

OPERATION MAINTENANCE AND MONITORING REPORT (MAY 2004 - JULY 2004)

FORMER FLAGSHIP AIRLINES **DUTCHESS COUNTY AIRPORT** WAPPINGERS FALLS, NEW YORK

DUTCHESS COUNTY AIRPORT WAPPINGERS FALLS, NEW YORK

NYSDEC SITE NO. 3-14-101, ORDER ON CONSENT NO. W3-0837-98-12

Submitted to:

Case Manager Division of Environmental Remediation New York State Department of Environmental Conservation, Region III 21 South Putt Corners Road New Paltz, New York 12561-1696

Submitted by:

Shaw Environmental, Inc. 13 British American Boulevard Latham, New York 12110

December 15, 2004

Prepared By:

Reviewed/Submitted By:

Jennifer Nafus Scientist/Engineer Brian L. Neumann, PG, CPG Project Manager/Hydrogeologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	OPERATION AND MAINTENANCE	2
3.0	SIGNIFICANT OPERATIONAL NOTES	3
4.0	SOIL VAPOR EXTRACTION SYSTEM	4
4.1 4.2		
5.0	AIR SPARGE SYSTEM	6
5.1 5.2	AIR SPARGE SYSTEM OPERATIONAL CONFIGURATION PERIOD PERFORMANCE	6 6
6.0	SYSTEM TREATMENT EFFICIENCY	6
7.0	PROPOSED ACTIVITIES	6
LIS1	OF TABLES:	

- 1. Vapor Removal (Based on PID)
- 2. Treatment Efficiency
- 3. Compound of Concern Cumulative Recovery
- 4. Historical Groundwater Depths, Elevations and Dissolved Oxygen Measurements
- 5. Analytical Results, Overburden Monitoring Wells July 21, 2004
- 6. Summary of Historical Water Quality Results

LIST OF FIGURES

- 1. Site Location Map
- 2. Well Location Map
- 3. Groundwater Contour Map July 21, 2004
- 4. Analytical Summary Map July 21, 2004
- 5. Naphthalene Isochron Map (07/21/04)
- 6. Chloroethane Isochron Map (07/21/04)
- 7. 1,2-Dichloroethene Map (07/21/04)
- 8. Dissolved Tetrachloroethene Trends

- 9. Dissolved 1,1 Dichloroethane Trends
- 10. Dissolved Naphthalene Trends

LIST OF APPENDICES _

- A. Analytical Results Groundwater (July 21, 2004)
- B. Analytical Results Air (July 23, 2004)

1.0 Introduction

This status report details the operational status of the Air Sparge/Soil Vapor Extraction (AS/SVE) treatment system at the Former Flagship Airlines Hangar, Dutchess County Airport, Wappingers Falls, New York (**Figure 1** and **Figure 2**). This status report covers the period from May 2004 through July 2004 and includes a discussion of the sampling event conducted on July 21, 2004 completed by Shaw Environmental, Inc. (Shaw) personnel.

The total run time for the AS/SVE systems during the reporting period was 97.14%. The SVE was down during this monitoring period for approximately three days, most likely due to significant rain events as discussed in **Section 4.2**. The total run time for the SVE during this reporting period was 2,208 available hours, with 2,136 actual hours or 97.14%.

2.0 Operation and Maintenance

Monthly Operation and Maintenance (O&M) visits were performed as required by the Record of Decision (ROD). All O&M actions are performed as outlined in the revised AS/SVE Treatment System Operation and Maintenance Manual, dated April 14, 2004. O&M visits were performed on May 06, 2004, June 03, 2004, July 08, 2004 and quarterly groundwater sampling on July 21, 2004.

Monitoring tasks performed during the typical O&M visit included:

- AS and SVE equipment inspected and operating parameters monitored and adjusted.
- AS and SVE equipment monitored (drained moisture separator when necessary, check/change air filter elements and belts and greasing and oil changes on blowers).
- Former Flagship and IBM property monitoring wells gauged for water depths and dissolved oxygen content.
- Quarterly groundwater sampling of ROD determined former Flagship and IBM property monitoring wells. All involved parties were notified prior to sampling.
- SVE points monitored in the equipment compound to verify pressure vacuum response surrounding the system.
- System operational time monitored.
- Influent SVE leg, pre-manifold, post-manifold, pre-carbon, in-between carbon and post-carbon absorption photoionization detector (PID) readings.

Individual system components were also monitored to ensure that all process systems were operating within design parameters.

3.0 Significant Operational Notes

Significant operational notes for this reporting period:

- Quarterly groundwater sampling was conducted on July 21, 2004.
- Influent and effluent vapor samples were collected on July 23, 2004, per the ROD.

4.1 Vapor Extraction System Operational Configuration

The SVE system consists of seven (7) horizontal SVE wells and a Roots 47-URAI rotary lobe blower powered by a 5 HP motor.

SVE wells EW-1 through EW-7 were constructed horizontally with 4-inch-diameter, SCH 40 PVC piping at a depth of approximately 4.5 feet below grade. Horizontal placement of the extraction wells was due to shallow groundwater table elevation that had been observed across the site. All seven SVE wells were fitted with six feet of 0.020-inch slotted screen. At approximately four feet below grade, 2-inch, SCH 80 PVC vapor extraction lateral piping tees off the extraction well and connects the extraction wells to the vapor manifold located in the treatment enclosure. The SVE process piping was placed on a 6-inch layer of sand, and covered by another 6-inch layer of sand. Sand and item four were then used to backfill the remainder of the trench, once the pipe and the sand bedding had been placed in non-paved areas. If the trench was within 6-feet of pavement or beneath pavement, item four was used above the pipe and sand layers to grade.

EW-1 through EW-7 were originally controlled by motor operated valves (MOVs) programmed to activate one set of SVE points while deactivating the other set of SVE points and visa versa. Each set was activated for 12-hour time periods. System adjustments have been made to allow for all SVE wells to operate simultaneously. Vapor extraction rates for each well can be regulated independently by utilizing ball valves located on each respective extraction line inside the treatment enclosure. A system design flow of 250 standard cubic feet per minute (scfm) at 50 inches of water column (w.c.) vacuum extraction rate is the design basis that yields approximately 50 scfm at 10" w.c. at each extraction well. These flow and vacuum parameters generate an area of influence of approximately 30 feet on each side of the SVE wells.

The SVE blower and related appurtenances are skid-mounted. A particulate air filter, vacuum, relief valve, inlet and discharge silencers, inlet vacuum and outlet pressure gauges, flowmeter, high pressure switch, low vacuum switch and dilution air filter/silencer/valve are located on the SVE blower skid.

The 60-gallon capacity moisture separator accepts vapors from the corresponding manifolds and removes excess water from the extracted vapor. Free liquids will accumulate in the moisture

separator tank until the high level switch is activated. Once the high level switch is activated, the system automatically shuts down until the water is manually drained and the system has been reset. The water should be drained into a drum and checked for odor and sheen. If no odor or sheen is observed, the water can be discharged on-site. If odor or sheen is detected, the water should be disposed in accordance with federal and state guidelines.

Two 2,000-pound vapor-phase granular activated carbon (VGAC) units are included in the SVE treatment train. The units are installed in a lead/lag arrangement, located outside the treatment enclosure and adsorb volatile organic compounds (VOCs) contained in the SVE blower effluent prior to discharge into the atmosphere via a 20-foot stack. Sample ports are located between and after the VGAC units to monitor the effectiveness and life cycle of the units. Carbon changeouts are required when a 5 to 10 pounds per square inch (psi) differential is noted from the inlet to the outlet side of the carbon unit, or when breakthrough is detected in the lead carbon unit indicated by the air monitoring results.

4.2 Period Performance

PID calculations for VOCs removed during this reporting period indicate that, to date, the system has removed approximately 24.64 pounds of VOCs. Based on PID monthly O&M measurements, no quantifiable VOCs have been recovered for the past twenty-six months of nearly continuous operation. The system was down on July 15, 19 and 20, 2004 due to loss of vacuum. There were several significant rain events during the month of July which would over saturate the ground causing a loss in vacuum for the system. System operating data and removal calculations are based on monthly PID readings shown in **Table 1**. Vapor phase carbon adsorption efficiency for the compounds of concern is shown on **Table 2** and **Table 2A**. Since ROD approved modifications to the treatment system, all SVE wells have operated simultaneously, 24-hours per day. Therefore no individual logged samples are collected. To date, laboratory analysis, calculative collection of "compounds of concern" is determined to be approximately 3.403 pounds (**Table 3**).

5.1 Air Sparge System Operational Configuration

Interm Remedial Measure Designed Operational Configuration

The AS system consists of eight (8) vertical AS wells and a Roots 32-URAI rotary lobe blower powered by a 7.5 HP motor.

The AS compressor is skid-mounted with and inlet air filter/muffler, pressure relief valve, bypass valve and muffler, effluent silencer, pressure gauge, high pressure switch and temperature gauge.

A heat exchanger was incorporated after the blower to lower the air discharge temperature before it enters the PVC piping. The 1-inch SCH 80 PVC piping leading to the sparge wells cannot tolerate temperatures greater than 150 degrees Fahrenheit. Therefore, a high temperature switch and temperature gauge are incorporated following the heat exchanger. The optimum air discharge temperature is 100 degrees Fahrenheit.

AS wells SP-1 through SP-7 were constructed with 2-inch diameter, SCH 40 PVC piping and were installed to a depth of approximately 15 feet below grade. Each of the seven AS wells were fitted with two feet of 0.020-inch slotted screen at depth. Each well as brought to grade and finished with a threaded steel or PVC plug, concrete pad, and a traffic-rated metal road box. At approximately 3.5 feet below grade a 1-inch, SCH 80 PVC, sparge line tees off each well and returns to the sparge manifold located in the treatment enclosure. The AS lateral piping was placed in the sand bedding that was used for the SVE lateral piping. Prior to exiting the subsurface and penetration through the treatment enclosure wall, the air sparge piping was transitioned from PVC to high pressure EPDM hose for safety concerns associated with handling compressed air above grade.

The AS manifold consists of an individual air flow meter (rotameter), needle valve, and pressure gauge for each independent sparge pipe. The sparge wells were previously controlled by motor operated valves programmed to activate one set of sparge points while deactivating other set of sparge points and vise versa. Each set was previously programmed to activate for 12-hour time periods. Sparge points SP-1, 2, 3 and 4 (Leg A) operated while extraction wells EW-1, 2, 5, and 7 operated, while SP-4, 5 and 6 operated while EW-3, 5 and 6 were operating.

ROD Modified Design Operational Configuration

In June 2003, a new sparge well (SP-8) was installed to a total depth of 23 feet below grade in the area northwest of SP-5. In November 2003, SP-1 was replaced with SP-1A which was installed to a total depth of 20 feet below grade. Sparge points SP-7, 6, 4, 3 and SP-2 were deactivated and SP-5 was valved off and a "T" installed in the line to supply air to SP-8 during the November 2003 system modifications. The valve is accessible through a flush mount roadbox. SP-1A and SP-8 are currently the only active sparge wells.

The system design flow of 55 scfm at 12-psi sparge rate (approximately 12 scfm at 8 to 10 psi per sparge well) yields a radius of influence of approximately 30 feet.

5.2 Period Performance

During the current reporting period, the sparge points ran at an average flow of approximately 3.5 cfm, with a total average system pressure of approximately 5.1-psi. The AS blower was fully operational with SP-1A and SP-8 were operating simultaneously.

Dissolved oxygen levels were measured in performance monitoring wells during the scheduled O&M visits. Based upon data collected during the quarterly monitoring period distribution of sparge air remains significantly greater than those observed prior to SP-1A and SP-8 installation and subsequent activation in November 2003. As expected and intended per the ROD sparging is most active in those two new well areas only. All historical dissolved oxygen data available since May 1999 is tabulated and show in **Table 4**. Air distribution trends and dissolved oxygen levels in the monitoring well network will continue to be measured during future O&M visits to anticipate maintenance actions needed in order to maintain desired air flow rates to the treatment zone.

6.0 System Treatment Efficiency

Data collected from the performance monitoring well network located upgradient and downgradient of the treatment zones show slight trends as of this reporting period. The only remaining dissolved contaminant levels on the former Flagship property are located in the former concrete drain feature area monitored by wells MW-9/10R and MW-6, and the property boundary area monitored by wells ME-19 and A-42S. Analytical results from the monitoring well network are tabulated and presented in **Table 5**. Significant compounds of concern, as identified by the ROD, are tabulated and presented in **Table 6**.

Contaminant of concern, dissolved concentrations observed during the July 2004 sampling are below laboratory detection limits in MW-9\10R. This marks three-consecutive quarterly events with no detections in this former concrete drain feature area. Monitoring well MW-6 which is approximately 15-feet down-gradient from this recently remediated feature, still displays low levels of dissolved contamination. Levels have decreased since the November 2003 ROD remedial efforts. Dissolved contaminant levels are decreasing near the property boundary, as a result of SP-8 operation, though low levels persist.

This report summarizes a joint survey from the Flagship and IBM hangar property groundwater contour map for the water level measurements from this reporting period. The groundwater contour map of the July 21, 2004 event is shown as **Figure 3** in this report. Prior to monitoring well gauging the treatment system is shutdown to allow for the stabilization of the naturally occurring potentiometric surface.

During the July 21, 2004 gauging event, groundwater elevations on the Flagship parcel ranged from 153.88 feet (ME-16) to 150.81 feet (ME-19). On the former IBM parcel, groundwater elevations ranged from 151.76 feet (A-43S) to 150.23 feet (A-44S). Depth to groundwater measurements and elevations are presented in **Table 4**. Based on the calculated groundwater elevations on the former Flagship and IBM properties, groundwater flow is in a northwesterly direction with some influence from the sparge points (**Figure 3**). Flow direction irregularity, observed on the down-gradient portion of the site has been consistent throughout project duration.

During the July 21, 2004 sampling event, detections of significant compounds of concern were recorded in samples collected from ME-14, ME-19, MW-6, and MW-8 above laboratory method

detection limits. Tetrachloroethene (PCE) was detected at concentrations ranging from 2 ug/l (ME-19) to 0.6J ug/l (MW-6). These concentrations are below the New York State Department of Environmental Conservation (NYSDEC) groundwater standard of 5 ug/l. Down-gradient wells are predominantly free of dissolved contamination, thus demonstrating limited plume mobility away from this primary area of concern. Tricholoethene (TCE) and Total 1,2-Dichloroethene (DCE) were not detected in any of the monitoring wells on the former flagship property. TCE was detected in one well on the former IBM property. Total 1,2-DCE was detected in two wells on the former IBM property. Naphthalene was not detected above laboratory detection limits for all wells. The analytical results are presented on **Table 5** and **Figure 4**. Naphthalene (**Figure 5**), chloroethane (**Figure 6**) and 1,2-DCE (**Figure 7**) are visually presented in contamination isochron format. Trend data for PCE, 1,1-dichloroethane (DCA) and naphthalene are presented in **Figures 8, 9** and **10**, respectively. Groundwater analytical data is presented in **Appendix A**.

Samples collected from former IBM monitoring wells, located near the eastern corner of the hangar exhibited detections of target analytes. Specifically, concentrations of 1,1-dichloroethane ranging from 13 ug/l to 0.7J ug/l (A-26, A-27S, A-42S and A-43S). Total 1,2-DCE was detected at concentrations ranging from 5 ug/l (A-27S) to 0.7J ug/l (A-43S). Naphthalene was not detected at any of the former IBM monitoring wells. Vinyl Chloride was detected at concentrations ranging from 1 ug/l to 0.4J ug/l (A-26, A-27S and A-43S). No significant trends have been observed in former IBM property wells. The up-gradient wells on the former Flagship property have demonstrated reductions in total VOC concentrations.

The presence of one or more of the following compounds, dichloroethane, vinyl chloride and dichloroethene in former IBM property wells A-42S, A-43S, A-26S and A-27S (**Table 5**) combined with the lack of immediate up-gradient (former Flagship property) detections, suggest that an ongoing source of these contaminants exists on the former IBM leased property. The MW-9/10R area of concern on the former Flagship property is approximately 160 feet up-gradient from this IBM well area. With the exception of low and infrequent detections in MW-6 and ME-19, no detections have been recorded between these two areas.

7.0 Proposed Activities

Proposed activities for the next reporting period include:

- Monthly O&M visits to monitor system operation.
- Adjust system flow and vacuum to maximize treatment system operation.
- Collect groundwater samples in October 2004.
- Submit workplan for indoor and outdoor air sampling in addition to SVE influent vapor sampling

TABLES

Table 1
FORMER FLAGSHIP HANGAR FACILITY
AIR SPARGE/SOIL VAPOR EXTRACTION SYSTEM
VAPOR REMOVAL (BASED ON PID)

Sampling	Run Time S	Since	SVE	SVE Blower	SVE Blower	SVE Blower	VOC	VOC's	Cumulative
Date	Last Vis		Operation	Effluent	Effluent	Effluent	Removal	Recovered	lbs. of VOC's
Date	(hrs)	, n.	Since Last	Flow Velocity	Flow Rate	PID Reading	Rate	Since Last	Recovered
	(1113)		O&M Visit	(4" diam.)	1 low reaco	1 ID Redding	rate	O&M Visit	recovered
	Available	Actual	(%)	(fpm)	(cfm)	(ppmv)	(lbs/hr)	(lbs.)	(lbs.)
8/4/2000	0 /	0	0.00%	2942.5	256	2.2	0.01	0.00	0.00
8/9/2000	120 /	6	5.00%	3172.4	276	0.0	0.00	0.00	0.00
8/16/2000	168 /	168	100.00%	3103.4	270	0.0	0.00	0.00	0.00
8/24/2000	192 /	192	100.00%	3356.3	292	0.0	0.00	0.00	0.00
9/21/2000	672 /	261	38.84%	3678.2	320	0.0	0.00	0.00	0.00
10/9/2000	432 /	192	44.44%	3678.2	320	0.0	0.00	0.00	0.00
11/17/2000	936 /	542	57.91%	4046.0	352	0.0	0.00	0.00	0.00
12/6/2000	456 /	298	65.35%	4114.9	358	0.0	0.00	0.00	0.00
1/10/2001	840 /	120	14.29%	4000.0	348	0.0	0.00	0.00	0.00
2/19/2001	960 /	960	100.00%	3195.4	278	0.0	0.00	0.00	0.00
3/28/2001	888 /	72	8.11%	0.0	0	0.0	0.00	0.00	0.00
4/19/2001	528 /	270	51.14%	2580.0	224	0.0	0.00	0.00	0.00
5/16/2001	648 /	600	92.59%	2919.5	254	0.0	0.00	0.00	0.00
6/20/2001	840 /	792	94.29%	3185.0	277	0.0	0.00	0.00	0.00
7/30/2001	960 /	960	100.00%	3287.4	286	0.0	0.00	0.00	0.00
8/17/2001	432 /	432	100.00%	3310.3	288	0.0	0.00	0.00	0.00
9/11/2001	600 /	600	100.00%	3379.3	294	0.0	0.00	0.00	0.00
10/31/2001	1200 /	1200	100.00%	3595.0	313	0.0	0.00	0.00	0.00
11/29/2001	696 /	408	59.00%	3560.0	310	2.3	0.01	4.08	4.08
12/13/2001	336 /	336	100.00%	3580.0	311	2.0	0.01	3.36	7.44
1/17/2002	840 /	768	91.00%	2494.0	217	0.0	0.00	0.00	7.44
2/21/2002	840 /	840	100.00%	3678.2	320	0.0	0.00	0.00	7.44
3/20/2002	648 /	552	85.19%	4770.1	415	0.0	0.00	0.00	7.44
4/17/2002	672 /	672	100.00%	3804.6	331	0.0	0.00	0.00	7.44
5/22/2002	840 /	840	100.00%	4655.2	405	5.7	0.02	13.74	21.18
6/17/2002	624 /	384	61.54%	0.0	0	0.0	0.01	3.46	24.64
7/15/2002	672 /	312	46.43%	3379.3	294	0.0	0.00	0.00	24.64
8/28/2002	1056 /	576	54.55%	3183.9	277	0.0	0.00	0.00	24.64
9/24/2002	624 /	624	100.00%	3862.1	336	0.0	0.00	0.00	24.64
10/21/2002	648 /	0	0.00%	0.0	0.0	0.0	0.00	0.00	24.64
11/15/2003	600 /	0	0.00% 0.00%	0.0	0.0	0.0	0.00	0.00	24.64
12/17/2003	768 / 748 /	0	0.00%		0.0	0.0	0.00	0.00 0.00	24.64
1/18/2003 2/12/2003	600 /	0	0.00%	0.0	0.0 0.0	0.0	0.00	0.00	24.64 24.64
3/20/2003	864 /	0	0.00%	0.0	0.0	0.0	0.00	0.00	24.64
4/21/2003	768 /	0	0.00%	2172.4	189.0	0.0	0.00	0.00	24.64
5/28/2003	888 /	704	79.28%	2862.1	249.0	0.0	0.00	0.00	24.64
6/10/2003	312	, 04 n	0.00%	0.0	249.0 NM	0.0	0.00	0.00	24.64
7/9/2003	696 /	696	100.00%	2298.9	200.0	0.0	0.00	0.00	24.64
8/28/2003	1200 /	1200	100.00%	1597.7	139.0	0.0	0.00	0.00	24.64
9/3/2003	120 /	120	100.00%	2563.2	223	0.0	0.00	0.00	24.64
10/17/2003	1056 /	1056	100.00%	2436.8	212	0.0	0.00	0.00	24.64
11/13/2004	648 /	648	100.00%	2069.0	180	0.0	0.00	0.00	24.64
12/16/2003	792 /	792	100.00%	1609.2	140	0.0	0.00	0.00	24.64
1/21/2004	528 /	528	100.00%	1862.1	162	0.0	0.00	0.00	24.64
2/19/2004	696 /	696	100.00%	1954.0	170	0.0	0.00	0.00	24.64
3/31/2004	984 /	787	79.98%	1724.1	150	0.0	0.00	0.00	24.64
4/7/2004	168 /	168	100.00%	2321.8	202 219	0.0	0.00	0.00	24.64
5/6/2004 6/3/2004	696 / 672 /	696 672	100.00% 100.00%	2517.2 2517.2	219 219	0.0 0.0	0.00 0.00	0.00 0.00	24.64 24.64
7/8/2004	840 /	768	91.43%	2528.7	220	0.0	0.00	0.00	24.64

October 2002 SVE shutdown due to high groundwater levels April 2003 SVE system Restarted

NM=Not Measured

TABLE 2

FORMER FLAGSHIP HANGAR FACILITY AIR SPARGE/SOIL VAPOR EXTRACTION SYSTEM

TREATMENT EFFICIENCY

				IENI EFFICIE	INCT			
		SVE Influent	SVE Influent	Carbon Effluent	Carbon Effluent	Carbon	Carbon	Total System
Date	Compounds	South Leg	North Leg	South Leg	North Leg	Efficiency	Efficiency	Efficiency
	of Concern	(ppbv) / ug/m ³	(ppbv) / ug/m ³	(ppbv) / ug/m ³	(ppbv)/ ug/m ³	South Leg (%)	North Leg (%)	(%)
08/04/00	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
00,01,00	Tetrachloroethene	130 / 896.3	13 / 89.63	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	3.9 / 14.94	2.3 / 8.81	0.52 / 1.99	ND / ND	86.67	100.00	93.34
	1,1-Dichloroethane	1.4 / 5.76	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	13 / 72.1	1.5 / 8.32	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
10/9/00 (1)	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
()	Tetrachloroethene	100 / 689.46	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	ND / ND	ND / ND	0.82 / 3.14	ND / ND	100.00	100.00	100.00
	1,1-Dichloroethane	2.3 / 9.46	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	17 / 94.29	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
12/06/00	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	50 / 344.73	3.5 / 24.13	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	1.1 / 4.21	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1-Dichloroethane	5.9 / 24.27	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	6.7 / 37.16	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
05/16/01	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1-Dichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
06/20/01	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	40 / 275.78	7.0 / 48.26	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	ND / ND	ND / ND	0.98 / 3.75	ND / ND	NA	100.00	NA
	1,1-Dichloroethane	ND / ND	3.0 / 12.34	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	4.2 / 23.3	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
09/11/01	Trichloroethene	1.4 / 7.65	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	130 / 896.3	2.5 / 17.24	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	ND / ND	ND / ND	ND / ND	ND / ND	NA	100.00	NA
	1,1-Dichloroethane	14 / 57.6	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	88 / 488.09	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
01/17/02	Trichloroethene	NA	NA	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	NA	NA	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	NA	NA	1.5 / 5.74	ND / ND	NA	100.00	NA
	1,1-Dichloroethane	NA	NA	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane Naphthalene	NA NA	NA NA	ND / ND ND / ND	ND / ND	100.00 100.00	100.00 100.00	100.00 100.00
05/22/02	Trichloroethene	ND / ND	ND / ND	0.55 / 3	ND / ND 1 / 5.46	NA	NA	NA
00/22/02	Tetrachloroethene	6.2 / 42.75	7.9 / 54.47	0.55 / 5 ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	18 / 68.94	15 / 57.45	1.3 / 4.98	2.8 / 10.72	93.00	81.00	87.00
	1,1-Dichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	86 / 458.19	109 / 580.73	ND / ND	ND / ND	100.00	100.00	100.00
09/24/02	Trichloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Tetrachloroethene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Toluene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1-Dichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	1,1,1-Trichloroethane	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00
	Naphthalene	ND / ND	ND / ND	ND / ND	ND / ND	100.00	100.00	100.00

Notes:

ND = Not Detected, therefore, compound believed to be absent in treatment train or below method detection limit.

NA = Not Applicable.

^{(1) =} Quarterly vapor recovery/treatment air samples collected on 10/9/00, not during the quarterly groundwater sampling event as intended.

^{(2) =} Quarterly vapor recovery/treatment air samples collected in May because SVE MOV not operational during March sampling event.

The May 16, 2001 sampling event was conducted after the system was re-started and in-place of the scheduled March sampling event. On **INSERT DATE HERE** MOV valve removed.

TABLE 2 (Continued) FORMER FLAGSHIP HANGAR FACILITY AIR SPARGE/SOIL VAPOR EXTRACTION SYSTEM TREATMENT EFFICIENCY

Date	Compounds	SVE Influent	SVE Effluent	Total System
Date	of Concern	(ppbv) / ug/m³	(ppbv) / ug/m³	Efficiency (%)
02/19/04	Trichloroethene	ND / ND	ND / ND	100.00
	Tetrachloroethene	2.1 / 15	ND / ND	100.00
	Toluene	ND / ND	ND / ND	100.00
	1,1-Dichloroethane	ND / ND	ND / ND	100.00
	1,1,1-Trichloroethane	ND / ND	ND / ND	100.00
	Naphthalene	ND / ND	ND / ND	100.00
07/23/04	Trichloroethene	ND / ND	ND / ND	100.00
	Tetrachloroethene	1.7 / 11.72	ND / ND	100.00
	Toluene	ND / ND	ND / ND	100.00
	1,1-Dichloroethane	ND / ND	ND / ND	100.00
	1,1,1-Trichloroethane	ND / ND	ND / ND	100.00
	Naphthalene	ND / ND	ND / ND	100.00

Notes:

ND = Not Detected, therefore, compound believed to be absent in treatment train or below method detection limit.

Table 3
Former Flagship Airlines Hangar Facility
Air Sparge/Soil Vapor Extraction System
Compound of Concern Cumulative Recovery

Sampling	Run Time Since	SVE	SVE Blower	SVE Blower	SVE Blower	SVE Blower	VOC	VOC's	Cumulative
Date	Last Visit	Operation	Effluent	Effluent	Effluent	Effluent	Removal	Recovered	lbs. of VOC's
	(hrs)	Since Last	Flow Velocity	Flow Rate	Lab Result	PID Reading	Rate	Since Last	Recovered
	, ,	O&M Visit	(4" diam.)					O&M Visit	
	Available Actual	(%)	(fpm)	(cfm)	(ppmv)	(ppmv)	(lbs/hr)	(lbs.)	(lbs.)
8/4/2000	0 / 0	0.00%	2885	252	0.165	2.2	0.000648	0.00	0.000
10/9/2000	1584 / 627	39.58%	3759	328	0.119	0.0	0.000642	0.40	0.403
12/6/2000	1392 / 1032	74.14%	4103	358	0.067	0.0	0.000498	0.51	0.917
5/16/2001	3864 / 2320	60.04%	2805	245	0.0	0.0	0.000158	0.37	1.282
6/20/2001	840 / 792	94.29%	3195	279	0.0542	0.0	0.000111	0.09	1.370
9/11/2001	9672 / 1992	20.60%	3379	295	0.236	0.0	0.000855	1.70	1.704
1/17/2002	3072 / 2712	88.28%	2494	218	0.0015	0.0	0.000475	1.29	2.991
5/22/2002	3000 / 3000	100.00%	4500	393	0.0404	5.7	0.000100	0.30	3.291
9/24/2002	2976 / 1896	63.71%	3862	337	0.0	0.0	0.000115	0.00	3.291
5/28/2003	907 / 702	77.44%	2862	250	0.063	0.0	0.000144	0.10	3.392
9/3/2003	1344 / 1344	100.00%	2560	223	NS	0.0	0.000000	0.00	3.392
2/19/2004	1344 / 1344	100.00%	2560	223	0.0021	0.0	0.000004	0.005	3.397
7/23/2004	2208 / 2136	97.14%	2529	221	0.0017	0.0	0.000003	0.006	3.403

Note: SVE was not operating between 9/02 and 4/03

NS - Not Sampled

TABLE 4 FORMER FLAGSHIP HANGAR FACILITY HISTORICAL GROUNDWATER DEPTHS, ELEVATIONS AND DISSOLVED OXYGEN MEASUREMENTS

		DG-1		Ī	MW-1			MW-2			MW-6			MW-7A		Γ	MW-8	
	7	OC Elev. 162.	27	Т	OC Elev. 156.0	3'	7	FOC Elev. 162.3	84'	т	OC Elev. 158.	64'	т	OC Elev. 158.52	7 1	7	OC Elev. 159.3	71
Date	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO
12/30/1996	8.65	153.62	NM	1.14	154.89	NM	5.83	156.51	NM	2.41	156.23	NM	1.98	156.54	NM NM	5.73	153.64	NM
4/2/1997	7.80	154.47	NM	0.79	155.24	NM	4.72	157.62	NM	2.24	156.40	NM	1.85	156.67	NM NM	5.18	154.19	NM
5/21/1999	9.00	153.27	12.59	2.32	153.71	14.87	7.32	155.02	15.23	3.75	154.89	13.51	3.45	155.07	13.00	6.19	153.18	12.53
2/9/2000	10.12	152.15	NM	NM	NM	NM	8.87	153.47	NM	5.33	153.31	NM	5.14	153.38	NM	7.33	152.04	NM
6/28/2000	8.45	153.82	NM	1.22	154.81	NM	5.98	156.36	NM	2.45	156.19	NM	2.15	156.37	NM	5.48	153.89	NM
8/3/2000	9.00	153.27	1.19	2.09	153.94	4.65	6.98	155.36	1.02	4.47	154.17	7.17	3.19	155.33	4.25	6.31	153.06	1.57
8/10/2000	8.78	153.49	NM	2.07	153.96	NM	6.94	155.40	NM	3.44	155.20	NM	3.17	155.35	NM	6.23	153.14	NM
8/31/2000	9.01	153.26	3.58	2.38	153.65	4.69	6.94	155.40	5.25	3.47	155.17	3.60	3.24	155.28	11.05	6.91	152.46	2.29
9/21/2000	9.16	153.11	2.48	2.45	153.58	5.59	5.90	156.44	4.28	2.39	156.25	3.62	3.49	155.03	6.98	5.95	153.42	1.76
10/16/2000	9.39	152.88	3.58	2.93	153.10	7.97	7.58	154.76	7.68	4.11	154.53	6.09	3.90	154.62	6.79	6.55	152.82	2.81
11/13/2000	9.55	152.72	1.75	2.92	153.11	8.58	6.36	155.98	4.48	2.97	155.67	5.09	4.23	154.29	6.56	6.39	152.98	2.37
12/6/2000	9.98	152.29	13.25*	3.51	152.52	0.77*	7.45	154.89	15.68*	4.35	154.29	10.61*	4.54	153.98	8.29*	6.88	152.49	17.4*
1/8/2001	9.37	152.90	1.83	3.06	152.97	3.33	9.22	153.12	5.38	4.94	153.70	5.57	4.60	153.92	6.24	6.52	152.85	2.52
2/19/2001	9.19	153.08	4.19	NM	NM	NM	10.07	152.27	11.15	6.05	152.59	13.03	5.03	153.49	8.13	6.35	153.02	2.33
3/28/2001	8.61	153.66	16.51*	1.37	154.66	17.86*	6.56	155,78	9.56*	3,02	155.62	15.73*	2.72	155.80	16.75*	5.75	153.62	15.53*
4/19-4/20/01	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/16/2001	9.26	153.01	0.73	NM	NM	NM	8.36	153.98	2.09	4.89	153.75	4.29	3.32	155.20	5.54	6.34	153.03	1.05
6/20-6/21/01	9.32	152.95	0.63	2.29	153.74	2.98	7.35	154.99	6.75	3.84	154.80	4.00	3,53	154.99	4.37	7.01	152.36	0.66
7/30/2001	9.93	152.34	0.77	3.21	152.82	1.22	8.81	153.53	2.82	5.30	153.34	3.56	4.53	153.99	4.17	7.33	152.04	1.08
8/16/2001	10.30	151.97	0.62	3.56	152.47	1.71	9.55	152.79	2.37	5.94	152.70	4.12	4.87	153.65	3.57	8.22	151.15	0.94
9/10/2001	10.81	151.46	0.62	3.95	152.08	1.08	7.60	154.74	3.69	4.40	154.24	9.97	4.93	153.59	4.12	9.22	150.15	1.35
10/31/2001	10.73	151.54	0.56	4.02	152.01	3.69	NM	NM	NM	4.75	153.89	4.86	5.50	153.02	3.72	NM	NM	NM
11/29/2001	11.13	151.14	0.81	4.35	151.68	6.27	10.49	151.85	5.65	7.76	150.88	7.10	6.02	152.50	3.54	8.90	150.47	1.34
12/13/2001	11.11	151.16	0.29	4.64	151.39	5.47	12.31	150.03	6.31	8.03	150.61	3.62	6.56	151.96	3.38	8.75	150.62	NM
1/17/2002	10.96	151.31	1.00	4.04	151.99	0.95	11.98	150.36	7.03	8.13	150.51	6.98	6.44	152.08	5.20	8.13	151.24	2.42
2/21/2002	11.03	151.24	0.72	4.55	151.48	0.72	10.28	152.06	4.12	6.73	151.91	3.25	6.49	152.03	2.94	8.21	151.16	0.37
3/20/2002	11.01	151.26	0.45	4.54	151.49	1.48	10.24	152.10	9.62	6.73	151.91	4.89	6.50	152.02	3.28	8.17	151.20	1.15
4/17/2002	10.40	151.87	1.38	4.07	151.96	2.40	11.24	151.10	2.28	7.15	151.49	3.27	6.18	152.34	3.96	7.78	151.59	1.61
5/22/2002	9.54	152.73	1.12	2.92	153.11	0.59	8.43	153.91	0.90	4.89	153.75	1.89	4.64	153.88	2.50	6.72	152,65	0.43
09/23&24/2002	10.08	152.19	0.50	3.40	152.63	2.03	8.40	153.94	4.48	5.01	153.63	3.40	4.82	153.70	2.63	7.35	152.02	0.56
10/21/2002	9.00	153.27	0.54	2.52	153.51	5.94	6.44	155.90	8.20	3.18	155.46	3.14	3.70	154.82	2.74	6.38	152.99	1.21
11/15/2002	9.42	152.85	2.18	2.74	153.29	7.75	7.93	154.41	4.72	4.40	154.24	3.98	4.15	154.37	4.04	6.68	152.69	1.50
12/17/2002	8.12	154.15	0.88	1.38	154.65	2.36	6.30	156.04	0.84	2.83	155.81	1.87	2.55	155.97	1.09	5.28	154.09	1.41
1/17/2003	8.59	153.68	1.04	NM	NM	NM	6.00	156.34	0.73	2.50	156.14	1.14	NM	NM	NM	5.53	153.84	0.83
2/12/2003	7.36	154.91	0.71	NM	NM	NM	4.60	157.74	0.86	NM	NM	NM	NM	NM	NM	4.62	154.75	0.63
3/20/2003	7.58	154.69	1.17	NM	NM	NM	5.42	156.92	1.03	NM	NM	NM	NM	NM	NM	4.81	154.56	1.03
4/21/2003	8.20	154.07	0.91	0.69	155.34	3.47	. 5.53	156.81	1.29	2.00	156.64	3.36	1.66	156.86	4.81	5.22	154.15	0.64
5/28/2003	8.60	153.67	0.75	1.50	154.53	6.55	6.48	155.86	1.03	2.95	155.69	3.27	5.28	153.24	5.28	5.79	153.58	0.42
7/9/2003	7.88	154.39	0.64	1.78	154.25	4.34	6.72	155.62	0.83	3.21	155.43	3.85	2.91	155.61	4.86	6.12	153.25	0.82
9/9/2003	8.55	153.72	0.71	1.85	154.18	1.03	6.81	155.53	1.11	3.3	155.34	1.43	2.96	155.56	0.98	5.97	153.40	1.14
10/16/2003	8.86	153.41	0.48	1.81	154.22	0.82	7.27	155.07	0.99	3.58	155.06	3.98	3.05	155.47	4.98	6.11	153.26	0.54
1/22/2004	8.65	153.62	6.46	NM	NM	NM	5.83	156.51	2.11	2.29	156.35	6.29	1.92	156.60	5.25	6.14	153.23	2.46
5/6/2004	9.10	153.17	0.14	1.95	154.08	0.02	7.08	155.26	1.01	3.46	155.18	6.52	3.17	155.35	3.78	6.55	152.82	0.1
6/3/2004	9.47	152.80	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	6.68	152.69	NM
7/21/2004	10.28	151.99	1.84	3.40	152.63	0.01	8.65	153.69	0.21	5.1	153.54	1.04	4.83	153.69	1.44	7.76	151.61	0.11
																		-

Notes:

Joint water level gauging on former Flagship and IBM properties began on June 28, 2000, therefore, Shaw did not collect prior to this date.

NM = Not Measured.

NI = Not installed as of this date.

All dissolved oxygen measurements are in mg/l.

* = DO measurement incorrect due to malfunctioning meter.

TABLE 4 FORMER FLAGSHIP HANGAR FACILITY HISTORICAL GROUNDWATER DEPTHS, ELEVATIONS AND DISSOLVED OXYGEN MEASUREMENTS

ſ	MW-9 MW-10 MW-9/10 R MW-20 ME-12 ME-13				MW 10			MW 0/10 D			NATIO 00			V 5 7 4 4							
-	т	OC Elev. 158.8	171	7	OC Elev. 158.7	71	T	OC Elev. 158.4	<i>(</i>)	l		141			·					ME-14	
Date	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO		OC Elev. 159.5			TOC Elev. 159	
12/30/1996	2.72	156.15	NM	2.58	156.14	NM				NG	NG	NM	3.12	155.75	NM	6.10	GW Elev 153.40	DO NM	3.91	156.07	DO NM
4/2/1997	4.54	154.33	NM	2.39	156.33	NM				NG	NG	NM	3.06	155.81	NM	5.65	153.40	NM NM	3.86	-	NM NM
5/21/1999	3.82	155.05	13.58	3,55	155.17	11.12				NG	NG	NI	4.50	154.37	14.39	7.10	153.83		5.39	156.12	
2/9/2000	5.43	153.44	NM	5.20	153.52	NM				NG	NG	NM	5.83	153.04	14.39 NM	NM	NM	10.13 NM	6.71	154.59 153.27	10.41 NM
6/28/2000	2.91	155.96	NM	2.72	156.00	NM				4.46	154.78	NM	3.29	155.58	NM NM	7.14	152.36	NM	3.92	156.06	NM
8/3/2000	3.75	155.12	0.2	3.55	155.17	0.25				5.15	154.09	2.55	4.08	154.79	0.65	7.65	151.85	1.80	4.79	155.19	0.61
8/10/2000	3,72	155.15	NM	3.50	155.22	NM				5.09	154.15	NM	4.06	154.81	NM	6.69	152.81	NM	4.79	155.26	NM
8/31/2000	3.69	155.18	8.29	3.52	155.2	3.68				5.65	153.59	6.51	4.17	154.7	10.93	6.97	152.53	4.37	4.72	155.03	3.3
9/21/2000	3.54	155.33	1.67	3.80	154.92	3.39				4,56	154.68	3.88	3.76	155.11	9.34	8.79	150.71	3.89	5.31	154.67	2.07
10/16/2000	3.99	154.88	7.77	4.12	154.6	2.72				4.90	154.34	7.37	4.70	154.17	10.51	NM	NM	NG	5.76	154.22	3.18
11/13/2000	4.53	154.34	2.02	4.58	154.14	2.11				5.44	153.8	8.38	3.32	155.55	10.55	9.93	149.57	1.56	9.93	150.05	1.56
12/6/2000	4.80	154.07	2.06*	4.67	154.05	2.39*				6.44	152.8	5.82	5.19	153.68	10.66*	8.04	151.46	6.97*	6.45	153.53	0.6*
1/8/2001	4.65	154.22	8.61	4.58	154.14	4.28				6.02	153.22	5.59	5.18	153.69	10.58	7.85	151.65	1.97	6.30	153.68	2.21
2/19/2001	4.60	154.27	9.38	4.20	154.52	8.91				5.56	153.68	6.59	6.64	152.23	8.94	6.92	152.58	1.14	5.62	154.36	1.38
3/28/2001	3.32	155.55	13.77*	3.15	155.57	9.77*				4.70	154.54	13.08*	3.67	155.20	10.95*	6.41	153.09	16.11*	4.50	155.48	11.53*
4/19-4/20/01	NM	NM	NM	NM	NM	NM		·		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/16/2001	3.68	155.19	0.74	3.45	155.27	0.58				5.11	154.13	0.58	4.53	154.34	1.48	NM	NM	NM	5.00	154.98	1.14
6/20-6/21/01	3.98	154.89	0.68	3.73	154.99	0.70				5.65	153.59	0.81	4.52	154.35	5.68	7.12	152.38	1.07	5.15	154.83	0.63
7/30/2001	4.91	153.96	0.36	4.60	154.12	0.31				6.13	153.11	2.16	5.93	152.94	6.65	NM	NM	NM	5.95	154.03	0.53
8/16/2001	5.14	153.73	0.45	5.06	153.66	0.43	_			6.92	152.32	0.54	7.25	151.62	4.09	8.13	151.37	0.69	6.38	153.60	0.57
9/10/2001	4.98	153.89	0.58	5.33	153.39	0.54				7.61	151.63	0.79	5.15	153.72	10.72	7.55	151.95	0.89	6.90	153.08	0.39
10/31/2001	5.40	153.47	0.87	5.84	152.88	0.69				6.82	152.42	1.92	5.63	153.24	3.14	9.56	149.94	0.56	7.23	152.75	0.72
11/29/2001	6.08	152.79	0.59	6.32	152.40	0.47				6.92	152.32	1.56	8.27	150.60	2.41	8.61	150.89	0.91	7.65	152.33	0.93
12/13/2001	6.69	152.18	0.91	6.54	152.18	0.56				7.92	151.32	4.15	7.85	151.02	5.80	11.23	148.27	0.52	7.82	152.16	0.67
1/17/2002	6.07	152.80	0.59	6.29	152.43	1.40				NM	NM	NM	7.93	150.94	2.60	9.10	150.40	1.30	7.83	152.15	1.33
2/21/2002	6.75	152.12	NM	6.63	152.09	1.36				7.68	151.56	0.72	6.96	151.91	4.07	9.18	150.32	1.22	7.82	152.16	0.65
3/20/2002	6.77	152.10	NM	6.70	152.02	NM		_		7.68	151.56	1.38	7.00	151.87	1.32	NM	NM	NM	7.93	152.05	0.70
4/17/2002	6.64	152.23	3.46	6.30	152.42	3.16				7.34	151.90	5.34	7.11	151.76	2.03	NM	NM	NM	7.33	152.65	2.94
5/22/2002	5.03	153.84	0.95	4.83	153.89	0.50				6.06	153.18	1.06	5.20	153.67	1.56	NM	NM	NM	6.14	153.84	0.87
09/23&24/2002	4.91	153.96	0.73	4.94	153.78	0.42				5.69	153.55	5.95	5.58	153.29	5.43	7.99	151.51	0.63	6.38	153,60	0.81
10/21/2002	3.98	154.89	0.27	4.02	154.70	0.22				5.54	153.70	1.09	4.00	154.87	8.60	5,94	153.56	2.18	5.23	154.75	0.33
11/15/2002	4.55	154.32	0.83	4.35	154.37	0.77				4.91	154.33			1							
12/17/2002	3.07	155.80				-						6.02	4.88	153.99	2.95	7.29	152.21	1.45	5.62	154.36	1.02
			0.44	2.91	155.81	0.38	·	-		4.50	154.74	1.11	3.39	155.48	2.01	4.24	155.26	0.61	4.15	155.83	0.78
1/17/2003	2.82	156.05	0.77	2.61	156.11	0.67				6.02	153.22	1.08	NM	NM	NM	5.95	153.55	0.88	4.00	155.98	0.89
2/12/2003	2.65	156.22	1.13	2.61	156.11	1.04				4.28	154.96	0.87	NM	NM	NM	4.49	155.01	0.55	2.98	157.00	0.66
3/20/2003	2.20	156.67	1.43	2.00	156.72	1.28				NM	NM	NM	NM	NM	NM	2.55	156.95	0.77	3.26	156.72	0.91
4/21/2003	2.35	156.52	NM	2.18	156.54	NM				3.80	155.44	2.49	2.63	156.24	1.85	5.86	153.64	1.61	3.54	156.44	1.44
5/28/2003	3.21	155.66	8.81	3.04	155.68	1.06				4.70	154.54	6.97	3.50	155.37	10.82	5.29	154.21	1.04	4.42	155.56	0.89
7/9/2003	3.48	155.39	2.2	3.26	155.46	0.6				3.95	155.29	5.5	3.73	155.14	10.39	6.44	153.06	0.75	4.59	155.39	0.79
9/3/2003	3.63	155.24	2.35	3.39	155.33	1.67				0.50	158.74	0.91	3.98	154.89	1.21	6.53	152.97	0.51	4.82	155.16	0.83
10/16/2003	3.44	155.43	0.62	3.62	155.10	0.44				4.64	154.60	6.15	4.00	154.87	0.99	6.69	152.81	1.56	4.71	155.27	0.92
1/22/2004	**	**	**	**	**	**	1.89	156.57	7.19	6.53	152.71	7.82	NM	NM	NM	6.18	153.32	1.66	3.85	156.13	0.95
5/6/2004	**	**	**	**	**	**	3.02	155.44	4.89	4.66	154.58	4.83	4.06	154.81	2.68	6.83	152.67	0.14	4.88	155.10	0.1
6/3/2004	**	**	**	**	**	**	NM	NM	NM	5.59	153.65	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
7/21/2004	**	**	**	**	**	**	4.68	153.78	1.18	7.30	151.94	0.91	5.61	153.26	0.53	8.1	151.40	0.03	6.36	153.62	0.02
											•									-	

Joint water level gaugiNM on former Flagship and IBM properties began on June 28, 2000, therefore, Shaw did not collect prior to this date.

NI = Not installed as of this date.

Red = corrected groundwater elevation measurement

** = well removed October 2003

-- = Well not installed until October 2003

All dissolved oxygen measurements are in mg/l.

* = DO measurement incorrect due to malfunctioning meter.

TABLE 4 FORMER IBM HANGAR FACILITY HISTORICAL GROUNDWATER DEPTHS, ELEVATIONS AND DISSOLVED OXYGEN MEASUREMENTS

		ME-15			ME-16			ME-18			ME-19			PZ-1	
	T	OC Elev. 159.6	66'	T	OC Elev. 159.	09'	7	OC Elev. 157.	32'	Т	OC Elev. 161.0	08'	1	OC Elev. 157.4	46'
Date	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO
12/30/1996	3.58	156.08	NM	2.45	156.64	NM	2.31	155.51	NM	NM	NM	NM	NM	NM	NM
4/2/1997	3.58	156.08	NM	2.43	156.66	NM	2.27	155.55	NM	6.31	154.77	NM	NM	NM	NM
5/21/1999	5.10	154.56	9.09	4.00	155.09	9.86	3.29	154.53	14.69	7.68	153.4	13.17	NM	NM	NI
2/9/2000	NM	NM	NM	NM	NM	NM	4.89	152.93	NM	8.86	152.22	NM	NM	NM	NM
6/28/2000	4.20	155.46	NM	2.55	156.54	NM	1.95	155.87	NM	7.48	153.6	NM	3.24	154.22	NM
8/3/2000	4.29	155.37	3	3.65	155.44	0.86	3.17	154.65	3.36	7.37	153.71	2.32	3.89	153.57	0.5
8/10/2000	4.35	155.31	NM	3.59	155.50	NM	3.13	154.69	NM	7.32	153.76	NM	3.84	153.62	NM
8/31/2000	4.53	155.13	3.78	3.58	155.51	3.88	3.18	154.64	4.51	8.08	153.00	2.48	4.50	152.96	6.39
9/21/2000	5.07	154.59	1.67	3.96	155.13	1.98	3.17	154.65	2.96	7.32	153.76	3.93	3.70	153.76	1.19
10/16/2000	5.44	154.22	4.33	4.52	154.57	3.58	6.99	150.83	2.89	4.50	156.58	3.93	4.91	152.55	3.51
11/13/2000	5.51	154.15	1.71	4.81	154.28	2.19	6.00	151.82	2.19	8.87	152.21	2.96	3.40	154.06	2.84
12/6/2000	6.05	153.61	0.35	5.30	153.79	16.08*	5.43	152.39	15.24*	7.96	153.12	12.57*	4.91	152.55	3.72
1/8/2001	6.00	153.66	2.51	NM	NM	NM	5.60	152.22	2.73	8.25	152.83	0.44	NM	NM	NM
2/19/2001	9.31	150.35	1.22	NM	NM	NM	3.94	153.88	8.71	7.81	153.27	3.28	NM	NM	NM
3/28/2001	4.16	155.50	17.42*	3.26	155.83	12.62*	2.55	155.27	10.86*	7.51	153.57	14.44*	3.41	154.05	NM
4/19-4/20/01	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/16/2001	NM	NM	NM	3.85	155.24	0.85	3.36	154.46	1.89	7.59	153.49	1.19	4.11	153.35	2.63
6/20-6/21/01	4.59	155.07	1.30	3.94	155.15	0.61	3,41	154.41	3.35	8.21	152.87	0.66	4.31	153.15	2.11
7/30/2001	NM	NM	NM	4.80	154.29	0.50	3.18	154.64	2.49	8.61	152.47	0.63	5.11	152.35	2.47
8/16/2001	6.03	153.63	1.71	5.25	153.84	0.64	4.40	153.42	2.28	8.84	152.24	0.76	5.60	151.86	2.21
9/10/2001	8.56	151.10	0.98	5.77	153.32	0.85	4.82	153.00	3.49	9.65	151.43	1.25	WNA	WNA	WNA
10/31/2001	6.89	152.77	0.61	6.15	152.94	1.35	4.96	152.86	2.97	NM	NM	NM	5.89	151.57	2.12
11/29/2001	9.76	149.90	0.73	6.56	152.53	0.43	5.67	152.15	1.47	9.84	151.24	0.71	4.87	152.59	1.09
12/13/2001	8.01	151.65	0.41	6.80	152.29	0.52	6.85	150.97	1.88	10.27	150.81	NM	6.49	150.97	2.82
1/17/2002	7.93	151.73	2.62	NM	NM	NM	6.47	151.35	1.26	9.55	151.53	0.76	6.11	151.35	2.13
2/21/2002	7.58	152.08	1.92	6.91	152.18	0.70	6.04	151.78	1.19	9.77	151.31	0.41	6.17	151.29	1.86
3/20/2002	NM	NM	NM	6.92	152.17	0.90	6.01	151.81	96.00	9.70	151.38	0.63	6.18	151.28	1.51
4/17/2002	NM	NM	NM	6.35	152.74	1.48	NM	NM	NM	9.22	151.86	1.61	5.72	151.74	4.96
5/22/2002	NM	NM	NM	4.64	154.45	0.85	NM	NM	NM	8.15	152.93	0.62	4.67	152.79	0.38
09/23&24/202	6.04	153.62	1.34	5.24	153.85	0.73	4.60	153.22	NM	8.60	152.48	1.97	5.24	152.22	0.47
10/21/2002	4.85	154.81	1.53	4.12	154.97	0.44	NM	NM	NM	7.59	153.49	3.93	4.23	153.23	1.73
11/15/2002	5.27	154.39	2.64	4.46	154.63	2.64	NM	NM	NM	7.94	153.14	2.09	4.50	152.96	0.83
12/17/2002	4.08	155.58	0.55	4.70	154.39	0.62	NM	NM	NM	6.60	154.48	0.99	3.15	154.31	1.22
1/17/2003	4.17	155.49	1.01	NM	NM	NM	NM	NM	NM	6.60	154.48	0.97	3.30	154.16	0.96
2/12/2003	4.26	155.40	0.83	NM (snow)	NM (snow)	NM (snow)	2.38	155,44	0.91	6.04	155.04	1.05	3.62	153.84	0.80
3/20/2003	2.97	156.69	0.69	2.44	156.65	0.79	1.46	156.36	1.13	5.91	155.17	1.06	2.50	154.96	0.71
4/21/2003	3.22	156.44	1.78	2.11	156.98	1.85	1.56	156.26	1.32	6.28	154.80	2.07	2.90	154.56	2.03
5/28/2003	3.83	155.83	0.97	3.03	156.06	0.85	2.49	155.33	1.92	6.90	154.18	0.32	3.46	154.00	0.34
7/9/2003	4.25	155.41	0.91	3.30	155.79	0.77	2.73	155.09	2.79	7.33	153.75	0.72	3.70	153.76	0.75
9/3/2003	4.56	155.10	1.04	3.40	155.69	1.01	2.88	154.94	1.44	7.17	153.91	1.08	NM	NM	0.90
10/16/2003	4.35	155.31	0.93	3.46	155.63	0.88	2.88	154.94	0.90	7.30	153.78	0.60	3.83	153.63	0.68
1/22/2004	3.56	156.10	2.10	NM	NM	NM	3.16	154.66	1.11	7.17	153.91	10.02	3.60	153.86	2.44
5/6/2004	4.53	155.13	0.33	3.55	155.54	0,25	3.01	154.81	1.08	8.50	152.58	5.20	4.12	153.34	0.13
6/3/2004	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.90	153.18	NM	4.41	153.05	NM
7/21/2004	6.04	153.62	0.09	5.21	153.88	0.01	4,65	153.17	0.14	10.27	150.81	1.28	5.51	151.95	0.01
·	-				100.00	0.01	1.05	155,17	0.17	10.27	150.01	1.20	3,31	131.73	0.01
Notes:															
loint water level ga	· · ·	El 1: 1TD	16 1	T 00	2000 1 0			J					l	1	

Joint water level gauging on former Flagship and IBM properties began on June 28, 2000, therefore, Shaw did not collect prior to this date.

NM = Not Measured.

All dissolved oxygen measurements are in mg/l.

* = DO measurement incorrect due to malfunctioning meter.

Red = corrected groundwater elevation measurement

TABLE 4 FORMER IBM HANGAR FACILITY HISTORICAL GROUNDWATER DEPTHS, ELEVATIONS AND DISSOLVED OXYGEN MEASUREMENTS

		A-8S			A-16S			A-19S		T	A-20S	T		A-26S	
	T	OC Elev. 157.8	36'	Т	OC Elev. 157.	40'	Т	OC Elev. 159.	04'	Т	OC Elev. 158.	76'	7	FOC Elev. 154.9	14'
Date	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO
6/28/2000	8.65	149.21	NM	5.06	152.34	NM	5.83	153.21	NM	6.33	152.43	NM	2.04	152.90	NM
8/3/2000	5.07	152.79	2.06	5.37	152.03	0.62	6.79	152.25	2.30	6.64	152.12	0.64	3.40	151.54	3.95
8/10/2000	5.00	152.86	NM	5.29	152.11	NM	6,71	152.33	NM	6.52	152.24	NM	2.61	152.33	NM
8/31/2000	5.25	152.61	3.90	5.57	151.83	1.74	6.89	152.15	3.33	6.82	151.94	4.55	2.55	152.39	8.19
9/21/2000	5.35	152.51	4.59	5.69	151.71	2.48	7.11	151.93	2.37	6.92	151.84	4.38	3.09	151.85	3.47
10/16/2000	5.67	152.19	4.49	5.95	151.45	4.81	7.48	151.56	5.36	7.32	151.44	4.66	3.41	151.53	3.78
11/13/2000	5.65	152.21	3.36	5.92	151.48	8.19	7.39	151.65	7.29	7.22	151.54	5.29	3.90	151.04	2.91
12/6/2000	6.16	151.70	11.84	6.26	151.14	6.81	7,72	151.32	5.54	7.62	151.14	8.33	3.91	151.03	2.99*
1/8/2001	5.88	151.98	1.83	6.09	151.31	7.78	7.57	151.47	4.03	NM	NM	NM	3.50	151.44	0.81
2/19/2001	5.30	152.56	2.34	5.50	151.90	4.90	6.96	152.18	6.41	NM	NM	NM	NM	NM	NM
3/28/2001	4.71	153,15	21.61*	5.01	152.39	NM	6.38	152.66	NM	6.18	152.58	NM	2.75	152.19	20.48*
4/19-4/20/01	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/16/2001	5.30	152.56	1.93	5.62	151.78	1.33	7.05	152.09	1.42	6.79	151.97	0.93	3.00	151.94	1.79
6/20-6/21/01	5.32	152.54	1.70	5.60	151.80	1.95	7.09	151.95	1.01	6.93	151.83	0.58	3.71	151.23	0.53
7/30/2001	6.00	151.86	1.16	6.19	151.21	1.70	7.67	151.37	0.83	7.45	151.31	0.57	3.63	151.23	0.69
8/16/2001	6.28	151.58	0.94	6.43	150.97	1.96	7.94	151.10	0.83	7.79	150.97	0.39	3.90	151.04	0.09
9/10/2001	6.65	151.21	0.83	6.75	150.65	2.00	8.26	150.78	0.77	8.01	150.75	0.39	4.30	150.64	0.43
10/31/2001	6.70	151.16	0.47	6.86	150.54	2.36	8.35	150.78	0.77	8.14	150.62	0.68	4.30	150.74	0.39
11/29/2001	6.94	150.92	0.66	7.09	150.34	4.65	8.60	150.09	2.56	8.34	150.62	1.17	4.20 NM	130.74 NM	0.44 NM
12/13/2001	7.15	150.71	NM	7.13	150.27	2.48	8.68	150.36	1.67	8.35	150.42	NM	4.64	150.30	0.55
1/17/2002	6.89	150.71	0.89	7.05	150.35	5.95	8.53	150.50	2.98	8.33	150.41	1.20	4.04	150.54	
2/21/2002	6.97	150.89	75.00	7.07	150.33	5.86	8.52	150.51	2.57	8.24	150.48	1.26	4.40	150.54	0.61 1.10
3/20/2002	6.99	150.87	0.37	7.08	150.33	3.28	8.55	150.32	1.71	8.30		1			
4/17/2002	6.54	151.32	1.42	6.71	150.69	4.21	8.33	150.49	1.71		150.46	0.57	4.40	150.54	0.39
5/22/2002	5.50	152.36	1.02	5.70	151.70	3.62				7.94	150.82	1.58	3.93	151.01	1.19
09/23&24/2002	6.06	151.80	0.63	6.31	151.70	1.64	7.15	151.83	1.78	6.93	151.83	1.47	3.16	151.78	1.81
10/21/2002	5.00	152.86	0.03	5.28	152.12	4.39	7.76	151.22	0.36	7.55	151,21	0.28	3.68	151.26	0.35
11/15/2002	5.43	152.43	2.07	5.72	151.68	4.35	6.69	152.29	5.98	6.52	152.24	0.72	2.81	152.13	0.47
12/17/2002	4.23	153.63	0.76	4.70			7.15	151.83	4.33	6.93	151.83	1.01	3.25	151.69	1.16
1/17/2003	4.62	153.03	0.78	4.70 NM	152.70	5.92	5.92	153.06	1.04	5.75	153.01	1.24	2.03	152.91	1.23
2/12/2003	5.15	152.71	0.68		NM	NM	6.25	152.73	0.53	6.02	152.74	0.52	2.21	152.73	0.93
3/20/2003	3.76	154.10		NM (snow)	NM (snow)	NM (snow)	6.43	152.55	0.74	6.05	152.71	1.01	2.01	152.93	0.48
4/21/2003	4.27	153.59	0.49 1.04	4.23	153.17	0.87	5.46	153.52	1.01	5.26	153.50	0.63	0.98	153.96	0.52
5/28/2003	New Lock	New Lock	New Lock	New Lock	152.61 New Lock	5.19	6.05	152.93	0.97	5.25	153.51	1.14	2.25	152.69	2.54
7/9/2003	4.58	153.28	2.66	5.08	152.32	New Lock	New Lock	New Lock	New Lock	New Lock	New Lock	New Lock	2.60	152.34	0.37
9/3/2003	4.60	153.26	0.77	5.07		0.96	6.41	152.57	0.82	6.25	152.51	1.22	2.82	152.12	0.58
10/16/2003	4.82	153.26	1.03		152.33	0.87	6.41	152.57	0.54	6.23	152.53	0.48	2.71	152.23	0.85
1/22/2004	4.82	153.04		5.33	152.07	2.58	6.68	152.30	0.87	6.50	152.26	1.90	3.76	151.18	0.76
5/6/2004	4.61	153.25	3.12	5.01	152.39	7.01	6.37	152.61	4.19	6.28	152.48	2.14	5.61	149.33	7.25
	1		0.19	5.45	151.95	0.09	6.84	152.20	0.62	6.70	152.06	0.34	3.53	151.41	0.02
6/3/2004	NM	NM	NM	NM C 27	NM	NM 0.47	NM 7.00	NM	NM	7.01	151.75	NM	3.35	151.59	NM
7/21/2004	NM	NM	NM	6.37	151.03	0.47	7.89	151.15	1.96	7.67	151.09	0.05	4.10	150.84	0.01
Notes:															

Notes.

Joint water level gauging on former Flagship and IBM properties began on June 28, 2000, therefore, Shaw did not collect prior to this date.

NM = Not Measured.

All dissolved oxygen measurements are in mg/l.

* = DO measurement incorrect due to malfunctioning meter.

Red = corrected groundwater elevation measurement

TABLE 4 FORMER FLAGSHIP HANGAR FACILITY HISTORICAL GROUNDWATER DEPTHS, ELEVATIONS AND DISSOLVED OXYGEN MEASUREMENTS

		A-27S		;	A-39S			A-40S			A-41S			A-42S			A-43S			A-44S	,
	T	OC Elev. 157.	74'	T	OC Elev. 159	.51	7	OC Elev. 161	1.03'	T	OC Elev. 160	64'		ΓΟC Elev. 159.4	0'	-	TOC Elev. 157.8	89'	7	OC Elev. 155.3	13'
Date	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO	DTW	GW Elev	DO
6/28/2000	4.35	153.39	NM	6.75	152.76	NM	7.81	153.22	NM	7.94	152.70	NM	7.05	152.35	NM	4,75	153.14	NM	2.72	152.61	NM
8/3/2000	5.27	152.47	1.00	7.05	152.46	5.78	7.88	153.15	0.48	7.71	152.93	0.54	7.88	151.52	0.47	5.77	152.12	2.15	4.32	151.01	1.88
8/10/2000	5.20	152.54	NM	6.96	152.55	NM	7.66	153.37	NM	7.61	153.03	NM	7.60	151.80	NM	4.66	153.23	NM	4,30	151.03	NM
8/31/2000	5.32	152.42	2.90	7.23	152.28	7.28	8.55	152.48	2.31	8.09	152.55	9.36	6.98	152.42	2.04	5.07	152.82	2.11	NG	NG	WNA
9/21/2000	4.83	152.91	2.99	7.47	152.04	6.18	6.75	154.28	3.59	7.37	153.27	7.36	5.43	153.97	2.68	4.64	153.25	3.18	NG	NG	WNA
10/16/2000	5.43	152.31	3.43	7.58	151.93	7.57	7.22	153.81	2.89	7.90	152.74	9.26	6.27	153.13	3.81	5.52	152.37	3.38	4.83	150.50	3.59
11/13/2000	5.19	152.55	3.38	7.62	151.89	9.32	7.54	153.49	2.58	8.02	152,62	3.53	5.77	153.63	2.67	4.81	153.08	2.49	4.83	150.5	3.05
12/6/2000	5.78	151.96	4.17*	6.02	153.49	5.26	8.37	152.66	4.08	8.43	152.21	12.17*	6.86	152.54	4.47*	5.67	152.22	12.23*	5.04	150.29	2.56
1/8/2001	5.55	152.19	1.09	7.81	151.70	7.47	NM	NM	NM	8.10	152.54	1.79	NM	NM	NM	NM	NM	NM	NM	NM	NM
2/19/2001	5.01	152.73	8.53	7.20	152.31	3.43	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
3/28/2001	4.50	153.24	17.84*	6.70	152.81	NM	7.24	153.79	NM	7.60	153.04	15.18*	5.62	153.78	15.19*	4.20	153.66	16.00*	3.89	151.44	NM
4/19-4/20/01	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM ·	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/16/2001	5.05	152.69	0.94	7.41	152.10	3.86	7.70	153.33	0.54	NG	NG	NM	6.01	153.39	0.60	4.76	153.10	0.93	4.49	150.84	0.93
6/20-6/21/01	5.24	152.50	0.69	7.36	152.15	4.99	8.35	152.68	0.71	8.00	152.64	0.58	7.10	152.30	0.82	5.22	152.64	1.10	4.52	150.81	0.55
7/30/2001	6.04	151.70	0.73	7.97	151.54	4.39	8.76	152.27	0.53	8.58	152.06	0.78	7.63	151.77	0.65	5.86	152.03	1.08	4.97	150.36	1.01
8/16/2001	6.33	151.41	0.98	8.24	151.27	2.09	9.60	151.43	0.69	9.11	151.53	0.74	8.07	151.33	0.81	6.24	151.65	0.91	5.41	149.92	0.37
9/10/2001	6.98	150.76	0.67	8.55	150.96	1.35	11.24	149.79	0.56	10.13	150.51	0.52	9.30	150.10	1.63	6.75	151.14	0.94	5,42	149.91	0.90
10/31/2001	6.64	151.10	0.60	8.72	150.79	0.78	9.46	151.57	0.92	9.18	151.46	0.43	7.88	151.52	0.51	6.47	151.42	0.77	5.51	149.82	0.39
11/29/2001	6.93	150.81	0.66	8.93	150.58	0.69	10.46	150.57	0.43	10.02	150.62	0.70	8.54	150.86	0.93	6.82	151.07	1.40	NM	NM	NM
12/13/2001	7.28	150.46	0.16	8.96	150.55	NM	10.27	150.76	0.43	9.88	150.76	0.54	8.71	150.69	0.38	6.98	150.91	0.26	5.74	149.59	0.79
1/17/2002	6.85	150.89	0.70	8.87	150.64	1.20	9.70	151.33	1.20	9.93	150.71	0.60	8.12	151.28	0.85	6.62	151.27	1.53	5.64	149.69	NM
2/21/2002	6.89	150.85	1.14	8.88	150.63	0.97	9.81	151.22	0.19	9.51	151.13	0.72	8.12	151.28	0.50	6.78	151.11	0.42	5,65	149.68	NM
3/20/2002	6.90	150.84	0.41	8.92	150.59	0.59	9.78	151.25	0.28	10.22	150.42	0.27	9.71	149.69	0.49	7.60	150.29	0.75	5.80	149.53	1.35
4/17/2002	6.45	151.29	1.74	8.50	151.01	0.87	9.94	151.09	2.33	9.79	150.85	1.37	9.33	150.07	1.53	7.20	150.69	1.52	5.21	150.12	1.93
5/22/2002	5.57	152.17	1.05	7.42	152.09	6.42	8.25	152.14	0.52	8.13	151.84	0.71	6.86	150.99	0.47	5.31	151.75	0.57	5.06	150.27	0.96
09/23&24/2002	6.06	151.68	0.39	8.07	151.44	1.84	9.43	150.96	0.21	9.62	150.35	0.43	8.78	149.07	0.41	6.67	150.39	0.51	4.94	150.39	0.84
10/21/2002	5.13	152.61	1.20	6.91	152.60	7.85	8.40	151.99	0.75	8.79	151.18	0.43	7.88	149.97	0.47	5.65	151.41	0.77	4.30	151.03	0.77
11/15/2002	5.48	152.26	1.13	7.43	152.08	7.99	8.72	151.67	1.71	8.67	151.30	1.79	8.14	149.71	0.98	5.98	151.08	2.35	4.53	150.80	2.35
12/17/2002	4.28	153.46	1.38	6.15	153.36	0.72	7.40	152.99	0.91	7.51	152.46	1.16	6.74	151.11	0.93	4.62	152.44	1.08	3.87	151.46	0.91
1/17/2003	4.44	153.30	0.47	6.60	152.91	0.73	7.42	152.97	0.89	7.81	152.16	0.91	6.83	151.02	0.86	4.67	152.39	0.55	4.08	151.25	0.71
2/12/2003	5.87	151.87	0.59	6.81	152.70	0.85	6.70	153.69	0.64	6.75	153.22	0.88	6.56	151.29	0.51	5.38	151.68	0.73	2.43	152.90	0.81
3/20/2003	3.78	153.96	0.46	3.87	155.64	0.63	6.75	153.64	0.84	5.31	154.66	0.81	5.99	151.86	0.66	4.03	153.03	0.77	1.87	153.46	0.61
4/21/2003	4.20	153.54	2.01	6.40	153.11	1.43	7.14	153.25	1.11	7.61	152.36	1.03	6.37	151.48	1.43	4.40	152.66	1.08	3.96	151.37	1.50
5/28/2003	4.66	153.08	0.40	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	NG (Lock)	6.98	153.97 (1)	1.05	5.02	153.70 (1)	1.21	4.16	151.17	0.42
7/9/2003	4.85	152.89	0.67	6.65	152.86	2.23	7.20	153.19	0.70	7.16	152.81	0.87	6.14	151.71	0.82	4.42	152.64	1.30	4.25	151.08	0.51
9/3/2003	4.81	152.93	0.87	6.63	152.88	1.02	7.29	153.10	1.10	7.31	152.66	1.14	5.70	152.15	0.81	4.32	152.74	0.73	4.14	151.19	0.61
10/16/2003	5.02	152.72	0.41	6.98	152.53	5.25	7.45	152.94	0.74	7.48	152.49	0.62	7.26	150.59	0.55	4.40	152.66	0.76	4.31	151.02	0.36
1/22/2004	5.29	152.45	0.69	6.69	152.82	6.46	9.78	150.61	7.67	7.51	152.46	3.35	8.61	149.24	9.46	5.03	152.03	1.46	4.10	151.23	2.61
5/6/2004	5.33	152.41	0.20	7.15	152.36	5.30	8.70	152.33	3.62	7.74	152.90	0.11	6.79	152.61	3.94	5.38	152.51	0.10	4.47	150.86	0.07
6/3/2004	NM	NM	NM NM	NM	NM	NM	8.03	153.00	NM	7.79	152.85	NM	6.45	152.95	NM	5.19	152.70	NM	NM	NM	NM
7/21/2004	6.51	151.23	0.05	8.24	151.27	0.54	10.05	150.98	1.78	8.77	151.87	0.04	7.94	151.46	1.28	6.13	151.76	0.01	5.10	150.23	0.00
N																					
Notes:	L			ies began on Ju	L					İ		[

Joint water level gauging on former Flagship and IBM propert NM = Not Measured.

WNA = Well Not Accessible at time of gauging.

All dissolved oxygen measurements are in mg/l.

* = DO measurement incorrect due to malfunctioning meter.

Red = corrected groundwater elevation measurement

TABLE 5
ANALYTICAL RESULTS OVERBURDEN MONITORING WELLS 3 - May 06, 2004
FORMER FLAGSHIP AIRLINES HANGAR - DUTCHESS COUNTY AIRPORT
ORDER ON CONSENT NOL W3-0837-00-06, NYSDEC SITE NO. 3-14-101

	NYSDEC																	DUP 1
Field Parameters	Standard (1)	ME-12	ME-13	ME-14	ME-15	ME-16	ME-18	ME-19	MW-1	MW-2	MW-6	MW-7A	MW-8	MW-9/10R	MW-20	DG-1	Septic	(A-42S)
рН	6.5-8.5	NS NS	NS	NS	NS	NS	NS	NS	NS	NS								
Temperature (deg Celsius)		NS NS	NS	NS	NS	NS	NS	NS	NS	NS								
Conductivity (umhos/cm)		NS NS	NS	NS	NS	NS	NS	NS	NS	NS								
Turbidity (NTU)	5	NS NS	NS	NS	NS	NS	NS	NS	NS	NS								
Dissolved Oxygen (ppm)		0.53	0.03	0.02	0.09	0.01	0.14	1.28	0.01	0.21	1.04	1.44	0.11	1.18	0.91	1.84	NS	1.28
Volatile Organic Compound																		
by ASP/CLP Method (ug/L)																		
Vinyl Chloride	2	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND
Chloroethane	5	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND
1,1-Dichloroethane	5	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	0.4J	ND	ND	ND	NS	0.6J
1,2-Dichloroethene, Total	5	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND
Tetrachloroethene	5	ND	NS	0.6J	NS	NS	ND	2	NS	ND	2	NS	ND	ND	ND	ND	NS	ND
Semi-Volatile Organic Compoun	d																	
by ASP/CLP Method (ug/L)																		
Phenol	1 (3)	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND
4-Methylphenol	1 (3)	ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND
Naphthalene		ND	NS	ND	NS	NS	ND	ND	NS	ND	ND	NS	ND	ND	ND	ND	NS	ND

Notes:

Only compounds detected at one or more sampling locations are listed.

BOLD values indicate detections above NYSDEC Standards or Guidance Values.

- (1) = NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (3) = The collective sum of all phenol compounds should not exceed 1 ug/l.
- U = Indicates compound was analyzed for but not detected.
- J = Indicates estimated value which is less than the sample quantitation limit but greater than zero.
- D = Identifies all compounds in analysis at a secondary dilution factor.
- NS = Not Sampled.
- ND = Not Detected.

X:\MG\Flagship\OM Rpt May04 - July04\Table 5.xls

TABLE 5 (Continued)

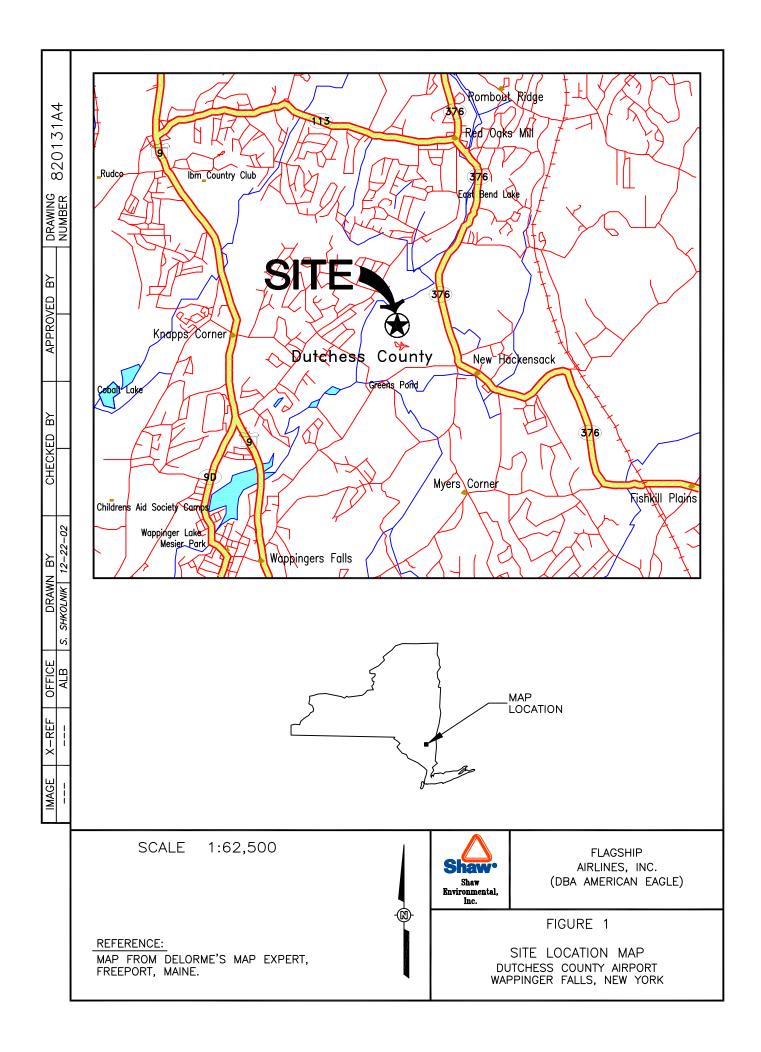
ANALYTICAL RESULTS OVERBURDEN MONITORING WELLS -May 06, 2004 FORMER IBM SHALLOW WELLS

ORDER ON CONSENT NO. W3-0837-00-06, NYSDEC SITE NO. 3-14-101

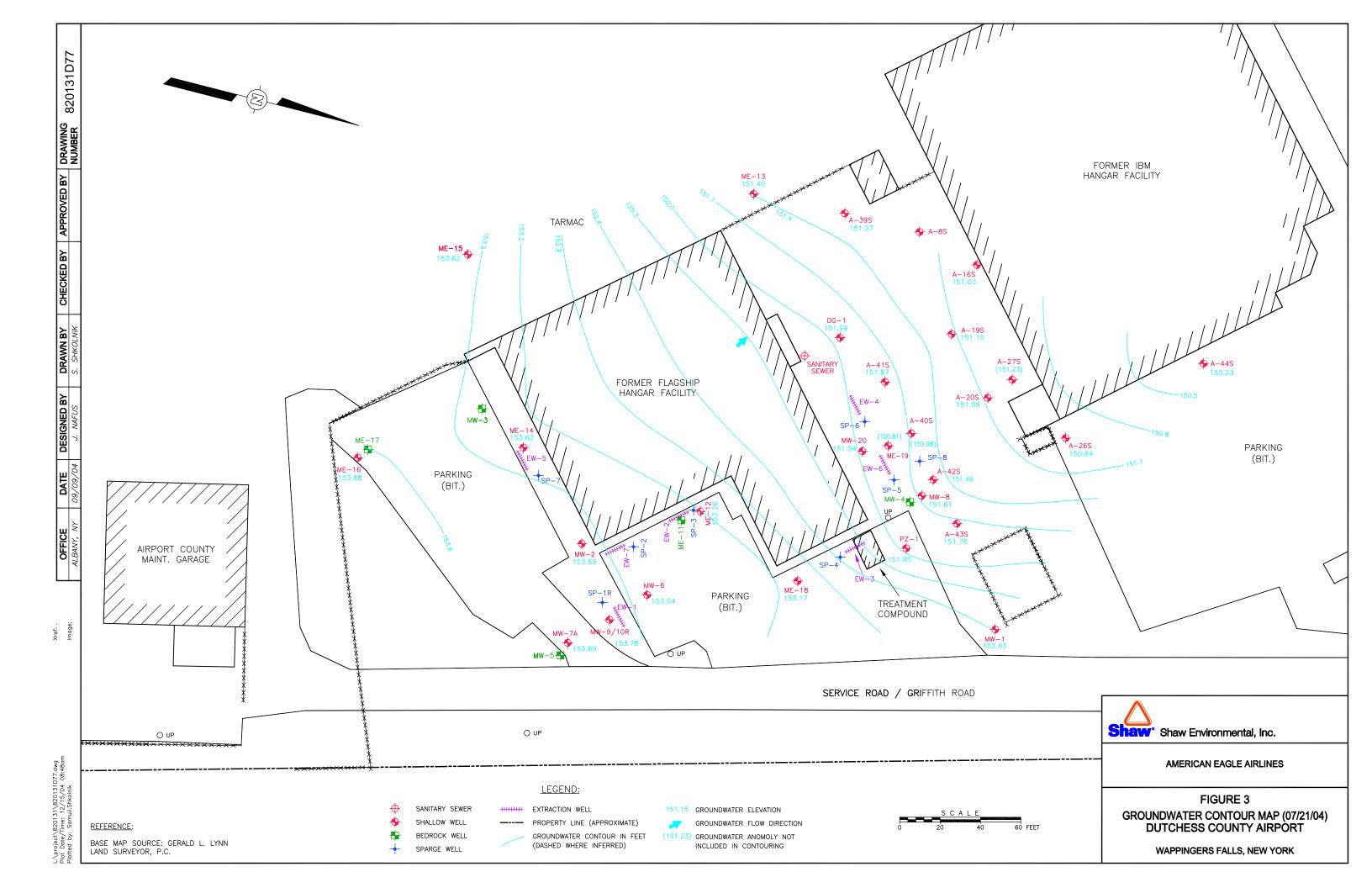
NYSDEC

Field Parameters	Standard (1)	A-8S	A-26S	A-27S	A-41S	A-42S	A-43S
pH	6.5-8.5	NS	NS	NS	NS	NS	NS
Temperature (deg Celsius)		NS	NS	NS	NS	NS	NS
Conductivity (umhos/cm)		NS	NS	NS	NS	NS	NS
Turbidity (NTU)	5	NS	NS	NS	NS	NS	NS
Dissolved Oxygen (ppm)		NS	0.01	0.05	0.04	1.28	0.01
Volatile Organic Compound							
by ASP/CLP Method (ug/L)							
Vinyl Chloride	2	NS	1	0.4J	NS	ND	0.8J
Chloroethane	5	NS	ND	ND	NS	ND	ND
1,1-Dichloroethane	5	NS	13	1	NS	0.7J	1
1,2-Dichloroethene, Total	5	NS	ND	5	NS	ND	0.7J
Trichloroethene	5	NS	ND	0.4J	NS	ND	ND
Semi-Volatile Organic Compour	nd						
by ASP/CLP Method (ug/L)							
4-Methylphenol	1	NS	ND	ND	NS	ND	ND
Naphthalene		NS	ND	ND	NS	ND	ND

Notes:


Only compounds detected at one or more sampling locations are listed.

BOLD values indicate detections above NYSDEC Standards or Guidance Values.


Laboratory data on this table includes third party validation.

- (1) = NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- U = Indicates compound was analyzed for but not detected.
- J = Indicates estimated value which is less than the sample quantitation limit but greater than zero.
- D = Identifies all compounds in analysis at a secondary dilution factor.
- NS = Not Sampled.
- ND = Not Detected.

FIGURES

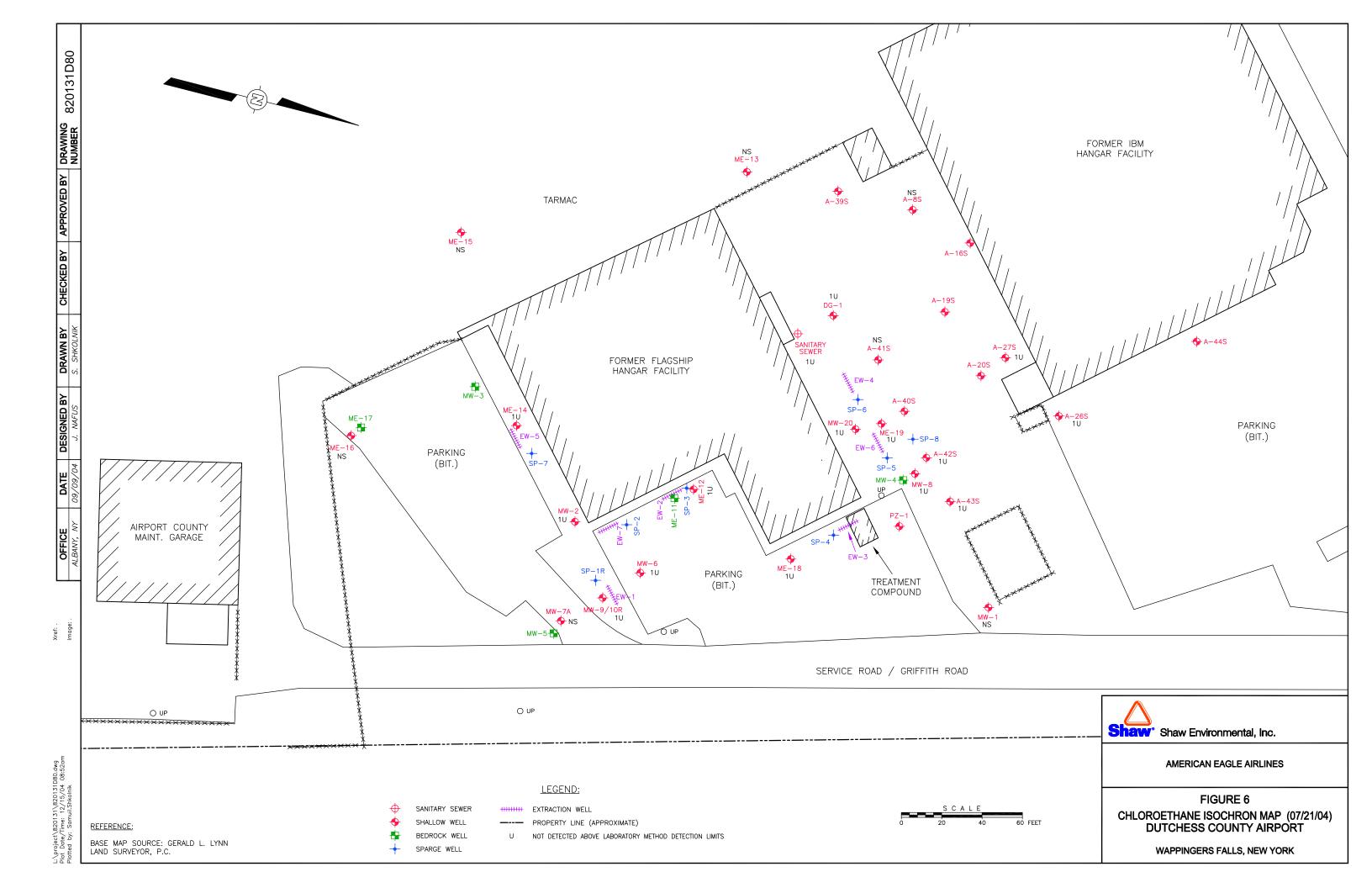


Figure 8
Dissolved Tetrachloroethene (PCE) Trends, MW-9 & MW-10

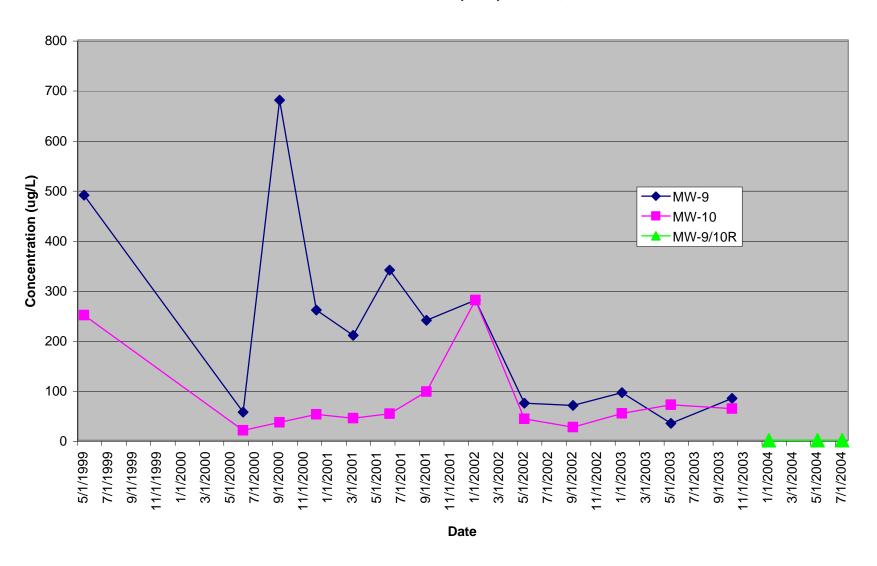


Figure 9
Dissolved 1,1-Dichloroethane Trends, MW-9, MW-10 & A-42S

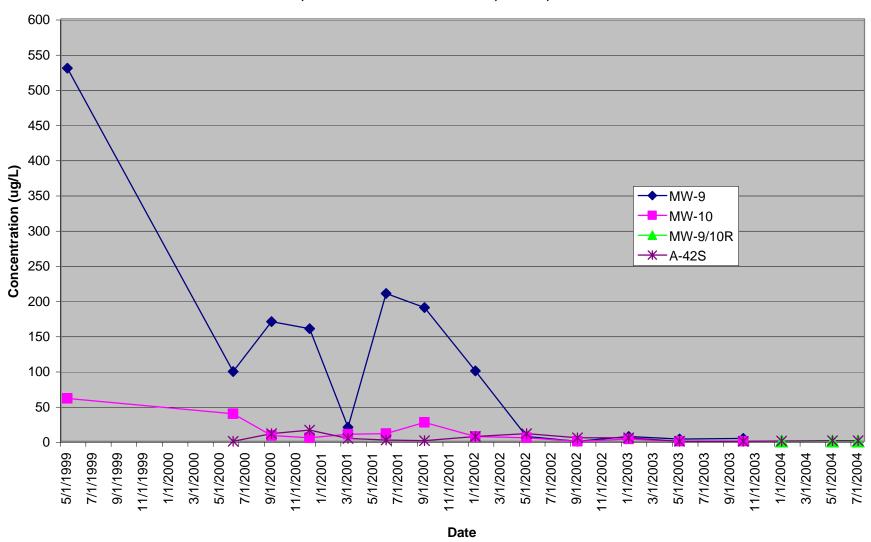
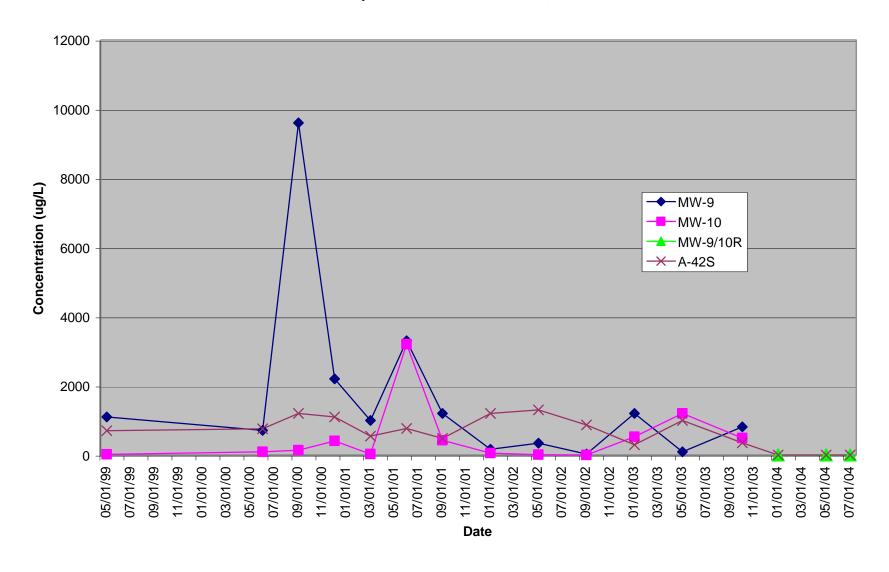



Figure 10
Dissolved Naphthalene Trends, MW-9, MW-10 & A-42S

APPENDIX A

ANALYTICAL RESULTS – GROUNDWATER (JULY 21, 2004)

STL Knoxville 5815 Middlebrook Pike Knoxville, TN 37921

Tel: 865 291 3000 Fax: 865 584 4315 www.stl-inc.com

ANALYTICAL REPORT

Flagship

Lot #: H4G260110

Tony Perretta

Shaw E & I Inc 13 British American Blvd Latham, NY 12110

SEVERN TRENT LABORATORIES, INC.

Scott A. Harris Project Manager

July 30, 2004

ANALYTICAL METHODS SUMMARY

H4G260110

PARAMETER	ANALYTICAL METHOD
Volatile Organics by TO15	EPA-2 TO-15

References:

"Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", EPA-625/R-96/010b, January 1999.

SAMPLE SUMMARY

H4G260110

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
GLTWN GLTWP	001 002	SVE EFFLUENT SVE INFLUENT	07/23/04 13:00 07/23/04 13:00
**************************************	- \		

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PROJECT NARRATIVE H4G260110

The results reported herein are applicable to the samples submitted for analysis only.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

There were no problems with the condition of the samples received.

Quality Control

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

STL Knoxville maintains the following certifications, approvals and accreditations: Arkansas DEQ Cert. # 03-049-0, California DHS ELAP Cert. #2423, Colorado DPHE, Connecticut DPH Cert. #PH-0223, Florida DOH Cert. #E87177, Georgia DNR Cert. #906, Hawaii DOH, Illinois EPA Cert. # 000687, Indiana DOH Cert. #C-TN-02, Kansas DHE Cert. # E-10349, Kentucky DEP Lab ID #90101, Louisiana DEQ Cert. #03079, Louisiana DOHH Cert. #LA030024, Maryland DHMH Cert. #277, Massachusetts DEP Cert. #M-TN009, Michigan DEQ Lab ID #9933, New Jersey DEP Cert. #TN001, New York DOH Lab #10781, North Carolina DPH Lab ID #21705, North Carolina DEHNR Cert. #64, Oklahoma DEQ ID #9415, Pennsylvania DEP Cert. # 68-576, South Carolina DHEC Lab ID #84001001, Tennessee DOH Lab ID #02014, Utah DOH Cert. #QUAN3, Virginia DGS Lab ID #00165, Washington DOE Lab #C120, Wisconsin DNR Lab ID #998044300, US Army Corps of Engineers, Naval Facilities Engineering Service Center, US EPA Perchlorate Approval and USDA Soil Permit #S-46424. This list of approvals is subject to change and does not imply that laboratory certification is available for all parameters reported in this environmental sample data report.

SHAW E & I INC

Client Sample ID: SVE EFFLUENT

GC/MS Volatiles

Lot-Sample #: H4G260110-001 Date Sampled: 07/23/04 Prep Date: 07/28/04 Prep Batch #: 4211276	Work Order #: Date Received: Analysis Date:	07/24/04	Matrix AIR
Dilution Factor: 2.33	Method:	EPA-2 TO-1	5
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chlorobenzene	ND	0.50	ppb(v/v)
Chloroethane	ND	0.50	ppb(v/v)
1,1-Dichloroethane	ND	0.50	ppb(v/v)
cis-1,2-Dichloroethene	ND	0.50	ppb(v/v)
trans-1,2-Dichloroethene	ND	0.50	ppb(v/v)
Naphthalene	ND	0.50	ppb(v/v)
Tetrachloroethene	ND	0.50	ppb(v/v)
1,1,1-Trichloroethane	ND	0.50	ppb(v/v)
Trichloroethene	ND	0.50	ppb(v/v)
Vinyl chloride	ND	0.50	ppb(v/v)
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	106	(70 - 130)	

99

105

Toluene-d8

4-Bromofluorobenzene

(70 - 130)

(70 - 130)

SHAW E & I INC

Client Sample ID: SVE INFLUENT

GC/MS Volatiles

Lot-Sample #: H4G260110-002	Work Order #: GLTWP1AA	Matrix AIR
-----------------------------	------------------------	------------

Date Sampled...: 07/23/04 Date Received..: 07/24/04 Prep Date....: 07/28/04 Analysis Date..: 07/28/04

Prep Batch #...: 4211276

Dilution Factor: 2.83 Method. . EPA-2 TO-15

REPORTING	3
LIMIT	UNITS
0.57	ppb(v/v)
RECOVERY	
LIMITS	
(70 - 130	0)
(70 - 130)
(70 - 130)
	LIMIT 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 C.57

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: H4G260110

MB Lot-Sample #: H4G290000-276

Work Order #...: GL4NF1AA

Matrix..... AIR

Analysis Date..: 07/28/04

Prep Date....: 07/28/04

Prep Batch #...: 4211276

Dilution Factor: 1

REPORTING

		KEFOKILI	NG .	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloroethane	ND	0.20	ppb (v/v)	EPA-2 TO-15
1.1-Dichloroethane	ND	0.20	ppb (v/v)	EPA-2 TO-15
cis-1,2-Dichloroethene	ND	0.20	ppb(v/v)	EPA-2 TO-15
trans-1,2-Dichloroethene	ND	0.20	ppb(v/v)	EPA-2 TO-15
Tetrachloroethene	ND	0.20	ppb(v/v)	EPA-2 TO-15
1,1,1-Trichloroethane	ND	0.20	ppb(v/v)	EPA-2 TO-15
Trichloroethene	ND	0.20	ppb(v/v)	EPA-2 TO-15
Vinyl chloride	ND	0.20	ppb (v/v)	EPA-2 TO-15
Chlorobenzene	ND	0.20	ppb (v/v)	EPA-2 TO-15
Naphthalene	ND	0.20	ppb (v/v)	EPA-2 TO-15
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	103	(70 - 1	30)	
Toluene-d8	99	(70 - 1	30)	
4-Bromofluorobenzene	103	(70 - 1	30)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: H4G260110 Work Order #...: GL4NF1AC Matrix........ AIR

LCS Lot-Sample#: H4G290000-276

Prep Date....: 07/28/04 Analysis Date..: 07/28/04

Prep Batch #...: 4211276

Dilution Factor: 1

PARAMETER Trichloroethene Chlorobenzene 1,1-Dichloroethene	PERCENT RECOVERY 103 102 105	RECOVERY LIMITS (70 - 130) (70 - 130) (70 - 130)	METHOD EPA-2 TO-15 EPA-2 TO-15 EPA-2 TO-15
Benzene Toluene	102 99	(70 - 130) (70 - 130) PERCENT RECOVERY	EPA-2 TO-15 EPA-2 TO-15 RECOVERY LIMITS
SURROGATE 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene		104 100 107	(70 - 130) (70 - 130) (70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: H4G260110 Work Order #...: GL4NF1AC Matrix...... AIR

LCS Lot-Sample#: H4G290000-276

Prep Date....: 07/28/04 Analysis Date..: 07/28/04

Prep Batch #...: 4211276

Dilution Factor: 1

PARAMETER Trichloroethene Chlorobenzene 1,1-Dichloroethene Benzene Toluene	SPIKE <u>AMOUNT</u> 10.0 10.0 10.0 10.0	MEASURED AMOUNT 10.3 10.2 10.5 10.2 9.92	UNITS ppb (v/v) ppb (v/v) ppb (v/v) ppb (v/v) ppb (v/v)	PERCENT RECOVERY 103 102 105 102 99	METHOD EPA-2 TO-15 EPA-2 TO-15 EPA-2 TO-15 EPA-2 TO-15 EPA-2 TO-15
SURROGATE 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene		PERCENT RECOVERY 104 100 107	RECOVERY LIMITS (70 - 130) (70 - 130) (70 - 130)		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

NOTE(S):

STL Knoxville

5815 Middlebrook Pike • Knoxville, TN 37921-5947 Phone: (865) 291-3000 • Fax: (865) 584-4315 Receiving: (865) 291-3031

Baion Neumorus. Project Name/No. 1 Flassio_ Sample Team Members 2 Purchase Order No. 6 Project Manager 4_ Profit Center No. 3_

Required Report Date 11

CHAIN OF CUSTODY RECORD* ANALYSIS REQUEST AND

Project Contact / Phone 12 578-283-456 ONE CONTAINER PER LINE Samples Shipment Date 7 7-23-04 Honris Lab Destination 8 Knokuille 5,077 Carrier / Waybill No. ¹³_ Lab Contact ⁹

४५ ७८६०१७६ Reference Document No.

Page 1 of

Bill to: 5 Shaw LATham 13 Baites

White: To accompany samples

ろななの Report to: 10

Yellow: Field copy

Sample ¹⁴ Number	Sample ¹⁵ Type	Date/Time ¹⁶ Collected	Container ¹⁷ Type	Sample 18 Volume	Pre- ¹⁹ servative	Requested Testing ²⁰ Program	Condition on Receipt ²¹ Lab use only
SUE FIFTEEN	7; V	1-23-04 640-1300	Summe			10-15	Custody seals intact $igotimes \mathbb{N}$ N NA
	7. H	7-23-04	Summe			10-15	Temperature received at Ambient
							Received by AOF Date 72404
							Number of packages /
·							Tracking # 83/487339007
							40F072404
				·			2 cens 2 flows
Special Instructions: ²³	. 23						
Possible Hazard Identification: ²⁴ Non-Hazard 2 Flammable C Skir	rd Identification: ²⁴ Flammable O Skin	I: ²⁴ Skin Irritant 🗇 F	Poison B Unknown	Jnknown 🗅	Sample Return to	Sample Disposal: 25 Return to Client O Disposal by Lab 🗹	Lab & Archive (mos.)
1 = -		ĺ	1 0 1 1	QC Level: 27		9	
ish Af	Lat Gilla	Date: Time:	1-3-04	1. Bec (Signatu	l by a	<u>[</u>	Anskey) () 7 Mas 50-3404
1. Relinquished by (Signature / Affiliation)		Date: Time:		1. Rec (Signatu	1. Received by (Signature / Affiliation)		Date:
Comments: 29							

STL KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Client: Shaws EhI	_	Project:	ect:	Flagship	Lot Number: #4 1-260116
Review Items	Yes	ž	AN AN	If No, what was the problem?	Comments/Actions Taken
 Do sample container labels match COC? (IDs, Dates, Times) 	-	×		■ 1a Do not match COC □ 1b Incomplete information □ 1c Marking smeared □ 1d Label tom □ 1e No label □ 1f COC not received □ 1g Other:	1A, Sample Container Label lists T.D. as SUE Final Effluent, see lists id as SUE Effluent, Log per coc.
 2. Is the cooler temperature within limits? (North Carolina, 1668, 1613B: 0-4°C; VOST: 10°C) (Cooler temp should be used only if no temp blank.) 3. Were samples received with correct chemical 			Х У	☐ 2a Temp Blank = ☐ 2b Cooler Temp = ☐ ☐ 2 ☐ 2 ☐ 2 ☐ ☐ ☐ 2 ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
preservative (excluding Encore)? 4. Were custody seals present/intact on cooler and/or containers?	*		<	☐ 4a Not present☐ 4b Not intact☐ 4c Other:	
5. Were all of the samples listed on the COC received?6. Were all of the sample containers received intact?	× ×			☐ 5a Samples received-not on COC ☐ 5b Samples not received-on COC ☐ 6a Leaking ☐ 6b Broken	
 Were VOA samples received without headspace? Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Were samples received with ≥½ HT remaining? 	×		xx	☐ 7a Headspace (VOA only) ☐ 8a Improper container ☐ 10a Holding time expired ☐ 10b < 1/4 HT left	
 For rad samples, was sample activity info. provided? For SOG water samples (1613B, 1668A, 8290, LR PAHs), do samples have visible solids present? Are the coolers intact? 	×		x x	☐ Incomplete information If yes, was SOG notified? ☐ 13a Leaking ☐ 13b Other:	
 14. Was COC relinquished? (Signed/Dated/Timed) 15. Are tests/parameters listed for each sample? 16. Is the matrix of the samples noted? 17. Is the date/time of sample collection noted? 18. Is the client and project name/# identified? 	××××			☐ 14a Not relinquished by client ☐ 15a Incomplete information	
was the sampler identified on the COC! uote #: mple Receiving Associate: h denul). A	me	-	-	U 15a Incomplete information Date: 07-26-04	QA026R14.doc, 7/12/04

Original Chain of Custody Documentation

White: To accompany samples

5815 Middlebrook Pike • Knoxville, TN 37921-5947 Phone: (865) 291-3000 • Fax: (865) 584-4315 STL Knoxville Receiving: (865) 291-3031

Project Manager 4 Bain Neumoral 820131 Project Name/No. 1 Flassip Sample Team Members² Required Report Date 11 Purchase Order No. ⁶ Profit Center No.

CHAIN OF CUSTODY RECORD* **ANALYSIS REQUEST AND**

518.783-1456 133905 Samples Shipment Date 7 7-23-04 HANNIS 8748 Knoxe; 16 Project Contact / Phone ¹² Scott Carrier / Waybill No. ¹³_ Lab Destination 8 Lab Contact ⁹

H4 6260(16 Reference Document No. Page 1 of

Enteridonine nito why 13 Baitist Bill to: $^5_-$

Batum Newmoner とななる Report to: 10

Required Report Date 11	e 11		ONE CON	CONTAINER PER LINE	PER LI			
Sample 14	Sample 15	Date/Time ¹⁶	Cont		Pre- ¹⁹	Requested Testing 20	eipt ²¹)
Number	Type	Collected	Type	Volume	servative	Program	Lab use only	rell
SUE EFFLON	A'R	1-23-04	Summe			To-15	Custody seals intact NN NA	ow: I
SUE INFluent	Air	7-23-04				10-15	Temperature received at Ambient ©	Field
	-						Received by Prof Date 7-2404	сору
							Number of packages	
,							Tracking # 831487339257	
							40F 072404	
							2 cans 2 Plows	
Special Instructions: 23	. 23							
Possible Hazard Identification: ²⁴ Non-Hazard 27 Flammable 3 Skin Irritant 3 Poison B 3 Unknown 3	ntification: 24	Irritant 0	Poison B 🗇	Unknown 🗇	Sample Return t	Sample Disposal: ²⁵ Return to Client 🗇 Disposal by Lab 🗹	Lab & Archive (mos.)	

Date: Time:

ine:

Date:

Project Specific (specify)

<u>□</u>

10

23

Date: Time:

Poison B

Skin Irritant

Flammable

Non-Hazard

Turnaround Time Required:

Rush (

Normal

I. Relinguished by R

Signature / Affiliation)

1. Relinquished by (Signature / Affiliation)

Comments: 29

QC Level:

1. Received by ²⁸ (Signature / Affiliation)

Received by (Signature / Affiliation)

Date: Time:

APPENDIX B

ANALYTICAL RESULTS – AIR (JULY 23, 2004)

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A04-6989

STL Project#: NY3A9019

Site Name: SHAW E&I / AMERICAN AIRLINES

Task: AMERICAN AIRLINES - DUTCHESS COUNTY

Mr. Brian Neuman Shaw E&I Inc. 13 British American Blvd. Latham, NY 12110-1405

STL Buffalo

08/11/2004

STL Buffalo Current Certifications

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP SDWA, CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA	10026
North Carolina	CWA	411
North Dakota	SDWA, CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington	CWA	C254
West Virginia	CWA	252
Wisconsin	ÇWA	998310390

SAMPLE DATA SUMMARY PACKAGE

SAMPLE SUMMARY

		SAMPLE	D	RECEIV	3 D
LAB SAMPLE ID	CLIENT SAMPLE ID	DATE	TIME	DATE	TIME
A4698901	A-26S	07/21/2004	16:40	07/23/2004	09:45
A4698902	A-27S	07/21/2004	16:10	07/23/2004	09:45
A4698903	A-42S	07/21/2004	16:20	07/23/2004	09:45
A4698904	A-43S			07/23/2004	
A4698905	DG-1	07/21/2004	16:30	07/23/2004	09:45
A4698906	Duplicate	07/21/2004		07/23/2004	09:45
A4698907	Field Blank	07/21/2004		07/23/2004	09:45
A4698908	ME-12	07/21/2004	14:55	07/23/2004	09:45
A4698909	ME-14	07/21/2004	14:05	07/23/2004	09:45
A4698910	ME-18			07/23/2004	
A4698910MS	ME-18	07/21/2004	15:05	07/23/2004	09:45
A4698910SD	ME-18	07/21/2004	15:05	07/23/2004	09:45
A4698911	ME-19	07/21/2004	16:55	07/23/2004	09:45
	MW-2			07/23/2004	
A4698913	MW-20	07/21/2004	16:50	07/23/2004	09:45
A4698914	MW-6	07/21/2004	14:40	07/23/2004	09:45
A4698915	MW-8			07/23/2004	
A4698916	MW-9/10R		14:25	07/23/2004	
A4698917	TRIP BLANK	07/21/2004		07/23/2004	09:45

METHODS SUMMARY

Job#: <u>A04-6989</u>

STL Project#: NY3A9019
Site Name: SHAW E&I / AMERICAN AIRLINES

ANALYTICAL METHOD ASP 2000 - VOLATILES ASP00 ASP00-4 ASP 2000 - METHOD 8270 SELECT LIST ASP00 8270

ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: <u>A04-6989</u>

STL Project#: NY3A9019

Site Name: SHAW E&I / AMERICAN AIRLINES

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A04-6989

Sample Cooler(s) were received at the following temperature(s); 3@2.0 °C All samples were received in good condition.

GC/MS Volatile Data

The spike recovery of the analyte Vinyl Chloride in the Matrix Spike Duplicate of sample ME-18 exceeded quality control limits. The Matrix Spike Blank recoveries were compliant, so no corrective action is required.

All samples were preserved to a PH less than 2.

The VHB exhibited the recovery of surrogate p-Bromofluorobenzene as slightly below quality control limits. Due to software rounding the recovery of this surrogate appears as compliant on the surrogate recovery form. Insufficient sample volume for reanalysis.

The surrogate p-Bromofluorobenzene had a Percent Relative Standard Deviation (%RSD) greater than 30% yet less than 40% in the Initial Calibration (A4I0000692-1). No corrective action was taken, up to 2 analytes may exhibit %RSD greater than 30% yet less than 40%, according to the protocol and method requirements.

