www.conradueo.con

Environmental Scientists One Civic Center Plaza, Suite 501, Poughkeepsie, New York 12601 • 845/454-2544 • fax: 845/454-2655

May 26, 2010

Re:

Wayne Mizerak
New York State Dept. of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 11th Floor
Albany, New York 12233-7014

1st Quarter 2010 Groundwater Monitoring Report;

Apple Valley Shopping Center Superfund Site, LaGrange, New York; Index No. II-CERCLA-10224; NYSDEC Site #3-14-084; Conrad Geoscience File #AL030070

Dear Mr. Mizerak:

In February 2010, Conrad Geoscience Corp. continued the groundwater monitoring program at the Apple Valley Shopping Center (Figure 1) in accordance with the NYSDEC-approved Interim Remedial Measure (IRM) Work Plan dated July 2, 2004 and subsequently modified.

QUARTERLY GROUNDWATER MONITORING

On April 17, 2010, Conrad Geoscience collected groundwater samples from Recovery Wells RW-1, RW-2, RW-3, and AV-2 (Figure 2). A groundwater remediation system effluent sample was also collected (AVS-EFF). Depth-to-water measurements were recorded from the top of each well casing and a groundwater contour map was prepared based on these measurements (Figure 3).

In accordance with the approved IRM Work Plan, residential supply well sampling was conducted at the following residences: Lot 6 and Lot 11 (Figure 4).

Recovery Well Sampling

Recovery well water samples were collected via in-line sample ports prior to the air stripper. Air stripper effluent samples were collected from the treated discharge pipe.

Samples were labeled, packed on ice, and shipped via overnight delivery for analysis of volatile organic compounds (VOCs) using USEPA Method 524.2.

Groundwater Monitoring Apple Valley Shopping Center May 26, 2010 Page 2

Residential Supply Well Sampling

According to the original IRM Work Plan, the drinking water wells for seven residences of the Woodbridge Estates Subdivision are to be monitored on a semi-annual basis, assuming access is granted. All but Lots 6 and 11 have been subsequently removed from the monitoring program. Prior to sampling, Conrad Geoscience contacted the two remaining residents whose supply wells are to be monitored: Lot 6 and Lot 11 (Figure 4). Despite the availability of public drinking water, a granular activated carbon (GAC) filtration system is installed and in operation at Lot 11. Both residences have water softeners.

Supply well samples were collected via in-line sample ports or spigots prior to GAC filtration and/or water softening. If a GAC filtration system was present, water samples were collected post-treatment and mid-treatment to monitor the effectiveness of the GAC system. Samples were collected at each residence as follows:

- Lot 6: Water sample collected from spigot at pressure tank, before water softener.
- Lot 11: Untreated water sample collected from spigot at pressure tank, before water softener and GAC filtration system. Mid-treatment sample collected from sample port between two GAC filtration canisters. Post-treatment sample collected from the bathroom tap.

Samples were labeled, packed on ice, and shipped via overnight delivery for analysis of VOCs using USEPA Method 524.2.

RESULTS

Recovery Wells

Sample results for the contaminants of concern (COC), tetrachloroethene; trichloroethene; cis-1,2-dichloroethene; and vinyl chloride, are summarized in Table 1. Analytical reports are attached. Total COC concentrations for each well are as follows:

- RW-1 (281.3 μg/l)
- RW-2 (1,070 μg/l)
- RW-3 (2,124 μg/l)
- AV-2 (75.6 µg/l)

Groundwater Monitoring Apple Valley Shopping Center May 26, 2010 Page 3

The total COC concentration for AVS-EFF was 4.4 μ g/l. Based on mass loading and measured effluent concentrations of COCs, the air stripper was performing at 99.9% removal efficiency.

Residential Supply Wells

Sample results for COCs are summarized in Table 2. Analytical reports are attached. Total COC concentrations for untreated samples at each residence are as follows:

- Lot 6 (2.3 μ g/l)
- Lot 11 (1.2 μg/l)

No COCs were detected in the mid-treatment or post-treatment samples at Lot 11.

DISCUSSION

As indicated by the groundwater contour map (Figure 3), hydraulic gradients formed by the groundwater extraction and treatment system demonstrate that groundwater movement is toward the recovery wells and away from adjacent properties and perimeter wells. We conclude, therefore, that the extraction and treatment system continues to exert effective plume control.

Recovery Wells

The February 2010 groundwater data generally indicate an increase in total COC in Recovery Wells RW-1, RW-1, RW-3, and AV-2 in comparison to the December 2009 groundwater monitoring data. The February 2010 groundwater data indicates the total COC concentrations in Recovery Wells RW-1, RW-2, and AV-2 are comparable to historic values. COC concentrations in RW-3 are higher than any previous round of monitoring.

Residential Wells

The February 2010 groundwater data indicate a decrease in total COC concentrations at residential Lot 6 in comparison to the August 2009 groundwater monitoring data. PCE in the Lot 6 well was present at a concentration of 2.3 μ g/l. Concentrations are comparable to historic values.

The February 2010 groundwater data indicate a slight decrease in total COC concentrations at residential Lot 11 in comparison to the September 2009 groundwater monitoring data. PCE in the Lot 11 well was present at a concentration of 1.2 μ g/l. Concentrations are comparable to historic values.

Groundwater Monitoring Apple Valley Shopping Center May 26, 2010 Page 4

SCHEDULE

The next round of quarterly groundwater monitoring is scheduled for May 2010. The next round of residential supply well monitoring is scheduled for August 2010. If you have any questions, please do not hesitate to call.

Sincerely,

CONRAD GEOSCIENCE CORP.

