

July 10, 2009

Mr. John Rashak, Environmental Engineer I Division of Environmental Remediation New York State Department of Environmental Conservation, Region III 21 South Putt Corners Road New Paltz, New York 12561-1696

Re: Post System Closure - March 2009 Groundwater Results Former Flagship Airlines Hangar Facility, Site #314101 Dutchess County Airport, Wappingers Falls, New York

Dear Mr. Rashak:

Shaw Environmental, Inc. (Shaw) is pleased to provide this Post System Closure Groundwater Report for the former Flagship Airlines Hangar Facility (Site). As outlined in the September 18, 2007 letter from the New York State Department of Environmental Conservation (NYSDEC) Shaw was requested to conduct a groundwater and indoor air/sub-slab vapor investigation at the Site, located at the Dutchess County Airport, in Wappingers Falls, Dutchess County, New York as part of post system closure monitoring. A site map is included as **Figure 1**. The following will summarize the sixth round of the six proposed groundwater sampling rounds conducted in accordance with the approved 2007-2009 *Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling Work Plan*, dated November 16, 2007. No additional work is planned at this time.

1.0 Site Background

The former Flagship Airlines Hangar Facility at the Dutchess County Airport was used for washing aircraft and performing maintenance work. This maintenance work required the use of jet fuel, heating oil and various solvents. The NYSDEC became involved with the Site in 1988 when a leaking heating-oil tank was discovered. The initial investigation soon expanded into a multi-phased remedial investigation (RI) to determine potential volatile and semi-volatile organic compound (VOC and SVOC) impacts in the shallow groundwater. As a result of the RI, five underground storage tanks and a septic tank that were present at the Site were all removed prior to 1996. On March 19, 1999, American Eagle Airlines signed an Order on Consent with the NYSDEC, Index No. W3-0837-98-12.

1.1 Remedial History

A soil vapor extraction (SVE) system was installed in 1988 as an interim remedial measure (IRM) to reduce the elevated levels of benzene, toluene, ethylbenzene and xylene (BTEX) in the unsaturated soil in the vicinity of the fuel oil release. An RI conducted during installation of the SVE system indicated the occurrence of residual dissolved impacts in the groundwater. In 1992, 1,020 gallons of water were pumped from monitoring wells MW-9 and MW-10 located near the gravel bed which served as the overflow drainage system to the wash water tank, the wash water tank was removed in 1995.

The phased RI was conducted between 1990 and 1996. An IRM based on the November 1999 Remedial Investigation (RI) and Feasibility Study (FS) Reports was implemented in 2000. As part of the IRM, a SVE and air sparging (AS) system were installed and began operating during August of 2000. Quarterly groundwater samples have been collected since August 2000 to monitor the efficiency of this remedial measure. Data collected from the groundwater sampling events has been presented in the quarterly O&M reports for the Site. As of October 2005, groundwater sampling and O&M reporting were performed on a semi-annual basis.

The New York State Department of Health (NYSDOH) requested that indoor air samples be collected in order for the SVE/AS system to be decommissioned. Shaw performed the original indoor air/sub-slab vapor investigation on March 29, 2006 and subsequent investigations on March 8, 2007, and January 30, 2008.

Upon approval of the *Indoor Air Sampling Report*, dated September 5, 2007, as outlined in a letter from NYSDEC dated September 18, 2007 the NYSDEC granted permission to shut down the AS/SVE system. At that time, NYSDEC also stipulated the following requirements:

- 6 quarterly groundwater sampling events occur between December 2007 and March 2009.
- A work plan be submitted for annual sub-slab and indoor air monitoring for two consecutive heating seasons by October 15, 2007.

On November 16, 2007, Shaw submitted the 2007-2009 Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling Work Plan which was approved in a November 23, 2007 letter from the NYSDEC.

2.0 Groundwater Results

The following section discusses the results of the sixth round of six quarterly post system closure groundwater sampling events. For a complete description and analysis of historical groundwater sampling results please refer to the previously submitted Operation Maintenance and Monitoring Reports from February 2002 through December 2008. A well location map is included as **Figure 2**.

2.1 Field Parameters/Groundwater Elevation

The water level measurements and field parameters collected on March 18 and March 19, 2008 from monitoring wells located on the former Flagship and former IBM hangar properties are shown in **Table 1**. Based upon depth to groundwater data obtained during the sampling event, the apparent groundwater flow is in a north/northwest direction as shown in **Figure 3**.

Groundwater elevations on the former Flagship property ranged from 155.56 feet (ME-16) to 152.80 feet (ME-13). On the former IBM property, groundwater elevations ranged from 153.67 feet (A-40S) to 151.03 feet (A-44S). Groundwater elevations observed during the March 2009 event were seasonably consistent when compared to historic groundwater elevations.

In December 2007, MW-1 was damaged by a snowplow. The roadbox had been removed and the exposed pvc was uncapped when Shaw personnel arrived at the site in March, 2008. Shaw has determined that MW-1 is not able to be repaired and thus will be abandoned at a later date.

Wells sampled on both properties included ME-12, ME-14, ME-18, ME-19, MW-2, MW-6, MW-8, MW-9/10R, MW-20, DG-1, A-26S, A-27S, A-42S and A-43S. The locations of these wells are shown on **Figure 2**.

Low flow sampling methodology was utilized in the collection of groundwater at the Site. This method is beneficial because; less disruption is caused to the water column, the agitation of suspended particles is less severe, potential aspiration of VOCs or other contaminants is minimized, and less volume of groundwater is removed. The method entails the removal of water by pumping the well at low enough flow rates to maintain minimal drawdown of the water column followed by in-line sample collection.

2.2 Groundwater Quality Results

Historical and current analytical results of the samples collected from the monitoring well network during the post system closure reporting period are presented in **Table 2**. A current summary of the analytical results is presented as **Figure 4**. Field data sheets from this period are included as **Appendix A**. The Chain of Custody is presented in **Appendix B**. The laboratory data packages are included as **Appendix C**.

The presence of dissolved concentrations of compounds of concern on the former Flagship property during the March 2009 sampling event occurred in ME-14, which yielded a value of $0.38~\mu g/L$ of Tetrachloroethene (PCE), in MW-8 and ME-19 which yielded a value of $0.27~\mu g/L$ and $0.25~\mu g/L$, respectively for cis-1,2-dichloroethene. All three detections were well below the NYSDEC T.O.G.S (Technical & Operational Guidance Series) standard guidance value of $5~\mu g/L$ for these individual compounds. MW-9/10R did not contain any compounds of concerns above the laboratory quantitivation limits in the area of the former concrete drain the laboratories detection limits during this latest sampling event. This marks seventeen consecutive groundwater sampling events with no detections above the laboratory limits in the area of the former concrete drain.

The sample collected from the former IBM property monitoring well A-26S exhibited laboratory detections above the sample quantitation limits. A-26S located in the southwest portion of the former IBM Hangar Facility parking lot, east of the IBM hangar facility had detections of 1,1-Dichloroethane (DCA) at 9.4 μ g/L, above the NYSDEC standard set at 5 μ g/L. A-26S also contained trace amounts of cis-1,2 Dichloroethene (DCE) and Vinyl Chloride, at 0.40 μ g/L and 0.42 μ g/L, respectively.

The sample collected from A-27S located near the eastern corner of the IBM hangar facility exhibited detections above the sample quantitation limits but below NYSDEC Standards for 1,1-DCA (1.8 μ g/L), cis-1,2 Dichloroethene (DCE) (4.9 μ g/L), 1,2 DCE (total) (4.9 μ g/L) and Vinyl Chloride (1.2 μ g/L).

The sample collected from the former IBM property monitoring well A-42S exhibited laboratory detections above the sample quantitation limits. A-42-S located in the central portion of the well field, south of the IBM hangar facility had detections of cis-1,2 Dichloroethene (DCE) at 2.9 μ g/L, 1,1-DCA at 0.78 μ g/L, 1,2-dichloroethene (total) at 2.9 μ g/L and vinyl chloride at 8.8 μ g/L. These concentrations were at or below the NYSDEC limit set at 5 μ g/L for 1,2 DCE, 1,1-

DCA, 1,2-dichloroethene (total) and cis-1,2 DCE, but exceeded limits set at 2 µg/l for Vinyl Chloride.

The sample collected from A-43S exhibited trace amounts of cis-1,2-Dichloroethene (0.41 μ g/L) and 1,1-DCA (0.76 μ g/L). A-43S is located 20 feet to the east of the before mentioned A-43S downgradient from former treatment compound.

1,1,1-Trichloroethane, trichloroethene (TCE), toluene and naphthalene were not detected at or above the sample quantitation limits in any of the former IBM property monitoring wells (A-26S, A-27S, A-42S, and A-43S) sampled during this sampling event.

3.0 Conclusion and Recommendation

The up-gradient wells on the former Flagship property have historically demonstrated reductions in total SVOC and VOC concentrations. The March 2009 sampling event yielded no compounds of concern at laboratory detection limits, other than a trace concentration of PCE in ME-14 at $0.38 \, \mu g/L$.

The presence of the before mentioned compounds of concern in the former IBM property wells, combined with the lack of immediate up-gradient (former Flagship property) detections, suggest that an ongoing source of these remnant contaminants exists on the former IBM leased property near the northeastern area of the former IBM hangar facility. The MW-9/10R area of concern on the former Flagship property is approximately 160 feet up-gradient from this IBM well area. Historically, with the exception of low and infrequent detections in MW-6 and ME-19, no detections have been recorded between these two areas. Groundwater quality trends analysis supporting this conclusion are shown as **Figures 5, 6** and **7**.

Based on the remedial activity results to date, American Airlines requests that NYSDEC reclassify the Site as class 5 status or "Site property closed – does not require continued management". If you require further information please contact the undersigned at (518) 785-2354 (direct).

Sincerely,

Shaw Environmental, Inc.

Shaw Environmental, Inc.

Mus Mullin

Marc E. Flanagan Project Geologist Brian Neumann Project Manager

Attachments: Tables

Figures

Appendix A – Field Data Sheets Appendix B – Chain of Custody

Appendix C – Laboratory Data Packages

Cc: Alan Angers

John Parker, Regional Attorney Anthony Perretta (CD only)

Edward Rose

James Johnson, Esq. Carol Bogle, Esq.

Shaw, File

TABLES

Table 1 Groundwater Monitoring Analytical Data Summary - Field Parameters and Measurement

AA Flagship, Wappingers Falls, NY

Monitoring Well Location	DG-1	MW-2	MW-6	MW-8	MW-9/10 R	MW-20
Sample Identification	DG-1	MW-2	MW-6	MW-8	MW-9/10 R	MW-20
Sample Date	19-Mar-09	18-Mar-09	18-Mar-09	18-Mar-09	18-Mar-09	18-Mar-09
Field Parameters	Result	Result	Result	Result	Result	Result
Color	Clear	Clear	Clear	Clear	Clear	Clear
pH (Standard Units)	5.99	6.65	6.79	7.71	6.85	6.54
Conductivity (mS/cm)	0.865	0.410	0.761	0.746	0.628	0.812
Turbidity (NTU)	0.0	0.8	0.7	45.3	0.9	0.0
Dissolved Oxygen (mg/L)	0.39	3.10	4.59	0.95	3.41	2.52
Temperature (°C)	11.07	11.83	10.75	11.75	10.79	15.72
ORP (mv)	206.9	133.1	191.0	79.0	136	202.3
Field Measurements						
Depth to Water	9.00	7.05	3.49	6.52	3.00	5.07
Depth to Well Bottom	19.56	22.97	22.73	25.50	18.50	22.70
Air Monitoring Results (ppm)	0.0	0.0	0.0	0.0	0.0	0.0

Monitoring Well Location	ME-18	ME-19	A-26S	A-27S	A-42S	A-43S
Sample Identification	ME-18	ME-19	A-26S	A-27S	A-42S	A-43S
Sample Date	18-Mar-09	19-Mar-09	18-Mar-09	19-Mar-09	19-Mar-09	18-Mar-09
Field Parameters	Result	Result	Result	Result	Result	Result
Color	Clear	Clear	Clear	Clear	Clear	Clear
pH (Standard Units)	7.51	7.20	7.42	7.72	7.58	7.53
Conductivity (mS/cm)	0.750	0.714	0.937	0.747	0.717	0.890
Turbidity (NTU)	0.0	32.7	78.1*	128*	155*	73.1*
Dissolved Oxygen (mg/L)	7.32	0.49	0.20	0.26	0.60	0.25
Temperature (°C)	9.88	12.44	12.59	12.04	11.74	13.19
ORP (mv)	230	192.1	-18.5	-46.7	11.7	35.6
Field Measurements						
Depth to Water	3.00	7.37	3.17	4.81	5.75	4.45
Depth to Well Bottom	21.90	25.33	23.15	26.15	25.10	25.40
Air Monitoring Results (ppm)	0.0	0.0	0.0	0.0	0.0	00

NOTES:

- NM indicates Not Measured.

Depth to groundwater collected at time of sampling

^{*-} Turbidity Sensor Malfunction

Table 1 Groundwater Monitoring Analytical Data Summary - Field Parameters and Measurement

AA Flagship, Wappingers Falls, NY

Monitoring Well Location	ME-12	ME-14
Sample Identification	ME-12	ME-14
Sample Date	18-Mar-09	18-Mar-09
Field Parameters	Result	Result
Color	Clear	Clear
pH (Standard Units)	6.82	6.51
Conductivity (mS/cm)	0.636	0.672
Turbidity (NTU)	0.0	-7.4
Dissolved Oxygen (mg/L)	1.53	0.26
Temperature (°C)	13.38	11.62
ORP (mv)	214.1	140.2
Field Measurements		
Depth to Water	4.02	4.88
Depth to Well Bottom	24.37	20.60
Air Monitoring Results (ppm)	0.0	0.0

NOTES:

- NM indicates Not Measured.
- * indicates meter anamoly

Table 2 Groundwater Analytical Results March 18, 2009

Former Flagship Airlines Hangar Dutchess County Airport

Laboratory Analysis	NYSDEC Standard ⁽¹⁾	ME-12	ME-14	ME-18	ME-19	MW-2	MW-6	MW-8	MW- 9/10R	MW-20	DG-1	Duplicate (A-43S)	A-26S	A-27S	A-42S	A-43S
Volatile Organic Compound by ASP/CLP Method (μg/L)																
1,1-Dichloroethane	5	U	U	U	U	U	U	U	U	U	U	0.78	9.4	1.8	0.78	0.76
1,1-Dichloroethene (3)	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethene (3)	5	U	U	U	0.25	U	U	0.27	U	U	U	0.4	0.4	4.9	2.9	0.41
trans-1,2-Dichloroethene (3)	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichloroethene, Total	5	U	U	U	U	U	U	U	U	U	U	U	U	4.9	2.9	U
Chlorobenzene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chloroethane	5	U	U	U	U	U	U	U	U	U	U	U	U	J	U	U
1,1,1-Trichloroethane	5	U	U	U	U	U	U	U	U	U	U	U	U	J	U	U
Tetrachloroethene	5	U	0.38	U	U	U	U	U	U	U	U	U	U	J	U	U
Trichloroethene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Vinyl Chloride	2	U	U	U	U	U	U	U	U	U	U	U	0.42	1.2	8.8	U
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																
Phenol	1 ⁽²⁾	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
4-Methylphenol	1 ⁽²⁾	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Notes:

BOLD values indicate detections above laboratory detection limit.

- = Compound detected above NYSDEC standard
 (1) NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (2) The collective sum of all phenol compounds should not exceed 1 $\mu\text{g/L}.$
- (3) Additional analyte reported as per request by IBM.
- J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.
- U = Indicates compound was analyzed for, but not detected.
- B = Indicates analyte was found in the associated blank, as well as in the sample.
- NA = Not Available
- NS = Not Sampled due to snow / ice
- * =DO meter malfunction

Former Flagship Airlines Hangar Dutchess County Airport

Field Parameters	NYSDEC Standard ⁽¹⁾		ME-12		(ME-12) DUP 1	(ME-12) DUP 1				ME	-14			(ME-18) DUP 1			ME-18					ME	-19		
		12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09
Volatile Organic Compound by ASP/CLP Method (µg/L)																									
1,1-Dichloroethane	5	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U
1,1-Dichloroethene (3)	5	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U
cis-1,2-Dichloroethene (3)	5	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	1U	0.3 J	0.4 U	0.2 U	0.2U	0.25
trans-1,2-Dichloroethene (3)	5	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U
1,2-Dichloroethene, Total	5	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U
Chlorobenzene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U
Chloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U
1,1,1-Trichloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U
Tetrachloroethene	5	0.3J	1 U	0.4 U	0.4 U	0.4U	0.36U	0.4J	0.3 J	0.4 U	0.5	0.5	0.38	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U
Trichloroethene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U
Toluene	5	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U
Vinyl Chloride	2	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																									
Phenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
4-Methylphenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
Naphthalene	10	5U	5 U	0.2 J	5 U	5U	5U	5U	5 U	0.2 J	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	0.6 J	5 U	5 U	5U	5U

Notes:

BOLD values indicate detections above laboratory detection limit.

