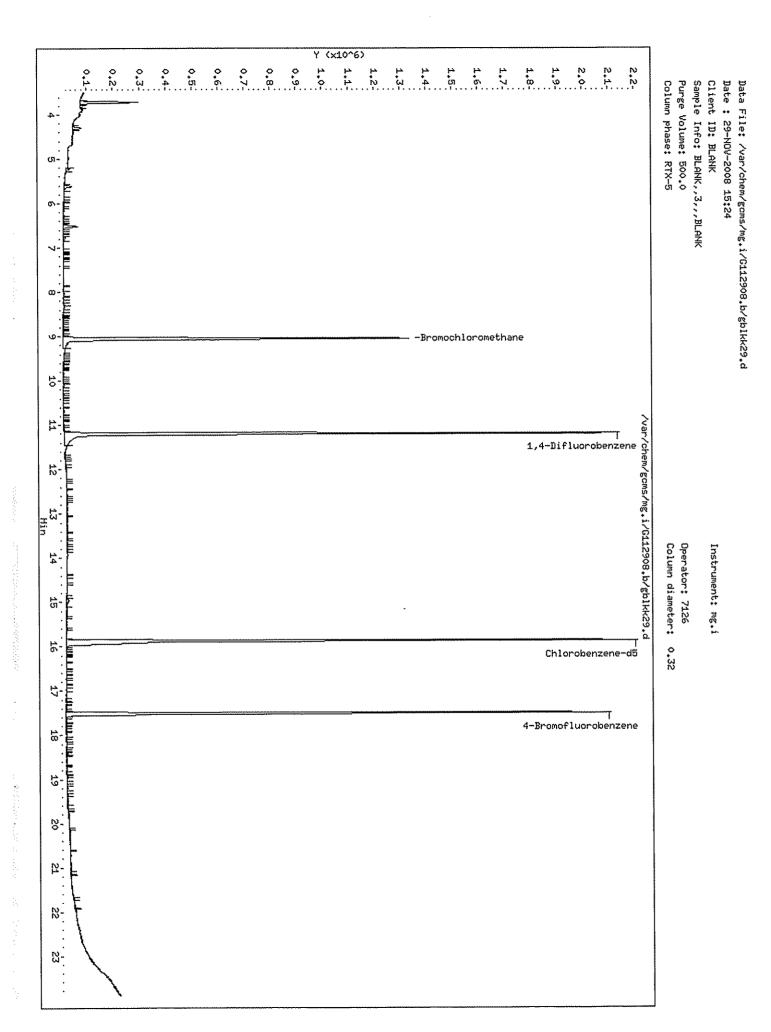
# TestAmerica Knoxville

# RECOVERY REPORT

Client SDG: G112908

Client Smp ID: BLANK

Fraction: OTHER


Operator: 7126 SampleType: BLANK Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Sample Matrix: GAS
Lab Smp Id: K3VH21AA
Client Smp
Operator: 7
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: nysdec.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112908, T0155, 1-all.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 64-Bromofluorobenze	4.000	3.659	91.48	70-130



Data File: /var/chem/gcms/mg.i/G112908.b/gblkk29.d

Report Date: 01-Dec-2008 13:39

#### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112908.b/gblkk29.d Lab Smp Id: K3VH21AA Client Smp Client Smp ID: BLANK

Inj Date : 29-NOV-2008 15:24 Operator : 7126 Smp Info : BLANK,,3,,,BLANK Misc Info : G112908,TO155,1-all.sub,,,, Inst ID: mg.i

Comment

Method : /var/chem/gcms/mg.i/G112908.b/T0155.m Meth Date : 01-Dec-2008 13:39 tajh Quant Tyr Quant Type: ISTD Cal File: rlstd.d Cal Date: 01-DeC-2008 13:39
Cal Date: 26-NOV-2008 12:31
Als bottle: 14
Dil Factor: 1.00000
Integrator: HP RTE
Target Version: 3.50
Processing Most: cmidbeo1 QC Sample: BLANK

Compound Sublist: nysdec.sub

Processing Host: qmidhp01

⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

# New York State D.E.C.

# Client Sample ID: CHECK SAMPLE

# GC/MS Volatiles

Lot-Sample # H8	L010000 - 265C	Work Or	der# K3V	H21AC	Matrix	: AIR
Prep Date: Prep Batch #:	11/18/2008 11/29/2008 8336265	Date Rec Analysis	eived: 11/2 Date 11/2	4/2008 9/2008		
Dilution Factor.:	1	Method	TO-	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	2.50	2.32	8.0	7.4	93	70 - 130
Toluene	2.50	2.02	9.4	7.6	81	70 - 130
Trichloroethene	2.50	2.30	13	12	92	70 - 130
Chlorobenzene	2.50	2.01	12	9.3	80	70 - 130
1,1-Dichloroethene	2.50	2.19	9.9	8.7	88	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL
4-Bromofluorobenze	ne	99			70 - 13	0

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d

Report Date: 01-Dec-2008 13:39

# TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Lab Smp Id: K3VH21AC Client Smp I Inj Date: 29-NOV-2008 10:08

Client Smp ID: CCV/LCS

Inj Date : 29-NOV-2008 10:08 Operator : 7126 Smp Info : CCV,,3,5,,CCV/LCS Misc Info : G112708,TO155,1-all.sub,,,, Inst ID: mg.i

Comment

Method: /var/chem/gcms/mg.i/G112908.b/T0155.m
Meth Date: 01-Dec-2008 13:14 tajh Quant Tyr
Cal Date: 26-NOV-2008 12:31 Cal File:
Als bottle: 13 QC Sample
Dil Factor: 1.00000
Integrator: HP RTE Compound
Target Version: 2 50 Quant Type: ISTD Cal File: rlstd.d QC Sample: LCS

Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cond Variable

Local Compound Variable

						CONCENTRA!	rions
		QUANT SIG				ON-COLUMN	FINAL
Com	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
222	网络哈萨萨拉莱 卷 计数与分别 医阴道性 医食食 有我有	25 W 22 M	==			_=====	****
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	432126	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	2140476	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1639335	4.00000	4.000
ş	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	1033805	3.94322	9.858
	7 Chlorodifluoromethane	67	3.893	3.893 (0.430)	43166	0.89824	2.246
	8 Propene	41	3.893	3.893 (0.430)	191559	0.97043	2.426
	9 Dichlorodifluoromethane	85	3.958	3.958 (0.437)	466980	0.99029	2.476
	10 Chloromethane	52	4.136	4.136 (0.457)	38907	0.85108	2.128
	11 1,2-Dichlorotetrafluoroethane	135	4.146	4.146 (0.458)	211105	0.84217	2.105
	12 Methanol	31	4.270	4.270 (0.472)	28203	0.91267	2.282
	13 Vinyl Chloride	62	4.313	4.313 (0.476)	104091	0.83059	2.076
	14 n-Butane	43	4.400	4.400 (0.486)	197185	0.83719	2.093
	15 1,3-Butadiene	54	4.400	4.400 (0.486)	96755	0.83224	2.080
	16 Bromomethane	94	4.729	4.729 (0.522)	87367	0.89043	2.226
	17 Chloroethane	64	4.869	4.869 (0.538)	48686	0.87283	2.182

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Report Date: 01-Dec-2008 13:39