Stephanie P. LaRose

Stephanie P. LaRose

Geologist

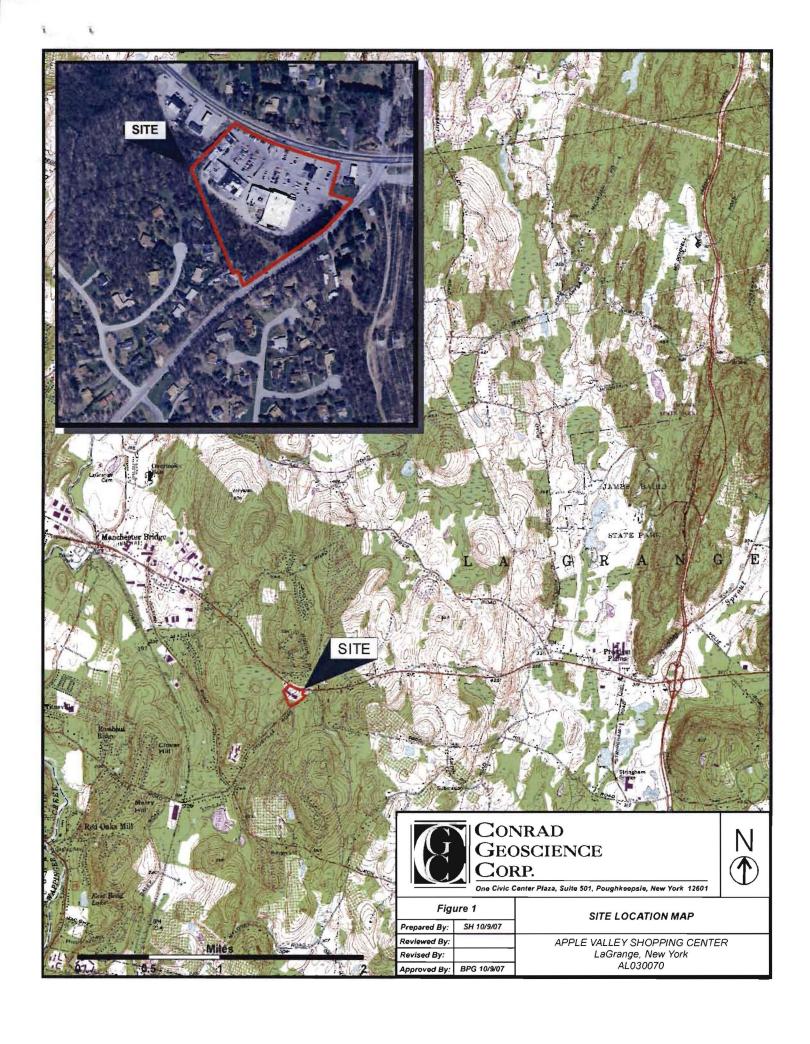
SPL/tla

attachments

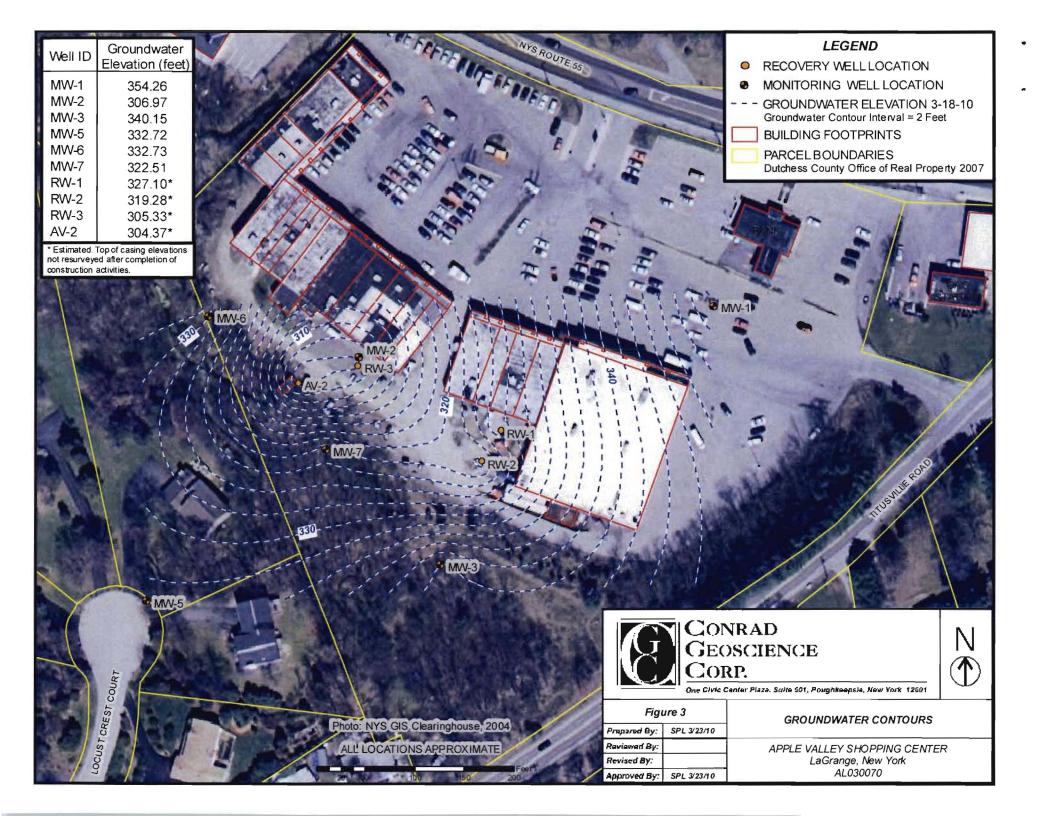
cc: D. Engel

J. Klein

M. Millspaugh


F. Navratil

D. MacDougal


J. Harmon

FIGURES

TABLES

Table 1. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates	Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC		
Volatile Organi	ic Compounds							
	2-9-06	2,850	119	53.6	ND < 10	3,022.6		
	3-9-06	412	19.9	13.6	ND < 1.0	445.5		
	5-16-06	394	21.0	19.0	ND < 1.0	434		
	8-22-06	583	6.4	8.6 M	ND < 2.5	598		
	11-28-06	265	7.7	10	ND < 1.0	282.7		
	12-11-06	217	6.9	9.4	ND < 2.5	233.3		
	3-1-07	591	7.4	5.4	ND < 2.5	603.8		
	5-29-07	298	8.4	ND < 1.0	ND < 1.0	306.4		
	8-28-07	763	9.1	5.2	ND < 5.0	777.3		
RW-1	11-28-07	606	7.8	7.4	ND < 2.5	621.2		
	2-28-08	1,400	14.0	18.4	ND < 10	1,432.4		
	5-27-08	1,170	45.0	102	ND<10	1,317		
	9-9-08	925	20.9	18.5	ND<5.0	964.4		
	11-25-08	3,090	ND<50.0	ND<50.0	ND<50.0	3,090		
	3-5-09	500	15.2	ND<10	ND<10 S	515.2		
	5-27-09	412	17.8	ND<10	ND<10	429.8		
	8-25-09	134	10	5.2	ND<5.0	149.2		
	12-8-09	264	11.4	ND<5	ND<5	275.4		
	2-17-10	271	7.1	3.2	ND<0.5	281.3		

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards;

All concentrations are in µg/l; ND = Not detected above the method detection limit listed,

NU = Not detected above the method detection limit listed.