= Compound detected above NYSDEC standard

(1) - NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.

^{(2) -} The collective sum of all phenol compounds should not exceed 1 $\mu g/L$.

^{(3) -} Additional analyte reported as per request by IBM.

J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.

U = Indicates compound was analyzed for, but not detected.

B = Indicates analyte was found in the associated blank, as well as in the sample.

^{* =}DO meter malfunc

Former Flagship Airlines Hangar Dutchess County Airport

Field Parameters	NYSDEC Standard ⁽¹⁾			MV	V-2					MV	V-6					MW	'- 8			MW- 9/10R	 DUP 1	 DUP 1		MW-9/10R	
		12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09
Volatile Organic Compound by ASP/CLP Method (µg/L)																									
1,1-Dichloroethane	5	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U
1,1-Dichloroethene (3)	5	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U
cis-1,2-Dichloroethene (3)	5	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	0.3J	0.3 J	0.4 U	0.2 U	0.2U	0.27	1U	1 U	0.4 U	0.2 U	0.2U	0.16U
trans-1,2-Dichloroethene (3)	5	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U
1,2-Dichloroethene, Total	5	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U
Chlorobenzene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U
Chloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U
1,1,1-Trichloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U
Tetrachloroethene	5	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U
Trichloroethene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U
Toluene	5	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U
Vinyl Chloride	2	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																									
Phenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
4-Methylphenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
Naphthalene	10	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	0.2 J/ 5 U	5 U	5U	5U

Notes:

BOLD values indicate detections above laboratory detection limit.

= Compound detected above NYSDEC standard

- (1) NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (2) The collective sum of all phenol compounds should not exceed 1 μ g/L.
- (3) Additional analyte reported as per request by IBM.
 - J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.
 - U = Indicates compound was analyzed for, but not detected.
 - B = Indicates analyte was found in the associated blank, as well as in the sample.
 - * =DO meter malfun

Former Flagship Airlines Hangar Dutchess County Airport

Field Parameters	NYSDEC Standard ⁽¹⁾			N	IW-20						DG-1					A-2	6S		
		12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09
Volatile Organic Compound by ASP/CLP Method (µg/L)																			
1,1-Dichloroethane	5	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	1U	1 U	0.3 U	0.3 U	0.8U	0.75U	8	1 U	6	7	8	9.4
1,1-Dichloroethene (3)	5	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U
cis-1,2-Dichloroethene (3)	5	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	1U	1 U	0.4 U	0.2 U	0.2U	0.16U	0.3J	1 U	0.4 U	0.4	0.2U	0.40
trans-1,2-Dichloroethene (3)	5	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U
1,2-Dichloroethene, Total	5	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	2U	2 U	0.7 U	0.7 U	0.7U	0.70U
Chlorobenzene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U
Chloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U
1,1,1-Trichloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U
Tetrachloroethene	5	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U
Trichloroethene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U
Toluene	5	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U
Vinyl Chloride	2	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.2 U	0.2U	0.24U	1U	1 U	0.2 U	0.4	0.2U	0.42
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																			
Phenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
4-Methylphenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U
Naphthalene	10	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	0.3 J	5 U	5 U	5U	5U

<u>Notes</u>

BOLD values indicate detections above laboratory detection limit.

= Compound detected above NYSDEC standard

^{(1) -} NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.

^{(2) -} The collective sum of all phenol compounds should not exceed 1 $\mu\text{g/L}.$

^{(3) -} Additional analyte reported as per request by IBM.

J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.

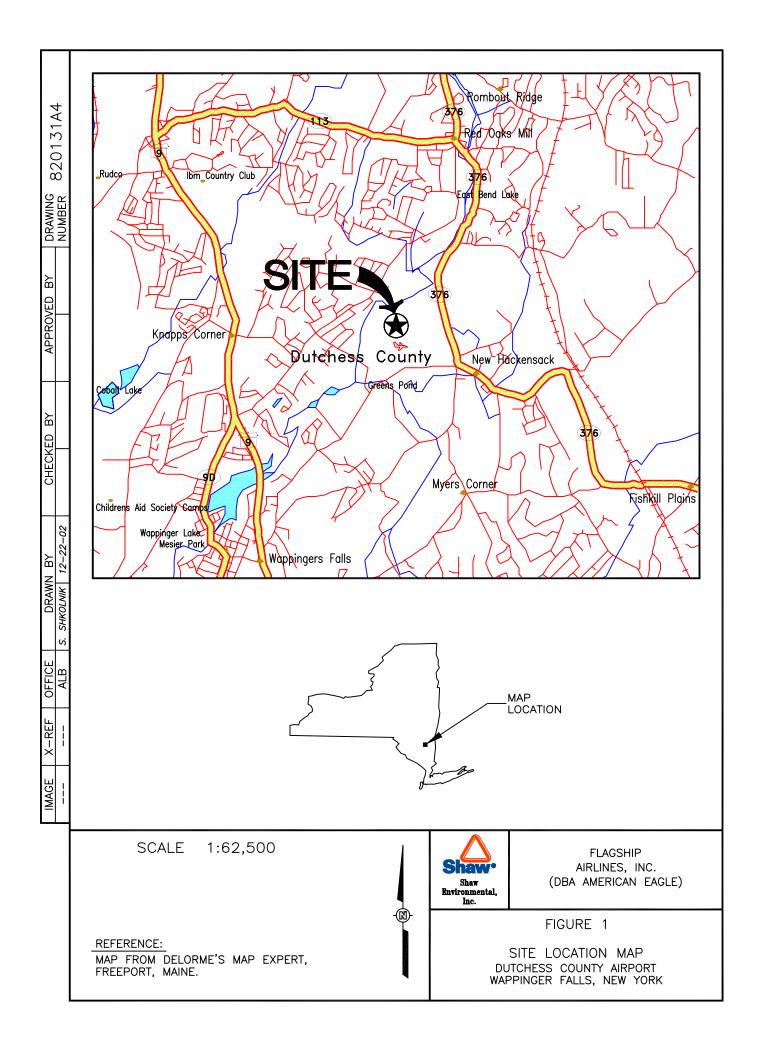
U = Indicates compound was analyzed for, but not detected.

B = Indicates analyte was found in the associated blank, as well as in the sample.

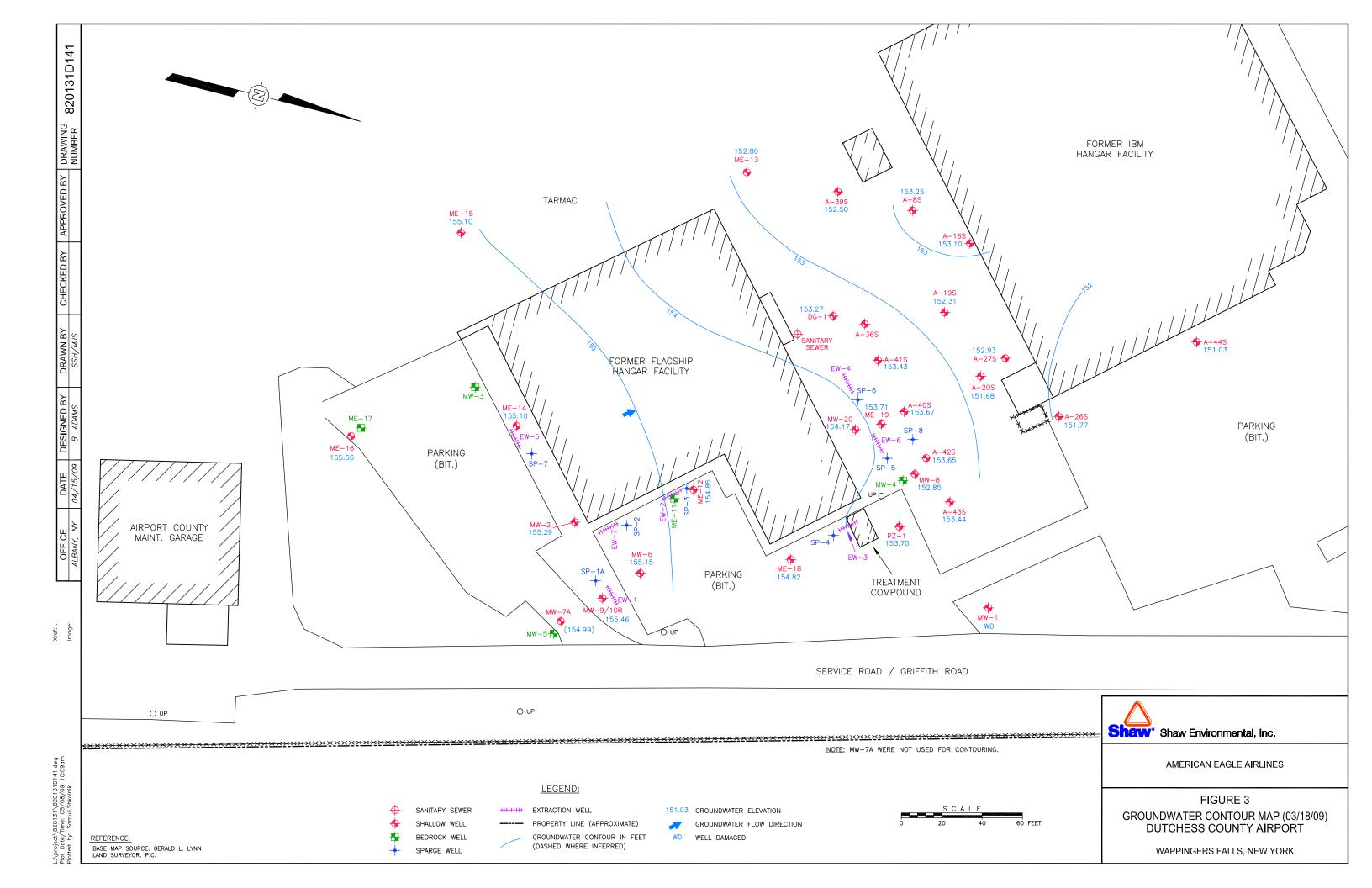
^{* =}DO meter malfunction

Former Flagship Airlines Hangar Dutchess County Airport

Field Parameters	NYSDEC Standard ⁽¹⁾			A-2	278					A -4	128						A-43S			Duplicate A-43S
		12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/08	3/18/09	12/18/07	3/6/08	6/11/08	9/17/08	12/4/2008	3/18/2009	3/18/2009
Volatile Organic Compound by ASP/CLP Method (μg/L)																				
1,1-Dichloroethane	5	1	1	1	1	1	1.8	1U	0.9 J	0.7	1.0	0.8U	0.78	0.5J	1 U	0.3 U	0.8 U	0.8U	0.76	0.78
1,1-Dichloroethene (3)	5	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	1U	1 U	0.3 U	0.3 U	0.3U	0.29U	0.29U
cis-1,2-Dichloroethene (3)	5	3	4	3	4	4	4.9	0.5J	6	3	5	3	2.9	0.3J	0.6 J	0.4 U	0.4	0.2U	0.41	0.40
trans-1,2-Dichloroethene (3)	5	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	1U	1 U	0.3 U	0.1 U	0.1U	0.13U	0.13U
1,2-Dichloroethene, Total	5	3	4	3	4	4	4.9	2U	6	3	5	3	2.9	2U	2 U	0.7 U	0.7 U	0.7U	0.70U	0.70U
Chlorobenzene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	1 U	0.3 U	0.2 U	0.2U	0.32U	1U	0.4 J	0.3 U	0.2 U	0.2U	0.32U	0.32U
Chloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	1U	1 U	0.3 U	0.3 U	0.3U	0.32U	0.32U
1,1,1-Trichloroethane	5	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	1U	1 U	0.3 U	0.3 U	0.3U	0.26U	0.26U
Tetrachloroethene	5	1U	0.3 J	0.4 U	0.4 U	0.4U	0.36U	1U	0.5 J	0.5	0.4	0.4U	0.36U	1U	1 U	0.4 U	0.4 U	0.4U	0.36U	0.36U
Trichloroethene	5	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	1U	0.3 J	0.3 U	0.2 U	0.2U	0.18U	1U	1 U	0.3 U	0.2 U	0.2U	0.18U	0.18U
Toluene	5	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	1U	1 U	0.5 U	0.5 U	0.5U	0.51U	0.51U
Vinyl Chloride	2	1U	0.5 J	0.6	1	0.2U	1.2	1U	10	15	21	9	8.8	1U	1 U	0.2 U	0.7	0.2U	0.24U	0.24U
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																				
Phenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U
4-Methylphenol	1 ⁽²⁾	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U
Naphthalene	10	5U	0.3 J	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U	5 U	5 U	5 U	5U	5U	5U


Notes:

BOLD values indicate detections above laboratory detection limit.


= Compound detected above NYSDEC standard

- (1) NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (2) The collective sum of all phenol compounds should not exceed 1 $\mu\text{g/L}.$
- (3) Additional analyte reported as per request by IBM.
 - J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.
 - U = Indicates compound was analyzed for, but not detected.
 - B = Indicates analyte was found in the associated blank, as well as in the sample.
 - * =DO meter malfunc

FIGURES

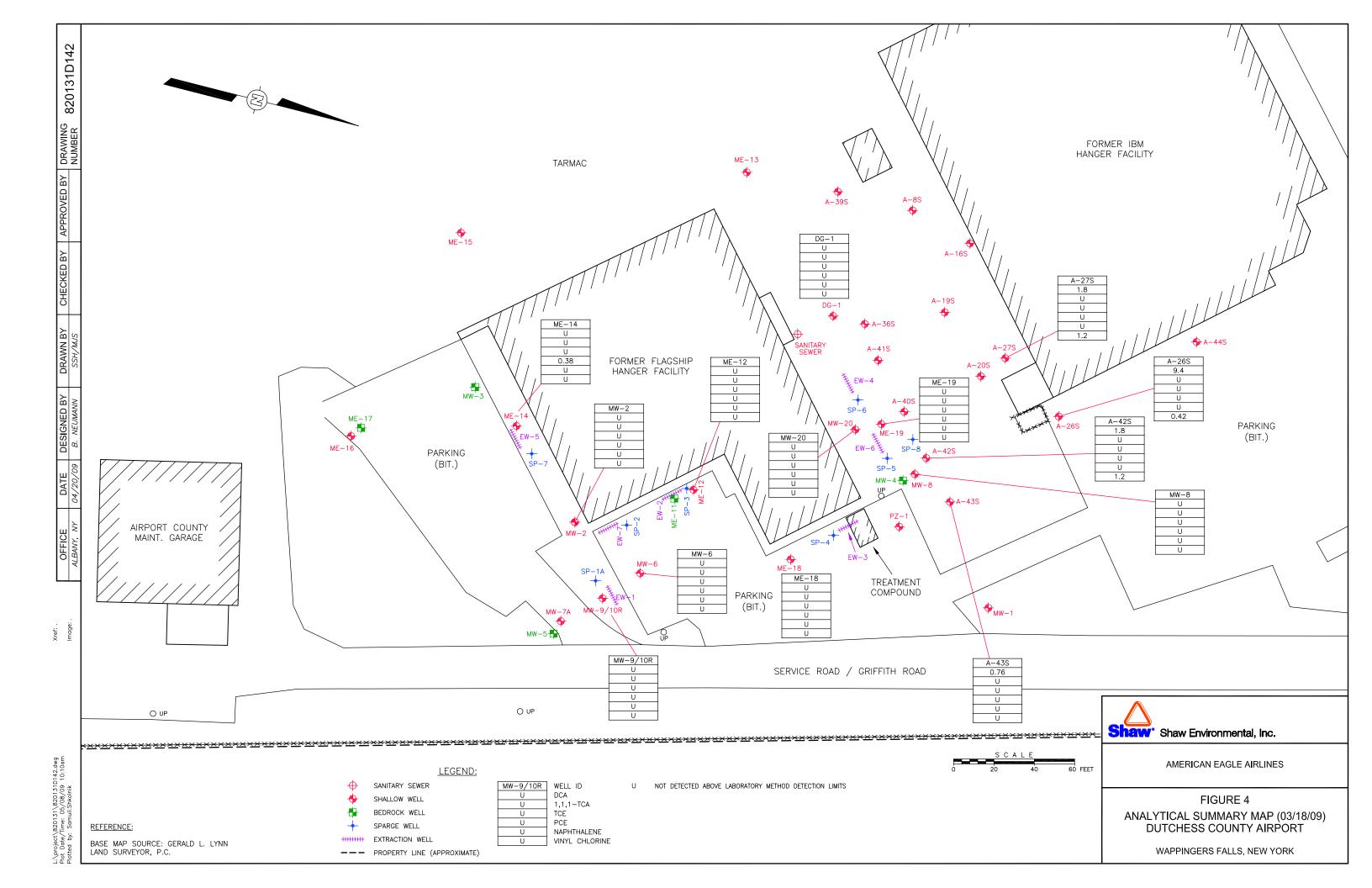


Figure 5
Dissolved Tetrachloroethene (PCE)

