One Civic Center Plaza, Suite 501, Poughkeepsic, New York 12601 • 845/454-2544 • fax: 845/454-2655

November 11, 2010

Wayne Mizerak
New York State Dept. of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 11th Floor
Albany, New York 12233-7014

NOV 1 5 2010

Re: 3rd Quarter 2010 Groundwater Monitoring Report;

Apple Valley Shopping Center Superfund Site, LaGrange, New York; Index No. II-CERCLA-10224; Conrad Geoscience File #AL030070

Dear Mr. Mizerak:

In August 2010, Conrad Geoscience Corp. continued the groundwater monitoring program at the Apple Valley Shopping Center (Figure 1) in accordance with the NYSDEC-approved Interim Remedial Measure (IRM) work plan dated July 2, 2004 and subsequently modified, as summarized below.

According to the original IRM Work Plan, the drinking water wells for seven residences of the Woodbridge Estates Subdivision were to be monitored on a semi-annual basis, assuming access is granted. All but Lots 6 and 11 were subsequently removed from the monitoring program after COCs decreased to non-detectable or trace concentrations in untreated water samples.

In February 2009, NYSDEC approved our request to discontinue periodic sampling of Monitoring Wells MW-1, MW-3, MW-5, and MW-6.

1.0 QUARTERLY GROUNDWATER MONITORING

On August 25, 2010, Conrad Geoscience collected groundwater samples from Monitoring Wells MW-2 and MW-7; and Recovery Wells RW-1, RW-2, RW-3, and AV-2 (Figure 2). A groundwater remediation system effluent sample was also collected (AVS-EFF). Depth-to-water measurements were recorded from the top of each well casing, and a groundwater contour map was prepared based on these measurements (Figure 3). Residential supply well sampling was conducted at the following residences: Lot 6 and Lot 11 (Figure 4).

Groundwater Monitoring – 3rd Quarter 2010 Apple Valley Shopping Center November 11, 2010 Page 2

1.1 Monitoring Well and Recovery Well Sampling

Prior to sampling, Conrad Geoscience purged each monitoring well following USEPA protocol for low-flow (minimal draw-down) groundwater sampling until physical parameters stabilized. Water quality parameters were monitored using an In-Situ® Troll 9500 water quality meter. Water samples were collected from monitoring wells using a bladder pump and dedicated polyethylene tubing and dispensed into laboratory provided containers. All monitoring wells have been sampled utilizing low-flow techniques throughout the duration of this project. Low-flow collection techniques generate samples that are reproducible and representative of surrounding formation water (*Puls and Barcelona*, 1996¹).

Monitoring Well MW-2 is 160 feet deep and the pump was installed at a depth of 130 feet. Monitoring Well MW-7 is 86.5 feet deep and the pump was installed at a depth of 76 feet.

Recovery well water samples were collected via in-line sample ports prior to treatment by the air stripper. Air stripper effluent samples were collected from the treated discharge pipe.

Samples were labeled, packed on ice, and shipped via overnight delivery for analysis of volatile organic compounds (VOCs) via USEPA Method 524.2.

1.2 Residential Supply Well Sampling

Prior to sampling, Conrad Geoscience contacted the two residents whose supply wells are monitored: Lot 6 and Lot 11 (Figure 4). Despite the availability of public drinking water, a granular activated carbon (GAC) filtration system is installed and in operation at Lot 11. Both residences have water softeners.

Supply well samples were collected via in-line sample ports or spigots prior to GAC filtration and/or water softening. If a GAC filtration system was present, water samples were collected post-treatment and mid-treatment to monitor the effectiveness of the GAC system. Samples were collected at each residence as follows:

Lot 6: Water sample collected from spigot at pressure tank, before water softener.

Lot 11: Untreated water sample collected from spigot at pressure tank, before water softener and GAC filtration system. Mid-treatment sample collected from sample port between two GAC filtration canisters. Post-treatment sample collected from the bathroom tap.

Samples were labeled, packed on ice, and shipped via overnight delivery for analysis of VOCs using USEPA Method 524.2.

¹ Puls, R.W. and M.J. Barcelona, 1996. "Low-Flow (Minimal Drawdown) Ground-water Sampling Procedures." <u>U.S. EPA</u>, Ground Water Issue, Publication Number EPA/540/S-95/504, April 1996.

Groundwater Monitoring – 3rd Quarter 2010 Apple Valley Shopping Center November 11, 2010 Page 3

2.0 RESULTS

2.1 Monitoring Wells and Recovery Wells

Sample results for the contaminants of concern (COC), tetrachloroethene;

trichloroethene; cis-1,2-dichloroethene; and vinyl chloride, are summarized in Table 1. Analytical reports are attached. Total COC concentrations for each well are as follows: MW-2 (637.2 μ g/l); MW-7 (15.2 μ g/l); RW-1 (363.9 μ g/l); RW-2 (421 μ g/l); RW-3 (229.5 μ g/l); and AV-2 (18.8 μ g/l). The total COC concentration for AVS-EFF was 4.1 μ g/l. Based on the mass loading and measured effluent concentrations of the COC, the air stripper was performing at a 97.5% removal efficiency for COC.

2.2 Residential Supply Wells

Sample results for COCs are summarized in Table 2. Analytical reports are attached. Total COC concentrations for untreated samples at each residence are as follows: Lot 6 (1.1 μ g/l) and Lot 11 (1.2 μ g/l). Neither sample exceeded the groundwater standard for COCs.

The total COC concentration for the post-treatment sample at Lot 11 was non-detectable (ND). The total COC concentration for the mid-treatment sample at Lot 11 was ND.

3.0 CONCLUSIONS

The August 2010 groundwater data indicates the total COC concentrations in Recovery Wells RW-1, RW-2, RW-3, and AV-2 have been substantially reduced since the system was first placed into operation in 2006. Total COC concentrations in Monitoring Well MW-2 and Recovery Well RW-3 were lower than any previous results recorded since sampling began in 2006. Total COC concentrations in Monitoring Well RW-2 were lower than any previous results recorded since sampling began in 2006, with the exception of August 2007. Total COC concentrations in Recovery Well RW-1 are an order of magnitude lower than initial sampling in 2006, and total COC concentrations in Recovery Well AV-2 are more than two orders of magnitude lower than initial sampling.

As indicated by the groundwater contour map (Figure 3), hydraulic gradients formed by the groundwater extraction and treatment system demonstrate that groundwater movement is toward the recovery wells and away from adjacent properties and perimeter wells. We conclude, therefore, that the extraction and treatment system continues to exert effective plume control. Extraction wells continue to remove significant amounts of COC from groundwater and the extraction and treatment system continues to remove VOCs at a high removal efficiency.

