

Site Characterization Report

Hudson Valley Regional Airport 18 Griffith Way Town of Wappinger Dutchess County, New York NYSDEC Site #314129

Prepared for:

COUNTY OF DUTCHESS 1626 Dutchess Turnpike Poughkeepsie, New York 12603

I, James D. McIver, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Draft Site Characterization Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Prepared by:

C.T. MALE ASSOCIATES 12 Raymond Avenue Poughkeepsie, New York 12603 (845) 454 4400

C.T. Male Associates Project No: 18.8090

Unauthorized alteration or addition to this document is a violation of the New York State Education Law.

DRAFT SITE CHARACTERIZATION REPORT HUDSON VALLEY REGIONAL AIRPORT SITE 18 GRIFFITH WAY, TOWN OF WAPPINGER DUTCHESS COUNTY, NEW YORK

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTF	RODUCTION	1
	1.1	Historical Site Uses	3
	1.2	Current Site Operations	3
	1.3	Purpose and Objectives	4
2.0	PHY	SICAL CHARACTERISTICS	5
	2.1	Surrounding Site Use and Site Improvements	5
		2.1.1 State Solid Waste Facilities	
		2.1.2 State Hazardous Waste Facilities	6
	2.2	Site Buildings and Structures	6
	2.3	Site Utilities	7
	2.4	Roadways or Driveways on or Adjoining the Site	7
	2.5	Site Drainage	7
		2.5.1 Site Storm Water and Discharge Location(s)	7
		2.5.2 Site Surface Water Bodies/Areas	
	2.6	Site Waste Profile	8
		2.6.1 Solid Wastes/Waste Deposits	
		2.6.2 Sludge Waste	
		2.6.3 Liquids Waste	
		2.6.4 Wastewater Discharge	
		2.6.5 Waste Lagoons or Disposal Pits2.6.6 On-Site Septic Systems	
		2.6.6 On-Site Septic Systems	9
3.0	SITE	CHARACTERIZATION METHODS	9
	3.1	Environmental Media Sampling	9
	3.2	Amendments to Field Sampling Plan (FSP)	14
	3.3	Soil Investigation	15
		3.3.1 Surface and Near-surface Soils	16
		3.3.2 Subsurface Soils	17
	3.4	Groundwater Investigation	
		3.4.1 Monitoring Well Installation	19

C.T. MALE ASSOCIATES

		3.4.2 Monitoring Well Survey	19
		3.4.3 Water Levels	
		3.4.4 Monitoring Well Development	20
		3.4.5 Groundwater Sampling	20
	3.5	Surface Water and Sediment Investigation	21
		3.5.1 Stormwater Outfall Sampling	
		3.5.2 Fire Pond Sampling	
	3.6	Drinking Water Well Investigation	22
	3.7	Data Validation	
	3.8	Community Air Monitoring Program	23
	3.9	Investigation-Derived Waste Disposal	
4.0	SITE	PHYSICAL SETTING	24
	4.1	Setting	22
		4.1.1 Topography	
		4.1.2 Regional Fractures and Landscape	23
	4.2	Geology	23
		4.2.1 Geologic History	
		4.2.2 Soils	25
		4.2.3 Bedrock	25
	4.3	Hydrology	26
		4.3.1 Stream Gauges	26
		4.3.2 Site Hydrogeology	26
		4.3.3 Hydrologeologic Units	27
		4.3.4 Classification of Exisiting Monitoring Wells	
		4.3.5 Supplemental Monitoring Well Network	28
		4.3.6 Groundwater Flow	29
5.0	SITE	CHARACTERIZATION RESULTS	32
	5.1	General	32
	5.2	AOC-1; Firefighting AFFF Testing Area – Soil Analytical Results	34
		Results	94
		Results	35
		5.2.2 AOC-1; Subsurface Soils Analytical Results	
		5.2.3 AOC-1; Groundwater Analytical Results	
	5.3	AOC-2; Former Balefill Landfill - Analytical Results	
	- •0	5.3.1 AOC-2; Groundwater Analytical Results	
	5.4	AOC-3; Former Dutchess County Landfill – Analytical Results	
	0.1	5.4.1 AOC-3: Groundwater Analytical Results	37

	5.5	Results	38			
		5.5.1 AOC-4; Surface and Near-Surface Soils Analytical	30			
		Results	38			
		5.5.2 AOC-4; Subsurface Soils Analytical Results				
		5.5.3 AOC-4; Groundwater Analytical Results				
	5.6	AOC-5; Stormwater Outfalls – Analytical Results	39			
		5.6.1 AOC-5; Surface Water Analytical Results				
		5.6.2 AOC-5; Sediment Analytical Results	41			
	5.7	AOC-6; AAG Hangars - Analytical Results	42			
		5.7.1 AOC-6; Groundwater Analytical Results				
		5.7.2 AOC-6; Drinking Water Analytical Results	43			
	5.8	AOC-7; ARFF / Maintenance Building - Analytical Results	43			
		5.8.1 AOC-7; Near-Surface Soils Analytical Results				
		5.8.2 AOC-7; Subsurface Soils Analytical Results				
		5.8.3 AOC-7; Groundwater Analytical Results				
		5.8.4 AOC-7; Drinking Water Analytical Results				
	5.9	AOC-8; Fire Pond – Analytical Results				
		5.9.1 AOC-8; Surface Water Analytical Results				
		5.9.2 AOC-8; Sediment Analytical Results				
	5.10	AOC-9; North / South Runway - Analytical Results	46			
		5.10.1 AOC-9; Surface and Near-Surface Soils Analytical				
		Results				
		5.10.2 AOC-9; Subsurface Soils Analytical Results				
		5.10.3 AOC-9; Groundwater Analytical Results				
	5.11	Off-Site Locations – Analytical Results				
		5.11.1 Analytical Results - Off-Site Locations; Drinking Water				
		5.11.2 Analytical Results – Off-Site Locations; Surface Water	50			
6.0	DISCUSSION OF FINDINGS5					
	6.1	VOCs, SVOCs, PCBs, Pesticides and Metals in Soils and				
		Sediment	52			
	6.2	VOCs, SVOCs, PCBs, Pesticides and Metals in Water	52			
	6.3	PFAS and 1,4-Dioxane				
	0.0	6.3.1 PFAS in Water				
		6.3.2 PFAS in Soils and Sediment				
		6.3.3 Additional Discussions of PFAS Results	55			
7.0	DEFE	EDENICEC				
7.0	KEFE	ERENCES	5/			

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Groundwater Flow Map
- Figure 4 Soil Sampling Results PFAS
- Figure 5 Soil Sampling Results Non-PFAS
- Figure 6 Groundwater Sampling Results PFAS
- Figure 7 Groundwater Sampling Results Non-PFAS
- Figure 8 Surface Water Sampling Results PFAS
- Figure 9 Surface Water Sampling Results Non-PFAS
- Figure 10 Sediment Sampling Results PFAS
- Figure 11 Sediment Sampling Results Non-PFAS
- Figure 12 Drinking Water Sampling Results

TABLES

- Table A Shallow Soil Sample Analysis
- Table B Subsurface Soil Sample Analysis
- Table C Groundwater Elevation Analysis
- Table D Groundwater Sample Summary
- Table E Analytical Table and Figure Summary
- Table 1 AOC-1, Firefighting AFFF Testing Area PFAS and 1,4-D
- Table 1A AOC-1, Firefighting AFFF Testing Area PFAS and 1,4-D
- Table 2 AOC-2, Former Balefill Landfill PFAS and 1,4-D
- Table 3 AOC-2, Former Balefill Landfill SVOCs
- Table 4 AOC-2, Former Balefill Landfill PCBs
- Table 5 AOC-2, Former Balefill Landfill Pesticides
- Table 6 AOC-3, Former Dutchess County Landfill PFAS and 1,4-D
- Table 7 AOC-3, Former Dutchess County Landfill SVOCs
- Table 8 AOC-3, Former Dutchess County Landfill PCBs
- Table 9 AOC-3, Former Dutchess County Landfill Pesticides
- Table 10 AOC-4, Jackson Road PFAS and 1,4-D
- Table 10A AOC-4, Jackson Road PFAS and 1,4-D
- Table 11 AOC-4, Jackson Road PCBs
- Table 11A AOC-4, Jackson Road PCBs
- Table 12 AOC-4, Jackson Road Pesticides

```
Table 12A - AOC-4, Jackson Road - Pesticides
```

Table 13 - AOC-4, Jackson Road - Metals

Table 13A - AOC-4, Jackson Road - Metals

Table 14 - AOC-5, Stormwater Outfall - PFAS and 1,4-D

Table 14A - AOC-5, Stormwater Outfall - PFAS and 1,4-D

Table 15 - AOC-5, Stormwater Outfall - VOCs

Table 15A – AOC-5, Stormwater Outfall -VOCs

Table 16 - AOC-5, Stormwater Outfalls - SVOCs

Table 16A - AOC-5, Stormwater Outfall - SVOCs

Table 17 - AOC-5, AAG Hangers - Pesticides and PCBs

Table 17A - AOC-5, Stormwater Outfall - Pesticides

Table 18 - AOC-5, AAG Hangers - Metals

Table 18A – AOC-5, Stormwater Outfall – Metals

Table 19 - AOC-6, AAG Hangars - PFAS and 1,4-D

Table 20 - AOC-6, AAG Hangars - SVOCs

Table 21 - AOC-6, AAG Hangars - PCBs

Table 22 - AOC-6, AAG Hangars - Metals

Table 23 - AOC-6, AAG Hangars - PFAS and 1,4-D

Table 24 - AOC-7, ARFF/Maintenance Bldg - PFAS and 1,4-D

Table 24A - AOC-7, ARFF/Maintenance Bldg - PFAS and 1,4-D

Table 25 – AOC-7, ARFF/Maintenance Bldg – VOCs

Table 25A - AOC-7, ARFF/Maintenance Bldg - VOCs

Table 26 - AOC-7, ARFF/Maintenance Bldg - SVOCs

Table 26A - AOC-7, ARFF/Maintenance Bldg - SVOCs

Table 27 – AOC-7, ARFF/Maintenance Bldg – PCBs

Table 27A - AOC-7, ARFF/Maintenance Bldg - PCBs

Table 28 - AOC-7, ARFF/Maintenance Bldg - Pesticides

Table 28A - AOC-7, ARFF/Maintenance Bldg - Pesticides

Table 29 - AOC-7, ARFF/Maintenance Bldg - Metals

Table 29A - AOC-7, ARFF/Maintenance Bldg - Metals

Table 30 – AOC-7, ARFF/Maintenance Bldg – PFAS and 1,4-D

Table 31 – AOC-7, ARFF/Maintenance Bldg – SVOCs

Table 32 – AOC-7, ARFF/Maintenance Bldg – PCBs

Table 33 – AOC-7, ARFF/Maintenance Bldg – Metals

Table 34 - AOC-8, Fire Pond - PFAS and 1,4-D

Table 34A - AOC-8, Fire Pond - PFAS and 1,4-D

Table 35 – AOC-9, North/South Runway – PFAS and 1,4-D

Table 35A - AOC-9, North/South Runway - PFAS and 1,4-D

Table 36 - AOC-9, North/South Runway - VOCs

Table 36A - AOC-9, North/South Runway - VOCs

Table 37 - AOC-9, North/South Runway - SVOCs

Table 37A - AOC-9, North/South Runway - SVOCs

Table 38 - AOC-9, North/South Runway - PCBs

Table 38A - AOC-9, North/South Runway - PCBs

Table 39 – AOC-9, North/South Runway – Pesticides

Table 39A - AOC-9, North/South Runway - Pesticides

Table 40 - AOC-9, North/South Runway - Metals

Table 40A - AOC-9, North/South Runway - Metals

Table 41 - OFFSITE - PFAS and 1,4-D

Table 42 - Stormwater Outfalls - PFAS and 1,4-D

Table 42A - Stormwater Outfalls - PFAS and 1,4-D

Table 43 - Rinse Blank - PFAS

APPENDICES

Appendix A - Soil Boring Logs

Appendix B - Monitoring Well Construction Logs

Appendix C - Monitoring Well Development and Sampling Logs

Appendix D - Drinking Water Well Sampling Logs

Appendix E - Laboratory Reports

Appendix F - Data Usability Summary Reports

Appendix G - Summary Table of Monitoring Well Details and Associated Logs

ACRONYMS AND ABBREVIATIONS

AAG Associated Aircraft Group, Inc.

AOC Area of Concern

AFFF Aqueous film forming foam

ARFF Aircraft Rescue and Firefighting Facilities

ASP Analytical Services Protocol
CAMP Community Air Monitoring Plan

CVOC Chlorinated Volatile Organic Compounds
DER Division of Environmental Remediation

DER-10 NYSDEC DER-10 Technical Guidance for Site Investigation and

Remediation (May 2010)

DUSR Data Usability Summary Report

EDS Electronic Data Summary

ELAP Environmental Laboratory Accreditation Program

FSP Field Sampling Plan
HASP Health and Safety Plan
IDW Investigation-Derived Waste
MCL Maximum Contaminant Level

MS/MSD Matrix Spike/Matrix Spike Duplicate

NTU Nephelometric Turbidity Units

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

NYSDOT New York State Department of Transportation

NYSGS New York State Geological Survey ORP Oxidation-Reduction Potential

OSHA Occupational Safety and Health Administration

P-Site Potential NYS Inactive Hazardous Waste Disposal Site

PCBs Polychlorinated biphenyls

PFAS Poly- & Perfluoroalkyl Substances

PFOA Perfluorooctanoic Acid PFOS Perfluorooctanesulfonic Acid

PID Photoionization Detector PPE Personal Protective Equipment

QA/QC Quality Assurance / Quality Control

QAPP Quality Assurance Project Plan

SC Site Characterization

SCR Site Characterization Report SCWP Site Characterization Work Plan

SCO Soil Cleanup Objectives

SPDES State Pollution Discharge Elimination System

SOP Standard Operating Procedure

C.T. MALE ASSOCIATES

SVOCs Semi-Volatile Organic Compounds

TAL Target Analyte List
TCL Target Compound List

TOGS Technical Operations Guidance Series

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

1.0 INTRODUCTION

This document constitutes the Draft Site Characterization (SC) Report for the Hudson Valley Regional Airport site (the "Site") located at 18 Griffith Way in the Town of Wappinger, Dutchess County, New York. The Site is approximately 510.8 acres in size and is identified with tax number 135689-6259-03-225301-0000 on the Town of Wappinger tax maps. A Site Location Map and Site Plan are included as Figures 1 and 2, respectively. This report describes the field sampling efforts and associated analytical results for the environmental media samples collected.

The New York State Department of Environmental Conservation (NYSDEC) has classified the Site as a potential inactive hazardous waste disposal site (P-Site #314129) as a result of the presence of combined perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) at concentrations in one of the potable drinking water supplies at the Site above the health advisory value of 70 parts per trillion set by the United States' Environmental Protection Agency (USEPA) in May 2016. PFOS and PFOA are members of the class of substances called per- and polyfluoroalkyl substances known as PFAS. Low concentrations of PFAS were also detected in nearby off-Site private water supply wells. Initial private well water samples were collected by the New York State Department of Health (NYSDOH) in September 2017. The NYSDEC informed Dutchess County of the P-Site classification based on these detections by letter dated September 15, 2017. This letter also stated that an investigation was required to be conducted in accordance with NYSDEC's technical requirements for a site characterization.

Dutchess County executed an Order of Consent with the NYSDEC on March 18, 2018. As a result, C.T. Male Associates Engineering, Survey, Architecture, Landscape Architecture & Geology, D.P.C. (C.T. Male) was retained by Dutchess County and developed a Site Characterization Work Plan (SCWP) in accordance with NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) (DER-10) and 6 NYCRR 375 Environmental Remediation Programs (December 14, 2006) which was submitted to NYSDEC on May 24, 2019.

Subsequently, NYSDEC/NYSDOH approved the SCWP in letter sent to the County on July 5, 2019. C.T. Male completed Site Characterization activities and submitted a Draft

Site Characterization Investigation Report (SCIR) to NYSDEC in December of 2019. A response from NYSDEC/NYSDOH was received on April 16, 2020. In their response, NYSDEC/NYSDOH identified several areas requiring additional information and did not approve the SCIR. The following summarizes the additional work required by NYSDEC/NYSDOH to for consideration in approving the SCIR:

- Collection of surface water samples from the Wappingers Creek;
- Additional off-Site drinking water well sampling; and
- Provision of drinking water to one off-Site building with drinking water results above 70 ppt (identified as Location A / A1, see Figure 12).

Specific requirements for the site characterization work, as set forth in the NYSDEC's comment letter dated April 16, 2020 were also incorporated into a supplemental SCWP.

The initial phase of the SC involved records research, facility inspection, and interviews with facility personnel. To the extent that they were available, records reviewed for the Site generally included historic land usage; past and present industrial/commercial operations; past and present usage/generation of hazardous materials/wastes, petroleum products, firefighting foam and aqueous film forming foam (AFFF); past and present storage containers, tanks and bulk storage areas; past and present environmental permits, reports, work plans and remedial actions; and areas of historic fill placement within the Site. The Records Search Report was submitted for NYSDEC review and comment in May 2018.

Based on the records search, inspections and interviews, nine areas of concern (AOCs) were identified and investigated during the SC investigation: the firefighting AFFF testing area (AOC-1), the former Balefill Landfill (AOC-2), the former Dutchess County Landfill (AOC-3), the former Jackson Road petroleum spill (AOC-4), several stormwater outfalls that may have received AFFF during routine testing(AOC-5), the AAG hangars (former IBM Hanger, NYSDEC Site No. 314078 and Flagship Hanger, NYSDEC Site No. 314101) (AOC-6), the Aircraft Rescue and Firefighting Facilities (ARFF)¹ / maintenance

_

¹ A new Aircraft Rescue and Firefighting Facilities (ARFF) building, situated in the southwest corner of the property, was constructed after a significant portion of the subject Site Characterization was completed. All references to the ARFF building in this report refer to the former ARFF building, which remains situated in the southeast corner of the property.

building (AOC-7), the fire pond (AOC-8), and the North/South runway where AFFF was tested annually as required by the Federal Aviation Administration (FAA) (AOC-9). The SCWP was developed to evaluate the overall environmental status of the Site relative to the contaminants of potential concern, including PFAS.

This SC Report was prepared in accordance with NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) (DER-10) and 6 NYCRR 375 Environmental Remediation Programs (December 14, 2006).

1.1 Historical Site Uses

The current site use is as a regional airport known as Hudson Valley Regional Airport (POU). It is a publicly owned, public-use, General Aviation facility, servicing the aviation needs of Dutchess County, metropolitan New York City area, and the southeastern region of New York State.

Based on the historical aerial photographs, the Site was developed as an airport between 1936 and 1940. The Site has undergone several improvements since 1940, such as a runway extension, and the addition of hangers and service buildings. Prior to being developed, the Site appears to have been used for agricultural purposes.

The airfield was originally established by the United States Department of Commerce to be used as an emergency field for air mail runs along the east coast. The field was taken over by the US Army Air Corps at the start of World War II. During that time a control tower was added to the field and the property was used primarily for training. In 1947, the field was deeded to Dutchess County and the airport was managed under contract with limited development until 1975, when the Dutchess County Department of Aviation was created, and a Commissioner was appointed to manage the airport.

1.2 Current Site Operations

The Site has several tenants that lease hangars and utilize the airport for helicopter and airplane flights for private clients or personal use. The airport operates by criteria that is outlined and regulated by the FAA pertaining to the following areas: facility requirements for airfield, terminal and general aviation areas, runways and taxiways,

land use, instrumentation and lighting, general aviation requirements, fuel storage, and ARFF.

As stated in the Airport's Master Plan, the Federal Aviation Regulation Part 139.315 establishes a system of indexing airports that are regularly served by scheduled commuter aircraft. The overall length of the aircraft having five or more daily departures determines the airports ARFF index. The Hudson Valley Regional Airport operates as an Index A facility. The minimum rescue and firefighting equipment and agents required for Index A are as follows:

- The airport must have one vehicle carrying at least 500 pounds of sodium-based dry chemical or halon 1211;
- Or alternatively, 450 pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF agent to total 100 gallons, for simultaneous dry chemical and AFFF application.

The ARFF vehicle at the airport currently meets the Federal Aviation Regulation Part 139 and has the capability of AFFF application.

The Federal Aviation Regulations also state that ARFF vehicles must be tested annually to ensure that the vehicle is working properly. Additionally, the quantity and the chemical composition of the AFFF must be held to the required standards. Interviews with the Airport Director and the fire fighters at the airport indicated that the testing areas for AFFF application is the North or South end of runway 15-33. Typically, one to two 5-gallon buckets of AFFF were applied during the testing. In 2009-2010, the airport switched the type of AFFF used in the ARFF. The AFFF products now used are Ansulite 3% (AFC-3A) and Chemguard C301MS. The AFFF used after 2009 may not contain PFAS compounds based on a review of the material safety data sheets; however, there are proprietary compounds listed, which may contain the PFAS compounds of concern.

1.3 Purpose and Objectives

This SC investigation was conducted to evaluate the physical setting and environmental quality of the Site for aid in the development of a conceptual model of environmental conditions at the Site, and to determine whether regulated substances are present at the Site at levels above NYSDEC unrestricted use Standards, Criteria, and Guidance (SCGs)

values for soils, groundwater standards, or other applicable SCGs for unrestricted use of the Site (DER-10, Section 3.2.1), pursuant to the Order and "P" Site designation.

The work presented in this report is based on the following NYSDEC approved work plans:

- Site Characterization Investigation Work Plan dated July 2019, with included modifications as per NYSDEC letters dated August 21, 2018 and April 12, 2019, and subsequent letter approving the work plan dated July 5, 2019; and
- Supplemental Site Characterization Investigation Work Plan dated December 2020.

As outlined in NYSDEC's DER-10, the SC was performed to meet the following goals:

- Perform a Records Search to identify and review documentation on the Site history and identify potential AOCs; and
- Perform field characterization to establish an environmental baseline and conceptual model for the Site with the intent of acquiring enough data for determining if further Site Investigation is necessary.

2.0 PHYSICAL CHARACTERISTICS

2.1 Surrounding Site Use and Site Improvements

The surrounding land uses, as identified during initial site visits, are described as follows: The areas surrounding the airport to the North, South, East and West are a mix of residential and light industrial/commercial properties.

2.1.1 State Solid Waste Facilities

There are two solid waste facilities reported on-Site. These two NYSDEC sites are:

• 314022, Class N (no further action at this time), Hudson Valley Regional Airport Landfill, approx. 30 acres in size, used for mixed municipal waste, operated between 1968 and 1972. NYSDEC has investigated this landfill, and it is currently in an Operation, Maintenance and Monitoring (OM&M) stage with groundwater monitoring.

 314023, Class N (no further action at this time), Hudson Valley Regional Airport Balefill, 2.25-acre site, used for disposal of baled refuse between 1976 and 1977.
 Groundwater monitoring and site inspections are currently being conducted on a semi-annual basis.

2.1.2 State Hazardous Waste Facilities

There are two designated State Hazardous Waste Sites on-Site that are listed on the State's Site Remediation Database.

- 314078, Class 4 (Properly closed but requires continued site management), Hudson Valley Regional Airport Hangar Facility. Former IBM Hanger. The site was listed as an inactive hazardous waste site after a release occurred when spent solvents were discharged to a floor drain and flowed to a septic system. Septic tank, above ground storage tank (AST) and two industrial waste underground storage tanks (USTs) were removed. During the remedial investigation, chlorinated solvents were detected in the groundwater above NYSDEC standards.
- 314101, Class 2 (Site represents a significant threat to public health and environment), Flagship Airlines Hangar (former Command Airways hangar). Work included investigations of leaking heating oil tank and the release of spent solvents from storage tanks and overflows. The facility was used for washing aircraft. During the remedial investigation, chlorinated solvents were detected in the groundwater above NYSDEC standards.

2.2 Site Buildings and Structures

The main facilities at the Hudson Valley Regional Airport are the terminal building, the terminal apron and general aviation parking aprons, support buildings (FAA offices, Maintenance, former Richmor Aviation office, Airport Rescue and Firefighting Facilities (ARFF)), airport parking for both the public and employees, and several aircraft storage hangars (T-Hangar, AAG Conventional Hangar, former Richmor Hangar, Civil Air Patrol Hangar, Whitefield Conventional Hangar, Frank Reiss Conventional Hanger).

The Hudson Valley Regional Airport is equipped with a three-runway system, with runways designated 6-24 (North/South), 7-25, and 15-33 (East/West). Runway 7-25 is a

turf runway, which runs parallel to Runway 6-24. These runways are identified on the Site Plan Map included as Figure 2.

2.3 Site Utilities

The Site is served with gas and electricity by Central Hudson Gas and Electric. Municipal water is available and is being used on-site by the new Airport Operations/ARFF building (located in the southwest corner of the property), AAG buildings, the new DCC Education building, and the airport terminal building. The remaining on-Site structures are serviced through private wells and septic systems. Site utilities were located, marked and cleared in areas of concern prior to the subsurface exploration activities completed during the SC investigation.

2.4 Roadways or Driveways on or Adjoining the Site

The Site is located adjacent to New Hackensack Rd. and Jackson Rd., Wappingers Falls, NY. The northeastern facilities of the Site can be accessed via New Hackensack Rd. to Dutchess Airport County Rd. Parking lot entrances off Dutchess Airport County Rd. are gated and require either airport approval or airport employee status for entry. A parking lot on the southern portion of the Site is also accessed via New Hackensack Rd. Western and northwestern Site lands and facilities are accessed via Jackson Rd. to Citation Drive. Some southwestern lands can be accessed directly from Jackson Road but are gated and require airport approval and assistance for access.

2.5 Site Drainage

2.5.1 Site Storm Water and Discharge Location(s)

The Airport has a NYSDEC SPDES Multi-Sector General Permit for Stormwater discharges associated with an industrial activity, NYSDEC Permit ID# NYR00E169. There are seven outfalls listed in the 2012 first quarter inspection associated with the airport and the SPDES storm water permit. Stormwater at the airport flows into various catch basins located throughout the runways and buildings on-Site. There are also several dry wells located on the airport grounds. The locations of the stormwater outfalls are contained in the Stormwater Pollution Prevention Plan for the Airport. A drainage plan for stormwater is also included in the Airport Master Plan.

2.5.2 Site Surface Water Bodies/Areas

Wappinger Creek, located on the northern perimeter of the Hudson Valley Regional Airport, generally runs northeast to southwest. Wappinger Creek drains from the north of the site to Wappinger Lake and into the Hudson River. It is a protected B(T) class stream. The best usage of Class B waters is primary and secondary contact recreation and fishing. There is a small-unnamed tributary south of Runway 15-33 that is designated a Class C stream. The best usage of Class C waters is fishing.

There is also a small pond just North of the current AAG hanger that is listed on the Airport layout plan (dated July 2002 by C&S Engineers) as a Fire Pond.

2.6 Site Waste Profile

2.6.1 Solid Wastes/Waste Deposits

Solid wastes generated at the hangars and support buildings on-Site are placed within dumpsters near their respective buildings for periodic pickup and removal. No other solid waste facilities were identified on the Site, except for Hudson Valley Regional Airport Landfill (314022) and Balefill (314023) sites, which are both closed and, in the operations, maintenance, and monitoring stage.

2.6.2 Sludge Waste

No sludge wastes were identified on the Site during the site visit.

2.6.3 Liquids Waste

There are ASTs used on-Site for fueling and heating purposes at several of the buildings.

In addition, there are liquid hazardous wastes generated on-Site from the site operations and maintenance activities. Below is a summary of the hazardous waste manifests listed in the EDR database related to the Site:

 1994, EPA ID#NYD002420826, Flagship Airlines Inc. generator, 1,500 pounds of D001 waste.

- 2009, EPA ID#NYD098332430, Hudson Valley Regional Airport, Dept. of Aviation generator, 35 gallons of D001 waste.
- 2017, EPA ID#NYR000206656, Associated Aircraft Group Inc. (AAG), 100 pounds, D006, D007, D035, D040, F002 waste.

No other liquid wastes were noted during Site visits.

2.6.4 Wastewater Discharge

There were no wastewater discharges identified on the Site. Several of the hangars currently have or previously had wastewater USTs that collect and contain wastewater from the operations at the corresponding hangars.

2.6.5 Waste Lagoons or Disposal Pits

No waste lagoons or disposal pits were identified on the Site during the site visit.

2.6.6 On-Site Septic Systems

Septic systems are in use for the Site. Several buildings on-Site have septic systems and associated leach fields. There is no municipal sewer system connection to the facilities located on the airport property. The buildings that have septic systems include the terminal building and support buildings (FAA offices, Maintenance) the former Richmor Aviation office, and the Airport Rescue and Firefighting Facilities. Several of the other aircraft storage hangars (T-Hangar, AAG Conventional Hangar, former Richmor Hangar, Civil Air Patrol Hangar, Whitefield Conventional Hangar, Frank Reiss Conventional Hanger are also connected to subsurface disposal systems.

3.0 SITE CHARACTERIZATION METHODS

3.1 Environmental Media Sampling

Following the approved Site Characterization Work Plan, environmental media sampling was completed to characterize geologic and hydrogeologic conditions of the Site. The following environmental media were sampled for field screening and laboratory analysis:

• Surface and Near-Surface Soil

- Subsurface Soil
- Sediment
- Groundwater
- Stormwater and Surface Water
- Drinking Water

The following provides the rationale for the selection of investigation in the areas of concern, which were identified based on the information compiled in the Records Search Report and the NYSDEC's August 21, 2018 and April 12, 2019 comment letters.

- 1. AOC-1, Firefighting AFFF Testing Area: These were selected because they are AFFF testing areas at the end of East/West runways 15 and 33. To assess if impacts have occurred to soil and groundwater at the end of runway 15 and 33, one soil boring/monitoring well was installed at each location. The borings/monitoring wells were completed at locations that are interpreted as being hydraulically downgradient of the AFFF testing area based on surface topography and location of surface water. At each location, Geoprobe borings were utilized and the test borings were converted into permanent monitoring wells. Test borings were advanced to depths of approximately five feet below the elevation of the shallow water table, which was anticipated to be approximately 4 to 6 feet below ground surface. The soil and groundwater samples were analyzed for PFAS and 1,4-Dioxane.
- 2. AOC-2, Former Balefill Landfill: The former Balefill landfill is located on the northern portion of the Site, to the northwest of the end of runway 15. The Balefill landfill is in an existing monitoring program for the collection of groundwater from monitoring wells for NYSDEC Part 360 routine baseline parameters. The assessment of groundwater at the Balefill landfill utilized two existing monitoring wells that were sampled for PFAS, Polychlorinated biphenyls (PCBs), Semi-Volatile Organic Compounds (SVOCs), pesticides, and 1,4-Dioxane. The sampled wells are MW-2S and MW-3S, which were interpreted as being hydraulically down gradient of the landfill.
- 3. <u>AOC-3, Former Dutchess County Landfill</u>: The former landfill is located on the northeastern portion of the Site. There are existing monitoring wells at this landfill. To assess groundwater at the former Dutchess County Landfill, three

- existing downgradient wells at the landfill, MW-15, MW-20 and MW-29, were sampled for PFAS, 1,4-Dioxane, PCBs, SVOCs, and pesticides.
- 4. AOC-4, Jackson Road, former Petroleum Spill: In 2004, an ExxonMobil gasoline cargo tanker truck overturned on Jackson Road releasing approximately 12,500 gallons of gasoline on the shoulder of Jackson Road, just south of its intersection with Citation Drive. The spill occurred on Dutchess County Airport property and AFFF was utilized during the emergency response. The spill was assigned a NYSDEC spill number 0402678, which was investigated, and the spill was closed by the NYSDEC in June 2010. Due to the use of AFFF during the emergency response, and to assess the environmental quality of the soil and groundwater, one test boring/monitoring well was completed in the down gradient vicinity of the former spill area, on the airport property. The soil and groundwater were analyzed for PFAS, 1,4-Dioxane, TAL metals and cyanide, pesticides, and PCBs.
- 5. AOC-5, Stormwater Outfalls: Airport personnel actively sample seven Outfall locations as part of their stormwater State Pollution Discharge Elimination System (SPDES) general permit. Due to activities on-Site, such as fire training activities and vehicle washing, there is a potential for the storm water to contain PFAS. Stormwater is not currently assessed for PFAS as part of the Site's general stormwater SPDES permit. Stormwater and sediment samples were proposed to be collected at six outfalls to the north of the North/South runway and analyzed for PFAS and 1,4-Dioxane. Of note, two of the proposed outfalls located north of Runway 24 were not found. Airport personnel informed C.T. Male that they have no recollection of outfalls being present in this area. Storm drainage structures and swales are present in the same general area, which according to Airport personnel, were installed approximately five years ago during construction of the access ramp to Runway 24. C.T. Male collected a stormwater sample from two of the storm drains and a sediment sample from each respective swale. stormwater and sediment sample collected at the southern outfall, located adjacent to the main terminal and New Hackensack Road, was additionally analyzed for NYSDECs full suite of Target Compound List / Target Analyte List (TCL/TAL) constituents and cyanide.

6. AOC-6, AAG Hangars (former IBM Hanger, Site No. 314078 and Flagship Hangar, Site No. 314101): The two hangars that AAG currently leases from Dutchess County Airport are also known as the former Flagship Hangar and former IBM Hangar. The two hangars are designated separately as NYSDEC inactive hazardous waste sites due to the presence of chlorinated volatile organic compounds (CVOCs) in groundwater and soils. They are respectively known as the former IBM hangar (a Class 4 site) and the former Flagship hangar (a Class 2 site).

In March 2003, a Record of Decision was issued by the NYSDEC, for the former Flagship Hangar (Site No. 314101). The selected remedy consisted of installation of deeper air-sparging points to clean up naphthalene in the lower reaches of the groundwater column. The enhanced system commenced operation in October 2003 and was shut down in 2007 with the NYSDEC approval. A Site Management Plan was approved in 2011. There are indications in the records that the NYSDEC attempted to put institutional controls on the Flagship Hanger site in 2013 but were unsuccessful.

At the former IBM Hanger site, substantial investigative work and remedial efforts have occurred to address the CVOCs; however, the current AAG potable well (located at the former IBM hangar) exhibit high PFAS levels. This well was sampled and analyzed for PFAS, 1,4-Dioxane, SVOCs, PCBs, and metals. It should be noted that the buildings operated by AAG are now connected to municipal water.

In addition, there is an existing network of groundwater monitoring wells (overburden and bedrock) installed at and surrounding the two hangars. To assess the environmental quality of the groundwater, samples were proposed to be collected from existing monitoring wells (A-21G, A-21S, A-21R, MW-1, MW-4, MW-5, and MW-6). C.T. Male conducted a reconnaissance of the Site on July 25, 2019 to locate and sound each of the proposed wells to be sampled for the SC. Monitoring wells MW-1 and MW-5 could not be located. C.T. Male requested via email to the NYSDEC dated October 26, for approval to replace shallow overburden well MW-1 and bedrock well MW-5 with nearby wells ME-18, and MW-3, respectively, which are generally of similar depth and construction as the

wells that could not be located. The NYSDEC approved this change in scope via an email to C.T. Male dated July 26, 2019. Samples collected from the existing monitoring wells were analyzed for PFAS and 1,4-Dioxane.

7. AOC-7, ARFF / Maintenance Building: The ARFF building has interior floor drains and an exterior septic system with leach field. Past activities within the ARFF may have included washing fire trucks or equipment containing residual AFFF. One test boring/monitoring well was completed in the vicinity of the building's septic system. The approximate location of the septic tank is proximal to the western corner of the building as depicted in historical records and confirmed by airport maintenance personnel. This boring/monitoring well was intended to assess the environmental quality of soil and groundwater near the building. A Geoprobe was utilized, and the test boring was converted into a monitoring well. Test boring was intended to be advanced to a depth of approximately five feet below the elevation of the shallow water table, which was anticipated to be less than twenty (20) feet below ground surface. The soil and groundwater samples were analyzed for PFAS and 1,4-Dioxane, and full suite of NYSDEC TCL/TAL constituents and cyanide.

In addition, the ARFF/Airport Maintenance Building has a potable drinking water well, with an associated Ultraviolet System, that supplies water to the building. It has been reported by airport personnel that the water from this well is mainly used to fill the fire trucks and hand washing, but not for drinking. This well is currently monitored by Dutchess County Health Department and water samples are collected and analyzed at least twice a year for analytes as listed in table 9B of the NYS Sanitary Code. A water sample was collected from the well and analyzed for PFAS, 1,4-Dioxane, SVOCs, PCBs and metals.

8. <u>AOC-8</u>, Fire Pond: The firefighting pond north of the two AAG hangars may have received stormwater runoff from the area that contained AFFF. The pond may also be in hydraulic connection to groundwater which, as indicated above, is impacted by PFAS. To assess the environmental quality of the surface water and sediment in the fire pond, two surface water and sediment samples were collected from the fire pond and analyzed for PFAS and 1,4-Dioxane.

9. AOC-9, North/South Runway: To assess possible impacts to soil and groundwater at the end of runway 6 and 24, one soil boring/monitoring well was installed at each location. At each location, a Geoprobe was utilized, and the test borings were converted into permanent monitoring wells. Test borings were intended to be advanced to depths of approximately five feet below the elevation of the shallow water table, which was anticipated to be less than twenty (20) feet below ground surface. The soil and groundwater samples collected were analyzed for PFAS, 1,4-Dioxane, and the full suite of TCL/TAL constituents and cyanide.

Off-Site Locations: In addition to the AOCs identified above, as part of this investigation off-Site drinking water wells were sampled for PFAS and 1,4-Dioxane. Three drinking water wells were initially included for sampling in the SCWP, which included Location A, Location E, and a third location situated on-Site. However, subsequent to the issuance of the SCWP, the well located at the third location was abandoned and the on-Site building was connected to the municipal water supply; therefore, sampling of this well was not conducted. In addition, the NYSDEC sent out several letters to adjacent and nearby property owner on April 19, 2019, notifying the respective property owners to contact C.T. Male or the NYSDEC if they were interested in having their well tested. Based on the responses received, two additional drinking water wells were added to the off-Site investigation, which are identified as Location D and Location C. Results were also obtained from a fifth location, identified as Location B.

Additionally, in accordance with the Supplemental Site Characterization Investigation Work Plan, C.T. Male sent out letters to sixty-nine (69) homeowners within ¼ to ½ mile radius of the southeastern corner of the Site requesting access for well testing. Forty-one (41) positive responses were received, and these locations were subsequently sampled. Sample locations and corresponding concentrations of PFOA / PFOS are shown on Figure 12.

3.2 Amendments to Field Sampling Plan (FSP)

Based on conditions encountered on the Site, the following amendments to the Field Sampling Plan were made:

- During the installation of MW105, which was intended to be installed such that
 the screened interval intersects the water table, the water table was not
 encountered before drill refusal after several boring attempts. MW105 was instead
 installed to the greatest depth of casing refusal.
- Pre-existing monitoring wells MW-1 and MW-5 at the AAG Hangars (AOC-6) could not be located during the SC Investigation. Pre-existing monitoring wells ME-18 and MW-3 were sampled as alternatives during groundwater sampling.
- Two of the proposed outfalls located north of Runway 24 were not located. C.T. Male was informed by Airport personnel that there are no outfalls in this area of the Site. Therefore, C.T. Male collected a stormwater sample from two of the storm drains and a sediment sample from each respective swale located in the same general area. These sampling locations are denoted as Outfall-006 and Outfall-007.

3.3 Soil Investigation

On August 5 & 6, 2019, on-Site subsurface investigation was performed through the advancement of six soil borings at pre-selected and approved locations within the Site. The subsurface investigation utilized direct push drilling techniques and conversion of the test borings into permanent monitoring wells. On August 12, 2019, surface and near-surface soil samples were collected at each of the six boring locations using a stainless-steel hand auger. The work was performed under the oversight of C.T. Male personnel. Drilling equipment including augers, rods, plugs, samplers, tools, and a drill unit. Any piece of equipment that contacted the formation was cleaned with a high temperature/high pressure steam cleaner prior to the start of work and between each boring to prevent cross-contamination between borings. The equipment was also cleaned using the same procedure upon completion of the work.

Soil samples were collected from the boreholes/monitoring well locations on a continuous basis using a direct-push drill rig. The recovered soil samples were visually classified by a geologist in general conformance with the Unified Soil Classification System, and subjectively assessed for impacts based on organoleptic perception (sight and smell) and with a photoionization detector (PID). Surface, near-surface and subsurface soil samples were collected for laboratory analyses. Of note, MW100 is located

in an asphalt paved area; therefore, a surface soil sample was not collected for laboratory analysis from this location. Soil boring logs are included in Appendix A.

3.3.1 Surface and Near-surface Soils

The following table summarizes the shallow soil samples (less than or equal to 24 inches) collected for laboratory analysis.

Table A: Shallow Soil Sample Analysis

Location	Sample ID	Depth	Analyses	Soil Observations	PID (ppmv*)
MW100	MW100-1.0	2" - 12"	PFAS, 1,4- Dioxane, Full TCL/TAL, CN	Fill; sand and gravel, trace fragments of brick, asphalt and glass; no sheening, odor, staining	0.0 (0 - 2')
MW101	MW101-1.5	0 - 6"	PFAS, 1,4-	Topsoil; clayey silt,	
MW101	MW101-2.0	6" - 24"	Dioxane, TAL Metals, Pesticides, PCBs	some fine sand; no sheening, odor, staining	0.0 (0 – 2')
MW102	MW102-0.5	0 - 6"	PFAS, 1,4-	Topsoil; clayey silt, some fine sand; no	0.0
MW102	MW102-2.0	6" - 24"	Dioxane, Full TCL/TAL, CN	sheening, odor, staining	(0 - 2')
MW103	MW103-0.5	0 - 6"	PFAS, 1,4-	Topsoil; clayey silt,	0.0
MW103	MW103-2.0	6" - 24"	Dioxane, Full TCL/TAL, CN	some fine sand; no sheening, odor, staining	(0 - 2')
MW104	MW104-0.5	0 - 6"	DEAC 1 /	Topsoil; clayey silt,	0.0
MW104	MW104-2.0	6" - 24"	PFAS, 1,4- Dioxane	some fine sand; no sheening, odor, staining	(0 - 2')
MW105	MW105-0.5	0 - 6"	PFAS, 1,4-	Topsoil; clayey silt, some fine sand; no	0.0
MW105	MW105-2.0	6" - 24"	Dioxane	sheening, odor, staining	(0 – 2')

^{*} ppmv – parts per million in air

3.3.2 Subsurface Soils

The following table summarizes the deeper subsurface soil samples (greater than 12 inches) collected for laboratory analysis.

Table B: Subsurface Soil Sample Analysis

Location	Sample ID	Depth	Analyses*	Soil Observations	PID (ppmv**)
MW100	MW100-6.0	6.0′ – 7.0′	PFAS, 1,4- Dioxane, Full TCL/TAL, CN	Medium and coarse sand; no sheening, odor, staining	0.0 (6'-8')
MW101	MW101-8.0	8.0′ - 9.0′	PFAS, 1,4- Dioxane, TAL Metals, Pesticides, PCBs	Coarse sand and gravel; petroleum odor and staining	69.2 (8'-10')
MW102	MW102-4.5	4.5′ – 5.5′	PFAS, 1,4- Dioxane, Full TCL/TAL, CN	Till; silt, some gravel; no sheening, odor, staining	0.0 (4' - 6')
MW103	MW103-10.0	10.0′ - 11.0′	PFAS, 1,4- Dioxane, Full TCL/TAL, CN	Till; silt and fine sand, some gravel; no sheening, odor, staining	0.0 (10' - 12')
MW104	MW104-9.5	9.5′ – 10.5′	PFAS, 1,4- Dioxane	Clayey silt; no sheening, odor, staining	0.0 (8' - 12')
MW105	MW105-4.0	4.0′ – 5.0′	PFAS, 1,4- Dioxane	Till; silt and fine sand, some gravel; no sheening, odor, staining	0.0 (4' - 6')

^{**} ppmv – parts per million in air

3.4 Groundwater Investigation

Six monitoring wells were installed in the six soil boring locations at the Site (MW100, MW101, MW102, MW103, MW104 and MW105).

• Soil boring/monitoring well MW100 was completed within AOC-7, the ARFF / Maintenance Building.

^{*} Full TAL/TCL = TAL Metals, TCL VOCs, SVOCs, PCBs, Pesticides

- Soil boring/monitoring well MW101 was completed within AOC-4, the Jackson Road former Petroleum Spill.
- Soil borings/monitoring wells MW102 and MW103 were completed within AOC-9, the North/South Runway.
- Soil borings/monitoring wells MW104 and MW105 were completed within AOC-1, the Firefighting AFFF Testing Area.

3.4.1 Monitoring Well Installation

Six monitoring wells were intended to be installed into the water table in the open boreholes, however, MW105 was installed above the water table due to drilling equipment refusal. The monitoring wells were constructed using 1.25-inch diameter, 0.01-inch slot well screen, and 1.25-inch solid PVC well riser. The well screens were installed in the boreholes at depths straddling the water table (apart from MW105) in the overburden formation that was observed during borehole advancement. The monitoring well construction details and logs are presented in Appendix B.

3.4.2 Monitoring Well Survey

Following installation, the top of the monitoring well casings and road box rim elevations were surveyed by C.T. Male relative to NAVD 1988.

3.4.3 Water Levels

Depths to groundwater were recorded in the monitoring wells on August 7, 2019 and are summarized in the following table.

Table C: Groundwater Elevation Summary

Location	Top of Casing Elevation (feet, NAVD88)	Depth to Water (feet) (on date sample collected)	Groundwater Elevation
MW100	160.55	6.51	154.04
MW101	104.39	6.50	97.89
MW102	144.54	12.52	132.02
MW103	151.85	3.98	147.87
MW104	153.90	18.71	135.19
MW105	164.73	DRY	

3.4.4 Monitoring Well Development

On August 7, 2019, each newly installed monitoring well (except MW105, which was dry) was developed in order to remove any accumulated fine sediment within the well and to establish a hydraulic connection with the surrounding aquifer. Monitoring wells were developed by surging and purging using a dedicated disposable plastic bailer and peristaltic pump. Purge water was containerized in DOT approved 55-gallon steel drums, covered, labeled, and stored outdoors at the Site. The wells were then left to recharge for at least 24-hours prior to collecting groundwater samples for laboratory analysis.

3.4.5 Groundwater Sampling

On August 8 and 9, 2019, five of the six newly installed groundwater monitoring wells were sampled for laboratory analysis, as MW105 remained dry. Additionally, the following pre-existing groundwater monitoring wells were sampled for laboratory analysis between July 31 and August 2, 2019: MW-2S and MW-3S located at the Former Balefill Landfill; MW-15, MW-20 and MW-29 located at the Former Dutchess County Landfill; A-21S, A-21G, A-21R, MW-3, MW-4, MW-6, and ME-18 located at the AAG Hangars. The analysis of the samples was performed by Alpha Analytical Laboratories, a NYSDOH certified ELAP laboratory. Monitoring well development and sampling logs are presented in Appendix C. The following table summarizes the groundwater samples collected for laboratory analysis.

Table D: Groundwater Sample Summary

Monitoring Well ID	Date Collected	Area of Concern	Analyses*
MW104	August 9, 2019	AOC-1	PFAS, 1,4-Dioxane
MW105	Not Sampled	AOC-1	DRY, Not Sampled
MW-2S	August 1, 2019	AOC-2	PFAS, PCBs, SVOCs, Pesticides,
MW-3S	August 1, 2019	AOC-2	1,4-Dioxane
MW-15	August 2, 2019	AOC-3	PFAS, PCBs, SVOCs, Pesticides,
MW-20	August 2, 2019	AUC-3	1,4-Dioxane

Monitoring Well ID	Date Collected	Area of Concern	Analyses*
MW-29	August 2, 2019		
MW101	August 9, 2019	AOC-4	PFAS, TAL Metals, PCBs, Pesticides, 1,4-Dioxane
MW-3	August 1, 2019		
MW-4	August 1, 2019		
MW-6	August 1, 2019		
ME-18	August 1, 2019	AOC-6	PFAS, 1,4-Dioxane
A-21G	July 31, 2019		
A-21S	July 31, 2019		
A-21R	July 31, 2019		
MW100	August 8,2019	AOC-7	PFAS, Full TAL/TCL, 1,4-Dioxane
MW102	August 9, 2019	AOC-9	DEAC Eull TAI /TCI 14 Diagram
MW103	August 9, 2019	AUC-9	PFAS, Full TAL/TCL, 1,4-Dioxane

^{*} Full TAL/TCL = TAL Metals, TCL VOCs, SVOCs, PCBs, Pesticides

3.5 Surface Water and Sediment Investigation

Surface water and accompanying underlying sediment samples were collected from several stormwater outfall locations, as well as locations in the Fire Pond. Surface water and sediment sampling occurred on July 23 and 24, 2019, except for the sediment sample from the southern stormwater outfall (Outfall-001), which was collected on August 8, 2019.

On January 15, 2021, C.T. Male mobilized to collect five (5) surface water samples from the Wappingers Creek. One (1) background sample, designated as B-1, and four (4) in stream samples were collected, designated SW-1, SW-2, SW-3 and SW-5. Additionally, a sixth sample was collected from an unnamed tributary to the Wappingers Creek,

designated SW-4. Approximate sample locations and corresponding analytical test results are shown on Figure 8.

3.5.1 Stormwater Outfall Sampling

Six surface water samples were collected from stormwater outfalls located to the north of the North/South runway (Outfall-002 through Outfall-007). The northern outfalls were analyzed at the laboratory for PFAS and 1,4-Dioxane. One surface water sample was collected from the stormwater outfall located adjacent to the main terminal and New Hackensack Road, south of the Site (Outfall-001). The southern outfall samples were analyzed at the laboratory for PFAS, 1,4-Dioxane, TCL VOCs, SVOCs, PCBs, Pesticides, and TAL Metals. An underlying sediment sample was collected at each of the surface water sample locations, and each accompanying sediment sample was analyzed for the same parameters at the laboratory as its corresponding surface water sample.

3.5.2 Fire Pond Sampling

Two surface water samples were collected from the Fire Pond on-Site (Fire Pond-01 and Fire Pond-02). An underlying sediment sample was collected at each of the surface water sample locations. The Fire Pond surface water and sediment samples were each analyzed at the laboratory for PFAS and 1,4-Dioxane.

3.6 Drinking Water Well Investigation

Several on and off-Site drinking water well samples were collected during the SC Investigation. On-Site drinking water well samples were collected from the AAG potable well (at the former IBM hangar) and the Maintenance Building potable well on July 16-17, 2019, and August 7, 2019, respectively. The AAG potable well was sampled just prior to the well being taken off-line, as the facility was connected to the municipal water line. At the request of the NYSDEC, the Dutchess County Department of Behavioral and Community Health allowed the well to remain as a monitoring point as long as the well was disconnected from the building. These two on-Site drinking water samples were analyzed at the laboratory for PFAS, 1,4-Dioxane, SVOCs, PCBs, and metals.

Off-Site drinking water wells were collected from forty-one (41) potable wells near the Site in 2021. A sample location map is included as Figure 12.

Off-Site drinking water samples were analyzed at the laboratory for PFASs and 1,4-Dioxane. Drinking Water Well Sampling Logs are provided in Appendix D.