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,

S = Spike recovery outside accepted recovery limits;

M = Matrix spike recoveries outside QC limits. Matrix bias indicated;

COC = Contaminants of concern.

* Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York;

Conrad Geoscience File #AL030070

Sample	Dates	·····		Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 µg/l ¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 μg/l ¹)	Total COC
Volatile Organi	c Compounds					
	2-9-06	7,860	132	148	ND < 25	8,140
	3-9-06	2,960	24.8	20.8	ND < 10	3,005.6
	5-16-06	1,800	12.2	20.1	ND < 5.0	1,832.3
	8-22-06	14,100	76	177 M	ND < 50.0	14,353
	11-28-06	3,340	ND < 25.0	25.5	ND < 25.0	3,365.5
	12-11-06	1,190	10.9	22.1	ND < 5.0	1,223
	3-1-07	5,100	ND < 50.0	ND < 50.0	ND < 50.0	5,100
	5-29-07	1,080	16.6	ND < 10.0	ND < 10.0	1,096.6
	8-28-07	325	4.1	3.6	ND < 2.5	332.7
RW-2	11-28-07	1,770	ND < 10.0	ND < 10.0	ND < 10.0	1,770
	2-28-08	4,700	30.5	46.0	ND < 25	4,776.5
	5-27-08	2,510	187	114	ND<25.0	2,811
	9-9-08	4,040	52.5	68.0	ND<25.0	4,160.5
	11-25-08	4,790	ND < 100.0	ND < 100.0	ND < 100.0	4,790
	3-5-09	4,800	ND<100	ND<100	ND<100 S	4,800
	5-27-09	5,090	ND<100	ND<100	ND<100	5,090
	8-25-09	2,610	ND<100	ND<100	ND<100 S	2,610
	12-8-09	861	ND<25	ND<25	ND<25	861
	2-17-10	1,070	ND<50	ND<50	ND<50	1,070

Standards are for groundwater according to 6NYCRR Part 700-705. Class GA Groundwater Standards;

All concentrations are in µgh;

ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,

S = Spike recovery outside accepted recovery limits,

M = Matrix spike recoveries cutside QC limits. Matrix bias indicated.

COC = Contaminants of concern.

* Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates	Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 μg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 μg/l ¹)	Vinyl Chloride (2 μg/l¹)	Total COC		
Volatile Organi	c Compounds	t.						
	2-9-06	1,250	102	88.8	ND < 5.0	1,440.8		
	3-9-06	567	67.3	72.8	3.9	711		
	5-16-06	538	53.8	99.4	ND < 2.5	691.2		
	8-22-06	151	19.6	34.1 M	ND < 2.5	204.7		
	11-28-06	451	49.5	103	4.0	607.5		
	12-11-06	467	66.4	147	5.7	686.1		
	3-1-07	494	59	75.3	ND < 2.5	628.3		
	5-29-07	550	54.3	93.8	5.2	703.3		
	8-28-07	657	69.7	121	4.4	852.1		
RW-3	11-28-07	541	57.0	103	ND < 5.0 S	701		
	2-28-08	618	53.0	99.7	ND < 5.0	770.7		
	5-27-08	543	55.2	89.8	ND<10	688		
	9-9-08	480	54.2	85.2	ND<5.0	619.4		
	11-25-08	876	82.2	120	ND<10	1,078.2		
	3-5-09	347	38.8	49.4	ND<10 S	435.2		
	5-27-09	351	40.6	42.2	ND<10	433.8		
	8-25-09	423	53.4	75.4	ND<10	551.8		
	12-8-09	763	83.8	78.2	ND<10	925		
	2-17-10	1,770	172	182	ND<50	2,124		

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards;

All concentrations are in µg/l;
ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards; S = Spike recovery outside accepted recovery limits; M = Matrix spike recoveries outside QC limits. Matrix bias indicated, COC = Contaminants of concern.

* Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York;

Conrad Geoscience File #AL030070

Sample	Dates	·		Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 μg/l ¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC
Volatile Organ	ic Compounds	3				
	2-9-06	3,560	380	979	ND < 10	4,919
	3-9-06	90.7	11.0	19.5	ND < 0.5	121.2
	5-16-06	913	13.2	18.0	ND < 2.5	944.2
	8-22-06	28.4	3.4	9.9 M	ND < 0.5	41.7
	11-28-06	24.7	3.5	6.6	ND < 0.5	34.8
	12-11-06	28.5	4.0	9.2	ND < 0.5	41.7
	3-1-07	25.4	4.0	5.2	ND < 0.5	34.6
	5-29-07	26.0	3.8	6.1	ND < 0.5	35.9
	8-28-07	24.4	ND < 0.5	6.5	ND < 0.5	30.9
AV-2	11-28-07	13.2	2.1	3.6	ND < 0.5 S	18.9
	2-28-08	126	10.7	26.2	ND < 0.5	162.9
	5-27-08	98.5	10.4	24.3	ND<0.5	133.2
	9-9-08	10	1.8	3.3	ND<0.5	15.1
	11-25-08	20.9	3.3	4.6	ND<0.5	28.8
	3-5-09	180	17.5	31.4	ND<0.5	228.9
	5-27-09	146	19.5	22.5	ND<5.0	188
	8-25-09	45.4	5.6	9.1	ND<2.5 S	60.1
	12-8-09	40.3	5.2	5.8	ND<1	51.3
	2-17-10	59.4	7.4	8.8	ND<0.5	75.6

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards. All concentrations are in µg/l,

ND = Not detected above the method detection limit listed,
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,
S = Spike recovery outside accepted recovery limits,
M = Matrix spike recoveries outside QC limits Matrix bias indicated,
COC = Contaminants of concern.

Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010;

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 μg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/1¹)	Vinyl Chloride (2 µg/l ¹)	Total COC
Volatile Organi	ic Compounds					
	2-9-06	146	8.3	22.1	ND < 0.5	176.4
	3-9-06	12.3	1.1	1.4	ND < 0.5	14.8
	5-16-06	14	0.6	1.5	ND < 0.5	16.1
	7-5-06	1.7	ND < 0.5	ND < 0.5	ND < 0.5	1.7
	8-22-06	7.4	ND < 0.5	ND < 0.5	ND < 0.5	7.4
	11-28-06	85.8	4.9	13.0	ND < 0.5	103.7
	12-11-06	2.1	ND < 0.5	ND < 0.5	ND < 0.5	2.1
	3-1-07	2.4	ND < 0.5	ND < 0.5	ND < 0.5	2.4
	5-29-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	8-28-07	2.0	ND < 0.5	ND < 0.5	ND < 0.5	2.0
AVS-EFF	11-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5 S	0
	2-28-08	2.8	ND < 0.5	ND < 0.5	ND < 0.5	2.8
	5-27-08	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0
	9-11-08	0.5	ND<0.5	ND<0.5	ND<0.5	0.5
	11-25-08	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	3-5-09	1.4	ND<0.5	ND<0.5	ND<0.5	1.4
	5-27-09	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	8-25-09	1.6	ND<0.5	0.7	ND<0.5	2.3
	12-30-09	4.3	0.5	1.1	ND<0.5	5.9
	2-17-10	3.6	ND<0.5	0.8	ND<0.5	4.4

M = Matrix spike recoveries outside QC limits Matrix bias indicated;
 COC = Contaminants of concern.

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards; All concentrations are in µg/l;
ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,
S = Spike recovery outside accepted recovery limits;

Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York;

O	^ :	F:1 -	11 A 11	000070
Conrad	Geoscience	F110	ĦΑΙ	OBOALA
Comad		1 110	π / \mathbb{L}	.000010

Sample	Dates	-		Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 μg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC
Volatile Organ	ic Compound	fs.	· · · · · · · · · · · · · · · · · · ·			
	1-16-06	35.5	1.4	2.0	ND < 0.5	38.9
AV-1	5-16-06	13.9	ND < 0.5	ND < 0.5	ND < 0.5	13.9
	8-23-06	10.3	0.6	0.8 M	ND < 0.5	11.7
·	1-17-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	5-16-06	ND < 0.5	2.2	ND < 0.5	ND < 0.5	2.2
MW-1	8-22-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	9-10-08	3.5	ND<0.5	ND<0.5	ND<0.5	3.5
	1-13-06	967	95.7	94.9	ND < 5.0	1,157.6
	5-16-06	4,440	638	1,300	ND < 25.0	6,378
ARIA/ O	8-22-06	2,710	390	943 M	24.2	4,067.2
MW-2	8-28-07	2,760	396	752	31.0	3,939
	9-10-08	1,290	182	484	32.7	1,988.7
	8-25-09	2,630	440	772	ND<100 S	3,842
	1-16-06	0.6	ND < 0.5	ND < 0.5	ND < 0.5	0.6
	5-16-06	2.6	ND < 0.5	N D < 0.5	ND < 0.5	2.6
MW-3	8-23-06	4.3	ND < 0.5	ND < 0.5	ND < 0.5	4.3
	8-29-07	2.5	ND < 0.5	ND < 0.5	ND < 0.5	2.5
	9-10-08	2.8	ND<0.5	0.6	ND<0.5	3.4

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards:

All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;

M = Matrix spike recoveries outside QC limits. Matrix bias indicated;

S = Spike recovery outside accepted recovery limits;

COC = Contaminants of concern.

Table 1 cont'd. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through February 2010; Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l ¹)	Total COC
Volatile Organ	ic Compound	ls,	,			
	1-18-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	8-23-06	4.0	ND < 0.5	0.6 M	ND < 0.5	4.6
MW-5	3-5-07	2.0	ND < 0.5	ND < 0.5	ND < 0.5	2.0
IVIVV-5	8-28-07	3.3	ND < 0.5	ND < 0.5	ND < 0.5	3.3
	3-26-08	0.7	ND < 0.5	ND < 0.5	ND < 0.5	0.7
	9-11-08	2.4	ND<0.5	ND<0.5	ND<0.5	2.4
	1-16-06	21.6	3.4	7.9	ND < 0.5	32.9
	5-16-06	6.0	0.6	ND < 0.5	ND < 0.5	6.6
MW-6	8-22-06	3.7	ND < 0.5	ND < 0.5	ND < 0.5	3.7
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	9-10-08	2.8	ND<0.5	ND<0.5	ND<0.5	2.8
_	1-16-06	6.1	3.6	0.9	ND < 0.5	10.6
	5-16-06	34.0	3.2	7.3	ND < 0.5	44.5
\$ #\A/ 7	8-22-06	23.6	2.8	8.7 M	ND < 0.5	35.1
MW-7	8-28-07	12.5	1.9	2.8	ND < 0.5	17.2
	9-10-08	17.1	1.4	3.7	ND<0.5	22.2
	8-25-09	27.2	3.9	8.0	ND<0.5 S	39.1

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705. Class GA Groundwater Standards: All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,
M = Matrix spike recoveries outside QC limits Matrix bias indicated,
S = Spike recovery outside accepted recovery limits;
COC = Contaminants of concern.