Groundwater Monitoring – 3rd Quarter 2010 Apple Valley Shopping Center November 11, 2010 Page 4

The next round of quarterly groundwater monitoring is scheduled for November 2010. The next round of residential supply well monitoring is scheduled for February 2011.

If you have any questions, please do not hesitate to call.

Sincerely,

COMRAD GEOSCIENCE CORP.

John A. Conrad

Senior Hydrogeologist

JAC/tla

attachments

cc: D. Engel

J. Klein

M. Millspaugh

F. Navratil

D. MacDougal

J. Harmon

Table 1. Volatile Organic Compounds (VOCs) in Quarterly Groundwater Monitoring Samples; USEPA Method 524.2; collected January 2006 through August 2010; Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates	Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 μg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 μg/l¹)	Total COC		
Volatile Organi	c Compounds							
	2-9-06	2,850	119	53.6	ND < 10	3,022.6		
	3-9-06	412	19.9	13.6	ND < 1.0	445.5		
	5-16-06	394	21.0	19.0	ND < 1.0	434		
	8-22-06	583	6.4	8.6 M	ND < 2.5	598		
	11-28-06	265	7.7	10	ND < 1.0	282.7		
	12-11-06	217	6.9	9.4	ND < 2.5	233.3		
	3-1-07	591	7.4	5.4	ND < 2.5	603.8		
	5-29-07	298	8.4	ND < 1.0	ND < 1.0	306.4		
	8-28-07	763	9.1	5.2	ND < 5.0	777.3		
	11-28-07	606	7.8	7.4	ND < 2.5	621.2		
RW-1	2-28-08	1,400	14.0	18.4	ND < 10	1,432.4		
	5-27-08	1,170	45.0	102	ND<10	1,317		
	9-9-08	925	20.9	18.5	ND<5.0	964.4		
	11-25-08	3,090	ND<50.0	ND<50.0	ND<50.0	3,090		
	3-5-09	500	15.2	ND<10	ND<10 S	515.2		
	5-27-09	412	17.8	ND<10	ND<10	429.8		
	8-25-09	134	10	5.2	ND<5.0	149.2		
	12-8-09	264	11.4	ND<5	ND<5	275.4		
	2-17-10	271	7.1	3.2	ND<0.5	281.3		
	5-27-10	93.7	5.7	ND<5	ND<5 M	99.4		
	8-25-10	310	26.5	27.4	ND<5.0	363.9		

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;
S = Spike recovery outside accepted recovery limits;
M = Matrix spike recoveries outside QC limits. Matrix bias indicated;
COC = Contaminants of concern.

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent		Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 μg/l ¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 μg/l ¹)	Total COC						
Volatile Organi	c Compounds											
	2-9-06	7,860	132	148	ND < 25	8,140						
	3-9-06	2,960	24.8	20.8	ND < 10	3,005.6						
	5-16-06	1,800	12.2	20.1	ND < 5.0	1,832.3						
	8-22-06	14,100	76	177 M	ND < 50.0	14,353						
	11-28-06	3,340	ND < 25.0	25.5	ND < 25.0	3,365.5						
	12-11-06	1,190	10.9	22.1	ND < 5.0	1,223						
	3-1-07	5,100	ND < 50.0	ND < 50.0	ND < 50.0	5,100						
	5-29-07	1,080	16.6	ND < 10.0	ND < 10.0	1,096 6						
	8-28-07	325	4.1	3.6	ND < 2.5	332.7						
	11-28-07	1,770	ND < 10.0	ND < 10.0	ND < 10.0	1,770						
RW-2	2-28-08	4,700	30.5	46.0	ND < 25	4,776.5						
	5-27-08	2,510	187	114	ND<25.0	2,811						
	9-9-08	4,040	52.5	68.0	ND<25.0	4,160.5						
	11-25-08	4,790	ND < 100.0	ND < 100.0	ND < 100.0	4,790						
	3-5-09	4,800	ND<100	ND<100	ND<100 S	4,800						
	5-27-09	5,090	ND<100	ND<100	ND<100	5,090						
	8-25-09	2,610	ND<100	ND<100	ND<100 S	2,610						
	12-8-09	861	ND<25	ND<25	ND<25	861						
	2-17-10	1,070	ND<50	ND<50	ND<50	1,070						
	5-27-10	1,000	ND<50	ND<50	ND<50	1,000						
	8-25-10	421	ND<10	ND<10	ND<10	421						

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards,

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standard All concentrations are in µg/l;
ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;
S = Spike recovery outside accepted recovery limits;
M = Matrix spike recoveries outside QC limits. Matrix bias indicated;
COC = Contaminants of concern.

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 μg/l ¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC
Volatile Organi	c Compounds					
	2-9-06	1,250	102	88.8	ND < 5.0	1,440.8
	3-9-06	567	67.3	72.8	3.9	711
	5-16-06	538	53.8	99.4	ND < 2.5	691.2
	8-22-06	151	19.6	34.1 M	ND < 2.5	204.7
	11-28-06	451	49.5	103	4.0	607.5
	12-11-06	467	66.4	147	5.7	686.1
	3-1-07	494	59	75.3	ND < 2.5	628.3
	5-29-07	550	54.3	93.8	5.2	703.3
	8-28-07	657	69.7	121	4.4	852.1
	11-28-07	541	57.0	103	ND < 5.0 S	701
RW-3	2-28-08	618	53.0	99.7	ND < 5.0	770.7
	5-27-08	543	55.2	89.8	ND<10	688
	9-9-08	480	54.2	85.2	ND<5.0	619.4
	11-25-08	876	82.2	120	ND<10	1,078.2
	3-5-09	347	38.8	49.4	ND<10 S	435.2
	5-27-09	351	40.6	42.2	ND<10	433.8
	8-25-09	423	53.4	75.4	ND<10	551.8
I	12-8-09	763	83.8	78.2	ND<10	925
	2-17-10	1,770	172	182	ND<50	2,124
	5-27-10	521	57.0	87.5	ND<25 M	665.5
	8-25-10	180	18.6	30.9	ND<5.0	229.5

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705. Class GA Groundwater Standards, All concentrations are in µg/l, ND = Not detected above the method detection limit listed,

ND = Not detected above the friends of detected finitial tasted,
S = Spike recovery outside accepted recovery limits,
M = Matrix spike recovenes outside QC limits Matrix bias indicated,
COC = Contaminants of concern.