3.7 Data Validation

In accordance with the SC Work Plan, laboratory analytical data produced during the Site Characterization was validated by a third-party data validator in accordance with DER-10 Appendix 2B Data Usability Summary Report requirements. Quality assurance/quality control (QA/QC) samples (duplicate, matrix spike, matrix spike duplicate, trip blank, method blank, field blank and equipment blank samples) were collected. The QA/QC samples were collected in accordance with the QAPP. Laboratory reports are provided as Appendix E. Data Usability Summary Reports (DUSRs) are included in Appendix F. The laboratory reported results were usable as reported or with minor qualification as discussed in the DUSRs.

3.8 Community Air Monitoring Program

A Community Air Monitoring Program was implemented during site characterization activities in accordance with the Health and Safety Plan, and with NYSDOH regulations. All VOC and particulate readings collected during the field investigation were below response levels.

3.9 Investigation-Derived Waste Disposal

The investigation derived waste, groundwater and soils, were collected in DOT approved 55-gallon drums and stored outside at the facility, along the fence that marks the western edge of property near the maintenance building. The investigation derived waste will be held on-Site until further notice and will be properly disposed off-Site in accordance with applicable regulations later.

4.0 SITE PHYSICAL SETTING

4.1 SETTING

The Site is approximately 510.8 acres in size and is identified with tax number 135689-6259-03-225301-0000 on the Town of Wappinger tax maps. The New York State Department of Environmental Conservation (NYSDEC) has classified the Site as a potential inactive hazardous waste disposal site (P-Site #314129) as a result of the presence of combined perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) at concentrations in one of the potable drinking water supplies at the Site above the health advisory value of 70 parts per trillion set by the United States' Environmental Protection Agency (USEPA) in May 2016.

4.1.1 Topography

The Site is nearly flat across the area that is maintained immediately surrounding the airport runways, associated hangars, and airport terminal. Site elevation ranges between approximately 100 feet above mean sea level (amsl) at the southwestern property boundary to approximately 170 feet amsl at the northeastern property boundary. The land was presumably filled and built up using local, repositioned soils to flatten the grade for the runways, especially in the southwestern, western, and northwestern portions of the Site where grade slopes sharply toward the Wappinger Creek immediately beyond the areas that buffer the runways. Additionally, the Balefill and Dutchess County Landfill, to the northwest and northeast of the Site, respectively, are artificially mounded from landfilling. The grade of both landfills generally slopes downward radially, but more predominantly to the north in both instances, in the direction of the Wappinger Creek. The natural topography surrounding the Site also slopes to the northwest in the direction of the Wappinger Creek.

4.1.2 Regional Features and Landscape

The Dutchess County region surrounding the Site is moderately hilly, with an average grade that slopes downward toward both the Wappinger Creek and the Hudson River. The region lies within the Hudson River Valley and has been eroded heavily by both glacial and fluvial processes. The Wappinger Creek runs predominantly from northeast

to southwest and ultimately feeds into the Hudson River on its eastern side at the Hamlet of New Hamburg. The Wappinger Creek's follows and erratic path and fluctuates largely in width. In the village of Wappinger Falls, downgradient of the Site, the creek forms Wappinger Lake, which is a man-made reservoir. The Wappinger Creek has several tributaries of varying size and has the largest watershed in the County.

4.2 GEOLOGY

The Site is relatively large and expresses variations in both overburden soils and bedrock. Soils generally consist of sandy loams, river deposits and glacial tills, which have been heavily reworked in some sections of the Site. Bedrock is predominantly shale or limestone, but varies drastically in extent of weathering, and elevation relative to grade across the Site.

The recovered soils in borings advanced at the Site were observed to be loose sands and gravels overlying dense tills or silts. Bedrock was not encountered during on-Site drilling for the SC Investigation. Refusal at boring MW105 may have been the result of encountering bedrock.

4.2.1 Geologic History

The oldest bedrock found in Dutchess county is a mixture of gneiss and granite that were formed from pre-existing sedimentary rocks during a continental collision known as the Grenville Orogeny, approximately 1 billion years ago (bya). Roughly 0.5 bya, the supercontinent formed by the Grenville Orogeny broke apart, leaving the area now known to be Dutchess County on the edge of the North American continent, subject to sedimentary deposition that varied as sea level changed. The limestones and shales that now underly much of the County were largely deposited in their present location during periods of deeper sea level. About 450 million years ago (mya), North America was affected by another continental collision that is now known as the Taconic Orogeny, resulting in significant mountain building along the eastern edge of present-day New York, and the ultimate formation of a foreland basin that spanned much of the state, including Dutchess County. An extensive series of thrust faulting occurred during the Taconic Orogeny, which pushed large masses of sandstones and shales over much of the previously formed sedimentary rocks of Dutchess County. The foreland basin formed during the Taconic Orogeny which ultimately led to the deposition and lithification of

other sedimentary rocks including sandstones and shales, as the Taconic Mountain Range that formed during the Orogeny eroded. A combination of sedimentary rocks formed through these events now underly Dutchess County, though the oldest metamorphic and igneous rocks have been encountered as bedrock in some areas as well (Budnik et al., 2010).

The Laurentide Ice Sheet fully covered Dutchess County roughly 20,000 years ago and is the most recent geologic force to drastically influence the regional geology and topography. Glaciers associated with the ice sheet's retreat scoured the bedrock, forming undulating valleys and leaving behind surficial deposits (glacial till) of varying source and grain size that are still present today. Fluvial processes of erosion have since dominated the area and continue to modify the landscape (Budnik et al., 2010).

4.2.2 Soils

Overburden soils at the Site consist of primarily silts and sands. Gravelly sections of overburden also exist but are less extensive, based on review of the soil borings for previous site investigations. Deeper sections of soil consist of glacial till with a silty-clay matrix and highly variable grain size. Till was observed or reported to be somewhat weathered, saturated, and only moderately dense in most instances. Additionally, like most overburden units encountered at the Site, the till was not found extensively, likely having been eroded away entirely in some locations. Overburden soils generally reflect fluvial deposits expected given the Site's proximity to the Wappinger Creek.

Soils on the Site are mapped by the United States Department of Agriculture (USDA) Web Soil Survey primarily as udorthents, or gravelly loam, likely derived from glacial outwash and kame deposits. Udorthents are described by the USDA as well drained soils that have often been disturbed or reworked by cuffing or filling in areas that are covered by buildings or pavement. The Wappinger loam and Pawling Silt loam are both mapped by the USDA in the western portions of the Site, and are siltier, fine-grained loams that are likely derived from lake and stream sediments.

4.2.3 Bedrock

Boring logs for pre-existing monitoring wells which extended into the surface of bedrock at the Site indicate that the bedrock beneath the Site is predominantly shale accompanied by intermittent to abundant veins of quartz. Some of the boring logs indicate limestone

as bedrock. Upon additional review of bedrock mapping completed for Dutchess County, it is suspected that the bedrock beneath the Site is primarily the Austin Glen Member of the Normanskill Formation. This is a Middle Ordovician unit of interbedded greywackes and shales whose depositional setting would most likely correlate to the foreland basin of Taconic Orogeny, described in the sections above (Fisher et al., 1970). It is possible that greywacke was misclassified as limestone in limited instances at the Site where limestone was reportedly encountered. It is also possible that limestone encountered at the Site is an autochthonous unit, older than the Taconic Orogeny, or a section of Taconic Melange, thrusted into the foreland during the collision event. The predominantly shale bedrock at the Site was noted to be moderately to heavily eroded at most locations, and can be seen in outcrops surrounding the Site, as well as in the bed of the Wappinger Creek immediately adjacent to the Site.

Using on-Site data from boring logs which penetrated bedrock, and depth-to-bedrock data taken from the NYSDEC's Records of Registered Water Well's, a regional and site bedrock elevation map was created and is included as Figure 13. Kriging was used as the gridding method to infer contours of the bedrock surface in feet above mean sea level (ft. amsl) using the available data.

4.3 Hydrology

A Fire Pond located adjacent to the former IBM Hangar is the only surface water body located on-Site. The Wappinger Creek is located topographically downgradient from, and approximately 100 to 500 feet to the north and west of the Site boundary. The creek flows southwest toward Wappingers Falls and Wappinger Lake, ultimately discharging to the Hudson River. Greens Pond is located topographically downgradient from, and approximately 500 feet to the south of the Site across New Hackensack Road. The pond drains via a seasonal, unnamed stream to the Wappinger Creek. Lastly, a series of unnamed, perennial streams are noted to the east and south of the Site, which ultimately drain to either Wappinger Lake or Wappinger Creek.

4.3.1 Stream Gauges

Four surface water/stream gauges were installed in surface water bodies surrounding the Site by CTM Field Staff in May 2021 ahead of the collection of monthly water level data. Two gauges are located in the Wappinger Creek, adjacent to the Site at one upstream location and one downstream location. One stream gauge was installed in Greens Pond, and another stream gauge was installed in the unnamed stream that drains from Greens Pond, upstream of its mouth to the Wappingers Creek. The gauges were intended to supplement monthly water level events and to evaluate the potential influence of surface water fluctuations on groundwater flow, or vice versa.

4.3.2 Site Hydrogeology

The Site hydrogeology is relatively complex, largely due to the heterogeneity of soils across the roughly 500-acre area. The Site's soils were presumably reworked in several areas to develop the land surface in a manner necessary for site operations, adding to the complexity. Monitoring well and soil boring logs were obtained from previous site investigations and information compiled in the Records Search Report and were carefully considered during the development of the conceptual site model. However, logs for several boring/monitoring well locations could not be obtained.

Monitoring wells were gauged monthly in March, April, and May of 2021 for the purpose of groundwater flow mapping and to observe single-season variations in groundwater behavior.

4.3.3 Hydrogeologic Units

After review of the available boring and monitoring well installation logs, it appears that three distinct aquifers exist at the Site, pending further evaluation and aquifer testing: 1) a bedrock aquifer (Bedrock Aquifer), 2) a deep unconsolidated aquifer, located directly above bedrock or till stratigraphically, (Unconsolidated Semi-confined Aquifer) separated by a leaky aquitard and 3) a shallow or perched water table aquifer (Perched or Water Table Aquifer).

The readily available monitoring well construction logs were compiled and a summary table of the available logs was prepared that includes the well name, installation date, well type (overburden vs bedrock), total drilled depth (feet below ground surface), well total depth (feet below ground surface), and screened interval (feet below ground surface. The summary table and associated logs are included in Appendix G.

Confining Layers and Aquitards

The distinction of each of the three aquifers categorized above stems from the identification of two confining units, or more likely, leaky aquitards: The first being the interface of the weathered bedrock surface and basal till, where encountered, and the second being a clayey silt and/or sand unit encountered at several deep monitoring well locations which extends from about 10-15 feet below the water table to about 20-40 feet below the water table.

4.3.4 Classification of Existing Monitoring Wells

A large, but localized monitoring well network exists at the Site from several previous environmental investigations. Most pre-existing groundwater monitoring wells are in the immediate vicinity of the Former IBM and Flagship Hangars. Smaller sets of pre-existing monitoring wells exist for the Balefill and Dutchess County Landfills.

Pre-existing monitoring wells at the Site were classified into the one of the following three aquifer categories: 1) bedrock 2) unconsolidated semi-confined 3) perched. The following methods were used to aid in the classification in a fashion of decreasing priority and confidence based on the information available: 1) Monitoring wells with available soil logs were classified first into one of the three categories above based on the combined interpretation of their soil log and monitoring well installation specifications, 2) Monitoring wells without available logs were classified by their total well depth paired with knowledge of wells with boring and installation logs in close proximity, 3) Monitoring wells without available logs and without close proximity to other wells with available logs were classified by their total well depth paired with gauged water table elevation, relative to other site monitoring wells. Finally, in instances where none of the above assumptions could be applied with a reasonable degree of confidence in order to classify a monitoring well, the monitoring well was omitted from groundwater flow mapping. Furthermore, if significant and obvious outliers were determined to exist during preliminary groundwater flow mapping, those points were henceforth omitted from groundwater flow mapping.

Note that while the confining units/leaky aquitards described in the sections above may be discontinuous, the monitoring well classification scheme was applied site-wide for the sake of consistency. If either of the confining units could not be identified at a given location, the monitoring well classification was based on the location of the screened interval stratigraphically.

4.3.5 Supplemental Monitoring Well Network

Six monitoring wells were installed under the supervision and instruction of C.T. Male Associates (CTM) Field Staff in August 2019 in accordance with the Site Characterization Work Plan (2018). The wells were intended to supplement the pre-existing monitoring well network and to address immediately identifiable data gaps at the Site. They target the shallow groundwater aquifer at ends both major runways, the Jackson Rd. Spill area, and the Maintenance/ARFF Building.

4.3.6 Groundwater Flow

The entire site monitoring well network was gauged monthly from March through May of 2021. A monitoring well survey was also completed in March of 2021 to acquire elevation data for groundwater mapping purposes. The calculated groundwater elevations from each event were used to prepare a groundwater flow contour map as depicted in Figures 3. Kriging was used with linear drift as the gridding method to infer contours of the groundwater surface in feet above mean sea level (ft. amsl) using each available dataset.

The shallow groundwater aquifer generally flows west and northwest, across the Site in the direction of the Wappinger Creek and mirroring the topography and drainage characteristics of the area surrounding the Site. Groundwater in the shallow unconsolidated soils exists under typical unconfined aquifer conditions. Based on the observed shallow groundwater flow pattern and local topography, the shallow aquifer likely discharges at the Wappinger Creek, which exists at an elevation approximately 60 feet lower than the central portion of the Site. Finally, no significant variation in shallow groundwater flow could be identified over the course of the Spring season.

The deep groundwater aquifer generally flows northwest across the Site in the direction of the Wappinger Creek and mirroring the topography and drainage characteristics of the area surrounding the Site. Deep groundwater flow aligns closely with shallow groundwater flow, though it should be noted that the deep aquifer monitoring well network is much more limited. Groundwater in the deep unconsolidated soils most likely exists under leaky confined conditions beneath the Site, but it is suspected that the aquifer

may transition to unconfined and blend with the shallow aquifer at some point down-groundwater gradient of the Site. Based on the observed deep groundwater flow pattern, the deep aquifer likely discharges with the shallow aquifer at the Wappinger Creek. No significant variation in deep groundwater flow could be identified over the course of the Spring season. A groundwater contour map is included as Figure 3.

The bedrock aquifer is lacking water level data due to the limited monitoring well network, which are located only in the immediate vicinity of the Former IBM and Flagship Hangars. Since AFFF was sprayed directly to the ground surface, the subject investigation focused largely on the shallow aquifer system. The shallow groundwater appears to flow in a westerly direction, toward the Wappinger Creek. We do not have enough data to make conclusions related to the direction of groundwater flow in the bedrock aquifer. It should be noted that the monitoring well network was established prior to on-Site buildings connecting to the municipal water supply. Groundwater flow direction in the bedrock aquifer is interpreted to be primarily to the west. However, due to the limited data available, this interpretation needs to be further investigated. Flow to the west under non-pumping influence is best depicted in Figure 13, mapped from the water level data collected on April 24, 2021. Groundwater in the bedrock aquifer most likely exists under leaky confined aquifer conditions but may vary on a larger scale. Discharge for the bedrock aquifer is again inconclusive due to the limited dataset. No significant variation in bedrock groundwater flow could be identified over the course of the Spring season. A bedrock groundwater flow contour map is depicted in Figure 13.

Vertical Flow Direction

Long term pressure transducer data loggers were deployed in a monitoring well triplet on-Site with a well screened in the shallow (A-21S), deep (A-21G), and bedrock (A-21R) aquifers. The purpose of the long-term monitoring was to examine changes in water level and potentiometric surface of each of the hydrogeologic units and correlate any observable trends, potentially providing insight as to the degree of which the three units may communicate with one another. Preliminary evaluations of the data logs suggest that each of the three units respond similarly to events of significant rainfall, but at a diminished rate with increasing depth, supporting the inference that the three units are separated by leaky aquitards and are not truly confined.

Pumping Influences

On and off-Site pumping influences can affect the observed flow patterns in groundwater at and surrounding the Site. Due to the nature of water supply wells in the region, typically installed as an open borehole in rock with overburden entirely cased off, it is likely in most instances that the effects of pumping nearby wells would be most prominent in the bedrock aquifer. Any off-Site water supply well currently in operation has the potential to influence groundwater flow, which in turn could have minimal to drastic effects on contaminant migration. At this time, off-Site locations of significant pumping influence are not entirely known. However, the large residential/commercial developments to the east and southeast of the Site are suspect influencers for bedrock groundwater flow and require further evaluation.

On-Site, the observed trend of groundwater flow in the bedrock aquifer implies that well DW-1 may have likely been in use as a water supply well. Pumping in DW-1 may have affected bedrock groundwater flow in the area between the Former IBM and Flagship Hangars, for the water level events completed on March 25 and May 28, 2021 respectively. However, the airport is now connected to a public water supply and DW-1 has been removed from service.

5.0 SITE CHARACTERIZATION RESULTS

5.1 General

The SC investigation involved the collection and laboratory analysis of soil, groundwater, surface water, sediment, and drinking water samples. The samples were analyzed for a combination of the following, depending on the AOC: NYS TCL VOCs, SVOCs, 1,4-Dioxane, PCBs, pesticides, TAL Metals, total cyanide and PFAS. Detected chemical compounds in the various media sampled as part of the SC and the analytical results are presented in Tables 1 through 43. The analyses of the samples were performed by Alpha Analytical Laboratories (Alpha) a NYSDOH certified ELAP laboratory. A summary of the media sampled and analyzed is provided in the sections below. In order to assist in the review of the data below, the following table summarizes the analytical tables and figures relative to the respective AOCs.

Table E: Analytical Table and Figure Summary

AOC	M. J.	T-1-1-(-)	F:(-)
AOC	Media	Table(s)	Figure(s)
	Soil	1A	4
1: Firefighting AFFF Testing Area	Groundwater	1	6
2: Former Balefill Landfill	Groundwater	2-5	6
3: Former Dutchess County Landfill	Groundwater	6-9	6
4.1.1. D. 1.5. D. 1	Soil	10A-13A	4
4: Jackson Road, Former Petroleum Spill	Groundwater	10-13	6, 7
	Surface Water	14-18, 42	8, 9
5: Stormwater Outfalls	Sediment	14A-18A, 42A	10, 11
	Groundwater	23	6
6: AAG Hangers	Drinking Water	19-22	6, 7, 12
	Soil	24A-29A	4, 5
	Groundwater	24-29	6, 7
7: ARFF / Maintenance Building	Drinking Water	30-33	6, 7, 12
	Surface Water	34	8
8: Fire Pond	Sediment	34A	10
	Soil	35A-40A	4
9: North /South Runway	Groundwater	35-40	6, 7

AOC	Media	Table(s)	Figure(s)
		D.T.	
		Not	
	Surface Water	Applicable	8
Off-Site Locations	Drinking Water	41	12

Compounds detected in the various media analyzed during this SC were compared to the following New York State guidance documents and standards:

- NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1); Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations dated October 1993; Revised June 1998; errata sheet dated January 1999; and Addendum dated April 2000 (NYSDEC Class GA);
- NYSDEC Regulation, 6 NYCRR Subpart 375-6, "Remedial Program Soil Cleanup Objectives". Soil analytical results for this investigation were compared against NYSDEC 6 NYCRR Part 375-6 Unrestricted Use Soil Cleanup Objectives (SCO), protection of public health; and
- USEPA Drinking Water Health Advisory for PFOA and perfluorooctanesulfonic acid (PFOS) dated May 2016.

5.2 AOC-1; Firefighting AFFF Testing Area - Soil Analytical Results

Surface soil and subsurface soil samples were collected at soil boring locations within AOC-1. Two test borings were completed and converted into permanent monitoring wells. Groundwater samples were collected from the monitoring wells after well development. Surface and near-surface soil samples were collected from 0 to 6 inches (including the root zone) and 6 to 24 inches below grade. Subsurface soil samples were collected based on subjective field screening of soils, or otherwise directly above the water table.

The soil and groundwater samples were analyzed for PFAS and 1,4-Dioxane. Sample results are presented below, and the reported laboratory results are presented in Tables 1 and 1A.

5.2.1 AOC-1; Surface and Near-Surface Soils Analytical Results

Results from the surface and near-surface soil samples (collected from 0 to 6 inches and 6 to 24 inches below grade) identified detections of PFAS at both soil boring locations. Figure 4 depicts the soil concentrations at each boring for PFAS. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. The PFAS detections are summarized below:

- MW104 surface soil sampling results detected fifteen PFAS compounds, including
 estimated detections ("J" qualified). PFOA was detected at 2.42 ppb. PFOS was
 detected at 129 ppb. The near-surface soil sample detected twelve PFAS
 compounds, including estimated detections ("J" qualified) of PFOA at 0.688 ppb.
 PFOS was detected at 109 ppb.
- MW105 surface soil sampling results detected fourteen PFAS compounds, including estimated detections ("J" qualified) of PFOA at 1.1 ppb. PFOS was detected at 113 ppb. The near-surface soil sample detected fourteen PFAS compounds, including estimated detections ("J" qualified) of PFOA at 1.1 ppb. PFOS was detected at 89.5 ppb.

1,4-Dioxane was not detected in any surface soil samples collected within AOC-1.

5.2.2 AOC-1; Subsurface Soils Analytical Results

Results from the subsurface soil samples identified detections of PFAS at both soil boring locations. Figure 4 depicts the soil concentrations at each boring for PFAS. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. The PFAS detections are summarized below:

- MW104 soil sampling results detected five PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.14 ppb. PFOS was detected at 43.8 ppb.
- MW105 sampling results detected ten PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.16 ppb. PFOS was detected at 56.9 ppb.

1,4-Dioxane was not detected in any subsurface soil sample collected within AOC-1.

5.2.3 AOC-1; Groundwater Analytical Results

Results from the groundwater samples identified detections of PFAS at the sampled location. At MW104, PFOA and PFOS were detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water for each respective compound. Figure 6 depicts the groundwater concentrations at each well for PFAS. The PFAS detections are summarized below:

- MW104 sampling results detected eleven PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 122 ppt and PFOS was detected at 1,720 ppt.
- MW105 was not sampled.

1,4-Dioxane was not detected in any groundwater sample collected within AOC-1.

5.3 AOC-2; Former Balefill Landfill - Analytical Results

Groundwater samples were collected from two pre-existing monitoring wells at the Balefill Landfill which were interpreted as being hydraulically down gradient of the landfill.

The groundwater samples were analyzed for PFAS, 1,4-Dioxane, SVOCs, PCBs and Pesticides. Sample results are presented below, and the reported laboratory results are presented in Tables 2 through 5.

5.3.1 AOC-2; Groundwater Analytical Results

Results from the groundwater samples identified detections of PFAS at the sampled locations. At MW-2S and MW-3S, PFOS was detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. At MW-3S, PFOA was detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. Figure 6 depicts the groundwater concentrations at each well for PFAS and 1,4-Dioxane. The PFAS detections are summarized below:

 MW-2S sampling results detected eleven PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 22.5 ppt and PFOS was detected at 932 ppt. • MW-3S sampling results detected eleven PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 35.8 ppt and PFOS was detected at 21.4 ppt.

1,4-Dioxane was detected at 0.635 ppb in both groundwater samples. Currently there are no NYSDEC regulatory standards or guidance values for 1,4-Dioxane in groundwater. There were no detections of SVOCs, PCBs or Pesticides that exceeded NYSDEC TOGS 1.1.1 for groundwater.

5.4 AOC-3; Former Dutchess County Landfill - Analytical Results

Groundwater samples were collected from three pre-existing monitoring wells at the Dutchess County Landfill which were interpreted as being hydraulically down gradient of the landfill.

The groundwater samples were analyzed for PFAS, 1,4-Dioxane, SVOCs, PCBs and Pesticides. Sample results are presented below, and the reported laboratory results are presented in Tables 6-9.

5.4.1 AOC-3; Groundwater Analytical Results

Results from the groundwater samples identified detections of PFAS at the sampled locations. At MW-20, PFOA and PFOS were detected in exceedance of the USEPA Health Advisory level of 70 ppt for each respective compound in drinking water. Figure 6 depicts the groundwater concentrations at each well for PFAS and 1,4-Dioxane. The PFAS detections are summarized below:

- MW-15 sampling results detected eleven PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 31.1 ppt and PFOS was detected at 19.7 ppt.
- MW-20 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 76.6 ppt and PFOS was detected at 79.2 ppt.
- MW-29 sampling results detected ten PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 8.71 ppt and PFOS was detected at 8.86 ppt.

1,4-Dioxane was detected in concentrations of 1.92 ppb, and 15.4 ppb at MW-15 and MW-20, respectively. 1,4-Dioxane was non-detect at MW-29. Currently there are no NYSDEC

regulatory standards or guidance values for 1,4-Dioxane in groundwater. There were no detections of SVOCs, PCBs or Pesticides that exceeded NYSDEC TOGS 1.1.1 for groundwater.

5.5 AOC-4; Jackson Road, Former Petroleum Spill - Analytical Results

Surface soil and subsurface soil samples were collected at a soil boring location within AOC-4. One test boring was completed and converted into a permanent monitoring well. A groundwater sample was collected from the monitoring well after well development. Surface soil samples were collected from 0 to 2 inches and 2 to 12 inches below grade. Subsurface soil samples were collected based on subjective field screening of soils, or otherwise directly above the water table.

The soil and groundwater samples were analyzed for PFAS, 1,4-Dioxane, TAL Metals, PCBs and Pesticides. Sample results are presented below, and the reported laboratory results are presented in Tables 10 through 13.

5.5.1 AOC-4; Surface and Near-Surface Soils Analytical Results

Results from the surface soil samples (collected from 0 to 6 inches and 6 to 24 inches below grade) identified detections of PFAS at the soil boring location. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. Figure 4 depicts the soil concentrations at each boring for PFAS. The PFAS detections are summarized below:

• MW101 surface soil sampling results detected nine PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.132 ppb and PFOS at 2.72 ppb. The near-surface soil sample detected ten PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.45 ppb. PFOS was detected at 11.3 ppb.

1,4-Dioxane was not detected in any surface soil samples collected within AOC-4. Metals, PCBs and Pesticides did not exceed their respective NYSDEC concentrations for Unrestricted SCO in any surface soil samples.

5.5.2 AOC-4; Subsurface Soils Analytical Results

Results from the subsurface soil sample identified detections of PFAS at the soil boring location. Currently there are no NYSDEC regulatory standards or guidance values for

PFAS in soils. Figure 4 depicts the soil concentrations at each boring for PFAS. The PFAS detections are summarized below:

• MW101 sampling results detected five PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.06 ppb. PFOS was detected at 1.12 ppb.

1,4-Dioxane was not detected in the subsurface soil sample collected within AOC-4. Metals, PCBs and Pesticides did not exceed their respective NYSDEC concentrations for Unrestricted SCO in any subsurface soil samples.

5.5.3 AOC-4; Groundwater Analytical Results

Results from the groundwater sample identified detections of PFAS at the sampled location. PFOA and PFOS were not detected in exceedance of the USEPA Health Advisory level of 70 ppt for each respective compound; however, the combined PFOA/PFOS concentrations exceed 70 ppt. Figure 6 depicts the groundwater concentrations at each well for PFAS. The PFAS detections are summarized below:

• MW101 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 11.3 ppt and PFOS was detected at 68.1 ppt.

1,4-Dioxane, PCBs and Pesticides were not detected in the groundwater sample collected within AOC-4. However, Total Iron was detected at a concentration of 7690 ppb and Total Manganese was detected at a concentration of 1657 ppb, both in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for groundwater. No other Metals were detected in exceedance of the NYSDEC TOGS 1.1.1 for groundwater. Figure 7 depicts the groundwater concentrations at each well for non-PFAS constituents.

5.6 AOC-5; Stormwater Outfalls - Analytical Results

Seven surface water samples were collected from various stormwater outfalls associated with the Site. A sediment sample was also collected from each stormwater outfall in association with the surface water samples.

Six surface water and six sediment samples collected from stormwater outfalls north of the North/South runway were analyzed for PFAS and 1,4-Dioxane. One surface water and one sediment sample collected from a southern outfall, located adjacent to the main

terminal and New Hackensack Road were analyzed for PFAS, 1,4-Dioxane, TAL Metals plus Cyanide, TCL VOCs, SVOCs, PCBs and Pesticides. Sample results are presented below, and the reported laboratory results are presented in Tables 14 through 18, and 42.

5.6.1 AOC-5; Surface Water Analytical Results

Results from the surface water samples identified detections of PFAS at the sampled locations. At Outfall-001 and Outfall-003, PFOS was detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. Figure 8 depicts the surface water concentrations at each location for PFAS. The PFAS detections are summarized below:

- Outfall-001 sampling results detected fourteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 21.4 ppt and PFOS was detected at 140 ppt.
- Outfall-002 sampling results detected nine PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 2.39 ppt and PFOS was detected at 13.4 ppt.
- Outfall-003 sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 8.3 ppt and PFOS was detected at 339 ppt.
- Outfall-004 sampling results detected nine PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 2.75 ppt and PFOS was detected at 12.7 ppt.
- Outfall-005 sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 14.9 ppt and PFOS was detected at 9.24 ppt.
- Outfall-006 sampling results detected nine PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 6.16 ppt and PFOS was detected at 2.68 ppt.
- Outfall-007 sampling results detected nine PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 10.5 ppt and PFOS was detected at 4.23 ppt).

1,4-Dioxane was not detected in any surface water samples collected within AOC-5. At Outfall-001, VOCs, PCBs and Pesticides were not detected in the surface water sample. The following SVOCs were detected at Outfall-001 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for surface water: Benzo(a)anthracene at 0.04 ppb, Benzo(b)fluoranthene at 0.04 ppb, Benzo(k)fluoranthene at

0.02 ppb, and Chrysene at 0.04 ppb. Additionally, the following Metals were detected at Outfall-001 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for surface water: Total Antimony at 16 ppb, Total Iron at 588 ppb, Total Manganese at 712 ppb, Total Sodium at 81,300 ppb. No other SVOCs or Metals were detected at Outfall-001 in exceedance of the NYSDEC TOGS 1.1.1 for surface water. Figure 9 depicts the surface water concentrations at each location for non-PFAS constituents.

5.6.2 AOC-5; Sediment Analytical Results

Results from the sediment samples identified detections of PFAS at the stormwater outfall locations. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in sediments. Figure 10 depicts the sediment concentrations for PFAS. The PFAS detections are summarized below:

- Outfall-001 sampling results detected two PFAS compounds, including estimated detections ("J" qualified) of PFOS at 0.36 ppb. PFOA was not detected.
- Outfall-002 sampling results detected seven PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.11 ppb and PFOS at 1.1 ppb.
- Outfall-003 sampling results detected six PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.09 ppb. PFOS was detected at 7.57 ppb.
- Outfall-004 sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.46 ppb. PFOS was detected at 7.8 ppb.
- Outfall-005 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.64 ppb. PFOS was detected at 1.84 ppb.
- Outfall-006 sampling results detected four PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.14 ppb and PFOS at 0.36 ppb.
- Outfall-007 sampling results had no PFAS detections.

1,4-Dioxane was not detected in any sediment samples collected within AOC-5. At Outfall-001, SVOCs, PCBs, Pesticides, and Metals did not exceed their respective NYSDEC concentrations for Unrestricted SCO in the sediment sample. Acetone was detected in the sediment sample at a concentration of 0.058 ppb, in exceedance of the respective NYSDEC Unrestricted SCO of 0.05 ppb. However, Acetone is commonly identified as a laboratory artifact and are not believed to be related to site operations. No other VOCs exceeded their respective NYSDEC concentration for Unrestricted SCO. Figure 11 depicts the sediment concentrations for non-PFAS constituents.

5.7 AOC-6; AAG Hangars - Analytical Results

Groundwater samples were collected from seven pre-existing monitoring wells which were installed during previous remedial investigation work. Additionally, a drinking water well sample was collected from the AAG potable well at the former IBM Hangar.

The groundwater samples were analyzed for PFAS, 1,4-Dioxane. The drinking water well sample was analyzed for PFAS, 1,4-Dioxane, SVOCs, PCBs and Metals. Sample results are presented below, and the reported laboratory results are presented in Tables 19 through 23.

5.7.1 AOC-6; Groundwater Analytical Results

Results from the groundwater samples identified detections of PFAS at the sampled location. PFOA and PFOS were detected in exceedance of the USEPA Health Advisory level of 70 ppt for each respective compound in drinking water for the following monitoring wells: A-21G, A-21R, A-21S, and ME-18. At MW-4 and MW-6, PFOS was detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. Figure 6 depicts the groundwater concentrations at each well for PFAS. The PFAS detections are summarized below:

- A-21G sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 500 ppt and PFOS was detected at 3,240 ppt.
- A-21R sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 371 ppt and PFOS was detected at 3,010 ppt.
- A-21S sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 184 ppt and PFOS was detected at 2,200 ppt.
- ME-18 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 77.5 ppt and PFOS was detected at 2,030 ppt.
- MW-3 sampling results detected eight PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.78 ppt. PFOS was detected at 12.3 ppt.
- MW-4 sampling results detected eleven PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 28.5 ppt and PFOS was detected at 1,420 ppt.

• MW-6 sampling results detected fourteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 47.7 ppt and PFOS was detected at 1,320 ppt.

1,4-Dioxane was not detected in any groundwater sample collected within AOC-6.

5.7.2 AOC-6; Drinking Water Analytical Results

Results from the drinking water samples identified detections of PFAS at the sampled location. PFOA and PFOS were both detected in exceedance of USEPA Health Advisory level of 70 ppt for each respective compound in drinking water for the AAG potable well. Figures 6 and 12 depict the groundwater concentrations for PFAS.

1,4-Dioxane was not detected in any of the drinking water well samples collected within AOC-6. SVOCs and PCBs were not detected in exceedance of the NYSDEC TOGS 1.1.1 for drinking water at the sampling location. Total Sodium was detected at 157,000 ppb, in exceedance of the NYSDEC TOGS 1.1.1 for drinking water of 20,000 ppb. No other metals were detected in exceedance of the applicable drinking water criteria. Figure 7 depicts the groundwater concentrations at for non-PFAS constituents.

5.8 AOC-7; ARFF/Maintenance Building - Analytical Results

Near-surface soil and subsurface soil samples were collected at a soil boring location within AOC-7. One test boring was completed and converted into a permanent monitoring well. A groundwater sample was collected from the monitoring well after well development. Surface soil samples were collected from 2 to 12 inches below grade (below the pavement). Subsurface soil samples were collected based on subjective field screening of soils, or otherwise directly above the water table. A drinking water sample was also collected from the potable drinking water well associated with the maintenance building.

The soil and groundwater samples were analyzed for PFAS, 1,4-Dioxane, TAL Metals plus Cyanide, TCL VOCs, SVOCs, PCBs and Pesticides. The drinking water sample was analyzed for PFAS, 1,4-Dioxane, Metals, SVOCs and PCBs. Sample results are presented below, and the reported laboratory results are presented in Tables 24 through 33.

5.8.1 AOC-7; Near-Surface Soils Analytical Results

Results from the near-surface soil sample (6 to 12 inches below grade) identified detections of PFAS at the soil boring location. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. Figure 4 depicts the soil concentrations at MW100 for PFAS The PFAS detections are summarized below:

 MW100 sampling results detected nineteen PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.44 ppb. PFOS was detected at 369 ppb.

1,4-Dioxane was not detected in the surface soil sample collected within AOC-7. Metals, VOCs, SVOCs, PCBs and Pesticides did not exceed their respective NYSDEC concentrations for Unrestricted SCO in the surface soil sample.

5.8.2 AOC-7; Subsurface Soils Analytical Results

Results from the subsurface soil sample identified detections of PFAS at the soil boring location. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. Figure 4 depicts the soil concentrations for PFAS. The PFAS detections are summarized below:

 MW100 sampling results detected fourteen PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.29 ppb. PFOS was detected at 36.8 ppb.

1,4-Dioxane was not detected in the subsurface soil sample collected within AOC-7. VOCs, SVOCs, PCBs and Pesticides did not exceed their respective NYSDEC concentrations for Unrestricted SCO in the surface soil sample. Total Copper, Total Lead, and Total Zinc were detected at 66.8 ppm, 70 ppm, and 138 ppm respectively, in exceedance of their respective NYSDEC concentrations for Unrestricted SCO of 50 ppm, 63 ppm and 109 ppm. No other metals were detected in exceedance of their applicable criteria. Figure 5 depicts the soil concentrations at MW100 for non-PFAS constituents.

5.8.3 AOC-7; Groundwater Analytical Results

Results from the groundwater sample identified detections of PFAS at the sampled location. At MW100, PFOS was detected in exceedance of the USEPA Health Advisory

level of 70 ppt in drinking water. Figure 6 depicts the groundwater concentrations at MW100 for PFAS. The PFAS detections are summarized below:

• MW100 sampling results detected eighteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 47.1 ppt and PFOS was detected at 595 ppt.

1,4-Dioxane was not detected in the groundwater sample collected within AOC-7. VOCs, SVOCs, PCBs and Pesticides did not exceed their respective concentrations for NYSDEC TOGS 1.1.1. Total Sodium was detected at 135,000 ppb, in exceedance of the NYSDEC TOGS 1.1.1 for drinking water of 20,000 ppb. No other metals were detected in exceedance of the applicable groundwater criteria. Figure 7 depicts the groundwater concentrations for non-PFAS constituents.

5.8.4 AOC-7; Drinking Water Analytical Results

Results from the drinking water sample identified detections of PFAS at the sampled location. However, PFOA and PFOS were not detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. The PFAS detections are summarized below:

• The maintenance building potable well sampling results detected four PFAS compounds, including estimated detections ("J" qualified). PFOA and PFOS were both non-detect in the drinking water sample.

1,4-Dioxane was detected at 0.254 ppb in the drinking water sample. Currently there are no NYDEC regulatory standards or guidance values for 1,4-Dioxane in drinking water. SVOCs and PCBs were not detected. Total Iron, Total Magnesium, and Total Sodium were detected at 434 ppb, 42,700 ppb, and 86,900 ppb respectively, in exceedance of their respective NYSDEC TOGS 1.1.1 standards of 300 ppb, 35,000 ppb and 20,000 ppb. No other metals were detected in exceedance of the applicable drinking water criteria. Figure 7 depicts the groundwater concentrations for non-PFAS constituents.

5.9 AOC-8; Fire Pond - Analytical Results

Two surface water samples were collected from the fire pond on the Site. A sediment sample was also collected from each location in association with the surface water samples.

The surface water and sediment samples collected from the fire pond were analyzed for PFAS and 1,4-Dioxane. Sample results are presented below, and the reported laboratory results are presented in Table 34.

5.9.1 AOC-8; Surface Water Analytical Results

Results from the surface water samples identified detections of PFAS at the sampled locations. At both sampling locations, PFOS was detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. Figure 8 depicts the surface water concentrations at each well for Total PFAS. The PFAS detections are summarized below:

- Fire Pond-01 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 26.1 ppt and PFOS was detected at 214 ppt.
- Fire Pond-02 sampling results detected thirteen PFAS compounds, including estimated detections ("J" qualified). PFOA was detected at 23.8 ppt and PFOS was detected at 195 ppt.

1,4-Dioxane was not detected in any surface water samples collected within AOC-8.

5.9.2 AOC-8; Sediment Analytical Results

Results from the sediment samples identified detections of PFAS at the stormwater outfall locations. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in sediments. Figure 10 depicts the sediment concentrations for PFAS. The PFAS detections are summarized below:

- Fire Pond-01 sampling results detected twelve PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.21 ppb. PFOS was detected at 11.6 ppb.
- Fire Pond-02 sampling results detected ten PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.21 ppb. PFOS was detected at 7.83 ppb.

1,4-Dioxane was not detected in any sediment samples collected within AOC-8.

5.10 AOC-9; North / South Runway - Analytical Results

Surface soil and subsurface soil samples were collected at soil boring locations within AOC-9. Two test borings were completed and converted into permanent monitoring

wells. Groundwater samples were collected from the monitoring wells after well development. Surface and near-surface soil samples were collected from 0 to 6 inches (including the root zone) and 6 to 24 inches below grade. Subsurface soil samples were collected based on subjective field screening of soils, or otherwise directly above the water table.

The soil and groundwater samples were analyzed for PFAS, 1,4-Dioxane, TAL Metals, TCL VOCs, SVOCs, PCBs and Pesticides. Sample results are presented below, and the reported laboratory results are presented in Tables 35 through 40.

5.10.1 AOC-9; Surface and Near-Surface Soils Analytical Results

Results from the surface and near-surface soil samples (collected from 0 to 6 inches and 6 to 24 inches below grade) identified detections of PFAS at both soil boring locations. Currently there are no NYSDEC regulatory standards or guidance values for PFAS in soils. Figure 4 depicts the soil concentrations at each boring for PFAS. The PFAS detections are summarized below:

- MW102 sampling results detected ten PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.42 ppb. PFOS was detected at 1.29 ppb. .
 The near-surface soil sample detected six PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.13 ppb and PFOS at 0.21 ppb.
- MW103 sampling results detected nine PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.85 ppb and PFOS at 0.96 ppb. The nearsurface soil sample detected nine PFAS compounds, including estimated detections ("J" qualified) of PFOA at 0.57 ppb and PFOS at 0.55 ppb.

1,4-Dioxane was not detected in any surface and near-surface soil samples collected within AOC-9. Additionally, Metals, VOCs, SVOCs, PCBs, and Pesticides were not detected in the surface soil samples in exceedance of their respective NYSDEC concentrations for Unrestricted SCO.

5.10.2 AOC-9; Subsurface Soils Analytical Results

Results from the subsurface soil samples identified detections of PFAS at the MW103 soil boring locations. Currently there are no NYSDEC regulatory standards or guidance

values for PFAS in soils. Figure 4 depicts the soil concentrations at each boring for PFAS. The PFAS detections are summarized below:

- MW102 sampling results were non-detect for PFAS.
- MW103 sampling results detected one PFAS compound. PFOA and PFOS were non-detect.

1,4-Dioxane was not detected in any subsurface soil sample collected within AOC-9. Additionally, Metals, VOCs, SVOCs, PCBs, and Pesticides were not detected in the surface soil samples in exceedance of their respective NYSDEC concentrations for Unrestricted SCO.

5.10.3 AOC-9; Groundwater Analytical Results

Results from the groundwater samples identified detections of PFAS at the sampled location. However, PFOA and PFOS were not detected in exceedance of the USEPA Health Advisory level of 70 ppt in drinking water. Figure 6 depicts the groundwater concentrations at each well for PFAS. The PFAS detections are summarized below:

- MW102 sampling results detected seven PFAS compounds, including estimated detections ("J" qualified) of PFOA at 1.26 ppt and PFOS at 1.17 ppt.
- MW103 sampling results detected eight PFAS compounds, including estimated detections ("J" qualified) of PFOS at 1.32 ppt. PFOA was detected at 2.1 ppt.

1,4-Dioxane was not detected in any groundwater sample collected within AOC-9.

At MW102, VOCs, PCBs and Pesticides were not detected in the groundwater sample. The following SVOCs were detected at MW102 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for groundwater: Benzo(a)anthracene at 0.04 ppb, Benzo(a)pyrene at 0.03 ppb, Benzo(b)fluoranthene at 0.03 ppb, Benzo(k)fluoranthene at 0.03 ppb, Chrysene at 0.02 ppb, and Indeno(1,2,3-cd)pyrene at 0.03 ppb. Additionally, the following Metals were detected at MW102 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for groundwater: Total Iron at 2,000 ppb, Total Magnesium at 66,800 ppb, and Total Manganese at 9,436 ppb. No other SVOCs or Metals were detected at MW102 in exceedance of the NYSDEC TOGS 1.1.1 for groundwater. Figure 7 depicts the groundwater concentrations at each well for non-PFAS constituents.

At MW103, VOCs, PCBs and Pesticides were not detected in the groundwater sample. The following SVOCs were detected at MW103 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for groundwater: Benzo(a)anthracene at 0.02 ppb, Benzo(a)pyrene at 0.02 ppb, Benzo(b)fluoranthene at 0.06 ppb, Benzo(k)fluoranthene at 0.02 ppb, and Indeno(1,2,3-cd)pyrene at 0.05 ppb. Additionally, the following Metals were detected at MW103 in exceedance of the respective NYSDEC TOGS 1.1.1 criteria for groundwater: Total Iron at 7,800 ppb, Total Manganese at 3,741 ppb, and Total Sodium at 68,500 ppb. No other SVOCs or Metals were detected at MW103 exceeding the NYSDEC TOGS 1.1.1 standards for groundwater.

5.11 Off-Site Locations - Analytical Results

Forty-one (41) off-Site, drinking water well samples were collected from the area surrounding the Site. The locations of the drinking water wells are shown on Figure 12. The drinking water samples were analyzed for PFAS, 1,4-Dioxane. Sample results are discussed below, and the reported laboratory results are presented in Table 41.

Additionally, six (6) surface water samples were collected from along the Wappinger Creek and a tributary of the Wappinger Creek situated immediately adjacent to and downgradient of the Site. Approximate sample locations and results are shown on Figure 8.

5.11.1 Analytical Results - Off-Site Locations; Drinking Water

Analytical test results were compared to the USEPA Health Advisory Level (HAL) of 70 ppt and the New York State (NYS) promulgated Maximum Contaminant Level (MCL) of 10 ppt each for PFOA and PFOS. Currently there are no USEPA or NYSDEC regulatory standards or guidance values for 1,4-Dioxane in drinking water. Figure 12 depicts the drinking water concentrations of PFOA and PFOS at each well.

Of the forty-one (41) drinking water wells that were sampled, three (3) locations, Map IDs: A14, A15 and Location A1, had results that were reported above the USEPA HAL of 70ppt. Location A1 is situated immediately adjacent to and southeast of the Site while Map IDs A14 & A15 are situated east of Route 376 and north of Hackensack Heights Road.

Analytical test results for Map IDs A4, Location D, A18/Location E, Location D and A34 had reported concentrations of either PFOA or PFOS above the NYS MCL of 10ppt but

below the USEPA HA of 70ppt. Map ID A4 is situated immediately adjacent to the southeastern site boundary. Location D, A18/Location E, Location D and A34 are located east and upgradient of the subject Site.

Analytical test results for all the wells sampled south of New Hackensack Road and west of Route 376 had reported concentrations of PFOA and PFOS below the USEPA HAL and NYSDEC MCL.

5.11.2 Analytical Results - Off-Site Locations; Surface Water

Six (6) off-Site surface water samples were collected as follows:

- One (1) background sample, designated B-1, was collected from a location situated approximately 800 feet upstream of the Site from the Wappingers Creek;
- Sample SW-1 was collected from the Wappingers Creek near the northern perimeter of the Site and upstream of the landfill/balefill;
- Sample SW-2 was collected from the Wappingers Creek downstream of the landfill/balefill;
- Sample SW-3 was collected from the Wappingers Creek just south of Jackson Road;
- Sample SW-4 was collected from an unnamed tributary of the Wappingers Creek that trends northeast/southwest along the Site's eastern perimeter before making an approximate ninety degree turn to trend northwest/southeast along the Site's southern perimeter before draining into the Wappinger's Creek; and
- Sample SW-5 was collected approximately 400 feet downstream of the Site.

The analytical test results indicate that background concentrations of PFOA were 0.761 ppt and PFOS was 0.92 ppt (PFOA/PFOS Total 1.68 ppt). In the Wappingers Creek, the highest reported total concentration of PFOA/PFOS (3.34 ng/L) was from the surface water sample collected west of the landfill/balefill area. The highest concentrations of PFOA/PFOS were detected at the unnamed tributary (total 21.5 ng/L) of the Wappingers Creek located immediately south and downgradient of the Site. The sample collected downgradient from the tributary and within the Wappingers Creek had concentrations of PFOA reported at 1.08 ng/L and PFOS reported at 1.78 ng/L.

6.0 DISCUSSION OF FINDINGS

This SC investigation was conducted to determine whether regulated substances are present at the Site at levels above NYSDEC unrestricted use SCGs values, groundwater standards, or other applicable SCGs for unrestricted use of the Site (DER-10, Section 3.2.1), pursuant to the Order and "P" Site designation. Nine AOCs were identified within the Site prior to the development of the SC Work Plan. The SC Investigation focused on evaluating each of these AOCs individually, as well as several off-Site locations to characterize the Site relative to surface and near-surface soils, subsurface soils, groundwater, surface water, sediment, and drinking water. Based on the results of the investigations, several regulated substances were identified above applicable SCGs:

- AOC-1:
 - PFOA and PFOS in groundwater
- AOC-2:
 - o PFOA and PFOS in groundwater
- AOC-3
 - PFOA and PFOS in groundwater
- AOC-4
 - Total Iron and Total Manganese in groundwater
- AOC-5
 - SVOCs, Total Antimony, Total Iron, Total Manganese, Total Sodium in surface water
 - Acetone in sediment
- AOC-6
 - o PFOA and PFOS in groundwater
 - PFOA, PFOS, and Total Sodium in drinking water
- AOC-7
 - Total Copper, Total Lead, and Total Zinc in subsurface soil
 - o PFOS and Total Sodium in groundwater
 - Total Iron, Total Magnesium and Total Sodium in drinking water
- AOC-8
 - PFOS in surface water

AOC-9

 SVOCs, Total Iron, Total Magnesium, Total Manganese and Total Sodium in groundwater

• OFF-SITE LOCATIONS:

- PFOA and PFOS in surface water
- PFOA and PFOS in drinking water

Additional PFAS compounds were detected in surface soils, subsurface soils, groundwater, surface water, sediment, and drinking water at concentrations above laboratory reporting limits at each AOC in which those respective media were sampled.

The following sections provide a summary and discussion of the SC investigation.

6.1 VOCs, SVOCs, PCBs, Pesticides and Metals in Soils and Sediment

The were no exceedances of NYSDEC Unrestricted Use SCOs for SVOCs, PCBs or Pesticides within the surface soils, subsurface soils or sediments analyzed.

Total Copper (66.8 ppm), Total Lead (70 ppm), and Total Zinc (138 ppm) exceeded their respective NYSDEC Unrestricted SCOs in subsurface soils at MW100. The location of this sample adjacent to the maintenance building septic tank could be indicative of Site activity related impacts. However, the detected metals were not found to have impacted shallow groundwater at this location.

There was a detection of acetone (0.058 ppb) at Outfall-001. This detection exceeds the NYSDEC Unrestricted Use SCO for acetone of 0.05 ppb. However, acetone is known to be a common laboratory artifact and is not considered to be associated with Site operations.

6.2 VOCs, SVOCs, PCBs, Pesticides and Metals in Water

The were no exceedances of NYSDEC Unrestricted Use SCOs for VOCs, PCBs or Pesticides within the surface soils, subsurface soils or sediments analyzed.

Total Iron (7,690 ppb) and Total Manganese (1,657 ppb) exceeded the respective NYSDEC TOGS 1.1.1 criteria in groundwater at MW101, AOC-4. These metals are naturally occurring, but the elevated concentrations may be artifacts of the historic oil spill remedial activities that occurred at this location.