Compounds   MASC   AT						CONCENTRAT	IONS
18 Vinyl Bromide		QUANT SIG				ON-COLUMN	FINAL
18 Vinyl Bromide	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
19 2-methyl butane	性性 经保存 网络阿拉斯斯 经经济 经经济 计算机 医阴道		<b>=</b> =				
20 Trichlorofluoromethane	18 Vinyl Bromide	106	5.176	5.176 (0.572)	89799	0.61141	1.528(R)
21 Acrolein	19 2-methyl butane	43	5.225	5.225 (0.577)	159289	0.54404	1.360(R)
22 Acetonirile 40 5.543 5.543 (0.612) 43834 0.80281 2.207 23 Acetone 58 5.602 5.602 (0.619) 48416 0.97634 2.441 24 Pentane 72 5.662 5.662 (0.629) 32204 0.93262 2.332 25 Isopropyl Alcohol 45 5.672 5.672 (0.627) 231670 0.86134 2.153 26 Ethyl Ether 31 5.845 5.645 (0.628) 32204 0.93262 2.332 27 1.1-Dichloroethene 96 6.158 6.158 (0.680) 31801 0.87763 2.194 28 Acrylonitrile 53 6.282 6.282 (0.646) 146560 0.88198 2.205 27 1.1-Dichloroethene 196 6.158 6.158 (0.680) 31801 0.87763 2.194 28 Acrylonitrile 53 6.282 6.282 (0.694) 55506 0.77829 1.946 29 tert-butanol 59 6.271 6.271 (0.693) 222125 0.80622 2.016 30 1,1,2-Trichlorourifluoroethane 101 6.325 6.325 (0.699) 286747 0.95413 2.385 31 Methylene Chloride 94 6.514 6.514 (0.719) 127055 0.80622 2.016 31 Methylene Chloride 94 6.514 6.514 (0.719) 127055 0.93925 2.348 32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 456696 0.94415 2.360 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Bulyl Ether 73 7.452 7.452 (0.823) 196035 0.81752 2.044 36 1,1-Dinchloroethane 63 7.743 7.43 (0.855) 283816 1.00217 2.552 37 Vinyl Acetate 43 7.845 7.845 (0.867) 179120 0.72227 1.806 38 Hexne 56 8.293 8.293 (0.916) 153930 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35982 0.85387 2.135 40 Cis 1,2-Dichloroethene 96 8.719 8.719 (0.953) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 186690 0.90200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93959 2.337 43 Tetrahylyrofuran 42 9.485 9.485 (1.048) 107730 0.96610 2.443 43 Tetrahylyrofuran 42 9.485 9.485 (1.048) 107730 0.96610 2.431 44 1,1,1-Trichloroethane 63 10.671 (0.671 (0.971) 12649 0.98091 2.432 45 1,2-Dichloroethane 65 10.655 (0.591) 71679 0.97699 2.443 45 1,2-Dichloroethane 67 10.671 (0.671 (0.951) 3.9448 0.92588 2.335 46 Cyclohexane 69 10.655 (0.685) (0.5851) 71679 0.96769 2.443 45 1,2-Dichloroethane 67 10.671 (0.671 (0.951) 3.9468 0.92989 2.301 47 Benzene 78 10.671 (0.671 (0.681) 3.7000 0.98054 2.005 48 1,2-Dichloroethane 68 11.	20 Trichlorofluoromethane	101	5.446	5.446 (0.602)	388605	0.86526	2.163
23 Acetome	21 Acrolein	56	5.478	5.478 (0.605)	29546	0.77804	1.945
24 PenCame 72 5.662 5.662 (0.625) 32204 0.93262 2.332 2.51 Esopropyl Alcohol 45 5.672 5.672 (0.627) 321670 0.66134 2.153 2.51 Esopropyl Alcohol 45 5.672 5.672 (0.627) 231670 0.66134 2.153 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.	22 Acetonitrile	40	5.543	5.543 (0.612)	43834	0.88281	2.207
Street	23 Acetone	58	5.602	5.602 (0.619)	48416	0.97634	2.441
26 Ethyl Ether 31 5.845 5.845 (0.646) 146960 0.88198 2.205 27 1,1-Dichlorocthene 96 6.158 6.158 (0.680) 131801 0.87763 2.194 28 Acrylonitrile 53 6.202 (0.594) 5506 0.77829 1.946 29 tert-butanol 59 6.271 (0.693) 222125 0.80622 2.016 30 1,1,2-Trichlorotrifluorocthane 101 6.325 6.325 (0.699) 286747 0.95413 2.385 31 Methylene Chloride 84 6.514 (0.719) 127053 0.9925 2.349 32 3-Chloropropene 39 6.524 6.524 (0.719) 127053 0.9925 2.349 32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 45696 0.94415 2.360 34 trans-1,2-Dichlorocthene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.623) 156035 0.94415 2.360 34 trans-1,2-Dichlorocthene 63 7.743 7.452 (0.623) 156035 0.9414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.623) 156035 0.96152 2.044 36 1,1-Dichlorocthane 63 7.743 7.452 (0.623) 156035 0.95152 2.044 36 1,1-Dichlorocthane 63 7.743 7.452 (0.623) 156035 0.95150 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichlorocthene 96 8.719 8.719 (0.963) 132365 0.95505 2.386 41 Ethyl acetate 41 8.911 8.913 (0.984) 18490 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93499 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.86631 2.041 41,1-Trichlorocthane 97 10.078 10.078 (0.911) 136489 0.80200 2.005 46 Cyclohaxane 69 10.655 10.655 (0.655) 10.655 (0.951) 71.079 0.97669 2.442 45 1,2-Dichlorocthane 87 10.671 10.671 (0.953) 294488 0.92588 2.315 81-Rutanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.692 10.692 (0.694) 61760 0.80654 2.016 53 Trichlorocthane 88 12.152 10.655 (0.655) 10.655 (0.959) 61.001 0.9529 0.93448 0.92588 2.315 81 Heptane 43 11.760 11.760 (1.050) 303602 0.80664 2.016 53 Trichlorocthane 88 12.165 12.165 (1.086) 50403 0.80200 0.80642 2.016 53 Trichlorocthane 88 12.165 12.165 (1.086) 50403 0.80200 0.80642 2.016 53 Trichlorocthane 88 12.165 12.165 (1.086) 50403 0.80314 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.80654 2.016 50 11.874 methy	24 Pentane	72	5.662	5.662 (0.625)	32204	0.93262	2.332
27   1.1-Dichloroethene	25 Isopropyl Alcohol	45	5.672	5.672 (0.627)	231670	0.86134	2.153
28 Acrylonitrile	26 Ethyl Ether	31	5.845	5.845 (0.646)	146960	0.88198	2,205
29 terr-butanol 59 6.271 6.271 (0.693) 222125 0.80622 2.016 30 1,1,2-Trichlorotrifluoroethane 101 6.325 6.325 (0.699) 286747 0.95413 2.385 31 Methylene Chloride 84 6.514 6.514 (0.719) 127055 0.39325 2.348 32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 456696 0.94415 2.360 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.623) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.473 (0.885) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.623) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.73 (0.885) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97669 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.9588 2.315 48 1-Butanol 31 10.628 10.628 (0.995) 61760 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.93642 2.016 49 Carbon Tetrachloride 117 10.682 10.628 (0.995) 61760 0.80642 2.016 53 Trichloroethane 83 11.992 11.992 (1.071) 122849 0.93249 2.200 54 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 54 Trichloroethane 93 11.992 11.992 (1.071) 122849 0.93249 2.331 55 2,2,4-trimethylpentane 57 11.388 11.386 (1.017) 729819 0.93412 2.344 55 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 56 Trichloroethane 93 11.992 11.992 (1.071) 122849 0.93249 2.300 57 Trichloroethane 93 11.992 11.992 (1.071) 122849 0.93249 2.200 58 1,2-Dichloropropene 75 13.189 13.199 13.199 14.099 0.73340 0.83140 2.085 58 Expondichl	27 1,1-Dichloroethene	96	6.158	6.158 (0.680)	131801	0.87763	2.194
30 1,1,2-Trichlorotrifluoroethane 101 6.325 6.325 (0.699) 286747 0.95413 2.385 31 Methylene Chloride 84 6.514 (0.719) 127055 0.93925 2.348 32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 456696 0.94415 2.360 34 trans-1,2-Dichloroethane 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.822) 169635 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 7.845 (0.867) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichloroethane 96 8.719 8.719 (0.963) 132265 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.994) 148690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 41,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97669 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 7167 0.956769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92288 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80554 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80554 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80554 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80554 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.949) 61760 0.80654 2.016 53 Trichloroethane 83 12.132 12.132 (1.083) 170876 0.9214 2.304 55 1,2-Dichloropropane 63 11.874 11.874 (1.060) 9200 0.80642 2.016 53 Trichloroethane 83 12.132 12.132 (1.083) 170876 0.9214 2.304 55 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 56 1.4-dioxane 88 12.165 12.165 (1.086) 50403 0.8040 0.79946 1.999 63 2.482anone 58 14.381 14.3	28 Acrylonitrile	53	6.282	6.282 (0.694)	55506	0.77829	1.946
31 Methylene Chloride 34 6.514 6.514 (0.719) 127055 0.93925 2.348 32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 456696 0.9415 2.360 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.823) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.7431 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 7.845 (0.867) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.95510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichloroethane 96 8.719 8.719 (0.963) 112365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.994) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.672 10.672 (0.953) 29448 0.92588 2.315 48 1-Butanol 31 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.662 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachlorophane 63 11.874 11.874 (1.060) 32000 0.80654 2.016 53 Trichloroethane 83 11.760 11.760 (1.050) 303602 0.87999 2.381 50 2,2,4-trimethylpentane 63 11.874 11.874 (1.060) 32000 0.80654 2.016 53 Trichloropropane 63 11.874 11.874 (1.060) 32000 0.80642 2.016 53 Trichloropropane 63 11.874 11.874 (1.060) 32000 0.80642 2.016 54 Pethane 93 11.992 11.992 (1.071) 122849 0.9219 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.8837 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 32000 0.80642 2.016 51 Trichloropropene 75 13.380 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231730 0.09946 1.801 61 Toluene 91 13.923 (0.877) 231730 0.09946 1.801 62 1,1.2-Trichloroethane 95 14.381 14.381 (0.906) 6982 0.70067 1.752	29 tert-butanol	59	6.271	6.271 (0.693)	222125	0.80622	2.016
32 3-Chloropropene 39 6.524 6.524 (0.721) 178266 1.02117 2.553 33 Carbon Disulfide 76 6.670 6.670 (0.737) 456696 0.94415 2.360 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.823) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 7.845 (0.867) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35062 0.85387 2.135 40 cis 1,2-Dichloroethane 96 8.719 8.719 (0.963) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 41,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 (0.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.628 (0.954) 61760 0.80654 2.016 49 Carbon Tetrachloroethane 83 11.760 11.760 (1.050) 303602 0.87999 2.2381 50.2,2-1-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51.2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethane 83 12.132 12.132 (1.083) 217467 0.80357 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92149 2.308 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92144 2.304 50 11.900 (1.063) 170876 0.92149 2.300 50 11.900 (1.063) 170876 0.92149 2.300 50 11.900 (1.063) 170876 0.92149 2.300 50 11.900 (1.063) 170876 0.92149 2.300 50	30 1,1,2-Trichlorotrifluoroethane	101	6.325	6.325 (0.699)	286747	0.95413	2.385
33 Carbon Disulfide 76 6.670 (0.737) 456696 0.94415 2.360 34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 7.452 (0.823) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 7.845 (0.867) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 186690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2.4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 300620 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethane 83 12.132 12.132 (1.083) 170876 0.92144 2.304 54 1.9-Dichloropropane 63 11.874 11.860 11.760 (1.050) 30062 0.87999 2.200 55 1,2-Dichloropropane 83 11.992 11.992 (1.071) 122849 0.92619 2.320 55 1,2-Dichloropropane 75 13.189 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.109 13.004 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231739 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (1.009) (8.802 80908 0.79346 1.999 63 2-Hexanone 58 14.381 14.381 (1.096) 69982 0.70067 1.752	31 Methylene Chloride	84	6.514	6.514 (0.719)	127055	0.93925	2.348
34 trans-1,2-Dichloroethene 96 7.317 7.317 (0.808) 157475 0.92414 2.310 35 Methyl-t-Butyl Ether 73 7.452 (0.823) 196035 0.81752 2.044 36 1,1-Dichloroethane 63 7.743 7.743 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 7.845 (0.857) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35082 0.85387 2.135 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 122365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.622 10.622 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.622 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.622 (0.949) 61760 0.95229 2.381 51 Heptane 43 11.760 11.760 (1.050) 303602 0.89799 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethane 83 12.132 12.132 (1.083) 217467 0.98137 2.208 54 1-Butanol 84 12.219 12.219 (1.071) 122849 0.9218 2.320 55 17-4-dioxane 88 12.165 12.165 (1.086) 5403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 75 13.804 13.804 (0.870) 84617 0.74024 1.843 59 15-1,3-Dichloropropene 75 13.109 13.109 (1.071) 10.3737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 1701uene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (0.802) 80908 0.79946 1.999 63 2-Hexanone 88 14.381 14.381 (0.906) 69882 0.70067 1.752	32 3-Chloropropene	39	6.524	6.524 (0.721)	178266	1.02117	2.553
Nethyl-t-Butyl Ether   73	33 Carbon Disulfide	76	6.670	6.670 (0.737)	456696	0.94415	2.360
36 1,1-Dichloroethane 63 7.743 (0.855) 283816 1.00874 2.522 37 Vinyl Acetate 43 7.845 (0.867) 179120 0.72227 1.806 38 Hexane 56 8.293 8.293 (0.916) 153903 0.96510 2.413 39 2-Butanone 72 8.315 8.315 (0.918) 35062 0.85387 2.135 40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.662 10.682 (0.954) 292110 0.95229 2.381 50 2,2.4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloroethane 83 12.132 12.132 (1.063) 27046 0.9214 2.304 54 Dibromomethane 83 12.132 12.132 (1.063) 27046 0.9219 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.063) 271467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.066) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.804 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 86982 0.	34 trans-1,2-Dichloroethene	96	7.317	7.317 (0.808)	157475	0.92414	2.310
17 Vinyl Acetate	35 Methyl-t-Butyl Ether	73	7.452	7.452 (0.823)	196035	0.81752	2.044
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	36 1,1-Dichloroethane	63	7.743	7.743 (0.855)	283816	1.00874	2.522
Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	37 Vinyl Acetate	43	7.845	7.845 (0.867)	179120	0.72227	1.806
40 cis 1,2-Dichloroethene 96 8.719 8.719 (0.963) 132365 0.95505 2.388 41 Ethyl acetate 43 8.913 8.913 (0.984) 184690 0.80200 2.005 42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97669 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.19 13.119 (1.171) 103737 0.7427 1.861 61 Toluene 91 13.923 13.923 (0.870) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone	38 Hexane	56	8.293	8.293 (0.916)	153903	0.96510	2.413
## Ethyl acetate	39 2-Butanone	72	8.315	8.315 (0.918)	35082	0.85387	2.135
42 Chloroform 83 9.059 9.059 (1.001) 244929 0.93495 2.337 43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.109 13.119 (1.171) 10.3737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 8098 0.79946 1.999 63 2-Hexanone	40 cis 1,2-Dichloroethene	96	8.719	8.719 (0.963)	132365	0.95505	2.388
43 Tetrahydrofuran 42 9.485 9.485 (1.048) 107730 0.81633 2.041 44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 9200 0.80642 2.016 53 Trichloroethene 130 11.990 11.990 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.993 13.993 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (4.082) 80908 0.79946 1.999 63 2-Hexanone	41 Ethyl acetate	43	8.913	8.913 (0.984)	184690	0.80200	2.005
44 1,1,1-Trichloroethane 97 10.078 10.078 (1.113) 279169 0.97689 2.442 45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 (1.060) 9200 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone	42 Chloroform	83	9.059	9.059 (1.001)	244929	0.93495	2.337
45 1,2-Dichloroethane 62 10.197 10.197 (0.910) 136489 0.88215 2.205 46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.662 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 59 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.19 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone	43 Tetrahydrofuran	42	9.485	9.485 (1.048)	107730	0.81633	2.041
46 Cyclohexane 69 10.655 10.655 (0.951) 71679 0.96769 2.419 47 Benzene 78 10.671 10.671 (0.953) 294488 0.92588 2.315 48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone	44 1,1,1-Trichloroethane	97	10.078	10.078 (1.113)	279169	0.97689	2.442
## Cyclinexame  ## Benzene  ## 10.671 10.671 (0.953) 294488 0.92588 2.315  ## 1-Butanol  ## 10.628 10.628 (0.949) 61760 0.80654 2.016  ## Carbon Tetrachloride  ## 17 10.682 10.682 (0.954) 292110 0.95229 2.381  ## 20.22,4-trimethylpentane  ## 11.388 11.388 (1.017) 729819 0.91344 2.284  ## 20.284 11.388 11.388 (1.017) 729819 0.91344 2.284  ## 20.284 11.388 11.388 (1.017) 729819 0.91344 2.284  ## 20.284 11.388 11.388 (1.017) 729819 0.91344 2.284  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.2-Dichloropropane  ## 20.285 1.3-Dichloropropane  ## 20.285 1.3-Dic	45 1,2-Dichloroethane	62	10.197	10.197 (0.910)	136489	0.88215	2.205
48 1-Butanol 31 10.628 10.628 (0.949) 61760 0.80654 2.016 49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	46 Cyclohexane	69	10.655	10.655 (0.951)	71679	0.96769	2.419
49 Carbon Tetrachloride 117 10.682 10.682 (0.954) 292110 0.95229 2.381 50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	47 Benzene	78	10.671	10.671 (0.953)	294488	0.92588	2.315
50 2,2,4-trimethylpentane 57 11.388 11.388 (1.017) 729819 0.91344 2.284 51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	48 1-Butanol	31	10.628	10.628 (0.949)	61760	0.80654	2.016
51 Heptane 43 11.760 11.760 (1.050) 303602 0.87999 2.200 52 1,2-Dichloropropane 63 11.874 11.874 (1.060) 92000 0.80642 2.016 53 Trichloroethene 130 11.900 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	49 Carbon Tetrachloride	117	10.682	10.682 (0.954)	292110	0.95229	
51 1,2-Dichloropropane       63       11.874       11.874       (1.060)       92000       0.80642       2.016         53 Trichloroethene       130       11.900       11.900       (1.063)       170876       0.92144       2.304         54 Dibromomethane       93       11.992       11.992       (1.071)       122849       0.92819       2.320         55 Bromodichloromethane       83       12.132       (1.083)       217467       0.88327       2.208         56 1,4-dioxane       88       12.165       (1.086)       50403       0.83410       2.085         57 methyl methacrylate       41       12.219       (1.091)       94850       0.73722       1.843         58 4-Methyl-2-pentanone       43       13.065       (1.167)       194629       0.73340       1.834         59 cis-1,3-Dichloropropene       75       13.119       (1.171)       103737       0.74427       1.861         60 trans-1,3-Dichloropropene       75       13.804       (1.804)       (0.870)       84617       0.72048       1.801         61 Toluene       91       13.923       13.923       (0.877)       231793       0.80969       2.024         62 1,1,2-Trichloroethane       97       14.009	50 2,2,4-trimethylpentane	57	11.388	11.388 (1.017)	729819	0.91344	
Trichloroethene 130 11.900 (1.063) 170876 0.92144 2.304 54 Dibromomethane 93 11.992 (1.071) 122849 0.92819 2.320 55 Bromodichloromethane 83 12.132 12.132 (1.083) 217467 0.88327 2.208 56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	51 Heptane	43	11.760	11.760 (1.050)	303602	0.87999	
53 Dibromomethane       93       11.992       11.992       (1.071)       122849       0.92819       2.320         55 Bromodichloromethane       83       12.132       12.132       (1.083)       217467       0.88327       2.208         56 1,4-dioxane       88       12.165       12.165       (1.086)       50403       0.83410       2.085         57 methyl methacrylate       41       12.219       12.219       (1.091)       94850       0.73722       1.843         58 4-Methyl-2-pentanone       43       13.065       13.065       (1.167)       194629       0.73340       1.834         59 cis-1,3-Dichloropropene       75       13.119       13.119       (1.171)       103737       0.74427       1.861         60 trans-1,3-Dichloropropene       75       13.804       13.804       (0.870)       84617       0.72048       1.801         61 Toluene       91       13.923       13.923       (0.877)       231793       0.80969       2.024         62 1,1,2-Trichloroethane       97       14.009       14.009       (0.882)       80908       0.79946       1.999         63 2-Hexanone       58       14.381       14.381       (0.906)       69982       0.70067	52 1,2-Dichloropropane	63	11.874	11.874 (1.060)	92000	0.80642	
55 Bromodichloromethane  83 12.132 12.132 (1.083) 217467 0.88327 2.208  56 1,4-dioxane  88 12.165 12.165 (1.086) 50403 0.83410 2.085  57 methyl methacrylate  41 12.219 12.219 (1.091) 94850 0.73722 1.843  58 4-Methyl-2-pentanone  43 13.065 13.065 (1.167) 194629 0.73340 1.834  59 cis-1,3-Dichloropropene  75 13.119 13.119 (1.171) 103737 0.74427 1.861  60 trans-1,3-Dichloropropene  75 13.804 13.804 (0.870) 84617 0.72048 1.801  61 Toluene  91 13.923 13.923 (0.877) 231793 0.80969 2.024  62 1,1,2-Trichloroethane  97 14.009 14.009 (0.882) 80908 0.79946 1.999  63 2-Hexanone  58 14.381 14.381 (0.906) 6982 0.70067 1.752	53 Trichloroethene	130	11.900	11.900 (1.063)	170876	0.92144	
56 1,4-dioxane 88 12.165 12.165 (1.086) 50403 0.83410 2.085 57 methyl methacrylate 41 12.219 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	54 Dibromomethane	93	11.992	11.992 (1.071)	122849	0.92819	
57 methyl methacrylate 41 12.219 (1.091) 94850 0.73722 1.843 58 4-Methyl-2-pentanone 43 13.065 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	55 Bromodichloromethane	83	12.132	12.132 (1.083)	217467	0.88327	
58 4-Methyl-2-pentanone 43 13.065 (1.167) 194629 0.73340 1.834 59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	56 1,4-dioxane	88	12.165	12.165 (1.086)	50403		
59 cis-1,3-Dichloropropene 75 13.119 13.119 (1.171) 103737 0.74427 1.861 60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	57 methyl methacrylate	41	12.219	12.219 (1.091)	94850		
60 trans-1,3-Dichloropropene 75 13.804 13.804 (0.870) 84617 0.72048 1.801 61 Toluene 91 13.923 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	58 4-Methyl-2-pentanone	43	13.065				
61 Toluene 91 13.923 (0.877) 231793 0.80969 2.024 62 1,1,2-Trichloroethane 97 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	59 cis-1,3-Dichloropropene	75	13.119	13.119 (1.171)	103737		
62 1,1,2-Trichloroethane 97 14.009 (0.882) 80908 0.79946 1.999 63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752	60 trans-1,3-Dichloropropene	75					
63 2-Hexanone 58 14.381 14.381 (0.906) 69982 0.70067 1.752		91					
05 2 10.00.00.00.00.00.00.00.00.00.00.00.00.0	62 1,1,2-Trichloroethane						
64 Octane 85 14.586 (0.919) 95130 0.82875 2.072	63 2-Hexanone						
	64 Octane	85	14.586	14.586 (0.919)	95130	0.82875	2.072

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Report Date: 01-Dec-2008 13:39

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
生性性性素性和抑制性性性炎性炎性性炎性炎	<b>** ** ** **</b>	<b>=</b> =	*****			*****
65 Dibromochloromethane	129	14.699	14.699 (0.926)	166523	0.86826	2.171
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	117023	0.77421	1.936
67 Tetrachloroethene	129	15.050	15.050 (0.948)	133424	0.90224	2.256
68 Chlorobenzene	112	15.923	15.923 (1.003)	186434	0.80396	2.010
69 Ethylbenzene	91	16.204	16.204 (1.021)	241128	0.74288	1.857
70 m&p-Xylene	91	16.365	16.365 (1.031)	379402	1.52977	3.824
71 Nonane	57	16.764	16.764 (1.056)	148947	0.66949	1.674(R)
72 Bromoform	173	16.824	16.824 (1.060)	113364	0.77463	1.936
73 Styrene	104	16.829	16.829 (1.060)	126921	0.72344	1.809
74 o-Xylene	91	16.888	16.888 (1.064)	203767	0.76390	1.910
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217 (1.085)	146098	0.77149	1.929
76 1,2,3-Trichloropropane	110	17.374	17.374 (1.094)	39239	0.73919	1.848
77 Cumene	105	17.465	17.465 (1.100)	247714	0.72151	1.804
78 n-Propylbenzene	120	17.999	17.999 (1.134)	65518	0.69454	1,736(R)
79 2-chlorotoluene	126	18.048	18.048 (1.137)	68081	0.74128	1.853
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	236676	0.71287	1.782
81 1,3,5-Trimethylbenzene	120	18,215	18.215 (1.147)	99010	0.73462	1.836
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	87695	0.67928	1.698(R)
83 Decane	57	-18.485	18.485 (1.164)	178078	0.73076	1.827
84 tert-butylbenzene	119	18.636	18.636 (1.174)	218395	0.72911	1.823
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	194551	0.74534	1.863
86 sec-butylbenzene	105	18.900	18.900 (1.191)	269610	0.72086	1.802
87 1,3-Dichlorobenzene	146	18.921	18.921 (1.192)	139223	0.75797	1.895
88 Benzyl Chloride	91	18.997	18.997 (1.197)	140403	0.70946	1.774
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	131754	0.73950	1.849
90 p-Cymene	119	19.062	19.062 (1.201)	225254	0.72469	1.812
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	124883	0.74713	1.868
92 n-butylbenzene	91	19.488	19.488 (1.228)	208588	0.73783	1.844
93 Undecane	57	19.784	19.784 (1.246)	169204	0.71948	1.799
94 Dodecane	57	20.857	20.857 (1.314)	108694	0.73748	1.844
95 1,2,4-Trichlorobenzene	180	21.084	21.084 (1.328)	78155	0.75115	1.878
96 Napthalene	128	21.229	21,229 (1.337)	175048	0.75768	1.894
97 Hexachlorobutadiene	225	21.440	21.440 (1.351)	91366	0.74059	1.851
98 1.2.3-trichlorobenzene	180	21.520	21.520 (1.356)	74243	0.79098	1.977

# QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Calibration Date: 29-NOV-2008

Calibration Time: 10:08

Client Smp ID: CCV/LCS

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d

Report Date: 01-Dec-2008 13:39

#### TestAmerica Knoxville

# INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: glcsk29a.d

Operator: 7126

Lab Smp Id: K3VH21AC Analysis Type: OTHER Quant Type: ISTD

Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m Misc Info: G112708, T0155, 1-all.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	432126	257115	607137	432126	0.00
2 1,4-Difluorobenze	2140476	1273583	3007369	2140476	
3 Chlorobenzene-d5	1639335	975404	2303266	1639335	

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	9.05	8.72	9.38	9.05	0.00
2 1,4-Difluorobenze	11.20	10.87	11.53	11.20	0.00
3 Chlorobenzene-d5	15.87	15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Report Date: 01-Dec-2008 13:39