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates	Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 µg/l³)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l¹)	Vinyl Chloride (2 μg/l ¹)	Total COC		
Volatile Organ	ic Compounds	3						
	2-9-06	3,560	380	979	ND < 10	4,919		
	3-9-06	90.7	11.0	19.5	ND < 0.5	121.2		
	5-16-06	913	13.2	18.0	ND < 2.5	944.2		
	8-22-06	28.4	3.4	9.9 M	ND < 0.5	41.7		
	11-28-06	24.7	3.5	6.6	ND < 0.5	34.8		
	12-11-06	28.5	4.0	9.2	ND < 0.5	41.7		
	3-1-07	25.4	4.0	5.2	ND < 0.5	34.6		
	5-29-07	26.0	3.8	6.1	ND < 0.5	35.9		
	8-28-07	24.4	ND < 0.5	6.5	ND < 0.5	30.9		
	11-28-07	13.2	2.1	3.6	ND < 0.5 S	18.9		
AV-2	2-28-08	126	10.7	26.2	ND < 0.5	162.9		
	5-27-08	98.5	10.4	24.3	ND<0.5	133.2		
	9-9-08	10	1.8	3.3	ND<0.5	15.1		
	11-25-08	20.9	3.3	4.6	ND<0.5	28.8		
	3-5-09	180	17.5	31.4	ND<0.5	228.9		
	5-27-09	146	19.5	22.5	ND<5.0	188		
	8-25-09	45.4	5.6	9.1	ND<2.5 S	60.1		
	12-8-09	40.3	5.2	5.8	ND<1	51.3		
	2-17-10	59.4	7.4	8.8	ND<0.5	75.6		
	5-27-10	17.2	2.8	4.1	ND<0.5 M	24.1		
	8-25-10	14.8	2.1	1.9	ND<0.5	18.8		

Notes:

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l;
ND = Not detected above the method detection limit listed,

ND = Not detected above the method detection limit listed,
Seldface type designates those compounds detected at concentrations exceeding NYSDEC standards;
S = Spike recovery outside accepted recovery limits;
M = Matrix spike recoveries outside QC limits Matrix bias indicated;
COC = Contaminants of concern.

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent		
Identification	Sampled	Tetrachloroethene (5 μg/l ¹)	Trichloroethene (5 μg/l¹)	cis-1,2- Dichloroethene (5 µg/l¹)	Vinyl Chloride (2 µg/l¹)	Total COC
Volatile Organ	ic Compounds					
	2-9-06	146	8.3	22.1	ND < 0.5	176.4
	3-9-06	12.3	1.1	1.4	ND < 0.5	14.8
	5-16-06	14	0.6	1.5	ND < 0.5	16.1
	7-5-06	1.7	ND < 0.5	ND < 0.5	ND < 0.5	1.7
	8-22-06	7.4	ND < 0.5	ND < 0.5	ND < 0.5	7.4
	11-28-06	85.8	4.9	13.0	ND < 0.5	103.7
	12-11-06	2.1	ND < 0.5	ND < 0.5	ND < 0.5	2.1
	3-1-07	2.4	ND < 0.5	ND < 0.5	ND < 0.5	2.4
	5-29-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	8-28-07	2.0	ND < 0.5	ND < 0.5	ND < 0.5	2.0
A) (C EEE	11-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5 S	0
AVS-EFF	2-28-08	2.8	ND < 0.5	ND < 0.5	ND < 0.5	2.8
	5-27-08	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0
	9-11-08	0.5	ND<0.5	ND<0.5	ND<0.5	0.5
	11-25-08	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	3-5-09	1.4	ND<0.5	ND<0.5	ND<0.5	1.4
	5-27-09	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
	8-25-09	1.6	ND<0.5	0.7	ND<0.5	2.3
	12-30-09	4.3	0.5	1.1	ND<0.5	5.9
	2-17-10	3.6	ND<0.5	0.8	ND<0.5	4.4
	5-27-10	4.1	ND<0.5	0.6	ND<0.5	4.7
	8-25-10	3.5	ND<0.5	0.6	ND<0.5	4.1

Notes

COC = Contaminants of concern

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards,

All concentrations are in µg/l; ND = Not detected above the method detection limit listed.

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards. S = Spike recovery outside accepted recovery limits, M = Matrix spike recoveries outside QC limits. Matrix bias indicated,

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates			Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l¹)	Vinyl Chloride (2 µg/l¹)	Total COC				
Volatile Organ	Volatile Organic Compounds									
	1-16-06	35.5	1.4	2.0	ND < 0.5	38.9				
AV-1	5-16-06	13.9	ND < 0.5	ND < 0.5	ND < 0.5	13.9				
	8-23-06	10.3	0.6	0.8 M	ND < 0.5	11.7				
	1-17-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0				
	5-16-06	ND < 0.5	2.2	ND < 0.5	ND < 0.5	2.2				
MW-1	8-22-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0				
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0				
	9-10-08	3.5	ND<0.5	ND<0.5	ND<0.5	3.5				
	1-13-06	967	95.7	94.9	ND < 5.0	1,157.6				
	5-16-06	4,440	638	1,300	ND < 25.0	6,378				
	8-22-06	2,710	390	943 M	24.2	4,067.2				
MW-2	8-28-07	2,760	396	752	31.0	3,939				
	9-10-08	1,290	182	484	32.7	1,988.7				
	8-25-09	2,630	440	772	ND<100 S	3,842				
	8-25-10	468	63.2	106	ND<10	637.2				
	1-16-06	0.6	ND < 0.5	ND < 0.5	ND < 0.5	0.6				
	5-16-06	2.6	ND < 0.5	ND < 0.5	ND < 0.5	2.6				
MVV-3	8-23-06	4.3	ND < 0.5	ND < 0.5	ND < 0.5	4.3				
	8-29-07	2.5	ND < 0.5	ND < 0.5	ND < 0.5	2.5				
	9-10-08	2 8	ND<0.5	0.6	ND<0.5	3.4				

Notes:

All concentrations are in µg/l; ND = Not detected above the method detection limit listed;

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards.

NO – Not detected above in initiation and initiation and initiation.

Bolidface type designates those compounds detected at concentrations exceeding NYSDEC standards; M = Matrix spike recoveries outside QC limits. Matrix bias indicated, S = Spike recovery outside accepted recovery limits COC = Contaminants of concern.