The surrogate p-Bromofluorobenzene had a Percent Difference greater than 30% yet less than 40% in the Continuing Calibration Verification (A4C0002996-1). No corrective action was taken, up to 2 analytes may exhibit percent difference greater than 30% yet less than 40% difference according to the protocol and method requirements.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Candace L. Fox

Project Manager

8/11/2004

Date

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
A-268	A4698901	ASP00	ASP00	-	_	-	÷	-
A-27S	A4698902	ASP00	ASP00	-	-	-	-	•
A-42S	A4698903	ASP00	ASP00	-	-	_	-	-
A-43S	A4698904	ASP00	ASP00	_	-	-	-	-
DG-1	A4698905	ASP00	ASP00	-		-	-	-
Duplicate	A4698906	ASP00	ASP00	-	-		-	•
Field Blank	A4698907	ASP00	ASP00	-	-	-	-	-
ME-12	A4698908	ASP00	ASP00		-	-	-	•
ME-14	A4698909	ASP00	ASP00	-	-	-	-	-
ME-18	A4698910	ASP00	ASP00	-	-	<u>-</u>	-	-
ME-19	A4698911	ASP00	ASP00	-	-	_	-	•
MW-2	A4698912	ASP00	ASP00	-	-	•	-	
MW-20	A4698913	ASP00	ASP00	-	-	-	-	•
MW-6	A4698914	ASP00	ASP00	<u>-</u>	-	-	-	•
MW-8	A4698915	ASP00	ASP00	-	-	-	-	•
MW-9/10R	A4698916	ASP00	ASP00	-	-	_	-	-

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAD NAIVIE: SEVERN I REN	i LADOKATO	JRIES, HVC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
A-26S	GW	07/21/2004	07/23/2004	-	07/30/2004
A-27S	GW	07/21/2004	07/23/2004	•	07/30/2004
A-42S	GW	07/21/2004	07/23/2004	-	07/30/2004
A-43S	GW	07/21/2004	07/23/2004	-	07/31/2004
DG-1	GW	07/21/2004	07/23/2004	-	07/31/2004
Duplicate	GW	07/21/2004	07/23/2004	-	07/31/2004
Field Blank	GW	07/21/2004	07/23/2004	-	07/31/2004
ME-12	GW	07/21/2004	07/23/2004	-	07/31/2004
ME-14	GW	07/21/2004	07/23/2004	-	07/31/2004
ME-18	GW	07/21/2004	07/23/2004	-	07/31/2004
ME-19	GW	07/21/2004	07/23/2004	-	07/31/2004
MW-2	GW	07/21/2004	07/23/2004	-	07/31/2004
MW-20	GW	07/21/2004	07/23/2004	-	07/31/2004
MW-6	GW	07/21/2004	07/23/2004	•	07/31/2004
MW-8	GW	07/21/2004	07/23/2004	-	07/31/2004
MW-9/10R	GW	07/21/2004	07/23/2004	•	07/31/2004

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY B\N-A ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
A-26S	GW	07/21/2004	07/23/2004	07/26/2004	07/27/2004
A-27S	GW	07/21/2004	07/23/2004	07/26/2004	07/27/2004
A-42S	GW	07/21/2004	07/23/2004	07/26/2004	07/27/2004
A-43S	GW	07/21/2004	07/23/2004	07/26/2004	07/27/2004
DG-1	GW	07/21/2004	07/23/2004	07/26/2004	07/27/2004
Duplicate	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
Field Blank	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
ME-12	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
ME-14	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
ME-18	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
ME-19	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
MW-2	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
MW-20	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
MW-6	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
MW-8	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004
MW-9/10R	GW	07/21/2004	07/23/2004	07/26/2004	07/28/2004

NYSDEC-3

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAB NAME: SEVERN TREN	LADORATO	JRIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
A-26S	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
A-27S	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
A-42S	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
A-43S	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
DG-1	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
Duplicate	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
Field Blank	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
ME-12	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
ME-14	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
ME-18	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
ME-19	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
MW-2	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
MW-20	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
MW-6	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
MW-8	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED
MW-9/10R	GW	ASP00	SEPF	AS REQUIRED	AS REQUIRED

DATA COMMENT PAGE

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected at or above the reporting limit.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- K Indicates the post digestion spike recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- M Indicates duplicate injection results exceeded quality control limits.
- W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Lab Name: <u>STL Buffalo</u> Contract:		A-26S	
Lab Name: SIII Bullaro Contract:			
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698901	
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	P6807.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/30/2004	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(u <u>L</u>)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)		Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U 1 U 13 2 U 1 U 1 U 1 U	

	A-43S
SDG No.:	
Lab Sample ID:	<u>A4698904</u>
Lab File ID:	P6810.RR
Date Samp/Recv:	07/21/2004 07/23/2004
Date Analyzed:	07/31/2004
Dilution Factor:	1.00
Soil Aliquot Volu	me:(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	<u>rg/L</u> Q
	1 U U U U U U U U U U U U U U U U U U U
	Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Volu CONCENTRATION UNITS: (ug/L or ug/Kg) U

Lab Name: STL Buffalo Contract:	DG-1
Distriction Concrace.	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698905</u>
Sample wt/vol: <u>25.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>L7919.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

Tab Mana Com D 55 3		A-27S	
Lab Name: STL Buffalo Contract:	A STATE OF THE STA	<u> </u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698902	
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	P6808.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/30/2004	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volu	me:	_ (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>l</u>	G/L	Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U U U U U U U U U U U U U U U U U U U	C

	A-42S
SDG No.:	
Lab Sample ID:	A4698903
Lab File ID:	P6809.RR
Date Samp/Recv:	07/21/2004 07/23/2004
Date Analyzed:	07/30/2004
Dilution Factor:	1.00
Soil Aliquot Vol	ume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg)	_
	1 U U U U U U U U U U U U U U U U U U U
	Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Vol: CONCENTRATION UNITS: (ug/L or ug/Kg)

	Duplicate
SDG No.:	
Lab Sample ID:	<u>A4698906</u>
Lab File ID:	L7920.RR
Date Samp/Recv:	07/21/2004 07/23/2004
Date Analyzed:	07/31/2004
Dilution Factor:	1.00
Soil Aliquot Volu	me: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>[</u>	<u>G/L</u> Q
	1 U U U U U U U U U U U U U U U U U U U
	SDG No.: Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Volu CONCENTRATION UNITS: (ug/L or ug/Kg) L

Lab Name: <u>STL Buffalo</u>	Contract.		Field	Blank	
Tab Name: SID BUITATO	Contract:	· .	<u></u>		
Lab Code: <u>RECNY</u> Case N	o.: SAS No.:	SDG No.:			
Matrix: (soil/water) <u>WATE</u>	<u>R</u>	Lab Sample ID	: A469890	07	
Sample wt/vol: 25.	00 (g/mL) <u>ML</u>	Lab File ID:	<u>L7921.</u> I	<u>RR</u>	
Level: (low/med) <u>LOW</u>		Date Samp/Rec	v: <u>07/21/</u> 2	2004 07/	23/2004
% Moisture: not dec	Heated Purge: N	Date Analyzed	: <u>07/31/</u> 2	2004	
GC Column: <u>DB-624</u> II	: <u>0.53</u> (mm)	Dilution Facto	or: <u>1.0</u>	<u>00</u>	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:		uL)
CAS NO. CO	MPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	_
127-18-4Te 75-34-31, 540-59-01, 79-01-6Tr	1,1-Trichloroethane trachloroethene 1-Dichloroethane 2-Dichloroethene (Total) ichloroethene		1 1 1 2 1	บ บ บ บ	
108-90-7Ch 75-00-3Ch	lorobenzene loroethane nyl chloride		1 1 1	บ บ	

				ME-12			
Lab Name	: <u>STL Buffalo</u>	Contract:					
Lab Code:	RECNY Case No.:	SAS No.:	SDG No.:				
Matrix: (soil/water) <u>WATER</u>			Lab Sample	E ID: <u>A469890</u>	8		
Sample wt/vol: $\underline{25.00}$ (g/mL) $\underline{\text{ML}}$			Lab File I): <u>L7922.RR</u>			
Level:	(low/med) <u>LOW</u>		Date Samp/	Recv: <u>07/21/2</u>	004 07/	23/2004	
% Moisture: not dec Heated Purge: N			Date Analy	zed: <u>07/31/2</u>	2004		
GC Column: DB-624 ID: 0.53 (mm) Soil Extract Volume: (uL)			Dilution Factor: (uL)				
	71-55-61,1,1-Tric 127-18-4Tetrachlor 75-34-31,1-Dichlo 540-59-01,2-Dichlo 79-01-6Trichloroe 108-90-7Chlorobenz 75-00-3Chloroetha 75-01-4Vinyl chlo	roethane roethene (Total)_ thene ene ne		1 1 2 1 1 1	ט ט ט ט ט ט		
			1				

I ab Nama, CTI Buffalo Contract		ME-14	
Lab Name: STL Buffalo Contract:			
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:): <u>A4698909</u>	
Sample wt/vol: <u>25.00</u> (g/mL) ML	Lab File ID:	Lab File ID: <u>L7923.RR</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/31/2004	i.
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)		Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U U U U U U U U U U U U U U U U U U U	T T T

Lab Name: SIL Buffalo Contract:	ME-18
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698910</u>
Sample wt/vol: <u>25.00</u> (g/mL) ML	Lab File ID: <u>L7924.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U U U U U U U U U U U U U U U U U U

Lab Name: STL Buffalo Contract:		ME-19
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698911
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	L7927.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/31/2004
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>t</u>	<u>G/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U 2 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U

Contract.		MW-20		
Contract:				
SAS No.:	SDG No.: _		•	
	Lab Sample 1	ID: <u>A46989</u>	13_	
/mL) <u>ML</u>	Lab File ID:	<u> L7929.</u>	RR	
	Date Samp/Re	ecv: <u>07/21/</u>	2004 07/	23/2004
eated Purge: <u>N</u>	Date Analyze	ed: <u>07/31/</u>	2004	
<u>53</u> (mm)	Dilution Fac	ctor: <u>1.</u>	00	
L)	Soil Aliquot	: Volume:	(uL)
D			Q	
loroethene hloroethane hloroethene (Total) roethene enzene		1 1 2 1 1 1	บ บ บ บ บ	
	SAS No.: ML eated Purge: N 53 (mm) L) prichloroethane loroethene hloroethene hloroethene hloroethene enzene thane	Lab Sample : /mL) ML Date Samp/Re eated Purge: N Date Analyze 53 (mm) Dilution Fac CONCENTRATION UM (ug/L or ug/Kg) richloroethane hloroethene hloroethene hloroethene enzene thane	SAS No.: SDG No.:	SAS No.:

Iah Name: STI. Buf	<u>falo</u>	Contract:		MW-2		
TWO TANKE. DITT DOT	-TUIO	williact.				
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:			
Matrix: (soil/wat	ter) <u>WATER</u>		Lab Sample	ID: <u>A4698</u>	912	
Sample wt/vol:	<u>25.00</u> (g/mL) <u> </u>	ML.	Lab File II	D: <u>L7928</u>	.RR	
Level: (low/med	i) <u>low</u>		Date Samp/I	Recv: <u>07/21</u>	/2004 07/	23/2004
% Moisture: not d	dec Heated	Purge: <u>N</u>	Date Analy:	zed: <u>07/31</u>	/2004	
GC Column: <u>DB-624</u>	ID: <u>0.53</u> (m	m)	Dilution Fa	actor:1	.00	
Soil Extract Volu	me:(uL)		Soil Aliqua	ot Volume: _	(uL)
CAS NO.	COMPOUND		CONCENTRATION (ug/L or ug/K		Q	
127-18-4 75-34-3- 540-59-0 79-01-6- 108-90-7 75-00-3-	Technology of the control of the con	thene ethane ethene (Total) ene e		1 1 2 1 1 1	ט ט ט ט ט ט	

Lab Name:	STL Buffalo Contract:		M ₩-6
Lab Code:	RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (s	oil/water) <u>WATER</u>	Lab Sample ID:	<u>A4698914</u>
Sample wt/	vol: <u>25.00</u> (g/mL) <u>ML</u>	Lab File ID:	L7930.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004 07/23/2004
% Moisture	: not dec Heated Purge: N	Date Analyzed:	07/31/2004
GC Column:	<u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extra	ct Volume: (uL)	Soil Aliquot Volu	ume: (uL)
ď	4S NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	JG/L Q
12 75 54 75 10 75	1-55-61,1,1-Trichloroethane 27-18-4Tetrachloroethene 5-34-31,1-Dichloroethane 40-59-01,2-Dichloroethene (Total 9-01-6Trichloroethene 08-90-7Chlorobenzene 5-00-3Chloroethane 5-01-4Vinyl chloride	1)	1 U 2 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U U 1 U U 1 U

Lab Name: STL Buffalo Contract:	MW-8
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698915</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7931.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U J J U J U J U U U U U U U U U U U U

Lab Name: STL Buffalo Contract:		TRIP BLANK
Lab Code: RECNY Case No.: SAS No.:	· :	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A4698917</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	P6804.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/30/2004
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>[</u>	JG/L Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U U U U U U U U U U U U U U U U U U U

MW-9/10R
SDG No.:
Lab Sample ID: <u>A4698916</u>
Lab File ID: <u>L7933.RR</u>
Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
Date Analyzed: 07/31/2004
Dilution Factor: 1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
1 U U U U U U U U U U U U U U U U U U U

Lab Name: <u>STL Buffalo</u> Contract:		A-26S	
Concract:			
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698901	_
Sample wt/vol: 1060.0 (g/mL) ML	Lab File ID:	Z61767.RR	<u> </u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/200	4 07/23/2004
% Moisture: decanted: (Y/N) N	Date Extracted:	07/26/200	<u>4</u>
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	07/27/200	<u>4</u>
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.0			
Ĭ. con	ምመምበት አጥተረል፤ <u>ተ</u> ልተተጥረት.		
	VCENTRATION UNITS:	TC /T	^
CAS NO. COMPOUND (1	ng/Lorug/Kg) <u>I</u>	72/11	Q
108-95-2Phenol		5	บ
106-44-54-Methylphenol		5	ט
91-20-3Naphthalene		5	บ

Lah Nama, STT D	uffalo (introct.		A-27S	
Tan Marie: 2111 Pr	<u>irraro</u>	Ontract:	-		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/wa	iter) <u>WATER</u>		Lab Sample II	D: <u>A469890</u>	02
Sample wt/vol:	<u>1055.0</u> (g/mL) <u>N</u>	<u>T</u>	Lab File ID:	<u>Z61768</u> .	RR
Level: (low/me	ed) <u>LOW</u>		Date Samp/Red	ev: <u>07/21/2</u>	2004 07/23/2004
% Moisture:	_ decanted: (Y/N	1) <u>N</u>	Date Extracte	ed: <u>07/26/2</u>	2004
Concentrated Ext	ract Volume: 1000 (uI	7)	Date Analyzed	d: <u>07/27/2</u>	2004
Injection Volume	e:2.00 (uL)		Dilution Fact	cor:1.0	00
GPC Cleanup: (Y	//N) <u>N</u> pH: <u>6.0</u>				
CAS NO.	COMPOUND		CONCENTRATION UNI (ug/L or ug/Kg)	_	Q
B Company	2Phenol_ 54-Methylpheno	ol.		5 5	U U
	Naphthalene_			5	U

Lab Name: STL Buffalo	Contract.		A-42S	
Durialo	CARLIACL:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) WATER		Lab Sample ID:	<u>A4698903</u>	
Sample wt/vol: <u>1055.0</u> (g/m	nL) <u>ML</u>	Lab File ID:	<u>Z61769.R</u>	<u>R</u>
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/21/20	04 07/23/2004
% Moisture: decanted:	(Y/N) <u>N</u>	Date Extracted:	07/26/20	<u>04</u>
Concentrated Extract Volume: 100	<u>)0</u> (uL)	Date Analyzed:	07/27/20	<u>04</u>
Injection Volume: 2.00 (uL)		Dilution Factor	:1.00	
GPC Cleanup: (Y/N) N pH: 6.0	2			
CAS NO. COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg)	-	Q
108-95-2Phenol 106-44-54-Methylr 91-20-3Naphthale	henol_ ne_		5 5 5	U U U

Lab Name: STL Buffalo Contract:	A-43S	<u> </u>
Lab Code: RECNY Case No.: SAS No.: _		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A4698904	
Sample wt/vol: 1045.0 (g/mL) ML	Lab File ID: Z61770.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/	23/2004
% Moisture: decanted: (Y/N) N	Date Extracted: <u>07/26/2004</u>	
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/27/2004	
Injection Volume: 2.00 (uL)	Dilution Factor:1.00	
GPC Cleanup: (Y/N) N pH: 6.0		
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene	5 U 5 U 5 U	

Lab Name: STL B	<u>uffalo</u>	Contract:		DG-1	
			SDG No.:		
Matrix: (soil/w	ater) <u>WATER</u>		Lab Sample ID:	A4698905	-
Sample wt/vol:	<u>920.00</u> (g/mL)	<u>ML</u>	Lab File ID:	Z61771.RR	
Level: (low/m	ed) <u>LOW</u>		Date Samp/Recv:	<u>07/21/2004</u>	07/23/2004
% Moisture:	decanted: (Y,	'N) <u>N</u>	Date Extracted:	07/26/2004	<u>l</u>
Concentrated Ex	tract Volume: 1000(ıL)	Date Analyzed:	07/27/2004	1
Injection Volum	e: <u>2.00</u> (uL)		Dilution Factor	c: <u>1.00</u>	
GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>				
CAS NO	. COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg)		Q
106-44	-2Phenol -5Amethylpher			5 t	J

Lab Name: STL Buffalo Contract:	Duplicate	
Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698906</u>	
Sample wt/vol: 1055.0 (g/mL) ML	Lab File ID: Z61775.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/20</u>	04
% Moisture: decanted: (Y/N) N	Date Extracted: 07/26/2004	
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: <u>07/28/2004</u>	
Injection Volume: 2.00 (uL)	Dilution Factor:1.00	
GPC Cleanup: (Y/N) N pH: 6.0		
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene	5 U 5 U 5 U	

Tolo Namo . CITT To-55	-1- a-	·	•	Field	Blank	
Lab Name: SIL BUII	alo Co	ntract:		<u> </u>		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	_ SDG No.:			
Matrix: (soil/wate	er) <u>WATER</u>		Lab Sample II): <u>A469890</u>	7	
Sample wt/vol:	<u>1030.0</u> (g/mL) <u>M</u> L	1	Lab File ID:	Z61776.	RR	
Level: (low/med)	LOW		Date Samp/Rec	v: <u>07/21/2</u>	004 07/23/	2004
% Moisture:	decanted: (Y/N)	<u>N</u>	Date Extracte	ed: <u>07/26/2</u>	004	
Concentrated Extra	ct Volume: 1000 (uL)		Date Analyzed	i: <u>07/28/2</u>	004	
Injection Volume:_	2.00 (uL)		Dilution Fact	or:1.0	<u>0</u>	
GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>					
CAS NO.	COMPOUND	•	CONCENTRATION UNI (ug/L or ug/Kg)		Q	
106-44-5-	Phenol 4-Methylphenol			5 5 5	U U	

41,					М	E-12		
Lab Name	: <u>SIL Buffa</u>	<u>ilo</u> Co	ontract:		L		· - <u></u>	
Lab Code	: RECNY	Case No.:	SAS No.:	_ SDG No.:				,
Matrix:	(soil/water) <u>WATER</u>		Lab Sample	e ID: <u>A4</u>	698908		
Sample wt	c/vol:	960.00 (g/mL) <u>M</u> I	į	Lab File	ID: <u>Z6</u>	1777.RR		
Level:	(low/med)	LOW		Date Samp,	/Recv: <u>07</u>	/21/2004	07/23/	<u>′2004</u>
% Moistu	re:	decanted: (Y/N)	<u>N</u>	Date Extra	acted: <u>07</u>	/26/2004		
Concentra	ated Extrac	t Volume: 1000 (uL)		Date Analy	yzed: <u>07</u>	/28/2004		
Injection	n Volume:	<u>2.00</u> (പL)		Dilution 1	Factor:	1.00		٠.
GPC Clear	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>						
				CONCENTRATION	UNITS:			
 X	CAS NO.	COMPOUND		(ug/L or ug/l	Kg) <u>UG/</u> :	<u>L</u>	Q	
.1,	108-95-2	Phenol			5	U		•
,	106-44-5	4-Methylphenol			5			
	91-20-3	Naphthalene			5	טו	1	

Client No.

Lab Name: SIL Buff	, Ore	ntract:		ME-14	
Ten Marie: SIN DALL	<u>a10</u> Wi	icract:			
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.: _		
Matrix: (soil/wate	r) <u>WATER</u>		Lab Sample 1	D: <u>A469890</u>	9
Sample wt/vol:	<u>1060.0</u> (g/mL) <u>ML</u>		Lab File ID:	<u>z61778.</u>]	RR
Level: (low/med)	LOW		Date Samp/Re	ecv: <u>07/21/20</u>	004 07/23/2004
% Moisture:	decanted: (Y/N)	N	Date Extract	ced: <u>07/26/20</u>	004
Concentrated Extra	ct Volume: 1000 (uL)		Date Analyze	ed: <u>07/28/20</u>	004
Injection Volume:_	2.00 (uL)		Dilution Fac	etor:1.00	<u>)</u>
GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>				
CAS NO.	COMPOUND		NCENTRATION UN ug/L or ug/Kg)		Q
108-95-2-	Phenol_			5	υ
	4-Methylphenol			5	U
91-20-3	Naphthalene			5	ט

1

FORM I - GC/MS BNA

Lab Name: <u>STL Buffalo</u> Contract:		ME-18
Lab waite. 5111 Bullato Coliciact:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A4698910</u>
Sample wt/vol: 1000.0 (g/mL) ML	Lab File ID:	<u>Z61779.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004 07/23/2004
% Moisture: decanted: (Y/N) N	Date Extracted:	07/26/2004
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	07/28/2004
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.0		
_	ONCENIRATION UNITS: (ug/L or ug/Kg)	
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene		5 U 5 U 5 U

· _	•		ME-19
Lab Name: STL Buffa	alo Contract: _	·	
Lab Code: RECNY	Case No.: SAS No.:	SDG No.:	- :
Matrix: (soil/water	e) <u>water</u>	Lab Sample ID:	<u>A4698911</u>
Sample wt/vol:	<u>1030.0</u> (g/mL) <u>ML</u>	Lab File ID:	<u>Z61782.RR</u>
Level: (low/med)	LOW	Date Samp/Recv:	07/21/2004 07/23/2004
% Moisture:	decanted: (Y/N) N	Date Extracted:	07/26/2004
Concentrated Extra	ct Volume: 1000 (uL)	Date Analyzed:	07/28/2004
Injection Volume:	<u>2.00</u> (证)	Dilution Factor:	1.00
GPC Cleanup: (Y/N)	<u>N</u> pH: <u>6.0</u>		
İ		CONCENIRATION UNITS:	:
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L Q
<u>108-95-2</u>	Phenol_		5 U
	4-Methylphenol		5 U
91-20-3	Naphthalene		5 U

Tab Name: STT. Buff	<u>falo</u> Contract:	•	MW-2
THE POLITICAL POLITICAL POLITICAL PROPERTY AND ADDRESS OF THE POLITICAL POLI	Concract:		
Lab Code: RECNY	Case No.: SAS No.: _	SDG No.:	.
Matrix: (soil/wate	er) <u>WATER</u>	Lab Sample ID:	A4698912
Sample wt/vol:	<u>1055.0</u> (g/mL) <u>ML</u>	Lab File ID:	<u>Z61783.RR</u>
Level: (low/med)	LOW	Date Samp/Recv:	07/21/2004 07/23/200
% Moisture:	decanted: (Y/N) N	Date Extracted:	07/26/2004
Concentrated Extra	act Volume: 1000 (uL)	Date Analyzed:	07/28/2004
Injection Volume:	2.00 (uL)	Dilution Factor:	1.00
PC Cleanup: (Y/N	I) <u>N</u> pH: <u>6.0</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	· _
106-44-5-	Phenol 4-Methylphenol Naphthalene		5 U 5 U
191-20-3	wahiriratere		5 10 1

Lab Name: STL Buffalo Contract:	MW-20
Lab Code: RECNY Case No.: SAS No.	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698913</u>
Sample wt/vol: 1045.0 (g/mL) ML	Iab File ID:Z61784.RR
Tevel: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/23/2004
% Moisture: decanted: (Y/N) N	Date Extracted: 07/26/2004
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: <u>07/28/2004</u>
Injection Volume: 2.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.0	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene	5 U 5 U 5 U

		MW-6	
Lab Name: STL Buffalo Contract:	 .		
Tab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698914	
Sample wt/vol: 970.00 (g/mL) ML	Lab File ID:	Z61785.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: decanted: (Y/N) N	Date Extracted:	07/26/2004	
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	07/28/2004	
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00	
TPC Cleanup: (Y/N) N pH: 6.0			
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	ug/L	Q
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene		5 U 5 U 5 U	· •

Client No.

Tah Mama	OTT D55-	.1 -	Garata and		M	W-8	
Tan Marie	: SIL BULL	alo	Contract:		<u> </u>	···	
Lab Code	: RECNY	Case No.:	SAS No.:	SDG No.:			
Matrix:	(soil/water	·) WATER		Lab Sample	e ID: <u>A4</u>	698915	
Sample wt	:/vol:	1045.0 (g/mL)	<u>ML</u>	Lab File	ID: <u>Z6</u>	1786.RR	
Level:	(low/med)	LOW		Date Samp	/Recv: <u>07</u>	/21/2004	07/23/2004
's Moistur	re:	decanted: (Y/	N) <u>N</u>	Date Extr	acted: <u>07</u>	/26/2004	
Concentra	ated Extra	ct Volume: 1000 (u	L)	Date Anal	yzed: <u>07</u>	/28/2004	
injection	n Volume:_	<u>2.00</u> (uL)		Dilution	Factor:	1.00	
GPC Clear	nup: (Y/N)	N pH: 6.0					
ć.	CAS NO.	COMPOUND		CONCENTRATION (ug/L or ug/l		<u>L</u>	Q
	106-44-5	Phenol 4-Methylphen Naphthalene			5 5 5		

1

1

FORM I - GC/MS BNA

Lab Name	: STL Buffa	lo (Contract:	·	MW-9/1	10R	
				SDG No.: _			
Matrix:	(soil/water)	<u>WATER</u>		Lab Sample	ID: <u>A46989</u>	16	
Sample w	t/vol:	<u>970.00</u> (g/mL) <u>N</u>	Æ.	Iab File ID	: <u>Z61787</u>	.RR	
evel:	(low/med)	<u>LOW</u>		Date Samp/R	ecv: <u>07/21/</u> 2	2004 07/23/20	04
₹ Moistu	re:	decanted: (Y/N	I) <u>N</u>	Date Extrac	ted: <u>07/26/</u> 2	2004	
Concentr	ated Extract	: Volume: 1000 (ul	٦)	Date Analyz	ed: <u>07/28/</u> 2	2004	
Injection	n Volume:	2.00 (uL)		Dilution Fa	ctor:1.0	00	
GPC Clea	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>			·	•	
1.	CAS NO.	COMPOUND		CONCENTRATION U (ug/L or ug/Kg		Q	
1 · · · · · · · · · · · · · · · · · · ·		Phenol 4-Methylpheno Naphthalene			5 5 5	U U U	

ASP 2000 - VOLATILES WATER SURROGATE RECOVERY

	Client Sample ID	BFB %REC	#						TOT
1	A-26S	92	_					 	0
2	A-27S	89		•		i			0
3	A-42S	91							0
	A-43S	87	- [•				0
4 5	DG-1	96			ř				0
6	Duplicate	96			<u> </u>				0
7	Field Blank	97							0
8	ME-12	94							0
9	ME-14	95	İ						0
10	ME-18	95							0
11	ME-18	100							0
12	ME-18	99	ļ	•	İ				0
13	ME-19	93			·				0
14	MSB32	99							0
15	MSB61	102		ŀ		,			0
16	MW-2	92							0
17	MW-20	96					·		0
18	MW-6	98	1	•					0
19	MW-8	96							0
20	MW-9/10R	99			4.				0
21	TRIP BLANK	84			l				0
22	VBLK32	81			}				0
23	VBLK61	95		}					0
24	VHB	80		ļ					0

QC LIMITS

BFB = p-Bromofluorobenzene

(80-120)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

ASP 2000 - METHOD 8270 SELECT LIST WATER SURROGATE RECOVERY

Lab Name: STL Buffalo Contract: _

Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: ____ SDG No.:

		%REC	#	FBP %REC	#	NBZ %REC	#	PHL %REC	#	TBP %REC	#	TPH %REC	#			TOT
1	A-26S	41		78	==	72	==	29		76		82	==			0
2	A-27S	50		93	٠.	82		37		90		100				ō
3	A-42S	42		83	į	76		29		80		90				0
4	A-43S	28		82		73		19		69		78				0
5	DG-1	45	- 1	80		72		32		79		89		•		0
6	Duplicate	48		88		92		34		98		102				0
7	Field Blank	38		70	i	68		26		85		84				0
8	Matrix Spike Blank	44		82		80		32		93		97				0
9	ME-12	26		90		90		18		94		101				0
10	ME-14	40		76	1	. 77		28		87		88				0
11	ME-18	35		87		85		24		95		98			ļ	0
12	ME-18	34	ı	85	1	91		26		76		98				0
13	ME-18	32		79		86		24		71		91				0
14	ME-19	37		84		87		26		96		88				0
15	MW-2	45		83		85		32		105		83				0
. 16	MW-20	44		83		88		31		103		101				0
17	MW-6	45		83	- 1	85		32		96		97		,		0
18	MW-8	35		75		78		24		82		89				0
19	MW-9/10R	46	ı	77		80		33		88		86				0
20	S Blank	42		78		75		30		97		94				0

QC LIMITS

2FP	=	2-Fluorophenol	(21-110)
FBP	=	2-Fluorobiphenyl	(43-116)
NBZ	=	Nitrobenzene-D5	(35-114)
PHL	=	Phenol-D5	(10-110)
TBP	=	2,4,6-Tribromophenol	(10-123)
TPH	=	p-Terphenyl-d14	(33-141)

- # Column to be used to flag recovery values* Values outside of contract required QC limits
- D Surrogates diluted out

ASP 2000 - VOLATILES WATER MATRIX SPIKE BLANK RECOVERY

Lab Code: <u>RECNY</u> Case No.: Matrix Spike - Client Sample No.: <u>VBr</u>	SAS No.: 1563) 1532 n ⁷ 8/9/204		SDG	No.:
	1563) 1532 n 7 8/9/2014			
CDIVI			<i>:</i>	
SPIKE ADDED COMPOUND UG/L	CONCENTRATION	MSB % REC #	QC LIMITS REC.	
Vinyl chloride 5. Trichloroethene 5. Tetrachloroethene 5.	0 4.9	103 99 102	60 - 140 60 - 140 60 - 140	

Spike recovery: ___0 out of ___3 outside limits

Comments: _

ASP 2000 - VOLATILES WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo	Contract:		Lab Samp ID: <u>A4B1386802</u>		
Lab Code: <u>RECNY</u> Case No	SAS No.:		SDG No.:		
Matrix Spike - Client Sampl		18/9/201		·	·
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	
Vinyl chloride Trichloroethene Tetrachloroethene	5.0 5.0 5.0	6.3 6.0 5.9	126 120 119	60 - 140 60 - 140 60 - 140	
# Column to be used to flag * Values outside of QC limi		PD values with an	n asteris	sk ·	
Spike recovery:0 out o	of <u>3</u> outside	limits			

Comments:

ASP 2000 - VOLATILES WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab S	Samp ID:	: <u>A4698910</u>
Lab Code: <u>RECNY</u> Case No).:	SAS No.: _	***	S	EDG No.:	
Matrix Spike - Client Sampl	e No.: <u>ME-18</u>					
COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MA CONCENTA UG/	RATION	MS % REC #	QC LIMITS REC.
Vinyl chloride Trichloroethene Tetrachloroethene	5.0 5.0 5.0	0 0 0	(5.6 5.1 5.0	133 122 121	60 - 140 60 - 140 60 - 140
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #		C LIMITS
Vinyl chloride Trichloroethene Tetrachloroethene	5.0 5.0 5.0	7.3 5.7 5.7	146 * 116 116	9 5 4	20 20 20	60 - 140 60 - 140 60 - 140
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits						
RPD:0 out of3 out Spike recovery:1 out o	side limits of <u>6</u> outside	limits				
Comments:				·· · · · · · · · · · · · · · · · · · ·		

Lab Samp ID: <u>A4698910</u>

ASP 2000 - MEIHOD 8270 SELECT LIST WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Contract:

ab Name: STL Buffalo

Lab Code: <u>RECNY</u> Case No.:			SAS No.:	S	SDG No.:		
Matrix Spike - Clien	t Sample No.:	<u>ME-18</u>					
COMPOUND	AI	PIKE DDED G/L	SAMPLE CONCENTRATION UG/L	M CONCENT UG/	RATION	MS % REC#	QC LIMITS REC.
Phenol_		155	0	2	6.1	17	12 - 110
COMPOUND	A	PIKE DDED G/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	QX RPD	C LIMITS REC.
Phenol_		155	24.7	16	6.	42	12 - 110
# Column to be used * Values outside of comments:	QC limits1 outside li	imits		n asteris	k		
· ————		. '410					•

ASP 2000 - METHOD 8270 SELECT LIST WATER MATRIX SPIKE BLANK RECOVERY

* Values outside of QC limits Spike recovery:0 out of1 outside limits	Lab Nalle: SIL BULLATO		Contract:		Lab Samp 1D: <u>A4B1345902</u>				
SPIKE MSB MSB QC LIMITS COMPOUND UG/L UG/L REC # REC. Phenol_ 150 32.8 22 12 - 110 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery:0 out of1 outside limits	Lab Code: <u>RECNY</u> Case No	·:	SAS No.:		SDG No.:				
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits ADDED UG/L UG/L REC # REC. 150 32.8 22 12 - 110 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery:0 out of1 outside limits	Matrix Spike - Client Sampl	e No.: <u>S Blank</u>	·						
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery:0 out of1 outside limits	COMPOUND	ADDED	CONCENTRATION	8	LIMITS				
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery:0 out of1 outside limits Comments:	Phenol	150	32.8	22	12 - 110				
	# Column to be used to flag recovery and RPD values with an asterisk								
Comments:	Spike recovery:0 out of1 outside limits								
	Comments:								

53/433

ASP 2000 - VOLATILES METHOD BLANK SUMMARY

Client No.

Lab Name: STL Buffalo	Contract:VBLK32
Lab Code: RECNY Case No.:	SAS No.: SDG No.:
Lab File ID: P6802.RR	_ Lab Sample ID: <u>A4B1380701</u>
Date Analyzed: <u>07/30/2004</u>	Time Analyzed: 17:02
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm) Heated Purge: (Y/N) N
Instrument ID: <u>HP5973P</u>	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
1	A-26S	A4698901	P6807.RR	20:31
2	A-27S A-42S	A4698902 A4698903	P6808.RR P6809.RR	21:04
4 5	A-43S MSB32	A4698904	P6810.RR	00:26
6	TRIP BLANK	A4B1380702 A4698917	P6803.RR P6804.RR	17:41 18:17
7	VHB	A4698918	P6805.RR	18:50

Comments:	:

•	VBLK32	
		· .
SDG No.:		
Lab Sample ID:	A4B1380701	
Lab File ID:	P6802.RR	<u> </u>
Date Samp/Recv:		
Date Analyzed:	07/30/2004	
Dilution Factor:	1.00	
Soil Aliquot Volu	me:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	G/L Q	
	1 U U U U U U U U U U U U U U U U U U U	
	SDG No.: Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Volu CONCENTRATION UNITS: (ug/L or ug/Kg) U	SDG No.: Lab Sample ID: A4B1380701 Lab File ID: P6802.RR Date Samp/Recv: Date Analyzed: 07/30/2004 Dilution Factor: 1.00 Soil Aliquot Volume: CONCENTRATION UNITS: (ug/L or ug/Kg)

ASP 2000 - VOLATILES METHOD BLANK SUMMARY

Client No.

Lab Name: STL Buffalo	Contract:
Lab Code: RECNY Case No.:	SAS No.: SDG No.:
Lab File ID: <u>L7917.RR</u>	Lab Sample ID: <u>A4B1386802</u>
Date Analyzed: <u>07/31/2004</u>	Time Analyzed: 14:32
GC Column: <u>DB-624</u> ID: <u>0.53</u>	(mm) Heated Purge: (Y/N) N
Instrument ID: I50L	· · · · ·

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

1				
	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=========		
1	DG-1	A4698905	L7919.RR	15:42
2	Duplicate	A4698906	L7920.RR	16:14
3	Field Blank	A4698907	L7921.RR	16:47
4	ME-12	A4698908	L7922.RR	17:20
.5	ME-14	A4698909	L7923.RR	17:53
6	ME-18	A4698910	L7924.RR	18:26
7	ME-18	A4698910MS	L7925.RR	18:59
8	ME-18	A4698910SD	L7926.RR	19:32
9	ME-19	A4698911	L7927.RR	20:04
10	MSB61	A4B1386801	L7918.RR	15:05
11	MW-2	A4698912	L7928.RR	20:37
12	MW-20	A4698913	L7929.RR	21:10
13	MW-6	A4698914	L7930.RR	21:43
14	MW-8	A4698915	L7931.RR	22:15
15	MW-9/10R	A4698916	L7933.RR	23:21
		i	!	'

Comments:	

Lab Name: STL Buffalo Contract:	VBLK61
Lab Code: <u>RECNY</u> Case No.: SAS No.:	·
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4B1386802</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7917.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethane 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethane (Total) 79-01-6Trichloroethane 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U U U U U U U U U U U U U U U U U U

ASP 2000 - METHOD 8270 SELECT LIST METHOD BLANK SUMMARY

Client No.

			S Blank
Lab Name: STL Buffal	<u>Lo</u> Co:	ntract:	
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:
bab File ID:	Z61766.RR	Lab Sample ID:	A4B1345902
Instrument ID:	150Z-A	Date Extracted:	07/26/2004
atrix: (soil/water)	WATER	Date Analyzed:	07/27/2004
Level: (low/med)	LOW	Time Analyzed:	19:58

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================			======
1	A-26S	A4698901	Z61767.RR	07/27/2004
2	A-27S	A4698902	Z61768.RR	07/27/2004
3	A-42S	A4698903	Z61769.RR	07/27/2004
4	A-43S	A4698904	Z61770.RR	07/27/2004
5	DG-1	A4698905	Z61771.RR	07/27/2004
6	Duplicate	A4698906	Z61775.RR	07/28/2004
7	Field Blank	A4698907	Z61776.RR	07/28/2004
8	Matrix Spike Blank	A4B1345901	Z61765.RR	07/27/2004
9	ME-12	A4698908	Z61777.RR	07/28/2004
10	ME-14	A4698909	Z61778.RR	07/28/2004
11	ME-18	A4698910	Z61779.RR	07/28/2004
12	ME-18	A4698910MS	Z61780.RR	07/28/2004
13	ME-18	A4698910SD	Z61781.RR	07/28/2004
14	ME-19	A4698911	Z61782.RR	07/28/2004
15	MW-2	A4698912	Z61783.RR	07/28/2004
16	MW-20	A4698913	Z61784.RR	07/28/2004
17	MW-6	A4698914	Z61785.RR	07/28/2004
18	MW-8	A4698915	Z61786.RR	07/28/2004
19	MW-9/10R	A4698916	Z61787.RR	07/28/2004

Comments:		
		•

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u>	Contract:		S Blank	
Lab Code: <u>RECNY</u> Case No.:				
Matrix: (soil/water) WATER		Lab Sample ID:	A4B1345902	
Sample wt/vol: <u>1000.0</u> (g/	mL) <u>ML</u>	Lab File ID:	Z61766.RR	
Level: (low/med) <u>LOW</u>	·	Date Samp/Recv:		
% Moisture: decanted:	(Y/N) <u>N</u>	Date Extracted:	07/26/2004	
Concentrated Extract Volume: 10	<u>00</u> (맵)	Date Analyzed:	07/27/2004	
Injection Volume: 2.00 (uL)		Dilution Factor:	1.00	
PC Cleanup: (Y/N) N pH: 5.	<u>o</u>			
CAS NO. COMPOUND		CONCENTRATION UNITS:		2
108-95-2Phenol 106-44-54-Methyl 91-20-3Naphthal			5 U 5 U 5 U	

ASP 2000 - VOLATILES VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab Name:
 STL Buffalo
 Contract:
 Labsampid:
 A4C0002997

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 L7916.RR
 Date Analyzed:
 07/31/2004

 Instrument ID:
 150L
 Time Analyzed:
 13:52

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
-	12 HOUR SID UPPER LIMIT LOWER LIMIT	687143 962000 412286	16.51 16.84 16.18	412046 576864 247228	20.13 20.46 19.80	872881 1222033 523729	11.39 11.72 11.06
	CLIENT SAMPLE						
	DG-1 Duplicate Field Blank ME-12 ME-14	684968 612809 626930 614700 593906	16.54 16.51 16.54 16.53 16.53	373271 336335 345731 330089 327974	20.15 20.14 20.15 20.14 20.14	890202 805467 820701 819354 793333	11.41 11.39 11.40 11.40 11.40
	ME-18 ME-18 ME-18	615445 628831	16.53 16.53	325270 368787	20.15 20.15 20.15	807843 818211	11.41
	ME-19 MSB61 MW-2	627533 590577 684107 581426	16.53 16.54 16.53 16.53	363965 313946 407508 305897	20.16 20.14 20.14	833641 806443 858883 795910	11.40 11.41 11.40 11.39
	MW-20 MW-6 MW-8 MW-9/10R VBLK61	651791 631712 678181 640473 659817	16.54 16.50 16.50 16.50 16.53	358698 366548 374216 366535 360823	20.16 20.11 20.13 20.11 20.14	805676 792774 840529 790631 886791	11.40 11.38 11.36 11.36 11.40

		AREA UNIT QC LIMITS	RT QC LIMITS
IS2 (DCB) =	Chlorobenzene-D5	(60-140)	-0.33 / +0.33 min
	1,4-Dichlorobenzene-D4	(60-140)	-0.33 / +0.33 min
	1,4-Difluorobenzene	(60-140)	-0.33 / +0.33 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

RT

QC LIMITS

ASP 2000 - VOLATILES VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	12 HOUR SID UPPER LIMIT LOWER LIMIT	608501 851901 365101	13.95 14.28 13.62	346718 485405 208031	17.34 17.67 17.01	648794 908312 389276	10.04 10.37 9.71
	CLIENT SAMPLE		********				
2	A-26S A-27S A-42S A-43S MSB32 TRIP BLANK VBLK32 VHB	426907 436957 457236 426454 615670 532444 519490 512511	13.95 13.95 13.95 13.95 13.95 13.95 13.95	216929 237259 233006 211375 336262 233865 229634 226413	17.34 17.34 17.34 17.34 17.34 17.34 17.34 17.34	417540 433245 460383 412859 632095 572477 544771 521507	10.05 10.05 10.05 10.05 10.04 10.04 10.04 10.04

IS1	(CBZ) =	Chlorobenzene-D5	(60-140)	$-0.33 / +0.33 \min$
IS2	(DCB) =	1,4-Dichlorobenzene-D4	(60-140)	$-0.33 / +0.33 \min$
IS3	(DFB) =	1,4-Difluorobenzene	(60-140)	$-0.33 / +0.33 \min$

AREA UNIT

QC LIMITS

1 2 3

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

RT

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>		Contract:		Labsampid:	A4C0002778
Lab Code: RECNY	Case No.:	SAS No.:	<u></u>	SDG N	o.:
Lab File ID (Standard):	<u>Z61751.RR</u>	·	Date	Analyzed:	07/27/2004
Instrument ID: I50Z-A			Time	Analyzed:	11:18

: \$ 'a'		IS1 (ANT) AREA	#	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
office Wilder	12 HOUR STD UPPER LIMIT LOWER LIMIT	867392 1734784 433696	_	14.92 15.42 14.42	1423023 2846046 711512	21.57 22.07 21.07	437981 875962 218991	7.90 8.40 7.40
* .	CLIENT SAMPLE		_					
2 3 4 5	A-26S A-27S A-42S A-43S DG-1 Matrix Spike Blank S Blank	763058 653046 724716 761883 700581 692887 718526	_	14.90 14.90 14.90 14.90 14.90 14.90	1320172 1092371 1201787 1345570 1190848 1028627 1115075	21.55 21.55 21.55 21.55 21.55 21.55 21.55	371916 309260 351057 369203 338855 331471 333963	7.90 7.90 7.90 7.90 7.90 7.90 7.90

		QC LIMITS	QC LIMITS
IS2 $(CRY) =$	Acenaphthene-D10	(50-200)	-0.50 / +0.50 min
	Chrysene-D12	(50-200)	-0.50 / +0.50 min
	1,4-Dichlorobenzene-D4	(50-200)	-0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo		Cont	ract:		Labsampid:	A4C0002778
Lab Code: <u>RECNY</u>	Case No.:		SAS No.:		SDG N	ю.:
Lab File ID (Standard):	<u>Z61751.RR</u>			Date	Analyzed:	07/27/2004
Instrument ID: T50Z-A			•	Time	Analyzed:	11:18

:		IS4 (NPT) AREA #	RT #	IS5 (PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR SID UPPER LIMIT LOWER LIMIT	1441043 2882086 720522	10.78 11.28 10.28	1358748 2717496 679374	17.62 18.12 17.12	1218061 2436122 609031	24.08 24.58 23.58
	CLIENT SAMPLE						
3	A-26S A-27S A-42S A-43S DG-1 Matrix Spike Blank S Blank	1396364 1175673 1307334 1401720 1280563 1235700 1221462	10.78 10.78 10.78 10.78 10.78 10.78 10.78	1286287 1175063 1223450 1287387 1172826 1060656 1087352	17.62 17.62 17.62 17.62 17.62 17.62 17.62	1293943 1094528 1246978 1283072 1161513 1017350 1088298	24.07 24.07 24.07 24.07 24.07 24.07 24.07 24.08

			QC LIMITS	QC LIMITS
IS5	(PHN) =	Naphthalene-D8 Phenanthrene-D10 Perylene-D12	(50-200) (50-200) (50-200)	-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits

RT

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo		Contract:	_ Labsampid:	A4C0002930
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG N	ю.:
Lab File ID (Standard):	Z61773.RR	Da	ate Analyzed:	07/28/2004
Instrument ID: I50Z-A		T	ime Analyzed:	09:17

		IS1 (ANT) AREA #	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD	832876	14.90	1404848	21.57	421372	7.88
•	UPPER LIMIT LOWER LIMIT	1665752 416438	15.40 14.40	2809696 702424	22.07 21.07	8 42744 210686	8.38 7.38
. :	CLIENT SAMPLE		======		======		2222244
1	Duplicate	615888	14.90	1002153	21.55	292246	7.90
2	Field Blank	620612	14.90	969492	21.55	310877	7.90
3	ME-12	610795	14.90	986065	21.55	298714	7.90
4	ME-14	710018	14.90	1204850	21.55	346426	7.90
5	ME-18	633676	14.90	1035909	21.55	323371	7.90
6	ME-18	629146	14.90	992192	21.55	308518	7.90
7	ME-18	687443	14.90	1089221	21.55	326911	7.90
8	ME-19	635317	14.90	1027831	21.55	311173	7.90
9	MW-2	608347	14.90	971197	21.55	304760	7.90
10	MW-20	633039	14.90	1073586	21.55	295730	7.88
11	MW-6	639765	14.90	980479	21.55	316453	7.90
12	MW-8	676236	14.90	1153222	21.55	329922	7.90
13	MW-9/10R	715253	14.90	1189949	21.55	351742	7.90

			QC LIMITS	QC LIMITS
IS2	(CRY) =	Acenaphthene-D10 Chrysene-D12 1,4-Dichlorobenzene-D4	(50-200)	-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

RT

AREA UNIT

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab Name:
 STL Buffalo
 Contract:
 Labsampid:
 A4C0002930

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 Z61773.RR
 Date Analyzed:
 07/28/2004

 Instrument ID:
 150Z-A
 Time Analyzed:
 09:17

•		IS4 (NPT) AREA #	RT #	IS5 (PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR SID UPPER LIMIT LOWER LIMIT	1462297 2924594 731149	10.78 11.28 10.28	1424219 2848438 712110	17.62 18.12 17.12	1231936 2463872 615968	24.07 24.57 23.57
	CLIENT SAMPLE						
1	Duplicate	1084811	10.77	1051497	17.62	1013571	24.07
2	Field Blank	1137709	10.77	1021369	17.62	1004653	24.07
3	ME-12	1106782	10.77	984585	17.62	1016979	24.07
4	ME-14	1271372	10.77	1233630	17.62	1229701	24.07
5	ME-18	1177182	10.77	1055074	17.62	1077165	24.07
. 6	ME-18	1162667	10.78	1065518	17.62	1078399	24.07
7	ME-18	1226916	10.78	1138413	17.62	1209850	24.07
8	ME-19	1133225	10.77	1059250	17.62	1092777	24.07
9	MW-2	1124026	10.77	983735	17.62	1039170	24.07
)	MW-20	1089402	10.77	1059728	17.62	1203077	24.07
1	MW-6	1180679	10.77	1057334	17.62	1117742	24.07
.2	MW-8	1216633	10.77	1137617	17.62	1178788	24.07
23	MW-9/10R	1294701	10.77	1183189	17.62	1264383	24.07

		QC LIMITS	QC LIMITS
IS5 (PHN) =	Naphthalene-D8	(50-200)	-0.50 / +0.50 min
	Phenanthrene-D10	(50-200)	-0.50 / +0.50 min
	Perylene-D12	(50-200)	-0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

SAMPLE DATA PACKAGE

SDG NARRATIVE

SAMPLE SUMMARY

		SAMPLE)	RECEIVE	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	DATE	TIME	DATE	TIME
A4698901	A-26S	07/21/2004	16:40	07/23/2004	09:45
A4698902	A-27S	07/21/2004	16:10	07/23/2004	09:45
A4698903	A-42S	07/21/2004	16:20	07/23/2004	09:45
A4698904	A-43S			07/23/2004	
A4698905	DG-1	07/21/2004			
A4698906	Duplicate	07/21/2004			
A4698907	Field Blank	07/21/2004		07/23/2004	
A4698908	ME-12			07/23/2004	
A4698909	ME-14			07/23/2004	
A4698910	ME-18			07/23/2004	
A4698910MS	ME-18			07/23/2004	
A4698910SD	ME-18			07/23/2004	
A4698911	ME-19	07/21/2004	16:55	07/23/2004	09:45
A4698912	MW-2			07/23/2004	
A4698913	MW-20			07/23/2004	
A4698914	MW-6			07/23/2004	
A4698915	MW-8			07/23/2004	
A4698916	MW-9/10R			07/23/2004	
A4698917	TRIP BLANK	07/21/2004		07/23/2004	09:45

METHODS SUMMARY

Job#: <u>A04-6989</u>

STL Project#: NY3A9019
Site Name: SHAW E&I / AMERICAN AIRLINES

•	ANALYTICAL
PARAMETER	METHOD
ASP 2000 - VOLATILES	ASP00 ASP00-4
ASP 2000 - METHOD 8270 SELECT LIST	ASP00 8270

ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: <u>A04-6989</u>

STL Project#: NY3A9019

Site Name: SHAW E&I / AMERICAN AIRLINES

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A04-6989

Sample Cooler(s) were received at the following temperature(s); 3@2.0 °C All samples were received in good condition.

GC/MS Volatile Data

The spike recovery of the analyte Vinyl Chloride in the Matrix Spike Duplicate of sample ME-18 exceeded quality control limits. The Matrix Spike Blank recoveries were compliant, so no corrective action is required.

All samples were preserved to a PH less than 2.

The VHB exhibited the recovery of surrogate p-Bromofluorobenzene as slightly below quality control limits. Due to software rounding the recovery of this surrogate appears as compliant on the surrogate recovery form. Insufficient sample volume for reanalysis.

The surrogate p-Bromofluorobenzene had a Percent Relative Standard Deviation (%RSD) greater than 30% yet less than 40% in the Initial Calibration (A4I0000692-1). No corrective action was taken, up to 2 analytes may exhibit %RSD greater than 30% yet less than 40%, according to the protocol and method requirements.

The surrogate p-Bromofluorobenzene had a Percent Difference greater than 30% yet less than 40% in the Continuing Calibration Verification (A4C0002996-1). No corrective action was taken, up to 2 analytes may exhibit percent difference greater than 30% yet less than 40% difference according to the protocol and method requirements.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Candace L. Fox Project Manager

11/2004

Date

CHAIN OF CUSTODY DOCUMENTATION

Chain of Custody Record

TRENT
SERVICES Severn Trent Laboratories, Inc.

72/433 Special Instructions/ Conditions of Receipt 24 40 (A fee may be assessed if samples are retained longer than 3 months) Chain of Custody Number 09940 rime Time 123/04 6 Date Page. Date 5 Analysis (Attach list if more space is needed) | Date 7/21 Lab Number Months 2.0% Archive For 2 7 7 Ğ 27/2005715 7 7 7 QC Requirements (Specify) \oAnZ HO₅N Containers & Preservatives Disposal By Lab 3. Received By ЮН ብ Deumann Project Manager
Srigan Determan SONH . Rep **#**0SZ# Jubres 5.8-783-1996 Site Contact Return To Client Sample Disposa ios Time Time Carrier/Waybill Number Matrix pəs 7 7 > Other Unknown **多**. 6.10 16:30 00 15:05 15.05 (4:25) 15/05 16,20 14:15 ८०। 4755 Date 7 Date Time ☐ 21 Days Poison B 元 Date 01/2/ るとび 14 Days 757 Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant テス 13 British Amrican ContractPurchase Order April 1205 □ 7 Days Non-Hazard | Flammable 3 DY W LA Tham Project Name and Location (State) 3 48 Hours ロの Possible Hazard Identification mus-allo R Tum Around Time Required Shar 2-42 A-275 वा-ज्रुप me-12 ME-18 ME-18 1. Relinquished By N. - & 7. mw 2. Relinquished By 3. Relinquished By 176-14 あ ma STL-4124 (1200) 24 Hours Comments

Chain of Custody Record

SEVERN TRENT SERVICES

Severn Trent Laboratories, Inc.

STL-4124 (1200)						,		J			1
Olient Show FMJ		Project Man	St. Co.	Den	Neuman-		Date 7	40/14		chain of Custock Number 0.999410	
Ance	BCW	Telephone Number	5 00	drea Code)/Fax Number		518-28-887	P 7 Lab Num	lumber /	Page	2 01 2	
	0/17/	Site Contact	ict	Lab Sontaci	0	ō	Analysis more spac	Analysis (Attach list if more space is needed)			ļ
and Location (State)		CarrierW	Camier/Waybill Number)		اد الاه اد الاه			& 	ecial Instructions/	
Contract/Purchase Order/Quote/No.			Matrix		Containers & Preservatives	प्रिक्ता शक्ता			.Š	Conditions of Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	soonby	Langres.	NªOH NªOH HCI HCI						1
A-16-5	निय	04:91	7	7	3	<u>></u>			·		l [
254-0	14/1	16:45	2	7	3	7					I
02-644		05:31	7	7	3	7	·		-		
61-244	144	16:55		2	3	7	·-				ı
Field Bush	1/11		7	7	2	7					ı
TRIOBLANK	17/1		7		2	7				-	
Jes long	7/2!	1	7	2	3	7					
			:								l
			·				,				† 1
											i
		,									ı
Possible Hazard Identification Alon Lassard Blammahle Strin Inflant	Poison R	T Inknown	Sample Disposal Return To Client		Disposal By Lab	Archive For		(A fee may Months fonger than	(A fee may be assessed if samples are retained fonger than 3 months)	iles are retained	
e Required	2			-	QC Requirements (Specify)	pecify)		1			1
	1	1	Time	1.5	1. Received By				Date	f Time	, 7
Child of the		27/2	100/2				mes		76	77:00 108:VC	73/4
Z. Kelinquishda By		<u></u>		vi) (crewedo)			ע		2	133
3. Relinquished By		Date	Time	3. F	3. Received By				Date	Time	Ì
Comments						30	7.0	J			ı
DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report;	r - Returned to Clie	nt with Report	: PINK - Field Copy	/dc)				1

VOLATILE DATA SUMMARY PACKAGE

QC SUMMARY

ASP 2000 - VOLATILES WATER SURROGATE RECOVERY

Lab Name: STL Buffalo		Contract:	
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:

	Client Sample ID	BFB %REC #			, in the second			: .	TOT
1	A-26S	92			 				0
2	A-27S	89					<u> </u>		l o l
3	A-42S	91							l o l
4	A-43S	87							l o l
5	DG-1	96							0
6	Duplicate	96							0
7	Field Blank	97							0
8	ME-12	94							0
. 9	ME-14	95	ı						0
10	ME-18	95							0
11	ME-18	100						,	0
12	ME-18	99	1						0
13	ME-19	93		,					0
14	MSB32	99							0
15	MSB61	102							0
16	MW-2	92							0
17	MW-20	96							0
18	MW-6	98					·		0
19	MW-8	96					Ç		0
20	MW-9/10R	99			·			,	0
21	TRIP BLANK	84							0.
22	VBLK32	81							0
23	VBLK61	95				·	·		0
24	VHB	80							0

QC LIMITS

BFB= p-Bromofluorobenzene (80-120)

- # Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

ASP 2000 - VOLATILES WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo		Contract:		Lab Sam	p ID: <u>A4B1</u>	380701
Lab Code: <u>RECNY</u> Case No	o.:	SAS No.:		SDG	No.:	
Matrix Spike - Client Sampl	le No.: VBLICZ	78/9/204				
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.		
Vinyl chloride Trichloroethene Tetrachloroethene	5.0 5.0 5.0 5.0	5.1 4.9 5.1	103 99 102	60 - 140 60 - 140 60 - 140		
# Column to be used to flag	g recovery and RI	PD values with ar	n asteris	sk		
* Values outside of QC limit	its					
Spike recovery:0 out o	of <u>3</u> outside	limits				
Claumanaha	•					

ASP 2000 - VOLATTLES WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: <u>STL Buffalo</u>	Contract:		Lab Sam	p ID: <u>A4B1386802</u>	
Lab Code: RECNY Case No	-1/1	SAS No.:		SDG	No.:
Matrix Spike - Client Sampl	le No.: <u>VBLK61</u>	⁷ 8/9/204			*.
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	
Vinyl chloride Trichloroethene Tetrachloroethene	5.0 5.0 5.0	6.3 6.0 5.9	126 120 119	60 - 140 60 - 140 60 - 140	
# Column to be used to flag * Values outside of QC limi		PD values with a	n asteris	sk	
Spike recovery:0 out o	of3 outside	limits		·	
Comments:					

ASP 2000 - VOLATILES WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: STL Buffalo Contract: _____ Lab Samp ID: <u>A4698910</u> Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: ____ SDG No.: ____ Matrix Spike - Client Sample No.: ME-18 SPIKE SAMPLE MS MS $^{\circ}$ 용 ADDED CONCENTRATION CONCENTRATION LIMITS COMPOUND REC # UG/L UG/L UG/L REC. ____ Vinyl chloride 5.0 0 6.6 133 60 - 140 Trichloroethene 122 60 - 140 5.0 0 6.1 Tetrachloroethene 121 60 - 140 5.0 0 6.0 SPIKE MSD MSD CONCENTRATION 왕 QC LIMITS ADDED 왕 COMPOUND UG/L REC # RPD # RPD REC. UG/L Vinyl chloride 60 - 140 5.0 7.3 9 20 146 * Trichloroethene 60 - 140 5.0 5.7 116 5 20 Tetrachloroethene 60 - 140 5.0 5.7 116 4 20 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits RPD: ___0 out of ___3 outside limits Spike recovery: 1 out of 6 outside limits

Comments: _

ASP 2000 - VOLATILES METHOD BLANK SUMMARY

Client No.

Lab Name: <u>STL Buffalo</u>	Contract:	VBLK32
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:
Lab File ID: P6802.RR	Lab Sample ID:	A4B1380701
Date Analyzed: <u>07/30/2004</u>	Time Analyzed:	17:02
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm) Heated Purge: (Y/N) <u>N</u>
Instrument ID: HP5973P		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
,	A-26S	34600001	DC007 DD	20.21
-		A4698901	P6807.RR	20:31
2	A-27S	A4698902	P6808.RR	21:04
3	A-42S	A4698903	P6809.RR	23:53
4	A-43S	A4698904	P6810.RR	00:26
5	MSB32	A4B1380702	P6803.RR	17:41
6	TRIP BLANK	A4698917	P6804.RR	18:17
7	VHB	A4698918	P6805.RR	18:50

Comments:		

81/433

ASP 2000 - VOLATILES METHOD BLANK SUMMARY

Client No.

Lab Name: STL Buffa	alo Cont	ract:
Lab Code: RECNY	Case No.:	SAS No.: SDG No.:
Lab File ID:	L7917.RR	Lab Sample ID: <u>A4B1386802</u>
Date Analyzed: 0	7/31/2004	Time Analyzed: 14:32
GC Column: DB-624	ID: <u>0.53</u> (mm)	Heated Purge: (Y/N) N

Instrument ID: <u>I50L</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3 4 5 6 7 8 9 10 11	DG-1 Duplicate Field Blank ME-12 ME-14 ME-18 ME-18 ME-18 ME-18 ME-19 MSB61 MW-2 MW-20	A4698905 A4698906 A4698907 A4698908	L7919.RR L7920.RR L7921.RR L7922.RR L7923.RR L7924.RR L7925.RR L7926.RR L7927.RR L7927.RR L7918.RR L7928.RR L7929.RR	15:42 16:14 16:47 17:20 17:53 18:26 18:59 19:32 20:04 15:05 20:37 21:10
13	MW-6	A4698914	L7930.RR	21:43
14	MW-8	A4698915	L7931.RR	22:15
15	MW-9/10R	A4698916	L7933.RR	23:21

Comments:				
	•			

Lab Name: STL Buffalo Contract: _____ Tune ID: A4T0002049

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: L7909 BFB Injection Date: 07/31/2004

Instrument ID: <u>I50L</u> BFB Injection Time: <u>09:53</u>

GC Column: DB-624 ID: 0.53 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria		lative ndance
75 95 96 173 174 175 176	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	1	(0.0) 1 (5.7) 1 (99.0) 1 (5.7) 2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD025 VSTD010 VSTD005 VSTD002 VSTD001	A4I0000695-1 A4I0000695-1 A4I0000695-1 A4I0000695-1 A4I0000695-1	L7911.RR L7912.RR L7913.RR	07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004	10:38 11:10 11:43 12:15 12:48

Lab Name: STL Buffalo Contract: _____ Tune ID: A4T0002086

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: <u>L7915</u>

BFB Injection Date: <u>07/31/2004</u>

Instrument ID: <u>150L</u> BFB Injection Time: <u>13:21</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.53}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria		lative ndance	
75 95 96 173 174 175 176	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	17.7 43.6 100.0 6.2 0.0 64.8 4.1 64.5 3.4	(0.0) (6.3) (99.5) (5.2)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
5 6 7 8 9 10 11 12 13 14 15	MSB61 DG-1 Duplicate Field Blank ME-12 ME-14 ME-18 ME-18	A4C0002997-1 A4B1386802 A4B1386801 A4698905 A4698906 A4698907 A4698908 A4698909 A4698910 A4698910 A4698910SD A4698911 A4698911 A4698912 A4698913 A4698914 A4698915	L7917.RR L7918.RR L7919.RR L7920.RR L7921.RR L7922.RR L7923.RR L7924.RR L7925.RR L7925.RR L7926.RR L7927.RR L7928.RR L7929.RR L7930.RR	07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004 07/31/2004	16:47 17:20 17:53 18:26 18:59 19:32 20:04 20:37 21:10 21:43
17		A4698916	L7931.RR L7933.RR	07/31/2004	22:15 23:21

Lab Name: STL Buffalo Contract: _____ Tune ID: A4T0002114 Case No.: ____ Lab Code: <u>RECNY</u> SAS No.: _____ SDG No.: ____ Lab File ID: P6793 BFB Injection Date: 07/29/2004 Instrument ID: HP5973P BFB Injection Time: 22:07

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria		lative Indance	
75 95 96 173 174 175	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	5.6	(0.0) (7.6) (96.3) (6.1)	1 1 2

1-Value is % mass 174 2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD010 VSTD005	A4I0000692-1 A4I0000692-1 A4I0000692-1 A4I0000692-1 A4I0000692-1	P6795.RR P6796.RR P6797.RR	07/29/2004 07/29/2004 07/29/2004 07/30/2004 07/30/2004	23:55

 Lab Name:
 STL Buffalo
 Contract:
 Tune ID:
 A4T0002113

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

Lab File ID: P6800 BFB Injection Date: 07/30/2004

Instrument ID: <u>HP5973P</u> BFB Injection Time: <u>14:59</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria		B .	lative ndance	
75 95 96 173 174	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174	•	80.5	(0.5)	
17.6	93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176		76.6	(. 95.1) (7.6)	1

1-Value is % mass 174

2-Value is % mass 176

	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1	VSTD005	A4C0002996-1	P6801.RR	07/30/2004	15:32
2	VBLK32	A4B1380701	P6802.RR	07/30/2004	17:02
3	MSB32	A4B1380702	P6803.RR	07/30/2004	17:41
4	TRIP BLANK	A4698917	P6804.RR	07/30/2004	18:17
5	VHB	A4698918	P6805.RR	07/30/2004	18:50
6	A-26S	A4698901	P6807.RR	07/30/2004	20:31
7	A-27S	A4698902	P6808.RR	07/30/2004	21:04
8	A-42S	A4698903	P6809.RR	07/30/2004	23:53
9	A-43S	A4698904	P6810.RR	07/31/2004	00:26

ASP 2000 - VOLATILES VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo Contract: Labsampid: A4C0002997

Lab Code: RECNY Case No.: SAS No.: SDG No.: _____

Lab File ID (Standard): L7916.RR Date Analyzed: 07/31/2004

Instrument ID: 150L Time Analyzed: 13:52

GC Column (1): <u>DB-624</u> ID: <u>0.530</u> (mm) Heated Purge: (Y/N) <u>N</u>

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	12 HOUR STD	687143	16.51	412046	20.13	872881	11.39
	UPPER LIMIT	962000	16.84	576864	20.46	1222033	11.72
	LOWER LIMIT	412286	16.18	247228	19.80	523729	11.06
	CLIENT SAMPLE			/ ====================================			
1	DG-1	684968	16.54	373271	20.15	890202	11.41
2	Duplicate	612809	16.51	336335	20.14	805467	11.39
3	Field Blank	626930	16.54	345731	20.15	820701	11.40
4	ME-12	614700	16.53	330089	20.14	819354	11.40
5	ME-14	593906	16.53	327974	20.14	793333	11.40
6	ME-18	615445	16.53	325270	20.15	807843	11.41
7	ME-18	628831	16.53	368787	20.15	818211	11.40
8	ME-18	627533	16.53	363965	20.15	833641	11.40
9	ME-19	590577	16.54	313946	20.16	806443	11.41
10	MSB61	684107	16.53	407508	20.14	858883	11.40
11	MW-2	581426	16.53	305897	20.14	795910	11.39
12	MW-20	651791	16.54	358698	20.16	805676	11.40
13	MW -6	631712	16.50	366548	20.11	792774	11.38
14	MW-8	678181	16.50	374216	20.13	840529	11.36
15	MW-9/10R	640473	16.50	366535	20.11	790631	11.36
16	VBLK61	659817	16.53	360823	20.14	886791	11.40
			•	1			

		QC LIMITS	QC LIMITS
IS2 (DCB) =	Chlorobenzene-D5 1,4-Dichlorobenzene-D4 1,4-Difluorobenzene	(60-140)	-0.33 / +0.33 min -0.33 / +0.33 min -0.33 / +0.33 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

RT

ASP 2000 - VOLATILES VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab Name:
 STL Buffalo
 Contract:
 Labsampid:
 A4C0002996

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 P6801.RR
 Date Analyzed:
 07/30/2004

 Instrument ID:
 HP5973P
 Time Analyzed:
 15:32

 GC Column(1):
 DB-624
 ID:
 0.250 (mm)
 Heated Purge:
 (Y/N)
 N

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
İ	12 HOUR STD UPPER LIMIT LOWER LIMIT	608501 851901 365101	13.95 14.28 13.62	346718 485405 208031	17.34 17.67 17.01	648794 908312 389276	10.04 10.37 9.71
	CLIENT SAMPLE						
3	A-26S A-27S A-42S A-43S MSB32 TRIP BLANK VBLK32 VHB	426907 436957 457236 426454 615670 532444 519490 512511	13.95 13.95 13.95 13.95 13.95 13.95 13.95	216929 237259 233006 211375 336262 233865 229634 226413	17.34 17.34 17.34 17.34 17.34 17.34 17.34 17.34	417540 433245 460383 412859 632095 572477 544771 521507	10.05 10.05 10.05 10.05 10.04 10.04 10.04 10.04

		QC LIMITS	QC LIMITS
IS2 (DCB) =	Chlorobenzene-D5 1,4-Dichlorobenzene-D4 1,4-Difluorobenzene	(60-140)	-0.33 / +0.33 min -0.33 / +0.33 min -0.33 / +0.33 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

STL Buffalo Comparision of CRQL/EQL to Lab MDL's

Page: 1 Rept: AN0907

Date: 08/11/2004 Time: 09:59

LAB: RECNY METHOD: ASPOO-4 PROTOCOL: ASPOO

	EXCEPT	2	2	2	Z	z	z	-	2	2	2	2		z	z	z	_	z	2	z	z	2	2	z	2	2	2	2	z	2	88. =	/4: =	33 =	2	2	~	æ
METHOD	TDL EXC	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL.	CROL	CROL
	i	0	0	0	Ö	ਹ	5	<u> </u>	ច	ប	2	5	5	5	ວ	ឆ	Ď	ច	ប	ច	ច	ច	ច	5	5	5	2	2	ច	5	5	5	5	5	5	5	5
AQUEOUS	S	UG/L	UG/L	UG/L	UG/L	UG/L	1/9n	UG/L	UG/L	UG/L	UG/L	7/9N	NG/L	UG/L	NG/L	UG/L	UG/L	NG/L	UG/L	UG/L	NG/L	UG/L	UG/L	7/50	7/9n	UG/L	79N	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	NG/L	NG/L	7/90
SOLID	₹	INVALID	INVAL ID	INVAL 1D	INVAL ID	INVAL 1D	INVAL ID	INVAL ID	INVAL ID	INVALID	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVALID	INVAL ID	INVAL ID	INVAL 1D	INVAL 1D	INVAL 1D	INVAL 1D	INVAL ID	INVAL ID	INVAL 10	INVAL ID	INVAL 1D	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVAL ID	INVALID	INVALID	INVALID
Aqueous	MDL	0.32561	0.31744	0.0000	0.34007	0.30424	0.42179	3.06317	0.32813	0.31147	0.34573	0.30864	0.30267	0.68800	0.30236	0.39476	0.27690	2,38019	2.04578	2.29565	4.03687	0.0000	0.31964	0.40859	0.31964	0.25175	0.41613	0.44316	0.29136	0.27847	0.26590	0.42148	0.37213	0.0000			0.34227
SOLID	MDL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000*0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	000000	0.0000	0.0000	0.0000	000000
AQUEOUS	CROL/EQL	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	2.00000	1.00000	1.00000	1.00000	2.00000	5.00000	5.00000	5.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
SOLID	CROL/EQL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	00000	0.0000	0.0000	00000	0.0000	0.0000	0.0000
	PARAMETER	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene (Total)	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone	2-Hexanone	4-Methyl-2-pentanone	Acetone	Benzaldehyde	Benzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Cyclohexane	Dibromochloromethane	Dichlorodifluoromethane	Ethylbenzene
	N LAB	<	⋖	∢	∢	∢	⋖	∢	∢	∢	∢	∢	∢	∢	∢	∢	∢	⋖	4	⋖	∢	∢	∢	<	∢	∢	∢	∢	∢	∢	∢	∢	⋖	⋖	⋖	∢	⋖
	FRACT ION	¥	¥	*	≩	≩	₹	¥	¥	≩	≩	≩	₹	≩	¥	₹	≩	¥	≩	₹	≩	≩	₹.	. ≩	¥	≩	≩	≩	≩	¥	≩	¥	¥	¥	≩	¥	¥
	METHOD	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	4SP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	ASP00-4	\$\$00-4	4-00ds	4SP00-4	ASP00-4	ASP00-4
	PROTOCOL	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00 A	ASP00	ASP00 A	ASP00	ASP00 A	ASP00	ASP00	ASP00 A	ASP00 A	ASP00	ASP00	ASP00 A	ASP00	ASP00 A	Ξ.	_	ASP00 A

STL Buffalo Comparision of CRQL/EQL to Lab MDL's

Page: 2 Rept: AN0907

Date: 08/11/2004 Time: 09:59

LAB: RECNY METHOD: ASPOO-4 PROTOCOL: ASPOO

					SOLID	AQUEOUS	SOLID	AQUEOUS	SOLID	AQUEOUS	METHOD
PROTOCOL	PROTOCOL METHOD	FRACTION LAB PARAMETER	AB	PARAMETER	CROL/EQL	CROL/EQL	MDL	MDL	Š	5	10L
ASP00	ASP00-4	, VM	4	Isopropylbenzene	0.0000	1.00000	0.0000	2,39057	INVAL ID	1/9 0	CROL
ASP00	ASP00-4	W	⋖	Methyl acetate	0,0000	1.00000	0.0000	0.0000	INVAL ID	UG/L	CROL
ASP00	ASP00-4	W.	<	Methyl tert butyl ether	00000	1.00000	0.0000	1.01047	INVAL ID	1/9 0	CROL
ASP00	ASP00-4	, VM	<	Methylcyclohexane	0.0000	1.00000	0.0000	0.0000	INVAL ID	7/9n	CROL
ASP00	ASP00-4	¥.	4	Methylene chloride	0.0000	2.00000	0.0000	0.38219	INVAL ID	7/9n	CROL
ASP00	ASP00-4	¥.	4	Styrene	0.0000	1.00000	0.0000	0.33033	INVAL ID	7/9n	CROL
ASP00	ASP00-4	¥	<	Tetrachloroethene	0.0000	1.00000	0.0000	0.30864		1/9 0	CROL
ASP00	ASP00-4	×	<	Toluene	0.0000	1.00000	0.00000	0.35170	INVAL ID	7/9n	CROL
ASP00	ASP00-4	AN.	<	Total Xylenes	0.0000	3.00000	0.0000	1.03939		UG/L	CROL
ASP00	ASP00-4	, M	«	Trichloroethene	0.0000	1.00000	0.0000	0.32373	INVAL 1D	NG/L	CROL
ASP00	ASP00-4	₩	4	Trichlorofluoromethane	0.0000	1.00000	0.0000	0.97904	INVAL ID	T/9n	CROL
ASP00	ASP00-4	M AM	•	Vinyl acetate	0.0000	5.00000	0.00000	0.0000	INVAL ID	7/9n	CROL
ASP00	ASP00-4	₩	4	Vinyl chloride	0.0000	1.00000	0.0000	0.35547	INVAL ID	7/90	CROL
ASP00	ASP00-4	W	⋖	cis-1,2-Dichloroethene	0.0000	1.00000	0.00000	0.32027	INVAL ID	7/9n	CROL
ASP00	ASP00-4	, M	4	cis-1,3-Dichloropropene	00000	1.00000	0.00000	0.39539	INVAL ID	1/9N	CROL
ASP00	ASP00-4	N N	4	m-Xylene	00000	1.00000	0.0000	0.0000	INVAL ID	7/9N	CROL
ASP00	ASP00-4	<u>~</u>	4	o/p-Xylenes	0.0000	1.00000	0.0000	0.0000	INVAL ID	7/9n	CROL
ASP00	ASP00-4	, >M	⋖	trans-1,2-Dichloroethene	0.0000	1.00000	0.0000	0.36773	INVAL ID	7/9N	CROL
ASP00	ASP00-4	¥	4	trans-1,3-Dichloropropene	0.0000	1.00000	0.0000	0.46674	INVALID	NG/L	CROL

SAMPLE DATA

91/433

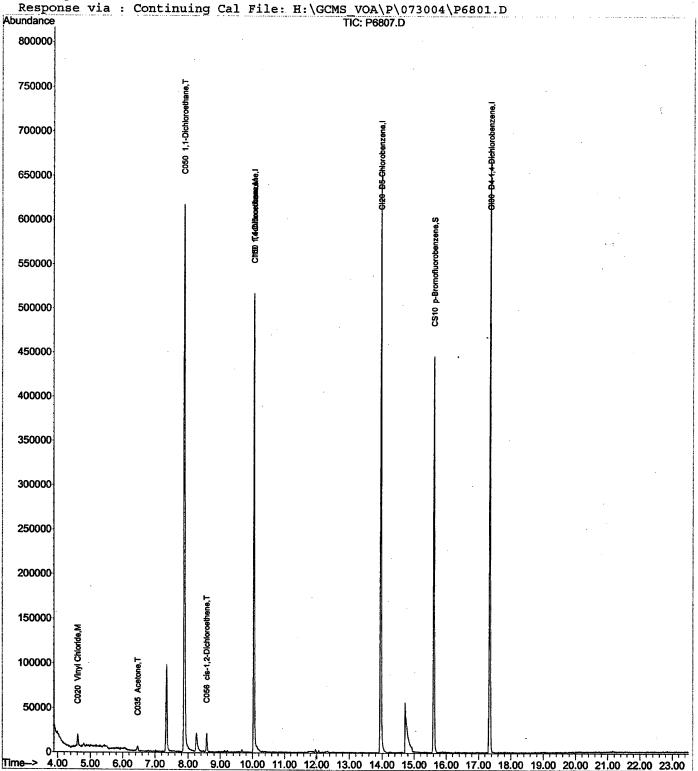
ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Namo, CTT Duffalo Contract		A-26S	
Lab Name: STL Buffalo Contract:			·····
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698901	-
Sample wt/vol: <u>25.00</u> (g/mL) ML	Lab File ID:	P6807.RR	managa di mada kanaga da
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	4 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/30/2004	<u>4</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	_	Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 13 2 1	

Vial: 16

Data File : H:\GCMS_VOA\P\073004\P6807.D Operator: PC


Acq On : 30 Jul 2004 20:31 Sample : A4698901 A Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:04 2004 Quant Results File: A4I00692.RES

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Quant Results File: A4I00692.RES

HP5973P

MS Integration Params: RTEINT2.P Quant Time: Jul 30 23:03:57 2004

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

Internal Standards	R.T.	QIon	Response	Conc Units	Rcv(Ar)	
1) CI10 1,4-Difluorobenzene	10.05	114	417540	125.00 ng	0.00	
17) CI20 D5-Chlorobenzene	13.95	117	426907	125.00 ng		
					70.16%	
40) CI30 D4-1,4-Dichlorobenze	17.34	152	216929	125.00 ng	0.00	
					62.57%	
System Monitoring Compounds						
38) CS10 p-Bromofluorobenzene	15.61	174	138495	114.47 ng	0.00	
Spiked Amount 125.000 Ran						
				_		
Target Compounds					Qvalue	1
	4.55					
3) C015 Bromomethane	5.21		135	N.D.		•
4) C020 Vinyl Chloride	4.62			29.61 ng	94	
	5.32		. 135	N.D.		
6) C030 Methylene Chloride						ME
7) C035 Acetone		43			89/	
8) C040 Carbon Disulfide	6.80	76	1090			
9) C045 1,1-Dichloroethene	6.43	. 96.				
(1) C050 1,1-Dichloroethane	7.88	. 63	686446	-	97	\W 4
11) C057 trans-1,2-dichloroet	0.00	. 96	0.	N.D.		De William
(2) C056 cis-1,2-Dichloroethe		96	10699	9.59 ng	94	1000 m
13) 6060 Chloroform	0.00	83	0			(U
14) C222 Bromochloromethane			0	N.D.		
15) C065 1,2-Dichloroethane			1383	N.D.		·
16) C110 2-Butanone	8.27		433	N.D.		
18) C115 1,1,1-Trichloroethan	9.21	97		N.D.		
		117.	0 .	N.D.		-
	10.05		13638	12. <u>21 ng</u>		•
21) C130 Bromodichloromethane				N.D.		
22) C140 1,2-Dichloropropane				N.D.		
23) C145 cis-1,3-Dichloroprop				N.D.		
	9.67			N.D.		
25) C155 Dibromochloromethane	. 0.00		0	N.D.		
26) C170 trans-1,3-Dichloropr	0.00	75	0	N.D.		
	0.00			N.D.		
28) C220 Tetrachloroethene	12.81	166	208	N.D.		
	0.00	. 109	0	N.D.		
30) C210 4-Methyl-2-Pentanone	11.73	. 43	700	N.D.		
31) C215 2-Hexanone	0.00	43.	. 0	N.D.		
32) C230 Toluene	12.06	91	1951	N.D.		
33) C235 Chlorobenzene	14.00	112	2323	N.D.		
34) C240 Ethylbenzene	14.09	91	1985	N.D.		
35) C246 m,p-Xylene	14.25	106	160	N.D.		
36) C247 o-Xylene	0.00	106	0	N.D.		
37) C245 Styrene	14.85	104	135	N.D.		
39) C225 1,1,2,2-Tetrachloroe	15.75	83	175	N.D.	•	

(#) = qualifier out of range (m) = manual integration P6807.D A4I00692.M Fri Jul 30 23:04:03 2004

Page 1

Data File : H:\GCMS_VOA\P\073004\P6807.D Acq On : 30 Jul 2004 20:31 Sample : A4698901 A

Vial: 16

Operator: PC Inst : HP5973 P

Multiplr: 1.00

Misc

MS Integration Params: RTEINT2.P

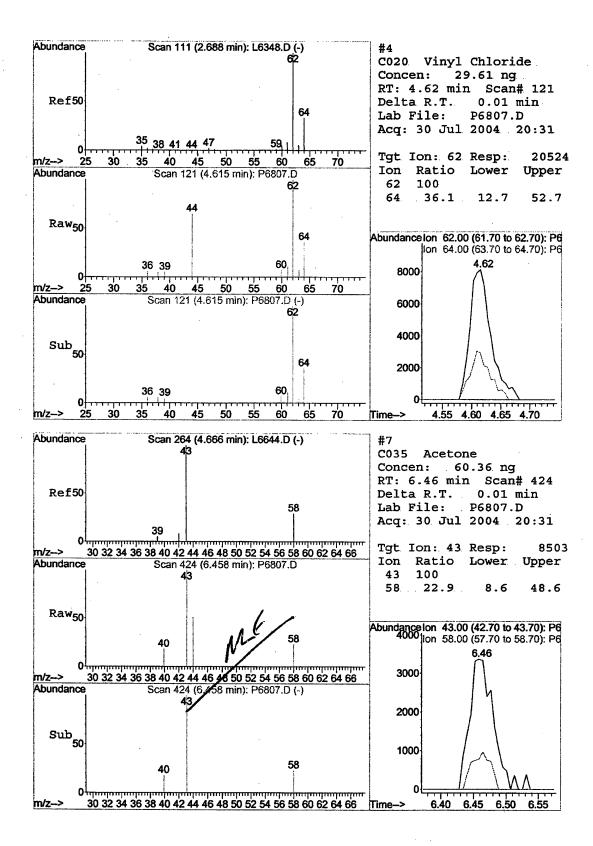
Quant Time: Jul 30 23:03:57 2004

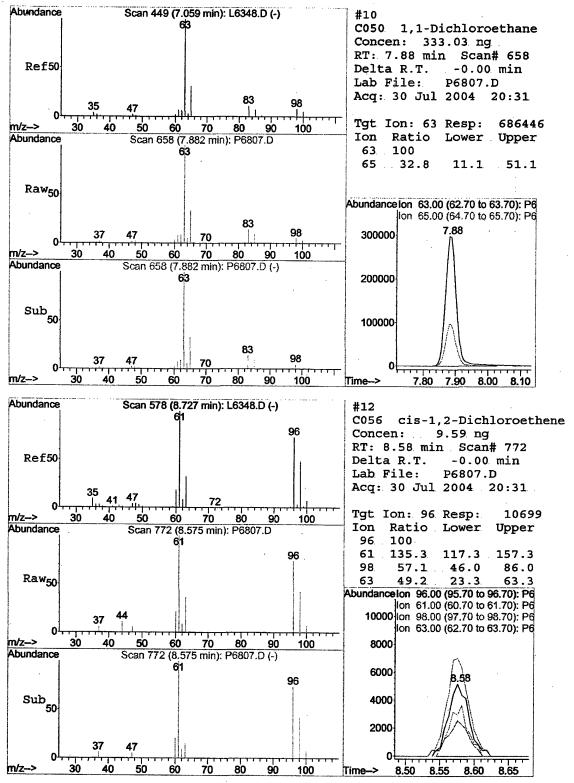
Quant Results File: A4I00692.RES

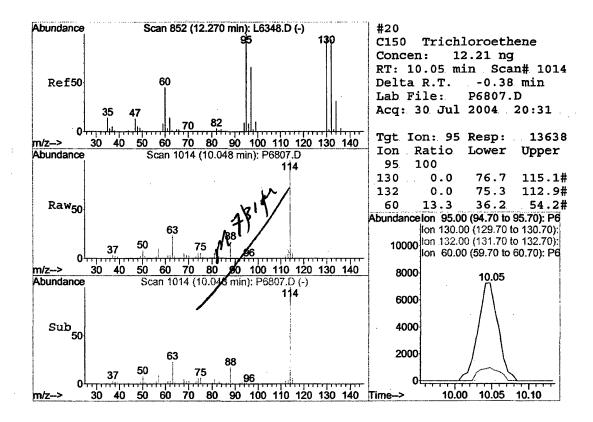
HP5973P

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER


Last Update : Fri Jul 30 16:04:16 2004


Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)


DataAcq Meth : VOA

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
42) C260 1,3-Dichlorobenzene 43) C267 1,4-Dichlorobenzene	15.61 17.24 17.24 17.96 0.00 20.41	146 146 75	134 143	N.D. N.D. N.D. N.D. N.D. N.D.	

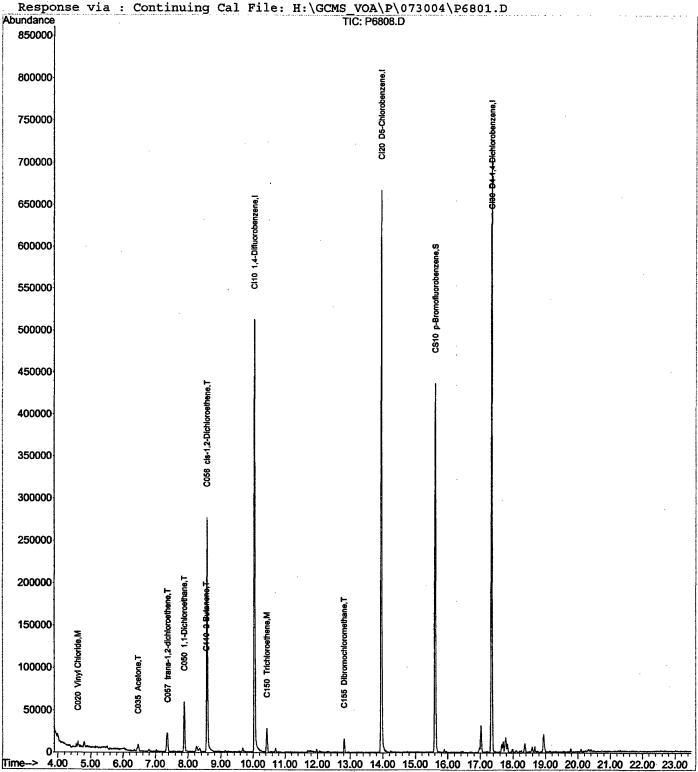
ASP 2000 - VOLATILES ANALYSIS DATA SHEET

	A-27S
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698902</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: P6808.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed: 07/30/2004
3C Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 1 5 0.4 J

Vial: 17

Data File : H:\GCMS_VOA\P\073004\P6808.D

: 30 Jul 2004 21:04 Acq On


Operator: PC Sample : A4698902 A Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:04 2004 Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator) Method

Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 16:04:16 2004

Vial: 17

HP5973P

Data File: H:\GCMS_VOA\P\073004\P6808.D Acq. On

: 30 Jul 2004 21:04

Operator: PC : A4698902 A Sample Inst. : HP5973. P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:04:26 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Pris Last Update : Fri Jul 30 16:04:16 2004 Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

Internal Standards					ts Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	10.05	114	433245	125.00 n	
17) CI20 D5-Chlorobenzene	13.95	117	436957	125.00 n	g 0.00 71.81%
40) CI30 D4-1,4-Dichlorobenze	17.34	152	237259	125.00 n	g 0.00 68.43%
System Monitoring Compounds					
38) CS10 p-Bromofluorobenzene	15 61	174	120/21	. 111 70 ∽	~ 0.00
Spiked Amount 125.000 Ran	. 13.01	- 120	Decove	111.70 11	g 0.00
	196 00.	120	Recove	:LY =	07.426
Target Compounds	4.49				Qvalue
2) C010 Chloromethane	4.49	50	130	N.D.	
			. 0	· N.D.	
5) C020 Vinyl Chloride 5) C025 Chloroethane 6) C030 Methylene Chloride	4.62	62	6723		g 94
5) C025 Chloroethane	0.00	64	0 9 4 2	N.D.	
6) C030 Methylene Chloride	7.02	84	942	N.D.	
7) C035 Acetone 8) C040 Carbon Disulfide	6.46	43	12605	86.24 n	g
8) C040 Carbon Disulfide	6.80	76	4159	N.D.	
9) C045 1,1-Dichloroethene	6.43	96	1383	N.D.	
(0) C050 1,1-Dichloroethane	7.88	63.	62422	29.19 n	g 97
9) C045 1,1-Dichloroethene 0) C050 1,1-Dichloroethane 11 C057 trans-1,2-dichloroet	7.37	96.	6927.	6.47 n	g # 83
12) (CO56, cis-1,2-Dichloroethe	8.58	96:	133546	. 115.37. n	g 95
13) Coc Chloroform	8.93	83	869	N.D.	
14) C222 Bromochloromethane	0.00	. 128	0	N.D.	
16) C110 2-Butanone	8.55	43.	2689	14.80 n	g -soMb
10) C115 1,1,1-111Cn10f0echan	9.21	91	. 620.	и.р.	
19) C120 Carbon Tetrachloride (20) C150 Trichloroethene	0.00	117	. 0	N.D.	
(20) C159 Trichloroethene	10.43	95	11940	10.44 n	g 94
21) C130 Bromodichloromethane 22) C140 1,2-Dichloropropane 23) C145 cis-1,3-Dichloroprop	10.71	. 83	138	N.D. N.D.	_
22) C140 1,2-Dichloropropane	10.24	63	300	N.D.	
23) C145 cis-1,3-Dichloroprop	0.00	75 .	. 0.	N.D.	
24) C165 Benzene	9.67	78	5333	N.D.	16
25) C155 Dibromochloromethane	12.82	129	3966 🤚	5.17 n	g # 13 MO
26) C170 trans-1,3-Dichloropr	0.00	75	0	N.D.	•
27) C160 1,1,2-Trichloroethan	0.00	97	0 .	N.D.	
28) C220 Tetrachloroethene				N.D.	
29) C163 1,2-Dibromoethane	0.00	109	. 0	N.D.	
30) C210 4-Methyl-2-Pentanone	11.72	43.	1877	N.D.	
31) C215 2-Hexanone	12.80	43	140	N.D.	
32) C230 Toluene 33) C235 Chlorobenzene	12.06	91	1610	N.D.	
33) C235 Chlorobenzene	14.00	112	1888	N.D.	
34) C240 Ethylbenzene	14.11	. 91	1671	N.D.	
35) C246 m,p-Xylene	14.25	. 106	143	N.D.	
36) C247 o-Xylene	14.25	106	0	N.D.	•
37) C245 Styrene	0.00	104		N.D.	

(#) = qualifier out of range (m) = manual integration

39) C225 1,1,2,2-Tetrachloroe 0.00

P6808.D A4I00692.M Fri Jul 30 23:04:30 2004

Data File : H:\GCMS_VOA\P\073004\P6808.D

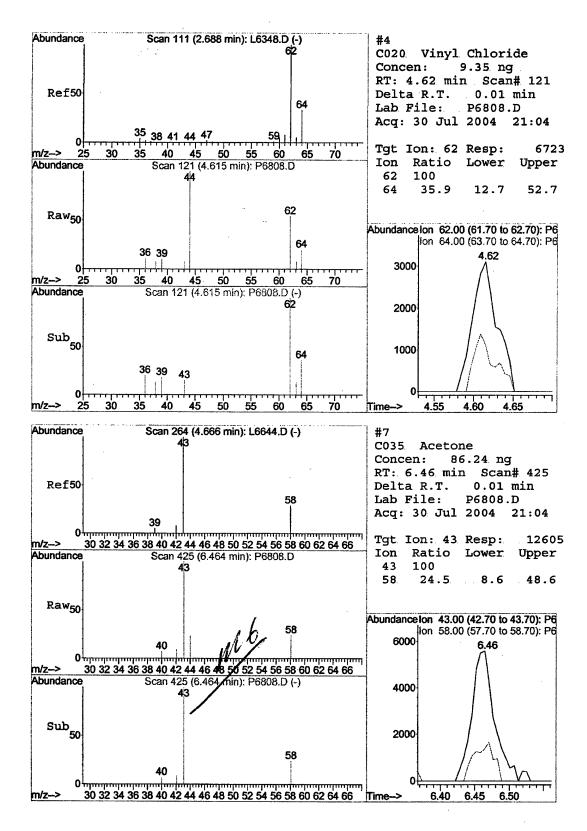
Vial: 17 Acq On : 30 Jul 2004 21:04 Operator: PC

Sample : A4698902 A Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:04:26 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)


Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

41) C180 Bromoform 0.00 173 0 N.D. 42) C260 1,3-Dichlorobenzene 17.26 146 630 N.D. 43) C267 1,4-Dichlorobenzene 17.26 146 630 N.D.		Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
44) C249 1,2-Dichlorobenzene 17.96 146 269 N.D. 45) C286 1,2-Dibromo-3-Chloro 0.00 75 0 N.D. 46) C313 1,2,4-Trichlorobenze 20.41 180 294 N.D.	42) 43) 44) 45)	C260 C267 C249 C286	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro	17.26 17.26 17.96 0.00	146 146 146 75	630 630 269 0	N.D. N.D. N.D. N.D.	

Data File : H:\GCMS_VOA\P\073004\P6808.D Acq On : 30 Jul 2004 21:04

Vial: 17

Operator: PC

Sample

: A4698902 A

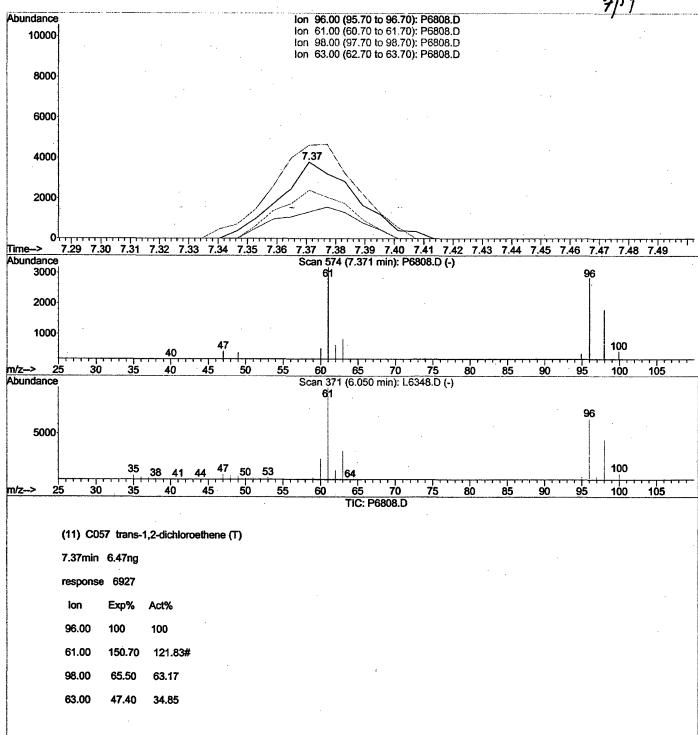
Inst : HP5973 P

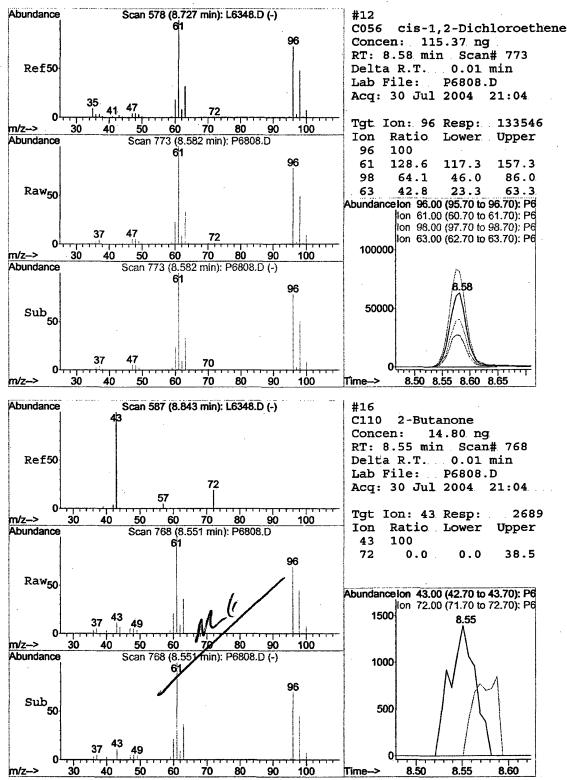
Misc

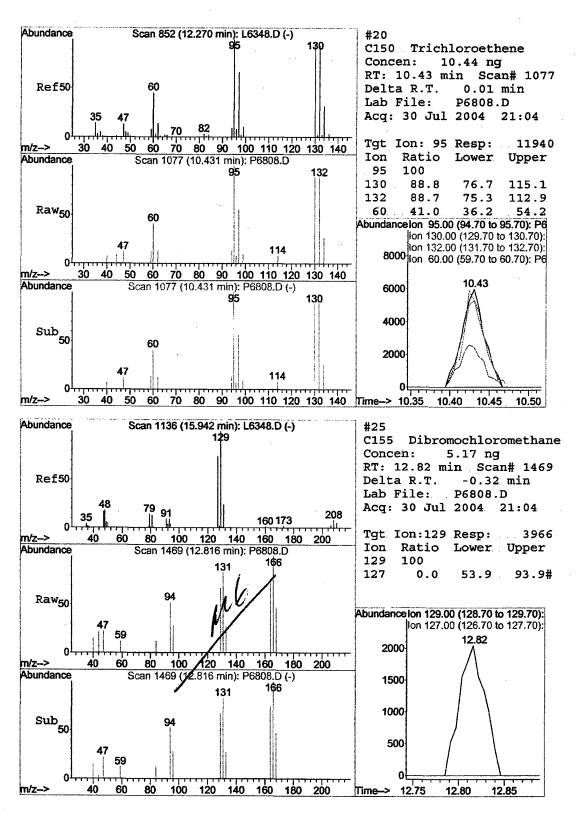
Multiplr: 1.00

MS Integration Params: RTEINT2.P Quant Time: Jul 31 10:40 2004

Quant Results File: temp.res


Method


: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator) : HP5973N CLP LOW LEVEL WATER


Title

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single Level Calibration

107/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

	•	•	A-42S		
Lab Name: <u>SIL Buffalo</u>	Contract:		' L		
Lab Code: <u>RECNY</u> Cas	e No.: SAS No.:	SDG No.:			
Matrix: (soil/water) <u>W</u>	ATER	Lab Sample ID	: <u>A46989</u> 0)3	· .
Sample wt/vol: _	<u>25.00</u> (g/mL) <u>ML</u>	Lab File ID:	P6809.I	R.	-
Level: (low/med) \underline{I}	<u>OW</u>	Date Samp/Reco	v: <u>07/21/2</u>	2004 07	/23/2004
% Moisture: not dec	Heated Purge: N	Date Analyzed	: <u>07/30/2</u>	2004	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Facto	or:1.0	00	
Soil Extract Volume: _	(uL)	Soil Aliquot V	Volume:		(uL)
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
127-18-4 75-34-3 540-59-0 79-01-6 108-90-7 75-00-3	-1,1,1-Trichloroethane -Tetrachloroethene -1,1-Dichloroethene -1,2-Dichloroethene (Total) -Trichloroethene -Chlorobenzene -Chloroethane -Vinyl chloride		1 1 0.7 2 1 1	0 0 0 0 0	

Data File: H:\GCMS_VOA\P\073004\P6809.D

Acq On : 30 Jul 2004 23:53

Sample : A4698903 A

Misc

Operator: PC

Inst : HP5973 P

Vial: 18

Multiplr: 1.00

MS Integration Params: RTEINT2.P Quant Time: Jul 31 7:48 2004

Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator) Method Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Continuing Cal File: H:\GCMS VOA\P\073004\P6801.D

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 07:48:55 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

Internal Standards			Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	10.05		460383	125.00 ng	0.00 70.96%
17) CI20 D5-Chlorobenzene	13.95	117	457236	125.00 ng	0.00 75.14%
40) CI30 D4-1,4-Dichlorobenze	17.34	152	233006	125.00 ng	0.00 67.20%
System Monitoring Compounds					
38) CS10 p-Bromofluorobenzene					
Spiked Amount 125.000 Ran	ige. 80	- 120	Recove	= 91	.28%
Target Compounds					Ovalue
2) C010 Chloromethane	4.43	50	1868	N.D.	&.arao
	0.00		0	N.D.	
4) C020 Vinyl Chloride		. 62.	3079	N.D.	
5) C025 Chloroethane	5.33		256	N.D.	•
6) C030 Methylene Chloride	7.02			N.D.	
7) C035 Acetone	6.46		25199	162.23 ng -	- ME
	6.80		3614	N.D.	-402
9) C045 1,1-Dichloroethene		96	. 0	N.D.	
10) C050 1,1-Dichloroethane			39421	17.35 ng	97
11) C057 trans-1,2-dichloroet			1320	N.D.	16.54
22) C056 cis-1,2-Dichloroethe	8 58		11261	9.15 ng	92 WWW.W
13) C060 Chloroform	8.93		596	N.D.	120160, Was
14) C222 Bromochloromethane		128	0	N.D.	, ka v
15) C065 1,2-Dichloroethane			16387	-11.56 na	#
16) C110 2-Butanone	8.55		4583	23.74 ng	SIMI
18) C115 1,1,1-Trichloroethan				N.D.	
19) C120 Carbon Tetrachloride				N.D.	•
	10.42		1562	N.D.	
21) C130 Bromodichloromethane			128	N.D.	•
22) C140 1,2-Dichloropropane			131	N.D.	
	0.00			N.D.	
24) C165 Benzene	9.68		2859	N.D.	
25) C155 Dibromochloromethane			130	N.D.	
26) C170 trans-1,3-Dichloropr				N.D.	
27) C160 1,1,2-Trichloroethan			191	N.D.	
28) C220 Tetrachloroethene			1811	N.D.	•
29) C163 1,2-Dibromoethane			0	N.D.	- A F.
30) C210 4-Methyl-2-Pentanone			2428	5.04 ng	-#-40ME
31) C215 2-Hexanone			1145	N.D.	
32) C230 Toluene	12.06	91	4160		
33) C235 Chlorobenzene			3583	N.D.	
	14.10		3340	N.D.	
35) C246 m,p-Xylene				N.D.	
36) C247 o-Xylene	0.00	106	0		
37) C245 Styrene	14.85		129	N.D.	
39) C225 1,1,2,2-Tetrachloroe				N.D.	

HP5973P

water on

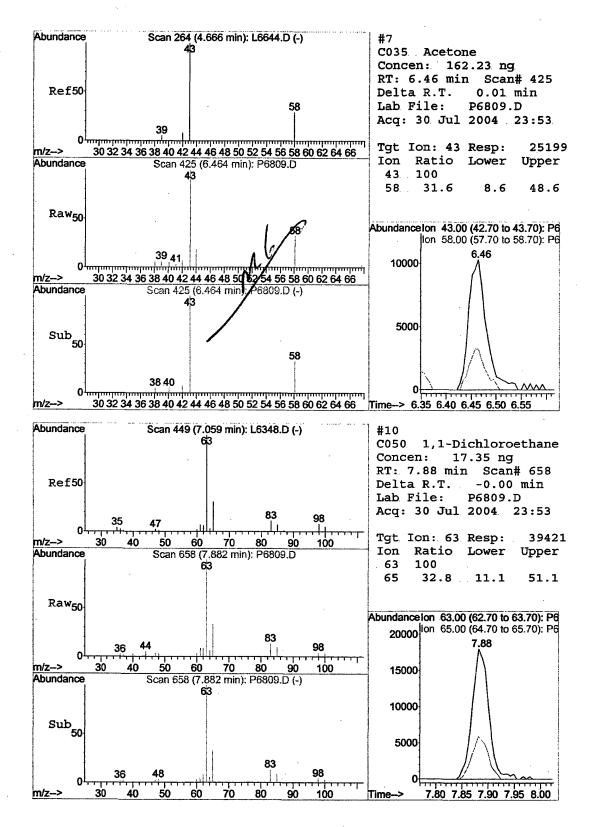
^{(#) =} qualifier out of range (m) = manual integration P6809.D A4I00692.M Sat Jul 31 07:49:00 2004

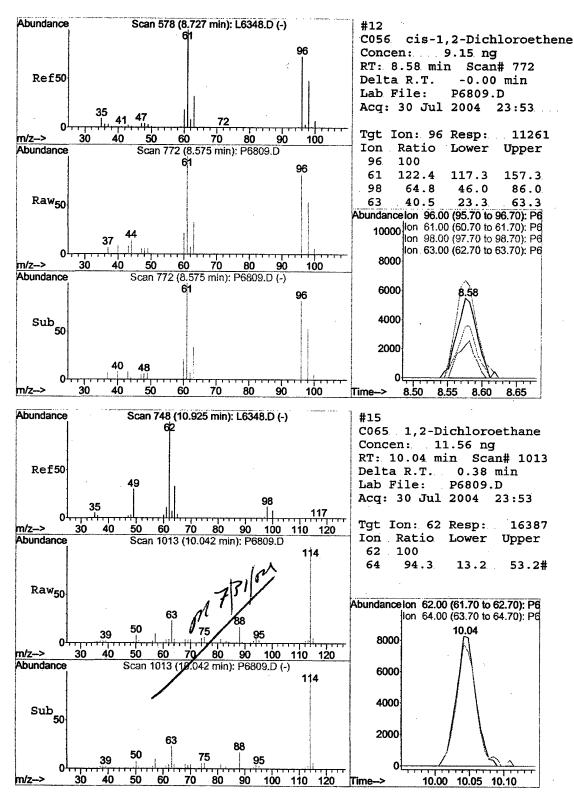
Data File : H:\GCMS_VOA\P\073004\P6809.D Acq On : 30 Jul 2004 23:53

Operator: PC

Vial: 18

Sample : A4698903 A Inst : HP5973 P Misc Multiplr: 1.00


MS Integration Params: RTEINT2.P


Quant Time: Jul 31 07:48:55 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 16:04:16 2004
Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

Comp	ound	R.T.	QIon	Response	Conc Unit	Qvalue
43) C267 44) C249 45) C286	Bromoform 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze	17.25 17.96 0.00	146 146	218 1130 1130 1186 0 1257	N.D. N.D. N.D. N.D. N.D. N.D.	

113/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Tab Name CIII Deffela Combon	t-	A-43S
Lab Name: <u>STL Buffalo</u> Contra	act:	
Lab Code: RECNY Case No.: SAS	S No.: SDG No.:	<u></u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698904
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	P6810.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv	r: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge	e: <u>N</u> Date Analyzed:	07/31/2004
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Facto	or: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot V	Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	-
71-55-61,1,1-Trichloroeth 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane	e (Total)	1 U U U U U U U U U U U U U U U U U U U

Data File: H:\GCMS_VOA\P\073004\P6810.D

Vial: 19

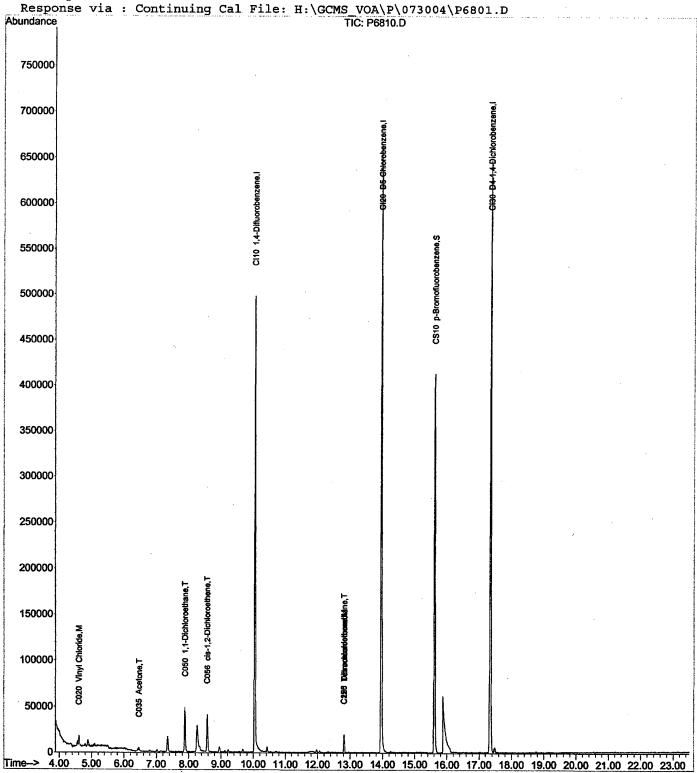
Acq On : 31 Jul $\overline{2}004$ 00:26

Operator: PC Inst : HP5973 P

Misc

Sample : A4698904 A

Multiplr: 1.00


MS Integration Params: RTEINT2.P

Quant Time: Jul 31 7:49 2004

Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator) Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

MS Integration Params: RTEINT2.P Quant Time: Jul 31 07:49:21 2004

Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

Internal St		R.T.	QIon	_	Conc Units	Dev(Min) Rcv(Ar)
	1,4-Difluorobenzene	10.05	114	412859	125.00 ng	0.00
					_	63.63%
17) CI20	D5-Chlorobenzene	13.95	117	426454	125.00 ng	0.00
					_	70.08%
40) CI30	D4-1,4-Dichlorobenze	17.34	152	211375	125.00 ng	0.00
					_	60.96%
System Moni	toring Compounds					
38) CS10	p-Bromofluorobenzene	15.61	174	131400	108.72 ng	0.00
Spiked Am	nount 125.000 Ran	ge 80	- 120	Recove	ry = 86	.98%
Toward Com						01
rarger comp	Chlaremethans	4 00	Ε0	141	N D	Qvalue
	Chloromethane Bromomethane	5.19	50	141		
4) :0020	Wines Chlowide	4 (2	C 2	7.4.6.0.7	N.D.	. 95
47 0020	Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene	4.01	64	14697	21.44 ng	. 95
6) C023	Mathylana Chlorida	7 02	. 04	015	N.D. N.D.	
7) C036	Acetone	6 16	42	815 5691	N.D. 40.86 ng	of M.K.
8) CO40	Carbon Digulfide	6 90	43	2002 202T	N.D.	
9) C045	1 1-Dichloroethene	6 42	96	1220	N.D.	
10) C050	1,1-Dichloroethane	7 00	63	53663	26 23 ng	97
11) C057	trans-1 2-dichloroet	0.00	96	33002	א ח או א ח	31
121-C056	1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-dichloroet cis-1,2-Dichloroethe	8.58	96	20481	18 57 ng	91
531 COCO	Chloroform	0.00	83	20401	и п	31
14) C222	Bromochloromethane 1,2-Dichloroethane 2-Butanone	0.00	128	0	N.D. 18.57 ng N.D. N.D. N.D.	
15) C065	1.2-Dichloroethane	9.66	62	1099	N.D.	•
16) C110	2-Butanone	8.33	43	796	N.D.	
18) C115	1,1,1-Trichloroethan	9.22	97	2634	N.D.	•
	Carbon Tetrachloride			0	N.D.	·
			95		N.D.	
	Bromodichloromethane					
22) C140	1,2-Dichloropropane	0.00	63.	0	N.D.	
23) C145	cis-1,3-Dichloroprop	0.00	. 75	0	N.D.	
24) C165	Benzene	9.67	78 .	. 3107	N.D.	. 11
25) C155	Benzene Dibromochloromethane	12.82	129	5733	7.66 ng	# 13/16
26) C170	trans-1,3-Dichloropr	0.00	75	0	N.D.	My M
27) C160	1,1,2-Trichloroethan	0.00	97	0	N.D.	"Up the
	Tetrachloroethene				5.84 ng	# 85 000
29) C163	1,2-Dibromoethane	0.00	109		N.D.	1 (Da 1 m)
30) C210	4-Methyl-2-Pentanone	11.71	43.	450	N.D.	` V
31) C215	2-Hexanone		43		N.D.	
. 32) C230	Toluene		91	2027	N.D.	
		14.00	112	1928	N.D.	
34) C240	Ethylbenzene m,p-Xylene	14.09	91	1409	N.D.	
35) C246	m,p-Xylene	14.10	106	277	N.D.	
36) C247	o-Xylene Styrene	0.00	106	0	N.D.	
37) C245	Styrene	0.00	104	0	N.D.	•
39) C225	1,1,2,2-Tetrachloroe	0.00	83.	0	N.D.	

HP5973P

Weller .