# TestAmerica Knoxville

#### RECOVERY REPORT

Client SDG: G112708

Client Smp ID: CCV/LCS Operator: 7126

Fraction: OTHER

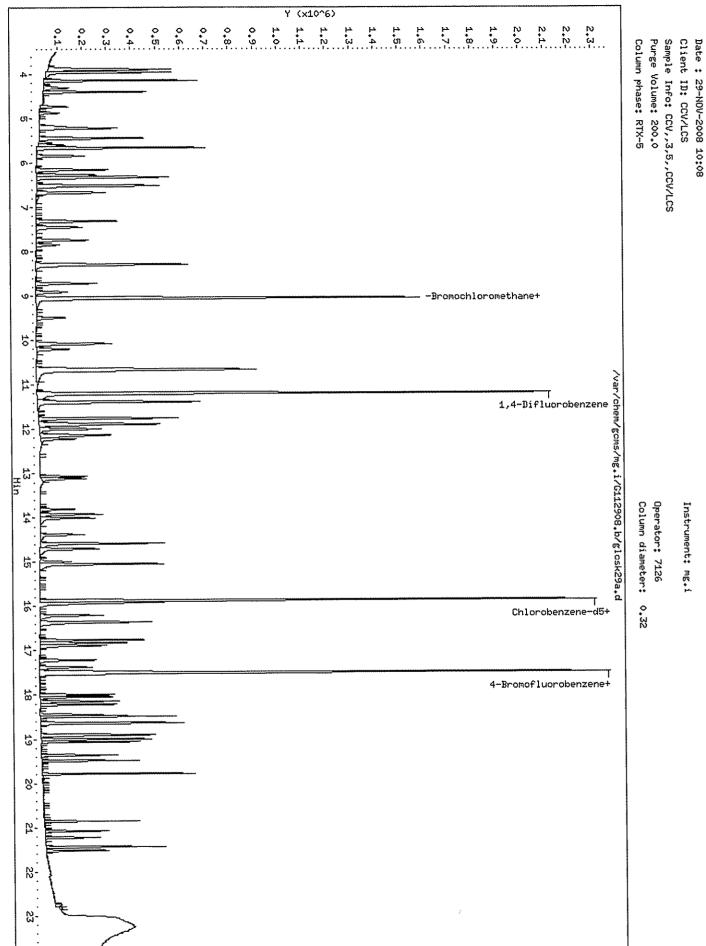
SampleType: LCS Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Sample Matrix: GAS
Lab Smp Id: K3VH21AC
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: 1-all.sub
Method File: /var/chem/gcms/mg.i/G112908.b/T0155.m
Misc Info: G112708, T0155, 1-all.sub,,,,

SPIKE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
7 Chlorodifluorometh 8 Propene 9 Dichlorodifluorome 10 Chloromethane 11 1,2-Dichlorotetraf 12 Methanol 13 Vinyl Chloride 14 n-Butane 15 1,3-Butadiene 16 Bromomethane 17 Chloroethane 18 Vinyl Bromide 19 2-methyl butane 20 Trichlorofluoromet 21 Acrolein 22 Acetonitrile 23 Acetone 24 Pentane 25 Isopropyl Alcohol 26 Ethyl Ether 27 1,1-Dichloroethene 28 Acrylonitrile 29 tert-butanol 30 1,1,2-Trichlorotri 31 Methylene Chloride 32 3-Chloropropene 33 Carbon Disulfide 34 trans-1,2-Dichloro 35 Methyl-t-Butyl Eth 36 1,1-Dichloroethane 37 Vinyl Acetate 38 Hexane 39 2-Butanone	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	2.446 2.476 2.476 2.128 2.1285 2.0793 2.0826 2.0980 2.1828 1.363 2.1441 2.3353 2.1294 1.946 2.3353 2.1294 1.946 2.3353 2.1294 1.946 2.3353 2.348 2.355 2.348 2.355 2.3194 2.3353 2.348 2.355 2.348 2.355 2.3194 2.335 2.348 2.355 2.360 2.388 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.386 2.	89.82 99.04 99.03 85.11 84.227 83.02 83.02 83.02 87.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140* 861.140*	


Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Report Date: 01-Dec-2008 13:39

### 40 cis 1,2-Dichloroet	SPIKE COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	LIMITS
86 sec-butylbenzene   2.500   1.802   72.09   70-130	40 cis 1,2-Dichloroet 41 Ethyl acetate 42 Chloroform 43 Tetrahydrofuran 44 1,1,1-Trichloroeth 45 1,2-Dichloroethane 46 Cyclohexane 47 Benzene 48 1-Butanol 49 Carbon Tetrachlori 50 2,2,4-trimethylpen 51 Heptane 52 1,2-Dichloropropan 53 Trichloroethene 54 Dibromomethane 55 Bromodichlorometha 56 1,4-dioxane 57 methyl methacrylat 58 4-Methyl-2-pentano 59 cis-1,3-Dichloropr 60 trans-1,3-Dichloropr 60 trans-1,3-Dichloro 61 Toluene 62 1,1,2-Trichloroeth 63 2-Hexanone 64 Octane 65 Dibromochlorometha 66 1,2-Dibromoethane 67 Tetrachloroethene 68 Chlorobenzene 69 Ethylbenzene 70 m&p-Xylene 71 Nonane 72 Bromoform 73 Styrene 74 o-Xylene 75 1,1,2,2-Tetrachlor 76 1,2,3-Trichloropro 77 Cumene 78 n-Propylbenzene 79 2-chlorotoluene 80 4-Ethyltoluene 81 1,3,5-Trimethylben 82 Alpha-Methylstyren 83 Decane 84 tert-butylbenzene 85 1,2,4-Trimethylben	ADDED ppb (v/v)  2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000 2.55000	RECOVERED ppb (v/v)  2.388 2.005 2.337 2.041 2.425 2.315 2.315 2.315 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.3	RECOVERED  95.20 96.234 98.639 89.62.6234 98.62.6234 98.62.6234 98.62.6234 98.62.6234 98.62.6234 99.83.73.4.4 99.83.73.4.4 99.83.73.4.4 99.83.73.4.4 99.83.73.4.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.83.73.4 99.73.73.4 99.73.73.73.73.73.73.73.73.73.73.73.73.73.	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d Report Date: 01-Dec-2008 13:39

SPIKE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
87 1,3-Dichlorobenzen 88 Benzyl Chloride 89 1,4-Dichlorobenzen 90 p-Cymene 91 1,2-Dichlorobenzen 92 n-butylbenzene 93 Undecane 94 Dodecane 95 1,2,4-Trichloroben 96 Napthalene 97 Hexachlorobutadien 98 1.2.3-trichloroben	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	1.895 1.774 1.849 1.812 1.868 1.844 1.799 1.844 1.878 1.878 1.894	75.80 70.95 73.95 72.47 74.71 73.78 71.95 73.75 75.11 75.77 74.06 79.10	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	10.00	9.858	98.58	70-130



Data File: /var/chem/gcms/mg.i/G112908.b/glcsk29a.d

# New York State D.E.C.

# Client Sample ID: INTRA-LAB BLANK

# GC/MS Volatiles

Lot-Sample # Work Order# H8L020000 - 098B K3WC51AA Matrix...: AIR

11/18/2008

Date Received..: 11/24/2008 Prep Date....: 12/01/2008 Analysis Date... 12/01/2008

Prep Batch #....: 8337098

Dilution Factor .: I Method..... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0,21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41

# New York State D.E.C.

# Client Sample ID: INTRA-LAB BLANK

# GC/MS Volatiles

Lot-Sample # H8L020000 - 098B		Work Order # K3WC51AA		1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Cyclohexane	ND	0.20		ND	0.69
1,2-Dichlorobenzene	ND	0.080		ND	0.48
1,3-Dichlorobenzene	ND	0.080		ND	0,48
1,4-Dichlorobenzene	ND	0.080		ND	0.48
Dichlorodifluoromethane	ND	0.080		ND	0.40
1,1-Dichloroethane	ND	0.080		ND	0.32
1,2-Dichloroethane	ND	0.080		ND	0.32
1,1-Dichloroethene	ND	0.080		ND	0.32
cis-1,2-Dichloroethene	ND	0.080		ND	0.32
trans-1,2-Dichloroethene	ND	0.080		ND	0.32
1,2-Dichloropropane	ND	0.080		ND	0.37
cis-1,3-Dichloropropene	ND	0.080		ND	0.36
TENTATIVELY INDENTIFIED	COMPOUNDS	RES	ULT	***************************************	UNITS
None					
SURROGATE		PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	and of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	89			70 - 130

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Report Date: 02-Dec-2008 12:34

# TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/gblkl01.d
Lab Smp Id: K3WC51AA
Ini Date Client Smp ID: BLANK

Inj Date : 01-DEC-2008 12:37 Operator : 7126 Smp Info : BLANK, 3, , , BLANK Inst ID: mg.i

Misc Info: G120108, T0155, all. sub, , , ,

Method: /var/chem/gcms/mg.i/G120108.b/T0155.m

Meth Date: 02-Dec-2008 12:34 tajh Quant Type: ISTD

Cal Date: 01-DEC-2008 11:14 Cal File: 1ptcal.d

Als bottle: 15 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 5

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt Vo	1.00000 500.00000 500.00000	Dilution Factor Default calibration vol Default sample volume
Cond Wariable		Local Compound Variable

Cpnd Variable

Local Compound Variable

		CONCENTRA			TIONS		
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
===	你我就我们们们的时间就是我们们们们们们还是我还		<b>**</b>				
*	1 Bromochloromethane	128	9.059	9.053 (1.000)	379875	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	1856719	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1374372	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	784976	3.57135	3.571
	14 n-Butane	43	4.308	4.405 (0.476)	15978	0.07717	007717 10/0/08
	31 Methylene Chloride	84	6.519	6.514 (0.720)	6693	0.05628	0.05628

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: BLANK

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Report Date: 02-Dec-2008 12:34

#### TestAmerica Knoxville

# INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: gblkl01.d Lab Smp Id: K3WC51AA Analysis Type: OTHER

Quant Type: ISTD

Operator: 7126

Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m Misc Info: G120108, T0155, all.sub,,,,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	396236 2070950 1572100	1232215	556712 2909685 2208800		-4.13 -10.34 -12.58

COMPOUND	STANDARD	RT I LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.06	0.06
2 1,4-Difluorobenze		10.87	11.53	11.20	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Report Date: 02-Dec-2008 12:34

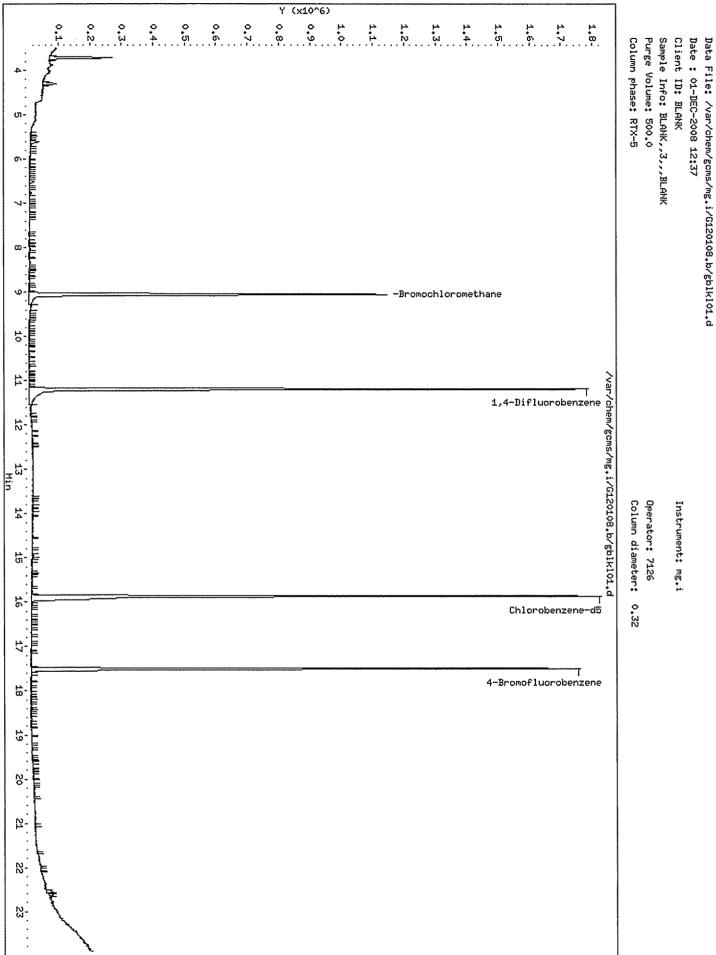
# TestAmerica Knoxville

# RECOVERY REPORT

Client SDG: G120108

Client Smp ID: BLANK Operator: 7126

Fraction: OTHER


SampleType: BLANK Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Lab Smp Id: K3WC51AA Client Smp
Level: LOW Operator: 7
Data Type: MS DATA SampleType:
SpikeList File: all.spk Quant Type:
Sublist File: all.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, all.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.571	89.28	70-130

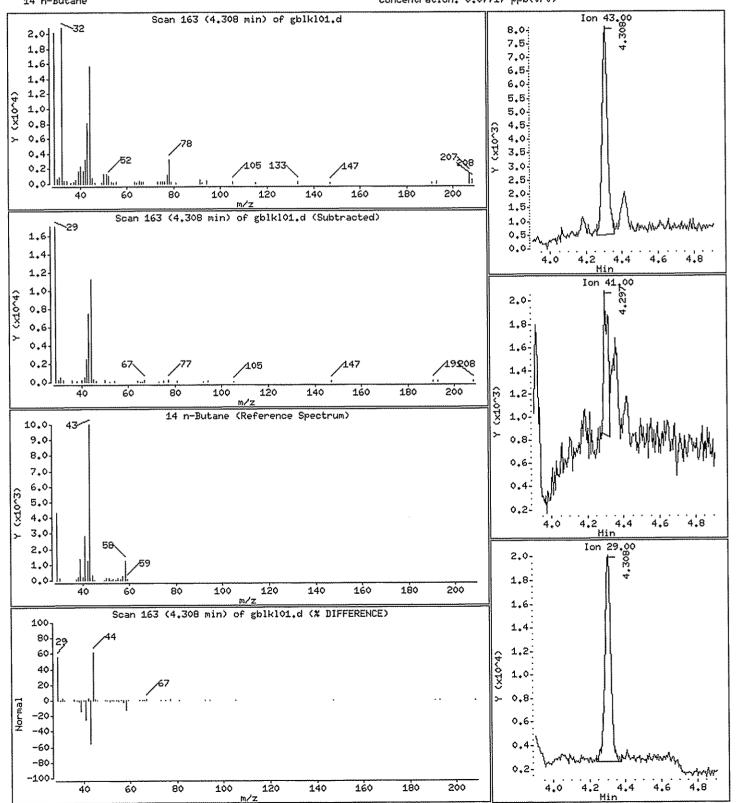


Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Date: 01-DEC-2008 12:37

Client ID: BLANK

Instrument: mg.i


Sample Info: BLANK,,3,,,BLANK

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

14 n-Butane

Concentration: 0.07717 ppb(v/v)

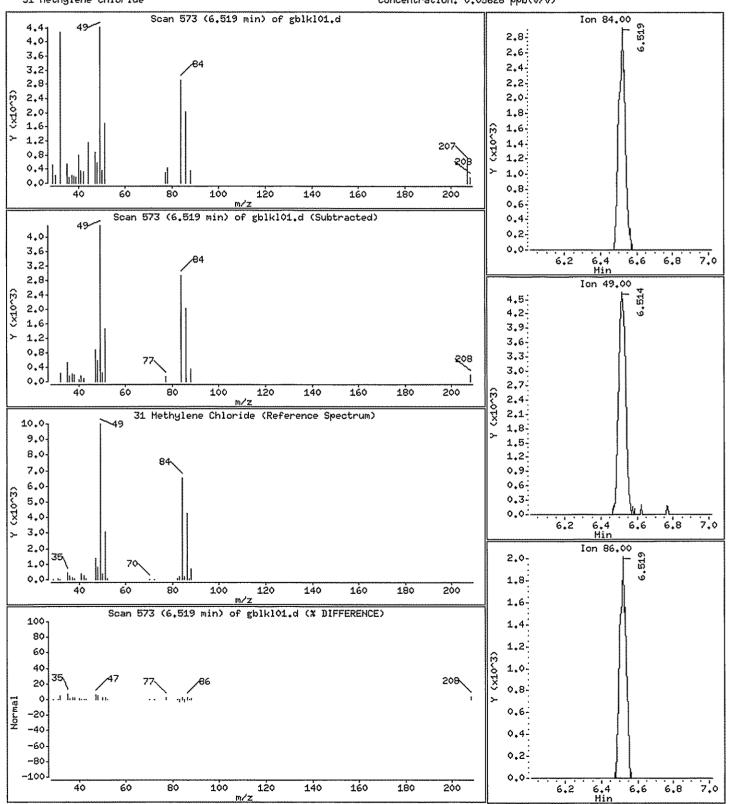


Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Date : 01-DEC-2008 12:37

Client ID: BLANK

Instrument: mg.i


Sample Info: BLANK,,3,,,BLANK

Purge Volume: 500.0 Column phase: RTX-5 Operator: 7126

Column diameter: 0.32

31 Methylene Chloride

Concentration: 0.05628 ppb(v/v)



