

Fax: 518.783.8397

August 19, 2009 Date:

To: Mr. John Rashak, P.E. Via: **UPS/Next Day**

Location: NYSDEC – Region 3

Division of Environmental Remediation

21 South Putt Corners Road

New Paltz. New York 12561-1696

Subject: Revised Post System Closure – March 2009 Groundwater Results

Former Flagship Airlines Hangar Facility, Site #314101 **Dutchess County Airport, Wappingers Falls, New York**

These are:

Per your request	For your files
For use on job	For your approval

Remarks:

Enclosed please find one unbound copy which only includes the edited text, tables and figures, and one complete CD of Shaw's revised "Post System Closure - Groundwater and Indoor Air/Sub-Slab Sampling Report." for the former Flagship Airlines Hangar Facility. These changes reflect those requested by you in the letter dated July 27, 2009. If you have any questions please feel free to contact Brian Neumann at 518-785-2354 (direct).

Sincerely,

Shaw Environmental, Inc.

Vare C. H.

Marc E. Flanagan **Project Geologist**

cc: A. Angers

John Parker, Regional Attorney (CD Only)

A. Perretta (CD Only)

Edward Rose

Brian Neumann Project Manager

Mein Mullin

James Johnson, Esq. Carol Bogle, Esq.

File - Shaw

March 30, 2009 (REVISED August 18, 2009)

Mr. John Rashak, Environmental Engineer I Division of Environmental Remediation New York State Department of Environmental Conservation, Region III 21 South Putt Corners Road New Paltz, New York 12561-1696

Re: Post System Closure - Groundwater and Indoor Air/Sub-Slab Sampling Report Former Flagship Airlines Hangar Facility, Site #314101 Dutchess County Airport, Wappingers Falls, New York

Dear Mr. Rashak:

As outlined in the letter from NYSDEC dated September 18, 2007, and included as **Appendix A**, Shaw Environmental, Inc. (Shaw) was requested to conduct a groundwater and indoor air/sub-slab investigation of the indoor air and sub-slab vapor at the Former Flagship Airlines Hangar Site (Site), located at the Dutchess County Airport, in Wappingers Falls, Dutchess County, New York for post system closure monitoring. A site map is included as **Figure 1**. Indoor air/sub-slab vapor sampling was performed concurrently with the groundwater sampling on December 3rd and 4th, 2008. The following report summarizes the second of the requested consecutive indoor air/sub-slab vapor sampling events along with the fifth of requested six groundwater monitoring events the next of which is scheduled for March 2009. Contained herein are all documented materials for the December 2008 sampling events. The groundwater and indoor air/sub-slab sampling was conducted in accordance with the approved 2007-2009 Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling Work Plan, dated November 16, 2007, included as **Appendix B**.

1.0 Site Background

The former Flagship Airlines Hangar Facility at the Dutchess County Airport was used for washing aircraft and performing maintenance work. This maintenance work required the use of jet fuel, heating oil and various solvents. The NYSDEC became involved with the Site in 1988 when a leaking heating-oil tank was discovered. The initial investigation soon expanded into a multi-phased remedial investigation (RI) to determine potential volatile and semi-volatile organic

compound (VOC and SVOC) impacts in the shallow groundwater. As a result of the RI, five underground storage tanks and a septic tank that were present at the Site were all removed by 1996. On March 19, 1999, American Eagle Airlines signed an Order on Consent with the NYSDEC, Index No. W3-0837-98-12.

1.1 Remedial History

A soil vapor extraction (SVE) system was installed in 1988 as an interim remedial measure (IRM) to reduce the elevated levels of benzene, toluene, ethylbenzene and xylene (BTEX) in the unsaturated soil in the vicinity of the fuel oil release. An RI conducted during installation of the SVE system indicated that the residual contamination in the groundwater was significant. In 1992, 1,020 gallons of water were pumped from monitoring wells MW-9 and MW-10 located near the gravel bed which served as the overflow drainage system to the wash water tank that was removed in 1995.

The phased RI was conducted between 1990 and 1996. An IRM based on the November 1999 Remedial Investigation (RI) and Feasibility Study (FS) Reports was implemented in 2000. As part of the IRM, an SVE and air sparging (AS) system were installed and began operating during August of 2000. Quarterly groundwater samples have been collected since August 2000 to monitor the efficiency of this remedial measure. Data collected from the groundwater sampling events has been presented in the quarterly O&M reports for the Site. During October 2005, groundwater sampling and O&M reporting was changed to a semi-annual basis.

In order for the SVE/AS system to be turned off permanently, the New York State Department of Health (NYSDOH) requested that indoor air samples be collected. Shaw performed the original indoor air/sub-slab vapor investigation on March 29, 2006, and a subsequent investigation on March 8, 2007.

Upon approval of the Indoor Air Sampling Report, dated September 5, 2007, as outlined in a letter from NYSDEC dated September 18, 2007 and included as **Appendix A**, NYSDEC granted permission to shut down the AS/SVE system. At that time, NYSDEC also stipulated the following requirements:

- 6 quarterly groundwater sampling events take place between 12/07 and 3/09.
- A work plan be submitted for annual sub-slab and indoor air monitoring for two consecutive heating seasons by 10/15/07.

On November 16, 2007, Shaw submitted the 2007-2009 Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling Work Plan which was approved on November 23, 2007 in a letter from DEC included as **Appendix C**.

The first round, third historically, of indoor air/ sub-slab vapor sampling was performed on January 31, 2008 and is summarized in the Post System Closure - Groundwater and Indoor Air/Sub-Slab Sampling Report dated March 20, 2008.

2.0 Groundwater Results

The following section discusses the results of the fifth of six quarterly post system closure groundwater sampling events. For a complete description and analysis of historical groundwater sampling results please refer to the previously submitted Operation Maintenance and Monitoring Reports from February 2002 through April 2007. A well location map is included as **Figure 2**.

The water level measurements and field parameters collected on December 3 and 4, 2008 from monitoring wells located on the former Flagship and former IBM hangar properties are shown in **Table 1**. Based on depth to groundwater data obtained during the sampling event, the apparent groundwater flow is in a northwest direction as shown in **Figure 3**.

Groundwater elevations on the former Flagship parcel ranged from 153.97 feet (ME-16) to 152.47 feet (DG-1). On the former IBM parcel, groundwater elevations ranged from 152.72 feet (A-40S) to 150.42 feet (A-44S). Observed groundwater elevations during the December 2008 event were comparable to historic levels.

Wells sampled on both parcels included (ME-12, ME-14, ME-18, ME-19, MW-2, MW-6, MW-8, MW-9/10R, MW-20, DG-1, A-26S, A-27S, A-42S and A-43S). Groundwater sampling was performed using low flow sampling methodology. This method is beneficial because; less disruption is caused to the water column, the agitation of suspended particles is less severe, potential aspiration of VOCs or other contaminants is minimized, and less volume of groundwater is removed. The method entails the removal of water by pumping the well at low enough flow rates to maintain minimal drawdown of the water column followed by in-line sample collection.

A summary of the analytical results of the samples collected from the monitoring well network during the current reporting period are presented in **Table 2** and **Figure 4**. Historical results since the acknowledgement of post system closure approval are displayed on **Table 3**. Field data sheets are included as **Appendix D**. The Chain of Custody is presented in **Appendix E**. The laboratory data packages are included as **Appendix F**.

There were no dissolved concentrations of the compounds of concern detected during the December 2008 sampling event in MW-9/10R. This marks sixteen consecutive groundwater sampling events with no detections above the laboratory quantitation limits in the area of the former concrete drain. None of the remaining groundwater samples collected from wells on the former Flagship property exhibited the presence of any of the compounds of concern at or above the sample quantitation limits.

Samples collected from the former IBM property Monitoring Wells A-26S, A-27S and A-42S exhibited laboratory detections of at least one ROD target analyte above the sample quantitation limits. A-26S located near the eastern corner of the former IBM hangar facility, had detections of 1,1-DCA at 8 μ g/L. A-27S also located near the eastern corner of the IBM hangar facility had detections of 1,1-DCA at 1 μ g/L. A-27S also had 1,2 DCE (total) at 4 μ g/l and cis-1,2-DCE at 4 μ g/l, the Technical and Operational Guidance Series (T.O.G.S) 1.1.1 NYSDEC standards for 1,1-DCA, cis-1,2-DCE and 1,2-DCE (total) is 5 μ g/L. Of the compounds of concern, 1,1-DCA found in A-26S at 8 μ g/L and Vinyl Chloride (9 μ g/L) found in A-42S were the only compounds exceeding the NYSDEC Groundwater Standard. 1,1,1-Trichloroethane, trichloroethene (TCE), toluene and naphthalene were not detected at or above the sample quantitation limits in any of the former IBM property monitoring wells (A-26S, A-27S, A-42S, and A-43S) sampled during the sampling event.

The up-gradient wells on the former Flagship property have demonstrated reductions in total VOC concentrations. The December 2008 sampling event showed a minimal detection of tetrachloroethene in ME-14 above laboratory reporting limits. Although no significant trends have been observed, the down-gradient wells (A-26S, A-27S, A-42S, and A-43S) on the former IBM property have demonstrated reductions in total VOC concentrations.

However, the presence of Vinyl Chloride in former IBM property well A-42S and 1,1-DCA in IBM property well A-26S, combined with the lack of immediate up-gradient (former Flagship property) detections, suggest that an ongoing source of these contaminants may exist on the X/MG/Flagship/Post System Closure/GW Indoor Air Jan 2009/Final Report (Revised August 18, 2009)

former IBM leased property near the eastern corner of the former IBM hangar facility. The MW-9/10R area of concern on the former Flagship property is approximately 160 feet upgradient from this IBM well area. Historically, with the exception of low and infrequent detections in MW-6 and ME-14, no detections have been recorded between these two areas. Trends are shown as **Figures 5**, **6**, **and 7**. A trend chart of Vinyl Chloride on the former IBM property is shown as **Figure 8**.

3.0 Indoor Air Results

The following section discusses the results of the second post system closure indoor air/sub-slab sampling event as requested and approved in Shaw's November 16, 2007 Work Plan. A sample location map is included as **Figure 9**. The Indoor Air Quality Questionnaire and Building Inventory is included as **Appendix G**. The Chain of Custody is included as **Appendix H**.

The indoor ambient air concentrations collected in the Office and Hangar areas displayed no compounds which exceeded the NYSDOH guidance standards. A summary of these results is presented in **Table 4** along with the current results. Both of the foundation soil gas samples (FSG-Office, FSG-Hangar) contained concentrations for tetrachloroethene which exceeded the NYSDOH Guideline of 100 ug/m3 with a concentration of 550 ug/m³ and 800 ug/m³ respectively. Laboratory analytical for the current sampling event is provided in **Appendix I**.

Based on Matrix 2 of the NYSDOH Vapor Intrusion Guideline, included as **Appendix J** which summarize the minimum actions recommended to address current and potential exposures related to soil vapor intrusion, the results indicate number 5, monitor.

If you have any questions or need additional information, please feel free to contact us at (518) 783-1996.

Sincerely,

Shaw Environmental, Inc.

Shaw Environmental, Inc.

Mullin

Robert Adams Project Scientist Brian Neumann Project Manager Attachments: Tables

Figures

Appendix A NYSDEC Letter of September 18, 2007

Appendix B 2007 – 2009 Final Post Shutdown Groundwater Monitoring

and Indoor Air Sampling Work Plan

Appendix C NYSDEC Letter of November 23, 2007

Appendix D Field Data Sheets - Groundwater Appendix E Chain of Custody - Groundwater Appendix F Laboratory Analytical - Groundwater

Appendix G Indoor Air Quality Questionnaire and Building Inventory

Appendix I Chain of Custody – Indoor Air/Sub Slab Appendix I Laboratory Analytical – Indoor Air/Sub Slab

Appendix J Guidance for Evaluating Soil Vapor Intrusion in the State of

New York – Matrix 2

cc: Alan Angers

John Parker, Regional Attorney Anthony Perretta (CD only) Edward Rose

James Johnson, Esq. Carol Bogle, Esq.

Shaw, File

TABLES

Table 1
Groundwater Monitoring
Analytical Data Summary - Field Parameters and Measurement

AA Flagship, Wappingers Falls, NY

MW-6

MW-6

MW-2

MW-2

8.40

25.38

0.0

MW-8

MW-8

5.65

25.90

0.0

MW-9/10 R

MW-9/10 R

6.71

25.11

0.0

MW-20

MW-20

5.20

25.20

0..0

Field Parameters	Result	Result				
		Result	Result	Result	Result	Result
Color	Clear	Clear	Clear	Clear	Clear	Clear
pH (Standard Units)	6.10	6.57	6.52	7.49	6.66	7.04
Conductivity (mS/cm)	0.962	0.476	0.929	0.923	0.835	0.070
Turbidity (NTU)	NM	NM	NM	NM	NM	NM
Dissolved Oxygen (mg/L)	0.73	4.51	2.40	2.01	4.58	11.41*
Temperature (°C)	15.39	15.62	13.73	13.17	14.46	14.94
ORP (mv)	94.7	77.1	123.8	64.7	91.3	97.1
Field Measurements						
Depth to Water	9.74	8.51	4.96	7.01	4.55	6.23
Depth to Well Bottom	19.4	24.00	22.75	25.40	18.30	22.70
Air Monitoring Results (ppm)	0.0	0.0	0.0	0.0	0.0	0.0
Monitoring Well Location	ME-18	ME-19	A-26S	A-27S	A-42S	A-43S
Sample Identification	ME-18	ME-19	A-26S	A-27S	A-42S	A-43S
Sample Date	3-Dec-08	4-Dec-08	3-Dec-08	4-Dec-08	3-Dec-08	4-Dec-08
Field Parameters	Result	Result	Result	Result	Result	Result
Color	Clear	Clear	Clear	Clear	Clear	Clear
pH (Standard Units)	7.57	7.13	7.68	7.56	7.41	7.70
Conductivity (mS/cm)	0.802	0.706	0.943	0.772	0.697	0.873
Turbidity (NTU)	NM	NM	NM	NM	NM	NM
Dissolved Oxygen (mg/L)	6.24	2.29	0.29	0.46	4.46	0.56
Temperature (°C)	14.54	14.18	13.20	13.89	13.36	14.28
ORP (mv)	101.6	113.8	-101.7	-131.8	93.6	38.5
Field Measurements						

NOTES:

Depth to Water

Depth to Well Bottom

Air Monitoring Results (ppm)

- NM indicates Not Measured. Depth to groundwater collected at time of sampling 3.84

23.00

0.0

Monitoring Well Location

Sample Identification

DG-1

DG-1

4.34

21.65

0.0

Table 1 Groundwater Monitoring Analytical Data Summary - Field Parameters and Measurement

AA Flagship, Wappingers Falls, NY

Monitoring Well Location	ME-12	ME-14
Sample Identification	ME-12	ME-14
Sample Date	3-Dec-08	3-Dec-08
Field Parameters	Result	Result
Color	Clear	Clear
pH (Standard Units)	6.89	6.28
Conductivity (mS/cm)	0.769	0.943
Turbidity (NTU)	NM	NM
Dissolved Oxygen (mg/L)	1.03	1.39
Temperature (°C)	14.40	16.27
ORP (mv)	114.9	88.5
Field Measurements		
Depth to Water	5.42	6.24
Depth to Well Bottom	24.2	20.60
Air Monitoring Results (ppm)	0.0	0.0

NOTES:

- NM indicates Not Measured.
- * indicates meter anamoly

Table 2 Groundwater Analytical Results December 18, 2008

Former Flagship Airlines Hangar Dutchess County Airport

Field Parameters	NYSDEC Standard (1)	ME-12	ME-14	ME-18	ME-19	MW-2	MW-6	MW-8	MW- 9/10R	MW-20	DG-1	DUP 1 (ME-12)	A-26S	A-27S	A-42S	A-43S
Dissolved Oxygen (ppm)		1.03	1.39	6.24	2.29	4.51	2.40	2.01	4.58	*	0.73	1.03	0.29	0.46	4.46	0.56
Volatile Organic Compound by ASP/CLP Method (µg/L)																
1,1-Dichloroethane	5	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	0.8U	8	1	0.8U	0.8U
1,1-Dichloroethene (3)	5	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U
cis-1,2-Dichloroethene (3)	5	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	4	3	0.2U
trans-1,2-Dichloroethene (3)	5	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
1,2-Dichloroethene, Total	5	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	0.7U	4	3	0.7U
Chlorobenzene	5	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Chloroethane	5	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U
1,1,1-Trichloroethane	5	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U	0.3U
Tetrachloroethene	5	0.4U	0.5	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U
Trichloroethene	5	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Toluene	5	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Vinyl Chloride	2	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	9	0.2U
Semi-Volatile Organic Compound by ASP/CLP Method (µg/L)																
Phenol	1 ⁽²⁾	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
4-Methylphenol	1 ⁽²⁾	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
Naphthalene	10	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U

Notes:

BOLD values indicate detections above laboratory detection limit.