Table 2. Volatile Organic Compounds (VOCs) in Residential Supply Well Groundwater Samples; USEPA Method 524.2; collected March 1998 through February 2010; Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

				Chemical Constituent		
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l¹)	Vinyl Chloride (2 µg/l ¹)	Total COC
Volatile Organ	ic Compounds					
	1-29-03	1.0	ND<0.5	ND < 0.5	ND	1.0
	8-23-06	4.5	ND<0.5	0.9 M	ND<0.5	5.4
Ī	2-27-07	2.6	ND<0.5	0.6	ND<0.5	3.2
	8-7-07	2.2	0.8	ND < 0.5	ND<0.5	3.0
Lot 6	2-27-08	9.8	0.6	1.3	ND<0.5	11.7
(Lipka)	6-3-08	3.0	ND<0.5	0.6	ND<0.5	3.6
	9-5-08	2.1	ND<0.5	0.6	ND<0.5	2.7
	3-19-09	2.9	ND<0.5	0.9	ND<0.5	3.8
	8-17-09	3.7	0.8	1.1	ND<0.5	5.6
	2-4-10	2.3	ND<0.5	ND<0.5	ND<0.5	2.3
	1-29-03	0.6	ND	ND	ND	0.6
Lot 8	8-22-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	2-23-07	0.8	ND < 0.5	ND < 0.5	ND < 0.5	0.8
	1-29-03	0.8	ND	0.6	ND	1.4
	2-23-07	0.9	ND < 0.5	0.6	ND < 0.5	1.5
Lot 9	8-24-07	0.7	0.5	ND < 0.5	ND < 0.5	1.2
	2-29-08	1.5	1.0	1.9	ND < 0.5	4.4
	9-5-08	ND<0.5	0.6	0.7	ND<0.5	1.3

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l,

ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,

M = Matrix spike recoveries outside QC limits Matrix bias indicated.

S = Associated LCS outside QC windows, COC = Contaminants of concern.

Table 2 cont'd. Volatile Organic Compounds (VOCs) in Residential Supply Well Groundwater Samples; USEPA Method 524.2; collected March 1998 through **February 2010;** Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

Campula	_	Chemical Constituent					
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l ¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l¹)	Vinyl Chloride (2 µg/l¹)	Total COC	
Volatile Organ	ic Compounds						
	9-01	7.8	3.4	4.0	ND	15.2	
	3-02	3.7	2.1	2.6	ND	8.4	
	9-02	ND	ND	ND	ND	0	
	4-03	2.1	2.2	1.9	ND	6.2	
	11-03	1.8	2.2	2.6	ND	6.6	
Lot 10 Upstream	5-18-04	1.9	2.0	2.0	ND	5.9	
	12-14-04	3.2	3.3	2.9	ND	9.4	
	7-13-05	4.77	3.54	2.85	ND	11.16	
	8-25-06	15.4	4.1 M	10.3	ND < 0.5	29.8	
	8-30-07	8.0	3.9	4.6	ND < 0.5	16.5	
	2-28-08	12.1	12.1	15.8	ND < 0.5	40	

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;

NO - Not detected above the mention detection limit itset,

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;

M = Matrix spike recoveries outside QC limits. Matrix bias indicated,

S = Associated LCS outside QC windows;

COC = Contaminants of concern.

Table 2 cont'd. Volatile Organic Compounds (VOCs) in Residential Supply Well Groundwater Samples; USEPA Method 524.2; collected March 1998 through February 2010; Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

				Chemical Constituent	<u> </u>	
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l ¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC
Volatile Organ	ilc Compounds					
	3-18-98	ND	ND	ND	ND	0
	1-25-07	2.8	0.5	ND < 0.5	ND < 0.5 S	3.3
	8-27-07	1.6	0.5	ND < 0.5	ND < 0.5	2.1
	2-28-08	20.2	1.3	2.0	ND < 0.5	23.5
Lot 11 Upstream (Alben)	6-26-08	2.5	1.6	1.9	ND<0.5	6.0
	9-5-08	0.9	ND<0.5	ND<0.5	ND<0.5	0.9
	3-12-09	1.4	1.0	1.5	ND<0.5	3.9
	9-29-09	1.4	ND<0.5	ND<0.5	ND<0.5	1.4
	2-24-10	1.2	ND<0.5	ND<0.5	ND<0.5	1.2
	1-29-03	ND < 0.5	ND	ND	ND	0
1.140	9-7-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
Lot 12	2-21-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
Lat 12	2-22-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
Lot 13	8-21-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards,
M = Matrix spike recoveries outside QC limits. Matrix bias indicated,
S = Associated LCS outside QC windows;
COC = Contaminants of concern.

ANALYTICAL DATA

Analytical Report Cover Page

Conrad Geoscience

For Lab Project # 10-0726 Issued March 4, 2010 This report contains a total of 7 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

Client: **Conrad Geoscience** Lab Project No.: 10-0726 Lab Sample No.: 3179

Client Job Site: Apple Valley Shopping Center

LaGrange, NY

Sample Type: Water Client Job No.: AL030070 Date Sampled: 02/17/10 Date Received: 02/18/10

Field Location: AVS-EFF Date Analyzed: 03/01/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5	Benzene	ND<0.5
Bromomethane	ND<0.5	Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5	n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0	sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5	tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5	Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5	2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5	4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5	1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5	1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5	1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5	Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	0.8	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5	Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5	4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5	Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5	n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5	Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5	Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5	1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5 M	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5	1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5	1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	3.6	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5	o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5	Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	ND<0.5	Trihalomethanes	
Trichlorofluoromethane	ND<0.5	Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5	Bromoform	ND<0.5
Vinyl Chloride	ND<0.5	Chloroform	ND<0.5
		Dibromochloromethane	ND<0.5

EPA Method 524.2

Comments:

ND denotes Non Detect.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

File ID: Conrad 10-0726

ELAP No.: 10709

Client:

Conrad Geoscience

Lab Project No.:

10-0726

Client Job Site:

Apple Valley Shopping Center

Lab Sample No.:

3180

LaGrange, NY

Sample Type:

Water

Client Job No.:

AL030070

Date Sampled:

02/17/10

Date Received:

02/18/10

Field Location: AV-2

Date Analyzed:

03/01/10

VOLATILE	RESUL	TS	VOLATILE	RESULTS
HALOCARBONS	(ug/I	2)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5		Benzene	ND<0.5
Bromomethane	ND<0.5		Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5		n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0		sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5		tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5		Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5		2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5		4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5		1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5		1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5		1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5		Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	8.8	X	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5		Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5		4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5		Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5		n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5		Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5		Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5		1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	M	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5		1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5		1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	59.4	X	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5		o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5		Methyl-t-Butyl Ether	ND<2.0
Frichloroethene	7.4	X	Trihalomethanes	
Trichlorofluoromethane	ND<0.5		Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5		Bromoform	ND<0.5
Vinyl Chloride	ND<0.5		Chloroform	ND<0.5
			Dibromochloromethane	ND<0.5

EPA Method 524.2

ELAP No.: 10709

Comments:

ND denotes Non Detect.