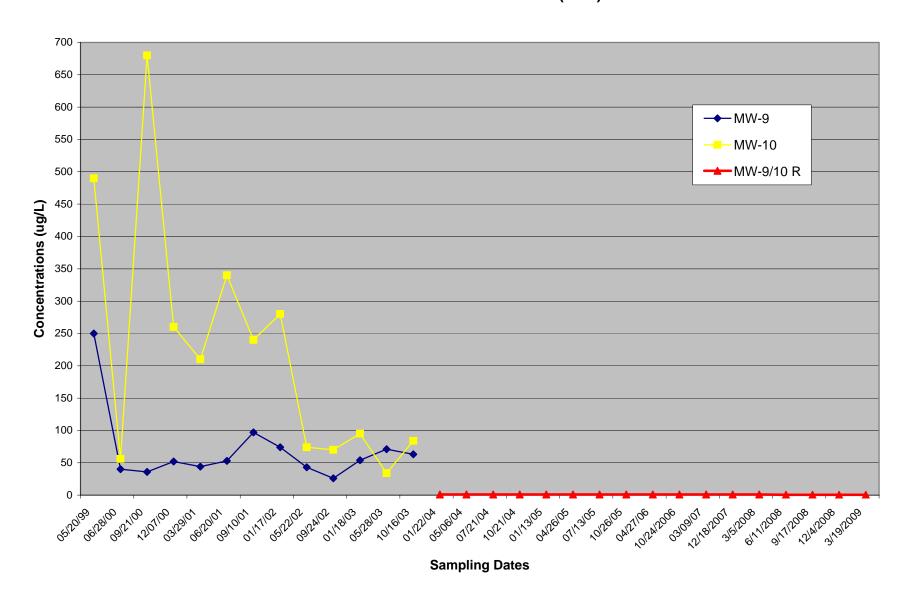


Figure 6
Dissolved 1,1-Dichloroethane

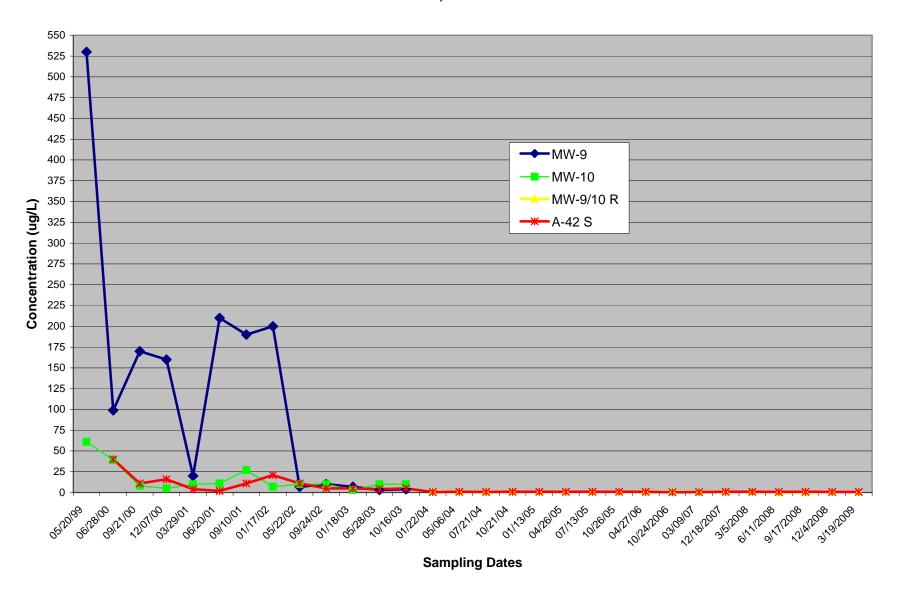


Figure 7
Dissoved Naphthalene Trends

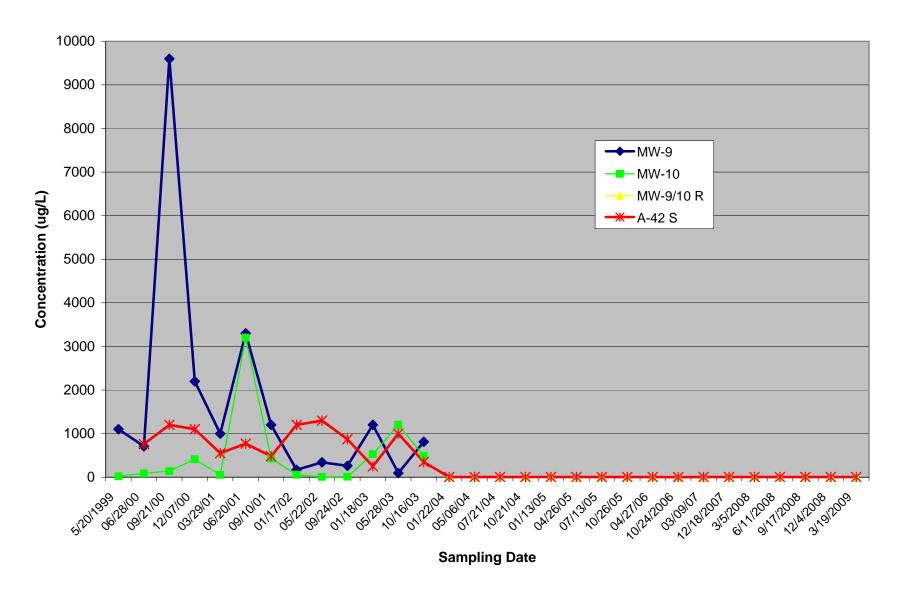
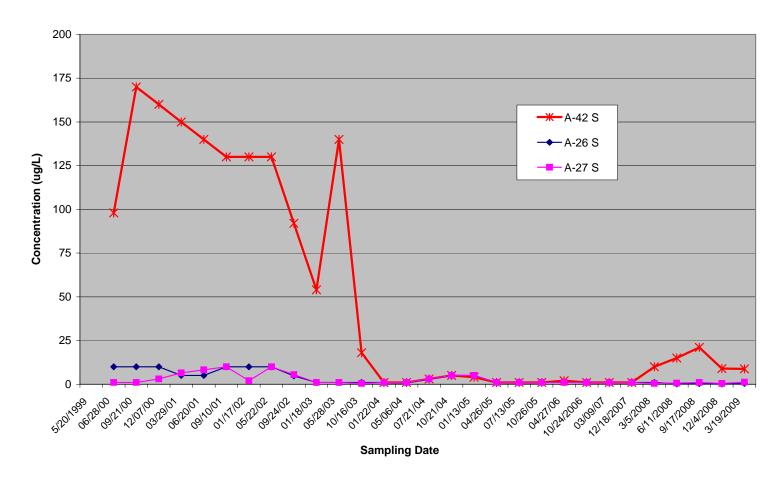



Figure 8
Dissoved Vinyl Chloride Trends

APPENDIX A FIELD DATA SHEETS

Project Name:				Project No	ımber:		
Water Level Data			φ.				•
Date: 3/19/04		•		Well ID:	ME-19		
Initial Total Casing Le	ength	<u> </u>	37	(feet)	*Volume I 1-inch we	-actors: II = 0.041 g	ıal/ft
Depth to Water (from	top of casin	ig) 1.3) (feet)	1.5-inch we	vell = 0.092	gal/ft
a) Height of Water Co	lumn	17.0	16 (feet)	Dinch we	ll = 0.367 g ll = 0.653 g	ıaι/π ıal/ft
Well Volume ([a] x vol	ume factor	*) = <u>1796</u>	(feet) x <u>14</u>	gallons/f	6-inch we oot = 11.7	ll = 1.468 g gallons	al/ft
Purge Data		<u> </u>					
Date: 3 909	Time:	26	_(start)	He(finis	sh)		
Method: Peristaltic (Waterra, bailer, subm	ersible pun	•	_Low Flow S	sampling			
Time	436	929	932	935	420	I Alla	T GDE
Volume	#	1.3	373	4.0	43.8 7.8	7.0	945
Specific Conductivity	1697	108	709	177	713	714	8,3
pН	7.04	7.13	7.19	7.19	7.19	.714	714
Turbidity	70.7	53.0	50:7	40.0		7.70	120
Temperature	11.32	11.45	13-09	12.21	31.5	347	327
ÖRP	1.515	2042	1980	1920.3	143.7	12.41	1244
DO	(0.32	.90	.81	in S	. 55	1957	1931
Did well dry out? (If ye				Actual Volu			
Sample Date:	3/19/09		9	Sample Time:	1	000	•
Appearance (visual)	Clea	V		or	Odor		
Sampling Method:	Lo-Fle	ow					
Constituents Sampled VOCs ՏածԸչ		yom	Discription L GA	<u>. </u>	Perservative LICI		- -
	•						<u>-</u>
							-
	•			•	· · · · · · · · · · · · · · · · · · ·		_
	•			 .			•
	•						•
Personnel: COMMENTS: ປຸລຸໄພ		749					
17 pa 81	sted love						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1 CA TOWN						

Project Name: AA	flogsh	P		Project Nu	ımber: 82	10131	
Water Level Data							_
Date: 3.19.09 Initial Total Casing Le		9/5 25.10	(Well ID:		 actors: l = 0.041 ga	
Depth to Water (from	top of casing	g) 5.75	(fe	et)		ell = 0.092	•
a) Height of Water Co	lumn <u> 19.3</u>	5	(fe	eet)	3-inch well	l = 0.367 ga l = 0.653 ga	l/ft l/ft
Well Volume ([a] x vol	ume factor *	() = <u>al63</u>	(feet) x 19.3	∑ gallons/f	oot = <u>3./5</u>	gallons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Purge Data							
Date: 3 · 19 · 09	Time: 9	15	(start) <u>93</u>	O (finis	sh)		•
Method: Peristaltic (Waterra, bailer, subm		p, etc.)					
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			
Time	915	918	922	925	929		
Volume	T	1.3	2.8	4.3	5.9	- C (C)	
Specific Conductivity pH	,691 2,39	209 204	<i>910</i>	0714	7530	07/7	
Turbidity	50.0	142	7.73	7,60	7,58	<u> </u>	
	11.47	11/11/V	62.5	137	7.75		
Temperature	10.0	11:74	11.73	11.76	11.74		
ORP	11.8	-2.0	~ 04	9,5	(18.3		
DO	2.45	074	o72	04/	e () ()		
Did well dry out? (If ye	es, how man	y times)		Actual Vol	ume Remov	ed2_	_ (gallons)
Sampling Data			·				ı
Sample Date:		09		ample Time:		.	
Appearance (visual)	(Jea)		. Colo	r <u>West</u>	_ Odor	NO	
Sampling Method:					,		
Constituents Sampled VOCs	<u> </u> - -	Container Ubn 1LC		- - -	Perservativ HCJ	8	
	-			_			,
	 -			-			
	-			-			
	-			_			1
1 40	Ā /			_		·	I
Personnel:							
COMMENTS:							
		A = 1	INAZ	\wedge			
		717	1111)			
				·			

Project Name: AA	+ longs	hup		Project Nu	ımber: 82	0/31	
Water Level Data	۵	V				_	
Date: 3 - 19 - 09	Start Time	840		Well ID:	A 27-	5	
Initial Total Casing Le	ength 24	.15	(1	eet)	*Volume F	actors: = 0.041 ga	i/ fi
Depth to Water (from					1.5-inch w	ell = 0.092 g	gal/ft
				et)	3-inch well	= 0.163 ga = 0.367 ga	l/ft
a) Height of Water Co				et)	0 3	= 0.653 ga = 1.468 ga	
Well Volume ([a] x vol	ume factor '	<u>3 کام</u> = ((feet) x <u>21.3</u>	4 gallons/f	oot = 3.4	gallons	1710
Purge Data							
Date: 3 19.09	Time: 8	42	(start) <u>95</u>	(finis	sh)		
Method: Peristaltic	pump						
(Waterra, bailer, subm	ersible pum	ip, etc.)					
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			
Time	840	843	846	850	854		
Volume		1.3	なり	4.2	5.5		
Specific Conductivity	7 35	1740	742	J45	747		
pH Turbidity	8.24	8.05	7.93	7.8/	7.72		
Turbidity Temperature	143.1	148 4	199	303	/28		
ORP	-63.1	11.88 -58.3	11.7.5	12.01	12.04		
DO	. 83	-50.5	-553 .56	-47.0	-46.7		
Did well dry out? (If ye	s, how man	y times)			ıme Remov	ed 2	(gallons)
	3.19.0	q			0900	- 11	
Sample Date:		Cla	· · · · ·	ample Time:			
Appearance (visual)	Clear	W/F/e	els Color	clear	. Odor	20	
Sampling Method:					•		
Constituents Sampled		Container I	Discription		Perservative	3 .	
VOCs	· _	40m		•	uc)	-	
8006	- -	116	DA	_			
	-			-			
				•			
	-		70-	_		````	
•	-			-			
	- ;	***************************************		-			
	-			-			
1	-		THE CONTRACT OF THE CONTRACT O	-		·····	
Personnel: UFW	<u></u> _						
COMMENTS:							
· · · · · · · · · · · · · · · · · · ·		J.M.					

Project Name: AA 4	FLAGST	(IP		Project N	umber: 82	.0131	
Water Level Data							
Date: 3 18 09 Initial Total Casing Leader Depth to Water (from total) Height of Water Columbia Well Volume ([a] x volume ([a] x volume Date: 3 18 09 Method: (Waterra, bailer, submeder Purge Volume (3 to 5 well)	ngth	25.50 $9.6.52$ 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98	(start) _/	34 / (finis	1.5-inch w 2-inch wel 3-inch wel 4-inch wel 6-inch wel oot = 12 4	actors: = 0.041 ga ell = 0.092 = 0.163 ga = 0.367 ga = 0.653 ga	gal/ft al/ft al/ft al/ft
Volume Specific Conductivity pH Turbidity Temperature ORP DO Did well dry out? (If yes	1328 I .763 2.70 39.2 12.35 87.2 5.09 , how many	1.33/ 1.5 .754 2.75 41.6 12.01 71.6 2.28 (times)	1334 3.2 .748 7.74 48 11.73 73.5	1338 4.8 -750 7.71 56.2 11.92 77.8 -95 Actual Volu	/34/ 6,2 .746 7,7/ 45,3 //.75 79,0 .95	ed_2.8	_(gallons)
Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCS SUOCS Personnel: COMMENTS:	C.ke.	Сontainer [Цол	Col <u>Discription</u>	Sample Time:	J345 Odor Perservative		

Project Name:	Project Number:							
Water Level Data							_	
Date: 3.18.09				Well ID:	A435		•	
Initial Total Casing Le	ength	<u> 25.40</u>		(feet)	9			
Depth to Water (from			eet)	9				
a) Height of Water Co				eet)	4-inch well	l = 0.367 ga l = 0.653 ga l = 1.468 ga	l/ft	
Well Volume ([a] x vol	lume factor	*) = <u>.163</u>	(feet) x <u>20</u>	95 gallons/f	foot = <u>3.4</u>	gallons	1/11	
Purge Data							•	
Date: 3.18.09	Time: 12	:42	(start) <u>13</u>	05(fini	sh)			
Method: pecci. (Waterra, bailer, subm		np, etc.)	/					
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	ampling				
Time	1242	1245	1248	1252	1256			
Volume Specific Conductivity	I .865	2	4	5,2	6.5			
pH	7.69	.859 7.67	.873 7.\$7	876	.890 7.83			
Turbidity	-2,3	~ 2.8	32.5	69.5	73.1			
Temperature	13.75	13.40	13.19	15.21	13.19			
ORP	<i>\$</i> 3, 2_	54.9	545	46.7	35.6			
DO	4.73	1.11	.26	و 25	• 25			
Did well dry out? (If ye	s, how man	y times)		Actual Volu	ıme Remov	ed2,5	_(gallons)	
Sampling Data								
Sample Date: Appearance (visual) Sampling Method:				ample Time: r_cleac	/300 Odor	NO		
Constituents Sampled V05 SU063	• . 	Container I 40 _V)L		<u>!</u> 	Perservative HO	2		
	· .			<u> </u>				
	· .			- ·		· · · · · · · · · · · · · · · · · · ·		
				- .				
Personnel: J 6M	;							
			— —	$\overline{\Omega}$				
				M_{\sim}	· · · · · · · · · · · · · · · · · · ·			