Apple Valley Shopping Center, Lagrange, New York; Conrad Geoscience File #AL030070

Sample	Dates	Chemical Constituent						
Identification	Sampled	Tetrachloroethene (5 μg/l¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC		
Volatile Organ	ic Compound	ds .						
	1-18-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0		
	8-23-06	4.0	ND < 0.5	0.6 M	ND < 0.5	4.6		
MW-5	3-5-07	2.0	ND < 0.5	ND < 0.5	ND < 0.5	2.0		
10100-3	8-28-07	3.3	ND < 0.5	ND < 0.5	ND < 0.5	3.3		
	3-26-08	0.7	ND < 0.5	ND < 0.5	ND < 0.5	0.7		
	9-11-08	2.4	ND<0.5	ND<0.5	ND<0.5	2.4		
	1-16-06	21.6	3.4	7.9	ND < 0.5	32.9		
	5-16-06	6.0	0.6	ND < 0.5	ND < 0.5	6.6		
MW-6	8-22-06	3.7	ND < 0.5	ND < 0.5	ND < 0.5	3.7		
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0		
	9-10-08	2.8	ND<0.5	ND<0.5	ND<0.5	2.8		
	1-16-06	6.1	3.6	0.9	ND < 0.5	10.6		
	5-16-06	34.0	3.2	7.3	ND < 0.5	44.5		
	8-22-06	23.6	2.8	8.7 M	ND < 0.5	35.1		
MW-7	8-28-07	12.5	1.9	2.8	ND < 0.5	17.2		
	9-10-08	17.1	1.4	3.7	ND<0.5	22.2		
	8-25-09	27.2	3.9	8.0	ND<0.5 S	39.1		
	8-25-10	9.9	2.7	2.6	ND<0.5	15.2		

^{1 -} Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards,

All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;

M = Matrix spike recoveries outside QC limits Matrix bias indicated,

S = Spike recovery outside accepted recovery limits; COC = Contaminants of concern.

Volatile Organic Compounds (VOCs) in Residential Supply Well Table 2. Groundwater Samples; USEPA Method 524.2; collected March 1998 through August 2010; Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

_			<u> </u>	Chemical Constituent		
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l ¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l ¹)	Total COC
Volatile Organ	ic Compounds					
	1-29-03	1.0	ND<0.5	ND < 0.5	ND	1.0
	8-23-06	4.5	ND<0.5	0.9 M	ND<0.5	5.4
	2-27-07	2.6	ND<0.5	0.6	ND<0.5	3.2
	8-7-07	2.2	0.8	ND < 0.5	ND<0.5	3.0
	2-27-08	9.8	0.6	1.3	ND<0.5	11.7
Lot 6 (Lipka)	6-3-08	3.0	ND<0.5	0.6	ND<0.5	3.6
	9-5-08	2.1	ND<0.5	0.6	ND<0.5	2.7
	3-19-09	2.9	ND<0.5	0.9	ND<0.5	3.8
	8-17-09	3.7	0.8	1.1	ND<0.5	5.6
	2-4-10	2.3	ND<0.5	ND<0.5	ND<0.5	2.3
	8-4-10	1.1	ND<0.5	ND<0.5	ND<0.5	1.1
	1-29-03	0.6	ND	ND	ND	0.6
Lot 8	8-22-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0
	2-23-07	0.8	ND < 0.5	ND < 0.5	ND < 0.5	0.8
	1-29-03	0.8	ND	0.6	ND	1.4
	2-23-07	0.9	ND < 0.5	0.6	ND < 0.5	1.5
Lot 9	8-24-07	0.7	0.5	ND < 0.5	ND < 0.5	1.2
	2-29-08	1.5	1.0	1.9	ND < 0.5	4.4
	9-5-08	ND<0.5	0.6	0.7	ND<0.5	1.3

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards; All concentrations are in µg/l;

ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards, M = Matrix spike recoveries outside QC limits Matrix bias indicated;
S = Associated LCS outside QC windows,
COC = Contaminants of concern.

Table 2 cont'd. Volatile Organic Compounds (VOCs) in Residential Supply Well Groundwater Samples; USEPA Method 524.2; collected March 1998 through August 2010; Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

	_		 	Chemical Constituent					
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l¹)	Trichloroethene (5 µg/l ¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l¹)	Total COC			
Volatile Organ	Volatile Organic Compounds								
	9-01	7.8	3.4	4.0	ND	15.2			
	3-02	3.7	2.1	2.6	ND	8.4			
	9-02	ND	ND	ND	ND	0			
	4-03	2.1	2.2	1.9	ND	6.2			
	11-03	1.8	2.2	2.6	ND	6.6			
Lot 10 Upstream	5-18-04	1.9	2.0	2.0	ND	5.9			
	12-14-04	3.2	3.3	2.9	ND	9.4			
	7-13-05	4.77	3.54	2.85	ND	11.16			
	8-25-06	15.4	4.1 M	10.3	ND < 0.5	29.8			
	8-30-07	8.0	3.9	4.6	ND < 0.5	16.5			
	2-28-08	12.1	12.1	15.8	ND < 0.5	40			

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards; All concentrations are in µg/l;
ND = Not detected above the method detection limit listed;

ND = Not detected above the method detection limit listed;

Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;

M = Matrix spike recoveries outside QC limits Matrix bias indicated;

S = Associated LCS outside QC windows;

COC = Contaminants of concern

Table 2 cont'd. Volatile Organic Compounds (VOCs) in Residential Supply Well Groundwater Samples; USEPA Method 524.2; collected March 1998 through August 2010; Apple Valley Shopping Center, LaGrange, New York; Conrad Geoscience File #AL030070

Comple	Datas			Chemical Constituent	<u> </u>				
Sample Identification	Dates Sampled	Tetrachloroethene (5 µg/l ¹)	Trichloroethene (5 µg/l¹)	cis-1,2- Dichloroethene (5 µg/l ¹)	Vinyl Chloride (2 µg/l ¹)	Total COC			
Volatile Organ	Volatile Organic Compounds								
	3-18-98	ND	ND	ND	ND	0			
	1-25-07	2.8	0.5	ND < 0.5	ND < 0.5 S	3.3			
	8-27-07	1.6	0.5	ND < 0.5	ND < 0.5	2.1			
	2-28-08	20.2	1.3	2.0	ND < 0.5	23.5			
Lot 11 Upstream	6-26-08	2.5	1.6	1.9	ND<0.5	6.0			
(Alben)	9-5-08	0.9	ND<0.5	ND<0.5	ND<0.5	0.9			
	3-12-09	1.4	1.0	1.5	ND<0.5	3.9			
	9-29-09	1.4	ND<0.5	ND<0.5	ND<0.5	1.4			
	2-24-10	1.2	ND<0.5	ND<0.5	ND<0.5	1.2			
	8-5-10	1.2	ND<0.5	ND<0.5	ND<0.5	1.2			
	1-29-03	ND < 0.5	ND	ND	ND	0			
	9-7-06	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0			
Lot 12	2-21-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0			
	8-28-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0			
Lot 13	2-22-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0			
LUC 13	8-21-07	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	0			

Notes:

1 - Standards are for groundwater according to 6NYCRR Part 700-705, Class GA Groundwater Standards, All concentrations are in µg/l;
ND = Not detected above the method detection limit listed;
Boldface type designates those compounds detected at concentrations exceeding NYSDEC standards;
M = Matrix spike recoveries outside QC limits. Matrix bias indicated,

S = Associated LCS outside QC windows; COC = Contaminants of concern.