- = Compound detected above NYSDEC standard
- (1) NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (2) The collective sum of all phenol compounds should not exceed 1 $\mu g/L$.
- (3) Additional analyte reported as per request by IBM.
 - J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.
 - U = Indicates compound was analyzed for, but not detected.
 - B = Indicates analyte was found in the associated blank, as well as in the sample.
- NA = Not Available
- NS = Not Sampled due to snow / ice
- * =DO meter malfunction

Table 3 Groundwater Analyitcal Results December 18, 2007 to December 4, 2008 Former Flagship Airlines Hangar Dutchess County Airport

								Volatile Organic Comp	oounds by ASP/CLP Met	hod (μg/L)							olatile Organic C SP/CLP Method (
				1,1-Dichloroethane	1,1-Dichloroethene (3)	cis-1,2-Dichloroethene (3)	trans-1,2-Dichloroethene (3)	1,2-Dichloroethene, Total	Chlorobenzene	Chloroethane	1,1,1-Trichloroethane	Tetrachloroethene	Trichloroethene	Toluene	Vinyl Chloride	Phenol	4-Methylphenol	Naphthalene
Monitoring Well	Date	Dissolved Oxygen (ppm)	NYSDEC Standard (1)	5	5	5	5	5	5	5	5	5	5	5	2	1	1	10
ME-12	12/18/07 3/6/08	6.33 0.11		1U 1 U	1U 1 U	1U 1 U	1U 1 U	2U 2 U	1U 1 U	1U 1 U	1U 1 U	0.3J 1 U	1U 1 U	1U 1 U	1U 1 U	5U 5 U	5U 5 U	5U 5 U
ME-12, DUP 1	6/11/08 9/17/08	2.43 2.00	1	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.2 U	0.3 U 0.1 U	0.7 U 0.7 U	0.3 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.3 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U	5 U	0.2 J 5 U
ME-12, DUP 1	12/4/08	1.39		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	*		1U	1U	1U	1U	2U	1U	1U	1U	0.4J	1U	1U	1U	5U	5U	5U
ME-14	3/6/08 6/11/08	0.70		1 U 0.3 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	2 U 0.7 U	1 U 0.3 U	1 U 0.3 U	1 U 0.3 U	0.3 J 0.4 U	1 U 0.3 U	1 U 0.5 U	1 U 0.2 U	5 U	5 U	5 U 0.2 J
	9/17/08	0.60	1	0.3 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.5	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/3/08	1.03		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.5	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
ME-18, DUP 1	12/18/07 3/6/08	3.29 1.76		1U 1 U	1U 1 U	1U 1 U	1U 1 U	2U 2 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	5U 5 U	5U 5 U	5U 5 U
ME-18	6/11/08	6.11		0.3 U	0.3 U	0.4 U	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.4 U	0.3 U	0.5 U	0.2 U	5 U	5 U	5 U
	9/17/08	7.58 6.29	ĺ	0.3 U 0.8 U	0.3 U 0.3 U	0.2 U 0.2 U	0.1 U 0.1 U	0.7 U 0.7 U	0.2 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.2 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U	5 U	5 U
	12/18/07 3/6/08	3.78	ł	1U 1 U	1U 1 U	1U 0.3 J	1U 1 U	2U 2 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	5U 5 U	5U 5 U	5U 0.6 J
ME-19	6/11/08	0.79		0.3 U 0.3 U	0.3 U 0.3 U	0.4 U	0.3 U 0.1 U	0.7 U 0.7 U	0.3 U	0.3 U	0.3 U	0.4 U	0.3 U	0.5 U	0.2 U	5 U	5 U	5 U
	9/17/08 12/4/08	1.30 2.29		0.3 U 0.8 U	0.3 U	0.2 U 0.2 U	0.1 U 0.1 U	0.7 U	0.2 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.2 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U 5 U	5 U 5 U	5 U 5 U
	12/18/07	2.38		1U	1U	1U	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
	3/6/08	*		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U
MW-2	6/11/08 9/17/08	3.11 2.09		0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.2 U	0.3 U 0.1 U	0.7 U 0.7 U	0.3 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.3 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U	5 U	5 U
	12/3/08	4.51		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	5.63		1U	1U	1U	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
MW-6	3/6/08 6/11/08	5.31 11.32		1 U 0.3 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	2 U 0.7 U	1 U 0.3 U	1 U 0.3 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	1 U 0.5 U	1 U 0.2 U	5 U 5 U	5 U 5 U	5 U 5 U
IIIVV-0	9/17/08	4.32		0.3 U	0.3 U	0.4 U	0.3 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.3 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/3/08	2.40		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	0.66		1U	1U	0.3J	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
MW-8	3/6/08 6/11/08	5.52		1 U 0.3 U	1 U 0.3 U	0.3 J 0.4 U	1 U 0.3 U	2 U 0.7 U	1 U 0.3 U	1 U 0.3 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	1 U 0.5 U	1 U 0.2 U	5 U 5 U	5 U	5 U
	9/17/08 12/3/08	1.44 2.01		0.3 U 0.8 U	0.3 U 0.3 U	0.2 U 0.2 U	0.1 U 0.1 U	0.7 U 0.7 U	0.2 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.2 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U 5 U	5 U	5 U 5 U
	12/3/08	2.01		0.8 0	0.3 0	0.2 0	0.10	0.70	0.2 0	0.3 0	0.3 0	0.4 0	0.2 0	0.5 0	0.2 0	5.0	50	50
MW-9/10R MW-9/10R, DUP 1	12/18/07 3/6/08	2.85 8.02		1U 1 U	1U 1 U	1U 1 U	1U 1 U	2U 2 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	5U 5 U	5U 5 U	5U 5 U
MW-9/10R, DUP 1	6/11/08	9.09		0.3 U	0.3 U	0.4 U	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.4 U	0.3 U	0.5 U	0.2 U	5 U	5 U	0.2 J/ 5 U
MW-9/10R	9/17/08 12/3/08	5.83 4.58	ł	0.3 U 0.8 U	0.3 U 0.3 U	0.2 U 0.2 U	0.1 U 0.1 U	0.7 U 0.7 U	0.2 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.2 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U	5 U	5 U
	12/18/07 3/6/08	3.78 7.88	1	1U 1 U	1U 1 U	1U 1 U	1U 1 U	2U 2 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	1U 1 U	5U 5 U	5U 5 U	5U 5 U
MW-20	6/11/08 9/17/08	2.46 0.81	-	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.2 U	0.3 U 0.1 U	0.7 U 0.7 U	0.3 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.3 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U 5 U	5 U 5 U	5 U 5 U
	12/4/08	NA		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	2.11		1U	1U	1U	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
P0.4	3/6/08	*	1	1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U
DG-1	6/11/08 9/17/08	0.56 0.48	1	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.2 U	0.3 U 0.1 U	0.7 U 0.7 U	0.3 U 0.2 U	0.3 U 0.3 U	0.3 U 0.3 U	0.4 U 0.4 U	0.3 U 0.2 U	0.5 U 0.5 U	0.2 U 0.2 U	5 U	5 U 5 U	5 U 5 U
	12/4/08	0.73		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	2.66		8	1U	0.3J	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
A-26S	3/6/08 6/11/08	5.31 0.36	ŀ	1 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	2 U 0.7 U	1 U 0.3 U	1 U 0.3 U	1 U 0.3 U	1 U 0.4 U	1 U 0.3 U	1 U 0.5 U	1 U 0.2 U	5 U	5 U	0.3 J 5 U
	9/17/08	0.66]	7	0.3 U	0.4	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.4	5 U	5 U	5 U
	12/4/08	0.29		8	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U
	12/18/07	1.95		1	1U	3	1U	3	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
A-27S	3/6/08 6/11/08	0.35	1	1	1 U 0.3 U	3	1 U 0.3 U	3	1 U 0.3 U	1 U 0.3 U	1 U 0.3 U	0.3 J 0.4 U	1 U 0.3 U	1 U 0.5 U	0.5 J 0.6	5 U	5 U	0.3 J 5 U
	9/17/08	11.03]	1	0.3 U	4	0.1 U	4	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	1 0.5	5 U	5 U	5 U
	12/4/08	0.46		1	0.3 U	4	0.1 U	4	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.5	5 U	5 U	5 U

Table 3 Groundwater Analyitcal Results December 18, 2007 to December 4, 2008 Former Flagship Airlines Hangar Dutchess County Airport

								Volatile Organic Comp	pounds by ASP/CLP Me	thod (μg/L)						Semi-Vo	olatile Organic C SP/CLP Method	compoundby (μg/L)
				1,1-Dichloroethane	1,1-Dichloroethene (3)	cis-1,2-Dichloroethene (3)	trans-1,2-Dichloroethene (3)	1,2-Dichloroethene, Total	Chlorobenzene	Chloroethane	1,1,1-Trichloroethane	Tetrachloroethene	Trichloroethene	Toluene	Vinyl Chloride	Phenol	4-Methylphenol	Naphthalene
Monitoring Well	Date	Dissolved Oxygen (ppm)	NYSDEC Standard ⁽¹⁾	5	5	5	5	5	5	5	5	5	5	5	2	1	1	10
	12/18/07	3.34		1U	1U	0.5J	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
	3/6/08	*		0.9 J	1 U	6	1 U	6	1 U	1 U	1 U	0.5 J	0.3 J	1 U	10	5 U	5 U	5 U
A-42S	6/11/08	0.27		0.7	0.3 U	3	0.3 U	3	0.3 U	0.3 U	0.3 U	0.5	0.3 U	0.5 U	15	5 U	5 U	5 U
	9/17/08	0.41		1.0	0.3 U	5	0.1 U	5	0.2 U	0.3 U	0.3 U	0.4	0.2 U	0.5 U	21	5 U	5 U	5 U
	12/3/08	4.46		0.8 U	0.3 U	3	0.1 U	3	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	9	5 U	5 U	5 U
	12/18/07	2.25		0.5J	1U	0.3J	1U	2U	1U	1U	1U	1U	1U	1U	1U	5U	5U	5U
	3/6/08	*		1 U	1 U	0.6 J	1 U	2 U	0.4 J	1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U
A-43S	6/11/08	0.32		0.3 U	0.3 U	0.4 U	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.4 U	0.3 U	0.5 U	0.2 U	5 U	5 U	5 U
	9/17/08	0.70		0.8 U	0.3 U	0.4	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.7	5 U	5 U	5 U
	12/4/08	0.56		0.8 U	0.3 U	0.2 U	0.1 U	0.7 U	0.2 U	0.3 U	0.3 U	0.4 U	0.2 U	0.5 U	0.2 U	5 U	5 U	5 U

Notes:

BOLD values indicate detections above laboratory detection limit.

- = Compound detected above NYSDEC standard

 (1) NYSDEC Standards has taken from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- (2) The collective sum of all phenol compounds should not exceed 1 μ g/L.
- (3) Additional analyte reported as per request by IBM.
 - J = Indicates estimated value which is less than the sample quantitation limit, but greater than zero.
 - U = Indicates compound was analyzed for, but not detected.
- B = Indicates analyte was found in the associated blank, as well as in the sample.

 * =DO meter malfunction

Table 4 (Revised) Former Flagship Airlines Hangar Facility Dutchess County Airport, Wappingers Falls, New York

Ambient Air and Foundation Soil Gas Sampling Results

Field Parameters	NYSDOH Air Guidelines			AI - 0	Office			FSG -	Office		Minimum	Minimum	Minimum	Minimum
Photoionization Detector (ppbv)			1.20	0.00	NR	0.00	111	1921	NR	3050	Action	Action	Action	Action
Sample Date:			03/29/06	03/08/07	01/31/08	12/03/08	03/29/06	03/08/07	01/31/08	12/03/08	03/29/06	03/08/07	01/31/08	12/03/08
Volatile Organic Compound by EPA Method TO-15 (µg/m³)	Ambient Air (Indoor & Outdoor)	NYSDOH Matrix												
1,1-Dichloroethane			<1.4	<1.3	<1.4	<0.16	<1.7	<1.5	<1.0	<1.0				
1,1,1-Trichloroethane		2	<1.4	<1.3	<1.4	<0.16	20	8.8	8.5	17.0				
Tetrachloroethene	100 μg/m³	2	<1.4	<1.3	3.6	0.68	90	140	400	550				
Trichloroethene	5 μg/m³	1	<1.4	<1.3	<1.4	<0.16	4.4	<1.5	<1.4	3.3				
Toluene			3.2	1.7	2.3	6.8	8.0	50	14	14				
Naphthalene			<1.4	<1.3	<1.4	0.29	<1.7	1.6	2.4	<1.0				

Field Parameters	NYSDOH Air Guidelines			AI - H	langar			FSG -	Hangar					
Photoionization Detector (ppbv)			3.21	0.00	NR	0.00	113	656.0	NR	2813.0				
Sample Date:			03/29/06	03/08/07	01/31/08	12/03/08	03/29/06	03/08/07	01/31/08	12/03/08	03/29/06	03/08/07	01/31/08	12/03/08
Volatile Organic Compound by EPA Method TO-15 (µg/m³)	Ambient Air (Indoor & Outdoor)	NYSDOH Matrix												
1,1-Dichloroethane			<1.6	<1.4	<1.5	<0.16	3.0	<1.5	<130	2.5				
1,1,1-Trichloroethane		2	<1.6	<1.4	<1.5	<0.16	39	6.0	<130	100.0			#1	
Tetrachloroethene	100 μg/m ³	2	<1.6	<1.4	<1.5	0.41	120	3.3	800	810				
Trichloroethene	5 μg/m³	1	<1.6	<1.4	<1.5	<0.16	2.3	<1.5	<130	<1.5			#1	
Toluene			12	6.4	9.1	11	11.0	15.0	350.0	7.4				
Naphthalene			<1.6	<1.4	<1.5	0.36	<1.5	<1.5	<130	2.5				

Field Parameters	NYSDOH Air Guidelines			AA - F	lagship		AI - Duplicate (AI - Office)					
Photoionization Detector (ppbv)			0.00	0.00	NR	0.00	0.00	0.00	NR	0.00		
Sample Date:			03/29/06	03/08/07	01/31/08	12/03/08	03/29/06	03/08/07	01/31/08	12/03/08		
Volatile Organic Compound by EPA Method TO-15 (μg/m³)	Ambient Air (Indoor & Outdoor)	NYSDOH Matrix										
1,1-Dichloroethane			<1.6	<1.3	<1.4	<0.15	<1.5	<1.4	<1.6	<0.16		
1,1,1-Trichloroethane		2	<1.6	<1.3	<1.4	<0.15	<1.5	<1.4	<1.6	<0.16		
Tetrachloroethene	100 μg/m³	2	4.1	<1.3	<1.4	0.44	<1.5	<1.4	<1.6	0.61		
Trichloroethene	5 μg/m³	1	<1.6	<1.3	<1.4	<0.15	<1.5	<1.4	<1.6	<0.16		
Toluene			1.7	<1.3	3.2	7.4	3.1	1.8	2.9	5.9		
Naphthalene			<1.6	<1.3	<1.4	<0.15	<1.5	<1.4	<1.6	0.33		

Notes:

BOLD values indicate detections above laboratory detection limit

Only compounds detected at one or more locations are shown.