Project Name: 🗲		Project Number: 820131						
Water Level Data	- 4							
Date: 3 · 1 8 · 0 9 Initial Total Casing Le Depth to Water (from a) Height of Water Co Well Volume ([a] x vol	ength 2 top of casir	Well ID: Feet) et)	*Volume Factors: 1-inch well = 0.041 gal/ft 1.5-inch well = 0.092 gal/ft 2-inch well = 0.163 gal/ft 3-inch well = 0.367 gal/ft 4-inch well = 0.653 gal/ft					
` Well Volume ([a] x vol	lume factor	*) = <u>e 16 3</u>	_(feet) x <u>19. 7</u>	O gallons/f	oot = <u>3, 1</u>	2 6 gallons		
Purge Data Date: 3. 18. 0 9 Method: Perci (Waterra, bailer, subm	pump nersible pun	np, etc.)	/		sh)		<u> </u>	
Time	1200	1203	1206	1269	12/2		V I	
Volume \∟	#	1.4	2.8	4.1	5.7	 		
Specific Conductivity	0955	.952	-944	.941	.937			
pН	7.3/	7.32	7.36	7.39	7.42			
Turbidity	52.3	52	15.5	41.8	78.1			
Temperature	13.05	13.04	12.88	12.73	12.59			
ORP -	31.7	-30 _' ठ	-26.	-21.0	-18.5			
DO	۰27	.24	.21	.20	£20			
Did well dry out? (If yes, how many times) Actual Volume Removed (gallons) Sampling Data								
Sample Date: Appearance (visual) Sampling Method:		79		mple Time: <u>Cleal</u>		No	-	
Constituents Sampled VOCS SUOCS Personnel: COMMENTS:		Container I		<u>F</u>	Perservativ	<u>e</u>		
		-						

Project Name:	Flags	ıφ		Project Nu	ımber: ${\cal G}$	2013)	
Water Level Data	·						_
Date: 3-18 · 09		•	· · · · ·	Well ID:	MW 9 *Volume F	/lo ·	
Initial Total Casing Lo	ength	18.5	0(1	feet)	1-inch wel	l = 0.041 ga	
Depth to Water (from	top of casir	ng) 3.0) @ (fe	et)		/ell = 0.092	_
a) Height of Water Co			· · · · · · · · · · · · · · · · · · ·	eet)	4-inch wel	ll = 0.367 ga ll = 0.653 ga L= 1.468 ga	ıl/ft
Well Volume ([a] x vo	lume factor	*) = <u>. 653</u>	(feet) x <u>/5</u>	gallons/f	toot = 9.8	gallons	11/11
Purge Data							_
Date: 3 · 18 · 09	Time: 10	800	(start) <i> 0 2</i>	22 (finis	sh)		-
Method: Deco	ch Pun nersible pun	∱ ⊖ p, etc.)					
Purge Volume (3 to 5	well volume	es):	Low Flow Sa	mpling			
Time	1008	1011	1014	1017	1020		
Volume Specific Conductivity	590	7.5	3.2	4.7	6.1		
pH	598	·610 7.05	6.95	6,88	6.85		
Turbidity	4,8	27	1.4	1.0	6.83		
Temperature	10.97	10.9	10.83	10.76	10.79	<u> </u>	
ORP	127.7	130.3	134.1	136	136		
DO	4.08	3,81	3,54	3,42	3.41		
Did well dry out? (If ye		y times) V O		Actual Volu	ıme Remov	red_2.5	(gallons)
Sampling Data					-		ſ
Sample Date: Appearance (visual) Sampling Method:	3.18.0 clea/	9		mple Time:		No	
Constituents Sampled Vocs Svocs	- - -	Container [40m	<u> </u>	<u>f</u> 	Perservative	2	
	•			•			
	•			· -			
	• •						
Personnel: JFM COMMENTS:							

THE	r logshin			i ioject ivi	arriber.			
Water Level Data								
Date: 3/18/104	Start Time	: 1140		Well ID:	WE-			
Initial Total Casing Le	ngth			(feet)	*Volume Factors: 1-inch well = 0.041 gal/ft 1.5-inch well = 0.092 gal/ft			
Depth to Water (from t	•			eet)	2-inch we	II = 0.163 ga	al/ft	
a) Height of Water Col		18:40			4) inch we	ll = 0.367 ga ll = 0.653 ga	ıl/ft	
Well Volume ([a] x volu	ume factor	$\frac{6p_1g_1}{}=($	(feet) x	gallons/f	oot = 12	ll = 1.468 ga gallons	ι/π	
Purge Data								
Date: 17423/18/10	Time:\\	42	(start) <u>115</u>	<u>1 (fini</u>	sh)		•	
Method: Peristaltic ¡ (Waterra, bailer, subm		np, etc.)						
Purge Volume (3 to 5 v	well volume	s):	Low Flow S	ampling				
Time	1142	1145	1148	1151	1154	1157	T .	
Volume \ L	Ţ	.7	2.0	3.7	4,5	6		
Specific Conductivity	.767	753	,752	1748	.751	1750		
рН	7.68	7.48	7.44	7.48	7.50	7.51		
Turbidity	0,9	0-0	12-1	10.1	1.0	0.0		
Temperature	10.52	9.95	9.48	9-91	9,90	9.86		
ORP	2449	236.7	235.1	232.9	230.0	230.0	i i	
DO	7.07	7.42	7.39	7.39	1.34	7,32		
Did well dry out? (If ye Sampling Data	s, how man	y times)		Actual Vol	ume Remov	ved	_ (gallons)	
Sample Date:	<u> </u>	-	8	Sample Time:	1200	-		
Appearance (visual)	<u>Clean</u>		Cole	or	Odo	<u> </u>	-	
Sampling Method:		.o- Flon					-	
Constituents Sampled VOCs	• •	Container 4	Discription omL LGA		Perservativ		; •	
							-	
	•					·····	•	
	•						• •	
Personnel:COMMENTS:								
Insti	N FR =	.7 low	red to .4	D 1143				
Added N	lew" Gripe	un Pluy						

Project Name: Flo	sgship		Project Nu	mber: 82	20131	
Water Level Data	· ·					•
Date: 3-18.09 St. Initial Total Casing Leng Depth to Water (from top a) Height of Water Colum Well Volume ([a] x volum Purge Data Date: 3-18-09 Till Method: perci. () We (Waterra, bailer, submers) Purge Volume (3 to 5 well	of casing) 4.88 of casing) 4.88 mn 15.72 ne factor *) = 6163 ime: 11.05 sible pump, etc.)	(feet) x 15,7	2 gallons/fo	1.5-inch well 2-inch well 3-inch well 4-inch well 6-inch well oot = 2.54	actors: = 0.041 ga ell = 0.092 g = 0.163 ga = 0.367 ga = 0.653 gal	gal/ft /ft /ft /ft
Volume \L Specific Conductivity of PH Government of Turbidity Temperature ORP	1/10 1/1/3 1	11/6 2.8 .678 6.55 -3.4 12.03 138.5 .31	1119 4, 4 653 -7.6 11.60 140 25 Actual Volu	1)27 6.0 .672 6.51 ~7.4 11.62 140.2 6 26	ed_ b	_(gallons)
Sample Date: 3 · Appearance (visual) Sampling Method: Constituents Sampled voes Sucs Personnel: COMMENTS:		Color Discription	mple Time:	Odor_Odor_Odor_		

Water Level Data Date: 3 18 00 Start Time: 1055 Well ID: NE-12 *Volume Factors: 1-inch well = 0.041 gal/2 1.5-inch well = 0.041 gal/2 1.5-inch well = 0.092 gal/2 2.000 3.5 (feet) Depth to Water (from top of casing) 4.07 (feet) 2-inch well = 0.163 gal/2 3-inch well = 0.367 gal/2 4-inch well = 0.653 gal/2 4-inch well = 0.653 gal/2 6-inch well = 1.468 gal/2 gallons/foot = 1.2 gallons	ıl/ft t
Initial Total Casing Length 24.37 (feet) 1-inch well = 0.041 gal/s 1.5-inch well = 0.092 gal/s 2-inch well = 0.163 gal/s 3-inch well = 0.163 gal/s 3-inch well = 0.367 gal/s 4-inch well = 0.653 gal/s 6-inch well = 0.653 gal/s 6-inch well = 1.468 gal/s gallons/foot = 1.2 gallons	ıl/ft t
Initial Total Casing Length 29.51 (feet) 1-inch well = 0.041 gal/s 1.5-inch well = 0.092 gal/s 1.5-inch well = 0.163 gal/s 2.5 (feet) 20.35 (feet) 3-inch well = 0.367 gal/s 3-inch well = 0.367 gal/s 4-inch well = 0.653 gal/s 6-inch well = 0.653 gal/s 6-inch well = 1.468 gal/s 1.5-inch well = 0.163 gal/s 6-inch well = 0.653 gal/s 6-inch well = 0.653 gal/s 6-inch well = 1.468 gal/s 1.5-inch well = 0.092 gal/s 1.5-in	ıl/ft t
Depth to Water (from top of casing) 20.35 (feet) 2 -inch well = 0.163 gal/s a) Height of Water Column 20.35 (feet) 4 -inch well = 0.653 gal/s 6-inch well = 1.468 gal/s Well Volume ([a] x volume factor *) = 20.35 (feet) x 163 gallons/foot = 12 gallons	ť
a) Height of Water Column (feet) 4-inch well = 0.653 gal/s Well Volume ([a] x volume factor *) = 20.3/ (feet) x 163 gallons/foot = 1.468 gal/s gallons/foot = 1.468 gal/s	ť
· · · · · · · · · · · · · · · · · · ·	t
	t
Purge Data	
Date: $3/8/6$ Time: 10 (start) 119 (finish)	
Method: Peristaltic pump (Waterra, bailer, submersible pump, etc.) Purge Volume (3 to 5 well volumes): Low Flow Sampling	
ブ 10 wyky らり Time 101 1104 1107 1110 1113 1116	1110
Volume 1	7.3
Omeritin Complete William	
	.636
Translating 0.0	0-87
Tananada	0.0
ODD (37)	13.38
DO HOLL STOLL	214.1 1.53
Did well dry out? (If yes, how many times) Actual Volume Removed Sampling Data	(gallons)
Sample Date: 3 18 09 Sample Time: 1120	
Appearance (visual) Clear Color Odor	
Sampling Method: Lo-Flow	
Constituents Sampled Container Discription Perservative VOCs Huch	
Personnel: RAdama COMMENTS:	

Project Name:				Project N	umber:			
Water Level Data			e.,					
Date: 3/18/04	Start Time	: 1310		Well ID:	MW -2		_	
Initial Total Casing Le	ngth			(feet)		II = 0.041 ga		•
Depth to Water (from	top of casin	_{g)} 5.0	<u>1(</u> f	eet)	Ø-inch we	vell = 0.092 II = 0.163 ga	al/ft	
a) Height of Water Co	lumn	17,0	3 (f	eet)	4-inch we	II = 0.367 ga II = 0.653 ga	al/ft	
Well Volume ([a] x vol	ume factor *) = <u>17.63</u>	(feet) x .16	<u>gallons/</u>	foot = $\frac{9-100}{2\sqrt{5}}$	II = 1.468 ga gallons	al/ft	
Purge Data							-	
Date: 3/8/09	Time: 13	17	(start) <u>13</u>	3 <i>5</i> (fini	sh)		-	
Method: Peristaltic (Waterra, bailer, subm	pump ersible pum	p, etc.)						
Time	1313	1316	1314	1322	1352	1328	1371	1335
Volume	.4	1.2	2.8	4.2	6.0	7.6	8.8	10.0
Specific Conductivity	1403	,388	,388	,391	.457	, 797	. 801	.812
рН	7.98	7/13	7,69	7.65	7.27	6.55	6.54	6.54
Turbidity	13.9	6,4	20	1.2	0.5	OND	0.0	0.0
Temperature	15.36	15:157	15.50	15.49	15.57	18.63	15.70	15.72
ORP	165.7	175.2	18681	184.4	190.6	300'8	202.7	2023
DO	-1640-	10.00	10,06	9.99	9.72	2,70	2.60	2,52
Did well dry out? (If ye	ไ₀∙3บ s, how man	y times)		Actual Vol	ume Remov	ved /	_ (gallons)	
Sample Date:	3/18/09		S	ample Time	1340	-		
Appearance (visual)	Clean		Cold	or	Odo		-	
Sampling Method:		Lo-Flo	W				-	
Constituents Sampled VOCs SV∞ς		Container 40mL	Voa		Perservativ	<u>'e</u> .	• •	
	•			_			• •	
	•						•	
					****		•	
	•			••••			•	
Personnel:COMMENTS:							•	
@ 1316	lowed to							
SOLIMIA		0 Umin						-
227,	<u>'</u>	- 1						-

Project Name:

Project Name: A	4 Flags	hip		Project Nu	ımber: 82	.0131	
Date: 3 18 16 Initial Total Casing Le Depth to Water (from to a) Height of Water Col Well Volume ([a] x volume Purge Data Date: 3 18 16 Method: Peristaltic p	op of casing tumnume factor of time:	22.73 g) 3,49 19.2°	(feet) x _ ,b	eet) <u>分</u> gallons/f	1.5-inch v 2-inch we 3-inch we (4)inch we 6-inch we oot = $\sqrt{2}$	II = 0.041 g vell = 0.092 II = 0.163 g II = 0.367 g II = 0.653 g	gal/ft al/ft al/ft al/ft
(Waterra, bailer, subm Purge Volume (3 to 5 v	•	• • •	Low Flow S	ampling			
*	•	7 Lowe	red to .31				
Time	1022	1025	1028	1031	1034	1037	1040
Volume \L	<i>I</i> .	1.72	۲.7	3,6	6.0	7.2	
Specific Conductivity	.803	.161	.762	.759	760	0.761	
pH Totalita	7.45	6.81	6.79	679	6:15	679	
Turbidity	8.1	1.4	0:4	30	0.0	0.7	<u> </u>
Temperature ORP	11.36	10.1.0	10.73	15 10 PR	10.69	10.75	
DO	7.02	183.1 4.87	185.6	1877 4.70	190.3	191.0	_/__
Did well dry out? (If ye: Sampling Data				Actual Volu	•	4.59 /ed	(gallons)
Sample Date:	3/18/09	•	S	ample Time:	1045	-	_
Appearance (visual)	elear	-	Colo)r	Odor		
Sampling Method:	Lo-Flou				•		-
Constituents Sampled VOCs SVBCs			Discription L Ven , 61	<u>.</u>	Perservativ HCI	<u>e</u> .	-
	· · · · · · · · · · · · · · · · · · ·			· ·			- -
				 			- - -
Personnel: R.	Adams, J.	moye(

Groundwater Sample Event Field Data Sheet

Project Name:	Flagsh	iρ		Project No	umber: ${\mathcal G}$	20131	
Water Level Data	•			··			_
Date: 3-18-09 Initial Total Casing Le		:: <u>1035</u> 22.97	(f	Well ID:		=actors: II = 0.041 ga	
Depth to Water (from	top of casir	ng) 7.0:	5 (fe	et)		/ell = 0.092	
a) Height of Water Co	lumn <u>/</u>	5.92	(fe	et)	3-inch wel 4-inch wel	ll = 0.367 ga ll = 0.653 ga	ıl/ft ıl/ft
Well Volume ([a] x vol	ume factor	*) = <u>•163</u>	(feet) x <u>/5.4</u>	<u>/2</u> gallons/f	toot = 2.6	gallons	11/11
Purge Data							-
Date: 03/18/09	Time: 10	35	(start) _ <i>/ 05</i>	O (finis	sh)		-
Method: pecci , pl (Waterra, bailer, subm Purge Volume (3 to 5	ersible pun		Low Flow Sar	mpling			
Time	1037	1040	1043	10/1/	16/10		
Volume \L	44PM	1090	7075	1046	1549		
Specific Conductivity	.427	.4)3	,413	3.8	5./		
рН				04/0	e4/0		-
Turbidity	6.94	6.73	6.72	6.65	6.65		
Temperature	-1.5	5.8	8	- 9	.8		
	12.24	11.88	11.9/	11,90	11,83		
ORP DO	114.5	127.8	129	13Z	/33./		
DO	4.58	3,22	3.20	3.15	3,10		
Did well dry out? (If yes	s, how man	y times)		Actual Volu	ıme Remov	ed 🟃	gallons)
Sample Date: Appearance (visual) Sampling Method:	3.18.0 clear	9		mple Time: Cleo-C		ΝO	
Constituents Sampled Strocs Vocs	Sang .	Container E	G A	<u>F</u> - - - - -	Perservative Nons HCI	_	
Personnel: JFW COMMENTS:	-			-			