The following detections of metals exceeded their respective NYSDEC TOGS 1.1.1 criteria in water: Total Sodium (157,000 ppb) in the AAG Potable well (AOC-6); Total Sodium (135,000 ppb) in MW100 (AOC-7); Total Iron (434 ppb), Total Magnesium (42,700 ppb) and Total Sodium (86,900 ppb) in the Maintenance Building potable well (AOC-7); Total Iron (2,000 ppb), Total Magnesium (66,800 ppb) and Total Manganese (9,436 ppb) in MW102 (AOC-9); Total Iron (7,800 ppb), Total Manganese (3,741 ppb) and Total Sodium (68,500 ppb) in MW103 (AOC-9). The following SVOCs were also detected in groundwater at AOC-9 in exceedance of their respective NYSDEC Unrestricted SCOs in surface water, but at very low concentrations, less than the laboratory reporting limit ("J" qualified): Benzo(a)anthracene at 0.04 ppb, Benzo(a)pyrene at 0.03 ppb, Benzo(b)fluoranthene at 0.03 ppb, Benzo(k)fluoranthene at 0.03 ppb, Chrysene at 0.02 ppb, and Indeno(1,2,3-cd)pyrene at 0.03 ppb in MW102; Benzo(a)anthracene at 0.02 ppb, Benzo(a)pyrene at 0.02 ppb, Benzo(b)fluoranthene at 0.06 ppb, Benzo(k)fluoranthene at 0.02 ppb, and Indeno(1,2,3-cd)pyrene at 0.05 ppb in MW103. The detected metals are all naturally occurring and not considered to be related to Site activities. Sodium is commonly associated with the use of de-icing agents, whether used on-Site or on adjacent roadways.

Total Antimony (16 ppb), Total Iron (588 ppb), Total Manganese (712 ppb), and Total Sodium (81,300 ppb) exceeded NYSDEC SCOs in surface water at Outfall-001, AOC-5. The following SVOCs were also detected at this location in exceedance of their respective NYSDEC SCOs in surface water, but at very low concentrations, less than the laboratory reporting limit ("J" qualified): Benzo(a)anthracene at 0.04 ppb, Benzo(a)pyrene at 0.02 ppb, Benzo(b)fluoranthene at 0.04 ppb, Benzo(k)fluoranthene at 0.02 ppb, and Chrysene at 0.04 ppb. The presence of these metals and SVOCs at the detected concentrations are most likely a result of the proximity and susceptibility of road run-off collection at Outfall-001 from the immediately adjacent New Hackensack Road.

6.3 PFAS and 1,4-Dioxane

PFAS were detected in surface soil, subsurface soil, groundwater, surface water, sediment at every sampling location examined during the SC Investigation, excluding the sediment sample from Outfall-007, and the subsurface soil sample collected at MW102, which were non-detect for PFAS. Figure 12 shows concentrations of PFAS detected in the drinking water samples.

1,4-Dioxane was detected in groundwater at AOC-2 and AOC-3, and at low concentrations in drinking water at AOC-7 and the off-Site sampling location at 1581 NY-376. There are currently no NYDEC regulatory standards or guidance values for 1,4-Dioxane in water. 1,4-Dioxane was not detected in any soil or sediment sample.

6.3.1 PFAS in Water

PFAS were detected widely across the Site in groundwater, surface water, and potable drinking water wells. Exceedances of the USEPA Health Advisory level of 70 ppt² for PFOS and/or PFOA were detected in the following sampling locations: MW104 (downgradient AFFF testing area); MW-2S and MW-3S (downgradient of the Former Balefill Landfill); MW-20 (downgradient of the Former Dutchess County Landfill); A-21G, A-21R, A-21S, ME-18, MW-4, and MW-6 (AAG Hangars); MW100 (ARFF / Maintenance Building area); Fire Pond-01 and Fire Pond-02 (Fire Pond Surface Water).

PFAS in water was detected in MW-3S at the former Balefill Landfill. Detections in MW-2S, which is also downgradient to the Balefill were also identified. Other downgradient monitoring wells on the Site (i.e. MW101 and MW102), did not display exceedances of applicable criteria for PFOS or PFOA, or otherwise display concentrations of PFAS that could be considered elevated with respect to most sampling locations on the Site. Upgradient sampling location MW104 within the AFFF testing area also displayed elevated concentrations of PFAS. Additionally, upgradient location MW103 displayed some of the lowest PFAS detections of water sampling locations across the Site. In addition, downgradient monitoring wells at the Former Dutchess County Landfill exhibited concentrations and exceedances of PFAS that were relatively low with respect to the Site as a whole.

Elevated concentrations of PFAS in groundwater, including several exceedances of the USEPA Health Advisory level of 70 ppt for PFOA and PFOS were found in pre-existing wells with the AAG Hangars area. Additionally, PFOA and PFOS were also detected in excess of the USEPA criteria in the AAG potable drinking water well. Though substantial investigative work and remedial efforts have occurred to address historical CVOC contamination in this area, remedies selected and put into effect following prior

-

² The USEPA Health Advisory level of 70 ppt for drinking water was used for comparison purposes.

environmental investigations in this area were not designed to target and treat PFAS contamination.

The Firefighting AFFF Testing Area, Fire Pond, and ARFF / Maintenance Building areas all exhibited elevated concentrations of PFAS in groundwater and surface water. These three AOCs are each associated with AFFF application, storage, or ARFF operation in some manner. As such, AFFF and ARFF storage and operation may have contributed to localized PFAS contamination. Associated stormwater runoff from historic AFFF applications and ARFF also may have contributed to the elevated PFAS detections within these areas.

6.3.2 PFAS in Soils and Sediment

PFAS were detected in the surface soil, subsurface soil and sediment samples at each AOC in which these media were sampled. PFAS concentrations in soils generally displayed the same relative trends as the groundwater and surface water detections described above. However, there are currently no NYSDEC regulatory standards or guidance values for PFAS in soils.

6.3.3 Additional Discussions of PFAS Results

PFAS detections were exhibited in samples collected from the three off-Site drinking water wells above the HAL of 70 ppt. Each of these sampling locations exists Northeast and upgradient of the Site hydraulically. This suggests there may be other localized or regional sources of PFAS contamination.

PFAS are widely used in consumer products. According to ITRC (2017) the following commercial and consumer products have been found to contain PFAS:

- paper and packaging
- clothing and carpets
- outdoor textiles and sporting equipment
- ski and snowboard waxes
- non-stick cookware
- cleaning agents and fabric softeners
- polishes and waxes, and latex paints
- pesticides and herbicides

- hydraulic fluids
- windshield wipers
- paints, varnishes, dyes, and inks
- adhesives
- medical products
- personal care products (for example, shampoo, hair conditioners, sunscreen, cosmetics, toothpaste, dental floss)

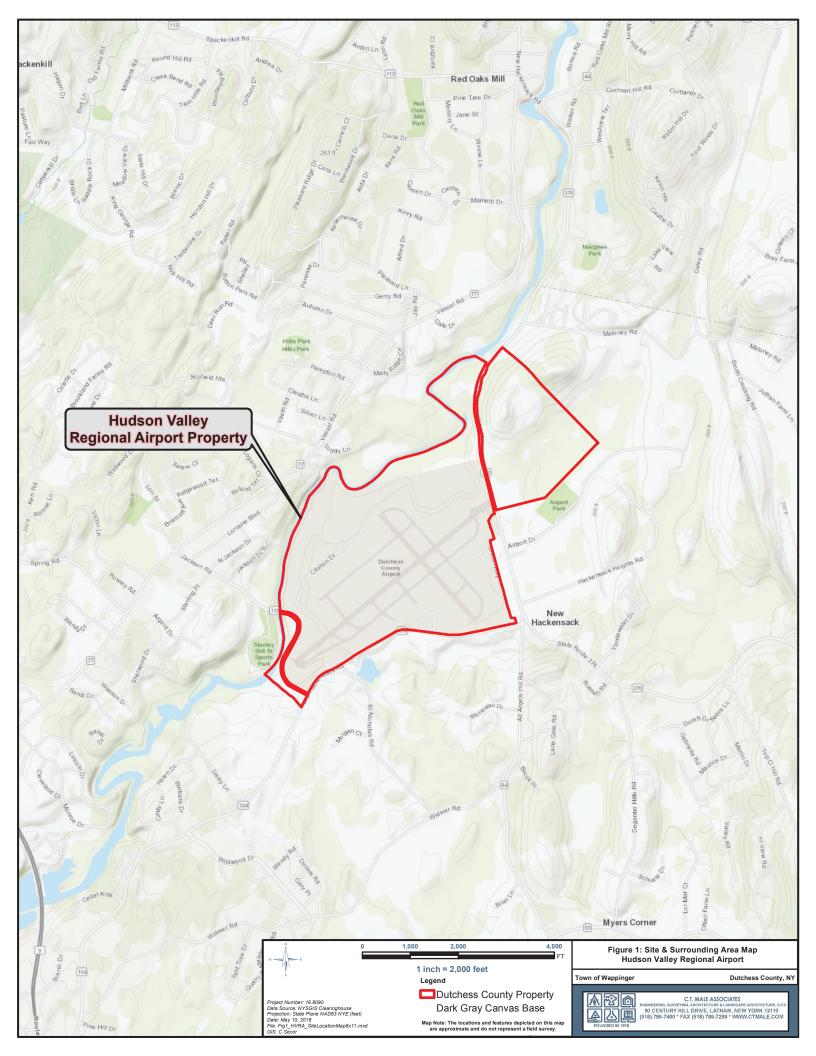
As described within the ITRC Fact Sheet on Environmental Fate and Transport (March 2018), landfills are demonstrated sources of PFAS due to the prevalence of PFAS usage in materials and the wide range of materials deposited within landfills. It is further noted within the Fact Sheet that landfills containing PFAS sources are expected to release PFAS at a "slow but relatively steady rate for decades following initial placement" of the waste.

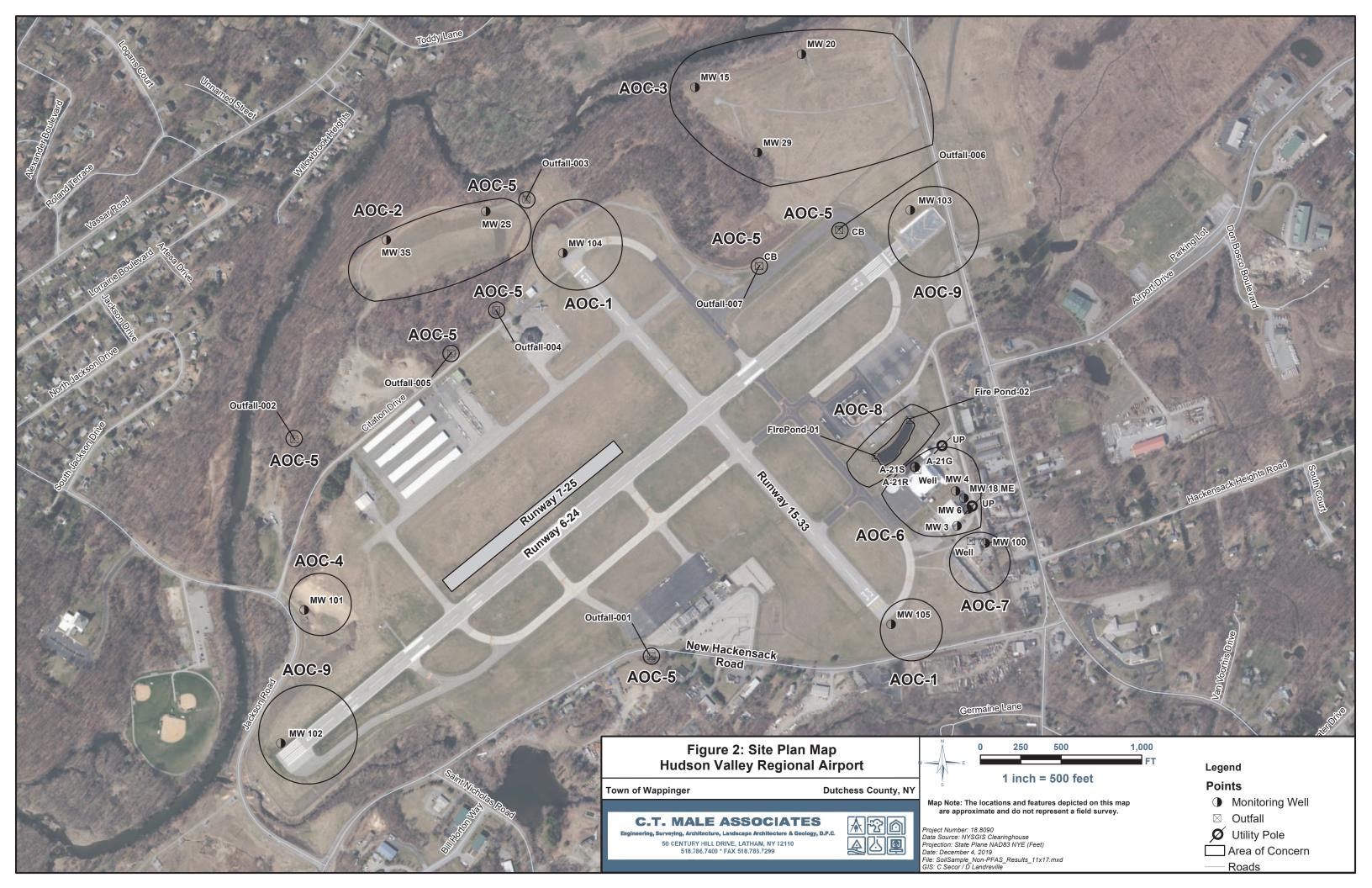
As described within the ITRC Fact Sheet on Environmental Fate and Transport (March 2018), PFAS could be concentrated in sewage sludge through the treatment process and, depending on waste management and disposal practices, could contaminate groundwater, surface water, or both.

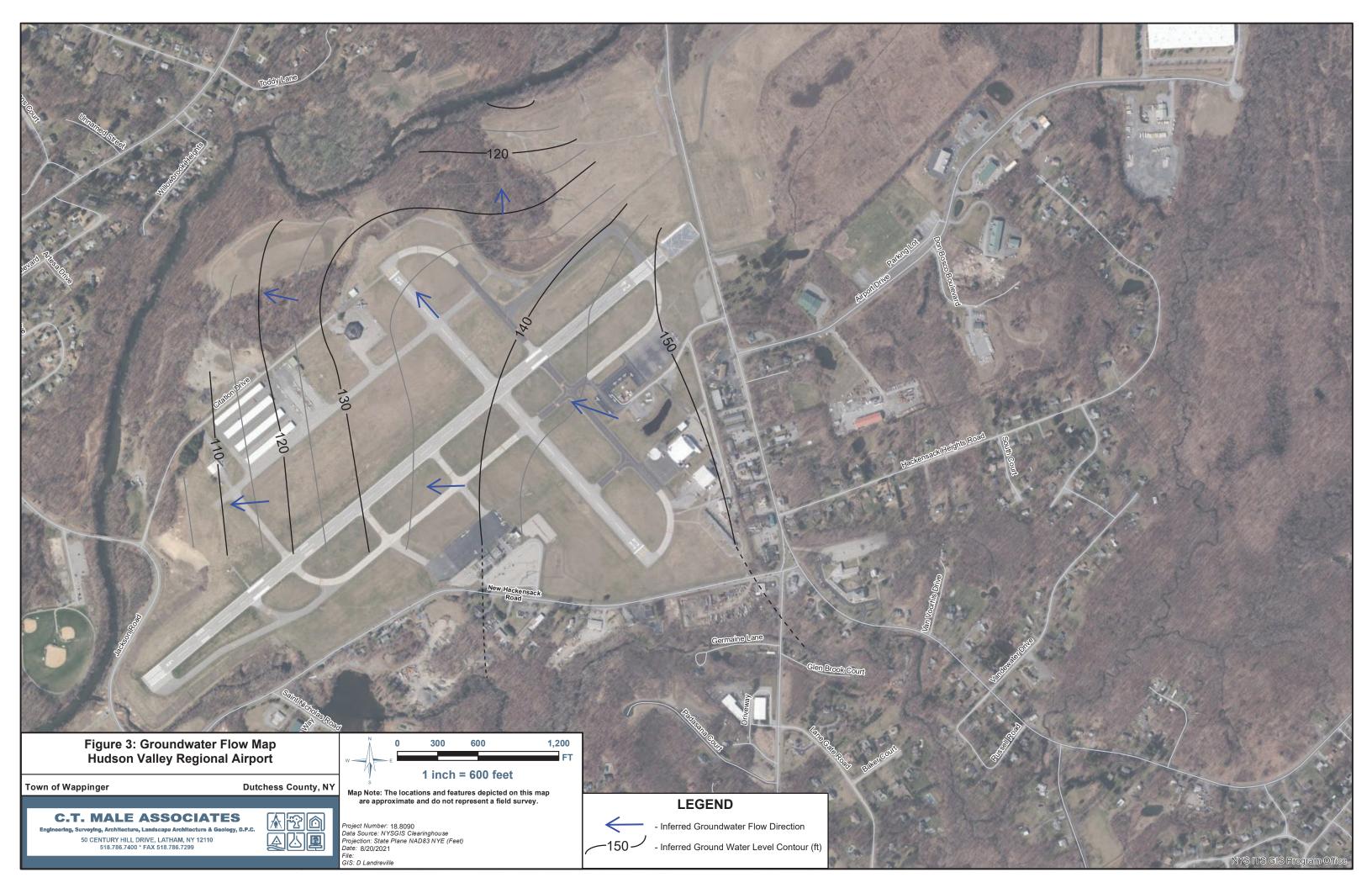
A national study for perfluoroalkyl substances in soils conducted in 2016³ determined that PFAS are ubiquitous in background soils. The study had a range of detected PFAS concentrations in North America of 145-6,080 ppt within the soil samples collected.

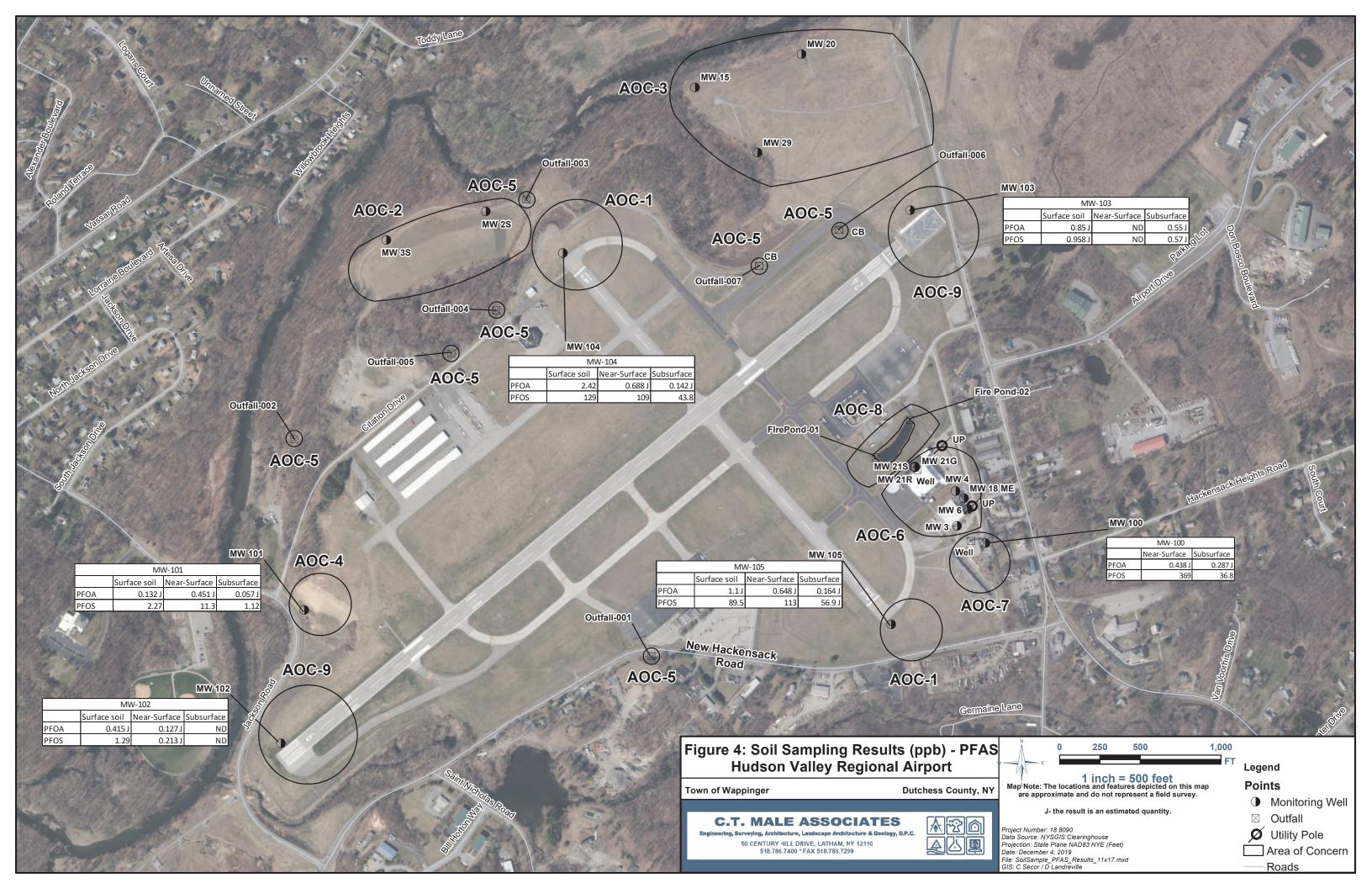
In addition, a background study of shallow soil samples was conducted statewide in Vermont⁴ and the report was issued in May 2019. This study found that PFAS were widespread in shallow Vermont soils. In particular, PFOS detections ranged from 0.106 to 9.7 ppb and PFOA detections ranged from 0.052 to 4.9 ppb.

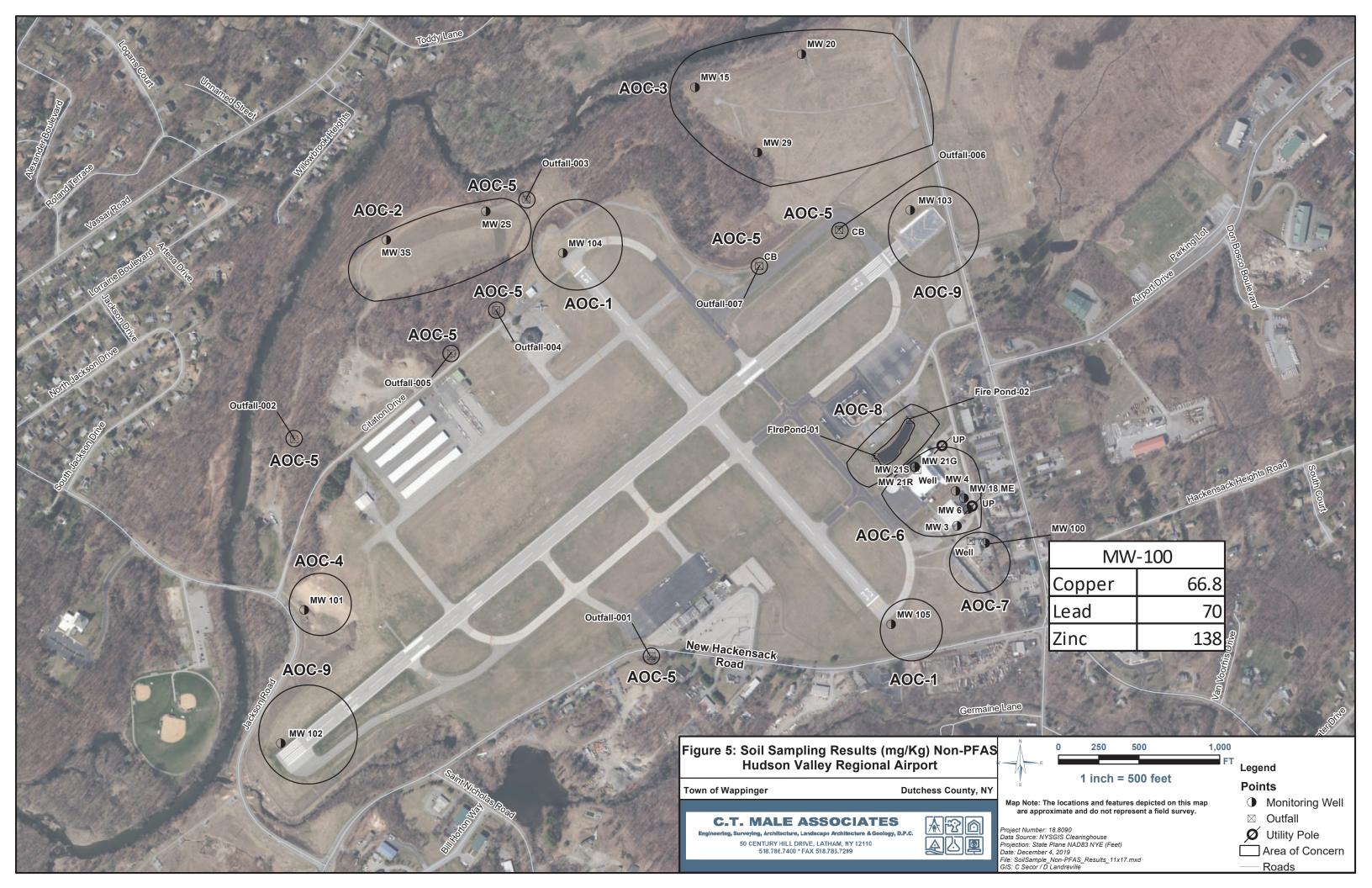
³ Rankin, Keegan & A Mabury, Scott & M Jenkins, Thomas & Washington, John. (2016). A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere. 161. 333-341. 10.1016/j.chemosphere.2016.06.109.

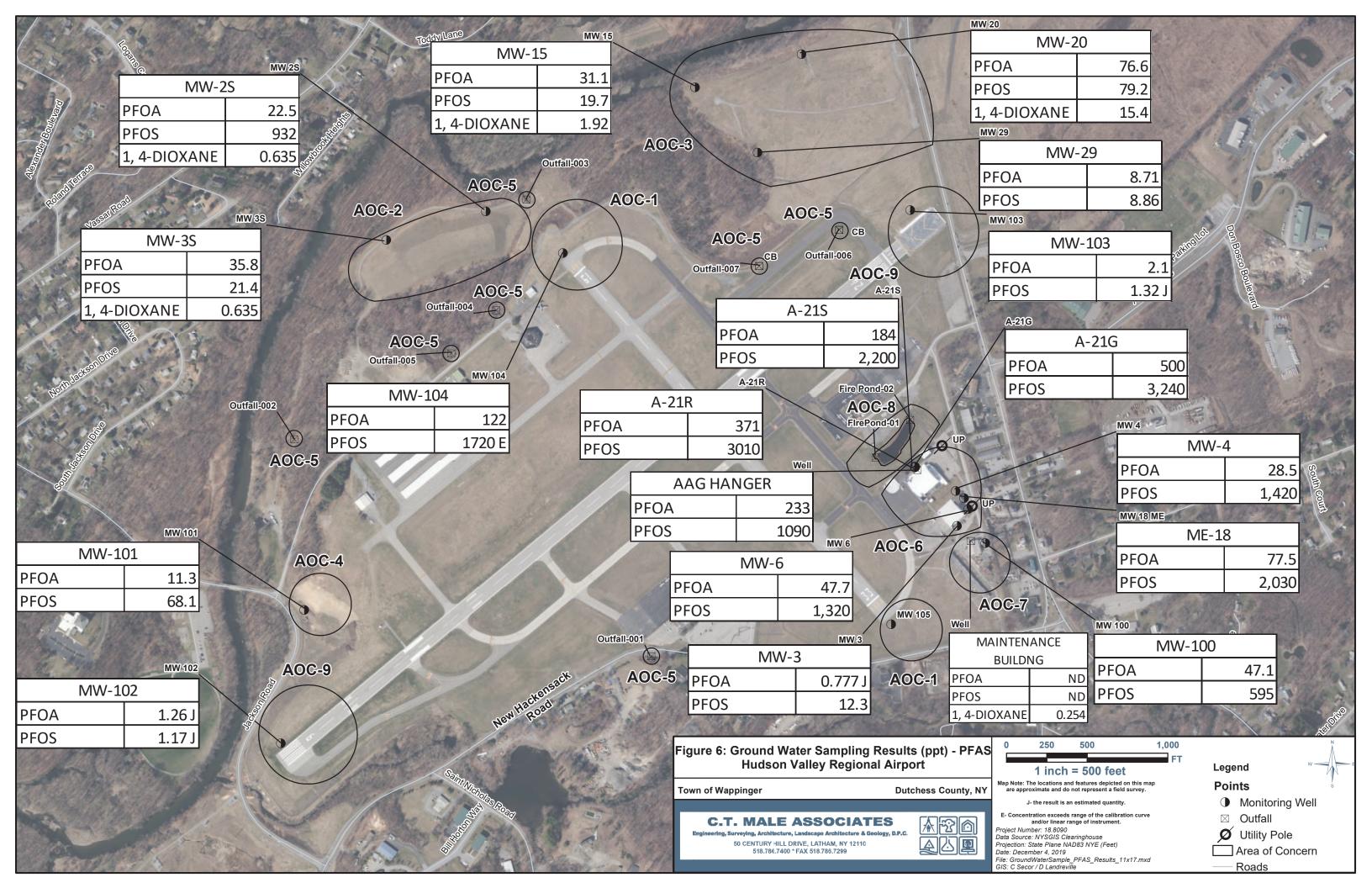

⁴ Zhu, et al. 2019. PFAS Background in Vermont Shallow Soils

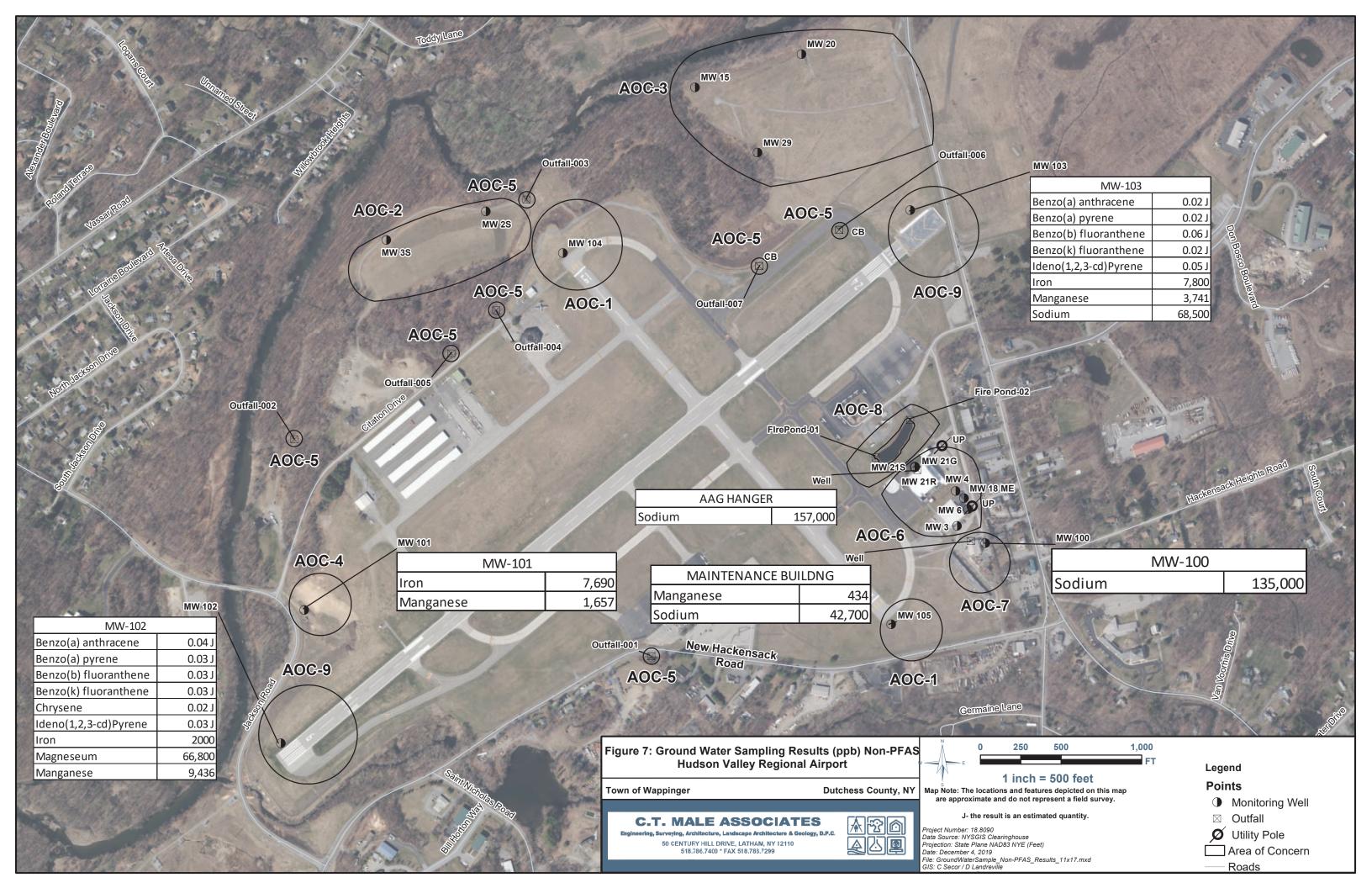

7.0 REFERENCES

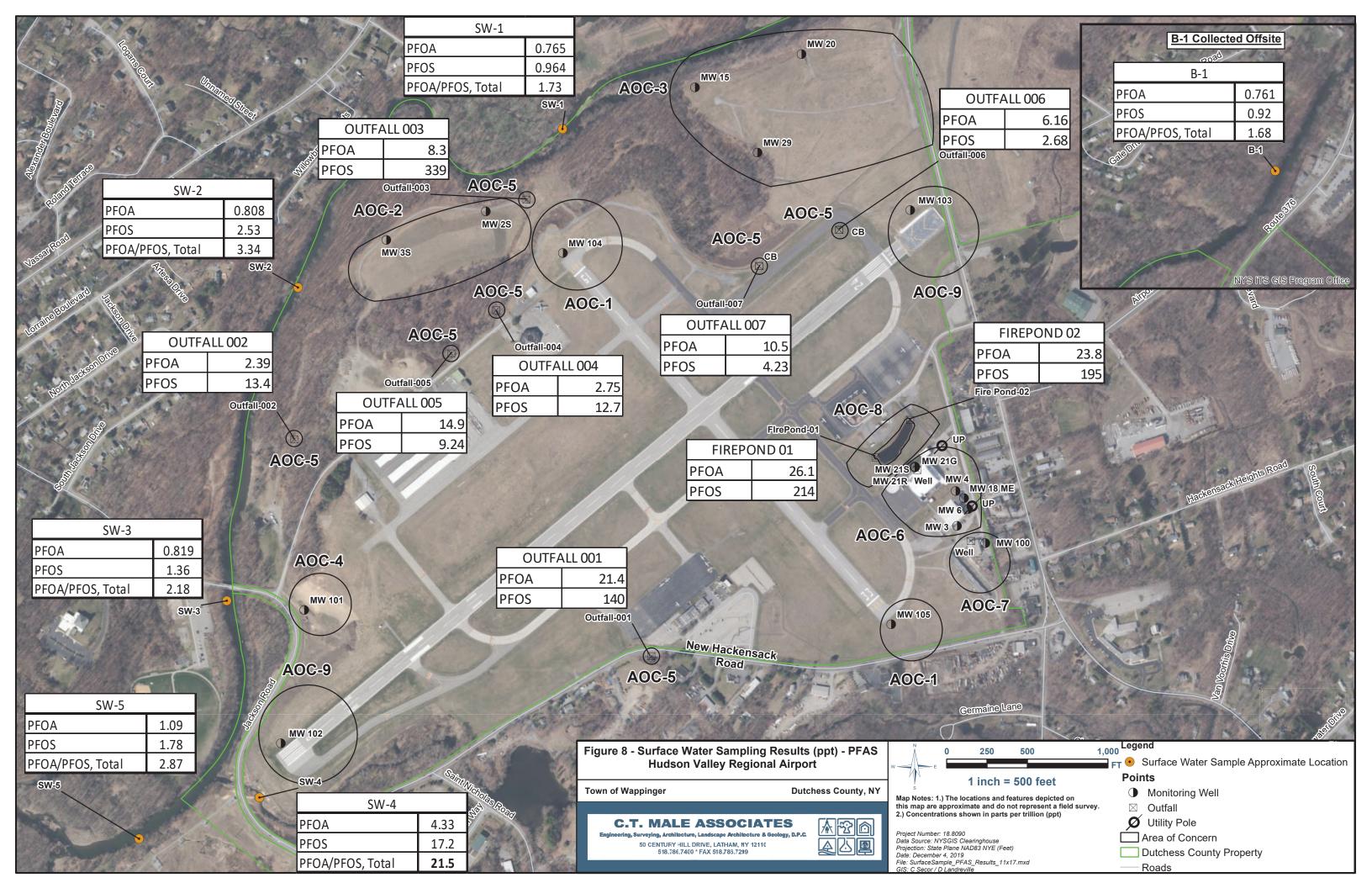

- Budnik, R.T.; Walker, J.R.; Menking, K. (2010). *Natural Resources Inventory of Dutchess County, Chapter 3: Geology and Topography of Dutchess County, NY*. Retrieved from dutchessny.gov
- C.T. Male, 2018a. Records Search Report: Hudson Valley Regional Airport Site (No. 314129): Town of Wappinger, Dutchess County, New York. C.T. Male Associates Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C., May 2018.
- C.T. Male, 2018b. Site Characterization Investigation Work Plan: Hudson Valley Regional Airport Site (No. 314129): Town of Wappinger, Dutchess County, New York. C.T. Male Associates Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C., July 2019.
- EDR, 2017. EDR First Search Report with Geocheck® for Saint-Gobain ADFORS facility, 14770 East Avenue, Albion, NY, December 8, 2017.
- ITRC, 2018. Environmental Fate and Transport for Per- and Polyfluoroalkyl Substances. Washington, D.C.: ITRC, PFAS Team.
- ITRC, 2018. Regulations, Guidance, and Advisories for Per- and Polyfluoroalkyl Substances (PFAS). Washington, D.C.: ITRC, PFAS Team.
- NYSDEC, 1998. Technical and Operational Guidance Series (TOGS) Memorandum 1.1.1-Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Division of Water, Albany, re-issued June 1998, and addendum sheets.
- NYSDEC, 2003. Waste Management of New York (Towpath) Decision of the Commissioner and SEQRA findings statement. February 10, 2003.
- NYSDEC, 2006. Soil Cleanup Objectives (SCOs) Title 6 Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Subpart 375-6.
- NYSDEC, 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May 2010.

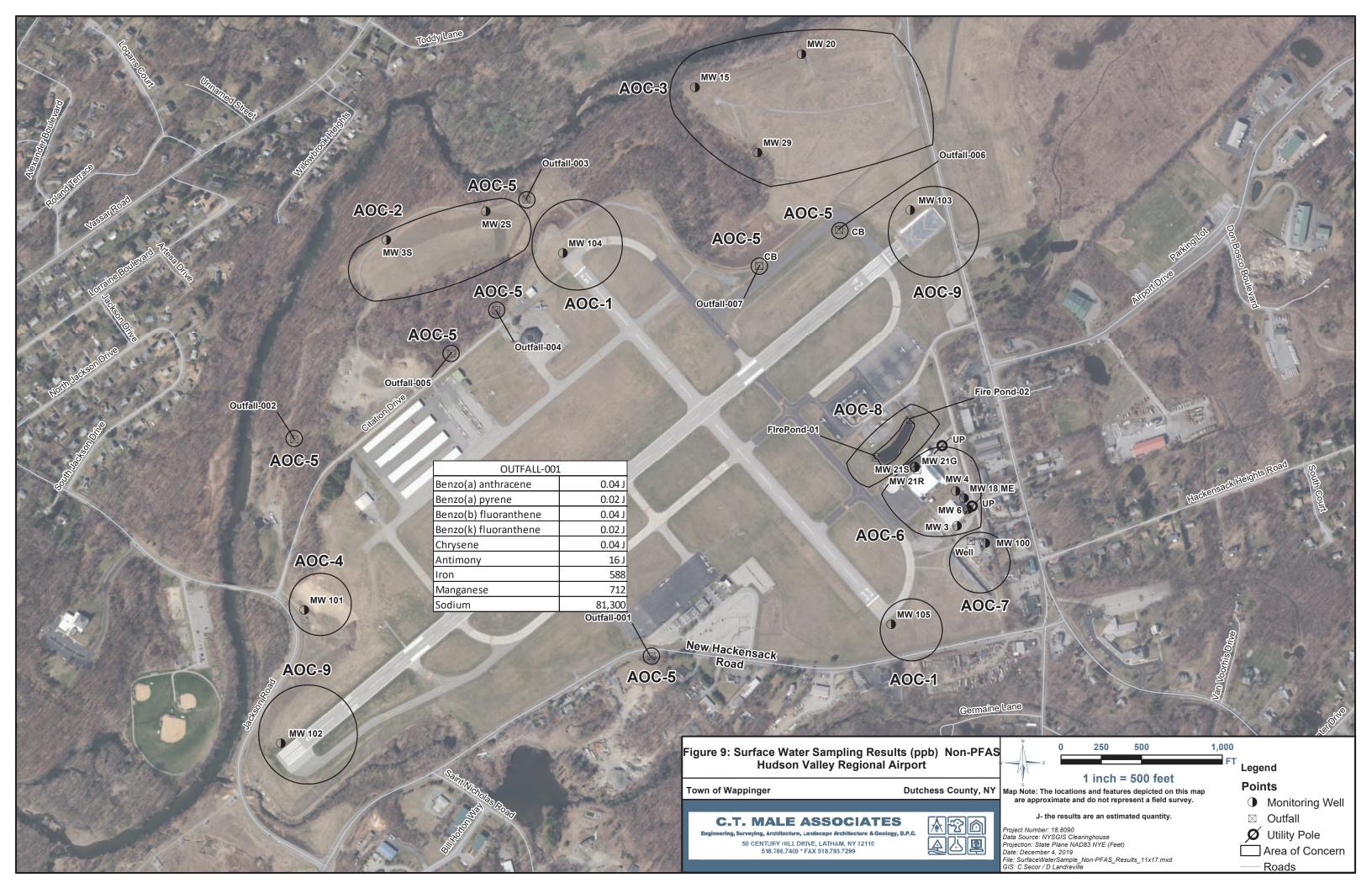

- NYSDEC, 2017b. NYSDEC, Division of Environmental Remediation, Environmental Site Remediation Database Search Detail Site Record. Site Name: Flagship Hangar (No. 314101), May, 2018.
- NYSDEC, 2017b. NYSDEC, Division of Environmental Remediation, Environmental Site Remediation Database Search Detail Site Record. Site Name: Former IBM Hangar (No. 314078), May, 2018.
- Rankin, Keegan & A. Mabury, Scott & M. Jenkins, Thomas & Washington, John, 2016. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere. 161. 333-341. 10.1016/j.chemosphere.2016.06.109.
- USEPA, 2016. Lifetime Health Advisories and Health Effects Support Documents for PFOA and PFOS. 18 FR 3325, May 2016. United States' Environmental Protection Agency (USEPA).
- USDA, 2018. Natural Resources Conservation Service Web Soil Survey for Dutchess County. United States Department of Agriculture (USDA). https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
- Zhu, et al. 2019. PFAS Background in Vermont Shallow Soils. February 8, 2019. University of Vermont and Sanborn, Head & Associates.

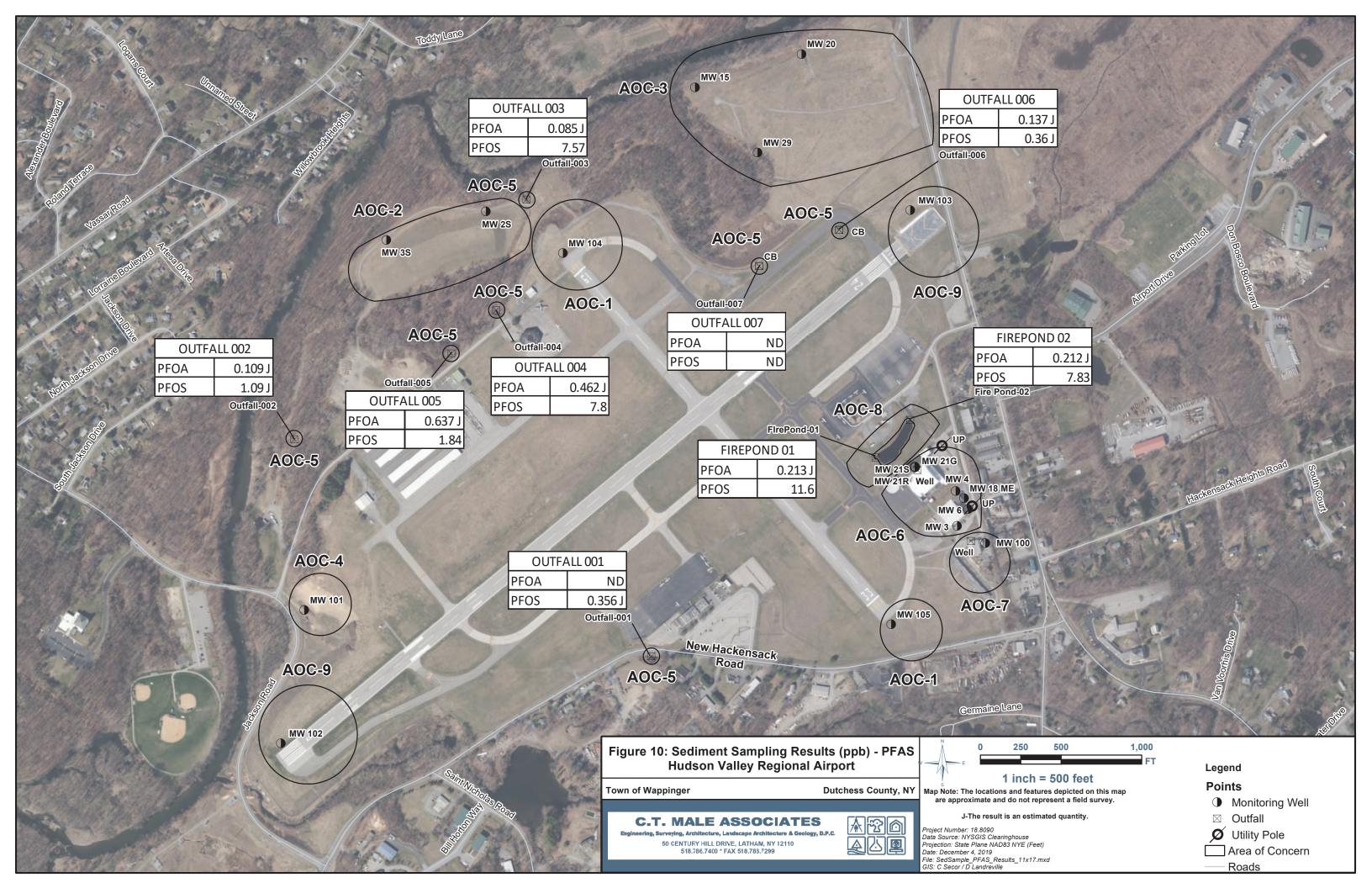

FIGURES

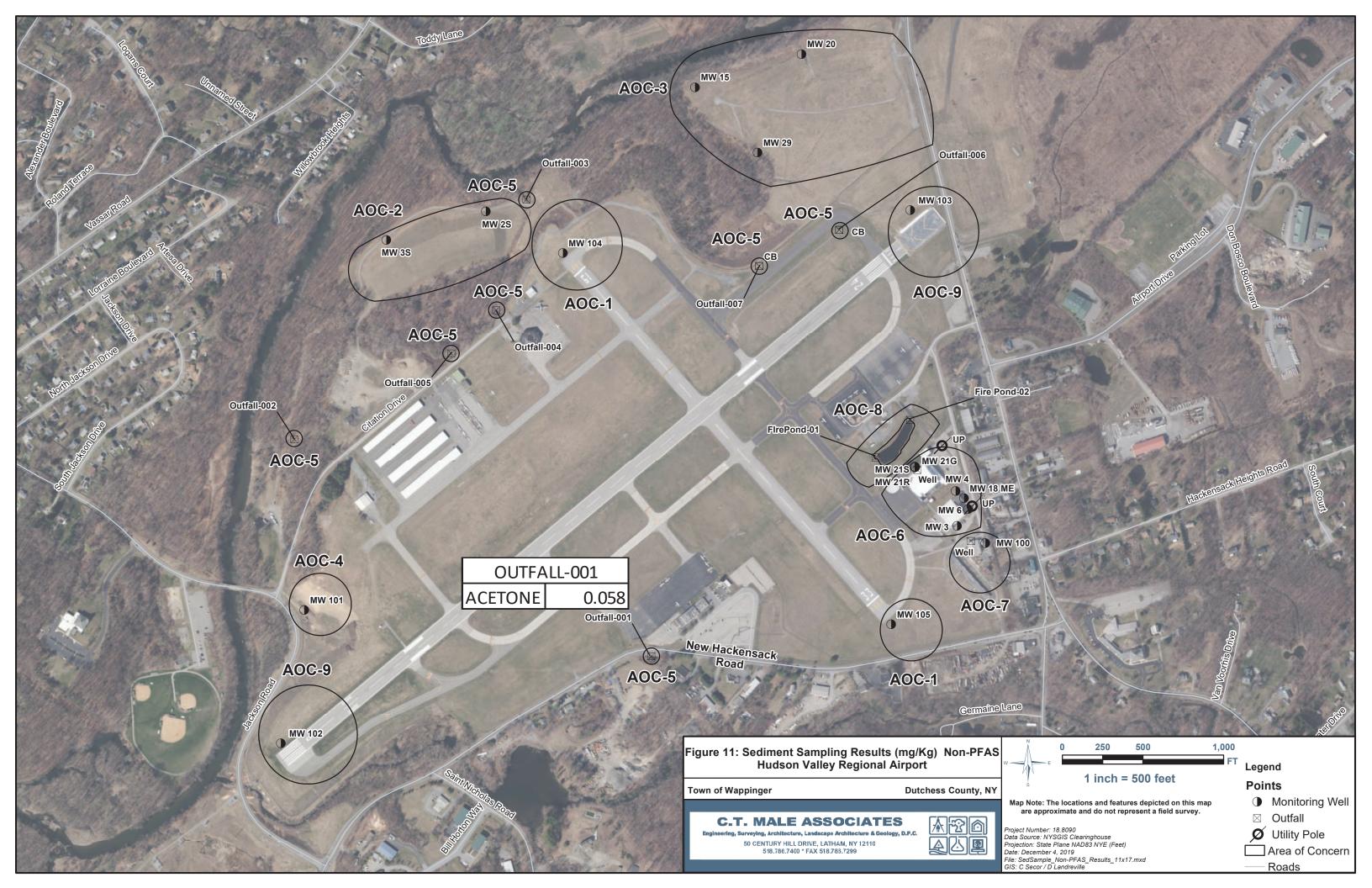


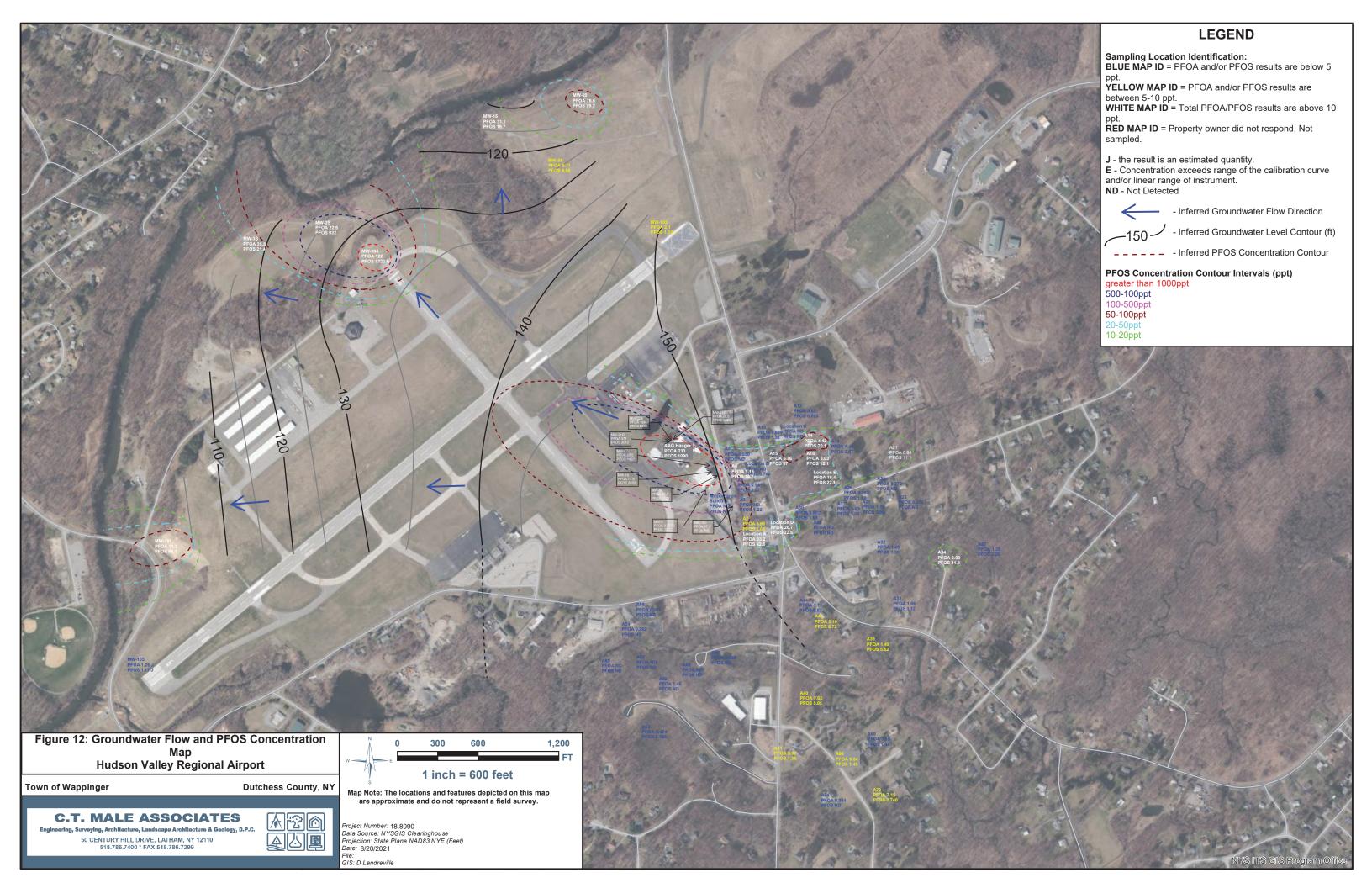


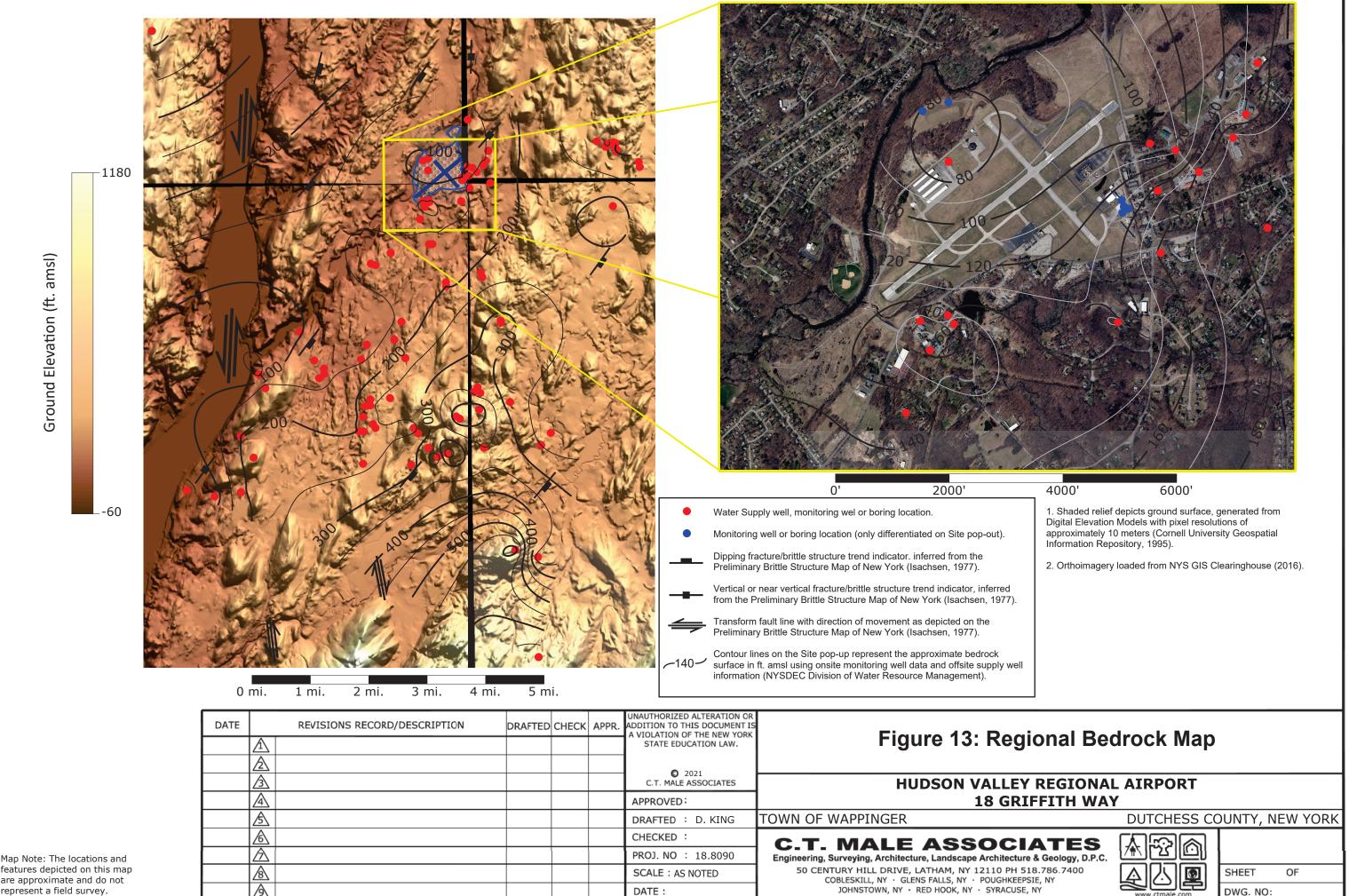












SCALE: AS NOTED

DWG. NO:

DATE:

features depicted on this map are approximate and do not represent a field survey.