NFA or Take
Reasonable Action

Monitor

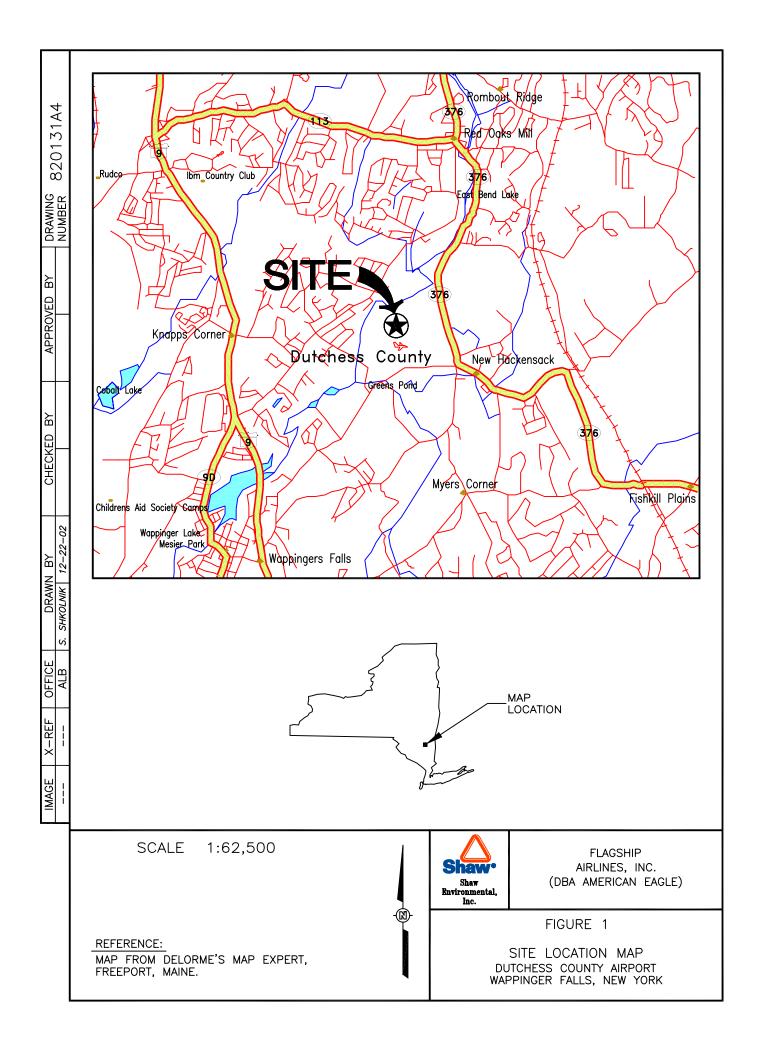
Monitor/Mitigate

Mitigate

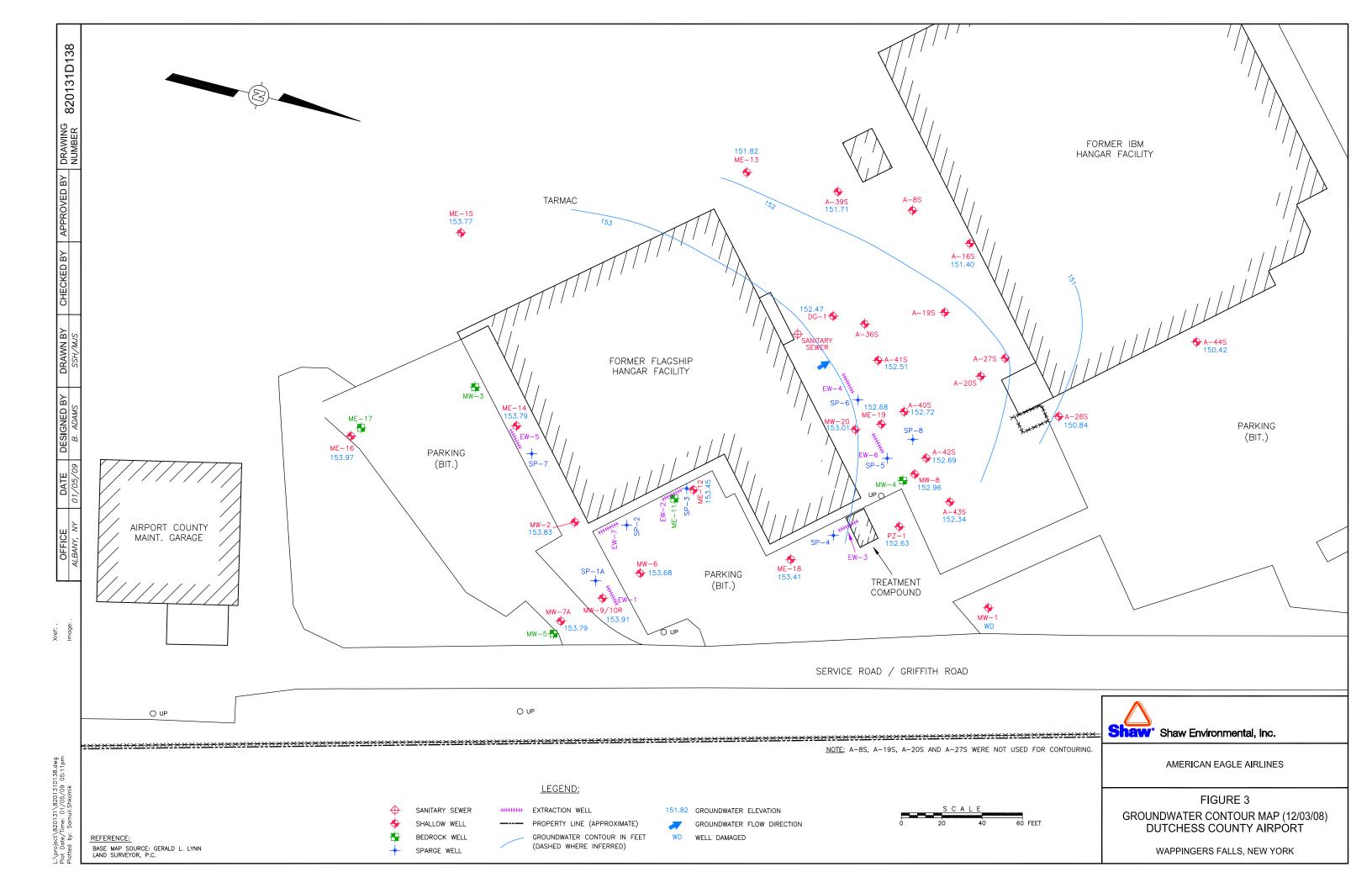
= Recommended Action for Matrix Indentified Compounds (Soil Vapor/Indoor Air Matrix 1 & 2 - October 2006)

--- = No air guildline given

NR = Not Recorded due to faulty PID


AI = Ambient Indoor Air


AA = Ambient Outdoor Air


FSG = Foundation (Sub-Slab) Soil Gas

#1 = Method reporting limit was high, therefore, the action level could have been greater

FIGURES

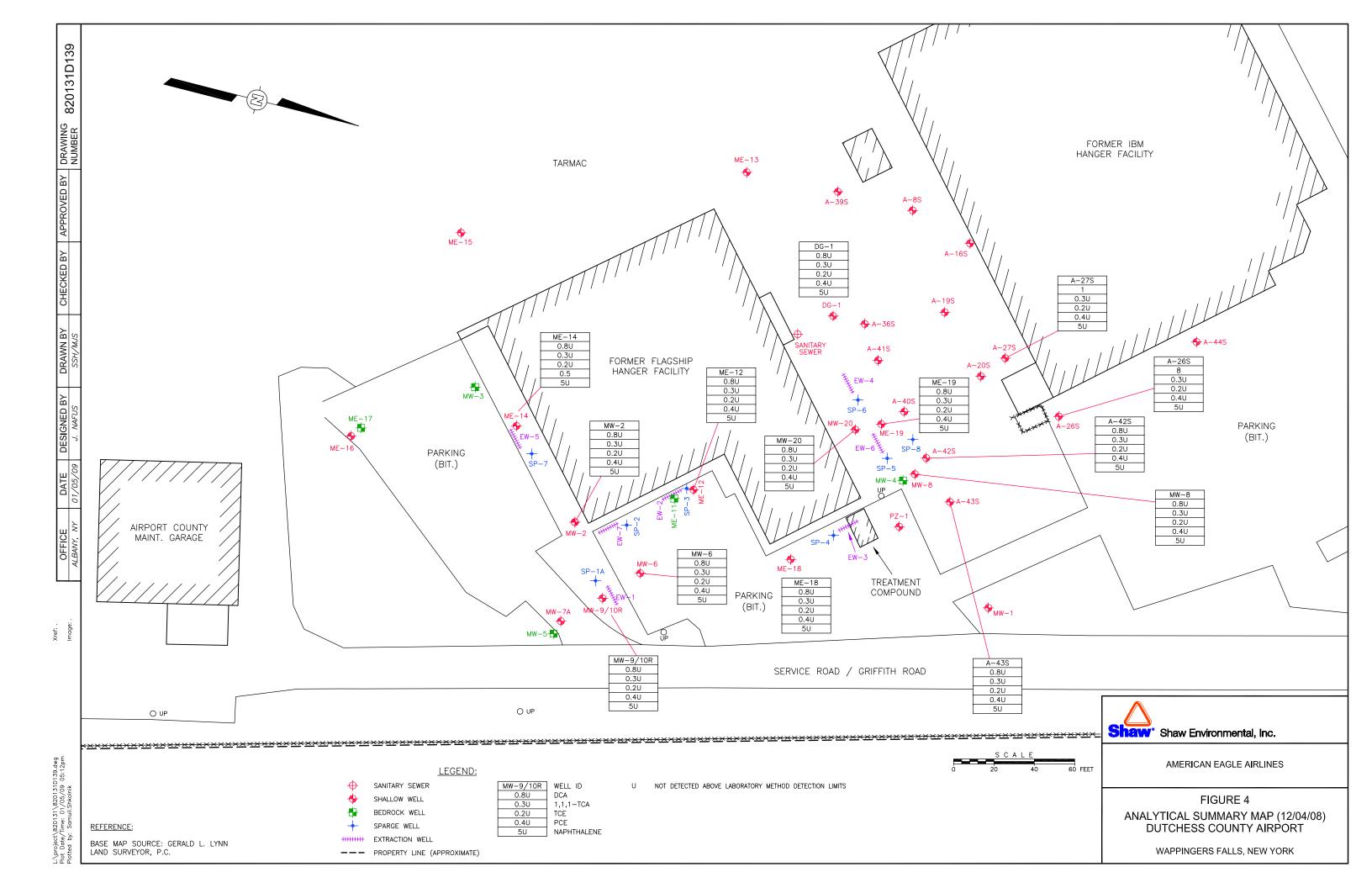


Figure 5
Dissolved Tetrachloroethene (PCE)

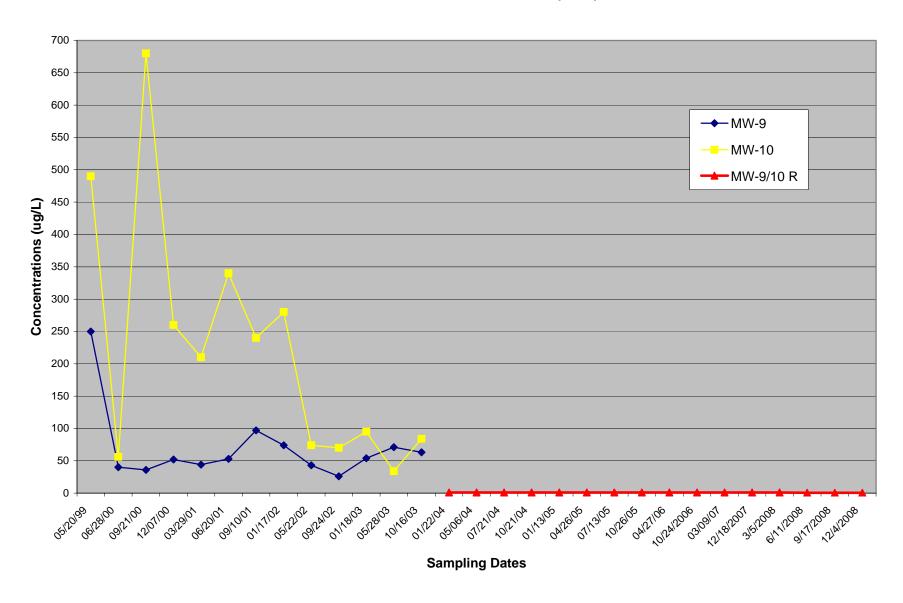


Figure 6
Dissolved 1,1-Dichloroethane

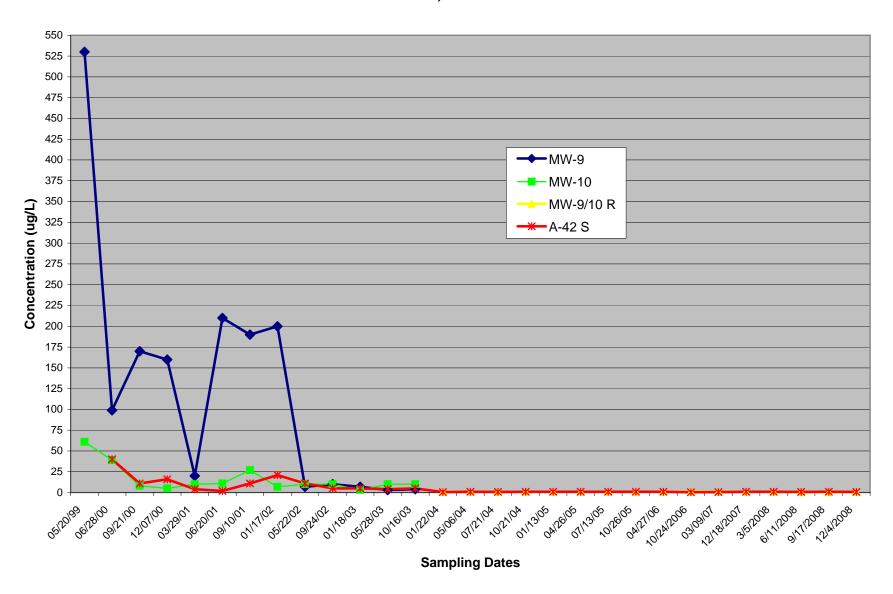


Figure 7
Dissoved Naphthalene Trends

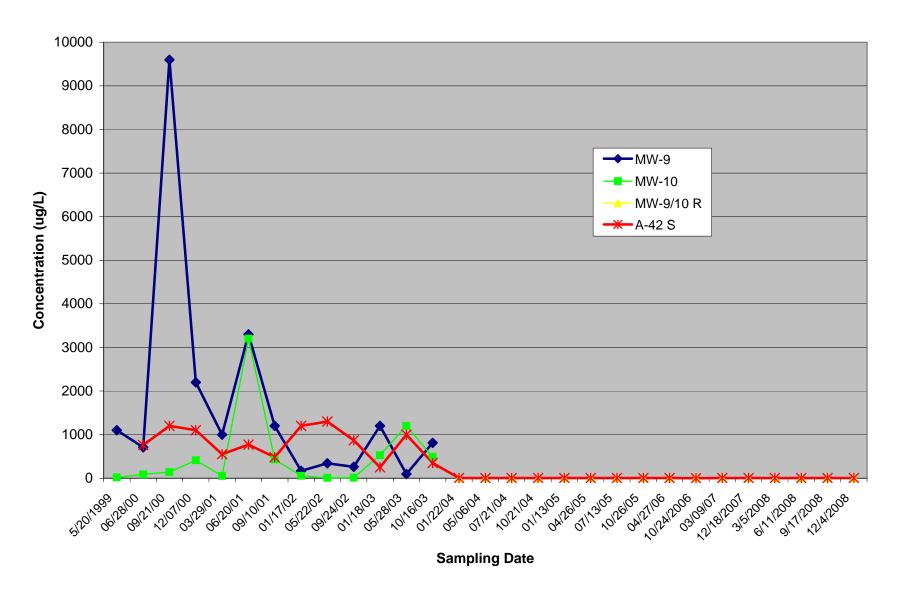
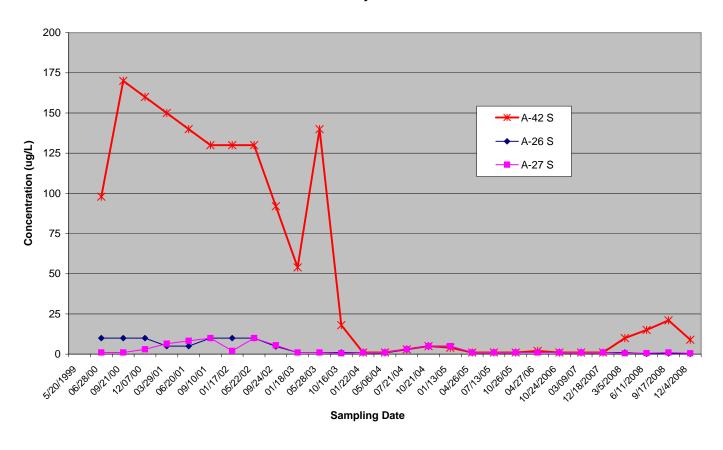
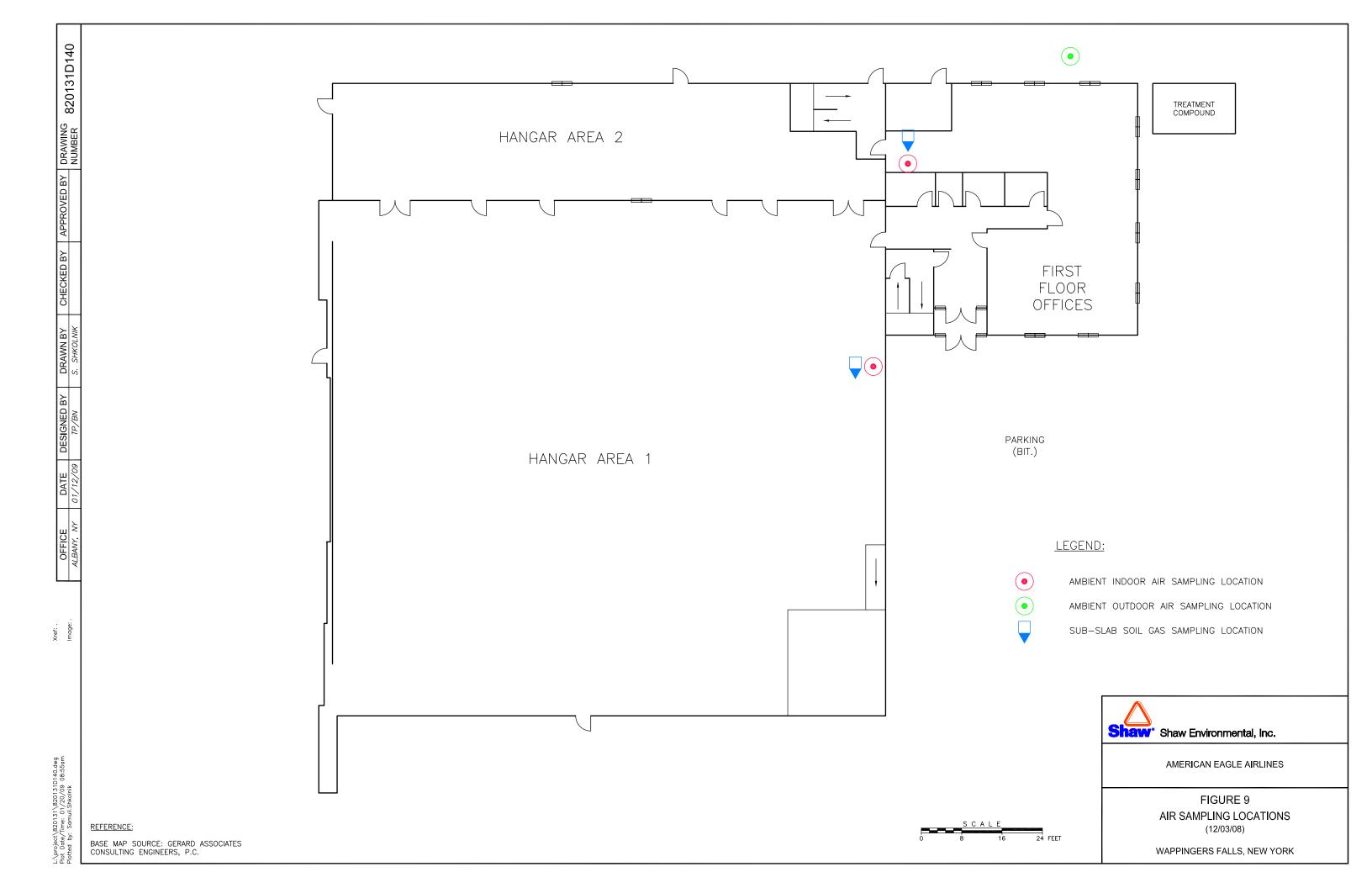