Analytical Report Cover Page

Conrad Geoscience

For Lab Project # 10-3508 Issued September 7, 2010 This report contains a total of 9 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;Z" = See case narrative.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

Client: Conrad Geoscience Lab Project No.:

10-3508

Client Job Site:

Apple Valley Shopping Center

Lab Sample No.:

11424

LaGrange, NY

Sample Type:

Water

Client Job No.:

AL030071

Date Sampled: Date Received:

08/25/10 08/26/10

Field Location: MW-2

Date Analyzed:

08/27/10

HALOCARBONS	RESULTS (ug	/LJ		
	_		AROMATICS	(ug/L)
Bromochloromethane	< 10		Benzene	< 10
Bromomethane	< 10		Bromobenzene	< 10
Carbon Tetrachloride	< 10		n-Butylbenzene	< 10
Chloroethane	< 20		sec-Butylbenzene	< 10
Chloromethane	< 10		tert-Butylbenzene	< 10
1,2-Dibromomethane	< 10		Chlorobenzene	< 10
Dibromomethane	< 10		2-Chlorotoluene	< 10
1,2-Dibromo-3-Chloropropane	< 10		4-Chlorotoluene	< 10
Dichlorodifluoromethane	< 10		1,2-Dichlorobenzene	< 10
1,1-Dichloroethane	< 10		1,3-Dichlorobenzene	< 10
1,2- Dichloroethane	< 10		1,4-Dichlorobenzene	< 10
l,1-Dichloroethene	< 10		Ethyl Benzene	< 10
cis- 1,2-Dichloroethene	106	Х	Hexachlorobutadiene	< 10
rans-1,2-Dichloroethene	< 10		Isopropylbenzene	< 10
,2 - Dichloropropane	< 10		4-Isopropyltoluene	< 10
,3-Dichloropropane	< 10		Naphthalene	< 10
2,2-Dichloropropane	< 10		n-Propylbenzene	< 10
,1- Dichloropropene	< 10		Styrene	< 10
is-1,3-Dichloropropene	< 10		Toluene	< 10
rans-1,3-Dichloropropene	< 10		1,2,3-Trichlorobenzene	< 10
Methylene Chloride	20.8	Х	1,2,4-Trichlorobenzene	< 10
,1,1,2-Tetrachloroethane	< 10		1,2,4-Trimethylbenzene	< 10
,1,2,2-Tetrachloroethane	< 10	ļ	1,3,5-Trimethylbenzene	< 10
Tetrachloroethene	468	x	m,p-Xylene	< 10
.,1,1-Trichloroethane	< 10		o-Xylene	< 10
.,1,2-Trichloroethane	< 10		Methyl-t-Butyl Ether	< 40
richloroethene	00	Х	Trihalomethanes	
richlorofluoromethane	< 10		Bromodichloromethane	< 10
,2,3-Trichloropropane	< 10		Bromoform	< 10
inyl Chloride	< 10		Chloroform	< 10
			Dibromochloromethane	< 10

EPA Method 524.2

ELAP No.: 10709

Comments:

X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client: **Conrad Geoscience** Lab Project No.:

10-3508

Client Job Site:

Apple Valley Shopping Center

Lab Sample No.:

11425

LaGrange, NY

Sample Type:

Water

Client Job No.:

Date Sampled:

08/25/10

AL030071

Date Received:

08/26/10

Field Location: MW-7

Date Analyzed:

08/27/10

VOLATILE	DECLUE MC (/I)	VOLATILE	RESULTS
HALOCARBONS	RESULTS (ug/L)	AROMATICS	(ug/L)
Bromochloromethane	< 0.5	Benzene	< 0.5
Bromomethane	< 0.5	Bromobenzene	< 0.5
Carbon Tetrachloride	< 0.5	n-Butylbenzene	< 0.5
Chloroethane	< 1.0	sec-Butylbenzene	< 0.5
Chloromethane	< 0.5	tert-Butylbenzene	< 0.5
1,2-Dibromomethane	< 0.5	Chlorobenzene	< 0.5
Dibromomethane	< 0.5	2-Chlorotoluene	< 0.5
1,2-Dibromo-3-Chloropropane	< 0.5	4-Chlorotoluene	< 0.5
Dichlorodifluoromethane	< 0.5	1,2-Dichlorobenzene	< 0.5
1,1-Dichloroethane	< 0.5	1,3-Dichlorobenzene	< 0.5
1,2- Dichloroethane	< 0.5	1,4-Dichlorobenzene	< 0.5
1,1-Dichloroethene	< 0.5	Ethyl Benzene	< 0.5
cis- 1,2-Dichloroethene	2.6	Hexachlorobutadiene	< 0.5
trans-1,2-Dichloroethene	< 0.5	Isopropylbenzene	< 0.5
1,2 - Dichloropropane	< 0.5	4-Isopropyltoluene	< 0.5
1,3-Dichloropropane	< 0.5	Naphthalene	< 0.5
2,2-Dichloropropane	< 0.5	n-Propylbenzene	< 0.5
1,1- Dichloropropene	< 0.5	Styrene	< 0.5
cis-1,3-Dichloropropene	< 0.5	Toluene	< 0.5
trans-1,3-Dichloropropene	< 0.5	1,2,3-Trichlorobenzene	< 0.5
Methylene Chloride	< 0.5	1,2,4-Trichlorobenzene	< 0.5
1,1,1,2-Tetrachloroethane	< 0.5	1,2,4-Trimethylbenzene	< 0.5
1,1,2,2-Tetrachloroethane	< 0.5	1,3,5-Trimethylbenzene	< 0.5
Tetrachloroethene	9.9 X	m,p-Xylene	< 0.5
1,1,1-Trichloroethane	< 0.5	o-Xylene	< 0.5
1,1,2-Trichloroethane	< 0.5	Methyl-t-Butyl Ether	< 2.0
Trichloroethene	2.7	Trihalomethanes	
Trichlorofluoromethane	< 0.5	Bromodichloromethane	< 0.5
1,2,3-Trichloropropane	< 0.5	Bromoform	< 0.5
Vinyl Chloride	< 0.5	Chloroform	< 0.5
		Dibromochloromethane	< 0.5