TABLES

Table 1 - AOC-1, Firefighting AFFF Testing Area - PFAS and 1,4-D

		SAMPLE ID:		HVR	A-MW104-19	0809		HVRA	\-MW104-19	0809
		LAB ID:			L1935927-11			L1	935927-11 F	₹1
		COLLECTION DATE:			8/9/2019				8/9/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM										
1,4-Dioxane	123-91-1	NS	ND		0.15	0.0339	-		-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.89	1.15	-		-	-
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	5.68		1.89	1.26	-		-	-
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.89	0.761	-		-	-
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.89	0.614	-		-	-
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	151	J	1.89	0.225	-		-	-
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	113		1.89	0.386	-		-	-
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.89	0.928	-		-	-
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.53	J	1.89	0.288	-		-	-
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.89	0.352	-		-	-
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	47.7		1.89	0.652	-		-	-
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	92.6		1.89	0.213	-		-	-
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	3030	E	1.89	0.356	5420		20	3.76
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	710		1.89	0.311	-		-	-
Perfluorononanoic Acid (PFNA)	375-95-1	NS	22.6		1.89	0.295	-		-	-
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	16.8		1.89	0.549	-		-	-
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	1720	E	1.89	0.477	2280		20	5.04
Perfluorooctanoic Acid (PFOA)	335-67-1	70	122		1.89	0.223	-		-	-
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	205		1.89	0.375	-		-	-
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND	J	1.89	0.235	-		-	-
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND	J	1.89	0.31	-		-	-
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.89	0.246	-		-	-
PFOA/PFOS, Total			1842		1.89	0.223	-		-	-

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- R Analytical results are from sample re-analysis.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 1A - AOC-1, Firefighting AFFF Testing Area - PFAS and 1,4-D

		SAMPLE ID:		Н	VRA-MW104-	-0.5		ı	IVRA-MW104-	-2.0		HV	RA-MW104	9.5		HV	RA-MW105	-0.5		H	IVRA-MW105-2	2.0		HV	/RA-MW105-	-4.0
		LAB ID:			L1936143-15	5			L1936143-16	6		- 1	L1935085-09	9			L1936143-1	В			L1936143-19	,			L1935085-12	2
		COLLECTION DATE:			8/12/2019				8/12/2019				8/6/2019				8/12/2019				8/12/2019				8/6/2019	
		SAMPLE DEPTH:			0.0' - 0.5'				0.5' - 2.0'				9.5' - 10.5'				0.0' - 0.5'				0.5' - 2.0'				4.0' - 5.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾									ı															
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM											•															
1,4-Dioxane	123-91-1	0.1	ND		0.00756	0.00193	ND		0.00743	0.00189	-		-	-	ND		0.0108	0.00276	ND		0.00824	0.0021	-	-	-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)									•															
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.04	0.3	ND		1.06	0.303	ND		1.02	0.294	ND		1.45	0.416	ND		0.953	0.274	ND		1.02	0.294
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	0.441	J	1.04	0.187	ND		1.06	0.19	5.36		1.02	0.184	ND		1.45	0.26	ND		0.953	0.171	4.03	J	1.02	0.184
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.04	0.088	ND	J	1.06	0.089	ND	J	1.02	0.087	0.262	J	1.45	0.122	ND		0.953	0.081	ND	J	1.02	0.087
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND	J	1.04	0.21	ND	J	1.06	0.213	ND	J	1.02	0.206	ND	J	1.45	0.292	ND		0.953	0.192	ND	J	1.02	0.206
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.04	0.041	0.111	J	1.06	0.041	ND		1.02	0.04	ND		1.45	0.057	ND		0.953	0.037	0.075	J	1.02	0.04
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	0.934	J	1.04	0.024	0.268	J	1.06	0.024	ND		1.02	0.023	1.46		1.45	0.033	0.807	J	0.953	0.022	0.082	J	1.02	0.023
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	2.89		1.04	0.16	0.73	J	1.06	0.162	ND		1.02	0.157	2.47		1.45	0.222	0.796	J	0.953	0.146	ND		1.02	0.157
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.174	J	1.04	0.07	ND		1.06	0.071	ND	J	1.02	0.069	0.953	J	1.45	0.097	0.529	J	0.953	0.064	ND	J	1.02	0.069
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	0.128	J	1.04	0.073	ND		1.06	0.074	ND	J	1.02	0.072	0.492	J	1.45	0.102	0.279	J	0.953	0.067	ND	J	1.02	0.072
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	0.428	J	1.04	0.142	0.516	J	1.06	0.144	ND		1.02	0.14	ND		1.45	0.198	0.223	J	0.953	0.13	ND		1.02	0.14
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.431	J	1.04	0.047	0.143	J	1.06	0.048	ND		1.02	0.046	0.304	J	1.45	0.065	0.185	J	0.953	0.043	ND	J	1.02	0.046
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	16.6	J	1.04	0.063	12.1		1.06	0.064	3.65		1.02	0.062	6.16		1.45	0.088	5.57		0.953	0.058	4.77		1.02	0.062
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	1.91		1.04	0.055	0.795	J	1.06	0.056	0.138	J	1.02	0.054	0.964	J	1.45	0.076	0.723	J	0.953	0.05	0.342	J	1.02	0.054
Perfluorononanoic Acid (PFNA)	375-95-1	NS	1.43		1.04	0.078	0.398	J	1.06	0.079	ND		1.02	0.077	0.878	J	1.45	0.109	0.838	J	0.953	0.072	0.128	J	1.02	0.077
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	6.47		1.04	0.102	ND		1.06	0.104	ND		1.02	0.1	ND		1.45	0.142	ND		0.953	0.093	0.142	J	1.02	0.1
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	129		1.04	0.136	109		1.06	0.137	43.8		1.02	0.133	89.5		1.45	0.188	113		0.953	0.124	56.9	J	1.02	0.133
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	2.42		1.04	0.044	0.688	J	1.06	0.044	0.142	J	1.02	0.043	1.1	J	1.45	0.061	0.648	J	0.953	0.04	0.164	J	1.02	0.043
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	0.954	J	1.04	0.048	0.335	J	1.06	0.049	ND		1.02	0.047	2		1.45	0.067	1.34	J	0.953	0.044	0.219	J	1.02	0.047
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.04	0.056	ND		1.06	0.057	ND		1.02	0.055	0.137	J	1.45	0.078	0.071	J	0.953	0.052	ND		1.02	0.055
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.04	0.214	ND		1.06	0.216	ND		1.02	0.21	ND		1.45	0.297	ND		0.953	0.195	ND		1.02	0.209
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	0.318	J	1.04	0.049	0.081	J	1.06	0.049	ND	J	1.02	0.048	0.648	J	1.45	0.068	0.519	J	0.953	0.045	ND	J	1.02	0.048
PFOA/PFOS, Total			131.4		1.04	0.044	109.7	J	1.06	0.044	43.9	J	1.02	0.043	90.6	J	1.45	0.061	113.6	J	0.953	0.04	57.1	J	1.02	0.043
GENERAL CHEMISTRY		(mg/kg)																			-					-
Solids, Total	NONE		93.2		0.1	NA	93.7		0.1	NA	94.7		0.1	NA	68.6		0.1	NA	94.3		0.1	NA	93.9		0.1	NA

ug/kg = ppb or parts per billion
Results that are shaded blue indicate a RL or MDL above the AWQS.
Results that are shaded yellow and in bold indicate a concentration above the AWQS.

⁽¹⁾ NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006. J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

Table 2 - AOC-2, Former Balefill Landfill - PFAS and 1,4-D

		SAMPLE ID:		HVR	A-BFL-2S-19	0801		HVF	RA-BFL2S-190	801	I	HVI	RA-BFL-3S-19	0801
		LAB ID:			L1934623-02				1934623-02 R				L1934623-01	
		COLLECTION DATE:			8/1/2019				8/1/2019				8/1/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾			*****		ı		******		ı		*********	
ANALYTE	CAS		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM		(ug/l)					•				•			
1,4-Dioxane	123-91-1	NS	0.635		0.15	0.0339	-		-	-	0.635		0.139	0.0314
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)												
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.97	1.19	-		-	-	ND		1.99	1.21
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.97	1.31	-		-	-	ND		1.99	1.33
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.97	0.791	-		-	-	1.62	J	1.99	0.801
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.97	0.638	-		-	-	0.793	J	1.99	0.645
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	7.11		1.97	0.234	-		-	-	2.31		1.99	0.237
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	9.43		1.97	0.402	-		-	-	13.6		1.99	0.406
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.97	0.964	-		-	-	ND		1.99	0.976
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.97	0.299	-		-	-	0.307	J	1.99	0.303
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.97	0.366	-		-	-	ND		1.99	0.37
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	16.8		1.97	0.677	-		-	-	ND		1.99	0.685
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	5.37		1.97	0.222	-		-	-	8.99		1.99	0.224
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	663		1.97	0.37	-		-	-	7.76		1.99	0.374
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	58.2		1.97	0.323	-		-	-	13.2		1.99	0.327
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.547	J	1.97	0.307	-		-	-	0.916	J	1.99	0.311
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.97	0.571	-		-	-	0.741	J	1.99	0.578
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	932		1.97	0.496	-		-	-	21.4		1.99	0.502
Perfluorooctanoic Acid (PFOA)	335-67-1	70	22.5		1.97	0.232	-		-	-	35.8		1.99	0.235
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	10.8		1.97	0.39	-		-	-	11.2		1.99	0.394
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.97	0.244	-		-	-	ND		1.99	0.247
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.97	0.322	-		-	-	ND		1.99	0.326
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.97	0.256	-		-	-	ND		1.99	0.259
PFOA/PFOS, Total			955		1.97	0.232	-		-	-	57.2		1.99	0.235

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded gray indicate a RL or MDL above the AWQS.

 $[\]label{eq:continuity} \textbf{J} - \textbf{Estimated Value} ~ \underline{\geq} ~ \textbf{the Method Detection Limit (MDL)} ~ \textbf{and} < \textbf{the Limit of Quantitation or Reporting Limit (LOQ or RL)}$

Table 3 - AOC-2, Former Balefill Landfill - SVOCs

Part			SAMPLE ID:		HVR	A-BFL-2S-19	0801		HVR	A-BFL-2S-19	0801		HVR	A-BFL-3S-19	0801
SAMPLE CAS C			LAB ID:			L1934623-02			L1	934623-02 F	R1			_1934623-01	
MALYTE CAS (9gf) Core Q RL MDL			COLLECTION DATE:			8/1/2019				8/1/2019				8/1/2019	
MALYTE SCAN Conc			SAMPLE MATRIX:			WATER				WATER				WATER	
SEMPOLATILE ORGANICS BY GCMS			NY-AWQS ⁽¹⁾												
12.6 5 Telavachirorhomozome	ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
24-Dehitopropend	SEMIVOLATILE ORGANICS BY GC/MS														
24-Dintitophenel 151-26-5 10	1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44	-		-	-	ND		10	0.44
24-Dintrolulame	2,4-Dichlorophenol	120-83-2	1	ND		5	0.41	-		-	-	ND		5	0.41
28-Dintrolutenee	2,4-Dinitrophenol	51-28-5	10	ND		20	6.6	-		-	-	ND		20	6.6
2-Niro-camine 88-7-4 5 ND 5 0.	2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2	-		-	-	ND		5	1.2
3.3-Dictorobenzidine	2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93	-		-	-	ND		5	0.93
3-Methylphenold 108-39-4/108-44-5 NS 0.72 J 5 0.48 - ND 5 0.48 3-Microalline 99-09-2 5 ND 5 0.81 - ND 5 0.81 ND 5 0.81 ND 0.81 ND 0.81 ND 0.81 ND N	2-Nitroaniline	88-74-4	5	ND		5	0.5	-		-	-	ND		5	0.5
SAINTGAINLINE 99.09.2 5 ND 5 0.81 - - - ND 5 0.81	3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6	-		-	-	ND		5	1.6
4-Chloroaniline 106-47-8 5 ND 5 1.1 ND 5 1.1 4-Nitroaniline 100-16 5 ND 5 0.8 ND 5 0.8 4-Nitroaniline 1912-24-9 7.75 ND 10 0.76 ND 10 0.76 Bis(2-chloroethoxy)methane 111-91-1 5 ND 5 0.8 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 5 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 ND 2 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 2 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 ND 0.2 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 0.4 ND 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 0.4 ND 0.5 0.5 Bis(2-chloroethy)ether 111-44-4 1 0.4 ND 0.5 0.6 0.5 Bis(2-chloroethy)ether 111-44-4 1 0.0 ND 0.1 0.0 0.0 0.0 Bis(2-chloroethy)ether 111-44-4 1 0.0 ND 0.1 0.0 0.0 0.0 Bis(2-chloroethy)ether 111-44-4 1 0.0 ND 0.1 0.0 0.0 0.0 Bis(2-chloroethy)ether 111-44-4 1 0.0 ND 0.1 0.0 0.0 0.0 0.0 Bis(2-chloroethy)ether 111-44-4 1 0.0 ND 0.1	3-Methylphenol/4-Methylphenol	108-39-4/106-44-5	NS	0.72	J	5	0.48	-		-	-	ND		5	0.48
Aftizaniline	3-Nitroaniline	99-09-2	5	ND		5	0.81	-		-	-	ND		5	0.81
Atrazine	4-Chloroaniline	106-47-8	5	ND		5	1.1	-		-	-	ND		5	1.1
Sist	4-Nitroaniline	100-01-6	5	ND		5	8.0	-		-	-	ND		5	0.8
Sis(2-chloroethyl)ether 111-44-4 1 ND 2 0.5 ND 2 0.5	Atrazine	1912-24-9	7.5	ND		10	0.76	-		-	-	ND		10	0.76
Hexachlorocyclopentadiene	Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5	-		-	-	ND		5	0.5
Nitrobenzene 98-95-3 0.4 ND 2 0.77 ND 2 0.77 Phenol 108-95-2 1 ND 5 0.57 O.57 O.5 O.5 O.57 O.5 O.5 O.57 O.5 O.5 O.5 O.57 O.5	Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5	-		-	-	ND		2	0.5
Phenol 108-95-2 1 ND 5 0.57 - - - ND 5 0.57 Total SVOCs - - - ND 5 0.57 SEMIVOLATILE ORGANICS BY GC/MS-SIM - - - - ND 5 0.57 SEMINOLATILE ORGANICS BY GC/MS-SIM - - - - ND - - - - ND - - - Semigraph thalene 91-57-6 NS 0.17 B 0.1 0.02 0.04 J 0.1 0.02 ND 0.1 0.02 Benzo(a)anthracene 56-55-3 0.002 ND ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02 Benzo(a)pyrene 50-32-8 ND ND ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02 Benzo(b)fluoranthene 205-99-2 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 Benzo(b)fluoranthene 207-08-9 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 Chysene 218-01-9 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 Hexachlorobenzene 118-74-1 0.04 ND 0.8 0.01 ND 0.8 0.01 ND 0.8 0.01 Hexachlorobutadiene 87-68-3 0.5 ND 0.5 0.5 ND 0.5 0.5 ND 0.5 0.5 ND 0.5 0.05 Indeno(1,2,3-d)pyrene 91-20-3 100 0.05 J 0.1 0.05 0.1 0.01 ND 0.1 0.05 0.06 J 0.1 0.05 Phenanthrene 85-01-8 50 0.04 J 0.1 0.05 0.1 0.05 0.1 0.05 0.05 0.1 0.05 0.05 Phenanthrene 85-01-8 50 0.04 J 0.04 J 0.05 0.05 ND 0.1 0.05 0.05 0.05 0.05 Rotation 108-01-10-10-10-10-10-10-10-10-10-10-10-10-	Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69	-		-	-	ND		20	0.69
Total SVOCs Control of the Contr	Nitrobenzene	98-95-3	0.4	ND		2	0.77	-		-	-	ND		2	0.77
SEMIVOLATILE ORGANICS BY GC/MS-SIM 91-57-6 NS 0.17 B 0.1 0.02 0.04 J 0.1 0.02 JB 0.1 0.02 Benzo(a)anthracene 56-55-3 0.002 ND 0.1 0.02 ND 0.1 0.01 ND <	Phenol	108-95-2	1	ND		5	0.57	-		-	-	ND		5	0.57
2-Methylnaphthalene 91-57-6 NS 0.17 B 0.1 0.02 0.04 J 0.1 0.02 JB 0.1 0.02 Benzo(a)anthracene 56-55-3 0.002 ND 0.1 0.02 ND 0.01 ND	Total SVOCs			0.72	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene 56-55-3 0.002 ND 0.1 0.02 ND 0.1 0.01 ND 0.	SEMIVOLATILE ORGANICS BY GC/MS-SIM														
Benzo(a)pyrene 50-32-8 ND ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02 Benzo(b)fluoranthene 205-99-2 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND	2-Methylnaphthalene	91-57-6	NS	0.17	В	0.1	0.02	0.04	J	0.1	0.02	0.02	JB	0.1	0.02
Benzo(b)fluoranthene 205-99-2 0.002 ND 0.1 0.01 ND 0.1 0.05 ND	Benzo(a)anthracene	56-55-3	0.002	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(k)fluoranthene 207-08-9 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 Chrysene 218-01-9 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 ND 0.01 ND 0.01 ND 0.01 ND 0.01 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.01 0.05 ND 0.05 ND 0.05 ND <td>Benzo(a)pyrene</td> <td>50-32-8</td> <td>ND</td> <td>ND</td> <td></td> <td>0.1</td> <td>0.02</td> <td>ND</td> <td></td> <td>0.1</td> <td>0.02</td> <td>ND</td> <td></td> <td>0.1</td> <td>0.02</td>	Benzo(a)pyrene	50-32-8	ND	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Chrysene 218-01-9 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 Hexachlorobenzene 118-74-1 0.04 ND 0.8 0.01 ND 0.8 0.01 ND 0.8 0.01 ND 0.8 0.01 ND 0.05 ND 0.5 0.05 ND 0.5 0.05 ND 0.5 0.05 ND 0.5 0.05 ND 0.01 0.05 ND 0.01 ND 0.06 J 0.01 <t< td=""><td>Benzo(b)fluoranthene</td><td>205-99-2</td><td>0.002</td><td>ND</td><td></td><td>0.1</td><td>0.01</td><td>ND</td><td></td><td>0.1</td><td>0.01</td><td>ND</td><td></td><td>0.1</td><td>0.01</td></t<>	Benzo(b)fluoranthene	205-99-2	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Hexachlorobenzene 118-74-1 0.04 ND 0.8 0.01 ND 0.8 0.01 ND 0.8 0.01 Hexachlorobutadiene 87-68-3 0.5 ND 0.5 0.05 ND 0.5 0.05 ND 0.05 ND 0.01 ND 0.1 0.01 ND 0.01 0.01 ND 0.01 0.01 ND 0.01 0.01 0.01 ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.06 J 0.1 0.05 ND 0.1 0.02	Benzo(k)fluoranthene	207-08-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Hexachlorobutadiene 87-68-3 0.5 ND 0.5 0.05 ND 0.5 0.05 Indeno(1,2,3-cd)pyrene 193-39-5 0.002 ND 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.06 J 0.1 0.05 Phenanthrene 85-01-8 50 0.04 J 0.1 0.02 ND 0.1	Chrysene	218-01-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Indeno(1,2,3-cd)pyrene 193-39-5 0.002 ND 0.1 0.01 ND 0.1 0.01 ND 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.02 ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02	Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01	ND		0.8	0.01	ND		0.8	0.01
Naphthalene 91-20-3 10 0.05 J 0.1 0.05 0.1 0.05 0.06 J 0.1 0.05 Phenanthrene 85-01-8 50 0.04 J 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02	Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05	ND		0.5	0.05	ND		0.5	0.05
Phenanthrene 85-01-8 50 0.04 J 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02 ND 0.1 0.02	Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
	Naphthalene	91-20-3	10	0.05	J	0.1	0.05	0.13		0.1	0.05	0.06	J	0.1	0.05
Total SVOCs 0.26 0.17 0.08	Phenanthrene	85-01-8	50	0.04	J	0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
	Total SVOCs			0.26	-	-	-	0.17	-	-	-	0.08	-	-	-

Notes

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- R Analytical results are from sample re-analysis.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 4 - AOC-2, Former Balefill Landfill - PCBs

		SAMPLE ID:		HVR	A-BFL2S-19	0801		HVR	A-BFL-3S-190	801
		LAB ID:			L1934623-02				L1934623-01	
		COLLECTION DATE:			8/1/2019				8/1/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC										
Aroclor 1254	11097-69-1	0.09*	ND		0.083	0.039	0.042	J	0.083	0.039
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032	0.042	J	0.083	0.032

Notes

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 5 - AOC-2, Former Balefill Landfill - Pesticides

		SAMPLE ID:		HVRA-BFL2S-1	90801		HVR	A-BFL-3S-190	801
		LAB ID:		L1934623-)2			L1934623-01	
		COLLECTION DATE:		8/1/2019				8/1/2019	
		SAMPLE MATRIX:		WATER				WATER	
		NY-AWQS ⁽¹⁾							
ANALYTE	CAS	(ug/l)	Conc	Q RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC									
Aldrin	309-00-2	ND	ND	0.014	0.002	ND		0.014	0.002
Alpha-BHC	319-84-6	0.01	ND	0.014	0.003	ND		0.014	0.003
Chlordane	57-74-9	0.05	ND	0.143	0.033	ND		0.143	0.033
Dieldrin	60-57-1	0.004	ND	0.029	0.003	ND		0.029	0.003
Endrin	72-20-8	ND	ND	0.029	0.003	ND		0.029	0.003
Toxaphene	8001-35-2	0.06	ND	0.143	0.045	ND		0.143	0.045

Notes:

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 6 - AOC-3, Former Dutchess County Landfill - PFAS and 1,4-D

		SAMPLE ID:		HVRA	A-DL-MW-15-	190802		HVR	A-DLMW-20-1	90802		HVRA	-DLMW-29-1	90802		HVF	RA-FTB01-19	0802		HVR	A-LTB01-190	0802
		LAB ID:			L1934623-04	ı			L1934623-03	3			L1934623-05	5			L1934623-06	3		ı	L1934623-07	
		COLLECTION DATE:			8/2/2019				8/2/2019				8/2/2019				8/2/2019				8/2/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾																				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM																						
1,4-Dioxane	123-91-1	NS	1.92		0.139	0.0314	15.4		0.139	0.0314	ND		0.15	0.0339	-		-	-	-		-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)					•				•								•			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.82	1.1	ND		2.05	1.24	ND		1.86	1.13	ND		1.84	1.12	ND		1.89	1.14
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.82	1.21	ND		2.05	1.36	ND		1.86	1.24	ND		1.84	1.23	ND		1.89	1.26
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	0.847	J	1.82	0.731	7.32		2.05	0.824	1.01	J	1.86	0.747	ND		1.84	0.742	ND		1.89	0.758
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.82	0.589	13.5		2.05	0.664	ND		1.86	0.602	ND		1.84	0.598	ND		1.89	0.611
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	2.33		1.82	0.216	6.74		2.05	0.244	1.53	J	1.86	0.221	ND		1.84	0.22	ND		1.89	0.224
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	10.1		1.82	0.371	20.4		2.05	0.418	7.01		1.86	0.379	ND		1.84	0.376	ND		1.89	0.385
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.82	0.891	ND		2.05	1	ND		1.86	0.911	ND		1.84	0.904	ND		1.89	0.924
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.82	0.276	ND		2.05	0.311	ND		1.86	0.282	ND		1.84	0.28	ND		1.89	0.287
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.82	0.338	ND		2.05	0.381	ND		1.86	0.346	ND		1.84	0.343	ND		1.89	0.351
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	1.12	J	1.82	0.625	2.41		2.05	0.705	ND		1.86	0.639	ND		1.84	0.635	ND		1.89	0.649
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	5.79		1.82	0.205	19.8		2.05	0.231	2.49		1.86	0.209	ND		1.84	0.208	ND		1.89	0.212
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	6.01		1.82	0.342	20.1		2.05	0.385	1.54	J	1.86	0.349	ND		1.84	0.347	ND		1.89	0.355
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	10.8		1.82	0.298	46.5		2.05	0.336	5.75		1.86	0.305	0.376	J	1.84	0.302	0.389	J	1.89	0.309
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.818	J	1.82	0.284	0.524	J	2.05	0.32	0.409	J	1.86	0.29	ND		1.84	0.288	ND		1.89	0.294
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.82	0.527	ND		2.05	0.594	ND		1.86	0.539	ND		1.84	0.535	ND		1.89	0.547
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	19.7		1.82	0.458	79.2		2.05	0.516	8.86		1.86	0.468	ND		1.84	0.465	ND		1.89	0.475
Perfluorooctanoic Acid (PFOA)	335-67-1	70	31.1		1.82	0.214	76.6		2.05	0.242	8.71		1.86	0.219	ND		1.84	0.218	ND		1.89	0.223
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	4.84		1.82	0.36	12.4		2.05	0.406	3.81		1.86	0.368	ND		1.84	0.365	ND		1.89	0.374
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.82	0.225	ND		2.05	0.254	ND		1.86	0.23	ND		1.84	0.229	ND		1.89	0.234
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.82	0.297	ND		2.05	0.335	ND		1.86	0.304	ND		1.84	0.302	ND		1.89	0.309
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.82	0.236	0.557	J	2.05	0.266	ND		1.86	0.242	ND		1.84	0.24	ND		1.89	0.245
PFOA/PFOS, Total			50.8		1.82	0.214	155.8		2.05	0.242	17.6		1.86	0.219	ND		1.84	0.218	ND		1.89	0.223

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

 $\label{eq:J-Estimated Value } \underline{>} \ \text{the Method Detection Limit (MDL) and } < \text{the Limit of Quantitation or Reporting Limit (LOQ or RL)}$

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 7 - AOC-3, Former Dutchess County Landfill - SVOCs

		SAMPLE ID:		HVRA-D	L-MW-15-1	190802		HVRA	DLMW-20-1	190802		HVRA	-DLMW-29-1	90802
		LAB ID:		L1	934623-04				1934623-03	3			L1934623-05	
		COLLECTION DATE:			8/2/2019				8/2/2019				8/2/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS														
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44	ND		10	0.44	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41	ND		5	0.41	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6	ND		20	6.6	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2	ND		5	1.2	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93	ND		5	0.93	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5	ND		5	0.5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6	ND		5	1.6	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81	ND		5	0.81	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1	ND		5	1.1	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8	ND		5	0.8	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76	ND		10	0.76	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5	ND		5	0.5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5	ND		2	0.5	ND		2	0.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69	ND		20	0.69	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77	ND		2	0.77	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57	ND		5	0.57	ND		5	0.57
Total SVOCs			-	-	-	-	-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM														
2-Methylnaphthalene	91-57-6	NS	ND		0.1	0.02	0.04	JB	0.1	0.02	ND		0.1	0.02
Acenaphthene	83-32-9	20	0.04	J	0.1	0.01	0.24		0.1	0.01	ND		0.1	0.01
Acenaphthylene	208-96-8	NS	ND		0.1	0.01	0.02	J	0.1	0.01	ND		0.1	0.01
Benzo(a)anthracene	56-55-3	0.002	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(a)pyrene	50-32-8	ND	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Chrysene	218-01-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01	ND		0.8	0.01	ND		0.8	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05	ND		0.5	0.05	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Naphthalene	91-20-3	10	ND		0.1	0.05	0.35		0.1	0.05	ND		0.1	0.05
Total SVOCs			0.04	-	-	-	0.65	-	-	-	-	-	-	-

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- $J Estimated \ Value \ \underline{>} \ the \ Method \ Detection \ Limit \ (MDL) \ and \ < the \ Limit \ of \ Quantitation \ or \ Reporting \ Limit \ (LOQ \ or \ RL)$
- B The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 8 - AOC-3, Former Dutchess County Landfill - PCBs

		SAMPLE ID:		HVRA-	-DL-MW-15-1	90802		HVRA	-DLMW-20-1	90802		HVRA	-DLMW-29-19	90802
		LAB ID:			L1934623-04				L1934623-03				L1934623-05	
		COLLECTION DATE:			8/2/2019				8/2/2019				8/2/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC														
PCBs, Total	1336-36-3	0.09*	ND	_	0.083	0.032	ND	_	0.083	0.032	ND	_	0.083	0.032

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 9 - AOC-3, Former Dutchess County Landfill - Pesticides

		SAMPLE ID:		HVRA	-DL-MW-15-1	90802		HVRA-	DLMW-20-19	90802		HVRA	-DLMW-29-19	90802
		LAB ID:			L1934623-04			L	.1934623-03				L1934623-05	
		COLLECTION DATE:			8/2/2019				8/2/2019				8/2/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC														
Aldrin	309-00-2	ND	ND		0.014	0.002	ND		0.014	0.002	ND		0.014	0.002
Alpha-BHC	319-84-6	0.01	ND		0.014	0.003	ND		0.014	0.003	ND		0.014	0.003
Chlordane	57-74-9	0.05	ND		0.143	0.033	ND		0.143	0.033	ND		0.143	0.033
Dieldrin	60-57-1	0.004	ND		0.029	0.003	ND		0.029	0.003	ND		0.029	0.003
Endrin	72-20-8	ND	ND		0.029	0.003	ND		0.029	0.003	ND		0.029	0.003
Toxaphene	8001-35-2	0.06	ND		0.143	0.045	ND		0.143	0.045	ND		0.143	0.045

Notes

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 10 - AOC-4, Jackson Road - PFAS and 1,4-D

		SAMPLE ID:		HVR	A-MW101-19	0809
		LAB ID:			L1935927-13	
		COLLECTION DATE:			8/9/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM						
1,4-Dioxane	123-91-1	NS	ND		0.15	0.0339
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	2.72		1.81	1.1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	24.1		1.81	1.21
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.81	0.728
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.81	0.587
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	11.1		1.81	0.216
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	71.1		1.81	0.37
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.81	0.888
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.536	J	1.81	0.275
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.81	0.337
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	1.9		1.81	0.623
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	16		1.81	0.204
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	99.8		1.81	0.34
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	74.8		1.81	0.297
Perfluorononanoic Acid (PFNA)	375-95-1	NS	3.05		1.81	0.283
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.81	0.525
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	68.1		1.81	0.456
Perfluorooctanoic Acid (PFOA)	335-67-1	70	11.3		1.81	0.214
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	130		1.81	0.359
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.81	0.225
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.81	0.296
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.81	0.236
PFOA/PFOS, Total			79.4		1.81	0.214

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 10A - AOC-4, Jackson Road - PFAS and 1,4-D

		SAMPLE ID:		HVR	A-MW101-	0.5		HV	'RA-MW101-	2.0		Н\	/RA-MW101-	8.0
		LAB ID:		L1	936143-04	Ļ			L1936143-05	5			L1934860-05	;
		COLLECTION DATE:			8/12/2019				8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.0' - 0.5'				0.5' - 2.0'				8.0' - 9.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												$\overline{}$
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM		, , ,												
1,4-Dioxane	123-91-1	0.1	ND		0.00724	0.00185	ND		0.009	0.0023	-		-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)					•							
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.02	0.294	ND		1.01	0.291	ND		0.977	0.28
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.02	0.184	ND		1.01	0.182	ND		0.977	0.175
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.02	0.087	ND		1.01	0.086	ND		0.977	0.083
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.02	0.206	ND	J	1.01	0.204	ND	J	0.977	0.197
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.02	0.04	ND		1.01	0.04	ND		0.977	0.038
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	0.072	J	1.02	0.023	0.192	J	1.01	0.023	ND		0.977	0.022
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.02	0.157	ND		1.01	0.155	ND		0.977	0.149
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.132	J	1.02	0.069	0.156	J	1.01	0.068	ND		0.977	0.065
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.02	0.072	ND		1.01	0.071	ND	J	0.977	0.068
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.02	0.14	ND		1.01	0.138	ND		0.977	0.133
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.105	J	1.02	0.046	0.26	J	1.01	0.046	ND		0.977	0.044
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	0.288	J	1.02	0.062	0.239	J	1.01	0.061	0.1	J	0.977	0.059
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	0.164	J	1.02	0.054	0.263	J	1.01	0.053	0.07	J	0.977	0.051
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.02	0.077	0.746	J	1.01	0.076	ND		0.977	0.073
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.02	0.1	ND		1.01	0.099	ND		0.977	0.096
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	2.27		1.02	0.133	11.3		1.01	0.132	1.12		0.977	0.127
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	0.132	J	1.02	0.043	0.451	J	1.01	0.042	0.057	J	0.977	0.041
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	0.117	J	1.02	0.047	0.509	J	1.01	0.047	0.047	J	0.977	0.045
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.02	0.055	ND	J	1.01	0.055	ND	J	0.977	0.053
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.02	0.209	ND		1.01	0.207	ND	J	0.977	0.2
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	0.201	J	1.02	0.048	0.071	J	1.01	0.047	ND	J	0.977	0.046
PFOA/PFOS, Total			2.4	J	1.02	0.043	11.8	J	1.01	0.042	1.2	J	0.977	0.041

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

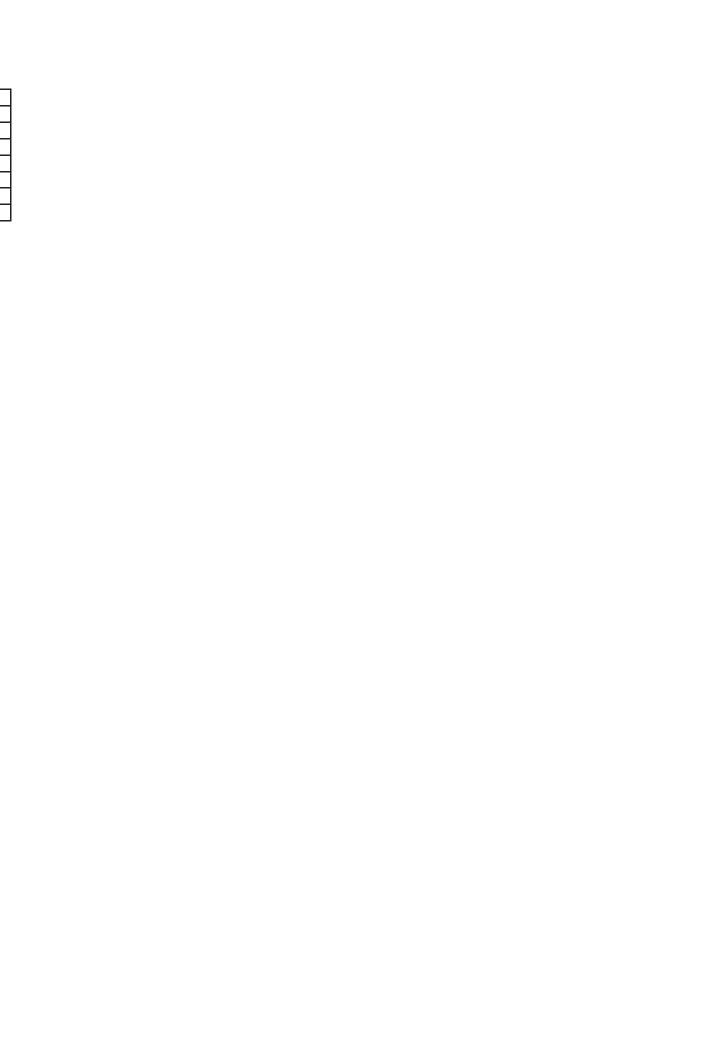
Table 11 - AOC-4, Jackson Road - PCBs

		SAMPLE ID:		HVR	HVRA-MW101-190809 L1935927-13 8/9/2019 WATER			
		LAB ID:			L1935927-13 8/9/2019 WATER			
		COLLECTION DATE:			L1935927-13 8/9/2019 WATER			
		SAMPLE MATRIX:			L1935927-13 8/9/2019 WATER			
		NY-AWQS ⁽¹⁾						
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL		
POLYCHLORINATED BIPHENYLS BY GC					8/9/2019 WATER			
PCBs, Total	1336-36-3	0.09*	ND		L1935927-13 8/9/2019 WATER Q RL M			

Notes:

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed


NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 11A - AOC-4, Jackson Road - PCBs

				MPLE ID: HVRA-MW101-0.5				RA-MW101-2	2.0	HVRA-MW101-8.0				
		LAB ID:			L1936143-04			L	.1936143-05			ı	_1934860-05	
		COLLECTION DATE:			8/12/2019				8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.0' - 0.5'				0.5' - 2.0'				8.0' - 9.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC														
PCBs, Total	1336-36-3		ND		0.0339	0.00301	ND		0.0362	0.00321	ND		0.0332	0.00294

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

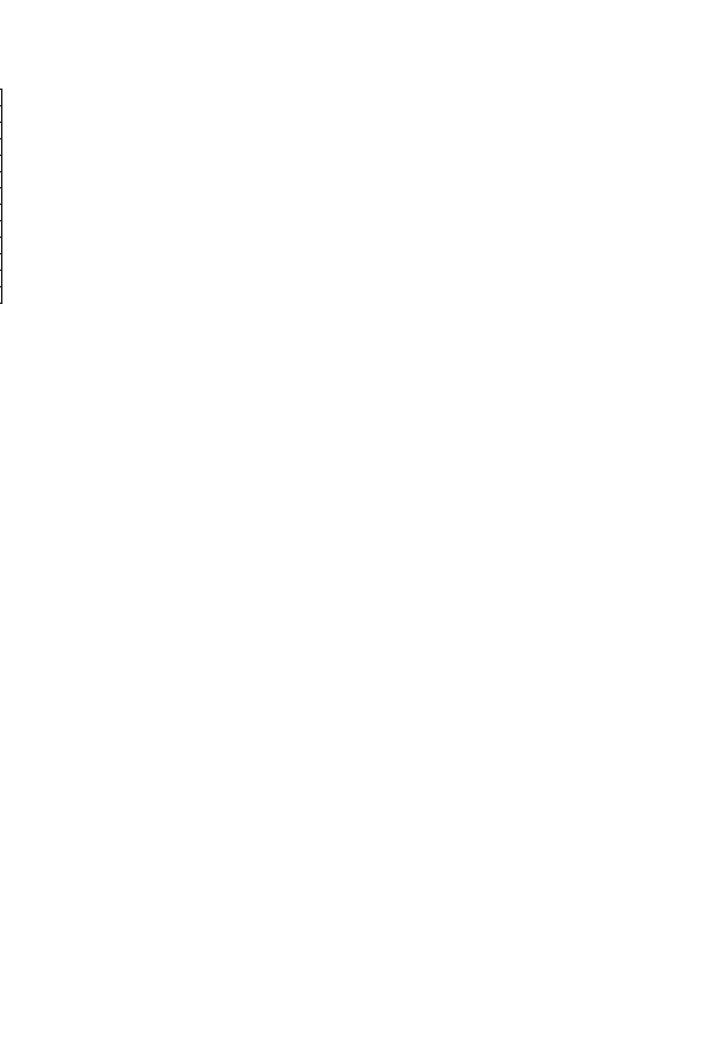
Table 12 - AOC-4, Jackson Road - Pesticides

		SAMPLE ID:		HVR	A-MW101-190	809
		LAB ID:			L1935927-13	
		COLLECTION DATE:			8/9/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC						
Aldrin	309-00-2	ND	ND		0.014	0.002
Alpha-BHC	319-84-6	0.01	ND		0.014	0.003
Chlordane	57-74-9	0.05	ND		0.143	0.033
Dieldrin	60-57-1	0.004	ND		0.029	0.003
Endrin	72-20-8	ND	ND		0.029	0.003
Toxaphene	8001-35-2	0.06	ND		0.143	0.045

Notes:

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed


NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 12A - AOC-4, Jackson Road - Pesticides

		SAMPLE ID:		HV	'RA-MW101-	0.5		Н\	/RA-MW101-	2.0		H\	/RA-MW101-	8.0
		LAB ID:	LAB ID: L1936143-04 L1936143-05					L1934860-05						
		COLLECTION DATE:	DLLECTION DATE: 8/12/2019 8/12/2019				8/5/2019							
		SAMPLE DEPTH:			0.0' - 0.5'				0.5' - 2.0'				8.0' - 9.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC														
4,4'-DDE	72-55-9	0.0033	ND		0.00164	0.000379	ND		0.00181	0.000419	ND		0.00166	0.000384
4,4'-DDT	50-29-3	0.0033	ND	•	0.00308	0.00132	ND		0.0034	0.00146	ND	•	0.00311	0.00133

Notes

- (1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 13 - AOC-4, Jackson Road - Metals

		SAMPLE ID:		HVR	A-MW101-19	0809
		LAB ID:			L1935927-13	
		COLLECTION DATE:			8/9/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
TOTAL METALS						
Aluminum, Total	7429-90-5	NS	3050		10	3.27
Antimony, Total	7440-36-0	3	0.62	J	4	0.42
Arsenic, Total	7440-38-2	25	4.28		0.5	0.16
Barium, Total	7440-39-3	1000	78.28		0.5	0.17
Beryllium, Total	7440-41-7	3	0.19	J	0.5	0.1
Cadmium, Total	7440-43-9	5	0.09	J	0.2	0.05
Calcium, Total	7440-70-2	NS	74900		100	39.4
Chromium, Total	7440-47-3	50	6.42		1	0.17
Cobalt, Total	7440-48-4	NS	3.95		0.5	0.16
Copper, Total	7440-50-8	200	13.37		1	0.38
Iron, Total	7439-89-6	300	7690		50	19.1
Lead, Total	7439-92-1	25	5.42		1	0.34
Magnesium, Total	7439-95-4	35000	24300		70	24.2
Manganese, Total	7439-96-5	300	1657		1	0.44
Nickel, Total	7440-02-0	100	7.55		2	0.55
Potassium, Total	7440-09-7	NS	1700		100	30.9
Sodium, Total	7440-23-5	20000	10400		100	29.3
Thallium, Total	7440-28-0	0.5	ND		0.5	0.14
Vanadium, Total	7440-62-2	NS	4.55	J	5	1.57
Zinc, Total	7440-66-6	2000	30.04		10	3.41
GENERAL CHEMISTRY						
Cyanide, Total	57-12-5	200	ND		5	1

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 13A - AOC-4, Jackson Road - Metals

		SAMPLE ID:		HV	RA-MW101	-0.5		HV	RA-MW101	-2.0		HVI	RA-MW101	-8.0
		LAB ID:		L	_1936143-04	4		I	_1936143-0	5		L	.1934860-0	5
		COLLECTION DATE:			8/12/2019				8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.0' - 0.5'				0.5' - 2.0'				8.0' - 9.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS											•			
Aluminum, Total	7429-90-5	NS	2130		7.89	2.13	11800		8.91	2.4	12500		8.32	2.25
Antimony, Total	7440-36-0	NS	0.363	J	3.94	0.3	1.04	J	4.46	0.339	ND		4.16	0.316
Arsenic, Total	7440-38-2	13	4.27		0.789	0.164	2.55		0.891	0.185	1.46		0.832	0.173
Barium, Total	7440-39-3	350	10.8		0.789	0.137	55.9		0.891	0.155	33.7		0.832	0.145
Beryllium, Total	7440-41-7	7.2	0.126	J	0.394	0.026	0.401	J	0.446	0.029	0.416		0.416	0.028
Cadmium, Total	7440-43-9	2.5	ND		0.789	0.077	ND		0.891	0.087	0.791	J	0.832	0.082
Calcium, Total	7440-70-2	NS	122000		78.9	27.6	8050		8.91	3.12	7480		8.32	2.91
Chromium, Total	7440-47-3	30	3.72		0.789	0.076	12.3		0.891	0.086	16.1		0.832	0.08
Cobalt, Total	7440-48-4	NS	2.8		1.58	0.131	7.6		1.78	0.148	8.44		1.66	0.138
Copper, Total	7440-50-8	50	8.36		0.789	0.204	13.9		0.891	0.23	15.2		0.832	0.215
Iron, Total	7439-89-6	NS	7120		3.94	0.712	20000		4.46	0.805	24100		4.16	0.752
Lead, Total	7439-92-1	63	4.71		3.94	0.211	11.5		4.46	0.239	11.9		4.16	0.223
Magnesium, Total	7439-95-4	NS	55500		7.89	1.21	7550		8.91	1.37	9340		8.32	1.28
Manganese, Total	7439-96-5	1600	185		0.789	0.125	568		0.891	0.142	479		0.832	0.132
Mercury, Total	7439-97-6	0.18	ND		0.065	0.042	ND		0.073	0.048	ND		0.066	0.043
Nickel, Total	7440-02-0	30	4.84		1.97	0.191	14.7		2.23	0.216	18.3		2.08	0.201
Potassium, Total	7440-09-7	NS	228		197	11.4	330		223	12.8	362		208	12
Selenium, Total	7782-49-2	3.9	0.497	J	1.58	0.204	ND		1.78	0.23	0.716	J	1.66	0.215
Sodium, Total	7440-23-5	NS	110	J	158	2.48	32.6	J	178	2.81	30.8	J	166	2.62
Thallium, Total	7440-28-0	NS	ND		1.58	0.248	ND		1.78	0.281	ND		1.66	0.262
Vanadium, Total	7440-62-2	NS	6.92		0.789	0.16	12.8		0.891	0.181	13.9		0.832	0.169
Zinc, Total	7440-66-6	109	12.7		3.94	0.231	47.7		4.46	0.261	55.3		4.16	0.244
GENERAL CHEMISTRY		(mg/kg)												
Moisture	NONE		-		-	-	-		-	-	-		-	-
Solids, Total	NONE	NS	96.7		0.1	NA	87.2		0.1	NA	94.8		0.1	NA
Notes:							•				•			

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 14 - AOC-5, Stormwater Outfall - PFAS and 1,4-D

		SAMPLE ID:		FIELD BL	ANK		Ol	JTFALL-001	-W
		LAB ID:		L1932869	-04			L1932869-08	3
		COLLECTION DATE:		7/23/20	19			7/23/2019	
		SAMPLE MATRIX:		WATE	₹			WATER	
		NY-AWQS ⁽¹⁾							
ANALYTE	CAS	(ug/l)	Conc	Q RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM									
1,4-Dioxane	123-91-1	0.1	-	-	-	ND		0.15	0.0339
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)				•			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND	1.8	1.09	1.93	J	2.02	1.23
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND	1.8	1.2	214		2.02	1.35
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND	1.8	0.726	ND		2.02	0.814
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND	1.8	0.585	ND		2.02	0.656
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND	1.8	0.215	4.19		2.02	0.241
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	ND	1.8	0.368	29		2.02	0.413
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND	1.8	0.884	ND		2.02	0.992
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND	1.8	0.274	1.29	J	2.02	0.308
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND	1.8	0.336	ND		2.02	0.376
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND	1.8	0.621	1.64	J	2.02	0.696
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND	1.8	0.203	22.6		2.02	0.228
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND	1.8	0.339	69.9		2.02	0.38
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	ND	1.8	0.296	57.4		2.02	0.332
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND	1.8	0.282	5.65		2.02	0.316
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND	1.8	0.523	ND		2.02	0.587
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	ND	1.8	0.455	140		2.02	0.51
Perfluorooctanoic Acid (PFOA)	335-67-1	70	ND	1.8	0.213	21.4		2.02	0.239
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND	1.8	0.357	87.2		2.02	0.401
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND	1.8	0.224	ND		2.02	0.251
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND	1.8	0.295	ND		2.02	0.331
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND	1.8	0.235	0.729	J	2.02	0.263
PFOA/PFOS, Total			ND	1.8	0.213	161.4		2.02	0.239

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 14A - AOC-5, Stormwater Outfall - PFAS and 1,4-D

		SAMPLE ID:		HVF	RA-OF1-190	808	HVRA-FD02-190808				
		LAB ID:		L	1935927-08	3		L	.1935927-09	,	
		COLLECTION DATE:			8/8/2019				8/8/2019		
		SAMPLE MATRIX:			SEDIMENT				SEDIMENT		
		NY-UNRES ⁽¹⁾									
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	
1,4 DIOXANE BY 8270D-SIM		, , ,									
1,4-Dioxane	123-91-1	0.1	-		-	-	-		-	-	
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)									
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.03	0.296	ND		1.05	0.301	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.03	0.185	ND		1.05	0.188	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.03	0.087	ND		1.05	0.089	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.03	0.208	ND		1.05	0.211	
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.03	0.4	ND		1.05	0.041	
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	ND		1.03	0.023	ND		1.05	0.024	
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.03	0.158	ND		1.05	0.16	
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.03	0.069	ND		1.05	0.07	
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.03	0.072	ND		1.05	0.073	
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.03	0.141	ND		1.05	0.143	
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.03	0.047	ND		1.05	0.047	
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.03	0.062	ND		1.05	0.064	
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	0.069	J	1.03	0.054	0.061	J	1.05	0.055	
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.03	0.077	ND		1.05	0.079	
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.03	0.101	ND		1.05	0.103	
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	0.356	J	1.03	0.134	0.32	J	1.05	0.136	
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	ND		1.03	0.043	ND		1.05	0.044	
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND		1.03	0.047	ND		1.05	0.048	
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.03	0.056	ND		1.05	0.057	
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.03	0.211	ND		1.05	0.214	
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.03	0.048	ND		1.05	0.049	
PFOA/PFOS, Total		NS	0.356	J	1.03	0.043	0.32	J	1.05	0.044	
GENERAL CHEMISTRY		(mg/kg)									
Solids, Total	NONE	NS	84.3		0.1	NA	85.5		0.1	NA	

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded gray indicate a RL or MDL above the AWQS.