(#) = qualifier out of range (m) = manual integration P6810.D A4I00692.M Sat Jul 31 07:49:25 2004

Data File : H:\GCMS_VOA\P\073004\P6810.D Acq On

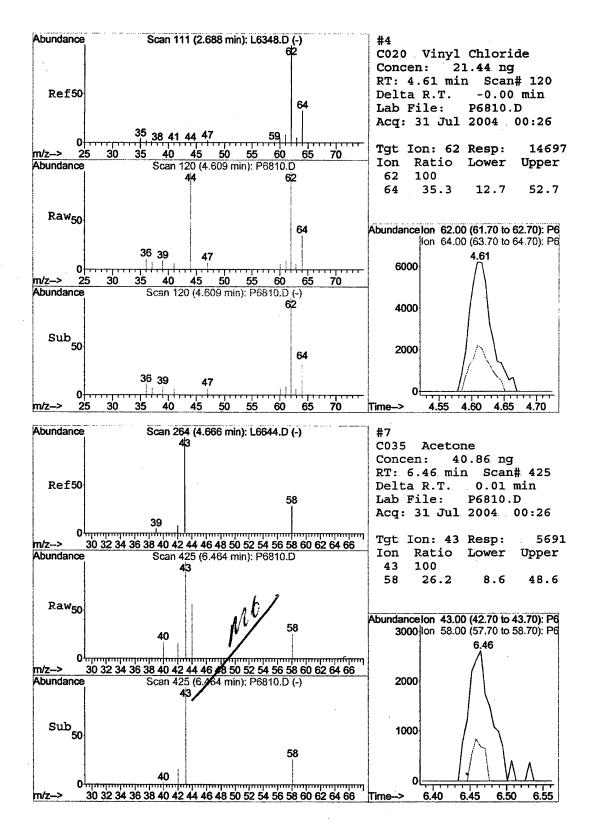
Vial: 19 : 31 Jul 2004 00:26 Operator: PC

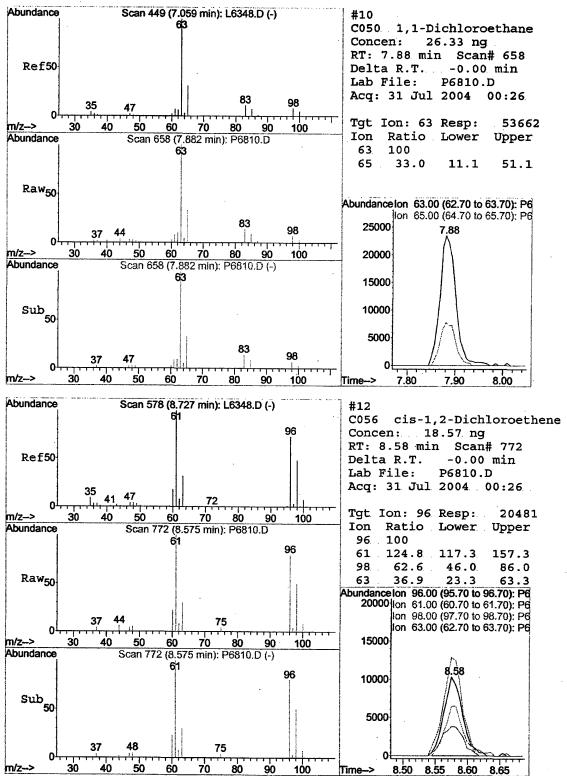
: A4698904 A Sample Inst : HP5973 P Misc Multiplr: 1.00

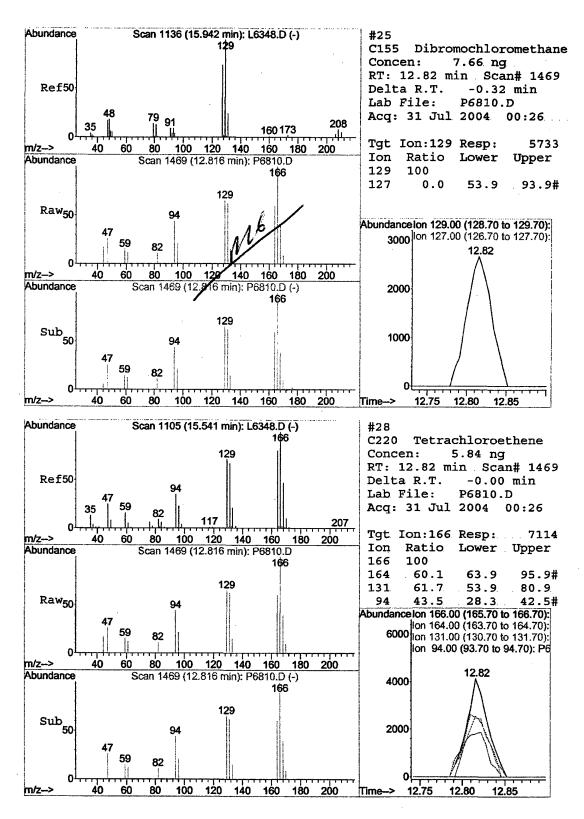
MS Integration Params: RTEINT2.P

Quant Time: Jul 31 07:49:21 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)


Title : HP5973N CLP LOW LEVEL WATER


Last Update : Fri Jul 30 16:04:16 2004 Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)


DataAcq Meth : VOA

Compound		R.T.	QIon	Response	Conc Unit	Qvalue
42) C260 1, 43) C267 1, 44) C249 1, 45) C286 1,	omoform 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichlorobenzene 2-Dibromo-3-Chloro	0.00 17.26 17.26 0.00 0.00	146 146	0 277 277 0 0	N.D. N.D. N.D. N.D. N.D.	·
46) C313 1,	2,4-Trichlorobenze	20.40	180	315	N.D.	

120/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

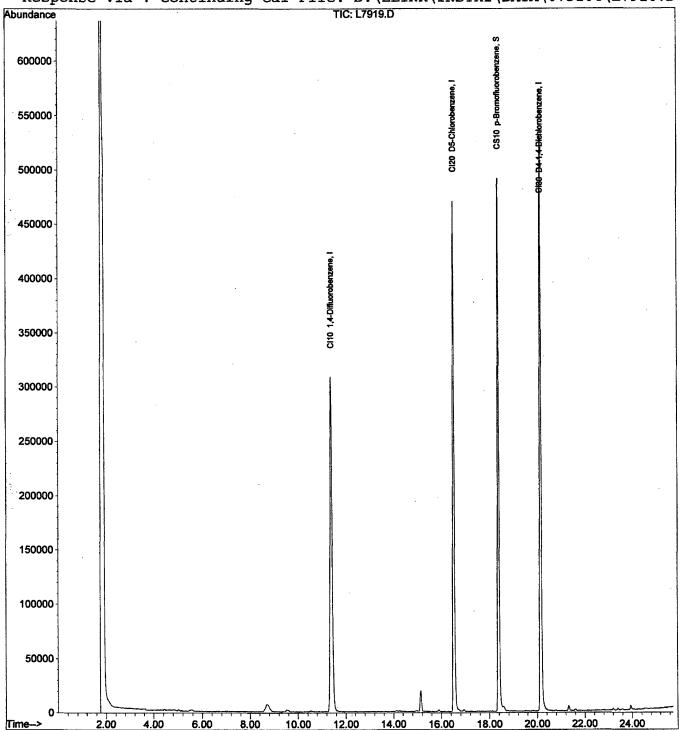
	DG-1		
SDG No.:	_		
Lab Sample ID:	A469890	5	
Lab File ID:	L7919.R	R	
Date Samp/Recv:	07/21/2	004 07/2	23/2004
Date Analyzed:	07/31/2	004	
Dilution Factor	: 1.0	<u>0</u>	
Soil Aliquot Vo	olume:	(1	ıΓ)
		Q	
	1 1 2 1 1 1	บ บ บ บ บ	
	Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor Soil Aliquot Vo	SDG No.: Lab Sample ID: A469890 Lab File ID: L7919.R Date Samp/Recv: 07/21/2 Date Analyzed: 07/31/2 Dilution Factor:1.0 Soil Aliquot Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L 1 1 2 1	SDG No.: Lab Sample ID: A4698905 Lab File ID: L7919.RR Date Samp/Recv: 07/21/2004 07/2 Date Analyzed: 07/31/2004 Dilution Factor: 1.00 Soil Aliquot Volume: (ug/L or ug/Kg) UG/L Q CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q 1

Data File : D:\ELINK\INSTR1\DATA\073104\L7919.D

Vial: 5 Operator: PC : 31 Jul 2004 15:42

: A4698905 B : Finnigan Sample Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Results File: A4I00695.RES Quant Time: Aug 2 8:14 2004

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) Method

Title CLP LOW LEVEL WATER : I50L

: Sat Jul 31 14:39:25 2004 Last Update

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7919.D Vial: 5
Acq On: 31 Jul 2004 15:42 Operator: PC

Sample : A4698905 B Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 0)

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene				_	0.03 101.98%
24)	CI20	D5-Chlorobenzene	16.54	117	684968	125.00 ng	0.03 99.68%
48)	CI30	D4-1,4-Dichlorobenze					
		itoring Compounds					
		p-Bromofluorobenzene mount 125.000 Ran					
Targe	et Com	pounds					Qvalue
2)	C290	Dichlorodifluorometh	0.00	85		N.D.	
			0.00	50		N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Chloroethane	0.00	64		N.D.	
		Trichlorotrifluorome				N.D.	
8)	C030	Methylene Chloride	0.00	84		N.D.	
9)	C035	Acetone	0.00	43		N.D.	
10)	C040	Carbon Disulfide	0.00	76		N.D.	
		1,1-Dichloroethene				N.D.	
	C962		0.00	73		N.D.	
13)	C050	1.1-Dichloroethane	0.00	63		N.D.	
		trans-1,2-dichloroet				N.D.	
		cis-1,2-Dichloroethe				N.D.	
	C060		0.00	83		N.D.	
17)	C222	Bromocnioromethane	0.00	128		N.D.	
18)	C065	1,2-Dichloroethane	0.00	62		N.D.	
		2-Butanone	0.00	43		N.D.	
	C255		0.00	43		N.D.	
	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	
		Cyclohexane	0.00	56		N.D.	4
	C012					N.D.	υ.
		1,1,1-Trichloroethan				N.D.	7 //2
		Carbon Tetrachloride				N.D.	K9\//
		Trichloroethene				N.D.	<i>√</i> , <i>p</i> /
		Bromodichloromethane				N.D.	ľ
(#)		ifiar out of mange (m)					

^{(#) =} qualifier out of range (m) = manual integration

L7919.D A4I00695.M Mon Aug 02 08:14:10 2004 I50L

Data File: D:\ELINK\INSTR1\DATA\073104\L7919.D Vial: 5

Acq On : 31 Jul 2004 15:42 Operator: PC

Sample : A4698905 B Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

Ţ.

	Compor	R.T.	QIon	Response	Conc Unit	Qvalue	
	C140	1,2-Dichloropropane	0.00	63		N.D.	
(30)		cis-1,3-Dichloroprop	0.00	75		N.D.	
31)		Benzene	0.00	78		N.D.	
32)		Dibromochloromethane	0.00	129		N.D.	
-	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
34)		1,1,2-Trichloroethan	0.00	83		N.D.	
35)	C220	Tetrachloroethene	0.00	166		N.D.	
36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
38)	C215	2-Hexanone	0.00	43		N.D.	
39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91	•	N.D.	
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)		Styrene	0.00	104		N.D.	
	C966	Isopropylbenzene	0.00	105		N.D.	
-	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	•
49)		Bromoform	0.00	173		N.D.	
50)		1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
-	C286	·	0.00	75		N.D.	
	C313	•	0.00	180		N.D.	
J4/	-J ₁ J	T'S'4-ITICITOTODEIIZE	0.00	100		14.2.	

I50L

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

	,	Duplicate
Lab Name: STL Buffalo Contract:		<u> </u>
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A4698906</u>
Sample wt/vol: <u>25.00</u> (g/mL) <u>ML</u>	Lab File ID:	L7920.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004 07/23/2004
Moisture: not dec Heated Purge: N	Date Analyzed:	07/31/2004
3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride		1 U 1 U 0.6 J 2 U 1 U 1 U 1 U 1 U

Data File: D:\ELINK\INSTR1\DATA\073104\L7920.D

Vial: 6 Operator: PC 16:14

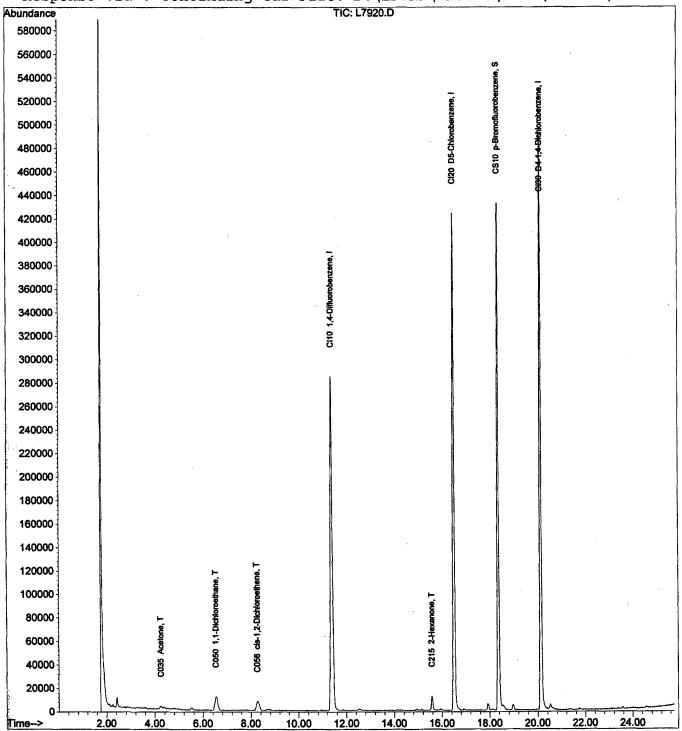
: 31 Jul 2004 Sample : A4698906 A

: Finnigan Inst

Misc

Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:14 2004

Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7920.D Vial: 6
Acq On: 31 Jul 2004 16:14 Operator: PC

Sample : A4698906 A Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916,D3I Jul 2004 13

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inter	mal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)		
1)	CI10	1,4-Difluorobenzene	11.39	114	805467	125.00 ng	0.00		
1 041	aro o	Dr. Ghlasshammana	16 51	117	610000	125 00 55	92.28%		
24)	C120	D5-Chlorobenzene	16.51	117	612809	125.00 ng	0.00 89.18%		
48)	CT30	D4-1,4-Dichlorobenze	20.14	152	336335	125.00 ng	0.01		
40)	CIJU	D4-1, 4 DICHIOLODEHZE	20.14	132	, 330333	125.00 119	81.63%		
							021000		
System Monitoring Compounds									
45)	CS10	p-Bromofluorobenzene	18.36	174	299569	120.25 ng	0.00		
Spi	ked A	mount 125.000 Ran	nge 80	- 120	Recove	= 96	.20%		
_	. ~						01		
		pounds		٥.5		17 D	Qvalue		
		Dichlorodifluorometh				N.D.			
		Chloromethane	0.00			N.D.	•		
		Bromomethane	0.00			N.D.			
5)	C020	Vinyl Chloride	0.00			N.D.			
<u> </u>		Chloroethane	0.00			N.D.			
	C275	Trichlorotrifluorome				N.D.			
	C030	Methylene Chloride	0.00			N.D.			
	C035	Acetone	4.25		11531	155,09 ng	79		
	C040	Carbon Disulfide	0.00			N.D.			
	C045	1,1-Dichloroethene	0.00			N.D.			
12)	C962	T-butyl Methyl Ether				N.D.			
	C050	1,1-Dichloroethane	6.54		64636	16.34 ng	97		
	C057	trans-1,2-dichloroet	0.00		3	N.D.	~ 0.0° ~		
) C056	cis-1,2-Dichloroethe	8.26		18248	8.66 ng	#00 (d) 85		
	C060	Chloroform	0.00			N.D.	y to		
	C222	Bromochloromethane	0.00		•	N.D.	OK' k		
	C065	1,2-Dichloroethane	0.00	62		N.D.	V		
	C110	2-Butanone	0.00	43		N.D.			
20)	C255	Methyl Acetate	0.00	43		N.D.			
21)	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	•		
22)	C256	Cyclohexane	0.00	56		N.D.			
	C012	Methylcyclohexane	0.00	83		N.D.	Ŋ		
	C115	1,1,1-Trichloroethan	0.00	97		N.D.	. (98)		
26)	C120	Carbon Tetrachloride	0.00	117		N.D.	MA		
. 27)	C150	Trichloroethene	0.00	95		N.D.	Vill.		
28)	C130	Bromodichloromethane	0.00	83		N.D.	[
							'-		

^{(#) =} qualifier out of range (m) = manual integration

L7920.D A4I00695.M Mon Aug 02 08:14:19 2004 I50L Page 1

Vial: 6 Data File: D:\ELINK\INSTR1\DATA\073104\L7920.D Acq On : 31 Jul 2004 16:14 Operator: PC

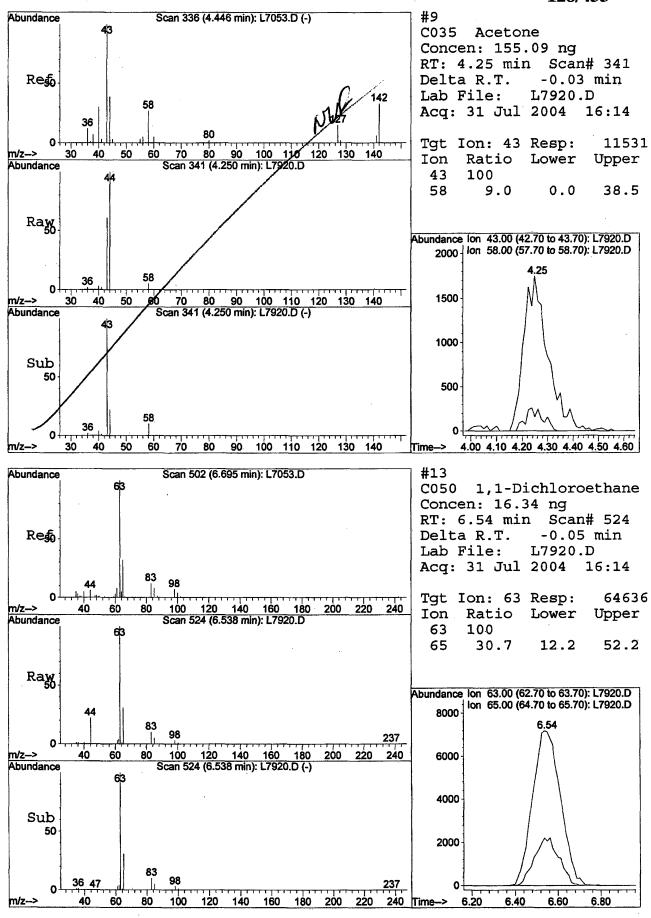
Sample : A4698906 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Results File: A4I00695.RES Quant Time: Aug 2 8:14 2004

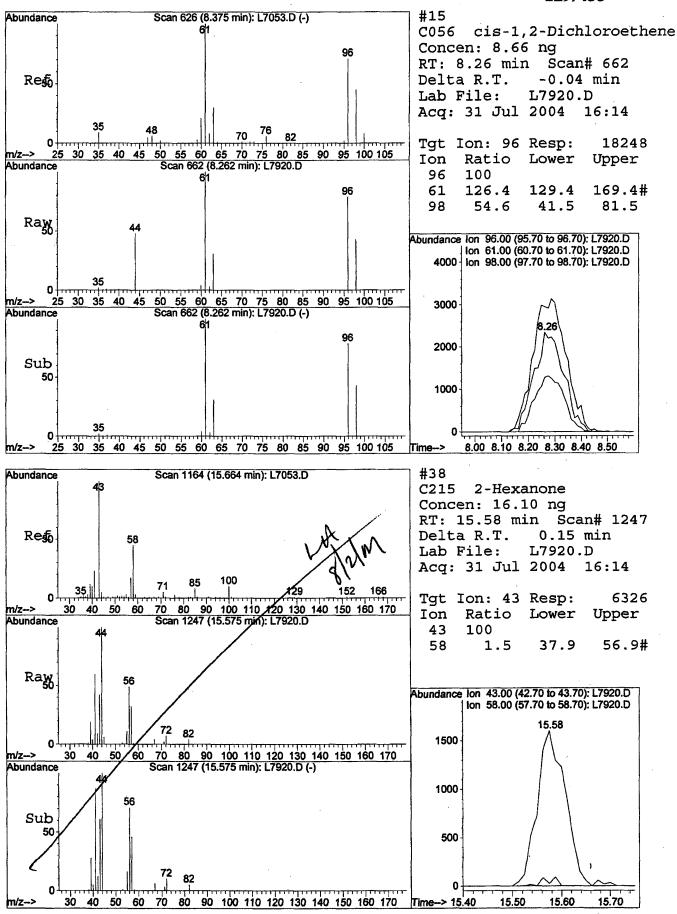
Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

: I50L CLP LOW LEVEL WATER Title


Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M


	Compound		R.T.	QIon	Response	Conc Unit	Qva	alue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.		
		cis-1,3-Dichloroprop	0.00			N.D.		
31)		Benzene	0.00			N.D.		
32)		Dibromochloromethane	0.00			N.D.		
33)	C170	trans-1,3-Dichloropr	0.00			N.D.		
34)	C160	1,1,2-Trichloroethan	0.00	83		N.D.		
35)	C220	Tetrachloroethene	0.00	166		N.D.		
36)	C163	1,2-Dibromoethane	0.00	109		N.D.		
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.		
38)	G215	2-Hexanone	15.58	43	6326	16:10 ng	#	32
39)	C230	Toluene	0.00	91		N.D.		
40)	C235	Chlorobenzene	0.00	112		N.D.		
41)	C240	Ethylbenzene	0.00	91		N.D.		
42)	C246	m,p-Xylene	0.00	106		N.D.		
43)	C247	o-Xylene	0.00	106		N.D.		
44)	C245	Styrene	0.00	104		N.D.		
46)	C966	Isopropylbenzene	0.00	105		N.D.		
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.		
49)	C180	Bromoform	0.00	173		N.D.		
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.		
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.		
52)	C249	1,2-Dichlorobenzene	0.00	146		N.D.		
53)	C286	1,2-Dibromo-3-Chloro	0.00	75		N.D.		
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.		

L7920.D A4I00695.M Acq :31 Jul 2004 16:14 Sample = A4698906 A Misc =

 T_{β}

L7920.D A4I00695.M Acq :31 Jul 2004 16:14 Sample = A4698906 A Misc =

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Tab Name (CHT Duffale	Field Blank
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698907</u>
Sample wt/vol: <u>25.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>L7921.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: 07/31/2004
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane	1 U U 1 U U 1 U U U U U U U U U U U U U
75 01 4 Wine and and and and	1 1 17

Data File: D:\ELINK\INSTR1\DATA\073104\L7921.D

Vial: 7 Operator: PC 16:47

: 31 Jul 2004 : Finnigan Sample : A4698907 B Inst

Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004 Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7921.D Vial: 7
Acq On: 31 Jul 2004 16:47 Operator: PC

Sample : A4698907 B Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916 31 Jul 2004 13:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte	rnal S				Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene					
							94.02%
24)	C120	D5-Chlorobenzene	16.54	117	626930	125.00 ng	0.03
401	at a a	D4 1 4 D'ablassbass					
48)	C130	D4-1,4-Dichlorobenze	20.15	152	345731	125.00 ng	83.91%
						•	63.916
Syst	em Mon	itoring Compounds					
		p-Bromofluorobenzene	18.39	174	308059	120.87 ng	0.02
		mount 125.000 Ran					
- 4-			.50 00			- 1	
Targ	et Com	pounds					Qvalue
2)	C290	Dichlorodifluorometh	0.00	85		N.D.	
3)	C010	Chloromethane	0.00	50		N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Chloroethane	0.00	64		N.D	·C
7)	C275	Trichlorotrifluorome	3.19	101	18764		W 81
8)	C030	Methylene Chloride	0.00	84		N.D.	
9)	C035	Acetone	0.00	43		N.D.	
10)	C040	Carbon Disulfide	0.00	76		N.D.	
11)	C045	1,1-Dichloroethene T-butyl Methyl Ether 1,1-Dichloroethane	0.00	96		N.D.	
12)	C962	T-butyl Methyl Ether	0.00	73	•	N.D.	
13)	C050	1,1-Dichloroethane	0.00	63		N.D.	
	C057	trans-1,2-dichloroet				N.D.	
	C056	cis-1,2-Dichloroethe		96		N.D.	
	C060	Chloroform	0.00			N.D.	
	C222	Bromochloromethane	0.00	128		N.D.	
	C065	1,2-Dichloroethane 2-Butanone	0.00	62		N.D.	
	C110	2-Butanone	0.00	43		N.D.	
	C255	Methyl Acetate 1,1,2 Trichloro-1,2,	0.00	43		N.D.	
	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	٨,
	C256	Cyclohexane	0.00	56		N.D.	1991
23)	C012	Methylcyclohexane	0.00	83		N.D.	~2/0/12 /
25)	CIID	1,1,1-Trichloroethan Carbon Tetrachloride	0.00	97		N.D.	\mathcal{MH}_{I}
20)	C120	Twicklesses	0.00			N.D.	γ ,
		Trichloroethene Bromodichloromethane				N.D.	V
20)		promodicatorometrane	0.00	83		N.D.	

^{(#) =} qualifier out of range (m) = manual integration

L7921.D A4I00695.M Mon Aug 02 08:14:30 2004 I50L Page 1

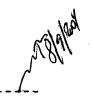
Data File: D:\ELINK\INSTR1\DATA\073104\L7921.D Vial: 7 Acq On : 31 Jul 2004 16:47 Operator: PC

: A4698907 B Inst : Finnigan Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)


Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

<u>.</u>	Compound			QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
		cis-1,3-Dichloroprop	0.00	75		N.D.	
31)	C165	Benzene	0.00	78		N.D.	
32)	C155	Dibromochloromethane	0.00	129		N.D.	
33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
34)	C160	1,1,2-Trichloroethan	0.00	83		N.D.	
35)	C220	Tetrachloroethene	0.00	166		N.D.	
36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
38)	C215	2-Hexanone	0.00	43	·	N.D.	
39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91		N.D.	
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	
₂ 46)	C966	Isopropylbenzene	0.00	105		N.D.	
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	•
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
		1,2-Dichlorobenzene	0.00	146		N.D.	
		1,2-Dibromo-3-Chloro	0.00	75		N.D.	
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	
51) 52) 53)	C267 C249 C286	1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro	0.00 0.00 0.00	146 146 75		N.D. N.D. N.D.	•

I50L

134/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

				ME-12	;	
L Buffal	<u>lo</u>	Contract:				
CNY (Case No.:	_ SAS No.:	SDG No.:			
1/water)	WATER		Lab Sample	e ID: <u>A46989</u>	<u>108</u>	
1:	_25.00 (g/mI	.) <u>ML</u>	Lab File	ID: <u>L7922</u> .	RR	
w/med)	LOW		Date Samp,	/Recv: <u>07/21/</u>	<u>2004</u> <u>07/</u>	23/2004
not dec	Heat	ted Purge: <u>N</u>	Date Analy	yzed: <u>07/31/</u>	<u>2004</u>	
B-624	_ ID: <u>0.53</u>	(mm)	Dilution 1	Factor: 1.	00	
Volume	: (uL)		Soil Aliq	uot Volume:	(uL)
NO.	COMPOUND				Q	
-18-4 34-3 -59-0 01-6 -90-7	Tetrachlor 1,1-Dichlo 1,2-Dichlor Trichloroe Chloroetha	roethene proethene proethene (Total) ethene zene ane	· · · · · · · · · · · · · · · · · · ·	1 1 2 1 1	0 0 0 0 0	
	CNY (l/water) l: w/med) not dec. B-624 Volume: NO18-4 34-359-0 01-690-7	CNY Case No.:	CNY Case No.:	Lab Sample Lab Sample Lab File Lab F	CONY Case No.:	CNY Case No.: SAS No.: SDG No.:

Data File: D:\ELINK\INSTR1\DATA\073104\L7922.D

Vial: 8 Operator: PC

Acq On : 31 Jul 2004 : A4698908 A

Sample

Inst : Finnigan

Misc

Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Results File: A4100695.RES

Quant Time: Aug 2 8:14 2004

Method

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title


CLP LOW LEVEL WATER I50L

17:20

Last Update

: Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7922.D Vial: 8 : 31 Jul 2004 17:20 Operator: PC

Sample : A4698908 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

		tandards			_		Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.40	114	819354	125.00 ng	0.01
24)	CT20	D5-Chlorobenzene	16.53	117	614700	125.00 ng	0.01
,			40.00				89.46%
48)	CI30	D4-1.4-Dichlorobenze	20.14	152	330089	125.00 ng	0.01
-		D4-1,4-Dichlorobenze					80.11%
	*	itoring Compounds				٠	
395C	CC10	p-Bromofluorobenzene	10 20	17/	295400	119 21 ng	0.01
		mount 125.000 Rar					
Op.	inca r	medite 125.000 Kai	196 00	120	Recove	+y -)+	. 5 / 6
Targe	et Com	pounds					Qvalue
2)	C290	Dichlorodifluorometh	0.00	85		N.D.	~
3)	C010	Chloromethane Bromomethane Vinyl Chloride	0.00	50		N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Chloroethane	0.00	64		N.D.	
7)	C275	Trichlorotrifluorome	0.00	101		N.D.	
8)	C030	Methylene Chloride	0.00	84		N.D.	
9)	C035	Vinyl Chloride Chloroethane Trichlorotrifluorome Methylene Chloride Acetone	0.00	43		N.D.	
TUI	LU4 U	Carbon Distille	0.00	76		N.D.	
11)	C045	1,1-Dichloroethene T-butyl Methyl Ether 1,1-Dichloroethane	0.00	96		N.D.	
12)	C962	T-butyl Methyl Ether	0.00	73		N.D.	
13)	C050	1,1-Dichloroethane	0.00	63		N.D.	
14)	C057	trans-1,2-dichloroet	0.00	96		N.D.	
15)	C056	cis-1,2-Dichloroethe	0.00	96		N.D.	
16)	C060	1,1-Dichloroethane trans-1,2-dichloroet cis-1,2-Dichloroethe Chloroform	0.00	83		N.D.	
7'/1	いつつつ	Promodh Loromothano	0 00	170		N.D.	
, 18)	C065	1,2-Dichloroethane 2-Butanone Methyl Acetate 1,1,2 Trichloro-1,2,	0.00	62		N.D.	
19)	C110	2-Butanone	0.00	43		N.D.	
20)	C255	Methyl Acetate	0.00	43		N.D.	
21)	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	
22)	C256	Cyclohexane Methylcyclohexane	0.00	56		N.D.	7
23)	C012	Methylcyclohexane	0.00	83		N.D.	Pan.
25)	C115	1,1,1-Trichloroethan	0.00	97		N.D.	A All
26)	C120	Carbon Tetrachloride Trichloroethene	0.00	117		N.D.	$\mathcal{K}\mathcal{M}$
27)	C150	Trichloroethene	0.00	95		N.D.	γ ,
28)	C130	Bromodichloromethane	0.00	83		N.D.	V.
(#)		ifica out of ronge (m)					

^{(#) =} qualifier out of range (m) = manual integration

I50L

Sample : A4698908 A Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:14 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compound			QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
		cis-1,3-Dichloroprop	0.00	75		N.D.	
	C165	Benzene	0.00	78		N.D.	
32)	C155	Dibromochloromethane	0.00	129		N.D.	
33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
			0.00	83		N.D.	
35)	C220	Tetrachloroethene	0.00	166		N.D.	
36).	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
38)	C215	2-Hexanone	0.00	43		N.D.	
39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91		N.D.	
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	
46)	C966	Isopropylbenzene	0.00	105		N.D.	
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52)	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
53)	C286	1,2-Dibromo-3-Chloro	0.00	75		N.D.	
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

138/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

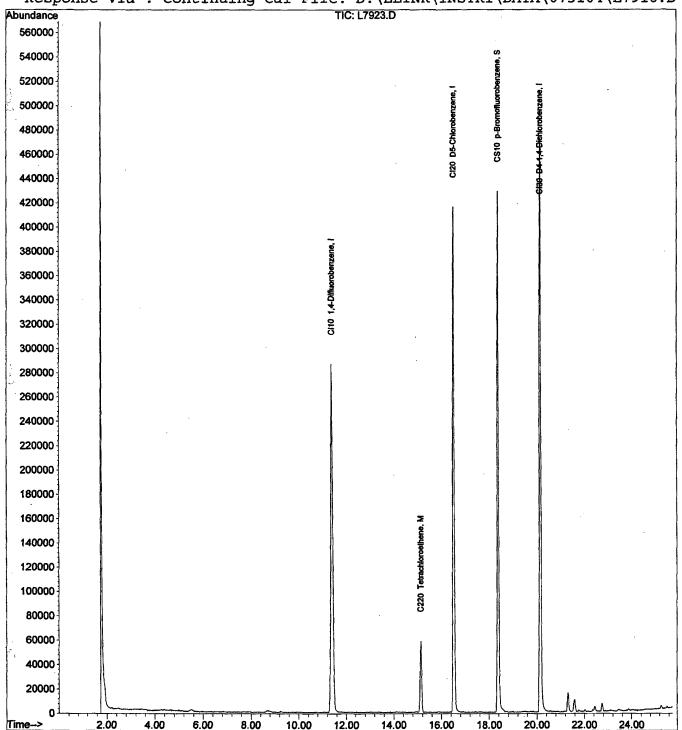
Lab Name: STL Buffalo Contract:		ME-14	
		•	
Lab Code: RECNY Case No.: SAS No.:	SUG No.:	-	
Matrix: (soil/water) WATER	Lab Sample ID:	A4698909	
Sample wt/vol:25.00 (g/mL) ML	Lab File ID:	L7923.RR	·
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/31/2004	
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor	:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume:	_ (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)		Q
71-55-61,1,1-Trichloroethane		1 U	
127-18-4Tetrachlomethene		0.6 J	
75-34-31.1-Dichloroethane		1 U	
540-59-01,2-Dichloroethene (Total)		2 · U	ŀ
79-01-6Trichloroethene		1 U	1
108-90-7Chlorobenzene		1 U	1
75-00-3Chloroethane		1 U	
175-01-4Vinzi chloride	1	1 ltt	Į.

Data File : D:\ELINK\INSTR1\DATA\073104\L7923.D

Vial: 9 : 31 Jul 2004 17:53 Operator: PC

: Finnigan Sample : A4698909 A Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7923.D Vial: 9 Operator: PC : 31 Jul 2004 17:53

Sample : A4698909 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P/

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrato

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 21

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte:	rnal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.40	114	793333		0.01 90.89%
241	CTON	D5-Chlorobenzene	16.53	117	593906	125 00 pg	
24)	CIZU	D3-CIIIOIODelizelle	10.55	11/	393900	125.00 ng	86.43%
48)	CT30	D4-1,4-Dichlorobenze	20 14	152	327974	125.00 ng	
10,	0130	Di I,i Dichiolopchize	20.14	172	327374	123.00 119	79.60%
Syste	em Mo	nitoring Compounds					
		p-Bromofluorobenzene	18.38	174	287071	118.90 ng	0.01
		Amount 125.000 Ran					.12%
Targ	et Co	mpounds					Qvalue
		Dichlorodifluorometh	0.00	85		N.D.	
		Chloromethane	0.00			N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Chloroethane	0.00	64		N.D.	
7)	C275	Trichlorotrifluorome	0.00	101	·	N.D.	:
8)	C030	Methylene Chloride	0.00	84		N.D.	
	C035		0.00	43		N.D.	
10)	C040	Carbon Disulfide	0.00	76		N.D.	
		1,1-Dichloroethene	0.00	96		N.D.	
	C962					N.D.	
	C050		0.00	63		N.D.	
	C057					N.D.	
	C056					N.D.	
16)	C060	Chloroform	0.00			N.D.	
	C222		0.00			N.D.	
		1,2-Dichloroethane	0.00			N.D.	
	C110	2-Butanone	0.00			N.D.	
	C255					N.D.	
	C291					N.D.	
	C256		0.00			N.D.	
	C012	Methylcyclohexane	0.00			N.D.	
		1,1,1-Trichloroethan	0.00			N.D.	Man.
		Carbon Tetrachloride				N.D.	~I Allo
		Trichloroethene		95	•	N.D.	V. H.
28)	C130	Bromodichloromethane	0.00	83		N.D.	\(\frac{1}{1} \cdot \qu

^{(#) =} qualifier out of range (m) = manual integration

L7923.D A4I00695.M Mon Aug 02 08:18:24 2004 I50L

141/433

Quantitation Report

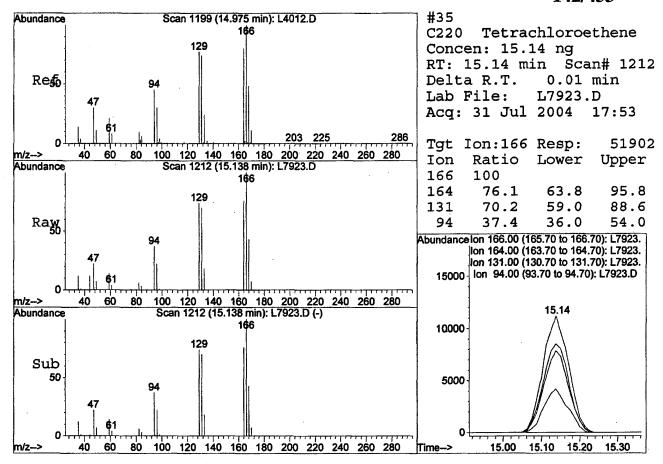
Data File : D:\ELINK\INSTR1\DATA\073104\L7923.D Vial: 9 Acq On : 31 Jul 2004 17:53 Operator: PC

Inst : Finnigan : A4698909 A Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Results File: A4I00695.RES Quant Time: Aug 2 8:18 2004

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)


Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004
Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
29) C140	1,2-Dichloropropane	0.00	63		N.D.	
		cis-1,3-Dichloroprop	0.00	75		N.D.	
31		Benzene	0.00	78		N.D.	
32) C155	Dibromochloromethane	0.00	129		N.D.	
33) C170	trans-1,3-Dichloropr	0.00	75		N.D.	
34		1,1,2-Trichloroethan	0.00	83		N.D.	
(-35)	() C220	Tetrachloroethene	15.14	166	51902	15.14 ng	94
36	C163	1,2-Dibromoethane	0.00	109		N.D.	
37	') C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
38) C215	2-Hexanone	0.00	43		N.D.	•
39) C230	Toluene	0.00	91		N.D.	
40) C235	Chlorobenzene	0.00	112		N.D.	
41	.) C240	Ethylbenzene	0.00	91		N.D.	
42	(c) C246	m,p-Xylene	0.00	106		N.D.	
43) C247	o-Xylene	0.00	106		N.D.	
44) C245	Styrene	0.00	104		N.D.	
46	C966	Isopropylbenzene	0.00	105		N.D.	
47) C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49) C180	Bromoform	0.00	173		N.D.	
50) C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51	.) C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52	(c) C249	1,2-Dichlorobenzene	0.00	146		N.D.	
53	c286	1,2-Dibromo-3-Chloro	0.00	75		N.D.	
<u>†</u> 54	(a) C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

I ah Name	· CTT Buffala	Contract:		ME-18		
TIED IVEILE	:: PIT DULTATO	Contract:				
Lab Code	e: <u>RECNY</u> Case No.	: SAS No.:	SDG No.:			
Matrix:	(soil/water) WATER		Lab Sample I	D: <u>A46989</u>	10	
Sample w	t/vol: <u>25.00</u>	(g/ml) <u>Ml</u>	Lab File ID:	L7924.	RR	
Level:	(low/med) <u>LOW</u>		Date Samp/Re	cv: <u>07/21/</u>	2004 07/2	23/2004
% Moistu	re: not dec	Heated Purge: N	Date Analyze	d: <u>07/31/</u>	2004	
GC Colum	n: <u>DB-624</u> ID: _	0.53 (mm)	Dilution Fac	tor: <u>1.</u>	00	
Soil Ext	ract Volume:	(uL)	Soil Aliquot	Volume:	(1	ıL)
	CAS NO. COMPO	OUND	CONCENTRATION UN (ug/L or ug/Kg)		Q	
	127-18-4Tetra 75-34-31,1-I 540-59-01,2-I 79-01-6Trich 108-90-7Chlor 75-00-3Chlor	roethane		1 1 2 1 1	บ บ บ บ บ	
	75-01-4Vinv	L CIHOTIO C		1	שו	l

Vial: 10

Quantitation Report

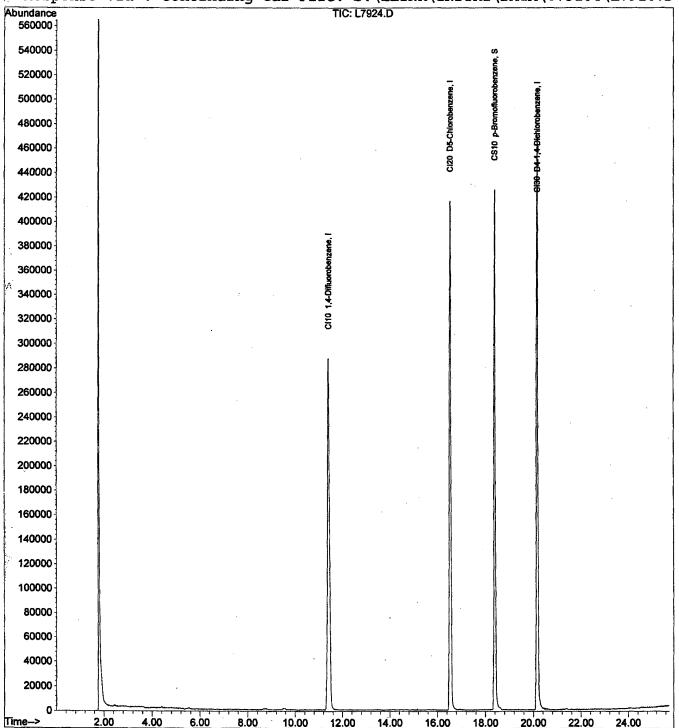
Data File: D:\ELINK\INSTR1\DATA\073104\L7924.D

Acq On : 31 Jul 2004 18:26

Operator: PC Sample : A4698910 A Inst : Finnigan

Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7924.D Vial: 10 Operator: PC Acq On : 31 Jul 2004 18:26

Inst : Finnigan Sample : A4698910 A Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

: I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Ju

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52

Internal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	11.41	114	807843	125.00 ng	0.03 92.55%
24) CI20	D5-Chlorobenzene	16.53	117	615445	125.00 ng	0.01
48) CT30	D4-1,4-Dichlorobenze	20 15		325270		
,40) CISO	D4-1,4 DICHIOLODCHZE	20.13	132	525270	123.00 119	78.94%
	itoring Compounds					,
	p-Bromofluorobenzene					
Spiked A	mount 125.000 Ran	ge 80	- 120	Recove	ry = 95	.18%
Target Com	oounds					Qvalue
•	Dichlorodifluorometh				N.D.	
	Chloromethane	0.00			N.D.	•
4) C015	Bromomethane	0.00			N.D.	
5) C020	Vinyl Chloride	0.00	62		N.D.	
6) CUZS	Chioroethane	0.00			N.D.	
	Trichlorotrifluorome				N.D.	
	Methylene Chloride	0.00			N.D.	
		0.00			N.D.	
10) C040	Carbon Disulfide	0.00	76		N.D.	
11) C045	1,1-Dichloroethene	0.00	96	•	N.D.	
	T-butyl Methyl Ether				N.D.	
13) C050		0.00	63		N.D.	
	trans-1,2-dichloroet				N.D.	
15) C056					N.D. N.D.	
16) C060 17) C222		0.00			N.D.	
17) C222 18) C065			128 62		N.D.	
19) C110	2-Butanone	0.00			N.D.	
20) C255		0.00	43	•	N.D.	
21) C291	1 1 2 Trichloro-1.2	0.00	101		N.D.	
22) C256		0.00	56		N.D.	
	Methylcyclohexane		83		N.D.	
25) C115		0.00	97		N.D.	ير
	Carbon Tetrachloride			•	N.D.	~ 18e
	Trichloroethene				N.D.	M6/N
	Bromodichloromethane	0.00			N.D.	4.81

(#) = qualifier out of range (m) = manual integration

Data File : D:\ELINK\INSTR1\DATA\073104\L7924.D Vial: 10
Acq On : 31 Jul 2004 18:26 Operator: PC

Sample : A4698910 A Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compound			R.T.	QIon	Response	Cổnc Unit	Qvalue
7 2	9)	C140	1,2-Dichloropropane	0.00	63		N.D.	
	0)	C145	cis-1,3-Dichloroprop	0.00	75		N.D.	
		C165	Benzene	0.00	78		N.D.	
3	2)	C155	Dibromochloromethane	0.00	129		N.D.	
3	3)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
	4)		1,1,2-Trichloroethan	0.00	83		N.D.	-
3	5)	C220	Tetrachloroethene	0.00	166		N.D.	
	6)		1,2-Dibromoethane	0.00	109		N.D.	وي د د د د
3	7)	C210	4-Methyl-2-Pentanone	0.00	43	•	N.D.	
3	8)	C215	2-Hexanone	0.00	43		N.D.	
3	9)	C230	Toluene	0.00	91		N.D.	
4	0)	C235	Chlorobenzene	0.00	112		N.D.	
4	1)	C240	Ethylbenzene	0.00	91		N.D.	
4	2)	C246	m,p-Xylene	0.00	106		N.D.	•
4	3)	C247	o-Xylene	0.00	106	•	N.D.	
4	4)	C245	Styrene	0.00	104		N.D.	
4	6)	C966	Isopropylbenzene	0.00	105		N.D.	·
4	7)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
4	9)	C180	Bromoform	0.00	173		N.D.	
5	0)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
5	1)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
5	2)	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
5	3)	C286	1,2-Dibromo-3-Chloro	0.00	75		N.D.	
5	4)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

			ME-19	•	
Lab Name: <u>STL Buf</u>	falo Contract:		·	· · · · · · · · · · · · · · · · · · ·	
Lab Code: <u>RECNY</u>	Case No.: SAS No.: _	SDG No.:			
Matrix: (soil/wate	er) <u>WATER</u>	Lab Sample ID	A46989	11	
Sample wt/vol:	_25.00 (g/mL) <u>ML</u>	Lab File ID:	<u>L7927.</u>	RR	-
Level: (low/med)	<u> LOW</u>	Date Samp/Rec	v: <u>07/21/</u>	2004 07/	/23/2004
% Moisture: not de	ec Heated Purge: N	Date Analyzed	: <u>07/31/</u>	<u>2004</u>	
GC Column: <u>DB-624</u>	ID: <u>0.53</u> (mm)	Dilution Facto	or: <u>1.</u>	00	
Soil Extract Volum	me: (uL)	Soil Aliquot	Volume: _		(uL)
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
71-55-6	1,1,1-Trichloroethane	`	1	U	7
	Tetrachloroethene		2	İ	
	1,1-Dichloroethane		1	U	1
540-59-0	1,2-Dichloroethene (Total		2	ט	
79-01-6	Trichloroethene		1	ט	
108-90-7-	Chlorobenzene		1	ש	
.	Chloroethane		1	U	
175-01-4-	Vinvl chloride	į.	7	III	-1

: Finnigan

Vial: 13

Operator: PC

Multiplr: 1.00

Inst

Data File: D:\ELINK\INSTR1\DATA\073104\L7927.D

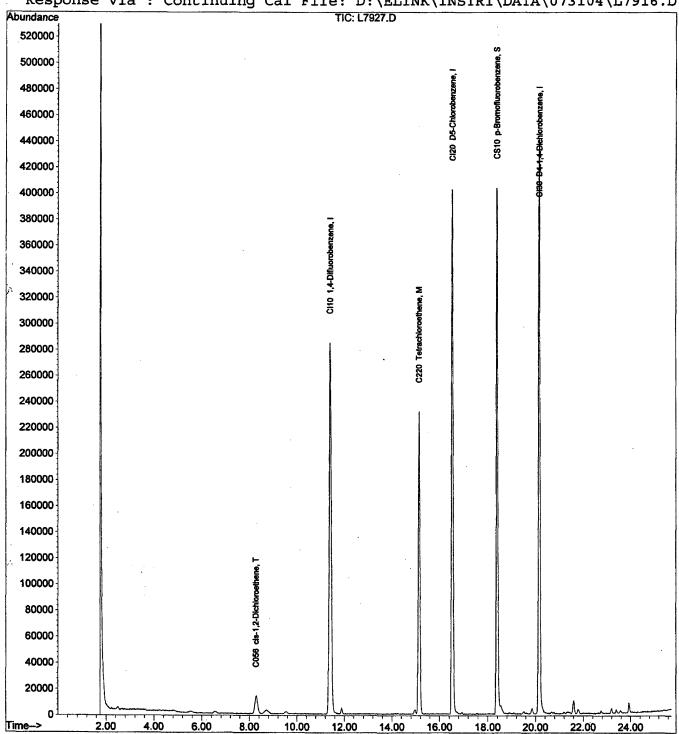
Acq On : 31 Jul 2004 20:04

Sample : A4698911 A

Misc

Method

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title CLP LOW LEVEL WATER : I50L

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7927.D Vial: 13 Acq On : 31 Jul 2004 20:04 Operator: PC

Sample : A4698911 A

Misc

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004

Inst

: Finnigan

Multiplr: 1.00

Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrate)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004

Inte	rnal S	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.41	114	806443	125.00 ng	0.03 92.39%
24)	CI20	D5-Chlorobenzene	16.54	117	590577	125.00 ng	0.03 85.95%
48)	CI30	D4-1,4-Dichlorobenze	20.16	152	313946	125.00 ng	0.04 76.19%
		nitoring Compounds					·
45)	CS10	p-Bromofluorobenzene	18.39	174	279566	116.44 ng	0.02
Sp:	iked A	amount 125.000 Ran	ge 80	- 120	Recove	ry = 93	.15%
Targ	et Con	pounds					Qvalue
2)	C290	Dichlorodifluorometh	0.00	85		N.D.	
		Chloromethane	0.00	50		N.D.	
		Bromomethane	0.00	94		N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Chloroethane	0.00	64		N.D.	
7)	C275	Trichlorotrifluorome	0.00	101		N.D.	
8)	C030	Methylene Chloride	0.00	84		N.D.	
	C035	Acetone	0.00	43		N.D.	
	C040		0.00	76		N.D.	
	C045		0.00	96		N.D.	•
	C962		0.00	73	•	N.D.	
	C050	1,1-Dichloroethane	0.00	63		N.D.	3 4/
	C057		0.00	96		N.D.	Chy (b)
	C 056		8.28	96	30013	14.23 ng	W 1 89
	C060	Chloroform	0.00	83	×.	N.D.	1001
	C222	Bromochloromethane	0.00	128		N.D.	Υ.
	C065	1,2-Dichloroethane	0.00	62		N.D.	
	C110		0.00	43		N.D.	
	C255		0.00			N.D.	*
	C291	1,1,2 Trichloro-1,2,	0.00			N.D.	
	C256	Cyclohexane	0.00	56		N.D.	7
	C012	Methylcyclohexane	0.00	83		N.D.	/q̃,,
	C115		0.00	97		N.D.	
		Carbon Tetrachloride	0.00	117		N.D.	WOL!
•	C150		0.00	95		N.D.	J. 01
28)	C130	Bromodichloromethane	0.00	83		N.D.	ſ

^{(#) =} qualifier out of range (m) = manual integration

Data File: D:\ELINK\INSTR1\DATA\073104\L7927.D Vial: 13 Acq On : 31 Jul 2004 20:04 Operator: PC

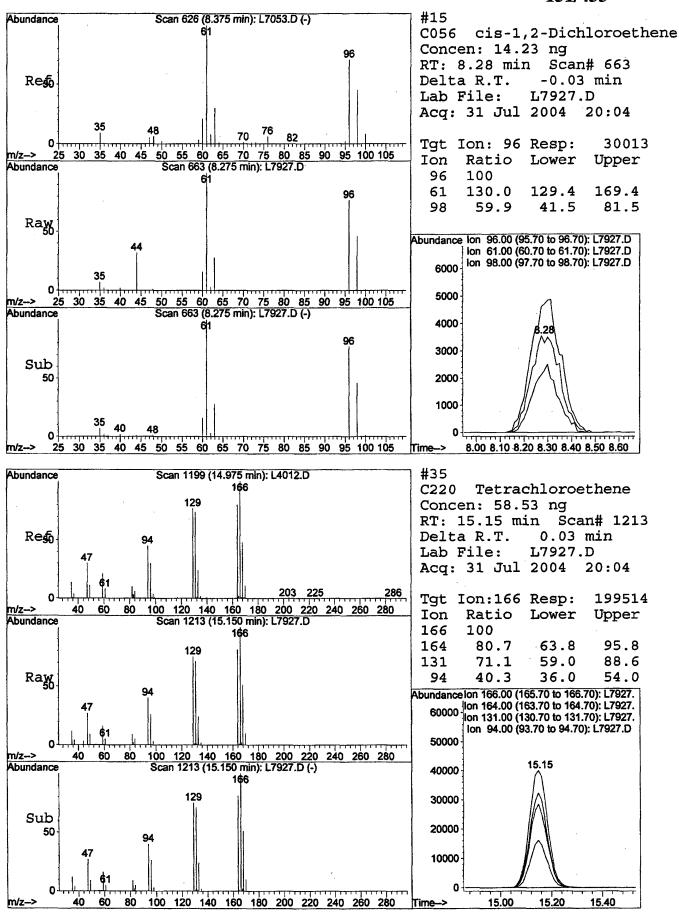
: A4698911 A Inst : Finnigan Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER Last Update : Sat Jul 31 14:39:25 2004


Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004

DataAcq Meth : METHOD.M

		Compo	R.T.	QIon	Response	Conc Unit	Qvalue	
	ຸ 29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
•	30)	C145	cis-1,3-Dichloroprop	0.00	75		N.D.	
	31)		Benzene	0.00	78		N.D.	
	32)	C155	Dibromochloromethane	0.00	129		N.D.	
	33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
_	34)	C160	1,1,2-Trichloroethan		83		N.D.	
(_		C220	Tetrachloroethene	15.15	166	199514	58.53 ng	97
_	36)	C163	1,2-Dibromoethane	0.00	109	•	N.D.	
	37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
	38)	C215	2-Hexanone	0.00	43		N.D.	
	39)	C230	Toluene	0.00	91		N.D.	
	40)	C235	Chlorobenzene	0.00	112		N.D.	
	41)	C240	Ethylbenzene	0.00	91		N.D.	
	42)	C246	m,p-Xylene	0.00	106		N.D.	
	43)	C247	o-Xylene	0.00	106		N.D.	
	44)	C245	Styrene	0.00	104		N.D.	
	46)	C966	Isopropylbenzene	0.00	105		N.D.	
	47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
	(49)	C180	Bromoform	0.00	173		N.D.	
	50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
	51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
	52)	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
	53)	C286	1,2-Dibromo-3-Chloro	0.00	75		N.D.	
	54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

I50L

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contract:	MW-2	
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) WATER	Lab Sample ID: <u>A4698912</u>	
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7928.RR</u>	ine
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/	23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed: 07/31/2004	
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor: 1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume:(ŭL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U U U U U	

Vial: 14

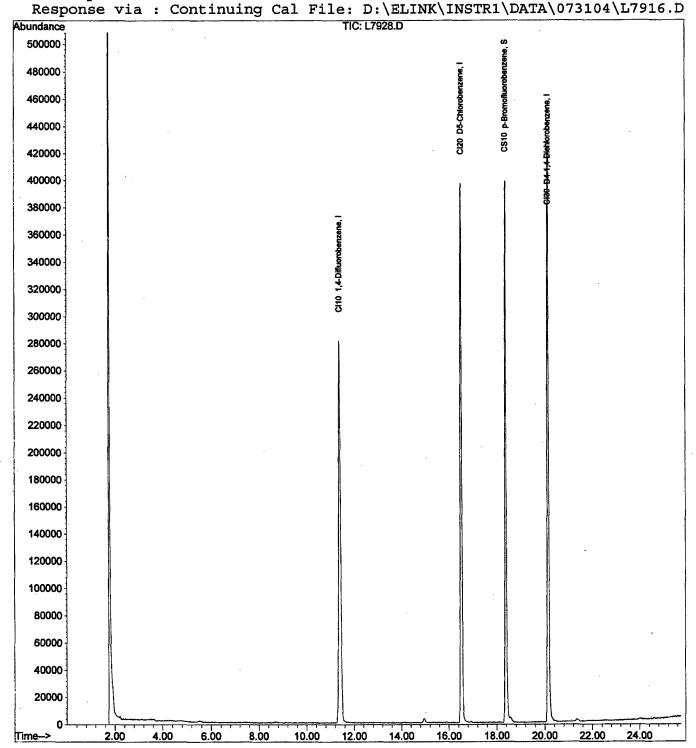
Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\073104\L7928.D

Operator: PC : 31 Jul 2004 20:37

Acq On Sample : A4698912 A Inst : Finnigan

Misc Multiplr: 1.00


MS Integration Params: RTEINT2.P

Quant Results File: A4I00695.RES Quant Time: Aug 2 8:18 2004

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

: Sat Jul 31 14:39:25 2004 Last Update

Tota File : D:\ELINK\INSTR1\DATA\073104\L7928.D Vial: 14 Acq On : 31 Jul 2004 20:37 Operator: PC

Sample : A4698912 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) NO

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D31 Jul

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004

1) CI10 1,4-Difluorobenzene					Rcv(Ar)
		114			0.00
					91.18%
24) CI20 D5-Chlorobenzene	16.53	117	581426	125.00 ng	0.01
					84.618
48) CI30 D4-1,4-Dichlorobenze	20.14	152	305897	125.00 ng	0.01
				•	74.24%
System Monitoring Compounds					
45) CS10 p-Bromofluorobenzene	18 38	174	272979	115 49 na	0.01
Spiked Amount 125.000 Rang	10.30 re 80	- 120	Recove	$m_{r} = 92$	30%
period imodife 125.000 Rang	, 00	120	Recove.	Ly - 52.	. 3) %
Target Compounds					Qvalue
2) C290 Dichlorodifluorometh	0.00	85		N.D.	•
3) C010 Chloromethane		50		N.D.	
4) C015 Bromomethane	0.00	94		N.D.	
5) C020 Vinyl Chloride	0.00	62		N.D.	
6) C025 Chloroethane		64		N.D.	
7) C275 Trichlorotrifluorome	0.00	101		N.D.	
8) C030 Methylene Chloride	0.00	84		N.D.	
9) C035 Acetone	0.00	43		N.D.	
10) C040 Carbon Disulfide	0.00	76		N.D.	
11) C045 1,1-Dichloroethene12) C962 T-butyl Methyl Ether13) C050 1,1-Dichloroethane	0.00	96		N.D.	•
12) C962 T-butyl Methyl Ether	0.00	73		N.D.	
13) C050 1,1-Dichloroethane	0.00	63		N.D.	
14) C057 trans-1,2-dichloroet	0.00	96		N.D.	
15) C056 cis-1,2-Dichloroethe	0.00	96		N.D.	
16) C060 Chloroform	0.00	83		N.D.	
17) C222 Bromochloromethane		128		N.D.	
18) C065 1,2-Dichloroethane		62		N.D.	
19) C110 2-Butanone	0.00	43		N.D.	
 19) C110 2-Butanone 20) C255 Methyl Acetate 21) C291 1,1,2 Trichloro-1,2, 	0.00	43		N.D.	
21) C291 1,1,2 Trichloro-1,2,	0.00	101		N.D.	
22) C256 Cyclohexane	0.00	56		N.D.	
23) C012 Methylcyclohexane	0.00	83	5	N.D.	N ~
(25) C115 1,1,1-Trichloroethan	0.00	97		N.D.	V(0)
26) C120 Carbon Tetrachloride				N.D.	N. H.
27) C150 Trichloroethene		95		N.D.	1 00
28) C130 Bromodichloromethane	0.00	83		N.D.	,

^{(#) =} qualifier out of range (m) = manual integration

Data File : D:\ELINK\INSTR1\DATA\073104\L7928.D Vial: 14 Acq On : 31 Jul 2004 20:37 Operator: PC

Sample : A4698912 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER
Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
30)	C145	<u>-</u> -	0.00	75		N.D.	
31)	C165	Benzene	0.00	78		N.D.	
32)	C155	Dibromochloromethane	0.00	129		N.D.	
33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
34)	C160	The state of the s	0.00	83		N.D.	
35)	C220	· · · · · · · · · · · · · · · · · · ·	0.00	166		N.D.	
36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210		0.00			N.D.	
38)	C215	2-Hexanone	0.00	43		N.D.	
.39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91		N.D.	
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	٠
46)	C966	Isopropylbenzene	0.00	105		N.D.	
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52)	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
53)	C286	1,2-Dibromo-3-Chloro	0.00	75		N.D.	
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

I50L

156/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

T - 1- 37	CTT 70 E E 7				1	MW -20	
Lao Name:	STL Buffalo	Cc	ontract:		L		
Lab Code:	<u>RECNY</u> Case	No.:	SAS No.:	SDG No.:			
Matrix: (soil/water) <u>WA</u>	<u>TER</u>		Lab Sample	e ID: A	4698913	
Sample wt,	/vol: <u>2</u>	5.00 (g/mL) <u>MI</u>	<u>.</u>	Lab File :	ID: <u>L</u>	7929.RR	-
Level:	(low/med) <u>LO</u>	<u>w</u>		Date Samp,	/Recv: 0	7/21/2004	07/23/2004
% Moistur	e: not dec	Heated I	Purge: <u>N</u>	Date Analy	yzed: <u>0</u>	7/31/2004	
GC Column	: <u>DB-624</u>	ID: <u>0.53</u> (mm)		Dilution 1	Factor: _	1.00	
Soil Extra	act Volume:	(uL)		Soil Aliq	uot Volum	e:	(uL)
	CAS NO.		s.	CONCENTRATION (ug/L or ug/l		<u>/L</u>	Q
	71-55-6 127-18-4 75-34-3 540-59-0 79-01-6 108-90-7	1,1-Dichloroet 1,2-Dichloroet 1,2-Dichloroether Trichloroether Chloroethane	hane hene (Total) ne			1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U	
1"	75-01-4'	Vinvi chloride			·	1. ITT	1

Data File: D:\ELINK\INSTR1\DATA\073104\L7929.D

: 31 Jul 2004 21:10 Acq On

Sample : A4698913 A

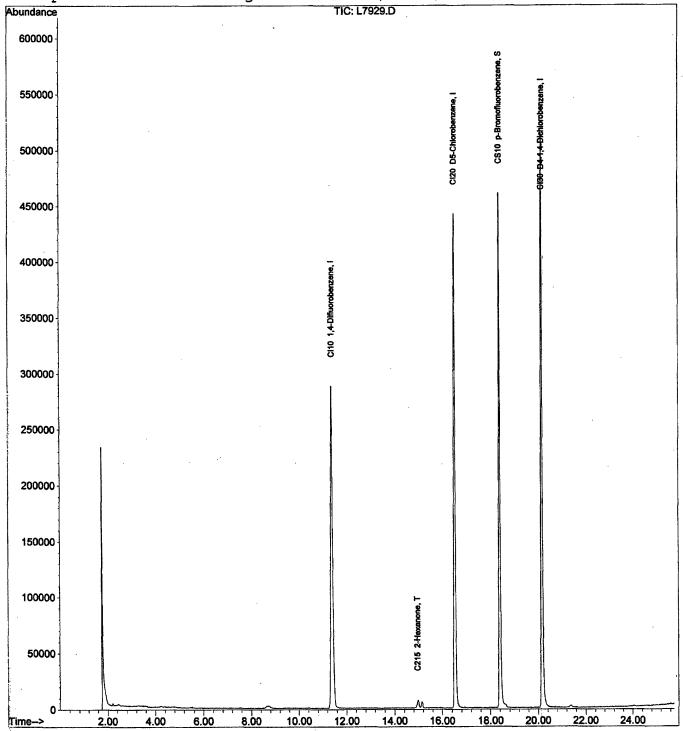
Misc

: Finnigan Inst

Vial: 15 Operator: PC

Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) Method

Title CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7929.D Vial: 15 Acq On : 31 Jul 2004 21:10 Operator: PC

Sample : A4698913 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:18 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004

Inte	rnal S		R.T.		_	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene				125.00 ng	
241	CT20	D5-Chlorobenzene	1 <i>C</i> E <i>A</i>	117	CE1701	125 00	92.30%
21)	C120	D3-Cliforopenzene	10.54	11/	021/31	125.00 ng	0.03
48)	CI30	D4-1,4-Dichlorobenze	20 16	152	358698	125.00 ng	94.00% 0 04
,			20.10	132	330,030	123.00 119	87.05%
Syste	em Mon	itoring Compounds					
45)	CS10	p-Bromofluorobenzene	18.39	174	318313	120.13 ng	0.02
Sp:	iked A	amount 125.000 Ran	ge 80	- 120	Recove	= 96	.10%
Parce	et Com	pounds					0
		Dichlorodifluorometh	0 00	85		N.D.	Qvalue
3)	C010	Chloromethane	0.00	50		N.D.	
4)	C015	Chloromethane Bromomethane	0.00	94		N.D.	
5 5)	C020	Vinyl Chloride	0.00	62		N.D.	
6)	C025	Ola I anno a talanana				N.D.	
	C275	Trichlorotrifluorome Methylene Chloride Acetone	0.00	101		N.D.	
	C030	Methylene Chloride	0.00	84		N.D.	
	C035	Acetone	0.00	43		N.D.	
		Carbon Disulfide	0.00	76		N.D.	
		1.1-Dichloroethene	0.00	96	•	N.D.	
12)	C962	1,1-Dichloroethene T-butyl Methyl Ether	0.00	73		N.D.	
13)	C050	1,1-Dichloroethane	0.00	63		N.D.	
14)	C057	trang_1 2_dighloroet	0 00	06		N.D.	
15)	C056	cis-1,2-Dichloroethe Chloroform	0.00	96		N.D.	
16)	C060	Chloroform	0.00	83		N.D.	
	C222	Bromochloromethane				N.D.	•
	C065	1,2-Dichloroethane	0.00	62		N.D.	
	C110	2-Butanone	0.00	43		N.D.	
	C255		0.00	43		N.D.	
	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	
22)	C256	Cyclohexane	0.00	56		N.D.	
23)	C012	Cyclohexane Methylcyclohexane 1,1,1-Trichloroethan	0.00	83		N.D.	MA
25)	C115	1,1,1-Trichloroethan	0.00	97		N.D.	KD.
26)	C120	Carbon Tetrachloride	0.00	117		N.D.	$\chi_{'Q}$
27)	C150	Trichloroethene	0.00			N.D.	ſ
28)	C130	Bromodichloromethane	0.00	83		N.D.	1

(#) = qualifier out of range (m) = manual integration L7929.D A4100695.M

Mon Aug 02 08:19:01 2004 **I50L**

Data File : D:\ELINK\INSTR1\DATA\073104\L7929.D Vial: 15 Operator: PC Acq On : 31 Jul 2004 21:10

Sample : A4698913 A Inst : Finnigan Multiplr: 1.00 Misc

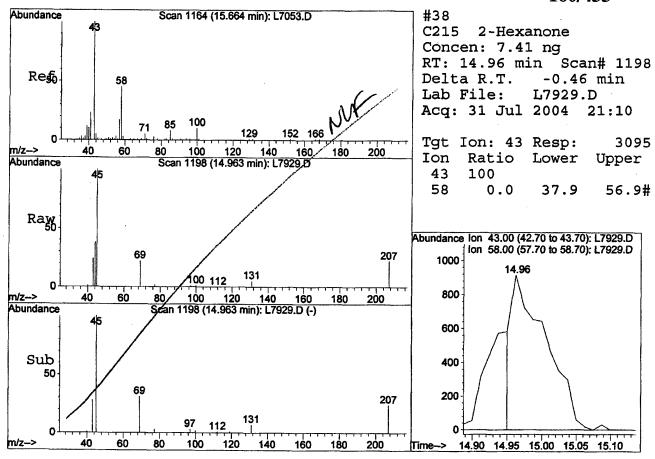
MS Integration Params: RTEINT2.P

Quant Results File: A4I00695.RES Quant Time: Aug 2 8:18 2004

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004


Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
-	C140	1,2-Dichloropropane	0.00			N.D.	
30)	C145	cis-1,3-Dichloroprop	0.00	75		N.D.	
31)	C165	Benzene	0.00			N.D.	
32)	C155	Dibromochloromethane	0.00			N.D.	
33)		trans-1,3-Dichloropr	0.00			N.D.	
34)	C160	1,1,2-Trichloroethan	0.00			N.D.	
35)	C220	Tetrachloroethene	0.00	166		N.D.	
36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	16
38)	C215	2-Hexanone	14.96	43	3095	7.42 ng N	/V ₩ 29
39)	C230	Toluene	0.00	91		A V.D.	
40)	C235	Chlorobenzene	0.00	112		\langle N.D.	
41)	C240	Ethylbenzene	0.00	91		N.D.	•
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	
46)	C966	Isopropylbenzene	0.00	105		N.D.	•
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00			N.D.	
51)	C267	1,4-Dichlorobenzene	0.00			N.D.	
52)	C249	1,2-Dichlorobenzene	0.00			N.D.	
53)		1,2-Dibromo-3-Chloro	0.00			N.D.	
-	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

I50L .

Øir

161/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contract:	MW-6
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A4698914
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7930.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	2 1 2 U U U

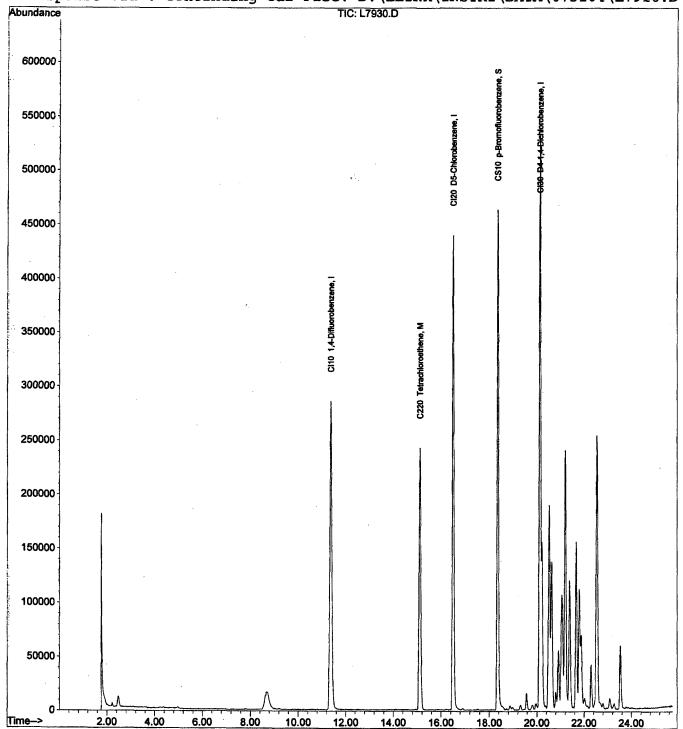
Data File: D:\ELINK\INSTR1\DATA\073104\L7930.D

Vial: 16 : 31 Jul 2004 Operator: PC

Sample : A4698914 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Acq On


Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7930.D

Acq On : 31 Jul 2004 21:43

Sample : A4698914 A

Misc :

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:19 2004

Vial: 16 Operator: PC

Inst : Finnigan

Multiplr: 1.00

Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916,D31

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene				125.00 ng	
•		D5-Chlorobenzene			631712		-0.01 91.93%
48)	CI30	D4-1,4-Dichlorobenze	20.11	152	366548	125.00 ng	-0.01 88.96%
		itoring Compounds					
		p-Bromofluorobenzene					
Sp	iked A	mount 125.000 Ran	.ge 80	- 120	Recove	ry = 97	.82%
Targ	et Com	pounds		ı			Qvalue
		Dichlorodifluorometh				N.D.	
		Chloromethane				N.D.	
		Bromomethane				N.D.	
5)	C020	Vinyl Chloride	0.00	62		N.D.	
		Chloroethane	0.00		•	N.D.	
		Trichlorotrifluorome				N.D.	
		Methylene Chloride				N.D.	
9)	C035	Acetone	0.00	43		N.D.	
10)	C040	Carbon Disulfide 1,1-Dichloroethene T-butyl Methyl Ether	0.00	76		N.D.	
11)	C045	1,1-Dichloroethene	0.00	96	•	N.D.	
12)	C962	T-butyl Methyl Ether	0.00	73		N.D.	
	C050					N.D.	
		trans-1,2-dichloroet				N.D.	
		cis-1,2-Dichloroethe		96		N.D.	ı
		Chloroform	0.00			N.D.	
		Bromochloromethane				N.D.	
		1,2-Dichloroethane				N.D.	
19)	C110	2-Butanone Methyl Acetate 1,1,2 Trichloro-1,2,	0.00	43	•	N.D.	
20)	C255	Methyl Acetate	0.00	43		N.D.	
21)	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	
	C256	Cyclohexane	0.00	56		N.D.	Λ.
	C012	Methylcyclohexane	0.00	83		N.D.	/8.
						N.D.	1 9/0 ,
26)	CT50	Carbon Tetrachloride	0.00			N.D.	1/0/V
		Trichloroethene				N.D.	\(\frac{1}{\range} \D \range \range \)
28)	CT30	Bromodichloromethane	0.00	83 		N.D.	^L -

(#) = qualifier out of range (m) = manual integration

L7930.D A4I00695.M Mon Aug 02 08:19:11 2004

I50L

Page 1

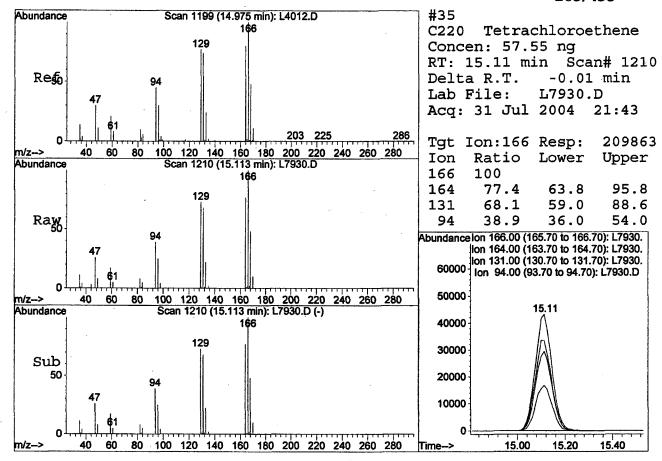
Data File : D:\ELINK\INSTR1\DATA\073104\L7930.D Vial: 16 Acq On : 31 Jul 2004 21:43 Operator: PC

Sample : A4698914 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)


Title : I50L CLP LOW LEVEL WATER Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
30)	C145	cis-1,3-Dichloroprop	0.00	75		N.D.	
31)	C165	Benzene	0.00	78		N.D.	•
32)	C155	Dibromochloromethane	0.00	129		N.D.	
33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
34)	C160	1,1,2-Trichloroethan		83	٠	N.D.	
(35)	C220	Tetrachloroethene	15.11	166	209863	57.55 ng	94
361	C163	1,2-Dibromoethane	0.00	109		N.D.	•
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
38)	C215	2-Hexanone	0.00	43	0	N.D.	
39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91		N.D.	
42)		m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	
	C966	Isopropylbenzene	0.00	105		N.D.	•
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
49)		Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52)		1,2-Dichlorobenzene	0.00	146		N.D.	
53)		1,2-Dibromo-3-Chloro	0.00	75		N.D.	
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

I50L

166/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Iah Nama. (STL Buffalo	Contract.		MW-8				
LED Nelle:	SIL BUITATO	Contract:						
Lab Code: 1	RECNY Case No.:	SAS No.:	SDG No.:					
Matrix: (s	oil/water) <u>WATER</u>		Lab Sample	ID: <u>A4698</u>	915			
Sample wt/	vol: <u>25.00</u> (g/mL)	<u>ML</u>	Lab File I	D: <u>L7931</u>	.RR	-		
Level: (low/med) <u>LOW</u>		Date Samp/	Recv: <u>07/21</u>	/2004 07/	23/2004		
% Moisture	: not dec Heated	i Purge: <u>N</u>	Date Analy	Date Analyzed: <u>07/31/2004</u>				
GC Column:	<u>DB-624</u> ID: <u>0.53</u> (n	nm)	Dilution F	actor:1	.00			
Soil Extra	ct Volume: (uL)		Soil Aliqu	ot Volume: _	((uL)		
C	AS NO. COMPOUND		CONCENTRATION (ug/L or ug/K		Q	:		
12 79	1-55-61,1,1-Trichl 27-18-4Tetrachloros 5-34-31,1-Dichloros	ethene cethane	. '	1 1 0.4	U U J			
79	40–59–01,2-Dichlord 9–01–6Trichloroeth	serveue (locar) [—]		2 1	U			
lío	08-90-7Chlorobenzer	·		1	บ			
75	5-00-3Chloroethane	· ·		ī	lΰ	,		
	5-01-4Vinyl chlori			_ 1	Ū	;		

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7931.D

Acq On : 31 Jul 2004 22:15

Sample : A4698915 A

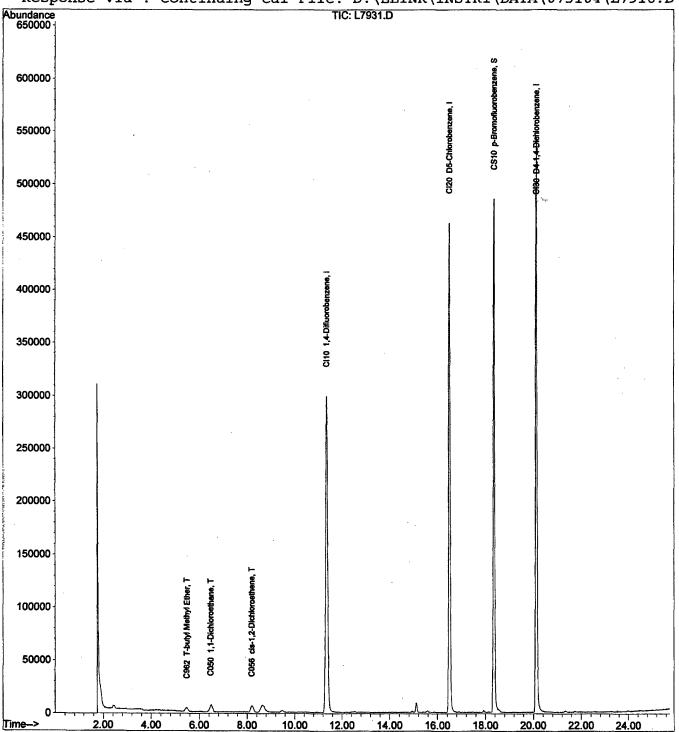
Misc

MS Integration Params: RTEINT2.P

Vial: 17 Operator: PC

Inst : Finnigan

Multiplr: 1.00


Quant Time: Aug 2 8:19 2004

Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title CLPLOW LEVEL WATER Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7931.D Vial: 17

Acq On : 31 Jul 2004 22:15 Operator: PC Sample : A4698915 A

Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004)

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Internal S	tandards	R.T.	QIón	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	11.36	114	840529	125.00 ng	-0.02 96.29%
24) CI20	D5-Chlorobenzene	16.50	117	678181	125.00 ng	
48) CI30	D4-1,4-Dichlorobenze	20.13	152	374216	125.00 ng	0.00 90.82%
	itoring Compounds p-Bromofluorobenzene	10.26	174	222024	120.43 ng	0.00
	mount 125.000 Ran				_	
Target Com						Qvalue
	Dichlorodifluorometh				N.D.	
=	Chloromethane	0.00	50		N.D.	
	Bromomethane	0.00	94		N.D.	
		0.00	62		N.D.	
	Chloroethane	0.00	64		N.D.	
7) C275					N.D.	
8) C030	Methylene Chloride				N.D.	
9) C035	Acetone	0.00	43		N.D.	
10) C040	Carbon Disulfide	0.00			N.D.	
11) C045	1,1-Dichloroethene	0.00			N.D.	16
12) C962	T-butyl Methyl Ether	5.48		13895	6 29 ng	86 86
13) C050	1,1-Dichloroethane	6.48		37853	9.17 ng	85
14) C057	trans-1,2-dichloroet				N.D.	" " " " " " " " " " " " " " " " " " "
(15))C056	cis-1,2-Dichloroethe			13953	6.35 ng	# 1/2 1/2/20
16) C060	Chloroform	0.00			N.D.	2060 V
17) C222	Bromochloromethane	0.00			N.D.	"V". J"
18) C065	1,2-Dichloroethane	0.00	62		N.D.	· v
19) C110	2-Butanone	0.00			N.D.	
20) C255	Methyl Acetate	0.00			N.D.	
21) C291	1,1,2 Trichloro-1,2,	0.00			N.D.	
22) C256	Cyclohexane	0.00			N.D.	ķ
23) C012	Methylcyclohexane				N.D.	'(M),
25) C115	1,1,1-Trichloroethan				N.D.	MAN
26) C120			117		N.D.	JYK,
27) C150		0.00			N.D.	ſ
28) C130	Bromodichloromethane	0.00	83		N.D.	

^{(#) =} qualifier out of range (m) = manual integration

169/433

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7931.D Vial: 17 Acq On : 31 Jul 2004 22:15 Operator: PC

Sample : A4698915 A Inst : Finnigan

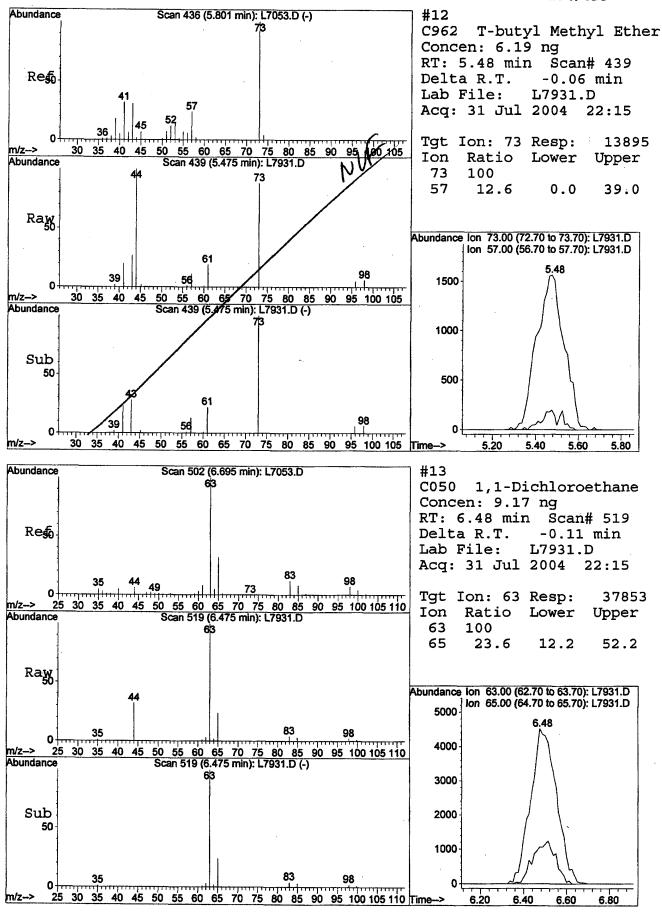
Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

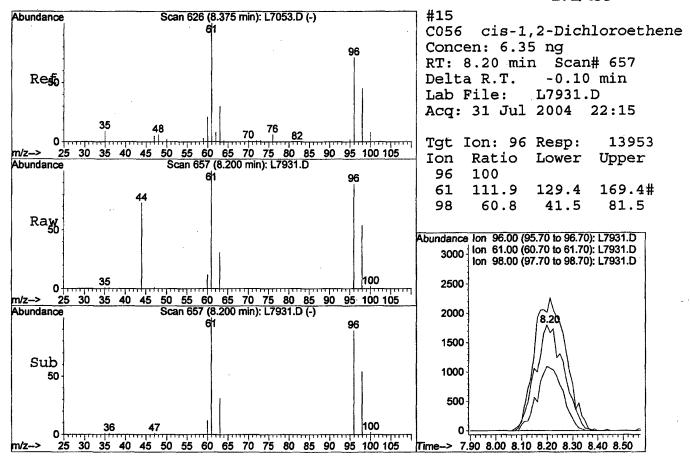
Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER Last Update : Sat Jul 31 14:39:25 2004


Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M


	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
30)	C145	cis-1,3-Dichloroprop	0.00	75		N.D.	
31)	C165	Benzene	0.00	78		N.D.	
32)	C155	Dibromochloromethane	0.00	129		N.D.	
33)	C170	trans-1,3-Dichloropr	0.00	75	•	N.D.	
34)	C160	1,1,2-Trichloroethan	0.00	83		N.D.	
35)	C220	Tetrachloroethene	0.00	166	¥ ²	N.D.	
36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	. T.
38)	C215	2-Hexanone	0.00	43		N.D.	
39)	C230	Toluene	0.00	91		N.D.	
40)	C235	Chlorobenzene	0.00	112		N.D.	
41)	C240	Ethylbenzene	0.00	91	**	N.D.	
42)	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
44)	C245	Styrene	0.00	104		N.D.	
46)	C966	Isopropylbenzene	0.00	105		N.D.	
47)	C225	1,1,2,2-Tetrachloroe	0.00	83	•	N.D.	
49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52)	C249	1,2-Dichlorobenzene	0.00	146		N.D.	
		1,2-Dibromo-3-Chloro	0.00	75		N.D.	
54)	C313	1,2,4-Trichlorobenze	0.00	180		N.D.	

I50L

L7931.D A4I00695.M Acq :31 Jul 2004 22:15 Sample = A4698915 A Misc =

150L

172/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract:	MW-9/10R
will act.	
Lab Code: RECNY Case No.: SAS No.:_	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698916</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7933.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene	1 U U U
75-34-31,1-Dichloroethane	
540-59-01,2-Dichloroethene (Total	
79-01-6Trichloroethene	1 U
108-90-7Chlorobenzene	1 U
75-00-3Chloroethane	1 U
75-01-4Vinyl chloride	1 U

Vial: 19

Multiplr: 1.00

Quantitation Report

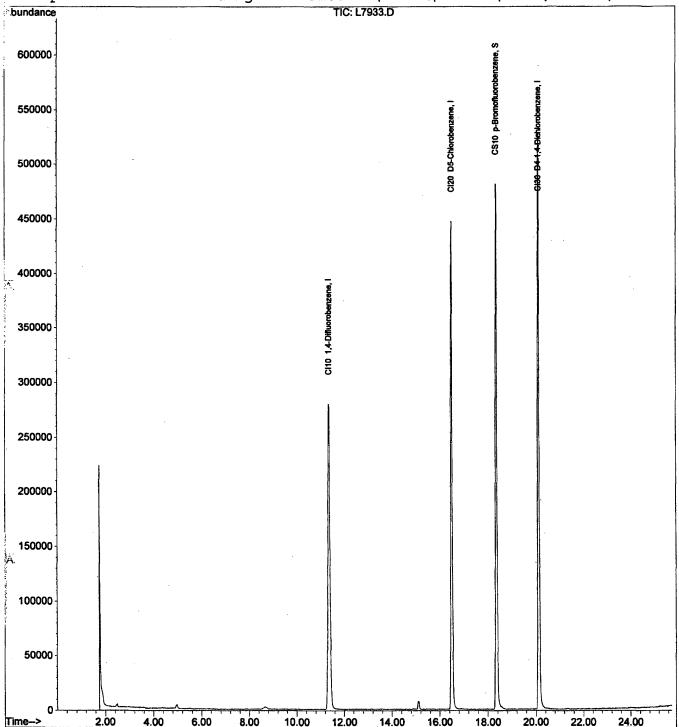
Data File: D:\ELINK\INSTR1\DATA\073104\L7933.D

: 31 Jul 2004 23:21

Operator: PC Sample : A4698916 A Inst : Finnigan

Misc

MS Integration Params: RTEINT2.P


Quant Results File: A4I00695.RES Quant Time: Aug 2 8:19 2004

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

NQ.

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7933.D Vial: 19 Acq On : 31 Jul 2004 23:21 Operator: PC

Sample : A4698916 A Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916 b 31 Jul

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004

Inte	rnal 8	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.36	114	790631	125.00 ng	~0.02 90.58%
24)	CI20	D5-Chlorobenzene	16.50	117	640473	125.00 ng	
48)	CI30	D4-1,4-Dichlorobenze	20.11	152	366535	125.00 ng	
Syste	em Mor	nitoring Compounds					
		p-Bromofluorobenzene	18.35	174	322288	123.78 ng	-0.01
Sp.	iked A	Amount 125.000 Ran	ge 80	- 120	Recove	ry = 99	
		npounds					Qvalue
2)	C290	Dichlorodifluorometh				N.D.	
		Chloromethane	0.00			N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	-
5)	C020	Vinyl Chloride Chloroethane	0.00	62		N.D.	
						N.D.	
		Trichlorotrifluorome				N.D.	
_ •	C030	_		84		N.D.	
	C035		0.00	43		N.D.	
10)	C040	Carbon Disulfide 1,1-Dichloroethene	0.00	76		N.D.	*
,	-01		0.00	96		N.D.	
· 14)	C962	1-purly Metnyl Ether	0.00	73		N.D.	
	C050		0.00	63		N.D.	
	C057		0.00	96		N.D.	
	C056	cis-1,2-Dichloroethe	0.00	96		N.D.	
	C060		0.00			N.D.	
17)	C222	Bromochloromethane	0.00			N.D.	
18)	C065	1,2-Dichloroethane	0.00			N.D.	
19)	C110	2-Butanone Methyl Acetate	0.00	43		N.D.	
20)	C255	Methyl Acetate	0.00			N.D.	
	C291					N.D.	
	C256		0.00	56		N.D.	
23)	C012	Methylcyclohexane	0.00	83		N.D.	ı
25)	C115	1,1,1-Trichloroethan	0.00	97		N.D.	ks.
26)	C120	Carbon Tetrachloride	0.00	117		N.D.	alaba,
27)	C150	Trichloroethene	0.00	95		N.D.	KUN
28)	C130	Bromodichloromethane	0.00	83		N.D.	∫¹* 5 .
/ # 5	_						

^{(#) =} qualifier out of range (m) = manual integration L7933.D A4100695.M

I50L

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7933.D Vial: 19
Acq On : 31 Jul 2004 23:21 Operator: PC

Sample : A4698916 A Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:19 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compound		R.T.	QIon	Response	Conc Unit	Qvalue
29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
	C145		0.00	75		N.D.	•
• .	C145	Benzene	0.00	78		N.D.	
-	C155	Dibromochloromethane	0.00	129		N.D.	
	C170		0.00	75		N.D.	
	C160	1,1,2-Trichloroethan	0.00	83		N.D.	
	C220	· ·		166		N.D.	
		Tetrachloroethene	0.00				
-	C163	1,2-Dibromoethane	0.00	109		N.D.	
	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
-	C215	2-Hexanone		43		N.D.	
	C230	Toluene	0.00	91		N.D.	
-	C235	Chlorobenzene	0.00	112		N.D.	
	C240	Ethylbenzene	0.00	91		N.D.	
	C246	m,p-Xylene	0.00	106		N.D.	
43)	C247	o-Xylene	0.00	106		N.D.	
	C245	Styrene	0.00	104		N.D.	
, 46)	C966	Isopropylbenzene	0.00	105		N.D.	
47)	C225	1,1,2,2-Tetrachloroe	0.00	83		N.D.	
(49)	C180	Bromoform	0.00	173		N.D.	
50)	C260	1,3-Dichlorobenzene	0.00	146		N.D.	
51)	C267	1,4-Dichlorobenzene	0.00	146		N.D.	
52)	C249		0.00	146		N.D.	
	C286	=	0.00	75	•	N.D.	
	C313	•	0.00	180		N.D.	

176/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract:		TRIP BLA	NK	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	- 1		
Matrix: (soil/water) WATER	Lab Sample ID:	A4698917		
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID:	P6804 .RR		
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/200	4 07/23/200	<u>)4</u>
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/30/200	4	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00		
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)		Q	
71-55-61,1,1-Trichloroethane_			U	
127-18-4Tetrachloroethene		3	ט	
75-34-31,1-Dichloroethane			ט	
540-59-01,2-Dichloroethene (Total)		1	ט	
79-01-6Trichloroethene			U	
108-90-7Chlorobenzene		,	U	
75-00-3Chloroethane		1	U	
75-01-4Vinyl chloride		1 1	ט	


Data File : H:\GCMS_VOA\P\073004\P6804.D
Acq On : 30 Jul 2004 18:17
Sample : A4698917 A ... Vial: 13 .. Operator: PC

Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:02 2004 Quant Results File: A4I00692.RES

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator)

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:02:52 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

Rev (Ar)	Internal	Standards				Conc Units		
17) CI20 D5-Chlorobenzene 13.95 117 532444 125.00 ng 0.00 87.50\(\) 40) CI30 D4-1,4-Dichlorobenze 17.34 152 233865 125.00 ng 0.00 67.45\(\) System Monitoring Compounds 38) CS10 p-Bromofluorobenzene 15.61 174 159049 105.40 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 84.32\(\) Recovery = 84.32\(\) Amount 25.000 Range 80 - 120 Recovery = 84.32\(\) Amount 25.000 Range 80 - 120 Recovery = 84.32\(\) Amount 25.000 Range 80 - 120 Recovery = 84.32\(\) Amount Am	1) CI1	0 1,4-Difluorobenzene	10.04	114	572477	125.00 ng	0.00	
August A	17) CI2	0 D5-Chlorobenzene	13.95	117	532444	125.00 ng	0.00	
System Monitoring Compounds 38) CS10 p-Bromofluorobenzene 15.61 174 159049 105.40 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 84.32*	40) CI3	0 D4-1,4-Dichlorobenze	17.34	152	233865	125.00 ng		
Sepiked Amount 125.000 Range 80 - 120 Recovery = 84.32%						2		
Sepiked Amount 125.000 Range 80 - 120 Recovery = 84.32%	Creation M	onitonina Company						
Target Compounds 2) C010 Chloromethane	System M	Onicoring compounds						
Target Compounds	Spiked	Amount 135 000 De-	15.61	174	159049	105.40 ng	0.00	
2) C010 Chloromethane 3) C015 Bromomethane 0.00 94 0 N.D. 4) C020 Vinyl Chloride 4.88 62 795 N.D. 5) C025 Chloroethane 5.31 64 138 N.D. 6) C030 Methylene Chloride 7.02 84 14367 9.06 ng 94 8) C040 Carbon Disulfide 6.46 43 6094 31.55 ng 8) C040 Carbon Disulfide 6.80 76 2414 N.D. 10 C050 1,1-Dichloroethene 10 C050 1,1-Dichloroethane 11) C057 trans-1,2-dichloroet 12) C056 cis-1,2-Dichloroethe 12) C056 cis-1,2-Dichloroethe 13) C060 Chloroform 13) C060 Chloroform 14) C222 Bromochloromethane 15) C051 1,2-Dichloroethane 16) C110 2-Butanone 17) C150 1,1-Trichloroethane 18) C150 1,1,1-Trichloroethane 19) C120 Carbon Tetrachloride 10,42 95 1301 N.D. 11) C130 Bromodichloromethane 10.42 95 1301 N.D. 12) C130 Bromodichloromethane 10.42 95 1301 N.D. 12) C140 1,2-Dichloropropane 10,72 63 338 N.D. 12) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C140 1,2-Trichloroethane 12.81 129 1391 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C104 1,2-Dichloropropane 11.59 75 160 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C104 1,2-Dichloropropane 10.72 63 338 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloropropane 11.59 75 160 N.D. 24) C165 Benzene 12.82 166 2221 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 12.81 129 1391 N.D. 210 C150 Trichloromethane 12.81 129 1391 N.D. 25) C165 1,2-Dibromoethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichlorobethane 12.81 129 1391 N.D. 28) C246 M.PYylene 14.05 1316 N.D. 31) C250 Tetrachlorobethene 12.82 166 2221 N.D. 31) C250 Tetrachlorobethene 12.82 166 2221 N.D. 32) C230 Toluene 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C246 M.PYylene 34) C245 Styrene 34 C245 Styrene	Spiked	Amount 125.000 Rai	nge 80	- 120	Recove	ry = 84	.32%	
2) C010 Chloromethane 3) C015 Bromomethane 0.00 94 0 N.D. 4) C020 Vinyl Chloride 4.88 62 795 N.D. 5) C025 Chloroethane 5.31 64 138 N.D. 6) C030 Methylene Chloride 7.02 84 14367 9.06 ng 94 8) C040 Carbon Disulfide 6.46 43 6094 31.55 ng 8) C040 Carbon Disulfide 6.80 76 2414 N.D. 10 C050 1,1-Dichloroethene 10 C050 1,1-Dichloroethane 11) C057 trans-1,2-dichloroet 12) C056 cis-1,2-Dichloroethe 12) C056 cis-1,2-Dichloroethe 13) C060 Chloroform 13) C060 Chloroform 14) C222 Bromochloromethane 15) C051 1,2-Dichloroethane 16) C110 2-Butanone 17) C150 1,1-Trichloroethane 18) C150 1,1,1-Trichloroethane 19) C120 Carbon Tetrachloride 10,42 95 1301 N.D. 11) C130 Bromodichloromethane 10.42 95 1301 N.D. 12) C130 Bromodichloromethane 10.42 95 1301 N.D. 12) C140 1,2-Dichloropropane 10,72 63 338 N.D. 12) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C140 1,2-Trichloroethane 12.81 129 1391 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C104 1,2-Dichloropropane 11.59 75 160 N.D. 24) C165 Benzene 10.42 95 1301 N.D. 25) C155 Dibromochloromethane 11.03 83 883 N.D. 21) C104 1,2-Dichloropropane 10.72 63 338 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloropropane 11.59 75 160 N.D. 24) C165 Benzene 12.82 166 2221 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 12.81 129 1391 N.D. 210 C150 Trichloromethane 12.81 129 1391 N.D. 25) C165 1,2-Dibromoethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichlorobethane 12.81 129 1391 N.D. 28) C246 M.PYylene 14.05 1316 N.D. 31) C250 Tetrachlorobethene 12.82 166 2221 N.D. 31) C250 Tetrachlorobethene 12.82 166 2221 N.D. 32) C230 Toluene 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C246 M.PYylene 34) C245 Styrene 34 C245 Styrene	Target C	ompounds					Ovalue	
4) C020 Vinyl Chloride	2) C01	O Chloromethane	4.43	50	185	N.D.	Qvarac	
4) C020 Vinyl Chloride	3). C01.	5 Bromomethane	0.00	94	. 0	N.D.		
10) C050	4) C02	O Vinyl Chloride	4.88	62	795	N.D.		
10) C050	5) C02	5 Chloroethane	5.31	64	138	N D	•	
10) C050	6) C03	Methylene Chloride	7.02	84	14367	9.06 ng		MS
10) C050	7) C03	5 Acetone	6.46	43	6094	31 55 ng		7
10) C050	8) C04	O Carbon Disulfide	6.80	76	2414	מ או		- 1
14) C222 Bromochloromethane 0.00 128 0 N.D. 15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethane 11.03 83 883 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethane 12.82 166 2221 N.D. 29) C163 1,2-Dibromochloromethane 12.82 166 2221 N.D. 30) C210 4-Methyl-2-Pentanone 12.80 43 1180 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 91 2574 N.D. 36) C247 O-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	9) C04	5 1.1-Dichloroethene	0.00	96	. 2111	N D		- 1
14) C222 Bromochloromethane 0.00 128 0 N.D. 15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethane 11.03 83 883 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethane 12.82 166 2221 N.D. 29) C163 1,2-Dibromochloromethane 12.82 166 2221 N.D. 30) C210 4-Methyl-2-Pentanone 12.80 43 1180 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 91 2574 N.D. 36) C247 O-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	10) C05	0 1.1-Dichloroethane	7.88	63	143	א ס		
14) C222 Bromochloromethane 0.00 128 0 N.D. 15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethane 11.03 83 883 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethane 12.82 166 2221 N.D. 29) C163 1,2-Dibromochloromethane 12.82 166 2221 N.D. 30) C210 4-Methyl-2-Pentanone 12.80 43 1180 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 91 2574 N.D. 36) C247 O-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	11) C05	7 trans-1.2-dichloroet	7 36	96	130	N D	•	
14) C222 Bromochloromethane 0.00 128 0 N.D. 15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethane 11.03 83 883 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethane 12.82 166 2221 N.D. 29) C163 1,2-Dibromochloromethane 12.82 166 2221 N.D. 30) C210 4-Methyl-2-Pentanone 12.80 43 1180 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 91 2574 N.D. 36) C247 O-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	12) C05	6 cis-1.2-Dichloroethe	0.00	96	130	N D	•	
14) C222 Bromochloromethane 0.00 128 0 N.D. 15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethene 10.42 95 1301 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.81 129 1391 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 O-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	13) C06	O Chloroform	8 92	83	5788	N D	•	-
15) C065 1,2-Dichloroethane 10.04 62 21366 12.12 ng # 17 16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethene 10.42 95 1301 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromochlane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 106 1316 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	14) C22	2 Bromochloromethane	0.00			N D		- 1
16) C110 2-Butanone 8.54 43 428 N.D. 18) C115 1,1,1-Trichloroethan 9.21 97 326 N.D. 19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethene 10.42 95 1301 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	15) C06	5 1.2-Dichloroethane	10.04	62	21366	12 12 na	41	-
18) C115	16) C11	0 2-Butanone	8 54	43	428	ת זא די	π	_
19) C120 Carbon Tetrachloride 9.44 117 371 N.D. 20) C150 Trichloroethene 10.42 95 1301 N.D. 21) C130 Bromodichloromethane 11.03 83 883 N.D. 22) C140 1,2-Dichloropropane 10.72 63 338 N.D. 23) C145 cis-1,3-Dichloroprop 11.59 75 160 N.D. 24) C165 Benzene 9.67 78 3996 N.D. 25) C155 Dibromochloromethane 12.81 129 1391 N.D. 26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C230 Toluene 12.06 91 6469 N.D. 34) C240 Ethylbenzene 14.00 112 5893 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	ורות ופר	E 7 7 7 Mariah laman bara	~ ~ 1	~ =	~~~		•	
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	19) C12	Carbon Tetrachloride	9.44	117	371	N D		
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	20) C15) Trichloroethene	10.42	95	1301	N D	•	
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	21) C13	D. Bromodichloromethane	11.03	83	883	N D	•	
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	22) C14	1,2-Dichloropropane	10.72	63	338	N.D.	•	
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	23) C14	cis-1.3-Dichloroprop	11.59	75	160	N.D.		
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	24) C16	5 Benzene	9.67	78	3996	N D		
26) C170 trans-1,3-Dichloropr 12.26 75 442 N.D. 27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	25) C15	Dibromochloromethane	12.81	129	1391	N.D.	* *	
27) C160 1,1,2-Trichloroethan 12.55 97 319 N.D. 28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	26) C17	trans-1.3-Dichloropr	12.26	75	442	N.D.		
28) C220 Tetrachloroethene 12.82 166 2221 N.D. 29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	27) C16	1,1,2-Trichloroethan	12.55	97				
29) C163 1,2-Dibromoethane 0.00 109 0 N.D. 30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	28) C22	Tetrachloroethene	12.82	166	2221	N.D.		
30) C210 4-Methyl-2-Pentanone 11.72 43 2164 N.D. 31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	29) C16:	1,2-Dibromoethane	0.00	109	0	и р		
31) C215 2-Hexanone 12.80 43 1180 N.D. 32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	30) C21	4-Methyl-2-Pentanone	11.72	43	2164	N.D.		
32) C230 Toluene 12.06 91 6469 N.D. 33) C235 Chlorobenzene 14.00 112 5893 N.D. 34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	31) C21	5 2-Hexanone	12 80	43	1180	N.D.		
34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	32) C23) Toluene	12.06	91	6469			
34) C240 Ethylbenzene 14.25 91 2574 N.D. 35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.		5 Chlorobenzene	14.00	112	5893			
35) C246 m,p-Xylene 14.25 106 1316 N.D. 36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D.	34) C24() Ethylbenzene						
36) C247 o-Xylene 0.00 106 0 N.D. 37) C245 Styrene 14.85 104 287 N.D. 39) C225 1,1,2,2-Tetrachloroe 15.75 83 1414 N.D.	35) C246	m,p-Xylene	14.25	106	1316		•	
37) C245 Styrene 14.85 104 287 N.D. 39) C225 1,1,2,2-Tetrachloroe 15.75 83 1414 N.D.	36) C24	7 o-Xylene	0.00	106	0			
39) C225 1,1,2,2-Tetrachloroe 15.75 83 1414 N.D.	37) C24!	Styrene	14.85	104	287			
	39) C225	1,1,2,2-Tetrachloroe	15.75	83 .	1414	,		

W. John

^{(#) =} qualifier out of range (m) = manual integration P6804.D A4I00692.M Fri Jul 30 23:02:57 2004 HP5973P

Quantitation Report

Data File : H:\GCMS_VOA\P\073004\P6804.D Vial: 13

Acq On : 30 Jul 2004 18:17 Operator: PC Sample Inst : HP5973 P

: A4698917 A : Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:02:52 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

Compo	Compound			Response	Conc Unit	Qvalue
42) C260 43) C267 44) C249 45) C286	Bromoform 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze	17.24	146 146	0 1261 1261 365 0 1051		

STANDARDS

12:48

LOW CONCENTRATION VOLATILES, 10/92 INITIAL CALIBRATION DATA

GC Column: <u>DB-624</u> ID: <u>0.53</u>(mm)

				
Lab File ID:	RRF1	= L7914.RR	RRF2	= <u>L7913.RR</u>
$RRF5 = \underline{L7912.RR}$	RRF10	= <u>L7911.RR</u>	RRF25	= L7910.RR

Heated Purge (Y/N): N Calibration Times: 09:53

'						ł	
COMPOUND	RRF1	RRF2	RRF5	RRF10	RRF25	AVG RRF	% RSD
Vinyl chloride Chloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Chlorobenzene 1,2-Dichloroethene (Total)	* 0.238 0.172 * 0.610 * 0.754 * 0.575 * 0.754 * 1.138 0.322	0.164 0.624 0.812 0.596 0.769 1.146	0.849 1.209	0.169 0.660 0.909 0.637 0.816 1.154	0.687 1.031 0.712 0.903 1.213	0.1730 0.6540 0.8880 0.6380 0.8180 1.1720	4.600 5.500* 12.200* 8.700* 7.400* 3.100*
p-Bromofluorobenzene	* 0.337	0.337	0.507	0.440	0.402	0.4040	17.800*

Comments:

Data File : D:\ELINK\INSTR1\DATA\073104\L7914.D

Vial: 5 Operator: PC

: 31 Jul 2004 12:48 Sample

Inst : Finnigan

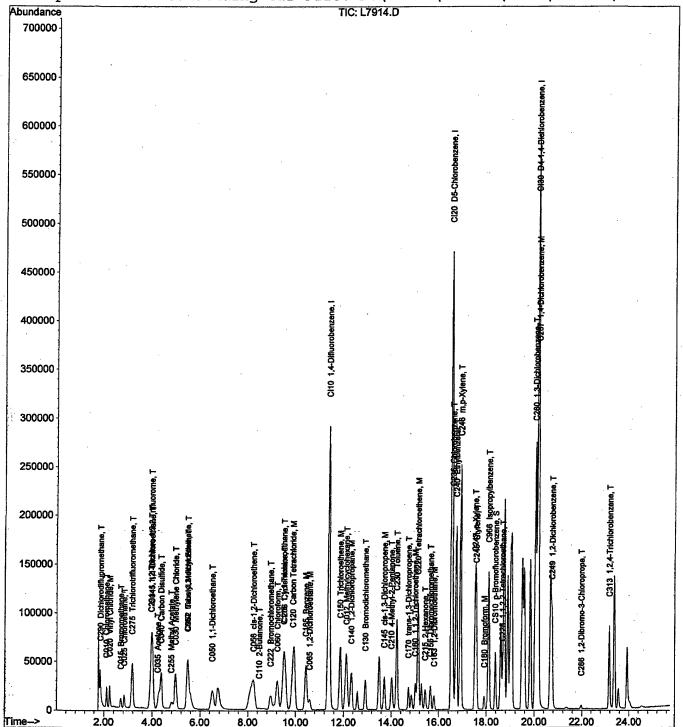
Misc

: VSTD001

Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004


Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

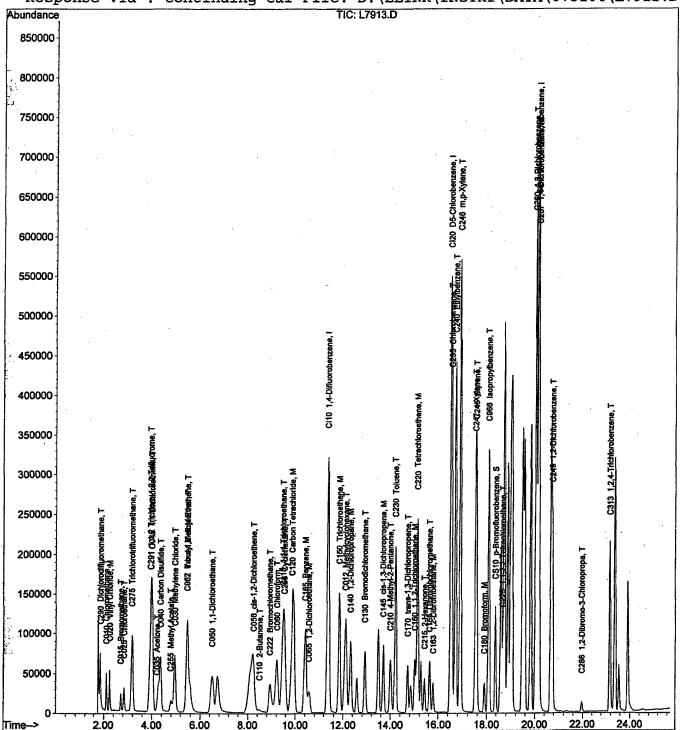
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7913.D

Vial: 4 Operator: PC : 31 Jul 2004 12:15

: VSTD002 Inst : Finnigan Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) Method

LOW LEVEL WATER Title CLP: I50L

Last Update : Sat Jul 17 11:22:00 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Vial: 3

: 31 Jul 2004 11:43

Operator: PC

Sample

: VSTD005

Inst : Finnigan Multiplr: 1.00

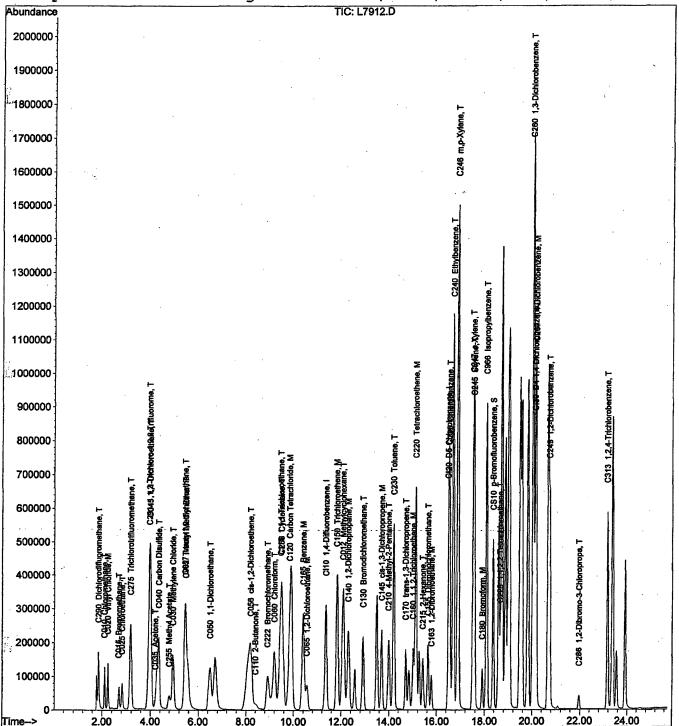
Misc

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004

Quant Results File: A4I00695.RES

Method


: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title

: I50L CLPLOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Data File : D:\ELINK\INSTR1\DATA\073104\L7911.D

11:10

Vial: 2

: 31 Jul 2004 Acq On

Operator: PC

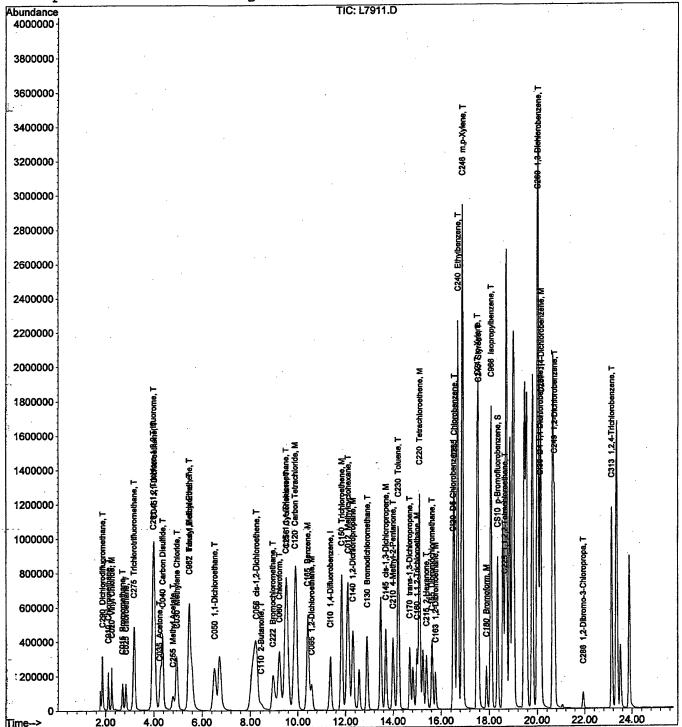
Sample : VSTD010

: Finnigan Inst

Misc

Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Results File: A4I00695.RES

Ouant Time: Jul 31 13:18 2004

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) Method CLPLOW LEVEL WATER Title ' : I50L