Data File: /var/chem/gcms/mg.i/G120108.b/gblkl01.d

Report Date: 02-Dec-2008 12:35

## TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120108.b/gblkl01.d
Lab Smp Id: K3WC51AA Client Smp II
Inj Date: 01-DEC-2008 12:37
Operator: 7126 Inst ID: mg.:
Smp Info: BLANK,,3,,,BLANK
Misc Info: G120108,T0155,all.sub,,,, Client Smp ID: BLANK

Inst ID: mq.i

Comment

: /var/chem/gcms/mg.i/G120108.b/T0155.m Method

Meth Date: 02-Dec-2008 12:34 tajh
Cal Date: 01-DEC-2008 11:14
Als bottle: 15
Dil Factor: 1.00000
Integrator: HP RTE
Target Version: 3 50 Quant Type: ISTD Cal File: 1ptcal.d QC Sample: BLANK

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: qmidhp01

- NO TENTATIVELY IDENTIFIED COMPOUNDS -

#### New York State D.E.C.

## Client Sample ID: CHECK SAMPLE

#### GC/MS Volatiles

Work Order # K3WC51AC Matrix....: AIR Lot-Sample # H8L020000 - 098C Date Received ..: 11/24/2008 11/18/2008 Prep Date....: 12/01/2008 Analysis Date... 12/01/2008 Prep Batch # ....: 8337098 1 Method..... TO-15 Dilution Factor .: MEASURED SPIKE **MEASURED** SPIKE **AMOUNT AMOUNT** AMOUNT RECOVERY **AMOUNT** PERCENT (ppb(v/v))(ug/m3) (ug/m3) LIMITS (ppb(v/v))RECOVERY **PARAMETER** 70 - 130 8.0 7.3 91 Benzene 2.50 2.27 96 70 - 130 9.4 9.0 Toluene 2.50 2.40 2.28 13 12 91 70 - 130 Trichloroethene 2.50 12 11 92 70 - 1302.50 2.31 Chlorobenzene 90 70 - 1301,1-Dichloroethene 2.50 2.25 9.9 8.9 LABORATORY CONTROL PERCENT LIMITS (%) RECOVERY SURROGATE 96 70 - 1304-Bromofluorobenzene

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d

Report Date: 02-Dec-2008 12:34

### TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120108.b/glcs101.d Lab Smp Id: K3WC51AC Client Smp

Client Smp ID: CCV/LCS

Inj Date : 01-DEC-2008 09:20

Operator : 7126 Inst ID: mg.i

Smp Info : CCV,,3,,,CCV/LCS Misc Info : G120108,TO155,1-all.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120108.b/T0155.m

Quant Type: ISTD Meth Date: 02-Dec-2008 09:57 tajh Cal File: 1ptcal.d Cal Date : 01-DEC-2008 11:14 Als bottle: 13 QC Sample: LCS

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
٧o	200.00000	Default sample volume

Cpnd Variable Local Compound Variable

						CONCENTRA	rions
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
==		****	==				
*	1 Bromochloromethane	128	9.053	9.053 (1.000)	396236	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.200	11.200 (1.000)	2070950	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1572100	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	963056	3.83046	9.576
	7 Chlorodifluoromethane	67	3.898	3.898 (0.431)	40876	0.92763	2.319
	8 Propene	41	3.914	3.914 (0.432)	178801	0.98784	2.470
	9 Dichlorodifluoromethane	85	3.963	3.963 (0.438)	438032	1.01304	2.532
	10 Chloromethane	52	4.146	4.146 (0.458)	41194	0.98273	2.457
	11 1,2-Dichlorotetrafluoroethane	135	4.152	4.152 (0.459)	219828	0.95640	2.391
	12 Methanol	31	4.281	4.281 (0.473)	35352	1.24764	3.119
	13 Vinyl Chloride	62	4.319	4.319 (0.477)	104247	0.90718	2.268
	14 n-Butane	43	4.405	4.405 (0.487)	208331	0.96463	2.412
	15 1,3-Butadiene	54	4.405	4.405 (0.487)	98195	0.92113	2.303
	16 Bromomethane	94	4.734	4.734 (0.523)	84928	0.94398	2.360
	17 Chloroethane	64	4.874	4.874 (0.538)	45968	0.89874	2.247

Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d Report Date: 02-Dec-2008 12:34

						CONCENTRA	rions
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	~~==	==	*====		======		
18 Vinyl Bromide	106	5.182	5.182	(0.572)	123924	0.92018	2.300
19 2-methyl butane	43	5.225	5.225	(0.577)	252580	0.94080	2.352
20 Trichlorofluoromethane	101	5.446	5.446	(0.602)	377831	0.91747	2.294
21 Acrolein	56	5.478	5.478	(0.605)	32741	0.94026	2.351
22 Acetonitrile	40	5.548	5.548	(0.613)	46434	1.01988	2.550
23 Acetone	58	5.597	5.597	(0.618)	50451	1.10953	2.774
24 Pentane	72	5.667	5.667	(0.626)	30156	0.95241	2.381
25 Isopropyl Alcohol	45	5.667	5.667	(0.626)	231892	0.94026	2.351
26 Ethyl Ether	31	5.845	5.845	(0.646)	159065	1.04110	2.603
27 1,1-Dichloroethene	96	6.158	6.158	(0.680)	124020	0.90061	2.252
28 Acrylonitrile	53	6.282	6.282	(0.694)	64095	0.98012	2.450
29 tert-butanol	59	6.266	6.266	(0.692)	231739	0.91730	2.293
30 1,1,2-Trichlorotrifluoroethane	101	6.330	6.330	(0.699)	248920	0.90328	2.258
31 Methylene Chloride	84	6.514	6.514	(0.719)	109330	0.88143	2.204
32 3-Chloropropene	39	6.530	6.530	(0.721)	140731	0.87917	2.198
33 Carbon Disulfide	76	6.675	6.675	(0.737)	429993	0.96946	2.424
34 trans-1,2-Dichloroethene	96	7.317	7.317	(0.808)	135540	0.86746	2.169
35 Methyl-t-Butyl Ether	73	7.446	7.446	(0.822)	207888	0.94548	2.364
36 1,1-Dichloroethane	63	7.743	7.743	(0.855)	233718	0.90592	2.265
37 Vinyl Acetate	43	7.846	7.846	(0.867)	204707	0.90021	2.250
38 Hexane	56	8.293	8.293	(0.916)	128788	0.88076	2,202
39 2-Butanone	72	8.309	8.309	(0.918)	37019	0.98263	2.456
40 cis 1,2-Dichloroethene	96	8.719		(0.963)	111467	0.87711	2.193
41 Ethyl acetate	43	8.913	8.913	(0.984)	200646	0.95021	2.376
42 Chloroform	83	9.059	9.059	(1.001)	225757	0.93982	2.350
43 Tetrahydrofuran	42	9.485		(1.048)	116363	0.96161	2.404
44 1,1,1-Trichloroethane	97	10.078	10.078	(1.113)	223600	0.85331	2.133
45 1,2-Dichloroethane	62	10.197		(0.910)	127551	0.85206	2.130
46 Cyclohexane	69	10.655		(0.951)	62214	0.86810	2.170
47 Benzene	78	10.666	10.666		279833	0.90934	2.273
48 1-Butanol	31	10.623		(0.948)	59473	0.80275	2.007
49 Carbon Tetrachloride	117	10.687		(0.954)	240983	0.81199	2.030
50 2,2,4-trimethylpentane	57	11.394	11.394	(1.017)	689051	0.89137	2.228
51 Heptane	43	11.760		(1.050)	284663	0.85280	2.132
52 1,2-Dichloropropane	63		11.874		98684	0.89405	2.235
53 Trichloroethene	130	11.895		(1.062)	163363	0.91050	2.276
54 Dibromomethane	93	11.998	11.998	(1.071)	108744	0.84920	2.123
55 Bromodichloromethane	83	12.132	12.132	(1.083)	199403	0.83709	2.093
56 1,4-dioxane	88	12.159		(1.086)	49931	0.85403	2.135
57 methyl methacrylate	41	12.219		(1.091)	102942	0.82698	2.067
58 4-Methyl-2-pentanone	43	13.060		(1.166)	225333	0.87760	2.194
59 cis-1,3-Dichloropropene	75		13.119		109639	0.81303	2.032
60 trans-1,3-Dichloropropene	75		13.809		96655	0.85818	2.145
61 Toluene	91	13.923		(0.877)	263655	0.96037	2.401
62 1,1,2-Trichloroethane	97	14.009		(0.882)	93765	0.96612	2.415
63 2-Hexanone	58	14.381		(0.906)	78850	0.82322	2.058
64 Octane	85		14.586		98255	0.89258	2.231
				,,			

Data File: /var/chem/gcms/mg.i/G120108.b/glcs101.d Report Date: 02-Dec-2008 12:34

					CONCENTRAT	CIONS
	QUANT SIG				ON-COLUMN	FINAL _
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
- 		22 22		****		
65 Dibromochloromethane	129	14.705	14.705 (0.926)	166650	0.90609	2.265
66 1,2-Dibromoethane	107	14.996	14.996 (0.945)	131407	0.90656	2.266
67 Tetrachloroethene	129	15.050	15.050 (0.948)	133343	0.94026	2.351
68 Chlorobenzene	112	15.923	15.923 (1.003)	205422	0.92372	2.309
69 Ethylbenzene	91	16.204	16.204 (1.021)	275306	0.88446	2.211
70 m&p-Xylene	91	16.365	16.365 (1.031)	430081	1.80828	4.521
71 Nonane	57	16.765	16.765 (1.056)	180411	0.84560	2.114
72 Bromoform	173	16.824	16.824 (1.060)	121371	0.86481	2.162
73 Styrene	104	16.829	16.829 (1.060)	148124	0.88041	2.201
74 o-Xylene	91	16.889	16.889 (1.064)	229822	0.89843	2.246
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217 (1.085)	171265	0.94306	2.358
76 1,2,3-Trichloropropane	110	17.374	17.374 (1.094)	44915	0.88230	2.206
77 Cumene	105	17.465	17.465 (1.100)	284902	0.86531	2.163
78 n-Propylbenzene	120	17.999	17.999 (1.134)	80391	0.88866	2.222
79 2-chlorotoluene	126	18.048	18.048 (1.137)	81237	0.92236	2.306
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	281222	0.88326	2.208
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	121577	0.94064	2.352
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	102249	0.82589	2.065
83 Decane	57	18.485	18.485 (1.164)	221091	0.94608	2.365
84 tert-butylbenzene	119	18.636	18.636 (1.174)	264303	0.92011	2.300
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	235650	0.94141	2.354
86 sec-butylbenzene	105	18.900	18.900 (1.191)	326538	0.91041	2.276
87 1,3-Dichlorobenzene	146	18.921	18.921 (1.192)	164901	0.93616	2.340
88 Benzyl Chloride	91	18.997	18.997 (1.197)	166445	0.87702	2.192
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	157137	0.91969	2.299
90 p-Cymene	119	19.056	19.056 (1.200)	279685	0.93829	2.346
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	150633	0.93973	2.349
92 n-butylbenzene	91	19.488	19.488 (1.228)	251198	0.92655	2.316
93 Undecane	57	19.784	19.784 (1.246)	220634	0.97829	2.446
94 Dodecane	57	20.841	20.841 (1.313)	139691	0.98833	2.471
95 1,2,4-Trichlorobenzene	180	21.068	21.068 (1.327)	90780	0.90980	2.274
96 Napthalene	128	21.213	21.213 (1.336)	192803	0.87022	2.176
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	108193	0.91449	2.286
98 1.2.3-trichlorobenzene	180	21.504	21.504 (1.355)	86847	0.96484	2.412

Calibration Date: 01-DEC-2008

Calibration Time: 09:20 Client Smp ID: CCV/LCS

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d

Report Date: 02-Dec-2008 12:34

#### TestAmerica Knoxville

## INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: glcsl01.d Lab Smp Id: K3WC51AC Analysis Type: OTHER Quant Type: ISTD

Misc Info: G120108, T0155, 1-all.sub, , , ,

Operator: 7126	
Operacor, 7220	
	<b>~~</b>
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.	III
11001100 1220. / 102/ 01000/ 3000/ 500/ 500 10/ 500 10/ 500	
Mina Tafa, C120100 TO1EE 1, all cub	

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		1232215	556712 2909685 2208800	396236 2070950 1572100	

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		8.72 10.87 15.54	9.38 11.53 16.20	9.05 11.20 15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d

Report Date: 02-Dec-2008 12:34

## TestAmerica Knoxville

## RECOVERY REPORT

Client SDG: G120108

Client Smp ID: CCV/LCS Operator: 7126

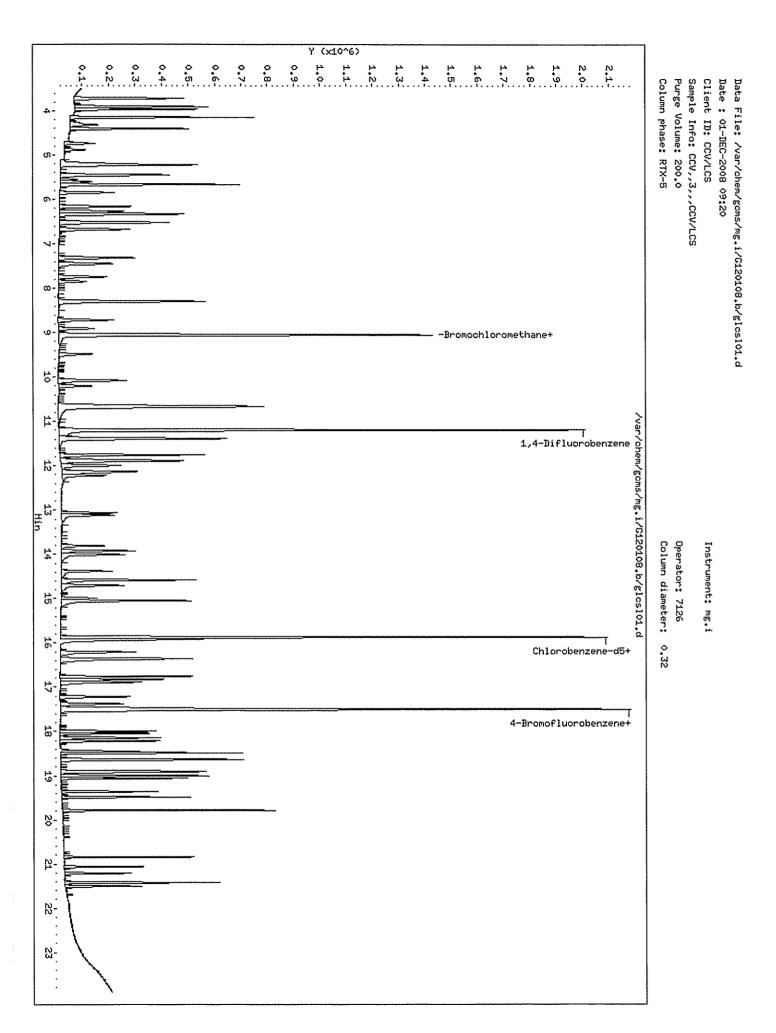
Fraction: OTHER

SampleType: LCS Quant Type: ISTD

Client Name:

Sample Matrix: GAS
Lab Smp Id: K3WC51AC
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: 1-all.sub
Method File: /var/chem/gcms/mg.i/G120108.b/T0155.m
Misc Info: G120108, T0155, 1-all.sub,,,,

SPIKE COMPOUND	CON ADI ppb (v	ED REC	ONC OVERED (v/v)	RECOVERED	LIMITS
7 Chlorodiflu 8 Propene 9 Dichlorodif 10 Chlorometha 11 1,2-Dichlor 12 Methanol 13 Vinyl Chlor 14 n-Butane 15 1,3-Butadie 16 Bromomethar 17 Chloroethar 18 Vinyl Bromi 19 2-methyl bu 20 Trichlorofi 21 Acrolein 22 Acetonitri 23 Acetone 24 Pentane 25 Isopropyl A 26 Ethyl Ether 27 1,1-Dichlor 28 Acrylonitri 29 tert-butand 30 1,1,2-Trich 31 Methylene ( 32 3-Chloropro 33 Carbon Disu 34 trans-1,2-I 35 Methyl-t-Bu 36 1,1-Dichlor 37 Vinyl Aceta 38 Hexane 39 2-Butanone	cluorome ine rotetraf ride ene ne ne ne ne ne ne ne ne ne ne ne n	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	2.319 2.470 2.537 2.319 2.457 2.319 2.262 2.330 2.350 2.3550 2.3550 2.3550 2.3550 2.3550 2.3550 2.3550 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250	92.76 98.327 91.327 92.78 108.327 92.466 92.466 92.466 92.466 92.466 92.466 92.466 92.466 92.466 94.73 94.106 91.73 94.106 91.73 94.106 98.75 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130


Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d Report Date: 02-Dec-2008 12:34