Groundwater Sample Event Field Data Sheet

Project Name:				Project N	umber:		•
Water Level Data						,	
Date: <u>3/19/09</u>	Start Time	: 835		Well ID:	DG-1		
Initial Total Casing Le	ength	1956		(feet)		II = 0.041 ga	
Depth to Water (from		g) 9.00	(1	feet)	2-inch we	vell = 0.092 II = 0.163 ga	al/ft
a) Height of Water Co	lumn	10.5	<u>(</u>	feet)	3-inch we	ll = 0.367 ga ll = 0.653 ga	al/ft al/ft
Well Volume ([a] x vol	ume factor	*) = 10/SC	(feet) x,(gallons/	foot =	ll = 1.468 ga gallons	al/ft
Purge Data							_
Date: 3/19/04	Time: 3	36	_(start) <u>_</u> 85	68 (fini	sh)		
Method: Peristaltic (Waterra, bailer, subm Purge Volume (3 to 5	ersible pun		_ Low Flow S	ampling			
Time	838	841	१५५	1847	850	353	828
Volume /L	4	1,2	a.5	3.75	4.95	6.2	77
Specific Conductivity	,366	.876	.869	1870	868	.867	.865
pН	663	6.02	5,99	5,95	5.95	5.99	5.99
Turbidity	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Temperature	10.90	1150	11.12	11.20	11.12	11.13	11.07
ORP	1317	1.18	1997	2017	204.1	1.206	9064
DO	461	.70	.60	157-	.46	.36	,39
Did well dry out? (If ye Sampling Data	s, how mar	ny times)		Actual Vol	ume Remov	ved	_ (gallons)
Sample Date:	3/19/09	_	S	Sample Time:	910		•
Appearance (visual)	Clea		Cold	or	Odo	· .	
Sampling Method:		.o-Flow					•
Constituents Sampled VOCs		Container .4on	Discription		Perservativ	<u>'e</u> .	
SVOCS	•		GA				•
							•
	•				·		• v ₇
				-			
	•						•
Personnel:COMMENTS:	•						•
EE@	.42 Llmi	'n					

APPENDIX B CHAIN OF CUSTODY

Chain of Custody Record

Temperature on Receipt _____

TestAmerica

Drinking Water? Yes □ No 🗵

THE LEADER IN ENVIRONMENTAL TESTING

Client		Project	Mana	cor			<u> </u>	<u> </u>								Date	. : ' .					- 12	36-26-26-26-26-26-26-26-26-26-26-26-26-26	
Client Shaw Environmental, Inc. Address			IVIANA		Ama	nv) [18]	loa				0	Chain of Custody N	
Address		Telepho	one Nu	ımber	(Area	Us) Code)/Fax	Nun	nber	·	······································				<u> </u>		Numb					+	<u> </u>) J /
13 British American Blod.			151	8) -	173-	19	961	14	518	1	83											1	Page	of
City State Zip Latham NY	Code	Site Co	ntact				Lab (Cont	act	,						lysis spa								
Project Name and Location (State)	12110	Carrier	Wayhi	i) Il Num	her		<u>C</u> .	· ro	Х			-	1-4			Jopan	T	T	T	П	Τ	Τ		
AA Flaship Wappingers Fall Contract/Purchase Order/Quote No.	K NY	J Garrier	,	., , , ,								ر د ا								-				
Contract/Purchase Order/Quote No.				17-4		Ī	•		Contai			1	5	5					1				Condition	Instructions/ ns of Receipt
				Mat	rix				resei	vat	ives	9260												
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous Sed.	Soil		Unpres.	H2SO4	HNO3	į	NaOH ZnAc/ NaOH	8	01778											
ME-18	3/18/09	1200		X			Z			3		$\top X$	X											
ME-12		1120										X	X											
MW-6		1045					\prod					X	X											
MW-20		1340										X	X	1										
ME-14		125								\prod		λ	γ											11.11.11.11.11.11.11.11.11.11.11.11.11.
MW-2		1050		\prod								X	X											
MW-9/10R		025					\prod			\prod		X	V											
A-265		1215					\prod					X	Y											
A-435		300					\prod			П		λ	V											
MW-8	4 1	345										入	V											
Displicate 1		-man bearings.					I			5		$-\chi$	X			-								
Trip Blank	- Access -	-		øl					1	2		У							1					
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B	Unknown		nple D	•			يم [sposai			7 46											ed if samples are i	retained
Turn Around Time Required	CI POSOITE C		جسنات			Herit					nts (Spec	Arch	ive i	-or _		IVIO	nths	lon	ger ti	han 1	1 moi	nth)		
☐ 24 Hours ☐ 48 Hours ☐ 7 Days ☐ 14 Da	ays 🗌 21 Days	☐ Oth	er <u>57</u>	andi	vd_		_		•												1.13			
1. Relinquished By Adul		Date 3//8		, T	ime 15	<u>-</u> 30	1	I. Re	ceive	і Ву	/					. 1.						1	Date	Time
2. Relinquished By		Date	<i>t</i>	17	ime		2	2. Re	ceive	І Ву	/				-				<u></u>			$\frac{1}{1}$	Date	Time
3. Relinquished By		Date	<u> </u>	T	me		3	3. Re	ceive	І Ву	,						-			- 1 - 1	<u> </u>	+	Date	Time
Comments			- ; ; .														1 -	<u> </u>						

Chain of Custody Record

Temperature on Receipt _____

Drinking Water? Yes □ No □

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)																									
Client	-	Projec	t Mana	ger										-		1	Date	T_{i}	. 1				Cha	in of Custoc	ly Number
Shaw Environmental, I	<u>m </u>	Teleph	<u>15. 7</u>	Ven	1110	nn												3//4	- 1	9				_099	3596
Address		Teleph	ione Ni	umbei	(Area	Cod	e)/Fa	x Nu	imbe.	r - N	-13	უ (C	227	,,		4	Lab N	umbe	er					and the second	/ /
City State Zip	Code	Site Co	(5	<u>/5)</u>	733	- /		Con		18)	/ <u>y</u>	<u> 3- S</u>	79					• • •					Pa	ge	of
Lathan NY	12110	R	AA				Lab	F	itact							Analy									
Project Name and Leasting (Ctata)		Carrie	rMayb	ill Nor	nher			15	OX.				_		<u></u>					1		T			
AA Flanship Wappingers For Contract/Purchase Order/Quote No.	IL NY	Camer	, wayb		IIDOI										15.13										
Contract/Purchase Order/Quote No.	115,10		Ť				i		Can	laina	ers &		┤ '	265	٤ ا									Specia	al Instructions/ ions of Receipt
				Ма	trix						ns a ntives			21	7									Condit	ions oi meceipi
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Soil		Unpres.	H2SO4	HNO3	HCI	NaOH	NaOH NaOH	j	02-60	26.10										
DG-1	3/19/09	310		X			9		3				X	X											
ME-19	,	1000		1									ΤX	X											
A-375		900								\exists			TX			1			\neg		\exists				
A-425		935		Π							T		X	X						\dashv			\neg		
A- 425 MS		935											X	X		1				1					
A-425 MSD		935							1		\top		$\sqrt{\chi}$	ľχ	-							7	\top		
Trip Blank							v		2		\dashv		ÍΧ			1			-						
					Ť				-				\top		\top					+	1	\dashv			
										\neg	_	-	 			1			1	1	7	+	+		Trans.
					+							+	1.			-			1	+	\dashv			·	***
				\top								 				+	\Box			+	\dashv	+	-		
				-				-		\dashv	+	-	╅┈		+	+				7	+	+	+		
Possible Hazard Identification			Sar	nple E	Dispos	<u>l </u>								<u> </u>		Щ				<u>l</u> .			Д.,		:
	Poison B	Unknown		Retui	n To (Client			•	-	y Lab			ive Fo	or		Monti			e ma er tha				if samples a	re retained
Turn Around Time Required		[∡[Oth	<	5/~.	. In	1	1	QC I	Requ	irem	ents (Specif.	y)												
24 Hours 48 Hours 7 Days 14 Da	ys 🗌 21 Days	اجا Oth Date	er				-							•											
Carlat Holes		3/19	ha	'	ime 15	30		1. H	eceiv	ed B	y												Da	te	Time
2. Relinquished By		Date	, .	17	ime			2. R	eceiv	ed B	y			-					<u> </u>			·····	Da	te	Time
3. Relinquished By				Щ								·····													
. Пошционей ру		Date			Time			3. R	eceiv	ed B	У.												Da	te	Time
Comments				L_			<u>.</u>					·····	-	····		~~~~							1		

APPENDIX C LABORATORY DATA PACKAGES

Analytical Report

Work Order: RSC0678

Project Description

AMERICAN AIRLINES - DUTCHESS COUNTY

AMERICAN AIRLINES - DUTCHESS COUNTY

For:

Project Manager

Shaw E & I, Inc. - Latham, NY 13 British American Boulevard Latham, NY 12110-1405

Lisa Shaffer For Candace Fox

Fin Sh

Project Manager

lisa.shaffer@testamericainc.com

Wednesday, April 15, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

SHAW

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	<i>E</i> 87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>SpecificMethod</u>	<u>Analyte</u>	<u>Units</u>	Client RL	Lab PQL
8260B	1,1,1-Trichloroethane	ug/L	0.26	1
8260B	1,1-Dichloroethane	ug/L	0.75	1
8260B	1,1-Dichloroethene	ug/L	0.29	1
8260B	1,2-Dichloroethene, Total	ug/L	0.70	2
8260B	Chlorobenzene	ug/L	0.32	1
8260B	Chloroethane	ug/L	0.32	1
8260B	cis-1,2-Dichloroethene	ug/L	0.16	1
8260B	Tetrachloroethene	ug/L	0.36	1
8260B	Toluene	ug/L	0.51	1
8260B	trans-1,2-Dichloroethene	ug/L	0.13	1
8260B	Trichloroethene	ug/L	0.18	1
8260B	Vinyl chloride	ug/L	0.24	1
8270C	3 & 4 Methylphenol	ug/L	5.0	9.433963

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

DATA QUALIFIERS AND DEFINITIONS

С Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted. **Z**6 Surrogate recovery was below acceptance limits.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

SHAW

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDI		ilution Factor	Date Analyzed	Analyst	Seq/	Method
		Quanners	тере шине							
Sample ID: RSC0678-05 (ME-14 - W	•				Sampled:	03/18/09	11:25	Recvd: 03	3/19/09 09):00
Volatile Organic Compounds by EPA 8			0.26	NIA	//	1.00	02/26/00 00:2	6 MF	0025000	8260B
Tetrachloroethene	0.38		0.36	NA	ug/L	1.00	03/26/09 00:20	o IVIF	9C25090	020UB
Sample ID: RSC0678-08 (A-26S - W	•				Sampled:	03/18/09	12:15	Recvd: 03	3/19/09 09	0:00
Volatile Organic Compounds by EPA 8										
1,1-Dichloroethane	9.4		0.75	NA	ug/L	1.00	03/26/09 01:37		9C25090	8260B
cis-1,2-Dichloroethene	0.40		0.16	NA	ug/L	1.00	03/26/09 01:37		9C25090	8260B
Vinyl chloride	0.42		0.24	NA	ug/L	1.00	03/26/09 01:37	7 MF	9C25090	8260B
Sample ID: RSC0678-09 (A-43S - W	ater)				Sampled:	03/18/09	13:00	Recvd: 03	3/19/09 09	:00
Volatile Organic Compounds by EPA 8	<u> 260B</u>									
1,1-Dichloroethane	0.76		0.75	NA	ug/L	1.00	03/26/09 02:01		9C25090	8260B
cis-1,2-Dichloroethene	0.41		0.16	NA	ug/L	1.00	03/26/09 02:01	1 MF	9C25090	8260B
Sample ID: RSC0678-10 (MW-8 - W	ater)				Sampled:	03/18/09	13:45	Recvd: 03	3/19/09 09	:00
Volatile Organic Compounds by EPA 8	260B									
cis-1,2-Dichloroethene	0.27		0.16	NA	ug/L	1.00	03/26/09 02:25	5 MF	9C25090	8260B
Sample ID: RSC0678-11 (DUPLICA	TE - Water)				Sampled:	03/18/09		Recvd: 03	3/19/09 09	:00
Volatile Organic Compounds by EPA 8	260B				•					
1,1-Dichloroethane	0.78		0.75	NA	ug/L	1.00	03/26/09 02:48	B MF	9C25090	8260B
cis-1,2-Dichloroethene	0.40		0.16	NA	ug/L	1.00	03/26/09 02:48	B MF	9C25090	8260B
Sample ID: RSC0728-02 (ME-19 - W	/ater)				Sampled:	03/19/09	10:00	Recvd: 03	3/20/09 09	:00
Volatile Organic Compounds by EPA 8	260B									
cis-1,2-Dichloroethene	0.25		0.16	NA	ug/L	1.00	03/26/09 05:57	7 MF	9C25090	8260B
Sample ID: RSC0728-03 (A-27S - W	ater)				Sampled:	03/19/09	09:00	Recvd: 03	3/20/09 09	:00
Volatile Organic Compounds by EPA 8	<u> 260B</u>				•					
1,1-Dichloroethane	1.8		0.75	NA	ug/L	1.00	03/26/09 06:20) MF	9C25090	8260B
1,2-Dichloroethene, Total	4.9		0.70	NA	ug/L	1.00	03/26/09 06:20) MF	9C25090	8260B
cis-1,2-Dichloroethene	4.9		0.16	NA	ug/L	1.00	03/26/09 06:20) MF	9C25090	8260B
Vinyl chloride	1.2		0.24	NA	ug/L	1.00	03/26/09 06:20) MF	9C25090	8260B
Sample ID: RSC0728-04 (A-42S - W	•				Sampled:	03/19/09	09:35	Recvd: 03	3/20/09 09	:00
Volatile Organic Compounds by EPA 8	260B									
1,1-Dichloroethane	0.78		0.75	NA	ug/L	1.00	03/26/09 10:41		9C26010	8260B
1,2-Dichloroethene, Total	2.9		0.70	NA	ug/L	1.00	03/26/09 10:41		9C26010	8260B
cis-1,2-Dichloroethene	2.9		0.16	NA	ug/L		03/26/09 10:41		9C26010	8260B
Vinyl chloride	8.8		0.24	NA	ug/L	1.00	03/26/09 10:41	I TRB	9C26010	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

Sample Summary

SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
ME-18	RSC0678-01	Water	03/18/09 12:00	03/19/09 09:00
ME-12	RSC0678-02	Water	03/18/09 11:20	03/19/09 09:00
MVV-6	RSC0678-03	Water	03/18/09 10:45	03/19/09 09:00
MVV-20	RSC0678-04	Water	03/18/09 13:40	03/19/09 09:00
ME-14	RSC0678-05	Water	03/18/09 11:25	03/19/09 09:00
MVV-2	RSC0678-06	Water	03/18/09 10:50	03/19/09 09:00
MW-9/10R	RSC0678-07	Water	03/18/09 10:25	03/19/09 09:00
A-26S	RSC0678-08	Water	03/18/09 12:15	03/19/09 09:00
A-43S	RSC0678-09	Water	03/18/09 13:00	03/19/09 09:00
MVV-8	RSC0678-10	Water	03/18/09 13:45	03/19/09 09:00
DUPLICATE	RSC0678-11	Water	03/18/09	03/19/09 09:00
TRIP BLANK	RSC0678-12	Water	03/18/09	03/19/09 09:00
VOLATILE HOLDING BLANK	RSC0678-13	Water	03/18/09	03/19/09 09:00
SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
DG-1	RSC0728-01	Water	03/19/09 09:10	03/20/09 09:00
ME-19	RSC0728-02	Water	03/19/09 10:00	03/20/09 09:00
A-27S	RSC0728-03	Water	03/19/09 09:00	03/20/09 09:00
A-42S	RSC0728-04	Water	03/19/09 09:35	03/20/09 09:00
TRIP BLANK	RSC0728-07	Water	03/19/09	03/20/09 09:00
VOLATILE HOLDING BLANK	RSC0728-08	Water	03/19/09	03/20/09 09:00

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

SHAW

			Analytic	cal Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-01 (ME-18 -	Water)				Samp	led: 03/18	/09 12:00	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 18:37	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 18:37	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 18:37	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	99 %						03/27/09 18:37	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	84 %						03/27/09 18:37	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	37 %						03/27/09 18:37	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	81 %						03/27/09 18:37	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	27 %						03/27/09 18:37	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	56 %						03/27/09 18:37	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	N 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/25/09 16:51	TRB	9C25010	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	97 %						03/25/09 16:51	TRB	9C25010	8260B
Surr: 4-Bromofluorobenzene (73-120%)	95 %						03/25/09 16:51	TRB	9C25010	8260B
Surr: Toluene-d8 (71-126%)	101 %						03/25/09 16:51	TRB	9C25010	8260B