Last Update : Sat Jul 17 11:22:00 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7910.D

Vial: 1 Operator: PC

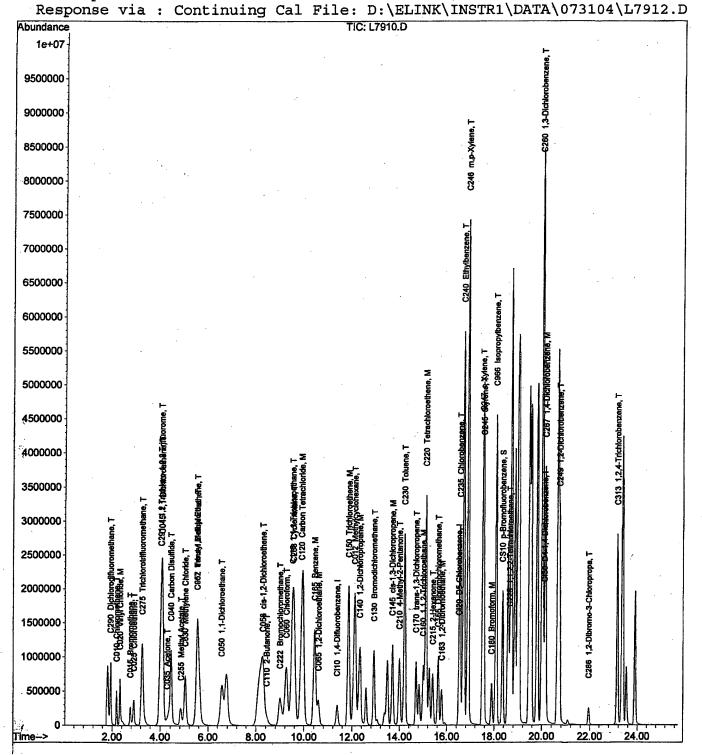
: 31 Jul 2004 10:38 Sample

: Finnigan Inst

Misc

: VSTD025

Multiplr: 1.00


MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response Factor Report Finnigan

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator) Title : I50L CLP LOW LEVEL WATER Last Update : Sat Jul 17 11:22:00 2004 Response via : Continuing Calibration Calibration Files =L7914.D 2 =L7913.D=L7912.D 5 =L7911.D =L7910.D Compound 2 3 &RSD 1) I CI10 1,4-Difluoroben -------ISTD------2) T C290 Dichlorodifluor 0.312 0.293 0.309 0.302 0.330 0.309 3) T C010 Chloromethane 0.213 0.196 0.211 0.206 0.190 0.203 4.85 4) T C015 0.073 0.081 0.103 0.117 0.100 0.095 Bromomethane 18.43 5) M C020 Vinyl Chloride 0.238 0.221 0.245 0.235 0.256 0.239 5.44 6) T C025 Chloroethane 0.172 0.164 0.177 0.169 0.184 0.173 4.64 7) T C275 Trichlorotriflu 0.690 0.659 0.708 0.676 0.768 0.700 5.97 8) T C030 Methylene Chlor 0.302 0.261 0.255 0.241 0.236 0.259 10.21 C035 9) Т 0.014 0.012 0.015 0.015 0.013 0.014 Acetone 9.01 10) T C040 Carbon Disulfid 0.791 0.649 0.825 0.855 0.956 0.815 13.65 11) T C045 1,1-Dichloroeth 0.258 0.267 0.306 0.301 0.328 0.292 9.89 12) T C962 T-butyl Methyl 0.376 0.318 0.382 0.372 0.345 0.358 7.50 13) T C050 1,1-Dichloroeth 0.610 0.624 0.688 0.660 0.687 0.654 5.48 14) T C057 trans-1,2-dichl 0.341 0.354 0.395 0.387 0.412 0.378 7.77 15) T C056 cis-1,2-Dichlor 0.302 0.319 0.349 0.350 0.361 0.336 7.30 16) T C060 Chloroform 0.625 0.639 0.673 0.665 0.702 0.661 4.59 17) T C222 Bromochlorometh 0.098 0.112 0.121 0.122 0.100 0.111 10.43 1,2-Dichloroeth 0.198 0.213 0.231 0.227 0.237 0.221 18) M C065 7.22 19) T C110 0.021 0.021 0.028 0.028 0.026 0.025 15.92 2-Butanone 20) T C255 Methyl Acetate 0.055 0.050 0.062 0.060 0.061 0.058 8.65 21) T C291 1,1,2 Trichloro 0.559 0.495 0.604 0.609 0.667 0.587 10.92 22) T C256 Cyclohexane 0.524 0.474 0.572 0.609 0.646 0.565 12.05 23) T C012 Methylcyclohexa 0.533 0.492 0.606 0.620 0.664 0.583 24) I CI20 D5-Chlorobenzen ------ISTD------25) T C115 1,1,1-Trichloro 0.754 0.812 0.933 0.909 1.031 0.888 12.19 26) M 27) M 28) T 29) M C120 Carbon Tetrachl 0.692 0.772 0.884 0.858 0.992 0.839 13.57 C150 Trichloroethene 0.575 0.596 0.672 0.637 0.712 0.638 8.71 · C130 Bromodichlorome 0.498 0.566 0.635 0.632 0.683 0.603 11.94 C140 1,2-Dichloropro 0.384 0.406 0.447 0.429 0.442 0.422 6.22 30) M C145 cis-1,3-Dichlor 0.424 0.478 0.549 0.543 0.577 0.514 -31) M C165 Benzene -- 1.220 1.261 1.410 1.373 1.483 1.349 -- 7.99 --C155 32) T Dibromochlorome 0.308 0.349 0.420 0.431 0.453 0.392 15.54 C170 33) T trans-1,3-Dichl 0.265 0.307 0.363 0.368 0.391 0.339 15.18 1,1,2-Trichloro 0.169 0.197 0.219 0.216 0.226 0.206 34) M C160 11.09 35) M C220 Tetrachloroethe 0.754 0.769 0.849 0.816 0.903 0.818 7.41 36) M C163 1,2-Dibromoetha 0.216 0.239 0.274 0.279 0.287 0.259 11.63 37) T C210 4-Methyl-2-Pent 0.130 0.117 0.148 0.143 0.141 0.136 38) T C215 2-Hexanone 0.076 0.070 0.095 0.096 0.095 0.086 14.44 39) T C230 Toluene 1.520 1.568 1.695 1.625 1.798 1.641 6.67 40) T C235 Chlorobenzene 1.138 1.146 1.209 1.154 1.213 1.172 3.08 41) T Ethylbenzene 2.009 2.048 2.210 2.117 2.326 2.142 $L_{QE}^{2\frac{1}{2}}$ Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef (#) = Out of Range A4I00695.M Sat Jul 31 13:21:52 2004 I50L Page 1

Response Factor Report Finnigan

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004 Response via : Continuing Calibration

Calibration Files

1 =L7914.D 2 =L7913.D 3 =L7912.D

4 =L7911.D 5 =L7910.D

		Compo	und	1	2	3	4	. 5	Avg	%RSD
42) 43) 445) 46)	T T T S	C246 C247 C245 CS10 C966	m,p-Xylene o-Xylene Styrene p-Bromofluorobe Isopropylbenzen	0.673 0.926 0.337	0.714 1.022 0.337	0.805 1.144 0.507	0.783 1.132 0.439	0.833 1.177 0.402	0.762 1.080 0.404	6.27 8.69 9.61 17.83 9.22
47)	Ť	C225	1,1,2,2-Tetrach	0.238	0.276	0.300	0.294	0.294	0.280	8.94
48)	I	CI30	D4-1,4-Dichloro							
49)	M	C180	Bromoform	0.241	0.293	0.371	0.382	0.409	0.339	20.55
50)	T	C260	1,3-Dichloroben	1.773	1.858	2.024	1.917	2.001	1.915	5.39
51)	M	C267	1,4-Dichloroben	1.763	1.854	1.989	1.892	2.013	1.902	5.36
52)	T	C249	1,2-Dichloroben	1.362	1.436	1.564	1.484	1.557	1.481	5.75
53)	T	C286	1,2-Dibromo-3-C	0.038	0.061	0.082	0.090	0.100	0.074	33.58
54)	T	C313	1,2,4-Trichloro							6.32
							Total A	verage	%RSD	9.93

A4I00695.M Sat Jul 31 13:21:53 2004

L = Linear LO = Linear + Origin Q = Quad QO = Quad + Origin R = Corr. Coef (#) = Out of Range

Data File: D:\ELINK\INSTR1\DATA\073104\L7914.D Vial: 5
Acq On: 31 Jul 2004 12:48 Operator: PC

Sample : VSTD001 Inst : Finnigan

Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

Inte	rnal	Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)	
1)	CI10	1,4-Difluorobenzene	11.39	114	827565	125.00 ng	0.00 94.239	
24)	CI20	D5-Chlorobenzene	16.53	117	637487	125.00 ng	0.00 96.41%	
48)	CI30	D4-1,4-Dichlorobenze	20.14	152	367452	125.00 ng	0.00 96.138	
		nitoring Compounds						
		p-Bromofluorobenzene					0.00)
Sp:	iked	Amount 125.000 Ran	ge 80	- 120	Recove	ry = 1	3.30%#	
		mpounds					Qvalue	
		Dichlorodifluorometh	1.85	85	51662		97	
	C010		2.10	50	35316			
4. 4	C015		2.70	94	12161	17.89 ng		
	C020		2.24	62	39446	24.31 ng	1,00	
	C025		2.84	64	28503	24.29 ng		
7)	C275	Trichlorotrifluorome	3.18	101	114273	24.39 ng	100	
8)	C030	Methylene Chloride	4.96	84	50066	29.63 ng	91	
	C035		4.23	43	11765	118.48 ng	85	
10)	C040	Carbon Disulfide	4.36	76	130923	23.97 ng		
11)	C045	1,1-Dichloroethene	3.99	96	42708	21.07 ng	-89)
12)	C962	T-butyl Methyl Ether	5.49	73	62224	24.62 ng	98	,
13)	C050	1,1-Dichloroethane	6.51	63	100937	22.16 ng	96	;
14)	C057	trans-1,2-dichloroet	5.48	96	56469	21.58 ng	97	,
15)	C056	cis-1,2-Dichloroethe	8.24	96	50020	21.67 ng	97	•
	C060		9.24	83	103398	23.20 ng	93	, ·
17)	C222	Bromochloromethane	8.95	128	16167		93	j
18)	C065	1,2-Dichloroethane	10.59	62	32742	21.36 ng	. 70)
19)	C110	2-Butanone	8.47	43	17147	90.09 ng	# 51	
20)	C255	Methyl Acetate	4.79	43	9125	22.16 ng	65	;
21)	C291	1,1,2 Trichloro-1,2,	3.96		92519	23.12 ng	85	j
122)	C256		9.53	56	86699	22.90 ng	94	:
	C012		12.13	83	88157	21.96 ng	96	;
	C115			97	96125	20.20 ng	95	;
	C120				88208			
	C150		11.86	95	73328	21.40 ng	# 84	:
	C130		12.94	83	63459	19.61 ng	99	

^{(#) =} qualifier out of range (m) = manual integration

Data File : D:\ELINK\INSTR1\DATA\073104\L7914.D Vial: 5 Operator: PC : 31 Jul 2004 12:48

Inst : Finnigan Sample : VSTD001

Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Results File: A4I00695.RES Quant Time: Jul 31 13:18 2004

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004
Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	lue
29)	C140	1,2-Dichloropropane	12.34	63	49009	21.49 ng		92
30)	C145	cis-1,3-Dichloroprop	13.73	75	54093	19.31 ng		98
31)	C165	Benzene	10.43	78	155561	21.64 ng		98
32)	C155	Dibromochloromethane	15.66	129	39312	18.34 ng		93
33)	C170	trans-1,3-Dichloropr	14.73	75	33821	18.27 ng		100
34)	C160	1,1,2-Trichloroethan	15.01	83	21605	19.31 ng		96
35)	C220	Tetrachloroethene	15.14	166	96139	22.22 ng		94
36)	C163	1,2-Dibromoethane	15.81	109	27584	- 19.72 ng		99
. 37)	C210	4-Methyl-2-Pentanone	14.01	43	82625	109.69 ng	#	72
38)	C215	2-Hexanone	15.44	43	48330	99.90 ng		94
39)	C230	Toluene	14.24	91	193777	22.42 ng		93
40)	C235	Chlorobenzene	16.57	112	145060	23.53 ng		98
41)	C240	Ethylbenzene	16.73	91	256089	22.72 ng		96
42)	C246	m,p-Xylene	16.91	106	202060	43.57 ng		98
43)	C247	o-Xylene	17.54	106	85813	20.89 ng		97
44)	C245	Styrene	17.59	104	118126	20.24 ng		96
46)	C966	Isopropylbenzene	18.10	105	282257	21.01 ng		100
47)	C225	1,1,2,2-Tetrachloroe	18.68	83	30395	19.89 ng		88
49)	C180	Bromoform	17.93	173	17738	16.27 ng		90
50)	C260	1,3-Dichlorobenzene	20.04	146	130316	21.91 ng		95
51)	C267	1,4-Dichlorobenzene	20.18	146	129572	22.17 ng		98
52)	C249	1,2-Dichlorobenzene	20.75	146	100067	21.77 ng		97
53)	C286	1,2-Dibromo-3-Chloro	21.99	75	2774	11.53 ng	#	84
54)	C313	1,2,4-Trichlorobenze	23.18	180	77370	21.20 ng		99

Data File : D:\ELINK\INSTR1\DATA\073104\L7913.D Vial: 4

Acq On : 31 Jul 2004 12:15 Operator: PC

Sample : VSTD002 Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

Inte	rnal S	Standards	R.T.	QIon	Response	Conc Un	its	Dev ()	Min) Ar)
1)	CI10	1,4-Difluorobenzene	11.38	114	902898	125.00	ng		0.01 .80%
24)	CI20	D5-Chlorobenzene	16.51	117	689567	125.00	ng	-)	0.01 .29%
48)	CI30	D4-1,4-Dichlorobenze	20.14	152	397514	125.00	ng	•	0.00 .99%
Syste	em Mor	nitoring Compounds			•			•	
		p-Bromofluorobenzene	18.38	174	92880	33.24	ng	1	0.00
		Amount 125.000 Ran	ge 80	- 120	Recove:	ry =	26.	59%#	
Tara	at Con	pounds						Qva:	lue
	C290	Dichlorodifluorometh	1.86	85	105811	47.42	na		100
•		Chloromethane	2.11	50	70814	46.46	_	•	98
•	C015	Bromomethane	2.70	94	29342	39.56			93
	C020	Vinyl Chloride	2.25	62	79845	45.10			98
•	C025	Chloroethane	2.84	64	59054	46.13	_		100
•	C275	Trichlorotrifluorome	3.18	101	238116	46.59	_		98
•	C030	Methylene Chloride	4.96	84	94438	51.22	_		89
•	C035	Acetone	4.21	43	22009	203.15	_		100
	C040	Carbon Disulfide	4.36	76	234425	39.34	_		100
	C045	1,1-Dichloroethene	4.00	96	96506	43.63	ng		100
12)	C962	T-butyl Methyl Ether	5.48	73	114749	41.62	ng .		96
13)	C050	1,1-Dichloroethane	6.50	63	225188	45.31	ng		98
14)	C057	trans-1,2-dichloroet	5.48	96	128025	44.83	ng	***	93
. 15)	C056	cis-1,2-Dichloroethe	8.24	96	115120	45.70	ng		90
16)	C060	Chloroform	9.22	83	230852	47.48	ng		96
17)	C222	Bromochloromethane	8.93	128	40568	46.56	ng		95
18)	C065	1,2-Dichloroethane	10.58	62	76764	45.91	_		65
<u>†</u> 19)	C110	2-Butanone	8.49	43	37485	180.52			63
20)	C255	Methyl Acetate	4.79	43	18159	40.43	ng		78
'21)	C291	1,1,2 Trichloro-1,2,	3.96	101	178877	40.97	ng		89
22)	C256	Cyclohexane	9.55	56	171146	41.44	_		95
	C012	Methylcyclohexane	12.11	83	177611	40.55	_		90
	C115	1,1,1-Trichloroethan	9.49	97	223853	43.49	_		99
•	C120	Carbon Tetrachloride		117	212842	43.64	_		100
•	C150	Trichloroethene	11.85	95	164345	44.35	_	#	83
28)	C130	Bromodichloromethane	12.91	83	156184	44.61	ng		99

Sat Jul 31 13:18:44 2004

150L

Page 1

(#) = qualifier out of range (m) = manual integration

L7913.D A4I00695.M

Data File: D:\ELINK\INSTR1\DATA\073104\L7913.D Vial: 4
Acq On: 31 Jul 2004 12:15 Operator: PC

Sample : VSTD002 Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

Compo	pund	R.T.	QIon	Response	Conc Unit	Qva	lue
C140	1,2-Dichloropropane	12.31	63	111852	45.35 ng		97
C145	cis-1,3-Dichloroprop	13.70	75	131841	43.50 ng		100
C165	Benzene	10.43	78	347875	44.73 ng		99
C155	Dibromochloromethane	15.64	129	96227	41.50 ng		96
C170	trans-1,3-Dichloropr	14.71	75	84780	42.34 ng		100
C160	1,1,2-Trichloroethan	15.00	83	54383	44.94 ng		96
C220	Tetrachloroethene	15.11	166	212058	45.30 ng		93
C163	1,2-Dibromoethane	15.79	109	65963	43.59 ng		99
C210	4-Methyl-2-Pentanone	14.00	43	161626	198.36 ng	#	74
C215	2-Hexanone	15.43	43	96331	184.09 ng		97
C230	Toluene	14.21	91	432365	46.25 ng		95
C235	Chlorobenzene	16.55	112	316220	47.42 ng		99
C240	Ethylbenzene	16.71	91	564799	46.33 ng		97
C246	m,p-Xylene	16.90	106	458672	91.44 ng		93
C247	o-Xylene	17.53	106	196946	44.32 ng		92
C245	Styrene	17.56	104	281950	44.67 ng		92
C966	Isopropylbenzene	18.09	105	642679	44.23 ng		100
C225	1,1,2,2-Tetrachloroe	18.66	83	76058	46.01 ng		86
C180	Bromoform	17.90	173	46604	39.52 ng		90
C260	1,3-Dichlorobenzene	20.03	146	295459	45.91 ng		97
C267	1,4-Dichlorobenzene	20.16	146	294776	46.61 ng		97
C249	1,2-Dichlorobenzene	20.74	146	228340	45.91 ng		96
C286	1,2-Dibromo-3-Chloro	21.98	75	9650	37.07 ng		91
C313	1,2,4-Trichlorobenze	23.18	180	181166	45.88 ng		99
	C140 C145 C165 C155 C170 C160 C220 C163 C210 C215 C230 C235 C246 C247 C245 C966 C225 C180 C267 C249 C286	C145 cis-1,3-Dichloroprop C165 Benzene C155 Dibromochloromethane C170 trans-1,3-Dichloropr C160 1,1,2-Trichloroethan C220 Tetrachloroethene C163 1,2-Dibromoethane C210 4-Methyl-2-Pentanone C215 2-Hexanone C230 Toluene C235 Chlorobenzene C240 Ethylbenzene C240 Ethylbenzene C247 o-Xylene C247 o-Xylene C245 Styrene C245 Styrene C966 Isopropylbenzene C260 1,3-Dichlorobenzene C260 1,3-Dichlorobenzene C260 1,2-Dichlorobenzene C249 1,2-Dichlorobenzene C249 1,2-Dichlorobenzene C286 1,2-Dibromo-3-Chloro	C140 1,2-Dichloropropane 12.31 C145 cis-1,3-Dichloroprop 13.70 C165 Benzene 10.43 C155 Dibromochloromethane 15.64 C170 trans-1,3-Dichloropr 14.71 C160 1,1,2-Trichloroethan 15.00 C220 Tetrachloroethene 15.11 C163 1,2-Dibromoethane 15.79 C210 4-Methyl-2-Pentanone 14.00 C215 2-Hexanone 15.43 C230 Toluene 14.21 C235 Chlorobenzene 16.55 C240 Ethylbenzene 16.71 C246 m,p-Xylene 16.90 C247 o-Xylene 17.53 C245 Styrene 17.56 C966 Isopropylbenzene 18.09 C225 1,1,2,2-Tetrachloroe 18.66 C180 Bromoform 17.90 C260 1,3-Dichlorobenzene 20.03 C267 1,4-Dichlorobenzene 20.16 C249 1,2-Dichlorobenzene 20.74 C286 1,2-Dibromo-3-Chloro 21.98	C140 1,2-Dichloropropane 12.31 63 C145 cis-1,3-Dichloroprop 13.70 75 C165 Benzene 10.43 78 C155 Dibromochloromethane 15.64 129 C170 trans-1,3-Dichloropr 14.71 75 C160 1,1,2-Trichloroethan 15.00 83 C220 Tetrachloroethene 15.11 166 C163 1,2-Dibromoethane 15.79 109 C210 4-Methyl-2-Pentanone 14.00 43 C215 2-Hexanone 15.43 43 C230 Toluene 14.21 91 C235 Chlorobenzene 16.55 112 C240 Ethylbenzene 16.71 91 C246 m,p-Xylene 16.90 106 C247 o-Xylene 17.53 106 C245 Styrene 17.56 104 C966 Isopropylbenzene 18.09 105 C225 1,1,2,2-Tetrachloroe 18.66 83 C180 Bromoform 17.90 173 C260 1,3-Dichlorobenzene 20.03 146 C267 1,4-Dichlorobenzene 20.16 146 C249 1,2-Dichlorobenzene 20.74 146 C286 1,2-Dibromo-3-Chloro 21.98 75	C140 1,2-Dichloropropane 12.31 63 111852 C145 cis-1,3-Dichloroprop 13.70 75 131841 C165 Benzene 10.43 78 347875 C155 Dibromochloromethane 15.64 129 96227 C170 trans-1,3-Dichloropr 14.71 75 84780 C160 1,1,2-Trichloroethan 15.00 83 54383 C220 Tetrachloroethene 15.11 166 212058 C163 1,2-Dibromoethane 15.79 109 65963 C210 4-Methyl-2-Pentanone 14.00 43 161626 C215 2-Hexanone 15.43 43 96331 C230 Toluene 14.21 91 432365 C235 Chlorobenzene 16.55 112 316220 C240 Ethylbenzene 16.71 91 564799 C246 m,p-Xylene 16.90 106 458672 C247 o-Xylene 17.53 106 196946 C245 Styrene 17.56 104 281950 C966 Isopropylbenzene 18.09 105 642679 C225 1,1,2,2-Tetrachloroe 18.66 83 76058 C180 Bromoform 17.90 173 46604 C260 1,3-Dichlorobenzene 20.03 146 295459 C267 1,4-Dichlorobenzene 20.16 146 294776 C249 1,2-Dichlorobenzene 20.74 146 228340 C286 1,2-Dibromo-3-Chloro 21.98 75 9650	C140 1,2-Dichloropropane 12.31 63 111852 45.35 ng C145 cis-1,3-Dichloroprop 13.70 75 131841 43.50 ng C165 Benzene 10.43 78 347875 44.73 ng C155 Dibromochloromethane 15.64 129 96227 41.50 ng C170 trans-1,3-Dichloropr 14.71 75 84780 42.34 ng C160 1,1,2-Trichloroethan 15.00 83 54383 44.94 ng C220 Tetrachloroethene 15.11 166 212058 45.30 ng C163 1,2-Dibromoethane 15.79 109 65963 43.59 ng C210 4-Methyl-2-Pentanone 14.00 43 161626 198.36 ng C215 2-Hexanone 15.43 43 96331 184.09 ng C230 Toluene 14.21 91 432365 46.25 ng C235 Chlorobenzene 16.55 112 316220 47.42 ng C240 Ethylbenzene 16.71 91 564799 46.33 ng C246 m,p-Xylene 16.90 106 458672 91.44 ng C247 o-Xylene 17.53 106 196946 44.32 ng C245 Styrene 17.56 104 281950 44.67 ng C265 1,1,2,2-Tetrachloroe 18.66 83 76058 46.01 ng C255 1,1,2,2-Tetrachloroe 18.66 83 76058 46.01 ng C260 1,3-Dichlorobenzene 20.03 146 295459 45.91 ng C267 1,4-Dichlorobenzene 20.16 146 294776 46.61 ng C249 1,2-Dichlorobenzene 20.74 146 228340 45.91 ng C266 1,2-Dibromo-3-Chloro 21.98 75 9650 37.07 ng	C140 1,2-Dichloropropane 12.31 63 111852 45.35 ng C145 cis-1,3-Dichloroprop 13.70 75 131841 43.50 ng C165 Benzene 10.43 78 347875 44.73 ng C155 Dibromochloromethane 15.64 129 96227 41.50 ng C170 trans-1,3-Dichloropr 14.71 75 84780 42.34 ng C160 1,1,2-Trichloroethan 15.00 83 54383 44.94 ng C220 Tetrachloroethene 15.11 166 212058 45.30 ng C163 1,2-Dibromoethane 15.79 109 65963 43.59 ng C210 4-Methyl-2-Pentanone 14.00 43 161626 198.36 ng # C215 2-Hexanone 15.43 43 96331 184.09 ng C230 Toluene 14.21 91 432365 46.25 ng C235 Chlorobenzene 16.55 112 316220 47.42 ng C240 Ethylbenzene 16.71 91 564799 46.33 ng C246 m,p-Xylene 16.90 106 458672 91.44 ng C247 o-Xylene 17.53 106 196946 44.32 ng C245 Styrene 17.56 104 281950 44.67 ng C266 Isopropylbenzene 18.09 105 642679 44.23 ng C251 1,1,2,2-Tetrachloroe 18.66 83 76058 46.01 ng C260 1,3-Dichlorobenzene 20.03 146 295459 45.91 ng C260 1,3-Dichlorobenzene 20.03 146 295459 45.91 ng C249 1,2-Dichlorobenzene 20.74 146 228340 45.91 ng C249 1,2-Dichlorobenzene 20.74 146 228340 45.91 ng C249 1,2-Dichlorobenzene 20.74 146 228340 45.91 ng C286 1,2-Dibromo-3-Chloro 21.98 75 9650 37.07 ng

Data File: D:\ELINK\INSTR1\DATA\073104\L7912.D Vial: 3
Acq On: 31 Jul 2004 11:43 Operator: PC

Sample : VSTD005 Inst : Finnigan

Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

# : * :				•				
Internal	Standards	R.T.	QIon	Response	Conc Ur	nits	Dev (1 Rcv (1	Min) Ar)
1) CII	1,4-Difluorobenzene	11.36	114	878281	125.00	nq		0.02
1) 011	io 1,4 billuolobellizelle	11.50		0.020		5		.00%
24) CI2	20 D5-Chlorobenzene	16.50	117	661214	125.00	ng	- (0.02
21, 021						_	100	.00%
48) CI3	0 D4-1,4-Dichlorobenze	20.13	152	382254	125.00	ng	· - (0.01
,	·				**		100	.00%
~	to the other Common and Sa							
System N	Monitoring Compounds	10 26	174	334967	125.00	nα	- (0 01
	.0 p-Bromofluorobenzene l Amount 125.000 Ran	ge 80	- 120	Recove			.00%	
spiked	Amount 125.000 kan	ige ou	- 120	Recove	- y	100.	. 000	
Target 0	Compounds				•		Qva.	lue
	Dichlorodifluorometh	1.85	85	271309	125.00	ng		99
3) C01		2.10	50	185347	125.00	ng		99
	5 Bromomethane	2.69	94	90185	125.00	ng		98
	0 Vinyl Chloride	2.24	62	215288	125.00	ng		97
6) C02	5 Chloroethane	2.83	64	155657	125.00	ng		99
7) C27			101	621422	125.00	ng		97.
8) C03		4.95	84	224169	125.00	ng		91
9) C03		4.20	43	65864				93
10) C04	0 Carbon Disulfide	4.35	76	724531	124.99	_		100
11) C04	5 1,1-Dichloroethene	3.99	96	268948	125.00	_		99
12) C96	2 T-butyl Methyl Ether	5.48	73	335273	125.00	_		90
13) COS	0 1,1-Dichloroethane	6.50	63	604292	125.00	_		97
14) CO5	7 trans-1,2-dichloroet	5.46		347215	125.00	_		94
15) C05	66 cis-1,2-Dichloroethe	8.20	96	306281	125.00	_		91
16) - C06	0 Chloroform	9.20	83	591081	124.97	_		100
, 17) C22	2 Bromochloromethane	8.91		105943	125.00	_	#	88
,18) CO6		10.56	62	203319	125.00	_		60
19) C11		8.40		126242	625.00	_		. 83
20) C25		4.79		54618	125.00			96
² 21) C29		3.96		530842	124.99			84
22) C25		9.50		502190	125.00	_		96
23) C01		12.09		532565	125.00			91
25) Cl1		9.47		617006	125.00			99
26) C12				584526	125.00			96
27) C15		11.83		444200	125.00	_		85
28) C13	0 Bromodichloromethane	12.91	83	419633	125.00	ng		98

^{(#) =} qualifier out of range (m) = manual integration L7912.D A4I00695.M Sat Jul 31 13:18:32 2004

I50L

194/433

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\073104\L7912.D Vial: 3
Acq On: 31 Jul 2004 11:43 Operator: PC

Sample : VSTD005 Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
29)	C140	1,2-Dichloropropane	12.30	63	295625	125.00 ng		100
30)	C145	cis-1,3-Dichloroprop	13.70	- 75	363261	125.00 ng		97
31)	C165	Benzene	10.40	78	932111	125.00 ng	•	96
32)	C155	Dibromochloromethane	15.64	129	277941	125.00 ng		95
33)	C170	trans-1,3-Dichloropr	14.70	75	239978	125.00 ng		96
34)	C160	1,1,2-Trichloroethan	15.00	83	145049	125.00 ng		97
_{.:} 35)	C220	Tetrachloroethene	15.11	166	561041	125.00 ng		93
36)	C163	1,2-Dibromoethane	15.79	109	181381	125.00 ng		94
37)	C210	4-Methyl-2-Pentanone	13.99	43	488309	625.00 ng	#	74
- 38)	C215	2-Hexanone	15.41	43	313609	625.00 ng		96
39)	C230	Toluene	14.21	91	1120535	125.00 ng		93
40)	C235	Chlorobenzene	16.55	112	799353	125.00 ng		98
41)	C240	Ethylbenzene	16.71	91	1461089	125.00 ng		98
42)	C246	m,p-Xylene	16.90	106	1202492	250.00 ng		93
43)	C247	o-Xylene	17.53	106	532590	125.00 ng		89
44)	C245	Styrene	17.56	104	756584	125.00 ng		96
46)	C966	Isopropylbenzene	18.09		1741607	125.00 ng		98
47)	C225	1,1,2,2-Tetrachloroe	18.65	83	198121	125.00 ng		88
49)	C180	Bromoform	17.90	173	141740	125.00 ng		96
50)	C260	1,3-Dichlorobenzene	20.03	146	773591	125.00 ng		97
51)	C267	1,4-Dichlorobenzene	20.16	146	760115	125.00 ng		97
52)	C249	1,2-Dichlorobenzene	20.74		597829	125.00 ng		96
53)	C286	1,2-Dibromo-3-Chloro	21.96	75	31290	125.00 ng		86
54)	C313	1,2,4-Trichlorobenze	23.16	180	474612	124.99 ng		93

Sample : VSTD010 Inst : Finnigan

Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

		•					
Inte	rnal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.36	114	874979	125.00 ng	-0.02 99.62%
24)	CI20	D5-Chlorobenzene	16.50	117	662576	125.00 ng	
48)	CI30	D4-1,4-Dichlorobenze	20.11	152	387323	125.00 ng	-0.02 101.33%
Svst	em Mon	itoring Compounds					
		p-Bromofluorobenzene	18.35	174	582347		
Sp	iked A	mount 125.000 Ran	ge 80	- 120	Recove	ery = 173	.50%#
Targe	et Com	pounds					Qvalue
		Dichlorodifluorometh	1.86	85	528227	244.29 ng	100
	C010	Chloromethane		50	360362	243.95 ng	.99
1 4)	C015	Bromomethane	2.70	94	204852	285.00 ng	98
5)	C020	Bromomethane Vinyl Chloride Chloroethane	2.25	62	412029	240.13 ng	97
	C025	Chloroethane	2.84	64		238.01 ng	99
7)	C275	Trichlorotrifluorome	3.18		1183499	238.96 ng	98
	C030	Methylene Chloride	4.96	84	420994		# 86
9)	C035	Acetone	4.23	43	126710	1206.92 ng	83
10)	C040	Carbon Disulfide	4.36	76	1495832	259.02 ng	100
11)	C045	1,1-Dichloroethene	4.00	96	526702	245.72 ng	98
	C962	T-butyl Methyl Ether			651623	243.86 ng	91
	C050	1,1-Dichloroethane	6.51	63	1154910	239.80 ng	99
	C057	trans-1,2-dichloroet	5.48	96	677828	244.94 ng	94
15)	C056	cis-1,2-Dichloroethe		96	612023	250.72 ng	93
16)	C060	Chloroform	9.21	83	1164386	247.12 ng	96
17)	C222	Bromochloromethane	8.93	128	1164386 214144	253.62 ng	93
18)	C065	1,2-Dichloroethane	10.58	62	397524	245.32 ng	57
19)	C110			43	249583	1240.30 ng	86
20)	C255	Methyl Acetate	4.80	43	105687	242.79 ng	99
	C291	2-Butanone Methyl Acetate 1,1,2 Trichloro-1,2,	3.96	101	1065320	251.79 ng	91
	C256	Cvclohexane	9.51	56	1065755	266.28 ng	97
23)	C012	Methylcyclohexane	12.10	83	1086197	255.91 ng	92
	C115	1,1,1-Trichloroethan	9.49	97	1204544		99
	C120	Carbon Tetrachloride			1139984	243.28 ng	99
•	C150	Trichloroethene	11.84		844617		# 80
	C130	Bromodichloromethane		83	837324	248.91 ng	99

^{(#) =} qualifier out of range (m) = manual integration

L7911.D A4I00695.M Sat Jul 31 13:18:20 2004 I50L Page 1

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7911.D Vial: 2 Operator: PC : 31 Jul 2004 11:10

Inst : Finnigan Sample : VSTD010

Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004
Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	QVa	alue
29)	C140	1,2-Dichloropropane	12.30	63	568152	239.74 ng		100
30)	C145	cis-1,3-Dichloroprop	13.69	75	719799	247.18 ng		99
31)	C165	Benzene	10.40	78	1819534	243.51 ng		100
32)	C155	Dibromochloromethane	15.63	129	570754	256.16 ng		96
33)	C170	trans-1,3-Dichloropr	14.69	75	488072	253.70 ng		93
34)	C160	1,1,2-Trichloroethan	15.00	83	286093	246.04 ng		96
35)	C220	Tetrachloroethene	15.10	166	1081632	240.49 ng		95
36)	C163	1,2-Dibromoethane	15.78	109	369486	254.11 ng		97
37)	C210	4-Methyl-2-Pentanone	13.99	43	949896	1213.30 ng	#	74
⁻ 38)	C215	2-Hexanone	15.40	43	634407	1261.73 ng		96
39)	C230	Toluene	14.20	91	2153648	239.75 ng		92
40)	C235	Chlorobenzene	16.54	112	1529098	238.62 ng		99
41)	C240	Ethylbenzene	16.70	91	2805906	239.56 ng		100
42)	C246	m,p-Xylene	16.89	106	2303216	477.86 ng		95
43)	C247	o-Xylene	17.51	106	1037138	242.92 ng		89
44)	C245	Styrene	17.55	104	1500673	247.43 ng		98
46)	C966	Isopropylbenzene	18.08	105	3355502	240.34 ng		100
47)	C225	1,1,2,2-Tetrachloroe	18.65	83	389357	245.15 ng		85
49)	C180	Bromoform	17.89	173	295639	257.31 ng		93
50)	C260	1,3-Dichlorobenzene	20.01	146	1484915	236.80 ng		97
51)	C267	1,4-Dichlorobenzene	20.15	146	1465471	237.84 ng	• .	98
52)	C249	1,2-Dichlorobenzene	20.71	146	1149822	237.27 ng		96
53)	C286	1,2-Dibromo-3-Chloro	21.95	75	69364	273.47 ng		89
54)	C313	1,2,4-Trichlorobenze	23.14	180	927103	240.96 ng		97

I50L

Data File: D:\ELINK\INSTR1\DATA\073104\L7910.D Vial: 1
Acq On: 31 Jul 2004 10:38 Operator: PC

Sample : VSTD025 Inst : Finnigan

Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc Uni	ts I	Dev(Min)
1)	CI10	1,4-Difluorobenzene	11.38	114	838376	125.00 r	ıg	-0.01 95.46%
24)	CI20	D5-Chlorobenzene	16.50	117	620508	125.00 n	ıg	-0.02 93.84%
48)	CI30	D4-1,4-Dichlorobenze	20.11	152	349256	125.00 n	ıg	-0.02 .91.37%
Syste	em Mon	itoring Compounds						
		p-Bromofluorobenzene					g	-0.02
Sp	iked A	mount 125.000 Ran	ige 80	- 120	Recove	= 3	96.6	52%#
Taxx	at Com	pounds						Qvalue
		Dichlorodifluorometh	1.94	85	1383359	667.69 n	a	99
		Chloromethane	2.19		797889	563.72 n	_	96
4.1		Bromomethane	2.76		421774	612.42 n		97
		Vinyl Chloride	2.33		1075175		_	97
		Chloroethane	2.91	64	773325		_	98
	C275	Trichlorotrifluorome	3.26	101	3219569	678.45 n	_	98
	C030		5.03	84	987687	576.96 n		# 81
	C035	Acetone	4.28	43		2627.98 n	_	79
	C040	Carbon Disulfide	4.44		4006278		_	100
-	C045	1,1-Dichloroethene	4.08		1374414			97
	C962	T-butyl Methyl Ether	5.54		1444080		_	90
	C050	1,1-Dichloroethane	6.56		2877619			99
	C057	trans-1,2-dichloroet	5.54		1727048			95
	C056	cis-1,2-Dichloroethe	8.29		1512677			97
		Chloroform	9.26	83	2947131			99
-	C222	Bromochloromethane	8.99		417206		g	96
	C065	1,2-Dichloroethane	10.60		994369	640.43 n	g	57
	C110	2-Butanone	8.44	43	552641	2866.25 n	ıg	88
	C255	Methyl Acetate	4.85			613.83 n	ığ.	95
	C291	1,1,2 Trichloro-1,2,	4.04	101	2797703	690.10 n	ģ	. 90
	C256	Cyclohexane	9.56	56	2708122	706.16 n	g	. 94
	C012	Methylcyclohexane			2782424	684.16 n	g	93
	C115	1,1,1-Trichloroethan			3199919		g	97
•	C120	Carbon Tetrachloride			3088934 2209458	703.90 n	g	98
	C150			95	2209458	662.54 n	g	# 83
	C130		12.93	83	2120504	673.09 n	g	98
				 7				

^{(#) =} qualifier out of range (m) = manual integration

Data File: D:\ELINK\INSTR1\DATA\073104\L7910.D Vial: 1
Acq On: 31 Jul 2004 10:38 Operator: PC

Sample : VSTD025 Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 13:18 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qv	alue
29)	C140	1,2-Dichloropropane	12.33	63	1372583	618.45 ng		96
30)	C145	cis-1,3-Dichloroprop	13.70	75	1789478	656.16 ng		96
31)	C165	Benzene	10.44	78	4600733	657.45 ng		100
.32)	C155	Dibromochloromethane	15.64	129	1404606	673.14 ng		96
33)	C170	trans-1,3-Dichloropr	14.70	75	1213640	673.63 ng		92
34)	C160	1,1,2-Trichloroethan	15.00	83	700280	643.08 ng		98
35)	C220	Tetrachloroethene	15.11	166	2802366	665.33 ng		97
36)	C163	1,2-Dibromoethane	15.79	109	890764	654.15 ng		100
37)	C210	4-Methyl-2-Pentanone	14.00	43	2180978	2974.62 ng	#	75
38)	C215	2-Hexanone	15.41	43	1475541	3133.56 ng		97
39)	C230	Toluene	14.21	91	5579446	663.24 ng		92
40)	C235	Chlorobenzene	16.55	112	3764477	627.29 ng		100
41)	C240	Ethylbenzene	16.70	91	7215109	657.77 ng		97
42)	C246	m,p-Xylene	16.89	106	5729865	1269.40 ng		96
43)	C247	o-Xylene	17.51	106	2583212	646.06 ng		88
44)	C245	Styrene	17.56	104	3651188	642.81 ng		97
46)	C966	Isopropylbenzene	18.08	105	8649110	661.49 ng	•	99
47)	C225	1,1,2,2-Tetrachloroe	18.65	83	911175	612.60 ng		85
49)	C180	Bromoform	17.89	173	715067	690.20 ng		95
50)	C260	1,3-Dichlorobenzene	20.01	146	3494774	618.05 ng		96
51)	C267	1,4-Dichlorobenzene	20.15	146	3515558	632.75 ng		97
52)	C249	1,2-Dichlorobenzene	20.73	146	2719323	622.30 ng		96
53)	C286	1,2-Dibromo-3-Chloro	21.95	75	174458	762.79 ng	#	80
54)	C313	1,2,4-Trichlorobenze	23.15	180	2107679	607.50 ng		98

LOW CONCENTRATION VOLATILES, 10/92 INITIAL CALIBRATION DATA

Intrument ID: <u>HP5973P</u> Calibration Dates(s): <u>07/29/2004</u> <u>07/29/2004</u>

Heated Purge (Y/N): N Calibration Times: 22:48 23:55

* 0.168 | 0.206 |

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

Lab File ID: RR RRF5 = $\underline{P6796.RR}$ RR	- -	P6798.I		RRF2 RRF25	= <u>P6797</u> = <u>P6794</u>		
COMPOUND	RRF1	RRF2	RRF5	RRF10	RRF25	AVG RRF	% RSD
1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	* 0.229 0.123 * 0.548 * 0.502 * 0.294 * 0.379 * 0.978 0.279	0.303 0.381 0.969	0.298 0.366 0.923	0.539 0.482 0.298 0.355 0.906	0.564 0.531 0.326 0.367 0.940	0.2110 0.1190 0.5490 0.5020 0.3040 0.3700 0.9430 0.2960	2.400 1.700* 3.500* 4.200* 2.900* 3.200*

0.370

0.326

0.291

Comments:

p-Bromofluorobenzene

(Not Reviewed)

Operator: PC

Quant Results File: A4I00692.RES

Inst

Vial: 6

: HP5973 P

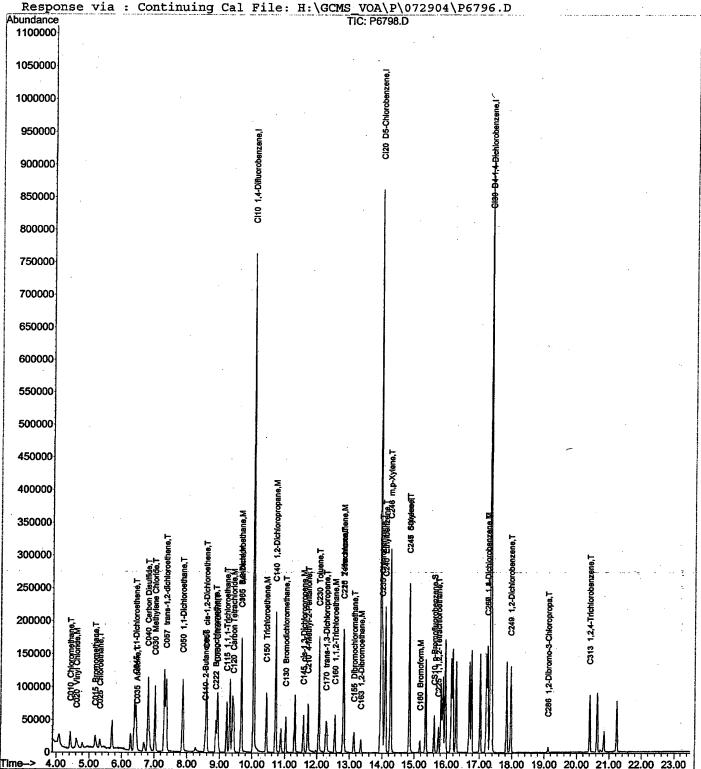
Data File: H:\GCMS_VOA\P\072904\P6798.D

Acq On : 30 Jul 2004 1:02

Sample

Misc

: VSTD001


MS Integration Params: RTEINT2.P Quant Time: Jul 30 9:31 2004

Multiplr: 1.00

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

(Not Reviewed)

Data File: H:\GCMS VOA\P\072904\P6797.D

: 30 Jul 2004 00:28

Sample

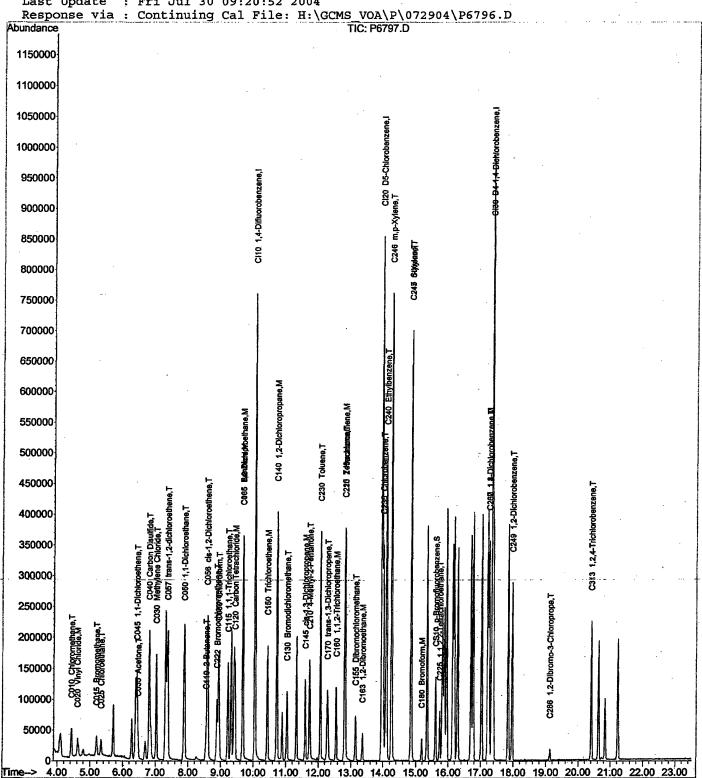
: VSTD002 Misc

MS Integration Params: RTEINT2.P

: HP5973 P

Multiplr: 1.00

Operator: PC


Inst

Vial: 5

Quant Time: Jul 30 9:30 2004 Quant Results File: A4I00692.RES

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator) Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

(Not Reviewed)

Data File: H:\GCMS_VOA\P\072904\P6796.D

Acq On : 29 Jul 2004 23:55

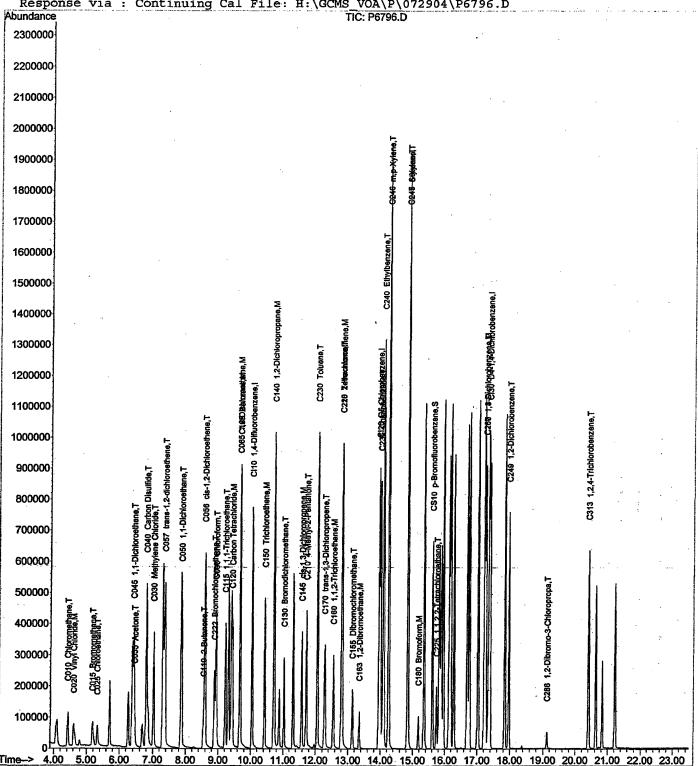
Sample Misc

: VSTD005

MS Integration Params: RTEINT2.P Quant Time: Jul 30 9:30 2004

Vial: 4 Operator: PC

Inst : HP5973 P


Multiplr: 1.00

Quant Results File: A4I00692.RES

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator) Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Continuing Cal File: H:\GCMS VOA\P\072904\P6796.D

(Not Reviewed)

Data File: H:\GCMS_VOA\P\072904\P6795.D

Acq On : 29 Jul 2004 23:21

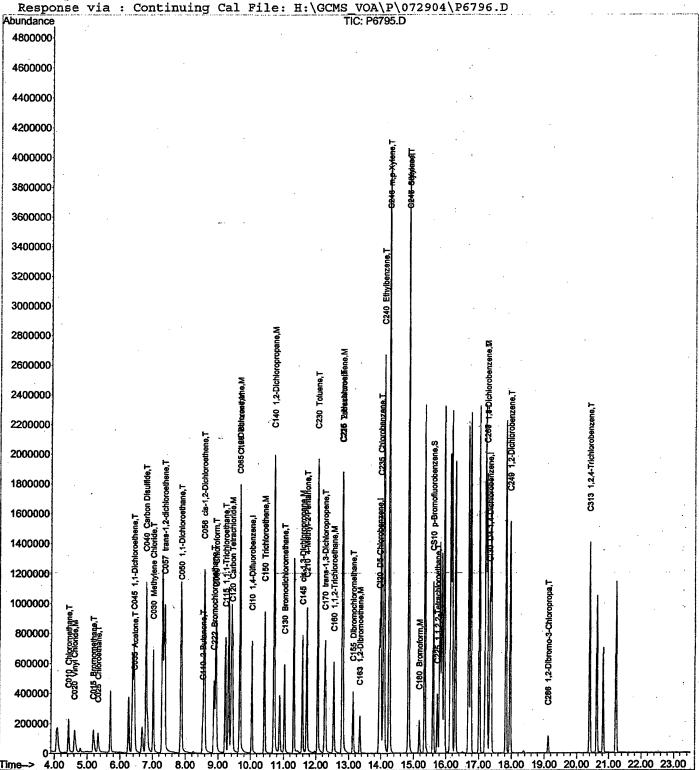
Sample : VSTD010

Misc :

VSTD010

MS Integration Params: RTEINT2.P Quant Time: Jul 30 9:30 2004 Vial: 3
**Operator: PC

Inst : HP5973 P


Multiplr: 1.00

Quant Results File: A4I00692.RES

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

(Not Reviewed)

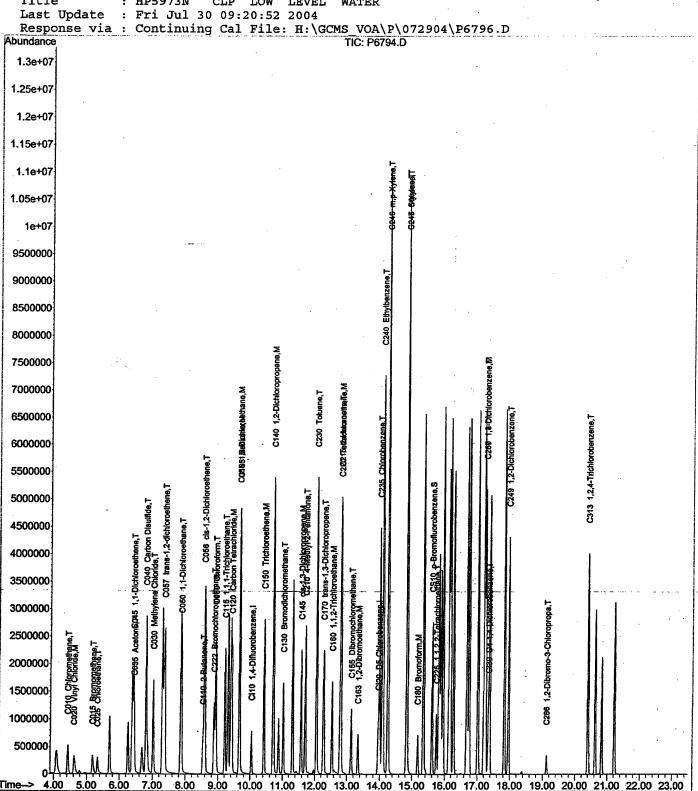
Data File: H:\GCMS_VOA\P\072904\P6794.D

Acq On : 29 Jul 2004 22:48

Sample : VSTD025

Misc MS Integration Params: RTEINT2.P Quant Time: Jul 30 9:30 2004

Vial: 2 Operator: PC


Quant Results File: A4I00692.RES

Inst : HP5973 P

Multiplr: 1.00

Method · : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Response Factor Report HP5973 P

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator) Method Title : HP5973N CLP LOW LEVEL WATER (6Pg ... (49) N2600 Last Update : Fri Jul 30 09:20:52 2004 Response via : Continuing Calibration Calibration Files 1 =P6798.D 2 =P6797.D=P6795.D =P6794.D Compound 2 3 5 Avq *RSD 1) I CI10 1,4-Difluoroben ------ISTD-----2) T C010 Chloromethane 0.271 0.246 0.238 0.245 0.234 0.247 3) T 0.135 0.123 0.116 0.116 0.111 0.120 7.76 C015 Bromomethane Vinyl Chloride 0.229 0.205 0.204 0.214 0.205 0.211 5.13 4) M C020 5) T C025 Chloroethane 0.123 0.118 0.116 0.119 0.117 0.119 2.41 6) T C030 Methylene Chlor 0.431 0.360 0.303 0.286 0.279 0.332 19.20 7) T C035 Acetone 0.044 0.038 0.033 0.035 0.033 0.037 8) T C040 Carbon Disulfid 1.065 0.879 0.877 0.894 0.898 0.922 8.71 9) T C045 1,1-Dichloroeth 0.231 0.238 0.246 0.241 0.253 0.242 3.47 10) T C050 1,1-Dichloroeth 0.548 0.551 0.542 0.539 0.563 0.549 1.73 11) T C057 trans-1,2-dichl 0.283 0.292 0.292 0.285 0.302 0.291 2.59 12) T C056 cis-1,2-Dichlor 0.276 0.289 0.303 0.312 0.322 0.301 6.07 13) Т C060 0.592 0.554 0.528 0.527 0.555 0.551 4.82 Chloroform / Bromochlorometh 0.117 0.119 0.116 0.115 0.118 0.117 14) T C222 1.54 15) M C065 1,2-Dichloroeth 0.319 0.331 0.311 0.320 0.333 0.323 2.79 C110 16) T 0.045 0.046 0.043 0.048 0.050 0.046 6.07 2-Butanone 17) I CI20 D5-Chlorobenzen -----ISTD-----ISTD-----1,1,1-Trichloro 0.502 0.501 0.494 0.482 0.530 0.502 18) T C115 5.91 19) M C120 Carbon Tetrachl 0.418 0.436 0.435 0.434 0.487 0.442 20) M C150 Trichloroethene 0.294 0.303 0.298 0.298 0.326 0.304 4.24 21) T C130 Bromodichlorome 0.365 0.386 0.371 0.369 0.398 0.378 3.70 1,2-Dichloropro 0.297 0.312 0.295 0.299 0.292 0.299 22) M C140 23) M C145 cis-1,3-Dichlor 0.338 0.382 0.404 0.429 0.469 0.404 12.27 1.227 1.318 1.301 1.262 1.312-1.284 24) M C165 Benzene 3.01 C155 Dibromochlorome 0.192 0.210 0.208 0.221 0.249 0.216 25) T 9.68 26) T C170 trans-1,3-Dichl 0.260 0.305 0.322 0.354 0.394 0.327 15.43 1,1,2-Trichloro 0.186 0.205 0.189 0.196 0.210 0.197 27) M C160 28) M C220 Tetrachloroethe 0.379 0.381 0.366 0.355 0.367 0.370 2.91 29) M 9.07 C163 1,2-Dibromoetha 0.135 0.153 0.151 0.159 0.174 0.154 30) T C210 4-Methyl-2-Pent 0.108 0.112 0.113 0.126 0.128 0.117 7.61 31) T C215 2-Hexanone 0.067 0.073 0.077 0.084 0.086 0.077 10.20 32) T C230 Toluene 1.306 1.392 1.409 1.399 1.476 1.397 4.34 33) T C235 Chlorobenzene 0.978 0.969 0.923 0.906 0.940 0.943 3.22 34) T C240 Ethylbenzene 1.385 1.539 1.602 1.642 1.731 1.580 8.17 35) T C246 m,p-Xylene 0.528 0.611 0.621 0.637 0.657 0.611 8.10 36) T 0.439 0.551 0.581 0.606 0.636 0.563 C247 o-Xylene 13.44 37) T 0.679 0.867 0.946 1.018 1.072 0.916 16.75 C245 Styrene p-Bromofluorobe 0.168 0.206 0.370 0.326 0.291 0.272 38) S CS10 30.70 -3·9) · T C225 1,1,2,2-Tetrach 0.198 0.210 0.201 0.208 0.218 0.207 D4-1,4-Dichloro ------ISTD-----40) I CI30 41) M Bromoform 0.157 0.170 0.169 0.183 0.217 0.179 C180 12.92 42) T C260 1,3-Dichloroben 1.348 1.398 1.352 1.352 1.432 1.376 2.71 43) M 1,4-Dichloroben 1.348 1.398 1.352 1.352 1.432 1.376 2.71 C267 44) T 1,2-Dichloroben 1.091 1.156 1.142 1.151 1.220 1.152 4.01 C249 45) T C286 1,2-Dibromo-3-C 0.047 0.050 0.050 0.052 0.059 0.052 8.94 46) T C313 1,2,4-Trichloro 0.576 0.667 0.713 0.778 0.853 0.717 14.73 Total Average %RSD 7.4700

Data File: H:\GCMS_VOA\P\072904\P6798.D Vial: 6 : 30 Jul 2004 1:02 Acq On

Operator: PC : HP5973 P Sample : VSTD001 Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:31:05 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\072904\P6796.D (29 Jul 2004 23:55)

Inte	rnal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	10.04	114	664480	125.00 ng	0.00 97.40%
17)	CI20	D5-Chlorobenzene	13.95	117	589520	125.00 ng	0.00 94.53%
40)	CI30	D4-1,4-Dichlorobenze	17.34	152	331470	125.00 ng	0.00 91.91%
		nitoring Compounds				٠.	
		p-Bromofluorobenzene				_	0.00
Sp	iked A	Amount 125.000 Rar	nge 80	- 120	Recove	ery = 9	.10%#
Targ	et Co	mpounds					Qvalue
2)	C010	Chloromethane	4.43	50	36077	28.51 ng	. 95
3)	C015	Bromomethane	5.17	94	17949	29.11 ng	.83
4)	C020	Vinyl Chloride	4.61	62	30475	28.08 ng	98
5)	C025	Chloroethane	5.33	64	16399	26.56 ng	91
6)	C030	Methylene Chloride	7.02	84	57213	35.55 ng	# 76
7)	C035	Acetone	6.46	43	29523	166.77 ng	98
8)	C040	Carbon Disulfide	6.79	76	141543	30.38 ng	100
9)	C045	1,1-Dichloroethene	6.42	96	30646	23.45 ng	93
10)	C050	1,1-Dichloroethane	7.88	63	72769	25.23 ng	95
11)	C057	trans-1,2-dichloroet	7.37	96	37557	24.17 ng	96
12)	C056	cis-1,2-Dichloroethe	8.58	96	36690	22.77 ng	96
13)	C060	Chloroform	8.92	83	78713	28.02 ng	96
14)	C222	Bromochloromethane	8.88	128	15587	25.38 ng	# . 73
-	C065	1,2-Dichloroethane	9.66	62	42412	25.66 ng	96
-	C110	2-Butanone	8.55	43	29582	130.12 ng	85
•	C115		9.22	97	59172	25.39 ng	94
-	C120	Carbon Tetrachloride	9.43	117	49282	24.46 ng	91
-	C150	Trichloroethene	10.42	95	34686	24.68 ng	96
	C130	Bromodichloromethane	11.03	83	43009	24.55 ng	
-	C140	1,2-Dichloropropane	10.72	63	35035	25.22 ng	98
	C145	cis-1,3-Dichloroprop	11.58	75	39800	20.87 ng	
-	C165	Benzene	9.68	78	144684	23.58 ng	100
-	C155	Dibromochloromethane	13.14	129	22690	23.15 ng	
-	C170	trans-1,3-Dichloropr	12.27	75	30626	20.18 ng	97
_	C160	1,1,2-Trichloroethan	12.55		21973	24.69 ng	97
-	C220	Tetrachloroethene	12.82	166	44725	25.92 ng	# 93
-	C163	1,2-Dibromoethane	13.34	109	15953	22.35 ng	· 93
	C210	4-Methyl-2-Pentanone		43	63605	119.58 ng	91
	C215	2-Hexanone	12.80	43	39549	109.22 ng	99
	C230.	Toluene	12.06	91	154015	23.18 ng	98
	C235	Chlorobenzene	14.00	112		26.48 ng	
		Ethylbenzene	14.10	91	115299 163309	26.46 ng 21.62 ng	98 96
		m,p-Xylene	14.10	106		42.49 ng	96
		o-Xylene	14.25	106	124504	_	98
		Styrene	14.85		51813	19.07 ng	# 83
		1,1,2,2-Tetrachloroe		TO#	80039 23300	17.95 ng	86
		1,1,2,2-16C1aCm1010e	13./4	83	23300	24.55 ng	94

^{(#) =} qualifier out of range (m) = manual integration P6798.D A4100692.M Fri Jul 30 09:31:10 2004 HP5973P

Quantitation Report

Data File : H:\GCMS_VOA\P\072904\P6798.D Acq On : 30 Jul 2004 1:02

Operator: PC

Sample Misc

: VSTD001

Inst : HP5973 P

Multiplr: 1.00

Vial: 6

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:31:05 2004

Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compound			QIon	Response	Conc Unit	Qval	ue
41)	C180	Bromoform	15.18	173	10408	23.18 ng		98
42)	C260	1,3-Dichlorobenzene	17.26	146	89366	24.93 ng		99
43)	C267	1,4-Dichlorobenzene	17.26	146	89366	24.93 ng		94
44)	C249	1,2-Dichlorobenzene	17.96	146	72301	23.88 ng		92
45)	C286	1,2-Dibromo-3-Chloro	19.12	75	3106	23.37 ng	#	84
46)	C313	1,2,4-Trichlorobenze	20.40	180	38176	20.20 ng		94

Vial: 5 Data File: H:\GCMS_VOA\P\072904\P6797.D : 30 Jul 2004 00:28 Operator: PC Acq On

: HP5973 P Sample : VSTD002 Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:52 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\072904\P6796.D (29 Jul 2004 23:55)

Inte	rnal S	tandards			Response	•			(Ar)
1)	CI10	1,4-Difluorobenzene	10.04	114	667251	125.00	ng	97	0.00 7.81%
17)	CI20	D5-Chlorobenzene	13.95	117	589268	125.00	ng	94	0.00 49%
40)	CI30	D4-1,4-Dichlorobenze	17.34	152	344688	125.00	ng		0.00
Syst	em Mon	itoring Compounds							
-		p-Bromofluorobenzene	15.61	174	48602	27.86	na		0.00
		mount 125.000 Ran		- 120	Recove			.29%#	
_		pounds				:		Qva	lue
2)	C010	Chloromethane	4.43	50	65627	51.65	ng		94
3)	C015	Bromomethane	5.18	94	32732	52.87	ng		98
•	C020		4.61	62	54670	50.17	ng		99
5)	C025	Chloroethane	5.33	64	31514	50.82	ng		97
6)	C030	Methylene Chloride	7.02	84	96099	59.46		#	83
7)	C035	Acetone	6.46	43	50994	286.86	ng		97
8)	C040	Carbon Disulfide	6.79	76	234473	50.11	ng		100
9)	C045	1,1-Dichloroethene	6.43	96	63398	48.31	ng		96
10)	C050	1,1-Dichloroethane	7.88	63	146943	50.74	ng		95
11)	C057	trans-1,2-dichloroet	7.37	96	77892	49.93	ng.		91
12)	C056	cis-1,2-Dichloroethe	8.58	96	77234	47.73	ng.	:	95
13)	C060	Chloroform:	8.92	83.	147876	52.43	ng		100
14)	C222	Bromochloromethane	8.87	128	31852	51.65	ng:	#.	66
15)	C065	1,2-Dichloroethane	9.66	62	88297	53.20	ng		96
16)	C110	2-Butanone	8.55	43	61226	268.18	ng		81
18)	C115	1,1,1-Trichloroethan	9.22	97	118105	50.69	ng:		.98
19)	C120	Carbon Tetrachloride	9.43	117	102767	51.02	ng		91
20)	C150	Trichloroethene	10.42	95	71443	50.85	ng		98
21)	C130	Bromodichloromethane	11.03	83	91026	51.99	ng.		100
22)	C140	1,2-Dichloropropane	10.72	63	73540	52.96	ng.		93
23)	C145	cis-1,3-Dichloroprop	11.58	75	89936	47.18	ng:		100
	C165	Benzene	9.68	78	310727	50.67			100
25)	C155	Dibromochloromethane	13.13	129	49395	50.42	ng		96
26)	C170	trans-1,3-Dichloropr	12.27	75	71949	47.42	_		100
27)	C160	1,1,2-Trichloroethan	12.55	97	48331	54.34	ng		94
28)	C220	Tetrachloroethene	12.82	166	89824	52.07	ng	#	94
29)	C163	1,2-Dibromoethane	13.35	109	36027	50.50	ng		99
30)	C210	4-Methyl-2-Pentanone		43	132169	248.58	_		92
31)	C215	2-Hexanone	12.80	43	85586	236.46	_		95
32)	C230	Toluene	12.06	91	328158	49.41	ng		97
33)	C235	Chlorobenzene	14.00	112	228344	52.47	ng		99
34)	C240	Ethylbenzene	14.09	91	362823	48.05	ng		98
-	C246	m n-Xvlene	14.25				_		95
-	C247	o-Xylene	14.84	106	287945 129847	47.81	_	#	89
37)	C245	o-Xylene Styrene	14.84	104	204355	45.84	ng	•	91
39)	C225	1,1,2,2-Tetrachloroe	15.74	83	49511	52.18	ng		99
							-		

HP5973P

Quantitation Report

Data File: H:\GCMS_VOA\P\072904\P6797.D

Vial: 5 : 30 Jul $\overline{2}004$ 00:28 Operator: PC Acq On

Inst : HP5973 P Sample : VSTD002 Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:52 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compound			QIon	Response	Conc Unit	Qvalue
41)	C180	Bromoform	15.17	173	23439	50.20 ng	93
42)	C260	1,3-Dichlorobenzene	17.25	146	192734	51.70 ng	98
43)	C267	1,4-Dichlorobenzene	17.25	146	192734	51.70 ng	9.6
44)	C249	1,2-Dichlorobenzene	17.96	146	159317	50.60 ng	94
. 45)	C286	1,2-Dibromo-3-Chloro	19.12	75	6947	50.26 ng	# 78
46)	C313	1,2,4-Trichlorobenze	20.40	180	91966	46.79 ng	98

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:39 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\072904\P6796.D (29 Jul 2004 23:55)

Internal Stand	dards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,	4-Difluorobenzene	10.04	114	682184	125.00 ng	0.00
17) CI20 D5	-Chlorobenzene	13.95	117	623623	125.00 ng	0.00
40) CI30 D4	-1,4-Dichlorobenze	17.34	152	360641	125.00 ng	0.00
						100.00%
System Moniton	ring Compounds				*	
	Bromofluorobenzene	15.61	174	230738	125.00 ng	0.00
Spiked Amour		ge 80		Recove		.00%
Target Compour	nde					Qvalue
	loromethane	4.43	50	162378	125.00 ng	gvarue 96
<u> </u>	omomethane	5.17	94	79127	125.00 ng	97
	nyl Chloride	4.61	62	139253	125.00 ng	100
	loroethane	5.32	64	79246	125.00 ng	99.
	chylene Chloride	7.02	84	206556	125.00 ng	# 85
	etone	6.45	43	113589	625.00 ng	# 85. 98
•	cbon Disulfide	6.79	76	597957	125.00 ng	100
*	l-Dichloroethene	6.42	96	167699	125.00 ng	98
	l-Dichloroethane	7.88	63	370072	125.00 ng	100
	ins-1,2-dichloroet	7.37	96	199370	125.00 ng	
	s-1,2-Dichloroethe	8.58	96	206779	125.00 ng	98
	croform	8.92	83	360458	125.00 ng	
	omochloromethane	8.87	128	78810	125.00 ng	# - 72
	P-Dichloroethane	9,66	62	212126	125.00 ng	98
	Butanone	8.54	43	145880	625.00 ng	86
•	,1-Trichloroethan	9.22	97	308206	125.00 ng	94
•	bon Tetrachloride	9.43	117	271044	127.16 ng	92
	chloroethene	10.43	95	185859	125.00 ng	
	omodichloromethane	11.03	83	231623	125.00 ng	· 97
	-Dichloropropane	10.72	63	183702	125.00 ng	96
	-1,3-Dichloroprop	11.58	75	252191	125.00 ng	
_	zene	9.68	78	811215	125.00 ng	
	romochloromethane	13.13	129	129609	125.00 ng	
	ns-1,3-Dichloropr	12.27	75	200711	125.00 ng	97
=	,2-Trichloroethan	12.55	97	117669	125.00 ng	99
•	rachloroethene	12.82	166	228190	125.00 ng	
	-Dibromoethane	13.35	109	94370	125.00 ng	
_	ethyl-2-Pentanone	11.71	43	351679	625.00 ng	90
	exanone	12.80	43	239409	625.00 ng	88
	uene	12.06	91	878635	125.00 ng	96
	orobenzene	14.00	112	575657	125.00 ng	
	ylbenzene	14.09	91	998963	125.00 ng	98
	-Xylene	14.25	106	774921	250.00 ng	96
	ylene	14.84	106	362320	126.05 ng	# 86
	rene	14.85	104	589728	125.00 ng	96
· · · · · · · · · · · · · · · · · · ·	,2,2-Tetrachloroe	15.74	83	125515	125.00 ng	98
		-	-			

Quantitation Report

Sample : VSTD005 Inst : HP5973 P
Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:39 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compo	Compound		QIon	Response	Conc Unit	Qvalue	
41)	C180	Bromoform	15.18	173	61063	125.00 ng	96	5.
42)	C260	1,3-Dichlorobenzene	17.25	146	487600	125.00 ng	98	3
43)	C267	1,4-Dichlorobenzene	17.25	146	487600	125.00 ng	96	5
44)	C249	1,2-Dichlorobenzene	17.96	146	411799	125.00 ng	96	5
45)	C286	1,2-Dibromo-3-Chloro	19.12	75	18079	125.00 ng	# 8.0)
46)	C313	1,2,4-Trichlorobenze	20.40	180	257032	125.00 ng	98	3

HP5973P

Sample : VSTD010 Inst : HP5973 P
Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:25 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

IS QA File : H:\GCMS VOA\P\072904\P6796.D (29 Jul 2004 23:55)

1) CI10 1,4-Difluorobenzene 10.04 114 667069 125.00 ng 97.78% 0.00 17) CI20 D5-Chlorobenzene 13.95 117 620674 125.00 ng 0.00 40) CI30 D4-1,4-Dichlorobenze 17.34 152 368158 125.00 ng 0.00 102.08% System Monitoring Compounds 38) CS10 p-Bromofluorobenzene 15.61 174 404603 220.23 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 176.18%# Target Compounds	Inte	rnal S	Standards	R.T.	QIon	Response	Conc Unit		(Min)
99.53 368158 125.00 ng 0.00 102.08 38 CS10 p-Bromofluorobenzen 15.61 174 404603 220.23 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 176.18 18 18 18 18 18 18 18	1)	CI10	1,4-Difluorobenzene	10.04	114	667069	125.00 ng		
## Action	17)	CI20	D5-Chlorobenzene	13.95	117	620674	125.00 ng		0.00
System Monitoring Compounds 15.61 174 404603 220.23 ng 0.00								9	
System Monitoring Compounds 38) CS10 p-Bromofluorobenzene 15.61 174 404603 220.23 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 176.18*# Target Compounds 2) C010 Chloromethane 4.43 50 326384 256.95 ng 95 3) C015 Bromomethane 5.17 94 155159 250.66 ng 98 4) C020 Vinyl Chloride 4.61 62 285819 262.38 ng 96 6) C030 Methylene Chloride 7.02 84 381750 236.26 ng # 84 7) C035 Acetone 6.45 43 230440 1296.68 ng 99 8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethane 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.89 128 153315 248.68 ng # 72 15) C055 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.85 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethane 9.66 62 426576 257.07 ng 99 21) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 22) C150 Trichloroethane 10.42 95 370117 250.11 ng 99 23) C145 cis-1,3-Dichloropropane 10.72 63 370147 250.11 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 99 24) C165 Benzene 9.67 78 1566019 242.51 ng 99 24) C165 Benzene 10.72 63 37046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.51 ng 98 26) C220 Tetrachloroethane 13.35 109 197117 262.34 ng 98 27) C160 1,1,2-Trichloroethane 13.35 109 197117 262.34 ng 98 28) C220 Tetrachloroethane 12.82 166 440610 242.51 ng 99 31) C215 2-Betxanone 12.80 43 519754 1363.31 ng 87 32) C245 C46 m,p-Xylene 14.85 106 15174 83 257831 257.99 ng 99 34) C246 m,p-Xylene 14.00 112 1124278 245.29 ng 99 34) C246 m,p-Xylene 14.00 112 1124278 245.29 ng 99 34) C246 m,p-Xylene 14.85 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84	40)	CI30	D4-1,4-Dichlorobenze	17.34	152.	368158	125.00 ng	•	
Spiked Amount 125.000 Range 80 - 120 Recovery = 176.18%# Target Compounds 2) C010 Chloromethane 4.43 50 326384 256.95 ng 95 3) C015 Bromomethane 5.17 94 155159 250.66 ng 98 4) C020 Vinyl Chloride 4.61 62 285819 262.38 ng 96 5) C025 Chloroethane 5.32 64 158735 256.06 ng 96 6) C030 Methylene Chloride 7.02 84 381750 236.26 ng #84 7) C035 Acetone 6.45 43 230440 1296.68 ng 99 8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethane 6.42 96 322111 245.54 ng 99 10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.89 128 153315 248.68 ng #72 15) C065 1,2-Dichloroethane 9.66 62 246576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 81 566019 242.45 ng 100 25) C155 Dibromochloromethane 12.82 166 440610 242.51 ng 98 26) C170 trans-1,3-Dichloropropane 12.57 78 1566019 221.45 ng 99 27) C160 1,1,2-Trichloroethane 12.85 79 243434 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng 99 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C245 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C246 Mp-Xylene 14.84 106 751750 262.77 ng #84 37) C245 Styrene 14.84 106 751750 262.77 ng #84 37) C245 1,1,2,2-Tetrachloroe 15.74 83 257831 25799 ng 96								10	2.08€
Spiked Amount 125.000 Range 80 - 120 Recovery = 176.18%# Target Compounds 2) C010 Chloromethane 4.43 50 326384 256.95 ng 95 3) C015 Bromomethane 5.17 94 155159 250.66 ng 98 4) C020 Vinyl Chloride 4.61 62 285819 262.38 ng 96 5) C025 Chloroethane 5.32 64 158735 256.06 ng 96 6) C030 Methylene Chloride 7.02 84 381750 236.26 ng #84 7) C035 Acetone 6.45 43 230440 1296.68 ng 99 8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethane 6.42 96 322111 245.54 ng 99 10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.89 128 153315 248.68 ng #72 15) C065 1,2-Dichloroethane 9.66 62 246576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 81 566019 242.45 ng 100 25) C155 Dibromochloromethane 12.82 166 440610 242.51 ng 98 26) C170 trans-1,3-Dichloropropane 12.57 78 1566019 221.45 ng 99 27) C160 1,1,2-Trichloroethane 12.85 79 243434 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng 99 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C245 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C246 Mp-Xylene 14.84 106 751750 262.77 ng #84 37) C245 Styrene 14.84 106 751750 262.77 ng #84 37) C245 1,1,2,2-Tetrachloroe 15.74 83 257831 25799 ng 96	Syst	em Mon	itoring Compounds						
Target Compounds 2) C010 Chloromethane 3) C015 Bromomethane 4 .43 50 326384 256.95 ng 95 3) C015 Bromomethane 5 .17 94 155159 250.66 ng 98 4) C020 Vinyl Chloride 4 .61 62 285819 262.38 ng 96 6) C030 Methylene Chloride 7 .02 84 381750 236.26 ng # 84 7) C035 Acetone 6 .45 43 230440 1296.68 ng 99 8) C040 Carbon Disulfide 6 .79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethane 10 .0050 1,1-Dichloroethane 11 .057 trans-1,2-dichloroet 12 .0056 cis-1,2-Dichloroethane 13 .0060 Chloroform 14 .0222 Bromochloromethane 15 .88 96 416773 257.65 ng 97 13 .0060 Chloroform 14 .0222 Bromochloromethane 15 .88 128 153315 248.68 ng # 72 15 .0065 1,2-Dichloroethan 16 .010 2-Butanone 17 .2-Dichloroethane 18 .88 128 153315 248.68 ng # 72 15 .0065 1,2-Dichloroethane 18 .88 128 153315 248.48 ng 99 16 .010 2-Butanone 18 .54 43 323414 1417.01 ng 81 18 .015 1,1,1-Trichloroethan 19 .0120 Carbon Tetrachloride 10 .42 95 370117 250.11 ng 99 17 .0130 Bromodichloromethane 11 .03 83 485341 248.53 ng 100 12 .0150 Bromodichloromethane 11 .03 83 485341 248.53 ng 100 12 .0160 C170 trans-1,3-Dichloropropane 10 .02 63 371046 253.68 ng 97 13 .016				15.61	174	404603	220.23 ng		0.00
Compounds			~				_		
2) C010 Chloromethane				.,					-
3) C015 Bromomethane	Targ	et Com						Qv	alue
4) C020 Vinyl Chloride	2)	C010	Chloromethane	4.43	50	326384	256.95 ng		95
5) C025 Chloroethane 5.32 64 158735 256.06 ng 96 6) C030 Methylene Chloride 7.02 84 381750 236.26 ng # 84 7) C035 Acetone 6.45 43 230440 1296.668 ng 99 8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethene 6.42 96 322111 245.54 ng 99 10) C050 1,1-Dichloroethene 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroethene 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C055 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 17.01 ng 81 18) C115 1,1,1-Trichloroethane 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1560019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 260 C170 trans-1,3-Dichloroprop 12.27 75 439199 274.83 ng 99 270 C160 1,1,2-Trichloroethane 13.13 129 274712 266.20 ng 98 260 C170 trans-1,3-Dichloroprop 12.27 75 439199 274.83 ng 99 270 C160 1,2-Dibromochloromethane 13.13 129 274712 266.20 ng 98 260 C170 trans-1,3-Dichloroprop 12.27 75 439199 274.83 ng 99 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 270 C160 1,2-Dibromochlane 13.35 109 197117 262.34 ng 99 270 C16	3)	C015	Bromomethane	5.17	94	155159	250.66 ng		98
6) C030 Methylene Chloride 7.02 84 381750 236.26 ng # 84 7) C035 Acetone 6.45 43 230440 1296.68 ng 99 80 C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethene 6.42 96 322111 245.54 ng 99 100 C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroeth 8.58 96 416773 257.65 ng 97 13) C066 cis-1,2-Dichloroethene 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1.1-Trichloroethane 9.66 62 426576 257.07 ng 99 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethane 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 260 C170 trans-1,3-Dichloroprop 12.27 75 439199 274 83 ng 99 27) C160 1,1,2-Trichloroethane 12.85 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 12.80 43 519754 1363.31 ng 87 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C236 m,p-Xylene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 37) C245 Styrene 14.84 106 7				4.61	62	285819	262.38 ng		
7) C035 Acetone 6.45 43 230440 1296.68 ng 99 8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethene 6.42 96 32211 245.54 ng 99 10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethane 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng 96 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C246 m,p-Xylene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.09 91 2038381 256.27 ng 97 35) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng	5)	C025	Chloroethane	5.32	64	158735			96
8) C040 Carbon Disulfide 6.79 76 1192459 254.93 ng 100 9) C045 1,1-Dichloroethene 6.42 96 322111 245.54 ng 99 10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81, 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 98 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng 98 28) C220 Tetrachloroethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng	6)	C030	Methylene Chloride	7.02	`84	381750	236.26 ng	, #	84
9) C045 1,1-Dichloroethene 6.42 96 322111 245.54 ng 99 10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 811 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.85 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.84 104 1263293 269.04 ng 94 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	7)	C035	Acetone	6.45	43	230440	1296.68 ng		99
10) C050 1,1-Dichloroethane 7.88 63 718937 248.34 ng 98 11) C057 trans-1,2-dichloroett 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethan 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethane 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	8)	C040	Carbon Disulfide	6.79	76	1192459	254.93 ng		100
11) C057 trans-1,2-dichloroet 7.37 96 380601 244.03 ng 94 12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	9)	C045	1,1-Dichloroethene	6.42	96	322111	245.54 ng		99
12) C056 cis-1,2-Dichloroethe 8.58 96 416773 257.65 ng 97 13) C060 Chloroform 8.92 83 702855 249.26 ng 100 14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81, 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng	10)	C050	1,1-Dichloroethane	7.88	63	718937	248.34 ng		98
13) C060 Chloroform 8.92 83 702855 249.26 ng 100	11)	C057	trans-1,2-dichloroet	7.37	96	380601	244.03 ng		94
14) C222 Bromochloromethane 8.88 128 153315 248.68 ng # 72 15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloropropane 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromoch	12)	C056	cis-1,2-Dichloroethe	8.58	96	416773	257.65 ng		97
15) C065 1,2-Dichloroethane 9.66 62 426576 257.07 ng 99 16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 104 1263293 269.04 ng 94 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng	13)	C060-	Chloroform	8.92	83	702855	249.26 ng		100
16) C110 2-Butanone 8.54 43 323414 1417.01 ng 81, 18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	14)	C222	Bromochloromethane	8.88	128	153315	248.68 ng	#	72
18) C115 1,1,1-Trichloroethan 9.21 97 598627 243.94 ng 95 19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng # 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 106 751750 262.77 ng # 84 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	15)	C065	1,2-Dichloroethane	9.66	62	426576	257.07 ng		- 99
19) C120 Carbon Tetrachloride 9.43 117 538908 254.03 ng 93 20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng	16)	C110	2-Butanone	8.54	43	323414	1417.01 ng		81;
20) C150 Trichloroethene 10.42 95 370117 250.11 ng 99 21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	18)	C115	1,1,1-Trichloroethan	9.21	97	598627	243.94 ng		95
21) C130 Bromodichloromethane 11.03 83 458341 248.53 ng 100 22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethane 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromochlane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	19)	C120	Carbon Tetrachloride	9.43	117	538908	254.03 ng		93
22) C140 1,2-Dichloropropane 10.72 63 371046 253.68 ng 97 23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	20)	C150	Trichloroethene	10.42	95	370117	250.11 ng		99
23) C145 cis-1,3-Dichloroprop 11.58 75 533007 265.44 ng 99 24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	21)	C130	Bromodichloromethane	11.03	83	458341	248.53 ng	•	100
24) C165 Benzene 9.67 78 1566019 242.45 ng 100 25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene <	22)	C140	1,2-Dichloropropane	10.72	63	371046	253.68 ng		97
25) C155 Dibromochloromethane 13.13 129 274712 266.20 ng 98 26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	23)	C145	cis-1,3-Dichloroprop	11.58	75	533007	265.44 ng	٠.	99
26) C170 trans-1,3-Dichloropr 12.27 75 439199 274.83 ng 99 27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	24)	C165	Benzene	9.67	78	1566019	242.45 ng		100
27) C160 1,1,2-Trichloroethan 12.55 97 243443 259.84 ng 94 28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	25)	C155	Dibromochloromethane	13.13	129	274712	266.20 ng		⁻ 98
28) C220 Tetrachloroethene 12.82 166 440610 242.51 ng # 96 29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	26)	C170	trans-1,3-Dichloropr	12.27	75	439199	274.83 ng		99
29) C163 1,2-Dibromoethane 13.35 109 197117 262.34 ng 98 30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	27)	C160		12.55	97	243443	259.84 ng		94
30) C210 4-Methyl-2-Pentanone 11.71 43 779897 1392.61 ng 92 31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	28)	C220	Tetrachloroethene	12.82	166	440610	242.51 ng	#	96
31) C215 2-Hexanone 12.80 43 519754 1363.31 ng 87 32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	29)	C163		13.35	109	197117	262.34 ng		98
32) C230 Toluene 12.06 91 1736593 248.23 ng 97 33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	30)	C210	4-Methyl-2-Pentanone	11.71	43	779897	1392.61 ng		92
33) C235 Chlorobenzene 14.00 112 1124278 245.29 ng 99 34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96			2-Hexanone	12.80	43			•	87
34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96				12.06	91				97
34) C240 Ethylbenzene 14.09 91 2038381 256.27 ng 97 35) C246 m,p-Xylene 14.25 106 1581108 512.51 ng 96 36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	33)	C235	Chlorobenzene	14.00	112	1124278	245.29 ng		99
36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96			Ethylbenzene	14.09	91	2038381	256.27 ng		97
36) C247 o-Xylene 14.84 106 751750 262.77 ng # 84 37) C245 Styrene 14.84 104 1263293 269.04 ng 94 39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	35)	C246	m,p-Xylene	14.25	106	1581108	512.51 ng	e	
37) C245Styrene14.841041263293269.04 ng9439) C2251,1,2,2-Tetrachloroe15.7483257831257.99 ng96	36)	C247	o-Xylene	14.84	106	751750	262.77 ng	.#	84
39) C225 1,1,2,2-Tetrachloroe 15.74 83 257831 257.99 ng 96	37)	C245	Styrene	14.84	104	1263293	269.04 ng		94
	39)	C225	1,1,2,2-Tetrachloroe	15.74	83	257831 ,	257.99 ng		96

HP5973P

Quantitation Report

Vial: 3 Operator: PC

Data File : H:\GCMS_VOA\P\072904\P6795.D Acq On : 29 Jul 2004 23:21 Sample : VSTD010 : HP5973 P Inst Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Results File: A4I00692.RES Quant Time: Jul 30 09:30:25 2004

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compound		R.T.	QIon	Response	Conc Unit	Qvalue
41)	C180	Bromoform	15.18	173	135020	270.75 ng	100
42)	C260	1,3-Dichlorobenzene	17.25	146	995618	250.02 ng	98
43)	C267	1,4-Dichlorobenzene	17.25	146	995618	250.02 ng	96
		1,2-Dichlorobenzene	17.96	146	847324	251.95 ng	95
45)	C286	1,2-Dibromo-3-Chloro	19.12	75	38456	260.46 ng	# 84
		1,2,4-Trichlorobenze	20.40	180	572743	272.85 ng	96

Data File: H:\GCMS_VOA\P\072904\P6794.D Vial: 2 Acq On : 29 Jul 2004 22:48 Operator: PC

: VSTD025 Sample Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 09:30:11 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\072904\P6796.D (29 Jul 2004 23:55)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc	Units		(Min) (Ar)
1)	CI10	1,4-Difluorobenzene	10.04	114	688698	125.0	o ng	100	0.00 0.95%
17)	CI20	D5-Chlorobenzene	13.95	117	651558	125.0	0 ng		0.00
40)	CI30	D4-1,4-Dichlorobenze	17.34	152	385486	125.0	0 ng		0.00
		•			٠,			100	.05
Syste	em Mon	itoring Compounds							
38)	CS10	p-Bromofluorobenzene	15.60	174	947964	491.5	3 ng		0.00
Sp	iked A	mount 125.000 Rar	ige 80	- 120	Recov	ery =	393	.22%#	
Targ	et Com	pounds		٠.				Ova	lue :
	C010		4.43	50	806089	614.6	7 na	2	97
	C015		5.17	94	381600	597.13	_		94
-	C020		4.61	62	704682	626.5			99
-	C025	-	5.32	64	402023	628.14			100
-	C030		7.02	84	961756	576.5	_	#	83
_	C035	Acetone	6.45	43	570716	3110.5	_	••	100
_	C040	Carbon Disulfide	6.79	76	3091659	640.18	_		100
	C045	1,1-Dichloroethene	6.42	96	870655	642.83	_		94
	C050	1,1-Dichloroethane	7.88	63	1940397	649.2			99
	C057	trans-1,2-dichloroet	7.37	96	1040155	645.98		•	94
-	C056	cis-1,2-Dichloroethe	8.57	96	1109022	664.0	_	•	98
-	C060		8.92	83	1910340	656.20	_		100
	C222	Bromochloromethane	8.87	128	406218	638.21	_	#	74.
-	C065	1,2-Dichloroethane	9.66	62	1145448	668.60		••	99
	C110	2-Butanone	8.53		854144	3624.83	_		80
	C115	1,1,1-Trichloroethan	9.21	97	1728169	670.85	_		96
	C120		9.43	117	1585484	711.94	_		93
	C150	Trichloroethene	10.43	95	1063085	684.33			97
	C130	Bromodichloromethane	11.02	83	1298123	670.52	_		99
	C140	1,2-Dichloropropane	10.72	63	952788	620.53			97
	C145	cis-1,3-Dichloroprop	11.58	75	1529362	725.54			98
	C165	Benzene	9.67	78	4272794	630.17	_		100
	C155	Dibromochloromethane	13.13	129	809631	747.36	_	÷	97
26)	C170	trans-1,3-Dichloropr	12.27	75	1282298	764.36			100
27)	C160	1,1,2-Trichloroethan	12.54	97	683271	694.72	_		94
28)	C220	Tetrachloroethene	12.82	166	1194893	626.49	_	#	94
29)	C163	1,2-Dibromoethane	13.34		567256	719.16	_		99
30)	C210	4-Methyl-2-Pentanone	11.71	43	2083958				90
	C215	2-Hexanone	12.80	43	1405276	3511.32	_		86
	C230	Toluene	12.06	91	4809400	654.88			97
-	C235	Chlorobenzene	14.00	112	3062531	636.50			99
	C240		14.09	91	5638156	675.25			97
	C246		14.25	106	4281104	1321.93			94
		o-Xylene	14.84	106	2071699	689.82		#	82
	C245	-	14.84	104	3493149	708.67	_		92
-	C225	1,1,2,2-Tetrachloroe	15.74	83	710118	676.88			97

^{(#) =} qualifier out of range (m) = manual integration HP5973P P6794.D A4I00692.M Fri Jul 30 09:30:16 2004

Vial: 2

Quantitation Report

Data File : H:\GCMS_VOA\P\072904\P6794.D Acq On : 29 Jul 2004 22:48 Operator: PC

: VSTD025 Inst : HP5973 P Sample

Multiplr: 1.00 Misc

MS Integration Params: RTEINT2.P

Quant Results File: A4I00692.RES Quant Time: Jul 30 09:30:11 2004

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

: HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:20:52 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compound		R.T.	QIon	Response	Conc Unit	Qvalue
42) 43) 44) 45)	C260 C267 C249 C286	Bromoform 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze	17.25 17.96 19.12	146 75	2760352 2352036 114305	802.45 ng 662.03 ng 662.03 ng 667.94 ng 739.38 ng 748.10 ng	99 98 96 96 # 82 96

216/433

LOW CONCENTRATION VOLATILES, 10/92 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: Lab Samp ID: A4C0002997-1

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Lab File Id: <u>L7916.RR</u> Calibration Date: <u>07/31/2004</u> Time: <u>13:52</u>

Intrument ID: <u>150L</u> Init. Calib. Date(s): <u>07/31/2004</u> <u>07/31/2004</u>

Heated Purge (Y/N): N Init. Calib. Times: 09:53 12:48

GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)

COMPOUND	AVG RRF	RRF5	MIN RRF	% D	MAX % D
Vinyl chloride Chloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Chlorobenzene 1,2-Dichloroethene (Total)	0.2390 0.1730 0.6540 0.8880 0.6380 0.8180 1.1720 0.3630	0.6139 0.7764 0.5656 0.7215 1.0992	0.1000 0.0100 0.2000 0.1000 0.3000 0.2000 0.5000 0.0100	22.600 6.100 12.600 11.300 11.800 6.200	100.00 30.00 30.00 30.00 30.00 30.00
p-Bromofluorobenzene	0.4040	0.5082	0.2000	-25.800	30.00

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Vial: 2 Operator: PC

: 31 Jul 2004 Acq On : VSTD005 Sample

: Finnigan Inst

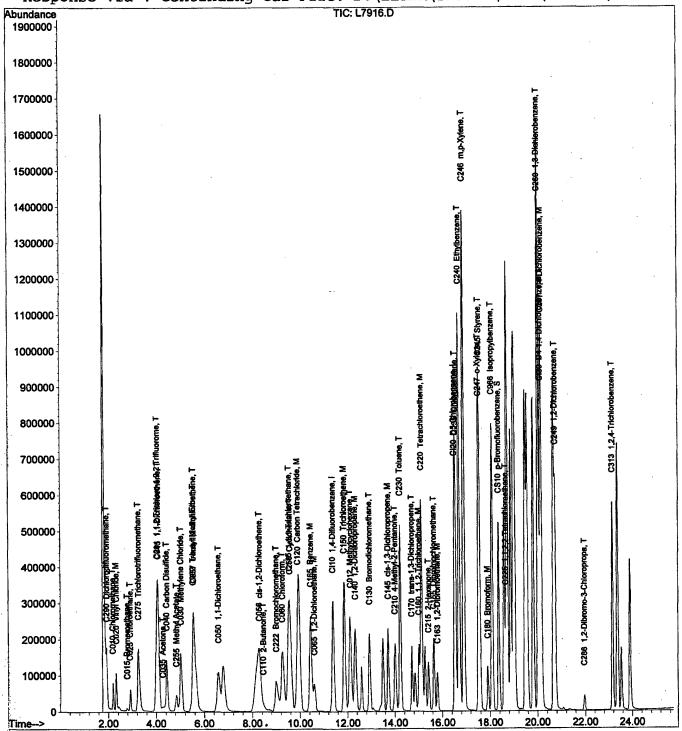
Misc

13:52

Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 14:37 2004


Quant Results File: A4I00695.RES

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator) Method

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 17 11:22:00 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7912.D

Page 1

Data File: D:\ELINK\INSTR1\DATA\073104\L7916.D Vial: 2
Acq On: 31 Jul 2004 13:52 Operator: PC

Sample : VSTD005 Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 14:37 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Wed May 19 15:26:24 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7912.D (31 Jul 2004 11:43)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min) Rcv(Ar)		
1)	CI10	1,4-Difluorobenzene	11.39	114	872881	125.00	ng	0.00		
24)	CI20	D5-Chlorobenzene	16.51	117	687143	125.00	ng	-0.01		
4.0.	~~~	D D. 13			410046	105 00		103.92%		
48)	C130	D4-1,4-Dichlorobenze	20.13	152	412046	125.00	ng	-0.01 107.79%		
G										
		itoring Compounds p-Bromofluorobenzene	10 26	174	349180	125 30	na	-0.01		
			ge 80				_	.31%		
.gp.	IKCU A	mount 125.000 Ran	ge ou	- 120	RCCOVC	- y -	100	.510		
Targ	et Com	pounds						Ovalue		
	C290		1.94	85	200882	93.12	ng	96		
	C010		2.19		119555	81.13		100		
4)	C015		2.79	94	12116	16.90	ng	97		
	C020		2.33	62	158629		ng	97		
6)	C025	Chloroethane	2.91	64	116835	94.40	ng	99		
7)	C275	Trichlorotrifluorome	3.26	101	469348	94.99	ng	99.		
8)	C030	Methylene Chloride	5.04	84	222392	124.78	ng	94		
9)	C035	Acetone	4.28	43	50357	480.81		83		
10)	C040	Carbon Disulfide	4.44		522746	90.74		100		
11)	C045	1,1-Dichloroethene	4.09		226975	106.14		100		
	C962	T-butyl Methyl Ether	5.54		291293		_	91		
	C050	1,1-Dichloroethane	6.59		535837	111.53		100		
•	C057	trans-1,2-dichloroet	5.55		303608	109.98	_	92		
	C056	cis-1,2-Dichloroethe	8.30		285416	117.21	_	95		
	C060	Chloroform	9.26		555071	118.09	_	99		
	C222	Bromochloromethane	9.00		92323	109.60		98		
	C065	1,2-Dichloroethane	10.61		205117	126.89		61		
	C110	2-Butanone	8.46		105110	523.60	_	78		
	C255	Methyl Acetate	4.85		45406	104.56		91		
	C291	1,1,2 Trichloro-1,2,	4.05		383879	90.95	ng	91		
	C256	Cyclohexane	9.57			93.19	ng	93		
	C012	Methylcyclohexane	12.13		384744		-	93		
	C115	1,1,1-Trichloroethan	9.55		533507	104.01		99 100		
	C120				509405	104.82		85		
	C150		11.86			105.23 117.99		98		
28)	C130	Bromodichloromethane	12.94	83	#TT07\	TT/.22		<i></i>		
(41)	(#) muslifier sub of warms (m) manual integration									

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\073104\L7916.D Vial: 2

Operator: PC Acq On : 31 Jul 2004 13:52

Sample : VSTD005 Inst : Finnigan Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 14:37 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

: 150L CLP LOW LEVEL WATER Title

Last Update : Wed May 19 15:26:24 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7912.D 31 Jul 2004 11:

DataAcq Meth : METHOD.M

•	Compound			QIon	Response	Conc Unit	Qva	lue
29)	C140	1,2-Dichloropropane	12.34	63	275952	112.28 ng		98
	C145	cis-1,3-Dichloroprop	13.73	75	352173	116.61 ng		98
31)	C165	Benzene	10.45	7 8	852111	109.96 ng		98
32)	C155	Dibromochloromethane	15.65	129	283475	122.68 ng		93
33)	C170	trans-1,3-Dichloropr	14.71	75	239552	120.07 ng		96
34)	C160	1,1,2-Trichloroethan	15.01	83	147071	121.96 ng		96
35)	C220	Tetrachloroethene	15.13	166	495788	106.29 ng		97
36)	C163	1,2-Dibromoethane	15.80	109	187193	124.14 ng		97
37)	C210	4-Methyl-2-Pentanone	14.01	43	429559	529.06 ng	#	74
38)	C215	2-Hexanone	15.43		275353	528.05 ng		93
39)	C230	Toluene	14.23	91	1022215	109.73 ng		92
40)	C235	Chlorobenzene	16.56		755328	113.66 ng		100
41)	C240	Ethylbenzene	16.71		1326770	109.23 ng		98
42)	C246	m,p-Xylene	16.90		1082484	216.56 ng		95
43)	C247	o-Xylene	17.53		498572	112.60 ng		89
44)	C245	Styrene	17.56		739567	117.58 ng		95
46)	C966	Isopropylbenzene	18.09		1536098	106.09 ng		99
47)	C225	1,1,2,2-Tetrachloroe	18.66		207328	125.87 ng		88
49)	C180	Bromoform	17.90		145223	118.81 ng		96
50)	C260	1,3-Dichlorobenzene	20.03		744038	111.53 ng		97
51)	C267	1,4-Dichlorobenzene	20.16		749040	114.27 ng		97
52)	C249	1,2-Dichlorobenzene	20.74		600521	116.48 ng		97
53)	C286	1,2-Dibromo-3-Chloro			31677	117.40 ng	#	81
54)	C313	1,2,4-Trichlorobenze	23.16	180	461750	112.81 ng		98

220/433

Contract: _____ Lab Samp ID: <u>A4C0002996-1</u>

LOW CONCENTRATION VOLATILES, 10/92 CONTINUING CALIBRATION CHECK

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ___

Lab File Id: P6801.RR Calibration Date: <u>07/30/2004</u> Time: <u>15:32</u>

Heated Purge (Y/N): \underline{N} Init. Calib. Times: $\underline{22:48}$ $\underline{23:55}$

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

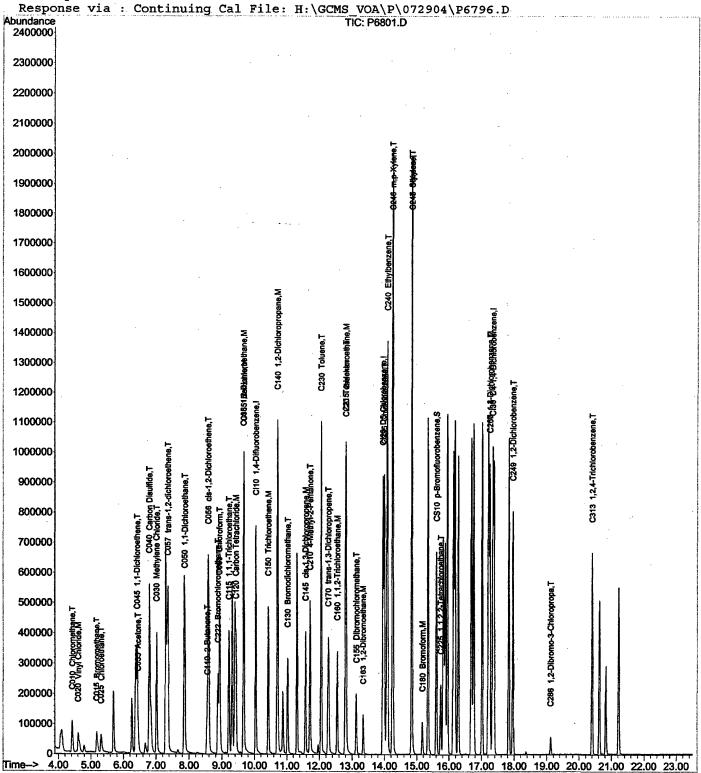
Lab Name: <u>STL Buffalo</u>

COMPOUND	AVG RRF	RRF5	MIN RRF	% D	MAX % D
Vinyl chloride Chloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Chlorobenzene 1,2-Dichloroethene (Total)	0.2110 0.1190 0.5490 0.5020 0.3040 0.3700 0.9430 0.2960	0.4966 0.3272 0.3570 1.0262	0.5000	3.500 -8.800	30.00 30.00 30.00
p-Bromofluorobenzene	0.2720	0.3542	0.2000	-30.200	30.00

Vial: 10

Data File : H:\GCMS_VOA\P\073004\P6801.D Acq On : 30 Jul 2004 15:32 Operator: BJ Sample : VSTD005

Inst : HP5973 P Misc Multiplr: 1.00


MS Integration Params: RTEINT2.P

Quant Time: Jul 30 16:00 2004 Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator) Method

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:32:38 2004

Data File : H:\GCMS_VOA\P\073004\P6801.D . Vial: 10 : 30 Jul 2004 15:32 Acq On Operator: BJ

Sample : VSTD005 Inst : HP5973 P Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 16:00:51 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 09:32:38 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

P6801.D A4I00692.M

IS QA File : H:\GCMS_VOA\P\072904\P6796.D (29 Jul 2004 23:55)

Internal Standards	R.T.	QIon	Response	Conc Units	Rcv(Ar)
1) CI10 1,4-Difluorobenzene	10.04	114	648794	125.00 ng	0.00 95.11%
17) CI20 D5-Chlorobenzene	13.95	117	608501	125.00 ng	0.00
40) CI30 D4-1,4-Dichlorobenze	17.34	152	346718	125.00 ng	
•			•		96.14%
System Monitoring Compounds		÷ .			•
38) CS10 p-Bromofluorobenzene					0.00
Spiked Amount 125.000 Ra	nge 80	- 120	Recove	ry = 95	.74%
Target Compounds					Qvalue
2) C010 Chloromethane	4.43	. 50	167816	135.83 ng	96
3) C015 Bromomethane	5.17	94	77998	129.56 ng	
4) C020 Vinyl Chloride	4.61	62	134640		
5) C025 Chloroethane	5.32		81113	_	98
6) C030 Methylene Chloride	7.02	. 84	224690	142.97 ng	# 84
7) C035 Acetone	6.45		136807	791.49 ng	98
8) C040 Carbon Disulfide	6.79	76	604574		
9) C045 1,1-Dichloroethene		96	155722	122.05 ng	97
10) C050 1,1-Dichloroethane		63	400355		
11) C057 trans-1,2-dichloroet			200405	132.12 ng	<i>9</i> 5
12) C056 cis-1,2-Dichloroethe	8.58	96.	216688		97
13) C060 Chloroform	8.92	83.	401199	146.29 ng	,97
14) C222 Bromochloromethane	8.87	128	82097	136.91 ng	# 77
15) C065 1,2-Dichloroethane	9.66	. 62	249736	154.74 ng	. 99
16) C110 2-Butanone	8.54	43.	170010	765.87 ng	79
18) C115 1,1,1-Trichloroethan	9.21	. 97.	302206	125.61 ng	97
19) C120 Carbon Tetrachloride	9.43	117	257858 .	121.87 ng	98
20) C150 Trichloroethene	10.43	95.	199086	137.22 ng	. 91
21) C130 Bromodichloromethane		83.	254603	140.82 ng	
22) C140 1,2-Dichloropropane		63.		143.56 ng	94
23) C145 cis-1,3-Dichloroprop			275665.	140.03 ng	99
24) C165 Benzene	9.67	78	856241	135.22 ng 131.91 ng	100
25) C155 Dibromochloromethane			133453	. 131.91 ng	99
26) C170 trans-1,3-Dichloropr				145.23 ng	96
27) C160 1,1,2-Trichloroethan			134087		100
28) C220 Tetrachloroethene	12.82		217262		
29) C163 1,2-Dibromoethane				141.65 ng	94
30) C210 4-Methyl-2-Pentanone			400705	729.83 ng	91
31) C215 2-Hexanone	12.80	. 43.	271761	727.09 ng	. 92
32) C230 Toluene	12.06	. 91	941600	137.29 ng	. 98
33) C235 Chlorobenzene	14.00	112		138.96 ng	97
34) C240 Ethylbenzene	14.09		1029560	132.03 ng	97
35) C246 m,p-Xylene	14.25			258.18 ng	95
36) C247 o-Xylene	14.84			_	# 82
taran da antara da antara da antara da antara da antara da antara da antara da antara da antara da antara da a	14.84			136.40 ng	93
39) C225 1,1,2,2-Tetrachloroe	15.74	83	146059	149.07 ng	100
(#) = qualifier out of range (m) = manı	ual in	tegration	WDr.oren	

Fri Jul 30 16:01:26 2004 HP5973P

Data File : H:\GCMS_VOA\P\073004\P6801.D Acq On : 30 Jul 2004 15:32

Sample : VSTD005

Misc

... Inst ...: HP5973 P Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 16:00:51 2004

Quant Results File: A4I00692.RES

Vial: 10 Operator: BJ

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 09:32:38 2004

Response via : Single (H:\GCMS_VOA\P\072904\P6796.D 29 Jul 2004 23:55)

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qval	ue
	C180 C260	Bromoform	15.18 17.25		64880	138.15 ng		94
43).	C267	1,4-Dichlorobenzene	17.25	146 146	492501	131.33 ng 131.33 ng		9 <u>.</u> 6 96
	C249 C286	1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro	17.96 19.12	146 75	421383 20132	133.05 ng	#	98 74
-		1,2,4-Trichlorobenze		180		132.06 ng		96

RAW QC DATA

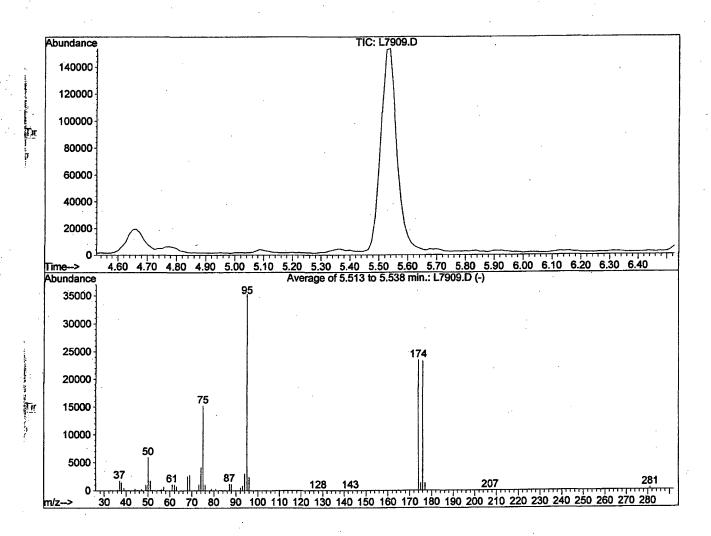
BFB Tune Evaluation

Data File: D:\ELINK\INSTR1\DATA\073104\L7909.D

Vial: 1 Operator: PC : 31 Jul 2004 09:53

Sample : 0731BFBL1

: Finnigan Inst


Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

: D:\ELINK\INSTR1\QUANT\826025ML\A4I00650.M (RTE Integrator) Method

Title : 8260 25ML WATER

			£43 (3.33 E			-		
7	Average of	f 3 scans:	442,443,44	44 minus ba	ackground	scan 423 (5	5.28 min)	
,	Target	Rel. to	Lower	Upper	Rel.	Raw	Result	l
i	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail	İ
-							DACC	- I
	50	95	15	40	16.9	5944	PASS	ı
a de la composition della composition della comp	75	95	30	60	43.3	15261	PASS	ı
4	95	95	100	100	100.0	35259	PASS	
	96	95	5	9	6.6	.2341	PASS	l
10	173	174	0	2	0.0	. 0	PASS	
3	174	95	50	100	66.6	23483	PASS	ĺ
	175	174	· 5	9	5.7	1340	PASS	
	176	174	95	101	99.0	23245	PASS	
	177	176	5	9	5.7	1322	PASS	

abund.

m/z

Average of 5.513 to 5.538 min.: L7909.D 0731BFBL1 Modified:subtracted

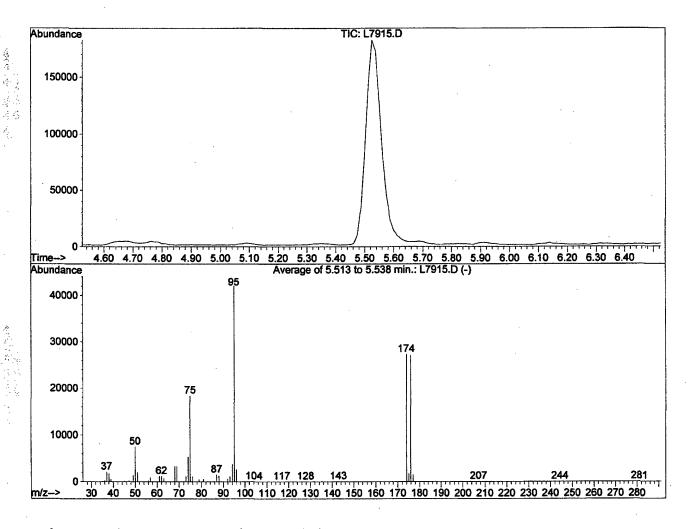
iiiiea:su	ptracted				
m/z	abund.	m/z	abund.	m/z	abund.
37.05	1743	63.00	74 0	92.05	487
38.00	1396	68.00	2583	93.00	833
39.00	433	69.00	2756	94.00	2984
44.00	331	73.05	1064	95.00	35259
47.00	218	74.05	4148	96.00	2341
49.00	1005	75.00	15261	173.95	23483
50.00	5944	76.00	1035	175.00	1340
·51.00	1775	78.90	295	176.00	23245
57.05	672	80.90	332	177.00	1322
61.00	1119	87.00	1196	281.10	393
62.00	1096	87.95	1120		

CLP BFB RESULTS Tune Evaluation

Data File: D:\ELINK\INSTR1\DATA\073104\L7915.D

Vial: 1

Acq On : 31 Jul 2004 13:21 Operator: PC


Sample : 0731BFBL2 Inst : Finnigan

Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLPLOW LEVEL WATER

Peak Apex is scan: 443 (5.53 min)

Average of 3 scans: 442,443,444 minus background scan 423 (5.28 min)

	Target Mass	Rel. to Mass	Lower Limit,%	Upper Limit,%	Rel. Abn,%	Raw Abn	Result Pass/Fail	į
Ī	50	95	15	40	17.7	7453	PASS	-
٠,	75	95	30	60	43.6	18357	PASS	
	95	95	100	100	100.0	42056	PASS	
	96	95	5	. 9	6.2	2613	PASS	ı
	173	174	0	2	0.0	0	PASS	ĺ
- 1	174	95	50	100	64.8	27264	PASS	
- 1	175	174	5	· 9	6.3	1719	PASS	
	176	174	95	101	99.5	27115	PASS	
	177	176	5	9	5.2	1415	PASS	

Average of 5.513 to 5.538 min.: L7915.D 0731BFBL2

0731BFBL2							
Modified:su	btracted					•	
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.05	272	61.00	1140	86.95	1472		
37.00	2082	62.00	1182	87.95	1298		
38.05	1789	63.00	722	91.95	525		
39.00	491	68.00	3301	93.00	1058		
45.00	216	69.00	3307	94.05	3691		
47.00	293	73.05	1106	95.05	42056		
49.05	1366	74.05	5307	96.05	2613		
50.00	7453	75.00	18357	174.00	27264		
51.00	2020	76.00	1117	175.05	1719		
56.05	261	78.90	470	175.95	27115		
57.00	874	80 90	517	177 00	1415		

1

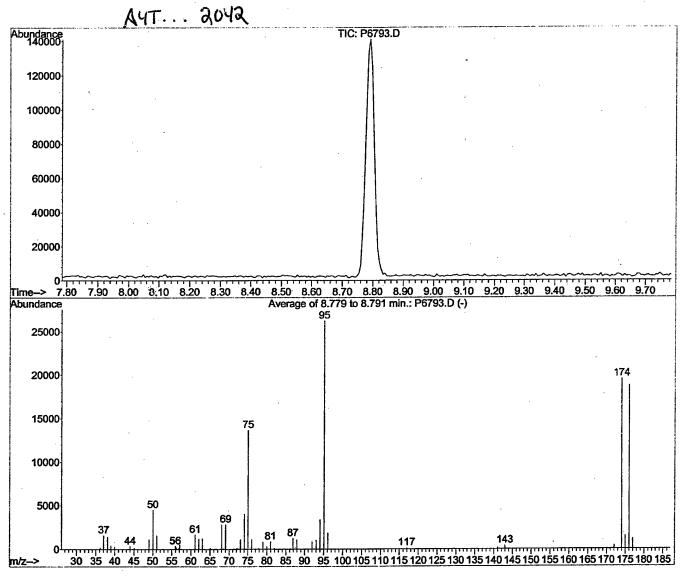
CLP BFB RESULTS Tune Evaluation

Data File : H:\GCMS_VOA\P\072904\P6793.D

Acq On : 29 Jul 2004 22:07

Vial: 1 Operator: PC

Sample : 0729BFBP2


Misc

Inst : HP5973 P Multiplr: 1.00

MS Integration Params: RTEINT2.P

Method : C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I000XXX.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

;	Peak Apex Average of	is scan: ' E 3 scans:	790 (8.78 t 789,790,79	nin) 91 minus ba	ackground	scan 770 (8	3.66 min)	
	Target	Rel. to	Lower	Upper	Rel.	Raw	Result	Ì
	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail	ı
٠.								-
	50	95	. 15	40	17.1	4477	PASS	ı
	75	95	30	60	52.1	13662	PASS	l
	95	95.	100	100	100.0	26242	PASS	ı
	96	95	. 5	. 9	7.1	1855	PASS	t
		:		_				ŀ

95	95.	100	100	100.0	26242	PASS
96	95	. 5	. 9	7.1	1855	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	74.3	19485	PASS
175	174	5	9	7.6	1480	PASS
176	174	95	101	96.3	18770.	PASS
177	176	. 5	. 9	6.1	1145	PASS
	<u>.</u>					

0123012		•					
Modified:su	btracted					•	•
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.10	184	56.20	202	75.05	13662	96.10	1855
37.05	1584	56.90	146	76.05	1122	141.00	156
38.10	1391	57.10	503	78.95	. 824	142.95	371
38.95	412	61.10	1651	80.00	. 276	171.90	136
39.95	283	62,05	1185	80.95	843	172.10	347
44.00	. 331	63.00	1212	86.90	1229	174.00	19485
45.10	134	65.10	148	87.95	1099	175.00	1480
49.05	1102	68.05	2800	92.00	849	176.00	18770
50.05	4477	69.05	. 2823	93.05	1028	176.95	1145
51.05	1578	73.05	1080	94.00	3390		
55.95	345	74.05	3997	95.05	26242		

BFB Tune Evaluation

A4313807

Data File : H:\GCMS_VOA\P\073004\P6800.D Acq On : 30 Jul 2004 14:59

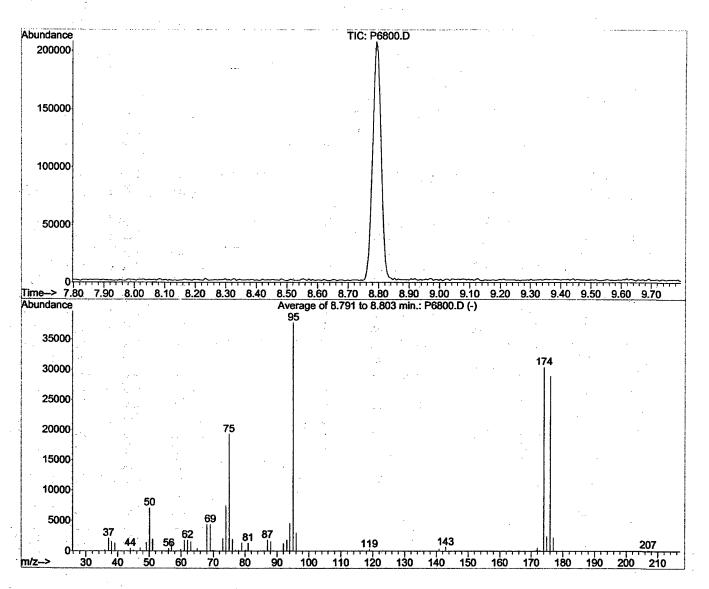
Vial: 9

Inst

Operator: BJ

NBRC

Sample Misc


: 0730BFBP1

: HP5973 P Multiplr: 1.00

MS Integration Params: events.e

: C:\MSDchem\1\methods\envdef.m (Chemstation Integrator)

Title

Peak Apex is scan: 792 (8.80 min)

	Average of 3 scans: 791,792,793 minus background scan 772 (8.68 min)												
2	Average of	E 3 scans:	791,792,79	93 minus ba	ackground	scan 772 (1	8.68 min)						
	Target	Rel. to	Lower	Upper	Rel.	Raw	Result						
	Mass	Mass	Limit,%	Limit, %	Abn, %	Abn	Pass/Fail	İ					
	·	' 		·	·			<u>,</u>					
	50	95	15	40	18.8	7080	PASS	l					
	75	95.	30	60	51.0	19249	PASS	Ì					
	95	95	100	100	100.0	37744	PASS	İ					
	96	. 95	5	9	7.9	2965	PASS	İ					
	173	174	0	. 2	0.5	145	PASS	İ					
	174	95	50	100	80.5	30392	PASS	İ					
	175	174	. 5	9	7.9	2391	PASS	l					
	176	174	95	. 101	. 95.1	28888	PASS	l					
	177	176	5	9	7.6	. 2204	PASS	İ					

	Modif:	ied:	subtracted
--	--------	------	------------

m/z	abund.	m/z.	abund.	m/z	abund.	m/z	abund.
35.90	191	59.90	271	79.00	1367	142.95	624
37.10	2092	61.05	1756	80.95	1312	171.95	566
38.05	1553	62.05	1769	87.00	1791	174.00	30392
39.05	1257	63.05	1505	88.05	1524	174.95	2391
44.00	432	65.00	429	92.00	1209	176.00	28888
47.10	488.	68.00	4348	93.05	1798	176.95	2204
49.05	1390	69.05	4352	94.05	4522		
50.10	7080	73.05	2042	95.10	37744		
51.05	1933	74.00	7451	96.05	2965		
56.10	411	75.00	19249	118.95	268		
57.00	1210	76.05	1886	140.85	350		

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

· · · · · · · · · · · · · · · · · · ·
VBLK32
SDG No.:
Lab Sample ID: <u>A4B1380701</u>
Lab File ID: <u>P6802.RR</u>
Date Samp/Recv:
Date Analyzed: 07/30/2004
Dilution Factor:1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
1 U U 1 U U U U U U U U U U U U U U U U

Data File : H:\GCMS_VOA\P\073004\P6802.D Acq On : 30 Jul 2004 17:02 Sample : VBLK32

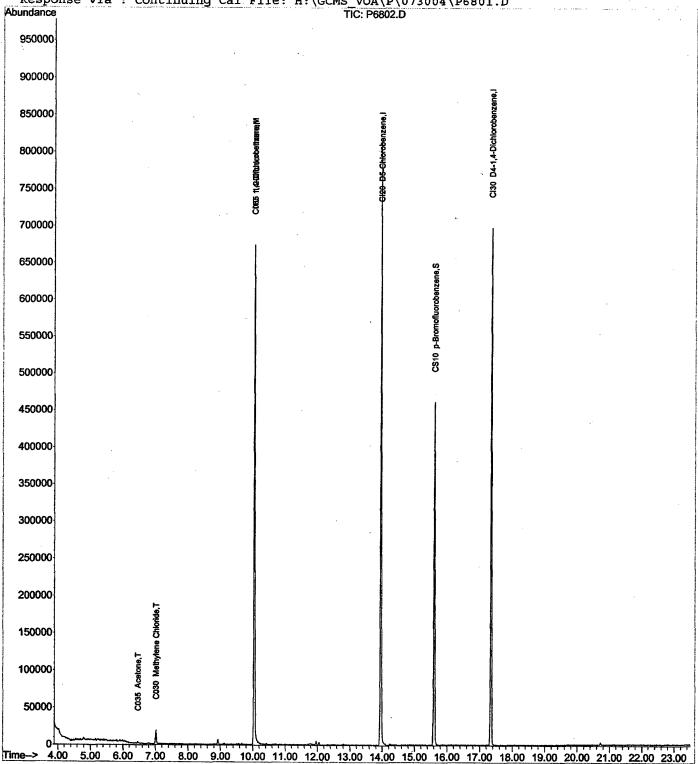
Misc

Operator: PC Inst : HP5973 P

Multiplr: 1.00

Vial: 11

MS Integration Params: RTEINT2.P


Quant Time: Jul 30 17:29 2004

Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator) Method Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Continuing Cal File: H:\GCMS_VOA\P\073004\P6801.D

Data File: H:\GCMS_VOA\P\073004\P6802.D

Acq On : 30 Jul 2004 17:02

Sample : VBLK32

Misc

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 17:29:52 2004

Quant Results File: A4I00692.RES

Operator: PC

Multiplr: 1.00

Vial: 11

Inst : HP5973 P

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

	Standards				Conc Units	Dev(Min) Rcv(Ar)
1) CI1	0 1,4-Difluorobenzene	10.04	114	544771	125.00 ng	0.00 83.97%
17) CI2	0 D5-Chlorobenzene	13.95	117	519490	125.00 ng	0.00 85.37%
40) CI3	0 D4-1,4-Dichlorobenze	17.34	152	229634	125.00 ng	0.00
	,					66.23%
System M	onitoring Compounds					
	0 p-Bromofluorobenzene	15.61	174	148576	100.92 ng	0.00
	Amount 125.000 Ran					.74%
Target C	ompounds					Qvalue
2) C01	-	4.43	50	290	N.D.	2.020
3) C01		4.99		133	N.D.	
4). C02	_	0.00	-	0	N.D.	
		0.00	64	0	N.D.	
6) C03		7.02	84	10733	7.11 ng	# 17/14
7) C03		6.45		2943 1992	16.01 ng	73
8) C04	O Carbon Disulfide	6.78	76	1992	N.D.	4
9) C04		0.00	96		N.D.	
10) C05		0.00		0	N.D.	14
11) C05	7 trans-1,2-dichloroet	. 0.00		. 0.	N.D.	
12) C05	6 cis-1,2-Dichloroethe	0.00	96	0		
	0 Chloroform	8.92	83.			
14). C22	2 Bromochloromethane	0.00	. 128	0.	N.D.	
15). C06		10.04	62.	18804	11.21 ng	# 13/1/
. 16) C11		0.00		0		
18) C11	5 1,1,1-Trichloroethan	0.00		0		
	O Carbon Tetrachloride			0.		
20). C15	O Trichloroethene	10.43	95	872	N.D.	
21) C13	0 Bromodichloromethane	11.03	83.			
22) C14	0 1,2-Dichloropropane	0.00	63.	· O	N.D.	
23) C14	5 cis-1,3-Dichloroprop	0.00		. 0	N.D.	
24) C16		9.68		2150	N.D.	
	5 Dibromochloromethane				N.D.	
	trans-1,3-Dichloropr			0		• • •
27) C16	0 1,1,2-Trichloroethan	0.00		0	N.D.	
28) C22		12.82		350	N.D.	
29) C16					N.D.	,
	0. 4-Methyl-2-Pentanone	11.72	43	330		
31) C21	5 2-Hexanone	12.81		163		
32) C23	5 2-Hexanone 0 Toluene	12.06				
33) C23	5 Chlorobenzene	14.00		3895		
		14.09		0.0.0.4	N.D.	•
35) C24	6 m,p-Xylene				N.D.	•
36) C24	7 O-Yvlene	0.00	106		N.D.	
37) C24		0.00	100. 104	0.	N.D.	
39) C22	5 1,1,2,2-Tetrachloroe	15 74	. 104	143	N.D.	•
J., CAL	- TITIETE TECTACHIOTOE	10.74	03.	. T#3	M.D.	