CDTITE COMPOUND	CONC	CONC	& SHOOMED IN	TTMTTO
SPIKE COMPOUND	ADDED ppb (v/v)	RECOVERED ppb (v/v)	RECOVERED	LIMITS
			-	
40 cis 1,2-Dichloroet 41 Ethyl acetate	2.500 2.500	2.193 2.376	87.71 95.02	70-130 70-130
42 Chloroform	2.500	2.350	93.98	70-130
43 Tetrahydrofuran	2.500	2.404	96.16	70-130
44 1,1,1-Trichloroeth	2.500	2.133	85.33	70-130
45 1,2-Dichloroethane	2.500 2.500	2.130 2.170	85.21 86.81	70-130   70-130
46 Cyclohexane 47 Benzene	2.500	2.273	90.93	70-130
48 1-Butanol	2.500	2.007	80.28	70-130
49 Carbon Tetrachlori		2.030	81.20	70-130
50 2,2,4-trimethylpen	2.500 2.500	2.228 2.132	89.14 85.28	70-130
51 Heptane 52 1,2-Dichloropropan		2.235	89.40	70-130
53 Trichloroethene	2.500	2.276	91.05	70-130
54 Dibromomethane	2.500	2.123	84.92	70-130
55 Bromodichlorometha	2.500 2.500	2.093 2.135	83.71 85.40	70-130
56 1,4-dioxane 57 methyl methacrylat		2.133	82.70	70-130
58 4-Methyl-2-pentance		2.194	87.76	70-130
59 cis-1,3-Dichloropr	2.500	2.032	81.30	70-130
60 trans-1,3-Dichloro	2.500	2.145 2.401	85.82 96.04	70-130
62 1,1,2-Trichloroeth	2.500	2.415	96.61	70-130
63 2-Hexanone	2.500	2.058	82.32	70-130
64 Octane	2.500	2.231	89.26 90.61	70-130
65 Dibromochlorometha 66 1,2-Dibromoethane	2.500 2.500	2.265 2.266	90.66	70-130
67 Tetrachloroethene	2.500	2.351	94.03	70-130
68 Chlorobenzene	2.500	2.309	92.37	70-130
69 Ethylbenzene	2.500	2.211 4.521	88.45 90.41	70-130 70-130
70 m&p-Xylene 71 Nonane	5.000 2.500	2.114	84.56	70-130
72 Bromoform	2.500	2.162	86.48	70-130
73 Styrene	2.500	2.201	88.04 89.84	70-130
74 o-Xylene 75 1,1,2,2-Tetrachlor	2.500	2.246 2.358	94.31	70-130
76 1,2,3-Trichloropro	2.500	2.206	88.23	70-130
77 Cumene	2.500	2.163	86.53	70-130
78 n-Propylbenzene	2.500	2.222	88.87 92.24	70-130
79 2-chlorotoluene 80 4-Ethyltoluene	2.500	2.306 2.208	88.33	70-130
81 1,3,5-Trimethylber		2.352	94.06	70-130
82 Alpha-Methylstyrer	2.500	2.065	82.59	70-130
83 Decane	2.500	2.365	94.61 92.01	70-130
84 tert-butylbenzene 85 1,2,4-Trimethylber	2.500 1 2.500	2.300 2.354	94.14	70-130
86 sec-butylbenzene	2.500	2.276	91.04	70-130
-	_			

Data File: /var/chem/gcms/mg.i/G120108.b/glcsl01.d Report Date: 02-Dec-2008 12:34

SPIKE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
87 1,3-Dichlorobenzen 88 Benzyl Chloride 89 1,4-Dichlorobenzen 90 p-Cymene 91 1,2-Dichlorobenzen 92 n-butylbenzene 93 Undecane 94 Dodecane 95 1,2,4-Trichloroben 96 Napthalene 97 Hexachlorobutadien 98 1.2.3-trichloroben	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	2.340 2.192 2.299 2.346 2.349 2.316 2.446 2.471 2.274 2.176 2.286 2.412	93.62 87.70 91.97 93.83 93.97 92.66 97.83 98.83 90.98 87.02 91.45 96.48	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	10.00	9.576	95.76	70-130



# Client Sample ID: INTRA-LAB BLANK

# GC/MS Volatiles

Lot-Sample # H8L030000 - 089B Work Order # K3X4A1AA Matrix......: AIR

11/18/2008 Prep Date.....: 12/02/2008

Prep Batch #....:

8338089

Dilution Factor.: 1

Method.....: TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
1,4-Dioxane	ND	0.20	ND	0.72
Ethylbenzene	ND	0.080	ND	0.35
Trichlorofluoromethane	ND	0.080	ND	0.45
Hexachlorobutadiene	ND	0.080	ND	0.85
n-Hexane	ND	0.20	ND	0.70
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
tert-Butyl alcohol	ND	0.32	ND	0.97
Methylene chloride	ND	0.20	ND	0.69
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Styrene	ND	0.080	ND	0.34
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2-Trichloroethane	ND	0.080	ND	0.44
Trichloroethene	ND	0.040	ND	0.21
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
Vinyl chloride	ND	0.080	ND	0.20
o-Xylene	ND	0.080	ND	0.35
Methyl tert-butyl ether	ND	0.16	ND	0.58
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
m-Xylene & p-Xylene	ND	0.080	ND	0.35
Bromodichloromethane	ND	0.080	ND	0.54
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
2-Butanone (MEK)	ND	0.32	ND	0.94
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Dibromochloromethane	ND	0.080	ND	0.68
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Chloromethane	ND	0.20	ND	0.41

## New York State D.E.C.

# Client Sample ID: INTRA-LAB BLANK

## GC/MS Volatiles

Lot-Sample # H8L030000 - 089B		Work Order # K3X4A	IAA	Matrix: AIR		
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)		
Cyclohexane	ND	0.20	ND	0.69		
1,2-Dichlorobenzene	ND	0.080	ND	0.48		
1,3-Dichlorobenzene	ND	0.080	ND	0.48		
1,4-Dichlorobenzene	ND	0.080	ND	0.48		
Dichlorodifluoromethane	ND	0.080	ND	0.40		
1,1-Dichloroethane	ND	0.080	ND	0.32		
1,2-Dichloroethane	ND	0.080	ND	0.32		
1,1-Dichloroethene	ND	0.080	ND	0.32		
cis-1,2-Dichloroethene	ND	0.080	ND	0.32		
trans-1,2-Dichloroethene	ND	0.080	ND	0.32		
1,2-Dichloropropane	ND	0.080	ND	0.37		
cis-1,3-Dichloropropene	ND	0.080	ND	0.36		
TENTATIVELY INDENTIFIED	COMPOUNDS	RESULT		UNITS		
None						
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)		
4-Bromofluorobenzene	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	91	•	70 - 130		

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G120208.b/gblkl02.d

Report Date: 03-Dec-2008 09:16

## TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mg.i/G120208.b/gblkl02.d

Lab Smp Id: K3X4A1AA Client Smp ID: BLANK

Inj Date : 02-DEC-2008 11:30

Operator: 7126 Inst ID: mg.i

Smp Info : BLANK, , 3, , , BLANK

Misc Info: G120208, T0155, all.sub, , , ,

Method: /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date: 03-Dec-2008 09:07 tajh Quant Tyr Cal Date: 02-DEC-2008 10:05 Cal File: Als bottle: 15 Quant Type: ISTD Cal File: 1ptcal.d QC Sample: BLANK

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	500.00000	Default sample volume

Cpnd Variable

Local Compound Variable

					CONCENTRA'	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	* * = *	<b>*</b> *				
* 1 Bromochloromethane	128	9.048	9.053 (1.000)	375417	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.194	11.194 (1.000)	1944429	4.00000	4.000
* 3 Chlorobenzene-d5	117	15.875	15.875 (1.000)	1422105	4.00000	4.000
\$ 6 4-Bromofluorobenzene	95	17.503	17.503 (1.103)	826649	3.63471	3.635

Data File: /var/chem/gcms/mg.i/G120208.b/gblkl02.d

Report Date: 03-Dec-2008 09:16

# TestAmerica Knoxville

## INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i Lab File ID: gblk102.d Lab Smp Id: K3X4A1AA Analysis Type: OTHER

Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, all.sub,,,,

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: BLANK Level: LOW

Sample Type: AIR

					<u> </u>
COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5		250756 1247147 946696	592122 2944943 2235474	======= 375417 1944429 1422105	-10.92 -7.23 -10.62

COMPOUND	STANDARD	RT I LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	-0.06
2 1,4-Difluorobenze		10.86	11.52	11.19	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120208.b/gblk102.d

Report Date: 03-Dec-2008 09:16

TestAmerica Knoxville

# RECOVERY REPORT

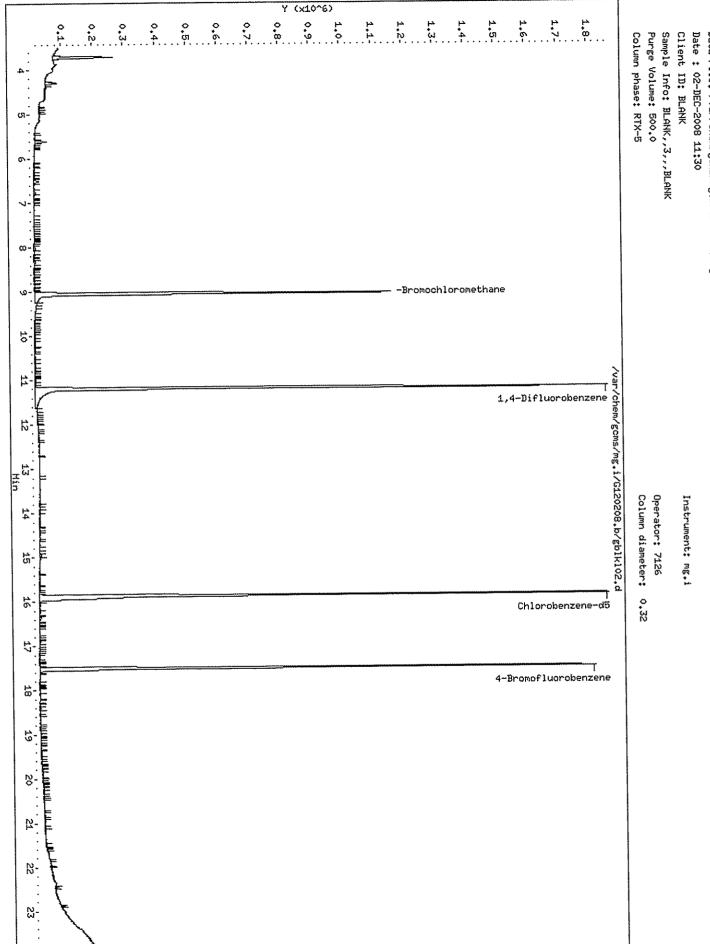
Client SDG: G120208

Client Smp ID: BLANK Operator: 7126

SampleType: BLANK Quant Type: ISTD

Fraction: OTHER

Client Name:


Sample Matrix: GAS Lab Smp Id: K3X4A1AA

Level: LOW

Data Type: MS DATA SpikeList File: all.spk

Sublist File: nysdec.sub Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, all.sub,,,,

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	4.000	3.635	90.87	70-130



Data File: /var/chem/gcms/mg.i/G120208.b/gblkl02.d

Data File: /var/chem/gcms/mg.i/G120208.b/gblkl02.d

Report Date: 03-Dec-2008 09:16

## TestAmerica Knoxville

Modified Method TO-14/TO-15
Data file: /var/chem/gcms/mg.i/G120208.b/gblkl02.d
Lab Smp Id: K3X4A1AA
Ini Date: 00 DTG 01 Client Smp ID: BLANK

Inj Date : 02-DEC-2008 11:30

Inst ID: mg.i Operator: 7126

Smp Info : BLANK,,3,,,BLANK Misc Info : G120208,TO155,all.sub,,,,

Comment

: /var/chem/gcms/mg.i/G120208.b/T0155.m Method

Quant Type: ISTD Cal File: 1ptcal.d QC Sample: BLANK Meth Date: 03-Dec-2008 09:07 tajh Cal Date : 02-DEC-2008 10:05

Als bottle: 15 Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: nysdec.sub

Target Version: 3.50 Processing Host: qmidhp01

⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

# New York State D.E.C.

# Client Sample ID: CHECK SAMPLE

# GC/MS Volatiles

Lot-Sample # H8	L030000 - 089C	Work Or	der# K3X	4A1AC	Matrix	: AIR
Prep Date: Prep Batch #:	11/18/2008 12/02/2008 8338089	Date Reco	eived: 11/24 Date 12/02	1/2008 2/2008		
Dilution Factor.:	1	Method	: TO-1	5		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	2.50	2.30	8.0	7.3	92	70 - 130
Toluene	2.50	2.36	9.4	8.9	95	70 - 130
Trichloroethene	2.50	2.32	13	12	93	70 - 130
Chlorobenzene	2.50	2.28	12	10	91	70 - 130
1,1-Dichloroethene	2.50	2.34	9.9	9.3	94	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL
4-Bromofluorobenze	ne	100			70 - 13	0

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d

Report Date: 03-Dec-2008 09:16

# TestAmerica Knoxville

Modified Method TO-14/TO-15 Data file: /var/chem/gcms/mg.i/G120208.b/glcsl02.d

Client Smp ID: CCV/LCS Lab Smp Id: K3X4A1AC

Inj Date : 02-DEC-2008 09:11

Inst ID: mg.i Operator: 7126

Smp Info : CCV,,3,,,CCV/LCS Misc Info : G120208,T0155,1-all.sub,,,,

Comment

Method : /var/chem/gcms/mg.i/G120208.b/T0155.m Meth Date : 03-Dec-2008 09:16 tajh Quant Tyr Quant Type: ISTD Cal File: 1ptcal.d QC Sample: LCS Cal Date : 02-DEC-2008 10:05

Als bottle: 13
Dil Factor: 1.00000
Integrator: HP RTE

Compound Sublist: 1-all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default calibration vol
Vo	200.00000	Default sample volume

Cpnd Variable

Local Compound Variable

							CONCENTRA	FIONS
		QUANT SIG					ON-COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT F	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	******	====	==	20255 E		*****		
*	1 Bromochloromethane	128	9.053	9.053	(1.000)	421439	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.194	11.194	(1.000)	2096045	4.00000	4.000
*	3 Chlorobenzene-d5	117	15.875	15.875	(1.000)	1591085	4.00000	4.000
\$	6 4-Bromofluorobenzene	95	17.503	17.503	(1.103)	1012740	3.98001	9.950
	7 Chlorodifluoromethane	67	3.898	3.898	(0.431)	43558	0.92938	2.323
	8 Propene	41	3.909	3.909	(0.432)	189497	0.98433	2.461
	9 Dichlorodifluoromethane	85	3.963	3.963	(0.438)	464793	1.01064	2.527
3	.0 Chloromethane	52	4.146	4.146	(0.458)	40894	0.91723	2.293
3	1 1,2-Dichlorotetrafluoroethane	135	4.146	4.146	(0.458)	225596	0.92280	2.307
1	2 Methanol	31	4.276	4.276	(0.472)	34051	1.12986	2.825
1	3 Vinyl Chloride	62	4.314	4.314	(0.476)	110870	0.90712	2.268
1	4 n-Butane	43	4.400	4.400	(0.486)	217813	0.94823	2.370
1	5 1,3-Butadiene	54	4.400	4.400	(0.486)	102986	0.90830	2.271
:	6 Bromomethane	94	4.729	4.729	(0.522)	88232	0.92205	2.305
:	7 Chloroethane	64	4.874	4.874	(0.538)	49169	0.90384	2.260

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d Report Date: 03-Dec-2008 09:16