Figure 8
Dissoved Vinyl Chloride Trends

APPENDIX A NYSDEC LETTER OF SEPTEMBER 18, 2007

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 3 21 South Putt Corners Road, New Paltz, New York 12561-1620

Phone: (845) 256-3000 • FAX: (845) 255-3414

Website: www.dec.state.ny.us

RECEIVED

SEP 2 1 2007

File Code:

9/18/07

Brian Neumann, Project Manager Shaw Environmental, Inc. 13 British American Boulevard Latham, New York 12110-1405

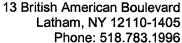
Re: Flagship Airlines Hangar site, ID#314101

Dear Mr. Neumann:

Your 9/5/07 "Indoor Air Sampling Report" for the Flagship Airlines Hangar site (ID#314101) is approved, subject to the following comments:

- 1. The air-sparging, soil vapor extraction (AS/SVE) system can be shut down. However, the following is required:
- A. Groundwater monitoring should take place during 12/07 and 3/09.
- B. A work plan for annual sub-slab vapor and indoor air monitoring for two consecutive heating seasons is due on 10/15/07.
- 2. The data from the two additional rounds of groundwater monitoring and soil vapor intrusion evaluation will be reviewed to determine if additional remedial efforts are required.

Thank you.


Sincerely,

John J. Rashak, Environmental Engineer I

cc: Carl Obermeyer, NYSDOH

APPENDIX B

2007-2009 FINAL POST SHUTDOWN GROUNDWATER MONITORING AND INDOOR AIR SAMPLING WORK PLAN

Phone: 518.783.1996 Fax: 518.783.8397

November 16, 2007

Via: UPS

Mr. John Rashak, Environmental Engineer I Division of Environmental Remediation New York State Department of Environmental Conservation, Region III 21 South Putt Corners Road New Paltz, New York 12561-1696

RE: 2007-2009 Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling
Work Plan
Former Flagship Airlines Hangar Facility, Site #314101
Dutchess County Airport, Wappingers Falls, New York

Dear Mr. Rashak:

Shaw Environmental, Inc. (Shaw), on behalf of American Airlines, is pleased to provide this Groundwater Monitoring and Indoor Air Sampling Work Plan for the Former Flagship Airlines Hangar Site (Site), located at the Dutchess County Airport, Wappingers Falls, Dutchess County, New York (Figure 1). The activities proposed in this plan are in response to your letter dated September 18, 2007 (Appendix A). Shaw will monitor groundwater quality for a total of five quarters beginning in December 2007 and conclude in March of 2009. In addition to the groundwater monitoring Shaw will conduct a subsequent investigation of the sub-slab vapor/indoor air at the Site at the request of the New York State Department of Environmental Conservation (NYSDEC) during the December 2007 groundwater sampling event. After receipt of the results from the December 2007 event American Airlines would then like to discuss the necessity of a second indoor air sampling event in December 2008.

It is American Airlines understanding that this requested fieldwork will be completed to confirm the cessation of monitoring activities at the Site, thus satisfying the remedial objectives set forth in the Record of Decision, dated March 2003.

1.0 Site Background

The former Flagship Airlines Hangar Facility at the Dutchess County Airport was used for washing aircraft and performing routine maintenance work on the aircrafts. This maintenance

work required the use of jet fuel, heating oil and various solvents. The NYSDEC became involved with the Site in 1988 when a leaking heating-oil tank was discovered. The initial investigation soon expanded into a phased remedial investigation (RI) to determine potential volatile and semi-volatile organic compound (VOC and SVOC) impacts to the shallow groundwater. As a result of the ensuing RI, five underground storage tanks and a septic tank that were present at the Site were all removed by 1996. On March 19, 1999, American Eagle Airlines signed an Order on Consent, Index No. W3-0837-98-12, with the NYSDEC.

1.1 Remedial History

A soil vapor extraction (SVE) system was installed in 1988 as an interim remedial measure (IRM) to reduce elevated levels of benzene, toluene, ethylbenzene and xylene (BTEX) detected in the unsaturated soil in the vicinity of the former heating-oil tank. An RI conducted during installation of the SVE system indicated that the residual contamination in the groundwater was significant. In 1992, 1,020 gallons of water were pumped from monitoring wells MW-9 and MW-10 located near the gravel bed. This gravel bed served as the overflow drainage system to the wash water tank that was removed in 1995.

The Phased RI was conducted between 1990 and 1996. An IRM based on the November 1999 Remedial Investigation (RI) and Feasibility Study (FS) Reports was implemented in 2000. As part of the IRM, an SVE and air sparging (AS) system were installed and began operating during August of 2000. Quarterly groundwater samples have been collected since August 2000 to monitor the efficiency of this remedial measure. The data collected during sampling has been presented in the O&M reports for the Site.

In order for the SVE/AS system to be turned off permanently, the New York State Department of Health (NYSDOH) requested an indoor air/sub-slab vapor investigation be performed. Shaw conducted an indoor air/sub-slab vapor investigation on March 29, 2006, in accordance with the NYSDEC-approved indoor air sampling work plan (Revised Final Indoor Air Sampling Work Plan, dated March 6, 2006). Based on the findings of the March 2006 indoor air/sub-slab vapor investigation (Indoor Air Sampling Report, dated August 3, 2006), the NYSDEC requested another soil vapor intrusion evaluation be performed by the end of the 2007 heating season (per NYSDEC letter dated August 29, 2006). Based on the results of these sampling events, the NYSDEC granted the request to shut down the system in a letter dated September 18, 2007.

In order for the system to remain shut down and to proceed with cessation of monitoring activities at the Site, Shaw, at the request of the NYSDEC has prepared this work plan. Shaw will conduct five quarters of groundwater sampling and a maximum of two indoor air sampling events. The methods involved in these activities are explained in detail below.

2.0 Groundwater Monitoring

To monitor the remaining residual dissolved-phase hydrocarbons, a total of five quarterly groundwater sampling events will be conducted. During these sampling events groundwater samples will be collected using low flow procedures from the 14 monitoring points (ME-12, ME-14, ME-18, ME-19, MW-2, MW-6, MW-8, MW-9/10R, MW-20, DG-1, A-26S, A-27S, A-42S and A-43S) utilized in previous sampling events (**Figure 2**). One field duplicate, one matrix spike/matrix spike duplicate and one trip blank will also be collected and analyzed. Groundwater samples will be analyzed in accordance with ASP/CLP method protocols, as historically conducted for the site sampling. Only those ROD identified and previously sampled compounds will be analyzed. The volatiles include the following:

1,1 Dichloroethane1,1 Dichloroethenecis-1,2 Dichloroethenetrans-1,2 Dichloroethene1,2 Dichloroethene, TotalChlorobenzeneChloroethane1,1,1 TrichloroethaneTetrachloroetheneTrichloroetheneTolueneVinyl Chloride

The semi-volatiles include the following:

Phenol 4-Methylphenol Naphthalene

In addition, to the 14 groundwater monitoring points and an additional eleven points (11) will be monitored for water table elevation, only, using field instruments including an water level indicator probe (IP).

2.1 Low Flow Sampling Procedures

The purpose of low flow or "low-stress" sampling is to provide a method which minimize the amount of impact the purging process has on the ground water chemistry during sample collection and to minimize the volume of water that is being purged and disposed. According to the United States Environmental Protection Agencies (USEPA) Standard Operating Procedure

for Low-Stress (Low Flow)/ Minimal Drawdown Groundwater Sample Collection (USEPA, 1996), the following procedures apply:

- 1. Begin Sampling at the least contaminated well proceeding to the most contaminated well last. Check and record the condition of the monitoring well for damage or evidence of tampering.
- 2. Record location, time, date and appropriate information in a field logbook or on the ground-water sampling log (Appendix B).
- 3. Monitor the headspace of the monitoring well at the rim of the casing for volatile organic compounds (VOC) with a Photoionization detector (PID) and record in the logbook or groundwater sampling log.
- 4. Measure the depth to water (water level must be measured to nearest 0.01 feet) and depth to bottom relative to a reference measuring point on the well casing with an electronic water level indicator and record in logbook or ground-water sampling log.
- 5. Use the information from the depth of water and the total depth of the monitoring well to calculate the monitoring well volume. Record information in field logbook or groundwater sampling log.
- 6. Place the pump and support equipment at the wellhead and slowly lower the pump and tubing down into the monitoring well until the location of the pump intake is set at a predetermined location within the screen interval, approximately the mid-screen interval.
- 7. Connect the discharge line from the pump to a flow-through cell.
- 8. Start pumping the well at a low flow rate (0.2 to 0.5 liter per minute) and slowly increase the speed. Check water level. Maintain a steady flow rate while maintaining a drawdown of less than 0.33 feet. If drawdown is greater than 0.33 feet lower the flow rate. 0.33 feet is a goal to help guide with the flow rate adjustment. It should be noted that this goal may be difficult to achieve under some circumstances due to geologic heterogeneities within the screened interval, and may require adjustment based on site-specific conditions and personal experience.
- 9. Measure the discharge rate of the. Continue purging and monitoring every three to five minutes during purging. Pumping rates should be kept at minimal flow to ensure minimal drawdown in the monitoring well.
- 10. During the purging, a minimum of one tubing volume (including the volume of water in the pump and flow cell) must be purged prior to recording the water-quality indicator parameters. Then monitor and record the water-quality indicator parameters every three to five minutes. The water-quality indicator field parameters are turbidity, dissolved oxygen, specific electrical conductance, pH, redox-potential and temperature. Oxidation-reduction potential may not always be an appropriate stabilization parameter, and will depend on site-specific conditions. However, readings should be recorded because of its value as a double check for oxidizing conditions. The stabilization criterion is based on

three successive readings of the water quality field parameters. The table below indicates the stabilization criteria:

Parameter Stabilization Criteria Reference

Parameter	Stabilization Criteria
pН	± 0.1 pH units
Specific electrical conductance (SEC)	± 3% FS/cm
Oxidation-Reduction Potential (ORP)	± 10 millivolts
Turbidity	\pm 10 % NTUs (when turbidity is greater
·	than 10 NTUs)
Dissolved Oxygen	± 0.3 milligrams per liter

- 11. Once the criteria have been successfully met indicating that the water quality indicator parameters have stabilized, then sample collection can take place.
- 12. If a stabilized drawdown in the well can't be maintained at 0.33 feet and the water level is approaching the top of the screened interval, reduce the flow rate or turn the pump off (for 15 minutes) and allow for recovery. It should be noted whether or not the pump has a check valve. A check valve is required if the pump is shut off. Under no circumstances should the well be pumped dry. Begin pumping at a lower flow rate, if the water drawsdown to the top of the screened interval again turn pump off and allow for recovery. If two tubing volumes (including the volume of water in the pump and flow cell) have been removed during purging then sampling can proceed next time the pump is turned on. This information should be noted in the field notebook or ground-water sampling log with a recommendation for a different purging and sampling procedure.
- 13. Maintain the same pumping rate or reduce slightly for sampling (0.2 to 0.5 liter per minute) in order to minimize disturbance of the water column. Samples should be collected directly from the discharge port of the pump tubing prior to passing through the flow-through cell.
- 14. Disconnect the pump's tubing from the flow-through-cell so that the samples are collected from the pump's discharge tubing. For samples collected for dissolved gases or Volatile Organic Compounds (VOCs) analyses, the pump's tubing needs to be completely full of ground water to prevent the ground water from being aerated as the ground water flows through the tubing. When filling the VOC samples a meniscus must be formed over the mouth of the vial to eliminate the formation of air bubbles and head space prior to capping.
- 15. All sample containers should be filled with minimal turbulence by allowing the ground water to flow from the tubing gently down the inside of the container.
- 16. Decontaminate non-dedicated equipment in-between each monitoring well.

2.2 Quarterly Reporting

Monitoring reports will be submitted to the NYSDEC Region 3 Division of Spills Management before two months have followed the field sampling event each quarter. Quarterly reports will document the quarterly groundwater sampling and analytical results.

3.0 Indoor Air Sampling

3.1 Pre Sampling Inspection

The sampling event will begin with an inspection of general site conditions at the hangar. The pre-sampling inspection will determine the locations for the indoor air, sub-slab soil gas, and ambient outdoor air sampling (*Shaw proposes to collect samples from the same locations as with the previous events*). The pre-sampling site inspection will be performed in general accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. An indoor air quality questionnaire and building inventory will be completed (**Appendix C**).

The inspection will include, but not be limited to the following:

- General condition of the area to be sampled;
- Specific location for ambient indoor and sub-slab sampling;
- Sketch of the area to be sampled with sample locations designated;
- Other physical characteristics of the building as outlined on the inspection questionnaire;
- Inventory of chemicals stored in the sampling area; and
- Photoionization detector (PID) readings from the general area to be sampled to quantify background or ambient air readings prior to sampling as well as from stored products suspected to contain VOCs. (Note: A PID manufactured by RAE Systems (Model PGM-7240), capable of detecting VOCs at the parts per billion (ppb) level will be utilized during the indoor air sampling activities).

This task assumes that the hangar's concrete floor is in similar condition as previous sampling events. Provisions for any necessary repairs will be made prior to sample collection.

4.0 Air Sample Collection

Three types of samples will be collected at the Site: indoor air, sub-slab soil gas, and ambient outdoor air. The following sections provide the field methodology that will be employed for the X/MG/Flagship/Indoor Air Workplan/Nov/2007-2009 Final Report

collection of the three basic sample types. Specific sampling procedures are included in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. An indoor air field sampling log sheet (**Appendix C**) will be completed prior to sample collection. Photographs will be taken to document the sample locations and any other conditions that may be of interest.

Sampling equipment utilized for each sample location will consist of the following:

- One 6-liter laboratory-certified summa canister,
- One 8-hour flow control unit,
- · Vacuum gauge, and
- Teflon tubing.

4.1 Indoor Air Sample Collection

A laboratory-certified 6-liter summa canister fitted with an 8-hour flow control unit and vacuum gauge will be assembled in a predetermined location. A section of disposable Teflon® tubing will be extended from the summa canister to collect the sample from the breathing zone at four to six feet above the floor.

One indoor air sample will be collected inside the hangar and another indoor air sample will be collected in the office area. Both of these samples will be located in close proximity to the subslab vapor sampling locations. In addition, they will be collected as close as possible to the locations from the previous two indoor air sample locations. One indoor air duplicate sample will be collected.

The 6-liter summa canister valve will be opened and the initial vacuum reading will be recorded. The sample will be collected over a period of 8 hours at a sampling rate of approximately 0.0125 liters/minute. After sampling, the final vacuum of the summa canister will be recorded and the valve will be closed. The sample will be shipped to the designated laboratory by overnight courier under proper chain-of-custody. A field sampling log (**Appendix C**) will be completed in conjunction with the collection of each sample. This basic procedure will be followed for the collection of the duplicate air sample as well.