^{(#) =} qualifier out of range (m) = manual integration P6802.D A4I00692.M Fri Jul 30 17:29:57 2004 HP5973P

Data File : H:\GCMS_VOA\P\073004\P6802.D
Acq On : 30 Jul 2004 17:02
Sample : VBLK32

Vial: 11 Operator: PC

HP5973P

Inst : HP5973 P Multiplr: 1.00

Misc MS Integration Params: RTEINT2.P

Quant Time: Jul 30 17:29:52 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

Compo	und 	R.T.	QIon	Response	Conc Unit	Qvalue
42) C260 43) C267 44) C249 45) C286	Bromoform 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze	0.00 17.26 17.26 0.00 0.00	146	0 469 469 0 0	N.D. N.D. N.D. N.D. N.D. N.D.	

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

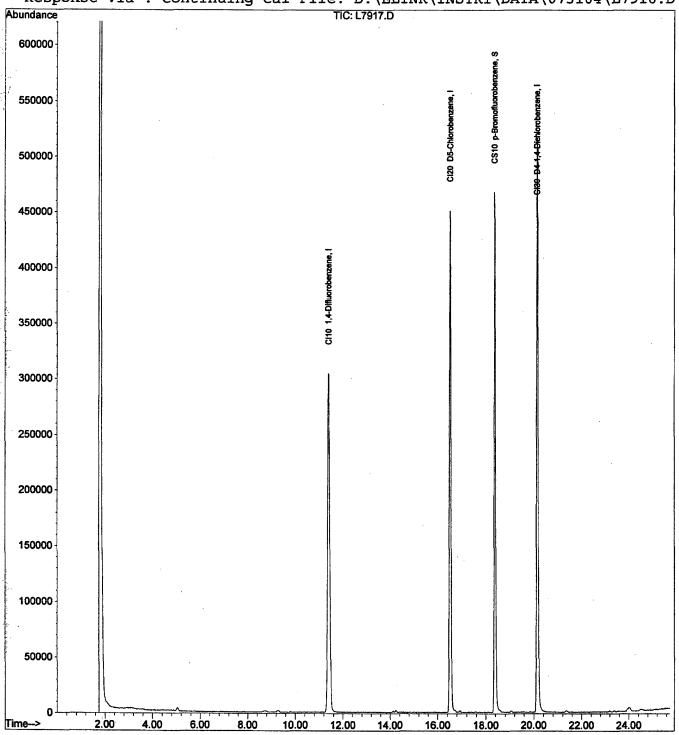
Lab Name: STL Buffalo Contract:	VBLK61
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4B1386802</u>
Sample wt/vol: <u>25.00</u> (g/mL) ML	Lab File ID: <u>L7917.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U U U U U U U U U U U U U U U U U U

Data File : D:\ELINK\INSTR1\DATA\073104\L7917.D

Vial: 3 Acq On : 31 Jul 2004 14:32 Operator: PC

Sample : VBLK61 : Finnigan Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Jul 31 15:00 2004 Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7917.D Vial: 3

Acq On : 31 Jul 2004 14:32

Sample : VBLK61

Misc :

1

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 15:00 2004

Mallar

Operator: PC Inst : Finnigan

Multiplr: 1.00

Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Wed May 19 15:26:24 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte	rnal S	tandards	R.T.	QIon	Response		Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.40	114	886791	125 00 ng	0.01
24)	CI20	D5-Chlorobenzene	16.53	117	659817	125.00 ng	0.01
48)	CI30	D4-1,4-Dichlorobenze	20.14	152	360823	125.00 ng	0.01 87.57%
Syste	em Mon	itoring Compounds					
45) Sp:	CS10 iked A	p-Bromofluorobenzene mount 125.000 Rar	18.38 nge 80	174 - 120	317493 Recove	118.36 ng ry = 94	0.01
Targe	et Com	pounds					Qvalue
2)	C290	Dichlorodifluorometh	0.00	85		N.D.	•
3)	C010	Chloromethane	0 00	50		N.D.	
4)	C015	Bromomethane	0.00	94		N.D.	
5)	C020	Bromomethane Vinyl Chloride Chloroethane Trichlorotrifluorome	0.00	62 64		N.D.	
6)	C025	Chloroethane	0.00	64		N.D.	
7)	C275	Trichlorotrifluorome	0.00	101		N.D.	
8)	C030	Methylene Chloride	0.00	84		N.D.	
9)	C035	Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene T-butyl Methyl Ether	0.00	43		N.D.	
10)	C040	Carbon Disulfide	0.00	76		N.D.	
11)	C045	1,1-Dichloroethene	0.00	96		N.D.	
12)	C962	T-butyl Methyl Ether	0.00	73		N.D.	
13)	C050	1,1-Dichloroethane	0.00	63		N.D.	
14)	C057	trans-1,2-dichloroet	0.00	96		N.D.	
15)	C056	cis-1,2-Dichloroethe	0.00	96		N.D.	
16)	C060	Chloroform	0.00	83		N.D.	
· 17)	C222	1.1-Dichloroethane trans-1,2-dichloroet cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,2-Dichloroethane 2-Butanone Methyl Acetate 1,1,2 Trichloro-1,2, Cyclohexane	0.00	128		N.D.	
18)	C065	1,2-Dichloroethane	0.00	62		N.D.	
19)	C110	2-Butanone	0.00	43		N.D.	
20)	C255	Methyl Acetate	0.00	43		N.D.	
21)	C291	1,1,2 Trichloro-1,2,	0.00	101		N.D.	1/2
22)	C256	Cyclohexane	0.00	56		N.D.	η ς ,
23)	C012	Methylcyclohexane	0.00	83	·	N.D.	" V /
25)	C115	Cyclohexane Methylcyclohexane 1,1,1-Trichloroethan	0.00	97		N.D.	
26)	C120	Carbon Tetrachloride	0.00	117		N.D.	4/2/
27)	C150	Trichloroethene Bromodichloromethane	0.00	95		N.D.	γ,
28)	C130	Bromodichloromethane	0.00	83		N.D.	1

^{(#) =} qualifier out of range (m) = manual integration

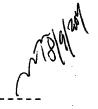
Data File: D:\ELINK\INSTR1\DATA\073104\L7917.D Vial: 3
Acq On: 31 Jul 2004 14:32 Operator: PC

Sample : VBLK61 Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 15:00 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)


Title : I50L CLP LOW LEVEL WATER

Last Update : Wed May 19 15:26:24 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

		Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
	29)	C140	1,2-Dichloropropane	0.00	63		N.D.	
			cis-1,3-Dichloroprop	0.00	75		N.D.	
	31)		Benzene	0.00	78		N.D.	
	32)	C155	Dibromochloromethane	0.00	129		N.D.	
	33)	C170	trans-1,3-Dichloropr	0.00	75		N.D.	
		C160	1,1,2-Trichloroethan	0.00	83		N.D.	
	35)	C220	Tetrachloroethene	0.00	166		N.D.	
	36)	C163	1,2-Dibromoethane	0.00	109		N.D.	
:-	37)	C210	4-Methyl-2-Pentanone	0.00	43		N.D.	
		C215	2-Hexanone	0.00	43		N.D.	•
	39)	C230	Toluene	0.00	91		N.D.	
	40)		Chlorobenzene	0.00	112		N.D.	
		C240	Ethylbenzene	0.00	91		N.D.	
		C246	m,p-Xylene o-Xylene	0.00	106		N.D.	
		C247	o-Xylene	0.00	106		N.D.	
	44)	C245	Styrene	0.00	104		N.D.	
	-	C966	Isopropylbenzene	0.00	105		N.D.	
		C225	1,1,2,2-Tetrachloroe	0.00	83	•	N.D.	
			Bromoform	0.00	173		N.D.	
•			1,3-Dichlorobenzene		146		N.D.	
٠			1,4-Dichlorobenzene		146		N.D.	
			1,2-Dichlorobenzene	0.00	146		N.D.	
			1,2-Dibromo-3-Chloro	0.00	75		N.D.	
٠.	54)	C313	1,2,4-Trichlorobenze	0.00	180	٠	N.D.	

241/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract:	VHB
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698918</u>
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: P6805.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/30/2004</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethane (Total) 79-01-6Trichloroethane 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	1 U U

Data File : H:\GCMS_VOA\P\073004\P6805.D

Acq On : 30 Jul 2004 18:50

Sample : A4698918 A

Misc

Title

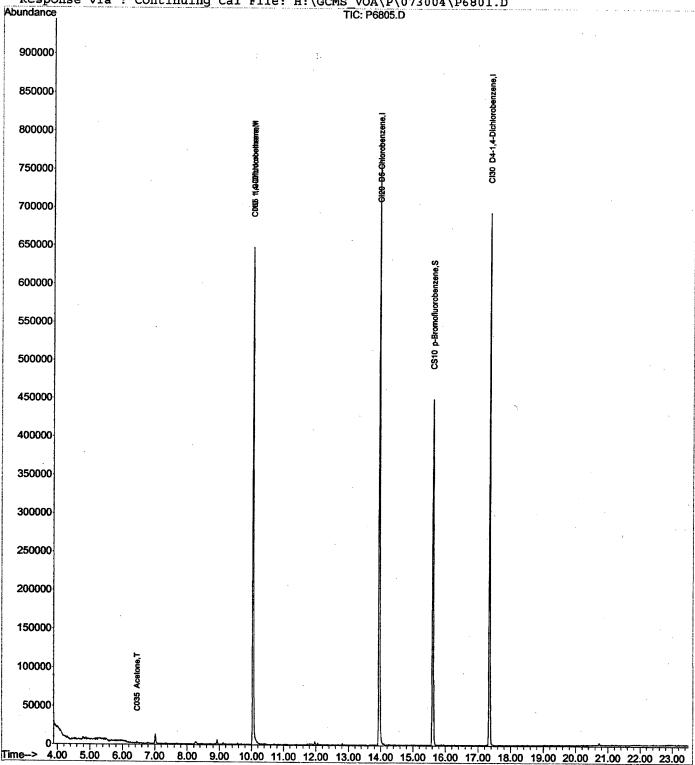
Vial: 14 Operator: PC

: HP5973 P Inst

Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:03 2004


Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4I00692.M (RTE Integrator)

: HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Continuing Cal File: H:\GCMS_VOA\P\073004\P6801.D

Data File: H:\GCMS VOA\P\073004\P6805.D

Acq On : 30 Jul $\overline{2004}$ 18:50

Sample : A4698918 A

Quant Time: Jul 30 23:03:14 2004

MS Integration Params: RTEINT2.P

Vial: 14 Operator: PC Inst : HP5973 P Multiplr: 1.00

Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

Misc

: H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 IS QA File

Internal S	tandards	R.T.	QIon	Response	Conc Units	Rcv(Ar)	
1) CI10	1,4-Difluorobenzene	10.04	114	521507	125.00 ng	0.00	
						80.38%	
17) CI20	D5-Chlorobenzene	13.95	117	512511	125.00 ng	0.00 :	
						84.23%	
. 40) CI30	D4-1,4-Dichlorobenze	17.34	152	226413	125.00 ng	0.00	
						65.30%	
Curatam Man	itoring Compounds					_	
	itoring Compounds p-Bromofluorobenzene	15 61	174	144040	00 90		
Spiked A	mount 125.000 Rar	13.61	_ 120	Pecove	. 99. (2. 11g	708#	
opined A	moure 123.000 Rai	ige ou	- 120	Recove	TY. = 19,	. /05#/	
Target Com	pounds					Qvalue	
	Chloromethane	4.43	50	129	N.D.	X v a z a c	
3) C015	Bromomethane	0.00		. 0	N.D.		
	Vinyl Chloride	0.00	62	0	N.D.		
	Chloroethane	0.00		0			
6) C030	Methylene Chloride			6698	N.D.		ŕ
	Acetone	6.46			14.15 ng		0
	Carbon Disulfide	6.80			N.D.	,	
9) C045	1,1-Dichloroethene	0.00	. 96	. 0 .			
10) C050	1,1-Dichloroethane	0.00	63 .				
11) C057	trans-1,2-dichloroet	0.00	. 96	0			
12) 0056	cis-1,2-Dichloroethe	0.00	. 96		N.D.		
14) (222	Chloroform	8.92	83				
14) C222	Bromochloromethane 1,2-Dichloroethane	10.00			N.D.		0
	2-Butanone	10.04		18558 0	11.56 ng ~	# ple	
	1,1,1-Trichloroethan				N.D. N.D.	4 4	
19) C120	Carbon Tetrachloride	0.00	117		N.D.		
20) C150	Trichloroethene	10.42		672	N.D.		
	Bromodichloromethane		83		N.D.		
22) C140	1,2-Dichloropropane	0.00	63	0	N.D.		
23) C145	cis-1,3-Dichloroprop	0.00	. 75	. 0	N.D.		
24) C165	Benzene	9.67	. 78	1505	N.D.		
25). C155	Dibromochloromethane		129	472	N.D.		
26) C170	trans-1,3-Dichloropr	0.00.	75	O.	N.D.		
27) C160	1,1,2-Trichloroethan	0.00		0	N.D.		
28) C220	Tetrachloroethene	12.82		695			
29) C163	1,2-Dibromoethane	0.00					
	4-Methyl-2-Pentanone			159	N.D.		
	2-Hexanone		43		N.D.		
	Toluene			2430			
	Chlorobenzene			3321	N.D.		
. 34). C240.	Ethylbenzene	14.09	91	1975	N.D.		

(#) = qualifier out of range (m) = manual integration P6805.D A4I00692.M Fri Jul 30 23:03:20 2004 HP5973P

14.10 106

0.00

0.00 106

104

83.

262

0

0

N.D.

N.D.

N.D.

35) C246 m,p-Xylene

39) C225 1,1,2,2-Tetrachloroe 15.75

36) C247 o-Xylene

37) C245 Styrene

Data File: H:\GCMS_VOA\P\073004\P6805.D

Acq On : 30 Jul 2004 18:50

Operator: PC Sample : A4698918 A Inst : HP5973 P

Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 23:03:14 2004 Quant Results File: A4I00692.RES

Vial: 14

Quant Method : C:\MSDCHEM\1...\A4100692.M (RTE Integrator)
Title : HP5973N CLP LOW LEVEL WATER
Last Update : Fri Jul 30 16:04:16 2004
Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

Compound			QIon	Response	Conc Unit	Qvalue
42) C260 43) C267 44) C249 45) C286	Bromoform 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze	15.60 17.26 17.26 17.96 0.00	146 146 146	300 463 463 333 0	N.D. N.D. N.D. N.D. N.D. N.D.	

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Name: STL	Buffalo	Contract:		MSB32		
		·	SDG No.:		• ,	
Matrix: (soil	/water) <u>WATER</u>		Lab Sample ID	: A4B13807	702	
Sample wt/vol	: <u>25.00</u> (g/mL) <u>ML</u>	Lab File ID:	P6803.RF	١	
Level: (low	/med) <u>LOW</u>		Date Samp/Rec	v:		
% Moisture: n	ot dec Heat	ed Purge: <u>N</u>	Date Analyzed	: <u>07/30/20</u>	004	
GC Column: <u>DB</u>	-624 ID: <u>0.25</u>	(mm)	Dilution Facto	or:1.00	2	
Soil Extract	Volume: (uL)		Soil Aliquot	Volume:	(uL)
CAS:	NO, COMPOUND		CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
127- 75-3 540- 79-0 108- 75-0	5-61,1,1-Trick 18-4Tetrachlor 4-31,1-Dichlor 59-01,2-Dichlor 1-6Trichloroe 90-7Chloroethau 0-3Vinyl chlor	oethene_ roethane roethene (Total) thene ene_ ne		5 5 5 10 5 5 5		

Data File : H:\GCMS_VOA\P\073004\P6803.D

: 30 Jul $\overline{2004}$ 17:41

Sample : LCS

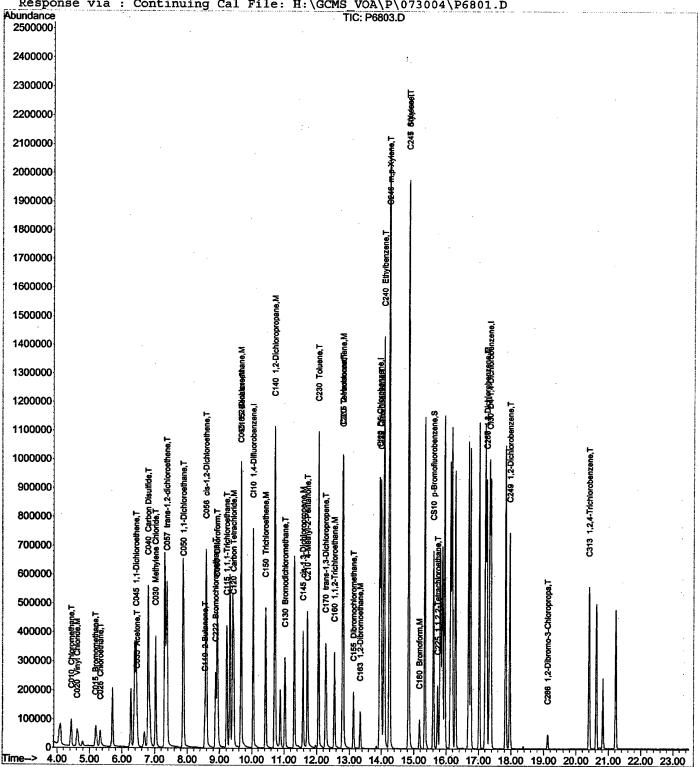
Acq On

Misc MS Integration Params: RTEINT2.P

Quant Time: Jul 30 18:21 2004

Vial: 12 Operator: PC

: HP5973 P Inst


Multiplr: 1.00

Quant Results File: A4I00692.RES

: C:\MSDCHEM\1\METHODS\MISC\CLP1092\A4100692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER Last Update : Fri Jul 30 16:04:16 2004

Response via : Continuing Cal File: H:\GCMS_VOA\P\073004\P6801.D

MS Integration Params: RTEINT2.P Quant Time: Jul 30 18:21:26 2004

Quant Time: Jul 30 18:21:26 2004 Quant Results File: A4I00692.RES

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\P\073004\P6801.D (30 Jul 2004 15:32)

1) CI10	Inte		tandards			-		ts Dev(Min) Rcv(Ar)	
17) CI20 D5-Chlorobenzene 13.95 117 615670 125.00 ng 0.00 101.18% 40) CI30 D4-1,4-Dichlorobenzene 17.34 152 336262 125.00 ng 0.00 96.98% 38) CS10 p-Bromofluorobenzene 15.61 174 215520 123.52 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery 98.82% 20.00 Chloromethane 4.43 50 155859 119.16 ng 99 30.015 Bromomethane 4.43 50 155859 119.16 ng 99 30.015 Bromomethane 5.17 94 82285 135.35 ng 89 30.015 Bromomethane 5.32 64 82198 130.02 ng 97 50.025 Chloroethane 5.32 64 82198 130.02 ng 97 60.000 Methylene Chloride 7.02 84 219503 125.34 ng # 84 70.03 Acetone 6.45 43 127819 599.37 ng 100 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000 60.00000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0	1)							g 0.00	
Octool	17)	CI20	D5-Chlorobenzene	13.95	117	615670	125.00 n	g 0.00);
System Monitoring Compounds 38) CS10 p-Bromofluorobenzene 15.61 174 215520 123.52 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 98.82% Target Compounds 2 0.010 Chloromethane 4.43 50 155859 119.16 ng 99 99 30 C015 Bromomethane 5.17 94 82285 135.35 ng 89 99 100 C015 Chloromethane 5.17 94 82285 135.35 ng 89 97 100 C020 Vinyl Chloride 4.61 62 135566 129.18 ng 97 100 C020 Colorothane 5.32 64 82198 130.02 ng 99 100 C030 Methylene Chloride 7.02 84 219503 125.34 ng 84 100 C030 Methylene Chloride 6.45 43 127819 599.37 ng 100 C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 100 C050 1,1-Dichloroethane 8.58 96 210950 124.90 ng 97 130 C060 Chloroform 8.92 83 400047 127.93 ng 100 C050 Chloroform 8.92 83 400047 127.93 ng 100 C050 Chloroform 8.92 83 400047 127.93 ng 100 C050 Chloroform 8.92 83 400047 127.93 ng 100 C050 C150	40)	CI30	D4-1,4-Dichlorobenze	17.34	152	336262	125.00 n	g 0.00).
Sale CS10 p-Bromofluorobenzene 15.61 174 215520 123.52 ng 0.00 Spiked Amount 125.000 Range 80 - 120 Recovery = 98.82%	Carata	em Mon	itoring Compounds		.			30.30	•
Target Compounds 2) C010 Chloromethane				15 61	174	215520	100 50 5	~ ^ ^ ^	
Target Compounds 2) C010 Chloromethane 4.43 50 155859 119.16 ng 99 3) C015 Bromomethane 5.17 94 82285 135.35 ng 89 4) C020 Vinyl Chloride 4.61 62 135566 129.18 ng 97 5) C025 Chloroethane 5.32 64 82198 130.02 ng 99 6) C030 Methylene Chloride 7.02 84 219503 125.34 ng 884 7) C035 Acetone 6.45 43 127819 599.37 ng 100 8) C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 9) C045 1,1-Dichloroethane 6.42 96 163149 134.42 ng 97 10) C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 12) C056 cis-1,2-Dichloroethane 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 40047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 8.87 128 77806 121.60 ng # 77 15) C065 1,1-Trichloroethane 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethane 9.43 117 268922 128.85 ng 97 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 21) C130 Bromodichloromethane 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 10.43 95 198918 123.44 ng 92 21) C140 1,2-Dichloropopane 10.72 63 203961 122.24 ng 99 22) C140 1,2-Dichloropopane 10.72 63 203961 122.24 ng 99 22) C140 1,2-Dichloropopane 10.72 63 203961 122.24 ng 99 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloroprop 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 12.82 166 224512 127.67 ng # 95 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromochlane 12.06 91 926107 121.51 ng 97 31) C245 Styrene 14.84 106 371714 123.95 ng #84 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 0-Xylene 14.84 106 371714 123.95 ng #84 36) C245 Styrene 14.84 106 371714 123.95 ng #84			-						′
20 C010 Chloromethane 4.43 50 155859 119.16 ng 99 30 C015 Bromomethane 5.17 94 82285 135.55 ng 89 89 40 C020 Vinyl Chloride 4.61 62 135566 129.18 ng 97 50 C025 Chloroethane 5.32 64 82198 130.02 ng 99 60 C030 Methylene Chloride 7.02 84 219503 125.34 ng 84 84 70 C035 Acetone 6.45 43 127819 599.37 ng 100 80 C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 90 C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 110 C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 120 C056 cis-1,2-Dichloroethane 8.58 96 210950 124.90 ng 97 713 C060 Chloroform 8.92 83 400047 127.93 ng 100 1	Up.	incu A	mount 125.000 Ran	ge ou	- 120	RECOVE	ту =	70.023	•
20 C010 Chloromethane 4.43 50 155859 119.16 ng 99 30 C015 Bromomethane 5.17 94 82285 135.55 ng 89 89 40 C020 Vinyl Chloride 4.61 62 135566 129.18 ng 97 50 C025 Chloroethane 5.32 64 82198 130.02 ng 99 60 C030 Methylene Chloride 7.02 84 219503 125.34 ng 84 84 70 C035 Acetone 6.45 43 127819 599.37 ng 100 80 C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 90 C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 110 C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 120 C056 cis-1,2-Dichloroethane 8.58 96 210950 124.90 ng 97 713 C060 Chloroform 8.92 83 400047 127.93 ng 100 1	Targe	et Com	nounds					Ovalue	
3) C015 Bromomethane	_		-	4.43	50	155859	119 16 m	-	a
4) C020 Vinyl Chloride	•							-	
5) C025 Chloroethane 5.32 64 82198 130.02 ng 99 60 C030 Methylene Chloride 7.02 84 219503 125.34 ng # 84 7.02 84 219503 125.34 ng # 84 7.02 84 127819 599.37 ng 100 80 C040 Carbon Disulfide 6.79 76 674510 141.14 ng 100 90 C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 100 C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 11 C057 trans-1,2-dichloroeth 7.37 96 208296 133.35 ng 95 12) C056 cis-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 130 C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19 1020 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 100 C150 Trichloroethane 10.43 95 198918 123.44 ng 92 11 C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 123 C145 cis-1,3-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 25 C155 Dibromochloromethane 12.55 97 130026 119.80 ng 97 27) C160 1,1,2-Trichloroethane 12.82 166 224512 127.67 ng 95 30) C210 4-Methyl-2-Pentanone 12.82 166 224512 127.67 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 CHorobenzene 12.80 43 238988 543.23 ng 92 22 C230 Toluene 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.60 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.00 112 609905 120.67 ng 99 350 C246 m,p-Xylene 14.84 104 618543 121.71 ng 91	•				_				
6) C035 Acetone 6.45 43 127819 599.37 ng 100 8) C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 9) C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 10) C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 11) C057 trans-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng 77 15) C055 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C200 Tetrachloroethene 12.82 166 224512 127.67 ng 99 30) C210 4-Methyl-2-Pentanone 13.34 109 1009711 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C246 m,p-Xylene 14.84 104 618543 121.71 ng 91									
7) C035 Acetone 6.45 43 127819 599.37 ng 100 8) C040 Carbon Disulfide 6.79 76 674510 143.14 ng 100 9) C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 10) C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 12) C056 cis-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.24 ng 99 22) C140 1,2-Dichloropropane 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromochlane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C246 m,p-Xylene 14.84 104 618543 121.71 ng 91	•							-	
8) C040 Carbon Disulfide 6.79 76 674510 141.14 ng 100 9) C045 1,1-Dichloroethene 6.42 96 163149 134.42 ng 97 10) C050 1,1-Dichloroethane 7.88 63 408707 130.98 ng 98 11) C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 12) C056 cis-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C15 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C246 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 618543 121.71 ng 91								-	
9) C045 1,1-Dichloroethene	•							_	
10) C050	- •							-	
11) C057 trans-1,2-dichloroet 7.37 96 208296 133.35 ng 95 12) C056 cis-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 24) C165 Benzene 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethane 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91								•	
12) C056 cis-1,2-Dichloroethe 8.58 96 210950 124.90 ng 97 13) C060 Chloroform 8.92 83 400047 127.93 ng 100 14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 618543 121.71 ng 91	11)	C057						-	
13) C060 Chloroform	12)	C056			_			-	
14) C222 Bromochloromethane 8.87 128 77806 121.60 ng # 77 15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloropropane 11.58 75 279093 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13<	13)	C060	· · · · · · · · · · · · · · · · · · ·					•	
15) C065 1,2-Dichloroethane 9.66 62 241026 123.83 ng 99 16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84			Bromochloromethane						
16) C110 2-Butanone 8.54 43 156630 591.02 ng 83 18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromochlane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84	15)	C065	1,2-Dichloroethane	9.66				• ••	
18) C115 1,1,1-Trichloroethan 9.21 97 320217 130.91 ng 96 19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 24) C165 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84	16)	C110	2-Butanone	8.54	43				
19) C120 Carbon Tetrachloride 9.43 117 268922 128.85 ng 97 20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	18)	C115	1,1,1-Trichloroethan	9.21	97	320217			;
20) C150 Trichloroethene 10.43 95 198918 123.44 ng 92 21) C130 Bromodichloromethane 11.03 83 251916 122.24 ng 99 22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 106 618543 121.71 ng 91	19)	C120	Carbon Tetrachloride	9.43	117		128.85 n	97	,
22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	20)	C150	Trichloroethene	10.43	95	198918		-	<u>, </u>
22) C140 1,2-Dichloropropane 10.72 63 203961 122.40 ng 91 23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	21)	C130	Bromodichloromethane	11.03	83	251916	122.24 n	99)
23) C145 cis-1,3-Dichloroprop 11.58 75 270903 121.41 ng 100 24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	22)	C140	1,2-Dichloropropane	10.72	63	203961			_
24) C165 Benzene 9.67 78 851457 122.85 ng 100 25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene <td>23)</td> <td>C145</td> <td>cis-1,3-Dichloroprop</td> <td>11.58</td> <td>75</td> <td>270903</td> <td></td> <td></td> <td>)</td>	23)	C145	cis-1,3-Dichloroprop	11.58	75	270903)
25) C155 Dibromochloromethane 13.13 129 131238 121.49 ng 96 26) C170 trans-1,3-Dichloropr 12.27 75 221817 120.43 ng 97 27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	24)	C165	Benzene	9.67	78	851457)
27) C160 1,1,2-Trichloroethan 12.55 97 130026 119.80 ng 97 28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 37) C245 Styrene 14.84 104 618543 121.71 ng 91	25)	C155	Dibromochloromethane	13.13	129	131238			;
28) C220 Tetrachloroethene 12.82 166 224512 127.67 ng # 95 29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	26)	C170		12.27	75	221817	120.43 n	97	١.
29) C163 1,2-Dibromoethane 13.34 109 100971 119.55 ng 99 30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 37) C245 Styrene 14.84 104 618543 121.71 ng 91	27)	C160		12.55	97	130026	119.80 ng	9.7	١.
30) C210 4-Methyl-2-Pentanone 11.71 43 359565 554.30 ng 90 31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	28)	C220	Tetrachloroethene	12.82	166	224512	127.67 ng	# 95	j
31) C215 2-Hexanone 12.80 43 238988 543.23 ng 92 32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	29)	C163			109	100971	119.55 n	99)
32) C230 Toluene 12.06 91 926107 121.51 ng 97 33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	30)	C210	4-Methyl-2-Pentanone	11.71	43	359565	554.30 n	90),
33) C235 Chlorobenzene 14.00 112 609905 120.67 ng 99 34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	31)	C215	2-Hexanone	12.80	43	238988	543.23 n	92	
34) C240 Ethylbenzene 14.09 91 1069965 128.39 ng 98 35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91	32)	C230	Toluene	12.06	91	926107	121.51 n	9.7	t.
35) C246 m,p-Xylene 14.25 106 799826 253.09 ng 95 36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91			Chlorobenzene	14.00	112	609905	120.67 n	99)
36) C247 o-Xylene 14.84 106 371714 123.95 ng # 84 37) C245 Styrene 14.84 104 618543 121.71 ng 91			-	14.09	91	1069965	128.39 n	g 98	J
37) C245 Styrene 14.84 104 618543 121.71 ng 91				14.25	106	799826	253.09 n	g 95	į
	•			14.84	106	371714			
39) C225 1,1,2,2-Tetrachloroe 15.74 83 138200 116.90 ng 100					104	618543	121.71 n	g 91	
	39)	C225	1,1,2,2-Tetrachloroe	15.74	83	138200	116.90 n	3 100	,

^{(#) =} qualifier out of range (m) = manual integration P6803.D A4I00692.M Fri Jul 30 18:21:31 2004 HP5973P

L. Folge

Data File : H:\GCMS_VOA\P\073004\P6803.D

Acq On : 30 Jul 2004 17:41

: LCS Sample

Misc

MS Integration Params: RTEINT2.P

Quant Time: Jul 30 18:21:26 2004

Inst : HP5973 P

Vial: 12

Multiplr: 1.00

Quant Results File: A4I00692.RES

Operator: PC

Quant Method : C:\MSDCHEM\1...\A4I00692.M (RTE Integrator)

Title : HP5973N CLP LOW LEVEL WATER

Last Update : Fri Jul 30 16:04:16 2004

Response via : Single (H:\GCMS_VOA\P\073004\P6801.D 30 Jul 2004 15:32)

DataAcq Meth : VOA

	Compo		R.T.	QIon	Response	Conc Unit	Qva.	lue
41)	C180	Bromoform	15.17	173	60256	119.70 ng		 98
		1,3-Dichlorobenzene	17.25	146	476711	124.75 ng		96
43)	C267	1,4-Dichlorobenzene	17.25	146	476711	124.75 ng		96
44)	C249	1,2-Dichlorobenzene	17.96	146	396690	121.33 ng		97
45)	C286	1,2-Dibromo-3-Chloro	19.12	75	17698	113.30 ng	# .	84
46)	C313	1,2,4-Trichlorobenze	20.40	180	222363	109.78 ng		96

249/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

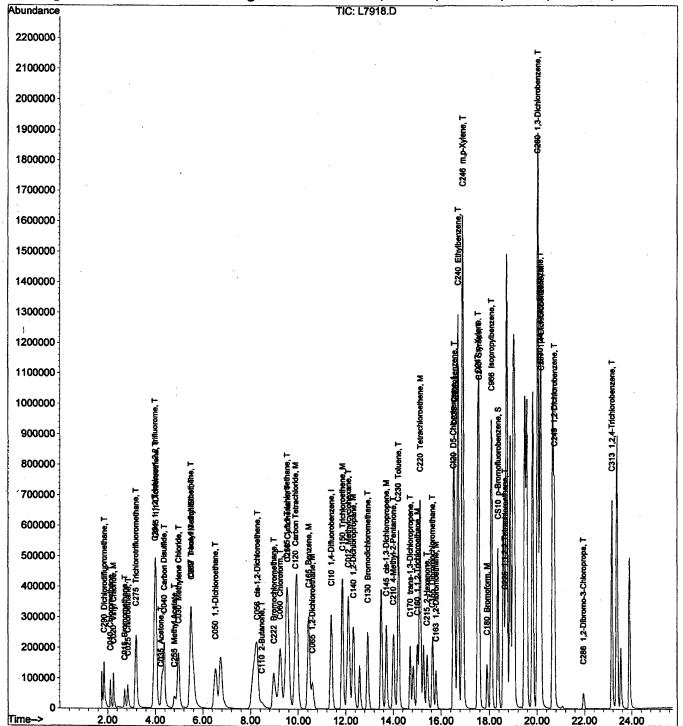
MSB61
SDG No.:
Lab Sample ID: <u>A4B1386801</u>
Lab File ID: <u>L7918.RR</u>
Date Samp/Recv:
Date Analyzed: <u>07/31/2004</u>
Dilution Factor: 1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
6 6 6 12 6 6 6 6

Data File: D:\ELINK\INSTR1\DATA\073104\L7918.D

Vial: 4 : 31 Jul 2004 Operator: PC 15:05

Sample : LCS : Finnigan Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Jul 31 15:37 2004 Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7918.D Vial: 4
Acq On: 31 Jul 2004 15:05 Operator: PC

Sample : LCS Inst : Finnigan

Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 15:37 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Wed May 19 15:26:24 2004

Response via: Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inter	mal S	tandards	R.T.	QIon	Response	Conc Ui	nits	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.40	114	858883	125.00	ng	0.01 98.40%
24)	CI20	D5-Chlorobenzene	16.53	117	684107	125.00	ng	0.01 99.56%
48)	CI30	D4-1,4-Dichlorobenze	20.14	152	407508	125.00	ng	0.01
,								98.90%
		itoring Compounds						
		p-Bromofluorobenzene					_	0.01
Spi	ked A	mount 125.000 Ran	ge 80	- 120	Recove	ery =	101	.77%
Targe	t Com	pounds						Qvalue
		Dichlorodifluorometh	1.86	85	259088	163.85	ng	100
•	C010		2.13		171599	182.34		97
-	C015		2.71		79904	837.80	_	9 9
5)	C020	Vinyl Chloride	2.25	62	197564 S	158.22	ng	98
6)	C025	Chloroethane	2.85	64	149552	162.6I	ng	96
. 7)	C275	Trichlorotrifluorome	3.19	101	610117	165.14	ng	100
. 8)	C030	Methylene Chloride	4.99	84	245091	140.00	ng	88
9)	C035	Acetone	4.24	43	72989	920.66	ng	94
10)	C040	Carbon Disulfide	4.38	76	739512	179.72	ng	100
11)	C045	1,1-Dichloroethene	4.03	96	266972	149.42	ng	98
12)	C962	T-butyl Methyl Ether	5.51	73	381748	166.49	ng	93
13)	C050	1,1-Dichloroethane	6.54	63	632968	150.07	ng	99
	C057	trans-1,2-dichloroet	5.50	96	357609	149.63		93
	C056	cis-1,2-Dichloroethe	8.29		333211	148.31		93
•	C060	Chloroform	9.25	83	654671	149.83	_	98
•	C222	Bromochloromethane	8.99		127423	175.34		95
-	C065	1,2-Dichloroethane	10.60		235494	145.85		63
	C110	2-Butanone	8.47		137783	832.63	_	83
	C255	Methyl Acetate	4.81		72188			95
	C291	1,1,2 Trichloro-1,2,	3.99		535379	177.17		86
	C256	Cyclohexane	9.56		513307		_	97
	C012	Methylcyclohexane	12.13		539039	177.98		91
-	C115	1,1,1-Trichloroethan	9.54		637374	150.00		98
	C120	Carbon Tetrachloride	9.90		604646	149-03		97
	C150	Trichloroethene	11.88		464324	150.01		# 621
28)	C130	Bromodichloromethane	12.94	83 	489590	149.34	ng	V/V/V/V/V
7.11.5	_							/' /J h

Sat Jul 31 15:37:53 2004

150L

(#) = qualifier out of range (m) = manual integration

L7918.D A4I00695.M

Sample : LCS Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Jul 31 15:37 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Wed May 19 15:26:24 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
29)	C140	1,2-Dichloropropane	12.34	 63	323387	147.14 ng		100
30)	C145	cis-1,3-Dichloroprop	13.73	75	416162	148.37 ng		98
31)	C165	Benzene	10.45	78	990340	145.92 ng		97
32)	C155	Dibromochloromethane	15.65	129	334779	148.28 ng		94
33)	C170	trans-1,3-Dichloropr	14.73	75	284558	149.14 ng		95
34)	C160	1,1,2-Trichloroethan	15.03	83	170342	145 42 ng	·	98
35)	C220	Tetrachloroethene	15.14	166	589422	149.27 ng		96
36)	C163	1,2-Dibromoethane	15.80	109	221600	148 63 ng		97
37)	C210	4-Methyl-2-Pentanone	14.01	43	569350	832.07 ng	#	75
38)	C215	2-Hexanone	15.43	43	372119	848.39 ng		96
39)	C230	Toluene	14.23	91	1183388	145.35 ng		92
40)	C235	Chlorobenzene	16.56	112	882425	146.68 ng		99
41)	C240	Ethylbenzene	16.73	91	1557437	147.38 ng		99
42)	C246	m,p-Xylene	16.91	106	1280102	296.95 ng		96
	C247	o-Xylene	17.54	106	588969	148.32 ng	#	87
44)	C245	Styrene	17.58	104	863240	146.55 ng		95
46)	C966	Isopropylbenzene	18.10	105	1825880	149.24 ng		100
47)	C225	1,1,2,2-Tetrachloroe	18.66	83	240300	145.52 ng		86
49)	C180	Bromoform	17.91	173	172701	150.31 ng		96
50)	C260	1,3-Dichlorobenzene	20.03	146	881066	149.67 ng		96
51)	C267	1,4-Dichlorobenzene	20.18		865995	146.13 ng		97
52)	C249	1,2-Dichlorobenzene	20.74		700993	147.54 ng		96
53)	C286	1,2-Dibromo-3-Chloro	21.96			157.81 ng		93
54)	C313	1,2,4-Trichlorobenze	23.16	180	543701	148.82 ng		96

I50L

253/433

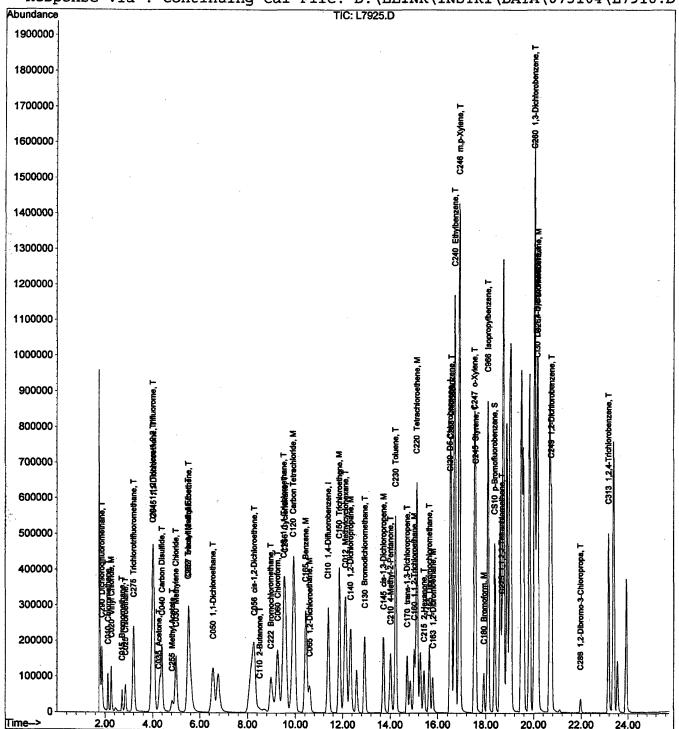
ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

•				
Lab Name: <u>STL Buffalo</u> Contract:		ME-18		,
Tab Name. Sin Bullato . Conclact:		,		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:			
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A4698910	MS	
Sample wt/vol: <u>25.00</u> (g/mL) ML	Lab File ID:	L7925.RR	<u>.</u>	.1
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/21/20	004 07/2	23/2004
% Moisture: not dec Heated Purge: N	Date Analyzed:	07/31/20	04	
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor	:: <u>1.00</u>) [.]	
Soil Extract Volume: (uL)	Soil Aliquot Vo	olume:	(1	uL)
CAS NO. COMPOUND	CONCENIRATION UNITS (ug/L or ug/Kg)		Q	
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethane (Total) 79-01-6Trichloroethane 108-90-7Chlorobenzene 75-00-3Chloroethane		6 6 6 11 6 6 7		

Sample : A4698910MS B Inst : Finnigan Multiplr: 1.00

MS Integration Params: RTEINT2.P


Quant Time: Aug 2 8:29 2004 Quant Results File: A4I00695.RES

Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Data File: D:\ELINK\INSTR1\DATA\073104\L7925.D Vial: 11 Operator: PC Acq On : 31 Jul 2004 18:59

Sample

: A4698910MS B

Misc

MS Integration Params: RTEINT2.F

Quant Time: Aug 2 8:29 2004

: Finnigan Inst Multiplr: 1.00

Quant Results File: A4I00695.RES

I50L

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

: I50L CLP LOW LEVEL WATER Title

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inte	rnal S	tandards	R.T.	QIon	Response	Conc Ur	nits		(Min) (Ar)
1)	CI10	·			818211	125.00	_	9:	0.01 3.74%
- 24)	CI20	D5-Chlorobenzene	16.53	117	628831	125.00	ng	9	0.01 1.51%
48)	CI30	D4-1,4-Dichlorobenze	20.15	152	368787	125.00	ng		0.02 9.50%
Syste	em Mor	itoring Compounds							
		p-Bromofluorobenzene			320654				
Sp:	iked A	amount 125.000 Rang	ge 80	- 120	Recove	ry =	100.	.34%	
Targe	et Com	pounds						Qv	alue
2)	C290	Dichlorodifluorometh	1.88	85	245373	162.89	ng		100
3)	C010	Chloromethane	2.14	50	167765	187.13	ng		98
4)	C015	Bromomethane	2.73		74962	825.05	ng		90
5)	C020	Vinyl Chloride Chloroethane	2.28	62	198092	166.53	ng		98
	C025	Chloroethane	2.86	64	148425	169.41	ng		100
	C275	Trichlorotrifluorome	3.21	101	599642	170.37			97
	C030	Methylene Chloride	5.00			124.56			88
	C035	Acetone	4.26	43	54206	717.72	ng		87
	C040	Carbon Disulfide	4.40	76	642913	164.01	ng		100
	C045	1,1-Dichloroethene				154.07	_		97
	C962	T-butyl Methyl Ether			270607				92
	C050	1,1-Dichloroethane	6.56		584705	145.51			99
	C057	trans-1,2-dichloroet			326312	143.32			96
	C056	cis-1,2-Dichloroethe			306212	143.07			95
	C060	Chloroform	9.26		589777	141.69			99
	C222	Bromochloromethane				153.15			94
	C065	1,2-Dichloroethane			198179	128.84			52
	C110	2-Butanone	8.51	43	94364	598.59			82
	C255	2-Butanone Methyl Acetate	4.84	43	44574	130.91			94
	C291	1,1,2 Trichloro-1,2,			496603	172.51	_		88
	C256	Cyclohexane	9.57	56	467179	167.43			96
	C012	Methylcyclohexane 1,1,1-Trichloroethan	12.14	83	475385	164.77			93
	C115	1,1,1-Trichloroethan	9.53	97	630810	161.50			97
	C120	Carbon Tetrachloride	9.93	117	599863				100
	C150	Trichloroethene	11.88			153.06		#	82
, 28)	C130	Bromodichloromethane	12.95	83	418821	138.98	ng		A September 1
									ኒ $+$ ብ $n//$

Mon Aug 02 08:29:11 2004

(#) = qualifier out of range (m) = manual integration

L7925.D A4I00695.M

Sample : A4698910MS B Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:29 2004 Quant Results File: A4I00695.RES

Quant Method: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	lue
29)	C140	1,2-Dichloropropane	12.35	63	283591	140.37 ng		99
30)	C145	cis-1,3-Dichloroprop	13.74	75	322457	125.07 ng		99
31)	C165	Benzene	10.45	78	919889	147.46 ng		98
32)	C155	Dibromochloromethane	15.66	129	267239	128.77 ng		96
33)	C170	trans-1,3-Dichloropr	14.73	75	213055	121.48 ng		96
34)	C160	1,1,2-Trichloroethan	15.03	83	139680	129.73 ng		96
35)	C220	Tetrachloroethene	15.14	166	550085	151.55 ng		95
36)	C163	1,2-Dibromoethane	15.81	109	172761	126.06 ng		98
37)	C210	4-Methyl-2-Pentanone	14.03	43	383087	609.07 ng	#	75
38)		2-Hexanone	15.44	43	243477	603.89 ng		95
39)		Toluene	14.24	91	1090529	145.72 ng		92
40)	C235	Chlorobenzene	16.58	112	791592	143.15 ng		97
41)	C240	Ethylbenzene	16.73	91	1429085	147.12 ng		99
42)	C246	m,p-Xylene	16.91	106	1116722	281.82 ng	,	95
43)	C247	o-Xylene	17.54	106	509871	139.69 ng	#	88
44)	C245	Styrene	17.59	104	552602	102.06 ng		96
46)	C966	Isopropylbenzene	18.10	105	1691003	150.37 ng		99
47)	C225	1,1,2,2-Tetrachloroe	18.68	83	194868	128.38 ng		85
49)	C180	Bromoform	17.93	173	130523	125.53 ng		96
50)	C260	1,3-Dichlorobenzene	20.04	146	744316	139.71 ng		96
51)	C267	1,4-Dichlorobenzene	20.18	146	728045	135.75 ng		96
52)	C249	1,2-Dichlorobenzene	20.75	146	576855	134.16 ng		96
53)		1,2-Dibromo-3-Chloro	21.98	75	28780	126.89 ng		88
54)	C313	1,2,4-Trichlorobenze	23.18	180	411890	124.58 ng		99

257/433

ASP 2000 - VOLATILES ANALYSIS DATA SHEET

Client No.

Lab Name: SIL Buffalo Contract:	ME-18	
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A4698910SD	
Sample wt/vol: 25.00 (g/mL) ML	Lab File ID: <u>L7926.RR</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/21/2004 07/23/200	<u>04</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>07/31/2004</u>	
GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm)	Dilution Factor:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	•
71-55-61,1,1-Trichloroethane 127-18-4Tetrachloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (Total) 79-01-6Trichloroethene 108-90-7Chlorobenzene 75-00-3Chloroethane 75-01-4Vinyl chloride	5 10 6	

Data File: D:\ELINK\INSTR1\DATA\073104\L7926.D

: 31 Jul 2004 19:32

Sample : A4698910SD A

Operator: PC : Finnigan Inst

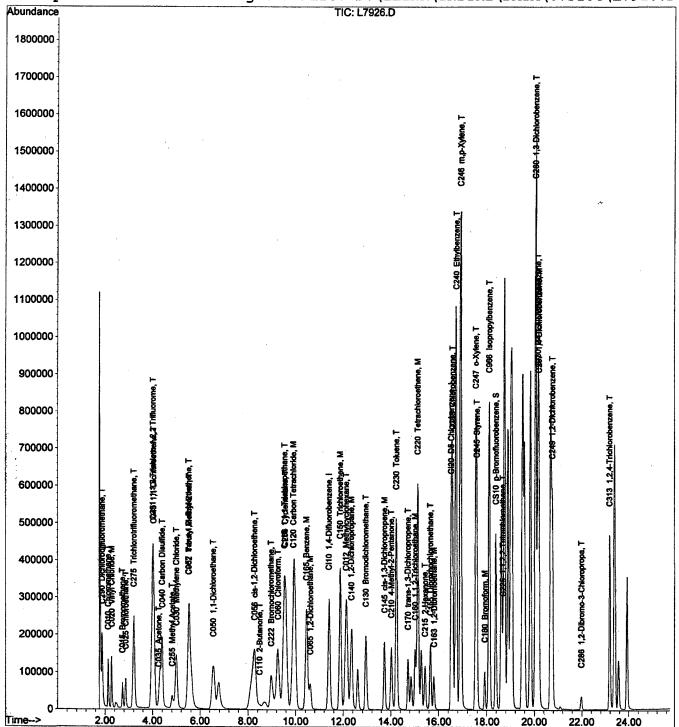
Multiplr: 1.00

Vial: 12

Misc MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:29 2004

Quant Results File: A4I00695.RES


Method

: D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\073104\L7916.D

Multiplr: 1.00

Inst

I50L

Page 1

: Finnigan

Data File : D:\ELINK\INSTR1\DATA\073104\L7926.D Vial: 12 Acq On : 31 Jul 2004 19:32 Operator: PC

: A4698910SD A Sample

Misc MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:29 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4100695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

L7926.D A4100695.M

IS QA File : D:\ELINK\INSTR1\DATA\073104\L7916.D (31 Jul 2004 13:52)

Inter	rnal s	Standards	R.T.	QIon	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	11.40	114	833641	125.00 r	ng 0.01 95.50%
24)	CI20	D5-Chlorobenzene	16.53	117	627533	125.00 r	ng 0.01 91.32%
48)	CI30	D4-1,4-Dichlorobenze	20.15	152	363965	125.00 r	
Syste	em Moi	nitoring Compounds					
		p-Bromofluorobenzene				123.77 r	
Spi	iked 1	Amount 125.000 Ran	ge 80	- 120	Recove	ry =	99.02%
		npounds					Qvalue
•	C290	Dichlorodifluorometh	1.88	85	265745	173.15 r	
•	C010	Chloromethane	2.13	50	195239	213.74 r	
•	C015	Bromomethane	2.73	94	87779	948.24 r	
	C020	Vinyl Chloride	2.27	62	221403	182.68 r	
	C025	Chloroethane	2.86		156179	174.96 r	
	C275	Trichlorotrifluorome	3.21	101	602958	168.14 r	_
	C030	Methylene Chloride	5.00	84	197727	116.37 r	
	C035	Acetone	4.25	43	55510	721.39 r	
_	C040	Carbon Disulfide	4.40		657233	164.56 r	
	C045	1,1-Dichloroethene	4.04	96	244756	141.14 r	
-	C962	T-butyl Methyl Ether	5.53	73	276446	124.21 r	-
	C050	•	6.55	63	554177	135.36 r	
•	C057	trans-1,2-dichloroet	5.51		313242	135.04 r	
	C056	cis-1,2-Dichloroethe	8.28		280490	128.62 r	_
	C060	Chloroform	9.26		550730	129.86 r	
	C222	Bromochloromethane	8.98		99252	140.71 r	
	C065	1,2-Dichloroethane	10.61		183482	117.08 r	
	C110	2-Butanone	8.49		98171	611.22 r	
	C255	Methyl Acetate	4.83		59141	170.48 r	
	C291	1,1,2 Trichloro-1,2,	4.01		461325	157.29 r	
	C256	Cyclohexane	9.56		454945	160.03 r	_
	C012	Methylcyclohexane	12.13		428843		
	C115	1,1,1-Trichloroethan	9.54		587476	150.72 r	
	C120		9.91		554417	148.97 r	
	C150		11.88		410185	144.47 r	
28)	C130	Bromodichloromethane	12.94	83	379387	126.15 r	ia ~ ~ <i>y/v//h</i> p8
(#) =	qua:	lifier out of range (m)	= man	ual in	tegration		July Oliv

Mon Aug 02 08:29:23 2004

260/433

Quantitation Report

Sample : A4698910SD A Inst : Finnigan Misc : Multiplr: 1.00

MS Integration Params: RTEINT2.P

Quant Time: Aug 2 8:29 2004 Quant Results File: A4I00695.RES

Quant Method : D:\ELINK\INSTR1\QUANT\LOWCLP\A4I00695.M (RTE Integrator)

Title : I50L CLP LOW LEVEL WATER

Last Update : Sat Jul 31 14:39:25 2004

Response via : Single (D:\ELINK\INSTR1\DATA\073104\L7916.D 31 Jul 2004 13:

DataAcq Meth : METHOD.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
29)	C140	1,2-Dichloropropane	12.34	63	262810	130.36 ng		99
30)	C145	cis-1,3-Dichloroprop	13.74	75	276228	107.36 ng		98
31)	C165	Benzene	10.45	78	863005	138.62 ng		99
32)	C155	Dibromochloromethane	15.66	129	243782	117.71 ng		96
33)	C170	trans-1,3-Dichloropr	14.73	75	184562	105.45 ng		94
34)	C160	1,1,2-Trichloroethan	15.03	83	128492	119.58 ng		100
35)	C220	Tetrachloroethene	15.14	166	525044	144.95 ng		. 95
36)	C163	1,2-Dibromoethane	15.81	109	160654	117.47 ng		94
37)	C210	4-Methyl-2-Pentanone	14.03	43	381198	607.32 ng	#	73
38)	C215	2-Hexanone	15.44	43	241040	599.09 ng		98
39)	C230	Toluene	14.24	91	1019824	136.55 ng		93
40)	C235	Chlorobenzene	16.58	112	744754	134.96 ng		99
41)	C240	Ethylbenzene	16.74	91	1347358	139.00 ng		100
42)		m,p-Xylene	16.91	106	1074190	271.65 ng		93
43)		o-Xylene	17.55	106	483502	132.74 ng	#	85
	C245	Styrene	17.59	104	505714	93.59 ng		97
-	C966	Isopropylbenzene	18.11		1607955	143.28 ng		100
47)	C225	1,1,2,2-Tetrachloroe	18.68	83	182603	120.55 ng		86
49)	C180	Bromoform	17.93	173	119365	116.32 ng	-	96
50)	C260	1,3-Dichlorobenzene	20.04	146	691459	131.51 ng		97
51)	C267	1,4-Dichlorobenzene	20.19	146	680454	128.56 ng		98
52)		1,2-Dichlorobenzene	20.75		538210	126.83 ng		98
53)		1,2-Dibromo-3-Chloro	21.99		27124	121.17 ng		90
54)	C313	1,2,4-Trichlorobenze	23.18	180	387018	118.61 ng		96

GCMS VOLATILE INJECTION LOG

1989	DATE TIME	ANALYST	FILE #	SAMPLE ID SAMPLE	JOB #	INJ. VOL.	G EXT. WHT.	O.F.	STANDARD MIX#	LS./SS MIX.
25.5 (1985 5 A471850. B 7118 10 10 10 10 10 10 10 10 10 10 10 10 10	73194 0014	م	13894	A4715515 A	3155	756	l	-		011/3/
1	4500		(789.5		3112	-	-	-		VING CT
15.50 (2.38) 15	5610		1 7696	018	7			0,		
1930 L3891 A43180 J h 3150 J L 2891 A 300 A 4 300 J L 300 A 4 3130 A 3130 A 4 3130 A	6250		C 7507		541£		_	1~		-
1	0330		73842		3/50			\ \ \-		<u> </u>
(\$25	950		C 7840	d d	,-			-		<u> </u>
1400 6.740 6	6335		1798	33.4				-		-
1	3403		10827	ay a			-	-		
517	Ohine		67900	05 B	1			-		-
1740	813		120	1447193034	3/93		-	-		+
150 1305 0180 0 2 185 0 100 0 2 185 0 100 0 2 185 0 100 0 2 185 0 100 0 2 185 0 100 0 2 185 0 100 0 2 185 0 100 0 1 10	515		(म्बर्स)	G A	1			-	- 12-2-1	-
950 G396 A471850100 B 7855 100 L 100	e)no		13405	せつ	-1		-			
25	0000		13966	١,	7/8-5			20	+1	
153 AV (3408 033, 64821 - 1 L L L L L L L L L L L L L L L L L	さん		しずの	A4 718801mg	7/88				7.4.5.5	-
153 AV (340°) 073,643L1 — JSC — LSLK-3 156 (37) VST000-S 110 (17) VST000-S 1110 (17) VST000-S 1110 (37) COO (37) 1110 (37) COO (37) 1111 (37	1 0955	-9	C79.0%	0210)		-		-	
556 (1700) VST003-S 110 (1711) VST000-S 1110 (1700) VST000-S 11110	13 Jan 18453	z	(3) (S)	073184361)	7 7	1		() () () () () () () () () ()	
110 1211 1870 010 1143 2912 1870 000 1143 1370 000 1144 1371 1870 000 1145 1371 1870 000 1145 1371 1870 000 1145 1371 1870 000 1145 1371 1870 000 1145 1371 1870 000 1145 1371 1870 0000 1	1638		1 X R	V51002-S	-	-	-	3 3		23762
145 (2912. 1879.005. 246 (2913. 1879.005. 25 (2914. 1879.005.) 25 (2914. 1879.005.) 25 (2914. 1879.005.) 25 (2914. 1879.005.) 26 (2914. 1879.006.) 26 (2914. 1879.006.) 26 (2914. 1879.006.) 26 (2914. 1879.006.) 26 (2914. 1879.006.) 27 (2914. 1879.006.) 28 (2914. 1879.006.) 28 (2914. 1879.006.) 29 (2914. 1879.006.) 20 (2914.	0 =		131	1510 010				3		
120 C7913 (570 0CD) 55 L7919 (570 0CD) 55 L7919 (570 0CD) 55 L7919 (570 0CD) 55 L7919 (570 0CD) 56 L7919 (570 0CD) 57 L7919 (57	1145		G912	S00 G73V				-)	-
353 13915 0331363623 353 13916 VS19225 353 13916 VS19225 354 13917 VSLICOI 355 13917 VSLICOI 357 13918 1 CS 358 13918 0 COST 358 13918 0 COST 359 13918 0 COST 350 13	13/5		L7913	VSTO OCT						
353 17413 (5176.3) 353 17413 (5176.3) 305 (27418) (5176.3) 305 (27418) (5176.3) 307 (5176.3) 30	0240	-	28.3	1570001					 	-
232 17412 VS1P 22 S 233 17413 VRLLCGI 205 C7918 C5 142 C791 A G98105 3 C787 144 C792 OF S 147 C793 OF S 140 C793 OF S 140 OF S	100	-	38.15	673136362			-	5	5116 - 2	
235 17417 VBLICGI CS C1787 CS	155		78.5	V510 w S				-		
205 CP18 CS L. 2918 A 4 648405 3 C1891 L. 2513A4-5 -17446-5 144 L. 2792	1,433	1	1797	VRL1661				3 1	1	
120 L 242 A 4 698053 C187 1 20 20 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 28 A 120 A 12	1505		C#18	1.05	7			1 X	41	
120	1547		17419	A4 6989053	1363	-				
120	10		L 7920	06. A						
120 C C7133 28 A Boviewed By	1249		15/2	0.13				-		
Reviewed By Reviewed By	4 1720)	(F)	9.S.A)	_)		-	1	7
	L BUFFALO			*VOOD STROOM		d By			Ç	

+										2
w_	ANALYST	FILE #	SAMPLE ID	# 90F	INJ. VOL.	EXT. WHT.	D.F.	STANDARD MIX #	I.S. / SS MIX#	
731M 753	200	(A)	A4 6959 201 A	(286°)	1.7%		-		NUSCH.	
828		5687	16 A	,			_	1		
1858		८स्राड	lomsa				_	2 1 4 A 2 - 7 - 7 A 4 - 5		
932		76661	1050 A				~	11		
7007		(393	1/ A				_			
72037		7405	461				_			
2110		5407g	130			-	-			
243		L 7930	14 A		-		-			 -
2215		(2bx7	/S A				-			
22.48		€2647	16 A 640/				.0			
7 2321	1	C \$437	16 36 81	-	Ł	1				
1	1	134	3116	1	,	+	+			
gram	*	1-7435	0802RF3CI		7.70	1			}	
-		17936	Vsmos				+		N955	
		17937	VSTXX5	-		-	+			
		1.7138	V5FD010			-				
		17936	VSTD602							
		71940	V472661			F				
		1-194	VSmo2	,					T	
	-	17942	VSTOBOL							
		1,7943			-			-		
						-			-	
							-			
						-	-			76.5
			,		-	-				
					- -					
						-	-			
						-	+			
STL BUFFALO			***************************************							
			SEARING.	Heviewed By	By			9		2

	_			, ,									2.17			General dis	2001 127															
	COMMENTS												14XX		10/97 Land		/ HUT												NO.			
	PH<2	×	4	X	X;	۷ ,	(X	×	y.	*	×							1	1	1	+	+	+	+	+	+	+	1				
	REANALYSIS?																													Carried and the state of the state of		
507 NO	S.S. #4 % REC.	7	1								-															-		PODE	- Connor			
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.		+	+	_						+) iid	700 A			
GCMS VOL	S.S. #2 % REC.	1	+								-1																					
	S.S. #1 % REC.	95	15.5	92	92	42	96	48	36	9,6	93																				•	
	I.S. #3 % REC.	80	79	28	76	74	87	84	100	88	84																					
	I.S. #2 % REC.	86	900	19	98	85	95	75	99	74	75																					
	LS. #1 % REC.	100	72	36	76	9	76	7	96	0,0	7																				y.*	
· 4群。	AUTO #		1											 			1,000											Date				
	3	al (*)	7		- 71 	150	44			your N	enteres.	aija aga	riu:	19:00	Market Market	179		8 10-4 5					API	TO BA	M	25)		KL,) chri			
	LS./ SS MIX #	200557							-			}	Nacc										<u></u>	12 f \	2			ond.				
	WIX #		7-1						9.												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 4						, ON				

ISS 6M WS6AG-10, WS 12AB-9, WS13 AZ-5 W 513B2-5 WS6 AG-10, WS1248-9 WS1387-5 1818ALS STANDARD MIX # W51944-5, W5194B-5 WS6AC-10, WS1ZAB-9 WS6AC-10, NS 12-DB-7 W 1K-4 からなって W534-2 7 U. 0 0 <u>0</u> 9 <u>Q</u> 9 EXT. WHT. GCMS VOLATILE INJECTION LOG INJ. VOL. Reviewed By 3 S_M 10B # 69ax 7137 6959 245 ಎ ಶ 8569 **688**7 000022 SAMPLE ID 072986BP2 E. BLA 历的代 VSTD 005 1550007 2-ED atsy MIDOID 1570 00 A OIMS A4695801 B A4658415 A4655415 152000 0729BFBP 44695901 1971770 A469aRDI 102707 PA 3881-2 VSTDOSD VBCh_3 VSTDOSD 七十二十五 MSRFULL MSB 8(343) FILE# 16777 Q67944 P6780 £8±9d S++31 8249 P6779 06790 からろう 6650 78739 8753 P8739 P6785 68498 76290 9559 **28**+38 88494 (bya) 8799 ANALYST 本で 1350 1320 OCH H र्वे द्व 1350 5 3248 TIME a 321 PE 2335 0028 0102 1034 30 B STL BUFFALO Volock DATE H/68/E

Š.

. \$		7		T	·T	T	T	T	T		2 - ·	1	1.	<u>.</u>	ন	- 1		15.7		Ť	٦.	Ť	· -1			ī	T -		· ·	- 1	:	- 1	`		~	2	4	 		
	1														Wat read	4	7			-	3 ~					,									Page 2					
	NTS				i	0							<u> </u>	h.						1.5 100		1			-	B 25h										·.				
	COMMENTS					Sales								M 3Koh.		+	4			1.5		1				15PB									NO.					
		_	:):		(3)	-1								ľ							7					69a)			Needed							1/2				
		(1 1955	- K. C.	1111	7		-						1000		2	9			1.0	7	9	200	\downarrow		(A 47			Who + W					.						
	PH S					1	1	1	<u> </u>	455	1	1	1	13	1				1	1	1			1			-)	١		1				•					
•	REANALYSIS?																																		•!					
	4 REC.				ŀ							-	_				\dagger	1					$\ $	-	╫	\parallel			1	\mid	+				3					
N LOG	S.S. #4 % REC.					96	42	33	Z	0	8	2	32				þ		0	8	-6														EALE COLOR					
JECTIO	% REC.					:								ŀ			†							+		$\ $			-	\		-		1	000023	}				
S VOLATILE INJECTION LOG	S.S. #3 % REC.					96	101	4	6	7 6	200	93	70	-			D			95	9														000					
IS VOL	S.S. #2 % REC.								٠	Õ							T	1	XI.											_		-								
GCM	S.S. #2					90	103	P01 44	dd	×	101	0)	B				00	3	91	2	9														•					
	S.S. #1 % REC.)	9	5	.)	60						w-		B		1	\parallel			1													
	8.5.#1					44	lou	109	101	109	9	101	109				17/2		207	0										\										
	I.S. #3 % REC.					119	83	44	79	77	7.3	75	29				8	3 4		6	101																			
		1		1															1	+	+	\prod	1				+	\parallel		_										
	I.S. #2 % REC.					105	68	40	6 00	9	م	44	76				707	X	0 0		00 -																			
					\parallel			1	ام	1	8	77	5			1	~		\dagger	\dagger	+	\parallel				H	+			1										
	HO . I.S. M %, REC.					801	-68	75	24	72	4	[2]	و				0	\$	6	7	5																			
	* O.D.						15. A. A. A. A. A. A. A. A. A. A. A. A. A.				· ·		1,000			+							+	1			-	11/	+	1										

THE PARTY OF THE P	A second		The Committee of the Co	A STATE OF THE STA	The state of the s		1	The state of the s	Ac	
			GCMS VOLATILE INJECTION LOG	ATILE INJE	CTION LO	g				Charles of the control of the contro
ŀ			C B GAND	* 80°	INJ. VOL	EXT.WHT.	D.F.	STANDARD MIX #	I.S. / SS MI	() () () () () () () () () ()
DATE TIME	ANALYST	FILE			7 25	ı	1	WS1)<- 3	CSS CM	The state of the s
73000 145g	Ĝ۶	D 6830	- 1	_	1 -		-			Action of the second se
1 533	4	P6801	VSTDOOS		1	+			eg ge	とう。
404	78	\$680A	VBUK 33		1	+	+		1725	
180		5029 81	7.5	1	1	+				
144		10 GROW	A 41 698917 A	(342)		+				
(4,5,7)		0 6805	81				+			
000		0 (80%	B				+			
100		£037 0	0/			+				
- T.		200	6						e kai	
2		20200	82							
ESEK	_	6,80	3							いり、人によりのう
JEM MAI DE		6 68N	0.0	+			-			
08/10		11890	8			1				19.7 Sept. 19.6
27.00	-	T137 0	DIMEGE			†	1			Control of the contro
		0 6818								
		713/0	\$ 100°							
		6001	00					-		
1		6 GXIS	- 1	-					17 (17 (17 (17 (17 (17 (17 (17 (17 (17 (
		91870	Od territ	+			1			
	,	6 6617	10801	J	.)	1	1			
										STEED TO SEE STEED
				+						
									acini-	A STATE OF THE STA
				-						
									i en A	
			* 320000	Reviewed By	ewed By			NO.		
STL BUFFALO			44 S	THE PERSON	1					To the state of th
	•									

	,			GCMS VOLA	GCMS VOLATILE INJECTION LOG	N LOG			
I B #1 % BEC	1.S. #2 % REC.	I.S. #3 % REC.	S.S. #1 % REC.	8.S. #2 % REC.	S.S. #3 % REC.	S.S. #4 % REC.	REANALYSIS?	pH<2	COMMENTS
									0453
									(2010/92 JEI (442 42)
									1
2%	5.8	و	- bo					1	
40	107.	40	99					1	
0	, % %	64	24					1	
200	7	65	(\mathcal{Q})						No volum
, 5	74.00		(bet)				7-		Jur sof
ر درا	טל	63	8						
وا	4	ح	S					1	
77	7.7	5	6						
1 (1)	7 7 14	- '	to						
9	7,	(22)	\ \ \ \				7		Isout
الع	90		0		_	_		\	
77	12	-	>						Crash
									Jul .
									7 15 1 100
									1401 0 20
									puel 3401 ore
									130 ch
									-
								ľ	
					000025	100 No.			NO. Page 2

SEMIVOLATILE DATA

QC SUMMARY

ASP 2000 - METHOD 8270 SELECT LIST WATER SURROGATE RECOVERY

Lab	Name:	SIL BULLATO			Contract:		

Lab Code: <u>RECNY</u> Case No.: SAS No.: SDG No.:

	Client Sample ID	2FP %REC	#	FBP %REC	#	NBZ %REC	#	PHL %REC	#	TBP %REC	#	TPH %REC	#			TOT
1	A-26S	41		78		72		29	_	76		82				0
2	A-27S	50		93		82		37		90		100	1			0
3	A-42S	42		83		76		29		80		90	i		·	0
4	A-43S	28		82		73		19		69		78				0
5	DG-1	45		80	ĺ	72	1	32	1	79		89				0
·6	Duplicate	48		88		92		34		98		102	- 1			0
7	Field Blank	38		70		68	1	26		85		84				0
8	Matrix Spike Blank	44		82		80		32		93		97				0
9	ME-12	26		90		90	1	18		94		101	ĺ			0
10	ME-14	40		76		<i>7</i> 7		28	i	87		88				0
11	ME-18	35		87		85		24		95		98				0
12	ME-18	34		85		91		26	İ	76		98		٠,		0
13	ME-18	32		79		86		24		71		91				0
14	ME-19	37		84		87		26		96		- 88		·		0
15	MW-2	45		83		85		32		105		83				0
16	MW-20	44		83		88		31		103		101				0
17	MW-6	45		83		85		32		96		97				0
18	MW-8	35		75		78		24		82		89	l			0
19	MW-9/10R	46		77		80		33		88		86				0
20	S Blank	42		78		75		30		97		94				0

QC LIMITS

2FP	=	2-Fluorophenol		(21-110)
FBP	= '	2-Fluorobiphenyl		(43-116)
NBZ	=	Nitrobenzene-D5		(35-114)
PHL	=	Phenol-D5	,	(10-110)
TBP	=	2,4,6-Tribromophenol		(10-123).
TPH	=	p-Terphenyl-d14		(33-141)

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
- D Surrogates diluted out

ASP 2000 - METHOD 8270 SELECT LIST WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ab Name: STL Buffalo	·	Contract:	Lab S	Samp ID: <u>A4698910</u>			
Lab Code: <u>RECNY</u> Case No	o.:	SAS No.:	9	SDG No.:			
Matrix Spike - Client Sampl	le No.: <u>ME-18</u>						
COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	CONCENT CONCENT UG/	RATION	MS % REC #	QC LIMITS REC.	
Phenol	155	0	20	5.1	17	12 - 110	
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #			C LIMITS REC.	
Phenol	155	24.7	16	6	42	12 - 110	
# Column to be used to flag * Values outside of QC limi	_	PD values with ar	n asteris	ς			
RPD: <u>0</u> out of <u>1</u> out Spike recovery: <u>0</u> out o	side limits of <u>2</u> outside	limits					

ASP 2000 - METHOD 8270 SELECT LIST WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo	Contract:		Lab Sam	D: <u>A4B134590</u>		
Lab Code: <u>RECNY</u> Case No	o.:	SAS No.:		SDG No.:		
Matrix Spike - Client Sampl	le No.: <u>S Blank</u>				• •	
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.		
Phenol_	150	32.8	22	12 - 110		
# Column to be used to flag * Values outside of QC limit	_			sk	•	
Spike recovery:0 out o	of <u>1</u> outside	limits				
Comments:					· · · · · · · · · · · · · · · · · · ·	

ASP 2000 - METHOD 8270 SELECT LIST METHOD BLANK SUMMARY

Client No.

Lab Name: STL Buffal	o Cont	ract:	S Blank
Lab Code: RECNY C		SAS No.:	SDG No.:
	61766.RR		
		Lab Sample ID:	
Instrument ID:	150Z-A	Date Extracted:	
atrix: (soil/water)		Date Analyzed:	
Level: (low/med)	LOW	Time Analyzed:	19:58

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

		·				
	i	CLIENT	LAB	LAB	DATE	l
		SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
			=========		######################################	l
	1	A-26S	A4698901	Z61767.RR	07/27/2004	ı
	2	A-27S	A4698902	Z61768.RR	07/27/2004	
	3	A-42S	A4698903	Z61769.RR	07/27/2004	
	4	A-43S	A4698904	Z61770.RR	07/27/2004	
I	5	DG-1	A4698905	Z61771.RR	07/27/2004	
	6	Duplicate	A4698906	Z61775.RR	07/28/2004	
1	7	Field Blank	A4698907	Z61776.RR	07/28/2004	
_	8	Matrix Spike Blank	A4B1345901	Z61765.RR	07/27/2004	
V.	9	ME-12	A4698908	Z61777.RR	07/28/2004	
<u>:</u>	10	ME-14	A4698909	Z61778.RR	07/28/2004	
I	11	ME-18	A4698910	Z61779.RR	07/28/2004	
	12	ME-18	A4698910MS	Z61780.RR	07/28/2004	
	13	ME-18	A4698910SD	Z61781.RR	07/28/2004	
	14	ME-19	A4698911	Z61782.RR	07/28/2004	
	15	MW-2	A4698912	Z61783.RR	07/28/2004	
	16	MW-20	A4698913	Z61784.RR	07/28/2004	
	17	MW-6	A4698914	Z61785.RR	07/28/2004	
	18	MW-8	A4698915	Z61786.RR	07/28/2004	
	19	MW-9/10R	A4698916	Z61787.RR	07/28/2004	

0	
Comments:	
į	

...

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name: S	TL Buffa	lo	Contract:		Tun	e ID:	A4T0001487
Lab	Code: R	ECNY	Case No.	: SAS	No.:		SDG No	·:
Lab	File ID	: <u>Z611</u>	.03		DFTPP	Injection	Date:	06/08/2004
Inst	trument	ID: <u>150</u> 2	<u>-A</u>	·	DFTPP	Injection	Time:	12:33

m/e	ION Abundance Criteria	% Relative Abundance			
51	30.0 - 60.0% of mass 198	36.7			
68	Less than 2.0% of mass 69	0.0	(0.0)	1
69	Present	36.7			
70	Less than 2.0% of mass 69	0.0	(0.0)	1
127	40.0 - 60.0% of mass 198	42.2			
197	Less than 1.0% of mass 198	0.0			
198	Base peak, 100% relative abundance	100.0			
	5.0 - 9.0% of mass 198	6.2			
	10.0 - 30.0% of mass 198	22.3			
	Greater than 1.00% of mass 198	1.4			•
	Present, but less than mass 443	7.8			
	40.0 - 110.0% of mass 198	68.2			
3 1	17.0 - 23.0% of mass 442	12.1	(1	.7.7)	2

1-Value is % mass 69

2-Value is % mass 442

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	SSTD020 SSTD050 SSTD080 SSTD120 SSTD160	A4I0000497-1 A4I0000497-1 A4I0000497-1 A4I0000497-1 A4I0000497-1	Z61105.RR Z61106.RR Z61107.RR	06/08/2004 06/08/2004 06/08/2004 06/08/2004 06/08/2004	13:00 13:34 14:09 14:43 15:18

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name: STL	<u>Buffalo</u>		Contract:		Tune	E ID:	A4T0001998
Lab	Code: RECN	Y Case	No.:	SAS	No.:		EDG No	.:
Lab	File ID:	<u>Z61728</u>			DFTPP	Injection	Date:	07/26/2004
Inst	rument ID:	<u> 150Z-A</u>			DFTPP	Injection	Time:	09:27

m/e	ION Abundance Criteria	% Relative Abundance		,	
	30.0 - 60.0% of mass 198	44.7			
	Less than 2.0% of mass 69	0.0	(0.0)	1
	Present	45.0			
70	Less than 2.0% of mass 69	0.0	(0.0)	1
127	40.0 - 60.0% of mass 198	44.8			
197	Less than 1.0% of mass 198	0.0			
198	Base peak, 100% relative abundance	100.0			
199	5.0 - 9.0% of mass 198	6.5			
275	10.0 - 30.0% of mass 198	23.3			
365	Greater than 1.00% of mass 198	1.8			
	Present, but less than mass 443	8.3			
	40.0 - 110.0% of mass 198	71.6			
443	17.0 - 23.0% of mass 442	13.3	(1	18.6)	2

1-Value is % mass 69

2-Value is % mass 442

	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1	SSTD020	A4I0000656~1	Z61730.RR	07/26/2004	10:24
2	SSTD050	A4I0000656-1	Z61731.RR	07/26/2004	10:58
3	SSTD080	A4I0000656-1	Z61732.RR	07/26/2004	11:33
4	SSTD120	A4I0000656-1	Z61733.RR	07/26/2004	12:07
5	SSTD160	A4I0000656-1	Z61734.RR	07/26/2004	12:41
6	SSTD020	A4I0000657-1	Z61735.RR	07/26/2004	13:16
7	SSTD050	A4I0000657-1	Z61736.RR	07/26/2004	13:50
8	SSTD080	A4I0000657-1	Z61737.RR	07/26/2004	14:25
9	SSTD120	A4I0000657-1	Z61738.RR	07/26/2004	14:59
10	SSTD160	A4I0000657-1	Z61739.RR	07/26/2004	15:33

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: <u>STL Buffalo</u>	Contract: Tune ID: <u>A4T0002005</u>
Lab Code: RECNY Case No.:	SAS No.: SDG No.:
Lab File ID: Z61750	DFTPP Injection Date: 07/27/2004
Instrument ID: <u>I50Z-A</u>	DFTPP Injection Time: 10:59

m/e	ION Abundance Criteria	% Relative Abundance		
	30.0 - 60.0% of mass 198	44.2		
68	Less than 2.0% of mass 69	0.0	(0.0)	1
69	Present	43.7	•	
70	Less than 2.0% of mass 69	0.0	(0.1)	1
127	40.0 - 60.0% of mass 198	44.3		
197	Less than 1.0% of mass 198	0.0		
198	Base peak, 100% relative abundance	100.0		
	5.0 - 9.0% of mass 198	6.3		
275	10.0 - 30.0% of mass 198	23.2		
365	Greater than 1.00% of mass 198	1.8		
	Present, but less than mass 443	8.4		
	40.0 - 110.0% of mass 198	71.6		
	17.0 - 23.0% of mass 442	12.5	(17.5)	2

1-Value is % mass 69

2-Value is % mass 442

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
1 2	SSTD050 SSTD050	A4C0002778-1 A4C0002778-2		07/27/2004 07/27/2004	11:18 11:58
4	SSTD050	A4C0002778-3	Z61753.RR	07/27/2004	12:32
	Matrix Spike Blank	A4B1345901	Z61765.RR	07/27/2004	19:24
6	S Blank A-26S	A4B1345902 A4698901	Z61766.RR Z61767.RR	07/27/2004 07/27/2004	20:33
8	A-27S A-42S	A4698902 A4698903	Z61768.RR Z61769.RR	07/27/2004	21:07 21:41
-	A-43S	A4698904	Z61770.RR	07/27/2004	22:16
	DG-1	A4698905	Z61771.RR	07/27/2004	22:50

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	STL I	Buffalo	5		C	Contract:		Tur	e ID:	A4T0002019	
Lab	Code:	RECN	<u>Y</u>	Case	No.:		SAS	No.:		SDG No	o.:	
Lab	File I	D:	Z61772	<u>2</u>			-	DFTPP	Injection	Date	07/28/2004	
Inst	rument	: ID:	150Z-A	<u>1</u>				DFTPP	Injection	Time	08:59	

m/e	ION Abundance Criteria	% Relative Abundance			
51	30.0 - 60.0% of mass 198	46.8			
68	Less than 2.0% of mass 69	0.0	(0.0)	1
69	Present	46.9	•	•	
70	Less than 2.0% of mass 69	0.1	(0.2)	1
127	40.0 - 60.0% of mass 198	46.7	•	•	
197	Less than 1.0% of mass 198	0.0			
198	Base peak, 100% relative abundance	100.0			
199	5.0 - 9.0% of mass 198	6.3			
275	10.0 - 30.0% of mass 198	22.7			•
365	Greater than 1.00% of mass 198	1.8			
441	Present, but less than mass 443	7.4			
442	40.0 - 110.0% of mass 198	63.9			
443	17.0 - 23.0% of mass 442	11.4	(1	L7.9)	2

1-Value is % mass 69

2-Value is % mass 442

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4 5 6 7 8 9	SSTD050 Duplicate Field Blank ME-12 ME-14 ME-18 ME-18 ME-18 ME-18 ME-19 MW-2 MW-20	A4C0002930-1 A4698906 A4698907 A4698908 A4698909 A4698910 A4698910MS A4698910SD A4698911 A4698912 A4698913	Z61773.RR Z61775.RR Z61776.RR Z61777.RR Z61779.RR Z61779.RR Z61780.RR Z61781.RR Z61782.RR Z61783.RR Z61784.RR	07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004 07/28/2004	09:17 10:29 11:04
13	MW-6	A4698914	Z61785.RR	07/28/2004	16:14
	MW-8	A4698915	Z61786.RR	07/28/2004	16:48
	MW-9/10R	A4698916	Z61787.RR	07/28/2004	17:22

AREA UNIT

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo	**	Cont	ract:	····	Labsampid:	A4C0002778
Lab Code: <u>RECNY</u>	Case No.:		SAS No.: _		SDG N	o.:
Lab File ID (Standard):	<u>Z61751.RR</u>			Date	Analyzed:	07/27/2004
Instrument TD: T50%-A				Time	Analyzed:	11:18

	IS1 (ANT) AREA #	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	867392 1734784 433696	14.92 15.42 14.42	1423023 2846046 711512	21.57 22.07 21.07	437981 875962 218991	7.90 8.40 7.40
 CLIENT SAMPLE						
7S 2S 3S	763058 653046 724716 761883 700581 692887 718526	14.90 14.90 14.90 14.90 14.90 14.90	1320172 1092371 1201787 1345570 1190848 1028627 1115075	21.55 21.55 21.55 21.55 21.55 21.55 21.57	371916 309260 351057 369203 338855 331471 333963	7.90 7.90 7.90 7.90 7.90 7.90 7.90

	•		QC LIMITS	QC LIMITS
IS2	(CRY) =	Acenaphthene-D10 Chrysene-D12 1,4-Dichlorobenzene-D4	(50-200) (50-200) (50-200)	-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min

2

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo		Cont	ract:		_ Labsampid:	A4C0002778
Lab Code: <u>RECNY</u>	Case No.:		SAS No.:		SDG N	ю.:
Lab File ID (Standard):	Z61751.RR			Da	ate Analyzed:	07/27/2004
Instrument ID: 150Z-A				T:	ime Analyzed:	11:18

	IS4 (NPT) AREA #	RT #	IS5 (PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	1441043	10.78	1358748	17.62	1218061	24.08
UPPER LIMIT	2882086	11.28	2717496	18.12	2436122	24.58
LOWER LIMIT	720522	10.28	679374	17.12	609031	23.58
CLIENT SAMPLE						
A-26S	1396364	10.78	1286287	17.62	1293943	24.07
A-27S	1175673	10.78	1175063	17.62	1094528	24.07
A-42S	1307334	10.78	1223450	17.62	1246978	24.07
A-43S	1401720	10.78	1287387	17.62	1283072	24.07
DG-1	1280563	10.78	1172826	17.62	1161513	24.07
Matrix Spike Blank	1235700	10.78	1060656	17.62	1017350	24.07
S Blank	1221462	10.78	1087352	17.62	1088298	24.07

		QC LIMITS	QC LIMITS
	Naphthalene-D8	• •	-0.50 / +0.50 min
	Phenanthrene-D10 Perylene-D12	(50-200) (50-200)	-0.50 / +0.50 min -0.50 / +0.50 min

AREA UNIT

123455

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo		Contract:	Labsampid:	A4C0002930
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No	o.:
Lab File ID (Standard):	<u>Z61773.RR</u>		Date Analyzed:	07/28/2004
Instrument ID: I50Z-A			Time Analyzed:	09:17

		IS1 (ANT) AREA #	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR SID UPPER LIMIT	832876 1665752	14.90 15.40	1404848 2809696	21.57 22.07	421372 842744	7.88 8.38
	LOWER LIMIT	416438	14.40	702424	21.07	210686	7.38
	CLIENT SAMPLE		======				
1	Duplicate	615888	14.90	1002153	21.55	292246	7.90
2	Field Blank	620612	14.90	969492	21.55	310877	7.90
3	ME-12	610795	14.90	986065	21.55	298714	7.90
4	ME-14	710018	14.90	1204850	21.55	346426	7.90
5	ME-18	633676	14.90	1035909	21.55	323371	7.90
6	ME-18	629146	14.90	992192	21.55	308518	7.90
	ME-18	687443	14.90	1089221	21.55	326911	7.90
	ME-19	635317	14.90	1027831	21.55	311173	7.90
-	MW-2	608347	14.90	971197	21.55	304760	7.90
	MW-20	633039	14.90	1073586	21.55	295730	7.88
	MW-6	639765	14.90	980479	21.55	316453	7.90
	MW-8 .	676236	14.90	1153222	21.55	329922	7.90
13	MW-9/10R	715253	14.90	1189949	21.55	351742	7.90

		QC LIMITS	QC LIMITS
	Acenaphthene-D10 Chrysene-D12		-0.50 / +0.50 min -0.50 / +0.50 min
	1,4-Dichlorobenzene-D4	•	-0.50 / +0.50 min

AREA UNIT

Column to be used to flag recovery values Values outside of contract required QC limits

ASP 2000 - METHOD 8270 SELECT LIST SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>		Cont	ract:		Labsampid:	A4C0002930
Lab Code: RECNY	Case No.:		SAS No.:		SDG N	b.:
Lab File ID (Standard):	<u>Z61773.RR</u>			Date	Analyzed:	07/28/2004
Instrument ID: 1507-A				Time	Analyzed.	09.17

	IS4 (NPT) AREA #	RT #	IS5 (PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	1462297	10.78	1424219	17.62	1231936	24.07
UPPER LIMIT	2924594	11.28	2848438	18.12	2463872	24.57
LOWER LIMIT	731149	10.28	712110	17.12	615968	23.57
CLIENT SAMPLE						
Duplicate	1084811	10.77	1051497	17.62	1013571	24.07
Field Blank	1137709	10.77	1021369	17.62	1004653	24.07
ME-12	1106782	10.77	984585	17.62	1016979	24.07
ME-14	1271372	10.77	1233630	17.62	1229701	24.07
ME-18	1177182	10.77		17.62	1077165	24.07
ME-18	1162667	10.78		17.62	1078399	24.07
ME-18	1226916	10.78		17.62	1209850	24.07
ME-19	1133225	10.77	1059250	17.62	1092777	24.07
MW-2	1124026	10.77	983735	17.62	1039170	24.07
MW-20	1089402	10.77	1059728	17.62	1203077	24.07
MW-6	1180679	10.77		17.62	1117742	24.07
MW-8	1216633	10.77	1137617	17.62	1178788	24.07
MW-9/10R	1294701	10.77	1183189	17.62	1264383	24.07

			QC LIMITS	QC LIMITS
IS5	(PHN) =	Naphthalene-D8 Phenanthrene-D10 Perylene-D12	(50-200) (50-200) (50-200)	-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min

AREA UNIT

234567890123

Column to be used to flag recovery values Values outside of contract required QC limits

STL Buffalo

Page: 1 Rept: AN0907

Comparision of CRGL/EQL to Lab MDL's

LAB: RECNY METHOD: 8270 PROTOCOL: ASP00

09:59

Time:

Date: 08/11/2004

	51																													28	33	/4:	33	,			
	EXCEPT	Z	Z	Z	2	2	Z	Z	Z	Z	Z	Z	Z	z	×	Z	Z	Z	2	Z	2	2	z	z	Z	z	2	2	Z,	z	z	z	Z	z	×	Z	¥
METHOD	Ţ	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL
AQUEOUS	3	UG/L	1/9n	7/5N	1/90	UG/L	UG/L	UG/L	1/9n	UG/L	UG/L	UG/L	7 %	7/9N	UG/L	UG/L	UG/L	NG/L	UG/L	UG/L	UG/L	7/9N	UG/L	UG/L	7/9N	NG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	NG/L	NG/L	NG/L	7/9N	UG/L
SOLID	5	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
	,																											-									
AQUEOUS	MDL	4.40146	1.96000	3.10000	3.70277	2.45343	2.50026	2.67061	2.43174	2.45154	4.11482	2.29722	3.34447	00000	2.76584	1.77674	2.39905	0.0000	0.0000	0.0000	3.21403	0.0000	1.91629	0.0000	2.13095	10.0000	1.60073	10.50799	3.52456	10.0000	4.11482	10.0000	0.0000	2.66652	5.39905	0.0000	1.93735
		330.00000	330.00000	330.00000	330.00000	1.31189	2.28873	2.76270	1.97223	3.16940	330.00000	330.00000	330.00000	0.0000.0	330.00000	2.21267	330.00000	0.0000.0	0.0000.0	0.0000	5.00869	0.0000.0	2.15798	0.0000.0	1.87166	330.00000	2.58512	4.75536	1.87323	330.00000	330.00000	330.00000	0.0000.0	3.93535	330.00000	0.0000	2.59392
SOLID	10	33(33(33(33(•	•	-	PF3	330	33(330	0	330	~	330	0	0	0	N	0	73	0	_	330	N	4		330	330	330	0	M	330	0	N
∞	101	10.0000	0.0000.0	00000.01	00000.01	10.0000	10.0000	10.0000	10.0000	00000.01	40.00000	10.00000	10.0000	0,0000.0	00000.01	00000.01	00000.01	0.0000	10.0000	10,00000	10.0000	10.0000	10.0000	10,0000	10.0000	00000.01	10.0000	25.00000	10.0000	10.0000	10.0000	00000.0	0.0000.0	10.0000	20.00000	10.0000	10.0000
AQUEOUS	CROL/EGL	_	-	-	-	-	~	=	<u>-</u>	=	4	=	=		=	-	=		=	=	=	=	=	=	=	=	=	N	=	=	=	=		=	ℵ	=	=
_	E0.	330,00000	330.00000	330.00000	330.00000	330,00000	330.00000	330,00000	330.00000	330.00000	300,00000	330,00000	330,00000	0.0000.0	330,00000	330,00000	330.00000	0,00000	330,00000	330.00000	330,00000	330,00000	330.00000	330,00000	330,00000	330,00000	330,00000	800.00000	330,00000	330.00000	330,00000	330.00000	0.0000.0	330.00000	00000.099	330,00000	330.00000
SOLID	CROL/EGL	K	'n	E.	M	ĸ	×	33	33	53	<u>13</u>	R	2		33	R	23		R	M	8	R	55	20	33	R	E	8	E	83	33	E		R	%	F	ĸ
																								~													
		foate	e (TIC)		•											Je)		8	(2)			(TIC)		ide (TIC													
		oroth	oenzen	aue	Jenzen	ane		ě								propa	henol	thaten	ne (T	(TIC)	<u>ج</u>	ine (T	ž	fluor		(TIC)				(710)		(TIC)	ene		ē	e e	
		phosp	hloro	openz	hloro	openz	nzene	draziı	nzene	nzene	zene		none	thren	•	Chlor	hlorop	Inaphi	otolue	Luene	opheno	otolue	opheno	nzotr	enof	Lene	enol	절	nene	Luene	enol	Luene	phthal	nene	luorer	utadí	atene
	~~1	ethyl	etrac	chlor	etrac	chlor	orobe	inythy	orobe	orobe	roben	<u></u>	hoqui	henan	'tamin	is(1-	etrac	methy	chlor	oroto	chlor	chlor	chlor	orobe	oroph	oroto	hytph	rophe	rotol	oroto	oroph	oroto	hytna	rotol	minof	1,3-b	aphth
	PARAMETER	0,0,0-Triethylphosphorothicate	1,2,3,4-Tetrachlorobenzene (TIC)	1,2,3-Trichlorobenzene	1,2,4,5-Tetrachlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Diphenylhydrazine	i,3-Dichlorobenzene	i,4-Dichlorobenzene	1,4-Dinitrobenzene	1,4-Dioxane	1,4-Naphthoquinone	-Methylphenanthrene	-Naphthylamine	2,2'-Oxybis(1-Chloropropane)	2,3,4,6-Tetrachlorophenol	2,3,5-Trimethylnaphthalene	2,3,6-Trichlorotoluene (TIC)	2,3-Dichlorotoluene (TIC)	2,4,5-Trichlorophenol	2,4,5-Trichlorotoluene	2,4,6-Trichlorophenol	2,4-Dichlorobenzotrifluoride (TIC)	2,4-Dichlorophenol	2,4-Dichlorotoluene	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,5-Dichlorotoluene	2,6-Dichlorophenol	2,6-Dichlorotoluene (TIC)	2,6-Dimethylnaphthalene	2,6-Dinitrotoluene	2-Acetylaminofluorene	2-chloro-1,3-butadiene	2-chloronaphthalene
	LAB	<	«	4	«	⋖	⋖	` «	< <	< <	` «	` ≪	` «	` «	` «	٧	 «	 «	 «			 «	·•	⋖	⋖	٠.	< <	 «		 «	 «	~	 «	 «	 «	≪	 «
	FRACTION	문	웊	· ¥	E	문	9	3 B	28	딸	2	9	쭞	3 9	£	9	3	₩	£	æ	æ	W	2	7 8	皇	띺	₩	X 8	2	₽	말	坚		3	8	æ	9
	ļ		_		_	~	_	-	-	<u>-</u>		-			~	_	~	_	-	_	_	•	-	_		_	_	-	_	_	•	_	_	_	-	_	•
	METHOD	8270	8270	8270	8270	8270	. 8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270
	PROTOCOL	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00

Page: 2 Rept: AN0907

STL Buffalo Comparision of CRQL/EQL to Lab MDL's

LAB: RECNY

Date: 08/11/2004 Time: 09:59 METHOD: 8270 PROTOCOL: ASPOO

	EXCEPT	z	×	2	z	2	2	2		>	>-	Z	2	2	z	z	2	*	z	z	z	2	2	z	z		z	z	z	28 z	34	/4. =	33	, =		2	z
METHOD	101	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL
AQUEOUS	3	7/90	1/9 0	1/90	1/5U	1/9n	1/9 0	1/9N	7/90	UG/L	7/90	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	7/90	UG/L	1/5U	NG/L	7/9n	UG/L	UG/L	UG/L	NG/L	UG/L	UG/L	VG/L	UG/L	UG/L	UG/L
SOLID	₹	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	JG/KG	UG/KG	JG/KG	UG/KG	UG/KG	UG/KG
AQUEOUS	MDL	1.00199	0.00000	0.0000	2.19004 (2.07000	3.57400	4.49732	1.99518	0.0000 0	2.67218	2.54457	7.43225	2.30000	10,00000 L		4.50000 L	2.03635	3.40921 L	3.50287 L	10.00000 L	7.62052 U	3.64300 u	2.50000 L	2.72844 U	1.05196 U	2.41602 u	_	3.13703 U	15.00000 u	1.89083 U	2.11932 U	3.41204 U	1.61393 U	_	4.15096 U	10.00000 u
SOLID	MDL	2.37391	0.0000	0.0000	1.33326	4.78459	330,00000	2.31325	2.40660	330,00000	790.00000	330,00000	1.86317	330,00000	330,00000	330.00000	330.00000	330,00000	330,00000	2.00146	330.00000	4.83833	330,00000	2.88967	2.40848	1.57496	2.16396	2.33053	2.18470	2.12027	330,00000	330,00000	330.00000	1.39486	2.58009	330.00000	330.00000
AQUEOUS	CROL/EQL	10.0000	10.0000	10.0000	10.0000	10,00000	10,00000	25.00000	10.0000	0.0000	10.00000	10.0000	10,00000	10.00000	10,00000	10.0000	20.0000	10.0000	10.0000	25.00000	100.00000	25.00000	10.00000	10.0000	10.0000	10.0000	10.00000	10.0000	25.00000	25.00000	10.0000	10.0000	10.0000	10.0000	10.00000	10.00000	10.00000
SOLID	CROL/EQL	330,00000	330.00000	330.00000	330.0000	330.00000	330.0000	800,00000	330.00000	0.0000	330.00000	330,00000	330.0000	330.0000	330,0000	330.0000	00000.099	330.00000	330.0000	800.0000	3300,00000	800,00000	330,0000	330.0000	330.0000	330,00000	330.0000	330.0000	800.00000	800.00000	330,00000	330,00000	330.0000	330.0000	330.0000	330,00000	330.0000
	B PARAMETER	. 2-Chlorophenol	2-Mercaptobenzothiazole	2-Methyl-1,3-Dioxolane	2-Methylnaphthalene	. 2-Methylphenol	2-Naphthylamine	2-Nitroaniline	2-Nitrophenol	2-Nitropropane	2-Picoline	2-sec-Butyl-4,6-dinitrophenol	3,3'-Dichlorobenzidine	3,3'-Dimethylbenzidine	3,4-Dichlorobenzotrifluoride (TIC)	3,4-Dichlorotoluene (TIC)	3- & 4-Methylphenol	3-Methylcholanthrene	3-Methylphenol	3-Nitroaniline	4,4'-Methylenebis(2-chloroaniline)	4,6-Dinitro-2-methylphenol	4-Aminobiphenyl	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	4-Nitroquinoline-1-oxide	5-Nitro-o-toluidine	7,12-Dimethylbenz(a)anthracene	Acenaphthene	Acenaphthylene	Acetophenone	Acrylamide
	ON LAB	*	*	•	⋖	⋖	⋖	⋖	4	*	⋖	⋖	⋖	4	⋖	⋖	∢	4	∢	⋖	∢	⋖	⋖	¥	∢	∢	⋖	∢	∢	4	•	⋖	⋖	∢	≪	∢	×
	FRACTION	8	₩.	8	2	뿦	2	쭞	2	2	뚲	2	뿔	£	뿢	쭞	¥	₩	뙆	皇	뚲	쭞	뿔	æ	£	뿢	뚲	딸	뚲	¥	£	딸	쭞	말	æ	£	X
	I, METHOD	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270
	PROTOCOL.	ASP00	ASP00	ASPOO	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00

STL Buffalo Comparision of CRQL/EQL to Lab MDL's

Page: 3 Rept: AN0907

Date: 08/11/2004 Time: 09:59

LAB: RECNY METHOD: 8270 PROTOCOL: ASPOO

FRACTION LAB	SOLID CROL/EGL	AQUEOUS CRQL/EQL	SOL ID MDL	AQUEOUS	SOLID	AQUEOUS	METHOD EXCEPT
A Aniline	330.0000	10.0000	1.90874	0.81000	UG/KG	1/9n	CROL
A Anthracene	330,0000	10.0000	3,88098	3.29921	UG/KG	1/9 0	CROL
A Aramite	00000.099	20.00000	330,00000	5.60365	UG/KG	NG/L	CROL
A Atrazine	330,0000	10.0000	330.00000	2.54000	UG/KG	7/9N	CROL
A Benzaldehyde	330.0000	10.0000	330.0000	10.0000	UG/KG	7/90	CRO
A Benzidine	330.0000	10.0000	6.95797	3.55128	UG/KG	7/9n	CROL
A Benzo(a)anthracene	330.0000	10.0000	3.39884	3.14017	UG/KG	7 /90	CROL
A Benzo(a)pyrene	330.0000	10.00000	1.64505	3.35170	UG/KG	7/9n	CROL
A Benzo(b)fluoranthene	330.0000	10.00000	2.36039	3.22032	UG/KG	1/9N	CROL
A Benzo(ghi)perylene	330.0000	10.00000	2.44840	1.73054	UG/KG	1/9 0	CROL
A Benzo(k)fluoranthene	330.0000	10.0000	2.80638	3.27123	UG/KG	7/9N	CROL
A Benzoic acid	1700.0000	50.0000	6.00439	7.30842	UG/KG	UG/L	CROL
A Benzothiazole (TIC)	330.0000	10.0000	0.0000	0.0000	UG/KG	1/9n	CROL
A Benzyl alcohol	330.0000	10.00000	3.22503	1.79000	UG/KG	. 1/90	CROL
A Biphenyl	330.0000	10.00000	0.75330	2.43500	UG/KG	1/90	CROL
A Bis(2-chloroethoxy) methane	330.0000	10.0000	1.64127	2.09858	UG/KG	1/90	CROL
A Bis(2-chloroethyl) ether	330.0000	10,00000	1.90874	2.43771	UG/KG	1/50	CROL
A Bis(2-ethylhexyl) phthalate	330,0000	10.0000	1.77014	7.17641	UG/KG	7/9N	CROL
A Butyl benzyl phthalate	330,00000	10.00000	2.98962	7.47154	UG/KG	UG/L	CRO
A Butyl carbitol acetate	330.0000	10.0000	0.0000	0.0000	UG/KG	1/9 0	CROL
A Butylated hydroxytoluene	330.0000	10.0000	0.0000	0.0000	UG/KG	7/9n	CROL
A Caprolactam	330.0000	10.0000	1.30800	4.59000	UG/KG	1/9 0	CROL
A Carbazole	330.0000	10.0000	2.28025	2.53074	UG/KG	N6/L	CROL
A Chlorobenzilate	330.0000	10.00000	330.00000	3.42587	UG/KG	7/9N	CROL
A Chrysene	330.0000	10.0000	2.79821	1.79120	UG/KG	790	580
A Di-n-butyl phthalate	330,0000	10.00000	3.13671	6.64053	UG/KG	NG/L	CROL
A Di-n-octyl phthalate	330,0000	10.0000	1.46904	6.95326	UG/KG	NG/L	CROL
A Diallate	330.0000	10.0000	330,00000	3.19203	UG/KG	NG/L	CROL
A Dibenzo(a,e)pyrene	330.0000	10.0000	330.00000	10.0000	UG/KG	1/90	CROL
A Dibenzo(a,h)anthracene	330.0000	10.00000	1.64316	3.23195	UG/KG	UG/L	CROL
A Dibenzofuran	330.0000	10.0000	1.92352	2.50969	UG/KG	UG/L	CROL
A Diethyl phthalate	330.0000	10.0000	3.02042	2.98931	UG/KG	ng/r	CROL
A Dimethoate	330,0000	10.0000	330,00000	4.73700	UG/KG	UG/L	CROL
A Dimethoxy ethyl phthalate	330.0000	10.00000	0.0000	0.0000	UG/KG	7/9N	CROL
A Dimethyl phthalate	330,0000	10.00000	1.99298	2.52540	UG/KG	7/9n	CROL
A Dimethyl terephthalate	עניט עצצ	10 0000	0.0000	0.0000	וופ/גע	7/9n	CROL

omparision:

Dimethylnaphthalene
Diphenylamine
Ethyl methane sulfonate
Fluoranthene
r Luorene
nevacinto i observante Vecentri onno i techione
nevaciitoi obditatieile Hexachlorocyclopentadiene
Hexachloroethane
Hexachlorophene
Hexachloropropene
Indeno(1,2,3-cd)pyrene
Methapyrilene
Methyl methanesulfonate
Methyl parathion
metnytnaphtnatene N.N-Dimethyl formamide
N-Nitroso-Di-n-propylamine
N-Nitrosodi-n-butylamine
N-Nitrosodiethylamine
N-Nitrosodimethylamine
N-Nitrosomethylethylamine
N-Nitrosomorpholine
N-Nitrosopiperidine
N-Nitrosopyrrolidine
N-nitrosodiphenylamine
Naphthal ene
Nitrobenzene
Octachlorocyclopentene

Page: 5 Rept: AN0907

STL Buffalo Comparision of CRQL/EQL to Lab MDL's

Date: 08/11/2004 Time: 09:59

LAB: RECNY METHOD: 8270 PROTOCOL: ASP00

	EXCEPT	z	2	æ	z		z	×	z		2	z	z	z	z	2	z	z	z	2	z	z	2	2	2	· 2	2	z	2	28	37 <i>,</i>	/433 =	;
METHOD	TOL EX	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL.	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	CROL	
AQUEOUS MI	5																									_	_				_		
	 	UG/L	UG/L	UG/L	UG/L	UG/L	1/9N	1/9N	1/90	1/90	Nev.	1/90	1/9n	NG/L	UG/L	UG/L	UG/L	NG/L	UG/L	79n	UG/L	UG/L	NG/L	NG/L	NG/L	7/9n	1/9n	1/9N	NG/L	Ne/I	Ne/I	7/9n	
SOLID	3	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	
AQUEOUS	MDL	2.81299	2.79664	9.53649	2.57380	2.44997	1.10000	0.0000	7,46808	2.47040	0.0000	3.53179	1.14185	2.24756	4.25656	2.98051	3.10434	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.14541	3.97495	10.0000	3.65374	2.27490	2.44840	
SOLID	MDL	330.00000	330.00000	4.27322	330.00000	2.68695	2.35851	0.0000	330,00000	330.00000	330,00000	330.00000	2.08601	453.00000	330.00000	330.00000	330.00000	0.0000	00000.0	0.0000	0.0000	330,00000	0,0000	0.0000	0.0000	0.0000	330,00000	330.0000	330,00000	330,00000	330.00000	330.0000	
AQUEOUS	CROL/EQL	10.0000	20.0000	25.00000	20.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	100.0000	10.0000	10.0000	20.0000	0.0000	0.0000	10.0000	10,0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	
SOLID	CROL/EQL	330,00000	990000	800.00000	990.0000	330.00000	330,00000	330,00000	330.0000	330.00000	330.00000	330.00000	330.00000	3300.00000	330.00000	330.0000	00000.099	0.0000	0.0000	330,00000	330.00000	330.00000	330.00000	330.00000	330.00000	330.00000	330.00000	330.00000	330,00000	330.0000	330,00000	330.0000	
	B PARAMETER	Pentachlorobenzene	Pentachloronitrobenzene	Pentachlorophenol	Phenacetin	Phenanthrene	Phenol	Phenothiazine	Phentermine	Phorate	Phthalic anhydride	Pronamide	Pyrene	Pyridine	Safrole	Sul fotepp	Thionazin	Total C2-Naphthalenes	Total C3-Naphthalenes	Tricresylphosphate	Triphenylphosphate	a,a-Dichlorotoluene (TIC)	alpha-BHC	beta-BNC	del ta-BHC	gamma-BHC (Lindane)	m-Dinitrobenzene	o-Toluidine	p-Cymene	p-Dimethylaminoazobenzene	p-Phenylenediamine	sym-Trinitrobenzene	
	ON LAB	•	⋖	⋖	⋖	•	<	<	<	4	4	4	⋖	4	4	⋖	⋖	⋖	⋖	4	⋖	*	∢	⋖	⋖	∢	∢	⋖	⋖	<	∢	< .	
	FRACTION	£	뿔	E	Æ	£	Œ	8	9	R	æ	2	딸	X	쭞	9	Æ	뿔	Æ	문	윷	딸	문	쯌	£	Æ	Æ	X	£	Æ	Æ	£	
	METHOD	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	8270	
	PROTOCOL	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	ASP00	

SAMPLE DATA

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

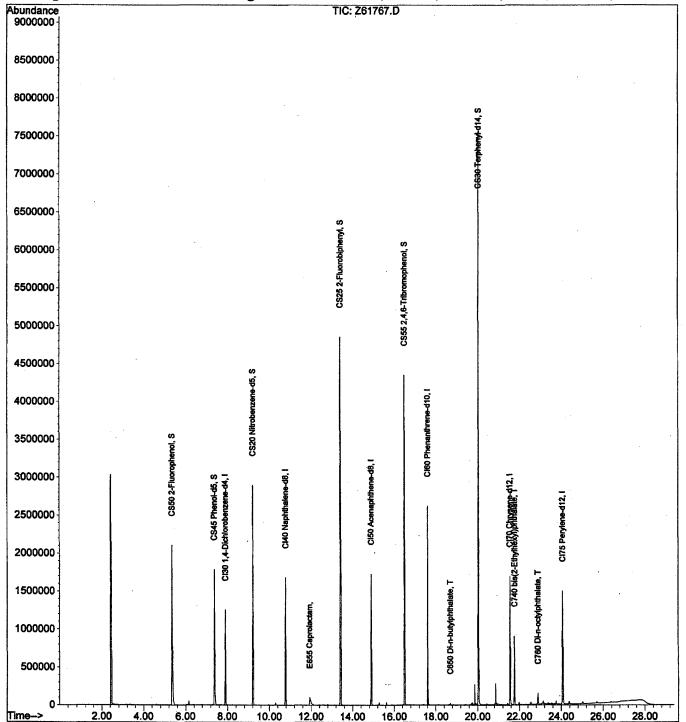
rah Marra	000 D.EE-1			•	A-26S	•	
rap Name:	SIL BUITA	<u>lo</u> Co	ntract:		L		
Lab Code:	RECNY C	Case No.:	SAS No.:	SDG No.:			
Matrix:	(soil/water)	WATER		Lab Sample 1	D: <u>A469890</u>	1	
Sample wt	:/vol:	<u>1060.0</u> (g/mL) <u>M</u> L		Lab File ID:	<u>z61767.</u>	RR	
Level:	(low/med)	TOM		Date Samp/Re	ecv: <u>07/21/2</u>	004 07/2	23/2004
% Moistur	æ:	decanted: (Y/N)	N	Date Extract	ed: <u>07/26/2</u>	<u>004</u>	٠.
Concentra	ted Extract	: Volume: 1000 (uL)		Date Analyze	ed: <u>07/27/2</u>	<u>004</u>	
Injection	Volume:	<u>2.00</u> (uL)		Dilution Fac	etor:1.0	<u>0</u>	
GPC Clear	rup: (Y/N)	<u>N</u> pH: <u>6.0</u>					
1			C	CONCENTRATION UN	NITS:		
	CAS NO.	COMPOUND		(ug/L or ug/Kg)		Q	
	108-95-2	Phenol			5	ט	
		4-Methylphenol			5	ט	
	91-20-3	Naphthalene			5	ט	

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\072704\Z61767.D Vial: 16 Acq On : 27 Jul 2004 Operator: PM 20:33 : I50Z-A Sample : A4698901 AW40017661 Inst Multiplr: 1.00

Misc

Quant Results File: CLP.RES


MS Integration Params: rteint.p Quant Time: Jul 28 8:07 2004

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

Page 1

Quantitation Report

Vial: 16 Data File : D:\ELINK\INSTR1\DATA\072704\Z61767.D : 27 Jul 2004 20:33 Operator: PM Sample : A4698901 AW40017661 Inst : I50Z-A Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jul 28 8:07 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration
Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

Internal Standards	R.T.	QIon	Response		nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	371916	40.00	ng 0.00
22) CI40 Naphthalene-d8	10.78	136	1396364	40.00	ng 0.00
38) CI50 Acenaphthene-d8	14.90	164	763058	40.00	ng -0.02
60) CI60 Phenanthrene-d10	17.62	188	1286287	40.00	87.97% ng 0.00 94.67%
73) CI70 Chrysene-d12			1320172	40.00	ng -0.02
82) CI75 Perylene-d12	24.07	264	1293943	40.00	ng -0.02 106.23%
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran 6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Ran 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	nge 34 13.42 nge 43	- 114 172 - 116	Recove 3290381 Recove 969821	ry = 156.59 ry = 228.82	ng 0.00 156.59%# ng 0.00 152.55%# ng 0.02 164.48%#
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	0.00	93		N.D. N.D. N.D. N.D. N.D.	•

(#) = qualifier out of range (m) = manual integration

Z61767.D CLP.M Wed Jul 28 08:07:48 2004

MS Integration Params: rteint.p

Quant Time: Jul 28 8:07 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
	C340 1,4-Dichlorobenzene	0.00	146		N.D.	
	C350 1,2-Dichlorobenzene	0.00	146		N.D.	
15)	C345 Benzyl alcohol	0 00	100		N.D.	
16)	C360 bis(2-chloroisopropyl	0.00	45		N.D.	
17)	C355 2-Methylphenol	0.00			N.D.	
	E145 Acetophenone	0.00	105	1	N.D.	
	C375 Hexachloroethane	0.00	117		N.D.	
	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
	C365 4-Methylphenol	0.00	108		N.D.	
24)	C410 Nitrobenzene	0.00	77		N.D.	
25)	C410 Nitrobenzene C415 Isophorone C430 benzoic acid C420 2-Nitrophenol	0.00			N.D.	
26)	C430 benzoic acid	0.00			N.D.	
27)	C420 2-Nitrophenol	0.00	139		N.D.	•
28)	C425 2,4-Dimethylphenol	0.00	107		N.D.	
29)	C435 bis(2-Chloroethoxy) me	0.00	93		N.D.	
30)	C440 2,4-Dichlorophenol	0.00	162		N.D.	
	C445 1,2,4-Trichlorobenzen				N.D.	
	C450 Naphthalene	0.00			N.D.	
	C455 4-Chloroaniline	0.00			N.D.	
	C460 Hexachlorobutadiene	0.00			N.D.	
	E655 Caprolactam		1213	53345	30.15 ng	99
	C465 4-Chloro-3-methylphen		107		N.D.	
	C470 2-Methylnaphthalene	0.00			N.D.	
	C510 Hexachlorocyclopentad	0.00			N.D.	
	C515 2,4,6-Trichlorophenol				N.D.	
	C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
	C525 2-Chloronaphthalene				N.D.	
	C811 1,1'-Biphenyl	0.00			N.D.	
	C530 2-Nitroaniline				N.D.	
	C540 Acenaphthylene	0.00			N.D.	
47)	C535 Dimethylphthalate	0.00	163		N.D.	
48)	C542 2,6-Dinitrotoluene C550 Acenaphthene	0.00	165		N.D.	
49)	C550 Acenaphthene	0.00	153		N.D.	,
50)	C550 Acenaphthene C545 3-Nitroaniline C555 2,4-Dinitrophenol C565 Dibenzofuran	0.00	138		N.D.	
2T)	C555 2,4-Dinitrophenol	0.00	184		N.D.	
,		0.00	100		N.D.	
53)	C570 2,4-Dinitrotoluene				N.D.	•
54)	C560 4-Nitrophenol	0.00	109		N.D.	
55) 	C590 Fluorene	0.00	166		N.D.	