					CONCENTRAT	IONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
· · · · · · · · · · · · · · · · · · ·		22			*****	****
18 Vinyl Bromide	106	5.182	5.182 (0.572)	124144	0.86669	2.167
19 2-methyl butane	43	5.219	5.219 (0.577)	266124	0.93197	2.330
20 Trichlorofluoromethane	101	5.446	5.446 (0.602)	406668	0.92844	2.321
21 Acrolein	56	5.473	5.473 (0.604)	30858	0.83319	2.083
22 Acetonitrile	40	5.543	5.543 (0.612)	43300	0.89417	2.235
23 Acetone	58	5.597	5.597 (0.618)	48895	1.01100	2.528
24 Pentane	72	5.662	5.662 (0.625)	32212	0.95651	2.391
25 Isopropyl Alcohol	45	5.667	5.667 (0.626)	230877	0.88016	2.200
26 Ethyl Ether	31	5.845	5.845 (0.646)	153706	0.94586	2.365
27 1,1-Dichloroethene	96	6.158	6.158 (0.680)	137192	0.93669	2.342
28 Acrylonitrile	53	6.276	6.276 (0.693)	60413	0.86857	2.171
29 tert-butanol	59	6.260	6.260 (0.691)	230611	0.85825	2.146
30 1.1.2-Trichlorotrifluoroethane	101	6.325	6.325 (0.699)	286473	0.97739	2.443
31 Methylene Chloride	84	6.514	6.514 (0.719)	126699	0.96037	2.401
32 3-Chloropropene	39	6.524	6.524 (0.721)	158718	0.93224	2.331
33 Carbon Disulfide	76	6.670	6.670 (0.737)	473817	1.00438	2.511
34 trans-1,2-Dichloroethene	96	7,317	7.317 (0.808)	159747	0.96125	2.403
35 Methyl-t-Butyl Ether	73	7,447	7.447 (0.822)	214380	0.91670	2.292
36 1.1-Dichloroethane	63	7.738	7.738 (0.855)	253490	0.92380	2.309
37 Vinyl Acetate	43	7.840	7.840 (0.866)	202102	0.83561	2.089
38 Hexane	56	8.288	8.288 (0.915)	149079	0.95856	2.396
39 2-Butanone	72	8.304	8.304 (0.917)	37555	0.93724	2.343
40 cis 1.2-Dichloroethene	96	8.714	8.714 (0.962)	127316	0.94191	2.355
41 Ethyl acetate	43	8.908	8.908 (0.984)	201186	0.89579	2.239
42 Chloroform	83	9.059	9.059 (1.001)	231085	0.90447	2.261
43 Tetrahydrofuran	42	9.479	9.479 (1.047)	120583	0.93689	2.342
44 1,1,1-Trichloroethane	97	10.073	10.073 (1.113)	247910	0.88951	2.224
45 1,2-Dichloroethane	62	10.197	10.197 (0.911)	133378	0.88031	2.201
46 Cyclohexane	69	10.655	10.655 (0.952)	73902	1.01885	2.547
47 Benzene	78	10.666	10.666 (0.953)	286365	0.91942	2.298
48 1-Butanol	31	10.623	10.623 (0.949)	57847	0.77146	1.929
49 Carbon Tetrachloride	117	10.682	10.682 (0.954)	275972	0.91875	2.297
50 2,2,4-trimethylpentane	57	11.388	11.388 (1.017)	729698	0.93265	2.332
51 Heptane	43	11.755	11.755 (1.050)	312170	0.92401	2.310
52 1,2-Dichloropropane	63	11.874	11.874 (1.061)	102051	0.91348	2.284
53 Trichloroethene	130	11.895	11.895 (1.063)	168480	0.92778	2.319
54 Dibromomethane	93	11.992	11.992 (1.071)	121446	0.93704	2.343
55 Bromodichloromethane	83	12.132	12.132 (1.084)	219980	0.91242	2.281
56 1,4-dioxane	88	12.159	12.159 (1.086)	50953	0.86107	2.153
57 methyl methacrylate	41	12.219		99860	0.79261	1.982
58 4-Methyl-2-pentanone	43	13.060		216969	0.83491	2.087
59 cis-1,3-Dichloropropene	75	13.114		113738	0.83332	2.083
60 trans-1,3-Dichloropropene	75	13.804		94175	0.82618	2.065
61 Toluene	91	13.917		262817	0.94590	2.365
62 1,1,2-Trichloroethane	97		14.004 (0.882)	87977	0.89567	2.239
63 2-Hexanone	58	14.381		78130	0.80597	2.015
64 Octane	85	14.581		110236	0.98947	2.474
94 Octana	33					

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d Report Date: 03-Dec-2008 09:16

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	<b>表表版</b>	<b>=</b> =	*****			======================================
65 Dibromochloromethane	129	14.699	14.699 (0.926)	174752	0.93880	2.347
66 1,2-Dibromoethane	107	14.990	14.990 (0.944)	130874	0.89211	2.230
67 Tetrachloroethene	129	15.050	15.050 (0.948)	139432	0.97146	2.429
68 Chlorobenzene	112	15.923	15.923 (1.003)	204842	0.91012	2.275
69 Ethylbenzene	91	16.204	16.204 (1.021)	281557	0.89375	2.234
70 m&p-Xylene	91	16.360	16.360 (1.031)	444359	1.84602	4.615
71 Nonane	57	16.759	16.759 (1.056)	175750	0.81392	2.035
72 Bromoform	173	16.824	16.824 (1.060)	116269	0.81857	2.046
73 Styrene	104	16.824	16.824 (1.060)	143128	0.84056	2.101
74 o-Xylene	91	16.883	16.883 (1.064)	237977	0.91921	2.298
75 1,1,2,2-Tetrachloroethane	83	17.217	17.217 (1.085)	160299	0.87215	2.180
76 1,2,3-Trichloropropane	110	17.379	17.379 (1.095)	43213	0.83874	2.097
77 Cumene	105	17.466	17.466 (1.100)	282820	0.84874	2.122
78 n-Propylbenzene	120	17.994	17.994 (1.133)	75437	0.82394	2.060
79 2-chlorotoluene	126	18.043	18.043 (1.137)	77464	0.86902	2.172
80 4-Ethyltoluene	105	18.145	18.145 (1.143)	263843	0.81879	2.047
81 1,3,5-Trimethylbenzene	120	18.215	18.215 (1.147)	112379	0.85910	2.148
82 Alpha-Methylstyrene	118	18.447	18.447 (1.162)	93527	0.74642	1.866
83 Decane	57	18.485	18.485 (1.164)	200004	0.84563	2.114
84 tert-butylbenzene	119	18.630	18.630 (1.174)	244129	0.83974	2.099
85 1,2,4-Trimethylbenzene	105	18.646	18.646 (1.175)	215576	0.85094	2.127
86 sec-butylbenzene	105	18.900	18.900 (1.191)	307244	0.84639	2.116
87 1,3-Dichlorobenzene	146	18.921	18.921 (1.192)	147738	0.82872	2.072
88 Benzyl Chloride	91	18.997	18.997 (1.197)	153841	0.80093	2.002
89 1,4-Dichlorobenzene	146	19.008	19.008 (1.197)	141038	0.81562	2.039
90 p-Cymene	119	19.056	19.056 (1.200)	253466	0.84019	2.100
91 1,2-Dichlorobenzene	146	19.364	19.364 (1.220)	134355	0.82818	2.070
92 n-butylbenzene	91	19.488	19.488 (1.228)	227206	0.82806	2.070
93 Undecane	57	19.784	19.784 (1.246)	199095	0.87225	2.181
94 Dodecane	57	20.841	20.841 (1.313)	134309	0.93892	2.347
95 1,2,4-Trichlorobenzene	180	21.062	21.062 (1.327)	81045	0.80254	2.006
96 Napthalene	128	21.213	21.213 (1.336)	181840	0.81095	2.027
97 Hexachlorobutadiene	225	21.424	21.424 (1.350)	96116	0.80272	2.007
98 1.2.3-trichlorobenzene	180	21.499	21.499 (1.354)	76607	0.84092	2.102

Calibration Date: 02-DEC-2008

Calibration Time: 09:11 Client Smp ID: CCV/LCS Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d

Report Date: 03-Dec-2008 09:16

#### TestAmerica Knoxville

## INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mg.i
Lab File ID: glcsl02.d Lab Smp Id: K3X4A1AC Analysis Type: OTHER

Quant Type: ISTD Operator: 7126

Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m Misc Info: G120208, T0155, 1-all.sub, , , ,

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan	421439		592122	421439	0.00
2 1,4-Difluorobenze	2096045		2944943	2096045	0.00
3 Chlorobenzene-d5	1591085		2235474	1591085	0.00

COMPOUND	STANDARD	RT I LOWER	SIMIT UPPER	SAMPLE	%DIFF
1 Bromochloromethan		8.72	9.38	9.05	0.00
2 1,4-Difluorobenze		10.86	11.52	11.19	0.00
3 Chlorobenzene-d5		15.54	16.20	15.87	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d Report Date: 03-Dec-2008 09:16

# TestAmerica Knoxville

## RECOVERY REPORT

Client SDG: G120208

Client Smp ID: CCV/LCS Operator: 7126

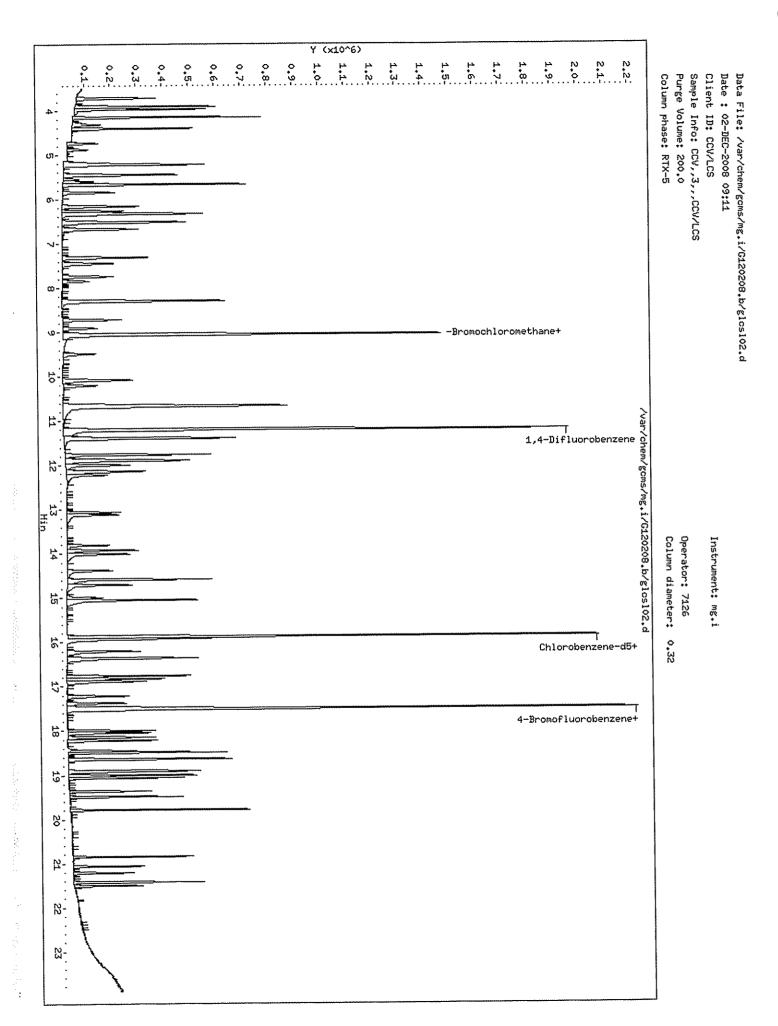
Fraction: OTHER

SampleType: LCS Quant Type: ISTD

Client Name: Sample Matrix: GAS

Sample Matrix: GAS
Lab Smp Id: K3X4A1AC
Level: LOW
Data Type: MS DATA
SpikeList File: all.spk
Sublist File: 1-all.sub
Method File: /var/chem/gcms/mg.i/G120208.b/T0155.m
Misc Info: G120208, T0155, 1-all.sub,,,,

SPIKE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
7 Chlorodifluorometh 8 Propene 9 Dichlorodifluorome 10 Chloromethane 11 1,2-Dichlorotetraf 12 Methanol 13 Vinyl Chloride 14 n-Butane 15 1,3-Butadiene 16 Bromomethane 17 Chloroethane 18 Vinyl Bromide 19 2-methyl butane 20 Trichlorofluoromet 21 Acrolein 22 Acetonitrile 23 Acetone 24 Pentane 25 Isopropyl Alcohol 26 Ethyl Ether 27 1,1-Dichloroethene 28 Acrylonitrile 29 tert-butanol 30 1,1,2-Trichlorotri 31 Methylene Chloride 32 3-Chloropropene 33 Carbon Disulfide 34 trans-1,2-Dichloro 35 Methyl-t-Butyl Eth 36 1,1-Dichloroethane 37 Vinyl Acetate 38 Hexane 39 2-Butanone	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	2.323 2.461 2.527 2.293 2.307 2.825 2.268 2.370 2.3060 2.167 2.3835 2.25291 2.3065 2.342 2.34401 2.443 2.443 2.4401 2.4401 2.4401 2.3314 2.4401 2.3314 2.4401 2.3314 2.3399 2.3399 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.3393 2.339	92.94 98.43 101.06 91.72 92.29 112.99 94.83 90.83 91.10 92.38 93.28 93.32 94.83 95.65 94.65 94.65 95.68 97.66 85.76 93.44 96.67 97.68 85.76 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68 97.68	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130


Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d Report Date: 03-Dec-2008 09:16

SPIKE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
40 cis 1,2-Dichloroet 41 Ethyl acetate 42 Chloroform 43 Tetrahydrofuran 44 1,1,1-Trichloroeth 45 1,2-Dichloroethane 46 Cyclohexane 47 Benzene 48 1-Butanol 49 Carbon Tetrachlori 50 2,2,4-trimethylpen 51 Heptane 52 1,2-Dichloropropan 53 Trichloroethene 54 Dibromomethane 55 Bromodichlorometha 56 1,4-dioxane 57 methyl methacrylat 58 4-Methyl-2-pentano 59 cis-1,3-Dichloropr 60 trans-1,3-Dichloropr 60 trans-1,3-Dichloro 61 Toluene 62 1,1,2-Trichloroeth 63 2-Hexanone 64 Octane 65 Dibromochlorometha 66 1,2-Dibromoethane 67 Tetrachloroethene 68 Chlorobenzene 69 Ethylbenzene 69 Ethylbenzene 70 m&p-Xylene 71 Nonane 72 Bromoform 73 Styrene 74 o-Xylene 75 1,1,2,2-Tetrachlor 76 1,2,3-Trichloropro 77 Cumene 78 n-Propylbenzene 79 2-chlorotoluene 80 4-Ethyltoluene 81 1,3,5-Trimethylben 82 Alpha-Methylstyren 83 Decane 84 tert-butylbenzene 85 1,2,4-Trimethylben 86 sec-butylbenzene	00000000000000000000000000000000000000	2.355 2.261 2.2642 2.3424 2.3424 2.3429 2.3424 2.5429 2.3222.3310 2.5429 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3312 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122 2.3122	94.549 198.54995384457600580 94.695384.695380 94.69538.695380 94.69538.695380 94.69538.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 94.695380 95.695380 96.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380 97.695380	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

Data File: /var/chem/gcms/mg.i/G120208.b/glcsl02.d Report Date: 03-Dec-2008 09:16

87 1,3-Dichlorobenzen         2.500         2.072         82.87         70-130           88 Benzyl Chloride         2.500         2.002         80.09         70-130           89 1,4-Dichlorobenzen         2.500         2.039         81.56         70-130           90 p-Cymene         2.500         2.100         84.02         70-130           91 1,2-Dichlorobenzen         2.500         2.070         82.82         70-130           92 n-butylbenzene         2.500         2.070         82.81         70-130           93 Undecane         2.500         2.181         87.23         70-130           94 Dodecane         2.500         2.347         93.89         70-130           95 1,2,4-Trichloroben         2.500         2.006         80.25         70-130           96 Napthalene         2.500         2.027         81.09         70-130           97 Hexachlorobutadien         2.500         2.007         80.27         70-130           98 1.2.3-trichloroben         2.500         2.102         84.09         70-130	SPIKE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
	88 Benzyl Chloride 89 1,4-Dichlorobenzen 90 p-Cymene 91 1,2-Dichlorobenzen 92 n-butylbenzene 93 Undecane 94 Dodecane 95 1,2,4-Trichloroben 96 Napthalene 97 Hexachlorobutadien	2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500	2.002 2.039 2.100 2.070 2.070 2.181 2.347 2.006 2.027 2.007	80.09 81.56 84.02 82.82 82.81 87.23 93.89 80.25 81.09 80.27	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 6 4-Bromofluorobenze	10.00	9.950	99.50	70-130



# Miscellaneous Data

TestAmerica Knoxville GC/MS Air Data Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 9

Lot/Project # <u>H8K250101</u> Page 1 of 1

Instrument: MG					
Scanned File: G112508 I					
G 112908 G120208					
G120108					
Review Items			. 1.46		
A. Tune / Continuing Calibration	N/A	Yes	No	Why is data reportable?	2nd
Were all samples injected within 24 hr of BFB?     Has a Continuing Calibration Checklist been completed for each					
analytical batch?					
3. Was the correct ICAL used for quantitation?  B. CLIENT SAMPLE AND QC SAMPLE Results	N/A	Yes	No	Why is data reportable?	2nd
Were all special project requirements met?	1977	7	140	Truy is tata reportable.	
2. Were dilution factors/can prep information verified?		7			/
3. Have the can number & lab ID been verified between the analysis					
log & sample prep log?  4. Were samples received in cans? •				_ [Tedlar1] Samples rec'd on (date) in Tedlar bags & ana by	
·				TO-14 (TO-15) within 72 hours from sampling.  _ [Tedlar2] Samples rec'd on (date) in Tedlar bags & transferred into Summa canisters within 72 hours.	
5. Sample analyses done within analytical holding time (HT)?  If no, list samples:		/		_ [ht2] Client requested analysis after HT expired. _ Other:	
6. Are surrogates and internal standards within QC limits? (70-130% R for surr.; 60-140%R from CCAL for IS)  If no, list samples/reason (e.g., sur1):  Sample Reason Sample Reason	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	/		_ [sur1] DUP surr. %R demonstrated same effect [sur2] Reanalysis demonstrated same effect [sur5] At client's request, data was flagged as estimated & released without further investigation [is1] Per client, reanalysis was not performed _ [is2] Reanalysis confirmed a matrix effect Obvious matrix effect	/
Were all positive results and false negatives on quan report verified to be correct in LIMS?		/			/
8. For dilutions, is highest concentration hit ≥ 20% cal range and not above calibration range?  List samples and reason (e.g., elev1): Sample Reason 計1 井2 井4 井5 つったはんの 井8 井10 とけないれた。		/	A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR	_ [elev1] Elevated RL for (ANALYTE) due to sample matrix interferences [elev3] Elevated RLs for all analytes due to difficult sample matrix [elev4] Elevated RLs based on screening _ [elev5] Elevated RLs for all analytes due to presence of non-target compounds.	
9. If manual integrations were performed, are they clearly identified, initialed, dated and reason given?	/			Reasons: 1)Corrected split peak; 2)Unresolved peak; 3)tailing; 4)RT shift; 5)wrong peak selected; 6)other	NA
10. Have alternate hits/manual integrations been verified as correct?		7,			+-   2nd
C. Preparation QC  1. System blank run every 24 hours prior to samples?	N/A	Yes	No		7
System blank surrogate recoveries within QC limits			1	_ [mb1] All sample surrogates OK and there is no analyte	1
(70-130% R) ?			ļ	>RL in samples associated with blank.	<del> </del>
Are all analytes present in the system blank < RL?  If no, list blank ID:		/		_ [mb3] No analyte > RL in associated samples [mb4] Sample results > 20x higher than blank.	/
4. DUP done per 20 samples and are all RPDs within limits? (for target analytes >5x RL, <25% RPD; no criteria for methanol and n-butanol) If no, list DUP ID:		/			/
5. Are all LCS analytes on final report within limits?			<del>                                     </del>	_ [LCS6] Flagged out but within SOP limits.	17
D. Other	N/A	Yes	No	LCS ID:	2nd
Final report acceptable? (Results correct, RLs calculated correctly, units correct, surrogate %R correct, appropriate flags used, dilution factor correct, analysis dates correct.)	1,322	/	1.10		1
Are all nonconformances documented appropriately and copy included with deliverable?	/				AU
3. Were the standards scanned properly?					14,
4. Was a narrative prepared and all deviations noted?	<del>                                     </del>	-	-	[TO14]	TOW WORLD
TO14A Authent included in narrative (for TO14A samples only).     All target unalytes on c.cal >30%D but <40%D noted in the narrative?				_ [ccal] The ccal exhibited a %D ICAL >30% but ≤40% for the following analytes:	4
Analyst: Date:	3/28			Reviewer: Date: 12/3/4	<del></del>
Comments:	V( , ,	C	mmer	nts:	
l V		_	<del></del>		