X denotes Value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample Information, including compliance with the sample condition requirements upon receipt

File ID: Conrad 10-0726

Client: **Conrad Geoscience** Lab Project No.:

10-0726

Client Job Site:

Apple Valley Shopping Center

Lab Sample No.:

Water

3181

Client Job No.:

LaGrange, NY

Sample Type: Date Sampled:

02/17/10

AL030070

Date Received:

02/18/10

Field Location: RW-1

Date Analyzed:

03/01/10

VOLATILE	RESUL	TS	VOLATILE	RESULTS
HALOCARBONS	(ug/L	.)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5		Benzene	ND<0.5
Bromomethane	ND<0.5		Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5		n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0		sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5		tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5		Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5		2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5		4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5		1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5		1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5		1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5		Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	3.2		Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5		Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5		4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5		Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5		n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5		Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5		Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5		1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	M	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5		1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5		1,3,5-Trimethylbenzene	ND<0.5
Fetrachloroethene	271	X	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5		o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5		Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	7.1	X	<u>Trihalomethanes</u>	
Trichlorofluoromethane	ND<0.5		Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5		Bromoform	ND<0.5
Vinyl Chloride	ND<0.5		Chloroform	ND<0.5
			Dibromochloromethane	ND<0.5

EPA Method 524.2

ELAP No.: 10709

Comments:

ND denotes Non Detect.

X denotes Value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client: Conrad Geoscience Lab Project No.: 10-0726
Lab Sample No.: 3182

Client Job Site: Apple Valley Shopping Center

LaGrange, NY Sample Type: Water

Field Location: RW-2 Date Received: 02/18/10
Date Analyzed: 03/02/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<50	Benzene	ND<50
Bromomethane	ND<50	Bromobenzene	ND<50
Carbon Tetrachloride	ND<50	n-Butylbenzene	ND<50
Chloroethane	ND<100	sec-Butylbenzene	ND<50
Chloromethane	ND<50	tert-Butylbenzene	ND<50
1,2-Dibromomethane	ND<50	Chlorobenzene	ND<50
Dibromomethane	ND<50	2-Chlorotoluene	ND<50
1,2-Dibromo-3-Chloropropane	ND<50	4-Chlorotoluene	ND<50
Dichlorodifluoromethane	ND<50	1,2-Dichlorobenzene	ND<50
1,1-Dichloroethane	ND<50	1,3-Dichlorobenzene	ND<50
1,2- Dichloroethane	ND<50	1,4-Dichlorobenzene	ND<50
1,1-Dichloroethene	ND<50	Ethyl Benzene	ND<50
cis- 1,2-Dichloroethene	ND<50	Hexachlorobutadiene	ND<50
trans-1,2-Dichloroethene	ND<50	Isopropylbenzene	ND<50
1,2 - Dichloropropane	ND<50	4-Isopropyltoluene	ND<50
1,3-Dichloropropane	ND<50	Naphthalene	ND<50
2,2-Dichloropropane	ND<50	n-Propylbenzene	ND<50
1,1- Dichloropropene	ND<50	Styrene	ND<50
cis-1,3-Dichloropropene	ND<50	Toluene	ND<50
trans-1,3-Dichloropropene	ND<50	1,2,3-Trichlorobenzene	ND<50
Methylene Chloride	ND<50	1,2,4-Trichlorobenzene	ND<50
1,1,1,2-Tetrachloroethane	ND<50	1,2,4-Trimethylbenzene	ND<50
1,1,2,2-Tetrachloroethane	ND<50	1,3,5-Trimethylbenzene	ND<50
Tetrachloroethene	1070 X	m,p-Xylene	ND<50
1,1,1-Trichloroethane	ND<50	o-Xylene	ND<50
1,1,2-Trichloroethane	ND<50	Methyl-t-Butyl Ether	ND<200
Trichloroethene	ND<50	<u>Trihalomethanes</u>	
Trichlorofluoromethane	ND<50	Bromodichloromethane	ND<50
1,2,3-Trichloropropane	ND<50	Bromoform	ND<50
Vinyl Chloride	ND<50	Chloroform	ND<50
		Dibromochloromethane	ND<50

EPA Method 524.2 ELAP No.: 10709

Comments: ND denotes Non Detect.

X denotes Value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

File ID: Conrad 10-0726

Client: <u>Conrad Geoscience</u> Lab Pr

Lab Project No.: 10-0726 Lab Sample No.: 3183

Client Job Site: Apple Valley Shopping Center

LaGrange, NY

Sample Type: Water

Client Job No.: AL030070

Date Sampled: 02/17/10

Field Location: RW-3

Date Received: 02/18/10
Date Analyzed: 03/02/10

VOLATILE	RESULT	S	VOLATILE	RESULTS
HALOCARBONS	(ug/L)		AROMATICS	(ug/L)
Bromochloromethane	ND<50		Benzene	ND<50
Bromomethane	ND<50		Bromobenzene	ND<50
Carbon Tetrachloride	ND<50		n-Butylbenzene	ND<50
Chloroethane	ND<100		sec-Butylbenzene	ND<50
Chloromethane	ND<50		tert-Butylbenzene	ND<50
1,2-Dibromomethane	ND<50		Chlorobenzene	ND<50
Dibromomethane	ND<50		2-Chlorotoluene	ND<50
1,2-Dibromo-3-Chloropropane	ND<50		4-Chlorotoluene	ND<50
Dichlorodifluoromethane	ND<50		1,2-Dichlorobenzene	ND<50
1,1-Dichloroethane	ND<50		1,3-Dichlorobenzene	ND<50
1,2- Dichloroethane	ND<50		1,4-Dichlorobenzene	ND<50
1,1-Dichloroethene	ND<50		Ethyl Benzene	ND<50
cis- 1,2-Dichloroethene	182	X	Hexachlorobutadiene	ND<50
trans-1,2-Dichloroethene	ND<50		Isopropylbenzene	ND<50
1,2 - Dichloropropane	ND<50		4-Isopropyltoluene	ND<50
1,3-Dichloropropane	ND<50		Naphthalene	ND<50
2,2-Dichloropropane	ND<50		n-Propylbenzene	ND<50
1,1- Dichloropropene	ND<50		Styrene	ND<50
cis-1,3-Dichloropropene	ND<50		Toluene	ND<50
trans-1,3-Dichloropropene	ND<50		1,2,3-Trichlorobenzene	ND<50
Methylene Chloride	ND<50		1,2,4-Trichlorobenzene	ND<50
1,1,1,2-Tetrachloroethane	ND<50		1,2,4-Trimethylbenzene	ND<50
1,1,2,2-Tetrachloroethane	ND<50		1,3,5-Trimethylbenzene	ND<50
Tetrachloroethene	1770	X	m,p-Xylene	ND<50
1,1,1-Trichloroethane	ND<50		o-Xylene	ND<50
1,1,2-Trichloroethane	ND<50		Methyl-t-Butyl Ether	ND<200
Trichloroethene	172	X	<u>Trihalomethanes</u>	
Trichlorofluoromethane	ND<50		Bromodichloromethane	ND<50
1,2,3-Trichloropropane	ND<50		Bromoform	ND<50
Vinyl Chloride	ND<50		Chloroform	ND<50
			Dibromochloromethane	ND<50
ED4 M-d- J 5242				ELAD N. 10700