4.2 Sub-Slab Soil Gas Sample Collection

Prior to sample collection, the hangar floor will be inspected and the ambient air surrounding the proposed sampling location will be screened with a PID. A total of two sub-slab samples will be collected in conjunction with the two indoor air samples. In addition, they will be collected as close as possible to the locations from the previous two sub-slab sample locations. The samples will be collected over an 8-hour sample period.

A hammer drill will be used to advance a boring to a depth of approximately three inches beneath the vapor barrier at a location central to the hangar floor away from foundations or observed penetrations, and approved by the current property owner. In accordance with the guidance provided by the NYSDEC, the following protocol will be followed for sample collection:

- 1. The entire depth of the sub-slab sample hole will be drilled with a one-inch diameter drill bit. The hole will be advanced to a depth of 3 inches beneath the bottom of the slab.
- 2. A section of 3/8-inch outside diameter (O.D), ¼-inch inside diameter (I.D) Teflon®-lined polyethylene tubing will be inserted to the bottom of the floor slab. The void will be filled with clean sand to the base of the slab.
- 3. The annular space between the 1-inch hole and the 3/8-inch tubing will be sealed with beeswax from the base of the slab to the surface.
- 4. The tubing will be connected to a PID. For approximately 3 minutes gas will be purged from the subsurface probe using the PID. The PID readings will be observed and the highest will be recorded on the appropriate field form.
- 5. The (PID) will be disconnected and A laboratory-certified 6-liter summa canister, fitted with an 8-hour flow control unit and vacuum gauge, will be set up next to the sampling point. The summa canister will be attached to the Teflon® tubing, and the valve will be opened. The initial vacuum reading will be recorded. The sample will be collected over a period of 8 hours at a sampling rate of approximately 0.0125 liters/minute. Following sampling, the final vacuum of the summa canister will be recorded and the valve will be closed. The sample will be shipped to the designated laboratory by overnight courier under proper chain-of-custody. The Teflon® tube will be removed and the sampling point will be patched with concrete or similar material.

4.3 Ambient Outdoor Air Sample Collection

A minimum of one ambient outdoor air sample will be collected at the time of the ambient indoor air sample collection. The outdoor air sample will be collected within a designated area surrounding the specific indoor air sampling locations (e.g., immediately outside of the indoor air

sampling location). More specifically the sample will be collected as close as possible to the location from the previous two ambient outdoor air sample locations.

A laboratory-certified 6-liter summa canister fitted with an 8-hour flow control unit and vacuum gauge will be assembled at a pre-designated location. A disposable Teflon® tube will be extended from the summa canister to collect the sample from the breathing zone at four to six feet above grade, the valve will be opened, and the initial vacuum reading will be recorded. The sample will be collected over a period of 8 hours at a sampling rate of approximately 0.0125 liters/minute. Following sampling, the final vacuum of the summa canister will be recorded and the valve will be closed. The sample will be shipped to Columbia Analytical Laboratories of Simi Valley California by overnight courier under proper chain-of-custody.

The proposed air sampling locations are shown on Figure 3.

5.0 Data Screening and Reporting

Samples will be submitted to Columbia Analytical Services of Simi Valley California, a NELAP-Certified laboratory, for analysis. The analysis will test for site-specific volatile organic compounds [trichloroethene (TCE), tetrachloroethene (PCE), toluene, 1,1-dichloroethane, 1,1,1-trichloroethane, and naphthalene] by Environmental Protection Agency (EPA) Method TO-15. The analysis will achieve detection limits of 1.0 micrograms per cubic meter ($\mu g/m^3$) for each compound except TCE, which will have a detection limit of 0.25 $\mu g/m^3$.

The results of the analysis will be included in the coinciding quarterly groundwater sampling report and will include a description of field work, all tabulated data, figures, air sampling and inspection forms, and a hard copy of the data report.

If you have any questions or need additional information, please call me at 518-783-1996. We look forward to working with you.

Sincerely,

Shaw Environmental, Inc.

Jennifer Nafus Project Scientist

X/MG/Flagship/Indoor Air Workplan/Nov/2007-2009 Final Report

Brian Neumann Project Manager

Min Mulun

Attachments: Figures

Appendix A – NYSDEC Letter Dated September 18, 2007

Appendix B – Field Data Sheet

Appendix C – Indoor Air Field Sampling Log

cc: Alan Angers, American Airlines

D. D'Ambrosio, Esq.

C. Obermeyer (CD Only)

E. Rose

J. Johnson, Esq.

C. Bogle, Esq.

Shaw - File

APPENDIX C NYSDEC LETTER OF NOVEMBER 23, 2007

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 3

21 South Putt Corners Road, New Paltz, New York 12561-1620

Phone: (845) 256-3000 • FAX: (845) 255-3414

Website: www.dec.state.ny.us

NOV 3 0 2007

11/23/07

Brian Neumann, Project Manager Shaw Environmental, Inc. 13 British American Boulevard Latham, New York 12110-1405 Re: Flagship Airlines Hangar site, ID#314101

Dear Mr. Neumann:

Your 11/16/07 "2007-2009 Final Post Shutdown Groundwater Monitoring and Indoor Air Sampling Work Plan" for the Flagship Airlines Hangar site is approved, subject to the following comment:

Please delete the words "a maximum of" from page 3, line 3 of the work plan, since future air sampling requirements, if any, will be based upon the results of the air sampling data submitted per the work plan.

Thank you.

Sincerely,

John J. Rashak, Environmental Engineer I

J. Rashak

cc: Carl Obermeyer, NYSDOH

APPENDIX D FIELD DATA SHEETS – GROUNDWATER

Project Name:	AA Flagsl	qir		Project Number: 82			1		
Water Level Data									
Date: 12/3/08				Well ID:	ME-17		_		
Initial Total Casing Le	ength	24.70							
Depth to Water (from		ng) S. 42	٢(feet)	(2) inch wei	rell = 0.092 l = 0.163 ga	gal/ft al/ft		
a) Height of Water Co	lumn	18.	<u> 18 </u>	feet)	3-inch wel 4-inch wel	l = 0.367 ga l = 0.653 ga	al/ft al/ft		
· Well Volume ([a] x vol	ume factor	*) = 1878	_ (feet) x	gallons/f	6-inch welloot = 3	l = 1.468 ga gallons	al/ft :		
Purge Data									
Date: 12/3/03	Time: \\	4	_(start) <u>\</u>	<u>3</u> (finis	sh)				
Method: (Waterra, bailer, subm	nersible pun	np, etc.)					·		
Purge Volume (3 to 5	well volume	es):	Low Flow S	ampling					
Time	1504	1500	1510	1513)516	1519	1525		
Volume Specific Conductivity	,41/min	A 20 a	770						
pH	0.739 7.55	0.753 7.30	.738 7.09	1763	סרה	0.772	0.769		
Turbidity	[-35]	<i>7.30</i>	7.01	7.00	10.91	6.89	689		
Temperature	12-33	13.87	14.08	14.31	14.40	14.41	14.40		
ORP	109.6	112.7	112.3	1142	114.6	114.9	114.9		
DO	6.22	2.17	1.38	1.30	1.11	1.05	1.03		
Did well dry out? (If yes	s, how man	らパへ y times)		Actual Volu	ıme Remov		ر _ (g allo ns)		
Sampling Data							•		
Sample Date: Appearance (visual) Sampling Method:		6v		ample Time: or <u>C/PW</u>) SZS Odor				
Constituents Sampled VOCs SVOCs			Discription mL voa LGA		Perservative HO No	CL			
				- .					
	•			- -			·		
				- .	*				
Personnel: R. Adams COMMENTS:	, M. Flanag	an							
	181.								
	DEinh	Pal	٠,						

Project Name:	AA Flagsh	ip		Project Number: 820131				
Water Level Data								
Date: 12/3/08 Initial Total Casing Le Depth to Water (from a) Height of Water Co Well Volume ([a] x vol Purge Data Date: 12/3/08 Method: Geo (Pen) (Waterra, bailer, subm	top of casin lumn 14 ume factor Time: 141	$\frac{20.50}{9}$ $\frac{30.50}{30}$ $\frac{30}{30}$	(feet) x _ 1 6	eet) 3 gallons/f	1.5-inch wel 2-inch wel 3-inch wel 4-inch wel 6-inch wel oot = 2.3	actors: = 0.041 ga ell = 0.092 ga = 0.163 ga = 0.367 ga = 0.653 ga	gal/ft ll/ft ll/ft ll/ft	
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			•	
Time	1417	1420	1423	1426				
Volume	NA	NA	NA	NA				
Specific Conductivity	. 920	. 432	. 939	.943				
рН	6.44	6.35	6.32	6. ହ8				
Turbidity	-	•	9	-				
Temperature	13.89	16.14	16.3/	16.27				
ORP	112.6	100. থ	94.1	88,5				
DO	2.47	1.56	1.43	1.39				
Did well dry out? (If yes		y times) 🏻 🖍			ıme Remov	ed ~7L	_ (gallons)	
Sample Date:		ı		ımple Time:				
Appearance (visual) Sampling Method:	clear		Color	clear	Odor	none	•	
Constituents Sampled VOCs SVOCs Personnel: R. Adams COMMENTS: Purge		an	nL voa LGA			CL one		

Project Name:	AA Flagsi	nip		Project N	lumber:	8201	31
Water Level Data							******
Date: 12/3/08 Initial Total Casing Leader Depth to Water (from a) Height of Water Cowell Volume ([a] x volume Data Date: 12/3/08 Method: (Waterra, bailer, subm	ength top of casir slumn tume factor Time:	21.65 ng) 4.36 17.31 *) = 17.31	(feet) x(feet) (feet) <u>53</u> gallons	1-inch w 1.5-inch w 2-inch w 3-inch w 6-inch w foot = 11-	Factors: ell = 0.041 well = 0.09 ell = 0.163 ell = 0.367 ell = 0.653	2 gal/ft gal/ft gal/ft gal/ft
Purge Volume (3 to 5		•	_Low Flow S	ampling			
Time	1559	1602	1605	1608	1611	1/ 1/	1617
Volume <i>Υ</i> _{min}	.4	7000	7007	7001	7011	1614	1011
Specific Conductivity	0.787	,790	0.797	0.800	0.801	0,802	,802
рН	7.44	7.48	7.52	7.59	756	7-56	7.57
Turbidity	-	_			-	-	
Temperature ORP	13.87	14.10	14.23	14.19	14.50	14.52	14.54
DO	7.40	998 94.3 5.74	99.9	100.z	6.18	101-6	6.24
Did well dry out? (If yea Sampling Data	s, how man	y times)		Actual Vo	lume Remo	oved	(gallons
Sample Date: Appearance (visual) Sampling Method:	12/3/01 Clan	•	S Cold	Sample Time	: 1620 Odo	r –	- -
Constituents Sampled VOCs SVOCs			Discription nL voa LGA	 		<u>/e</u> łCL lone	- - -
Personnel: R. Adams COMMENTS: ス		an Pww.o/P	nhe.				

Project Name:	AA Flagsh	ip		Project Number:					
Water Level Data					_				
Date: 12/4/08 Initial Total Casing Le				Well ID:	ME - I *Volume F 1-inch wel	9 Factors: II = 0.041 ga	- I/ft		
Depth to Water (from			40 (fe		1.5-inch w	ell = 0.092 (gal/ft		
3-inch well = 0.367 gal/ft									
					6-inch wel	l = 0.653 ga l = 1.468 ga			
Well Volume ([a] x vol	ume factor	*) = <u>17.40</u>	(feet) x <u>• 6 5</u>	3 gallons/f	oot = 11	gallons	,, IC		
Purge Data							-		
Date: 12/4/08	Time:_10	07	(start) <u>10 2</u>	<u>4</u> (finis	sh)				
Method: (Waterra, bailer, subm	iersible num	n etc.)							
	•								
Purge Volume (3 to 5 v	well volume	s):	Low Flow Sa	mpling					
Time	1010	1013	1616	1019					
Volume	NA	NA	NA	NA					
Specific Conductivity	. 684	. 696	. 70ର	.706					
pН	7.12	712	7.13	7./3					
Turbidity		ļ	-						
Temperature	13.64	13.88	14.05	14.18					
ORP	122.0	118.9	115,6	113.8					
DO	3.12	2.64	2.89	2.29					
Did well dry out? (If yes	s, how man	y times) N ()	Actual Volu	ıme Remov	ed <u>~ 2</u>	_ (gallons)		
		; ··							
Sample Date:	12/4/08			ample Time:		ı			
Appearance (visual)	clear	*****	Colo	clean	Odor	none			
Sampling Method:									
Constituents Sampled VOCs SVOCs	•		Discription nL voa LGA			DL one			
	•								
	•			 					
	•								
				- -					
Personnel: R. Adams COMMENTS: \$2	, M. Flanag 100 mL /m;∩.								

Project Name:

Water Level Data				··		
Date: 12/3/08	Start Time	: 1322	-	Well ID:		
nitial Total Casing L	ength	24.20	(feet)		ell = 0.041 gal
Depth to Water (from	top of casin	ig) 8.51	(fe		2-inch we	well = 0.092 g ell = 0.163 gal
a) Height of Water Co	olumn	15.6	<u>o </u>	eet)	4-inch we	ell = 0.367 gal ell = 0.653 gal
Well Volume ([a] x vo	lume factor	*) = 15.69	(feet) x <u>.16</u>	3_ gallons/f	6-inch we oot = <u>15.</u>	ell = 1.468 gal 8 gallons
Purge Data						
Date: <u>। </u>	Time: /3	345	(start)/3	<u> </u>	sh)	
Method: Geo Pur Waterra, bailer, subr	np (peri) nersible pun	np, etc.)				
Ourge Volume (3 to 5	well volume	es):	Low Flow Sa	ampling		
Time	1348	1351	1355	1358		
Volume	NA	NA	NA	NA		
Specific Conductivity	0.472	0.469	0.472	0,476		
pН	7.11	6.74	6.61	6.57		
Turbidity	-	-	-			
Temperature	15.35	13.53	13. 32	13.62		
ORP	46.6	66.7	76.7	79.1		
DO	G. 20	4.98	4.71	4.51		
Did well dry out? (If yo Sampling Data	es, how mar	ny times) N	0	Actual Vol	ume Remo	oved <u>NA</u> ~29a/
Sample Date	: 12/3/08	-		ample Time:		
Appearance (visual) Sampling Method:	clear		. Colo	r <u>clear</u>	- Odo	or None
Constituents Sample	<u> </u>	Container I			<u>Perservati</u>	
VOCs SVOCs			mL voa	_		HCL
3,008	_	!	LGA		<u>I</u>	None
	_			_		
				Marie.		
	-			_		
				_		
						
	-					
	- - -					
	 - -			_		
	- - - -					
Personnel: R. Adams	- - - , M. Flana e rate 41			_ _ _		

Project Name:	AA Flagsh	nip		Project Number: 820131			
Water Level Data							
Date: 12/3/08 Initial Total Casing Leader Depth to Water (from a) Height of Water Cowell Volume ([a] x volume Date: 12-3-08 Method: Geo (Feo (Waterra, bailer, subm	top of casing lumn ume factor Time: 153	18.3 *) = 18.34 *) = 18.34	96 (feed) x 65 (start) 1 5 4	eet) 5 <u>3</u> gallons/f 44 (finis	*Volume F 1-inch wei 1.5-inch wei 2-inch wei 3-inch wei 4-inch wei 6-inch wel toot =	Factors: = 0.041 gal/ft /e = 0.092 gal/ft = 0.163 gal/ft = 0.367 gal/ft = 0.653 gal/ft	
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			
Time	1532	1535	1538	1542			
Volume	NA	NA	NA	NA			
Specific Conductivity	. 895	. 9a4	. ୩ ଅ ୪	· 429			
pH	6.67	6.56	0.54	G .52			
Turbidity	40.00	-	_				
Temperature ORP	18.82	13.48	13.62	13.73			
DO	197.5	125.6	124.6	123.8			
L DO	6.93	3.03	ə.54	2.40			
Did well dry out? (If yes		y times) N				ed <u>~ 5 L</u> (gallons)	
Sample Date: Appearance (visual) Sampling Method:	12/3/08 clear			imple Time:		none	
Constituents Sampled VOCs SVOCs Personnel: R. Adams COMMENTS: Purg	- - - - - - -	an 1	nL voa LGA	<u> </u>	Perservative HC No	<u>CL</u>	

Project Name:	AA Flagsh	nip		Project N	umber:	82013	1
Water Level Data							
Date: 12/3/08 Initial Total Casing Le Depth to Water (from a) Height of Water Co Well Volume ([a] x vol Purge Data Date: 12/4/08 Method: Peci Puo (Waterra, bailer, subm Purge Volume (3 to 5	top of casing the control of the casing the	19.09 19.09 *) = 19.09 30 np, etc.)	(feet) x 6 !	eet) get) gallons/f	1.5-inch we 2-inch we 3-inch we 6-inch we 6-inch we foot = 12.	Factors: = 0.041 ga vel = 0.092 = 0.163 ga = 0.367 ga = 0.653 ga	gal/ft al/ft al/ft
	Well Volume	3)	Low Flow Sar	npling		•	
Time	833	836	839	842			
Volume	NA	NA	NA	NA			
Specific Conductivity	. १२३	. 923	. 921	. 923			
pH Turkidik	7.44	7.46	4.47	7.49			
Turbidity	-		164	*			
Temperature ORP	13.01	13.02	13.11	13.17			
DO	66.9	ଟେ. ହ	65.5	64.7			
	4.76	3.2/	2.69	2.01			
Did well dry out? (If yes	s, how many	∕times) N	•	Actual Volu	me Remov	ed <u>~ 2</u>	_ (gallons)
Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs SVOCs Personnel: R. Adams COMMENTS: Puese	clear - - - - - - - - - - - - - - - - - - -	n 1L	Color Discription DL voa LGA	mple Time:		<u>L</u>	
Johnson Surge	Rate =	360 ml	r / min				