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

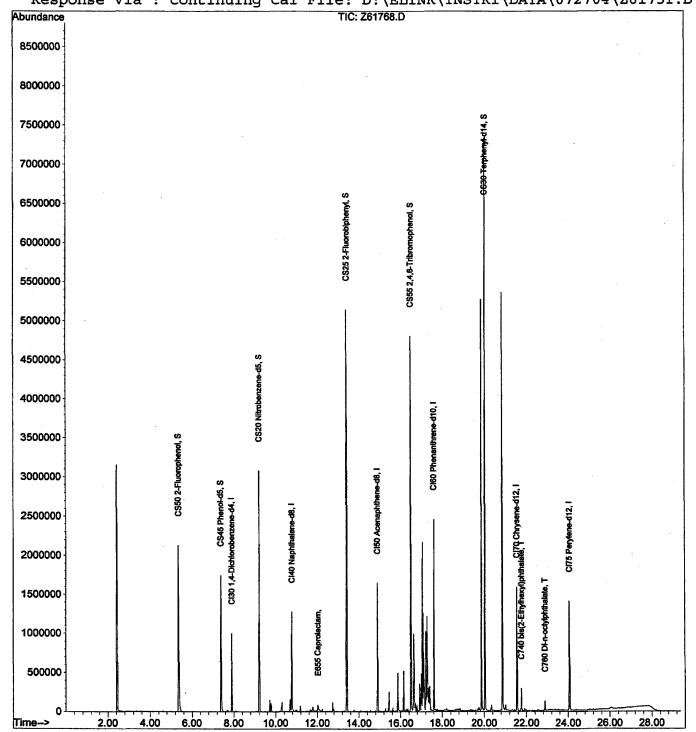
Client No.

Tab Mass	om p.es 1	_	3			A-27S		
Lab Name:	: SIL BUTTAL	<u>o</u> (ontract:			L		
Lab Code:	RECNY C	ase No.:	SAS No.:	SDG No.	:	-		
Matrix:	(soil/water)	WATER		Lab Samp	le ID:	A4698902		
Sample wt	:/vol:	1055.0 (g/mL) <u>N</u>	伍	Lab File	ID:	<u>Z61768.R</u>	R	
Level:	(low/med)	LOW		Date Sam	p/Recv:	07/21/20	04 07/2	23/2004
% Moistur	æ:	decanted: (Y/N	1) <u>N</u>	Date Ext	racted:	07/26/20	04	
Concentra	ated Extract	Volume: 1000 (uI	ر.	Date Ana	lyzed:	07/27/20	<u>04</u>	
Injection	ı Volume:	<u>2.00</u> (uL)		Dilution	Factor:	1.00		
GPC Clear	nup: (Y/N) j	<u>N</u> pH: <u>6.0</u>						
	CAS NO.	COMPOUND		CONCENTRATIO	-:		Q	
,	106-44-5	Phenol 4-Methylpheno Naphthalene	ol			5 5 5	บ บ	

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\072704\Z61768.D Vial: 17

Acq On : 27 Jul 2004 21:07 Operator: PM Sample : A4698902 AW40017662 Inst : I502


MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

Quantitation Report

MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

Z61768.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

•						
Internal Standards					nits Dev(Min) Rcv(Ar)	
1) CI30 1,4-Dichlorobenzene-d			309260	40.00	ng 0.00 70.61%	
22) CI40 Naphthalene-d8	10.78	136	1175673	40.00	ng 0.00 81.59%	
38) CI50 Acenaphthene-d8	14.90	164	653046	40.00	ng -0.02	
60) CI60 Phenanthrene-d10	17.62	188	1175063	40.00	75.29% ng 0.00 86.48%	
73) CI70 Chrysene-d12	21.55	240	1092371	40.00	ng -0.02	
82) CI75 Perylene-d12	24.07	264	1094528	40.00	ng -0.02 89.86%	
System Monitoring Compounds				·	ng -0.02	
Spiked Amount 150.000 Ran	ge 21	- 110	Recove		100.98%	
6) CS45 Phenol-d5	7.38				ng -0.02	
Spiked Amount 150 000 Ran	ge 10	- 110	Recove	~v =	73.21%	
7) CS70 2-chlorophenol-d4	0.00	132	0	0.00	ng	
7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran	ge 33	- 110	Recove	ry =	0.00%#	
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng	
Spiked Amount 100.000 Ran	ge 16	- 110	Recove	ry =	0.00%#	
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran	9.22	82	1804929	163.26	ng 0.00	
Spiked Amount 100.000 Ran	ge 34	- 114	Recove	ry =	163.26%#	
42) CS25 2-Fluorobiphenyl	13.42	172	3357695	186.72	ng 0.00	
					186.72%#	
63) CS55 2,4,6-Tribromophenol	16.50	330	1041805	269.07	ng 0.00	
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	ry =	179.38%#	
Spiked Amount 150.000 Ran 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	20.05 ge 33	- 141	Recove	200.44 ry =	200.44%#	
Target Compounds				N.D	Qvalue	
2) C705 n-nitrosodidimethylam	0.00	74		N.D.		
4) E600 Benzaldehyde	0.00	77		N.D.		
2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol	0.00	93		N.D.	•	
8) C315 Phenol	0.00	94		N.D.	•	
9) C330 2-Chlorophenol 10) C320 aniline	0.00	728		N.D.		
(#) = qualifier out of range (m) = manual integration						

Wed Jul 28 08:08:14 2004

PP

Page 1

MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
	C340 1,4-Dichlorobenzene	0.00	146		N.D.	
	C350 1,2-Dichlorobenzene	0.00	146		N.D.	
	C345 Benzyl alcohol	0.00	108		N.D.	
16)	C360 bis(2-chloroisopropyl		45		N.D.	
17)	C355 2-Methylphenol	0.00	108		N.D.	
	E145 Acetophenone	0.00	105		N.D.	
	C375 Hexachloroethane	0.00	117		N.D.	
20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
	C365 4-Methylphenol	0.00	108		N.D.	
24)	C410 Nitrobenzene	0.00	77		N.D.	
25)	C415 Isophorone	0.00	82		N.D.	
26)	C430 benzoic acid	0.00	122		N.D.	
	C420 2-Nitrophenol	0.00	139		N.D.	
28)	C425 2,4-Dimethylphenol	0.00	107		N.D.	
	C435 bis(2-Chloroethoxy)me		93		N.D.	
30)	C440 2,4-Dichlorophenol	0.00	162		N.D.	
	C445 1,2,4-Trichlorobenzen		180		N.D.	
	C450 Naphthalene	0.00	128		N.D.	
	C455 4-Chloroaniline	0.00	127		N.D.	
	C460 Hexachlorobutadiene	0.00	225	1	N.D.	
	E655 Caprolactam	12.03	113	17/176	11.73 ng	# 38
	C465 4-Chloro-3-methylphen	0.00	107	Ĺ	N.D.	
	C470 2-Methylnaphthalene	0.00	142		N.D.	
	C510 Hexachlorocyclopentad	0.00	237		N.D.	
	C515 2,4,6-Trichlorophenol	0.00	196		N.D.	
	C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
	C525 2-Chloronaphthalene	0.00	162		N.D.	
	C811 1,1'-Biphenyl	0.00	154		N.D.	
	C530 2-Nitroaniline	0.00	65		N.D.	
	C540 Acenaphthylene	0.00			N.D.	
47)	C535 Dimethylphthalate	0.00	163		N.D.	
	C542 2,6-Dinitrotoluene	0.00			N.D.	
	C550 Acenaphthene	0.00			N.D.	
	C545 3-Nitroaniline	0.00			N.D.	*,
	C555 2,4-Dinitrophenol				N.D.	•
	C565 Dibenzofuran	0.00			N.D.	
	C570 2,4-Dinitrotoluene	0.00			N.D.	
	C560 4-Nitrophenol	0.00			N.D.	
55)	C590 Fluorene	0.00	166		N.D.	
				- 	·	

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lah Name	STT. Buffal	.o 0.	ontract.		A-42S	.	
IVALIE .	· <u>vin puriar</u>	<u></u>	**************************************				
Lab Code:	: <u>RECNY</u> C	ase No.:	SAS No.:	SDG No.:			
Matrix: ((soil/water)	WATER		Lab Sample	D: <u>A46989</u>	<u> 103</u>	
Sample wt	:/vol:	1055.0 (g/mL) M	L	Lab File 1	D: <u>Z61769</u>	.RR	
Level:	(low/med)	LOW		Date Samp/	/Recv: <u>07/21/</u>	2004 07/23	/2004
% Moistur	æ:	decanted: (Y/N) <u>N</u>	Date Extra	acted: <u>07/26/</u>	2004	
Concentra	ited Extract	Volume: 1000 (uL	,)	Date Analy	/zed: <u>07/27/</u>	2004	
Injection	n Volume:	2.00 (uL)		Dilution H	Factor:1.	<u>00</u>	
GPC Clear	rup: (Y/N)	N pH: 6.0					
		× r _{ss}		CONCENTRATION	UNITS:		
	CAS NO.	COMPOUND			(g) <u>UG/L</u>	Q	
	108-95-2				5	ַ	
×		4-Methylpheno	1		5	ָּט	

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\072704\Z61769.D

Vial: 18 Operator: PM Inst : I50Z-A

Sample

: 27 Jul 2004 21:41 : A4698903 AW40017663

Multiplr: 1.00

Misc

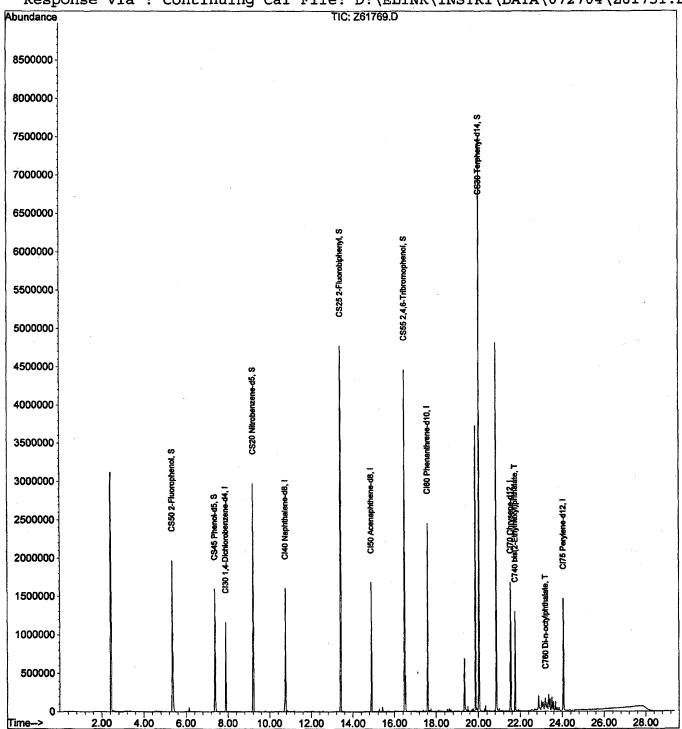
MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004

Quant Results File: CLP.RES

Method

Acq On


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

Quantitation Report

MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 1

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

Internal Standards	R.T.	QIon	•		nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	351057		ng 0.00
22) CI40 Naphthalene-d8	10.78	136	1307334	40.00	80.15% ng 0.00
38) CI50 Acenaphthene-d8	14.90	164	724716	40.00	
60) CI60 Phenanthrene-d10	17.62	188	1223450	40.00	
73) CI70 Chrysene-d12	21.55	240	1201787	40.00	90.04% ng -0.02 84.45%
82) CI75 Perylene-d12	24.07	264	1246978	40.00	
System Monitoring Compounds					102.370
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran 6) CS45 Phenol-d5	7.38	- 110 99	1123810	ery = 87.20	ng -0.02 83.93% ng -0.02 58.13%
7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Rar 13) CS75 1,2-dichlorobenzene-d	0.00	132	0	0.00	nq
Spiked Amount 150.000 Rar	ige 33	- 110	Recove	ery =	0.00%#
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng
Spiked Amount 100.000 Rai	ige io	110	100000	- <u> </u>	0.000,
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Rar	9.22	82	1866720		
Spiked Amount 100.000 Rar	nge 34	- 114	Recove	ery =	151.84%#
42) CS25 2-Fluorobiphenyl			3314649		
Spiked Amount 100.000 Rar	nge 43	- 116	Recove	ery =	166.09%#
63) CS55 2,4,6-Tribromophenol	16.50	330	968193		
Spiked Amount 150.000 Ran	nge 10	- 123	Recove	ery =	
76) CS30 Terphenyl-d14	20.05	244	3706635	180.82	ng 0.02
Spiked Amount 100.000 Ran	nge 33	- 141	Recove	ery =	180.82*#
Target Compounds					Qvalue
2) C705 n-nitrosodidimethylam		74		N.D	
4) E600 Benzaldehyde	0.00	77		N.D	
5) C325 bis(2-Chloroethyl)eth		93		N.D	
8) C315 Phenol	0.00	94		N.D	
9) C330 2-Chlorophenol	0.00	128		N.D	
10) C320 aniline	0.00	93		N.D	•
(#) - qualifier out of range (m)	- man	 ual in	tegration		

^{(#) =} qualifier out of range (m) = manual integration Z61769.D CLP.M Wed Jul 28 08:08:39 2004 PP

Data File : D:\ELINK\INSTR1\DATA\072704\Z61769.D Vial: 18 Operator: PM Acq On : 27 Jul 2004 21:41 : A4698903 AW40017663 Inst: I50Z-A Sample Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration
Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C335 1,3-Dichlorobenzene	0.00	146		N.D.	
12) C340 1,4-Dichlorobenzene	0.00	146		N.D.	
14) C350 1,2-Dichlorobenzene	0.00	146		N.D.	
15) C345 Benzyl alcohol	0.00	108		N.D.	
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.	
17) C355 2-Methylphenol	0.00	108		N.D.	٠ ,
18) E145 Acetophenone	0.00	105		N.D.	
19) C375 Hexachloroethane	0.00	117		N.D.	
20) C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21) C365 4-Methylphenol	0.00	108		N.D.	
24) C410 Nitrobenzene	0.00	77		N.D.	
24) C410 Nitrobenzene 25) C415 Isophorone 26) C430 benzoic acid	0.00	82		N.D.	
26) C430 benzoic acid	0.00	122		N.D.	
2/) C420 2-Nitrophenoi	0.00	139		N.D.	
28) C425 2,4-Dimethylphenol 29) C435 bis(2-Chloroethoxy)me	0.00	107		N.D.	
29) C435 bis(2-Chloroethoxy)me		93		N.D.	
30) C440 2,4-Dichlorophenol	0.00	162		N.D.	
31) C445 1,2,4-Trichlorobenzen		180		N.D.	
32) C450 Naphthalene	0.00	128		N.D.	
33) C455 4-Chloroaniline	0.00	127		N.D.	
34) C460 Hexachlorobutadiene	0.00	225		N.D.	
35) E655 Caprolactam	0.00	113		N.D.	
36) C465 4-Chloro-3-methylphen	0.00	107		N.D.	
37) C470 2-Methylnaphthalene	0.00	142		N.D.	
39) C510 Hexachlorocyclopentad	0.00	237		N.D.	
40) C515 2,4,6-Trichlorophenol	0.00	196		N.D.	
41) C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
43) C525 2-Chloronaphthalene		162		N.D.	
44) C811 1,1'-Biphenyl	0.00	154		N.D.	
45) C530 2-Nitroaniline 46) C540 Acenaphthylene	0.00	65 150		N.D.	
46) C540 Acenaphthylene 47) C535 Dimethylphthalate	0.00	152		N.D.	
47) C535 Dimetnyiphthalate	0.00			N.D.	
48) C542 2,6-Dinitrotoluene	0.00	165		N.D. N.D.	
49) C550 Acenaphthene 50) C545 3-Nitroaniline 51) C555 2,4-Dinitrophenol	0.00	153		N.D.	
50) C545 3-Nitrodilline	0.00	138 184		N.D.	
52) C565 Dibenzofuran	0.00	160		N.D.	
	0.00			N.D.	
54) C560 4-Nitrophenol	0.00	109		N.D.	
54) C560 4-Nitrophenol 55) C590 Fluorene	0.00	166		N.D.	

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

T-1 17	OUT TO SEE T	1	-1		A-43S	
Lad Name	: SIL Buffa	<u>lo</u> Co	ntract:			
Lab Code	: <u>RECNY</u> (Case No.:	SAS No.:	SDG No.:	_	·
Matrix:	(soil/water)) <u>WATER</u>		Lab Sample ID:	<u>A4698904</u>	
Sample w	t/vol:	<u>1045.0</u> (g/mL) <u>ML</u>	ı	Lab File ID:	Z61770.R	R
Level:	(low/med)	LOW		Date Samp/Recv:	07/21/200	04 07/23/2004
% Moistu	re:	decanted: (Y/N)	N	Date Extracted:	07/26/200	04
Concentra	ated Extract	t Volume: 1000 (uL)		Date Analyzed:	07/27/200	04
Injection	n Volume:			Dilution Factor	: 1.00	
GPC Clear	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>	•			
			α	ONCENTRATION UNITS	3:	
	CAS NO.	COMPOUND	-	(ug/L or ug/Kg)	UG/L	Q
	108-95-2	Phenol			5	U
		4-Methylphenol			5	ט
	91-20-3	Nanhthalene			ς .	l

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\072704\Z61770.D

Vial: 19 Operator: PM

Acq On : 27 Jul 2004 22:16 Sample : A4698904 AW40017664

Inst : I50Z-A

Misc :

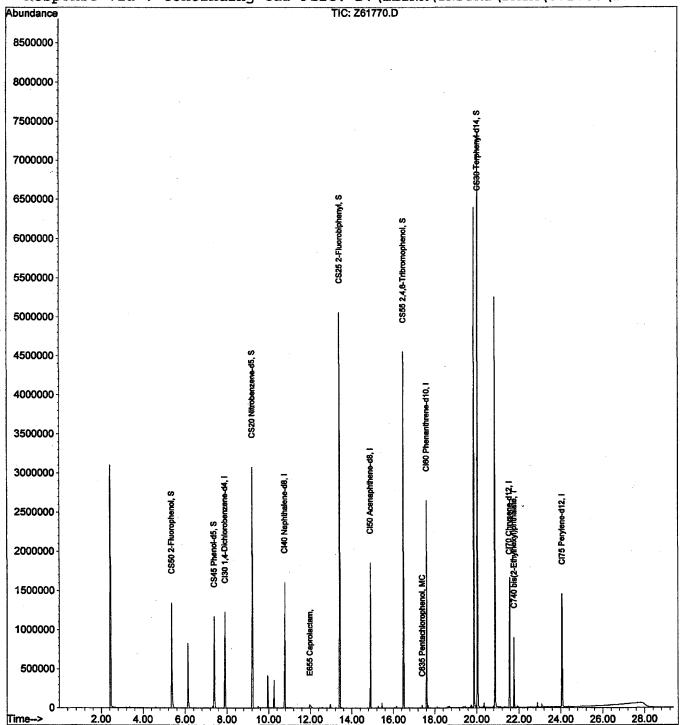
. A4090904 AW4001

Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Jul 28 8:08 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

Page 1

Quantitation Report Vial: 19 Data File : D:\ELINK\INSTR1\DATA\072704\Z61770.D Acq On : 27 Jul 2004 22:16 Operator: PM Inst : I50Z-A Sample : A4698904 AW40017664 Multiplr: 1.00 Misc MS Integration Params: rteint.p Quant Results File: CLP.RES Quant Time: Jul 28 8:08 2004 Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Title : CLP BNA Calibration Last Update : Tue Jul 27 12:22:42 2004 Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 DataAcq Meth : METHOD.M IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	369203	40.00 ng	
22) CI40 Naphthalene-d8	10.78	136	1401720	40.00 ng	84.30% 0.00
22) CI40 Naphthalene-do	10.70	130	1401/20	40.00 119	97.27%
38) CI50 Acenaphthene-d8	14.90	164	761883	40.00 ng	-0.02
•				J	87.84%
60) CI60 Phenanthrene-d10	17.62	188	1287387	40.00 ng	0.00
					94.75%
73) CI70 Chrysene-d12	21.55	240	1345570	40.00 ng	-0.02
00) 6785 0 3 340	04 05	0.54	1000000	40.00	94.56%
82) CI75 Perylene-d12	24.07	264	1283072	40.00 ng	-0.02 105.34%
					103.340
System Monitoring Compounds					
3) CS50 2-Fluorophenol	5.35	112	905621	83.27 ng	-0.02
	ge 21				
6) CS45 Phenol-d5	7.38	99	780569	57.59 ng	-0.02
Spiked Amount 150.000 Ran	ge 10	- 110	Recove		3.39%
7) CC70 2-ahlaranhanal-d4	Λ $\Lambda\Lambda$	יכנו	Λ		
Spiked Amount 150.000 Ran	ge 33	- 110	Recove	•	0.00%#
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00 ng	
		- 110		· 4	0.00%#
23) CS20 Nitrobenzene-d5	9.22	82		145.35 ng	0.00
		- 114 172			5.35%#
42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran	ge 43			165.13 ng $ery = 165$	0.00 5.13%#
63) CS55 2,4,6-Tribromophenol	16.50				
			Recove		3.60%#
76) CS30 Terphenyl-d14					
Spiked Amount 100.000 Ran	ge 33	- 141	Recove		5.69%#
					_
Target Compounds					Qvalue
2) C705 n-nitrosodidimethylam	0.00			N.D.	
4) E600 Benzaldehyde	0.00			N.D.	
5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol	0.00			N.D. N.D.	
9) C330 2-Chlorophenol	0.00			N.D.	
10) C320 aniline	0.00	93		N.D.	

(#) = qualifier out of range (m) = manual integration Z61770.D CLP.M Wed Jul 28 08:09:03 2004 PP MS Integration Params: rteint.p

Quant Time: Jul 28 8:08 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

11 C335 1,3-Dichlorobenzene		Compound	R.T.	QIon	Response	Conc Unit	Qvalue
12 C340	11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
14) C350 1,2-Dichlorobenzene 0.00 146 N.D. 15) C345 Benzyl alcohol 0.00 108 N.D. 160 C360 bis(2-chloroisopropyl 0.00 45 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 19) C375 Hexachloroethane 0.00 108 N.D. 190 C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 190 C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 190 C370 N.D. 190 N.D.							
15) C345 Benzyl alcohol 0.00 108 N.D. 16) C360 bis (2-chloroisopropyl 0.00 45 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 128 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 1.88 ng 92							
16) C360 bis(2-chloroisopropyl 0.00 45 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimitrotoluene 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 127 N.D. 33) C450 Naphthalene 0.00 127 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.98 117 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C510 Hexachlorophenol 0.00 196 N.D. 39) C510 Hexachlorophenol 0.00 196 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C530 2-Nitroaniline 0.00 162 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 2-Nitroaniline 0.00 165 N.D. 39) C530 3-Nitroaniline 0.00 165 N.D. 39) C550 3-Nitroaniline 0.00 165 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 39) C550 3-Nitroaniline 0.00 166 N.D. 30) C550 3-Nitroaniline 0.00 168 N.D. 30) C550 5-Nitroaniline 0.00 168 N.D. 30) C550 5-Nitroaniline 0.00 168 N.D. 30) C550 5-Nitroaniline 0.00 168 N.D. 30) C550	15)	C345 Benzyl alcohol					
17 C355 2-Methylphenol	16)	C360 bis(2-chloroisopropyl					
18) E145 Acetophenone	17)	C355 2-Methylphenol		108			
19) C375 Hexachloroethane 20) C370 N-Nitroso-di-n-propyl 21) C365 4-Methylphenol 22) C365 4-Methylphenol 23) C365 4-Methylphenol 24) C410 Nitrobenzene 26) C430 benzoic acid 27) C420 2-Nitrophenol 28) C425 2,4-Dimethylphenol 29) C435 bis(2-Chloroethoxy)me 30) C440 2,4-Dichlorophenol 31) C445 1,2,4-Trichlorophenol 32) C450 Naphthalene 33) C455 4-Chloroaniline 33) C455 4-Chloroaniline 34) C460 Hexachlorobutadiene 37) C470 2-Methylnaphthalene 38) C455 2,4-Britrophenol 39) C450 X-Britrophenol 31) C450 X-Britrophenol 32) C450 Naphthalene 33) C455 4-Chloroaniline 34) C460 Hexachlorobutadiene 35) C450 Z-Methylnaphthalene 37) C470 2-Methylnaphthalene 38) C455 2,4-Britrophenol 39) C510 Hexachlorocyclopentad 30) C555 2,4-Britrophenol 31) C555 2,4-Britrophenol 32) C555 Dimethylphen 33) C555 2,4-Dinitrotoluene 34) C550 Acenaphthene 35) C555 2,4-Dinitrophenol 36) C555 2,4-Dinitrophenol 37) C550 Z-Methylnaphthalate 38) C555 2,4-Dinitrophenol 39) C550 Acenaphthene 3000 163 N.D. 4000 163 N.D. 410 C555 2,4-Dinitrotoluene 420 C555 Z-A-Dinitrophenol 330 C555 Z-A-Dinitrotoluene 340 C550 Z-A-Dinitrotoluene 341 C550 Z-A-Dinitrotoluene 342 C550 Z-A-Dinitrotoluene 343 C555 Z-A-Dinitrotoluene 344 C550 Z-A-Dinitrotoluene 345 C555 Z-A-Dinitrotoluene 346 C550 Z-A-Dinitrotoluene 347 C555 Z-A-Dinitrotoluene 348 C552 Z-A-Dinitrotoluene 349 C550 Z-A-Dinitrotoluene 350 C555 Z-A-Dinitrotoluene			0.00	105		N.D.	
21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 127 N.D. 33) C450 Naphthalene 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 127 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C530 2-Nitroaniline 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 165 N.D. 46) C542 2,6-Dinitrotoluene 0.00 165 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 163 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2-A-Dinitrotoluene 0.00 165 N.D. 53) C570 2-A-Dinitrotoluene 0.00 165 N.D.	19)	C375 Hexachloroethane	0.00	117		N.D.	
24) C410 Nitrobenzene	20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy) me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 154 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C555 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	21)	C365 4-Methylphenol	0.00	108		N.D.	
26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 154 N.D. 43) C530 2-Nitroaniline 0.00 65 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 49) C550 Acenaphthene 0.00 184 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrophenol 0.00 168 N.D.	24)	C410 Nitrobenzene	0.00	77		N.D.	ing.
27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C555 Dimethylphthalate 0.00 165 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	25)	C415 Isophorone	0.00	82		N.D.	
28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 11.3 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 165 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrophenol 0.00 168 N.D.			0.00	122		N.D.	
29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C525 2-Chloronaphthalene 0.00 162 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 184 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	27)	C420 2-Nitrophenol	0.00	139		N.D.	
29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	28)	C425 2,4-Dimethylphenol	0.00	107		N.D.	
31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C525 2-Chloronaphthalene 0.00 162 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	29)	C435 bis (2-Chloroethoxy) me	0.00	93		N.D.	
32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 168 N.D.	30)	C440 2,4-Dichlorophenol	0.00	162		N.D.	
33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D.			0.00	180		N.D.	
34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 11.7 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 53) C570 2 4-Dinitrotoluene 0.00	32)	C450 Naphthalene	0.00	128		N.D.	
35) E655 Caprolactam 11.98 113 22879 12.88 ng 92 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C555 2,4-Dinitrophenol 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.			0.00	127		N.D.	
36) C465 4-Chloro-3-methylphen 0.00 10 ⁷ N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D.	34)	C460 Hexachlorobutadiene	0.00	225		N.D.	
37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D.	35)	E655 Caprolactam	11.98	113~	22879	12.88 ng	92
39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D.			0.00	107		N.D.	
40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D.			0.00	142		N.D.	
41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.				237		N.D.	
43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.	40)	C515 2,4,6-Trichlorophenol	0.00	196	•	N.D.	
44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.			0.00				
45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.			0.00	162		N.D.	
46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.	44)	C811 1,1'-Biphenyl	0.00	154		N.D.	
47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.	45)	C530 2-Nitroaniline	0.00	65			
48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.			0.00	152			
49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotolyene 0.00 165 N.D.	47)	C535 Dimethylphthalate	0.00	163		N.D.	
50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2 4-Dinitrotoluene 0.00 165 N.D.	48)	C542 2,6-Dinitrotoluene					
52) C565 Dibenzoluran 0.00 168 N.D. 53) C570 2 4-Dipitrotoluene 0.00 165 N.D.	49)	C550 Acenaphthene					
52) C565 Dibenzoluran 0.00 168 N.D. 53) C570 2 4-Dipitrotoluene 0.00 165 N.D.	50)	C545 3-Nitroaniline	0.00	138			
52) C565 Dibenzoluran 0.00 168 N.D. 53) C570 2 4-Dipitrotoluene 0.00 165 N.D.	51)	C555 2,4-Dinitrophenol					
53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	52)	C565 Dibenzoluran					-
54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	53)	C570 2,4-Dinitrotoluene					
55) C590 Fluorene 0.00 166 N.D.	54)	C560 4-Nitrophenol					
	55)	C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61770.D CLP.M Wed Jul 28 08:09:04 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

		,		DG-1		l
Lab Name: SIL But:	<u>falo</u> Con	ntract:		<u> </u>		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:	· -		
Matrix: (soil/wate	er) <u>WATER</u>		Lab Sample ID:	<u>A4698905</u>	5	
Sample wt/vol:	920.00 (g/mL) <u>M</u> L		Lab File ID:	<u> 261771.</u> F	R.	
Level: (low/med)	LOW		Date Samp/Recv:	07/21/20	07/23/2	2004
% Moisture:	decanted: (Y/N)	N	Date Extracted:	07/26/20	004	
Concentrated Extra	act Volume: 1000 (uL)		Date Analyzed:	07/27/20	004	
Injection Volume:	2.00 (uL)		Dilution Factor	:1.00	2	
GPC Cleanup: (Y/1	N <u>N</u> pH: <u>6.0</u>					
		C	ONCENIRATION UNITS	:		
CAS NO.	COMPOUND		(ug/L or ug/Kg)	UG/L	Q	
• — · — — —	Phenol			5	Ü	
	4-Methylphenol			5	Ü	

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\072704\Z61771.D Vial: 20 : 27 Jul 2004 22:50 Operator: PM Sample : A4698905 AW40017665 Inst : I50Z-A Multiplr: 1.00

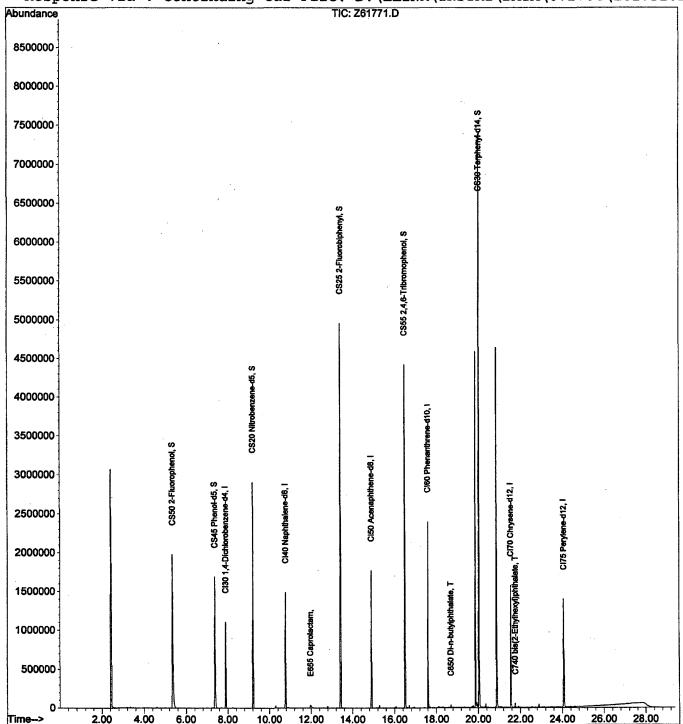
Misc

MS Integration Params: rteint.p

Quant Time: Jul 28 8:09 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

MS Integration Params: rteint.p Quant Time: Jul 28 8:09 2004

Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

ID QN IIIC . D. (IBIM(IMDIKI	(22222)	,,,,,,,,,	(202,0212	,	
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	338855	40.00	ng 0.00 77.37%
22) CI40 Naphthalene-d8	10.78	136	1280563	40.00	
38) CI50 Acenaphthene-d8	14.90	164	700581	40.00	
·	17.62		1172826	40.00	86.32%
73) CI70 Chrysene-d12			1190848		83.68%
82) CI75 Perylene-d12	24.07	264	1161513	40.00	ng -0.02 95.36%
6) CS45 Phenol-d5 Spiked Amount 150.000 Rar 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Rar 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Rar 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Rar 42) CS25 2-Fluorobiphenyl	nge 21 7.38 nge 10 0.00 nge 33 0.00 nge 16 9.22 nge 34 13.42 nge 43	- 110 99 - 110 132 - 110 152 - 110 82 - 114 172 - 116 330	Recove 1200925 Recove 0 Recove 1727131 Recove 3108759 Recove 918572	96.54 ery = 0.00 ery = 0.00 ery = 143.42 ery = 161.14 ery = 237.69	ng 0.00%# ng 0.00%# ng 0.00 143.42%# ng 0.00 161.14%# ng 0.00
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	0.00 0.00 0.00 0.00 0.00	77 93 94 128		N.D N.D N.D N.D N.D	

^{(#) =} qualifier out of range (m) = manual integration Z61771.D CLP.M Wed Jul 28 08:09:27 2004 PP

Data File: D:\ELINK\INSTR1\DATA\072704\Z61771.D Vial: 20 Acq On : 27 Jul 2004 22:50 Operator: PM Sample : A4698905 AW40017665 Inst: I50Z-A Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 28 8:09 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004
Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
	C340 1,4-Dichlorobenzene	0.00			N.D.	
	C350 1,2-Dichlorobenzene	0.00			N.D.	
	C345 Benzyl alcohol	0.00			N.D.	
	C360 bis(2-chloroisopropyl		45	,	N.D.	
	C355 2-Methylphenol	0.00			N.D.	
	E145 Acetophenone	0.00			N.D.	
	C375 Hexachloroethane	0.00	117		N.D.	
.20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21)	C365 4-Methylphenol	0.00	108		N.D.	
24)	C410 Nitrobenzene	0.00	7 7		N.D.	
25)	C415 Isophorone	0.00	82		N.D.	
	C430 benzoic acid	0.00	122	•	N.D.	
27)	C420 2-Nitrophenol	0.00	139		N.D.	
	C425 2,4-Dimethylphenol	0.00	107		N.D.	
	C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	
	C440 2,4-Dichlorophenol	0.00	162		N.D.	
	C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
	C450 Naphthalene	0.00	128		N.D.	
	C455 4-Chloroaniline	0.00	127		N.D.	
	C460 Hexachlorobutadiene	0.00	225	11 119	N.D.	
	E655 Caprolactam	11.97		μ 17899	11.03 ng	90
	C465 4-Chloro-3-methylphen		107		N.D.	
	C470 2-Methylnaphthalene	0.00	142		N.D.	
	C510 Hexachlorocyclopentad	0.00	237		N.D.	
	C515 2,4,6-Trichlorophenol	0.00	196		N.D.	
	C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
	C525 2-Chloronaphthalene	0.00			N.D.	
44)	C811 1,1'-Biphenyl C530 2-Nitroaniline	0.00			N.D.	
		0.00			N.D.	
	C540 Acenaphthylene	0.00			N.D.	
	C535 Dimethylphthalate	0.00			N.D.	
	C542 2,6-Dinitrotoluene	0.00			N.D.	
	C550 Acenaphthene	0.00			N.D.	
	C545 3-Nitroaniline	0.00			N.D.	
2T)	C555 2,4-Dinitrophenol	0.00			N.D.	
	C565 Dibenzofuran	0.00			N.D.	
	C570 2,4-Dinitrotoluene	0.00			N.D.	
	C560 4-Nitrophenol	0.00			N.D.	
22)	C590 Fluorene	0.00	166		N.D.	

(#) = qualifier out of range (m) = manual integration Wed Jul 28 08:09:28 2004 Z61771.D CLP.M

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lah Mama	. С ЧТ, Вы££~1.	<u>o</u> Co	ntradt.		D	uplicate		
Hall Marie:	SIL BULLAL	<u>u</u>	illitaci:		_			
Lab Code:	RECNY C	ase No.:	SAS No.:	_ SDG No.:				
Matrix:	(soil/water)	WATER		Lab Sample	e ID: <u>A46</u>	698906		
Sample wt	:/vol:	1055.0 (g/mL) <u>MI</u>	!	Lab File 1	ID: <u>Z6</u>	1775.RR		
Level:	(low/med)	LOW		Date Samp/	/Recv: <u>07</u>	/21/2004	07/23/2	2004
% Moistur	e:	decanted: (Y/N)	N	Date Extra	acted: <u>07</u> /	/26/2004		
Concentrated Extract Volume: 1000 (uL)			Date Analy	Date Analyzed: <u>07/28/2004</u>				
Injection Volume: 2.00 (uL)			Dilution H	Dilution Factor:1.00				
GPC Clear	up: (Y/N)]	N pH: 6.0						
i		•	ı	CONCENTRATION	UNITS:			
• • • • • • • • • • • • • • • • • • •	CAS NO.	COMPOUND		(ug/L or ug/k		<u>. </u>	Q	
	108-95-2	Phenol			5	ט		
<u>.</u>		4-Methylphenol			5	ប		
1	91-20-3	Naphthalene			5	l t ī	. 1	

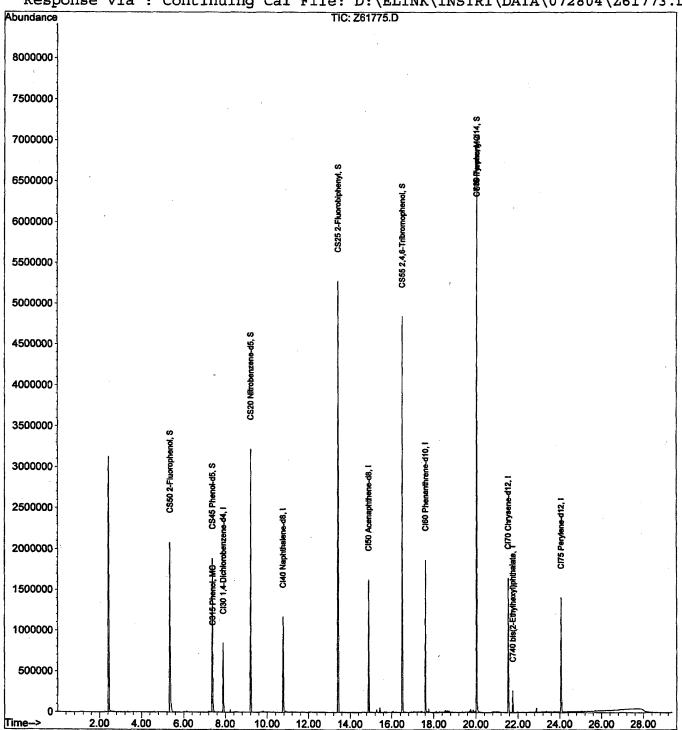
Multiplr: 1.00

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\072804\Z61775.D Acq On

Vial: 3 : 28 Jul 2004 10:29 Operator: PM : A4698906 AW40017666 Inst : I50Z-A

Misc MS Integration Params: rteint.p


Sample

Quant Time: Jul 28 13:45 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004 Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 28 13:45 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

nternal Standards	R.T.	QIon	Response	Conc Un	its Dev(Min Rcv(Ar
1) CI30 1,4-Dichlorobenzene-d	7.90	152	292246	40.00	ng 0.0
22) CI40 Naphthalene-d8	10 77	126	1084811	40.00	69.36 ng -0.0
22) C140 Naphthalene-da	10.77	136	1004011	40.00	74.19
38) CI50 Acenaphthene-d8	14.90	164	615888	40.00	
					73.95
60) CI60 Phenanthrene-d10	17.62	188	1051497	40.00	
					73.83
73) CI70 Chrysene-d12	21.55	240	1002153	40.00	ng -0.0
•					71.34
82) CI75 Perylene-d12	24.07	264	1013571	40.00	ng 0.0
		•			82.27
ystem Monitoring Compounds					
3) CS50 2-Fluorophenol	5.35	112	1301337	145.74	ng 0.0
	ge 21	- 110	Recove	ery =	97.16%
6) CS45 Phenol-d5	7.38	99	1118997	101.07	ng 0.0
Spiked Amount 150.000 Ran	ge 10	- 110	Recove	ery =	6/.386
7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CG20 Nitrobenzene d5	0.00	132	Dogorro	0.00	0 008#
12) CC75 1 2 dighterohorson d	.ge 33	152	Recove n	.T.A =	nct
Spiked Amount 100 000 Par	0.00	- 110	Recove	rv =	0.00%#
23) CS20 Nitrobenzene-d5	9 22	82	1790679	183.37	ng 0.0
Spiked Amount 100.000 Ran	ge 34				
42) CS25 2-Fluorobiphenyl	13.42	172	3177185	176.94	ng 0.0
Spiked Amount 100.000 Ran	ge 43	- 116	Recove	erv =	176.94%#
Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol	16.50	330	950849	295.49	ng 0.0
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	ery =	196.99%#
76) CS30 Terphenyl-d14	20.05	244	3672697	$\frac{1}{203.54}$	ng 0.0
Spiked Amount 150.000 Ran 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	ige 33	- 141	Recove	ery =	203.54%#
arget Compounds					Qvalue
2) C705 n-nitrosodidimethylam	0.00	74		N.D.	
4) E600 Benzaldehyde	0.00	77		N.D.	
5) C325 bis(2-Chloroethyl)eth	0.00			N.D.	
8) C315 Phenol	-7.40		13736	1.10	_
9) C330 2-Chlorophenol	0.00			N.D.	
10) C320 aniline	0.00	93		N.D.	•

^{(#) =} qualifier out of range (m) = manual integration Z61775.D CLP.M Wed Jul 28 13:45:56 2004 PP

MS Integration Params: rteint.p

Quant Time: Jul 28 13:45 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
12)	C340 1,4-Dichlorobenzene	0.00	146	•	N.D.	
14)	C350 1,2-Dichlorobenzene	0.00	146		N.D.	
7 = 1	COAF Demost almahal	0.00	108		N.D.	
16)	C360 bis (2-chloroisopropyl	0.00	45		N.D.	
17)	C355 2-Methylphenol	0.00	108		N.D.	
18)	77117 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.00	105		N.D.	
19)	C375 Hexachloroethane C370 N-Nitroso-di-n-propyl C365 4-Methylphenol C410 Nitrobenzene C415 Isophorone	0.00	117		11.2.	
20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21)	C365 4-Methylphenol	0.00	108		N.D.	
24)	C410 Nitrobenzene	0.00	. 77		N.D.	
25)	C415 Isophorone	0.00	82		N.D.	
20)	C430 Denzoic acid	0.00	122		N.D.	
27)	C420 2-Nitrophenol	0.00	139		N.D.	
28)	C420 2-Nitrophenol C425 2,4-Dimethylphenol C435 bis(2-Chloroethoxy)me	0.00	107		N.D.	
29)	C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	
30)	C440 5'4-DICHIOLOBHEHOL	0.00	T07		N.D.	
31)	C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
	C450 Naphthalene	0.00	128		N.D.	
	C455 4-Chloroaniline	0.00	127		N.D.	
	C460 Hexachlorobutadiene		225		N.D.	
	E655 Caprolactam	0.00	113		N.D.	
	C465 4-Chloro-3-methylphen		107		N.D.	
	C470 2-Methylnaphthalene	0.00	142		N.D.	
	C510 Hexachlorocyclopentad	0.00	237		N.D.	_
40)	C515 2,4,6-Trichlorophenol C520 2,4,5-Trichlorophenol	0.00	196		N.D.	•
41)	C520 2,4,5-Trichiorophenoi	0.00	196		N.D.	
43)	C525 2-Chloronaphthalene	0.00	162		N.D.	
44)	C511 1,1'-Biphenyi	0.00	154		N.D. N.D.	
45)	C811 1,1'-Biphenyl C530 2-Nitroaniline C540 Acenaphthylene	0.00	65 153		N.D.	
40)	C535 Dimethylphthalate	0.00	152 163		N.D.	
40)	C542 2 6-Dinitrotolueno	0.00	165	•	N.D.	
40)	C542 2,6-Dinitrotoluene C550 Acenaphthene C545 3-Nitroaniline	0.00	153		N.D.	
50)	C545 3-Nitrospiline	0.00	138		N.D.	
51)	C555 2,4-Dinitrophenol	0.00	184	,	N.D.	
521	C565 Dibenzofuran	0.00	168		N.D.	
52) 52)	C570 2 4-Dinitrotoluene	0.00	165		N.D.	
54)	C560 4-Nitrophenol	0.00	109		N.D.	
55)	C565 Dibenzofuran C570 2,4-Dinitrotoluene C560 4-Nitrophenol C590 Fluorene	0.00	166		N.D.	

Data File : D:\ELINK\INSTR1\DATA\072804\Z61776.D

Vial: 4

: 28 Jul 2004 11:04 Operator: PM : 150Z-A

Sample Misc

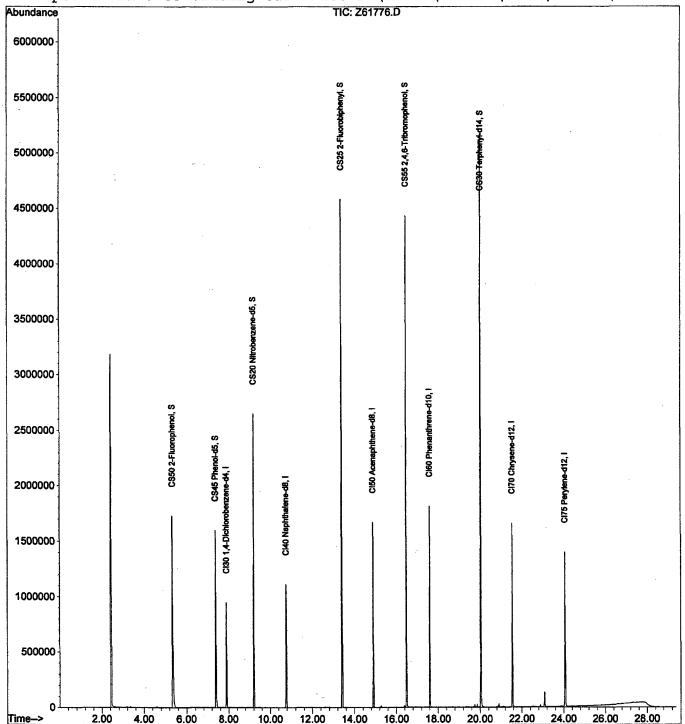
: A4698907 AW40017667

Inst Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Jul 28 13:46 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 28 13:46 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)	
1) CI30 1,4-Dichlorobenzene-d	7.90	152	310877	40.00		
22) CI40 Naphthalene-d8					73.78%	
			2237703		ng -0.02 77.80%	
38) CI50 Acenaphthene-d8	14.90	164	620612	40.00	ng 0.00 74.51%	
60) CI60 Phenanthrene-d10	17.62	188	1021369	40.00	74.51% ng 0.00 71.71%	
73) CI70 Chrysene-d12	21.55	240	969492	40.00	119 ~0.02	
00)					69.01%	
82) CI75 Perylene-d12	24.07	264	1004653	40.00	ng 0.00	
					01.550	
System Monitoring Compounds	E 2E	110	1060000	112 64	n~ 0.00	
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran 6) CS45 Phenol-d5 Spiked Amount 150.000 Ran	ge 21	- 110	Recove	T12.04	75 09%	
6) CS45 Phenol-d5	7 38	99	927371	78.74	ng 0.00	
Spiked Amount 150.000 Ran	ge 10	- 110	Recove	rv =	52.49%	
Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene d5	0.00	132	0	0.00	ng	
Spiked Amount 150.000 Ran	ge 33	- 110	Recove	ry =	0.00%#	
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng	
Spiked Amount 100.000 Ran	ge 16	- 110	Recove	ry =	0.00%#	
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran	9.22	82	1404252	$\bar{1}37.11$	ng 0.00	
Spiked Amount 100.000 Ran	ge 34	- 114	Recove	ry =	137.11%#	
42) CS25 2-Fluorobiphenyl	13.42	172	2540057	140.38	ng 0.00	
Spiked Amount 100.000 Ran	ge 43	- 116	Recove	ry =	140.38%#	
63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Ran	16.50	330	794074	254.05	ng 0.00	
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	ry =	169.37%#	
76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	20.05	244	2926482	167.64	ng 0.02	
Spiked Amount 100.000 Ran	.ge 33	- 141	Recove	ry =	167.64%#	
Target Compounds					Qvalue	
2) C705 n-nitrosodidimethylam	0.00	74		N.D.	•	
4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth	0.00	77		N.D.	,	
5) C325 bis(2-Chloroethyl)eth	0.00	93		N.D.	•	
8) C315 Phenol	0.00	94		N.D.	•	
9) C330 2-Chlorophenol	0.00	128		N.D.	, '	
10) C320 aniline	0.00	93 		и. D.		
(11)						

(#) = qualifier out of range (m) = manual integration

Wed Jul 28 13:46:19 2004

PP

Page 1

Z61776.D CLP.M

MS Integration Params: rteint.p

Quant Time: Jul 28 13:46 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C335 1,3-Dichlorobenzene 12) C340 1,4-Dichlorobenzene 14) C350 1,2-Dichlorobenzene 15) C345 Benzyl alcohol 16) C360 bis(2-chloroisopropyl 17) C355 2-Methylphenol 18) E145 Acetophenone	0.00	146		N.D.	
12) C340 1,4-Dichlorobenzene	0.00	146		N.D.	
14) C350 1,2-Dichlorobenzene	0.00	146		N.D.	
15) C345 Benzyl alcohol	0.00	108		N.D.	
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.	
17) C355 2-Methylphenol	0.00	108		N.D.	
18) E145 Acetophenone	0.00	105		N.D.	
19) C375 Hexachloroethane	0.00	117		N.D.	
20) C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21) C365 4-Methylphenol	0.00	108		N.D.	
18) E145 Acetophenone 19) C375 Hexachloroethane 20) C370 N-Nitroso-di-n-propyl 21) C365 4-Methylphenol 24) C410 Nitrobenzene 25) C415 Isophorone 26) C430 benzoic acid 27) C420 2-Nitrophenol 28) C425 2,4-Dimethylphenol 29) C435 bis(2-Chloroethoxy)me 30) C440 2,4-Dichlorophenol 31) C445 1,2,4-Trichlorobenzen 32) C450 Naphthalene	0.00	77		N.D.	
25) C415 Isophorone	0.00	82		N.D.	
26) C430 benzoic acid	0.00	122		N.D.	•
27) C420 2-Nitrophenol	0.00	139		N.D.	
28) C425 2,4-Dimethylphenol	0.00	107		N.D.	
29) C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	•
30) C440 2,4-Dichlorophenol	0.00	162		N.D.	
31) C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
32) C450 Naphthalene 33) C455 4-Chloroaniline	0.00	128		N.D.	
33) C455 4-Chloroaniline	0.00	127		N.D.	
34) C460 Hexachlorobutadiene	0.00	225		N.D.	
35) E655 Caprolactam 36) C465 4-Chloro-3-methylphen 37) C470 2-Methylnaphthalene	0.00	113		N.D.	
36) C465 4-Chloro-3-methylphen	0.00	107		N.D.	
37) C470 2-Methylnaphthalene	0.00	142		N.D.	
39) C510 Hexachlorocyclopentad	0.00	237		N.D.	
40) C515 2,4,6-Trichlorophenol	0.00	190		и	•
41) C520 2,4,5-Trichlorophenol	0.00	196 162		N.D.	
43) C525 2-Chloronaphthalene	0.00			N.D.	•
44) C811 1,1'-Biphenyl	0.00	154		N.D.	
40) C515 2,4,6-Trichlorophenol 41) C520 2,4,5-Trichlorophenol 43) C525 2-Chloronaphthalene 44) C811 1,1'-Biphenyl 45) C530 2-Nitroaniline 46) C540 Acenaphthylene	0.00	65		N.D.	
46) C540 Acenaphthylene	0.00	152		N.D.	
4/) C535 DimethViphthalate	0.00	163		N.D.	
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.	
49) C550 Acenaphthene	0.00	153		N.D.	
48) C542 2,6-Dinitrotoluene 49) C550 Acenaphthene 50) C545 3-Nitroaniline 51) C555 2,4-Dinitrophenol	0.00	138		N.D.	
51) C555 2,4-Dinitrophenol	0.00	184		N.D.	
52) C565 Dibenzofuran	0.00	168		N.D.	
53) C570 2,4-Dinitrotoluene	0.00	165		N.D.	
54) C560 4-Nitrophenol	0.00	109		N.D.	
51) C555 2,4-Dinitrophenol 52) C565 Dibenzofuran 53) C570 2,4-Dinitrotoluene 54) C560 4-Nitrophenol 55) C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61776.D CLP.M Wed Jul 28 13:46:20 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name:	: STL Buffal	<u>o</u> C	ontract:		ME-12	·
Lab Code:	RECNY C	ase No.:	SAS No.:	SDG No.:		
Matrix:	(soil/water)	WATER		Lab Sample ID:	A469890	8
Sample wt	:/vol:	960.00 (g/mL) M	<u>L</u>	Lab File ID:	<u>Z61777.</u>]	RR
Level:	(low/med)	LOW		Date Samp/Recv	: 07/21/20	004 07/23/2004
% Moistur	æ:	decanted: (Y/N) <u>N</u>	Date Extracted	l: <u>07/26/2</u> 0	004
Concentra	ated Extract	Volume: 1000 (uL)	Date Analyzed:	07/28/20	004
Injection	volume:	2.00 (uL)		Dilution Facto	r: <u>1.00</u>	<u>0</u>
GPC Clear	nup: (Y/N) <u>l</u>	<u>v</u> pH: <u>6.0</u>				
f.,	CAS NO.	COMPOUND		CONCENIRATION UNIT (ug/L or ug/Kg)		Q
<i>!</i>	108-95-2 106-44-5 91-20-3	Phenol 4-Methylpheno Naphthalene	I		5 5 5	U U

Data File : D:\ELINK\INSTR1\DATA\072804\Z61777.D

Vial: 5

: 28 Jul 2004 11:38 Sample : A4698908 AW40017668 Operator: PM : I50Z-A Inst

Misc

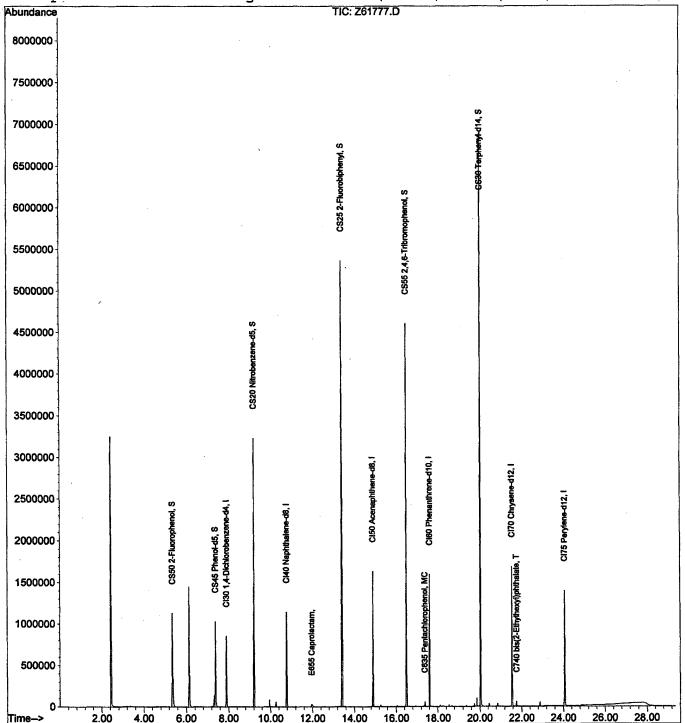
Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES

Quant Time: Jul 28 13:46 2004

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 28 13:46 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul\2004 0

DataAcq Meth : METHOD.M

Z61777.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

•					
Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(Min) Rcv(Ar)
 CI30 1,4-Dichlorobenzene-d CI40 Naphthalene-d8 	7.90	152	298714	40.00	ng 0.02
22) CI40 Naphthalene-d8	10.77	136	1106782	40.00	70.89% ng -0.02 75.69%
38) CI50 Acenaphthene-d8	14.90	164	610795	40.00	ng 0.00
60) CI60 Phenanthrene-d10	17.62	188	984585	40.00	73.34% ng 0.00 69.13%
73) CI70 Chrysene-d12	21.55	240	986065	40.00	ng -0.02 70.19%
82) CI75 Perylene-d12	24.07	264	1016979	40.00	ng 0.00 82.55%
System Monitoring Compounds					
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran	5.35	112	706578	77.42	ng 0.00
Spiked Amount 150.000 Ran	ge 21	- 110	Recove	ry =	51.61%
6) CS45 Phenol-d5	7.38	. 99	608163	53.74	ng 0.00
Spiked Amount 150.000 Ran	ge 10	- 110	Recove	ry =	35.83%
7) CS/U 2-Cniorophenoi-d4	0.00	132	0	0.00	ng
Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran	ge 33	- 110	Recove	ry =	# 0.00%
Spiked Amount 100 000 Page	0.00	152	Dogorro	0.00	ud
23) CS20 Nitrobenzene-d5	9e 10	- 110	170001E	190 ee	0.005#
Spiked Amount 100.000 Ran	2.22	114	1/23313	100.00	119 0.00
42) CS25 2-Fluorohinhanyl	12 /2	170	2105000	IY =	100.00%
Spiked Amount 100 000 Pan	72.72	_ 116	Decore	117.32 TU -	179 422#
42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol	16 50	330	852824	283 N4	ng 0.00
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	rv =	188.69%#
76) CS30 Terphenyl-d14	20.05	244	3600968	202.82	ng 0.02
Spiked Amount 150.000 Ran 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	ge 33	- 141	Recove	ry =	202.82%#
Target Compounds			•		Qvalue
2) C705 n-nitrosodidimethylam	0.00	74		N.D	• *
4) E600 Benzaldehyde	0.00	77		N.D	•
5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol	0.00	93		N.D	•
8) C315 Phenol	0.00	94		N.D	•
9) C330 2-Chlorophenol				N.D	
10) C320 aniline	0.00	93		N.D	•
(#) = qualifier out of range (m)	= man	ual in	tegration		

Wed Jul 28 13:46:43 2004

PP

Page 1

MS Integration Params: rteint.p

Quant Time: Jul 28 13:46 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

Com	pound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C33	5 1,3-Dichlorobenzene	0.00	146		N.D.	
12) C34	0 1,4-Dichlorobenzene	0.00	146		N.D.	
14) C35	0 1,2-Dichlorobenzene	0.00	146	•	N.D.	
	5 Benzyl alcohol	0.00	108		N.D.	
	0 bis(2-chloroisopropyl		45	•	N.D.	
	5 2-Methylphenol	0.00	108		N.D.	
	5 Acetophenone	0.00	105		N.D.	
	5 Hexachloroethane	0.00	117		N.D.	
	0 N-Nitroso-di-n-propyl		70		N.D.	
	5 4-Methylphenol	0.00	108		N.D.	·
	0 Nitrobenzene	0.00	77		N.D.	
	5 Isophorone	0.00	82		N.D.	
	0 benzoic acid	0.00	122		N.D.	
	0 2-Nitrophenol	0.00	139		N.D.	
	5 2,4-Dimethylphenol		107		N.D.	
	5 bis (2-Chloroethoxy) me		93		N.D.	
30) C44	0 2,4-Dichlorophenol	0.00	162		N.D.	
	5 1,2,4-Trichlorobenzen		180		N.D.	
	0 Naphthalene	0.00	128		N.D.	
	5 4-Chloroaniline	0.00	127		N.D.	•
	0 Hexachlorobutadiene	0.00	225	<u>/</u>	N.D.	0.0
	5 Caprolactam	11.97	1/1/3/0	15554	7.28 ng	90
	5 4-Chloro-3-methylphen	0.00	107		N.D.	
	0 2-Methylnaphthalene	0.00	142		N.D.	
	0 Hexachlorocyclopentad	0.00	237		N.D.	
	5 2,4,6-Trichlorophenol	0.00	196	•	N.D.	
	0 2,4,5-Trichlorophenol	0.00			N.D.	
	5 2-Chloronaphthalene	0.00	162		N.D.	
	1 1,1'-Biphenyl	0.00			N.D.	
	0 2-Nitroaniline	0.00			N.D.	•
46) C54	0 Acenaphthylene	0.00			N.D.	
47) C53	5 Dimethylphthalate	0.00			N.D.	
	2 2,6-Dinitrotoluene				N.D.	
	0 Acenaphthene	0.00			N.D.	
50) C54	5 3-Nitroaniline	0.00			N.D.	•
21) C25	5 2,4-Dinitrophenol	0.00			N.D.	
	5 Dibenzofuran	0.00			N.D.	
53) (57	0 2,4-Dinitrotoluene				N.D.	
54) C56	0 4-Nitrophenol	0.00			N.D.	
55) C55	0 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61777.D CLP.M Wed Jul 28 13:46:45 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name	: STL Buffal	<u>.o</u> . C	ontract:		M.	Æ-14	
		ase No.:					
Matrix:	(soil/water)	WATER		Lab Sample	∋ ID: <u>A4</u>	1698909	
Sample w	t/vol:	<u>1060.0</u> (g/mL) <u>M</u>	Ī	Lab File 1	D: <u>Z6</u>	1778.RR	<u> </u>
Level:	(low/med)	LOW		Date Samp/	/Recv: <u>07</u>	//21/2004	07/23/2004
% Moistu	re:	decanted: (Y/N) <u>N</u>	Date Extra	acted: <u>07</u>	//26/2004	
Concentra	ated Extract	Volume: 1000 (uL)	Date Analy	zed: <u>07</u>	//28/2004	
Injection	į Volume:	2.00 (uL)		Dilution F	Factor:	1.00	
GPC Clear	nup: (Y/N)	N pH: 6.0					
	CAS NO.	COMPOUND		CONCENTRATION (ug/L or ug/K		<u>'L</u>	Q .
	108-95-2 106-44-5 91-20-3	Phenol 4-Methylpheno Naphthalene	1		5 5 5	; U	

í

Data File : D:\ELINK\INSTR1\DATA\072804\Z61778.D

Vial: 6
Operator: PM

Acq On : 28 Jul 2004 12:13 Sample : A4698909 AW40017669 Operator: PM Inst : I50Z-A

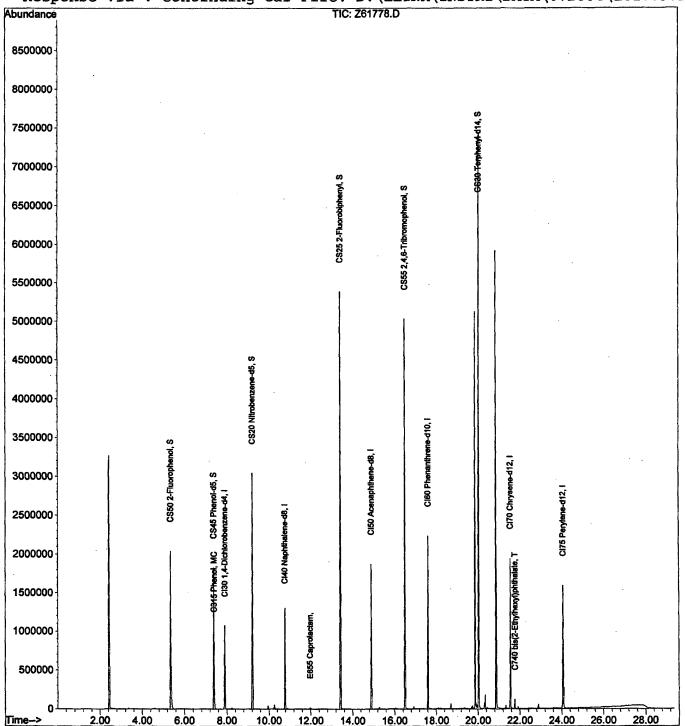
Misc :

Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Jul 28 13:47 2004

Quant Results File: CLP.RES

Method :


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Page 4

Page 1

MS Integration Params: rteint.p Quant Time: Jul 28 13:47 2004

Quant Results File: CLP.RES

Quant Method: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) $U_{\gamma/2}^{s}$ Title: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

Z61778.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

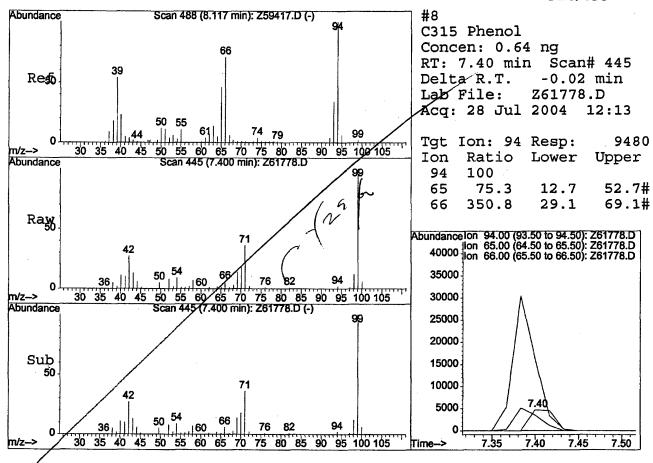
Internal Standards		QIon			nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d				40.00	ng 0.02
22) CI40 Naphthalene-d8	10.77	136	1271372	40.00	82.21% ng -0.02 86.94%
38) CI50 Acenaphthene-d8	14.90	164	710018	40.00	86.94% ng 0.00 85.25%
60) CI60 Phenanthrene-d10	17.62	188	1233630	40.00	85.25% ng 0.00 86.62%
73) CI70 Chrysene-d12	21 55	240	1204850	40 00	86.62% ng -0.02
-					
82) CI75 Perylene-d12	24.07	264	1229701	40.00	ng 0.00 99.82%
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Range 6) CS45 Phenol-d5 Spiked Amount 150.000 Range 7) CS70 2-chlorophenol-d4					
3) CS50 2-Fluorophenol	5.35	112	1277820	120.72	ng 0.00
6) CS45 Phenol-d5	7.38	99	1126010	85.80	ng 0.00
Spiked Amount 150.000 Ranger 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ranger 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ranger 100.0000 Ranger 100.000 Ranger 100.0000 Ranger 100.0000 Ranger 100.0000	ge 10	- 110	Recove	ry =	57.20%
7) CS70 2-chlorophenol-d4	0.00	132	0	0.00	ng
Spiked Amount 150.000 Ran	ge 33	- 110	Recove	ry =	0.00%#
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng
Spiked Amount 100.000 kan	ge 16	- 110	Recove	ry =	0.008#
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran	7.24	_ 11/	T/0000Z	154.54	154 54%#
42) CS25 2-Fluorobiphenyl	12 42	172	3126561	151 04	na 0.00
Spiked Amount 100.000 Ran	ge 43	- 116	Recove	rv =	151.04%#
63) CS55 2,4,6-Tribromophenol	16.50	330	990105	262.26	ng 0.00
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	ry =	174.84%#
Spiked Amount 150.000 Rand 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Rand	20.05	244	3802029	175.26	ng 0.02
Spiked Amount 100.000 Ran	ge 33	- 141	Recove	ry =	175.26%#
Target Compounds					Qvalue
2) C705 n-nitrosodidimethylam	0.00	74		N.D.	i e
4) E600 Benzaldehyde	0.00	77		N.D.	•
5) C325 bis(2-Chloroethyl)eth	0.00	93		N.D.	
8) C315 Phenol	7.40		9480	0.64	
9) C330 2-Chlorophenol 10) C320 aniline	0.00			N.D. N.D.	
TO' C250 dillitie	0.00	93 		. ע. א	
(#) = qualifier out of range (m)	= man	ual in	tegration		•

Wed Jul 28 13:47:08 2004

MS Integration Params: rteint.p

Quant Time: Jul 28 13:47 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)


Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

11) C335 1,3-Dichlorobenzene 0.00 146		Compound	R.T.	QIon	Response	Conc Unit	Qvalue
14) C350 1,2-Dichlorobenzene	11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
14) C350 1,2-Dichlorobenzene	12)	C340 1,4-Dichlorobenzene	0.00	146		N.D.	
16) C360 bis (2-chloroisopropyl 0.00 45 N.D. 177 C355 2-Methylphenol 0.00 108 N.D. 181 B145 Acetophenone 0.00 105 N.D. 199 C375 Hexachloroethane 0.00 117 N.D. 200 C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 211 C365 4-Methylphenol 0.00 108 N.D. 221 C365 4-Methylphenol 0.00 108 N.D. 221 C365 4-Methylphenol 0.00 108 N.D. 222 N.D. 225 C315 Isophorone 0.00 82 N.D. 225 C415 Isophorone 0.00 122 N.D. 226 C430 benzoic acid 0.00 122 N.D. 227 C420 2-Nitrophenol 0.00 139 N.D. 228 C425 2,4-Dimethylphenol 0.00 139 N.D. 229 C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 229 C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 231 C445 1,2,4-Trichlorobenzen 0.00 162 N.D. 321 C445 1,2,4-Trichlorobenzen 0.00 162 N.D. 321 C450 Naphthalene 0.00 127 N.D. 321 C460 Hexachlorobutadiene 0.00 127 N.D. 323 C450 Naphthalene 0.00 127 N.D. 324 C460 Hexachlorobutadiene 0.00 127 N.D. 325 E655 Caprolactam 11.98 113 7406 3.02 ng # 67 N.D. 329 C510 Hexachlorocyclopentad 0.00 127 N.D. 329 C510 Hexachlorocyclopentad 0.00 127 N.D. 329 C510 Hexachlorocyclopentad 0.00 196 N.D. 320 C52 2,4,5-Trichlorophenol 0.00 196 N.D. 321 C520 2,4,5-Trichlorophenol 0.00 196 N.D. 321 C520 2,4,5-Trichlorophenol 0.00 196 N.D. 321 C520 2,4,5-Trichlorophenol 0.00 196 N.D. 321 C520 2,4,5-Trichlorophenol 0.00 154 N.D. 321 C520 2,4,5-Trichlorophenol 0.00 156 N.D. 321 C530 2-Nitroaniline 0.00 152 N.D. 322 C550 Dimethylphthalate 0.00 152 N.D. 323 C550 2-Dinitrotoluene 0.00 165 N.D. 325 C550 2-Dinitrotoluene 0.00 165 N.D. 325 C550 Jimethylphthalate 0.00 165 N.D. 325 C550 Dibenzofuran 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 4-Dinitrotoluene 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0.00 168 N.D. 325 C550 Jimetrophenol 0	14)	C350 1,2-Dichlorobenzene		146	•	N.D.	
17	15)	C345 Benzyl alcohol	0.00	108		N.D.	
18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 193 N.D. 30) C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 31) C445 1,2,4-Trichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobethoxen 0.00 127 N.D. 32) C450 Naphthalene 0.00 127 N.D. 34) C466 Hexachlorocyclopentad 0.00	16)	C360 bis(2-chloroisopropyl	0.00	45		N.D.	
19) C375 Hexachloroethane			0.00	108		N.D.	
20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 127 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 127 N.D. 37) C470 2-Methylnaphthalene 0.00 127 N.D. 39) C510 Hexachlorocyclopentad 0.00 225 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 127 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C555 2-Chloronaphthalene 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 154 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C5542 2,6-Dinitrotoluene 0.00 168 N.D. 50) C545 3-Nitroaniline 0.00 168 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.	18)	E145 Acetophenone	0.00	105		N.D.	
21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 127 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 142 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C535 Dimethylphene 0.00 152 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 165 N.D. 47) C535 Dimethylphthalate 0.00 165 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C550 2,4-Dinitrotoluene 0.00 165 N.D. 56) C550 4-Nitrophenol 0.00 165 N.D. 57) C560 A-Nitrophenol 0.00 165 N.D. 58) C570 2,4-Dinitrotoluene 0.00 165 N.D. 59) C565 Dibenzofuran 0.00 165 N.D. 510 C560 A-Nitrophenol 0.00 165 N.D.			0.00	117		N.D.	
24) C410 Nitrobenzene	20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
25) C415 Isophorone	21)	C365 4-Methylphenol	0.00	108		N.D.	
26) C430 benzoic acid	24)	C410 Nitrobenzene	0.00	77		N.D.	
27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 152 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 168 N.D. 54) C560 4-Nitrophenol 0.00 169 N.D. 54) C560 4-Nitrophenol 0.00 169 N.D.	25)	C415 Isophorone	0.00	82		N.D.	
28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorophenol 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 168 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.			0.00	122		N.D.	
29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C525 2-Chloronaphthalene 0.00 162 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 138 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.	27)	C420 2-Nitrophenol	0.00	139		N.D.	
30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C530 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.	28)	C425 2,4-Dimethylphenol	0.00	107		N.D.	
31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.			0.00	93		N.D.	
32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D.	30)	C440 2,4-Dichlorophenol	0.00	162		N.D.	
33) C455 4-Chloroaniline	31)	C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.98 113 7406 3.02 ng # 67 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 54) C560 4-Nitrophenol	32)	C450 Naphthalene	0.00	128		N.D.	
35) E655 Caprolactam 36) C465 4-Chloro-3-methylphen 37) C470 2-Methylnaphthalene 39) C510 Hexachlorocyclopentad 40) C515 2,4,6-Trichlorophenol 41) C520 2,4,5-Trichlorophenol 42) C811 1,1'-Biphenyl 43) C530 2-Nitroaniline 46) C540 Acenaphthylene 47) C535 Dimethylphthalate 48) C542 2,6-Dinitrotoluene 49) C550 Acenaphthene 50) C545 3-Nitroaniline 50) C545 3-Nitroaniline 50) C555 2,4-Dinitrophenol 51) C555 2,4-Dinitrophenol 52) C565 Dibenzofuran 53) C570 2,4-Dinitrotoluene 54) C560 4-Nitrophenol 55) C565 Q-Acenaphtylene 56) C566 Q-Acenaphtylene 57) C566 Q-Acenaphtylene 58) C570 2,4-Dinitrotoluene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C567 Q-Acenaphtylene 59) C566 Q-Acenaphtylene 59) C567 Q-Acenaphtylene 59) C568 Q-Acenaphtylene 59) C569 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 59) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 50) C560 Q-Acenaphtylene 51) C560 Q-Acenaphtylene 52) C560 Q-Acenaphtylene 53) C570 Q-Acenaphtylene 54) C560 Q-Acenaphtylene 55) C560 Q-Acenaphtylene 56) C560 Q-Acenaphtylene 57) C560 Q-Acenaphtylene 57) C560 Q-Acenaphtylene 57) C560 Q-Acenaphtylene 57) C560 Q-Acenaphtylene 57) C560 Q-Acenaphtyl			0.00	127		N.D.	
36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	34)	C460 Hexachlorobutadiene	0.00		18	N.D.	
37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	35)	E655 Caprolactam	11.98	113	//V 7406	3.02 ng	# 67
39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	36)	C465 4-Chloro-3-methylphen	0.00	107		N.D.	
40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	37)	C470 2-Methylnaphthalene	0.00	142	•	N.D.	
41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	39)	C510 Hexachlorocyclopentad	0.00	237		N.D.	
43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	196		N.D.	
44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	41)	C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	162		N.D.	
46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	154		N.D.	
47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	65		N.D.	
48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	152		N.D.	
49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	47)	C535 Dimethylphthalate	0.00	163		N.D.	
50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	48)	C542 2,6-Dinitrotoluene	0.00	165		N.D.	
51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	153		Ň.D.	
52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.	50)	C545 3-Nitroaniline			•	N.D.	
53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D.			0.00	184		N.D.	
54) C560 4-Nitrophenol 0.00 109 N.D.						N.D.	
54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	53)	C570 2,4-Dinitrotoluene	0.00	165		N.D.	
55) C590 Fluorene 0.00 166 N.D.	54)	C560 4-Nitrophenol	0.00	109		N.D.	
	55)	C590 Fluorene	0.00	166	÷	N.D.	

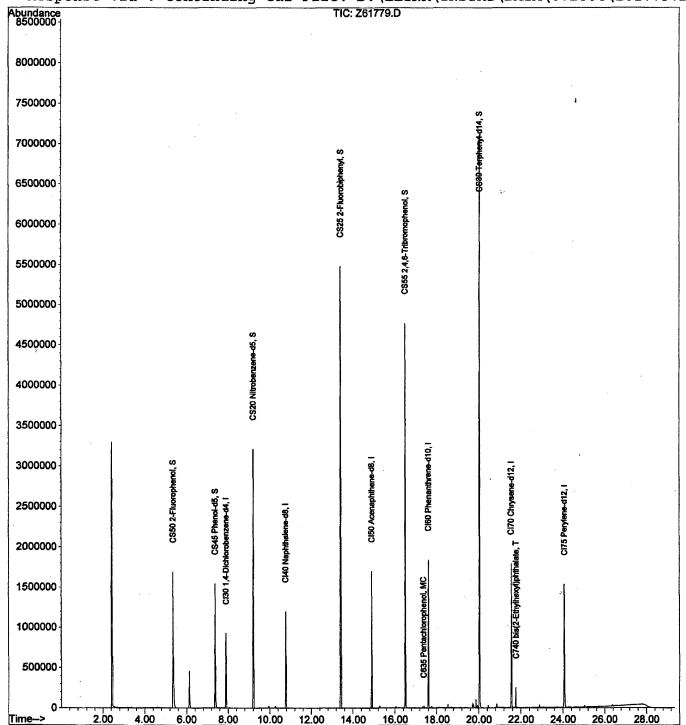
^{(#) =} qualifier out of range (m) = manual integration Z61778.D CLP.M Wed Jul 28 13:47:09 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name	: STL Buffa	alo C	bntract:	<u></u>	ME-18		
Lab Code	: RECNY	Case No.:	SAS No.:	SDG No.:			
Matrix:	(soil/water	r) <u>WATER</u>		Lab Sample II	D: <u>A46989</u>	LO	
Sample w	t/vol:	<u>1000.0</u> (g/mL) M	<u>L</u>	Lab File ID:	<u>z61779</u>	.RR	
Level:	(low/med)	LOW		Date Samp/Rec	ev: <u>07/21/2</u>	2004 07/23/	2004
% Moistu	re:	decanted: (Y/N	ī) <u>N</u>	Date Extracte	ed: <u>07/26/2</u>	2004	
Concentra	ated Extra	ct Volume: 1000 (uL		Date Analyzed	i: <u>07/28/2</u>	2004	
Injection	n Volume:_	2.00 (uL)	•	Dilution Fact	or: <u>1.0</u>	00	
GPC Clean	nup: (Y/N)) <u>N</u> pH: <u>6.0</u>	•				
7	CAS NO.	COMPOUND		CONCENTRATION UNI (ug/L or ug/Kg)		Q	
	106-44-5	Phenol 4-Methylpheno Naphthalene	1		5 5 5	ט ט	

Misc :
MS Integration Params: rteint.p


Quant Time: Jul 28 13:47 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 28 13:47 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	323371	40.00	
22) CI40 Naphthalene-d8	10.77	136	1177182	40.00	$n\sigma = -0.02$
38) CI50 Acenaphthene-d8	14.90	164	633676	40.00	ng 0.00
38) CI50 Acenaphthene-d8 60) CI60 Phenanthrene-d10	17.62	188	1055074	40.00	ng 0.00
73) CI70 Chrysene-d12	21.55	240	1035909	40.00	ng -0.02 73.74%
82) CI75 Perylene-d12	24.07	264	1077165	40.00	ng 0.00 87.44%
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Ra 6) CS45 Phenol-d5 Spiked Amount 150.000 Ra 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ra 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ra 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ra 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ra 63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Ra 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ra	0.00 ange 33 d 0.00 ange 16 9.22 ange 34 13.42 ange 43 16.50 ange 10	- 110 152 - 110 82 - 114 172 - 116 330 - 123	Recove 1794260 Recove 3225893 Recove 917743 Recove	0.00 ery = 0.00 ery = 169.32 ery = 174.61 ery = 284.24	0.00%# ng 0.00%# ng 0.00 169.32%# ng 0.00 174.61%# ng 0.00 189.49%#
Target Compounds 2) C705 n-nitrosodidimethylar 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	n 0.00 0.00 n 0.00 0.00 0.00	74 77 93 94 128 93			

^{(#) =} qualifier out of range (m) = manual integration Z61779.D CLP.M Wed Jul 28 13:47:32 2004 PP

MS Integration Params: rteint.p

Quant Time: Jul 28 13:47 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

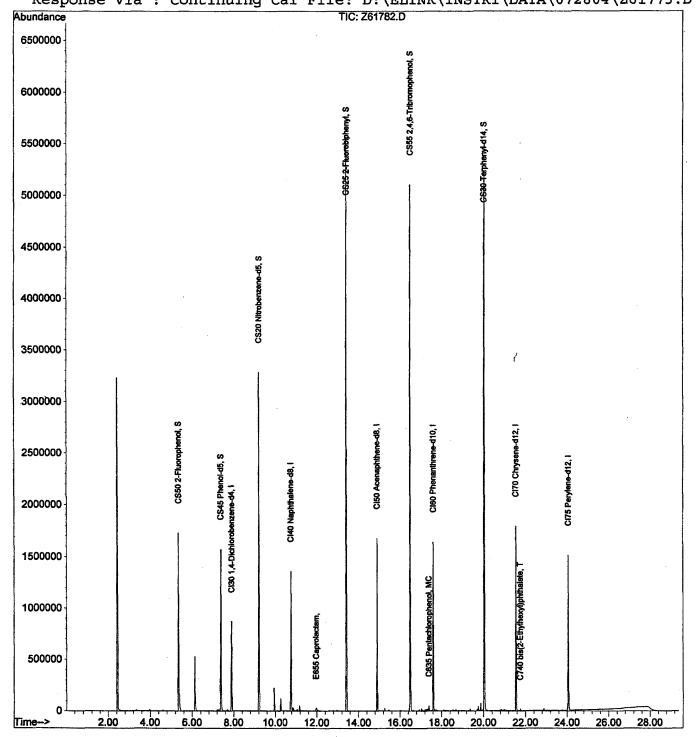
	Compound	R.T.		_	Conc Unit	Qvalue
11)	C335 1 3-Dichlorobenzene	0.00	146		N.D.	
12)	C340 1,4-Dichlorobenzene C350 1,2-Dichlorobenzene C345 Benzyl alcohol C360 bis(2-chloroisopropyl C355 2-Methylphenol E145 Acetophenone	0.00	146		N.D.	
14)	C350 1,2-Dichlorobenzene	0.00	146		N.D.	
15)	C345 Benzyl alcohol	0.00	108		N.D.	
16)	C360 bis(2-chloroisopropyl	0.00	45		N.D.	
17)	C355 2-Methylphenol	0.00	108		N.D.	
18)	E145 Acetophenone	0.00	105		N.D.	
19)	C375 Hexachloroethane	0.00	117		N.D.	•
20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21)	E145 Acetophenone C375 Hexachloroethane C370 N-Nitroso-di-n-propyl C365 4-Methylphenol C410 Nitrobenzene C415 Isophorone C430 benzoic acid C420 2-Nitrophenol C425 2,4-Dimethylphenol C435 bis (2-Chloroethoxy) me C440 2,4-Dichlorophenol C445 1,2,4-Trichlorobenzen C450 Naphthalene C455 4-Chloroaniline C460 Hexachlorobutadiene E655 Caprolactam	0.00	108		N.D.	
24)	C410 Nitrobenzene	0.00	77		N.D.	
25)	C415 Isophorone	0.00	82		N.D.	
26)	C430 benzoic acid	0.00	122		N.D.	
27)	C420 2-Nitrophenol	0.00	139		N.D.	
28)	C425 2,4-Dimethylphenol	0.00	107		N.D.	
29)	C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	
30)	C440 2,4-Dichlorophenol	0.00	162		N.D.	
31)	C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
32)	C450 Naphthalene	0.00	128		N.D.	
33)	C455 4-Chloroaniline	0.00	127		N.D.	
34)	C460 Hexachlorobutadiene	0.00	225		N.D.	
35)	E655 Caprolactam C465 4-Chloro-3-methylphen C470 2-Methylnaphthalene C510 Hexachlorocyclopentad	0.00	113		N.D.	
36)	C465 4-Chloro-3-methylphen	0.00	107		N.D.	
37)	C470 2-Methylnaphthalene	0.00	142		N.D.	
39)	C510 Hexachlorocyclopentad	0.00	237		N.D.	
40)	C515 2,4,6-Trichlorophenol	0.00	196		N.D.	
41)	C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
43)	C525 2-Chloronaphthalene	0.00	162		N.D.	
44)	C811 1,1'-Biphenyl	0.00	154		N.D.	•
45)	C515 2,4,6-Trichlorophenol C520 2,4,5-Trichlorophenol C525 2-Chloronaphthalene C811 1,1'-Biphenyl C530 2-Nitroaniline C540 Acenaphthylene C535 Dimethylphthalate C542 2 6-Dinitrotolyene	0.00	65		N.D.	
46)	C540 Acenaphthylene	0.00	152		N.D.	
47)	C535 Dimethylphthalate	0.00	163		N.D.	
48)	C542 2,6-Dinitrotoluene C550 Acenaphthene C545 3-Nitroaniline C555 2,4-Dinitrophenol	0.00	165		N.D.	
49)	C550 Acenaphthene	0.00	153		N.D.	
50)	C545 3-Nitroaniline	0.00	138		N.D.	
51)	C555 2,4-Dinitrophenol	0.00	184		N.D.	
52)	C565 Dibenzofuran	0.00	168	•	N.D.	
53)	C570 2,4-Dinitrotoluene	0.00	165		N.D.	
54)	C560 4-Nitrophenol	0.00	109		N.D.	
55)	C565 Dibenzofuran C570 2,4-Dinitrotoluene C560 4-Nitrophenol C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration
Z61779.D CLP.M Wed Jul 28 13:47:33 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

				ME-19	
Lab Name: <u>ST</u>	<u>L Buffalo</u>	Contract:		L	
Lab Code: <u>RE</u>	CONY Case No.:	_ SAS No.:	SDG No.:		ù.
Matrix: (soi	l/water) <u>WATER</u>		Lab Sample ID:	A4698911	
Sample wt/vo	ol: <u>1030.0</u> (g/mL	·) <u>M</u> L	Lab File ID:	<u>Z61782.R</u>	R
Level: (lo	w/med) <u>LOW</u>		Date Samp/Recv	: 07/21/200	04 07/23/2004
% Moisture:	decanted: ((Y/N) <u>N</u>	Date Extracted	: 07/26/200	<u>04</u>
Concentrated	l Extract Volume: 1000) (uL)	Date Analyzed:	07/28/200	<u>04</u>
Injection Vo	olume: 2.00 (uL)		Dilution Facto	r: <u>1.00</u>	
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>6.0</u>	•			
CAS	S NO. COMPOUND		CONCENTRATION UNIT	_	Q
108 106	3-95-2Phenol 5-44-54-Methylph 20-3Naphthalen	nenol			บ บ บ


MS Integration Params: rteint.p

Quant Time: Jul 29 7:30 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Page 1

Quantitation Report Data File: D:\ELINK\INSTR1\DATA\072804\Z61782.D Vial: 10 Acq On : 28 Jul 2004 14:31 Operator: PM Inst : I50Z-A Sample : A4698911 AW40017673 Misc Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: Jul 29 7:30 2004 Quant Results File: CLP.RES Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Title : CLP BNA Calibration Last Update : Wed Jul 28 09:52:13 2004 Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 26 Jul 2004 DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	311173	40.00	ng 0.02
22) CI40 Naphthalene-d8	10.77	136	1133225	40.00	73.85% ng -0.02 77.50%
38) CI50 Acenaphthene-d8	14.90	164	635317	40.00	
60) CI60 Phenanthrene-d10	17.62	188	1059250	40.00	
73) CI70 Chrysene-d12	21.55	240	1027831	40.00	ng -0.02 73.16%
82) CI75 Perylene-d12	24.07	264	1092777	40.00	
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol	ge 21 7.38 ge 10 0.00 ge 33 0.00 ge 16 9.22 ge 34 13.42 ge 43 16.50	- 110 99 - 110 132 - 110 152 - 110 82 - 114 172 - 116 330 - 123	Recove 910754 Recove 0 Recove 1768021 Recove 3126657 Recove 931987 Recove	ry = 77.26 ry = 0.00 ry = 0.00 ry = 173.32 ry = 168.81 ry = 287.51	ng 0.00 51.51% ng 0.00%# ng 0.00 173.32%# ng 0.00 168.81%# ng 0.00 191.67%#
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	0.00	77 93 94		N.D. N.D. N.D. N.D. N.D.	

(#) = qualifier out of range (m) = manual integration

Thu Jul 29 07:30:35 2004

Z61782.D CLP.M

MS Integration Params: rteint.p

Quant Time: Jul 29 7:30 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

11) C335 1,3-Dichlorobenzene 0.00 146 N.D. 12) C340 1,4-Dichlorobenzene 0.00 146 N.D. 14) C350 1,2-Dichlorobenzene 0.00 146 N.D. 15) C345 Benzyl alcohol 0.00 108 N.D. 16) C360 bis (2-chloroisopropyl 0.00 108 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18] E145 Acetophenone 0.00 105 N.D. 19] C375 Hexachloroethane 0.00 117 N.D. 19] C375 Hexachloroethane 0.00 117 N.D. 10] C375 Hexachloroethane 0.00 117 N.D. 10] C375 Hexachloroethane 0.00 108 N.D. 12] C365 A-Methylphenol 0.00 108 N.D. 12] C365 A-Methylphenol 0.00 108 N.D. 12] C361 Saphorone 0.00 82 N.D. 12] C410 Nitrobenzene 0.00 77 N.D. 12] C420 2-Nitrophenol 0.00 139 N.D. 12] C420 2-Nitrophenol 0.00 139 N.D. 13] C445 1,2,4-Trichlorophenol 0.00 162 N.D. 13] C445 1,2,4-Trichlorophenol 0.00 162 N.D. 13] C445 1,2,4-Trichlorobenzen 0.00 127 N.D. 13] C445 1,2,4-Trichlorophenol 0.00 127 N.D. 13] C450 4-Chloroaniline 0.00 127 N.D. 14] C520 2-4,5-Trichlorophenol 0.00 127 N.D. 15] C555 C3-Prolactam 11.97 116 12976 5.93 ng 81 10] C510 4-5-Trichlorophenol 0.00 162 N.D. 10] C510 2-4,5-Trichlorophenol 0.00 162 N.D. 11] C520 2-4,5-Trichlorophenol 0.00 154 N.D. 14] C520 2-Nitroaniline 0.00 154 N.D. 15] C550 2-Nitroaniline 0.00 163 N.D. 16] C540 Acenaphthylene 0.00 165 N.D. 17] C550 Acenaphthylene 0.00 165 N.D. 18] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 Acenaphthylene 0.00 165 N.D. 19] C550 A	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
12 C340 1,4-Dichlorobenzene	11) C335 1,3-Dichlorobenzene	0.00	146		N.D.	
14) C350 1,2-Dichlorobenzene			146		N.D.	
16) C360 bis(2-chloroisopropyl 0.00 45 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 139 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C450 Naphthalene 0.00 128 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.97 110 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C550 2-Nitroaniline 0.00 162 N.D. 39) C550 Acenaphthylene 0.00 163 N.D. 30 C540 Acenaphthylene 0.00 163 N.D. 30 C540 Acenaphthylene 0.00 163 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C556 Dibenzofuran 0.00 168 N.D. 30 C556 Dibenzofuran 0.00 168 N.D. 30 C556 C550 Fluorene 0.00 165 N.D. 30 C556 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0			146		N.D.	
16) C360 bis(2-chloroisopropyl 0.00 45 N.D. 17) C355 2-Methylphenol 0.00 108 N.D. 18) E145 Acetophenone 0.00 105 N.D. 19) C375 Hexachloroethane 0.00 117 N.D. 20) C370 N-Nitroso-di-n-propyl 0.00 70 N.D. 21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 139 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C450 Naphthalene 0.00 128 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.97 110 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 39) C510 Hexachlorocyclopentad 0.00 196 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C525 2-Chloronaphthalene 0.00 162 N.D. 39) C550 2-Nitroaniline 0.00 162 N.D. 39) C550 Acenaphthylene 0.00 163 N.D. 30 C540 Acenaphthylene 0.00 163 N.D. 30 C540 Acenaphthylene 0.00 163 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C555 2,4-Dinitrotoluene 0.00 168 N.D. 30 C556 Dibenzofuran 0.00 168 N.D. 30 C556 Dibenzofuran 0.00 168 N.D. 30 C556 C550 Fluorene 0.00 165 N.D. 30 C556 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 165 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0.00 166 N.D. 30 C550 Fluorene 0	15) C345 Benzyl alcohol	0.00	108		N.D.	
17 C355 2-Methylphenol	16) C360 bis(2-chloroisopropyl	0.00	45		N.D.	
19) C375 Hexachloroethane			108		N.D.	
19) C375 Hexachloroethane	18) E145 Acetophenone	0.00	105		N.D.	
21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy) me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.97 114 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C530 2-Nitroaniline 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 154 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 165 N.D. 46) C540 Acenaphthylene 0.00 153 N.D. 47) C535 Dimethylphthalate 0.00 165 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 184 N.D. 50) C545 3-Nitroaniline 0.00 168 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 168 N.D. 54) C560 4-Nitrophenol 0.00 169 N.D. 55) C590 Fluorene 0.00 169 N.D.			117		N.D.	
21) C365 4-Methylphenol 0.00 108 N.D. 24) C410 Nitrobenzene 0.00 77 N.D. 25) C415 Isophorone 0.00 82 N.D. 26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy) me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.97 114 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C530 2-Nitroaniline 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 154 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 165 N.D. 46) C540 Acenaphthylene 0.00 153 N.D. 47) C535 Dimethylphthalate 0.00 165 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 184 N.D. 50) C545 3-Nitroaniline 0.00 168 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 168 N.D. 54) C560 4-Nitrophenol 0.00 169 N.D. 55) C590 Fluorene 0.00 169 N.D.	20) C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
25) C415 Isophorone	21) C365 4-Methylphenol	0.00	108			
26) C430 benzoic acid 0.00 122 N.D. 27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 127 N.D. 35) E655 Caprolactam 11.97 118 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C530 2-Nitroaniline 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C566 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C590 Fluorene 0.00 165 N.D.	24) C410 Nitrobenzene	0.00				
27) C420 2-Nitrophenol 0.00 139 N.D. 28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 118 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C811 1,1'-Biphenyl 0.00 154 N.D. 43) C525 2-Chloronaphthalene 0.00 152 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 155 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C555 2,4-Dinitrotoluene 0.00 184 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	25) C415 Isophorone		82			
28) C425 2,4-Dimethylphenol 0.00 107 N.D. 29) C435 bis (2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 116 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C525 2-Chloronaphthalene 0.00 162 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 188 N.D. 51) C555 2,4-Dinitrotoluene 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 165 N.D.	26) C430 benzoic acid					
29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 115 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 109 N.D.	27) C420 2-Nitrophenol	0.00				
29) C435 bis(2-Chloroethoxy)me 0.00 93 N.D. 30) C440 2,4-Dichlorophenol 0.00 162 N.D. 31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 115 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 163 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 109 N.D.	28) C425 2,4-Dimethylphenol	0.00				
31) C445 1,2,4-Trichlorobenzen 0.00 180 N.D. 32) C450 Naphthalene 0.00 128 N.D. 33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 118 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 42) C525 2-Chloronaphthalene 0.00 162 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C590 Fluorene 0.00 109 N.D.	29) C435 bis(2-Chloroethoxy)me	0.00				
32) C450 Naphthalene 33) C455 4-Chloroaniline 34) C460 Hexachlorobutadiene 35) E655 Caprolactam 36) C465 4-Chloro-3-methylphen 37) C470 2-Methylnaphthalene 39) C510 Hexachlorocyclopentad 39) C510 Hexachlorocyclopentad 30) C525 2-4,6-Trichlorophenol 31) C520 2,4,5-Trichlorophenol 32) C525 2-Chloronaphthalene 33) C525 2-Chloronaphthalene 34) C525 2-Chloronaphthalene 35) C530 2-Nitroaniline 36) C540 Acenaphthylene 37) C535 Dimethylphthalate 38) C540 Acenaphthylene 39) C510 Hexachlorocyclopentad 30,000 196 31) N.D. 32) N.D. 33) C525 2-Chloronaphthalene 30,000 156 31) N.D. 32) N.D. 33) C525 2-Chloronaphthalene 30,000 154 31) N.D. 32) C530 2-Nitroaniline 30,000 152 31) N.D. 32) N.D. 33) C555 Dimethylphthalate 30,000 163 31) N.D. 34) C555 Acenaphthene 30,000 165 31) N.D. 32) C555 2,4-Dinitrotoluene 30,000 184 31) N.D. 32) C555 Dibenzofuran 30,000 168 31) N.D. 32) C556 Dibenzofuran 30,000 168 31) N.D. 33) C570 2,4-Dinitrotoluene 30,000 168 31) N.D. 32) C560 4-Nitrophenol 310 0.00 169 32) N.D. 33) C570 2,4-Dinitrotoluene 30,000 169 31) N.D. 32) C560 4-Nitrophenol 310 0.000 109 32) N.D. 32) N.D. 33) C570 2,4-Dinitrotoluene 30,000 109 31) N.D. 32) C560 Fluorene						
33) C455 4-Chloroaniline 0.00 127 N.D. 34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 118 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 152 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 184 N.D. 51) C555 2,4-Dinitrophenol 0.00 168 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C						
34) C460 Hexachlorobutadiene 0.00 225 N.D. 35) E655 Caprolactam 11.97 11.8 12976 5.93 ng 81 36) C465 4-Chloro-3-methylphen 0.00 107 N.D. N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. N.D. N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D.		0.00		<i></i>		
35) E655 Caprolactam 36) C465 4-Chloro-3-methylphen 37) C470 2-Methylnaphthalene 39) C510 Hexachlorocyclopentad 40) C515 2,4,6-Trichlorophenol 41) C520 2,4,5-Trichlorophenol 43) C525 2-Chloronaphthalene 44) C811 1,1'-Biphenyl 45) C530 2-Nitroaniline 46) C540 Acenaphthylene 47) C535 Dimethylphthalate 48) C542 2,6-Dinitrotoluene 49) C550 Acenaphthene 50) C545 3-Nitroaniline 51) C555 2,4-Dinitrophenol 52) C565 Dibenzofuran 53) C570 2,4-Dinitrotoluene 54) C560 4-Nitrophenol 55) C590 Fluorene 50.00 166 50.00 167 50.00 168 50.00 169 50.00 166						
36) C465 4-Chloro-3-methylphen 0.00 107 N.D. 37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
37) C470 2-Methylnaphthalene 0.00 142 N.D. 39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 165 N.D. 55) C590 Fluorene 0.00 166 N.D.				12976		81
39) C510 Hexachlorocyclopentad 0.00 237 N.D. 40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
40) C515 2,4,6-Trichlorophenol 0.00 196 N.D. 41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
41) C520 2,4,5-Trichlorophenol 0.00 196 N.D. 43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
43) C525 2-Chloronaphthalene 0.00 162 N.D. 44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
44) C811 1,1'-Biphenyl 0.00 154 N.D. 45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
45) C530 2-Nitroaniline 0.00 65 N.D. 46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
46) C540 Acenaphthylene 0.00 152 N.D. 47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
47) C535 Dimethylphthalate 0.00 163 N.D. 48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.						
48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	46) C540 Acenaphthylene					
48) C542 2,6-Dinitrotoluene 0.00 165 N.D. 49) C550 Acenaphthene 0.00 153 N.D. 50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	47) C535 Dimethylphthalate	0.00				
50) C545 3-Nitroaniline 0.00 138 N.D. 51) C555 2,4-Dinitrophenol 0.00 184 N.D. 52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	48) C542 2,6-Dinitrotoluene					
52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	49) C550 Acenaphthene					
52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	50) C545 3-Nitroaniline	0.00	138			
52) C565 Dibenzofuran 0.00 168 N.D. 53) C570 2,4-Dinitrotoluene 0.00 165 N.D. 54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	51) C555 2,4-Dinitrophenol	0.00	184			
54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	52) C565 Dibenzofuran	0.00	168			
54) C560 4-Nitrophenol 0.00 109 N.D. 55) C590 Fluorene 0.00 166 N.D.	53) C570 2,4-Dinitrotoluene					
55) C590 Fluorene 0.00 166 N.D.	54) C560 4-Nitrophenol					
	55) C590 Fluorene				N.D.	