Surr: 4-Bromofluorobenzene (73-120%)

Surr: Toluene-d8 (71-126%)

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

9C25010

9C25010

TRB

TRB

03/25/09 17:15

03/25/09 17:15

8260B

8260B

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

Analytical Report Sample Data Dilution Date Seq/ MDL Units Analyzed Qualifiers Rpt Limit Factor Analyst Batch Analyte Result Method Sample ID: RSC0678-02 (ME-12 - Water) Recvd: 03/19/09 09:00 Sampled: 03/18/09 11:20 Semivolatile Organics by GC/MS 8270C 1.00 ND 4.8 NA ug/L 03/27/09 19:01 MKP 9C19085 3 & 4 Methylphenol ND 4.8 NA ug/L 1.00 03/27/09 19:01 MKP 9C19085 8270C Naphthalene ND NA 03/27/09 19:01 MKP 9C19085 8270C Phenol 4.8 ug/L 1.00 9C19085 8270C Surr: 2,4,6-Tribromophenol (52-132%) 98 % 03/27/09 19:01 MKP 9C19085 03/27/09 19:01 MKP 8270C Surr: 2-Fluorobiphenyl (48-120%) 83 %

Surr: 1,2-Dichloroethane-d4 (66-137%)	97 %					03/25/09 17:15	TRB	9C25010	8260B
Vinyl chloride	ND	0.24	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Trichloroethene	ND	0.18	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
trans-1,2-Dichloroethene	ND	0.13	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Toluene	ND	0.51	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Tetrachloroethene	ND	0.36	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
cis-1,2-Dichloroethene	ND	0.16	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Chloroethane	ND	0.32	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Chlorobenzene	ND	0.32	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
1,2-Dichloroethene, Total	ND	0.70	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
1,1-Dichloroethene	ND	0.29	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
1,1-Dichloroethane	ND	0.75	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
1,1,1-Trichloroethane	ND	0.26	NA	ug/L	1.00	03/25/09 17:15	TRB	9C25010	8260B
Volatile Organic Compounds by EPA	8260B								
Surr: p-Terphenyl-d14 (24-136%)	55 %					03/27/09 19:01	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	27 %					03/27/09 19:01	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	80 %					03/27/09 19:01	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	38 %					03/27/09 19:01	MKP	9C19085	8270C

92 %

99 %

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

umber: SHAW

			Analytic	al Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analys	Seq/ t Batch	Method
Sample ID: RSC0678-03 (MW-6 -	Water)				Samp	led: 03/18	/09 10:45	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 19:26	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 19:26	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 19:26	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	96 %						03/27/09 19:26	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	82 %						03/27/09 19:26	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	34 %						03/27/09 19:26	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	78 %						03/27/09 19:26	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	25 %						03/27/09 19:26	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	49 %						03/27/09 19:26	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
1,1-Dichloroethene	ND		0.29	NΑ	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/25/09 17:38	TRB	9C25010	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	99 %						03/25/09 17:38	TRB	9C25010	8260B
Surr: 4-Bromofluorobenzene (73-120%)	93 %						03/25/09 17:38	TRB	9C25010	8260B
Surr: Toluene-d8 (71-126%)	100 %						03/25/09 17:38	TRB	9C25010	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	cal Rep	ort					
	Sample	Data	Dock I took	MDI		Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-04 (MW-20	- Water)				Samp	led: 03/18	/09 13:40	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.8	NA	ug/L	1.00	03/27/09 19:51	MKP	9C19085	8270C
Naphthalene	ND		4.8	NA	ug/L	1.00	03/27/09 19:51	MKP	9C19085	8270C
Phenol	ND		4.8	NA	ug/L	1.00	03/27/09 19:51	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	107 %						03/27/09 19:51	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	87 %						03/27/09 19:51	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	38 %						03/27/09 19:51	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	80 %						03/27/09 19:51	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	28 %						03/27/09 19:51	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	58 %						03/27/09 19:51	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	4 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 00:02	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	102 %						03/26/09 00:02	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	99 %						03/26/09 00:02	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	107 %						03/26/09 00:02	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 04/15/09 11:02

MF 9C25090

03/26/09 00:26

8260B

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

Sample ID: RSC0678-05 (ME-14 - Water) Sampled: 0	03/18/09 11:25 .00 03/27/09 20:15 .00 03/27/09 20:15	MKP MKP MKP MKP MKP MKP MKP	Seq/ Batch 03/19/09 0 9C19085 9C19085 9C19085 9C19085 9C19085 9C19085 9C19085	Method 09:00 8270C 8270C 8270C 8270C 8270C 8270C 8270C
Sample ID: RSC0678-05 (ME-14 - Water) Sampled: 0	03/18/09 11:25 .00 03/27/09 20:15 .00 03/27/09 20:15 .00 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP MKP MKP MKP MKP	9C19085 9C19085 9C19085 9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C 8270C 8270C 8270C 8270C
Semivolatile Organics by GC/MS 3 & 4 Methylphenol ND 4.7 NA ug/L 1.00	.00 03/27/09 20:15 .00 03/27/09 20:15 .00 03/27/09 20:15 .00 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP MKP MKP MKP	9C19085 9C19085 9C19085 9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C 8270C 8270C 8270C
3 & 4 Methylphenol	.00 03/27/09 20:15 .00 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP MKP MKP	9C19085 9C19085 9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C 8270C 8270C
Name	.00 03/27/09 20:15 .00 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP MKP MKP	9C19085 9C19085 9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C 8270C 8270C
Phenol ND 4.7 NA ug/L 1.00 Surr: 2,4,6-Tribromophenol (52-132%) 99 % Surr: 2-Fluorobiphenyl (48-120%) 79 % Surr: 2-Fluorophenol (20-120%) 34 % Surr: Nitrobenzene-d5 (46-120%) 76 % Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane 1,1,1-Dichloroethane ND 0.26 NA ug/L 1.00 1,1-Dichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	.00 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP MKP	9C19085 9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C 8270C
Surr: 2,4,6-Tribromophenol (52-132%) 99 % Surr: 2-Fluorobiphenyl (48-120%) 79 % Surr: 2-Fluorophenol (20-120%) 34 % Surr: Nitrobenzene-d5 (46-120%) 76 % Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 1,1-Dichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15 03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP	9C19085 9C19085 9C19085 9C19085	8270C 8270C 8270C
Surr: 2-Fluorobiphenyl (48-120%) 79 % Surr: 2-Fluorophenol (20-120%) 34 % Surr: Nitrobenzene-d5 (46-120%) 76 % Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 1,1-Dichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15 03/27/09 20:15 03/27/09 20:15	MKP MKP MKP	9C19085 9C19085 9C19085	8270C 8270C
Surr: 2-Fluorophenol (20-120%) 34 % Surr: Nitrobenzene-d5 (46-120%) 76 % Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B I,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 I,1-Dichloroethane ND 0.75 NA ug/L 1.00 I,1-Dichloroethene ND 0.29 NA ug/L 1.00 I,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15 03/27/09 20:15	MKP MKP	9C19085 9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%) 76 % Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 1,1-Dichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15	MKP	9C19085	
Surr: Phenol-d5 (16-120%) 24 % Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B I,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 I,1-Dichloroethane ND 0.75 NA ug/L 1.00 I,1-Dichloroethene ND 0.29 NA ug/L 1.00 I,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00		IVITAL		8270C
Surr: p-Terphenyl-d14 (24-136%) 47 % Volatile Organic Compounds by EPA 8260B ND 0.26 NA ug/L 1.00 1,1,1-Trichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15	MKP	0010005	
Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 1,1-Dichloroethane ND 0.75 NA ug/L 1.00 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 1,2-Dichloroethane, Total ND 0.70 NA ug/L 1.00			90 19000	8270C
I,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 I,1-Dichloroethane ND 0.75 NA ug/L 1.00 I,1-Dichloroethane ND 0.29 NA ug/L 1.00 I,2-Dichloroethane, Total ND 0.70 NA ug/L 1.00	03/27/09 20:15	MKP	9C19085	8270C
I,1-Dichloroethane ND 0.75 NA ug/L 1.00 I,1-Dichloroethene ND 0.29 NA ug/L 1.00 I,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00				
1,1-Dichloroethene ND 0.29 NA ug/L 1.00 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.00 03/26/09 00:26	MF	9C25090	8260B
	.00 03/26/09 00:26	MF	9C25090	8260B
Chlorobenzene ND 0.32 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
Chloroethane ND 0.32 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
cis-1,2-Dichloroethene ND 0.16 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
Tetrachloroethene 0.38 0.36 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
Toluene ND 0.51 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
rans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
Trichloroethene ND 0.18 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
/inyl chloride ND 0.24 NA ug/L 1.00	.00 03/26/09 00:26	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%) 101 %	03/26/09 00:26	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%) 97 %	03/26/09 00:26	MF	9C25090	8260B

Surr: Toluene-d8 (71-126%)

105 %

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

SHAW

			Analytic	al Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-06 (MW-2 - \	Water)				Samp	led: 03/18	/09 10:50	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 20:40	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 20:40	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 20:40	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	95 %						03/27/09 20:40	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	78 %						03/27/09 20:40	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	35 %						03/27/09 20:40	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	73 %						03/27/09 20:40	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	25 %						03/27/09 20:40	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	60 %						03/27/09 20:40	MKP	9C19085	8270C
/olatile Organic Compounds by EPA	4 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
rans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Frichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
/inyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 00:49	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	101 %						03/26/09 00:49	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	96 %						03/26/09 00:49	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	104 %						03/26/09 00:49	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analys	Seq/ Batch	Method
Sample ID: RSC0678-07 (MW-9/10			<u>-</u>		Samp	led: 03/18			03/19/09	
Semivolatile Organics by GC/MS	·				************					
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:04	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 21:04	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:04	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	95 %			***************************************			03/27/09 21:04	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	82 %						03/27/09 21:04	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	33 %						03/27/09 21:04	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	76 %						03/27/09 21:04	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	25 %						03/27/09 21:04	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	50 %						03/27/09 21:04	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
rans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 01:13	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	102 %						03/26/09 01:13	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	99 %						03/26/09 01:13	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	106 %						03/26/09 01:13	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 0

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	cal Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-08 (A-26S -	Water)				Samp	led: 03/18	/09 12:15	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:29	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 21:29	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:29	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	111 %						03/27/09 21:29	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	87 %						03/27/09 21:29	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	41 %						03/27/09 21:29	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	83 %						03/27/09 21:29	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	28 %						03/27/09 21:29	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	81 %						03/27/09 21:29	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
1,1-Dichloroethane	9.4		0.75	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
cis-1,2-Dichloroethene	0.40		0.16	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Vinyl chloride	0.42		0.24	NA	ug/L	1.00	03/26/09 01:37	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	103 %						03/26/09 01:37	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	96 %						03/26/09 01:37	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	105 %						03/26/09 01:37	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

: SHAW

			Analytic	al Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-09 (A-43S -	Water)				Samp	led: 03/18	/09 13:00	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:54	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 21:54	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 21:54	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	104 %						03/27/09 21:54	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	79 %						03/27/09 21:54	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	34 %						03/27/09 21:54	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	76 %						03/27/09 21:54	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	23 %						03/27/09 21:54	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	76 %						03/27/09 21:54	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
1,1-Dichloroethane	0.76		0.75	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
1,2-Dichloroethene, Total	NĐ		0.70	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
cis-1,2-Dichloroethene	0.41		0.16	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 02:01	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	102 %						03/26/09 02:01	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	97 %						03/26/09 02:01	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	104 %						03/26/09 02:01	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	cal Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0678-10 (MW-8 -	Water)				Samp	led: 03/18	/09 13:45	Recvd:	03/19/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/27/09 22:18	MKP	9C19085	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/27/09 22:18	MKP	9C19085	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/27/09 22:18	MKP	9C19085	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	89 %						03/27/09 22:18	MKP	9C19085	8270C
Surr: 2-Fluorobiphenyl (48-120%)	77 %						03/27/09 22:18	MKP	9C19085	8270C
Surr: 2-Fluorophenol (20-120%)	23 %						03/27/09 22:18	MKP	9C19085	8270C
Surr: Nitrobenzene-d5 (46-120%)	73 %						03/27/09 22:18	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%)	14 %	Z6					03/27/09 22:18	MKP	9C19085	8270C
Surr: p-Terphenyl-d14 (24-136%)	77 %						03/27/09 22:18	MKP	9C19085	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
cis-1,2-Dichloroethene	0.27		0.16	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 02:25	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	104 %						03/26/09 02:25	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	95 %						03/26/09 02:25	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	104 %						03/26/09 02:25	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 0

d: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

Sample ID: RSC0678-11 (DUPLICATE - Water) Sampled: 03/18/09 Recvd: 03/19/09 09:		An	nalytical Report					
Semivolatile Organics by GC/MS 3 & 4 Methylphenol ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 02% Naphthalene ND 03/27/09 22:43 MKP 9C19085 Naphthalene Na			t Limit MDL Un			Analyst	•	Method
3 & 4 Methylphenol ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Phenol ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Surr. 2,4,6-Tribromophenol (52-132%) 102 % US US 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorophenol (48-120%) 69 % US US US 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorophenol (20-120%) 31 % US US US 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 64 % US US US 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 20 % US US 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 20 % US US 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%)	0678-11 (DUPLICATE	Water)	Sa	mpled: 03/18/0)9	Recvd:	03/19/09	09:00
Naphthalene ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Phenol ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085 Surr. 2.4,6-Tribromophenol (52-132%) 102 % 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorobiphenyl (48-120%) 69 % 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorophenol (20-120%) 31 % 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 64 % 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 20 % 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 20 % 03/27/09 22:43 MKP 9C19085 Surr. Prephenyl-d14 (24-136%) 73 % 03/27/09 22:43 MKP 9C19085 Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 I,1-Dichlo	nics by GC/MS							
Pheno ND 4.7 NA ug/L 1.00 03/27/09 22:43 MKP 9C19085		ND 4	4.7 NA ug	/L 1.00	03/27/09 22:43	MKP	9C19085	8270C
Surr. 2,4,6-Tribromophenol (52-132%) 102 % 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorobiphenyl (48-120%) 69 % 03/27/09 22:43 MKP 9C19085 Surr. 2-Fluorobiphenyl (48-120%) 31 % 03/27/09 22:43 MKP 9C19085 Surr. Nitrobenzene-d5 (46-120%) 64 % 03/27/09 22:43 MKP 9C19085 Surr. Phenol-d5 (16-120%) 20 % 03/27/09 22:43 MKP 9C19085 Surr. P-Terphenyl-d14 (24-136%) 73 % 03/27/09 22:43 MKP 9C19085 Volatile Organic Compounds by EPA 8260B 1,1-Trichloroethane ND 0.26 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane 0.78 0.75 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethene, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090		ND 4	4.7 NA ug.	/L 1.00	03/27/09 22:43	MKP	9C19085	8270C
Surr. 2-Fluorophenol (20-120%) 69 % 03/27/09 22:43 MKP 9C19085		ND 4	4.7 NA ug.	/L 1.00	03/27/09 22:43	MKP	9C19085	8270C
Surr. 2-Fluorophenol (20-120%) 31 % 9C19085	phenol (52-132%) 1	72 %			03/27/09 22:43	MKP	9C19085	8270C
Surr. Nitrobenzene-d5 (46-120%)	ıyl (48-120%) 6	9 %			03/27/09 22:43	MKP	9C19085	8270C
Surr: Phenol-d5 (16-120%) 20 % 03/27/09 22:43 MKP 9C19085 Surr: p-Terphenyl-d14 (24-136%) 73 % 03/27/09 22:43 MKP 9C19085 Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethene ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,2-Dichloroethene, Total ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chlorobenzene ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090	l (20-120%)	1 %			03/27/09 22:43	MKP	9C19085	8270C
Surr. p-Terphenyl-d14 (24-136%) 73 % 03/27/09 22:43 MKP 9C19085	d5 (46-120%) 6	4 %			03/27/09 22:43	MKP	9C19085	8270C
Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane 0.78 0.75 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,2-Dichloroethane, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND	-120%) 2	0 %			03/27/09 22:43	MKP	9C19085	8270C
1,1,1-Trichloroethane ND 0.26 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane 0.78 0.75 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,2-Dichloroethane, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Cis-1,2-Dichloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethane ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethane ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethane ND	14 (24-136%) 7	3 %			03/27/09 22:43	MKP	9C19085	8270C
1,1-Dichloroethane 0.78 0.75 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,1-Dichloroethane ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,2-Dichloroethane, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chlorobenzene ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09	Compounds by EPA 8260	<u>B</u>						
1,1-Dichloroethene ND 0.29 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 <td>е</td> <td>ND 0.</td> <td>0.26 NA ug/</td> <td>/L 1.00</td> <td>03/26/09 02:48</td> <td>MF</td> <td>9C25090</td> <td>8260B</td>	е	ND 0.	0.26 NA ug/	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
1,2-Dichloroethene, Total ND 0.70 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chlorobenzene ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.2	(·.78 0.	0.75 NA ug	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
Chlorobenzene ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.24		۷D 0.	0.29 NA uga	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
Chloroethane ND 0.32 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090	Total	VD 0.	0.70 NA ug/	L 1.00	03/26/09 02:48	MF	9C25090	8260B
cis-1,2-Dichloroethene 0.40 0.16 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090		VD 0.	0.32 NA uga	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
Tetrachloroethene ND 0.36 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090		VD 0.	0.32 NA ug/	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
Toluene ND 0.51 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090	ne (.40 0.	0.16 NA ug/	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
trans-1,2-Dichloroethene ND 0.13 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090		۷D 0.	0.36 NA ug/	/L 1.00	03/26/09 02:48	MF	9C25090	8260B
Trichloroethene ND 0.18 NA ug/L 1.00 03/26/09 02:48 MF 9C25090 Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090		VD 0.	0.51 NA ug/	L 1.00	03/26/09 02:48	MF	9C25090	8260B
Vinyl chloride ND 0.24 NA ug/L 1.00 03/26/09 02:48 MF 9C25090	nene	VD 0.	0.13 NA ug/	L 1.00	03/26/09 02:48	MF	9C25090	8260B
		VD 0.	0.18 NA ug	L 1.00	03/26/09 02:48	MF	9C25090	8260B
		ND 0.	0.24 NA ug/	L 1.00	03/26/09 02:48	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%) 104 % 03/26/09 02:48 MF 9C25090	nane-d4 (66-137%) 1)4 %			03/26/09 02:48	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%) 97 % 03/26/09 02:48 MF 9C25090	benzene (73-120%) 9	7 %			03/26/09 02:48	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%) 105 % 03/26/09 02:48 MF 9C25090	1-126%) 10)5 %			03/26/09 02:48	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