Project Name:	AA Flagship			Project Number: 820131			
Water Level Data							_
Date: <u>/a/3/08</u>		_		Well ID:	MW- *Volume	9/10 R Factors:	
Initial Total Casing Le	ength	18,23		(feet)	1-inch we	ll = 0.041 ga	
Depth to Water (from			<u>-</u>	•	1.5-inch well = 0.092 gal/ft 2-inch well = 0.163 gal/ft 3-inch well = 0.367 gal/ft		
a) Height of Water Co	lumn	13.0	<u> </u>	eet)	4-inch we	ll = 0.653 ga	.l/ft
Well Volume ([a] x vol	ume factor	*) = <u>1397</u>	_ (feet) x <u> </u>	53 gallons/i	6-inch we 13 .	ll = 1.468 ga 3 gallons	l/ft
Purge Data							_
Date: <u>12/3/08</u>	Time: 14	45	(start) _ / ។:	59 (fini:	sh)		•
Method: ເວັດ (Perí Waterra, bailer, subm) Pu <i>mp</i> nersible pun	np, etc.)					
Purge Volume (3 to 5	well volume	s):	_Low Flow Sa	ampling			
Time	1448	1431	1454	1457			
Volume	NA	NA	NA	NA			
Specific Conductivity	.8ao	. ૧૧૨	. 837	. 835			
pH Turkidika	6.76	6 69	6.67	6.66			
Turbidity			***				
Temperature ORP	14.23	14.40	14.46	14.46			
DO	85.3 5.96	88.0 6.43	90.6 4.66	91.3 4.58			
Pid well dry out? (If yes					ıme Remov	/ed_ ^ 6	_ (gallons
Sampling Data							
Sample Date: Appearance (visual) Sampling Method:	19/3/08 clean		Sa Colo	ample Time: r <u>clean</u>		none	
Constituents Sampled VOCs SVOCs	· -		Discription nL voa LGA	<u>.</u> -		e CL one	
	-			- 			
	-			- . 			
	- -			 			
Personnel: R. Adams COMMENTS: Pure	, M. Flanaga se. Rate		mh/min	-			

Project Name:	AA Flagsh	ip		Project Number: 820131			
Water Level Data			·				
Date: 12 4 08	Start Time	: 935		Well ID:	MW-		
Initial Total Casing Le	ength	33.8	8(feet)	*Volume f 1-inch we	=actors: II = 0.041 ga	ıl/ft
Depth to Water (from	top of casin	g)	23(fe	eet)	1.5-inch w	/ell = 0.092	gal/ft
a) Height of Water Co					3-inch wel	ll = 0.367 ga ll = 0.653 ga	l/ft
Well Volume ([a] x vol	ume factor	*) = <u>16.6</u> 2	(feet) x 1	gallons/	6-inch wel 10ot = _ &	l = 1.468 ga 1 gallons	l/ft
Purge Data						_	
Date: 18/4/05	Time:9	37	(start)9	<u>54</u> (fini	sh)		
Method: Pea Pump (Waterra, bailer, subm	o ersible pum	p, etc.)					
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	mpling			
Time	940	943	946	949	T	1	
Volume	NA	NA	NΑ	NA			
Specific Conductivity	.081	.075	.07/	. 070			
pH Turbidity	7.81	7.72	7.01	7.04			
Temperature	14.40	14.89	14.98	14 94			
ORP	84.6	89.3	94.5	97.1			
DO \$	11.4/	X	X	X			
Did well dry out? (If yes	s, how many	rtimes) N	10	Actual Volu	ıme Remov	ed <u>∼ 2</u>	_ (gallons)
Sampling Data							
Sample Date: Appearance (visual) Sampling Method:	clean		Sa Color	mple Time:		none	
Constituents Sampled VOCs SVOCs	: - - -		Discription nL voa LGA		Perservative H(No	DL	
	-			·			
Personnel: R. Adams ,	-	~ 400	mL/min	Hi	DO, n	o air in	line.
•	· · · · · · · · · · · · · · · · · · ·						

Project Name:	AA Flagsh	nip	Project Number: 82013					
Water Level Data								
Date: 12 4 68 Initial Total Casing Leader Depth to Water (from a) Height of Water Converse Well Volume ([a] x volume Date: 12 4 68 Method: (Waterra, bailer, subm	ength top of casin blumn lume factor Time:	(19.0 (1	\0 \\ <u>\U</u> (feet) x <u>. \</u> _ (start)/0	(feet) (feet) gallons	1.5-inch we 3-inch we 4-inch we 6-inch we 6-inch we /foot = \\.5	ell = 0.041 g well = 0.092 ell = 0.163 g ell = 0.367 g	! gal/ft al/ft al/ft	
Purge Volume (3 to 5	well volume	s):	_ Low Flow S	Sampling				
Time	1005	1007	10 10	<i>j</i> o13	10/6	10.19	1023	
Volume	.60	.40 —		1,5.7	1070	70.14	- 1	
Specific Conductivity	0.467	0.967	,965	.962	.961	,962	.962	
pН	6.91	6.46	6.38	6.19	6.14	6.12	6.10	
Turbidity					1		0270	
Temperature	15.42	15.25	15.19	15.25	15.34	15.37	15.39	
ORP	15.0	520	64.0	82,2	89.9	91.6	947	
DO	3.82	0.99	0.81	0.68	0.64	0.70	0.73	
Sampling Data Sample Date: 12 4								
Constituents Sampled VOCs SVOCs Personnel: R. Adams COMMENTS:		40 . 1	Discription mL voa I LGA			re ICL one	-	

Project Name:	AA Flags	ship		Project	Number:	820	131
Water Level Data				•			
Date: 12/4/08	Start Tim	ne: <i>7</i> 55		Well ID	. A-26	5	
Initial Total Casing L	enath ¹⁷	6 th	3.00	(feet)	*Volume	Factors:	
Depth to Water (from	ton of casi	40 (pg)	40384	(1661)	1.5-inch	/eii = 0.041 well = 0.09	gal/ft 92 gal/ft
a) Height of Water Co	- top 0, 000	g <u>) </u>	a 16	. (1eet)	3-inch w	/ell = 0.163 /ell = 0.367	gai/ft gal/ft
Wall Value (Co	olumn	101	ι ι	(feet)	4-inch w 6-inch w	O BE2	a a 1/4
Well Volume ([a] x vo	lume factor	(*) = <u>14.1</u>	(feet) x <u>'</u>	63 gallon	s/foot = 3	gallor	18
Purge Data							
Date: 12/4/08	Time:	759	(start)	316 (fi	nish)		
Method:	•				•		
(Waterra, bailer, subm	nersible pur	np, etc.)					
Purge Volume (3 to 5	well volume	es):	_ Low Flow S	Sampling			
Time	754	802	805	803	8(1	815	
Volume 4m Specific Conductivity	,4	-				3	
pH	7.30	0.955	0.451	0.947	0.944	.943	
Turbidity	7.30	7.67	7.65	7.64	7.62	7.61	
Temperature	13.41	13.35	13.34	13.33	13.32	12.0	
ORP	-136-7	- 123.7	-119.5	-111.7	-106.0	13.25	
DO	7.39	n.bs	0.54	0.43	10.38	0.39	
Did well dry out? (If yes	s, how man	y times)		Actual Vo	lume Remo		(gallons
Sampling Data							_
Sample Date:	12/4/08		و	Sample Time	. 8 25		
Appearance (visual)	FR			or_Clear	Odor	.	
Sampling Method:	Minimal	2 SWMII	-		_		_
Constituents Sampled	<u>.</u>		<u>Discription</u>		<u>Perservativ</u>	e	
VOCs SVOCs	_		mL voa		Н	CL	
37005	•		LGA		No	ne	-
	-		······································				7 71
	-		···	_			-
	_			-			-
	-			_			-
							•
	_		· · · · · · · · · · · · · · · · · · ·	-			•
	_	**************************************					
ersonnel: R. Adams ,							
CIALIAIEIA 12: PW	er in st	teel cash	m Felo	Sheen in Ci	andin nat		
		10 ml/mir		3.440 14 3F	arious war	-{	

Project Name:	AA Flag	ship		Project	Number:	<i>.</i> 8201	131
Water Level Data						020	
Date: 12/4/4	Start Tim	ne: 420		Well ID:	A-20:	3	الريسانية (الريسانية الريسانية الريسانية الريسانية الريسانية الريسانية الريسانية الريسانية الريسانية الريساني الريسانية الريسانية
Initial Total Casing L	-ength_ $\frac{\lambda}{2}$	5.90	65 NA	(feet)	*Volume	Factors:	
Depth to Water (from			ac ook		1.5-inch	ell = 0.041 well = 0.09	2 gal/ft
				feet)	(2 ₃inch w	ell = 0.163 ell = 0.367	gal/ft
a) Height of Water C	olumn	300	}72 (feet)	4-inch w	oll 0 eco .	m = 1/64
· Well Volume ([a] x vo	olume factor	$(*) = \overline{90'93}$	5 (feet) x	gallons	o-men we 5/foot = <u>3.5</u>	ell = 1.468 (3 gallon	jal/ft s
Purge Data							,
Date: iz Mos	Time: ¶	19	(ctart) '43'	/£:			
Method:			_ (Start)	L (fir	nish)	i	
(Waterra, bailer, subn	nersible pur	np. etc.)					
		•					
Purge Volume (3 to 5			_Low Flow Sa	ampling			
Time Volume	920	923	926	924	932	935	T
Specific Conductivity	0,765	.40 6.773	933	1 222			
рН	7,65	7.65	777	1712	,772	.772	
Turbidity	,,,,,	7.07	7.63	7.60	7.57	7.56	
Temperature	13.22	13.70	13.72	13.32	15.33	12:06	
ORP	-1557	-146.0	- 134.7	- 126.8	-124.6	13.89	
DO	3.13	2,92	0.57	0,50	0.48	-131.8 0.46	
District to the second				0,100	1 - 70	0.70	<u> </u>
Did well dry out? (If yes	s, how man	y times)		Actual Vol	ume Remov	/ed	(gallons)
Sampling Data							(90110115)
	د ما دا د						
Sample Date:			Sa	ımple Time:	940		
Appearance (visual)	Cle	<u> </u>		Cler	Odor	•	
Sampling Method:					•		•
Constituents Sampled	.,	Container D	icarintian	,			
VOCs	•		iL voa	į	Perservative	-	
SVOCs	-		.GA	•	HO		
	-			•	No	ne	
	-			•			
	-			•		· · · · · · · · · · · · · · · · · · ·	
	_		• •				
				-			
	-			-			
	_			-			
Arsonnol: D. A-I				-			
ersonnel: R. Adams , OMMENTS:	M. Flanaga	n No Octob	100 11				
- ····································	ruige Ki	ate no c	100 mL/min	,			

	AA Flagsi	qir		Project N	820131	
Water Level Data						
Date: 12/3/08	Start Time			Well ID:	A 42	
Initial Total Casing Le	ength	25,9	15	(feet)	*Volume f 1-inch we	actors: = 0.041 gal/ft
Depth to Water (from			(1		1.5-inch wei	/ell = 0.092 gal/ft ll = 0.163 gal/ft
a) Height of Water Co	olumn	19.24	<u> </u>	eet)	3-inch wei 4-inch wei	l = 0.367 gal/ft l = 0.653 gal/ft
Well Volume ([a] x vol						
Purge Data			· ,	gaσσ, ι	00(<u>), </u>	galloris
Date: <u>18/4/ 08</u>	Timo: 90) ¹⁷	(-t) 91	cı		
			(start) <u>91</u>	1 (tinis	sh)	
Method: Peri - Pum (Waterra, bailer, subm	인 Persible pun	np, etc.)				
Purge Volume (3 to 5	well volume	s):	Low Flow Sa	ampling		
Time	910	913	916	919		
Volume	NA	NA	NA	NA		
Specific Conductivity	. 689	. 694	. 695	. 697		
pH	7.50	7.48	7,46	7.41		
Turbidity		-	~	~ -		
Temperature	12.99	13.37	13.35	13.36		
Temperature ORP	12.99 93.4	13.37 92.5	13.35 92.5	13.36 93.6		
Temperature ORP DO	12.99 93.4 6.95	13.37 92.5 5.57	13.35 9a.5 5.04	13.36 93.6 4.46		
Temperature ORP DO Did well dry out? (If yes	12.99 93.4 6.95	13.37 92.5 5.57	13.35 9a.5 5.04	13.36 93.6	me Remove	ed ^ &. 5 (gallor
Temperature ORP DO Did well dry out? (If yes	12.99 93.4 6.95	13.37 92.5 5.57	13.35 9a.5 5.04	13.36 93.6 4.46	me Remove	ed <u>~&.∮</u> (gallor
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date:	12.99 93.4 6.95 s, how many	13.37 92.5 5.57	13.35 92.5 5.04	13.36 93.6 4.46 Actual Volu	920	
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual)	12.99 93.4 6.95 s, how many	13.37 92.5 5.57	13.35 92.5 5.04	13.36 93.6 4.46 Actual Volu	920	ed <u>~2.5</u> (gallor
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N	13. 35 9 a . 5 5 . 0 4 0 Sa Color	13.36 93.6 4.46 Actual Volu	920	none
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor	none
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13. 35 9 a . 5 5 . 0 4 0 Sa Color	13.36 93.6 4.46 Actual Volu	920 Odor Perservative	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many 12/4/08 clean	13.37 92.5 5.57 (times) N Container E 40 m	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs SVOCs	12.99 93.4 6.95 s, how many clean	13.37 92.5 6.57 / times) N	13.35 9a.5 5.04 O Sa Color Discription nL voa	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs SVOCs ersonnel: R. Adams	12.99 93.4 6.95 s, how many clean	13.37 92.5 5.57 y times) N	13.35 9a.5 5.04 O	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane
Temperature ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	12.99 93.4 6.95 s, how many clean	13.37 92.5 5.57 y times) N	13.35 9a.5 5.04 O	13.36 93.6 4.46 Actual Volu	920 Odor Perservative HC	nane

Project Name:	Name: AA Flagship			Project (Number:	8201	820131	
Water Level Data								
Date: 12 4 08	Start Tin	ne: _		Well ID:	A-435			
Initial Total Casing L	ength	25.20		_ (feet)		Factors: ell = 0.041	gal/ft	
Depth to Water (from					1.5-inch	well = 0.09 ell = 0.163	2 gal/ft	
a) Height of Water Co	olumn	20	2.00	(feet)	3-inch w	ell = 0.367 ell = 0.653	gal/ft	
Well Volume ([a] x vo	lume facto	or*) = 20;0	P (feet) x	[63 gallons	6-inch w	ell = 0.053 (ell = 1.468 (gal/ft	
Purge Data		· / =	(.000) X <u></u>	ganoris	5/100(= <u>- 3 (a</u>	≭ ⊈_ gallon	S	
Date: <u> 2 4 08</u>	Time: 8	30	(otowi)	(5)				
	1 11116 <u>0</u> .		_ (start)	(fir	nish)			
Method: (Waterra, bailer, subm	nersible pu	ımp, etc.)						
Purge Volume (3 to 5	well volum	nes):	Low Flow S	Sampling		#		
Time	939	842	845	8 48	851	854	857	
Volume	.58 ~				100	1 37	+3/	
Specific Conductivity	0.870	0.866	0.860	0.863	0.869	0.877	,873	
pH	7.84	7.81	7.79	7.77	7.74	7.72	7.70	
Turbidity	-		-	-			-	
Temperature	12.71	13.51	1373	14.00	14.14	14.18	14.28	
ORP DO	60.2	55.1	50.7	48.0	45.8	45.5	58.5	
DO	6.15	2.40	1.50	1.00	0.77	0.69	0.5G	
Did well dry out? (If yes	s, how mar	ny times)		Actual Vo	lume Remo	ved	(gallons)	
Sampling Data							,	
Sample Date:	12/4/08			Sample Time	: 900			
Appearance (visual) Sampling Method:	<u>c le</u>	ear	_ Col	or	Odo	r		
Constituents Sampled		Container	<u>Discription</u>		<u>Perservativ</u>	' A		
VOCS			mL voa			ICL		
SVOCs		1	LGA			one	_	
								
			·				_	
		·					_	
				_		·.	_	
							-	
							-	
							-	
Personnol D Adams	M EL			-				
Personnel: R. Adams , COMMENTS: マタ			DI					
38		~ Purge	<u>rate</u>					
		AS IM	T)					
			シシ					