EPA Method 524.2

ELAP No.: 10709

Comments:

X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client: Conrad Geoscience Lab Project No.: 10-3508
Lab Sample No.: 11426

Client Job Site: Apple Valley Shopping Center

LaGrange, NY Sample Type: Water

 Client Job No.:
 AL030071
 Date Sampled:
 08/25/10

Field Location: AVS-EFF Date Received: 08/26/10
Date Analyzed: 08/27/10

VOLATILE	RESULTS (ug/L)	VOLATILE	RESULTS		
HALOCARBONS	KESULIS (ug/L)	AROMATICS	(ug/L)		
Bromochloromethane	< 0.5	Benzene	< 0.5		
Bromomethane	< 0.5	Bromobenzene	< 0.5		
Carbon Tetrachloride	< 0.5	n-Butylbenzene	< 0.5		
Chloroethane	< 1.0	sec-Butylbenzene	< 0.5		
Chloromethane	< 0.5	tert-Butylbenzene	< 0.5		
1,2-Dibromomethane	< 0.5	Chlorobenzene	< 0.5		
Dibromomethane	< 0.5	2-Chlorotoluene	< 0.5		
1,2-Dibromo-3-Chloropropane	< 0.5	4-Chlorotoluene	< 0.5		
Dichlorodifluoromethane	< 0.5	1,2-Dichlorobenzene	< 0.5		
1,1-Dichloroethane	< 0.5	1,3-Dichlorobenzene	< 0.5		
1,2- Dichloroethane	< 0.5	1,4-Dichlorobenzene	< 0.5		
1,1-Dichloroethene	< 0.5	Ethyl Benzene	< 0.5		
cis- 1,2-Dichloroethene	0.6	Hexachlorobutadiene	< 0.5		
trans-1,2-Dichloroethene	< 0.5	Isopropylbenzene	< 0.5		
1,2 - Dichloropropane	< 0.5	4-Isopropyltoluene	< 0.5		
1,3-Dichloropropane	< 0.5	Naphthalene	< 0.5		
2,2-Dichloropropane	< 0.5	n-Propylbenzene	< 0.5		
1,1- Dichloropropene	< 0.5	Styrene	< 0.5		
cis-1,3-Dichloropropene	< 0.5	Toluene	< 0.5		
trans-1,3-Dichloropropene	< 0.5	1,2,3-Trichlorobenzene	< 0.5		
Methylene Chloride	< 0.5	1,2,4-Trichlorobenzene	< 0.5		
1,1,1,2-Tetrachloroethane	< 0.5	1,2,4-Trimethylbenzene	< 0.5		
1,1,2,2-Tetrachloroethane	< 0.5	1,3,5-Trimethylbenzene	< 0.5		
Tetrachloroethene	3.5	m,p-Xylene	< 0.5		
1,1,1-Trichloroethane	< 0.5	o-Xylene	< 0.5		
1,1,2-Trichloroethane	< 0.5	Methyl-t-Butyl Ether	< 2.0		
Trichloroethene	< 0.5	<u>Trihalomethanes</u>			
Trichlorofluoromethane	< 0.5	Bromodichloromethane	< 0.5		
1,2,3-Trichloropropane	< 0.5	Bromoform	< 0.5		
Vinyl Chloride	< 0.5	Chloroform	< 0.5		
		Dibromochloromethane	< 0.5		
EPA Method 524.2			ELAP No.: 10709		

EPA Method 524.2 Comments: ELAP No.: 10709

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client: **Conrad Geoscience** Lab Project No.:

10-3508

Client Job Site:

Apple Valley Shopping Center

Lab Sample No.:

11427

LaGrange, NY

Sample Type:

Water

Client Job No.:

Date Sampled:

08/25/10

AL030071

Date Received:

08/26/10

Field Location: AV-2 Date Analyzed:

08/27/10

VOLATILE	DECILITE (/I.)	VOLATILE	RESULTS		
HALOCARBONS	RESULTS (ug/L)	AROMATICS	(ug/L)		
Bromochloromethane	< 0.5	Benzene	< 0.5		
Bromomethane	< 0.5	Bromobenzene	< 0.5		
Carbon Tetrachloride	< 0.5	n-Butylbenzene	< 0.5		
Chloroethane	< 1.0	sec-Butylbenzene	< 0.5		
Chloromethane	< 0.5	tert-Butylbenzene	< 0.5		
1,2-Dibromomethane	< 0.5	Chlorobenzene	< 0.5		
Dibromomethane	< 0.5	2-Chlorotoluene	< 0.5		
1,2-Dibromo-3-Chloropropane	< 0.5	4-Chlorotoluene	< 0.5		
Dichlorodifluoromethane	< 0.5	1,2-Dichlorobenzene	< 0.5		
1,1-Dichloroethane	< 0.5	1,3-Dichlorobenzene	< 0.5		
1,2- Dichloroethane	< 0.5	1,4-Dichlorobenzene	< 0.5		
1,1-Dichloroethene	< 0.5	Ethyl Benzene	< 0.5		
cis- 1,2-Dichloroethene	1.9	Hexachlorobutadiene	< 0.5		
trans-1,2-Dichloroethene	< 0.5	lsopropylbenzene	< 0.5		
1,2 - Dichloropropane	< 0.5	4-Isopropyltoluene	< 0.5		
1,3-Dichloropropane	< 0.5	Naphthalene	< 0.5		
2,2-Dichloropropane	< 0.5	n-Propylbenzene	< 0.5		
1,1- Dichloropropene	< 0.5	Styrene	< 0.5		
cis-1,3-Dichloropropene	< 0.5	Toluene	< 0.5		
trans-1,3-Dichloropropene	< 0.5	1,2,3-Trichlorobenzene	< 0.5		
Methylene Chloride	< 0.5	1,2,4-Trichlorobenzene	< 0.5		
1,1,1,2-Tetrachloroethane	< 0.5	1,2,4-Trimethylbenzene	< 0.5		
1,1,2,2-Tetrachloroethane	< 0.5	1,3,5-Trimethylbenzene	< 0.5		
Tetrachloroethene	14.8 X	m,p-Xylene	< 0.5		
1,1,1-Trichloroethane	< 0.5	o-Xylene	< 0.5		
1,1,2-Trichloroethane	< 0.5	Methyl-t-Butyl Ether	< 2.0		
Trichloroethene	2.1	<u>Trihalomethanes</u>			
Trichlorofluoromethane	< 0.5	Bromodichloromethane	< 0.5		
1,2,3-Trichloropropane	< 0.5	Bromoform	< 0.5		
Vinyl Chloride	< 0.5	Chloroform	< 0.5		
		Dibromochloromethane	< 0.5		