EPA Method 524.2

ELAP No.: 10709

Comments:

ND denotes Non Detect.

X denotes Value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

File ID: Conrad 10-0726

Analytical Report Cover Page

Conrad Geoscience

For Lab Project # 10-0547 Issued February 16, 2010 This report contains a total of 3 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

Client: Conrad Geoscience Lab Project No.: 10-0547
Lab Sample No.: 2550

Client Job Site: Lipka Residence

LaGrange, NY Sample Type: Drinking Water

 Client Job No.:
 AL030070
 Date Sampled:
 02/04/10

 Date Received:
 02/04/10

Field Location: Lipka Date Analyzed: 02/12/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5	Benzene	ND<0.5
Bromomethane	ND<0.5	Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5	n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0	sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5	tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5	Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5	2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5	4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5	1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5	1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5	1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5	Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	ND<0.5	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5	Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5	4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5	Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5	n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5	Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5	Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5	1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5	1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5	1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	2.3	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5	o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5	Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	ND<0.5	Trihalomethanes	
Trichlorofluoromethane	ND<0.5	Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5	Bromoform	ND<0.5
Vinyl Chloride	ND<0.5	Chloroform	ND<0.5
		Dibromochloromethane	ND<0.5

EPA Method 524.2

ND denotes Non Detect.

Approved By:

Comments:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

ELAP No.: 10709

CHAIN OF CUSTODY

Con radi PROJECT NAMESIT Lipka re Lagra	E NAGE	cience	COMPANY ADDRESS GITY: PHONE ATTIE COMMEN	Pavadjam Bri 179 Latte Avenu Oschester MAE 585-647-2530 Jane Dalon	1480 -3311	28	ADDRESS CITY: PHONE: ATTN:	Y:	Sar		FAX:	STATE:		ZIP:	TURNAROU	10 - 1 2 1 1 1 1 1 1 1 1	RKING D STI	AYS)	7 6 C	HER	COLON WW RI:11 DHIL/DIR
DATE	-fatE	C O M P O S I I	GRAB	SAMPLE LOCATION/FIEL	D ID	IA A T R	CONTA! NERS	524.2			-				REMAR	RKS		PARAD			nrad Leoscience
12/4/10	837		X	Lipka		DW	3	X										2	<u>5</u> 5	0	
2															<u> </u>			Ш		Ш	
3												·						·			
4																	l_			Ш	ľΑλ
5												-					:				NO
6				-	_													 .			24
7																		\prod			45 4
8									1									\prod	\top		54
9				· · · · · · · · · · ·										-							2055
10																			1	\sqcap	္ဌ
Sample Condit		AC/ELAP 2107	وعديتها حسور	· · · · · · · · · · · · · · · · · · ·		/H								1-							
Comments:	Cotainer 1	Гуре '		Y Z ee N	Sample	A Chi	LA.	<u></u>	: :	<u> </u>	<u></u>	Date/T	7-10	176		Total Co	ośt:				ĺ
Comments:	Paservat	cont. ion: direc to su	+14) Y N	Relinqu	uished I	Зу	_	•		2	-4- Date/T	D/	170	<u> </u>						۲. پ
Comments:	-idding Ti	ime: labbi Clien		Y [] N []	Receive			<u>.</u>				Date/T				P.I.F.					700
Comments:	Temperat	ure: 		_ Y	Receive	<u>izal</u> ed@LE	Lth b By	Q.	Hon	nci		2/4 Date/T	//O ime	115.	0						
		_ -																			

Analytical Report Cover Page

Conrad Geoscience

For Lab Project # 10-0799
Issued March 4, 2010
This report contains a total of 5 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

Client: Conrad Geoscience Lab Project No.: 10-0799
Lab Sample No.: 3355

Client Job Site: Alben Residence - LaGrange

Client Job No.: AL030070 Sample Type: Drinking Water Date Sampled: 02/24/10

Date Sampled: 02/24/10
Date Received: 02/25/10

Field Location: Alben (Lot 11) - Post Date Analyzed: 03/02/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5	Benzene	ND<0.5
Bromomethane	ND<0.5	Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5	n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0	sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5	tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5	Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5	2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5	4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5	1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5	1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5	1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5	Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	ND<0.5	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5	Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5	4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5	Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5	n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5	Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5	Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5	1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5	1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5	1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	ND<0.5	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5	o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5	Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	ND<0.5	Trihalomethanes	
Trichlorofluoromethane	ND<0.5	Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5	Bromoform	ND<0.5
Vinyl Chloride	ND<0.5	Chloroform	ND<0.5
		Dibromochloromethane	ND<0.5

EPA Method 524.2

ELAP No.: 10709

Comments:

ND denotes Non Detect.