Table 15 - AOC-5, Stormwater Outfalls - VOCs

		SAMPLE ID:		OU	TFALL-001	-W		-	TRIP BLANK	
		LAB ID:		L	1932869-08	}		ı	L1932869-09	,
		COLLECTION DATE:			7/23/2019				7/23/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾					•			
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY GC/MS										
1,1,2-Trichloroethane	79-00-5	1	ND		1.5	0.5	ND		1.5	0.5
1,2-Dibromo-3-chloropropane	96-12-8	0.04	ND		2.5	0.7	ND		2.5	0.7
1,2-Dibromoethane	106-93-4	0.0006	ND		2	0.65	ND		2	0.65
1,2-Dichloropropane	78-87-5	1	ND		1	0.14	ND		1	0.14
Acetone	67-64-1	50	7.5		5	1.5	5.7		5	1.5
Chloromethane	74-87-3	5	ND		2.5	0.7	0.92	J	2.5	0.7
cis-1,3-Dichloropropene	10061-01-5	0.4	ND		0.5	0.14	ND		0.5	0.14
Dichlorodifluoromethane	75-71-8	5	ND		5	1	ND		5	1
trans-1,3-Dichloropropene	10061-02-6	0.4	ND		0.5	0.16	ND		0.5	0.16
Total VOCs			7.5	-	_	_	6.62	-	_	_

Notes

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 15A - AOC-5, Stormwater Outfall - VOCs

		SAMPLE ID:		HVF	RA-FD02-190	808		HVF	RA-OF1-1908	808
		LAB ID:		ı	L1935927-09			l	_1935927-08	
		COLLECTION DATE:			8/8/2019				8/8/2019	
		SAMPLE MATRIX:					SEDIMENT			
		NY-UNRES ⁽¹⁾								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY EPA 5035										
Acetone	67-64-1	0.05	0.058		0.01	0.005	0.031		0.011	0.0052
Tetrachloroethene	127-18-4	1.3	0.0013		0.00052	0.0002	0.00066		0.00054	0.00021
trans-1,2-Dichloroethene	156-60-5	0.19	0.0002	J	0.0016	0.00014	ND		0.0016	0.00015
Total VOCs			0.0595	-	-	-	0.03166	-	-	-

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 16 - AOC-5, Stormwater Outfalls - SVOCs

		SAMPLE ID:		OI	UTFALL-001	·W
		LAB ID:			L1932869-08	
		COLLECTION DATE:			7/23/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS						
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5
Bis(2-ethylhexyl)phthalate	117-81-7	5	4.1		3	1.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57
Total SVOCs			4.1	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM						
Benzo(a)anthracene	56-55-3	0.002	0.04	J	0.1	0.02
Benzo(a)pyrene	50-32-8	0	0.02	J	0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	0.04	J	0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	0.02	J	0.1	0.01
Chrysene	218-01-9	0.002	0.04	J	0.1	0.01
Fluoranthene	206-44-0	50	0.06	J	0.1	0.02
Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01
Naphthalene	91-20-3	10	0.11		0.1	0.05
Pyrene	129-00-0	50	0.04	J	0.1	0.02
Total SVOCs			0.37	-	-	-

Notes

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

Table 16A - AOC-5, Stormwater Outfall - SVOCs

		SAMPLE ID:		HV	RA-FD02-190	808		HV	'RA-OF1-1908	308
		LAB ID:			L1935927-09				L1935927-08	
		COLLECTION DATE:			8/8/2019				8/8/2019	
		SAMPLE MATRIX:			SEDIMENT				SEDIMENT	
		NY-UNRES ⁽¹⁾								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS										
Anthracene	120-12-7	100	0.069	J	0.12	0.037	ND		0.12	0.038
Benzo(a)anthracene	56-55-3	1	0.31		0.12	0.022	0.2		0.12	0.022
Benzo(a)pyrene	50-32-8	1	0.3		0.15	0.047	0.2		0.16	0.048
Benzo(b)fluoranthene	205-99-2	1	0.44		0.12	0.032	0.32		0.12	0.033
Benzo(ghi)perylene	191-24-2	100	0.23		0.15	0.022	0.16		0.16	0.023
Benzo(k)fluoranthene	207-08-9	0.8	0.16		0.12	0.031	0.083	J	0.12	0.031
Carbazole	86-74-8	NS	0.067	J	0.19	0.019	0.049	J	0.2	0.019
Chrysene	218-01-9	1	0.38		0.12	0.02	0.24		0.12	0.02
Dibenzo(a,h)anthracene	53-70-3	0.33	0.046	J	0.12	0.022	0.029	J	0.12	0.023
Fluoranthene	206-44-0	100	0.9		0.12	0.022	0.55		0.12	0.022
Fluorene	86-73-7	30	0.028	J	0.19	0.019	ND		0.2	0.019
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.24		0.15	0.027	0.17		0.16	0.027
Phenanthrene	85-01-8	100	0.47		0.12	0.023	0.26		0.12	0.024
Pyrene	129-00-0	100	0.69		0.12	0.019	0.43		0.12	0.02
Total SVOCs			4.33	-	-	-	2.691	-	-	-

Notos

- (1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 17 - AOC-5, AAG Hangars - Pesticides and PCBs

	SAMPLE ID:	OUTFALL-001-W						
		LAB ID:	L1932869-08					
	COLLECTION DATE:	7/23/2019						
		SAMPLE MATRIX:	WATER					
		NY-AWQS ⁽¹⁾						
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL		
ORGANOCHLORINE PESTICIDES BY GC								
Aldrin	309-00-2	0	ND		0.014	0.002		
Alpha-BHC	319-84-6	0.01	ND		0.014	0.003		
Chlordane	57-74-9	0.05	ND		0.143	0.033		
Dieldrin	60-57-1	0.004	ND		0.029	0.003		
Endrin	72-20-8	0	ND		0.029	0.003		
Toxaphene	8001-35-2	0.06	ND		0.143	0.045		
POLYCHLORINATED BIPHENYLS BY GC								
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032		

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

^{* -} Applies to the sum of these substances.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 17A - AOC-5, Stormwater Outfall - Pesticides

		SAMPLE ID:	HVRA-FD02-190808		HVRA-OF1-190808			HVRA-OF1-190808						
		LAB ID:	L1935927-09			L1935927-08				L1935927-08 R1				
		COLLECTION DATE:	8/8/2019		8/8/2019			8/8/2019						
		SAMPLE MATRIX:	SEDIMENT		SEDIMENT			SEDIMENT						
		NY-UNRES												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC														
4,4'-DDE	72-55-9	0.0033	0.00186		0.00181	0.000419	0.00165	J	0.00185	0.000428	-	-	-	-
4,4'-DDT	50-29-3	0.0033	ND		0.0034	0.00146	ND		0.00347	0.00149	-	-	-	-
Endrin aldehyde	7421-93-4	NS	ND		0.00226	0.000793	0.207	E	0.00231	0.000809	0.206		0.00462	0.00162

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

R - Analytical results are from sample re-analysis.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 18 - AOC-5, AAG Hangars - Metals

		SAMPLE ID:		Ol	JTFALL-001-	W
		LAB ID:			L1932869-08	
		COLLECTION DATE:			7/23/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
TOTAL METALS						
Aluminum, Total	7429-90-5	NS	ND		100	32
Antimony, Total	7440-36-0	3	16	J	50	7
Arsenic, Total	7440-38-2	25	3	J	5	2
Barium, Total	7440-39-3	1000	29		10	2
Beryllium, Total	7440-41-7	3	ND		5	1
Cadmium, Total	7440-43-9	5	ND		5	1
Calcium, Total	7440-70-2	NS	44100		100	35
Chromium, Total	7440-47-3	50	ND		10	2
Cobalt, Total	7440-48-4	NS	ND		20	2
Copper, Total	7440-50-8	200	ND		10	2
Iron, Total	7439-89-6	300	588		50	9
Lead, Total	7439-92-1	25	ND		10	3
Magnesium, Total	7439-95-4	35000	10300		100	15
Manganese, Total	7439-96-5	300	712		10	2
Mercury, Total	7439-97-6	0.7	ND		0.2	0.09
Nickel, Total	7440-02-0	100	ND		25	2
Potassium, Total	7440-09-7	NS	2400	J	2500	237
Selenium, Total	7782-49-2	10	ND		10	4
Silver, Total	7440-22-4	50	ND		7	3
Sodium, Total	7440-23-5	20000	81300		2000	120
Thallium, Total	7440-28-0	0.5	ND		20	3
Vanadium, Total	7440-62-2	NS	ND		10	2
Zinc, Total	7440-66-6	2000	2	J	50	2
GENERAL CHEMISTRY						
Cyanide, Total	57-12-5	200	3	J	5	1

Notes

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

Table 18A - AOC-5, Stormwater Outfall - Metals

		SAMPLE ID:		HV	RA-FD02-190	808		НΛ	/RA-OF1-1908	308
		LAB ID:			L1935927-09)			L1935927-08	
		COLLECTION DATE:			8/8/2019				8/8/2019	
		SAMPLE MATRIX:			SEDIMENT				SEDIMENT	
		NY-UNRES								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS										
Aluminum, Total	7429-90-5	NS	7020		8.97	2.42	8980		9.03	2.44
Antimony, Total	7440-36-0	NS	0.789	J	4.48	0.341	0.777	J	4.52	0.343
Arsenic, Total	7440-38-2	13	6.4		0.897	0.186	5.14		0.903	0.188
Barium, Total	7440-39-3	350	48.1		0.897	0.156	64.5		0.903	0.157
Beryllium, Total	7440-41-7	7.2	0.224	J	0.448	0.03	0.253	J	0.452	0.03
Cadmium, Total	7440-43-9	2.5	0.735	J	0.897	0.088	0.641	J	0.903	0.089
Calcium, Total	7440-70-2	NS	55100	J	8.97	3.14	19600	J	9.03	3.16
Chromium, Total	7440-47-3	NS	7.5		0.897	0.086	9.22		0.903	0.087
Cobalt, Total	7440-48-4	NS	5.05		1.79	0.149	6.5		1.81	0.15
Copper, Total	7440-50-8	50	25.2	J	0.897	0.231	16.4	J	0.903	0.233
Iron, Total	7439-89-6	NS	21100		4.48	0.81	18600		4.52	0.816
Lead, Total	7439-92-1	63	20		4.48	0.24	21.9		4.52	0.242
Magnesium, Total	7439-95-4	NS	15100	J	8.97	1.38	13000	J	9.03	1.39
Manganese, Total	7439-96-5	1600	1250		0.897	0.143	891		0.903	0.144
Nickel, Total	7440-02-0	30	10.8		2.24	0.217	13.9		2.26	0.219
Potassium, Total	7440-09-7	NS	186	J	224	12.9	283		226	13
Silver, Total	7440-22-4	2	0.287	J	0.897	0.254	ND		0.903	0.256
Sodium, Total	7440-23-5	NS	73.9	J	179	2.82	87.5	J	181	2.84
Vanadium, Total	7440-62-2	NS	9.82		0.897	0.182	10.4		0.903	0.183
Zinc, Total	7440-66-6	109	88.2		4.48	0.263	77.6		4.52	0.265

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 19 - AOC-6, AAG Hangars - PFAS and 1,4-D

		SAMPLE ID:		F	ELD BLAN	<		HV	RA-AAG-PW	V01			TRIP BLANK	
		LAB ID:		L	.1931312-06	;			L1931312-04	1		1	L1931312-05	;
		COLLECTION DATE:			7/17/2019				7/17/2019				7/17/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM														
1,4-Dioxane	123-91-1	NS	-		-	-	-	-	-	-	-	-	-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)												
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.8	1.09	42.4		20	12.1	ND		1.8	1.14
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.8	1.2	2180		20	13.3	ND		1.8	1.25
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.8	0.726	ND		20	8.04	ND		1.8	0.756
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.8	0.585	ND		20	6.48	ND		1.8	0.609
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.8	0.215	23.6		20	2.38	ND		1.8	0.224
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	ND		1.8	0.368	191		20	4.08	ND		1.8	0.383
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.8	0.884	ND		20	9.8	ND		1.8	0.921
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.8	0.274	ND		20	3.04	ND		1.8	0.286
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.8	0.336	ND		20	3.72	ND		1.8	0.35
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.8	0.621	37.6		20	6.88	ND		1.8	0.647
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.8	0.203	191		20	2.25	ND		1.8	0.212
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.8	0.339	553		20	3.76	ND		1.8	0.353
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	ND		1.8	0.296	621		20	3.28	ND		1.8	0.308
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.8	0.282	21.4		20	3.12	ND		1.8	0.293
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.8	0.523	ND		20	5.8	ND		1.8	0.545
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	ND		1.8	0.455	1090		20	5.04	ND		1.8	0.474
Perfluorooctanoic Acid (PFOA)	335-67-1	70	ND		1.8	0.213	233		20	2.36	ND		1.8	0.222
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND		1.8	0.357	838		20	3.96	ND		1.8	0.372
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.8	0.224	ND		20	2.48	ND		1.8	0.233
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.8	0.295	ND		20	3.27	ND		1.8	0.308
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.8	0.235	ND		20	2.6	ND		1.8	0.244
PFOA/PFOS, Total			ND		1.8	0.213	1323		20	2.36	ND		1.8	0.222

Notes

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

Table 20 - AOC-6, AAG Hangars - SVOCs

		SAMPLE ID:		HVI	RA-AAG-PW	/01
		LAB ID:		L	1931312-01	
		COLLECTION DATE:			7/16/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS						
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5
Bis(2-ethylhexyl)phthalate	117-81-7	5	1.7	J	3	1.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57
Total SVOCs			1.7	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM						
Benzo(a)anthracene	56-55-3	0.002	ND		0.1	0.02
Benzo(a)pyrene	50-32-8	0	ND		0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	ND		0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	ND		0.1	0.01
Chrysene	218-01-9	0.002	ND		0.1	0.01
Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01
Phenanthrene	85-01-8	50	0.04	J	0.1	0.02
Total SVOCs			0.04	-	-	-

Notes

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

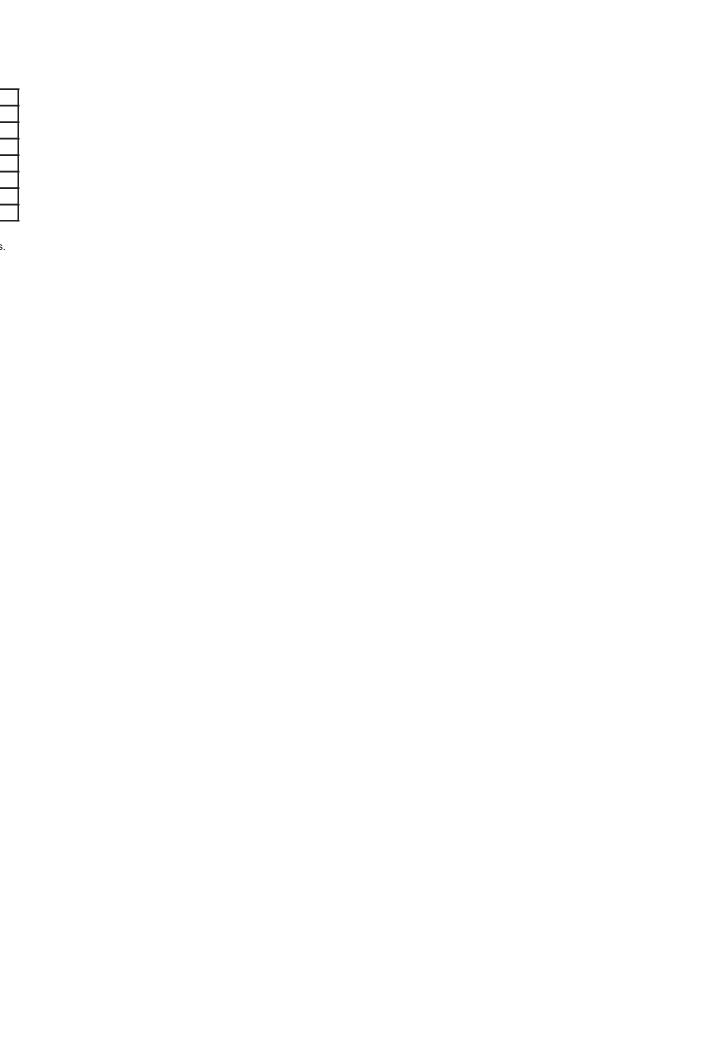
Table 21 - AOC-6, AAG Hangars - PCBs

		SAMPLE ID:		HV	RA-AAG-PW	01
		LAB ID:			L1931312-01	
		COLLECTION DATE:			7/16/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾ WATER				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC						
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032

Notes:

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed


NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 22 - AOC-6, AAG Hangars - Metals

		SAMPLE ID:		HV	'RA-AAG-PW	/01
		LAB ID:			L1931312-01	l
		COLLECTION DATE:			7/16/2019	
		SAMPLE MATRIX:			WATER	
		NY-AWQS ⁽¹⁾				
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL
TOTAL METALS						
Antimony, Total	7440-36-0	3	0.97	J	4	0.42
Arsenic, Total	7440-38-2	25	0.22	J	0.5	0.16
Barium, Total	7440-39-3	1000	58.78		0.5	0.17
Calcium, Total	7440-70-2	NS	102000		100	39.4
Chromium, Total	7440-47-3	50	0.24	J	1	0.17
Cobalt, Total	7440-48-4	NS	0.39	J	0.5	0.16
Copper, Total	7440-50-8	200	22.39		1	0.38
Iron, Total	7439-89-6	300	29.9	J	70	19.1
Lead, Total	7439-92-1	25	2.38		1	0.34
Magnesium, Total	7439-95-4	35000	18600		70	24.2
Manganese, Total	7439-96-5	300	180.5		1	0.44
Nickel, Total	7440-02-0	100	0.71	J	2	0.55
Potassium, Total	7440-09-7	NS	2440		100	30.9
Sodium, Total	7440-23-5	20000	157000		100	29.3
Thallium, Total	7440-28-0	0.5	ND		0.5	0.14
Zinc, Total	7440-66-6	2000	7.74	J	10	3.41
GENERAL CHEMISTRY						
Cyanide, Total	57-12-5	200	ND		5	1

Notes:

- (1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 23 - AOC-6, AAG Hangars - PFAS and 1,4-D

<u> </u>	SAMPLE ID:		HVRA-A-21G-19	0731		HVRA-A-21R-19	0731		HVRA-A-21S-1	90731		HVRA-FTB01-19	0731		HVRA-LTB01-19	0731		HVRA-ME-18	190801		HVRA-MW-3	-190801		HVRA-MW	4-190801		HVF	/RA-MW-6-1908	J801
	LAB ID:		L1934423-05	5		L1934423-02	2		L1934423-	01		L1934423-04	1		L1934423-03	3		L1934423	-06		L193442	3-09		L19344	23-08			L1934423-07	/
	COLLECTION DATE:		7/31/2019			7/31/2019			7/31/2019)		7/31/2019			7/31/2019			8/1/201	9		8/1/201	9		8/1/2	019			8/1/2019	
	SAMPLE MATRIX:		WATER			WATER			WATER			WATER			WATER			WATE	₹		WATE	R		WAT	ER			WATER	
	NY-AWQS ⁽¹⁾																												
NALYTE CAS	(ug/l)	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RI	. M	DL Conc	Q	RL	
4 DIOXANE BY 8270D-SIM																													
4-Dioxane 123-91-1	NS	ND	0.15	0.0339	ND	0.15	0.0339	ND	0.144	0.0326	-	-	-	-	-	-	ND	0.144	0.0326	ND	0.144	0.0326	ND	0.1	4 0.0	326 ND		0.144	
ERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION	(ng/l)																												
H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) 39108-34-4	NS	152	50	30.3	117	50	30.3	91.3	50	30.3	ND	1.86	1.13	ND	1.84	1.11	8.76	J 10	6.06	ND	1.82	1.1	ND	10	6.	.06 63.9		10	
H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) 27619-97-2	NS	8150	50	33.3	4980	50	33.3	6870	50	33.3	ND	1.86	1.24	ND	1.84	1.22	89.4	10	6.66	ND	1.82	1.22	147	10	6.	66 61.4		10	
Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA) 2991-50-6	NS	ND	50	20.1	ND	50	20.1	ND	50	20.1	ND	1.86	0.747	ND	1.84	0.739	ND	10	4.02	ND	1.82	0.734	ND	10	4.	.02 ND		10	
Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) 2355-31-9	NS	ND	50	16.2	ND	50	16.2	ND	50	16.2	ND	1.86	0.602	ND	1.84	0.596	ND	10	3.24	ND	1.82	0.591	ND	10	3.	24 ND		10	
erfluorobutanesulfonic Acid (PFBS) 375-73-5	NS	40.9	J 50	5.95	24.2	J 50	5.95	56.1	50	5.95	ND	1.86	0.221	ND	1.84	0.219	39.7	10	1.19	0.912	J 1.82	0.217	20.8	10	1.	.19 18.7		10	
erfluorobutanoic Acid (PFBA) 375-22-4	NS	387	50	10.2	235	50	10.2	298	50	10.2	ND	1.86	0.379	ND	1.84	0.375	59.7	10	2.04	3.67	1.82	0.372	20.2	10	2	.04 35.5		10	
erfluorodecanesulfonic Acid (PFDS) 335-77-3	NS	ND	50	24.5	ND	50	24.5	ND	50	24.5	ND	1.86	0.911	ND	1.84	0.901	ND	10	4.9	ND	1.82	0.894	ND	10	4	.9 ND		10	
erfluorodecanoic Acid (PFDA) 335-76-2	NS	ND	50	7.6	ND	50	7.6	ND	50	7.6	ND	1.86	0.282	ND	1.84	0.279	2.82	J 10	1.52	ND	1.82	0.277	ND	10	1.	52 4.14	J	10	
erfluorododecanoic Acid (PFDoA) 307-55-1	NS	ND	50	9.3	ND	50	9.3	ND	50	9.3	ND	1.86	0.346	ND	1.84	0.342	ND	10	1.86	ND	1.82	0.339	ND	10	1.	.86 ND		10	
erfluoroheptanesulfonic Acid (PFHpS) 375-92-8	NS	102	50	17.2	83.7	50	17.2	23.5	J 50	17.2	ND	1.86	0.639	ND	1.84	0.632	43	10	3.44	ND	1.82	0.628	21.7	10	3.	.44 17.3		10	
erfluoroheptanoic Acid (PFHpA) 375-85-9	NS	405	50	5.63	276	50	5.63	282	50	5.63	ND	1.86	0.209	ND	1.84	0.207	84.9	10	1.13	0.555	J 1.82	0.205	22.1	10	1.	13 45.9		10	
erfluorohexanesulfonic Acid (PFHxS) 355-46-4	NS	1440	50	9.4	1410	50	9.4	814	50	9.4	ND	1.86	0.349	ND	1.84	0.346	959	10	1.88	9.75	1.82	0.343	318	10	1.	.88 511		10	
erfluorohexanoic Acid (PFHxA) 307-24-4	NS	1360	50	8.2	870	50	8.2	777	50	8.2	ND	1.86	0.305	0.423	J 1.84	0.301	184	10	1.64	2.19	1.82	0.299	98	10	1.	64 93.1		10	
erfluorononanoic Acid (PFNA) 375-95-1	NS	61.9	50	7.8	39.7	J 50	7.8	34.5	J 50	7.8	ND	1.86	0.29	ND	1.84	0.287	7.4	J 10	1.56	ND	1.82	0.285	3.6	J 10	1.	.56 11.5		10	
erfluorooctanesulfonamide (FOSA) 754-91-6	NS	ND	50	14.5	ND	50	14.5	ND	50	14.5	ND	1.86	0.539	ND	1.84	0.533	ND	10	2.9	ND	1.82	0.529	ND	10	2	.9 8.62	J	10	
erfluorooctanesulfonic Acid (PFOS) 1763-23-1	70	3240	50	12.6	3010	50	12.6	2200	50	12.6	ND	1.86	0.468	ND	1.84	0.463	2030	10	2.52	12.3	1.82	0.46	1420	10	2.	.52 1320		10	
erfluorooctanoic Acid (PFOA) 335-67-1	70	500	50	5.9	371	50	5.9	184	50	5.9	ND	1.86	0.219	ND	1.84	0.217	77.5	10	1.18	0.777	J 1.82	0.215	28.5	10	1.	.18 47.7		10	
erfluoropentanoic Acid (PFPeA) 2706-90-3	NS	1970	50	9.9	1190	50	9.9	1350	50	9.9	ND	1.86	0.368	ND	1.84	0.364	197	10	1.98	1.37	J 1.82	0.361	58.2	10	1.	98 93.7		10	
erfluorotetradecanoic Acid (PFTA) 376-06-7	NS	ND	50	6.2	ND	50	6.2	ND	50	6.2	ND	1.86	0.23	ND	1.84	0.228	ND	10	1.24	ND	1.82	0.226	ND	10	1.	24 ND		10	
erfluorotridecanoic Acid (PFTrDA) 72629-94-8	NS	ND	50	8.18	ND	50	8.18	ND	50	8.18	ND	1.86	0.304	ND	1.84	0.301	ND	10	1.64	ND	1.82	0.298	ND	10	1.	.64 ND		10	
erfluoroundecanoic Acid (PFUnA) 2058-94-8	NS	ND	50	6.5	ND	50	6.5	ND	50	6.5	ND	1.86	0.242	ND	1.84	0.239	ND	10	1.3	ND	1.82	0.237	ND	10	1	.3 ND		10	
FOA/PFOS. Total		3740	50	5.9	3381	50	5.9	2384	50	5.9	ND	1.86	0.219	ND	1.84	0.217	2107.5	10	1.18	13.1	J 1.82	0.215	1448.5	10	1.	.18 1367.7		10	
POWNEDS, Total robes: New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Qu Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (Lf Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. A denotes Not Analyzed S denotes No Standard D denotes No Standard D denotes Non Detect yl = pph or parts per billion yl = pph or parts per billion sults that are shaded blue indicate a RL or MDL above the AWQS. ssults that are shaded yellow and in bold Indicate a concentration above the AWQS.					3361	30	5.9	2304	50	5.9	NU	1.00	0.219	NU	1.09	0.217	2107.5	10	1.10	15.1	J 1.02	0.215	1940.5	II.		1307.7		10	

Table 24 - AOC-7, ARFF/Maintenance Bldg - PFAS and 1,4-D

		SAMPLE ID:		HVF	A-MW100-19	90808		HVI	RA-FD01-190	808
		LAB ID:			L1935927-0	5			L1935927-06	;
		COLLECTION DATE:			8/8/2019				8/8/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM										
1,4-Dioxane	123-91-1	NS	ND		0.15	0.0339	ND		0.15	0.0339
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	331		10	6.06	344		1.92	1.16
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	39		1.8	1.2	48.2		1.92	1.28
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.8	0.726	ND		1.92	0.77
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	0.628	J	1.8	0.585	ND		1.92	0.621
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	15.2		1.8	0.215	15.5		1.92	0.228
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	75.9		1.8	0.368	77		1.92	0.391
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	2.64		1.8	0.884	3.97		1.92	0.939
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	28.9		1.8	0.274	32.9		1.92	0.291
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	0.487	J	1.8	0.336	0.456	J	1.92	0.356
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	7.56		1.8	0.621	9.04		1.92	0.659
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	102		1.8	0.203	101		1.92	0.216
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	368		1.8	0.339	370		1.92	0.36
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	222		1.8	0.296	229		1.92	0.314
Perfluorononanoic Acid (PFNA)	375-95-1	NS	8.67		1.8	0.282	8.28		1.92	0.299
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	23.8		1.8	0.523	20.8		1.92	0.556
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	595		1.8	0.455	699		1.92	0.483
Perfluorooctanoic Acid (PFOA)	335-67-1	70	47.1		1.8	0.213	48.1		1.92	0.226
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	258		1.8	0.357	260		1.92	0.379
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.8	0.224	ND		1.92	0.238
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.8	0.295	ND		1.92	0.313
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	2.09		1.8	0.235	2.73		1.92	0.249
PFOA/PFOS, Total			642.1		1.8	0.213	747.1		1.92	0.226

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 24A - AOC-7, ARFF/Maintenance Bldg - PFAS and 1,4-D

		SAMPLE ID: HVRA-MW100-1.0					HVF	RA-MW100-	1.0	HVRA-MW100-6.0					
		LAB ID:			L1936143-02	2		L19	936143-02 R	R1			L1934860-01	1	
		COLLECTION DATE:			8/12/2019				8/12/2019				8/5/2019		
		SAMPLE DEPTH:			1.0' - 2.0'				1.0' - 2.0'				6.0' - 7.0'		
		SAMPLE MATRIX:			SOIL				SOIL				SOIL		
		NY-UNRES ⁽¹⁾													
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	
1,4 DIOXANE BY 8270D-SIM											•				
1,4-Dioxane	123-91-1	0.1	ND		0.00858	0.00219	-		-	-	-		-	-	
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)													
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	42.6	J	1.04	0.298	-		-	-	ND		0.956	0.274	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	4.13	J	1.04	0.186	-		-	-	ND		0.956	0.172	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	0.279	J	1.04	0.088	-		-	-	ND		0.956	0.081	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.04	0.209	-		-	-	ND	J	0.956	0.193	
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	0.103	J	1.04	0.04	-		-	-	ND		0.956	0.037	
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	0.282	J	1.04	0.024	-		-	-	0.138	J	0.956	0.022	
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	1.04		1.04	0.159	-		-	-	0.19	J	0.956	0.146	
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	1.37		1.04	0.07	-		-	-	0.164	J	0.956	0.064	
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	0.238	J	1.04	0.073	-		-	-	0.124	J	0.956	0.067	
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	1.82		1.04	0.142	-		-	-	0.143	J	0.956	0.13	
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.243	J	1.04	0.047	-		-	-	0.275	J	0.956	0.043	
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	4.38	J	1.04	0.063	-		-	-	1.64		0.956	0.058	
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	0.823	J	1.04	0.054	-		-	-	0.442	J	0.956	0.05	
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.152	J	1.04	0.078	-		-	-	0.182	J	0.956	0.072	
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	4.71		1.04	0.102	-		-	-	ND		0.956	0.094	
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	369	Е	1.04	0.135	363		5.18	0.674	36.8		0.956	0.124	
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	0.438	J	1.04	0.043	-		-	-	0.287	J	0.956	0.04	
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	0.767	J	1.04	0.048	-		-	-	0.416	J	0.956	0.044	
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	0.237	J	1.04	0.056	-		-	-	0.074	J	0.956	0.052	
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.04	0.212	-		-	-	ND		0.956	0.196	
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	0.254	J	1.04	0.049	-		-	-	0.088	J	0.956	0.045	
PFOA/PFOS, Total			369.4	J	1.04	0.043	-		-	-	37.1	J	0.956	0.04	

Notes

- J Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- R Analytical results are from sample re-analysis.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 25 - AOC-7, ARFF/Maintenance Bldg - VOCs

		SAMPLE ID:		HVI	RA-EB01-190	0808		HVR	A-MW100-19	8080		HVF	RA-FD01-190	808		HVR	RA-LTB01-190	0807
		LAB ID:			L1935927-07	7			L1935927-0	5		I	L1935927-06				L1935927-01	
		COLLECTION DATE:			8/8/2019				8/8/2019				8/8/2019				8/7/2019	•
		SAMPLE MATRIX:			WATER				WATER				WATER				WATER	•
		NY-AWQS ⁽¹⁾													-			•
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY GC/MS																		
1,1,2-Trichloroethane	79-00-5	1	ND		1.5	0.5	ND		1.5	0.5	ND		1.5	0.5	ND		1.5	0.5
1,2-Dibromo-3-chloropropane	96-12-8	0.04	ND		2.5	0.7	ND		2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
1,2-Dibromoethane	106-93-4	0.0006	ND		2	0.65	ND		2	0.65	ND		2	0.65	ND		2	0.65
1,2-Dichloropropane	78-87-5	1	ND		1	0.14	ND		1	0.14	ND		1	0.14	ND		1	0.14
Acetone	67-64-1	50	9.1		5	1.5	13		5	1.5	8.6		5	1.5	7.2		5	1.5
Chloromethane	74-87-3	5	0.96	J	2.5	0.7	1.4	J	2.5	0.7	1.2	J	2.5	0.7	1.1	J	2.5	0.7
cis-1,3-Dichloropropene	10061-01-5	0.4	ND		0.5	0.14	ND		0.5	0.14	ND		0.5	0.14	ND		0.5	0.14
Dichlorodifluoromethane	75-71-8	5	ND		5	1	ND		5	1	ND		5	1	ND		5	1
trans-1,3-Dichloropropene	10061-02-6	0.4	ND		0.5	0.16	ND		0.5	0.16	ND		0.5	0.16	ND		0.5	0.16
Total VOCs			10.06	-	-	-	14.4	_	-	-	9.8	-	-	-	8.3	_		

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 25A - AOC-7, ARFF/Maintenance Bldg - VOCs

		SAMPLE ID:		Н\	/RA-MW100-	1.0		H	VRA-MW100-	6.0		
		LAB ID:			L1936143-02				L1934860-01			
		COLLECTION DATE:			8/12/2019				8/5/2019			
		SAMPLE DEPTH:			0.5' - 1.0'				6.0' - 7.0'			
		SAMPLE MATRIX:			SOIL				SOIL			
		NY-UNRES ⁽¹⁾										
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc Q RL					
VOLATILE ORGANICS BY EPA 5035												
Acetone	67-64-1	0.05	0.019		0.0088	0.0042	0.0082	J	0.0097	0.0047		
Methyl Acetate	79-20-9	NS	0.054		0.0035	0.00084	ND		0.0039	0.00092		
Tetrachloroethene	127-18-4	1.3	0.00051		0.00044	0.00017	ND		0.00049	0.00019		
Total VOCs			0.07351	-	-	-	0.0082	-	-	-		
Notes: (1) NV UNDES: New York NYCDB Part 275 New York Uprostricted use	0.11 0.111/0000 0	75.5	. 5	ee .:	5	4 0000						

- (1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 26 - AOC-7, ARFF/Maintenance Bldg - SVOCs

		SAMPLE ID:		HVR	A-EB01-190	808		HVRA	\-FD01-190	808		HVR	A-MW100-19	0808
		LAB ID:		L	1935927-07	,		L1	935927-06				L1935927-05	,
		COLLECTION DATE:			8/8/2019				8/8/2019				8/8/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS														
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44	ND		10	0.44	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41	ND		5	0.41	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6	ND		20	6.6	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2	ND		5	1.2	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93	ND		5	0.93	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5	ND		5	0.5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6	ND		5	1.6	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81	ND		5	0.81	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1	ND		5	1.1	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8	ND		5	0.8	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76	ND		10	0.76	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5	ND		5	0.5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5	ND		2	0.5	ND		2	0.5
Bis(2-ethylhexyl)phthalate	117-81-7	5	1.7	J	3	1.5	ND		3	1.5	ND		3	1.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69	ND		20	0.69	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77	ND		2	0.77	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57	ND		5	0.57	ND		5	0.57
Total SVOCs			1.7	-	-	-	-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM														
2-Methylnaphthalene	91-57-6	NS	0.03	J	0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(a)anthracene	56-55-3	0.002	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(a)pyrene	50-32-8	ND	ND		0.1	0.02	ND		0.1	0.02	ND		0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Chrysene	218-01-9	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Hexachlorobenzene	118-74-1	0.04	ND		8.0	0.01	ND		0.8	0.01	ND		8.0	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05	ND		0.5	0.05	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01	ND		0.1	0.01	ND		0.1	0.01
Naphthalene	91-20-3	10	0.08	J	0.1	0.05	ND		0.1	0.05	ND		0.1	0.05
Phenanthrene	85-01-8	50	ND		0.1	0.02	ND		0.1	0.02	0.03	J	0.1	0.02
Total SVOCs			0.11	-	-	-	-	-	-	-	0.03	-	-	-

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

 $J-Estimated\ Value \ \underline{>}\ the\ Method\ Detection\ Limit\ (MDL)\ and < the\ Limit\ of\ Quantitation\ or\ Reporting\ Limit\ (LOQ\ or\ RL)$

Table 26A - AOC-7, ARFF/Maintenance Bldg - SVOCs

		SAMPLE ID:		HV	RA-MW100-	1.0		HV	RA-MW100-	6.0
		LAB ID:			L1936143-02			I	_1934860-01	
		COLLECTION DATE:			8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.5' - 1.0'				6.0' - 7.0'	
		SAMPLE MATRIX:			SOIL				SOIL	
		NY-UNRES ⁽¹⁾								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS										
Benzaldehyde	100-52-7	NS	ND		0.24	0.048	ND		0.23	0.048
Benzo(a)anthracene	56-55-3	1	0.029	J	0.11	0.02	0.069	J	0.1	0.02
Benzo(a)pyrene	50-32-8	1	ND		0.14	0.044	0.053	J	0.14	0.043
Benzo(b)fluoranthene	205-99-2	1	0.042	J	0.11	0.03	0.097	J	0.1	0.03
Benzo(ghi)perylene	191-24-2	100	0.029	J	0.14	0.021	0.056	J	0.14	0.021
Benzo(k)fluoranthene	207-08-9	0.8	ND		0.11	0.029	0.028	J	0.1	0.028
Chrysene	218-01-9	1	0.034	J	0.11	0.019	0.076	J	0.1	0.018
Fluoranthene	206-44-0	100	0.053	J	0.11	0.02	0.13		0.1	0.02
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.029	J	0.14	0.025	0.055	J	0.14	0.024
Phenanthrene	85-01-8	100	ND		0.11	0.022	0.046	J	0.1	0.021
Pyrene	129-00-0	100	0.047	J	0.11	0.018	0.12		0.1	0.018
Total SVOCs			0.263	-	-	-	0.73	-	-	-

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 27 - AOC-7, ARFF/Maintenance Bldg - PCBs

		SAMPLE ID:		HVF	RA-EB01-190	308		HVF	RA-FD01-190	808		HVR	A-MW100-190	3808
		LAB ID:			L1935927-07				L1935927-06				L1935927-05	
		COLLECTION DATE:			8/8/2019				8/8/2019				8/8/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC														
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032	ND		0.083	0.032	ND		0.083	0.032

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 27A - AOC-7, ARFF/Maintenance Bldg - PCBs

		SAMPLE ID:		HV	'RA-MW100-	1.0		HVF	RA-MW100-1	.0		HV	/RA-MW100-6	6.0
		LAB ID:			L1936143-02			L1:	936143-02 R	1			L1934860-01	
		COLLECTION DATE:			8/12/2019				8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.5' - 1.0'				0.5' - 1.0'				6.0' - 7.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC														
PCBs, Total	1336-36-3		ND		0.0349	0.0031	-		-	-	ND		0.0349	0.0031

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 28 - AOC-7, ARFF/Maintenance Building - Pesticides

		SAMPLE ID:		HVF	RA-EB01-190	308		HVR	RA-FD01-190	808		HVR	A-MW100-190	3808
		LAB ID:			L1935927-07			L	_1935927-06				L1935927-05	
		COLLECTION DATE:			8/8/2019				8/8/2019				8/8/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC														
Aldrin	309-00-2	ND	ND		0.014	0.002	ND		0.014	0.002	ND		0.014	0.002
Alpha-BHC	319-84-6	0.01	ND		0.014	0.003	ND		0.014	0.003	ND		0.014	0.003
Chlordane	57-74-9	0.05	ND		0.143	0.033	ND		0.143	0.033	ND		0.143	0.033
Dieldrin	60-57-1	0.004	ND		0.029	0.003	ND		0.029	0.003	ND		0.029	0.003
Endrin	72-20-8	ND	ND		0.029	0.003	ND		0.029	0.003	ND		0.029	0.003
Toxaphene	8001-35-2	0.06	ND		0.143	0.045	ND		0.143	0.045	ND		0.143	0.045

Notes

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded gray indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 28A - AOC-7, ARFF/Maintenance Bldg - Pesticides

		SAMPLE ID:		H۱	/RA-MW100-	1.0		H\	/RA-MW100-6	6.0		
		LAB ID:			L1936143-02	!			L1934860-01			
		COLLECTION DATE:			8/12/2019				8/5/2019			
		SAMPLE DEPTH:			0.5' - 1.0'				6.0' - 7.0'			
		SAMPLE MATRIX:			SOIL			SOIL				
		NY-UNRES ⁽¹⁾										
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
ORGANOCHLORINE PESTICIDES BY GC												
4,4'-DDE	72-55-9	0.0033	0.00132	J	0.00171	0.000396	0.00113	J	0.00161	0.000373		
4,4'-DDT	50-29-3	0.0033	0.00146	J	0.00321	0.00138	0.00285	JP	0.00302	0.0013		

Notes

- (1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- P The RPD between the results for the two columns exceeds the method-specified criteria.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 29 - AOC-7, ARFF/Maintenance Bldg - Metals

		SAMPLE ID:		HVR	RA-EB01-190	808		HVF	RA-FD01-190	808		HVR	A-MW100-19	0808
		LAB ID:		ı	L1935927-07				L1935927-06	i			L1935927-05	,
		COLLECTION DATE:			8/8/2019				8/8/2019				8/8/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS														
Aluminum, Total	7429-90-5	NS	ND		10	3.27	6.18	J	10	3.27	10		10	3.27
Antimony, Total	7440-36-0	3	ND		4	0.42	0.76	J	4	0.42	ND		4	0.42
Arsenic, Total	7440-38-2	25	ND		0.5	0.16	0.39	J	0.5	0.16	0.32	J	0.5	0.16
Barium, Total	7440-39-3	1000	ND		0.5	0.17	15		0.5	0.17	15.62		0.5	0.17
Calcium, Total	7440-70-2	NS	202		100	39.4	36800		100	39.4	37400		100	39.4
Chromium, Total	7440-47-3	50	ND		1	0.17	0.57	J	1	0.17	0.69	J	1	0.17
Copper, Total	7440-50-8	200	ND		1	0.38	0.9	J	1	0.38	0.95	J	1	0.38
Iron, Total	7439-89-6	300	21	J	50	19.1	39.5	J	50	19.1	21.1	J	50	19.1
Magnesium, Total	7439-95-4	35000	ND		70	24.2	7690		70	24.2	7720		70	24.2
Manganese, Total	7439-96-5	300	ND		1	0.44	36.24		1	0.44	39.2		1	0.44
Nickel, Total	7440-02-0	100	ND		2	0.55	0.61	J	2	0.55	0.57	J	2	0.55
Potassium, Total	7440-09-7	NS	ND		100	30.9	3090		100	30.9	3160		100	30.9
Sodium, Total	7440-23-5	20000	ND		100	29.3	134000		100	29.3	135000		100	29.3
Thallium, Total	7440-28-0	0.5	ND		0.5	0.14	0.45	J	0.5	0.14	ND		0.5	0.14
GENERAL CHEMISTRY														
Cyanide, Total	57-12-5	200	ND		5	1	3	J	5	1	ND		5	1

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 29A - AOC-7, ARFF/Maintenance Bldg - Metals

		SAMPLE ID:		H\	/RA-MW100-	1.0		Η\	/RA-MW100-	6.0
		LAB ID:			L1936143-02	2			L1934860-01	
		COLLECTION DATE:			8/12/2019				8/5/2019	
		SAMPLE DEPTH:			0.5' - 1.0'				6.0' - 7.0'	
		SAMPLE MATRIX:			SOIL				SOIL	
		NY-UNRES ⁽¹⁾								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS		, , ,								
Aluminum, Total	7429-90-5	NS	11300		8.6	2.32	9240		8.06	2.18
Antimony, Total	7440-36-0	NS	0.946	J	4.3	0.327	1.18	J	4.03	0.306
Arsenic, Total	7440-38-2	13	3.73		0.86	0.179	3.38		0.806	0.168
Barium, Total	7440-39-3	350	59.6		0.86	0.15	39.3		0.806	0.14
Beryllium, Total	7440-41-7	7.2	0.396	J	0.43	0.028	0.346	J	0.403	0.027
Cadmium, Total	7440-43-9	2.5	ND		0.86	0.084	1.73		0.806	0.079
Calcium, Total	7440-70-2	NS	809		8.6	3.01	3720		8.06	2.82
Chromium, Total	7440-47-3	30	10.6		0.86	0.083	17.8		0.806	0.077
Cobalt, Total	7440-48-4	NS	6.79		1.72	0.143	8.24		1.61	0.134
Copper, Total	7440-50-8	50	17.3		0.86	0.222	66.8		0.806	0.208
Iron, Total	7439-89-6	NS	19000		4.3	0.777	51300		40.3	7.28
Lead, Total	7439-92-1	63	57.8		4.3	0.231	70		4.03	0.216
Magnesium, Total	7439-95-4	NS	3320		8.6	1.32	5480		8.06	1.24
Manganese, Total	7439-96-5	1600	728		0.86	0.137	721		0.806	0.128
Mercury, Total	7439-97-6	0.18	0.094		0.068	0.044	0.178		0.067	0.044
Nickel, Total	7440-02-0	30	13.8		2.15	0.208	19.2		2.01	0.195
Potassium, Total	7440-09-7	NS	305		215	12.4	225		201	11.6
Selenium, Total	7782-49-2	3.9	ND		1.72	0.222	0.806	J	1.61	0.208
Sodium, Total	7440-23-5	NS	79.8	J	172	2.71	76.7	J	161	2.54
Thallium, Total	7440-28-0	NS	ND		1.72	0.271	0.572	J	1.61	0.254
Vanadium, Total	7440-62-2	NS	11.7		0.86	0.175	12.8		0.806	0.164
Zinc, Total	7440-66-6	109	76.6		4.3	0.252	138		4.03	0.236
GENERAL CHEMISTRY		(mg/kg)								
Moisture	NONE		-				-		-	-
Solids, Total	NONE		92.3		0.1	NA	94		0.1	NA
Nieton										

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 30 - AOC-7, ARFF/Maintenance Bldg - PFAS and 1,4-D