			Analytic	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0678-12 (TRIP BL	ANK - Wate	r)			Samp	led: 03/18/	/09	Recvd:	03/19/09	09:00
Volatile Organic Compounds by EPA	8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 03:12	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	107 %						03/26/09 03:12	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	99 %						03/26/09 03:12	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	108 %						03/26/09 03:12	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number:

SHAW

		Analytic	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0678-13 (VOLATI	LE HOLDIN	G BLANK - Water)		Samp	led: 03/18	/09	Recvd:	03/19/09	09:00
Volatile Organic Compounds by EPA	8260B								
1,1,1-Trichloroethane	ND	0.26	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
1,1-Dichloroethane	ND	0.75	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
1,1-Dichloroethene	ND	0.29	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND	0.70	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Chlorobenzene	ND	0.32	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Chloroethane	ND	0.32	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND	0.16	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Tetrachloroethene	ND	0.36	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Toluene	ND	0.51	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND	0.13	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Trichloroethene	ND	0.18	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Vinyl chloride	ND	0.24	NA	ug/L	1.00	03/26/09 03:35	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	105 %					03/26/09 03:35	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	97 %					03/26/09 03:35	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	103 %					03/26/09 03:35	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

ted: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	al Rep	ort					
	Sample	Data	5 411 14			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0728-01 (DG-1 - V	Vater)				Samp	led: 03/19	/09 09:10	Recvd:	03/20/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/28/09 16:39	MKP	9C22002	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/28/09 16:39	MKP	9C22002	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/28/09 16:39	MKP	9C22002	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	102 %						03/28/09 16:39	MKP	9C22002	8270C
Surr: 2-Fluorobiphenyl (48-120%)	79 %						03/28/09 16:39	MKP	9C22002	8270C
Surr: 2-Fluorophenol (20-120%)	38 %						03/28/09 16:39	MKP	9C22002	8270C
Surr: Nitrobenzene-d5 (46-120%)	73 %						03/28/09 16:39	MKP	9C22002	8270C
Surr: Phenol-d5 (16-120%)	30 %						03/28/09 16:39	MKP	9C22002	8270C
Surr: p-Terphenyl-d14 (24-136%)	62 %						03/28/09 16:39	MKP	9C22002	8270C
Volatile Organic Compounds by EPA	8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 05:33	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	95 %						03/26/09 05:33	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	102 %						03/26/09 05:33	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	104 %						03/26/09 05:33	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported: 0

ed: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

			Analytic	al Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0728-02 (ME-19 -	Water)				Samp	led: 03/19	/09 10:00	Recvd:	03/20/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:04	MKP	9C22002	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/28/09 17:04	MKP	9C22002	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:04	MKP	9C22002	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	106 %						03/28/09 17:04	MKP	9C22002	8270C
Surr: 2-Fluorobiphenyl (48-120%)	95 %						03/28/09 17:04	MKP	9C22002	8270C
Surr: 2-Fluorophenol (20-120%)	38 %						03/28/09 17:04	MKP	9C22002	8270C
Surr: Nitrobenzene-d5 (46-120%)	90 %						03/28/09 17:04	MKP	9C22002	8270C
Surr: Phenol-d5 (16-120%)	27 %						03/28/09 17:04	MKP	9C22002	8270C
Surr: p-Terphenyl-d14 (24-136%)	64 %						03/28/09 17:04	MKP	9C22002	8270C
Volatile Organic Compounds by EPA	4 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
cis-1,2-Dichloroethene	0.25		0.16	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 05:57	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	97 %						03/26/09 05:57	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	100 %						03/26/09 05:57	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	103 %						03/26/09 05:57	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	al Rep	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	t Batch	Method
Sample ID: RSC0728-03 (A-27S -	Water)				Samp	led: 03/19	/09 09:00	Recvd:	03/20/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:29	MKP	9C22002	8270C
Naphthalene	ND		4.7	NA	ug/L	1.00	03/28/09 17:29	MKP	9C22002	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:29	MKP	9C22002	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	117 %						03/28/09 17:29	MKP	9C22002	8270C
Surr: 2-Fluorobiphenyl (48-120%)	90 %						03/28/09 17:29	MKP	9C22002	8270C
Surr: 2-Fluorophenol (20-120%)	45 %						03/28/09 17:29	MKP	9C22002	8270C
Surr: Nitrobenzene-d5 (46-120%)	83 %						03/28/09 17:29	MKP	9C22002	8270C
Surr: Phenol-d5 (16-120%)	34 %						03/28/09 17:29	MKP	9C22002	8270C
Surr: p-Terphenyl-d14 (24-136%)	54 %						03/28/09 17:29	MKP	9C22002	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
1,1-Dichloroethane	1.8		0.75	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
1,2-Dichloroethene, Total	4.9		0.70	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
cis-1,2-Dichloroethene	4.9		0.16	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Vinyl chloride	1.2		0.24	NA	ug/L	1.00	03/26/09 06:20	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	98 %						03/26/09 06:20	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	100 %						03/26/09 06:20	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	102 %						03/26/09 06:20	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

TRB 9C26010

03/26/09 10:41

8260B

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

			Analytic	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analys	Seq/ t Batch	Method
Sample ID: RSC0728-04 (A-42S -	Water)				Samp	led: 03/19	/09 09:35	Recvd:	03/20/09	09:00
Semivolatile Organics by GC/MS										
3 & 4 Methylphenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:54	MKP	9C22002	8270C
Naphthalene	ND		4.7	NΑ	ug/L	1.00	03/28/09 17:54	MKP	9C22002	8270C
Phenol	ND		4.7	NA	ug/L	1.00	03/28/09 17:54	MKP	9C22002	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	115 %						03/28/09 17:54	MKP	9C22002	8270C
Surr: 2-Fluorobiphenyl (48-120%)	90 %						03/28/09 17:54	MKP	9C22002	8270C
Surr: 2-Fluorophenol (20-120%)	45 %						03/28/09 17:54	MKP	9C22002	8270C
Surr: Nitrobenzene-d5 (46-120%)	84 %						03/28/09 17:54	MKP	9C22002	8270C
Surr: Phenol-d5 (16-120%)	34 %						03/28/09 17:54	MKP	9C22002	8270C
Surr: p-Terphenyl-d14 (24-136%)	56 %						03/28/09 17:54	MKP	9C22002	8270C
Volatile Organic Compounds by EPA	A 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
I,1-Dichloroethane	0.78		0.75	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
I,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
1,2-Dichloroethene, Total	2.9		0.70	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
cis-1,2-Dichloroethene	2.9		0.16	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
rans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Frichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Vinyl chloride	8.8		0.24	NA	ug/L	1.00	03/26/09 10:41	TRB	9C26010	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	101 %						03/26/09 10:41	TRB	9C26010	8260B
Surr: 4-Bromofluorobenzene (73-120%)	100 %						03/26/09 10:41	TRB	9C26010	8260B

Surr: Toluene-d8 (71-126%)

105 %

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW

Project Number:

			Analytic	al Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0728-07 (TRIP BL	.ANK - Wate	r)			Samp	led: 03/19/	09	Recvd:	03/20/09	09:00
Volatile Organic Compounds by EPA	\ 8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 06:44	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	98 %						03/26/09 06:44	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	99 %						03/26/09 06:44	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	104 %						03/26/09 06:44	MF	9C25090	8260B

Work Order: RSC0678

Received: 03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			Analytic	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0728-08 (VOLATI	LE HOLDIN	G BLANK - V	Vater)		Samp	led: 03/19	/09	Recvd:	03/20/09	09:00
Volatile Organic Compounds by EPA	8260B									
1,1,1-Trichloroethane	ND		0.26	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
1,1-Dichloroethane	ND		0.75	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
1,1-Dichloroethene	ND		0.29	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
1,2-Dichloroethene, Total	ND		0.70	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Chlorobenzene	ND		0.32	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Chloroethane	ND		0.32	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
cis-1,2-Dichloroethene	ND		0.16	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Tetrachloroethene	ND		0.36	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Toluene	ND		0.51	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
trans-1,2-Dichloroethene	ND		0.13	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Trichloroethene	ND		0.18	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Vinyl chloride	ND		0.24	NA	ug/L	1.00	03/26/09 07:07	MF	9C25090	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	97 %						03/26/09 07:07	MF	9C25090	8260B
Surr: 4-Bromofluorobenzene (73-120%)	98 %						03/26/09 07:07	MF	9C25090	8260B
Surr: Toluene-d8 (71-126%)	102 %						03/26/09 07:07	MF	9C25090	8260B

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

SHAW Project Number:

SAMPLE EXTRACTION DATA

			Wt∕Vol		Extract				
Parameter	Batch	Lab Number	Extracted	Units	Volume	Units	Date	Analyst	Extraction Method
Semivolatile Organics by GC/I	ЛS								
8270C	9C19085	RSC0678-01	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-02	1,050.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-03	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-04	1,050.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-05	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-06	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-07	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-08	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-09	1,060.00	mL	1.00	mL	03/20/09 08:00	JB	3510C MB
8270C	9C19085	RSC0678-10	1,060.00	mL	1.00	mL	03/20/09 08:00	JВ	3510C MB
8270C	9C19085	RSC0678-11	1,060.00	mL	1.00	mL	03/20/09 08:00	JВ	3510C MB
Volatile Organic Compounds b	y EPA 826	60B							
8260B	9C25010	RSC0678-01	5.00	mL	5.00	mL	03/25/09 09:21	TRB	5030B MS
8260B	9C25010	RSC0678-02	5.00	mL	5.00	mL	03/25/09 09:21	TRB	5030B MS
8260B	9C25010	RSC0678-03	5.00	mL	5.00	mL	03/25/09 09:21	TRB	5030B MS
8260B	9C25090	RSC0678-04	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-05	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-06	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-07	5.00	mL	5.00	mL.	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-08	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-09	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-10	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-11	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-12	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0678-13	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract				
Parameter	Batch	Lab Number	Extracted	Units	Volume	Units	Date	Analyst	Extraction Method
Semivolatile Organic	s by GC/MS								
8270C	9C22002	RSC0728-01	1,060.00	mL	1.00	mL.	03/22/09 08:00	CJM	3510C MB
8270C	9C22002	RSC0728-02	1,060.00	mL	1.00	mL	03/22/09 08:00	CJM	3510C MB
8270C	9C22002	RSC0728-03	1,060.00	mL	1.00	mL	03/22/09 08:00	CJM	3510C MB
8270C	9C22002	RSC0728-04	1,060.00	mL	1.00	mL	03/22/09 08:00	CJM	3510C MB
Volatile Organic Cor	npounds by EPA 826	80B							
8260B	9C25090	RSC0728-01	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0728-02	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0728-03	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C26010	RSC0728-04	5.00	mL	5.00	mL	03/26/09 08:55	TRB	5030B MS
8260B	9C25090	RSC0728-07	5.00	mL	5.00	mL	03/25/09 21:10	MAF	5030B MS
8260B	9C25090	RSC0728-08	5.00	mL	5.00	mL.	03/25/09 21:10	MAF	5030B MS

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			LA	BUKAI	OKT QC	DAIA						
	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifier
Semivolatile Organics by GC/MS	}											
Blank Analyzed: 03/27/09 (9C19	085-BLK1)											
3 & 4 Methylphenol	9C19085			5.0	0.58	ug/L	ND					
Naphthalene	9C19085			5.0	0.12	ug/L	ND					
Phenol	9C19085			5.0	0.45	ug/L	ND					
Surrogate: 2,4,6-Tribromophenol						ug/L		106	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		88	48-120			
Surrogate: 2-Fluorophenol						ug/L		39	20-120			
Surrogate: Nitrobenzene-d5						ug/L		81	46-120			
Surrogate: Phenol-d5						ug/L		30	16-120			
Surrogate: p-Terphenyl-d14						ug/L		71	24-136			
LCS Analyzed: 03/27/09 (9C1908	85-BS1)											
3 & 4 Methylphenol	9C19085		100	5.0	0.58	ug/L	65.9	66	39-120			
Naphthalene	9C19085		100	5.0	0.12	ug/L	79.5	80	48-120			
Phenol	9C19085		100	5.0	0.45	ug/L	36.2	36	17-120			
Surrogate: 2,4,6-Tribromophenol						ug/L		106	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		85	48-120			
Surrogate: 2-Fluorophenol						ug/L		39	20-120			
Surrogate: Nitrobenzene-d5						ug/L		83	46-120			
Surrogate: Phenol-d5						ug/L		29	16-120			
Surrogate: p-Terphenyl-d14						ug/L		72	24-136			
LCS Dup Analyzed: 03/27/09 (90	C19085-BSD	1)										
3 & 4 Methylphenol	9C19085		100	5.0	0.58	ug/L	68.1	68	39-120	3	30	
Naphthalene	9C19085		100	5.0	0.12	ug/L	82.9	83	48-120	4	29	
Phenol	9C19085		100	5.0	0.45	ug/L	36.8	37	17-120	2	39	
Surrogate: 2,4,6-Tribromophenol						ug/L		110	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		88	48-120			
Surrogate: 2-Fluorophenol						ug/L		40	20-120			
Surrogate: Nitrobenzene-d5						ug/L		85	46-120			
Surrogate: Phenol-d5						ug/L		30	16-120			
Surrogate: p-Terphenyl-d14						ug/L		76	24-136			