RQC058	stAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	Labora ION BEN	tories, CH WORF	, Inc. KSHEET	Ľ,	Run Date: 12/02/08 Time: 9:53:08
LEV LEV T T Weights/Volumes  Check Spike & Surrogate Worksheet  Check Vial contains correct volum  Labels, greenbars, workshee	ne its 11 match hod	* *	* * *	**************************************	Expanded Deliver COC Completed Bench Sheet Copi Package Submitte Bench Sheet Copi	Expanded Deliverable COC Completed Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied per COC
Extractionist:Concentrationist:		* * *	QC BATCH:	* QC BATCH: 8336265 * * ***************	PREP DATE: 11/29/08 COMP DATE: 11/30/08	80/ 08
Reviewer/Date: / 0/00/00	Vol	atile O SAMPLE	rganic: PRBPARI	Volatile Organics by GC/MS TO-15 NO SAMPLE PREPARATION PERFORMED /	low-level ppbv/v   DIRECT INJECTION	
EXTR ANL LOT#, MSRUN#/ TEST EXP MTH MATRIX	INIT/FIN WT/VOL	INIT AD	PH"S ADJZ	SOLVENTS SEXTRACTION VOL EXCHANGE	NOL	SPIKE STANDARD/ SURROGATE ID
0/00/00 12/04/08 K3K52-1-AA DR 88 7M AIR COMMENTS:	mĽ	N AN	na na	·	0.	
0/00/00 12/04/08 K3K52-2-AA DR 88 7M AIR COMMENTS:	m.	NA N	na na	•	0.	
0/00/00 12/04/08 K3K58-1-AA DR 88 7M AIR COMMENTS:	mL	N AN	na na	·	0,	
0/00/00 12/04/08 K3K59-1-AA DR 88 7M AIR COMMENTS:	Ţu	NA N	na na	·	0.	
0/00/00 12/04/08 K3K59-2-AA DR 88 7M AIR COMMENTS:	ШĪ	NA N	na na	٠	0.	
0/00/00 12/04/08 K3K6C-1-AA DR 88 7M AIR COMMENTS:	шĽ	NA N	na na	0.	0.	
0/00/00 12/04/08 K3K6D-1-AA DR 88 7M AIR COMMENTS:	Ţш	NA N	na na	0.	0.	

RQC058		TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	Labora TION BEN	tories, CH WORKS	Inc. HEET		Run Date: 12/02/08 Time: 9:53:08	3:08
			* 0 *	******* BATCH:	**************************************	PREP DATE: COMP DATE:	11/29/08 11/30/08	
EXTR ANL LOT#, MSRUN#/ TE	TEST EXT MTH MATRIX	INIT/FIN WT/VOL	TINI	"S ADJ2	PH"S SOLVENTS ADJI ADJI EXCHANGE	S KCHANGE VOL	SPIKE STANDARD/ SURROGATE ID	
0/00/00 0/00/00 K3VHZ-1-AAB COMMENTS:	88 7M AIR	mL	N AN	na na	0.		0.	
0/00/00 0/00/00 K3VH2-1-ACC COMMENTS:	88 7M AIR	100mL 100.00mL	NA N	na na	0.		o.	
Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrew		**************************************	***************************************	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	11			
R = RUSH C = CLP E = EPA 600 D = EXP.DEL) M = CLIENT REQ MS/MSD	NUMBER OF W	WORK ORDERS IN BATCH:	IN BATCH	• •	<b>o</b>			

Run Date: 12/03/08 Time: 5:55:39	Expanded Deliverable  COC Completed  Bench Sheet Copied  Package Submitted to AnalyticalGroup  Bench Sheet Copied	PRBP DATE: 12/01/08 COMP DATE: 12/02/08	low-level ppbv/v DIRECT INJECTIO	INTS SPIKE STANDARD/ EXCHANGE VOL SURROGATE ID	0.	0. 0.	0.	0. 0.	0. 0.	0.	0.
estAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	ne ets all match thod	* QC BATCH: 8337098 * * *********************************	Volatile Organics by GC/MS TO-15 NO SAMPLE PREPARATION PERFORMED /	INIT/FIN PH"S BUJZ EXTRACTION VOL EXCHANGE	NA NA NA mL	NA NA MA	NA NA NA mL	NA NA NA mL	MA NA MA mL	NA NA NA mL	NA NA NA mL
RQC058	LEV LEV T T Neights/Volumes  - Check Surrogate Worksheet - Check Vial contains correct volume - MS/MSD T Lebels, greenbars, worksheets - Labels, greenbars, worksheets - Computer batch: correct & all remaines to Extraction Method	Extractionist:ConcentrationisT:	Reviewer/Date: / 0/00/00	EXTR ANL LOT#,MSRUN#/ TEST EXPR DUE WORK ORDER FLGS EXT MTH MATRIX	H8K250101-001 0/00/00 12/04/08 K3K5V-2-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K5X-2-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K50-1-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K51-1-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K53-1-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K55-1-AA DR 88 7M AIR COMMENTS:	0/00/00 12/04/08 K3K57-1-AA DR 88 7M AIR COMMENTS:

Run Date: 12/03/08 Time: 5:55:39	12/01/08 12/02/08	SPIKE STANDARD/ SURROGATE ID	0.	0,		
	PREP DATE: COMP DATE:	VENTS OL EXCHANGE VOL	0.	0.		
es, Inc. Jorksheer	**************************************	PH"S SOLVENTS INIT ADJI EXTRACTION VOL EXCHANGE	NA	NA		Ø
boratori BENCH W	****** QC BAT	T ADJI A	NA.	NA		ATCH:
ca La	* # * * *		NA	N.		I IN
TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET		INIT/FIN WT/VOL	Tu.	100mL 100.00mL	19100000000000000000000000000000000000	WORK ORDERS IN BATCH:
		EXT MTH MATRIX	88 7M AIR	88 7M AIR	100000000000000000000000000000000000000	NUMBER OF WO
		TEST	8	8		1
		ANL LOT#, MSRUN#/ DUE WORK ORDER	0/00/00 K3WC5-1-AAB	0/00/00 0/00/00 K3WC5-1-ACC COMMENTS:	A TOTAL POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE TO THE POLICE T	RUSH C = CLP EPA 600 D = EXP.DEL) CLIENT REQ MS/MSD
RQC058		EXTR EXPR	0/00/00 COMMENTS:	0/00/00 COMMENTS:	AMERICAN PROPERTY STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT STATES AND ASSESSMENT AND ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT	R = RUSH E = EPA 60 M = CLIENT

RQC058	stAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	Labora ION BEN	tories CH WOR	Inc. KSHEET		Run Date: 12/03/08 Time: 6:46:21
LEV LEV TEV TEV TEV Weights/Volumes  - Check Spike & Surrogate Worksheet - Check Vial contains correct volume - MS/MSD - Labels, greenbars, worksheets - computer batch: correct & all a Anomalies to Extraction Method	ne ets all match thod	* * * *	**	* * * * * * * * * * * * * * * * * * *	Expanded Deliv COC Completed Bench Sheet Co Package Submit Bench Sheet Co	Expanded Deliverable COC Completed Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied per COC
Extractionist:		* * * *	QC BATCH	* QC BATCH: 8338089 * * *******************************	PREP DATE: 12/0 COMP DATE: 12/0	12/02/08 12/03/08
Reviewer/Date: / 0/00/00	Volu	atile O SAMPLE	rganic PREPAI	Volatile Organics by GC/MS TO-15 NO SAMPLE PREPARATION PERFORMED /	low-level ppbv/v DIRECT INJECTIO	
EXTR ANL LOT#, MSRUN#/ TEST EXT MTH MATRIX EXPR DUE WORK ORDER FLGS EXT MTH MATRIX	INIT/FIN WT/VOL	INIT AD	PH"S ADJI ADJ2	SOLVENTS 12 EXTRACTION VOL EXCHANGE	VOL	SPIKE STANDARD/ SURROGATE ID
H8KZ50101-001 0/00/00 12/04/08 K3K5V-1-AA DR 88 7M AIR COMMENTS:	길	N.A. N	na na	•	0.	
0/00/00 12/04/08 K3K5X-1-AA DR 88 7M AIR COMMENTS:	-Tm	NA N	na na	•	0.	
0/00/00 12/04/08 K3K51-2-AA DR 88 7M AIR COMMENTS:	m	N AN	na na	•	0.	
0/00/00 12/04/08 K3K54-1-AA DR 88 7M AIR COMMENTS:	mL	NA N	na na	•	0.	
0/00/00 12/04/08 K3K55-2-AA DR 88 7M AIR COMMENTS:	mĽ	NA N	N AN	NA .	0.	
0/00/00 12/04/08 K3K56-1-AA DR 88 7M AIR COMMENTS:	mŢ	NA 1	NA N	NA .	0.	
0/00/00 12/04/08 K3K57-2-AA DR 88 7M AIR COMMENTS:	mĽ	NA	NA N	NA .	0.	

Run Date: 12/03/08 Time: 6:46:21	2/08 3/08	SPIKE STANDARD/ SURROGATE ID						
	12/02/08 12/03/08		0,	0.	0.	0.		
	DATE:	IGE VOL						
	***** 39 * PREP ****	SOLVENTS EXTRACTION VOL EXCHANGE	0.	0.	٥.	0.		
Inc. SHEET	**************************************	EXTRACI					***************************************	
ries, Work	********* QC BATCH:	PH"S ADJZ	NA	NA	NA	NA		
orato:	%****		МA	NA	NA	NA	**************************************	
Labe	* * *	INIT	NA	NA	NA	NA		
TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET		INIT/FIN WT/VOL	Ţш	uľ	шГ	100.00mL	Vigiliani pi	MATERIA DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTO
		MATRIX	AIR	AIR	AIR	AIR	Websited the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec	
		EXT MTH	88 7M	88 7M	88 7M	88 7M		
		TEST	DR	DR		•	WALL	
83		ANL LOT#, MSRUN#/ T	0/00/00 12/04/08 K3K59-3-AA COMMENTS:	0/00/00 12/04/08 K3K6A-1-AA COMMENTS:	0/00/00 0/00/00 K3X4A-1-AAB COMMENTS:	0/00/00 0/00/00 K3X4A-1-ACC COMMENTS:	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
RQC058		EXTR	0/00/00 COMMENTS:	0/00/00 COMMENTS:	0/00/00 COMMENTS:	0/00/00 COMMENTS:	and the second	NAMES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY

R = RUSH C = CLP E = EPA 600 D = EXP.DEL) M = CLIENT REQ MS/MSD

NUMBER OF WORK ORDERS IN BATCH:

11

Test America - Knoxville ---- Air Canister Dilution Log Lot Number: <u>H8K250101</u>

			T			T									***************************************	
	Comments	28tt				A THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS	$\rightarrow$		ANALYMAN			>	4	+++	Z8££	<b>→</b>
	Final Pres. Pf (psig)															
	Vol (mL.)															
	Serial Dilution Can #									***************************************	***************************************			Harry Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the		
ilutions	Third InCan Final Pres. Pf (pslg)													-		
Subsequent Dilutions	Second In-can Final Pres. Pf (psig)					- HILLIAN WATER			23.5		25.4					
Sub	First InCan Final Pres. Pf (psig)								7.72		24.2					
	Finał Pres. Pf (psig)				28.7			***************************************	23.5		23.3		1514			
	Initial Pres. PI (in)				F. 5.				んどん		5 19.11 /5.2		7:			
	Pbarr (in)				72.88.77				\$ 29.11 5.V		17.4.11		17.62			
	te / s								40)				<i>ل</i> ا مہ			
	Analyst∕Date	***************************************			\$017/21	***************************************			phy map	•	र श्रीय		सन्तर्भव	***************************************	- Level and All All All All All All All All All Al	***************************************
	Adj. Initial Pres. (- in or + psig)	ı	0.2	ļ	١	1	1	(	l	1	١	١	ţ	(	ţ	(
	Pres. upon receipt (-in or + psig)	-S.7	-9.5	-5:3	-5.3	LS.2	J-5.4	L6.2	1-5-1	9.4	<u>-4</u> 9	-1.5	-6.1	-4.6	-4.3	-0.9
	Can #	S 1494	A 2238	3277	7466	6678	6627	04426	6615	1456/	7481	78121	2991	6374	6349	1148
Initial Can Pressure	Sample ID		K3K5X	K3K50	K3K51	K3K52	K3K53	K3K54	K3K55	K3K56	K3K57	K3K58	K3K59	K3K6A	кзкес	кзкбр
	Pbarr (in)	8.88														>
	Tedlar Bag F	N. 98.99	_													3
	νDate	POST.	1													<b>A</b>

A) Cont 13a8 Ata

Lot: <u>h8k250101</u>

Initial

W/O #   Inches Hg		Barometer	Knoxville	P init	P init	P final	P final	Dilution	
K3K 5V       28.99       736.3       - 9.5       495.0       0.2       746.7       1.51       (6X,DF*200=302)         K3K 50       28.99       736.3       - 9.5       495.0       0.2       746.7       1.51       (6X,DF*200=302)         K3K 50       28.99       736.3       - 8.84       - 8.89       736.3       - 8.84       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       - 8.89       -	W/O#	1			Abs,mm	psig	Abs,mm	Factor	
K3K 5X       28.99       736.3       - 9.5       495.0       0.2       746.7       1.51       (5X,DF*200=302)         K3K 50       28.99       736.3       - 8.5       495.0       0.2       746.7       1.51       (5X,DF*200=302)         K3K 51       28.99       736.3       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5       - 8.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>رر</td> <td></td> <td></td> <td></td>						رر			
K3K 51       28.99       736.3         K3K 52       28.99       736.3         K3K 53       28.99       736.3         K3K 54       28.99       736.3         K3K 55       28.99       736.3         K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 5X	28.99	736.3	- 9.5	495.0	0.2	746.7	1.51	(5X,DF*200=302)
K3K 52       28.99       736.3         K3K 53       28.99       736.3         K3K 54       28.99       736.3         K3K 55       28.99       736.3         K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 50	28.99	736.3						
K3K 53       28.99       736.3         K3K 54       28.99       736.3         K3K 55       28.99       736.3         K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 51	28.99	736.3						
K3K 54       28.99       736.3         K3K 55       28.99       736.3         K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 52	28.99	736.3						
K3K 55       28.99       736.3         K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 53	28.99	736.3						
K3K 56       28.99       736.3         K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 54	28.99	736.3					AA	
K3K 57       28.99       736.3         K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 55	28.99	736.3						
K3K 58       28.99       736.3         K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 56	28.99	736.3						
K3K 59       28.99       736.3         K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 57	28.99	736.3					manda de Mario Proto de	
K3K 6A       28.99       736.3         K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 58	28.99	736.3						
K3K 6C       28.99       736.3         K3K 6D       28.99       736.3	K3K 59	28.99	736.3						
K3K 6D 28.99 736.3	K3K 6A	28.99	736.3						
	K3K 6C	28.99	736.3						
	K3K 6D	28.99	736,3						
		Mar No. and Co. Village							
									***************************************
								LOWER CO.	
	A								
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	=\= 1 \\ \text{VIIII \text{V} \\ \text{VIIII \text{V} \\ \text{V} \\ \text{VIIII \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V} \\ \text{V}								
	Total design of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec								
			No. Alexander of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract						
	1111 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	011114-W-1			****					
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					

¹ psig = 2.036 inch Hg

Pinit(Abs,mm)=(Pinit(inch)*25.4mm/inch)+Pbar(mm)

Pfinal(Abs,mm)=(Pfinal(psig)*2.036 (inch Hg/psig)*25.4 (mm/inch))+Pbar(mm)

dilution factor = Pfinal(Abs,mm)/Pinit(Abs,mm)