EPA Method 524.2

ELAP No.: 10709

Comments:

X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client:Conrad GeoscienceLab Project No.:10-3508Lab Sample No.:11428

Client Job Site: Apple Valley Shopping Center

LaGrange, NY Sample Type: Water

 Client Job No.:
 AL030071
 Date Sampled:
 08/25/10

 Date Received:
 08/26/10

Field Location: RW-1 Date Analyzed: 08/27/10

VOLATILE	DECLUTE (/L)	VOLATILE	RESULTS (ug/L)		
HALOCARBONS	RESULTS (ug/L)	AROMATICS			
Bromochloromethane	< 5.0	Benzene	< 5.0		
Bromomethane	< 5.0	Bromobenzene	< 5.0		
Carbon Tetrachloride	< 5.0	n-Butylbenzene	< 5.0		
Chloroethane	< 10	sec-Butylbenzene	< 5.0		
Chloromethane	< 5.0	tert-Butylbenzene	< 5.0		
1,2-Dibromomethane	< 5.0	Chlorobenzene	< 5.0		
Dibromomethane	< 5.0	2-Chlorotoluene	< 5.0		
1,2-Dibromo-3-Chloropropane	< 5.0	4-Chlorotoluene	< 5.0		
Dichlorodifluoromethane	< 5.0	1,2-Dichlorobenzene	< 5.0		
1,1-Dichloroethane	< 5.0	1,3-Dichlorobenzene	< 5.0		
1,2- Dichloroethane	< 5.0	1,4-Dichlorobenzene	< 5.0		
1,1-Dichloroethene	< 5.0	Ethyl Benzene	< 5.0		
cis- 1,2-Dichloroethene	27.4 X	Hexachlorobutadiene	< 5.0 _.		
trans-1,2-Dichloroethene	< 5.0	Isopropylbenzene	< 5.0		
1,2 - Dichloropropane	< 5.0	4-Isopropyltoluene	< 5.0		
1,3-Dichloropropane	< 5.0	Naphthalene	< 5.0		
2,2-Dichloropropane	< 5.0	n-Propylbenzene	< 5.0		
1,1- Dichloropropene	< 5.0	Styrene	< 5.0		
cis-1,3-Dichloropropene	< 5.0	Toluene	< 5.0		
trans-1,3-Dichloropropene	< 5.0	1,2,3-Trichlorobenzene	< 5.0		
Methylene Chloride	10.7 X	1,2,4-Trichlorobenzene	< 5.0		
1,1,1,2-Tetrachloroethane	< 5.0	1,2,4-Trimethylbenzene	< 5.0		
1,1,2,2-Tetrachloroethane	< 5.0	1,3,5-Trimethylbenzene	< 5.0		
Fetrachloroethene	310 X	m,p-Xylene	< 5.0		
1,1,1-Trichloroethane	< 5.0	o-Xylene	< 5.0		
1,1,2-Trichloroethane	< 5.0	Methyl-t-Butyl Ether	< 20		
Trichloroethene		<u>Trihalomethanes</u>			
Frichlorofluoromethane	< 5.0	Bromodichloromethane	< 5.0		
1,2,3-Trichloropropane	< 5.0	Bromoform	< 5.0		
Vinyl Chloride	< 5.0	Chloroform	< 5.0		
		Dibromochloromethane	< 5.0		

EPA Method 524.2

ELAP No.: 10709

Comments: X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

Client: Conrad Geoscience Lab Project No.: 10-3508
Lab Sample No.: 11429

Client Job Site: Apple Valley Shopping Center

LaGrange, NY Sample Type: Water

 Client Job No.:
 AL030071
 Date Sampled:
 08/25/10

 Date Received:
 08/26/10

Field Location: RW-2 Date Analyzed: 08/27/10

VOLATILE	RESULTS (ug/L)	VOLATILE	RESULTS (ug/L)		
HALOCARBONS	KESULIS (UB/L)	AROMATICS			
Bromochloromethane	< 10	Benzene	< 10		
Bromomethane	< 10	Bromobenzene	< 10		
Carbon Tetrachloride	< 10	n-Butylbenzene	< 10		
Chloroethane	< 20	sec-Butylbenzene	< 10		
Chloromethane	< 10	tert-Butylbenzene	< 10		
1,2-Dibromomethane	< 10	Chlorobenzene	< 10		
Dibromomethane	< 10	2-Chlorotoluene	< 10		
1,2-Dibromo-3-Chloropropane	< 10	4-Chlorotoluene	< 10		
Dichlorodifluoromethane	< 10	1,2-Dichlorobenzene	< 10		
1,1-Dichloroethane	< 10	1,3-Dichlorobenzene	< 10		
1,2- Dichloroethane	< 10	1,4-Dichlorobenzene	< 10		
1,1-Dichloroethene	< 10	Ethyl Benzene	< 10		
cis- 1,2-Dichloroethene	< 10	Hexachlorobutadiene	< 10		
trans-1,2-Dichloroethene	< 10	lsopropylbenzene	< 10		
1,2 - Dichloropropane	< 10	4-Isopropyltoluene	< 10		
1,3-Dichloropropane	< 10	Naphthalene	< 10		
2,2-Dichloropropane	< 10	n-Propylbenzene	< 10		
1,1- Dichloropropene	< 10	Styrene	< 10		
cis-1,3-Dichloropropene	< 10	Toluene	< 10		
trans-1,3-Dichloropropene	< 10	1,2,3-Trichlorobenzene	< 10		
Methylene Chloride	27.2 X	1,2,4-Trichlorobenzene	< 10		
1,1,1,2-Tetrachloroethane	< 10	1,2,4-Trimethylbenzene	< 10		
1,1,2,2-Tetrachloroethane	< 10	1,3,5-Trimethylbenzene	< 10		
Tetrachloroethene	421 X	m,p-Xylene	< 10		
1,1,1-Trichloroethane	< 10	o-Xylene	< 10		
1,1,2-Trichloroethane	< 10	Methyl-t-Butyl Ether	< 40		
Trichloroethene	< 10	<u>Trihalomethanes</u>			
Trichlorofluoromethane	< 10	Bromodichloromethane	< 10		
1,2,3-Trichloropropane	< 10	Bromoform	< 10		
Vinyl Chloride	< 10	Chloroform	< 10		
		Dibromochloromethane	< 10		
EPA Method 524.2			ELAP No.: 10709		