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

d: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			LA	DUKAI	ORT QC	DATA						
	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifier
Semivolatile Organics by GC/MS												
Blank Analyzed: 03/28/09 (9C220	02-BLK1)											
3 & 4 Methylphenol	9C22002			5.0	0.58	ug/L	ND					
Naphthalene	9C22002			5.0	0.12	ug/L	ND					
Phenol	9C22002			5.0	0.45	ug/L	ND					
Surrogate: 2,4,6-Tribromophenol						ug/L		109	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		84	48-120			
Surrogate: 2-Fluorophenol						ug/L		42	20-120			
Surrogate: Nitrobenzene-d5						ug/L		73	46-120			
Surrogate: Phenol-d5						ug/L		32	16-120			
Surrogate: p-Terphenyl-d14						ug/L		89	24-136			
LCS Analyzed: 03/28/09 (9C2200)	2-BS1)											
3 & 4 Methylphenol	9C22002		100	5.0	0.58	ug/L	73.0	73	39-120			
Naphthalene	9C22002		100	5.0	0.12	ug/L	76.4	76	48-120			
Phenol	9C22002		100	5.0	0.45	ug/L	38.2	38	17-120			
Surrogate: 2,4,6-Tribromophenol						ug/L		103	52-132			***************************************
Surrogate: 2-Fluorobiphenyl						ug/L		84	48-120			
Surrogate: 2-Fluorophenol						ug/L		44	20-120			
Surrogate: Nitrobenzene-d5						ug/L		76	46-120			
Surrogate: Phenol-d5						ug/L		32	16-120			
Surrogate: p-Terphenyl-d14						ug/L		85	24-136			
Matrix Spike Analyzed: 03/28/09	(9C22002-N	IS1)										
QC Source Sample: RSC0728-04												
3 & 4 Methylphenol	9C22002	ND	94	4.7	0.55	ug/L	76.4	81	39-120			
Naphthalene	9C22002	0.368	94	4.7	0.11	ug/L	88.9	94	48-120			
Phenol	9C22002	ND	94	4.7	0.42	ug/L	39.7	42	17-120			
Surrogate: 2,4,6-Tribromophenol						ug/L		115	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		96	48-120			
Surrogate: 2-Fluorophenol						ug/L		48	20-120			
Surrogate: Nitrobenzene-d5						ug/L		92	46-120			
Surrogate: Phenol-d5						ug/L		36	16-120			
Surrogate: p-Terphenyl-d14						ug/L		85	24-136			
Matrix Spike Dup Analyzed: 03/28	3/09 (9C220	02-MSD1)										
QC Source Sample: RSC0728-04	•	-										
3 & 4 Methylphenol	9C22002	ND	94	4.7	0.55	ug/L	71.6	76	39-120	6	30	
Naphthalene	9C22002	0.368	94	4.7	0.11	ug/L	88.2	93	48-120	1	29	
Phenol	9C22002	ND	94	4.7	0.42	ug/L	37.9	40	17-120	5	39	
Surrogate: 2,4,6-Tribromophenol						ug/L		118	52-132			
Surrogate: 2-Fluorobiphenyl						ug/L		97	48-120			
Surrogate: 2-Fluorophenol						ug/L		45	20-120			
Surrogate: Nitrobenzene-d5						ug/L		91	46-120			
Surrogate: Phenol-d5						ug/L		34	16-120			
Surrogate: p-Terphenyl-d14						ug/L		85	24-136			
						•						

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifie
Volatile Organic Compounds by	y EPA 8260B											
Blank Analyzed: 03/25/09 (9C25	5010-BLK1)											
1,1,1-Trichloroethane	9C25010			0.26	0.26	ug/L	ND					
1,1-Dichloroethane	9C25010			0.75	0.75	ug/L	ND					
1,1-Dichloroethene	9C25010			0.29	0.29	ug/L	ND					
1,2-Dichloroethene, Total	9C25010			0.70	0.70	ug/L	ND					
Chlorobenzene	9C25010			0.32	0.32	ug/L	ND					
Chloroethane	9C25010			0.32	0.32	ug/L	ND					
cis-1,2-Dichloroethene	9C25010			0.16	0.16	ug/L	ND					
Tetrachloroethene	9C25010			0.36	0.36	ug/L	ND					
Toluene	9C25010			0.51	0.51	ug/L	ND					
trans-1,2-Dichloroethene	9C25010			0.13	0.13	ug/L	ND					
Trichloroethene	9C25010			0.18	0.18	ug/L	ND					
Vinyl chloride	9C25010			0.24	0.24	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4						ug/L		92	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		94	73-120			
Surrogate: Toluene-d8						ug/L		97	71-126			
LCS Analyzed: 03/25/09 (9C250	10-BS1)											
1,1,1-Trichloroethane	9C25010		25	0.26	0.26	ug/L	25.1	101	78-124			
1,1-Dichloroethane	9C25010		25	0.75	0.75	ug/L	26.2	105	78-120			
1,1-Dichloroethene	9C25010		25	0.29	0.29	ug/L	26.9	108	73-143			
1,2-Dichloroethene, Total	9C25010		50	0.70	0.70	ug/L	51.3	103	80-120			
Chlorobenzene	9C25010		25	0.32	0.32	ug/L	24.1	96	79-118			
Chloroethane	9C25010		25	0.32	0.32	ug/L	26.6	106	69-136			
cis-1,2-Dichloroethene	9C25010		25	0.16	0.16	ug/L	24.9	100	78-117			
Tetrachloroethene	9C25010		25	0.36	0.36	ug/L	24.0	96	77-120			
Toluene	9C25010		25	0.51	0.51	ug/L	24.3	97	77-119			
trans-1,2-Dichloroethene	9C25010		25	0.13	0.13	ug/L	26.4	106	79-122			
Trichloroethene	9C25010		25	0.18	0.18	ug/L	24.2	97	80-121			
Vinyl chloride	9C25010		25	0.24	0.24	ug/L	24.2	97	68-127			
Surrogate: 1,2-Dichloroethane-d4						ug/L		97	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		99	73-120			
Surrogate: Toluene-d8						ug/L		99	71-126			

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

			LA	BUKAI	OKT QC	DATA						
	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifier
Volatile Organic Compounds by	EPA 8260B											
Blank Analyzed: 03/25/09 (9C25	090-BLK1)											
1,1,1-Trichloroethane	9C25090			0.26	0.26	ug/L	ND					
1,1-Dichloroethane	9C25090			0.75	0.75	ug/L	ND					
1,1-Dichloroethene	9C25090			0.29	0.29	ug/L	ND					
1,2-Dichloroethene, Total	9C25090			0.70	0.70	ug/L	ND					
Chlorobenzene	9C25090			0.32	0.32	ug/L	ND					
Chloroethane	9C25090			0.32	0.32	ug/L	ND					
cis-1,2-Dichloroethene	9C25090			0.16	0.16	ug/L	ND					
Tetrachloroethene	9C25090			0.36	0.36	ug/L	ND					
Toluene	9C25090			0.51	0.51	ug/L	ND					
trans-1,2-Dichloroethene	9C25090			0.13	0.13	ug/L	ND					
Trichloroethene	9C25090			0.18	0.18	ug/L	ND					
Vinyl chloride	9C25090			0.24	0.24	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4						ug/L		95	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		93	73-120			
Surrogate: Toluene-d8						ug/L		100	71-126			
LCS Analyzed: 03/25/09 (9C2509	90-BS1)											
1,1,1-Trichloroethane	9C25090		25	N/A	NA	ug/L	23.6	94	78-124			
1,1-Dichloroethane	9C25090		25	N/A	NA	ug/L	24.5	98	78-120			
1,1-Dichloroethene	9C25090		25	N/A	NA	ug/L	24.6	99	73-143			
1,2-Dichloroethene, Total	9C25090		50	N/A	NA	ug/L	49.5	99	80-120			
Chlorobenzene	9C25090		25	N/A	NA	ug/L	23.7	95	79-118			
Chloroethane	9C25090		25	N/A	NA	ug/L	23.5	94	69-136			
cis-1,2-Dichloroethene	9C25090		25	N/A	NA	ug/L	25.2	101	78-117			
Tetrachloroethene	9C25090		25	N/A	NA	ug/L	23.1	93	77-120			
Toluene	9C25090		25	N/A	NA	ug/L	23.6	94	77-119			
trans-1,2-Dichloroethene	9C25090		25	N/A	NA	ug/L	24.3	97	79-122			
Trichloroethene	9C25090		25	N/A	NA	ug/L	22.3	89	80-121			
Vinyl chloride	9C25090		25	N/A	NA	ug/L	22.2	89	68-127			
Surrogate: 1,2-Dichloroethane-d4						ug/L		98	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		98	73-120			
Surrogate: Toluene-d8						ug/L		98	71-126			

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

ed: 04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

LABORATORY QC DATA

	Seq/	Source	Snike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits		Limit	Qualifier
Volatile Organic Compounds by		Itosuit				Omis	ROSUIL		Limito			Quantor
Blank Analyzed: 03/26/09 (9C260	-			0.00	0.00	/!	ND					
1,1,1-Trichloroethane	9C26010			0.26	0.26	ug/L	ND					
1,1-Dichloroethane	9C26010			0.75	0.75	ug/L	ND					
1,1-Dichloroethene	9C26010			0.29	0.29	ug/L	ND					
1,2-Dichloroethene, Total	9C26010			0.70	0.70	ug/L	ND					
Chlorobenzene	9C26010			0.32	0.32	ug/L	ND					
Chloroethane	9C26010			0.32	0.32	ug/L	ND					
cis-1,2-Dichloroethene	9C26010			0.16	0.16	ug/L	ND					
Tetrachloroethene	9C26010			0.36	0.36	ug/L	ND					
Toluene	9C26010			0.51	0.51	ug/L	ND					
trans-1,2-Dichloroethene	9C26010			0.13	0.13	ug/L	ND					
Trichloroethene	9C26010			0.18	0.18	ug/L	ND					
Vinyl chloride	9C26010			0.24	0.24	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4						ug/L		98	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		98	73-120			
Surrogate: Toluene-d8						ug/L		103	71-126			
LCS Analyzed: 03/26/09 (9C2601	0-BS1)											
1.1.1-Trichloroethane	9C26010		25	0.26	0.26	ug/L	25.6	102	78-124			
1,1-Dichloroethane	9C26010		25	0.75	0.75	ug/L	27.0	108	78-120			
1,1-Dichloroethene	9C26010		25	0.29	0.29	ug/L	27.4	109	73-143			
1,2-Dichloroethene, Total	9C26010		50	0.70	0.70	ug/L	52.9	106	80-120			
Chlorobenzene	9C26010		25	0.32	0.32	ug/L	24.4	98	79-118			
Chloroethane	9C26010		25	0.32	0.32	ug/L	26.9	108	69-136			
cis-1,2-Dichloroethene	9C26010		25	0.16	0.16	ug/L	25.6	102	78-117			
Tetrachloroethene	9C26010		25	0.36	0.36	ug/L	24.3	97	77-120			
Toluene	9C26010		25	0.51	0.51	ug/L	24.5	98	77-119			
trans-1,2-Dichloroethene	9C26010		25	0.13	0.13	ug/L	27.4	110	79-122			
Trichloroethene	9C26010		25	0.18	0.18	ug/L	23.8	95	80-121			
Vinyl chloride	9C26010		25	0.24	0.24	ug/L	24.2	97	68-127			
	11					ua/l		102	66-137			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene						ug/L ug/L		103	73-120			
•						-		102	71-126			
Surrogate: Toluene-d8	(000004010					ug/L		102	71-120			
Matrix Spike Analyzed: 03/26/09	(9C26010-N	151)										
QC Source Sample: RSC0728-04							ND		70.404			
1,1,1-Trichloroethane	9C26010	ND		0.26	0.26	ug/L	ND		78-124			
1,1-Dichloroethane	9C26010	0.780		0.75	0.75	ug/L	ND		71-129			
1,1-Dichloroethene	9C26010	ND	25	0.29	0.29	ug/L	29.4	118	73-143			
1,2-Dichloroethene, Total	9C26010	2.94		0.70	0.70	ug/L	2.67		80-120			
Chlorobenzene	9C26010	ND	25	0.32	0.32	ug/L	28.3	113	79-118			
Chloroethane	9C26010	ND		0.32	0.32	ug/L	ND		69-136			
cis-1,2-Dichloroethene	9C26010	2.94		0.16	0.16	ug/L	2.67		78-117			
Tetrachloroethene	9C26010	ND		0.36	0.36	ug/L	ND		77-120			
Toluene	9C26010	ND	25	0.51	0.51	ug/L	28.6	114	77-119			
trans-1,2-Dichloroethene	9C26010	ND		0.13	0.13	ug/L	ND		79-122			
Trichloroethene	9C26010	ND	25	0.18	0.18	ug/L	25.0	100	80-121			

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Work Order: RSC0678

Received:

03/19/09-03/20/09

Reported:

04/15/09 11:02

Project: AMERICAN AIRLINES - DUTCHESS COUNTY

Project Number: SHAW

	Seq/	Source	Spike					%	% REC	<u>%</u>	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifie
Volatile Organic Compounds by	EPA 8260B											
Matrix Spike Analyzed: 03/26/09	(9C26010-N	/IS1)										
QC Source Sample: RSC0728-04												
Vinyl chloride	9C26010	8.84		0.24	0.24	ug/L	7.72		68-127			
Surrogate: 1,2-Dichloroethane-d4						ug/L		99	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		99	73-120			
Surrogate: Toluene-d8						ug/L		104	71-126			
Matrix Spike Dup Analyzed: 03/2	6/09 (9C26	010-MSD1)										
QC Source Sample: RSC0728-04												
1,1,1-Trichloroethane	9C26010	ND		0.26	0.26	ug/L	ND		78-124		15	
1,1-Dichloroethane	9C26010	0.780		0.75	0.75	ug/L	ND		71-129		20	
1,1-Dichloroethene	9C26010	ND	25	0.29	0.29	ug/L	29.4	118	73-143	0	16	
1,2-Dichloroethene, Total	9C26010	2.94		0.70	0.70	ug/L	2.77		80-120	4	20	
Chlorobenzene	9C26010	ND	25	0.32	0.32	ug/L	28.1	112	79-118	1	25	
Chloroethane	9C26010	ND		0.32	0.32	ug/L	ND		69-136		15	
cis-1,2-Dichloroethene	9C26010	2.94		0.16	0.16	ug/L	2.77		78-117	4	15	
Tetrachloroethene	9C26010	ND		0.36	0.36	ug/L	ND		77-120		20	
Toluene	9C26010	ND	25	0.51	0.51	ug/L	28.2	113	77-119	1	15	
trans-1,2-Dichloroethene	9C26010	ND		0.13	0.13	ug/L	ND		79-122		20	
Trichloroethene	9C26010	ND	25	0.18	0.18	ug/L	24.6	98	80-121	1	16	
Vinyl chloride	9C26010	8.84		0.24	0.24	ug/L	7.90		68-127	2	15	
Surrogate: 1,2-Dichloroethane-d4						ug/L		100	66-137			
Surrogate: 4-Bromofluorobenzene						ug/L		101	73-120			
Surrogate: Toluene-d8						ug/L		106	71-126			

Chain of Custody Record

Temperature	on	Receipt	
icinpolature.	011	riccipi	

Drinking Water? Yes □ No 🗷

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)		<u> </u>																							
Shaw Environmental, Inc.		Project Manager													Date 3/18/09						Chain of Custody Number				
Address	Telephi	5. Neum ann Telephone Number (Area Code)/Fax Number													Lab Number						098597				
13 British American Blud.			1996	196 (518) 183 Lab Contact													Pag	ae	1	of					
City State Zip C		Site Co	Site Contact La						Lab Contact										alysis (Attach list if						
Latham NY 1 Project Name and Location (State)	2110		R. Adams Carrier/Waybill Number				C.Fox										re space is needed)								
AA Flord in Island and Education (State)	A/Y	Carrier	Waybii	i Num	ber							V VC S	兰												
AA Flagship Wappingers Falls Contract/Purchase Order/Quote No.	, // 1	1				_		O				1 1	92												ctions/
		Matrix				Containers & Preservatives						1	1 1								Conditions			teceipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	JĮ¥ .	Sed.	Soil	Unpres.	HZSOA	HNO3	Ę	NaOH 7040/	NaOH	8260	87.78												
ME-18	3/18/09	1200				Z			3			X	X												
ME-12		1120										X	X												****
MW - 6		1045										X	X												
Mw-20		1340										X	X	1											
ME-14		125							П			X	X	$\lceil \rceil$											
MW-2		1050		\prod		\prod			П			X	X										-	•	
MW-9/10R		025										X	Y									•			
A-265	١	1215				\prod			П			χ	X												
A-43S	1	300							\prod			X	X											· · · · · · ·	
. MW-8	4 1	345				\prod		,				X	Y											,,	
Duplicate	_					L		:	3			X	K												
Trip Blank Possible Hazard Identification				1		-			2			Ŋ													
] Poison B	Unknown		•	isposa n To Cl)ienne	oi Ri	, i eh		Amb	rivo i	Ear		140	miho	(A fe	e may	be as:	sessed	if samp	les are	retaine	d d
Turn Around Time Required											(Specif					_ 10/0	11013	юпу	er mar.	i i moi	ntn)				
24 Hours 48 Hours 7 Days 14 Day	s 🗌 21 Days	□ Ott	er_57	and	va																				
1. Relinguished By		Defe		7	īme	· · · · · · · · · · · · · · · · · · ·	1. F	eceiy	ed B	У		2	_					,			Da	ite ,		Time	
2. Relinquished By	. Date	3/18/04 1530				1. Received By Z. Received By						4			Butile				13	1170	09		00		
		Daile		'	#+1 G		Z. 7	ieceivi	au D	у											Da	10		Time	
3. Relinquished By		Date	,	7	ime	****	3. F	eceive	ed B	y											Da	te		Time	
Comments		1					<u> </u>			7	6	7		~									<u> </u>	L	
										7 2		ب س			_										