APPENDIX E CHAIN OF CUSTODY - GROUNDWATER

Custody Record Chain of

Temperature on Receipt

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt **∂** Chain of Custody Number 121905 (A fee may be assessed if samples are retained longer than 1 month) Time Time Ø. Page Date Date Date 13/m/21 Analysis (Attach list if more space is needed) Lab Number Months Date Archive For 0168 06-6 Telephone Number (Area Code)/Fax Number QC Requirements (Specify) NaOH NaOH Disposal By Lab Containers & Preservatives HOBN 1. Received By 2. Received By 3. Received By IOH r.n Lab Contact EONE B. Nermann Drinking Water? Yes □ No 🗖 tOSZH Unpres 6 16 1 Ó 1 ☐ Return To Client 7000/Sample Disposa - Other Stradul 110S Carrier/Waybill Number Time Matrix Site Contact 'pəs Project Manager snoenb_b 80/11/21 Unknown 026 5000 020 Time Date 9 55 949 21 Days ☐ Poison B MHC Date Weppingers Falls, NY British American Blud.
State Zip Code Shaw Environmental Inc ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant ☐ 7 Days | Flammable Contract/Purchase Order/Quote No. Project Name and Location (State) Nip Blank The 0/1 Possible Hazard Identification Turn Around Time Required A-425 M/W-20 A-275 ME-19 D6-1 Lathorn 1. Relinquished By 3. Relinquished By 💆 Non-Hazard 2. Relinquished By TAL-4124 (1007) Client Comments

Custody Record Chain of

Temperature on Receipt

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt Chain of Custody Number (A fee may be assessed if samples are retained longer than 1 month) Time Time Time Date Date Date Date 7/1/18 Analysis (Attach list if more space is needed) Lab Number Months ☐ Archive For <u> ८१८४</u> Q_C8 QC Requirements (Specify) · 8347 \oAnZ HO_BN Containers & Preservatives 🗌 Disposal By Lab HOBN 1. Received By 3. Received By ЮН 3 Č. ŽŠ 1 JL (1/5) S , N (www n n relephone Number (Area Code)/Fax Number EONH Drinking Water? Yes □ No 🕱 +SSO ∩ubtes (4) Time / (000) ☐ Unknown ☐ Return To Client (518) 783- 1996 Sample Disposa R. Adum I Carrier/Waybill Number lios Time Matrix Tomer Hamilton pes. Project Manager 10/1-/21 Site Contact ıį∀ 1620 1430 5/18 900 [525] 900 1500 345/ 568 Time 00/2/ Date Date 21 Days 13/3/68 89/11/2 Waypingers Fally 104 Poison B Date 13 British Amprilan Blod. Stod. ☐ 14 Days Ollent Shaw Environmental, Inc Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant A-435 MS/MSD ☐ 7 Days 🖂 Non-Hazard 🔃 Flammable Contract/Purchase Order/Quòte No. Project Name and Location (State) 24 Hours 48 Hours Possible Hazard Identification Turn Around Time Required MW-7110R A-435 MW-8 A-265 1. Relinquished By ME-18 MW-C 2. Relinquished By ME-14 3. Relinquished By W.011707 MELL I Q 20 アプラブ FAL-4124 (1007) Comments

APPENDIX F

LABORATORY ANALYTICAL – GROUNDWATER (PROVIDED ON CD)

APPENDIX G INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

		Project Name: Fla	gship A	Δ	*
		Date: 12/3/0			
Shaw Sha	aw Environmental, Inc.	-			*
Occupant information		Tax Map ID: NA	/RA		
Name:		Addresss:			
		Office	Area.	/ n	A here)
Home Phone: NA		Office Phone:		Dupe	A rere
Owner or Landloard (If diff Name:	erent than occupant)				
		Addresss:			
Home Phone: NA		NA			
PID Meter Used:	IEID Make	Office Phone: NA			
	FID Mete	r Used: NA	Infrared Gas	Analyzer Use	ed:
	INDOOR AIR	SUBSTRUCTURE	SOIL GAS	AMD	NA IENT AIR
SUMMA CANISTER RECO	RD		OOIL OAG	AIVID	ENTAIR
Canister Serial No:	AC 00740	AC 01128		AC	00640
Flow Controller No.:	FC oo aaq	0A 01376			
Start Date/Time:	12/3/08 1300				0681
Stop Date/Time:	12/3/08 2010			12/3/08	1137/30
Stop Pressure (in. Hg):	3		05	12/3/08	1940
Sample ID:	IA - Office	5		2	
Duplicate Sample ID	Dupe A	SYG Office		AA - F.	lagship
Sample ID Category:		NA NA		NA	<i></i>
BUILDING CONSTRUCTION	Indoor Ambient VOTHER CHARACTERISTICS	Soil Vapor		Outdoor	Ambient
Story / Level	First Floor				n, ethorogen and all the control of
Room	Office by Exit				
Indoor Air Temp (%) 🗲	68°F				
Gas Sampling Point (in. of H₂O) Deploy	NA				
Gas Sampling Point (in. of	777				
H₂O) Pickup	NA				
Basement / Crawl Space		NA	and and the second of the second of the second		
Crawl space condition		NA			
Floor Slab Thickness (in)		~ 8			
Percent O ₂ /CO ₂ /CH ₄		0% He			
Potential Vapor Entry Points Observed?		None			
Direction/Distance from Bldg				The Control of the	a 19 Normana a Pagladi
Distance to roadway					
ntake Height/Depth (feet)	ち み "	5a " NA		<i>(</i>)	
Noticeable Odor?	None	No		<u>52</u>	
PID Reading (ppmv) ppB	0	30 50		None	
ID Reading (ppmv)	NA	NA			
Comments: Gauge	AVG O1028	AYG 0100-		0)/4 -	- · ·
Dupe A	1302/30" /2010/2		/	AVG O	0984
	1 -				

Dupe A 1302/30" /2010/2 Can - AC 01448 Gauge AVG 00911 FC 00681

		Project Name: Flagship AA			
		Date: 12/3/08			
Snaw Sha	aw Environmental, Inc.	Sampler(s): Marc Flanagan	/ R.I. D.I		
Occupant Information		Tax Map ID:	nob. Maame		
Name: Dutchess	County Airport	Addresss:			
Former Flagship	(AA) Hanges Facility	HANGER AREA			
Home Phone:	A /	HANGER AREA Office Phone: (845) 463-6	500		
Owner or Landloard (If diffe Name:	erent than occupant)				
	•	Addresss:			
Home Phone: NA	A	NA			
PID Meter Used:	FID Mete	Office Phone: NA			
PPB Rae 250-1	01313	r Used: NA Infrared Gas Ar	lalyzer Used:		
	INDOOR AIR	SUBSTRUCTURE SOIL GAS	AMBIENT AIR		
SUMMA CANISTER RECOF	₹D				
Canister Serial No:	AC OHA4	AC 01351	NA		
Flow Controller No.:	FC 00291	OA 01399			
Start Date/Time: 5 % ct ド	12/3/08 1225/50				
Stop Date/Time:	18/3/08 2030	12/3/08 2030	,		
Stop Pressure (in. Hg):	/				
Sample ID:	IA-Hanger	3VG - Hanson			
Duplicate Sample ID	NA	SYG - Hangen NA			
Sample ID Category:	Ambient Air		·		
BUILDING CONSTRUCTION	OTHER CHARACTERISTICS	Soil Yapor			
Story / Level	First				
Room	Hangen				
Indoor Air Temp (%) ° F	64°F				
Gas Sampling Point (in. of H₂O) Deploy	NA				
Gas Sampling Point (in. of H₂O) Pickup	NA				
Basement / Crawl Space		On Slab			
Crawl space condition		NIA			
Floor Slab Thickness (in)		. //			
Percent O ₂ /CO ₂ /CH ₄		NIA			
Potential Vapor Entry Points		cracks in the Floor			
Observed?					
Direction/Distance from Bldg			NA		
Distance to roadway					
Intake Height/Depth (feet)	' 50 " high	11" deep			
Noticeable Odor?	None	None			
PID Reading (paray)	O	28/3			
FID Reading (ppmv)	NIA	NA	√		
Comments: Javge	AVG 00899	A VG 00814			
-		He Leak Ck = OK			

Z :

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Robert Adams / Marc Flangen Date/Time Prepared 12/3/08
Preparer's Affiliation Shaw Environmental, Inc. Phone No. 518-783-1996
Purpose of Investigation Soil Vapor Intrusian / Indoor coulder Ambient Site Conditions
1. OCCUPANT:
Interviewed: Ø/N
Last Name: Damico First Name: Joanna
Address: 32 Griffith way Wappingas Falk, NY
County: Ntches
Home Phone: W//t Office Phone: 888-235-9224
Number of Occupants/persons at this location 2 - 8 Age of Occupants 20 - 65
2. OWNER OR LANDLORD: (Check if same as occupant) Patchess County Airport
Interviewed: Y/N
Last Name:First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use 80% Hangar Industrial Church Other: AVPOR 20% Office Space

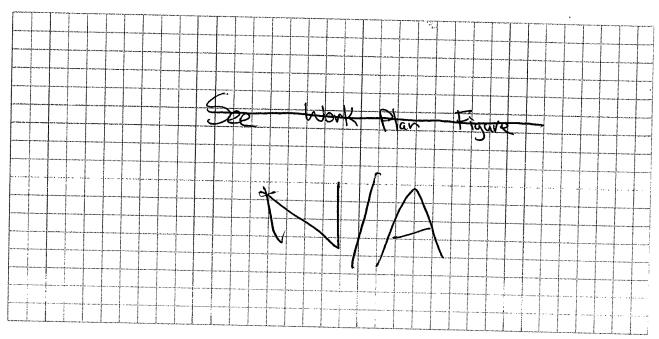
If the property is residentia	type? (Circle appropri	ate response)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:	
If multiple units, how many	?		
If the property is commerci	al, type?		
Business Type(s)	tisport		
Does it include residence	s (i.e., multi-use)? Y/1	If yes, how many	?
Other characteristics:		•	
Number of floors 2	Build	ing age	
Is the building insulated)/N How	air tight? Tight / Average /	Not Tight
4. AIRFLOW			
Use air current tubes or trac	er smoke to evaluate a	rflow nottowns and an 14	
Airflow between floors NA		or at Roof, through	
Airflow near source		į	
Outdoor air infiltration Luvge Bay Office - N	Doors in Hanga	Ave	
Infiltration into air ducts From Vents los	isted within the t	tangar frimarily + 2	15' above Floor Slab.

5. BASEMENT AND CONSTR	RUCTION CHARA	ACTERISTICS	(Circle all tha	at apply)
a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other <u>N/A</u>
c. Basement floor:	concrete	dirt	stone	other WH
d. Basement floor:	uncovered	covered	covered with	th <u>N/A</u>
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other <u>C. Block</u> Aluminin
g. Foundation walls:	unsealed	sealed	sealed with	Paint
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially fini	shed
j. Sump present?	Y (N)			
	N / not applicable			
Basement/Lowest level depth belo	(,			
Identify potential soil vapor entry	points and approx	imate size (e.g.	, cracks, utilit	y ports, drains)
During Sampling helicop	tar was rem	out from	Hannar	Cracks present in Floor
Microwane near indoor				THE PROPERTY IN LOS
6. HEATING, VENTING and Al Type of heating system(s) used in t	:			ry)
Hot air circulation	Heat pump	Hot wa	ter baseboard	•
Space Heaters Electric baseboard	Stream radiation Wood stove		t floor or wood boiler	Other
The primary type of fuel used is:				
2 no primary type of fuel used is.				
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerose Solar	ne	
Natural Gas Electric	Propane Coal		ne	
Natural Gas Electric Wood Domestic hot water tank fueled by:	Propane Coal	Sólar		Other

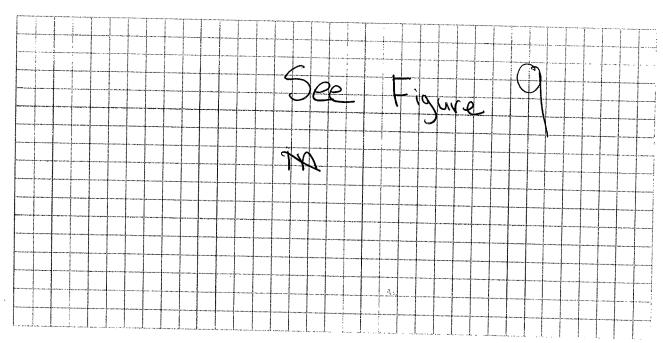
Describe the	distribution ducts present? (Y/N) supply and cold air return ductwork, and i	ts conditio	on where visible, including whether
there is a colo diagram.	l air return and the tightness of duct joints.	. Indicate	the locations on the floor plan
<u>**</u>	NA		<u> </u>
7. OCCUPA	NCY		
Is basement/lo	owest level occupied? Full-time Occ	casionally	Seldom Almost Never
Level	General Use of Each Floor (e.g., familyre	oom, bedr	oom, laundry, workshop, storage)
Basement	MA		
1 st Floor	Hangar Josse		
2 nd Floor	Offices		
3 rd Floor			
4 th Floor			
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR		
a. Is there ar	n attached garage?		YIN
b. Does the g	arage have a separate heating unit?		Y (NA
c. Are petrol stored in t	eum-powered machines or vehicles he garage (e.g., lawnmower, atv, car)		Ø/N/NA Please specify In Hangar
d. Has the bu	ilding ever had a fire?		Y/(N) When?
e. Is a kerose	ne or unvented,gas space heater present?		Y (N) Where?
f. Is there a v	vorkshop or hobby/craft area?	Ÿ/N	Where & Type? whiteway
g. Is there sn	oking in the building?	Y (N)	How frequently?
h. Have clear	ning products been used recently?	Ø/N	When & Type? 3 Nights a news

(9/N When & Type? | Leekly

i. Have cosmetic products been used recently?

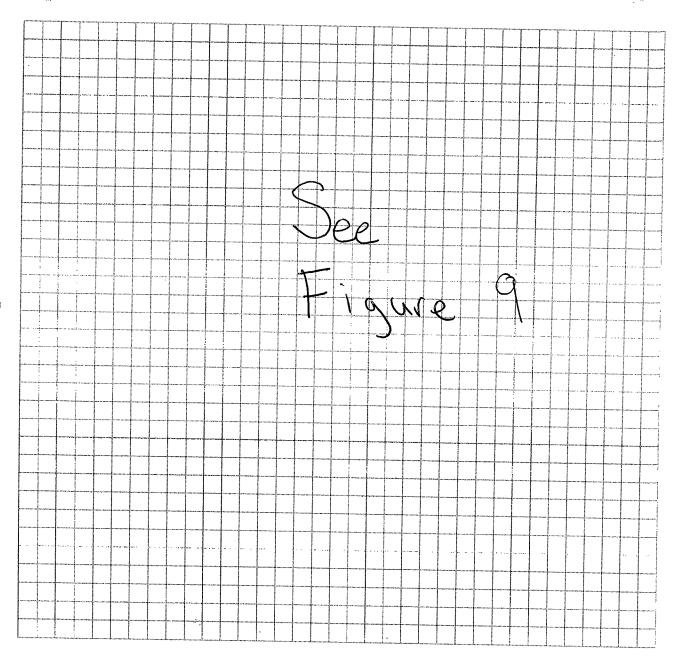

j. Has painting/staining been done in the last 6 months?	37 /37	Where & When? Yes when year Latex
k. Is there new carpet, drapes or other textiles?		
		Where & When? yes wanya
l. Have air fresheners been used recently?	Y/N	When & Type? yes plug-ins
m. Is there a kitchen exhaust fan?	Y/N	If yes, where vented? wo
n. Is there a bathroom exhaust fan?	Y/N	If yes, where vented? ************************************
o. Is there a clothes dryer?	Y/N	If yes, is it vented outside? Y /N
p. Has there been a pesticide application?	Y/N	When & Type?w/4
Are there odors in the building? If yes, please describe:	Y /(\$)	
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Why tuto body	shop, painting, fuel oil delivery,
If yes, what types of solvents are used?		
If yes, are their clothes washed at work?	Y /🕥	
Do any of the building occupants regularly use or work at a response)	dry-clear	ning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly) or less) Yes, work at a dry-cleaning service		No Unknown
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive	? Y 🕖	Date of Installation:
9. WATER AND SEWAGE		
Water Supply: Public Water Drilled Well Driven	Well]	Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach I	Field]	Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residential	l emergen	ncy)
a. Provide reasons why relocation is recommended:	414	
b. Residents choose to: remain in home relocate to frier	nds/family	relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	explaine	
d. Relocation package provided and explained to resident		Y/N

11. FLOOR PLANS


Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

);


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	Mini R	PID	Agp)
--	--------	-----	------

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Hangar	Motorcycle	_	-	Gasoline		M
Hangar	Car	-	_	Gasoline Gasoline	8 12	M
11	3 Helicoptes	_	_	Specialized Fuel Hydrocabay	n	M
Office	3 Heki optes Ory EraseR Makers	_	~	nantoxic	0	W
			-			
						
				,		
· · · · · · · · · · · · · · · · · · ·						
-				·		
						:

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX H CHAIN OF CUSTODY – INDOOR AIR/SUB SLAB

CAS Project No.