		SAMPLE ID:		HVRA-	MAINTBLDG	-190807		HVF	RA-FD01-190	807		HVR	A-FTB01-190	807		HVRA	A-LTB01-190	807
		LAB ID:			L1935927-03	3			L1935927-04	1		l	L1935927-02			L	1935927-01	
		COLLECTION DATE:			8/7/2019				8/7/2019				8/7/2019				8/7/2019	
		SAMPLE MATRIX:			WATER				WATER				WATER				WATER	
		NY-AWQS ⁽¹⁾																
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM																		
1,4-Dioxane	123-91-1	NS	0.254		0.15	0.0339	0.284		0.15	0.0339	-		-	-	-		-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)																
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.8	1.09	ND		1.94	1.18	ND		1.99	1.21	ND		1.97	1.19
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.8	1.2	ND		1.94	1.3	ND		1.99	1.33	ND		1.97	1.31
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.8	0.726	ND		1.94	0.782	ND		1.99	0.801	ND		1.97	0.791
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.8	0.585	ND		1.94	0.63	ND		1.99	0.645	ND		1.97	0.638
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.8	0.215	ND		1.94	0.232	ND		1.99	0.237	ND		1.97	0.234
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	2.34		1.8	0.368	2.45		1.94	0.397	ND		1.99	0.406	ND		1.97	0.402
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.8	0.884	ND		1.94	0.953	ND		1.99	0.976	ND		1.97	0.964
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.8	0.274	ND		1.94	0.296	ND		1.99	0.303	ND		1.97	0.299
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.8	0.336	ND		1.94	0.362	ND		1.99	0.37	ND		1.97	0.366
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.8	0.621	ND		1.94	0.669	ND		1.99	0.685	ND		1.97	0.677
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.8	0.203	0.377	J	1.94	0.219	ND		1.99	0.224	ND		1.97	0.222
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	1.18	J	1.8	0.339	1.1	J	1.94	0.366	ND		1.99	0.374	ND		1.97	0.37
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	0.83	J	1.8	0.296	0.895	J	1.94	0.319	ND		1.99	0.327	ND		1.97	0.323
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.8	0.282	ND		1.94	0.304	ND		1.99	0.311	ND		1.97	0.307
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.8	0.523	ND		1.94	0.564	ND		1.99	0.578	ND		1.97	0.571
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	ND		1.8	0.455	0.521	J	1.94	0.49	ND		1.99	0.502	ND		1.97	0.496
Perfluorooctanoic Acid (PFOA)	335-67-1	70	ND		1.8	0.213	0.506	J	1.94	0.23	ND		1.99	0.235	ND		1.97	0.232
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	1.03	J	1.8	0.357	1.13	J	1.94	0.385	ND		1.99	0.394	ND		1.97	0.39
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.8	0.224	ND		1.94	0.241	ND		1.99	0.247	ND		1.97	0.244
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.8	0.295	ND		1.94	0.318	ND		1.99	0.326	ND		1.97	0.322
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.8	0.235	ND		1.94	0.253	ND		1.99	0.259	ND		1.97	0.256
PFOA/PFOS, Total			ND		1.8	0.213	1.03	J	1.94	0.23	ND		1.99	0.235	ND		1.97	0.232

Notes

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 31 - AOC-7, ARFF/Maintenance Bldg - SVOCs

		SAMPLE ID:		HVRA-	-FD01-190	0807		HVRA-I	MAINTBLDG	-190807
		LAB ID:		L19	935927-04	4			L1935927-03	j
		COLLECTION DATE:		8	3/7/2019				8/7/2019	
		SAMPLE MATRIX:		١	WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS										
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5	ND		2	0.5
Bis(2-ethylhexyl)phthalate	117-81-7	5	ND		3	1.5	1.6	JB	3	1.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57	ND		5	0.57
Total SVOCs			-	-	-	-	1.6	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM										
Benzo(a)anthracene	56-55-3	0.002	ND		0.1	0.02	ND		0.1	0.02
Benzo(a)pyrene	50-32-8	ND	ND		0.1	0.02	ND		0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	ND		0.1	0.01	ND		0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	ND		0.1	0.01	ND		0.1	0.01
Chrysene	218-01-9	0.002	ND		0.1	0.01	ND		0.1	0.01
Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01	ND		0.8	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ND		0.1	0.01	ND		0.1	0.01
Total SVOCs			-	-	-	-	-	-	-	-

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- J Estimated Value > the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 32 - AOC-7, ARFF/Maintenance Bldg - PCBs

		SAMPLE ID:		HV	RA-FD01-1908	807		HVRA-MAINTBLDG-190807 L1935927-03 8/7/2019 WATER						
		LAB ID:			L1935927-04				L1935927-03					
		COLLECTION DATE:			8/7/2019				8/7/2019					
		SAMPLE MATRIX:			WATER			WATER						
		NY-AWQS ⁽¹⁾												
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL				
POLYCHLORINATED BIPHENYLS BY GC														
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032	ND		0.083	0.032				

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 33 - AOC-7, ARFF/Maintenance Bldg - Metals

		SAMPLE ID:		HVI	RA-FD01-190	807		HVRA-N	// AINTBLDG	-190807
		LAB ID:			L1935927-04				L1935927-03	į .
		COLLECTION DATE:			8/7/2019				8/7/2019	•
		SAMPLE MATRIX:			WATER				WATER	•
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS										
Antimony, Total	7440-36-0	3	0.72	J	4	0.42	1.25	J	4	0.42
Arsenic, Total	7440-38-2	25	7.18		0.5	0.16	8.1		0.5	0.16
Barium, Total	7440-39-3	1000	141.1		0.5	0.17	152.1		0.5	0.17
Calcium, Total	7440-70-2	NS	138000		100	39.4	148000		100	39.4
Copper, Total	7440-50-8	200	0.57	J	1	0.38	0.93	J	1	0.38
Iron, Total	7439-89-6	300	436		50	19.1	434		50	19.1
Magnesium, Total	7439-95-4	35000	41000		70	24.2	42700		70	24.2
Manganese, Total	7439-96-5	300	243.4		1	0.44	258.2		1	0.44
Nickel, Total	7440-02-0	100	1.24	J	2	0.55	1.12	J	2	0.55
Potassium, Total	7440-09-7	NS	2880		100	30.9	3040		100	30.9
Sodium, Total	7440-23-5	20000	82900		100	29.3	86900		100	29.3
Thallium, Total	7440-28-0	0.5	0.43	J	0.5	0.14	0.18	J	0.5	0.14
GENERAL CHEMISTRY										
Cyanide, Total	57-12-5	200	ND		5	1	ND		5	1

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 34 - AOC-8, Fire Pond - PFAS and 1,4-D

		SAMPLE ID:		FIR	E POND-01	-W		FIR	RE POND-02	-W		F	IELD BLANK	<		1	RIP BLANK	
		LAB ID:		L	.1932867-08			L	L1932867-10)		L	1932867-11			L	.1932867-12	
		COLLECTION DATE:			7/24/2019				7/24/2019				7/24/2019				7/24/2019	
		SAMPLE MATRIX:		SUR	RFACE WAT	ER		SUF	RFACE WAT	ER		SUF	RFACE WAT	ER		SUF	RFACE WAT	ER
		NY-AWQS ⁽¹⁾																
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM																		
1,4-Dioxane	123-91-1		ND		0.163	0.0368	ND		0.6	0.136	-		-	-	-	-	-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)																
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	6.36		1.82	1.1	5.28		1.79	1.09	ND		2.08	1.26	ND	-	1.78	1.08
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	292		1.82	1.22	226		1.79	1.19	ND		2.08	1.39	ND	-	1.78	1.18
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.82	0.734	ND		1.79	0.72	ND		2.08	0.838	ND	-	1.78	0.715
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.82	0.591	ND		1.79	0.581	ND		2.08	0.675	ND	-	1.78	0.576
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	6.27		1.82	0.217	6.39		1.79	0.213	ND		2.08	0.248	ND	-	1.78	0.212
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	36.2		1.82	0.372	35.1		1.79	0.366	ND		2.08	0.425	ND	-	1.78	0.363
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.82	0.894	ND		1.79	0.878	ND		2.08	1.02	ND	-	1.78	0.872
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.945	J	1.82	0.277	1.03	J	1.79	0.272	ND		2.08	0.317	ND	-	1.78	0.27
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.82	0.339	ND		1.79	0.333	ND		2.08	0.388	ND	-	1.78	0.331
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	2.7		1.82	0.628	1.79		1.79	0.616	ND		2.08	0.717	ND	-	1.78	0.612
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	24.4		1.82	0.205	22.8		1.79	0.202	ND		2.08	0.234	ND	-	1.78	0.2
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	83.4		1.82	0.343	78		1.79	0.337	ND		2.08	0.392	ND	-	1.78	0.334
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	70.4		1.82	0.299	65.2		1.79	0.294	ND		2.08	0.342	ND	-	1.78	0.292
Perfluorononanoic Acid (PFNA)	375-95-1	NS	4.46		1.82	0.285	4.26		1.79	0.28	ND		2.08	0.325	ND	-	1.78	0.278
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.82	0.529	ND		1.79	0.52	ND		2.08	0.604	ND	-	1.78	0.516
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	214		1.82	0.46	195		1.79	0.452	ND		2.08	0.525	ND	-	1.78	0.448
Perfluorooctanoic Acid (PFOA)	335-67-1	70	26.1		1.82	0.215	23.8		1.79	0.211	1.24		2.08	0.246	0.886	J	1.78	0.21
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	107		1.82	0.361	99.6		1.79	0.355	ND		2.08	0.412	ND	-	1.78	0.352
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.82	0.226	ND		1.79	0.222	ND		2.08	0.258	ND	-	1.78	0.221
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.82	0.298	ND		1.79	0.293	ND		2.08	0.341	ND	-	1.78	0.291
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.82	0.237	ND		1.79	0.233	ND		2.08	0.412	ND	-	1.78	0.231
PFOA/PFOS, Total			240.1		1.82	0.215	218.8		1.79	0.211	1.2	J	2.08	0.246	0.9	J	1.78	0.21

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 34A - AOC-8, Fire Pond - PFAS and 1,4-D

		SAMPLE ID:		FII	RE POND-01	-S		FI	RE POND-02	2-S
		LAB ID:			L1932867-07	•			L1932867-0	}
		COLLECTION DATE:			7/24/2019				7/24/2019	
		SAMPLE MATRIX:			SEDIMENT				SEDIMENT	
		NY-UNRES ⁽¹⁾								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM										
1,4-Dioxane	123-91-1	0.1	ND		0.0412	0.0105	ND		0.0345	0.00881
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.29	0.37	ND		1.21	0.347
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.29	0.231	ND		1.21	0.217
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.29	0.109	ND	J	1.21	0.102
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.29	0.26	ND	J	1.21	0.244
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.29	0.05	ND		1.21	0.047
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	0.245	J	1.29	0.029	0.342	J	1.21	0.027
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	0.345	J	1.29	0.197	ND		1.21	0.185
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.122	J	1.29	0.086	0.1	J	1.21	0.081
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	0.128	J	1.29	0.09	ND		1.21	0.085
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.29	0.176	ND		1.21	0.165
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.16	J	1.29	0.058	0.215	J	1.21	0.055
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	2.27		1.29	0.078	0.208	J	1.21	0.073
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	0.342	J	1.29	0.068	0.218	J	1.21	0.064
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.147	J	1.29	0.097	0.206	J	1.21	0.091
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.29	0.126	ND		1.21	0.118
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	11.6		1.29	0.167	7.83		1.21	0.157
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	0.213	J	1.29	0.054	0.212	J	1.21	0.051
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	0.422	J	1.29	0.059	0.737	J	1.21	0.056
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.29	0.07	ND	J	1.21	0.065
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.29	0.263	ND	J	1.21	0.247
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	0.243	J	1.29	0.06	0.132	J	1.21	0.057
PFOA/PFOS, Total		NS	11.8	J	1.29	0.054	8.0	J	1.21	0.051
GENERAL CHEMISTRY		(mg/kg)								
Solids, Total	NONE		72.9		0.1	0.1	82.3		0.1	0.1

Notes

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- B The analyte was detected above the reporting limit in the associated method blank.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 35 - AOC-9, North/South Runway - PFAS and 1,4-D

		SAMPLE ID:		HVR	A-MW102-19	0809		HVR	A-MW103-19	0809
		LAB ID:			L1935927-10)			L1935927-12	
		COLLECTION DATE:			8/9/2019				8/9/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM										
1,4-Dioxane	123-91-1	NS	ND		0.15	0.0339	ND		0.156	0.0353
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.95	1.18	ND		1.84	1.12
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.95	1.3	ND		1.84	1.23
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.95	0.785	ND		1.84	0.742
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.95	0.633	ND		1.84	0.598
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.95	0.232	0.819	J	1.84	0.22
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	1.72	J	1.95	0.398	1.39	J	1.84	0.376
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.95	0.957	ND		1.84	0.904
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.95	0.297	ND		1.84	0.28
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.95	0.363	ND		1.84	0.343
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.95	0.672	ND		1.84	0.635
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.762	J	1.95	0.22	0.819	J	1.84	0.208
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.95	0.367	4.74		1.84	0.347
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	1.41	J	1.95	0.32	1.26	J	1.84	0.302
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.95	0.305	ND		1.84	0.288
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	0.684	J	1.95	0.566	ND		1.84	0.535
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	1.17	J	1.95	0.492	1.32	J	1.84	0.465
Perfluorooctanoic Acid (PFOA)	335-67-1	70	1.26	J	1.95	0.23	2.1		1.84	0.218
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	1.38	J	1.95	0.387	1.15	J	1.84	0.365
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.95	0.242	ND		1.84	0.229
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.95	0.32	ND		1.84	0.302
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.95	0.254	ND		1.84	0.24
PFOA/PFOS, Total			2.4	J	1.95	0.23	3.4	J	1.84	0.218

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 35A - AOC-9, North/South Runway - PFAS and 1,4-D

		SAMPLE ID:		HVE	RA-FD01-190	1806		HV	/RA-MW102-	0.5		н	VRA-MW102-2	0		HV	RA-MW102-	4.5		HV	RA-MW103-	0.5		HVRA.	-MW103-10	0.0		HVR/	A-MW103-2.	0
		LAB ID:			L1935085-05				L1936143-07				L1936143-08				L1935085-04				_1936143-12				935085-06				936143-13	
		COLLECTION DATE:			8/6/2019				8/12/2019				8/12/2019				8/6/2019				8/12/2019			8	3/6/2019			8	3/12/2019	$\overline{}$
		SAMPLE DEPTH:		FD	of MW102-	4.5			0.0' - 0.5'				0.5' - 2.0'				4.5' - 5.5'				0.0' - 0.5'				0.0 - 11.0'				0.5' - 2.0'	$\overline{}$
		SAMPLE MATRIX:			SOIL		İ		SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾			00.12				00.2				00.12				00.2				00.2		<u> </u>							$\overline{}$
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1.4 DIOXANE BY 8270D-SIM		(0 0)																						-			-			
1,4-Dioxane	123-91-1	0.1	-		-	-	ND		0.0077	0.00196	ND		0.00753	0.00192	-		-	-	ND		0.0103	0.00263	-	-		-	ND		0.00767	0.00196
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)																					,	-			-			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.09	0.313	ND		0.975	0.28	ND		0.976	0.28	ND		1	0.288	ND		1.47	0.422	ND	-	0.989	0.284	ND		1.02	0.292
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.09	0.196	ND		0.975	0.175	ND		0.976	0.175	ND		1	0.18	ND		1.47	0.264	8.28	-	0.989	0.178	ND		1.02	0.182
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.09	0.092	ND		0.975	0.082	ND	J	0.976	0.082	ND	J	1	0.085	ND		1.47	0.124	ND		0.989	0.084	ND		1.02	0.086
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND	J	1.09	0.22	ND	J	0.975	0.196	ND	J	0.976	0.197	ND	J	1	0.202	ND	J	1.47	0.296	ND	-	0.989	0.199	ND		1.02	0.205
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.09	0.043	ND		0.975	0.038	ND		0.976	0.038	ND		1	0.039	ND		1.47	0.057	ND	-	0.989	0.039	ND		1.02	0.04
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	ND		1.09	0.025	0.176	J	0.975	0.022	0.06	J	0.976	0.022	ND		1	0.023	0.252	J	1.47	0.033	ND	-	0.989	0.022	0.093	J	1.02	0.023
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.09	0.167	ND		0.975	0.149	ND		0.976	0.149	ND		1	0.153	ND		1.47	0.225	ND	-	0.989	0.151	ND		1.02	0.155
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.09	0.073	0.089	J	0.975	0.065	ND		0.976	0.065	ND		1	0.067	0.14	J	1.47	0.099	ND		0.989	0.066	0.075	J	1.02	0.068
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.09	0.076	ND		0.975	0.068	ND		0.976	0.068	ND	J	1	0.07	ND		1.47	0.103	ND	- /	0.989	0.069	ND		1.02	0.071
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.09	0.149	ND		0.975	0.133	ND		0.976	0.133	ND		1	0.137	ND		1.47	0.201	ND	- /	0.989	0.135	ND		1.02	0.139
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.09	0.049	0.174	J	0.975	0.044	ND		0.976	0.044	ND		1	0.045	0.25	J	1.47	0.066	ND		0.989	0.045	0.085	J	1.02	0.046
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.09	0.066	0.172	J	0.975	0.059	0.063	J	0.976	0.059	ND		1	0.061	ND		1.47	0.089	ND	- /	0.989	0.06	ND		1.02	0.062
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	ND		1.09	0.057	0.137	J	0.975	0.051	0.082	J	0.976	0.051	ND		1	0.053	0.244	J	1.47	0.077	ND		0.989	0.052	0.144	J	1.02	0.053
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.09	0.082	0.146	J	0.975	0.073	ND		0.976	0.073	ND		1	0.075	0.391	J	1.47	0.11	ND	- /	0.989	0.074	0.239	J	1.02	0.076
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.09	0.107	ND		0.975	0.096	ND		0.976	0.096	ND		1	0.098	ND		1.47	0.144	ND		0.989	0.097	ND		1.02	0.1
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	ND		1.09	0.142	1.29		0.975	0.127	0.213	J	0.976	0.127	ND		1	0.13	0.958	J	1.47	0.191	ND		0.989	0.128	0.55	J	1.02	0.132
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	ND		1.09	0.046	0.415	J	0.975	0.041	0.127	J	0.976	0.041	ND		1	0.042	0.85	J	1.47	0.062	ND		0.989	0.041	0.57	J	1.02	0.043
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND		1.09	0.05	0.118	J	0.975	0.045	0.045	J	0.976	0.045	ND		1	0.046	0.178	J	1.47	0.068	ND		0.989	0.046	0.089	J	1.02	0.047
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.09	0.059	ND		0.975	0.053	ND		0.976	0.053	ND		1	0.054	ND		1.47	0.079	ND		0.989	0.053	ND		1.02	0.055
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND	,	1.09	0.223	ND	,	0.975	0.199	ND		0.976	0.2	ND		1	0.205	ND		1.47	0.301	ND	- /	0.989	0.202	ND		1.02	0.208
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.09	0.051	0.08	J	0.975	0.046	ND		0.976	0.046	ND	J	1	0.047	0.2	J	1.47	0.069	ND		0.989	0.046	0.053	J	1.02	0.048
PFOA/PFOS, Total			ND		1.09	0.046	1.7	J	0.975	0.041	0.3	J	0.976	0.041	ND		1	0.042	1.8	J	1.47	0.062	ND		0.989	0.041	1.1	J	1.02	0.043

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/ka = ppm or parts per million

Table 36 - AOC-9, North/South Runway, VOCs

		SAMPLE ID:		HVRA	-MW102-19	0809		HVR	A-MW103-19	0809
		LAB ID:		L	.1935927-10				L1935927-12	
		COLLECTION DATE:			8/9/2019				8/9/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY GC/MS										
1,1,2-Trichloroethane	79-00-5	1	ND		1.5	0.5	ND		1.5	0.5
1,2-Dibromo-3-chloropropane	96-12-8	0.04	ND		2.5	0.7	ND		2.5	0.7
1,2-Dibromoethane	106-93-4	0.0006	ND		2	0.65	ND		2	0.65
Acetone	67-64-1	50	18		5	1.5	11		5	1.5
cis-1,3-Dichloropropene	10061-01-5	0.4	ND		0.5	0.14	ND		0.5	0.14
Dichlorodifluoromethane	75-71-8	5	ND		5	1	ND		5	1
trans-1,3-Dichloropropene	10061-02-6	0.4	ND		0.5	0.16	ND		0.5	0.16
Total VOCs			18	-	-	-	11	-	-	-

Notes

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 36A - AOC-9, North/South Runway - VOCs

		SAMPLE ID:		HVF	RA-FD01-190	0806		HV	'RA-MW102-0	0.5		HVRA-MV	102-2.0			HVRA-MW10	2-4.5		HV	RA-MW103-	0.5		HV	RA-MW103-1	0.0		HVR	RA-MW103-2	2.0
		LAB ID:		- 1	L1935085-0	5			L1936143-07			L19361	3-08			L1935085	-04		ı	_1936143-12	2			L1935085-06			L1	1936143-13	}
		COLLECTION DATE:			8/6/2019				8/12/2019			8/12/2	19			8/6/2019)			8/12/2019				8/6/2019				8/12/2019	
		SAMPLE DEPTH:		FD	of MW102-	4.5			0.0' - 0.5'			0.5' -	.0'			4.5' - 5.5	ŗ.			0.0' - 0.5'				10.0' - 11.0'				0.5' - 2.0'	
		SAMPLE MATRIX:			SOIL				SOIL			so				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES(1)																											
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RI	MDI	Con	c Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY EPA 5035											•							•			•								
Acetone	67-64-1	0.05	0.054		0.01	0.0048	ND		0.011	0.0051	ND	0.00	5 0.004	6 0.01	3	0.0095	0.0046	ND		0.014	0.0066	ND		0.0096	0.0046	ND		0.0094	0.0045
Methyl Acetate	79-20-9	NS	0.038		0.004	0.00096	ND		0.0042	0.001	ND	0.00	8 0.000	9 ND		0.0038	0.0009	ND		0.0054	0.0013	ND		0.0038	0.00091	ND		0.0037	0.0008
Tetrachloroethene	127-18-4	1.3	ND		0.0005	0.0002	0.001		0.00053	0.00021	0.00035	J 0.000	18 0.000	19 ND		0.00047	0.00018	0.00065	J	0.00068	0.00027	ND		0.00048	0.00019	0.00071		0.00047	0.0001
Total VOCs			0.092	-	-	-	0.001	-	-	-	0.00035		-	0.01	3 -	-	-	0.00065	-	-	-	-	-	-	-	0.00071	-	-	-
Notes:	I																												
Notes: (1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted us J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Lin B - The analyte was detected above the reporting limit in the associat E - Concentration of analyte exceeds the range of the calibration curv NA denotes Not Analyzed NS denotes No Standard ND denotes Non Detect mg/kg = ppm or parts per million ug/kg = ppb or parts per billion	imit of Quantitation or Reporting Li ated method blank.	imit (LOQ or RL)		effective D	December 14	i, 2006.																							
(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted us J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Lin B - The analyte was detected above the reporting limit in the associat E - Concentration of analyte exceeds the range of the calibration curv NA denotes Not Analyzed NS denotes No Standard ND denotes No Standard ND denotes Non Detect mg/kg = ppm or parts per million	imit of Quantitation or Reporting Li ated method blank. rve and/or linear range of the instru	imit (LOQ or RL)		effective D	December 14	, 2006.																							

Table 37 - AOC-9, North/South Runway - SVOCs

		SAMPLE ID:		HVR	A-MW102-1	90809		HVR	A-MW103-19	0809
		LAB ID:			L1935927-1				L1935927-12	
		COLLECTION DATE:			8/9/2019				8/9/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS										
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND		10	0.44	ND		10	0.44
2,4-Dichlorophenol	120-83-2	1	ND		5	0.41	ND		5	0.41
2,4-Dinitrophenol	51-28-5	10	ND		20	6.6	ND		20	6.6
2,4-Dinitrotoluene	121-14-2	5	ND		5	1.2	ND		5	1.2
2,6-Dinitrotoluene	606-20-2	5	ND		5	0.93	ND		5	0.93
2-Nitroaniline	88-74-4	5	ND		5	0.5	ND		5	0.5
3,3'-Dichlorobenzidine	91-94-1	5	ND		5	1.6	ND		5	1.6
3-Nitroaniline	99-09-2	5	ND		5	0.81	ND		5	0.81
4-Chloroaniline	106-47-8	5	ND		5	1.1	ND		5	1.1
4-Nitroaniline	100-01-6	5	ND		5	0.8	ND		5	0.8
Atrazine	1912-24-9	7.5	ND		10	0.76	ND		10	0.76
Bis(2-chloroethoxy)methane	111-91-1	5	ND		5	0.5	ND		5	0.5
Bis(2-chloroethyl)ether	111-44-4	1	ND		2	0.5	ND		2	0.5
Hexachlorocyclopentadiene	77-47-4	5	ND		20	0.69	ND		20	0.69
Nitrobenzene	98-95-3	0.4	ND		2	0.77	ND		2	0.77
Phenol	108-95-2	1	ND		5	0.57	ND		5	0.57
Total SVOCs			-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS-SIM										
Benzo(a)anthracene	56-55-3	0.002	0.04	J	0.1	0.02	0.02	J	0.1	0.02
Benzo(a)pyrene	50-32-8	ND	0.03	J	0.1	0.02	0.02	J	0.1	0.02
Benzo(b)fluoranthene	205-99-2	0.002	0.03	J	0.1	0.01	0.06	J	0.1	0.01
Benzo(ghi)perylene	191-24-2	NS	0.03	J	0.1	0.01	0.05	J	0.1	0.01
Benzo(k)fluoranthene	207-08-9	0.002	0.03	J	0.1	0.01	0.02	J	0.1	0.01
Chrysene	218-01-9	0.002	0.02	J	0.1	0.01	ND		0.1	0.01
Dibenzo(a,h)anthracene	53-70-3	NS	0.02	J	0.1	0.01	ND		0.1	0.01
Fluoranthene	206-44-0	50	0.02	J	0.1	0.02	ND		0.1	0.02
Hexachlorobenzene	118-74-1	0.04	ND		0.8	0.01	ND		0.8	0.01
Hexachlorobutadiene	87-68-3	0.5	ND		0.5	0.05	ND		0.5	0.05
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	0.03	J	0.1	0.01	0.05	J	0.1	0.01
Naphthalene	91-20-3	10	ND		0.1	0.05	0.06	J	0.1	0.05
Phenanthrene	85-01-8	50	0.04	J	0.1	0.02	0.02	J	0.1	0.02
Total SVOCs			0.29	-	-	-	0.3	-	-	-

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 37A - AOC-9, North/South Runway - SVOCs

																			ı				1							
		SAMPLE ID:			RA-FD01-190				/RA-MW102-				/RA-MW102-				/RA-MW102	_			VRA-MW103				A-MW103-1				/RA-MW103-	
		LAB ID:			L1935085-05	i			L1936143-07	7			L1936143-08				L1935085-0	4			L1936143-1	2		L	1935085-06				L1936143-13	3
		COLLECTION DATE:			8/6/2019				8/12/2019				8/12/2019				8/6/2019				8/12/2019				8/6/2019				8/12/2019	
		SAMPLE DEPTH:		FD	of MW102-4	1.5			0.0' - 0.5'				0.5' - 2.0'				4.5' - 5.5'				0.0' - 0.5'				10.0' - 11.0'				0.5' - 2.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾																	•											
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
SEMIVOLATILE ORGANICS BY GC/MS																														
Benzaldehyde	100-52-7	NS	ND		0.24	0.05	0.063	J	0.23	0.048	ND		0.23	0.047	ND		0.24	0.05	0.29	J	0.34	0.069	ND		0.23	0.048	0.14	J	0.25	0.051
Benzo(a)anthracene	56-55-3	1	ND		0.11	0.021	ND		0.11	0.02	ND		0.1	0.02	ND		0.11	0.021	ND		0.15	0.029	ND		0.11	0.02	ND		0.11	0.021
Benzo(a)pyrene	50-32-8	1	ND		0.15	0.045	ND		0.14	0.043	ND		0.14	0.042	ND		0.15	0.045	ND		0.2	0.062	ND		0.14	0.043	ND		0.15	0.046
Benzo(b)fluoranthene	205-99-2	1	ND		0.11	0.031	ND		0.11	0.03	ND		0.1	0.029	ND		0.11	0.031	ND		0.15	0.043	ND		0.11	0.03	ND		0.11	0.032
Benzo(ghi)perylene	191-24-2	100	ND		0.15	0.022	ND		0.14	0.021	ND		0.14	0.02	ND		0.15	0.022	ND		0.2	0.03	ND		0.14	0.021	ND		0.15	0.022
Benzo(k)fluoranthene	207-08-9	0.8	ND		0.11	0.029	ND		0.11	0.028	ND		0.1	0.028	ND		0.11	0.029	ND		0.15	0.041	ND		0.11	0.028	ND		0.11	0.03
Chrysene	218-01-9	1	ND		0.11	0.019	ND		0.11	0.018	ND		0.1	0.018	ND		0.11	0.019	ND		0.15	0.026	ND		0.11	0.018	ND		0.11	0.02
Fluoranthene	206-44-0	100	ND		0.11	0.021	ND		0.11	0.02	ND		0.1	0.02	ND		0.11	0.021	0.039	J	0.15	0.029	ND		0.11	0.02	0.034	J	0.11	0.022
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	ND		0.15	0.026	ND		0.14	0.025	ND		0.14	0.024	ND		0.15	0.026	ND		0.2	0.035	ND		0.14	0.025	ND		0.15	0.026
Phenanthrene	85-01-8	100	ND		0.11	0.022	ND		0.11	0.022	ND		0.1	0.021	ND		0.11	0.022	ND		0.15	0.031	ND		0.11	0.022	ND		0.11	0.023
Pyrene	129-00-0	100	ND		0.11	0.018	ND		0.11	0.018	ND		0.1	0.017	ND		0.11	0.018	0.033	J	0.15	0.025	ND		0.11	0.018	0.031	J	0.11	0.019
Total SVOCs			-	-	-	-	0.063	-	-	-	-	-	-	-	-	-	-	-	0.362	-	-	-	-	-	-	-	0.205	-	-	-

Notes:
(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes No No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per million

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Table 38 - AOC-9, North/South Runway - PCBs

		SAMPLE ID:		HVR	A-MW102-19	0809		HVR	A-MW103-190	809
		LAB ID:			L1935927-10				L1935927-12	
		COLLECTION DATE:			8/9/2019				8/9/2019	
		SAMPLE MATRIX:			WATER				WATER	
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC										
PCBs, Total	1336-36-3	0.09*	ND		0.083	0.032	ND		0.083	0.032

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

- * Applies to the sum of these substances.
- J Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Table 38A - AOC-9, North/South Runway - PCBs

		SAMPLE ID:		HVRA-F	FD01-1908	306		H,	VRA-MW102	-0.5		H\	/RA-MW102-	2.0		HVR	A-MW102-4	4.5		HVF	RA-MW103-	0.5		HVF	RA-MW103-1	0.0		HVF	RA-MW103-2	2.0
		LAB ID:			35085-05				L1936143-0				L1936143-08				1935085-04				1936143-12				1935085-06				1936143-13	
		COLLECTION DATE:		8/	/6/2019				8/12/2019				8/12/2019				8/6/2019				8/12/2019				8/6/2019				8/12/2019	
		SAMPLE DEPTH:		FD of	MW102-4	.5			0.0' - 0.5'				0.5' - 2.0'				4.5' - 5.5'				0.0' - 0.5'				10.0' - 11.0'				0.5' - 2.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾																												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
POLYCHLORINATED BIPHENYLS BY GC																														
PCBs, Total	1336-36-3		ND	C	0.0368	0.00327	ND		0.0356	0.00316	ND		0.0352	0.00313	ND		0.0355	0.00315	ND		0.0504	0.00448	ND		0.0355	0.00315	ND		0.0376	0.00334

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ND denotes Non Detect
mg/kg = ppm or parts per million
ug/kg = ppb or parts per billion
Results that are shaded blue indicate a RL or MDL above the AWQS.
Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Table 39 - AOC-9, North/South Runway - Pesticides

		SAMPLE ID:		HVRA-MW102-1	90809		HVR	A-MW103-190	0809
		LAB ID:		L1935927-1	0			L1935927-12	
		COLLECTION DATE:		8/9/2019				8/9/2019	
		SAMPLE MATRIX:		WATER				WATER	
		NY-AWQS ⁽¹⁾							
ANALYTE	CAS	(ug/l)	Conc	Q RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC									
Aldrin	309-00-2	ND	ND	0.014	0.002	ND		0.014	0.002
Alpha-BHC	319-84-6	0.01	ND	0.014	0.003	ND		0.014	0.003
Chlordane	57-74-9	0.05	ND	0.143	0.033	ND		0.143	0.033
Dieldrin	60-57-1	0.004	ND	0.029	0.003	ND		0.029	0.003
Endrin	72-20-8	ND	ND	0.029	0.003	ND		0.029	0.003
Toxaphene	8001-35-2	0.06	ND	0.143	0.045	ND		0.143	0.045

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded gray indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 39A - AOC-9, North/South Runway - Pesticides

		SAMPLE ID:		HVR	RA-FD01-190	806		H	VRA-MW102-	-0.5		HV	/RA-MW102-	2.0		HVI	RA-MW102-4	.5		Н١	VRA-MW103	-0.5		HVR	A-MW103-1	0.0		HVRA	A-MW103-2	0
		LAB ID:		l	L1935085-05				L1936143-07	7			L1936143-08			L	1935085-04				L1936143-1	2		L	1935085-06			L1:	936143-13	
		COLLECTION DATE:			8/6/2019				8/12/2019				8/12/2019				8/6/2019				8/12/2019				8/6/2019			8	3/12/2019	
		SAMPLE DEPTH:		FD	of MW102-	1.5			0.0' - 0.5'				0.5' - 2.0'				4.5' - 5.5'				0.0' - 0.5'			1	10.0' - 11.0'			C	0.5' - 2.0'	
		SAMPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾																												
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
ORGANOCHLORINE PESTICIDES BY GC																														
4,4'-DDE	72-55-9	0.0033	ND		0.00175	0.000404	ND		0.00172	0.000398	ND		0.00167	0.000387	ND		0.00176	0.000408	0.000886	JP	0.00241	0.000557	ND		0.00167	0.000387	0.00052	J	0.0018	0.000415
4,4'-DDT	50-29-3	0.0033	ND		0.00328	0.00141	ND		0.00323	0.00138	ND		0.00314	0.00134	ND		0.0033	0.00142	ND		0.00451	0.00194	ND		0.00314	0.00135	ND		0.00336	0.00144

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

P - The RPD between the results for the two columns exceeds the method-specified criteria.

NA denotes Not Analyzed

NS denotes No Standard ND denotes Non Detect

no denotes non betech

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Table 40 - AOC-9, North/South Runway - Metals

		SAMPLE ID: HVRA-MW102-190809					HVRA-MW103-190809 L1935927-12			
		LAB ID: L1935927-10								
		COLLECTION DATE:	8/9/2019				8/9/2019 WATER			
		SAMPLE MATRIX:	WATER							
		NY-AWQS ⁽¹⁾								
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS										
Aluminum, Total	7429-90-5	NS	472		10	3.27	172		10	3.27
Antimony, Total	7440-36-0	3	0.52	J	4	0.42	ND		4	0.42
Arsenic, Total	7440-38-2	25	1.52		0.5	0.16	4.79		0.5	0.16
Barium, Total	7440-39-3	1000	70.84		0.5	0.17	53.8		0.5	0.17
Cadmium, Total	7440-43-9	5	0.1	J	0.2	0.05	ND		0.2	0.05
Calcium, Total	7440-70-2	NS	206000		100	39.4	72200		100	39.4
Chromium, Total	7440-47-3	50	1.73		1	0.17	0.7	J	1	0.17
Cobalt, Total	7440-48-4	NS	6.3		0.5	0.16	1.14		0.5	0.16
Copper, Total	7440-50-8	200	2.74		1	0.38	1.17		1	0.38
Iron, Total	7439-89-6	300	2000		50	19.1	7800		50	19.1
Lead, Total	7439-92-1	25	1.13		1	0.34	0.75	J	1	0.34
Magnesium, Total	7439-95-4	35000	66800		70	24.2	16900		70	24.2
Manganese, Total	7439-96-5	300	9436		1	0.44	3741		1	0.44
Nickel, Total	7440-02-0	100	11.34		2	0.55	0.81	J	2	0.55
Potassium, Total	7440-09-7	NS	3520		100	30.9	1550		100	30.9
Sodium, Total	7440-23-5	20000	15900		100	29.3	68500		100	29.3
Thallium, Total	7440-28-0	0.5	0.16	J	0.5	0.14	ND		0.5	0.14
Zinc, Total	7440-66-6	2000	13.36		10	3.41	4.14	J	10	3.41
GENERAL CHEMISTRY										
Cyanide, Total	57-12-5	200	3	J	5	1	ND		5	1

Notes:

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 40A - AOC-9, North/South Runway - Metals

		SAMPLE ID:		HVRA-FD01-	90806		HV	/RA-MW102-	0.5		H\	/RA-MW102-	2.0		HVR	A-MW102-4	1.5		HVR	A-MW103-0).5		HV	/RA-MW103-10	0.0		HVI	RA-MW103-2	2.0
		LAB ID:		L1935085	-05			L1936143-07	,			L1936143-08			L1	1935085-04			L'	1936143-12				L1935085-06			L	1936143-13	
		COLLECTION DATE:		8/6/201)	1		8/12/2019				8/12/2019				8/6/2019				8/12/2019				8/6/2019				8/12/2019	
		SAMPLE DEPTH:		FD of MW10	2-4.5			0.0' - 0.5'				0.5' - 2.0'				4.5' - 5.5'				0.0' - 0.5'				10.0' - 11.0'				0.5' - 2.0'	
		SAMPLE MATRIX:		SOIL		1		SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾												l .															
ANALYTE	CAS	(mg/kg)	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS																						•							
Aluminum, Total	7429-90-5	NS	11400	8.64	2.33	9550		8.59	2.32	11200		8.41	2.27	11000		8.86	2.39	15500		12	3.26	10800		8.28	2.24	10200		8.91	2.41
Antimony, Total	7440-36-0	NS	1.18	J 4.32	0.328	0.834	J	4.3	0.326	1.06	J	4.21	0.32	1.35	J	4.43	0.337	1.2	J	6.03	0.458	1.32	J	4.14	0.315	0.918	J	4.46	0.339
Arsenic, Total	7440-38-2	13	4.53	0.864	0.18	3.15		0.859	0.179	4.34		0.841	0.175	4.67		0.886	0.184	5.53		1.2	0.251	5.06		0.828	0.172	3.8		0.891	0.185
Barium, Total	7440-39-3	350	50	0.864	0.15	42.4		0.859	0.15	41.2		0.841	0.146	44.1		0.886	0.154	54.7		1.2	0.21	43.1		0.828	0.144	36.8		0.891	0.155
Beryllium, Total	7440-41-7	7.2	0.363	J 0.432	0.029	0.37	J	0.43	0.028	0.387	J	0.421	0.028	0.363	J	0.443	0.029	0.494	J	0.603	0.04	0.406	J	0.414	0.027	0.365	J	0.446	0.029
Cadmium, Total	7440-43-9	2.5	ND	0.864	0.085	ND		0.859	0.084	ND		0.841	0.083	ND		0.886	0.087	ND		1.2	0.118	ND		0.828	0.081	ND		0.891	0.087
Calcium, Total	7440-70-2	NS	21900	8.64	3.02	1410		8.59	3.01	8520		8.41	2.94	34200		8.86	3.1	3610		12	4.22	22800		8.28	2.9	2360		8.91	3.12
Chromium, Total	7440-47-3	30	14.1	0.864	0.083	10.6		0.859	0.083	15.8		0.841	0.081	13.3		0.886	0.085	15.8		1.2	0.116	14		0.828	0.08	11.6		0.891	0.086
Cobalt, Total	7440-48-4	NS	9.32	1.73	0.143	6.46		1.72	0.143	9.48		1.68	0.14	9.42		1.77	0.147	10.5		2.41	0.2	10.6		1.66	0.138	7.98		1.78	0.148
Copper, Total	7440-50-8	50	29.4	0.864	0.223	20.1		0.859	0.222	26.5		0.841	0.217	27.5		0.886	0.228	32		1.2	0.311	25.5		0.828	0.214	24		0.891	0.23
Iron, Total	7439-89-6	NS	25000	4.32	0.78	17400		4.3	0.776	21800		4.21	0.76	24300		4.43	0.8	29400		6.03	1.09	23600		4.14	0.748	19700		4.46	0.805
Lead, Total	7439-92-1	63	9.87	4.32	0.232	13.2		4.3	0.23	10.9		4.21	0.226	9.85		4.43	0.237	25.5		6.03	0.323	10.7		4.14	0.222	19.7		4.46	0.239
Magnesium, Total	7439-95-4	NS	7590	8.64	1.33	3370		8.59	1.32	5080		8.41	1.3	7670		8.86	1.36	6400		12	1.86	9470		8.28	1.28	4280		8.91	1.37
Manganese, Total	7439-96-5	1600	551	0.864	0.137	415		0.859	0.137	636		0.841	0.134	657		0.886	0.141	974		1.2	0.192	730		0.828	0.132	573		0.891	0.142
Mercury, Total	7439-97-6	0.18	ND	0.071	0.046	ND		0.068	0.044	ND		0.067	0.044	ND		0.071	0.046	ND		0.097	0.063	ND		0.07	0.046	ND		0.072	0.047
Nickel, Total	7440-02-0	30	19.2	2.16	0.209	14.5		2.15	0.208	19.9		2.1	0.204	18.9		2.21	0.214	22.3		3.01	0.292	20.5		2.07	0.2	17.2		2.23	0.216
Potassium, Total	7440-09-7	NS	820	216	12.4	358		215	12.4	448		210	12.1	850		221	12.8	519		301	17.4	866		207	11.9	376		223	12.8
Selenium, Total	7782-49-2	3.9	ND	1.73	0.223	ND		1.72	0.222	ND		1.68	0.217	ND		1.77	0.228	ND		2.41	0.311	ND		1.66	0.214	ND		1.78	0.23
Sodium, Total	7440-23-5	NS	45.9	J 173	2.72	19.4	J	172	2.71	29.2	J	168	2.65	49.2	J	177	2.79	37.1	J	241	3.8	52.4	J	166	2.61	23.2	J	178	2.81
Thallium, Total	7440-28-0	NS	ND	1.73	0.272	ND		1.72	0.271	ND		1.68	0.265	ND		1.77	0.279	ND		2.41	0.38	ND		1.66	0.261	ND		1.78	0.281
Vanadium, Total	7440-62-2	NS	13.9	0.864	0.175	14		0.859	0.174	13.2		0.841	0.171	13.4		0.886	0.18	20.1		1.2	0.245	13.4		0.828	0.168	14.9		0.891	0.181
Zinc, Total	7440-66-6	109	59.5	4.32	0.253	46.1		4.3	0.252	57		4.21	0.246	57.4		4.43	0.26	75.5		6.03	0.353	56.3		4.14	0.243	60.3		4.46	0.261
GENERAL CHEMISTRY		(mg/kg)				•								•								•							
Moisture	NONE	. 3 6/	11.2	0.1	NA	-		-	-	-		-	-	10.9		0.1	NA	-		-	-	9.1		0.1	NA	-		-	-
Solids, Total	NONE		88.8	0.1	NA	92.8		0.1	NA	93.8		0.1	NA	89.1		0.1	NA	65.2		0.1	NA	90.9		0.1	NA	87.1		0.1	NA

Solids, Total

Notes:

(1) NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

B - The analyte was detected above the reporting limit in the associated method blank.

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

mg/kg = ppm or parts per million

ug/kg = ppb or parts per billion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded by leveling the state of the shaded by the indicate a concentration above the AWQS.

Table 41 - OFFSITE - PFAS and 1,4-D

		SAMPLE ID:		HVRA-1581_RT_37	6-190904		HVRA-160	01_RT376_	190906		HVRA-16	610_RT_376	-190904	Н	VRA-2_HACKENSA	K-190906	HVR	A-7_HACKENSACK_H	TS_RD-190904		HVRA-FTB	01-190904	\neg	LTB0	01-190906	
		LAB ID:		L1940308-0)1		L1	940894-01			L	1940308-04			L1940894-02	!		L1940308-02	2		L19403	08-03		L194	40894-03	
		COLLECTION DATE:		9/4/2019				9/6/2019				9/4/2019			9/6/2019			9/4/2019			9/4/2	019		9/6	6/2019	-
		SAMPLE MATRIX:		WATER				WATER				WATER			WATER			WATER			WAT	ER		W	/ATER	
		NY-AWQS ⁽¹⁾																								
ANALYTE	CAS	(ug/l)	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RI	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM						•											•			•						
1,4-Dioxane	123-91-1	NS	0.216	0.144	0.0326	ND		0.16	0.0361	ND		0.139	0.0314	ND	0.156	0.0353	ND	0.144	0.0326	-		-	-	-	-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)																								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND	1.8	1.09	ND		1.85	1.12	ND		1.84	1.11	ND	1.91	1.16	ND	1.84	1.12	ND	1.9	4 1.17	ND		1.79	1.09
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND	1.8	1.2	ND		1.85	1.23	ND		1.84	1.22	ND	1.91	1.27	ND	1.84	1.23	ND	1.9	4 1.29	ND		1.79	1.19
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND	1.8	0.723	ND		1.85	0.744	ND		1.84	0.739	ND	1.91	0.767	ND	1.84	0.742	ND	1.9	4 0.779	ND		1.79	0.72
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND	1.8	0.583	ND		1.85	0.6	ND		1.84	0.596	ND	1.91	0.618	ND	1.84	0.598	ND	1.9	4 0.628	ND		1.79	0.581
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	7.48	1.8	0.214	0.407	J	1.85	0.22	ND		1.84	0.219	5.92	1.91	0.227	9.01	1.84	0.22	ND	1.9	4 0.231	ND		1.79	0.213
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	12.8	1.8	0.367	1.78	J	1.85	0.378	1.33	J	1.84	0.375	8.25	1.91	0.389	8.38	1.84	0.376	ND	1.9	4 0.395	ND		1.79	0.366
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND	1.8	0.881	ND		1.85	0.907	ND		1.84	0.901	ND	1.91	0.935	ND	1.84	0.904	ND	1.9	4 0.95	ND		1.79	0.878
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND	1.8	0.273	ND		1.85	0.281	ND		1.84	0.279	ND	1.91	0.29	0.524	J 1.84	0.28	ND	1.9	4 0.294	ND		1.79	0.272
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND	1.8	0.334	ND		1.85	0.344	ND		1.84	0.342	ND	1.91	0.355	ND	1.84	0.343	ND	1.9	4 0.36	ND		1.79	0.333
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND	1.8	0.619	ND		1.85	0.637	ND		1.84	0.632	ND	1.91	0.656	ND	1.84	0.635	ND	1.9	4 0.667	ND		1.79	0.616
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	14.2	1.8	0.202	ND		1.85	0.208	ND		1.84	0.207	7.27	1.91	0.215	3.93	1.84	0.208	ND	1.9	4 0.218	ND		1.79	0.202
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	8.31	1.8	0.338	1.36	J	1.85	0.348	ND		1.84	0.346	5.43	1.91	0.359	2.5	1.84	0.347	ND	1.9	4 0.364	ND		1.79	0.337
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	36	1.8	0.295	1.27	J	1.85	0.304	1.18	J	1.84	0.301	10.7	1.91	0.313	9.41	1.84	0.302	0.368	J 1.9	4 0.318	0.373	J '	1.79	0.294
Perfluorononanoic Acid (PFNA)	375-95-1	NS	1.1	J 1.8	0.28	ND		1.85	0.289	ND		1.84	0.287	1.19	J 1.91	0.298	1.19	J 1.84	0.288	ND	1.9	4 0.302	ND		1.79	0.28
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND	1.8	0.522	ND		1.85	0.537	ND		1.84	0.533	ND	1.91	0.553	ND	1.84	0.535	ND	1.9	4 0.562	ND		1.79	0.52
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	42.6	1.8	0.453	0.748	J	1.85	0.467	ND		1.84	0.463	22.5	1.91	0.481	22.1	1.84	0.465	ND	1.9	4 0.488	ND	-	1.79	0.452
Perfluorooctanoic Acid (PFOA)	335-67-1	70	33.2	1.8	0.212	ND		1.85	0.218	ND		1.84	0.217	20.7	1.91	0.225	10.4	1.84	0.218	ND	1.9	4 0.229	ND		1.79	0.211
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	35.5	1.8	0.356	1.11	J	1.85	0.367	1.12	J	1.84	0.364	12	1.91	0.378	13.8	1.84	0.365	ND	1.9	4 0.384	ND		1.79	0.355
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND	1.8	0.223	ND		1.85	0.23	ND		1.84	0.228	ND	1.91	0.237	ND	1.84	0.229	ND	1.9	4 0.24	ND		1.79	0.222
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND	1.8	0.294	ND		1.85	0.303	ND		1.84	0.301	ND	1.91	0.312	ND	1.84	0.302	ND	1.9	4 0.317	ND		1.79	0.293
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND	1.8	0.234	ND		1.85	0.241	ND		1.84	0.239	ND	1.91	0.248	ND	1.84	0.24	ND	1.9	4 0.252	ND		1.79	0.233
PFOA/PFOS, Total			75.8	1.8	0.212	0.8	J	1.85	0.218	ND		1.84	0.217	43.2	1.91	0.225	32.5	1.84	0.218	ND	1.9	4 0.229	ND		1.79	0.211

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums. J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Table 42 - Stormwater Outfalls - PFAS and 1,4-D