ASP 2000 - MEIHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

				•	MW-	2	
Lab Name: SIL	<u>Buffalo</u>	Cor	ntract:		L		
Lab Code: REC	<u>NY</u> Case N	ю.:	SAS No.:	_ SDG No.: _	· ·		•
Matrix: (soil	/water) <u>WATE</u>	<u>R</u>		Lab Sample	ID: <u>A469</u>	8912	
Sample wt/vol	: 1055	<u>.0</u> (g/mL) <u>ML</u>		Lab File II	D: <u>Z617</u>	83.RR	•
Level: (low	r/med) <u>LOW</u>			Date Samp/I	Recv: <u>07/2</u>	1/2004 07/	23/2004
% Moisture: _	deca	nted: (Y/N)	N	Date Extra	cted: <u>07/2</u>	6/2004	
Concentrated	Extract Volu	me: <u>1000</u> (uL)		Date Analyz	zed: <u>07/2</u>	8/2004	
Injection Vol	ume: 2.00	(uL)		Dilution Fa	actor:	1.00	
CPC Cleanup:	(Y/N) <u>N</u> p	H: <u>6.0</u>		. •			
CAS	NO. CC	MPOUND .	· · ·	CONCENIRATION (ug/L or ug/Kg		_ Q	
106-		enol Methylphenol phthalene			5 5 5	U U U	

€

I:

Data File : D:\ELINK\INSTR1\DATA\072804\Z61783.D

Vial: 11 Operator: PM

Sample : A4698912 AW40017674

Inst : I50Z-A Multiplr: 1.00

Misc

Acq On

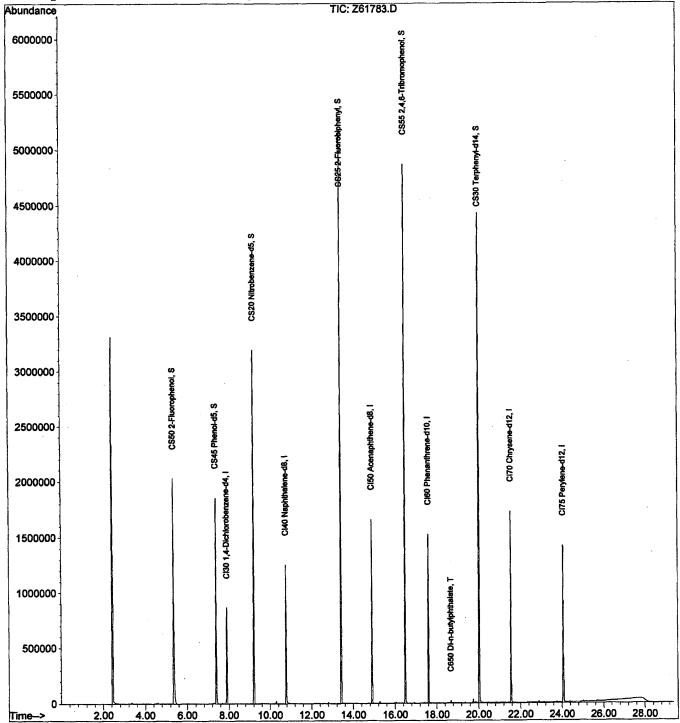
: 28 Jul 2004 15:05

MS Integration Params: rteint.p

Quant Time: Jul 29 7:30 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Data File : D:\ELINK\INSTR1\DATA\072804\Z61783.D Vial: 11 Operator: PM Acg On : 28 Jul 2004 15:05 Inst : I50Z-A Sample : A4698912 AW40017674 Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Jul 29 7:30 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Title : CLP BNA Calibration

09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon		Conc Un	its Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-	d 7.90	152			ng 0.02 72.33%
22) CI40 Naphthalene-d8	10.77	136	1124026	40.00	ng -0.02 76.87%
38) CI50 Acenaphthene-d8	14.90	164	608347	40.00	
60) CI60 Phenanthrene-d10	17.62	188	983735	40.00	
73) CI70 Chrysene-d12	21.55	240	971197	40.00	ng -0.02 69.13%
82) CI75 Perylene-d12	24.07	264	1039170	40.00	
	Range 21 7.38 Range 10 0.00 Range 33 d 0.00 Range 16 9.22 Range 34 13.42 Range 43 L 16.50	- 110 99 - 110 132 - 110 152 - 110 82 - 114 172 - 116 330 - 123	Recove 1097742 Recove 0 Recove 1725802 Recove 2931949 Recove 947729 Recove	95.08 95.08 ery = 0.00 ery = 0.00 ery = 170.56 ery = 165.31 ery = 314.81	90.95% ng 0.00 63.39% ng 0.00%# ng 0.00 170.56%# ng 0.00 165.31%# ng 0.00 209.87%#
Target Compounds 2) C705 n-nitrosodidimethyla 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)et 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	am 0.00 0.00 ch 0.00 0.00 0.00	74 77 93 94 128 93			Qvalue

^{(#) =} qualifier out of range (m) = manual integration Thu Jul 29 07:30:57 2004 PP Z61783.D CLP.M

Vial: 11 Data File : D:\ELINK\INSTR1\DATA\072804\Z61783.D Acq On : 28 Jul 2004 15:05 Operator: PM : A4698912 AW40017674 Inst : I50Z-A Sample Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jul 29 7:30 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

	Compound				Qvalue
11)	C335 1,3-Dichlorobenzene C340 1,4-Dichlorobenzene C350 1,2-Dichlorobenzene C345 Benzyl alcohol C360 bis(2-chloroisopropyl C355 2-Metalylphenol	0.00	146	 N.D.	
12)	C340 1,4-Dichlorobenzene	0.00	146	N.D.	
14)	C350 1,2-Dichlorobenzene	0.00	146	N.D.	
15)	C345 Benzyl alcohol C360 bis(2-chloroisopropyl C355 2-Methylphenol E145 Acetophenone	0.00	108	N.D.	
16)	C360 bis(2-chloroisopropyl	0.00	45	N.D.	
17)	C355 2-Methylphenol	0.00	108	N.D.	
ואו	KI45 ACETODDEDODE	(1) (1)(1)	105	м.р.	
19)	C375 Hexachloroethane C370 N-Nitroso-di-n-propyl C365 4-Methylphenol C410 Nitrobenzene C415 Isophorone C430 benzoic acid	0.00	117	N.D.	
20)	C370 N-Nitroso-di-n-propyl	0.00	70	N.D.	
21)	C365 4-Methylphenol	0.00	108	N.D.	
24)	C410 Nitrobenzene	0.00	77	N.D.	
25)	C415 Isophorone	0.00	82	N.D.	
26)	C430 benzoic acid	0.00	122	N.D.	
27)	C420 2-Nitrophenol	0.00	139	N.D.	
28)	C425 2,4-Dimethylphenol	0.00	107	N.D.	
29)	C435 bis(2-Chloroethoxy)me	0.00	93	N.D.	
30)	C430 benzoic acid C420 2-Nitrophenol C425 2,4-Dimethylphenol C435 bis(2-Chloroethoxy)me C440 2,4-Dichlorophenol C445 1,2,4-Trichlorobenzen C450 Naphthalene C455 4-Chloroaniline	0.00	162	N.D.	
31)	C445 1,2,4-Trichlorobenzen	0.00	180	N.D.	
32)	C450 Naphthalene	0.00	128	N.D.	
33)	C455 4-Chloroaniline	0.00	127	N.D.	
34)	C460 Rexachioroducadiene	0.00	225	N.D.	
35)	E655 Caprolactam C465 4-Chloro-3-methylphen	0.00	113	N.D.	
36)	C465 4-Chloro-3-methylphen	0.00	107	N.D.	
371	C470 2-Methylnanhthalene	በ በበ	142	N.D.	
39)	C510 Hexachlorocyclopentad	0.00	237	N.D.	
40)	C515 2,4,6-Trichlorophenol	0.00	196	N.D.	
41)	C520 2,4,5-Trichlorophenol	0.00	196	N.D.	
43)	C525 2-Chloronaphthalene	0.00	162	N.D.	•
44)	C811 1,1'-Biphenyl	0.00	154	N.D.	
45)	C510 Hexachlorocyclopentad C515 2,4,6-Trichlorophenol C520 2,4,5-Trichlorophenol C525 2-Chloronaphthalene C811 1,1'-Biphenyl C530 2-Nitroaniline	0.00	65	N.D.	
46)	C540 Acenaphthylene	0.00	152	N.D.	
47)	C535 Dimethylphthalate	0.00	163	N.D.	
48)	C542 2,6-Dinitrotoluene	0.00	165	N.D.	
49)	C550 Acenaphthene	0.00	153	N.D.	
50)	C545 3-Nitroaniline	0.00	138	N.D.	
51)	C555 2,4-Dinitrophenol	0.00	184 168	N.D.	
52)	C530 2-Nitroaniline C540 Acenaphthylene C535 Dimethylphthalate C542 2,6-Dinitrotoluene C550 Acenaphthene C545 3-Nitroaniline C555 2,4-Dinitrophenol C565 Dibenzofuran	0.00	168	N.D.	
-53)	C5/0 2,4-Dinitrotoluene	0.00	165	N.D.	
54)	C560 4-Nitrophenol	0.00	109	N.D.	
55)	C570 2,4-Dinitrotoluene C560 4-Nitrophenol C590 Fluorene	0.00	166 	 N.D.	
7115					

^{(#) =} qualifier out of range (m) = manual integration Z61783.D CLP.M Thu Jul 29 07:30:59 2004 PP Z61783.D CLP.M

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lah Name	ে পোন Buffal	<u>Lo</u> Co	ntract.		MW-20		
TALL TAUTE	· Din naria	<u></u>	iiciacci				
Lab Code	: RECNY	Case No.:	SAS No.:	_ SDG No.: _			
Matrix:	(soil/water)	WATER		Lab Sample	ID: <u>A469891</u>	3	
Sample w	t/vol:	<u>1045.0</u> (g/mL) <u>ML</u>	· !	Lab File ID	: <u>Z61784</u> .]	RR	
Level:	(low/med)	LOW	~	Date Samp/R	ecv: <u>07/21/2</u>	004 07/23/20	004
* Moistu	re:	decanted: (Y/N)	N	Date Extrac	ted: <u>07/26/2</u>	004	
Concentr	ated Extract	: Volume: 1000 (uL)		Date Analyz	ed: <u>07/28/2</u> 0	004	
Injectio	n Volume:	<u>2.00</u> (പ്L)		Dilution Fac	ctor:1.00	<u>o</u> .	
GPC Clea	nup: (Y/N)	N pH: <u>6.0</u>					
	CAS NO.	COMPOUND		CONCENTRATION U (ug/L or ug/Kg)		Q	
ž.		Phenol 4-Methylphenol Naphthalene			5 5 5	U U U	

Data File : D:\ELINK\INSTR1\DATA\072804\Z61784.D

Vial: 12 : 28 Jul 2004 15:39 Operator: PM

Misc

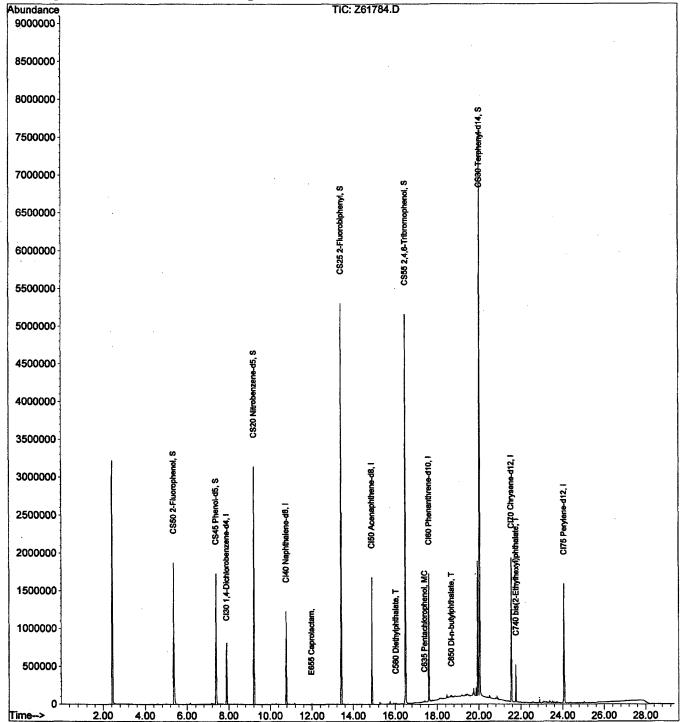
Sample : A4698913 AW40017675

: I50Z-A Inst Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES

Quant Time: Jul 29 7:31 2004


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Method Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 29 7:31 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Un	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.88	152	295730	40.00	ng 0.00
22) CI40 Naphthalene-d8	10.77	136	1089402	40.00	70.18% ng -0.02 74.50%
38) CI50 Acenaphthene-d8	14.90	164	633039	40.00	74.50% ng 0.00 76.01%
60) CI60 Phenanthrene-d10	17.62	188	1059728	40.00	ng 0.00 74.41%
73) CI70 Chrysene-d12	21.55	240	1073586		
82) CI75 Perylene-d12	24.07	264	1203077	40.00	
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran	5.35 nge 21	112 - 110	1183583 Recove	130.99 ery =	ng 0.00 87.33%
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran	7 20	99	1042717	93.07	na 0.00
Spiked Amount 150.000 Rar	ige 33	- 110	Recove	ery =	0.00%#
13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Rar	0.00 nge 16	152 - 110	0 Recove	0.00 ery =	ng 0.00%#
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Rar	9.22	82	1716674	175 <i>.</i> 05	ng 0.00
Spiked Amount 100.000 Rar	nge 34	- 114 172	Recove	ery =	ng 0.00
42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Rar	nge 43	- 116	Recove	ery =	166.51%#
63) CS55 2,4,6-Tribromophenol	16.50	330	1001927	308.95	ng 0.00
Spiked Amount 150.000 Rar	nge 10	- 123	Recove	ery =	205.97%#
76) CS30 Terphenyl-d14 Spiked Amount 100.000 Rar	20.05 19e 33	244 - 141	3894812 Recove	201.48 ery =	201.48%#
<u> </u>					Orralisa
Target Compounds 2) C705 n-nitrosodidimethylam	0.00	74		N.D	
4) E600 Benzaldehyde	0.00	77		N.D	. ,
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol	0.00	93		N.D	•
8) C315 Phenol	0.00	94		N.D	•
9) C330 2-Chlorophenol 10) C320 aniline	0.00	128		N.D N.D	•

^{(#) =} qualifier out of range (m) = manual integration Z61784.D CLP.M Thu Jul 29 07:31:22 2004 PP

MS Integration Params: rteint.p

Quant Time: Jul 29 7:31 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

	Compound R.T. QIon Response Conc Unit				Qva]	ue	
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.		
	C340 1,4-Dichlorobenzene	0.00			N.D.		
	C350 1,2-Dichlorobenzene	0.00			N.D.		
	C345 Benzyl alcohol	0.00			N.D.		
16)	C360 bis(2-chloroisopropyl	0.00			N.D.		
	C355 2-Methylphenol	0.00	108		N.D.		
	E145 Acetophenone	0.00			N.D.		
	C375 Hexachloroethane	0.00	117		N.D.		
20)	C370 N-Nitroso-di-n-propyl	0.00	70		N.D.		
21)	C365 4-Methylphenol	0.00	108		N.D.		
24)	C410 Nitrobenzene	0.00	77		N.D.		
25)	C415 Isophorone	0.00	82		N.D.		
26)	C430 benzoic acid	0.00	122		N.D.		
27)	C420 2-Nitrophenol	0.00			N.D.		
		0.00	107		N.D.		
	C435 bis(2-Chloroethoxy)me		93		N.D.		
	C440 2,4-Dichlorophenol	0.00			N.D.		
	C445 1,2,4-Trichlorobenzen				N.D.		
	C450 Naphthalene	0.00	128		N.D.		
	C455 4-Chloroaniline	0.00			N.D.		
	C460 Hexachlorobutadiene	0.00	225	1,00	N.D.		
	E655 Caprolactam	11.98		/V1507	0.72 ng	#	1
	C465 4-Chloro-3-methylphen			(N.D.		
	C470 2-Methylnaphthalene	0.00			N.D.		
	C510 Hexachlorocyclopentad	0.00	237		N.D.		
	C515 2,4,6-Trichlorophenol				N.D.		
	C520 2,4,5-Trichlorophenol	0.00			N.D.		
43)	C525 2-Chloronaphthalene	0.00			N.D.		
44)	C811 1,1'-Biphenyl	0.00			N.D.		
45)	C525 2-Chloronaphthalene C811 1,1'-Biphenyl C530 2-Nitroaniline C540 Acenaphthylene	0.00			N.D.		
46)	C540 Acenaphthylene	0.00			N.D.		
47)	C535 Dimethylphthalate				N.D.		٠.
48)	C542 2,6-Dinitrotoluene	0.00			N.D.		
	C550 Acenaphthene	0.00			N.D.		
	C545 3-Nitroaniline	0.00			N.D.		
51)	C555 2,4-Dinitrophenol				N.D.		
	C565 Dibenzofuran	0.00		÷	N.D.		
	C570 2,4-Dinitrotoluene	0.00		· ·	N.D.		
	C560 4-Nitrophenol	0.00			N.D.		
55)	C590 Fluorene	0.00	166		N.D.		

^{(#) =} qualifier out of range (m) = manual integration Z61784.D CLP.M Thu Jul 29 07:31:24 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

iab Name:	: <u>STL Buf</u> fal	<u>o</u> Cc	ontract:		MW-6	
		ase No.:				
Matrix:	(soil/water)	WATER		Lab Sample	ID: <u>A469891</u>	4
Sample wt	:/vol:	970.00 (g/mL) MI	į	Lab File II): <u>Z61785.</u>	RR
Level:	(low/med)	LOW	•	Date Samp/R	ecv: <u>07/21/2</u>	004 07/23/2004
% Moistur	æ:	decanted: (Y/N)	N	Date Extrac	ted: <u>07/26/2</u>	004
Concentra	ated Extract	Volume: 1000 (uL)		Date Analyz	æd: <u>07/28/2</u>	004
Injection	n Volume:	2.00 (uL)		Dilution Fa	ctor:1.0	<u>0</u>
#PC Clear	nup: (Y/N)]	<u>М</u> рн: <u>6.0</u>				
Ti	CAS NO.	COMPOUND		CONCENTRATION U (ug/L or ug/Kg		Q
į.		Phenol 4-Methylphenol Naphthalene			5 5 5	U U U

Data File : D:\ELINK\INSTR1\DATA\072804\Z61785.D

Vial: 13 Operator: PM

Acq On : 28 Jul 2004 16:14 Sample : A4698914 AW40017676

Inst : I50Z-A Multiplr: 1.00

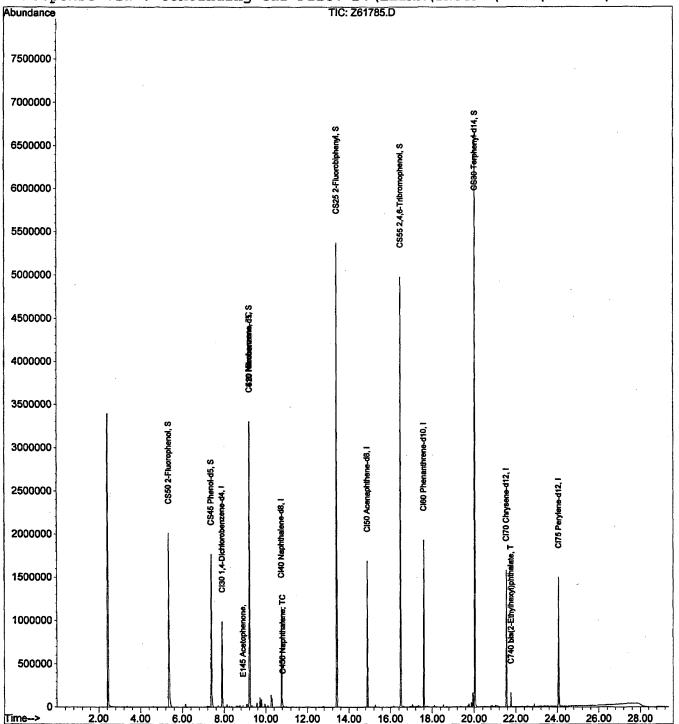
Misc :

•

MS Integration Params: rteint.p Quant Time: Jul 29 7:31 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

MS Integration Params: rteint.p

Quant Time: Jul 29 7:31 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	316453	40.00	
1) CI30 1,4-Dichlorobenzene-d 22) CI40 Naphthalene-d8	10.77	136	1180679	40.00	ng -0.02
38) CI50 Acenaphthene-d8	14.90	164	639765	40 00	ng 0.00
60) CI60 Phenanthrene-d10	17.62	188	1057334	40.00	76.81% ng 0.00 74.24%
73) CI70 Chrysene-d12	21.55	240	980479	TO.00	119 0.02
82) CI75 Perylene-d12	24.07	264	1117742	40.00	69.79% ng 0.00 90.73%
Contan Maritanian Communic					
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ram 6) CS45 Phenol-d5 Spiked Amount 150.000 Ram	5.35	112	1303885	134.85	ng 0.00
6) CS45 Phenol-d5	7 38	- 110	1169170	±y - 97 53	ng 0.00
Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran	nge 10	- 110	Recove	rv =	65.02%
7) CS70 2-chlorophenol-d4	0.00	132	0	0.00	ng
Spiked Amount 150.000 Ray	nge 33	- 110	Recove	rv =	0.00%#
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng
Spiked Amount 100.000 Ray	nge 16	- 110	Recove	ry =	0.00%#
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Rai 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Rai	9.22	82	1808733	170.18	ng 0.00
Spiked Amount 100.000 Ra	nge 34	- 114	Recove	ry =	170.18%#
42) CS25 2-Fluorobiphenyl	13.42	172	3112589	166.88	ng 0.00
Spiked Amount 100.000 Ram	nge 43	- 116	Recove	ry =	166.88%#
63) CS55 2.4.6-Tribromophenol	16.50	330	933122	288.38	ng 0.00
Spiked Amount 150.000 Rai	nge 10	- 123	Recove	ry =	192.25%#
Spiked Amount 150.000 Rai 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Rai	20.05	244	3436277	194.64	ng 0.02
Spiked Amount 100.000 Ra	nge 33	- 141	Recove	ry =	194.64%#
Target Compounds					Qvalue
2) C705 n-nitrosodidimethylam	0 00	74		N.D	
4) E600 Benzaldehvde	0.00	77		N.D	
4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol	0.00	93		N.D	
8) C315 Phenol	0.00	93 94		N.D	
9) C330 2-Chlorophenol	0.00	128		N.D	
10) C320 aniline	0.00	93		N.D	

^{(#) =} qualifier out of range (m) = manual integration Z61785.D CLP.M Thu Jul 29 07:31:47 2004 PP

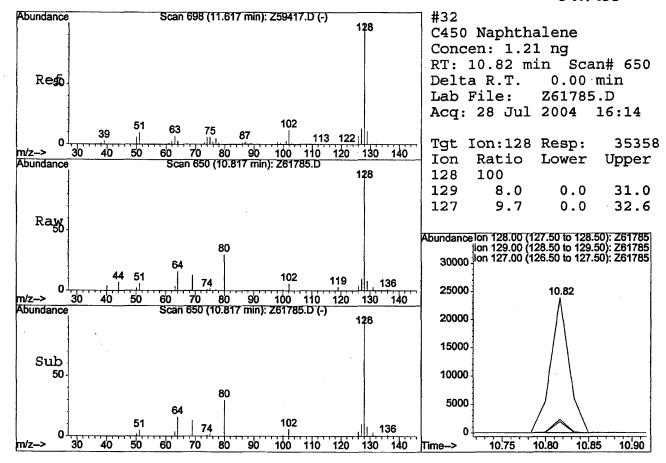
Data File : D:\ELINK\INSTR1\DATA\072804\Z61785.D Vial: 13 Acq On : 28 Jul 2004 16:14 Operator: PM Sample : A4698914 AW40017676 Inst : I50Z-A Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES. Quant Time: Jul 29 7:31 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration


Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

	Compo	ound	R.T.	QIon	Response	Conc Unit	Qvalue	
		1,3-Dichlorobenzene	0.00		,	N.D.		
		1,4-Dichlorobenzene	0.00			N.D.		
		1,2-Dichlorobenzene	0.00			N.D.		
15)	C345	Benzyl alcohol	0.00	108		N.D.		
16)	C360	bis(2-chloroisopropyl	0.00	45		N.D.		
17)	C355	2-Methylphenol Acetophenone Hexachloroethane	0.00	108 ر		N.D.		
18)	E145	Acetophenone	8.90		18400	1.58 ng	#	15
•			0.00	117		N.D.		
		N-Nitroso-di-n-propyl	0.00	70		N.D.		
21)	C365	4-Methylphenol Nitrobenzene Isophorone	0.00	1,108		N.D.		
		Nitrobenzene	9.22	W 77	11920	1.04 ng	#	29
		Isophorone	0.00	82		N.D.		
26)	C430	benzoic acid	0.00	122		N.D.		
27)	C420	2-Nitrophenol	0.00			N.D.		
		2,4-Dimethylphenol		107		N.D.		
		bis(2-Chloroethoxy)me		93		N.D.		
		2,4-Dichlorophenol	0.00	162		N.D.		
31)	C445	1,2,4-Trichlorobenzen		180		N.D.		
		Naphthalene	191/8/2		35358	1.21 ng		92
		4-Chloroaniline	0.00	127		N.D.		
(34)	C460	Hexachlorobutadiene	0.00	225		N.D.		
		Caprolactam	0.00	113		N.D.		
36)	C465		0.00	107		N.D.		
		2-Methylnaphthalene	0.00	142		N.D.		
		Hexachlorocyclopentad	0.00	237		N.D.		
		2,4,6-Trichlorophenol	0.00	196		N.D.		
		2,4,5-Trichlorophenol	0.00	196		N.D.		
		2-Chloronaphthalene	0.00	162		N.D.		
44)	C811	1,1'-Biphenyl	0.00	154		N.D.		
45)	C530	2-Nitroaniline	0.00	65		N.D.		
46)	C540	Acenaphthylene	0.00	152		N.D.		
47)	C535	Dimethylphthalate	0.00	163		N.D.		
48)	C542	2.6-Dinitrotoluene	0.00	165		N.D.		
		Acenaphthene	0.00	153		N.D.		
50)	C545	3-Nitroaniline	0.00	138		N.D.		
		2,4-Dinitrophenol	0.00	184		N.D.		
52)	C565	Dibenzofuran	0.00	168		N.D.		
53)	C570	2,4-Dinitrotoluene	0.00	165		N.D.		
54)	C560	4-Nitrophenoi	0.00	TOA		N.D.		
55)	C590	Fluorene	0.00	166		N.D.		

(#) = qualifier out of range (m) = manual integration Z61785.D CLP.M Thu Jul 29 07:31:48 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract	
Lab Code: <u>RECNY</u> Case No.: SAS No	o.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A4698915</u>
Sample wt/vol: <u>1045.0</u> (g/mL) <u>ML</u>	Lab File ID: Z61786.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>07/21/2004</u> <u>07/23/2004</u>
Moisture: decanted: (Y/N) N	Date Extracted: <u>07/26/2004</u>
Oncentrated Extract Volume: 1000 (uL)	Date Analyzed: <u>07/28/2004</u>
njection Volume: 2.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.0	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene	5 U 5 U 5 U

1

0

Ţ

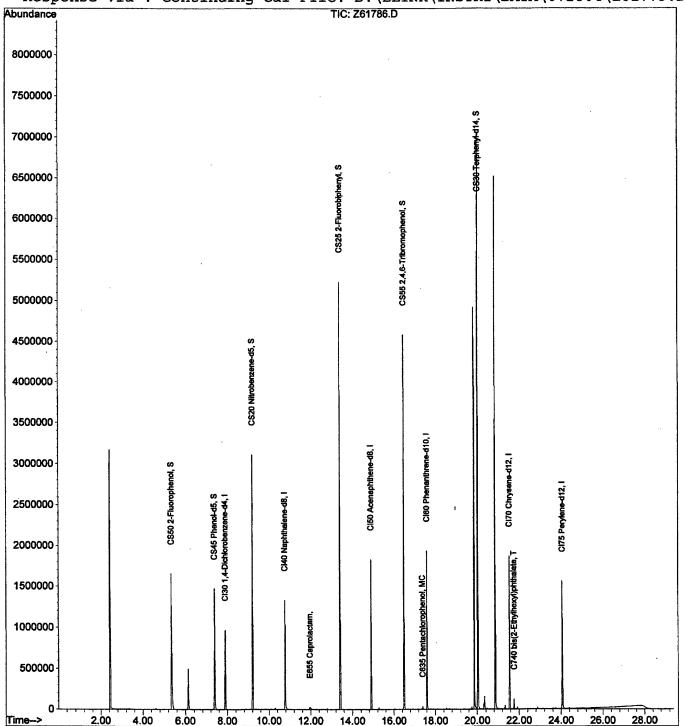
Vial: 14 Data File : D:\ELINK\INSTR1\DATA\072804\Z61786.D Operator: PM Acq On : 28 Jul 2004 16:48 Sample : A4698915 AW40017677 Inst : I50Z-A Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Time: Jul 29 7:32 2004

Ouant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Page 1

PP

MS Integration Params: rteint.p Quant Time: Jul 29 7:32 2004

Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Z61786.D CLP.M Thu Jul 29 07:32:11 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)					
1) CI30 1,4-Dichlorobenzene-d	7.90	152	329922	40.00	ng 0.02 78.30%					
22) CI40 Naphthalene-d8	10.77	136	1216633	40.00						
38) CI50 Acenaphthene-d8	14.90	164	676236	40.00						
60) CI60 Phenanthrene-d10	17.62	188	1137617	40.00						
73) CI70 Chrysene-d12	21.55	240	1153222	40.00						
82) CI75 Perylene-d12	24.07	264	1178788	40.00						
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol	ge 21 7.38 ge 10 0.00 ge 33 0.00 ge 16 9.22 ge 34 13.42 ge 43 16.50 ge 10	99 - 110 132 - 110 152 - 110 82 - 114 172 - 116 330 - 123 244	Recove: 898487 Recove: 0 Recove: 1709579 Recove: 2956494 Recove: 858540 Recove: 3681149	ry = 71.89 ry = 0.00 ry = 0.00 ry = 156.10 ry = 149.96 ry = 246.61 ry = 177.28	70.46% ng 0.00 47.93% ng 0.00%# ng 0.00%# ng 0.00 156.10%# ng 0.00 149.96%# ng 0.00 164.41%# ng 0.02					
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	0.00 0.00 0.00 0.00 0.00	74 77 93 94 128 93		N.D N.D N.D N.D N.D	•					
(#) = qualifier out of range (m) = manual integration										

MS Integration Params: rteint.p

Quant Time: Jul 29 7:32 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

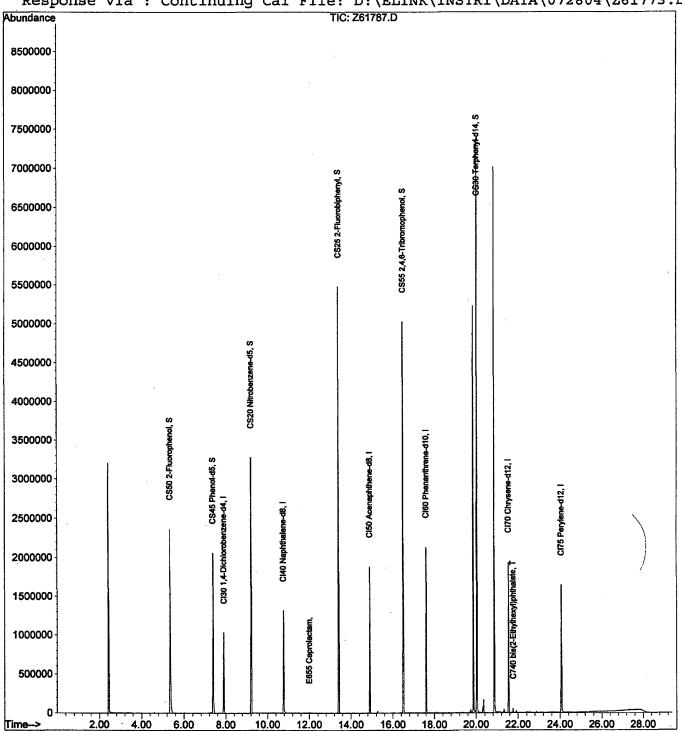
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11)	C335 1,3-Dichlorobenzene	0.00	146		N.D.	
	C340 1,4-Dichlorobenzene	0.00	146	•	N.D.	
	C350 1,2-Dichlorobenzene	0.00	146		N.D.	
	C345 Benzyl alcohol	0.00	108		N.D.	
16)	C360 bis(2-chloroisopropyl		45		N.D.	
17)	C355 2-Methylphenol	0.00	108		N.D.	
	E145 Acetophenone	0.00	105		N.D.	
	C375 Hexachloroethane	0.00	117		N.D.	
	C370 N-Nitroso-di-n-propyl		70		N.D.	
	C365 4-Methylphenol	0.00	108		N.D.	
	C410 Nitrobenzene	0.00	77		N.D.	
	C415 Isophorone	0.00	82		N.D.	
	C430 benzoic acid	0.00	122		N.D.	
	C420 2-Nitrophenol	0.00	139		N.D.	
		0.00	107		N.D.	
29)	C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	•
	C440 2,4-Dichlorophenol	0.00	162		N.D.	
	C445 1,2,4-Trichlorobenzen	0.00	180		N.D.	
32)	C450 Naphthalene	0.00	128		N.D.	
	C455 4-Chloroaniline	0.00	127		N.D.	
34)	C460 Hexachlorobutadiene	0.00	225 1/13	2	N.D.	
	E655 Caprolactam	11.97	1/1.30	13833	5.89 ng	81
	C465 4-Chloro-3-methylphen	0.00	1/07		N.D.	
37)	C470 2-Methylnaphthalene	0.00	142		N.D.	
39)	C510 Hexachlorocyclopentad	0.00	237		N.D.	
40)	C470 2-Methylnaphthalene C510 Hexachlorocyclopentad C515 2,4,6-Trichlorophenol C520 2,4,5-Trichlorophenol	0.00	196		N.D.	
			196		N.D.	
	C525 2-Chloronaphthalene	0.00	162		N.D.	
	C811 1,1'-Biphenyl	0.00	154		N.D.	•
	C530 2-Nitroaniline	0.00	65		N.D.	
	C540 Acenaphthylene	0.00	152		N.D.	
	C535 Dimethylphthalate	0.00	163	•	N.D.	
	C542 2,6-Dinitrotoluene	0.00	165	•	N.D.	
	C550 Acenaphthene	0.00	153		N.D.	
	C545 3-Nitroaniline	0.00	138		N.D.	
	C555 2,4-Dinitrophenol		184		N.D.	
	C565 Dibenzofuran	0.00			N.D.	
53)	C570 2,4-Dinitrotoluene	0.00			N.D.	
	C560 4-Nitrophenol	0.00			N.D.	
55)	C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61786.D CLP.M Thu Jul 29 07:32:13 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u>	Contract:		MW-9/10R	
Lab Code: RECNY Case No.:				1
Matrix: (soil/water) WATER		Lab Sample ID:	A4698916	
Sample wt/vol: <u>970.00</u> (g/mL)]	<u>ML</u>	Lab File ID:	Z61787.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/21/2004	07/23/2004
% Moisture: decanted: (Y/N	N) <u>N</u>	Date Extracted:	07/26/2004	
Concentrated Extract Volume: 1000 (u	L) .	Date Analyzed:	07/28/2004	
Injection Volume: 2.00 (uL)		Dilution Factor:	:1.00	
GPC Cleanup: (Y/N) N pH: 6.0	·			•
CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/Kg)	•	Q
108-95-2Phenol 106-44-54-Methylphenol 91-20-3Naphthalene			5 U 5 U 5 U	r


MS Integration Params: rteint.p

Quant Time: Jul 29 7:32 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

PP

Data File : D:\ELINK\INSTR1\DATA\072804\Z61787.D Vial: 15 Operator: PM Acq On : 28 Jul 2004 17:22 Sample Inst : I50Z-A : A4698916 AW40017678 Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 29 7:32 2004 Ouant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration Title

Last Update : Wed Jul 28 09:52:13 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	351742	40.00	ng 0.02 83.48%
22) CI40 Naphthalene-d8	10.77	136	1294701	40.00	
38) CI50 Acenaphthene-d8	14.90	164	715253	40.00	
60) CI60 Phenanthrene-d10	17.62	188	1183189	40.00	
73) CI70 Chrysene-d12	21.55	240	1189949	40.00	
82) CI75 Perylene-d12	24.07	264	1264383	40.00	
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol	ge 21 7.38 ge 10 0.00 ge 33 0.00 ge 16 9.22 ge 34 13.42 ge 43 16.50 ge 10	- 110 99 - 110 132 - 110 152 - 110 82 - 114 172 - 116 330 - 123 244	1307356 Recove 0 Recove 1872356 Recove 3198331 Recove 956961 Recove 3709976	ry = 98.11 ry = 0.00 ry = 0.00 ry = 160.65 ry = 153.38 ry = 264.29 ry = 173.15	92.63% ng 0.00 65.41% ng 0.00%# ng 0.00 160.65%# ng 0.00 153.38%# ng 0.00 176.19%# ng 0.02
Target Compounds 2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde 5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol 9) C330 2-Chlorophenol 10) C320 aniline	0.00 0.00 0.00 0.00 0.00	74 77 93 94 128 93		N.D N.D N.D N.D N.D	• • •
(#) = qualifier out of range (m) Z61787.D CLP.M Thu Jul 29					Page 1

MS Integration Params: rteint.p

Quant Time: Jul 29 7:32 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C335 1,3-Dichlorobenzene	0.00	146		N.D.	
12) C340 1,4-Dichlorobenzene				N.D.	
14) C350 1,2-Dichlorobenzene		146		N.D.	
15) G245 Demond -1 b-1	0 00			N.D.	
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.	
17) C355 2-Methylphenol	0.00	108		N.D.	
18) E145 Acetophenone	0.00			N.D.	
19) C375 Hexachloroethane	0.00	117		N.D.	
20) C370 N-Nitroso-di-n-propyl	0.00	70		N.D.	
21) C365 4-Methylphenol	0.00	108		N.D.	
24) C410 Nitrobenzene	0.00	77		N.D.	
25) C415 Isophorone	0.00	82		N.D.	
26) C430 benzoic acid	0.00	122		N.D.	
27) C420 2-Nitrophenol	0.00	139		N.D.	
28) C425 2,4-Dimethylphenol 29) C435 bis(2-Chloroethoxy)me	0.00	107		N.D.	
29) C435 bis(2-Chloroethoxy)me	0.00	93		N.D.	
30) C440 2,4-Dichlorophenol	0.00	162		N.D.	
31) C445 1,2,4-Trichlorobenzen		180		N.D.	
32) C450 Naphthalene	0.00	128		N.D.	
33) C455 4-Chloroaniline	0.00	127		N.D.	
34) C460 Hexachlorobutadiene	0.00	225		N.D.	
35) E655 Caprolactam	12.00	n113	2171	0.87 ng	# 15
36) C465 4-Chloro-3-methylphen		(107		N.D.	
37) C470 2-Methylnaphthalene	0.00	`142		N.D.	
39) C510 Hexachlorocyclopentad	0.00	237		N.D.	
40) C515 2,4,6-Trichlorophenol		196		N.D.	
41) C520 2,4,5-Trichlorophenol		196		N.D.	
43) C525 2-Chloronaphthalene		162		N.D.	
44) C811 1,1'-Biphenyl	0.00	154		N.D.	
45) C530 2-Nitroaniline	0.00	65		N.D.	
46) C540 Acenaphthylene 47) C535 Dimethylphthalate	0.00	152		N.D.	
47) C535 Dimethylphthalate	0.00			N.D.	•
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.	
49) C550 Acenaphthene	0.00	153		N.D.	
50) C545 3-Nitroaniline	0.00	138		N.D.	
50) C545 3-Nitroaniline 51) C555 2,4-Dinitrophenol 52) C565 Dibenzofuran	0.00	184		N.D.	
				N.D.	
53) C570 2,4-Dinitrotoluene				N.D.	
54) C560 4-Nitrophenol 55) C590 Fluorene	0.00	109		N.D.	
55) C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61787.D CLP.M Thu Jul 29 07:32:37 2004 PP

STANDARDS DATA

SEMIVOLATILE 3/90 AND ASP '91 INITIAL CALIBRATION DATA

Lab File ID: RRF80 = $\underline{Z61106.RR}$		Z61104 Z61107		RRF50 RRF160	$= \frac{Z6110}{Z6110}$		
COMPOUND	RRF20	RRF50	RRF80	RRF120	RRF160	AVG RRF	% RSD
Phenol 4-Methylphenol Naphthalene	* 1.631 * 1.079 * 1.013	1	1.148	1.278	1.915 1.269 0.893	1.1820	7.400*
Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	* 0.328 * 1.163 * 0.767 * 1.442 * 1.091 0.106	1.135 0.729 1.490 1.157	1.128 0.650	0.693 1.700	0.375 1.098 0.653 1.721 1.364 0.129	0.3500 1.1300 0.6980 1.5770 1.2320 0.1210	2.000*

1.294

0.815

1.233

* 0.817

1.330

0.812

1.462

0.865

1.442

0.834

1.3520

0.8290

7.200*

2.700*

Comments:

2-Chlorophenol-d4

1,2-Dichlorobenzene-d4

Page:

Rept: AN0323R

GC/MS STANDARDS WORKSHEET

Date: 06/09/2004 Time: 11:05:34

Profile Code: A00012

Lab Samp Id: A410000497-1 Z61104 CLP ICC Tune Code: A4T0001487 261103 DFTPP 50ng SEMIVOLATILE 3/90, ASP '91 CALIBRATION DATA

Lab file ID Matrix: W Fraction: MB Conc Point 1: 20.0000 ng Z61104.RR 50.0000 ng Z61105.RR Conc Point 2: Instr: I50Z-A Heated Purge? F Analyst: PM 80,0000 ng Z61106.RR GC Column: ZB-5 0.25 mm CCC Conc: End: 06/08/2004 15:18 Conc Point 4: 120_0000 ng Z61107.RR IS Conc: · ICC Ref ID: 40.00 ng 261108.RR 2.00 ul Conc Point 5: 160.0000 ng Level: L Inj Volume:

Conc Point 6: 0.0000 ng

						•							
											Max	15	E
Sea T	Parameter	RRF 1	RRF 2	RRF 3	RRF 4	RRF 5	RRF 6	Avg RRF	Min RRF	% RSD	% RSD	AU RT_	Tresh
10	Phenol	1.6310	1.6792	1.6988	1.8645	1.9152		1.758	0.8000	7.1	20.50	797743 8.00	160
20	Bis(2-chloroethyl) ether	1.3546	1.3548	1.4057	1.6024	1.5241		1.448	0.7000	7.6	20.50	643620 8.12	160
30	2-Chlorophenol	1.2389	1.2628	1.3045	1.4653	1.4457		1.343	0.8000	7.8	20.50	599942 8.18	160
40	1,3-Dichlorobenzene	1.4321	1.4304	1.4334	1.5149	1.5131		1.465	0.6000	3.1	20.50	679524 8.48	160
50	1,4-Dichlorobenzene	1.4810	1.4396	1.4515	1.5451	1.5234		1.488	0.5000	3.0	20.50	683936 8.60	160
60	1,2-Dichlorobenzene	1.3915	1.3691	1.3699	1.4733	1.3675		1.394	0.4000	3.2	20.50	650439 9.00	160
70	2-Methylphenol	0.9877	1.0466	1.0623	1.2073	1.2196		1.105	0.7000	9.3	20.50	497209 9.30	160
80	2,21-Oxybis(1-Chloropropa	2.1785	2.1996	2.2510	2.4956	2.5318		2.331	0.0100	7.2	100.00	***** 9.33	160
90	4-Methylphenol	1.0785	1.1375	1.1477	1.2782	1.2693		1.182	0.6000	7.4	20.50	540413 9.63	160
99	1,2-Diphenylhydrazine	1.3824	1.3491	1.4443	1.5902	1.4567		1.445	0.0100	6.4	100.00	***** 16.9	160
100	N-Nitroso-Di-n-propylamin	0.8389	0.8898	0.9423	1.0815	1.0509		0.961	0.5000	10.8	20.50	422729 9.65	160
101	Acetophenone	1.4371	1.4620	1.5218	1.6247	1.7448		1.558	0.0100	8.1	100.00	694570 9.55	160
102	Benzaldehyde	0.7146	0.6336	0.6764	0.5941	0.4083		0.605	0.0100	19.7	100.00	301017 7.65	160
103	Caprolactam	0.0560	0.0654	0.0712	0.0831	0.0865		0.072	0.0100	17.4	100.00	110895 12.5	160
104	Biphenyl	1.3050	1.2718	1.2542	1.2799	1.1257		1.247	0.0100		100.00	****** 14.2	160
105	Atrazine	0.1685	0.1725	0.1267	0.0912	0.0353		0.119	0.0100		100.00	251195 17.8	160
110	Hexachloroethane	0.5175	0.5145	0.4998	0.4830	0.4119		0.485	0.3000	8.9	20.50	244412 9.68	160
120	Nitrobenzene	0.3490	0.3563	0.3455	0.3909	0.3832		0.365	0.2000	5.7	20.50	603701 9.92	160
130	Isophorone	0.6277	0.6638	0.6617	0.7313	0.7326		0.683	0.4000	6.8	20.50	****** 10.4	160
140	2-Nitrophenol	0.1585	0.1752	0.1773	0.2077	0.2042		0.185	0.1000	11.3	20.50	296880 10.6	160
150	2,4-Dimethylphenol	0.2690	0.2715	0.2609	0.3081	0.2990		0.282	0.2000	7.3	20.50	459950 10.8	160
160	Bis(2-chloroethoxy) metha	0.4188	0.4311	0.4238	0.4783	0.4610		0.443	0.3000	5.8	20.50	730493 11.0	160
170	2,4-Dichlorophenol	0.2708	0.2813	0.2791	0.3103	0.2903		0.286	0.2000	5.3	20.50	476676 11.2	160
180	1,2,4-Trichlorobenzene	0.3304	0.3107	0.3074	0.3328	0.3110		0.318	0.2000	3.8	20.50	526419 11.3	160
190	Naphthalene	1.0126	0.9550	0.9192	0.9857	0.8928		0.953	0.7000	5.1	20.50	****** 11.5	160
200	4-Chloroaniline	0.3894	0.4009	0.3873	0.4281	0.3975		0.401	0.0100	4.1	100.00	679183 11.7	160
210	Hexachlorobutadiene	0.1672	0.1662	0.1618	0.1711	0.1621		0.166	0.0100	2.3	v .	281520 11.9	160 160
220	4-Chloro-3-methylphenol	0.2549	0.2646	0.2652	0.2995	0.2994		0.277	0.2000	7.6	20.50	448268 12.9 ***** 13.1	160
230	2-Methylnaphthalene	0.6454	0.6242	0.5939	0.6325	0.5977		0.619	0.4000	3.6	20.50	297375 13.7	160
240	Hexachlorocyclopentadiene	0.2913	0.3208	0.3184	0.3354	0.3062		0.314	0.0100	6.2	20.50	314720 13.9	160
250	2,4,6-Trichlorophenol	0.3189	0.3395	0.3491	0.3718	0.3676		0.349	0.2000	5.1	20.50	347172 13.9	160
260	2,4,5-Trichlorophenol	*	0.3745	0.3760	0.4125	0.4076		1.028	0.8000	4.1	20.50	961324 14.2	160
270	2-Chloronaphthalene	1.0659	1.0371	1.0171	1.0571 0.3695	0.9609 0.3716		0.341	0.0100	10.0	100.00	282803 14.6	160
280 290	2-Nitroaniline		0.3051 1.1258	0.3189	1.1542	1.1936		1,149	0.0100		100.00	***** 15.1	160
300	Dimethyl phthalate	1.1492	1.5983	1.6456	1.6423	1.5187		1.602	1.3000	3.2	20.50	****** 15.2	160
	Acenaphthylene	0.2214			0.2969	0.3153		0.273	0.2000	13.4		236344 15.2	160
310 320	2,6-Dinitrotoluene 3-Nitroaniline	U.ZZ14 *	0.2550 0.3453	0.2755 0.3757	0.4271	0.4201		0.392	0.0100		100.00	320103 14.6	160
330			0.9548	0.9512	0.9841	0.8925		0.954	0.8000		20.50	885087 15.6	160
	Acenaphthene	0.9896				0.2369		0.205	0.0100		100.00	167851 15.7	160
340 350	2,4-Dinitrophenol	*	0.1811 0.1319	0.1871 0.1324	0.2168 0.1416	0.1456		0.138	0.0100		100.00	122226 15.9	160
360	4-Nitrophenol		1.4711	1.3908	1_4701	1.3992		1.450	0.8000	3.7		***** 15.9	160
370	Dibenzofuran	1.5177	0.3517	0.3790	0.4265	0.3767		0.371	0.2000	10.4	20.50	326041 16.0	160
380	2,4-Dinitrotoluene Diethyl phthalate	0.3220 1.0947	1.1636	1.0686	1.2015	0.3787		1.105	0.0100		100.00	****** 16.6	160
390	4-Chlorophenyl phenyl eth	0.6264	0.5944	0.5863	0.6176	0.5449		0.594	0.4000	5.4			160
270	- chrocophenyt phenyt eth	0.0204	U.J744		0.0170	0.5447			,				

GC/MS STANDARDS WORKSHEET

Date: 06/09/2004 Time: 11:05:34

Lab Samp Id: A410000497-1

Rept: ANO323R

Lab	Samp 10: M410000497*1										Max	IS		E
Seq	T Parameter	RRF 1	RRF 2	RRF 3	RRF 4	RRF 5	RRF 6	Ave RRF	Min RRF	% RSD	% RSD	AU	RT	Tresh
400	Fluorene	1.1643	1.1126	1.0537	1.1060	1.0054		1.088	0.9000	5.6	20.50	*****	16.6	160
410	4-Nitroaniline	*	0.3110	0.3072	0.3805	0.3860		0.346	0.0100	12.4	100.00	288282 1	16.7	160
420	4,6-Dinitro-2-methylpheno	*	0.1413	0.1533	0.1790	0.1766		0.163	0.0100	11.3	100.00	205696 1	16.8	160
430	N-nitrosodiphenylamine	0.5438	0.5440	0.5589	0.5660	0.5279		0.548	0.0100	2.7	100.00	792069 1	16.8	160
440	4-Bromophenyl phenyl ethe	0.2035	0.2007	0.2113	0.2212	0.2096		0.209	0.1000	3.8	20.50	292230 1	17.4	.160
450	Hexach Lorobenzene	0.2605	0.2425	0.2301	0.2551	0.2238		0.242	0.1000	6.5	20.50	353040 1	17.6	160
460	Pentachlorophenol	*	0.1522	0.1587	0.1635	0.1666		0.160	0.0500	3.9	20.50	221650 1	18.0	160
470	Phenanthrene	1.0541	0.9497	0.9046	0.8920	0.8320		0.926	0.7000	8.9	20.50	*****	18.2	160
480	Anthracene	1.0049	1.0258	0.9965	0.9378	0.9621		0.985	0.7000	3.6	20.50	*****	18.2	160
490	Carbazole	0.9352	0.9033	0.8559	0.9349	0.8319		0.892	0.0100	5.2	100.00	*****	18.5	160
500	Di-n-butyl phthalate	1.0926	1.1084	1.0609	1.2783	1.1507		1.138	0.0100	7.4	100.00	*****	19.2	160
510	Fluoranthene	1.0094	1.0420	0.9939	0.9150	0.8709		0.966	0.6000	7.3	20.50	****** 2	20.0	160
520	Pyrene	1.0967	1.0230	0.9877	0.9389	0.8575	•	0.981	0.6000	9.2	20.50	*****	20.3	160
530	Butyl benzyl phthalate	0.4953	0.4995	0.5126	0.5855	0.5185		0.522	0.0100	7.0	100.00	737807 2	21.3	160
540	3,31-Dichlorobenzidine	0.3072	0.3141	0.2979	0.3131	0.2917		0.305	0.0100	3.2	100.00	463977 2	22.1	160
550	Benzo(a)anthracene	0.9830	0.9212	0.8542	0.9369	0.8485	•	0.909	0.8000	6.3	20.50	*****	22.2	160
560	Chrysene	1.1072	0.9432	0.9234	0.9628	0.8998		0.967	0.7000	8.4	20.50	*****	22.2	160
570	Bis(2-ethylhexyl) phthala	0.6337	0.7197	0.7234	0.8055	0.7383	•	0.724	0.0100	8.5	100.00	***** 2		160
580	Di-n-octyl phthalate	1.1109	1.2950	1.3115	1.3663	1.1727		1.251	0.0100		100.00	*****		160
590	Benzo(b)fluoranthene	1.0986	1.1880	1.0914	1.1681	1.1571		1.141	0.7000	3.8	20.50	****** 2		160
600	Benzo(k)fluoranthene	1.0823	0.9963	0.9964	0.9271	0.7641		0.953	0.7000	12.5	20.50	*****		160
610	Benzo(a)pyrene	0.9861	1.0342	1.0015	1.0426	0.9764		1.008	0.7000	2.9	20.50	*****		160
620	Indeno(1,2,3-cd)pyrene	1.1566	1.2535	1.2864	1.4333	1.4322	-	1.312	0.5000	9.1	20.50	*****		160
630	Dibenzo(a,h)anthracene	1.0809	1.1596	1.1429	1.1543	1.1422		1.136	0.4000	2.8	20.50	*****		160
640	Benzo(ghi)perylene	0.9718	1.0858	1.1141	1.2702	1.2878	*	1.146	0.5000	11.6	20.50	*****		160
856	Benzidine	0.3760	0.3113	0.0815	0.0993	0.0778		0.189	0.0100		100.00	459758 2		160
857	N-Nitrosodimethylamine	0.6460	0.8499	0.8376	0.9475	0.9657		0.849	0.0100		100.00	403774 3		160
900	Benzoic acid	0.1038	0.1579	0.1819	0.2183	0.2269		0.178	0.0100		100.00	267484 1		160
910	Benzyl alcohol	0.6277	0.6866	0.7301	0.8418	0.7994		0.737	0.0100		100.00	326167 8		160
920	Aniline	1.6516	1.6117	1.4963	1.4990	1.0375		1.459	0.0100		100.00	765688 7		160
740	Phenanthrene-D10	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0		*****		160
75 0	Chrysene-D12	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0		*****		160
	Perylene-D12	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0		*****	-	160
	1,4-Dichlorobenzene-D4	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0		380059 8		160
780	Naphthalene-D8	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0				160 160
	Acenaphthene-D10	1.0000	1.0000	1.0000	1.0000	1.0000		1.000	0.0100	0.0	20 E0	.741568 1		
	S Nitrobenzene-D5	0.3280	0.3359	0.3326	0.3805	0.3747		0.350	0.2000		20.50	569185 9		160 160
	S 2-Fluorobiphenyl	1.1625	1.1352	1.1281	1.1243	1.0984		1.130	0.7000	2.0	20.50	*****		160 160
	S p-Terphenyl-d14	0.7670	0.7290	0.6501	0.6929	0.6531		0.698	0.5000	7.2	20.50			
	S Phenol-D5	1.4415	1.4903	1.5333	1.6999	1.7206		1.577	0.8000	8.0	20.50	707986 7		16D
	2-fluorophenol	1.0909	1.1568	1.1916	1.3592	1.3636		1.232	0.6000	10.0	20.50	549554 6 178537 1		160
	5 2,4,6-Tribromophenol	0.1055	0.1226	0.1223	0.1255	0.1286		0.121	0.0100		100.00			160 160
	2-Chlorophenol-d4	1.2333	1.2939	1.3296	1.4624	1.4424		1.352	0.8000		20.50	614706 8		160 160
720	S 1,2-Dichlorobenzene-d4	0.8174	0.8145	0.8123	0.8653	0.8344		0.829	0.4000	2.1	20.50	386934 8	J. 70	

Mean % RSD: 8.8

Data File : D:\ELINK\INSTR1\DATA\060804\Z61104.D

Vial: 2 Operator: PM 8 Jun 2004 13:00 Sample

: SSTD020

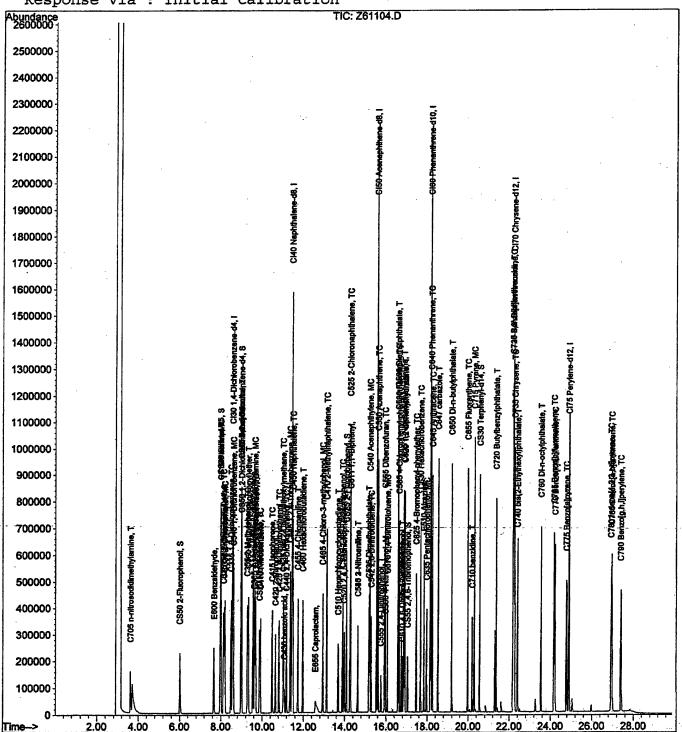
Inst

: I50Z-A

Misc

Multiplr: 1.00

MS Integration Params: rteint.p


Quant Results File: CLP.RES Quant Time: Jun 8 14:55 2004

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004

Response via: Initial Calibration

Vial: 3

Multiplr: 1.00

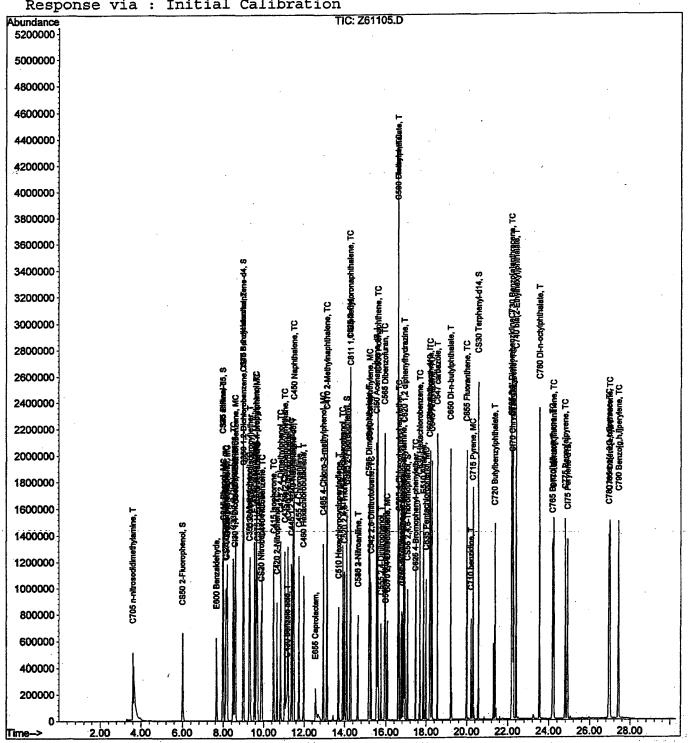
Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\060804\Z61105.D

Operator: PM 8 Jun 2004 Acq On 13:34 : I50Z-A Inst Sample SSTD050

Misc

MS Integration Params: rteint.p


Quant Results File: CLP.RES Quant Time: Jun 8 14:56 2004

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

Title : CLP BNA Calibration

Tue Jun 01 13:43:07 2004 Last Update

Response via : Initial Calibration

PP

Data File : D:\ELINK\INSTR1\DATA\060804\Z61106.D

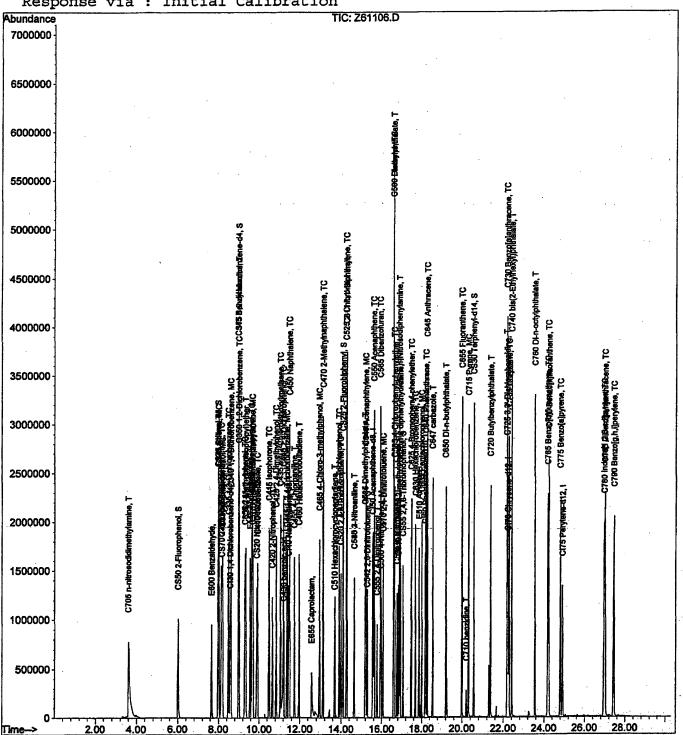
Vial: 4 Operator: PM 8 Jun 2004 14:09 : SSTD080 Inst : I50Z-A Multiplr: 1.00

Misc

Acq On

Sample

MS Integration Params: rteint.p Quant Time: Jun 8 14:57 2004


Ouant Results File: CLP.RES

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

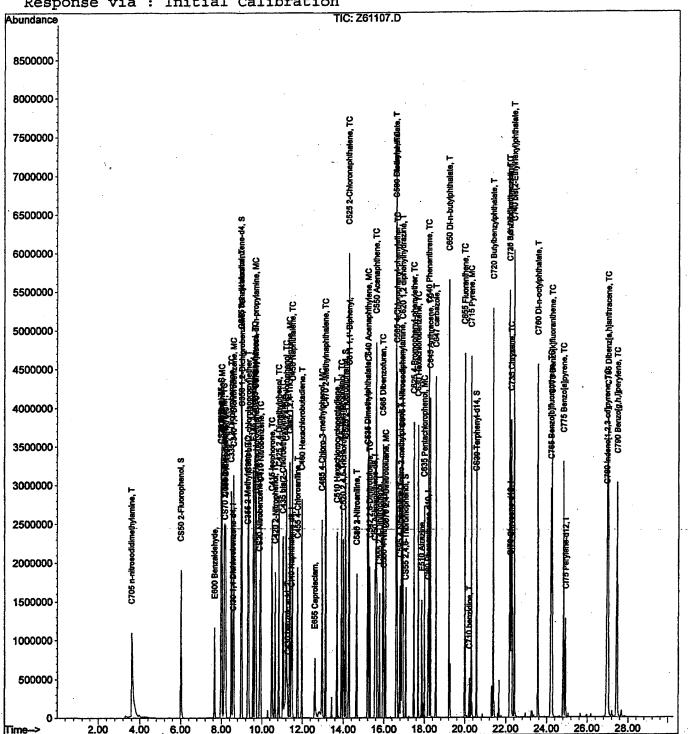
Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004

Response via: Initial Calibration

Vial: 5 Data File : D:\ELINK\INSTR1\DATA\060804\Z61107.D Operator: PM 8 Jun 2004 14:43 Acq On Inst : I50Z-A Sample SSTD120 Multiplr: 1.00 Misc

MS Integration Params: rteint.p


Quant Results File: CLP.RES Ouant Time: Jun 8 15:22 2004

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

: CLP BNA Calibration Title

: Tue Jun 01 13:43:07 2004 Last Update

Response via : Initial Calibration

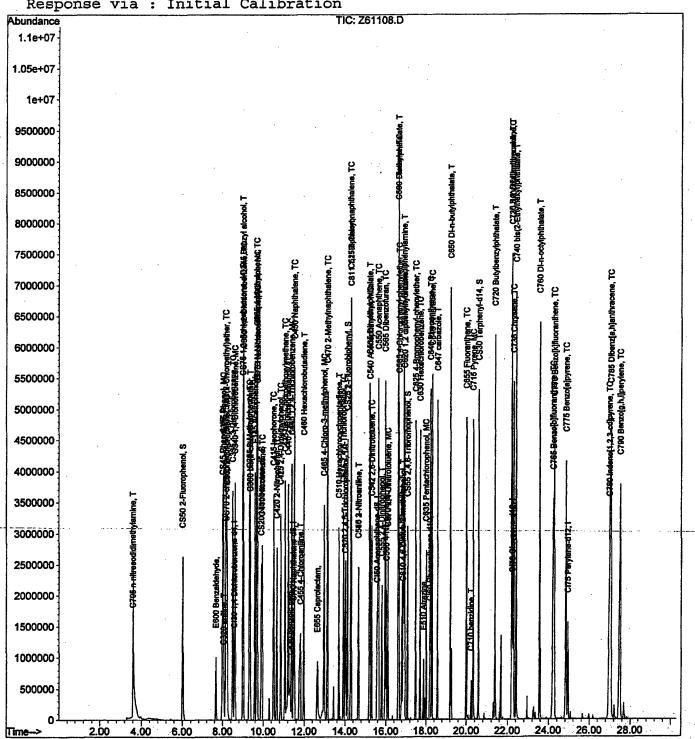
Multiplr: 1.00

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\060804\Z61108.D

Vial: 6 8 Jun 2004 15:18 Operator: PM Acq On Sample : SSTD160 Inst : I50Z-A

Misc MS Integration Params: rteint.p


Quant Results File: CLP.RES Quant Time: Jun 9 7:28 2004

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

Title : CLP BNA Calibration

: Tue Jun 01 13:42:33 2004 Last Update

Response via: Initial Calibration

Vial: 2 Data File: D:\ELINK\INSTR1\DATA\060804\Z61104.D Acq On : 8 Jun 2004 13:00 Operator: PM Inst: I50Z-A : SSTD020 Sample Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jun 8 14:55 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 08 14:55:01 2004 Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\060104\Z61034.D (1 Jun 2004 13:06)

·			4.1			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Der Rc	v(Min) v(Ar)
1) CI30 1,4-Dichlorobenzene-d	8.57	152	356090	40.00		0.00 86.48%
22) CI40 Naphthalene-d8	11.45	136	1248165	40.00	ng	0.00 91.77%
38) CI50 Acenaphthene-d8	15.55	164	709748	40.00	ng	0.00 92.82%
60) CI60 Phenanthrene-d10	18,17	188	1152472	40.00	ng	0.00
73) CI70 Chrysene-d12	22.22	240	1100125	40.00	ng	0.00 87.26%
82) CI75 Perylene-d12	24.90	264	986611	40.00	ng	0.00 94.29%
System Monitoring Compounds						
3) CS50 2-Fluorophenol		112		17.89	ng 11.93	
			Recove 256645	17.88		0.00
6) CS45 Phenol-d5	7.97	- 110			·	
Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4		132				0.00
		- 110			- I	
13) CS75 1,2-dichlorobenzene-d		152			ng	0.00
		- 110			20.04	
23) CS20 Nitrobenzene-d5		82		17.21		0.00
			Recove		17.21	8 #
42) CS25 2-Fluorobiphenyl	14.08	172	412549	20.33	ng	0.00
Spiked Amount 100.000 Ran	nge 43	- 116	Recove	ery =	20.33	₹#
63) CS55 2,4,6-Tribromophenol	17.05	330	60821	16.38	ng	0.00
Spiked Amount 150.000 Ran	nge 10	- 123	Recove 60821 Recove	ery =	10.929	
76) CS30 Terphenyl-d14	20.57	244	421913	21.73	ng	
Spiked Amount 100.000 Ran	nge 33	- 141	Recove	ery =	21.73	8 #
Target Compounds					Q	value
2) C705 n-nitrosodidimethylam	3.62		115020		_	89
4) E600 Benzaldehyde	7.67	77	127223	20.08	_	
5) C325 bis(2-Chloroethyl)eth		93	241175	18.19		74
8) C315 Phenol	7.98	94	290383	18.87	_	86
9) C330 2-Chlorophenol	8.18	128				86
10) C320 aniline	7.97	93	294066	21.32	ng #	53

^{(#) =} qualifier out of range (m) = manual integration Z61104.D CLP.M Tue Jun 08 14:55:32 2004 PP

MS Integration Params: rteint.p

Quant Time: Jun 8 14:55 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 08 14:55:01 2004

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
11)	C335 1,3-Dichlorobenzene	8.48	146	254980	19.82 ng		98
12)		8.60	146	263692	20.07 ng		100
•	C350 1,2-Dichlorobenzene	9.00	146	247744	20.27 ng		94
	C345 Benzyl alcohol	8.98	108	111762	16.92 ng	#	82
16)		9.33	45	387875	18.69 ng		98
17)		9.28	108	175862	17.86 ng	•	92
	E145 Acetophenone	9.55	105	255874	18.17 ng		87
	C375 Hexachloroethane	9.68	117	92131	17.36 ng		85
20)	C370 N-Nitroso-di-n-propyl	9.65	70	149358	16.76 ng		82
21)	C365 4-Methylphenol	9.62	108	192015	17.70 ng		94
24)	C410 Nitrobenzene	9.92	77	217828	17.41 ng		89
25)	C415 Isophorone	10.48	82	391714	16.88 ng	-	92
26)	C430 benzoic acid	11.08	122	64807	14.68 ng		87
27)	C420 2-Nitrophenol	10.65	139	98929	16.62 ng		82
	C425 2,4-Dimethylphenol	10.83	107	167862	17.86 ng		95
29)	C435 bis(2-Chloroethoxy)me	11.03	93	261342	18.57 ng		93
30)	C440 2,4-Dichlorophenol	11.18	162	169001	18.63 ng		92
31)		11.37	180	206221	19.86 ng		93
	C450 Naphthalene	11.50	128	631927	20.95 ng		98
33)		11.73	127	242993	19.08 ng		99
34)	C460 Hexachlorobutadiene	11.97	225	104337	18.37 ng		96
	E655 Caprolactam	12.58	113	34979	15.98 ng		95
	C465 4-Chloro-3-methylphen		107	159051	16.96 ng		82
	C470 2-Methylnaphthalene	13.13	142	402760	20.42 ng		94
39)	C510 Hexachlorocyclopentad	13.68	237	103391	21.16 ng		96
	C515 2,4,6-Trichlorophenol	13.90	196	113165	17.99 ng		95
41)		13.97	196	124903	18.40 ng		91
	C525 2-Chloronaphthalene	14.27	162	378262	20.51 ng		94
44)	C811 1,1'-Biphenyl	14.28	154	463104	20.77 ng	#	98
	C530 2-Nitroaniline	14.63	65	94193	14.86 ng	#	77
	C540 Acenaphthylene	15.22	152	569354	20.31 ng		99
47)	C535 Dimethylphthalate	15.17	163	407830	19.82 ng		98
48)	C542 2,6-Dinitrotoluene	15.28	165	78562	16.23 ng		92
	C550 Acenaphthene	15.62	153	351196	20.84 ng	.11	94
	C545 3-Nitroaniline	14.63	138	104283	15.72 ng	#	43
51)		15.75	184	45860	16.99 ng	#	41
	C565 Dibenzofuran	15.95	168	538581	20.93 ng	٠	76
	C570 2,4-Dinitrotoluene	16.07	165	114267	16.97 ng	п	80 86
54)		15.97	109	37144	14.80 ng	#	99
55)	C590 Fluorene	16.60	166	413177	21.14 ng		99

^{(#) =} qualifier out of range (m) = manual integration Z61104.D CLP.M Tue Jun 08 14:55:33 2004 PP

Vial: 2 Data File : D:\ELINK\INSTR1\DATA\060804\Z61104.D Operator: PM : 8 Jun 2004 13:00 Acq On Inst : I50Z-A : SSTD020 Sample Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Results File: CLP.RES Quant Time: Jun 8 14:55 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration Title

Last Update : Tue Jun 08 14:55:01 2004

Response via: Initial Calibration

	Compo	ound	R.T.	QIon	Response	Conc Unit	Qvalue
56)	C585	4-Chlorophenyl-phenyl	16.63	204	222298	20.03 ng	96
57)		Diethylphthalate	16.58	149	388477	18.72 ng	93
58)		1,2 diphenylhydrazine	16.92	77	490585	17.74 ng	85
59)		4-Nitroaniline	16.75	138	88554	15.33 ng	88
61)		4,6-Dinitro-2-methylp	16.80	198	68978	16.42 ng	100
62)		n-Nitrosodiphenylamin	16.87	169	313340	20.56 ng	96
64)	C625	4-Bromophenyl-phenyle	17.47	248	117287	17.88 ng	96
65)	C630	Hexachlorobenzene	17.68	284	150102	19.88 ng	90
66)	E510	Atrazine	17.85		97122	25.37 ng	97
67)	C635	Pentachlorophenol	17.98		79790	19.37 ng	99
68)	C640	Phenanthrene	18.20	178	607427	21.98 ng	98
69)	C645	Anthracene	18.27	178	579070	20.94 ng	98
70)	C647	carbazole	18.55		538910	21.01 ng	98
71)	C650	Di-n-butylphthalate	19.20			19.74 ng	98
72)	C655	Fluoranthene	19.98		581673	20.66 ng	90
74)	C715	Pyrene	20.30	202	603279	22.72 ng	91
75)	C710	benzidine	20.20		2067.97	45.68 ng	97
77)	C720	Butylbenzylphthalate	21.37		272419	19.35 ng	87
78)		3,3'-Dichlorobenzidin	22.18		168954	18.51 ng	99
79)	C730	Benzo[a] anthracene	22.18	228	540701	21.09 ng	97
80)		Chrysene	22.27		609043	22.43 ng	97
81)	C740	bis(2-Ethylhexyl)phth	22.40	149	348569	18.50 ng	97
83)		Di-n-octylphthalate	23.55		548005	20.49 ng	99
84)		Benzo[b]fluoranthene	24.18		541941	21.32 ng	98
85)	C770	Benzo[k] fluoranthene	24.23		533928	23.09 ng	96
86)		Benzo[a]pyrene	24.78		486458	20.15 ng	97
87)		<pre>Indeno[1,2,3-cd]pyren</pre>			570553	17.61 ng	98
88)	C785	Dibenz[a,h]anthracene	26.97		533190	19.36 ng	97
89)		Benzo[g,h,i]perylene	27.40	276	479385	16.76 ng	93

MS Integration Params: rteint.p

Quant Time: Jun 8 14:56 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004

Response via: Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\060104\Z61034.D (1 Jun 2004 13:06)

Internal Standards	R.T.	QIon	Response	Conc U		ev(Min)
1) CI30 1,4-Dichlorobenzene	e-d 8.57	152	380059	40.00	ng	0.00 92.30%
22) CI40 Naphthalene-d8	11.45	136	1355480	40.00	ng	0.00
38) CI50 Acenaphthene-d8	15.55	164	741568	40.00	ng	99.66% 0.00
				·		96.98%
60) CI60 Phenanthrene-d10	18.17	188	1164844	40.00	ng	0.00 94.60%
73) CI70 Chrysene-d12	22.23	240	1181657	40.00	ng	0.02 93.73%
82) CI75 Perylene-d12	24.92	264	1026049	40.00	ng	0.02
•						98.06%
System Monitoring Compounds				•		
3) CS50 2-Fluorophenol	6 00	112	EAGEEA	47 42	, n.a.	0 00
6) CS45 Phenol-d5	7.97		Recove 707986	ry =	31.0	
	Range 10				30.8	0.00
7) CS70 2-chlorophenol-d4	8.15			47.25		0.00
		- 110			31.5	
13) CS75 1,2-dichlorobenzene				10 02		0.00
		- 110	Recove	rv =	49.9	
	9.88					0.02
	Range 34	- 114	Recove	77	44.0	
42) CS25 2-Fluorobiphenyl	14.10			49 62		0.02
		- 116			49.6	
63) CS55 2,4,6-Tribromopheno	17.07	330	178537	-y - - 47 58		0.02
	Range 10				31.7	
76) CS30 Terphenyl-d14	20.57		•			0.00
		- 141			=	
Target Compounds		•				Dana 7
2) C705 n-nitrosodidimethyl	am 3.60	74	402774	40 14		Qvalue
4) E600 Benzaldehyde	7.65	7 4 77	403774 301017			86
5) C325 bis(2-Chloroethyl)e		93	643620			84
8) C315 Phenol	8.12	93 04	797743	45.49		‡ 73
9) C330 2-Chlorophenol	8.18		797743 599942	48.57		96
10) C320 aniline	7.97	128 93	765688	47.08 52.01		84 ‡ 50
	,,,,, 					

^{(#) =} qualifier out of range (m) = manual integration Z61105.D CLP.M Tue Jun 08 14:56:10 2004 PP

Vial: 3 Data File : D:\ELINK\INSTR1\DATA\060804\Z61105.D Operator: PM : 8 Jun 2004 13:34 Inst : I50Z-A Sample : SSTD050 Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jun 8 14:56 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004

Response via : Initial Calibration DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C335 1,3-Dichlorobenzene	8.48	146	679524	49.49 ng	99
12) C340 1,4-Dichlorobenzene	8.60	146	683936	48.78 ng	99
14) C350 1,2-Dichlorobenzene	9.00	146	650439	49.86 ng	94
15) C345 Benzyl alcohol	8.98	108	326167	46.27 ng	# 83
16) C360 bis(2-chloroisopropyl	9.33	45	1044970	47.18 ng	97
17) C355 2-Methylphenol	9.30	108	497209	47.32 ng	91
18) E145 Acetophenone	9.55	105	694570	46.22 ng	87
19) C375 Hexachloroethane	9.68	117	244412	43.15 ng	84
20) C370 N-Nitroso-di-n-propyl	9.65	70	422729	44.46 ng	79
21) C365 4-Methylphenol	9.63	108	540413	46.67 ng	94
24) C410 Nitrobenzene	9.92	77	603701	44.44 ng	84
25) C415 Isophorone	10.48	82	1124691	44.64 ng	91
26) C430 benzoic acid	11.17	122	267484	55.78 ng	90
27) C420 2-Nitrophenol	10.65	139	296880	45.93 ng	79
28) C425 2,4-Dimethylphenol	10.83	107	459950	45.06 ng	92
29) C435 bis(2-Chloroethoxy)me	11.05	93	730493	47.81 ng	96
30) C440 2,4-Dichlorophenol	11.20	162	476676	48.38 ng	97
31) C445 1,2,4-Trichlorobenzen	11.37	180	526419	46.68 ng	94
32) C450 Naphthalene	11.50	128	1618054	49.40 ng	100
33) C455 4-Chloroaniline	11.73	127	679183	49.11 ng	100
34) C460 Hexachlorobutadiene	11.97	225	281520	45.64 ng	98
35) E655 Caprolactam	12.55	113	110895	46.64 ng	84
36) C465 4-Chloro-3-methylphen	12.95	107	448268	44.01 ng	86
37) C470 2-Methylnaphthalene	13.13	142	1057654	49.37 ng	95
39) C510 Hexachlorocyclopentad	13.70	237	297375	58.25 ng	95
40) C515 2,4,6-Trichlorophenol	13.90	196	314720	47.88 ng	92
41) C520 2,4,5-Trichlorophenol	13.98	196	347172	48.95 ng	93
43) C525 2-Chloronaphthalene	14.27	162	961324	49.90 ng	96
44) C811 1,1'-Biphenyl	14.28	154	1178937	50.60 ng	# 97
45) C530 2-Nitroaniline	14.65	65	282803	42.71 ng	87
46) C540 Acenaphthylene	15.22	152	1481515	50.58 ng	98
47) C535 Dimethylphthalate	15.18	163	1043550	48.55 ng	98 81
48) C542 2,6-Dinitrotoluene	15.28	165	236344	46.74 ng	95
49) C550 Acenaphthene	15.62	153	885087	50.27 ng	
50) C545 3-Nitroaniline	14.65	138	320103	46.20 ng	••
51) C555 2,4-Dinitrophenol	15.77	184	167851	59.51 ng	# 51 90
52) C565 Dibenzofuran	15.95	168	1363638	50.71 ng	# 72
53) C570 2,4-Dinitrotoluene	16.07	165	326041	46.36 ng 46.60 ng	# <i>12</i> 93
54) C560 4-Nitrophenol 55) C590 Fluorene	15.98 16.60	109 166	122226 1031379	50.50 ng	93
55) C550 FIUOTEHE	10.00	T00	T03T3/3		, , , , , , , , , , , , , , , , , , ,

^{(#) =} qualifier out of range (m) = manual integration Z61105.D CLP.M Tue Jun 08 14:56:11 2004 PΡ

Data File : D:\ELINK\INSTR1\DATA\060804\Z61105.D Vial: 3 Operator: PM Acq On : 8 Jun 2004 13:34 Inst : I50Z-A Sample : SSTD050 Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jun 8 14:56 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
56)	C585 4-Chlorophenyl-phenyl	16.63	204	551026	47.51 ng	96
57)	C580 Diethylphthalate	16.60	149	1078600	49.74 ng	98
58)	C620 1,2 diphenylhydrazine	16.92	77	1250526	43.28 ng	84
59)	C595 4-Nitroaniline	16.77	138	288282	47.77 ng	86
61)	C610 4,6-Dinitro-2-methylp	16.82	198	205696	48.46 ng	100
62)	C615 n-Nitrosodiphenylamin	16.87	169	792069	51.42 ng	94
64)	C625 4-Bromophenyl-phenyle	17.47	248	292230	44.07 ng	90
65)	C630 Hexachlorobenzene	17.68	284	353040	46.27 ng	94
66)	E510 Atrazine	17.87	200	251195	64.93 ng	99
67)	C635 Pentachlorophenol	18.00	266	221650	53.24 ng	. 100
68)	C640 Phenanthrene	18.20	178	1382834	49.51 ng	98
69)	C645 Anthracene	18:28	178	1493669	53.44 ng	98
70)	C647 carbazole	18.55	167	1315300	50.74 ng	99
	C650 Di-n-butylphthalate	19.20		1613859	50.05 ng	98
	C655 Fluoranthene	20.00		1517231	53.32 ng	91
	C715 Pyrene	20.30	202	1511094	52.99 ng	89
75)	C710 benzidine	20.20	184	459758	94.54 ng	99
77)	C720 Butylbenzylphthalate	21.37		737807	48.79 ng	82
	C725 3,3'-Dichlorobenzidin	22.18		463977	47.32 ng	98
79)	C730 Benzo[a]anthracene	22.20	228	1360691	49.42 ng	95
80)	C735 Chrysene	22.27	228	1393221	47.77 ng	96
81)	C740 bis(2-Ethylhexyl)phth	22.42	149	1063001	52.52 ng	97
	C760 Di-n-octylphthalate	23.55	149	1660971	59.72 ng	100
84)	C765 Benzo[b]fluoranthene	24.18	252	1523741	57.65 ng	99
	C770 Benzo[k]fluoranthene	24.23	252	1277766	53.13 ng	97
86)	C775 Benzo[a]pyrene	24.80	252	1326487	52.84 ng	98
87)	C780 Indeno[1,2,3-cd]pyren		276	1607680	47.70 ng	95
	C785 Dibenz[a,h]anthracene	26.98	278	1487223	51.91 ng	99
89)	C790 Benzo[g,h,i]perylene	27.43	276	1392623	46.83 ng	96

Page 1

Quantitation Report

MS Integration Params: rteint.p

Quant Time: Jun 8 14:57 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 08 13:33:17 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\060804\Z61105.D (8 Jun 2004 13:34)

Internal Standards	R.T.	QIon	Response	Conc U		v(Min)
1) CI30 1,4-Dichlorobenzene-d	8.57	152	337679	40.00		0.00 88.85%
22) CI40 Naphthalene-d8	11.45	136	1260220	40.00	ng	0.00 92.97%
38) CI50 Acenaphthene-d8	15.55	164	669148	40.00	ng	0.00 90.23%
60) CI60 Phenanthrene-d10	18.17	188	1066319	40.00	ng	0.00 91.54%
73) CI70 Chrysene-d12	22.23	240	1060669	40.00	ng	0.00
82) CI75 Perylene-d12	24.92	264	931511	40.00	ng	89.76% 0.00 90.79%
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Rar	6.02 nge 21		804755 Recove	78.23 ry =		
6) CS45 Phenol-d5	7.97	99	1035554	76.97 ry =	ng	0.00
7) CS70 2-chlorophenol-d4	8.15	132		78.37	ng	0.00
13) CS75 1,2-dichlorobenzene-d	8.98	152	548603 Recove	79.36	ng	0.00
23) CS20 Nitrobenzene-d5	9.88		838345	71.30 ry =	ng	0.00
42) CS25 2-Fluorobiphenyl	14.10	172	1509720 Recove	79.06		0.00
63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Ran	17.07	330		75.83	-	
76) CS30 Terphenyl-d14	20.57	244	1379009 Recove	73.96		0.00
Target Compounds						value
2) C705 n-nitrosodidimethylam		74				85
4) E600 Benzaldehyde	7.65	77	456829	76.65	ng #	
5) C325 bis(2-Chloroethyl)eth 8) C315 Phenol			949323			
9) C330 2-Chlorophenol	8.00 8.18	94 120	1147274			91 83
10) C320 aniline	7.97	93	881013 1010568	78.29 77.29		45

(#) = qualifier out of range (m) = manual integration Z61106.D CLP.M Tue Jun 08 14:57:32 2004 PP

Data File : D:\ELINK\INSTR1\DATA\060804\Z61106.D Vial: 4 Acq On : 8 Jun 2004 14:09 Operator: PM Inst : 150Z-A Sample : SSTD080 Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jun 8 14:57 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration
Last Update : Tue Jun 08 13:33:17 2004
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
11)	C335 1,3-Dichlorobenzene	8.48	146	968056	78.88 ng		98
	C340 1,4-Dichlorobenzene	8.60	146	980301	78.80 ng		98
	C350 1,2-Dichlorobenzene	9.00	146	925202	79.71 ng		94
15)	C345 Benzyl alcohol	8.98	108	493074	79.19 ng	#	81
16)	C360 bis(2-chloroisopropyl	9.33	45	1520248	77.96 ng		97
17)	C355 2-Methylphenol	9.30	108	717408	77.57 ng		91
18)	E145 Acetophenone	9.55	105	1027784	77.82 ng	#	88
19)	C375 Hexachloroethane	9.68	117	337572	68.81 ng		88
	C370 N-Nitroso-di-n-propyl	9.67	70	636414	76.72 ng		82
21)	C365 4-Methylphenol	9.63	108	775121	76.03 ng		91
24)	C410 Nitrobenzene	9.92	77	870725	70.39 ng		82
25)	C415 Isophorone	10.48	82	1667762	72.60 ng		91
	C430 benzoic acid	11.22	122	458444	95.58 ng		91
	C420 2-Nitrophenol	10.65	139	446930	74.87 ng	#	78
28)	C425 2,4-Dimethylphenol	10.83	107	657489	70.11 ng		91
29)	C435 bis(2-Chloroethoxy)me	11.05	93	1068106	75.92 ng		96
		11.20	162	703510	77.09 ng		95
	C445 1,2,4-Trichlorobenzen	11.37	180	774808	74.73 ng		96
32)	• · · · · · · · · · · · · · · · · · · ·	11.50	128	2316698	76.49 ng		100
33)	C455 4-Chloroaniline	11.73	127	976216	76.50 ng		100
-	C460 Hexachlorobutadiene	11.97	225	407898	72.23 ng		97
	E655 Caprolactam	12.57	113	179378	78.10 ng		83
	C465 4-Chloro-3-methylphen	12.95	107	668499	71.62 ng		82
37)	C470 2-Methylnaphthalene	13.13	142	1496878	75.50 ng		96
39)	C510 Hexachlorocyclopentad	13.68	237	426141	86.54 ng		98
	C515 2,4,6-Trichlorophenol	13.90	196	467183	78.61 ng		92
	C520 2,4,5-Trichlorophenol	13.98	196	503198	78.23 ng		93
43)	C525 2-Chloronaphthalene	14.27	162	1361117	78.29 ng		96
44)	C811 1,1'-Biphenyl	14.28	154	1678457	79.71 ng	#	96
	C530 2-Nitroaniline	14.65	65	426738	72.98 ng	#	77
	C540 Acenaphthylene	15.22	152	2202251	82.93 ng		97
47)	C535 Dimethylphthalate	15.18	163	1499278	77.71 ng		97
48)	C542 2,6-Dinitrotoluene	15.28	165	368672	80.88 ng	#	78
	C550 Acenaphthene	15.62	153	1272932	79.62 ng		95
	C545 3-Nitroaniline	14.65	138	502757	80.73 ng	#	44
	C555 2,4-Dinitrophenol	15.77	184	250346	89.12 ng	#	43
52)	C565 Dibenzofuran	15.95	168	1861239	76.12 ng		91
	C570 2,4-Dinitrotoluene	16.08	165	507248	80.64 ng		85
54)	C560 4-Nitrophenol	15.98	109	177200	74.38 ng	#	80
55)	C590 Fluorene	16.60	166	1410116	76.33 ng		99

MS Integration Params: rteint.p
Quant Time: Jun 8 14:57 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 08 13:33:17 2004

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue .
56)	C585 4-Chlorophenyl-phenyl	16.65	204	784608	75.33 ng		87
57)	C580 Diethylphthalate	16.60	149	1430095	73.71 ng		97
58)	C620 1,2 diphenylhydrazine	16.92	77	1932955	76.60 ng		88
59)	C595 4-Nitroaniline	16.77	138	411189	75.60 ng	#	77
61)	C610 4,6-Dinitro-2-methylp	16.83	198	326881	82.59 ng		100
62)	C615 n-Nitrosodiphenylamin		169	1191933	84.39 ng		96
64)	C625 4-Bromophenyl-phenyle		248	450565	75.69 ng	#	78
65)	C630 Hexachlorobenzene	17.68	284	490786	70.98 ng		97
66)	E510 Atrazine	17.87		270269	75.40 ng		98
67)	C635 Pentachlorophenol	18.00		338556	85.74 ng		97
68)	C640 Phenanthrene	18.22	178	1929176	75.88 ng		97
69)	C645 Anthracene	18.28	178	2125117	82.79 ng	•	97
70)	C647 carbazole	18.55		1825375	76.43 ng		98
71)	C650 Di-n-butylphthalate	19.20		2262507	76.56 ng		98
72)	C655 Fluoranthene	20.00		2119523	79.89 ng		87
74)	C715 Pyrene	20.32	202	2095228	80.91 ng		85
75)	C710 benzidine	20.20	184	172903	34.21 ng		100
77)	C720 Butylbenzylphthalate	21.38		1087351	81.08 ng		90
78)	C725 3,3'-Dichlorobenzidin			631955	73.10 ng		98
	C730 Benzo[a]anthracene	22.20		1811969	73.90 ng		95
80)	C735 Chrysene	22.28	228	1958824	76.58 ng		95
81)	C740 bis(2-Ethylhexyl)phth		149	1534645	83.73 ng		97
83)	C760 Di-n-octylphthalate	23.55	149	2443287	93.70 ng		100
84)	C765 Benzo[b]fluoranthene	24.20	252	2033289	81.79 ng		95
85)	C770 Benzo[k]fluoranthene	24.25	252	1856360	85.66 ng		96
86)	C775 Benzo[a]pyrene	24.82	252	1865802	80.98 ng		95
87)	C780 Indeno[1,2,3-cd]pyren		276	2396551	79.07 ng		84
88)	C785 Dibenz[a,h]anthracene		278	2129215	82.30 ng		95
89)	C790 Benzo[g,h,i]perylene	27.45	276	2075554	77.55 ng		92

Data File : D:\ELINK\INSTR1\DATA\060804\Z61107.D Vial: 5 Operator: PM : 8 Jun 2004 14:43 Acq On : I50Z-A Sample : SSTD120 Inst Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jun 8 15:22 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration

Last Update : Tue Jun 08 13:33:17 2004 Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\060804\Z61105.D (8 Jun 2004 13:34)

Internal Standards	R.T.	QIon	Response	Conc U		v(Min) v(Ar)
1) CI30 1,4-Dichlorobenzene-d	8.57	152	320731	40.00	_	0.00 84.39%
22) CI40 Naphthalene-d8	11.47	136	1186183	40.00	ng	0.02 87.51%
38) CI50 Acenaphthene-d8	15.57	164	637685	40.00	ng	0.02 85.99%
60) CI60 Phenanthrene-d10	18.18	188	1013995	40.00	ng	0.02 87.05%
73) CI70 Chrysene-d12	22.23	240	986240	40.00	ng	0.00 83.46%
82) CI75 Perylene-d12	24.93	264	968637	40.00		0.02 94.40%
System Monitoring Compounds						
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran	6.02 ge 21			133.62 ry =	ng 89.08	0.00 %
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran	7.98 ge 10	99 - 110		128.67	ng 85.78	0.02 %
7) CS70 2-chlorophenol-d4	8.17 ge 33	132	1407132	129.50	ng 86.33	0.02 %
13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran	8.98		832607	125.96	ng 125.96	0.00 %#
23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran	9.88		1353870	125.30		0.00
42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran	14.10 ge 43	172 - 116	2150836 Recove	118.54 ry =	ng 118.54	0.00
	17.07 ge 10	330 - 123	381690 Recove		T	0.00 %
76) CS30 Terphenyl-d14	20.57		2050219	120.68	ng 120.68	0.00
Target Compounds					Q	value
2) C705 n-nitrosodidimethylam4) E600 Benzaldehyde	3.60 7.67	74 77	911675 571642	131.81 103.53		84 83
5) C325 bis(2-Chloroethyl)eth	8.13	93	1541844	131.93	ng #	74
8) C315 Phenol 9) C330 2-Chlorophenol	8.02 8.20	94 128	1794050 1409922	129.35 132.30	_	92 84
10) C320 aniline	7.98	93	1442344	116.21	_	39

^{(#) =} qualifier out of range (m) = manual integration Z61107.D CLP.M Tue Jun 08 15:22:37 2004

MS Integration Params: rteint.p

Quant Time: Jun 8 15:22 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 08 13:33:17 2004

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
11)	C335 1,3-Dichlorobenzene	8.48	146	1457657	124.35 ng		99
	C340 1,4-Dichlorobenzene	8.60	146	1486663	125.25 ng		98
	C350 1,2-Dichlorobenzene	9.02	146	1417595	127.66 ng		96
	C345 Benzyl alcohol	8.98	108	809963	136.56 ng	#	75
	C360 bis(2-chloroisopropyl	9.33	45	2401278	129.90 ng		89
	C355 2-Methylphenol	9.30	108	1161691	133.06 ng		94
18)	E145 Acetophenone	9.57	105	1563260	125.05 ng	#	89
19)	C375 Hexachloroethane	9.70	117	464704	102.90 ng		94
20)	C370 N-Nitroso-di-n-propyl	9.68	70	1040587	133.08 ng		82
21)	C365 4-Methylphenol	9.65	108	1229863	127.82 ng		93
24)	C410 Nitrobenzene	9.93	77	1390990	121.98 ng		85
	C415 Isophorone	10.50	82	2602423	122.65 ng		91
26)	C430 benzoic acid	11.28	122	776826	161.71 ng		91
27)	C420 2-Nitrophenol	10.67	139	738938	132.70 ng		86
	C425 2,4-Dimethylphenol	10.85	107	1096412	127.23 ng		93
	C435 bis(2-Chloroethoxy) me	11.05	. 93	1702115	129.40 ng		95
	C440 2,4-Dichlorophenol	11.22	162	1104243	128.93 ng		96
31)	C445 1,2,4-Trichlorobenzen	11.38	180	1184390	122.34 ng		95
	C450 Naphthalene	11.52	128	3507502	123.15 ng		99
33)	C455 4-Chloroaniline	11.77	127	1523328	127.50 ng		100
34)	C460 Hexachlorobutadiene	11.98	225	608861	117.14 ng		. 98
35)	E655 Caprolactam	12.62	113	295705	133.73 ng	•	85
	C465 4-Chloro-3-methylphen	12.97	107	1065732	124.17 ng		88
	C470 2-Methylnaphthalene	13.13	142	2250863	121.51 ng		94
39)	C510 Hexachlorocyclopentad	13.70	237	641643	132.04 ng		96
40)	C515 2,4,6-Trichlorophenol	13.92	196	711320	126.20 ng		94
41)	C520 2,4,5-Trichlorophenol	14.00	196	789061	129.06 ng		95
	C525 2-Chloronaphthalene	14.28	162	2022213	122.02 ng		92
	C811 1,1'-Biphenyl	14.30	154	2448608	121.96 ng	#	95
45)	C530 2-Nitroaniline	14.67	65	706815	131.46 ng	#	81
46)	C540 Acenaphthylene	15.23	152	3141817	122.63 ng		97
	C535 Dimethylphthalate	15.20	163	2208049	121.02 ng		97
48)	C542 2,6-Dinitrotoluene	15.30	165	568061	131.57 ng		81
	C550 Acenaphthene	15.63	153	1882637	123.41 ng	11	94
50)	C545 3-Nitroaniline	14.67	138	817081	138.69 ng	#	46
	C555 2,4-Dinitrophenol	15.78	184	414751	145.91 ng	#	46
52)	C565 Dibenzofuran	15.97	168	2812452	121.42 ng		87 90
	C570 2,4-Dinitrotoluene	16.10	165	815848	136.78 ng	#	
54)		16.00	109	270818	119.80 ng	Ħ	81 99
55)	C590 Fluorene	16.62	166	2115811	120.24 ng		

Data File: D:\ELINK\INSTR1\DATA\060804\Z61107.D Vial: 5 Acq On : 8 Jun 2004 14:43 Operator: PM Sample : SSTD120 Inst : I50Z-A Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Jun 8 15:22 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration

Last Update : Tue Jun 08 13:33:17 2004 Response via : Initial Calibration

	Comp	ound	R.T.	QIon	Response	Conc Unit	Qvalue
		4-Chlorophenyl-phenyl	16.65	204	1181462	121.14 ng	94
		Diethylphthalate	16.62	149	2298611	126.10 ng	98
58)		1,2 diphenylhydrazine	16.93	77	3042048	130.02 ng	84
59)		4-Nitroaniline	16.80	138	727877	143.76 ng	83
61)		4,6-Dinitro-2-methylp		198	544441	141.70 ng	100
		n-Nitrosodiphenylamin		169	1721842	125.86 ng	97
		4-Bromophenyl-phenyle	17.48	248	672838	120.75 ng	89
65)		Hexachlorobenzene	17.70	284	776065	120.03 ng	79
•		Atrazine	17.87	200	277423	82.54 ng	97
67)		Pentachlorophenol	18.00	266	497294	127.60 ng	96
68)		Phenanthrene	18.22	178	2713571	112.33 ng	97
69)		Anthracene	18.28	178	2852865	114.01 ng	97
70)		carbazole	18.57	167	2843823	124.18 ng	97
		Di-n-butylphthalate	19.22	149	3888485	136.77 ng	99
•		Fluoranthene	20.00	202	2783327	110.45 ng	94
		Pyrene	20.32	202	2777953	113.64 ng	94
		benzidine	20.22	184	293757	62.56 ng	100
		Butylbenzylphthalate	21.38	149	1732234	137.46 ng	96
		3,3'-Dichlorobenzidin	22.20	252	926313	116.77 ng	.98
79)		Benzo[a] anthracene	22.20	228	2771920	123.04 ng	95
		Chrysene	22.28	228	2848794	119.37 ng	
81)		bis(2-Ethylhexyl)phth	22.42	149	2383227	136.94 ng	98
83)		Di-n-octylphthalate	23.57	149	3970486	140.31 ng	100
		Benzo[b]fluoranthene	24.22	252	3394434	130.98 ng	94
		Benzo[k] fluoranthene	24.27	252	2694112	116.25 ng	95
		Benzo[a]pyrene	24.83	252	3029702	125.56 ng	95
87)		Indeno[1,2,3-cd]pyren	26.98	276	4165005	132.48 ng	85
		Dibenz[a,h]anthracene	27.03	278	3354425	124.80 ng	91
89)	C790	Benzo[g,h,i]perylene	27.48	276	3691217	133.57 ng	89

MS Integration Params: rteint.p

Quant Time: Jun 9 7:28 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:42:33 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\060804\Z61105.D (8 Jun 2004 13:34)

· ·						,
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	8.57	152	326920	40.00	ng	0.00 79.39%
22) CI40 Naphthalene-d8	11.47	136	1246592	40.00	ng	0.00 91.66%
38) CI50 Acenaphthene-d8	15.57	164	662944	40.00	ng	0.00 86.70%
60) CI60 Phenanthrene-d10	18.18	188	1039718	40.00	ng	0.00 84.44%
73) CI70 Chrysene-d12	22.23	240	1046562	40.00	ng	0.00 83.01%
82) CI75 Perylene-d12	24.93	264	1085200	40.00	ng	0.00 103.71%
System Monitoring Compounds						·
	6.02					0.00
			Recove			69%#
6) CS45 Phenol-d5	8.00					
	nge 10			-		32%#
7) CS70 2-chlorophenol-d4		132				0.00
		- 110				0.00
13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran			Recove			57%#
23) CS20 Nitrobenzene-d5						
Spiked Amount 100.000 Rai	9.90 nge 34		Recove			
42) CS25 2-Fluorobiphenyl	14.12		2912809	155.03	na	0.02
	nge 43			ry =		03%#
63) CS55 2,4,6-Tribromophenol	17.08			166.55		0.02
		- 123		ry =	_	•
76) CS30 Terphenyl-d14						0.02
		- 141	Recove			74%#
Target Compounds						Qvalue
2) C705 n-nitrosodidimethylam						82
4) E600 Benzaldehyde	7.67		533927 1992994	100.74		# 83
5) C325 bis(2-Chloroethyl)eth		93	1992994	167.18	ng	# 77
8) C315 Phenol	8.03	94				
9) C330 2-Chlorophenol	8.20	128	1890479		_	85
10) C320 aniline	8.05	93	1356729	108.66	ng	# 3

^{(#) =} qualifier out of range (m) = manual integration Z61108.D CLP.M Wed Jun 09 07:29:21 2004 PP

Data File : D:\ELINK\INSTR1\DATA\060804\Z61108.D Vial: 6 Operator: PM Acq On : 8 Jun 2004 15:18 Inst : I50Z-A Sample : SSTD160 Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Jun 9 7:28 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration
Last Update : Tue Jun 01 13:42:33 2004

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
11)	C335 1,3-Dichlorobenzene	8.48	146	1978616	166.01 ng		100
12)		8.60	146	1992124	164.71 ng		100
14)		9.02	146	1788295	156.87 ng		97
	C345 Benzyl alcohol	9.00	108	1045345	171.60 ng	#	80
	C360 bis(2-chloroisopropyl	9.35	45	3310812	175.45 ng		96
	C355 2-Methylphenol	9.32	108	1594891	178.05 ng		92
18)	E145 Acetophenone	9.58	105	2281649	180.59 ng		88
19)	C375 Hexachloroethane	9.70	117	538660	124.28 ng		99
	C370 N-Nitroso-di-n-propyl	9.68	70	1374266	172.63 ng	#	78
	C365 4-Methylphenol	9.67	108	1659829	170.85 ng		92
•	C410 Nitrobenzene	9.93	77	1910636	163.43 ng		81
	C415 Isophorone	10.50	82	3652791	167.81 ng		88
	C430 benzoic acid	11.33	122	1131334	212.26 ng		94
	C420 2-Nitrophenol	10.67	139	1018033	174.94 ng		82
	C425 2,4-Dimethylphenol	10.85	107	1490834	166.67 ng		91
	C435 bis (2-Chloroethoxy) me	11.07	93	2298565	166.77 ng		95
30)	C440 2,4-Dichlorophenol	11.22	162	1447622	161.20 ng		95
	C445 1,2,4-Trichlorobenzen	11.38	180	1550769	153.89 ng		94
	C450 Naphthalene	11.52	128	4451812	149.04 ng		99
- •	C455 4-Chloroaniline	11.82	127	1981980	157.98 ng		100
34)	C460 Hexachlorobutadiene	11.98	225	808141	152.34 ng		96
35)	E655 Caprolactam	12.65	113	431105	187.38 ng		85
	C465 4-Chloro-3-methylphen	12.98	107	1492968	169.17 ng		89
	C470 2-Methylnaphthalene	13.15	142	2980355	153.51 ng		98
39)	C510 Hexachlorocyclopentad	13.70	237	811955	157.28 ng		95 03
	C515 2,4,6-Trichlorophenol	13.92	196	974885	167.47 ng		92 93
	C520 2,4,5-Trichlorophenol	14.00	196	1080844	169.75 ng		93
	C525 2-Chloronaphthalene	14.28 14.30	162 154	2548116 2985076	148.77 ng 142.34 ng	···-#-	93
	C811 1,1'-Biphenyl C530 2-Nitroaniline	14.30	65	985488	179.74 ng	#	73
	C540 Acenaphthylene	15.23	152	4027129	150.36 ng	17	9 <u>.</u> 6
40) 47)	C535 Dimethylphthalate	15.23	163	3165226	168.03 ng		98
48)	C542 2,6-Dinitrotoluene	15.22	165	836043	187.18 ng		85
•	C550 Acenaphthene	15.63	153	2366788	149.02 ng		95
	C545 3-Nitroaniline	14.67	138	1114033	180.69 ng	#	45
	C555 2,4-Dinitrophenol	15.80	184	628099	205.07 ng	#	54
52)	C565 Dibenzofuran	15.97	168	3710334	155.48 ng	ır	86
-	C570 2,4-Dinitrotoluene	16.10	165	998996	158.92 ng		80
	C560 4-Nitrophenol	16.02	109	386019	170.55 ng	#	81
55)		16.62		2665977	147.53 ng	**	99.
;							

^{(#) =} qualifier out of range (m) = manual integration Z61108.D CLP.M Wed Jun 09 07:29:22 2004

MS Integration Params: rteint.p

Quant Time: Jun 9 7:28 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:42:33 2004