Lot: h8k250101

## Initial

	Barometer	Knoxville	P init	P init	P final	P final	Dilution	
W/O#	inches Hg	mm Hg	inches	Abs,mm	psig	Abs,mm	Factor	
K3K 5V	y				1			
K3K 5X	28.99	736.3	- 9.5	495.0	0.2	746.7	1.51	(5X,DF*200=302)
K3K 50					***************************************			
K3K 51	29.11	739.4	- 5.7	594.6	28.2	2197.7	3.70	(51,DF*200=740)
K3K 52								
K3K 53								
K3K 54			,,,,,,,					
K3K 55	29.11	739.4	- 5.2 '	607.3	23.5	1954.7	3.22	(55,DF*200=644)
K3K 56			,					
K3K 57	29.11	739.4	- 5.0	612.4	23.3	1944.3	3.17	(57,DF*200=634)
K3K 58								_
K3K 59	29.11	739.4	- 9.4	500.6	25.4	2052.9	4.10	(59,DF*200=820)
K3K 6A								
K3K 6C								•
K3K 6D								
								.[
					<u>                                     </u>			_
								-
				-		<u> </u>		-
			ļ					-
		ļ						-
					_	_	-	-
								-
					-	-	-	
			-					-
		-	_		_	<u> </u>		
			_		_			-[
			-					•••
		_			-	-	_	-
								-
	_		_		-			-
							_	
			-					-
			_	_	-	-	-	_
			- <b>-</b>					-
			-		_		<u> </u>	-
							1	
		_		_	_			
		_1	<u>. J</u>	1				

1 psig = 2.036 inch Hg

Pinit(Abs,mm)=(Pinit(inch)*25.4mm/inch)+Pbar(mm)

Pfinal(Abs,mm)=(Pfinal(psig)*2.036 (inch Hg/psig )*25.4 (mm/inch))+Pbar(mm)

dilution factor = Pfinal(Abs,mm)/Pinit(Abs,mm)

## h8k250101

## In-Can Dilution

					Dilution	Dilution		
	Barometer	Knoxville	P final	P final	Factor	Factor		
W/O #	inches Hg		psig	Abs,mm	(In Can)	(Total)		
K3K 5V				·				
K3K 5X						***************************************		
K3K 50							1	
K3K 51							1	
K3K 52								
K3K 53								
K3K 54								
K3K 55	29.11	739.4	24.2	1990.9	2.69	8.67	(55)	(*3.22)
K3K 56				,				
K3K 57	29.11	739.4	24.2	1990.9	2.69	8.55	(57)	(*3.17)
K3K 58						***************************************	1	
K3K 59								
K3K 6A			***************************************					
K3K 6C		· · · · · · · · · · · · · · · · · · ·						
K3K 6D								
		<u> </u>					1	
			1					
							1	
			<u> </u>				1	
			***************************************					
		***************************************					1	
			1					
							1	
							1	
							1	
	***************************************			***************************************			1	
		1						
				<u> </u>			1	
	<del></del>				***************************************		1	
				***************************************			1	
		· · · · · · · · · · · · · · · · · · ·	1					

1 psig = 2.036 inch Hg

Pinit(Abs,mm)=(Pinit(inch)*25.4mm/inch)+Pbar(mm)

Pfinal(Abs,mm)=(Pfinal(psig)*2.036 (inch Hg/psig)*25.4 (mm/inch))+Pbar(mm)

dilution factor = Pfinal(Abs,mm)/Pinit(Abs,mm)

## h8k250101

## In-Can Dilution #2

					Dilution	Dilution		
	Barometer	Knovville	P final	P final	Factor	Factor		
W/O #	inches Hg			Abs,mm	(in Can)	(Total)		
K3K 5V	mones rig	111111119	polg	7100111111	(			
K3K 5X								
K3K 50								
K3K 51								
K3K 52								
K3K 53								
K3K 54								
K3K 55	29.11	739.4	23.5	1954.7	2,64	22.91	(55)	(*8.67)
K3K 56				· · · · · · · · · · · · · · · · · · ·			[	
K3K 57	29.11	739.4	25.4	✓ 2052.9	2.78	23.74	(57)	(*8.55)
K3K 58								
K3K 59							1	
K3K 6A								
K3K 6C								
K3K 6D							1	
							1	
							.]	
							_	
							_	
						ļ	_	
							-1	
							-	
							_	
			ļ				_	
							_	
							-	
							-	
			l				l	

1 psig = 2.036 inch Hg

Pinit(Abs,mm)=(Pinit(inch)*25.4mm/inch)+Pbar(mm)

Pfinal(Abs,mm)=(Pfinal(psig)*2.036 (inch Hg/psig )*25.4 (mm/inch))+Pbar(mm)

dilution factor = Pfinal(Abs,mm)/Pinit(Abs,mm)

Sample Receipt Documentation

## TAL Knoxville

Knoxville, TN 37921

phone 865-291-3000 fax 865-584-4315 5815 Middlebrook Pike

## ্বিপ্তিমুখ্য। Canister Samples Chain of Custody Record

[estAmerico

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

Offier (Please specify in notes section) seo Illibus. Soll Gas 15 FLOWS TIA InsidmA COCs riA toobn CUSTODY SEALS INTACT REC. AT AMBIENT aqyT alqms2 ĺΛ Euvicenmated scroles, DHC # 82097914540 ŏ Other (Please specify in notes section) 9761-0 MTS# 3 BOXES EPA 25C DE A93 Baulin A41-01 Х X Х Canister ID 1238 1494 427 7446 66 78 52.77 Sampled By: Bur Pression Vacuum in Fleld, 'Hg | Flow Controller Y 235 5人23子 2723 July 3-74 大324 KZS とが Received by: Received by Temperature (Fahrenheit) (1) Rashale-Nisore Canistor ر. د Pressure (inches of Hg) -75 = اني) ز 7 Sekolows K Vacuum In Field, "Hg Detection Limit Canister -30 F - 3a r -29 4 (Start) Analysis Turnaround Time 1304 Ambient Ambient 25 30 (845) 256 3000 Rashuk Site Contact: John Rashuk TAL Contact: Jamic Mckingly 80/81/11 Timo Stop 100 300 1635 1610 635 <u>ح</u> Standard (Specify) Project Manager: John Rush (Specify) infrafes - 16,00 Time Start 1605 1605 017 1610 101 = Interior Interior 89/6/// 13/8-11/18/8 Date/Time: Date/Time: Sample Date(s) Start Stop Start Phone: Stop Special Instructions/QC Requirements & Comments: SEL PES. Arout Address: 21 South Put Culus Sample Identification Sampled by : Beint Buturik Project Name: Dubluss (winty Phone: 445 256 3000 Site/location: Dubluss Land 2447 Client Contact Information Samples Relinquished by: Company: NYS DEC १८८ N 4 Canisters Shipped by VI 3A 2 Ž. Relinquished by: City/State/Zip 븻 ユン FA:

TAL Knoxville

phone 865-291-3000 fax 865-584-4315 5815 Middlebrook Pike Knoxville, TN 37921

ا الاکتخابال المتعدد المتعدد Canister Samples Chain of Custody Record

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

JENSONE (

Clent Contact Information	Project Manager 17 hv	ager 7		Zas Den	Rashalk	Sampled Bv:	5	7	١,		"	<b> </b> "c	~	COC				
Company: NYSDEC (200. 3	Phone: 545	45 25%	12	***************************************	***************************************			1			1_	5	Į					1
T Contrars	Site Contact: Tolum	سامال :	-	ر مار						<u> </u>	ļ					-		
Phone: 41/2 204 1256	IAL Contact:	t: lamit	Mc/6, w	+								(ion)			,		(noi)	
757												295 9	) (2)				295 !	
ahlus		Analysis	Turnaround Time	nd Time								ajot			······		oles	
/ YY /	SI	Standard (Specify)		X					••••			υįΛ	6. 90		·		ı ni y	
	Œ	Rush (Specify)							······································	······		itoaq		<del></del>				
	Sample	\$0 t.   11	30 31 11	Canister Vacuum in	Canister Vacuum in	Flow Controller		.15	74tA 3C	7 25C	9461-G MT	et (Please si	edγT eldπ	NA 100	blent Alr I Gas	see linb	is 9269lq) <b>19</b>	
Sample Identification	Date(s)	Time Start	Time Stop	(Start)		9	Canister ID				s∀							
V1-4B	11/17/5 - 146/8	ि।	16.570	- 30	- 7.5	£284	97450	×					8.6					
45 - 17	14   14   14   14   14   14   14   14	1614	ع دِماا	- 30	2-	ドルチ	21010	メ										
٧١- څ ۸	-		0171	-30	۱ کا	K230	1456	义			_							
VI - 5'S			01()	-30+	9-	K 284	! <i>Ֆ</i> ሖር	人										
41.6A		0	1720	-30	8 -	K 326	12187	又										,
\$9-17	€	16.30	07.21	-30+	レー	K380	1662	×										<del>,</del>
Sampled by: R. A. Sampled by: R. A. Sampled by: R. A. Sampled by: R. A. Sampled by: R. A. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sampled by: R. Sample				Temperature	Temperature (Fahrenhelt)									l				_
-		Interior		Amblent														
つくのと	Start					5. O. B. B. C. B. B. B. B. B. B. B. B. B. B. B. B. B.												
	Stop																	
				Pressure (inches of Hg)	ches of Hg)													
		Interior		Ambient														
	Start																	
	Stop																	
Special Instructions/QC Requirements & Comments: $\rho_{\rm col} = \rho_{\rm mments: Sokolowski	<b>(</b> )	Prec	Precision	FLV	Fuvinamen	July 1	Q	Servic es	\$°									
	くらおよび	50	Limet	11		~~ ~~ 	^س م											
Canisters Skipped by:	Date/Time:/	1 - 80	1605		Canistars F	Canisters Received by:	"	146	20	0900								•
Samples Relinquished by:	Date/Time:			,	Received by:	oy:		,										
Relinquished by:	Date/Time:				Received by:	oy:					1							
	-					***************************************			***************************************	***************************************	_							

TAL Knoxville

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

## Canister Samples Chain of Custody Record

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

1010sexxXX

MESTAMETICO NATIONAL TESTING

Office (Please specify in notes section) Landfill Gas 1IA IneldmA COCs eqyT eldme2 ᢐ Offier (Please specify in notes section) 9461-G MT2A EPA 250 EPA 3C 3 Abt-OT X 31-OT X Canister ID 6334 6349 Shill Sampled By: K 23/23 Flow Controller ( 10 PX K408 K130 6270 Received by: Regeived by: Temperature (Fahrenheit) Fletd, 'Hg Vacuum in Pressure (inches of Hg) Canister 15, (Stop) ا ا ٥ ないっていいいいかん Melonmy Canister Vacuum in Fleid, "Hg 1) (Start) -30 - 30-Analysis Turnaround Time Ambient Ambient 1740 -29 Site Contact: John Ros Lak 11/18/18 A SOLE Time Stop 132 1725 000 Standard (Specify) Project Manager: John TAL Contact: Jamis Rush (Specify) Phone: 845 257 カウ 11 | 17 | \$ かないいかみ 635 049 Interior Interior 11/12/1/1635 John ///5/68 Date/Time: Date/Time: Date/Fimg: Sample Date(s) Start Stop Start Stop O) Special Instructions/QC Requirements & Comments: Sokolowoki Sampled by: BRIGH SHULS IX. FPES 1256 Sample Identification Part Comos City/State/Zip Atw Partz NY 345 256 - 3000 インピン・ Company: NYSDEL Regier Client Contact Information Samples Relinquished by Canisters Shipped by: Outdown Relinquished by: M1-7A 848 21-12 Project Name: Site/location: Phone: Address: # Od ĘŘ

# TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Project: | A8Kas0|0|

Client:		Project:	; ;		Lot Number: [48Kas010]
Review Items	Yes No	<del> </del>	¥	If No, what was the problem?	Comments/Actions Taken
1. Do sample container labels match COC?			ļ	□ 1a Do not match COC	
(1Ds, Dates, 1 mes)				U 1b Incomplete information	
				☐ 1c Marking Silleared ☐ 1d Label form	
	/			Cle No label	
				☐ If COC not received	
		+		Ulg Other:	
2. Is the cooler temperature within limits? (> freezing			_	O2a Temp Blank =	
(emp. 6) water to 6 C; NC, 1008, 1013B: 0-4 C; VOST: 10°C; MA: 2-6 °C)		۔۔۔	\	U2b Cooler 1 emp =	
3. Were samples received with correct chemical		7		□3a Sample preservative =	
4. Were custody seals present/infact on cooler and/or		╁	+	149 Not present	
containers?	_			Ab Not intect	**************************************
	7			1 4c Other:	
5. Were all of the samples listed on the COC received?				☐ 5a Samples received-not on COC	
	7			☐ 5b Samples not received-on COC	
6. Were all of the sample containers received intact?	7			Ga Leaking	
7 Were VOA samples received without headspace?		+		7. Headenace (VOA only)	**************************************
8 Were camples received in annountiate containers?	1	3	+	O Introduct Configuration	Million of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committe
	7	+		Loa improper container	
9. Did you check for residual chiofine, it necessary?				LIVA Could not be determined due to matrix interference	
10. Were samples received within holding time?		├-		□ 10a Holdino time expired	
11. For rad samples, was sample activity info, provided?		-		□ Incomplete information	
		-		If yes & appears to be >1%, was	
			7	SOG notified?	
13. Are the shipping containers intact?			F	□ 13a Leaking	***************************************
	7			□ 13b Other:	
14. Was COC relinquished? (Signed/Dated/Timed)	/			□14a Not relinquished	
15. Are tests/parameters listed for each sample?	/			□15a Incomplete information	
16. Is the matrix of the samples noted?	/			□15a Incomplete information	***************************************
17. Is the date/time of sample collection noted?	7	_		☐ 15a Incomplete information	
18. Is the client and project name/# identified?	7	-		□ 15a Incomplete information	
19. Was the sampler identified on the COC?	/	_		T DESCRIPTION OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF	
Quote #: PM Instructions:	***************************************		***************************************		
		***************************************	***************************************	Websters that a be dead a secretary described in the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of th	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Samula Beraivina A senciate: 1,1911 [Lows.			<u>ا</u>	Date: 11/311/90	707080 20 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO
Sample Necesting Associate. Totalli HUMA			l	Date: 11/2/1/20	AA020K19.406, 000/07
, ·					

## **Attachment E:**

Data Usability Summary Report





Geology

Hydrology

Remediation

Water Supply

December 22, 2008

Mr. Paul M Sokolowski Precision Environmental Services, Inc. Curtis Industrial Park 831 Rt. 67, Lot 28. Ballston Spa, New York 12020

Re:

Data Usability Summary Report Duchess County Airport Project November 2008 Air Sampling Event

Dear Mr. Sokolowski:

The data usability summary report and data validation summary are attached to this letter for the Duchess County Airport, November 2008 air sampling event. The data for TestAmerica Knoxville lot number H8K250101 were acceptable with some minor issues that are identified and discussed in the validation summary. There were no data that were qualified as unusable (R) in the data pack.

A list of common data validation acronyms and data validation qualifers is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Precision Environmental Services, Inc.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments



Geology

Hydrology

Remediation

Water Supply

## Data Usability Summary Report for TestAmerica Knoxville, Lot No. H8K250101

15 Air Samples Collected November 18, 2008

Prepared by: Donald Anné December 22, 2008

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of TO-15 volatile analyses for 15 air samples and 1 duplicate.

The overall performances of the analyses are acceptable. TestAmerica Knoxville did fulfill the requirements of the analytical method.

The data are acceptable with minor issues that are identified in the accompanying data validation review. The following data were flagged:

• Volatile results for compounds in samples VI 1A, VI 1S, VI 2A, VI 3A, VI 4S, VI 5S, and VI 6S were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for these compounds were qualified as estimated (J) in the undiluted samples. It is recommended that the diluted results (D) be used for those compounds.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2008\08600 - 08620\08620-Duchess Cnty Airport\h8k250101.dus.wpd



Geology

Hydrology

Remediation

Water Supply

## QA/QC Review of TO 15 Volatiles Data for TestAmerica Knoxville, Lot No. H8K250101

## 15 Air Samples Collected November 18, 2008

Prepared by: Donald Anné December 22, 2008

Holding Times: Samples were analyzed within the EPA recommended holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRF4s for target compounds were above the allowable minimum (0.050) and the %Ds were below the allowable maximum (30%), as required.

Blanks: The analyses of the laboratory blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for air samples and trip blank.

<u>Laboratory Control Sample</u>: The percent recoveries for target compounds were within QC limits for check samples H8K010000-265C, H8L020000-098C, and H8L030000-089C.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There were volatile results for one or more compounds for samples VI 1A, VI 1S, VI 2A, VI 3A, VI 4S, VI 5S, and VI 6S that were quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The samples were diluted by the laboratory and re-analyzed; therefore, the results for compounds that are flagged as 'E' in the undiluted samples should be considered estimates (J) and the use of the diluted results (D) for those compounds is recommended. It is recommended that the undiluted results be used for all other compounds.

Z:\projects\2008\08600 - 08620\08620-Duchess Cnty Airport\h8k250101.t15.wpd

## Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

## **Data Validation Acronyms**

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions

MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene
%D Percent difference
%R Percent recovery

%RSD Percent relative standard deviation