Air - Chain of Custody Record & Analytical Service Request

Columbia 2655 Park Center Drive, Suite A Services Proces (806)-526-7161

Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day - Standard Phone (806)-526-7161 (ax (805) 526-7270

e.g. Actual Preservative or specific instructions Project Requirements (MRLs, QAPP) Comments 70W moy Analysis Method and/or Analytes Reallorg H- Fc CAS Contact 100 EDD required Yes / No Sample Volume 7 3 AC SSOR OA O1576 AC COTHO FC CORST Flow Controller (Bar Code -FC #) AC OIMA FC DOGRI 03391 ACOIST DA 01599 ACCORNO FC 22691 Canister ID (Bar Code # - AC, SC, etc.) AC OH34 Tier III - (Data Validation Package) 10% Surcharge _____ Tier V - (client specified) _____ P.O. # / Billing Information Sample Type (Air/Tube/ Solid) Sampler (Print & Sign) 4 ÅIC Project Number 1.1. Project Name Date Time Collected Collected 2090 2110 0401 0000 3 Company Name & Address (Reporting Information) Laboratory ID Number , ... ****** Email Address for Result Reporting Report Tier Levels - please select 30180 Flagglip 3VG - Hr. Joe OFFE <u>0</u> Project Manager Client Sample ID . 5AC -AH H T AA Phone

NYSOCH

Cooler / Blank Temperature

Time: Time:

Date: Date:

Time:

Date:

Received by: (Signature)
Received by: (Signature)

Received by: (Signature)

Time: 1600

Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)

Time:

Date:

APPENDIX I LABORATORY ANALYTICAL – INDOOR AIR/SUB SLAB

LABORATORY REPORT

December 19, 2008

Brian Neumann Shaw Environmental & Infrastructure,Inc. 13 British American Blvd. Latham, NY 12110

RE: Flagship / 820131

Dear Brian:

Enclosed are the results of the samples submitted to our laboratory on December 5, 2008. For your reference, these analyses have been assigned our service request number P0804092.

All Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **14** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Late Genles

Kate Aguilera Project Manager

> Page 1 of <u>|੫</u>_

Client:

Shaw Environmental & Infrastructure, Inc.

CAS Project No:

P0804092

Project:

Flagship / 820131

New York Lab ID:

11221

CASE NARRATIVE

The samples were received intact under chain of custody on December 5, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Folder: P0804092

Client: Shaw Environmental & Infrastructure, Inc.

Project: Flagship 820131

Detailed Sample Information

Bottle Order #	11055	11055	11055	11055	11055	11055
FCID	FC00291	OA01399	FC00681	FC00229	OA01376	FC00252
Order#	11055	11055	11055	11055	11055	11055
Cont ID	AC01124	AC01351	AC01448	AC00740	AC01128	_AC00640
Pf2				1 1 1 1 1 1 1 1		! ! ! !
Pi2 (psig)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	1
Pi2 (Hg)			 		1 1 1 1 1 1 1 1	
Pf	3.5	3.5	3.5	3.5	3.5	3.5
Pi1 (psig)	0.5	0.7	0.2	0.1	0.3	4.1
(Hg)		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		1	1 1 1	 	f 	[
Container Type	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient
CAS Sample ID Client Sample ID Container Type	IA - Hanger	SVG - Hanger	Dupe A	IA - Office	SVG - Office	AA - Flagship
CAS Sample ID	P0804092-001.01 IA - Hanger	P0804092-002.01 SVG - Hanger	P0804092-003.01 Dupe A	P0804092-004.01 IA - Office	P0804092-005.01 SVG - Office	P0804092-006.01 AA - Flagship

Miscellaneous Items - received

AVG00984
AVG01007
AVG00814
AVG00911
AVG00899

2000
o to
-
Page_

CAS Project No.

Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day - Standard

Air - Chain of Custody Hecord & Analytical Service Hequest

2655 Park Center Drive, Suite A

Columbia
Analytical
Services Mc
An Employee - Owned Company

Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

) 						CAS Contact			
Company Name & Address (Reporting Information)	rmation)	Project Name	те				Rate	Aguillera		
	7-						Analys	Analysis Method and/or Analytes		
) T	Flac	Flagship							
	でママダ	Project Number	mber					-		-
Latham, NY 12110		82	82.0131							
Project Manager		P.O. # / Bill	P.O. # / Billing Information						annight a	Comments
Brian Neumann										e.g. Actual Preservative or specific instructions
								-	econtribit plant de la Film III e III e	
(518) 783-1996 (618) 783.	783.8397									
Reporting		Sampler (F	Sampler (Print & Sign)		1/2					
		Mare	Flanagan	7-1/11			,		uun suoruu nymineksiin	-
Client Sample ID ID Number	/ Date	Time	Sample Type (Air/Tube/	<u></u>	Flow Controller (Bar Code -	Sample Volume	6		n a muusuke vatema meenumen l	
			Collid	50, etc.)	10 m)	19	×			
	14/3/08	2030		4		4				
546 - Hanger 6	~	2030		AC 01351 DA	01399					
Dupe A	and the second	ļ	_	AC ONAMS FC	00681	************				
.00		0110		AC OOTHO FC	00339			-		
		2103		20 20 20 20 20 20 20 20 20 20 20 20 20 2	01376	waangaan ged	and the same	-		
DO Charles	>	OKPI	>	Ch200		→	~		and the same of th	
Time Suite										
Report Tier Levels - please select									Project F	S
Tier I - (Results/Default if not specified)	Tier III - (D Tier V - (clie	Tier III - (Data Validation Pa Tier V - (client specified)	Tier III - (Data Validation Package) 10% Surcharge Tier V - (client specified)	arge		EDD required Yes / No Type:	s / No	EDD Units:	Nox	Kow MUL For
Relinquished by: (Signature) m		0/17/98/	Time: 1600	Received by: (Signature)		1700	Utraume	Parsion Time: 115		1000
Reling 2 ed by: (Signature)		Date:		Received by: (Signature)	1			Date: Time:	Cooler / Blank	Blank

Ö

Cooler / Blank Temperature

Time:

Date:

Received by: (Signature) Received by: (Signature)

Time: Time:

Relinq and by: (Signature) Relinquished by: (Signature)

Date:

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: IA - Hanger

CAS Project ID: P0804092

Client Project ID: Flagship / 820131

6.0 L Summa Canister

CAS Sample ID: P0804092-001

Test Code:

Date Collected: 12/3/08

Instrument ID:

EPA TO-15

Date Received: 12/5/08

Analyst:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Analyzed: 12/9/08

Sampling Media:

Li Li

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01124

Initial Pressure (psig):

0.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.20

CAS#	Compound	Result μg/m³	-MRL μg/m³	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
75-34-3	1,1-Dichloroethane	ND	0.60	0.16	ND	0.15	0.039	
71-55-6	1,1,1-Trichloroethane	ND	0.60	0.16	ND	0.11	0.029	
79-01-6	Trichloroethene	ND	0.60	0.16	ND	0.11	0.029	
108-88-3	Toluene	11	0.60	0.17	2.8	0.16	0.045	
127-18-4	Tetrachloroethene	0.41	0.60	0.26	0.060	0.089	0.039	J
91-20-3	Naphthalene	0.36	0.60	0.16	0.069	0.11	0.030	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

Verified By:____ Date: W

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: SVG - Hanger

Client Project ID: Flagship / 820131

CAS Project ID: P0804092

CAS Sample ID: P0804092-002

Test Code:

EPA TO-15

Date Collected: 12/3/08

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 12/5/08

Analyst:

Li Li

Date Analyzed: 12/9/08

0.10 Liter(s) Volume(s) Analyzed:

Sampling Media: Test Notes:

Container ID:

AC01351

6.0 L Summa Canister

Initial Pressure (psig):

0.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.18

CAS [*] #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
75-34-3	1,1-Dichloroethane	2.5	5.9	1.5	0.61	1.5	0.38	\mathbf{J}
71-55-6	1,1,1-Trichloroethane	100	5.9	1.5	18	1.1	0.28	
79-01-6	Trichloroethene	ND	5.9	1.5	ND	1.1	0.29	
108-88-3	Toluene	7.4	5.9	1.7	2.0	1.6	0.44	
127-18-4	Tetrachloroethene	810	5.9	2.6	120	0.87	0.38	
91-20-3	Naphthalene	2.5	5.9	1.5	0.48	1.1	0.29	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: Dupe A

Client Project ID: Flagship / 820131

6.0 L Summa Canister

CAS Project ID: P0804092

CAS Sample ID: P0804092-003

Test Code:

EPA TO-15

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Collected: 12/3/08

Date Received: 12/5/08

Instrument ID: Analyst:

Li Li

Date Analyzed: 12/9/08

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

AC01448

Initial Pressure (psig):

0.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.22

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL Data	l
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV Qualifi	ier
75-34-3	1,1-Dichloroethane	ND	0.61	0.16	ND	0.15	0.039	
71-55-6	1,1,1-Trichloroethane	ND	0.61	0.16	ND	0.11	0.029	
79-01-6	Trichloroethene	ND	0.61	0.16	ND	0.11	0.030	
108-88-3	Toluene	5.9	0.61	0.17	1.6	0.16	0.045	
127-18-4	Tetrachloroethene	0.61	0.61	0.27	0.091	0.090	0.040	
91-20-3	Naphthalene	0.33	0.61	0.16	0.064	0.12	0.030 J	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

W Verified By:

Date:

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: IA - Office

CAS Project ID: P0804092

Client Project ID: Flagship / 820131

CAS Sample ID: P0804092-004

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Collected: 12/3/08

Date Received: 12/5/08

Analyst:

Li Li

Date Analyzed: 12/9/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00740

Initial Pressure (psig):

0.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.23

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
75-34-3	1,1-Dichloroethane	ND	0.62	0.16	ND	0.15	0.040	
71-55-6	1,1,1-Trichloroethane	ND	0.62	0.16	ND	0.11	0.029	
79-01-6	Trichloroethene	ND	0.62	0.16	ND	0.11	0.030	
108-88-3	Toluene	6.8	0.62	0.17	1.8	0.16	0.046	
127-18-4	Tetrachloroethene	0.68	0.62	0.27	0.10	0.091	0.040	
91-20-3	Naphthalene	0.29	0.62	0.16	0.054	0.12	0.031	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: SVG - Office

Client Project ID: Flagship / 820131

6.0 L Summa Canister

CAS Project ID: P0804092

CAS Sample ID: P0804092-005

Test Code:

Analyst:

EPA TO-15

Date Collected: 12/3/08

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 12/5/08

Date Analyzed: 12/9/08 Volume(s) Analyzed:

0.15 Liter(s)

Sampling Media:

Test Notes: Container ID:

AC01128

Initial Pressure (psig):

0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.21

CAS#	Compound	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Oualifier
75-34-3	1,1-Dichloroethane	ND	4.0	1.0	ND	1.0	0.26	<u> </u>
71-55-6	1,1,1-Trichloroethane	17	4.0	1.0	3.1	0.74	0.19	
79-01-6	Trichloroethene	3.3	4.0	1.0	0.62	0.75	0.20	$\mathbf{J}^{^{\prime}}$
108-88-3	Toluene	14	4.0	1.1	3.8	1.1	0.30	
127-18-4	Tetrachloroethene	550	4.0	1.8	81	0.60	0.26	
91-20-3	Naphthalene	ND	4.0	1.0	ND	0.77	0.20	T. Company of the second

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: AA - Flagship

CAS Project ID: P0804092

Client Project ID: Flagship / 820131

CAS Sample ID: P0804092-006

Test Code:

EPA TO-15

Date Collected: 12/3/08

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 12/5/08

Analyst:

Li Li

Date Analyzed: 12/9/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00640

Initial Pressure (psig):

1.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.13

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	ppbV	Qualifier
75-34-3	1,1-Dichloroethane	ND	0.57	0.15	ND	0.14	0.036	
71-55-6	1,1,1-Trichloroethane	ND	0.57	0.15	ND	0.10	0.027	
79-01-6	Trichloroethene	ND	0.57	0.15	ND	0.11	0.027	
108-88-3	Toluene	7.4	0.57	0.16	2.0	0.15	0.042	
127-18-4	Tetrachloroethene	0.44	0.57	0.25	0.065	0.083	0.037	J
91-20-3	Naphthalene	ND	0.57	0.15	ND	0.11	0.028	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

Verified By: W

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: Method Blank

Client Project ID: Flagship / 820131

CAS Project ID: P0804092 CAS Sample ID: P081209-MB

Test Code:

Test Notes:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Sampling Media:

6.0 L Summa Canister

Date Received: NA

Date Analyzed: 12/9/08

Date Collected: NA

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV Qualifier
75-34-3	1,1-Dichloroethane	ND	0.50	0.13	ND	0.12	0.032
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.13	ND	0.092	0.024
79-01-6	Trichloroethene	ND	0.50	0.13	ND	0.093	0.024
108-88-3	Toluene	ND	0.50	0.14	ND	0.13	0.037
127-18-4	Tetrachloroethene	ND	0.50	0.22	ND	0.074	0.032
91-20-3	Naphthalene	ND	0.50	0.13	ND	0.095	0.025

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Project ID: Flagship / 820131

CAS Project ID: P0804092

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Li Li

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Received: 12/5/08 Date(s) Analyzed: 12/9/08

Date(s) Collected: 12/3/08

Test Notes:

		1,2-Dichlor	oethane-d4	Tolue	ene-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P081209-MB	95	70-130	97	70-130	105	70-130	
Lab Control Sample	P081209-LCS	102	70-130	95	70-130	104	70-130	
IA - Hanger	P0804092-001	99	70-130	97	70-130	108	70-130	
SVG - Hanger	P0804092-002	103	70-130	97	70-130	107	70-130	
SVG - Hanger	P0804092-002DUP	98	70-130	96	70-130	108	70-130	
Dupe A	P0804092-003	95	70-130	97	70-130	108	70-130	
IA - Office	P0804092-004	99	70-130	96	70-130	108	70-130	
SVG - Office	P0804092-005	101	70-130	97	70-130	107	70-130	
AA - Flagship	P0804092-006	101	70-130	97	70-130	106	70-130	

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: Lab Control Sample

CAS Project ID: P0804092

Client Project ID: Flagship / 820131

CAS Sample ID: P081209-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Test Notes:

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 12/09/08 Volume(s) Analyzed:

NA Liter(s)

CAS#	Compound	Spike Amount	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-34-3	1,1-Dichloroethane	26.8	25.3	94	72-130	
71-55-6	1,1,1-Trichloroethane	26.5	26.2	99	69-127	
79-01-6	Trichloroethene	26.5	24.7	93	72-122	
108-88-3	Toluene	27.0	22.8	84	74-119	
127-18-4	Tetrachloroethene	25.8	21.4	83	72-125	
91-20-3	Naphthalene	25.8	24.4	95	69-141	***

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Shaw Environmental & Infrastructure, Inc.

Client Sample ID: SVG - Hanger

CAS Project ID: P0804092

Client Project ID: Flagship / 820131

CAS Sample ID: P0804092-002DUP

Test Code:

EPA TO-15

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Collected: 12/3/08

Date Received: 12/5/08

Instrument ID: Analyst:

Li Li

Date Analyzed: 12/9/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.10 Liter(s)

Test Notes:

Container ID:

AC01351

Initial Pressure (psig):

0.7

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.18

			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	$\mu g/m^3$		Limit	Qualifier
1,1-Dichloroethane	2.47	0.610	2.45	0.607	2.46	0.8	25	J
1,1,1-Trichloroethane	101	18.4	98.8	18.1	99.9	2	25	
Trichloroethene	ND	ND	ND	ND	-	-	25	
Toluene	7.39	1.96	7.38	1.96	7.385	0.1	25	
Tetrachloroethene	805	119	798	118	801.5	0.9	25	
Naphthalene	2.49	0.475	2.44	0.466	2.465	2	25	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The analyte was positively identified below the method reporting limit; the associated numerical value is considered estimated.

APPENDIX J

GUIDANCE FOR EVALUATING SOIL VAPOR INTRUSION IN THE STATE OF NEW YORK – MATRIX 2

Soil Vapor/Indoor Air Matrix 2

October 2006

		INDOOR AHR CONCENTRAT	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)	
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	۳ ٧	3 to < 30	30 to < 100	100 and above
< 100	 No further action 	2. Take reasonable and practical actions to identify source(s) and reduce exposures	3. Take reasonable and practical actions to identify source(s) and reduce exposures	4. Take reasonable and practical actions to identify source(s) and reduce exposures
100 to < 1,000	5. MONITOR	6. MONITOR / MITIGATE 7. MITIGATE	7. MITIGATE	8. MITIGATE
1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take reasonable and practical actions to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type

preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing

MONITOR / MITIGATE: Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building- and site-

See additional notes on page 2.