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
56)	C585 4-Chlorophenyl-phenyl	16.65	204	1445053	144.98 ng	95
57)		16.62	149	2646727	141.27 ng	97
58)	C620 1,2 diphenylhydrazine	16.93	77	3862897	156.93 ng	86
59)	C595 4-Nitroaniline	16.82	138	1023455	192.59 ng	# 81
61)	C610 4,6-Dinitro-2-methylp	16.85	198	734645	184.26 ng	100
62)	C615 n-Nitrosodiphenylamin	16.90	169	2195399	155.36 ng	96
64)	C625 4-Bromophenyl-phenyle	17.48		871816	154.66 ng	92
65)	C630 Hexachlorobenzene	17.70	284	930627	143.57 ng	79
66)	E510 Atrazine	17.87		146814	45.54 ng	95
67)	C635 Pentachlorophenol	18.00		692891	173.17 ng	97
68)	C640 Phenanthrene	18.22		3460260	139.60 ng	97
69)	C645 Anthracene	18.30	178	4001135	158.40 ng	97
70)		18.57		3459627	148.34 ng	97
	C650 Di-n-butylphthalate	19.22	,	4785727	161.42 ng	98
72)	· ·	20.00		3621807	141.86 ng	94
-	C715 Pyrene	20.32	202	3589768	140.59 ng	94
75)	C710 benzidine	20.22	184	325733	65.40 ng	100
	C720 Butylbenzylphthalate	21.38	149	2170553	157.15 ng	95
-	C725 3,3'-Dichlorobenzidin	22.22		1221028	150.66 ng	95
79)	C730 Benzo[a]anthracene	22.22		3552040	147.89 ng	95
80)	C735 Chrysene	22.30		3766926	150.03 ng	95
81)	C740 bis(2-Ethylhexyl)phth	22.42	149	3090706	162.84 ng	97
83)	C760 Di-n-octylphthalate	23.57	149	5090273	153.97 ng	/u 99
	C765 Benzo[b] fluoranthene	24.23		√5022617m	167.68 ng	/ low 94
85)	C770 Benzo[k] fluoranthene	24.28		3316703m	127.82 ng	619 94
	C775 Benzo[a]pyrene	24.85	252	4238402	156.07 ng	6 () 94
87)	C780 Indeno[1,2,3-cd]pyren	27.00	276	6217087	176.06 ng	79
88)	C785 Dibenz[a,h]anthracene	27.07	278	4957995	163.29 ng	88
89)	C790 Benzo[g,h,i]perylene	27.52	276	5589871	182.58 ng	86

Data File: D:\ELINK\INSTR1\DATA\060804\Z61108.D

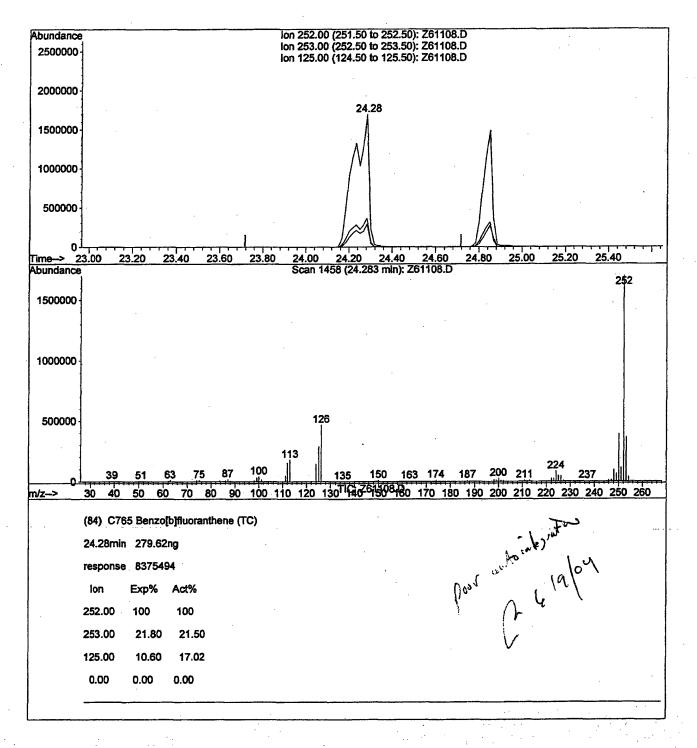
8 Jun 2004 15:18

SSTD160 Sample

Operator: PM Inst : I50Z-A

Vial: 6

Multiplr: 1.00 Misc MSamht#gmetionnPagams:27tennt.p


Quant Results File: temp.res

Method

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

: Tue Jun 01 13:43:07 2004 Last Update Response via : Multiple Level Calibration

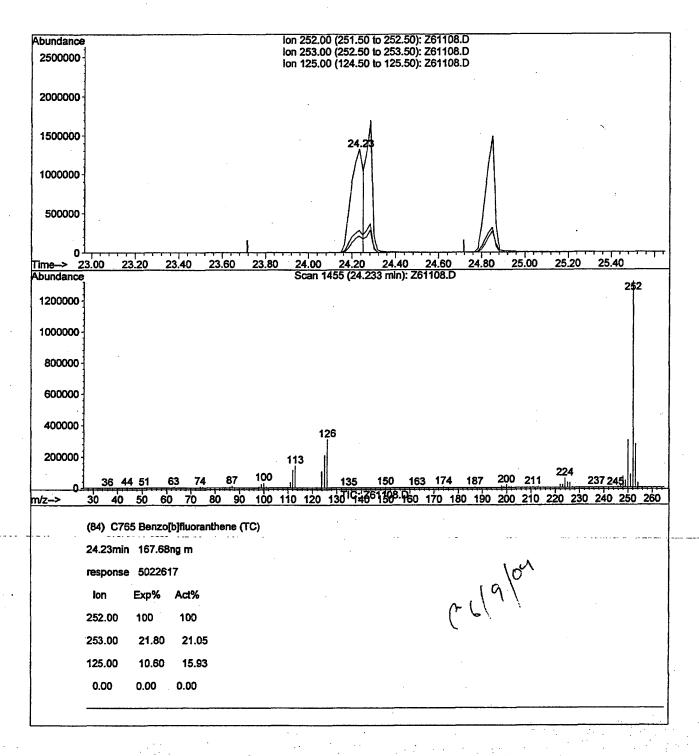
Data File: D:\ELINK\INSTR1\DATA\060804\Z61108.D

Vial: 6 Operator: PM

Acq On : 8 Jun 2004 15:18 Sample : SSTD160

Inst : I50Z-A Multiplr: 1.00

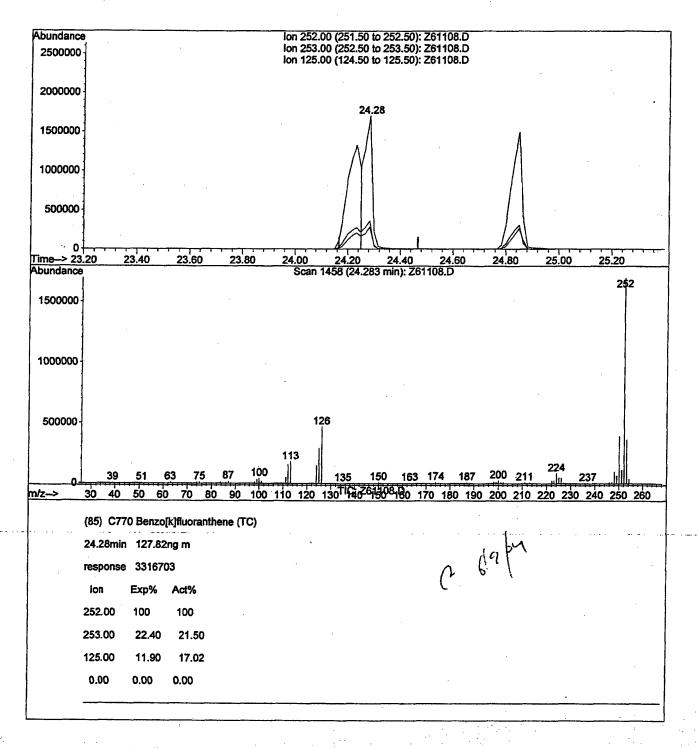
Misc : MSamhtægmetionnPagams:28tennt.p


Quant Results File: temp.res

Method : D:\ELINK

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration


Last Update : Tue Jun 01 13:43:07 2004 Response via : Multiple Level Calibration

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jun 01 13:43:07 2004 Response via : Multiple Level Calibration

15:18

<u>13:00</u>

SEMIVOLATILE 3/90 AND ASP '91 CONTINUING CALIBRATION CHECK

Lab	Name:	STL Buffa	ilo	Contract:	Lab Samp ID: <u>A4C0002778-</u>
Lab	Code:	RECNY	Case No	: SAS No.:	SDG No:
Lab	File 1	Id: <u>Z61751</u>	.RR	Calibration Date: 07/2	27/2004 Time: 11:18
Int	rument	ID: <u>150Z-</u>	A	<pre>Init. Calib. Date(s):</pre>	06/08/2004 06/08/2004

Init. Calib. Times:

COMPOUND	AVG RRF	RRF50	MIN RRF	% D	MAX % D
Phenol 4-Methylphenol Naphthalene	1.7580 1.1820 0.9530		0.8000 0.6000 0.7000		25.00
Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	0.3500 1.1300 0.6980 1.5770 1.2320 0.1210 1.3520 0.8290	0.6823 1.4685 1.1783 0.1318	0.2000 0.7000 0.5000 0.8000 0.6000 0.0100 0.8000 0.4000	2.200 6.900 4.400 -8.900	25.00 25.00 25.00 25.00 100.00

Data File : D:\ELINK\INSTR1\DATA\072704\Z61751.D

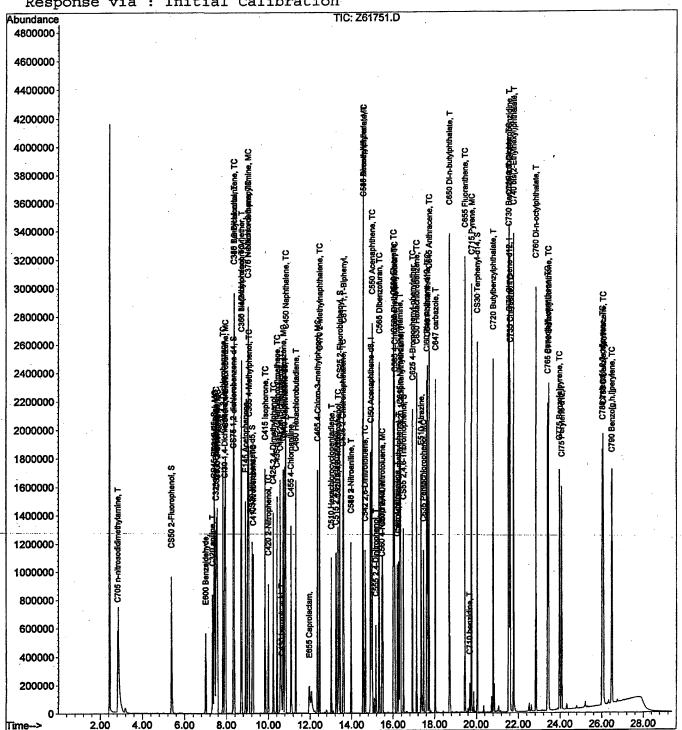
Vial: 2 Operator: PM

: 27 Jul 2004 11:18 Sample : SSTD050

: I50Z-A Inst

Misc

Multiplr: 1.00


MS Integration Params: rteint.p Quant Time: Jul 27 11:55 2004

Quant Results File: CLP.RES

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

: CLP BNA Calibration Title Last Update : Mon Jul 26 10:23:20 2004

Response via: Initial Calibration

Data File : D:\ELINK\INSTR1\DATA\072704\Z61751.D Vial: 2 Operator: PM Acq On : 27 Jul 2004 11:18 Sample : SSTD050 Inst : I50Z-A Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Time: Jul 27 11:55 2004

Ouant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072604\Z61729.D (26 Jul 2004 09:50)

Internal Standards	R.T.	QIon	Response	Conc Un	nits 1	Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	437981	40.00	ng	-0.02 105.52%
22) CI40 Naphthalene-d8	10.78	136	1441043	40.00	ng	-0.02 101.38%
38) CI50 Acenaphthene-d8	14.92	164	867392	40.00	ng	-0.02 102.85%
60) CI60 Phenanthrene-d10	17.62	188	1358748	40.00	ng	-0.02 100.64%
73) CI70 Chrysene-d12	21.57	240	1423023	40.00	ng	-0.02 116.20%
82) CI75 Perylene-d12	24.08	264	1218061	40.00	ng	-0.02 120.40%
6) CS45 Phenol-d5 Spiked Amount 150.000 Rai 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Rai 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Rai 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Rai 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Rai 63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Rai 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Rai	nge 21 7.40 nge 10 7.52 nge 33 8.32 nge 16 9.22 nge 34 13.42 nge 43 16.50 nge 10	- 110 152 - 110 82 - 114	438004 Recove 677569 Recove 1194261 Recove 223857 Recove 1213652	46.56 ery = 47.16 ery = 48.27 ery = 53.68 ery = 48.75 ery = 54.50 ery =	31. ng 31. ng 31. ng 48. ng 53. ng 48. ng	87%
Target Compounds 2) C705 n-nitrosodidimethylam	2.82	74	508698	54.70	ng	Qvalue 89
4) E600 Benzaldehyde	7.00	77	276988	41.79	_	# 87
5) C325 bis(2-Chloroethyl)eth			795223	50.15	_	# 77
8) C315 Phenol	7.42	94	878135	45.63		85
9) C330 2-Chlorophenol	7.55	128	704561	47.90		86
10) C320 aniline	7.32	93	723893	45.31	ng	92
						

(#) = qualifier out of range (m) = manual integration

Z61751.D CLP.M Tue Jul 27 11:55:27 2004

Data File : D:\ELINK\INSTR1\DATA\072704\Z61751.D Vial: 2 Acq On : 27 Jul 2004 11:18 Sample : SSTD050 Operator: PM Inst: I50Z-A Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jul 27 11:55 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004 Response via : Initial Calibration DataAcq Meth : METHOD.M

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
11)	C335 1,3-Dichlorobenzene	7.82	146	802352	50.03 ng		98
	C340 1,4-Dichlorobenzene	7.93	146	807836	49.58 ng		99
	C350 1,2-Dichlorobenzene	8.35	146	756081	49.53 ng		96
	C345 Benzyl alcohol	8.35	108	373823	46.32 ng	#	80
	C360 bis(2-chloroisopropyl	8.70	45	1277187	50.03 ng		50
	C355 2-Methylphenol	8.70	108	550441	45.51 ng		91
	E145 Acetophenone	8.90	105	777862	45.59 ng		90
	C375 Hexachloroethane	9.02	117	342319	64.42 ng		91
	C370 N-Nitroso-di-n-propyl	9.02	70	518847	49.32 ng		83
	C365 4-Methylphenol	9.05	108	622720	48.11 ng		94
24)		9.27	77	721513	54.87 ng		92
25)	C415 Isophorone	9.83	82	1356009	55.08 ng		91
26)	C430 benzoic acid	10.63	122	197765	30.88 ng		94
27)	C420 2-Nitrophenol	10.00	139	340429	51.20 ng		91
	C425 2,4-Dimethylphenol	10.23	107	486607	47.95 ng		91
29)	C435 bis(2-Chloroethoxy)me	10.42	93	855308	53.64 ng		97
30)	C440 2,4-Dichlorophenol	10.57	162	521738	50.57 ng		95
31)	C445 1,2,4-Trichlorobenzen	10.72	180	617576	53.83 ng		94
32)	C450 Naphthalene	10.83	128	1847088	53.80 ng		100
33)	C455 4-Chloroaniline	11.08	127	712292	49.35 ng		99
34)	C460 Hexachlorobutadiene	11.32	225	338170	56.66 ng		96
35)	E655 Caprolactam	11.95	113	91295	34.98 ng		88
36)	C465 4-Chloro-3-methylphen	12.35	107	533931	53.56 ng		86
	C470 2-Methylnaphthalene	12.45	142	1179181	52.90 ng		96
	C510 Hexachlorocyclopentad	13.02		291438	42.74 ng		96
40)	C515 2,4,6-Trichlorophenol	13.23	196	371678	49.06 ng		93
41)	C520 2,4,5-Trichlorophenol	13.33	196	391149	46.91 ng		93
43)		13.57	162	1112035	49.90 ng		97
	C811 1,1'-Biphenyl	13.60		13 54 128		#	97
-	C530 2-Nitroaniline	13.97	65	357128	50.50 ng	#	79
46)		14.55	152	1708331	49.18 ng		99
	C535 Dimethylphthalate	14.55	163	1304165	52.36 ng		98
	C542 2,6-Dinitrotoluene	14.65	165	292905	49.51 ng		82
-	C550 Acenaphthene	14.98	153	1048733	50.67 ng	,,	93
50)	C545 3-Nitroaniline	13.97	138	384908	47.66 ng	#	45
	C555 2,4-Dinitrophenol	15.17	184	144991	35.15 ng	#	52
	C565 Dibenzofuran	15.33	168	1594037	50.70 ng		93
53)	C570 2,4-Dinitrotoluene	15.48	165	416783	51.78 ng		80
54)	· · · · · · · · · · · · · · · · · ·	15.47	109	136623	48.02 ng		97
55)	C590 Fluorene	16.02	166	1214057	51.44 ng		99 -

^{(#) =} qualifier out of range (m) = manual integration Z61751.D CLP.M Tue Jul 27 11:55:29 2004 PP

Vial: 2 Data File : D:\ELINK\INSTR1\DATA\072704\Z61751.D Operator: PM : 27 Jul 2004 11:18 Acq On Inst : I50Z-A Sample : SSTD050 Multiplr: 1.00

Misc

MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jul 27 11:55 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

: CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

	Compo	ound	R.T.	QIon	Response	Conc Unit	Qva	alue
56)	C585	4-Chlorophenyl-phenyl	16.07	204	667428	51.82 ng		98
57)		Diethylphthalate	16.05	149	1353138	56.46 ng		95
58)		1,2 diphenylhydrazine	16.37	77	1663361	53.10 ng		88
59)		4-Nitroaniline	16.20	138	322012	45.43 ng		80
61)	C610	4,6-Dinitro-2-methylp	16.27	198	250849	47.96 ng		100
62)		n-Nitrosodiphenylamin	16.32	169	895827	48.11 ng		97
64)		4-Bromophenyl-phenyle	16.93	248	408297	57.44 ng	#	80
65)		Hexachlorobenzene	17.13	284	478912	58.16 ng		92
66)	E510	Atrazine	17.35		257486	63.77 ng		96
67)	C635	Pentachlorophenol	17.47	266	234988	44.37 ng		99
68)	C640	Phenanthrene	17.65	178	1689781	53.69 ng		98
69)	C645	Anthracene	17.73	178	1836736	54.87 ng		98
70)	C647	carbazole	18.03	167	1653110	54.54 ng		.99
71)	C650	Di-n-butylphthalate	18.70		2121338	54.87 ng		99
72)	C655	Fluoranthene	19.45		1768992	53.90 ng		98
74)		Pyrene	19.77	202	1925423	55.18 ng		95
		benzidine	19.68		132789	19.73 ng		96
77)		Butylbenzylphthalate	20.80		908594	48.90 ng		89 98
78)		3,3'-Dichlorobenzidin	21.55		641567	59.17 ng		98 96
•		Benzo[a] anthracene	21.53		1717122	53.11 ng		96 97
80)		Chrysene	21.60		1814918	52.74 ng		97 96
81)		bis(2-Ethylhexyl)phth	21.77	149	1341065	52.06 ng	•	100
83)		Di-n-octylphthalate	22.83		2141006	56.19 ng		98
84)		Benzo[b]fluoranthene	23.40		1744741	50.23 ng		98
85)		Benzo[k]fluoranthene	23.45		1661014	57.22 ng		99
86)		Benzo[a]pyrene	23.97		1579064	51.43 ng		99 97
87)		- · · · ·	26.03	276	1981863	49.59 ng	•	
88)		Dibenz[a,h]anthracene	26.07		1826430	52.80 ng		99.
89)	C790	Benzo[g,h,i]perylene	26.48	276	1715024	49.15 ng		99

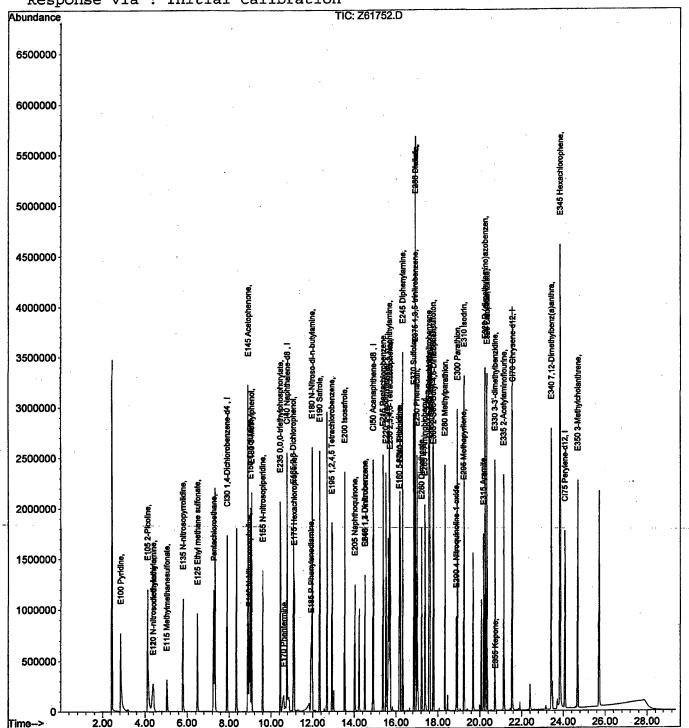
: I50Z-A

Vial: 2

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\072704\Z61752.D

Acq On : 27 Jul 2004 11:58


Operator: PM Inst Sample : SSTD050 Multiplr: 1.00 Misc : APIX

MS Integration Params: rteint.p Quant Time: Jul 27 12:42 2004

Quant Results File: CLPAPIX.RES

: D:\ELINK\INSTR1\QUANT\CLPAPIX.M (RTE Integrator) Method

Title : CLP APENDIX IX 2ul inj. Last Update : Tue Jul 27 09:10:52 2004 Response via: Initial Calibration

R.T. QIon Response Conc Units Dev (Min)

Quantitation Report

Vial: 2 Data File: D:\ELINK\INSTR1\DATA\072704\Z61752.D Operator: PM Acg On : 27 Jul 2004 11:58 Inst : I50Z-A Sample : SSTD050 Multiplr: 1.00 : APIX Misc

MS Integration Params: rteint.p

Ouant Results File: CLPAPIX.RES Quant Time: Jul 27 12:42 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLPAPIX.M (RTE Integrator)

Title : CLP APENDIX IX 2ul inj. Last Update : Tue Jul 27 09:10:52 2004 Response via : Initial Calibration

DataAcq Meth : METHOD.M

Internal Standards

IS QA File : D:\ELINK\INSTR1\DATA\072604\Z61731.D (26 Jul 2004 10:58)

			-	- :		Rcv(Ar)
1) CI30 1,4-Dichl	orobenzene-d	7.90	152	513702	40.00 ng	-0.02 124.74%
19) CI40 Naphthale	ne-d8	10.78	136	1937369	40.00 ng	-0.02 120.49%
29) CI50 Acenaphth	ene-d8	14.92	164	1087672	40.00 ng	-0.02 120.86%
45) CI60 Phenanthr	ene-d10	17.63	188	1811704	40.00 ng	0.00 122.24%
61) CI70 Chrysene-	d12	21.57	240	1827174	40.00 ng	-0.02 129.01%
64) CI75 Perylene-	d12	24.08	264	1558186	40.00 ng	-0.02 139.35%
System Monitoring C	ompounds					
	- .			, « .		Qvalue
Target Compounds	n .	0.00	- 88		No Calib	#
2) C268 1,4-Dioxa: 3) E100 Pyridine	iie	2.83	79	807015	50.01 ng	" 96
4) E105 2-Picolin	_	4.12	93	922808	51.75 ng	95
5) Ello N-nitroso		4.38	88	411891	44.59 ng	100
6) E120 N-nitroso		4.38	88	411891	44.59 ng	100
7) E115 Methylmet		5.03	80	264408	50.40 ng	96
8) E135 N-nitroso		5.80	102	414834	46.41 ng	97
9) E125 Ethyl met		6.48	79	740466	48.20 ng	100
10) Pentachloroeth		7.27	167	321927	51.19 ng	93
11) E145 Acetophen		8.90	105	1116176	47.64 ng	95
12) E150 O-Toluidi		9.02	106	1286166		99 97
13) E140 N-Nitroso		8.95	56	574881	47.45 ng	97 97
14) E130 3-Methylp		9.07	108	944139	48.66 ng 46.50 ng	97
15) E155 N-nitroso		9.60	42	695562 414259	49.54 ng	~ (_94
16) E235 0,0,0-tri	ernyipnospno	10.45 10.62	198 58	2297246m	42.83 ng	(27/~99
17) E170 Phentermi		11.93	108	801122	59.80 ng	7 / 97
18) E185 P-Phenyle 20) E175 Hexachlor		11.12	213	465216	54.38 ng	98
20) E1/5 Hexachion 21) E165 2,6-Dichl		11.12	162	692017	50.19 ng	95
21) E183 2,6-DICHI 22) E180 N-Nitroso		11.98	84	607188	48.68 ng	95
23) E190 Safrole	ar ii bacjia	12.35		665439	49.27 ng	94
24) E195 1,2,4,5 T	etrachlorobe	12.93	216	779650	53.78 ng	100

^{(#) =} qualifier out of range (m) = manual integration Z61752.D CLPAPIX.M Tue Jul 27 12:43:04 2004

Vial: 2 Data File : D:\ELINK\INSTR1\DATA\072704\Z61752.D Operator: PM Acg On : 27 Jul 2004 11:58 Inst : I50Z-A : SSTD050 Sample Multiplr: 1.00 Misc : APIX

MS Integration Params: rteint.p

Ouant Results File: CLPAPIX.RES Ouant Time: Jul 27 12:42 2004

Quant Method : D:\ELINK\INSTR1\QUANT\CLPAPIX.M (RTE Integrator)

Title : CLP APENDIX IX 2ul inj. Last Update : Tue Jul 27 09:10:52 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

	Compour	nd	R.T.	QIon	Response	Conc Unit	Qva	lue
25)	E200 Is	sosafrole	13.55	162	685134	49.17 ng		97
26)		aphthoquinone	14.03	158	428481	70.71 ng		82
27)		,3-Dinitrobenzene	14.52	168	334410	54.62 ng		94
28)		4-Dinitrobenzene	14.52	168	334410	47.71 ng	#	82
	•	entachlorobenzene	15.38	250	739269	55.85 ng		93
31)		-Naphthylamine	15.52	143	1460540	51.17 ng		100
32)		3,4,6-Tetrachloroph	15.72	232	447025	52.50 ng		100
		-Naphthylamine	15.68	143	1614116	55.16 ng		99
34)		nionazine	16.18	97	435976	57.15 ng		89
35)		iphenylamine	16.32	169	1363854	52.10 ng		99
36)	E370 St	<u> </u>	16.85	322	358344	54.77 ng		82
37)		3,5-trinitrobenzene	16.92	213	244150	61.64 ng		97
38)	E255 Di		16.93	43	999599	53.44 ng		62
39)	E380 Pł		16.93	75	1624032	53.45 ng		87
40)		-Nitro-o-toluidine	16.17	152	544229	53.61 ng		93
41)		nenacitin	17.02	108	811612	52.19 ng		91
42)		imethoate	17.23	87	621664	65.91 ng		97
43)		entachloronitrobenze	17.58	237	209128	53.92 ng	#	73
44)		-Aminobiphenyl	17.38	169	1597377	53.50 ng		100
46)		ronamide	17.60	173	672938	48.25 ng		96
47)		-Sec-Butyl-4,6-Dinit	17.80	211	430964	44.08 ng		94
48)		isulfoton	17.78	88	1023023	49.40 ng		96
49)	E280 Me	ethylparathion	18.35	109	540713	71.47 ng	#	86
		arathion	18.95	97	443715	58.09 ng		93
		-Nitroquinoline-1-ox	18.90	190	123040	89.36 ng	#	76
		ethapyrilene	19.25	58	635027	64.37 ng		100
53)	E310 Is		19.27	193	314533	53.47 ng		98
54)	E315 A	ramite	20.18	185	242003	64.25 ng		89
55)	E320 P-	- (dimethylamino) azob	20.27	120	744202	76.50 ng	•	83
56)	E325 Cl	nlorobenzilate	20.35	139	829413	48.27 ng		89
57)	E330 3-	-3'-dimethylbenzidin	20.73	212	1196536	62.76 ng		97
58)		amphur	20.35	218	4063m	2.36 ng	#. /	89
59)			20.75	272	18467	38.89 ng	10%	
		-Acetylaminoflourine	21.15	181	914756	44.41 ng		94
62)	E340 7,	,12-Dimethylbenz(a)a	23.43	256	1086465	46.42 ng		100
63)		exachlorophene	23.85	196	986140	398.68 ng		95
65)	E350 3-	-Methylcholanthrene	24.70	252	427128	49.14 ng		100

Data File : D:\ELINK\INSTR1\DATA\072704\Z61752.D

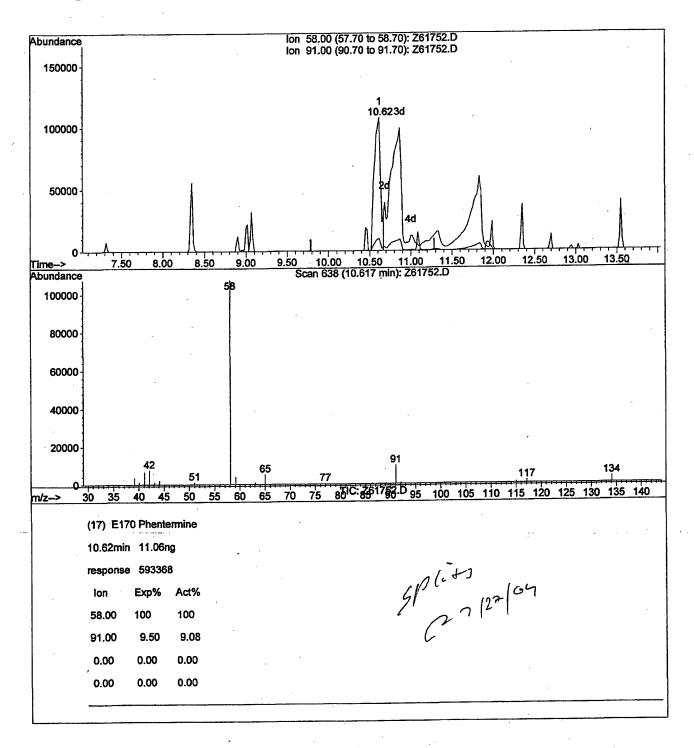
Vial: 2
Operator: PM

Acq On : 27 Jul 2004 11:58 Sample : SSTD050

Inst : I50Z-A

Sample : SSTD050 Misc : APIX

Multiplr: 1.00


Wsamntegmetion1Parama:32tannt.p

Quant Results File: temp.res

Method

: D:\ELINK\INSTR1\QUANT\CLPAPIX.M (RTE Integrator)

Title : CLP APENDIX IX 2ul inj.
Last Update : Tue Jul 27 09:09:40 2004
Response via : Multiple Level Calibration

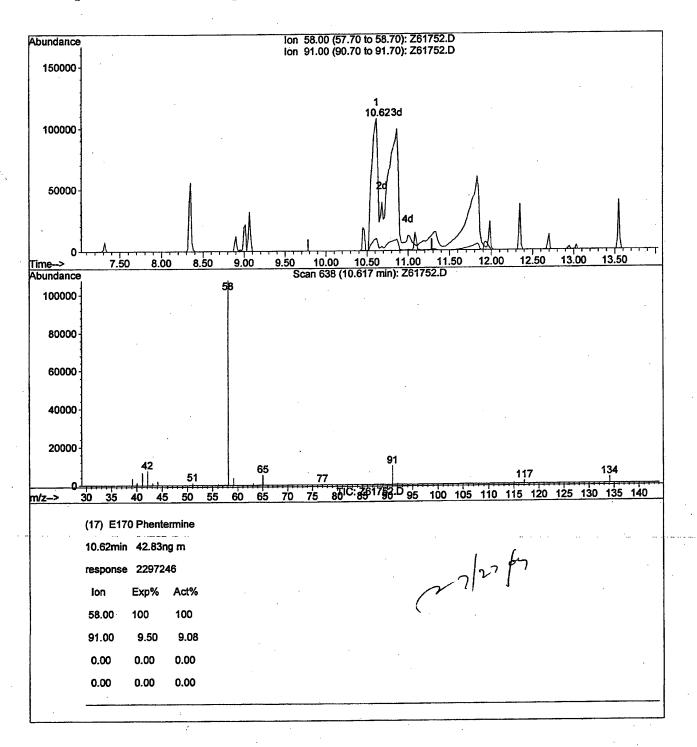
Data File : D:\ELINK\INSTR1\DATA\072704\Z61752.D

Vial: 2

: 27 Jul 2004 Acq On

Operator: PM : I50Z-A Inst

Sample : SSTD050 Misc : APIX


Multiplr: 1.00

Manintegnetion1Parana:41t2004.p

Quant Results File: temp.res

: D:\ELINK\INSTR1\QUANT\CLPAPIX.M (RTE Integrator) Method

: CLP APENDIX IX 2ul inj. Title : Tue Jul 27 09:09:40 2004 Last Update Response via : Multiple Level Calibration

: I50Z-A

Vial: 2

Quantitation Report

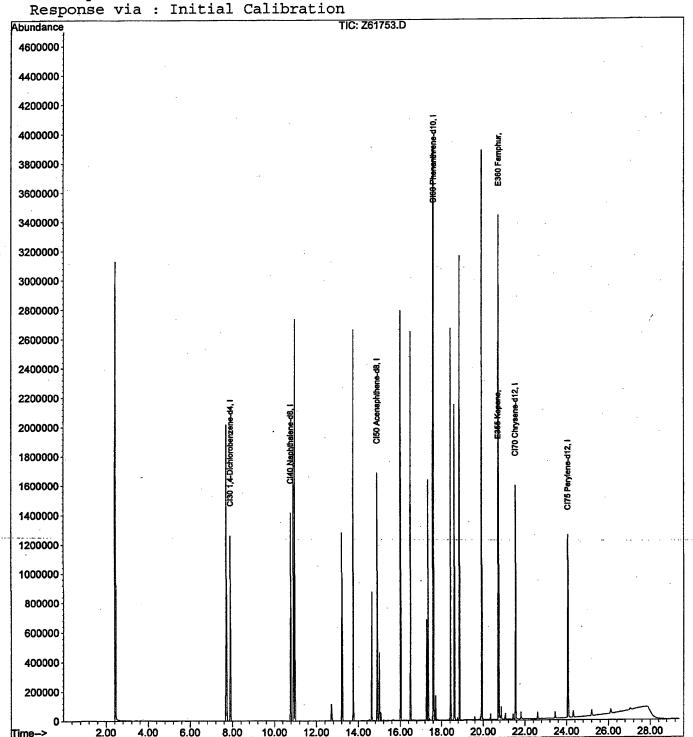
Data File : D:\ELINK\INSTR1\DATA\072704\Z61753.D

: 27 Jul 2004 12:32 Acq On

Operator: PM Inst : SSTD050 Multiplr: 1.00 : ADD#1

MS Integration Params: rteint.p

Quant Results File: CLPADD#1.RES Quant Time: Jul 28 7:21 2004


: D:\ELINK\INSTR1\QUANT\CLPADD#1.M (RTE Integrator) Method

Title : CLP ADD#1

Sample

Misc

Last Update : Tue Jul 27 08:30:17 2004

MS Integration Params: rteint.p

Quant Time: Jul 28 7:21 2004 Quant Results File: CLPADD#1.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLPADD#1.M (RTE Integrator)

Title : CLP ADD#1

Last Update : Wed Jul 28 07:21:28 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : 50 level for IS QA unknown. No recoveries calculated.

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.90	152	368302	40.00 ng	-0.28 NA%
2) CI40 Naphthalene-d8	10.78	136	1252009	40.00 ng	-0.30 NA%
3) CI50 Acenaphthene-d8	14.90	164	736430	40.00 ng	-0.32 NA%
4) CI60 Phenanthrene-d10	17.62	188	1359281	40.00 ng	-0.27 NA%
7) CI70 Chrysene-d12	21.55	240	1305162	40.00 ng	-0.33 NA%
8) CI75 Perylene-d12	24.07	264	1135479	40.00 ng	-0.42 NA%
System Monitoring Compounds		•			
Target Compounds					Qvalue
5) E360 Famphur	20.73	218	1194247	93.40 ng	# 83
6) E355 Kepone	20.72	272	390636	95.33 ng	98

SEMIVOLATILE 3/90 AND ASP '91 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: Lab Samp ID: A4C0002930-1

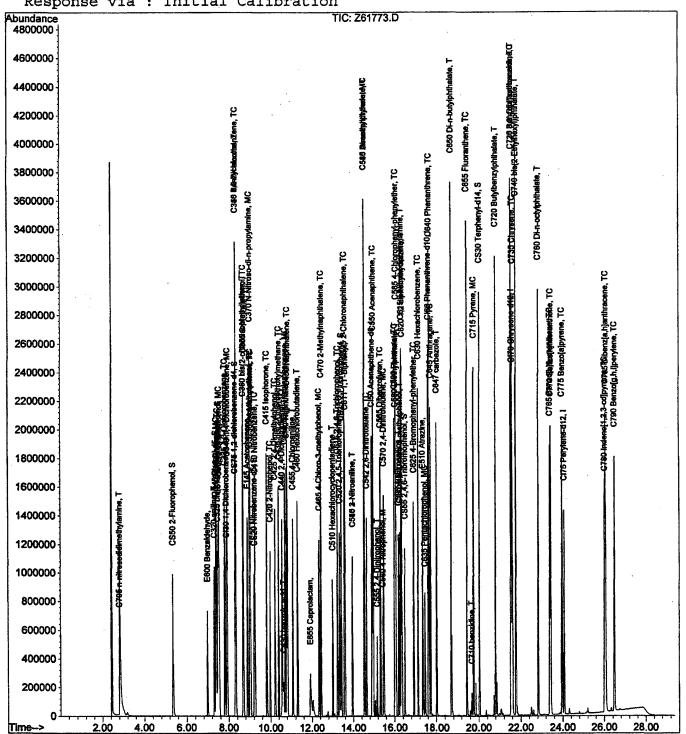
Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>Z61773.RR</u> Calibration Date: <u>07/28/2004</u> Time: <u>09:17</u>

Init. Calib. Times: <u>13:00</u> <u>15:18</u>

COMPOUND	AVG RRF	RRF50	MIN RRF	% D	MAX % D
Phenol 4-Methylphenol Naphthalene	1.7580 1.1820 0.9530		0.8000 0.6000 0.7000		25.00
Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	0.3500 1.1300 0.6980 1.5770 1.2320 0.1210 1.3520 0.8290	1.1662 0.7202	0.2000 0.7000 0.5000 0.8000 0.6000 0.0100 0.8000 0.4000		25.00 25.00 25.00 25.00 100.00 25.00

Data File: D:\ELINK\INSTR1\DATA\072804\Z61773.D Vial: 2 Operator: PM : 28 Jul 2004 09:17 Acq On : I50Z-A Sample : SSTD050 Inst Multiplr: 1.00 Misc


MS Integration Params: rteint.p

Quant Results File: CLP.RES Quant Time: Jul 28 9:51 2004

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

: CLP BNA Calibration Title Last Update : Tue Jul 27 12:22:42 2004

Response via: Initial Calibration

PP

Page 1

Quantitation Report

MS Integration Params: rteint.p

Quant Time: Jul 28 9:51 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

Internal Standards	R.T.	QIon	Response	Conc Un	its D R	ev(Min) cv(Ar)
1) CI30 1,4-Dichlorobenzene-d	7.88	152	421372	40.00		
22) CI40 Naphthalene-d8		136	1462297		ng	96.21% 0.00 101.48%
38) CI50 Acenaphthene-d8	14.90	164	832876	40.00	ng	-0.02 96.02%
60) CI60 Phenanthrene-d10	17.62	188	1424219	40.00	ng	0.00 104.82%
73) CI70 Chrysene-d12			1404848		_	0.00 98.72%
82) CI75 Perylene-d12	24.07	264	1231936	40.00	ng	-0.02 101.14%
6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5	ge 21 7.38 ge 10 7.50 ge 33 8.30 ge 16 9.22	- 110 99 - 110 132 - 110 152 - 110 82	Recove 658165	ry = 48.04 ry = 48.65 ry = 49.69 ry = 51.39	33.0 ng 32.0 ng 32.4 ng 49.6	-0.02 3% -0.02 3%# -0.02 59% 0.00
Spiked Amount 100.000 Ran	ge 10	- 123	Recove	ry =	33.7	14%
Target Compounds 2) C705 n-nitrosodidimethylam	2.80	74 77 93 94 128	508841 309974 782710 901046 690760	56.87 48.60 51.30 48.66	ng ng ng ng	Qvalue 88 # 87 # 75 87

(#) = qualifier out of range (m) = manual integration

Z61773.D CLP.M Wed Jul 28 09:51:56 2004

MS Integration Params: rteint.p

Quant Time: Jul 28 9:51 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
11) C335 1,3-Dichlorobenzene	7.80	146	784626	50.85 ng		98
12) C340 1,4-Dichlorobenzene	7.93	146	801655	51.14 ng		98
14) C350 1,2-Dichlorobenzene	8.33		742550	50.56 ng		96
15) C345 Benzyl alcohol	8.33	108	376493	48.49 ng	#	79
16) C360 bis(2-chloroisopropyl	8.68	45	1271493	51.77 ng		78
17) C355 2-Methylphenol	8.70	108	561127	48.22 ng		92
18) E145 Acetophenone	8.90	105	775586	47.25 ng		91
19) C375 Hexachloroethane	9.02	117	332616	65.06 ng		93
20) C370 N-Nitroso-di-n-propyl	9.00	70	507966	50.19 ng		83
21) C365 4-Methylphenol	9.03	108	603211	48.43 ng		91
24) C410 Nitrobenzene	9.25	77	712835	53.43 ng		87
25) C415 Isophorone	9.82	82	1384363	55.41 ng		91
26) C430 benzoic acid	10.63		242501	37.32 ng		92
27) C420 2-Nitrophenol	9.98		339302	50.29 ng		85
28) C425 2,4-Dimethylphenol	10.22		484899	47.09 ng		92
29) C435 bis(2-Chloroethoxy)me	10.40		836145	51.68 ng		96
30) C440 2,4-Dichlorophenol	10.57		520818	49.75 ng		98
31) C445 1,2,4-Trichlorobenzen	10.70		585795	50.31 ng		93
32) C450 Naphthalene	10.82		1814442	52.08 ng		100
33) C455 4-Chloroaniline	11.08		743294	50.75 ng		99
34) C460 Hexachlorobutadiene	11.30		329890	54.47 ng		96
35) E655 Caprolactam	11.92		141137	53.29 ng		89
36) C465 4-Chloro-3-methylphen	12.35		530931	52.49 ng		95
37) C470 2-Methylnaphthalene	12.45		1194743	52.82 ng		95
39) C510 Hexachlorocyclopentad	13.00		293925	44.89 ng		94
40) C515 2,4,6-Trichlorophenol	13.23		364776	50.14 ng		94
41) C520 2,4,5-Trichlorophenol	13.33		396082	49.47 ng		94
43) C525 2-Chloronaphthalene	13.57		1108781	51.82 ng	п	98 96
44) C811 1,1'-Biphenyl	13.60		1343744	51.74 ng	#	90
45) C530 2-Nitroaniline	13.97		371279	54.68 ng		98
46) C540 Acenaphthylene	14.53		1677196	50.29 ng		98
47) C535 Dimethylphthalate	14.53		1272540	53.21 ng		88
48) C542 2,6-Dinitrotoluene	14.65		306670	53.99 ng		95
49) C550 Acenaphthene	14.97		1025057	51.58 ng 51.12 ng	#	49
50) C545 3-Nitroaniline	13.97		396366 162213	40.96 ng	#	61
51) C555 2,4-Dinitrophenol	15.17			52.31 ng	11	98
52) C565 Dibenzofuran	15.32		1578960 418315	54.12 ng		85
53) C570 2,4-Dinitrotoluene	15.48		136780	50.06 ng	#	81
54) C560 4-Nitrophenol 55) C590 Fluorene	15.45 16.00		1194528	52.71 ng	π	99
22) C220 LIMOTENE	16.00	T00				

^{(#) =} qualifier out of range (m) = manual integration Z61773.D CLP.M Wed Jul 28 09:51:58 2004 PP

MS Integration Params: rteint.p

Quant Time: Jul 28 9:51 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Mon Jul 19 07:09:07 2004

Response via : Initial Calibration

DataAcq Meth : METHOD.M

	Compound			QIon	Response	Conc Unit	Qvalue
56)	C585	4-Chlorophenyl-phenyl	16.07	204	700132	56.61 ng	98
57)		Diethylphthalate	16.03	149	1320837	57.39 ng	93
58)		1,2 diphenylhydrazine	16.35	77	1589065	52.83 ng	85
59)		4-Nitroaniline	16.20	138	349617	51.37 ng	82
61)	C610	4,6-Dinitro-2-methylp	16.27	198	277753	50.66 ng	100
62)		n-Nitrosodiphenylamin	16.32	169	936575	47.99 ng	96
64)	C625	4-Bromophenyl-phenyle	16.92	248	387124	51.96 ng	93
65)		Hexachlorobenzene	17.13	284	487731	56.51 ng	85
66)	E510	Atrazine	17.35	200	257155	60.76 ng	98
67)	C635	Pentachlorophenol	17.45	266	237672	42.82 ng	99
68)	C640	Phenanthrene	17.65	178	1652108	50.08 ng	98
69)		Anthracene	17.72	178	1723505	49.12 ng	97
70)	C647	carbazole	18.02	167	1543706	48.59 ng	99
71)		Di-n-butylphthalate	18.70		2342695	57.81 ng	99
72)		Fluoranthene	19.45	202	1883452	54.75 ng	99
74)		Pyrene	19.77	202	1840093	53.42 ng	87
75)		benzidine	19.68		126469	19.04 ng	96
77)		Butylbenzylphthalate	20.80		957261	52.19 ng	95
78)		3,3'-Dichlorobenzidin	21.53		592292	55.33 ng	99
		Benzo[a] anthracene	21.53	228	1705169	53.43 ng	96
80)		Chrysene	21.60	228	1746989	51.42 ng	97
81)		bis(2-Ethylhexyl)phth	21.77		1408613	55.39 ng	98
83)		Di-n-octylphthalate	22.83	149	2223169	57.69 ng	99
84)		Benzo[b] fluoranthene	23.40		1871259	53.27 ng	97
85)		Benzo[k]fluoranthene	23.43		1515431	51.62 ng	99
86)		Benzo[a]pyrene	23.97		1560338	50.25 ng	99
87)	C780		26.02		2022521	50.04 ng	96
		Dibenz[a,h]anthracene	26.07		1798641	51.41 ng	99
89)	C790	Benzo[g,h,i]perylene	26.48	276	1672760	47.40 ng	100

RAW QC DATA

DFTPP Tune Evaluation

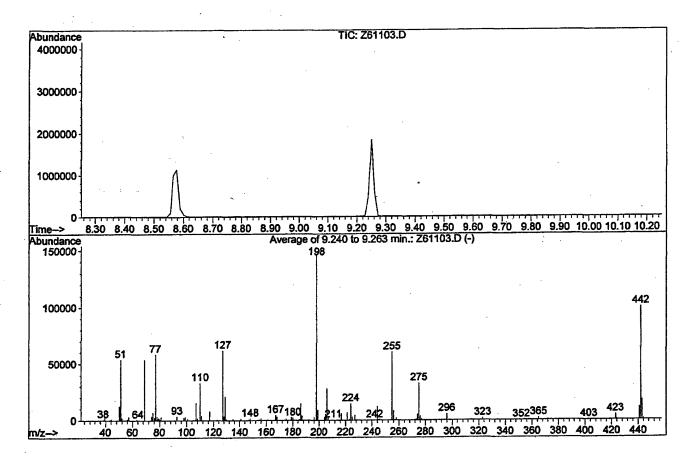
Data File : D:\ELINK\INSTR1\DATA\060804\Z61103.D

: 8 Jun 2004 12:33

Sample : DFTPP 50NG

Misc

Operator: PM Inst.


: I50Z-A

Multiplr: 1.00

MS Integration Params: rteint.p

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

: CLP BNA Calibration Title

Peak Apex is scan: 701 (9.25 min)

A	Average of 3 scans: 700,701,702 minus background scan 681 (9.02 min)											
-	Target	Rel. to	Lower	Upper	Rel.	Raw	Result					
	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail					
_								<u>.</u>				
-1	51	198	30	60	36.7	53872	PASS					
-1	68	69	Ö	2	0.0	0	PASS	T				
	69	198	0	100	36.7	53875	PASS	l				
	70	69	0	2	0.0	0	PASS	l				
-	127	198	40	60	42.2	61912	PASS					
	197	198	0	1	0.0	0	PASS	l				
١	198	198	100	100	100.0	146699	PASS	l				
1	199	198	5	9	6.2	9099	PASS	l				
-	275	198	10	30	22.3	32713	PASS	١				
1	365	198	1	100	1.4	1994	PASS					
1	441	198	0	100	7.8	11459	PASS					
- 1	442	198	40	110	68.2	100014	PASS					
	443	442	17	23	17.7	17703	PASS					

	9.240 to	9.263 min.:	Z61103.	D			, 455
DFTPP 50NG Modified:su	.he wa at a d						
		/	المحمد ما	/	abund.	m/z	abund.
m/z	abund.	m/z	abund.	m/z	1830	147.95	1759
39.05	4152	76.05	2529	108.00		156.00	1602
44.05	1099	77.00	58471	109.95	33128		
50.10	12393	78.10	3356	111.05	3945	167.00	4653
51.05	53872	79.05	1876	116.95	7901	167.95	3173
52.10	2118	80.00	1599	123.00	739	175.00	1297
56.05	914	81.00	2929	127.00	61912	178.95	2785
57.00	3064	92.95	3578	128.05	3877	180.00	2233
63.05	1204	98.00	2283	128.95	21036	185.05	983
68.95	53875	99.00	2944	130.00	1087	186.00	14711
74.10	3635	101.00	1418	135.00	1246	186.95	3890
75.00	7095	106.95	15426	141.00	1463	196.00	2588
Average of	9.240 to	9.263 min.:	Z61103.	D			
DFTPP 50NG				•			
Modified:su	btracted			·			
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
197.90	146699	226.95	4499	277.00	1240		
198.95	9099	244.00	12130	296.00	5438		
204.00	2703	245.05	865	323.00	1703		
205.00	5464	245.95	1129	364.95	1994	•	
206.00	28117	254.95	60272	422.95	4713		
207.00	3467	256.00	8102	423.95	829		
216.90	6017	257.95	1954	440.95	11459		
221.10	6773	273.00	975	441.95	100014	•	
222.95	894	274.00	5055	442.95	17703		
223.95	14674	275.05	32713	443.95	1157		
225.00	3154	276.00	3704				
							

DFTPP Tune Evaluation

-103/133 C 2778

Vial: 1

: I50Z-A

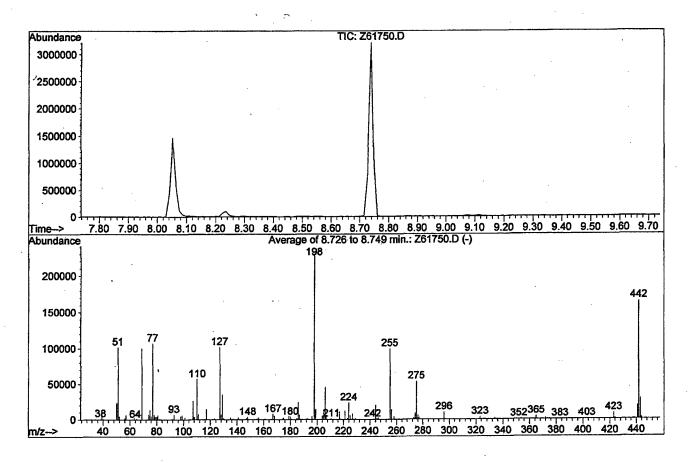
Operator: PM

Multiplr: 1.00

Inst

Data File : D:\ELINK\INSTR1\DATA\072704\Z61750.D

Acq On : 27 Jul 2004 10:59


Sample : DFTPP 50NG

Misc

MS Integration Params: rteint.p

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Peak Apex is scan: 656 (8.74 min)

Average of 3 scans: 655,656,657 minus background scan 636 (8.51 min)											
	Rel. to	Lower	Upper	Rel.	Raw	Result					
Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail					
51	198	30	60	44.2	101683	PASS					
68	6.9	0.	. 2	0.0	0	PASS					
69	198	0	100	43.7	100528	PASS					
70	69	. 0	2	0.1	68	PASS					
127	198	40	60	44.3	101944	PASS					
197	198	. 0	1	0.0	. 0	PASS					
198	198	100	100	100.0	229896	PASS					
199	198	5	9	6.3	14553	PASS					
275	198	10	30	23.2	53370	PASS					
365	198	1	100	1.8	4171	PASS					
441	198	0	100	8.4	19230	PASS					
442	198	40	110	71.6	164710	PASS					
443	442	17	23	17.5	28883	PASS					

Average of	8.726 to	8.749 min.:	Z61750.	D		404/	433
DFTPP 50NG							
Modified:s	ubtracted		•				
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
39.10	8700	76.00	4530	108.00	3669	147.00	1982
50.05	23612	77.00	107040	109.95	56649	147.95	3446
51.00	101683	78.10	6744	111.00	7353	155.00	1483
52.10	4253	79.00	4121	116.95	14421	156.00	2844
56.10	1998	80.00	3537	122.95	1643	161.00	1241
57.00	6341	80.95	5848	126.95	101944	166.95	7818
63.05	2826	92.95	6992	128.05	7025	167.95	5255
65.05	1276	98.00	4398	128.95	35120	175.00	2447
68.90	100528	98.95	5649	130.00	2150	178.95	5135
74.00	6872	101.00	2977	135.00	2752	180.00	4004
75.00	13333	107.00	26180	141.00	3030	180.95	1380
Average of	8.726 to	8.749 min.:	Z61750.	D			
DFTPP 50NG		•					
Modified:s		_				,	, ,
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
185.00	2014	216.90	10751	256.00	13739	372.00	1664
186.00	24352	221.10	12272	257.95	3957	422.95	8616
186.95	6340	222.95	1734	273.00	2021	423.95	1730
193.00	1545	223.95	23668	274.00	8501	440.95	19230
196.05	4647	225.00	5494	274.95	53370	441.90	164710
197.95	229896	226.95	7860	276.00	6234	442.95	28883
198.95	14553	228.95	1222	276.95	2685	443.95	2263
203.95	5098	244.00	19952	295.95	10116	•	
205.00	9519	245.05	1936	323.00	3468		
205.95	45397	246.00	2413	334.00	1825		
207.00	6120	254.95	99480	364.95	4171		•

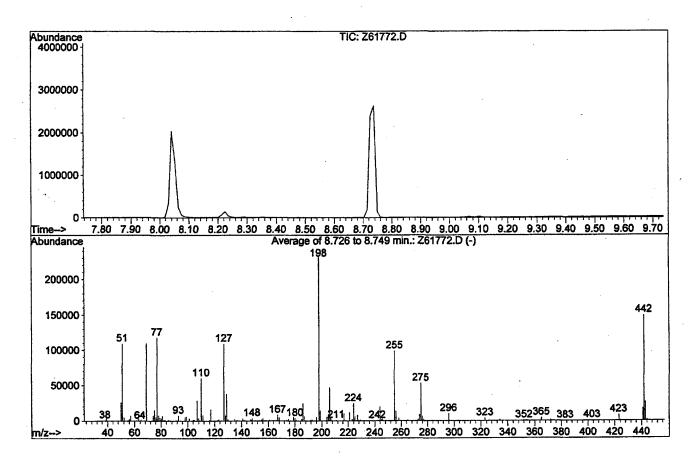
C 2930

Vial: 1

DFTPP Tune Evaluation

Data File: D:\ELINK\INSTR1\DATA\072804\Z61772.D

Acq On : 28 Jul 2004 08:59


Operator: PM : I50Z-A Sample : DFTPP 50NG Inst Multiplr: 1.00

Misc

MS Integration Params: rteint.p

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Peak Apex is scan: 656 (8.74 min)

Average of 3 scans: 655,656,657 minus background scan 636 (8.51 min)											
Target	Rel. to	Lower Limit,%	Upper Limit,%	Rel. Abn,%	Raw Abn	Result Pass/Fail					
51	198	30	60	46.8	109360	PASS					
68	69	0	2	0.0	0	PASS					
69	198	0	100	46.9	109659	PASS					
70	69	0	2	0.2	225	PASS					
127	198	40	60	46.7	109120	PASS					
197	198	0	1	0.0	0	PASS					
198	198	100	100	100.0	233703	PASS					
199	198	5	9	6.3	14814	PASS					
275	198	10	30	22.7	52986	PASS					
365	198	1	100	1.8	4222	PASS					
441	198	-0	100	7.4	17396	PASS					
442	198	40	110	63.9	149317	PASS					
443	442	17	23	17.9	26654	PASS					

				_		700	433
	8.726 to	8.749 min.:	Z61772.I)			
DFTPP 50NG Modified:su	htracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
39.05	9580	76.00	5447	98.95	5957	128.05	7466
50.05	25630	77.00	118155	101.00	3765	128.95	37763
51.00	109360	78.10	7546	104.00	1260	130.00	2479
52.10	4929	79.05	4433	105.00	1471	135.00	2566
56.05	2389	80.00	3827	106.95	28799	140.95	3146
57.00	7403	81.00	6707	108.00	4022	147.00	1921
63.00		82.05	1475	110.00	60156	147.95	3763
	3081					155.00	1857
65.05	1622	83.00	1496	111.05	8031	156.00	3391
68.90	109659	85.05	1467	116.95	15800		
74.05	7575	92.95	7408	123.00	1858	161.00	1703
75.00	14858	98.00	4928	126.95	109120	166.95	8358
	8.726 to	8.749 min.:	Z61772.I)			
DFTPP 50NG							•
Modified:su		,		,		,	1
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
167.95	4685	196.00	4866	224.00	24587	272.95	2427
174.00	1329	197.90	233703	225.00	5995	274.00	8650
175.00	2890	198.95	14814	227.00	7944	275.00	52986
178.95	5498	203.95	5336	228.95	1518	276.00	6318
180.00	4003	205.00	9746	244.00	19853	276.95	2900
180.95	1620	206.00	47050	245.05	2133	296.00	10066
185.00	2535	207.00	5660	245.95	2821	323.00	3770
186.00	24324	210.95	1276	254.95	98989	334.05	1844
186.95	6742	216.90	10903	256.00	13681	365.00	4222
192.00	1399	221.05	11843	258.00	4187	372.00	1722
193.00	1731	222.95	2291	265.00	1306	423.00	8122
Average of	8.726 to	8.749 min.:	Z61772.I)			
DFTPP 50NG							
Modified:su	ubtracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
424.00	1326	•		•			
441.05	17396						
442.00	149317						
442.95	26654						
444.00	2068					*	•
= = = = = = =							

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Iah Name: STI. Buff	<u>falo</u> Co	intract.		S Blank	•	
Iwaiie. <u>SIII Bull</u>	u.u.u	antact.				
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:	_		
Matrix: (soil/wate	r) <u>WATER</u>		Lab Sample ID:	A4B13459	02	
Sample wt/vol:	<u>1000.0</u> (g/mL) <u>M</u> I	į	Lab File ID:	<u>Z61766.R</u>	R	
Level: (low/med)	LOW		Date Samp/Recv	:		
% Moisture:	decanted: (Y/N)	<u>N</u>	Date Extracted	: <u>07/26/20</u>	04	
Concentrated Extra	act Volume: 1000 (uL)		Date Analyzed:	07/27/20	04	
Injection Volume:_	<u>2.00</u> (uL)		Dilution Factor	r: <u>1.00</u>	!	
TPC Cleanup: (Y/N	I) <u>N</u> pH: <u>5.0</u>					
CAS NO.	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg)		Q	
106-44-5-	Phenol 4-Methylphenol Naphthalene			5 5 5	ט ט ט	

G,

Data File : D:\ELINK\INSTR1\DATA\072704\Z61766.D

Vial: 15

Acq On : 27 Jul 2004 19:58 Sample : SBLK97 AW40017680

Operator: PM : I50Z-A Inst

Misc

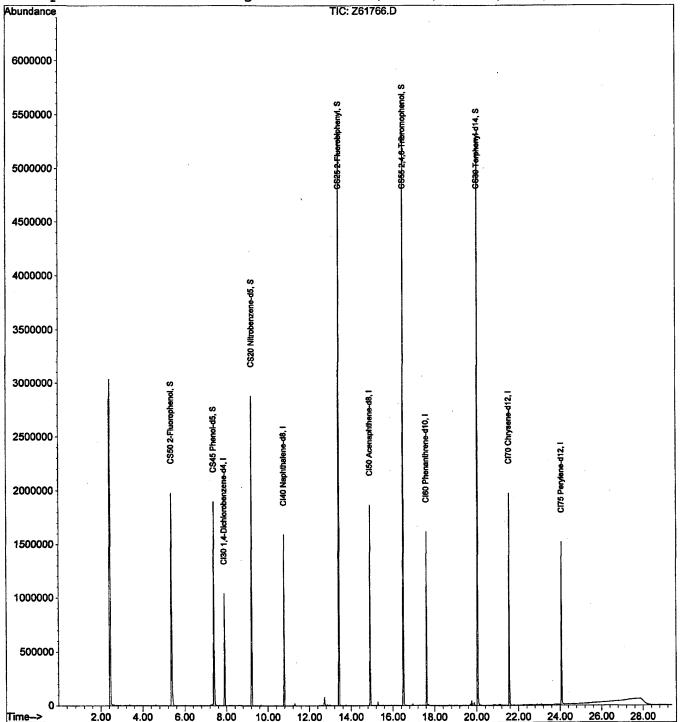
: 04-6989

Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Jul 28 8:07 2004

Quant Results File: CLP.RES

Method


: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title

: CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072704\Z61751.D

MS Integration Params: rteint.p

Quant Time: Jul 28 8:07 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

	, ,		•	•	
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI30 1,4-Dichlorobenze	ene-d 7.90	152	333963	40.00	
					76.25%
22) CI40 Naphthalene-d8	10.78	136	1221462	40.00	ng 0.00
38) CI50 Acenaphthene-d8	14 02	161	718526	40.00	84.76% ng 0.00
36) C150 Acenaphenene-d6	14.92	104	/10520	40.00	82.84%
60) CI60 Phenanthrene-d10	17.62	188	1087352	40.00	
				<u> </u>	80.03%
73) CI70 Chrysene-d12	21.57	240	1115075	40.00	ng 0.00
					78.36%
82) CI75 Perylene-d12	24.08	264	1088298	40.00	ng 0.00
					89.35%
System Monitoring Compounds	3				
3) CS50 2-Fluorophenol	5.37	112	1229870	125.01	ng 0.00
3) CS50 2-Fluorophenol Spiked Amount 150.000	Range 21	- 110	Recove	ery =	83.34%
6) CS45 Phenol-d5	7.40	99	1119851	91.34	ng 0.00
Codlead Amount 150 000	Dames 10	110	Dogotto	````	ፈበ ወወይ
7) CS70 2-chlorophenol-despiked Amount 150.000 13) CS75 1,2-dichlorobenzespiked Amount 100.000 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 42) CS25 2-Fluorobinbeny	4 0.00	132	0	0.00	ng
Spiked Amount 150.000	Range 33	- 110	Recove	ery =	0.00%#
13) CS75 1,2-dichlorobenze	ene-d 0.00	152	0	0.00	ng
Spiked Amount 100.000	Range 16	- 110	Recove	ery =	0.00%#
23) CS20 Nitrobenzene-d5	9.23	82	1715501	149.35	ng 0.02
Spiked Amount 100.000	Range 34	- 114	Recove	ery =	149.35%#
42/ CD25 Z-FIGOTODIPHENYI	10.70	1/2	2101101	200110	
Spiked Amount 100.000	Range 43	- 116	Recove	ery =	156./38#
63) CS55 2,4,6-Tribromophe	enol 16.52	330	1044334	291.48	ng 0.02
Spiked Amount 150.000 76) CS30 Terphenyl-d14 Spiked Amount 100.000	Range 10	- 123	Recove	ery =	194.32%#
76) CS30 Terphenyl-d14	20.05	244	3572674	187.84	ng 0.02
Spiked Amount 100.000	Range 33	- 141	Recove	ery =	187.84%#
Target Compounds					Qvalue
Target Compounds 2) C705 n-nitrosodidimet	0.00 mc[vrd	71		N.D	
4) E600 Benzaldehyde	0.00	7 4 77		N.D	
5) C325 bis(2-Chloroethy)		93		N.D	
8) C315 Phenol	0.00		•	N.D	
9) C330 2-Chlorophenol	0.00			N.D	
10) C320 aniline	0.00	93		N.D	
(#) = qualifier out of ran	ae (m) - man	ual in	tegration		

(#) = qualifier out of range (m) = manual integration Z61766.D CLP.M Wed Jul 28 08:07:24 2004 PP

Page 1

Data File : D:\ELINK\INSTR1\DATA\072704\Z61766.D Vial: 15 Acq On : 27 Jul 2004 19:58 Operator: PM Inst : I50Z-A Sample : SBLK97 AW40017680 Misc : 04-6989 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 28 8:07 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004
Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
11) C335 1,3-Dichlorobenzen	e 0.00	146		N.D.	
12) C340 1,4-Dichlorobenzen				N.D.	
14) C350 1,2-Dichlorobenzen	e 0.00	146		N.D.	
15) C345 Benzyl alcohol 16) C360 bis(2-chloroisopro	0.00	108		N.D.	
16) C360 bis (2-chloroisopro	pyl 0.00	45		N.D.	
17) C355 2-Methylphenol	0.00	108		N.D.	
18) E145 Acetophenone	0.00	105		N.D.	
19) C375 Hexachloroethane	0.00	117	·	N.D.	
20) C370 N-Nitroso-di-n-pro	pyl 0.00	70		N.D.	
21) C365 4-Methylphenol 24) C410 Nitrobenzene 25) C415 Isophorone 26) C430 benzoic acid	0.00	108		N.D.	
24) C410 Nitrobenzene	0.00	77		N.D.	
25) C415 Isophorone	0.00	82		N.D.	
26) C430 benzoic acid	0.00	122		N.D.	
27) C420 2-Nitrophenol 28) C425 2,4-Dimethylphenol 29) C435 bis(2-Chloroethoxy	0.00	139		N.D.	
28) C425 2,4-Dimethylphenol	0.00	107		N.D.	
29) C435 bis(2-Chloroethoxy) me 0.00	93		N.D.	
30) C440 2,4-Dichlorophenol	0.00	162		N.D.	
31) C445 1,2,4-Trichloroben				N.D.	
32) C450 Naphthalene	0.00			N.D.	
33) C455 4-Chloroaniline	0.00			N.D.	
34) C460 Hexachlorobutadien				N.D.	
35) E655 Caprolactam	0.00			N.D.	
36) C465 4-Chloro-3-methylp				N.D.	
37) C470 2-Methylnaphthalen				N.D.	•
39) C510 Hexachlorocyclopen				N.D.	
40) C515 2,4,6-Trichlorophe				N.D.	
41) C520 2,4,5-Trichlorophe	nol 0.00			N.D.	
43) C525 2-Chloronaphthalen	e 0.00	162		N.D.	
44) C811 1,1'-Biphenyl	0.00	154		N.D.	
45) C530 2-Nitroaniline 46) C540 Acenaphthylene 47) C535 Dimethylphthalate	0.00	65		N.D.	
46) C540 Acenaphthylene	0.00	152		N.D.	
47) C535 Dimethylphthalate	0.00	163		N.D.	
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.	
49) C550 Acenaphthene	0.00	153		N.D.	
50) C545 3-Nitroaniline	0.00	138		N.D.	
47) C535 Dimethylphthalate 48) C542 2,6-Dinitrotoluene 49) C550 Acenaphthene 50) C545 3-Nitroaniline 51) C555 2,4-Dinitrophenol 52) C565 Dibenzofuran	0.00	184		N.D.	
52) C565 Dibenzofuran	0.00	168		N.D.	
53) C570 2,4-Dinitrotoluene	0.00	165		N.D.	
54) C560 4-Nitrophenol 55) C590 Fluorene	0.00	109		N.D.	
55) C590 Fluorene	0.00	166		N.D.	

^{(#) =} qualifier out of range (m) = manual integration Z61766.D CLP.M Wed Jul 28 08:07:26 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo	Contract:		Matrix Sp	oike Blank
Lab Code: <u>RECNY</u> Case No.:				
Matrix: (soil/water) WATER		Lab Sample ID:	A4B1345901	
Sample wt/vol: 1000.0 (g/mL) <u>ML</u>	Lab File ID:	Z61765.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:		
% Moisture: decanted	: (Y/N) <u>N</u>	Date Extracted:	07/26/2004	l
Concentrated Extract Volume:	<u>1000</u> (പ് L)	Date Analyzed:	07/27/2004	<u>l</u>
Injection Volume: 2.00(uL)		Dilution Factor:	1.00	
GPC Cleanup: (Y/N) <u>N</u> pH:_	5.0			
CAS NO. COMPOU	ND	CONCENTRATION UNITS: (ug/L or ug/Kg) [G/L	Q
108-95-2Phenol 106-44-54-Meth 91-20-3Naphth	ylphenol		33 5 U 5 U	

Vial: 14

Quantitation Report

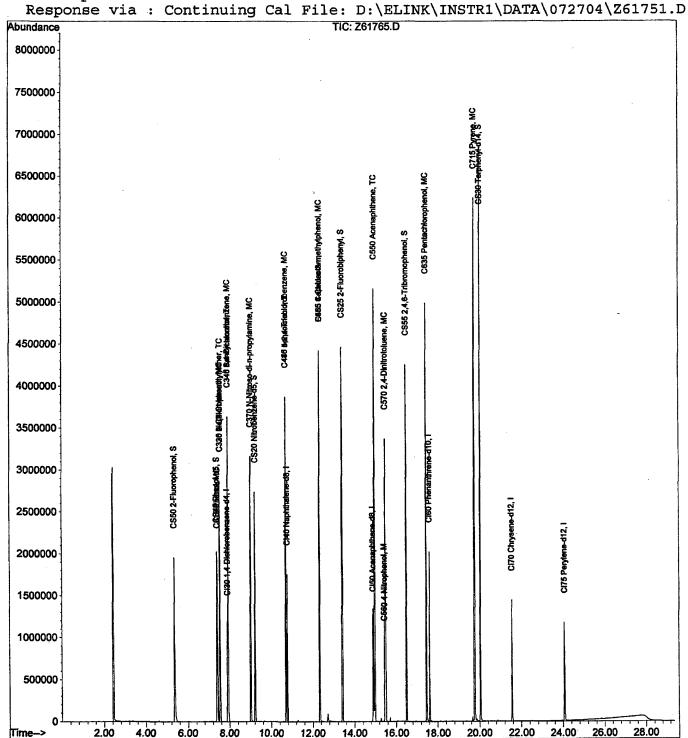
Data File : D:\ELINK\INSTR1\DATA\072704\Z61765.D : 27 Jul 2004 19:24 Acq On

Operator: PM : I50Z-A Inst

Misc

Sample

: MSB AW40017679 Multiplr: 1.00 : 04-6989


MS Integration Params: rteint.p Quant Time: Jul 28 8:06 2004

Quant Results File: CLP.RES

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator) Method

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Page 1

Quantitation Report

MS Integration Params: rteint.p

Quant Time: Jul 28 8:06 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004

Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

Z61765.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072704\Z61751.D (27 Jul 2004 11:18)

Internal Standards 1) CI30 1.4-Dichlorobenzene-d	R.T.	QIon	Response	Conc Ur	nits Dev(Min Rcv(Ar)			
1) CI30 1,4-Dichlorobenzene-d	7.90	152	331471	40.00		00			
22) CI40 Naphthalene-d8	10.78	136	1235700	40.00	75.68 ng 0.0 85.75				
38) CI50 Acenaphthene-d8	14.90	164	692887	40.00	ng -0.0	วร 02 ฉะ			
60) CI60 Phenanthrene-d10	17.62	188	1060656	40.00	ng 0.0	00 68			
73) CI70 Chrysene-d12	21.55	240	1028627	40.00	ng -0.0	02			
82) CI75 Perylene-d12	24.07	264	1017350		, , , ,	02			
System Monitoring Compounds	E 25	110	120000	122 21	ng -0 (വാ			
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran	ge 21	- 110	Recove	ry =	88.14%	02			
Spiked Amount 150.000 Ran	ge 10	- 110	Recove	ry =	ng 0.0				
7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran	7.55 ge 33	132 - 110	207 Recove	0.02 ery =	ng 0.0	03			
13) CS75 1,2-dichlorobenzene-d	0.00	152	. 0	0.00	ng 0.00%#				
23) CS20 Nitrobenzene-d5	9.23 ge 34	82	1855830	159.71	ng 0.0 159.71%#				
42) CS25 2-Fluorobiphenyl	13.42	172	3127473	163.91	ng 0.0	00			
63) CS55 2,4,6-Tribromophenol	16.50	330	Recove 971562	277.99	ng 0.0	00			
Spiked Amount 150.000 Ran	ge 10	- 123	Recove	ery =	185.33%#				
76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	ge 33	- 141	Recove	ery =	194.11%#				
Target Compounds					Qvalu	.e			
2) C705 n-nitrosodidimethylam 4) E600 Benzaldehyde	0.00	74 77		N.D N.D					
5) C325 bis (2-Chloroethyl) eth			30432	2.53	<u>ng#</u>	1			
(8) C315 Phenol	7.42		874013	65.76		85			
(19) C330 2-Chlorophenol 10) C320 aniline	7.55 0.00		-1581189 -	148.27 N.D	-	91			
	(#) = qualifier out of range (m) = manual integration								

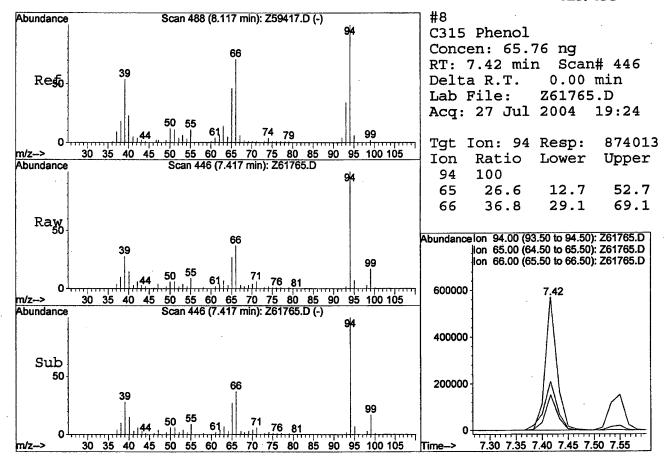
Wed Jul 28 08:06:58 2004 PP

Vial: 14 Data File : D:\ELINK\INSTR1\DATA\072704\Z61765.D Acq On : 27 Jul 2004 19:24 Operator: PM Inst : I50Z-A Sample : MSB AW40017679 Misc : 04-6989 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 28 8:06 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)


Title : CLP BNA Calibration

Last Update : Tue Jul 27 12:22:42 2004
Response via : Single (D:\ELINK\INSTR1\DATA\072704\Z61751.D 27 Jul 2004 11

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
11) C335 1,3-Dichlorobenzene	0.00	146		N.D.		
12) C340 1,4-Dichlorobenzene	7.93	146	1545584	126.40 ng		99
14) C350 1,2-Dichlorobenzene	0.00	146		N.D.		
15) C345 Benzyl alcohol	7.93	108	18591_	1.35 ng	# -	1
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.		
17) C355 2-Methylphenol	0.00	108/	/ (N.D.		
18) E145 Acetophenone	0.00	10,5		N.D.		
19) C375 Hexachloroethane	0.00	1/1 7	•	N.D.		
20) C370 N-Nitroso-di-n-propyl	9.02	/ 70	1464686	186.50 ng		79
21) C365 4-Methylphenol	0.00	108		N.D.		
24) C410 Nitrobenzene	0.00	77		N.D.		
25) C415 Isophorone	0.00	82,		N.D.		
26) C430 benzoic acid	10.72	122	4492	1.32 ng	#	1
27) C420 2-Nitrophenol	0.00	139		N.D.		
28) C425 2,4-Dimethylphenol	0.00	107		N.D.		
29) C435 bis(2-Chloroethoxy)me	0.00	93		N.D.		
30) C440 2,4-Dichlorophenol	0.00	162	1 -	N.D.		
31) C445 1,2,4-Trichlorobenzen	10.72	180	1262233	128.62 ng		95
32) C450 Naphthalene	0.00	128	,	N.D.		
33) C455 4-Chloroaniline	0.00	127	•	N.D.		
34) C460 Hexachlorobutadiene	0.00	225		N.D.		
35) E655 Caprolactam	12.35	/113	45250	28.90 ng	#	52
36) C465 4-Chloro-3-methylphen	12.35	107	1634464	178.49 ng		94
37) C470 2-Methylnaphthalene	0.00	142		N.D.		
39) C510 Hexachlorocyclopentad	0.00	237		N.D.		
40) C515 2,4,6-Trichlorophenol	0.00	196		N.D.		
41) C520 2,4,5-Trichlorophenol	0.00	196		N.D.		
43) C525 2-Chloronaphthalene	0.00	162		N.D.		
44) C811 1,1'-Biphenyl	0.00	154		N.D.		
45) C530 2-Nitroaniline	0.00	65		N.D.		•
46) C540 Acenaphthylene	0.00	152		N.D.		
47) C535 Dimethylphthalate	0.00	163		N.D.		
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.		
49) C550 Acenaphthene	14,98		2704417	161.41 ng		93
50) C545 3-Nitroaniline	0.00	138//		N.D.		
51) C555 2,4-Dinitrophenol	0.00	184		N.D.		
52) C565 Dibenzofuran	0.00	168		N.D.		
53) C570 2,4-Dinitrotolueme	15.50	165	1220966	183.37 ng		85
54) C560 4-Nitrophenol	15.45	109	185848	85.14 ng	#	84
55) C590 Fluorene	0.00	166		N.D.		

^{(#) =} qualifier out of range (m) = manual integration Z61765.D CLP.M Wed Jul 28 08:07:00 2004 PΡ

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

,				ME-18			
Lab Name: STL	Buffalo	Contract:		L			
Lab Code: REC	NY Case No.:	SAS No.:	SDG No.:				
Matrix: (soil	/water) <u>WATER</u>		Lab Sample ID:	A4698910M	5		
Sample wt/vol	: <u>965.00</u> (g/mL) M	ഥ	Lab File ID:	Z61780.RR			
Level: (low	/med) <u>LOW</u>		Date Samp/Recv:	07/21/2004	4 07/23/2004		
% Moisture: _	decanted: (Y/N	1) <u>N</u>	Date Extracted:	07/26/2004	<u>4</u>		
Concentrated Extract Volume: 1000 (uL)			Date Analyzed:	07/28/2004	<u>4</u>		
Injection Volume: 2.00 (uL)			Dilution Factor:1.00				
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>6.0</u>						
¥.		ca	NCENTRATION UNITS:				
CAS 1	NO. COMPOUND	(1	ug/L or ug/Kg) <u>I</u>	JG/L	Q		
108-	95-2Phenol			26			
	44-54-Methylpheno	ol			n		
191-2	0-3Naphthalene		i	5 1	J		

Vial: 8

Quantitation Report

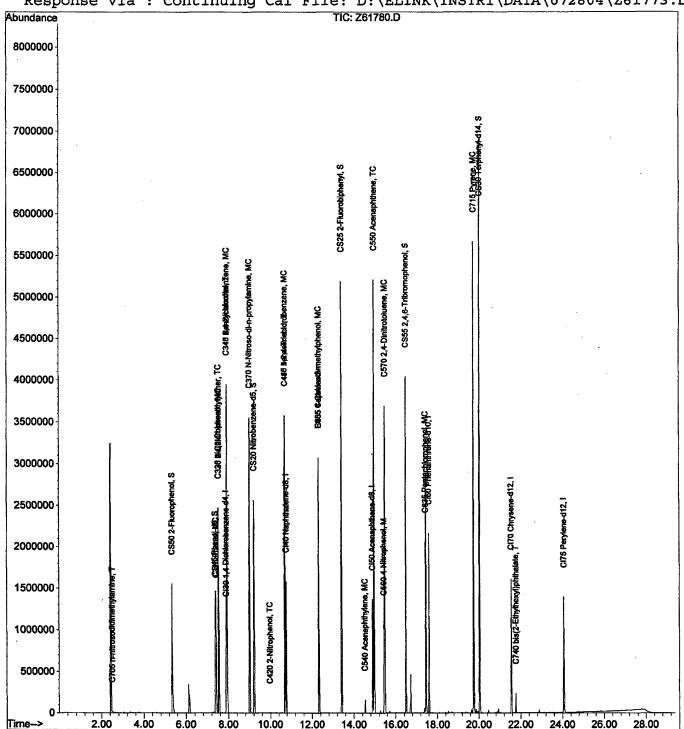
Data File : D:\ELINK\INSTR1\DATA\072804\Z61780.D

Acq On : 28 Jul 2004 13:22 Ope

: 28 Jul 2004 13:22 Operator: PM : A4698910MS AW40017671 Inst : I50Z-A

Sample Misc

Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Jul 28 14:49 2004 Quant Results File: CLP.RES

Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Misc :
MS Integration Params: rteint.p

Quant Time: Jul 28 14:49 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

Z61780.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev((Ar)		
1) CI30 1,4-Dichlorobenzene-d	7.90	152	308518	40.00	**9	0.02		
22) CI40 Naphthalene-d8	10.78	136	1162667	40.00	ng	0.00 0.19		
38) CI50 Acenaphthene-d8	14.90	164	629146	40.00	ng	0.00 5.54%		
60) CI60 Phenanthrene-d10	17.62	188	1065518	40.00	na	0.00		
73) CI70 Chrysene-d12	21.55	240	992192	40.00	ng -	0.02		
82) CI75 Perylene-d12	24.07	264	1078399	40.00	ng 87	0.00		
System Monitoring Compounds 3) CS50 2-Fluorophenol Spiked Amount 150.000 Ran 6) CS45 Phenol-d5 Spiked Amount 150.000 Ran 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ran 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ran 23) CS20 Nitrobenzene-d5 Spiked Amount 100.000 Ran 42) CS25 2-Fluorobiphenyl Spiked Amount 100.000 Ran 63) CS55 2,4,6-Tribromophenol Spiked Amount 150.000 Ran 76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	ge 10 7.53 ge 33 0.00 ge 16 9.22 ge 34	- 110 132 - 110 152 - 110 82 - 114	Recove 164 Recove 0 Recove 1910342 Recove	0.02 ry = 0.00 ry = 182.53 ry = 170.40	51.49% ng 0.01%; ng 0.00%; ng 182.53%;	0.03 ‡ 0.00 ‡		
76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ran	20.05 ige 33	- 141	Recove	195.86 ery =	ng 195.86%	0.02 ‡		
Target Compounds 2) C705 n-nitrosodidine hylam 4) E600 Benzaldehyde	2.50	74 77	3843	0.52 N.D.	ng #	alue 1		
5) C325 bis(2-(Mioroethyl)eth 8) C315 Phenol 9) C330 2 Chlorophenol 10) C320 aniline	7.53	93 94 128	24176 666459 1318778	2.11 50.51	ng # ng ng	1 87 84		
(#) = qualifier out of range (m) = manual integration								

Wed Jul 28 14:49:54 2004

PP

Page 1

MS Integration Params: rteint.p

Quant Time: Jul 28 14:49 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qva	lue.
11) C335 1,3-Dichlorobenzene	0.00	146		N.D.		
12) C340 1,4-Dichlorobenzene	7,/93		1639425	139.66 ng		99
14) C350 1,2-Dichlorobenzene	0.00	146	2007120	N.D.		
15) C345 Benzyl alcohol		108	8961	1.63 ng	#	1
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.		
17) C355 2-Methylphenol	0.00	108		N.D.		
18) E145 Acetophenone	0.00	105		N.D.		
19) C375 Hexachloroethane	0.00	117		N.D.		
20) C370 N-Nitroso-di-n-propyl	. 19.02	70	1434218	192.81 ng		80
21) C365 4-Methylphenol	0.00	108		N.D.		
24) C410 Nitrobenzene	0.00	77		N.D.		
25) C415 Isophorone	0.00	82		N.D.		
26) C430 benzoic acid	1,0.72	122	4935	1.28 ng	#	1
27) C420 2-Nitrophenol	/g~98	139	2737	0.51 ng	#	61
28) C425 2,4-Dimethylphenol	0.00	107		N.D.		
29) C435 bis(2-Chloroethoxy) me		93		N.D.		
30) C440 2,4-Dichlorophenol	₄ 0.00	162		N.D.		
31) C445 1,2,4-Trichlorobenzer		180	1406092	150.94 ng		93
32) C450 Naphthalene	0.00	128		N.D.		
33) C455 4-Chloroaniline	0.00	127		N.D.		
34) C460 Hexachlorobutadiene	0.00	225		N.D.		
35) E655 Caprolactam \	12.33	113	25876	11.53 ng	#	49
36) C465 4-Chloro-3-methylpher		107	972126	115.14 ng		86
37) C470 2-Methylnaphthalene	0.00	142		N.D.		
39) C510 Hexachlorocyclopentae		237		N.D.		
40) C515 2,4,6-Trichlorophenol		196		N.D.		
41) C520 2,4,5-Trichlorophenol		196		N.D.		
43) C525 2-Chloronaphthalene	Q.08	1302	-	N.D.		
44) C811 1,1'-Biphenyl	0)/(00	Y54		N.D.		
45) C530 2-Nitroaniline	ø. <i>6</i> 0	65		N.D.		
46) C540 Acenaphthylene	14.53	152	133794	5.28 ng		99
47) C535 Dimethylphthalate	0.00	163		N.D.		
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.		
49) C550 Acenaphthene	14.98	193	2163142	139.68 ng		95
50) C545 3-Nitroaniline	0.00	138		N.D.		
51) C555 2,4-Dinitrophenol	0.00	184	\	N.D.		
52) C565 Dibenzofuran	0.00	168	1	N.D.		0.7
53) C570 2,4-Dinitrotoluene	15.50	165	1272851	201.41 ng	,,	87
54) C560 4-Nitrophenol	15.45	109	1 2859	83.65 ng	#	84
55) C590 Fluorene	0.00	166	\	N.D.		
(#) = qualifier out of range (m	n) – manı	nal ir	tegration			

(#) = qualifier out of range (m) = manual integration Z61780.D CLP.M Wed Jul 28 14:49:56 2004 PP

ASP 2000 - METHOD 8270 SELECT LIST ANALYSIS DATA SHEET

Client No.

				ME-18		
Lab Name: STL Buf	falo	Contract:		· ·		**
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:	·	-	
Matrix: (soil/wat	er) <u>WATER</u>		Lab Sample	ID: <u>A469891</u>	.0SD	
Sample wt/vol:	<u>965.00</u> (g/mL)	ML	Lab File II	D: <u>Z61781</u> .	RR	
Level: (low/med	l) <u>LOW</u>		Date Samp/	Recv: <u>07/21/2</u>	004 07/23	<u>/2004</u>
% Moisture:	decanted: (Y/	N) <u>N</u>	Date Extra	cted: <u>07/26/2</u>	004	
Concentrated Extr	act Volume: 1000 (u	L)	Date Analy:	zed: <u>07/28/2</u>	004	
Injection Volume:	2.00 (uL)		Dilution Fa	actor:1.(<u>00</u>	
GPC Cleanup: (Y/	N) <u>N</u> pH: <u>6.0</u>					
			CONCENTRATION	UNITS:		
CAS NO.	COMPOUND		(ug/L or ug/K	g) <u>UG/L</u>	Q	
108-95-2	Phenol			25		
106-44-5	4-Methylphen	ol		5	ע	
91-20-3-	Naphthalene			5	ן טן	

Quantitation Report

Data File : D:\ELINK\INSTR1\DATA\072804\Z61781.D

Vial: 9 Operator: PM

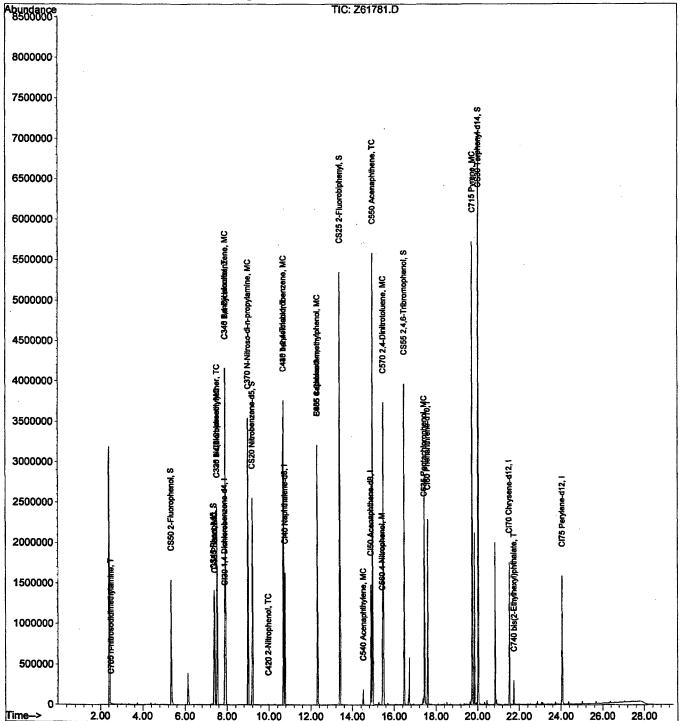
Acq On : 28 Jul 2004 13:56 Sample : A4698910SD AW40017672

Operator: PM Inst : I50Z-A

Misc :

Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Jul 28 14:50 2004


Quant Results File: CLP.RES

.

Method : D:\ELINK\INSTR1\QUANTitle : CLP BNA Calibration

: D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Last Update : Wed Jul 28 09:52:13 2004
Response via : Continuing Cal File: D:\ELINK\INSTR1\DATA\072804\Z61773.D

Page 1

Quantitation Report

Data File: D:\ELINK\INSTR1\DATA\072804\Z61781.D Vial: 9 Acq On : 28 Jul 2004 13:56 Operator: PM Sample : A4698910SD AW40017672 : I50Z-A Inst Misc Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Jul 28 14:50 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004
Response via : Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004

DataAcq Meth : METHOD.M

Z61781.D CLP.M

IS QA File : D:\ELINK\INSTR1\DATA\072804\Z61773.D (28 Jul 2004 09:17)

Internal Standards	R.T.	QIon	Response			RCV (AL')
1) CI30 1,4-Dichlorobenzene-d	7.90	152	326911	40.00	ng	0.02 77.58%
22) CI40 Naphthalene-d8	10.78	136	1226916	40.00	ng	0.00
38) CI50 Acenaphthene-d8	14.90	164	687443			0.00 82.54%
60) CI60 Phenanthrene-d10	17.62	188	1138413	40.00	ng	0.00
73) CI70 Chrysene-d12	21.55	240	1089221	40.00	ng	-0.02
82) CI75 Perylene-d12	24.07	264	1209850	40.00	ng	0.00 98.21%
System Monitoring Compounds						
3) CS50 2-Fluorophenol Spiked Amount 150.000 Ra 6) CS45 Phenol-d5	5.35	112	955904	95.70	ng	0.00
6) CS45 Phanolade	inge 21	- 110	Recove	ery =	na	0 00
Spiked Amount 150.000 Ra 7) CS70 2-chlorophenol-d4 Spiked Amount 150.000 Ra 13) CS75 1,2-dichlorobenzene-d Spiked Amount 100.000 Ra	7.30 ange 10	- 110	Recove	71.70	47.1	35%
7) CS70 2-chlorophenol-d4	7.53	132	95	0.01	ng	0.03
Spiked Amount 150.000 Ra	ange 33	- 110	Recove	ery =	0.0	01%#
13) CS75 1,2-dichlorobenzene-d	0.00	152	0	0.00	ng	
Spiked Amount 100.000 Ra	ange 16	- 110	Recove	ery =	0.0	00%#
23) CS20 Nitrobenzene-d5	9.22	82	1897605	171.82	ng	0.00
			Recove			
42) CS25 2-Fluorobiphenyl						
Spiked Amount 100.000 Ra	ange 43	- 116	Recove	ery =	157.	36%#
63) CS55 2,4,6-Tribromophenol						
Spiked Amount 150.000 Ra	ange 10	- 123	Recove	101 00	142.	7.36# 0.03
76) CS30 Terphenyl-d14 Spiked Amount 100.000 Ra	20.03 ange 33	- 141	Recove	ery =	181.	89%#
Target Compounds						Ovalue
2) C705 n-nitrosodidimethylan	$\frac{1}{2.50}$	74	4062	0.51	ng	# 1
2) C705 n-nitrosodidimethylan 4) E600 Benzaldehyde	0.00	77		N.D.		
5) C325 bis(2-enToroethyl)eth	n 7.53	93	24176	1.99	ng	# 1
(8) C315 Phenol	7.42		667450	47.74		87
9) C330 2-Chilorophenol			1323934	123.52		84
10) C320 aniine	0.00	93		N.D.	•	
(#) = qualifier out of range (m	n) = man	ual in	tegration			

Wed Jul 28 14:50:20 2004

MS Integration Params: rteint.p

Quant Time: Jul 28 14:50 2004 Quant Results File: CLP.RES

Quant Method : D:\ELINK\INSTR1\QUANT\CLP.M (RTE Integrator)

Title : CLP BNA Calibration

Last Update : Wed Jul 28 09:52:13 2004

Response via: Single (D:\ELINK\INSTR1\DATA\072804\Z61773.D 28 Jul 2004 09

DataAcq Meth : METHOD.M

Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
11) C335 1,3-Dichlorobenzene	0.00	146		N.D.		
12) C340 1,4-Dichlorobenzene	17.93	146	1745038	140.29 ng		100
14) C350 1,2-Dichlorobenzene	6.00	146		N.D.		
15) C345 Benzyl alcohol	/ 7.93	108	8876	1.52 ng	#	1
16) C360 bis(2-chloroisopropyl	0.00	45		N.D.		
17) C355 2-Methylphenol	0.00	108		N.D.		
18) E145 Acetophenone	0.00	105		N.D.		
19) C375 Hexachloroethane	,0.00	117		N.D.		
20) C370 N-Nitroso-di-n-propyl		70	1445271	183.37 ng		80
21) C365 4-Methylphenol	0.00	108		N.D.		
24) C410 Nitrobenzene	0.00	77		N.D.		
25) C415 Isophorone	0.00	82		N.D.		
26) C430 benzoic acid	110272		5722	1.41 ng	#	1
27) C420 2-Nitrophenol	/ [©] 9.98	139	3215	0.56 ng	#	59
28) C425 2,4-Dimethylphenol	0.00	107		N.D.		
29) C435 bis(2-Chloroethoxy) me	0.00	93		N.D.		
30) C440 2,4-Dichlorophenol	0.00	162		N.D.		
31) C445 1,2,4-Trichlorobenzen	10.72		1489456	151.52 ng		93
32) C450 Naphthalene	^ℓ 0.00	128		N.D.		
33) C455 4-Chloroaniline	0.00	127		N.D.		
34) C460 Hexachlorobutadiene	0.00	225		N.D.		•
35) E655 Caprolactam	12,33	113	26699	11.27 ng	#	48
36) C465 4-Chloro-3-methylphen	12.33	107	983662	110.41 ng		87
37) C470 2-Methylnaphthalene	0.00	142		N.D.		
39) C510 Hexachlorocyclopentad	0.00	237		N.D.		
40) C515 2,4,6-Trichlorophenol	0.00	\ 196		N.D.		
41) C520 2,4,5-Trichlorophenol	0.00	\196		N.D.		
43) C525 2-Chloronaphthalene	0.00	162	1152	N.D.		
44) C811 1,1'-Biphenyl	0.00	154		N.D.		
45) C530 2-Nitroaniline	0.00	6\5/		N.D.		
46) C540 Acenaphthylene	14.53	152	156462	5.65 ng		99
47) C535 Dimethylphthalate	0.00	163	\	N.D.		
48) C542 2,6-Dinitrotoluene	0.00	165		N.D.		
49) C550 Acenaphthene	14.98	153	2 270789	134.20 ng		94
50) C545 3-Nitroaniline	0.00	138	\	N.D.		
51) C555 2,4-Dinitrophenol	0.00	184	\	N.D.		
52) C565 Dibenzofuran	0.00		\	N.D.		
53) C570 2,4-Dinitrotoluene	15.50	165	1323 4 19	191.65 ng		84
54) C560 4-Nitrophenol	15.45		183284	81.17 ng	#	85
55) C590 Fluorene	0.00	166	\	N.D.		

(#) = qualifier out of range (m) = manual integration Z61781.D CLP.M Wed Jul 28 14:50:21 2004 PP

Final Volume (ml) 4244433 3 Sample Volume (ml) 1030 **1**/2 000) 29% 1045 1000 1095 (090) 63 S 5301 629 Joset. A A 560 Thelot Initial pH Date Conc/Initials: Date Cleanup/Initials: Appear. 12 Sec. 5. RA A00057 A00057 Spike Code A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 A00028 Sept Organic Prep Log Book (3510C) ASP00 8270 WAII A4B13459 <u>k</u>us AQUEOUS EXTRACTIONS Method Expiration Date:
Prepared by: 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 8270 Spiked | Witnessed | Protoc ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 Test ASP00 AW40017661 ASP00 AW40017662 ASP00 AW40017663 ASP00 ASPOO AW40017672 ASP00 AW40017674 ASP00 AW40017676 ASP00 AW40017665 ASP00 AW40017666 ASP00 AW40017667 ASP00 AW40017668 ASP00 AW40017669 ASP00 AW40017670|ASP00 AW40017671 ASP00 AW40017675 ASP00 AW40017673 SEPF) or CLLE (circle one) AW40017664 Vial # 茶 Sample B FS សួ 돲 FS 돲 FB 뗪 돲 돲 뎞 Š B 폆 亞 ES Bottle ID Expiration Detain Extraction Type Date Ext/Initials: A04-6989 A4698910MS A04-6989 A4698910SD Sample A04-6989 | A4698906 A04-6989 | A4698909 A04-6989 A4698902 A04-6989 A4698903 A04-6989 | A4698904 A04-6989 | A4698905 A04-6989 A4698907 A04-6989 A4698908 A04-6989 | A4698910 A04-6989 A4698912 A04-6989 | A4698913 A04-6989 A4698901 A04-6989 A4698911 A04-6989 A4698914 Job Number

Rept: ANOSO	MeCl2: Acetone: Hexane: Na2So4: 1:1 H2SO4:		Initial Sample Final
		Date Cleanup/Initials: Date Conc/Initials:	Ini
	0.00 ti	Date Cle Date	S. mr. Smike
ok VTERS		Ω.	
Organic Prep Log Book (3510C) ASP00 8270 WATERS A4B13459	MATRIX SPIKE— iration Date: Prepared by: Spiked by: witnessed by:	ACTECTIONS EXTRACTIONS	
Organic F S510C) AS	Expiration Da Prepared Spiked Witnessed	ACI IFOLIS	
(3)	<u>a</u>		
	0.00 ul	(enc. of ports)	Extraction Type: SEFF OF CLICAE OF
			HAGS:
/2004 :16	Expiration Date: Prepared by: Spiked by: Witnessed by:	Date Ext/Initials:	ction Type
IL Buffalo ate: 07/26/2004 ime: 12:44:16	Expir P	Date Ex	Extra

(m1)	0	_	+		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4					
Volume (ml)	MAS	らてゆ	2	0000	1	4			:	1	
Initial pH	Ø	_	4	<u>ل</u>		1					
Appear.	Ch. A.		4	シグノ		/					
Spike Code				רחסססיגי	/ C000#			-			
Surr	\$0000₽); }););	A00028	6000	AUUUZO	A00028	}				
Method	0200	0.40	8270		8270	0220	2 4 5				
Protoc	0700 0000	PO-FOO	ASP00 8270	-	ASP00	עסטע					
Test	0000	ASFUU	ASP00		ASPOO	0000	ADFOO				
Vial #		AW4001/6// ASFUO	AW40017678 ASP00		AW40017679 ASP00		AW40017680 ASEVO				
Sample	# F -	FS	FS	<u> </u>	MSB	1	MAI K				
Bottle Sample	1		-								
Sample	- 1	A4698915	71080774	のすべつぐつませ	A4B13459 A4B1345901		A4B13459 A4B1345902			nts:	
Tob	TOCHOL	A04-6989 A4698915	3108031K 0000 10K	COCO - 50W	A4B13459		A4B13459			Comments:	

-			<u>;</u> .					٠,			:		<i>;</i>			:	•	; .		٠.		4	1		İ	3	:						:	4		•
IS ID	211 221		_			_	10/0/25		-																											
NG 1.S.	Ì						12															~			*.									+	T	
占	1	٠		_		-	-		-		Ŀ		_							-													T		K	
F.V.	١					>	26.7	T -	_	F																							†	-		6
INJ.VOL.	1.0.0	-			_										_																				†	
		_					たら	-													>	l					۷									REVIEWED BY
VIAL #/ Standard #	811-8177	CO (4/11/03)	1			Ą	trop/ 00 407	'n	2	2) ~	A54000 200	0) " ,	0	25	£,₽	W	1	70	අ	20 /	6/2/04	/								-					
SAMPLE ID	Dragon -	Simons	NSO 0237 7	C80000	50000	6310153	ANGTHUBY	_	Je 1 (2)	\$163c)	25785	1416	besust	10 howard	1 81.19	(Jr) D	CD	03	, ou) (Q	20 ° , "	(, pe 13a														000034
FRN	£ C1132	2 Kiroy	61005	r 610C	+ 6(007-	84.079-	F(1005	26(000	26 to 11	f 6.0012	A61113	661819	460005	F 61016	70000	66111	61017	1/41010	1 (621	4 60122	E101) 7	h=197					t.									SEVERN TRENT LABORATORIES
ANALYST	77	1										~			. [-				·	~	ر													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- LABORAI
TIME	1833	(3 th	1234	1407	5243	62.00	CRN	(11)	122	17.72	110	136)	1621	7651	1.20	21.14	2027	sm1	7597	1321	2527	0030						-						(本) (本) (水) (水)	A STATE OF THE STA	IN TRENT
DATE	614 pm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											•					-				7						. ,								SEVEF
	TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #42, INLYOL, EV DF NG IS	1E TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #4- INJ 64) R33 / LC(103) PPBD _ CLIV/13 _ O	THE TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #4, INJ.VOL. F.V. DF NG 1.S. P4 1923 (4 16.03 10 10 10 10 10 10 10 10 10 10 10 10 10	15 TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB 船4、 INJ.VOL. F.V. DF NG 1.S. F.J. DF NG 1.S. L. S. L. L. L. L. L. L. L. L. L. L. L. L. L.	15 TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB 機4、 INJ.VOL. F.V. DF NG I.S. F.Y DF NG I.S.	15 TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB 船4、 INJ.VOL. F.V. DF NG 1.S. F.Y DF NG 1.S.	15 TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #4- INJ.VOL. F.V. DF NG 1.S.	15 TIME ANALYST FRN SAMPLE ID VIAL#/Standard# JOB #44_ INJ.VOL. F.V. DF NG I.S. I.S. I. I.S. I. I.S. I. I.S. I.S.	15 TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #4. INJ.VOL. F.V. DF NG I.S. II. S. II. 11	FRN SAMPLE ID	TIME ANALYST FRN SAMPLE ID VIAL #/ Standard # JOB #4. INJ.VOL. F.Y. DF NG 1.S. 1.S.1.1 1.S.2.2 1.S.2.2 1.C	TE TIME ANALYST FRN SAMPLE ID VIAL#/Standard # JOB #44. INJVOL F.V. DF NG1.S. I.S.I.I.	Factor 1923	TE TIME ANALYST FRN SAMPLE ID VIAL#/Standard # JOB #44. INJ.VOL. F.V. DF NG I.S. I.S. I.S. I.S. I.S. I.S. I.S. I.S	TE TIME ANALYST FFIN SAMPLE ID VIAL#/Standard# JOB #4-, INJVOL, EV, DF NG18, I.S.I.I. I.S.	15.11 ANALYST FRN SAMPLE ID VIAL#/Standard # JOB #4-, INLVOL. F.V. DF NG1.8, I.S.11	15.11 SAMPLE ID VIAL# Standard # JOB 報4 JINJVOL. F.V. DF NGT.S. I.S.1.1	15 TIME ANALYST FRN SAMPLE ID VIAL#/Standard # JOB 報4. INJVOL. F.V. DF NG IS. I.S.I. 18.II 18.II 18.II 18.II 18.II 18.II 18.II 18.II 18.II 18.II 18.II 18.	15 11 15 15 15 15 15 15	TIME ANALYST FRN SAMPLE ID VNA.# Standard # JOB #44_ INJ.VOL. F.V DF NG IS. I.S.I. 18	1	Time Analyst FRN Sample D Vinal # Standard # JOB #4. INJVOL F.V DF NG IS.	TIME ANALYST FRN SAMPLE ID VIAL# Standard # JOB #42, INLIVOL, F.V. DF NG1.8. I.S.I.	DMTE TIME AMALYST FRN SAMPLE ID WAL # Standard # JOB #44. INLIVOL. F.V. DF NG1S. 15.11 13	DATE TIME ANALYST FRN SAMPLEID VAL # Standard # JOB #44. INLIVOL F.V. DF NG18. 15.11 17	DATE TIME ANALYST FRN SAMPLEID VAL # Standard # JOB #44. INJUVOL F.V. DF NG1S. 15.11 15	1843 1840	DATE TIME ANALYST FRIN SAMPLE D	1 1 2 2 1 2 2 2 2 2		The Annuser Fer	The NAMYST FRN SAMPLE D	The Amanyor Fen Sample Val. # Sample Val	The many of Fen Sample D Val. 4 Standard	DATE THE NAMEST FIN SAMPLED VALL & SENGON & LOS BAL, INLVOL FLY DF VALL & SENGON & LOS BAL, INLVO	

	GCMS SEMIVOLATILE INJECTION LOG	
	COMMENTS	
1) 17/ July 1040 8	and the second	,
L		
3		
	•	
(1)		
	4	
	•	
	Z.	
ē.		
	•	
	DATE 6 (9/0, 4, 1977)	
	_	

GCMS SEMIVOLATILE INJECTION LOG

:	DATE	TIME	ANALYST	FRN	SAMPIE	Chai Mr Car	_	}	L	L		
	Julgielas	09केन	O W	4	AETOOOR	WINL#/ Standard #	a # AvidoB #	INJ.VOI.	FV _m	H H	NG I.S.	I.S. I.D.
		0950	•	21.1209	Semon	2011/2) July	70	0.5	1			
		pear		210,1220	280000			+	1	\prod		
		105-8		7/01731	\$5.00 S	40/27 / XIAN	+	1	#	1		+
		1133		26123	SSTANSO			1	+	1		+
		1901		261733	SST0120			-	1	lacksquare		1
:		1241		JEE1076.	SST\$160				\pm	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$		+
		1316		261735	SSTAGAO	ANS#11 3/29	6.9		1	lacksquare		+
		1350		261730	SSTOR	1		-	1	1		1
,		5641		787125	55 Th 080		-			1		
		1459		7.41738	SST0 /20				-		1	1
	7	1533		761739	SSTD1(40				+	1	1	+
	1	1407	-	2101740	MSB	AWILDNIZULZ	42.7		, 3	1	†	٠
		1443		1451017	281294	017	╁		<u>.</u>	1	077	-613
		13.16		315148	44/178901				+	*	1	+
f		1750	زيلاف	2/10/34	ו סובץ					9	1	+
		nes!		カカセパフモ			77			1		1
		1889		そんけんら	68		177		1	.		+
-	1	1933		2613460	SMS		2			1-	1	$\frac{1}{1}$
;	1	2008		子でいる	0350		2 7	-	1			+
	1	ence	-	3年1973	7.0		47			<u></u>	+	1
	>	2116	*	इ.७.१	A SOAL	>	7 27	7		> 6	+	+
<u> </u>	1						*	·		2	*	,
<u></u>											1	V
											V	
	-							1	Y			
								$\sqrt{}$	1			
<u> </u>						A SERVICE OF THE PERSON OF THE				+		
						2/2				1		
										1		
				\setminus								
		,					 -		1	1		
				,						1		
								1	1	1	-	
J									1			
	SEVEH	N TRENT	LABORA	SEVERN TRENT LABORATORIES	980000 Da	4	REVIEWED BY	>	<u>_</u> :	7		
				 			r					

REVIEWED BY.

SEVERN TRENT LABORATORIES

I.S. I.D. -6125 NG I.S. 40 160 占 FV. 9 INJ.VQL. 12739 VIAL #/ Standard # | Act JOB # 2852 **6867** 692 SCIR-11A 8856 (411/91) 14/5/E) /#SVA REALIX (1/24/04) 41406171002 AW40017443 30 3 13 4W4 0012538 3 4W40017679 41 3 β 446873302AU 03 EBU 귅 SAMPLE ID Ö 8 **DETPPOSO** 44 C+8501 44692 log SSTNOSD 44149890 Samosa SALK97 561291 8811.98 MSSA MSBA MSA MSB 456 741745 देशस्त्रम् स्वास्ता 201419 221752 241743 2 Calilla 74174 स्त्रात्र र 26.1748 218135 261752 36,1353 24176 2/013/20 37777 इस्नास् 21017 उत्पास्त उत्तर 35175 76133 FRN ANALYST PM 1059 14 15 TME 1832 2216 130/2 1450 14.33 2107 8111 1158 1781 7051 KSSX 1707 2033 18110 1924 2250 1721 1850 3141 1958 12 Jan 104 DATE

GCMS SEMIVOLATILE INJECTION LOG

ဗ
_
7
<u>~</u>
\mathbf{O}
=
-
()
ш
\Box
=
ш
E
⋖
_
\geq
~
=
2
111
=
Ų
\mathbf{v}
5
$\overline{}$
U
C)

A.						
AMC# 1 NO to 1 1 deg 7 2005						
0 0.3778		4			,.	-
d. Tuks by 2					,	4.
						15
						ŀ
•						
	,					
				•		
NUM DE 20						
•						
; -						
T.	-					
	- 4			12		
			2			
			,			
						<u> </u>
	•					.
						.
		,			٠	
		-				:
	•					
	•					
	9 (=====	1 - 1 - 66. 12 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				

Q
N
SCTK
S
ATILE
ಶೆ
SEM
CMS
Ğ

F	-	· . r			-	÷	-								:		_				- <u>8</u> }-				eV.			. *•		•	• •	·.		1			
	1.S. 1.D.			5019-1	+	1	1	+	-					$ar{\mathbf{I}}$	+	T	*																		I		
	NG I.S.			9	-		1		1	1	†	1	1	1	1	>				+						\parallel		-			†	1	+				
	H			30	-	+	-	Ŧ	F	I	1	F	\perp	+	1	4		1	1		brace	<u> </u>	T	T		T					\dagger		\dagger	\dagger	T	1	
	F.Vm			0.7	1	+	-	-	-	-	F	-	-		1	-							 	1	.					-	1		1	-		1	-
3	NJ.VC	2.0	+	1	+				-		-				-													-					-				
= 4001	#UT-700 #			4785 4785	1873					-						->					-															REVIEWED BY	
VIAL #/ Ctandom #	INC. # Stationard #	X X X X X X X X X X X X X X X X X X X	(12) (2)	4N40011838	AW POSSITURES	10,	0,	7	7	22	7,0	7	*	77	7	8t >																				₩	
SAMPLE ID		7	200	4		5	00	01	IOMS	A801		81.	13	Ź	15	7/ 1/4					-															060000	₫.
FRN	7/4/2A	2101732	2, 122.1	7017	2/012210	20,1232	74017-8	261779	262 (780	261781	261782	261783	48E177E	784175	26217860	2(21787													:		,				·		50
ANALYST	Wa	,										1				Ę														,					7	SEVERN TRENT LABORATORIES	
TIME	0,000	47.00	2000	96.00	100	- X	1213	+481	1322	13570	1431	1525	15.39	1414	1/448	4																,			1	THENT	
DATE	Tolselen	-												1	1																			1		SEVER	
			:	i Na	;		,							. <u>:</u>	-	- -		!.	<u></u>							بـ	. 2 . 422	<u> </u>	<u>나</u> :	,		_	_	_	4		

(T
ဗ္ဗ
י
اِت
~
=
JON C
5
当
⋥
Z
_
ш
_
5
OLATILE INJE
=
Ų
>
SEMI
2
ш
S
(C)
5
۳
<u>ں</u>

	COMMENTS	
Contract to the state of		
NMC# 1 ALO FOLK (ARM 7 2017		
03.80		
	•	
(
	,	
4		
DATE	で 一個ない 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	