		SAMPLE ID	D:	OU.	TFALL-002-	w		OUTFALL-0	03-W		OI	UTFALL-004	W		OUTF	ALL-005-W	I		OUT	FALL-006-	W		OU	JTFALL-007-	w		FIELD BLAN	NK
		LAB ID	D:	L	1932869-05			L1932869	-03			L1932869-06			L19	32869-07			L1	932869-02			L	L1932869-01			L1932869-0)4
		COLLECTION DATE	≣:		7/23/2019			7/23/201	9			7/23/2019			7/	23/2019			7	7/23/2019				7/23/2019			7/23/2019	i
		SAMPLE MATRIX	(:		WATER			WATE	₹			WATER			V	VATER				WATER				WATER			WATER	
		NY-AWQS ⁽¹⁾																										
ANALYTE	CAS	(ug/l)	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL
1,4 DIOXANE BY 8270D-SIM																												
	123-91-1		ND		0.144	0.0326	ND	0.15	0.0339	ND		0.15	0.0339	ND		0.15	0.0339	ND		0.15	0.0339	ND		0.15	0.0339		-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ng/l)																										
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) 39	9108-34-4	NS	ND		1.98	1.2	ND	1.98	1.2	ND		1.98	1.2	2.03		1.87	1.13	ND		1.96	1.19	ND		1.9	1.15	ND	1.8	1.09
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) 27	7619-97-2	NS	ND		1.98	1.32	143	1.98	1.32	ND		1.98	1.32	114		1.87	1.25	ND		1.96	1.3	ND		1.9	1.27	ND	1.8	1.2
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA) 2	991-50-6	NS	ND		1.98	0.794	ND	1.98	0.798	ND		1.98	0.794	ND		1.87	0.753	ND		1.96	0.788	ND		1.9	0.764	ND	1.8	0.726
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) 2	2355-31-9	NS	ND		1.98	0.64	ND	1.98	0.643	ND		1.98	0.64	ND		1.87	0.607	ND		1.96	0.635	ND		1.9	0.616	ND	1.8	0.585
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	1.03	J	1.98	0.235	2.04	1.98	0.236	2.54		1.98	0.235	4.33		1.87	0.223	1.1	J	1.96	0.233	1.09	J	1.9	0.226	ND	1.8	0.215
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	2.2		1.98	0.403	10.6	1.98	0.405	5.92		1.98	0.403	104		1.87	0.382	7.64		1.96	0.4	9.13		1.9	0.388	ND	1.8	0.368
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.98	0.968	ND	1.98	0.972	ND		1.98	0.968	ND		1.87	0.918	ND		1.96	0.961	ND		1.9	0.932	ND	1.8	0.884
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.98	0.3	ND	1.98	0.302	ND		1.98	0.3	0.412	J	1.87	0.285	ND		1.96	0.298	ND		1.9	0.289	ND	1.8	0.274
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.98	0.368	ND	1.98	0.369	ND		1.98	0.368	ND		1.87	0.348	ND		1.96	0.365	ND		1.9	0.354	ND	1.8	0.336
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.98	0.68	4.15	1.98	0.682	ND		1.98	0.68	ND		1.87	0.644	ND		1.96	0.674	ND		1.9	0.654	ND	1.8	0.621
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	0.893	J	1.98	0.222	6.29	1.98	0.223	1.37	J	1.98	0.222	82.5		1.87	0.211	2.8		1.96	0.221	3.54		1.9	0.214	ND	1.8	0.203
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	28.1		1.98	0.372	234	1.98	0.373	14.7		1.98	0.372	11		1.87	0.352	3.15		1.96	0.369	2.9		1.9	0.357	ND	1.8	0.339
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	1.34	J	1.98	0.324	44.6	1.98	0.325	1.79	J	1.98	0.324	246		1.87	0.307	3.78		1.96	0.322	4.67		1.9	0.312	ND	1.8	0.296
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.427	J	1.98	0.308	0.659	J 1.98	0.31	0.818	J	1.98	0.308	2.62		1.87	0.292	1.14	J	1.96	0.306	1.11	J	1.9	0.296	ND	1.8	0.282
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.98	0.573	0.647	J 1.98	0.575	ND		1.98	0.573	ND		1.87	0.543	ND		1.96	0.569	ND		1.9	0.551	ND	1.8	0.523
Perfluorooctanesulfonic Acid (PFOS)	763-23-1	70	13.4		1.98	0.498	339	1.98	0.5	12.7		1.98	0.498	9.24		1.87	0.472	2.68		1.96	0.494	4.23		1.9	0.479	ND	1.8	0.455
Perfluorooctanoic Acid (PFOA)	335-67-1	70	2.39		1.98	0.233	8.3	1.98	0.234	2.75		1.98	0.233	14.9		1.87	0.221	6.16		1.96	0.231	10.5		1.9	0.224	ND	1.8	0.213
Perfluoropentanoic Acid (PFPeA) 2	2706-90-3	NS	0.877	J	1.98	0.391	51.4	1.98	0.393	1.71	J	1.98	0.391	470		1.87	0.371	5.22	-	1.96	0.388	5.05		1.9	0.376	ND	1.8	0.357
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.98	0.245	ND	1.98	0.246	ND		1.98	0.245	ND		1.87	0.232	ND		1.96	0.243	ND		1.9	0.236	ND	1.8	0.224
Perfluorotridecanoic Acid (PFTrDA) 72	2629-94-8	NS	ND		1.98	0.323	ND	1.98	0.325	ND		1.98	0.323	ND	·	1.87	0.306	ND	•	1.96	0.321	ND		1.9	0.311	ND	1.8	0.295
Perfluoroundecanoic Acid (PFUnA) 2	2058-94-8	NS	ND		1.98	0.257	ND	1.98	0.258	ND		1.98	0.257	ND		1.87	0.243	ND		1.96	0.255	ND		1.9	0.247	ND	1.8	0.235
PFOA/PFOS, Total			15.8		1.98	0.233	347.3	1.98	0.234	15.5		1.98	0.233	24.1		1.87	0.221	8.8		1.96	0.231	14.7		1.9	0.224	ND	1.8	0.213

(1) New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

Table 42A - Stormwater Outfalls - PFAS and 1,4-D

		SAMPLE ID:		0	UTFALL-002	-S		C	UTFALL-003	3-S		0	UTFALL-004	1-S		OL	JTFALL-005	-S		0'	UTFALL-006	6-S		0'	UTFALL-007-	-S
		LAB ID:			L1932867-02				L1932867-0	1			L1932867-03	3		I	_1932867-04	ļ		-	L1932867-05	5		-	L1932867-06	ذ
		COLLECTION DATE:			7/24/2019				7/24/2019				7/24/2019				7/24/2019				7/24/2019				7/24/2019	
		SAMPLE MATRIX:			SEDIMENT				SEDIMENT	•			SEDIMENT	,			SEDIMENT				SEDIMENT				SEDIMENT	
		NY-UNRES ⁽¹⁾																								
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
1,4 DIOXANE BY 8270D-SIM																										
1,4-Dioxane	123-91-1	0.1	ND		0.0934	0.0238	ND		0.0104	0.00265	ND		0.127	0.0323	ND		0.0426	0.0109	ND	<u> </u>	0.0337	0.00859	ND		0.0322	0.0082
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(ug/kg)																		<u> </u>						
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.14	0.328	ND		1.25	0.36	ND		3.53	1.01	1.86		1.34	0.384	ND		1.2	0.344	ND		1.06	0.305
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.14	0.205	ND		1.25	0.225	ND		3.53	0.633	3.51		1.34	0.24	ND	<u> </u>	1.2	0.215	ND		1.06	0.191
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.14	0.097	ND		1.25	0.106	ND		3.53	0.298	ND		1.34	0.113	ND		1.2	0.101	ND		1.06	0.09
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.14	0.23	ND		1.25	0.252	ND		3.53	0.71	ND		1.34	0.27	ND	<u> </u>	1.2	0.242	ND		1.06	0.214
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.14	0.045	ND		1.25	0.049	ND		3.53	0.138	ND		1.34	0.052	ND	<u> </u>	1.2	0.047	ND		1.06	0.042
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	0.035	J	1.14	0.026	0.033	J	1.25	0.028	0.278	J	3.53	0.08	0.653	J	1.34	0.03	0.08	J	1.2	0.027	ND		1.06	0.024
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.14	0.175	ND		1.25	0.192	ND		3.53	0.54	ND		1.34	0.205	ND	<u> </u>	1.2	0.184	ND	J	1.06	0.163
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	0.103	J	1.14	0.077	ND		1.25	0.084	0.589	J	3.53	0.236	0.253	J	1.34	0.09	ND	<u> </u>	1.2	0.08	ND		1.06	0.071
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	0.225	J	1.14	0.08	ND		1.25	0.088	0.557	J	3.53	0.247	0.193	J	1.34	0.094	ND	<u> </u>	1.2	0.084	ND		1.06	0.075
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.14	0.156	ND		1.25	0.171	ND		3.53	0.481	ND		1.34	0.183	ND		1.2	0.164	ND		1.06	0.145
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.14	0.052	ND		1.25	0.057	0.245	J	3.53	0.159	1.09	J	1.34	0.06	ND		1.2	0.054	ND		1.06	0.048
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.14	0.069	1.86		1.25	0.076	2.15	J	3.53	0.213	ND		1.34	0.081	ND		1.2	0.073	ND		1.06	0.064
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	ND		1.14	0.06	0.083	J	1.25	0.066	0.236	J	3.53	0.185	1.52		1.34	0.07	ND		1.2	0.063	ND		1.06	0.056
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.14	0.086	ND		1.25	0.094	0.455	J	3.53	0.264	0.56	J	1.34	0.1	ND	<u> </u>	1.2	0.09	ND		1.06	0.08
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.14	0.112	ND		1.25	0.123	ND		3.53	0.346	ND		1.34	0.131	ND		1.2	0.118	ND	J	1.06	0.104
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	1.09	J	1.14	0.149	7.57		1.25	0.163	7.8		3.53	0.458	1.84		1.34	0.174	0.36	J	1.2	0.156	ND		1.06	0.138
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	0.109	J	1.14	0.048	0.085	J	1.25	0.053	0.462	J	3.53	0.148	0.637	J	1.34	0.056	0.137	J	1.2	0.05	ND		1.06	0.045
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND		1.14	0.053	0.098	J	1.25	0.058	0.201	J	3.53	0.162	3.37		1.34	0.062	ND	<u> </u>	1.2	0.055	ND		1.06	0.049
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	0.137	J	1.14	0.062	ND		1.25	0.068	0.335	J	3.53	0.19	0.089	J	1.34	0.072	ND	<u> </u>	1.2	0.065	ND		1.06	0.058
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.14	0.234	ND		1.25	0.256	ND		3.53	0.721	ND		1.34	0.274	ND	<u> </u>	1.2	0.245	ND		1.06	0.218
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	0.153	J	1.14	0.054	ND		1.25	0.059	0.76	J	3.53	0.165	0.405	J	1.34	0.063	0.056	J	1.2	0.056	ND		1.06	0.05
PFOA/PFOS, Total			1.2	J	1.14	0.048	7.7	J	1.25	0.053	8.3	J	3.53	0.148	2.5	J	1.34	0.056	0.5	J	1.2	0.05	ND		1.06	0.045
GENERAL CHEMISTRY																										
Solids, Total	NONE		82.3		0.1	0.1	71.1		0.1	0.1	24.5		0.1	0.1	68.2		0.1	0.1	80.1		0.1	0.1	87.6		0.1	0.1

E - Concentration of analyte exceeds th range fo the calibration curve and/or linear range of the instrument

NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ug/l = ppb or parts per billion

ng/l = ppt or parts per trillion

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

Table 43 - Rinse Blanks - PFAS

		SAMPLE ID:		RE	B01-190716	1		RB04-19	0716		RB05-1907	16		RB06-1	90716		RB07-19071	6		RB08	8-190716			RB09-19071	6		TRIP BLAN	NK
		LAB ID:		L1	1931180-01			L193118	0-04		L1931180-	05		L19311	80-06		L1931180-0	7		L193	31180-08		i Total	L1931180-09	9		L1931180-1	10
		COLLECTION DATE:			7/16/2019			7/16/20	19		7/16/2019)		7/16/2	019		7/16/2019			7/1	6/2019		<i>i</i>	7/16/2019			7/16/2019	9
		SAMPLE MATRIX:		SH	OP WATER	₹		SCREEN 8	RISER		DRILLING F	OD		ACETATE LIN	ER & SHOE		AUGER			MACF	RO CORE			TOTE			WATER	
		NY-AWQS					•			•						•						•				•		
ANALYTE	CAS	(ng/l)	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q R	. MDI	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc Q	RL	MDL	Conc	Q RL	MDL
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION																,												
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.97	1.19	ND	1.91	1.16	ND	1.92	1.16	ND	1.7	2 1.04	ND	1.75	1.06	ND		1.8	1.09	ND	1.77	1.07	ND	2.02	1.22
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.97	1.31	ND	1.91	1.27	ND	1.92	1.28	ND	1.7	2 1.15	ND	1.75	1.16	ND		1.8	1.2	ND	1.77	1.18	ND	2.02	1.34
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.97	0.791	ND	1.91	0.767	ND	1.92	0.77	ND	1.7	2 0.69	3 ND	1.75	0.703	ND		1.8	0.726	ND	1.77	0.713	ND	2.02	0.81
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.97	0.638	ND	1.91	0.618	ND	1.92	0.621	ND	1.7	2 0.55) ND	1.75	0.566	ND		1.8	0.585	ND	1.77	0.574	ND	2.02	0.653
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	0.646	J	1.97	0.234	ND	1.91	0.227	ND	1.92	0.228	ND	1.7	2 0.20	5 ND	1.75	0.208	ND		1.8	0.215	ND	1.77	0.211	ND	2.02	0.24
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	2.63		1.97	0.402	ND	1.91	0.389	ND	1.92	0.391	ND	1.7	2 0.35	2 ND	1.75	0.357	9.82	J	1.8	0.368	ND	1.77	0.362	ND	2.02	0.411
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.97	0.964	ND	1.91	0.935	ND	1.92	0.939	ND	1.7	2 0.84	5 ND	1.75	0.857	ND		1.8	0.884	ND	1.77	0.869	ND	2.02	0.988
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.97	0.299	ND	1.91	0.29	ND	1.92	0.291	ND	1.7	2 0.26	2 ND	1.75	0.266	ND		1.8	0.274	ND	1.77	0.27	ND	2.02	0.306
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.97	0.366	ND	1.91	0.355	ND	1.92	0.356	ND	1.7	2 0.32	1 ND	1.75	0.325	ND		1.8	0.336	ND	1.77	0.33	ND	2.02	0.375
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.97	0.677	ND	1.91	0.656	ND	1.92	0.659	ND	1.7	2 0.59	3 ND	1.75	0.601	ND		1.8	0.621	ND	1.77	0.61	ND	2.02	0.694
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	2.09	J	1.97	0.222	ND	1.91	0.215	ND	1.92	0.216	ND	1.7	2 0.19	4 ND	1.75	0.197	ND		1.8	0.203	ND	1.77	0.2	ND	2.02	0.227
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	1.03	J	1.97	0.37	ND	1.91	0.359	ND	1.92	0.36	ND	1.7	2 0.32	4 ND	1.75	0.329	ND		1.8	0.339	ND	1.77	0.333	ND	2.02	0.379
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	2.26		1.97	0.323	ND	1.91	0.313	ND	1.92	0.314	ND	1.7	2 0.28	3 ND	1.75	0.287	ND		1.8	0.296	ND	1.77	0.291	ND	2.02	0.331
Perfluorononanoic Acid (PFNA)	375-95-1	NS	0.531	J	1.97	0.307	ND	1.91	0.298	ND	1.92	0.299	ND	1.7	2 0.26) ND	1.75	0.273	ND		1.8	0.282	ND	1.77	0.276	ND	2.02	0.314
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.97	0.571	ND	1.91	0.553	ND	1.92	0.556	ND	1.7	2 0.5	ND	1.75	0.507	ND		1.8	0.523	ND	1.77	0.514	ND	2.02	0.585
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	70	2.95		1.97	0.496	ND	1.91	0.481	ND	1.92	0.483	ND	1.7	2 0.43	1 ND	1.75	0.44	ND		1.8	0.455	ND	1.77	0.447	ND	2.02	0.508
Perfluorooctanoic Acid (PFOA)	335-67-1	70	2.4		1.97	0.232	ND	1.91	0.225	ND	1.92	0.226	ND	1.7	2 0.20	3 ND	1.75	0.206	ND		1.8	0.213	ND	1.77	0.209	ND	2.02	0.238
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	1.77	J	1.97	0.39	ND	1.91	0.378	ND	1.92	0.379	ND	1.7	2 0.34	1 ND	1.75	0.346	0.379	J	1.8	0.357	ND	1.77	0.351	ND	2.02	0.399
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.97	0.244	ND	1.91	0.237	ND	1.92	0.238	ND	1.7	2 0.21	4 ND	1.75	0.217	ND		1.8	0.224	ND	1.77	0.22	ND	2.02	0.25
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.97	0.344	ND	1.91	0.312	ND	1.92	0.313	ND	1.7	2 0.28	2 ND	1.75	0.286	ND		1.8	0.295	ND	1.77	0.29	ND	2.02	0.33
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.97	0.256	ND	1.91	0.248	ND	1.92	0.249	ND	1.7	2 0.22	1 ND	1.75	0.227	ND		1.8	0.235	ND	1.77	0.23	ND	2.02	0.262
PFOA/PFOS, Total			5.35		1.97	0.232	ND	1.91	0.225	ND	1.92	0.226	ND	1.7	2 0.20	3 ND	1.75	0.206	ND		1.8	0.213	ND	1.77	0.209	ND	2.02	0.238

		SAMPLE ID:		RF	302-19071	6		F	RB03-19071	6
		LAB ID:			931180-0				1931180-0	
		COLLECTION DATE:			7/16/2019				7/16/2019	-
		SAMPLE MATRIX:			ONITE C	JID6			SAND	
		NY-AWQS		BENT	ONTE CI	III 3			SAND	
ANALYTE	CAS	(ug/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION		(=93)								
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	NS	ND		1.08	0.311	ND		0.97	0.278
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	NS	ND		1.08	0.195	ND		0.97	0.174
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	NS	ND		1.08	0.092	ND	J	0.97	0.082
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	2355-31-9	NS	ND		1.08	0.219	ND	J	0.97	0.195
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	NS	ND		1.08	0.042	ND		0.97	0.038
Perfluorobutanoic Acid (PFBA)	375-22-4	NS	ND		1.08	0.025	ND	J	0.97	0.022
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	NS	ND		1.08	0.166	ND		0.97	0.148
Perfluorodecanoic Acid (PFDA)	335-76-2	NS	ND		1.08	0.073	ND		0.97	0.065
Perfluorododecanoic Acid (PFDoA)	307-55-1	NS	ND		1.08	0.076	ND		0.97	0.068
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	NS	ND		1.08	0.148	ND		0.97	0.132
Perfluoroheptanoic Acid (PFHpA)	375-85-9	NS	ND		1.08	0.049	ND		0.97	0.044
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	NS	ND		1.08	0.066	ND		0.97	0.059
Perfluorohexanoic Acid (PFHxA)	307-24-4	NS	ND		1.08	0.057	ND		0.97	0.051
Perfluorononanoic Acid (PFNA)	375-95-1	NS	ND		1.08	0.081	ND		0.97	0.073
Perfluorooctanesulfonamide (FOSA)	754-91-6	NS	ND		1.08	0.106	ND		0.97	0.095
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	NS	ND		1.08	0.141	ND		0.97	0.126
Perfluorooctanoic Acid (PFOA)	335-67-1	NS	ND		1.08	0.046	ND		0.97	0.041
Perfluoropentanoic Acid (PFPeA)	2706-90-3	NS	ND		1.08	0.05	ND		0.97	0.045
Perfluorotetradecanoic Acid (PFTA)	376-06-7	NS	ND		1.08	0.059	ND		0.97	0.052
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	NS	ND		1.08	0.222	ND		0.97	0.198
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	NS	ND		1.08	0.051	ND		0.97	0.045
PFOA/PFOS, Total			ND		1.08	0.046	ND		0.97	0.041

⁽¹⁾ New York Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June 1998 and Addendums.

J - Estimated Value ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation or Reporting Limit (LOQ or RL)

E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. NA denotes Not Analyzed

NS denotes No Standard

ND denotes Non Detect

ng/l = ppt or parts per trillion

ug/kg = ppm or parts per million

Results that are shaded blue indicate a RL or MDL above the AWQS.

Results that are shaded yellow and in bold indicate a concentration above the AWQS.

APPENDIX A SOIL BORING LOGS

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG BORING NO.: MW100 ELEV.: DATUM: START DATE: 8/5/19 FINISH DATE: 8/5/19 SHEET 1 of 1 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY ¬ Asphalt ±0.25' Fill Brown coarse SAND and fine to coarse GRAVEL, trace brick, 2 2.5 Moist 6 ±6.0' Brown medium and coarse SAND, firm, well sorted Saturated at 6.0' bgs 2 3.5 8 10 Saturated 12 3 5.0 14 MW installed to 14.0' bgs ±15.0' with 10' screen End of Boring at 15.0' bgs 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT LEVEL METHOD OF SAMPLING: 5' Macro Core 8/7 6.51 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED SAMPLE CLASSIFICATION BY: USERS.

D. King

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG **BORING NO.:** MW101 ELEV.: DATUM: START DATE: 8/5/19 FINISH DATE: 8/5/19 SHEET 1 of 1 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Topsoil Moist ±1.5' 2 Light Brown fine SAND and SILT, Some medium and coarse Moist Sand, firm, poorly sorted 3.5 ±3.0' Light Brown coarse SAND and fine to coarse GRAVEL, loose, Moist poorly sorted Moist 6 2 3.0 8 Saturated at 8.5' bgs Gray/Black staining in soil at top of water table at 8.5' 10 bgs - petroleum odor ±10.5' Gray SILT and fine SAND, trace fine gravel, firm, well sorted Saturated 12 3 3.5 14 MW installed to 15.0' bgs ±15.0' with 10' screen End of Boring at 15.0' bgs 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT LEVEL METHOD OF SAMPLING: 5' Macro Core 8/7 6.50 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME

SAMPLE CLASSIFICATION BY:

D. King

INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED

USERS.

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG **BORING NO.:** MW102 ELEV.: DATUM: START DATE: FINISH DATE: 8/6/19 8/6/19 SHEET 1 of 2 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Topsoil Moist ±1.0' Brown fine SAND and fine to coarse GRAVEL, little medium and Moist 2 coarse sand, firm, poorly sorted 4.0 ±4.0' Wet from 4.0' to 4.5' bgs Gray and Brown Till, primarily -Till appears reworked SILT, Some fine to coarse Gravel, little fine sand, dense, through entire logged poorly sorted interval, with varying 6 moisture and irregular color sequence - short sections (<1.0' thick) of 2 4.5 roughly alternating gray 8 and brown Moist 10 Wet from 9.0' to 10.0' bgs 12 Moist 3 4.0 Wet from 12.0' to 13.0' bgs 14 4.0 Moist 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT METHOD OF SAMPLING: LEVEL 5' Macro Core 8/7 12.52 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED SAMPLE CLASSIFICATION BY: USERS. D. King

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG BORING NO.: MW102 ELEV.: DATUM: START DATE: 8/6/19 FINISH DATE: 8/6/19 SHEET 2 of 2 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Gray and Brown Till, primarily -Moist SILT, Some fine to coarse Gravel, little fine sand, dense, poorly sorted 18 4 4.0 20 Wet from 20.0' to 21.0' bgs 22 5 5.0 24 Wet from 24.5' to 26.5' bgs 26 6 1.5 ±26.5' MW installed to 20.0' bgs with 10' screen Refusal at 26.5' bgs - End of Boring (Casing refusal at 20.0' bgs) 28 30 32 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT METHOD OF SAMPLING: LEVEL 5' Macro Core 8/7 12.52 Top of Casing

SAMPLE CLASSIFICATION BY:

D. King

THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED

USERS.

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG **BORING NO.:** MW103 ELEV.: DATUM: START DATE: FINISH DATE: 8/6/19 8/6/19 SHEET 1 of 1 Hudson Valley Regional Airport SC Investigation 18.8090 PROJECT: CTM PROJECT NO.: LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) (FT NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Topsoil Moist ±1.0' Gray Till, primarily -Moist 2 SILT and fine SAND, Some fine to coarse Gravel, dense, poorly sorted Till is moderately 4.0 weathered Moist 6 Wet at 6.5' bgs 2 2.5 8 10 Saturated at 10.0' bgs Till loosens significantly at 12 10.0' bgs 3 5.0 ±14.0' 14 Wet at 14.0' bgs Gray and Brown SILT, little fine sand and clay, varved, dense well sorted ±15.0' MW installed to 14.0' bgs Refusal at 15.0' bgs - End of Boring with 10' screen 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT METHOD OF SAMPLING: LEVEL REFERENCE MEASURING POINT 5' Macro Core 8/7 3.98 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME

SAMPLE CLASSIFICATION BY:

D. King

INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED

USERS.

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG **BORING NO.:** MW104 ELEV.: DATUM: START DATE: 8/6/19 FINISH DATE: 8/6/19 SHEET 1 of 2 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Topsoil Moist ±1.0' Light Brown fine to coarse SAND and fine to coarse GRAVEL, Moist 2 loose, poorly sorted 5.0 Moist 6 2 2.5 8 ±9.5' 10 Tan SILT, Some Clay, trace fine sand, laminated beds, dense, Moist well sorted Frequent partings of Gray and Dark Brown SILT and CLAY Occasional partings of Brown fine SAND 12 3 5.0 14 Wet at 16.0' bgs 5.0 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT LEVEL METHOD OF SAMPLING: 5' Macro Core 8/7 18.71 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED SAMPLE CLASSIFICATION BY: USERS.

D. King

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG BORING NO.: MW104 ELEV.: DATUM: START DATE: 8/6/19 FINISH DATE: 8/6/19 SHEET 2 of 2 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Tan SILT, Some Clay, trace fine sand, laminated beds, dense, Wet well sorted At 16.0' bgs, partings transition to -18 Occasional partings of Gray SILT 4 5.0 Occasional partings of Brown fine SAND 20 Wet ±21.0' Gray SILT, Some Clay, trace fine sand, dense, low plasticity, well Saturated at 21.0' bgs 22 sorted 5 5.0 24 Saturated 26 6 5.0 28 MW installed to 25.0' bgs ±30.0' 30 with 10' screen End of Boring at 30.0' bgs (Casing refusal at 25.0' bgs) 32 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT LEVEL REFERENCE MEASURING POINT METHOD OF SAMPLING: 5' Macro Core 8/7 18.71 Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT

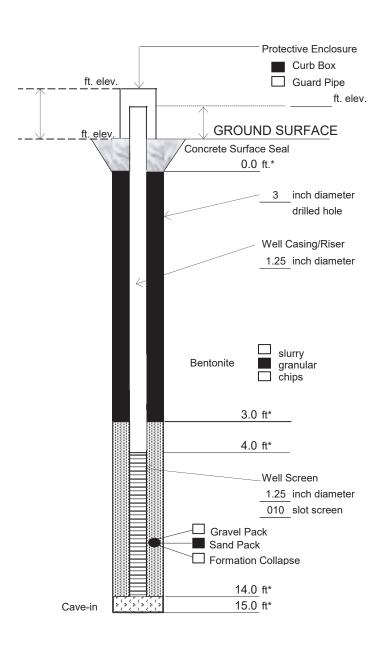
SAMPLE CLASSIFICATION BY:

D. King

IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED

USERS.

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG **BORING NO.:** MW105 ELEV.: DATUM: START DATE: 8/6/19 FINISH DATE: 8/6/19 SHEET 1 of 2 Hudson Valley Regional Airport SC Investigation PROJECT: CTM PROJECT NO.: 18.8090 LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Topsoil Moist ±1.0' Brown fine to coarse SAND and fine to coarse GRAVEL, firm, Moist 2 poorly sorted 4.5 ±4.0' Brown Till, primarily -SILT and fine SAND, Some fine to coarse Gravel and Cobble, dense, poorly sorted Moist 6 2 5.0 8 ±9.5' 10 Gray Till, primarily -SILT, Some fine Gravel and fine Sand, little clay and coarse Moist gravel, very dense, poorly sorted 12 3 5.0 14 Moist 5.0 16 DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT DATE LEVEL METHOD OF SAMPLING: 5' Macro Core 8/7 DRY Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED SAMPLE CLASSIFICATION BY: USERS.

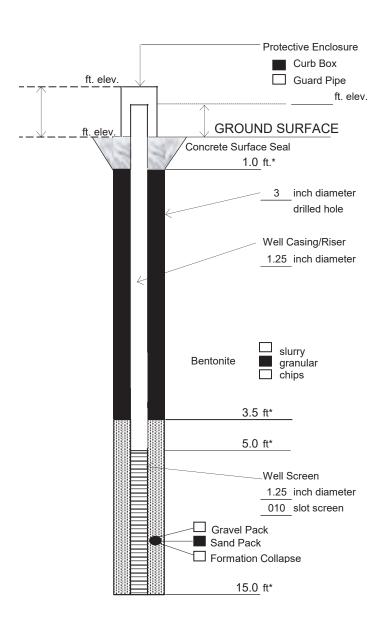

D. King

C.T. MALE ASSOCIATES DIRECT-PUSH EXPLORATION LOG BORING NO.: W105 ELEV.: DATUM: START DATE: FINISH DATE: 8/6/19 8/6/19 SHEET 2 of 2 Hudson Valley Regional Airport SC Investigation 18.8090 PROJECT: CTM PROJECT NO.: LOCATION: Wappingers Falls, Dutchess County, NY CTM OBSERVER: D. King SAMPLE DEPTH (FT) NTERVAL NUMBER SAMPLE CLASSIFICATION **NOTES** RECOVERY Gray Till, primarily -Moist SILT, Some fine Gravel and fine Sand, little clay and coarse gravel, very dense, poorly sorted 4 5.0 18 ±19.0' Refusal at 19.0' bgs - End of Boring MW installed to 6.0' bgs 20 with 3' screen (Casing refusal at 6.0' bgs) 22 24 26 28 30 32

DRILLING CONTRACTOR: **NYEG Drilling** GROUNDWATER LEVEL READINGS DIRECT-PUSH TYPE: Geoprobe 7720 DT REFERENCE MEASURING POINT METHOD OF SAMPLING: LEVEL 5' Macro Core 8/7 DRY Top of Casing THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE EVALUATION. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T. MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED SAMPLE CLASSIFICATION BY: USERS. D. King

APPENDIX B MONITORING WELL CONSTRUCTION LOGS

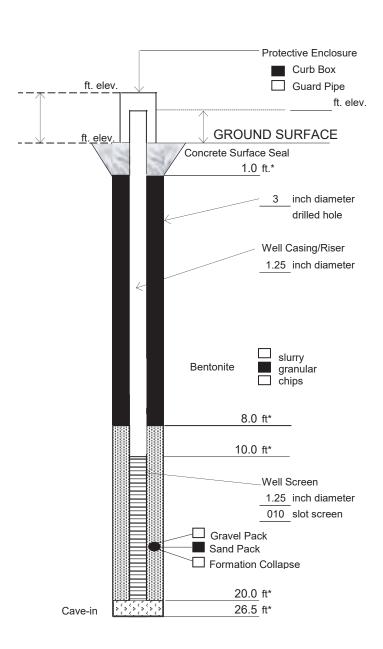
^{*} Depth below ground surface.


Project Na	me: Hudson \	/alley Regional A	irport
	SC Inves	tigation	
Project Nu	mber: 18.8	3090	
Well No.:	MW100	Boring No.:	MW100
Town/City:		Wappingers Falls	3
County:	Dutches	sState:	NY NY
Installation	Date(s):	8/5/2019	9
Drilling Cor		NYEG Dril	
Drilling Me	thod:	Geoprobe 772	0 DT
Water Dep	th From Top of R	iser: 6.51	
C.T. Male	Observer:	D. Kir	Date ng
	Bags of Sand Sand Size:	#0 Brand:	lb. bags) Filpro
0.5	Bags of Bentonite Brand:	(50 Cetco	lb. bags)
10 4 0	ft. of Sche ft. of Sche	dule 40 PVC dule 40 PVC Concrete (80	well screen well riser
Grout Mixt	·		

No grout used for monitoring well construction.

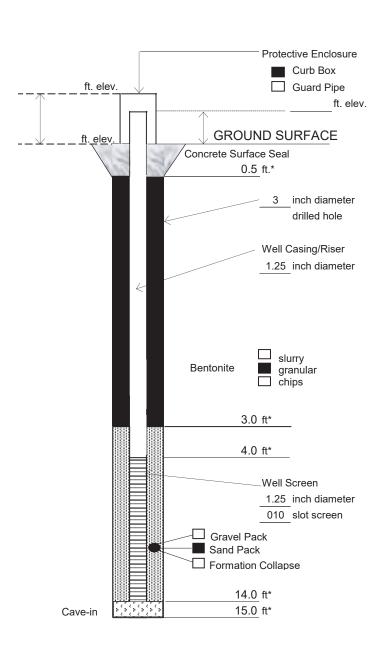
Notes:

Blacktop patched around roadbox following installation.



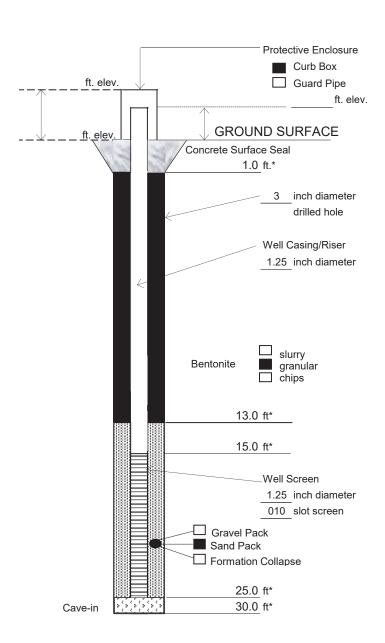
^{*} Depth below ground surface.

Project Name:	Hudson Va	alley Regio	nal Airpe	ort
	SC Investi	gation		
Project Number:	18.80	090		
Well No.:	/W101	Boring No	·.:	MW101
Town/City:	W	/appingers	Falls	
County:	Dutchess	s	State:	NY
Installation Date(s):	8/5	/2019	
Drilling Contracto	or:	NYE	3 Drilling	J
Drilling Method:		Geoprobe	7720 D	Т
Water Depth Fro	m Top of Ris	ser:	6.50 ft	8/7/19 Date
C.T. Male Observ	/er:	С). King	Date
	of Sand Size:	(<u> </u>	50 lb. Brand:	bags) Filpro
0.5 Bags	of Bentonite I:	(50 lb.	bags)
10 ft. of 5 ft. of 1.0 Bags	Sched Sched of Cement/Co	ule 40 PVC ule 40 PVC oncrete (_	we we 80 lb.	ll riser
Grout Mixture: No grout used				



^{*} Depth below ground surface.

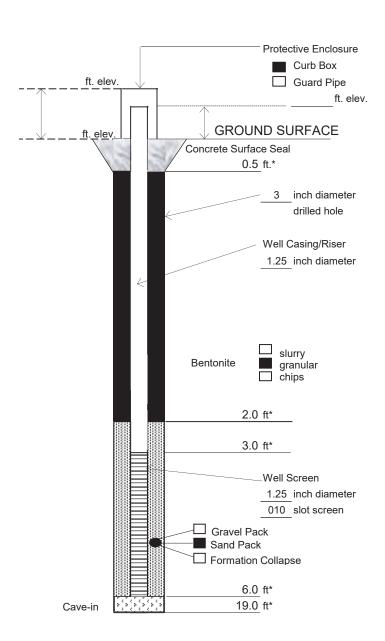
Project Nam		•	Regional Airp	
Project Num				
Well No.:	MW102	Borir	ng No.:	MW102
Town/City:		Wappir	ngers Falls	
County:	Duto	chess	State:	NY
Installation E	Date(s):		8/6/2019	
Drilling Cont	ractor:	ı	NYEG Drillin	g
Drilling Meth	od:	Geop	orobe 7720 [)T
Water Depth	From Top	of Riser:	12.52 ft	8/7/19 Date
C.T. Male O	bserver:		D. King	
0.5 10 10 1.00	Bags of Sand Sand Size: Bags of Bent Brand: it. of	#0 conite Schedule 40 Schedule 40 ent/Concrete	(50 lb. Brand: (50 lb. Cetco PVC we PVC we (80 lb. Quikrete	Filpro bags) ell screen ell riser
Grout Mixtur No grout	<u>e:</u> used for mon	itoring well o	construction.	



^{*} Depth below ground surface.

Project Nar	ne: <u>Hu</u>	ıdson Va	lley Regio	nal Airp	ort
	sc	Investig	ation		
Project Nur	mber:	18.80	90		
Well No.: _	MW1	03	Boring No	o.:	MW103
Town/City:		W	appingers	Falls	
County: _	D	utchess		State:	NY
Installation	Date(s):		8/6	6/2019	
Drilling Cor	itractor:		NYE	G Drilling	J
Drilling Met	hod:		Geoprobe	7720 D	т
Water Dept	th From To	op of Rise	er:	3.98 ft	8/7/19
C.T. Male (Observer:		I	D. King	Date
Materials U	sed: Bags of Sa			50 lb. Brand:	
0.5	Bags of Be Brand:	entonite	(50 lb.	
10 4 1.0	ft. of ft. of Bags of Co Brand:	Schedu Schedu ement/Cor	le 40 PVC le 40 PVC ncrete (_	we	ll screen Il riser bags)
Grout Mixtu	ıre:				

No grout used for monitoring well construction.



^{*} Depth below ground surface.

Project Na	me: Hudson	Valley Re	gional Airp	ort
	SC Inves	stigation		
Project Nu	mber: <u>18</u>	.8090	_	
Well No.:	MW104	Boring	No.:	MW104
Town/City:		Wapping	ers Falls	
County:	Dutche	ss	_State:	NY
Installation	Date(s):		8/6/2019	
Drilling Cor	ntractor:	NΥ	/EG Drilling)
Drilling Me	thod:	Geopro	obe 7720 D	T
•	th From Top of F	Riser:	18.71 ft	8/7/19 Date
C.T. Male	Observer:		D. King	
Materials U	J <u>sed</u> : Bags of Sand Sand Size:	#0	(<u>50</u> lb. Brand:	
1.0	Bags of Bentonit	е	(50 lb.	bags)
10 15 1.0	Brand: ft. of Schrift. of Schrift. of Schrift. of Schrift. Bags of Cement/Brand:	Concrete	(<u>80</u> lb.	ll screen Il riser bags)
Grout Mixto	ure: ut used for monitori	ng well cor	nstruction.	

^{*} Depth below ground surface.

Project Name: Hudson \	/alley Regional Airpo	ort
SC Inves	tigation	
Project Number: 18.8	3090	
Well No.: MW105	Boring No.:	MW105
Town/City:	Wappingers Falls	
County: Dutches	s State:	NY
Installation Date(s):	8/6/2019	
Drilling Contractor:	NYEG Drilling	
Drilling Method:	Geoprobe 7720 D	Γ
Water Depth From Top of R	iser: <u>DRY</u> ft	8/7/19
C.T. Male Observer:	D. King	Date
Materials Used: 0.5_ Bags of Sand Sand Size:	(<u>50</u> lb. b #0 Brand:	
0.5 Bags of Bentonite		
3 ft. of Sche 3 ft. of Sche 1.0 Bags of Cement/O	edule 40 PVC well well well well	l riser
Grout Mixture: No grout used for monitoring	ng well construction.	

APPENDIX C MONITORING WELL DEVELOPMENT AND SAMPLING LOGS

C.T. MALE ASSOCIATES

Daily Calibration Record

Date:	8/7/19
Project:	_ HV Airport SC Investigation
	- 10

C.T.M. Project #: 18.8090
Location: Wappingers Falls, NY

Techinian Name(s): Pan King

Ambient Temperature:

Serial Number	Time	Temperature Accuracy	Pre-Cal Values	Calibrat	on Values	Post-Cal or Bump Ch	eck Values
SI: FA03966 Pro 055	0840	Yes No	pH: 407 / 7,03 / Dissolved Oxygen: 98/ Sp. Conductivity: 697 ORP: 22.5	7 % Dissolved Sp. Condi	0xygen: 100,0 uctivity: 7000 230,3	% Dissolved Oxygen:	7000
si: <u>FA01466</u>	0920	Yes No	pH: 3.97 6.97 / Dissolved Oxygen: 97.8 Sp. Conductivity: 6954	% Dissolved	O1 / 6,99 / / Oxygen: 100,6 uctivity: 7000	% Dissolved Oxygen: Sp. Conductivity: ORP:	%
SI:		Yes No	pH:/ Dissolved Oxygen:/ Sp. Conductivity:	% Dissolved Sp. Cond	/ / / I Oxygen: / uctivity:	% Dissolved Oxygen: Sp. Conductivity:	%
SI:		Yes No	pH:// Dissolved Oxygen:/ Sp. Conductivity:	% Dissolved Sp. Cond	/////////	% Dissolved Oxygen: Sp. Conductivity:	_%
SI:		Yes No	pH: / / Dissolved Oxygen: / Sp. Conductivity:		//////	pH:/ % Dissolved Oxygen:	%
Furbidity Meters Ser.No. CTM	Time 2	92.5 R	eading 10,26 NTU	4) Ser.No	Time_	Reading	NTU
2) Ser.No	Time	R	eadingNTU	5) Ser.No	Time	Reading	NTU
3) Ser.No.	Time	R	eadingNTU	6) Ser.No.	Time	Reading	NTU

WELL DEVEOPMENT LOG

Project Name:	HV Airp	ort SC I	nvestiga	tion				Date S	tarted:	8/7/	19		
Project Number: _	18.8090)						Date Fi	inished:	8/7	/19		
Field Parameters		Well Vo	olumes a	and Corre	espondir	ng Field f	aramete	ers Value	9				
	Intitial	1	2	3	4	5	6	7	8	9	10		
Water Level	12,52	18.00	18.59									ĺ	
Temperature (C)		A.6	19,6										
DO (mg/L)	11.90		151										
Conductivity (uS)	961	1080	1091							19			
pH	6.22	636											
ORP (mV)	42.8	29,9	14.9										
Turbidity (NTU)	110		186940										
Monitoring Well:	MIGS		Notes:	Beain	dev	@ 10	144	J per	in Du	MA		ge developmen	
Total Depth: 19.3				0000	10:50	- Dure	edne	2.20	00 -	lacting	Ter here	ae	
Water Column: 6	183	- 1	~	BECOV	ies to	17.9	2011	1/2	9-11	-S. J	1	1-	,
One Well Volume:	0,44			Paraec	dsy	@110	15-to	di ~1.0	200/1	ourgeo	, end	developmen	+
Field Parameters	1-UC-1			T	spondin	g i iciu i	arannete	o value		1			
Water Level	Intitial	70 00	2	3	4	5	6	7	8	9	10		
Temperature (C)	18,71	20,99											
DO (mg/L)	731	7.26											
Conductivity (uS)	277	557											
pH	713	694											
ORP (mV).	155,9	133.5											
Turbidity (NTU)	OR	AL											
Monitoring Well:		UM	Notes:	P	des (Diller.	1000	o 1	^				
Total Double 31 34			rvotes.	Regiv	2111	elline	المراد	1. pur	P	locall.	- 1		
Water Column: 2,	59'	- 1		Below	211,7	30 69	95011	conty	1911	resnag	reche	rge de velopme	
One Well Volume:	0.170	ial.		Puna	do	2011:5	9-1	10/1-1	3.300/	PUSOR	ed and	do wolvemo	2+
Field Parameters		Well Vo	lumes ar	nd Corre	sponding	a Field P	aramete	rs Value	911	1)	1010	SE SCIPTIFE	1)
	Intitial	1	2	3	4	5	6	7	8	9	10		
Water Level	DRY										10		
Temperature (C)													
DO (mg/L)													
Conductivity (uS)													
pH													
ORP (mV)													
Turbidity (NTU)													
Monitoring Well:	wios		Notes:	Dry	201	1 201	celaps	ort					
Total Depth: 4,93				1	1 .10 /	CI CI	CICI						
Water Column:	,	Ca.		50.									
One Well Volume:		161 11 1 1 1		10									
Field Parameters		Well Vol				7		-		1812-184			
Water Level	Intitial	1100	2	3	4	5	6	7	8	9	10		
	3.98	11,04	5 d 4										
DO (mg/L)	161	18.1	161										
Conductivity (uS)	000	5,10											
oH .	666	703											
ORP (mV)	-7/	1914											
	808A419		M CA AL.										
			Notes:	_				. /					
Monitoring Well: [3 Fotal Depth: [3 .8]	0	WW 103	10103.	· Km	o de	V. @	2134	w/p	en, po	1/70			
Water Column: 4,8	71			100	0121	40-	a Compand	11/2	sali-	testin	a rach	arge A)
One Well Volume:	1730	-1		Pry	012.	10-1	wy co	2.2.	7	1-411)	J	
CS Tron Volume.	3,639	1411		& Rece	NET	to 12	,040	11210	5	erro est	1	I N	
				0		0	17:07	- tot	aln	:28 gn	1.purg	ed, 1	
				rusg	s ar	y Co	1310 6	, -		000	dows	ed, N	
										E IN	LIEW (")	O LIFTEN D	

WELL DEVEOPMENT LOG

Date Started: 8/7/19 Project Name: HV Airport SC Investigation Date Finished: 8/7/19 Project Number: 18.8090 Field Parameters Well Volumes and Corresponding Field Parameters Value Total Depth Intitial 5 8 10 3 12.17 11.85 Water Level 6.50 9.25 12.38 11.77 12,53 12.78 12.90 11.07 11,51 Ls 13.31 Temperature (C) 17.7 15.5 17.0 16.3 14.0 16.8 15.6 17.7 17.6 16.1 DO (mg/L) 6.07 1.98 0,68 5.78 6.56 4.77 5.65 6.87 5.19 4.17 4443 6.01 Conductivity (uS) 431.8 402.6 396.0 403.8 398.4 425.2 392.0 399.3 412.2 441,0 415.3 рН 7.29 7.06 7.09 7.18 6.90 6.92 6.68 7.06 7,07 ORP (mV) 132.9 52.8 68.3 35.9 55.9 67.3 99.6 82.1 59.6 Turbidity (NTU) 3051 2531 792 2199 2302 1072 2282 601 670 1215 Monitoring Well: MUJ-101 Notes: Start @ 1035 Well Pumps day / lecovery ★Total Depth: 12.92 to finish development 125"well Store 1205 4.5 jaifuged Water Column: 6.42 One Well Volume: 6.41 jai Well Volumes and Corresponding Field Parameters Value YSI DSS Pro : FA 03966 Field Parameters 10 Intitial 2 3 6 9 7.35 7,39 Water Level 7.35 6.51 7,50 7.32 7.34 18.9 18.7 Temperature (C) 17.5 19.0 19.2 18,6 100 DO (mg/L) 2.33 1,29 1.05 1,14 1.26 1.39 1,54 782 Conductivity (uS) 870 849 880 790 786 766 10,00 5,82 8.91 8.26 7.94 7,48 6.92 -94.3 ORP (mV) -93.3 -30,0 -7.0 -754 2367 1336 Turbidity (NTU) 2195 2024 2000 2141 1571 Monitoring Well: MU-bo 1,25"6011 Notes: Start@ 1315 there too fact to factings 56P@ 1335 # Total Depth: 12,29 4511 Puged Water Column: 5.78 One Well Volume: 0,37 121 YSIDSS FO: # 4003966 10 Volumes = 3, 7 a 21 Peristalise Pune Well Volumes and Corresponding Field Parameters Value Field Parameters Intitial 8 9 10 Water Level Temperature (C) DO (mg/L) Conductivity (uS) Hq ORP (mV) Turbidity (NTU) Monitoring Well: Notes: Total Depth: Water Column: One Well Volume:

Field Parameters	Well Volumes and Corresponding Field Parameters Value										
	Intitial	1	2	3	4	5	6	7	8	9	10
Water Level									18.		
Temperature (C)											
DO (mg/L)											
Conductivity (uS)											
pН											
ORP (mV)											
Turbidity (NTU)											

Monitoring Well:

Notes:

Total Depth: Water Column: One Well Volume:

Residental Well Sampling Services Field Log

C.T. MALE ASSOCIATES

		Page _1_ of _1_
DATE:	ON SITE: 07 ! SO	PROJECT NO.:
8/7/19	OFF SITE: 16:00	18,8090
PROJECT NAME: HVR A		PROJECT LOCATION: Wappingers Falls, NY
SAMPLING PERSONNEL: D. Kirey	SAMPLE TYPE: POET	POU LTM OTHER
SAMPLE ADDRESS: Mainter	nance Building	DOUBLE PAIR OF NITRILE GLOVES USED
SITE CONTACT PRESENT? YE	es No	NAME: Mike (HVRA Maintenance)
PURGING SOURCE:	PURGE DURATION:	SAMPLE LOCATION(S):
(Not Bathroom)	~ZSmin	(Not Bathroom)
	TINE SAMPLING VES	SEL CHANGE-OUT OTHER
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLITIME:	EFFLUENT SAMPLE COLLECTION TIME: # See COC#
FLOW METER READING (GALLONS):	•
· Aerator not in Collected MS/M	removed	
· Collected MS/M	150 + FD	
,		

Key

POET: Point Of Entry Treatment system POU: Point Of Use Treatment system LTM: Long Term Monitoring location Example Sample Locations:

POET vessel ports

Pressure tank

Kitchen Sink (aerator removed)

Outdoor Spigot

PFCs Sampling Checklist

Weather (temp./precipitation):	Site Name: HVKH
Field Clothing and PPE: No clothing or boots containing Gore-Tex™ All safety boots made from polyurethane and PVC No materials containing Tyvek® Field crew has not used fabric softener on	Coolers filled with regular ice only. No chemical (blue) ice packs in possession Sample Containers: All sample containers made of HDPE or polypropylene
Field crew has not used cosmetics, moisturizers, hand cream, or other related products this morning Field crew has not applied unauthorized sunscreen or insect repellant Field Equipment:	Caps are unlined and made of HDPE or polypropylene Wet Weather (as applicable): Wet weather gear made of polyurethane and PVC only Equipment Decontamination: "PFC-free" water on-site for
No Teflon® or LDPE containing materials on-site All sample materials made from stainless steel, HDPE, acetate, silicon, or polypropylene No waterproof field books on-site No plastic clipboards, binders, or spiral hard cover notebooks on-site	decontamination of sample equipment. No other water sources to be used. Alconox and Liquinox to be used as decontamination materials Food Considerations: No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the staging area
No adhesives (Post-It Notes) on-site y applicable boxes cannot be checked, the Field Lead shall personnel to address noncompliance issues prior to condude removal of noncompliance items from the site or renderibe the noncompliance issues (include personnel not in	noval of worker offsite until in compliance.

C.T. MALE ASSOCIATES

M	P	
A	Z	(B)

1) Ser.No. CTM

2) Ser.No.

3) Ser.No.

Daily Calibration Record

C.T.M. Project #: 18.8090

Location: Wappingers Falls, NY

Project: _HV Airport SC Investigation
Techinian Name(s): Di King

Reading 10.25 NTU

NTU

NTU

Reading

Reading

Time 1000

Time

Time

erial Number	Time	Temperature Accuracy	Pre-Cal Values	Calibration Values	Post-Cal or Bump Check Values
		/	pH: 4.04 / 6.94 / 10.065	pH: 4,00/ 7.01/10,03	pH: 4,0017,01 , 10,03
FA03 966	1876	Yes No	Dissolved Oxygen: 98.3 %	Dissolved Oxygen:%	Dissolved Oxygen:%
1/	0000	/	Sp. Conductivity: 6764	Sp. Conductivity: 7600	Sp. Conductivity: 7000
Pro 055			ORP: 231,2	ORP: ZSZ, 7	ORP: 232,7
		1	pH: 3,99 17.00 110,06	pH:4.00 17.01 1 (0.63	pH: 1,00 / 7.01 /10,03
FA01466	0820	Yes No	Dissolved Oxygen: 1/0.7 %	Dissolved Oxygen:%	Dissolved Oxygen:%
		/	Sp. Conductivity: 7006	Sp. Conductivity: 1000	Sp. Conductivity: 7000
		/	ORP: 279.5	ORP: 232.4	ORP: ZJZ.4
			pH:/	pH://	pH://
		Yes No	Dissolved Oxygen:%	Dissolved Oxygen:%	Dissolved Oxygen:%
		01/88: 01.180	Sp. Conductivity:	Sp. Conductivity:	Sp. Conductivity:
			ORP:	ORP:	ORP:
			pH:/	pH:/	pH://
:		Yes No	Dissolved Oxygen:%	Dissolved Oxygen:%	Dissolved Oxygen:%
		250-284 UNISSE	Sp. Conductivity:	Sp. Conductivity:	Sp. Conductivity:
			ORP:	ORP:	ORP:
			pH://	pH://	pH:/
:		Yes No	Dissolved Oxygen:%	Dissolved Oxygen:%	Dissolved Oxygen:%
		ANARONES UNIONS	Sp. Conductivity:	Sp. Conductivity:	Sp. Conductivity:
			ORP:	ORP:	ORP:

4) Ser.No.