EPA Method 524.2 Comments:

X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt

Client: Conrad Geoscience Lab Project No.: 10-3508
Lab Sample No.: 11430

Client Job Site: Apple Valley Shopping Center

LaGrange, NY Sample Type: Water

 Client Job No.:
 AL030071
 Date Sampled:
 08/25/10

 Date Received:
 08/26/10

Field Location: RW-3 Date Analyzed: 08/27/10

VOLATILE	DECLUTE (/I	VOLATILE	RESULTS		
HALOCARBONS	RESULTS (ug/I	AROMATICS	(ug/L)		
Bromochloromethane	< 5.0	Benzene	< 5.0		
Bromomethane	< 5.0	Bromobenzene	< 5.0 ·		
Carbon Tetrachloride	< 5.0	n-Butylbenzene	< 5.0		
Chloroethane	< 10	sec-Butylbenzene	< 5.0		
Chloromethane	< 5.0	tert-Butylbenzene	< 5.0		
1,2-Dibromomethane	< 5.0	Chlorobenzene	< 5.0		
Dibromomethane	< 5.0	2-Chlorotoluene	< 5.0		
1,2-Dibromo-3-Chloropropane	< 5.0	4-Chlorotoluene	< 5.0		
Dichlorodifluoromethane	< 5.0	1,2-Dichlorobenzene	< 5.0		
1,1-Dichloroethane	< 5.0	1,3-Dichlorobenzene	< 5.0		
1,2- Dichloroethane	< 5.0	1,4-Dichlorobenzene	< 5.0		
1,1-Dichloroethene	< 5.0	Ethyl Benzene	< 5.0		
cis- 1,2-Dichloroethene	30.9 X	Hexachlorobutadiene	< 5.0		
trans-1,2-Dichloroethene	< 5.0	Isopropylbenzene	< 5.0		
1,2 - Dichloropropane	< 5.0	4-Isopropyltoluene	< 5.0		
1,3-Dichloropropane	< 5.0	Naphthalene	< 5.0		
2,2-Dichloropropane	< 5.0	n-Propylbenzene	< 5.0		
1,1- Dichloropropene	< 5.0	Styrene	< 5.0		
cis-1,3-Dichloropropene	< 5.0	Toluene	< 5.0		
trans-1,3-Dichloropropene	< 5.0	1,2,3-Trichlorobenzene	< 5.0		
Methylene Chloride	5.4 X	1,2,4-Trichlorobenzene	< 5.0		
1,1,1,2-Tetrachloroethane	< 5.0	1,2,4-Trimethylbenzene	< 5.0		
1,1,2,2-Tetrachloroethane	< 5.0	1,3,5-Trimethylbenzene	< 5.0		
Tetrachloroethene	180 X	1	< 5.0		
1,1,1-Trichloroethane	< 5.0	o-Xylene	< 5.0		
1,1,2-Trichloroethane	< 5.0	Methyl-t-Butyl Ether	< 20		
Trichloroethene	18.6 X				
Trichlorofluoromethane	< 5.0	Bromodichloromethane	< 5.0		
1,2,3-Trichloropropane	< 5.0	Bromoform	< 5.0		
Vinyl Chloride	< 5.0	Chloroform	< 5.0		
		Dibromochloromethane	< 5.0		

EPA Method 524.2

ELAP No.: 10709

Comments:

X denotes value exceeds Maximum Contaminant Level.

Approved By:

Bruce Hoogesteger, Technical Director

PARADIGM	Cher	nt: Conrad Geos	cience <u>C</u> I	<u>HAIN</u>	OF C	CUSTO	<u>DDY</u>				Al
ENVIRONMENTAL	COMPANY			COMPAN		, N	OCE TO		LAB PROJECT#:	CLIENT PROJECT #:	AUG/27
SERVICES, INC.	ADDRESS	MYOUNAM Enviro	anneatal	ADDRES					10.3508	ALCTURY	/27/2010/FRI
Rochester, NY 14608 (585) 647-2590 • (800) 724-1997	CITY: 1	CCINC FO STATE!	14608	CITY:			STATE:	ZBP:	TURNAROUND TIME: (VI	~ Del 36	# P F
FAX: (585) 647-3311	PHONE:	5×5-6497-753		PHONE:			FAX:	· · · · · · · · · · · · · · · · · · ·	10-	STD 8/27 STD 8/27	
PROJECT NAME/SITE NAME:	ATTN: COMMENT	Jure Daloia		ATTN:					1 2	3 5 🔀	
John Side Wald	COMMENT	· Charactur							QUOTE#:	116765	MA
	i i			T c	REC	DESTER	AMALYSIS	T T			<u> </u>
Apple Valley 6 0 Shopping Center, 6 0 Shopping Center, 6 0 DATE LASCANGE 8 127 1 EPH 8 127 EPH 8	G A B	sample location field id	A T R I	N T A L N E R S	2.476				REMARKS	PARAOIGIN LAB Sample Number	Conrad Geoscience
18/25/10 1041	X	MLU-Z	610	3	Х					11424	1 □ □ □ □
2 1705		MCU-7			j.					11425	5
3 1240		MS-EFF								11420	o
4 1/43			SL 8/27 EAH 8/27)	-	1			<u> </u>	- <u>-</u>	1142	7 F AX
5 747		K(v-1						<u> </u>		11428	
6 1652	1	120 2						 		11429	7 8 8
7 1 1256	W	12w-3	V	1	Ŵ			 		11430	≃
8				↓			4444				454
9				<u> </u>	<u> </u>			 			265
10	1.768		S. Harris States The Care To	(1) 第4 15 V (2) V	Wall-Santa	La de la companya de		and the section of the recto	ক্ষালয় এন বিভাগ বিশ্বাসনাম উ পা- ক্ষাল	**************************************	5
Sample Condition: Per NELAC/ELAF	Auc. + 44 74 74	Wildows School and Sectional Mark to School a Control of Control of			2000					e de la companya de l	<u>::</u>
Receipt Parameter		NELAC Compliance	\mathcal{M}	: · · ·			r* - 22	, <i>1</i> , , ,	P 2		
Container Type:	ouln-1	Ŷ□ N□	Sampled,By		·		300	ate/Time			7
Preservation; S. C. Comments: +0 Sub		Y	Relinquished	Ву		д-	<u> 3 ~25</u>	ate/Time	Total Co	st:	P. 002
Holding Time: by Comments: [e: d]	8/24/	OY	Received By				D.	ate/Time			12
Temperature 9210 V N Elizabeth C. Honch 8/27/10 1/33 Received @ Eab By Date/Time											