Approved By:

Bruce Hoogesteger, Technical Director

Client: **Conrad Geoscience** Lab Project No.: Lab Sample No.: 10-0799

3356

Client Job Site: Alben Residence - LaGrange

Sample Type:

Drinking Water

Client Job No.:

AL030070

Date Sampled:

Date Received:

02/24/1002/25/10

Field Location: Alben (Lot 11) - Mid

Date Analyzed:

03/02/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5	Benzene	ND<0.5
Bromomethane	ND<0.5	Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5	n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0	sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5	tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5	Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5	2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5	4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5	1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5	1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5	1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5	Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	ND<0.5	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5	Isopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5	4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5	Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5	n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5	Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5	Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5	1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5	1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5	1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	ND<0.5	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5	o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5	Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	ND<0.5	Trihalomethanes	
Trichlorofluoromethane	ND<0.5	Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5	Bromoform	ND<0.5
Vinyl Chloride	ND<0.5	Chloroform	ND<0.5
-		Dibromochloromethane	ND<0.5

Comments:

ND denotes Non Detect.

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Conrad Geoscience

Lab Project No.: Lab Sample No.: 10-0799

3357

Client Job Site:

Alben Residence - LaGrange

Sample Type:

Drinking Water

Client Job No.:

AL030070

Date Sampled:

02/24/10

Date Received:

02/25/10

Field Location: Alben (Lot 11) - Pre

Date Analyzed:

03/02/10

VOLATILE	RESULTS	VOLATILE	RESULTS
HALOCARBONS_	(ug/L)	AROMATICS	(ug/L)
Bromochloromethane	ND<0.5	Benzene	ND<0.5
Bromomethane	ND<0.5	Bromobenzene	ND<0.5
Carbon Tetrachloride	ND<0.5	n-Butylbenzene	ND<0.5
Chloroethane	ND<1.0	sec-Butylbenzene	ND<0.5
Chloromethane	ND<0.5	tert-Butylbenzene	ND<0.5
1,2-Dibromomethane	ND<0.5	Chlorobenzene	ND<0.5
Dibromomethane	ND<0.5	2-Chlorotoluene	ND<0.5
1,2-Dibromo-3-Chloropropane	ND<0.5	4-Chlorotoluene	ND<0.5
Dichlorodifluoromethane	ND<0.5	1,2-Dichlorobenzene	ND<0.5
1,1-Dichloroethane	ND<0.5	1,3-Dichlorobenzene	ND<0.5
1,2- Dichloroethane	ND<0.5	1,4-Dichlorobenzene	ND<0.5
1,1-Dichloroethene	ND<0.5	Ethyl Benzene	ND<0.5
cis- 1,2-Dichloroethene	ND<0.5	Hexachlorobutadiene	ND<0.5
trans-1,2-Dichloroethene	ND<0.5	lsopropylbenzene	ND<0.5
1,2 - Dichloropropane	ND<0.5	4-Isopropyltoluene	ND<0.5
1,3-Dichloropropane	ND<0.5	Naphthalene	ND<0.5
2,2-Dichloropropane	ND<0.5	n-Propylbenzene	ND<0.5
1,1- Dichloropropene	ND<0.5	Styrene	ND<0.5
cis-1,3-Dichloropropene	ND<0.5	Toluene	ND<0.5
trans-1,3-Dichloropropene	ND<0.5	1,2,3-Trichlorobenzene	ND<0.5
Methylene Chloride	ND<0.5	1,2,4-Trichlorobenzene	ND<0.5
1,1,1,2-Tetrachloroethane	ND<0.5	1,2,4-Trimethylbenzene	ND<0.5
1,1,2,2-Tetrachloroethane	ND<0.5	1,3,5-Trimethylbenzene	ND<0.5
Tetrachloroethene	1.2	m,p-Xylene	ND<0.5
1,1,1-Trichloroethane	ND<0.5	o-Xylene	ND<0.5
1,1,2-Trichloroethane	ND<0.5	Methyl-t-Butyl Ether	ND<2.0
Trichloroethene	ND<0.5	<u>Trihalomethanes</u>	
Trichlorofluoromethane	ND<0.5	Bromodichloromethane	ND<0.5
1,2,3-Trichloropropane	ND<0.5	Bromoform	ND<0.5
Vinyl Chloride	ND<0.5	Chloroform	ND<0.5
		Dibromochloromethane	ND<0.5

EPA Method 524.2

ELAP No.: 10709

Comments:

ND denotes Non Detect.

Approved By:

Bruce Hoogesteger, Technical Director

PARADIGINI	Conrad Groscince	
ENVIRONMENTAL	COMPANY: (/A) COMPANY: (-) LAB PROJECTIVE: CLIENT PROJECT	
SERVICES, INC.	ANDERSON DOVICONNECTED SAME	
179 Lake Avenue Rochester, NY 14608	19 Lake Ave	<u> 70</u>
(585) 647-2530 • (600) 724-1997 FAX: (585) 647-3311	CITY: STATE: ZIP: TURNAROUND TIME; (WORKING DAYS) PHONE: 635 / Late FAX: PHONE: FAX: PHONE: FAX: PHONE: FAX: PHONE: FAX: PHONE: PHONE: FAX: PHONE: FAX: PHONE: FAX: PHONE: FAX: PHONE: PHONE:	
	287-647-25205311	OTHE
Aloca resignade	ATTN: Jave Dalora 1 2 3 5	\times
Lacionic	COMMENTS: Please retried cooler JD110705	
C		
O M		
DATE TIME O	R SAMPLE LOCATION/FIELD ID T M.A. \ REMARKS PARADIN SAMPLE	
S		
T.		
2/24/10/310		3 5 5
1315		354
1325	大型 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35
	CLEAN 3	2 6 5
5	2/24	
6		
7		
3		
)		
10		
LABUSE ONLY BELOW	HEISAUNET LONG OF THE STATE OF	
Sample Condition: Per NELAC/ELA		
Receipt Parameter		
Container Type:		
	Total Code I	
onments:	第72日(A.) King 20 (1991 A.2) 1	<u>::</u>
Holding Time	COE V VI LI NO LE VILLE DE LA COMPANION DE LA	
	Pierre 1 - Commentine Street Property 1 - Commentine Street Stree	-
Temperature:	Elia ALLA Honch 2/24/10 16 35 Received & Lab By: Samples received by Sublab 2/25/10 KRH 3/4/10	<u>(</u> , . · ·
	Samples received by sublab 2/25/10 KRH 3/4/10	