5) Ser.No.

6) Ser.No.

Time

Time

Time

Reading

Reading

Reading

NTU

NTU

NTU

		Sampling	0.00	5150	all that	apply):						
		Ir	nitial / 3 \	Vol.	L	Low-Flo	W		Sample			
DATE: PROJECT	No.:	3/8/19	8.8090)	-		CT NAM	ME: ATION:		ort SC In		on
	G PERSONNEL:		King			A Children and				0	2017/2017	
NOTES T		DiKi				NOTES	CHECK	KED BY:				
MONITOR	RING WELL ID#:	MW	102			WELL (CASING	DIAMET	TER:	1.25	in.	
DEPTH TO	O WATER (ft):	11.08 F	ROM:	TPVC		CONVER	SION FAC	TORS LIN	EAR FEET	TO GALLO		
DEPTH TO	D BOTTOM (ft):	19,35F	ROM:	TPVC		1" = 0.04	11 GAL/LF		3" = 0.38	GAL/LF		
WATER C	OLUMN HEIGH	T: 8	127	ft		1.25" = 0	.064 GAL	/LF	4" = 0.66	GAL/LF		
WELL VO	LUME:	0.53		GALLO		2" = 0.16			6" = 1.47			
N 1000 200						TO 55.8.88			9 3 1534	O ILL		
Field Parameters	Stabilization	Time (sind	ce start	of purgi	ng)		New York					
Time (minutes)	i e	Initial	S	10	15	20	SS	30	35	38		
Water Level (ft)	± 0.00			13.56	14,39	15.28	16.19		18,82	DRY		
Temperature (C)	± 3%	16.4 11		17.0	1701	17,1	17.2	17.2	17-0			
DO (mg/L)	±10% or < 0.5			3,04	2,96	285	2.81	3.0	3,26			
Conductivity (uS)	± 3%			160	1134	1126	1129	1139	1210			
pH (SU)	± 0.1	76		6134		6,42	6A2	6.93	6.43			
ORP (mV)	±10 mV			2,2	-3,0	-5,8	-1.0	-5,5	-2,9			
Turbidity (NTU)	±10% or < 5	39.5	65	25,8	48,4	59,0	26.6	6718	1051		- 1	
Field Parameters	Time (since sta	rt of purgino	1)					No of the				DESCRIPTION OF
Time (minutes)	Time (Since Sta	Tur purging	3)					TOTAL PROPERTY.			BELISTED S	19/6
Water Level (ft)												
Temperature (C)												
DO (mg/L)												
Conductivity (uS)			-		7							
pH (SU)											-+	
ORP (mV)												
Turbidity (NTU)												
	1	1	,						- 1	/	1	
VOLUMES	PURGED:	~ 1.1		SALLON	NS	AVG	PURGE	RATE:	~11	10mL	Min	
TIME STAI	RTED: [C	1150				Т	IME FIN	IISHED:	Dry	@10	0149	
		,							/			
OBSERVA	TIONS: COLOR	None	2			ODOR	1/	100				
AMERICAN PLOYER I	SHEEN		-			OTHER	/ / /	4-				
	OFFECT	POAS				OTTILIT.						
WATER LE	EVEL AT 80% RE	ECOV.:		ft		WATER	R RECO	VERY H	EIGHT:		ft	
SAMPLE	COLLECTION TIN	ME-			1	DECOVE	DV TIM	I IN NAIN	II ITEO			
SAMPLE	OLLECTION III	VIE. —			, ,	RECOVE	ERY HIM	E IN MI	MOTES: -			
NOTES:	Clothe	e -	1 and	- Flow	wed	do	ara	h =	mole	to 1	e	
110120.	collected	beand	2011	Flo		and I		20	7/1	70 -		
	collected	tamos	1000	CU 78	,	echari	Je.					
-			-									
EQUIPMEN	NT. PERIST	ALTIC PUN	MP N	IEW DE	SPOSA	BLE BAII	EP	STAINIL	EQQ QTE	EL BAILI	ED	
LGOITWE	LIMOI	ALTIO FUI	VII IN	-LVV DI	UI USAI	JLL DAII	LLIT	OTAINL	_00 01E	CL BAILI	=17	
	BLADDI	ER PUMP	S	UBMF	RSIBLE	PUMP		OTHER				
			-		NAME AND SECURE			O I I ILIN				
SERIAL NO	os: YS	I FAC	146	6	Turb	CTN	1					

		Sampling Activ	ity (check al	that apply):							
		Initial /	3 Vol.	Low-Fle	ow		Sample				
DATE: PROJECT	NO.:	18.809	A TOTAL CONTRACTOR OF THE PARTY		ECT NAM				vestigations, NY	n	
SAMPLIN	G PERSONNEL:	D.Kin	9								
NOTES TA	AKEN BY:	DiKin	7	NOTE	S CHECK						
	RING WELL ID#: D WATER (ft):	17.91 FROM		WELL CASING DIAMETER: 1/25 in. CONVERSION FACTORS LINEAR FEET TO GALLONS							
	D BOTTOM (ft):					IORS LIN			NS		
	OLUMN HEIGH	All the same of th			041 GAL/LF	-	3" = 0.38				
WELL VO	Carried Control of the	:22			0.064 GAL/L		4" = 0.66				
WELL VO	LUIVIE:	166	GALLONS	2" = 0.1	16 GAL/LF		6" = 1.47	GAL/LF			
Field Parameters	Stabilization	Time (since sta	d of purging		STATUS OF			0212000		Ties is	
Time (minutes)	-	Initial as a									
Water Level (ft)	± 0.00	179196	DRY								
Temperature (C)	± 3%	18.3 16.9									
DO (mg/L)	±10% or < 0.5	7,63 6.03									
Conductivity (uS)	± 3% ± 0.1	509 483.5									
pH (SU) ORP (mV)	±10 mV	7.10 6.98									
Turbidity (NTU)	±10% or < 5	79244 44,3			+ +						
raibialty (1410)	21070 01 40	1101017 113					ll.				
Field Parameters	Time (since star	t of purging)	To the same			W. B.	WHAT SHAP	No. of the last			
Time (minutes)					T						
Water Level (ft)			A								
Temperature (C)											
DO (mg/L)											
Conductivity (uS)											
pH (SU) ORP (mV)											
Turbidity (NTU)					+ +						
raibially (1110)									, ,		
VOLUMES TIME STAR	PURGED:	~0.75	GALLONS	5657506	G PURGE P TIME FINI	RYC	115	12 42	חור.		
OBSERVA	TIONS: COLOR SHEEN		<u> </u>	ODOR OTHER		ne					
WATER LE	EVEL AT 80% RE	ECOV.:	— ft	WATE	R RECO\	/ERY H	EIGHT:_		ft		
SAMPLE C	OLLECTION TIM	лЕ:		RECOV	ERY TIME	IN MI	NUTES:		_		
NOTES:	Low-Flow tomorrow	after t	grab echarge.	sample	e to	be	61/e	ted			
EQUIPMEN	NT: PERIST	ALTIC PUMP	NEW DISP	OSABLE BA	ILER 5	STAINLE	ESS STE	EL BAILE	ER .		
	BLADDE	ER PUMP	SUBMERS	BLE PUMP	(OTHER					
SERIAL NO	os: YS	I FAOIS	66	Tub. C	TM						

	Sampling Activity (check all		
	Initial / 3 Vol.	Low-Flow	Sample
DATE:	X/8/19	PROJECT NAME:	HV Airport SC Investigation
PROJECT NO.:	18,8090	PROJECT LOCATION:	The state of the s
SAMPLING PERSONNEL:		PROJECT LOCATION.	vvappingers rails, ivr
NOTES TAKEN BY:	Diking	NOTES CHECKED BY:	
MONITORING WELL ID#:	MW103	WELL CASING DIAME	TER: 1,25 in.
	4.30 FROM: TPVC	CONVERSION FACTORS LIN	
DEPTH TO BOTTOM (ft):		1" = 0.041 GAL/LF	3" = 0.38 GAL/LF
WATER COLUMN HEIGH	1: 9,50 ft	1.25" = 0.064 GAL/LF	4" = 0.66 GAL/LF
WELL VOLUME:	120,61 GALLONS	2" = 0.16 GAL/LF	6" = 1.47 GAL/LF
		_	
Field Parameters Stabilization	Time (since start of purging		
Time (minutes) - Water Level (ft) ± 0.00	Initial S 10 1	5 20 245 29	
Temperature (C) \$\display \pm 3\%		76 10,55 11,94 DKY	
DO (mg/L) ±10% or < 0.5		,24 4,89 4,99	
Conductivity (uS) ± 3%		79 772 780	
pH (SU) ± 0.1		59 6,62 6,65	
ORP (mV) ±10 mV	-29.5 -27.1 -12,5 (8 11.7 16,2	
Turbidity (NTU) $\pm 10\%$ or < 5	40.9 45,2 30,5 Z		
Field Parameters Time (since star	t of purging)		
Time (minutes)			
Water Level (ft)			
Temperature (C)			
DO (mg/L) Conductivity (uS)			
pH (SU)			
ORP (mV)			
Turbidity (NTU)			
(Constant (Constant)	1-		
VOLUMES PURGED:	~1,Z GALLONS	AVG PURGE RATE:	110ml/min.
17	11		
TIME STARTED:	1 1	TIME FINISHED:	DRY@12:40
	۸/	- 1	
OBSERVATIONS: COLOR	/ Vone	ODOR None	
SHEEN	None	OTHER	
WATER LEVEL AT 80% RE	ECOV.;ft	WATER RECOVERY H	EIGHT: ft
SAMPLE COLLECTION TIME	ME:	RECOVERY TIME IN MII	NITES:
6			1. 1. 1
NOTES: Low flow	red dry, arab	sample to be	collected
tomorrow	after lecturate.		
	J		
EQUIPMENT: PERIST	ALTIC PUMP NEW DISP	OSABLE BAILER STAINL	ESS STEEL BAILER
BLADDI	ER PUMP SUBMERSI	BLE PUMP OTHER	
	SI FAO1466		

WELL LOW-FLOW PURGING LOG

			Sampli	ng Activi	ty (check	all that	apply):						
		۷]Initial / 3	3 Vol.	U	Low-Flo	W	U	Sample	е		
DATE: PROJECT SAMPLIN		ONNEL:		18.809 FC Bo		-		ECT NAM			oort SC I ngers Fa	-	ition -
NOTES TA			CB			_	NOTES	CHECK	(ED BY:	0	, Kin	ey.	
MONITOR DEPTH TO DEPTH TO	O WATE	R (ft): DM (ft):	6.69	FROM:	TPVC		1" = 0.0	CASING RSION FAC 41 GAL/LF	TORS LIN			in.	का
WATER C			F: _ 6.	74	ft GALLO			0.064 GAL 6 GAL/LF	'LF	4" = 0.6 6" = 1.4			
Field Parameters	Stahi	lization	Time (s	ince star	t of purg	ina)	Wilder Town						ALCO NO.
Time (minutes)	Otdo	-	Initial	5	10	1,5	20	25	30	35	40	45	20
Water Level (ft)	± (0.00	6.69	6.83	6.81	681	6.81	6.81	6.81	6.81	6.51	6.81	6.81
Temperature (C)	-	3%	18.5	18.9	19.0	19.1	17.4	19.1	19.2	19.3	19.3	19.4	19.3
DO (mg/L)		or < 0.5	3.01	1.16	1.18	1.27	1.30	1.32	1.34	1.35	1.35	1.36	1.37
Conductivity (uS)	-	3%	882	892	862	847	841	828	8-25	824	823	819	8-19
pH (SU)	-	0.1	7,47	7.04	6.93	6.82	6.76	6.71	6.69	6.67	6.65	6.63	6.63
ORP (mV)	-	mV	43.2	-72.8	-58.2	-43.9	-36.2	-29.0	-25.5	-21.9	-128	-15.3	-14.9
Turbidity (NTU)		or < 5	99.71	77.85	30,15	29.41	20.62	27.62		39.66	14.52		14.38
Field Parameters	Time /s	ince star	t of purg	ina)		San Charles						201702	
Time (minutes)	55	60	Tor parg	ling)				SS 2000					
Water Level (ft)	6.81	6.81											-
Temperature (C)	19.1	19.2	0										-
DO (mg/L)	1.40	1,40				177					-		
Conductivity (uS)	814	816											
pH (SU)	6.62	6.61											
ORP (mV)	-12.4	-10.7											
Turbidity (NTU)	14.98	14.03											
VOLUMES TIME STAI		1220	5,		GALLO	NS		PURGE			0 m/h	in	
OBSERVA			None				ODOR OTHER	No-	·e	0			
WATER LE	VEL AT	80% RE	ECOV.:		ft		WATE	R RECO	VERY H	IEIGHT:		ft	
SAMPLE C	OLLECT	TION TIM	ИE:	1320			RECOVE	ERY TIM	E IN MI	NUTES:		_	·c
NOTES:	ms/m	sd co	full	here Suite	TCL	TAL,	CN,	PFA VoCs,		4-Die			
EQUIPMEN	NT:	PERIST	ALTIC P	UMP	NEW DI	SPOSA	BLE BAI	LER	STAINL	ESS ST	EEL BAI	LER	
		BLADD	ER PUMI	P	SUBME	RSIBLE	PUMP		OTHER				
SERIAL NO	os:	YSI .	DSS F	10 : F	-A039	66							

	2 乙	1	Samplin	ng Activit	y (check	all that	apply):			60)		
		_		Initial / 3	Vol.	V	Low-Flo	w	V	Sample			
DATE:		8/	8/19				PROJE	CT NAM	ſΕ:	HV Airp	oort SC I	nvestiga	tion
PROJECT	NO.:	1	-	18.809	6	-	PROJE	CT LOC	ATION:	Wappir	igers Fa	lls, NY	
SAMPLIN		ONNEL:	Clic			*							*
NOTES TA			CE		0	_	NOTES	CHECK	(ED BY:				
MONITOR	ING WE	LL ID#:	Mh	1-101			WELL	CASING	DIAME	TER:	1.25	in.	
DEPTH TO			-		TPVC						T TO GALL	TO SEAL OF THE PARTY OF	
DEPTH TO				-				41 GAL/LF		3" = 0.31	SYSTEM BUSINESS	20110	
WATER C						-				4" = 0.66			
WELL VO	LIME	(3)		-	GALLO								
WELL VO	LUIVIE.	0,90	0.4-	7	GALLO	1/1/2	2" = 0.16	6 GAL/LF		6" = 1.47	/ GAL/LF		
Field Parameters	Stabil	lization	Time (s	ince star	t of pura	ing)	. 8 135			1.00	BV B	TO ME	30 30
Time (minutes)		-	Initial	5	10	15	20	25	30	35	40	45	50
Water Level (ft)	± (0.00	6.45	7.67	7,95	8.07	8.30	8-46	8.64	8.81	9.00	9,22	9,73
Temperature (C)		3%	17.1	17.1	17.3	17.6	17.1	17.5	16.8	17,4	17.6	17,7	17.0
DO (mg/L)		or < 0.5	-		3.12	2.28	1.29	0,81	0,56	0.40	0,46	0.75	1.70
Conductivity (uS)		3%	436.6	424,1	429.0	434.9	427.5	428.4			438.9	440.1	432.
pH (SU)		0.1		7,10	7.03	7.09	7.17	7,22	7.22	7,20	7.14	7,10	7.05
ORP (mV)) mV		-	112.9	97,0	54.1	36.2	26.9	23.3	21.2	17,5	25.4
Turbidity (NTU)	±10%	or < 5	58:41	95,48	26.78	17,18	20,35	17.97	26.61	42,57	43.61	5395	56.6
Field Parameters	Time (s	ince star	t of purg	ina)	Walter Street	ALLAY.	M 2 92 1	ALLESON .	The same of the sa		The second		0 58300
Time (minutes)	55	60	65	70	75	80	85	90	95	100			
Water Level (ft)	10,37	10.82	11.31	11.58	11.73	11,90		12.84		13.82			
Temperature (C)	16.8	16.9	16.9	16.6	169	17.4	166	16.3	16.8	17.4			
DO (mg/L)	2.33	3.22	4.40	4,08	5.18	5.41	5.85	5.95	5.66	5,45			
Conductivity (uS)	430.1	432.3	431.3	429.3	428.5		424,6	422.1		431.3			
pH (SU)	7,02	6.96	6.87	6.94	6.87	6.88		6.81		6.95			
ORP (mV)	30.1	48.48	517	28.7	45.9	43.8	57.9	54.9		53.1			
Turbidity (NTU)	90,63	48.70	89.70	187.7	1186	293,96	146.72	9.45	268,29	745.32			
VOLUMES	PURGE	D:	4.0		GALLO	NS	AVG	PURGE	RATE:	160) ~1/~	10	
VOLONIES			1.		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,0	, , , ,	21 01101	_ 1011_				
TIME STA	RTED:	0940			E		1	TIME FIN	NISHED:	1120	* Dry		
			Carl V	,									1
OBSERVA	TIONS:	COLOR	Clean	1/0100	dy	e	ODOR	Non	2		6		
		SHEEN	No.	re			OTHER	-	_				
		-											
WATER LE	EVEL AT	80% RE	ECOV.:		— ft		WATE	R RECC	VERY H	HEIGHT:	_	— ft	8
SAMPLE (COLLEC.	TION TI	ΛE:	-			RECOV	ERY TIM	IE IN MI	NUTES:			
NOTES	1		1	-							-		
NOTES:		Puges	Ley	-> W	:11 911	ou for	(ecox	ery o	vernig	Lt Pri	or to e	collection	5
9 (26	San	mple											
<u> </u>													
EQUIPME	NT:	PERIST	ALTIC P	UMP	NEW D	ISPOSA	BLE BAI	LER	STAINL	ESS ST	EEL BAI	LER	
		BLADD	ER PUM	P	SUBME	RSIBLE	PUMP		OTHER				
OFFINI N	20:		DSS P		A 103 6	911							
SERIAL NO	JS.	121	000	10 1 h	100	166							

Created On: 3/15/2018 Revised On: 4/1/2019

PFCs Sampling Checklist Weather (temp./precipitation): Field Clothing and PPE: Coolers filled with regular ice only. No No clothing or boots containing Gore-Tex™ chemical (blue) ice packs in possession All safety boots made from polyurethane Sample Containers: and PVC All sample containers made of HDPE or No materials containing Tyvek® polypropylene Field crew has not used fabric softener on Caps are unlined and made of HDPE or clothing /polypropylene Field crew has not used cosmetics, Wet Weather (as applicable): moisturizers, hand cream, or other related products this morning Wet weather gear made of polyurethane and PVC only Field crew has not applied unauthorized Lunscreen or insect repellant Equipment Decontamination: Field Equipment: "PFC-free" water on-site for decontamination of sample equipment. No No Teflon® or LDPE containing materials other water sources to be used. on-site W Alconox and Liquinox to be used as All sample materials made from stainless decontamination materials steel, HDPE, acetate, silicon, or polypropylene Food Considerations: No waterproof field books on-site No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., No plastic clipboards, binders, or spiral Gatorade and Powerade) that is available hard cover notebooks on-site for consumption only in the staging area No adhesives (Post-It Notes) on-site If any applicable boxes cannot be checked, the Field Lead shall describe the noncompliance issues below and work with field personnel to address noncompliance issues prior to commencement of that day's work. Corrective action shall include removal of noncompliance items from the site or removal of worker offsite until in compliance. Describe the noncompliance issues (include personnel not in compliance) and action/outcome of noncompliance:

Time:

Field Lead Name:

Field Lead Signature:

C.T. MALE ASSOCIATES

Daily Calibration Record

C.1.M. Project #: 18.8090	C.T.M. Project #:	18.8090
---------------------------	-------------------	---------

Project: _HV Airport SC Investigation
Techinian Name(s): _D, King

Location: Wappingers Falls, NY

Ambient Temperature:

Serial Number	Time	Temperature Accuracy	Pre-Cal Values	Calibration Values	Post-Cal or Bump Check Values
ysi: <u>FA01466</u>	0715	Yes No	pH: 4.04 / 7.01 / 10.07 Dissolved Oxygen: 98.8 % Sp. Conductivity: 7032	pH: <u>4.00</u> / <u>7.03</u> / <u>10.08</u> Dissolved Oxygen: <u>100.0</u> % Sp. Conductivity: <u>7000</u>	pH: 4.00 / 7.05 / /0.08 Dissolved Oxygen:
ysi: <u>FA03966</u> ProDSS	0745	Yes No	ORP: <u>Z37,9</u> pH: <u>4,15</u> / <u>7,09</u> / <u>10,14</u> Dissolved Oxygen: <u>99,6</u> % Sp. Conductivity: <u>Z330</u> ORP: <u>Z37,7</u>	ORP: 239,4 pH: 4,00/ 7,03 / 10,08 Dissolved Oxygen: 100,0 % Sp. Conductivity: 7000 ORP: 238,9	Dissolved Oxygen:% Sp. Conductivity:
YSI:		Yes No	pH:/	pH:/	pH: / / / / Dissolved Oxygen: % Sp. Conductivity: ORP:
YSI:		Yes No	pH:/	pH:/	pH: / /
/SI:		Yes No	pH:/	pH://	pH:/

						Act 17 Co.			
т	**	**	ь	:4	4-1	M	a	to	3+5
L	u	1	1,7	ш	LY	14.1	C	LC	13

1) Ser.No. CTM	Time 07:45	Reading [0.15	NTU	4) Ser.No	Time	Reading	NTU
2) Ser.No	Time	Reading	_NTU	5) Ser.No	Time	Reading	NTU
3) Ser.No	Time	Reading	_NTU	6) Ser.No	Time	Reading	NTU

	P	
4		(3)

		Sampling A	ctivity (check al	I that apply):		,		
	اجا رك		al / 3 Vol.	Low-Flo	nw.	Sample	2	
DATE: PROJECT		19/19	.809	PROJE	ECT NAME:	HV Airp	oort SC Inves ngers Falls, N	and the same of th
	G PERSONNEL:		ing	Var Serence Line Line		- COLLINSOR		
NOTES TA	AKEN BY:	Diki	~9	NOTE	S CHECKED	BY:		
	ING WELL ID#: D WATER (ft):				CASING DIA		1,25	in.
	D BOTTOM (ft):				ASION FACTOR 041 GAL/LF			
WATER C	OLUMN HEIGHT	4	86 ft		0.064 GAL/LF			
WELL VOL	LUME: O	,57	GALLONS		6 GAL/LF			
Field Parameters	Stabilization	Time (since	start of purging)				
ime (minutes)	- Stabilization	Initial	start or purging					
Vater Level (ft)	± 0.00	10.49						
emperature (C)	± 3%	1 Cal						
00 (mg/L)	±10% or < 0.5							
Conductivity (uS) H (SU)	± 3% ± 0.1	1137			-			
DRP (mV)	±10 mV	654						
urbidity (NTU)	±10% or < 5	61.2						
ield Parameters	Time (since star	t of nuraina)		Market Barry				
ime (minutes)	Time (Since star	l pargrig)			T			
Vater Level (ft)								-
emperature (C)								
00 (mg/L)								
Conductivity (uS)								
H (SU)								
ORP (mV) Turbidity (NTU)								
VVC 20-20-40-100-00-00-00-00-00-00-00-00-00-00-00-0			8 800 5000					
VOLUMES	PURGED:		GALLONS	AVC	S PURGE RA	TE:		
TIME STAF	RTED:	_			TIME FINISH	ED:		
OBSERVA ⁻	TIONS: COLOR SHEEN	None		ODOR OTHER	-	18	ti e	
WATER LE	EVEL AT 80% RE	COV.:	ft	WATE	R RECOVER	RY HEIGHT:	10.49	ft
SAMPLE C	OLLECTION TIN	ne: C	2840	RECOV	ERY TIME IN	MINUTES:	_	
NOTES:	Sampled	for!	CL/TAL	ZCN, P				
3			_	, ,				
EQUIPMEN	T: PERIST	ALTIC PUME	NEW DISP	OSABLE BA	ILER STA	AINLESS STE	EEL BAILER	
	BLADDE	ER PUMP	SUBMERS	IBLE PUMP	OTH	HER		
SERIAL NO	os: Y	ST F	401466	Two. C	Try			

Created On: 3/15/2018

A		Sampling Activ	vity (check all	that apply):		,	
		Initial /	3 Vol.	Low-Flo	w	Sample	
DATE: PROJECT SAMPLING	NO.: 3 PERSONNEL:	18.80 D.K.			CT NAME: CT LOCATION:	TALL A CONTENSION OF THE	C Investigation Falls, NY
NOTES TA		A 1.61	new	NOTES	CHECKED BY:		
DEPTH TO DEPTH TO WATER O WELL VOL	***	MW102 17,92 FROM 21,30 FROM 3,38 0,22	1: TPVC 1: TPVC 5 ft GALLONS	WELL (CONVER 1" = 0.04	CASING DIAME SION FACTORS LIN 11 GAL/LF .064 GAL/LF	TER: // NEAR FEET TO G	LF LF
Field Parameters Time (minutes)	Stabilization	Time (since sta	art of purging)				
Water Level (ft)	± 0.00	17.92	+				
Temperature (C)	± 3%	17.5	+				
DO (mg/L)	±10% or < 0.5	6,58					
Conductivity (uS)	± 3%	483.5					
oH (SU)	± 0.1	719					
ORP (mV)	±10 mV	190.7					
Furbidity (NTU)	±10% or < 5	OR					
Field Parameters	Time (since star	t of purging)					
Fime (minutes)	Time (since star	l bir purgirig)	I				
Water Level (ft)							
remperature (C)							
OO (mg/L)							
Conductivity (uS)							
H (SU)							
ORP (mV)							
Turbidity (NTU)							
VOLUMES TIME STAF		None	_GALLONS		PURGE RATE:		
- COUNTY	SHEEN	None		OTHER	7 01		
	VEL AT 80% RE OLLECTION TIM Sampled	ME: 09	25 PFAS, 1	RECOVE	R RECOVERY HERY TIME IN MI		19Z ft
EQUIPMEN	BLADDE	ALTIC PUMP	SUBMERSI	BLE PUMP	LER STAINL		IAILER
SERIAL NO)s:	SI FAC	01466	Turb	CM		

Created On: 3/15/2018

	B	
4	囚	0

劉色劉	Sampling Activity (c	check all that apply):	TV/same	in .
DATE:	8/9/19	PROJECT N		port SC Investigation
PROJECT NO.: SAMPLING PERSON	18.809 INEL: B. King		OCATION: Wapp	ngers Falls, NY
NOTES TAKEN BY:	D. K.Ko	The state of the s	CKED BY:	
MONITORING WELL	ID#: MW163	WELL CASIN	IG DIAMETER:	1,25 in.
DEPTH TO WATER (VC CONVERSION I	ACTORS LINEAR FE	
	(ft): 13,80FROM: TP			38 GAL/LF
WATER COLUMN HE			AL/LF $4" = 0.0$	66 GAL/LF
WELL VOLUME:	0.58 GA	LLONS 2" = 0.16 GAL/I	F 6" = 1.	47 GAL/LF
ield Parameters Stabiliza	tion Time (since start of	purging)		
ime (minutes) -	Initial			
Vater Level (ft) ± 0.00 emperature (C) $\pm 3\%$	J. M. M.			
O (mg/L) ±10% or <				
conductivity (uS) ± 3%				
H (SU) ± 0.1				
RP (mV) ±10 m	V 0.3			
urbidity (NTU) ±10% or	< 5 44.7			
ield Parameters Time (since	e start of purging)			
ime (minutes)	J Daily J J			TOTAL DESCRIPTION OF THE PARTY
/ater Level (ft)				
emperature (C)				
O (mg/L)				
onductivity (uS)				
H (SU) RP (mV)				
urbidity (NTU)				
VOLUMES PURGED: TIME STARTED:	GA	LLONS AVG PUR	GE RATE:	
OBSERVATIONS: CO	LOR NORE	ODOR OTHER	None	
311				
WATER LEVEL AT 80	% RECOV.:	ft WATER REG	COVERY HEIGHT	4.68 ft
WATER LEVEL AT 80				
L	2 00		IME IN MINUTES	
WATER LEVEL AT 80'S SAMPLE COLLECTION NOTES: Sample	NTIME: 1000 led for! TCL		IME IN MINUTES	xane
WATER LEVEL AT 800 SAMPLE COLLECTION NOTES: Sample EQUIPMENT: PE	N TIME: 1000 Led For! TCL FRISTALTIC PUMP NEW	TAL, CN, PF,	S, 1,4-Dio	xane

Created On: 3/15/2018

	7 0	Samplin	ng Activi	ty (check	all that	apply):			/			
	كالكا]Initial / 3	3 Vol.		Low-Flo	w	V	Sample	е		
DATE:	8	-/9/	19			PROJE	CT NAM	ΛΕ:	HV Air	port SC I	nvestigation	
PROJECT	NO.:		18.809	ð	**	PROJE	CT LOC	ATION:	Wappi	ngers Fa	lls, NY	
	3 PERSONNEL:	CI	iff B		-	III. IIvonamentini		N. A.S. ASTANIA	87		Control of the Contro	
NOTES TA		C	8			NOTES	S CHECK	KED BY:				
MONITOR	ING WELL ID#:	Mu	1-101			WELL	CASING	DIAME	TER:	1,25	in.	
	WATER (ft):	-		TPVC						T TO GALI		
	D BOTTOM (ft):						41 GAL/LF				LONG	
		-	-			- TOTAL						
	OLUMN HEIGH	0.000					0.064 GAL					
WELL VOI	LUME: 0,4	1		GALLO	NS	2" = 0.1	6 GAL/LF		6" = 1.4	7 GAL/LF		
ield Dasameters	Ctabilization	Time to	inas atas	t of mirror	= =V							
ield Parameters ime (minutes)	Stabilization	Initial		t of purg	119)			The state of		50 50 50		
Vater Level (ft)	± 0.00		10,24									
emperature (C)	± 3%	17.2				-			-	1		
O (mg/L)	±10% or < 0.5		4.17									
onductivity (uS)	± 3%		414,4									
H (SU)	± 0.1	7.20	7.23									
RP (mV)	±10 mV	211.6	204.8									
urbidity (NTU)	±10% or < 5		202.50									
1.3											al A	
eld Parameters	Time (since sta	rt of purg	ing)									1330
me (minutes)												
later Level (ft)												
emperature (C)												
O (mg/L)												
onductivity (uS)												
H (SU)												
RP (mV)		17										
urbidity (NTU)												
VOLLIMES	PURGED:	-		GALLO	VIS	Δ\/C	PURGE	E DATE:	_			
VOLOWILO	TOROLD.		224	OFILLO	10	1110	or or or	- 1 1/1 1 1	-			
TIME STAF	RTED:	1				177	TIME FIN	IISHED:	-			
OBSERVA	TIONS: COLOR	Clare	1-1	1		ODOD	A 100 A 100	0	1		- 1	
OBSERVA				· y			Stoght	retrole.	un code	_	- 1	
	SHEEN	No-	×			OTHER				-	- 1	
WATER LE	EVEL AT 80% RI	ECOV.:	-	ft		WATE	R RECC	VERY H	HEIGHT:		ft	
			001-									
SAMPLE C	COLLECTION TI	ME:	0915			RECOV	ERY TIM	IE IN MI	NUTES:			
NOTEO	1 . 1 6		5 5 V 5 5 5					×		219		
NOTES:	Grab San	ple (ollecte	->	well	lowif	fored	gith X	esterde	y 5/	7/19	
Sample	foc: PFA	15,14	Diexe	me, p	netal	SITCI				17 days		
* 1 set of	feranciers	Collect	ed af	her PF	AS/D.	oxane	Sample	3, 150	taffe	full So	well collecte	1 (E-
EQUIPMEN		TALTIC P	3			ABLE BA						
L&OII WILI	LINIO			TALAN DI	JI 00/	WLL DA		SIAINL	00 01	LLL DAI	LLIX	
	BLADD	ER PUM	P	SUBME	RSIBLE	PUMP		OTHER				
SERIAL NO	Ds: YSI	250	Pro:	FA 03	966							
Created On: 3/1										Reviser	d On: 4/1/201	19
	we and the first									. TO VIOCE	1 -11 1/201	

APPENDIX D DRINKING WATER WELL SAMPLING LOGS

C.T. MALE ASSOCIATES

Page _____ of ________

DATE: 09/04/2019	ON SITE: 1308	PROJECT NO.:
	OFF SITE: 1346	18.8090
PROJECT NAME: HVRA		PROJECT LOCATION: Wappingers Falls, N
SAMPLING PERSONNEL: Amanda Hei	SAMPLE TYPE: POET	POU LTM OTHER
SAMPLE ADDRESS: 1581 Re	rute 376	DOUBLE PAIR OF NITRILE GLOVES USED
SITE CONTACT PRESENT? YES	NO	NAME: Rob (worker)
purging source: outside hose spigot	PURGE DURATION: 10 M	in outside spiget
	NE SAMPLING VESS	EL CHANGE-OUT OTHER
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLL TIME:	ECTION EFFLUENT SAMPLE COLLECTION TIME:
FLOW METER READING (GALLONS):	NA	•
· OFC & Dept of	at 1333	
Kov.	Evamna Samn	

Key:

POET: Point Of Entry Treatment system POU: Point Of Use Treatment system LTM: Long Term Monitoring location Exampe Sample Locations

POET vessel ports Pressure tank

Kitchen Sink (aerator removed)

C.T. MALE ASSOCIATES

Page / of /

	- Control of the Cont	
DATE: 09/04/2019	ON SITE: 1353	PROJECT NO.:
	OFF SITE: 1415	18.8070
PROJECT NAME: HVRA	•	PROJECT LOCATION: Wappingers Falls, NY
SAMPLING PERSONNEL: Amanda	POET	POU LTM OTHER
SAMPLE ADDRESS: 7 Hack	ensack Heights R	DOUBLE PAIR OF NITRILE GLOVES USED
(At) Left Property owner	YES NO X	NAME: to Sampler
outside spiget	PURGE DURATION:	samplification(s): outside spiget
INITIAL SAMPLING RO	OUTINE SAMPLING VES	SEL CHANGE-OUT OTHER.
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLI	LECTION EFFLUENT SAMPLE COLLECTION TIME:
FLOW METER READING (GALLO)		•
	NA	
NOTES: DEC afficial	started purge a	+ 1348 ended at 1358
Sample		J
· Resident lef	t note; wated	signed so she know we took picture
	2 .	took picture
FTB to	Ken at 1404	1.
	Health represent	atives present ansite
Kev:	Exampe Sam	ple Locations:

POET: Point Of Entry Treatment system POU: Point Of Use Treatment system LTM: Long Term Monitoring location

POET vessel ports

Pressure tank

Kitchen Sink (aerator removed)

C.T. MALE ASSOCIATES

575	
Page _	of

DATE: 09/04/2019	ON SITE: 1417	PROJECT NO.:
	OFF SITE: 1455	18.8090
PROJECT NAME: HVRA		PROJECT LOCATION: Wappingers falls, NY
SAMPLING PERSONNEL: Amanda Hen	POET POU	LTM OTHER
SAMPLE ADDRESS: FTC Enter 1610 Rt. 3		DOUBLE PAIR OF NITRILE GLOVES USED
SITE CONTACT PRESENT? YES	NO NAM	ME: Mike (propertyoner
purging source: outside spiget	PURGE DURATION: SAM	IPLE LOCATION(S):
INITIAL SAMPLING ROUTE	NE SAMPLING VESSEL CHAN	GE-OUT OTHER
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLLECTION TIME: -	EFFLUENT SAMPLE COLLECTION TIME:
FLOW METER READING (GALLONS):	LA	
Nome	NA	
NOTES: Arrived at 11.	117 waiting for proper	ell was and where
we could sample	30 ended at 1440	500 H deep
sounded at 1441		
"DEC & Dept. of H	eath rep, present a	enpite

Key:

POET: Point Of Entry Treatment system POU: Point Of Use Treatment system LTM: Long Term Monitoring location Exampe Sample Locations:

POET vessel ports

Pressure tank

Kitchen Sink (aerator removed)

C.T. MALE ASSOCIATES

1	1
Page /	of
rage _	_ 01

DATE: 09/04/2019	ON SITE: 1505	PROJECT NO.:
	0.10.12.7505	CONTRACTOR BASSAND
	OFF SITE:	18,8090
PROJECT NAME:		PROJECT LOCATION:
HVRA		Wappingons falls, NY
II TISTORIUS (M.)		wasp. rest is items, so
SAMPLING PERSONNEL: Amanda Hens	or that Las I II E.	
	POET POU	OTHER D
SAMPLE ADDRESS: 2 Hackensa	K Hoights Rd.	DOUBLE PAIR OF NITRILE
	at reignis	GLOVES USED
SITE CONTACT PRESENT? YES	NO NAME	Homeowners pavents
PURGING SOURCE:	PURGE DURATION: SAMPL	E LOCATION(S):
INITIAL SAMPLING ROUTIN	JE SAMPLING VESSEL CHANGE	OTHER _
INFLUENT SAMPLE COLLECTION	MID POINT SAMPLE COLLECTION	EFFLUENT SAMPLE COLLECTION
TIME:	TIME:	TIME:
FLOW METER READING (GALLONS):		
	NA	
Mr. Chung was not ho	Lakon in Sconnessicot	in a heat most a Line
Ma al march sees not	tarian, miscernianisch	ion decell metting time.
Mr. Chung was not no	ma. was material / itea	ins over crownspace
exterance Older con	ple cauld not made	items and sampling
point was in confined	I space Told cample	- we could keep he
time they thought h	and loon rehadulad	Evidou at 4pm and
they tronglot	the bean schalled	Till I O wall
someone saula can	a then to sumple.	Talkeld to David Len
sameane dauld can and said he would	either house samene	sample it or call
hameawner.		
		I

Key:

POET: Point Of Entry Treatment system POU: Point Of Use Treatment system LTM: Long Term Monitoring location Exampe Sample Locations:

POET vessel ports

Pressure tank

Kitchen Sink (aerator removed)

LTM: Long Term Monitoring location

Residental Well Sampling Services Field Log

Page ____ of ____ /

D. LOWER		
DATE:	ON SITE: 1445	PROJECT NO.:
09/06/19	OFF SITE: 1540	18.80 90
PROJECT NAME:		PROJECT LOCATION:
HURA		1601 Rt. 376
SAMPLING PERSONNEL:	SAMPLE TYPE:	
D.LenT	POET	POU LTM OTHER
SAMPLE ADDRESS:		DOUBLE PAIR OF NITRILE
1601 Kt. 376 Way	Minger Fulls N	Y 12590 GLOVES USED X
SITE CONTACT PRESENT? YES	NO NO	NAME: Herdl Bochnes
PURGING SOURCE:	PURGE DURATION:	SAMPLE LOCATION(S):
Spigot - bath bile of building	10 min	Outside spigot
		SEL CHANGE-OUT OTHER
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLI TIME:	LECTION EFFLUENT SAMPLE COLLECTION TIME:
FLOW METER READING (GALLONS):		
NOTES: Started purge at	1505; end	ed at 1515
Collected boungle	at 1515	
Key:	Exampe Sam	
POET: Point Of Entry Treatment system POU: Point Of Use Treatment system	POET vessel p Pressure tank	
The state of the s	r ressure tank	

Outdoor Spigot

Kitchen Sink (aerator removed)

DATE		
DATE:	ON SITE: 1545	PROJECT NO.:
09/06/19	OFF SITE: 16 20	18.8090
PROJECT NAME:		PROJEÇT LOCATION:
HVRA		2 Heckentack Heights Ld.
SAMPLING PERSONNEL:	SAMPLE TYPE:	
D. Lent	POET	POU LTM OTHER
SAMPLE ADDRESS:		DOUBLE PAIR OF NITRILE
2 Hack enbeck Height	5 Rd	GLOVES USED
SITE CONTACT PRESENT? YES	NO NO	NAME: Melon Chong
PURGING SOURCE:	PURGE DURATION:	SAMPLE LOCATION(S):
Rear Spigot of		
deck	10 Min	Octside Spigot
		EL CHANGE-OUT OTHER
INFLUENT SAMPLE COLLECTION TIME:	MID POINT SAMPLE COLL	
1114111.	TIME:	TIME:
1		
ELOWA (EEEE DE LORS)		
FLOW METER READING (GALLONS):		
iv A Notes:		
Stortel Purge a	et 1550; End	ed forge at 1600
Collected bomple	at 1600	led forge at 1600
,		
1		
Key:	Exampe Sampl	e Locations:
POET: Point Of Entry Treatment system POU: Point Of Use Treatment system	POET vessel po	
1 CO. 1 OHR OI USE HEARINGHI SVSTEM		

LTM: Long Term Monitoring location

Kitchen Sink (aerator removed)

APPENDIX E LABORATORY REPORTS

ANALYTICAL REPORT

Lab Number: L1931312

Client: C.T. Male Associates

12 Raymond Avenue

Poughkeepsie, NY 12603

ATTN: David Lent
Phone: (845) 454-4400

Project Name: HVRA

Project Number: 18.8090

Report Date: 07/31/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: HVRA
Project Number: 18.8090

Lab Number: L1931312 **Report Date:** 07/31/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1931312-01	HVRA-AAG-PW01	WATER	AAG HANGAR	07/16/19 13:20	07/16/19
L1931312-02	TRIP BLANK	WATER	AAG HANGAR	07/16/19 13:20	07/16/19
L1931312-03	FIELD BLANK	WATER	AAG HANGAR	07/16/19 00:00	07/16/19
L1931312-04	HVRA-AAG-PW01	WATER	AAG HANGAR	07/17/19 10:00	07/17/19
L1931312-05	TRIP BLANK	WATER	AAG HANGAR	07/17/19 10:00	07/17/19
L1931312-06	FIELD BLANK	WATER	AAG HANGAR	07/17/19 10:00	07/17/19

Project Name:HVRALab Number:L1931312Project Number:18.8090Report Date:07/31/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 HVRA
 Lab Number:
 L1931312

 Project Number:
 18.8090
 Report Date:
 07/31/19

Case Narrative (continued)

Report Submission

July 31, 2019: This final report includes the results of all requested analyses.

July 31, 2019: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1931312-01: One container for the PCBs analysis was received broken; however, there was adequate sample remaining to perform the requested analysis.

L1931312-01: The Perfluorinated Alkyl Acids analysis was requested on the Chain of Custody, but a container was not received. This was later received and is reported as L1931312-04.

L1931312-02: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. At the client's request, this sample was not analyzed.

L1931312-03: A sample identified as "FIELD BLANK" was received but not listed on the Chain of Custody. At the client's request, this sample was not analyzed.

L1931312-04: The sample identified as "HVRA-AAG-PW01" on the chain of custody was identified as "HVRA-ARFF-PW01" on the container label. At the client's request, the sample is reported as "HVRA-AAG-PW01".

Perfluorinated Alkyl Acids by Isotope Dilution

WG1266320-2: The continuing calibration standard had the response for PFHxS is outside the acceptance criteria for the method. This value represents less than 10% of all compounds; therefore, the calibration was accepted.

PCBs

The WG1261777-2 LCS recoveries, associated with L1931312-01, were outside the acceptance criteria for

 Project Name:
 HVRA
 Lab Number:
 L1931312

 Project Number:
 18.8090
 Report Date:
 07/31/19

Case Narrative (continued)

aroclor 1016 (28%) and aroclor 1260 (26%); however, re-extraction could not be performed due to lack of additional sample. The results of the original analyses are reported.

The surrogate recoveries for the WG1261777-2 LCS, associated with L1931312-01, are outside the acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (24%, 24%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/31/19

Melissa Sturgis Melissa Sturgis

ORGANICS

SEMIVOLATILES

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20

Client ID: HVRA-AAG-PW01 Date Received: 07/16/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 07/17/19 15:45

Analytical Method: 1,8270D Extraction Date: 07/17/19 15:45
Analytical Date: 07/18/19 19:14

Analyst: SZ

3.3-Dichlorobenzidine ND ug/l 5.0 1.6 1 2.4-Dinitrotoluene ND ug/l 5.0 1.2 1 2.6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.53 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.42 1 N-N-Nitrosodi-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 5.0 0.39 1 Di-n-octylphthalate ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3.3-Dichlorobenzidine ND ug/l 5.0 1.6 1 2.4-Dinitrotoluene ND ug/l 5.0 1.2 1 2.6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.53 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.42 1 N-N-Nitrosodi-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 5.0 0.39 1 Di-n-octylphthalate ND	Semivolatile Organics by GC/MS - We	estborough Lab					
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
ND	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chlorostoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Isophorone ND ug/l 2.0 0.77 1 Individual 2.0 0.42 1 Individual 2.0 0.44 1 Individual 2.0 0.46 1 Individua	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-octylphthalate ND <td< td=""><td>2,6-Dinitrotoluene</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>0.93</td><td>1</td></td<>	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroispropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND Ug/l 20 0.69 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
NDPA/DPA NDPA/DPA NDD ug/l 2.0 0.42 1 NDPA/DPA NDD ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.1 1 Diathyl phthalate ND ug/l 5.0 0.50 1 Diathyl 6.0 0.50 1	Hexachlorocyclopentadiene	ND			20	0.69	1
NDPA/DPA	Isophorone	ND		ug/l	5.0	1.2	1
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1	Bis(2-ethylhexyl)phthalate	1.7	J	ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 4-Chloroaniline ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Nitroaniline ND ug/l 5.0 0.80 1 A-Nitroaniline ND ug/l 5.0 0.50 1 A-Note on the total number of the total number	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
ND ug/l 2.0 0.46 1	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
· · · · · · · · · · · · · · · · · · ·	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2.4.6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
2,1,0 monorphonor ug/1 0.0 0.01 1	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20

Client ID: HVRA-AAG-PW01 Date Received: 07/16/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	57	21-120	
Phenol-d6	52	10-120	
Nitrobenzene-d5	102	23-120	
2-Fluorobiphenyl	96	15-120	
2,4,6-Tribromophenol	61	10-120	
4-Terphenyl-d14	113	41-149	

Project Name: Lab Number: **HVRA** L1931312

Project Number: Report Date: 18.8090 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20

Client ID: Date Received: 07/16/19 HVRA-AAG-PW01 AAG HANGAR Field Prep: Sample Location: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/17/19 15:47 Analytical Method: 1,8270D-SIM Analytical Date:

Analyst: DV

07/18/19 14:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	nb				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	0.04	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20

Client ID: HVRA-AAG-PW01 Date Received: 07/16/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	56	10-120
Nitrobenzene-d5	103	23-120
2-Fluorobiphenyl	95	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	107	41-149

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20

Client ID: HVRA-AAG-PW01 Date Received: 07/16/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/23/19 08:50

Analyst: MA

07/25/19 11:30

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab				
1,4-Dioxane	ND	ng/l	144	32.6	1
Surrogate		% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8		36			15-110

Project Name:HVRALab Number:L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-04 Date Collected: 07/17/19 10:00

Client ID: HVRA-AAG-PW01 Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537(M) Extraction Date: 07/29/19 09:45
Analytical Date: 07/30/19 16:17

Analyst: AJ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	191		ng/l	20.0	4.08	1
Perfluoropentanoic Acid (PFPeA)	838		ng/l	20.0	3.96	1
Perfluorobutanesulfonic Acid (PFBS)	23.6		ng/l	20.0	2.38	1
Perfluorohexanoic Acid (PFHxA)	621		ng/l	20.0	3.28	1
Perfluoroheptanoic Acid (PFHpA)	191		ng/l	20.0	2.25	1
Perfluorohexanesulfonic Acid (PFHxS)	553		ng/l	20.0	3.76	1
Perfluorooctanoic Acid (PFOA)	233		ng/l	20.0	2.36	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	2180		ng/l	20.0	13.3	1
Perfluoroheptanesulfonic Acid (PFHpS)	37.6		ng/l	20.0	6.88	1
Perfluorononanoic Acid (PFNA)	21.4		ng/l	20.0	3.12	1
Perfluorooctanesulfonic Acid (PFOS)	1090		ng/l	20.0	5.04	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	20.0	3.04	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	42.4		ng/l	20.0	12.1	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	20.0	6.48	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	20.0	2.60	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	20.0	9.80	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	20.0	5.80	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	20.0	8.04	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	20.0	3.72	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	20.0	3.27	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	20.0	2.48	1
PFOA/PFOS, Total	1320		ng/l	20.0	2.36	1

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-04 Date Collected: 07/17/19 10:00

Client ID: HVRA-AAG-PW01 Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	83	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	126	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	93	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	119	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	111	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	78	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	99	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	82	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	129	33-143

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-05 Date Collected: 07/17/19 10:00

Client ID: TRIP BLANK Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537(M) Extraction Date: 07/29/19 09:45
Analytical Date: 07/30/19 15:11

Analyst: AJ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.88	0.383	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.88	0.372	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.88	0.224	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.88	0.308	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.88	0.212	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.88	0.353	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.88	0.222	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.88	1.25	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.88	0.647	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.88	0.293	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.88	0.474	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.88	0.286	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.88	1.14	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.88	0.609	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.88	0.244	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.88	0.921	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.88	0.545	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.88	0.756	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.88	0.350	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.88	0.308	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.88	0.233	1
PFOA/PFOS, Total	ND		ng/l	1.88	0.222	1

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-05 Date Collected: 07/17/19 10:00

Client ID: TRIP BLANK Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113	16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84	31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	89	21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90	30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105	47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77	1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	81	34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78	42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	68	38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	44	7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	59	1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	66	40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	38	1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	51	23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	70	24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	72	33-143	

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-06 Date Collected: 07/17/19 10:00

Client ID: FIELD BLANK Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537(M) Extraction Date: 07/29/19 09:45
Analytical Date: 07/30/19 15:28

Analyst: AJ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.80	0.368	1		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.80	0.357	1		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.80	0.215	1		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.80	0.296	1		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.80	0.203	1		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.80	0.339	1		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.80	0.213	1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.80	1.20	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.80	0.621	1		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.80	0.282	1		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.80	0.455	1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.80	0.274	1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.80	1.09	1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.80	0.585	1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.80	0.235	1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.80	0.884	1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.80	0.523	1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.80	0.726	1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.80	0.336	1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.80	0.295	1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.80	0.224	1		
PFOA/PFOS, Total	ND		ng/l	1.80	0.213	1		

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-06 Date Collected: 07/17/19 10:00

Client ID: FIELD BLANK Date Received: 07/17/19
Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	112	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	93	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	95	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	61	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	83	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	67	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	64	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	17	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	58	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	85	33-143

Project Name: HVRA

Project Number: 18.8090

Lab Number:

Report Date:

L1931312 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/18/19 00:44

Analyst: CB

Extraction Method: EPA 3510C

Extraction Date: 07/16/19 17:22

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1260590-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l		5.0	1.2	
Nitrobenzene	ND		ug/l		2.0	0.77	
NDPA/DPA	ND		ug/l		2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64	
Bis(2-ethylhexyl)phthalate	1.6	J	ug/l		3.0	1.5	
Butyl benzyl phthalate	ND		ug/l		5.0	1.2	
Di-n-butylphthalate	ND		ug/l		5.0	0.39	
Di-n-octylphthalate	ND		ug/l		5.0	1.3	
Diethyl phthalate	ND		ug/l		5.0	0.38	
Dimethyl phthalate	ND		ug/l		5.0	1.8	
Biphenyl	ND		ug/l		2.0	0.46	
4-Chloroaniline	ND		ug/l		5.0	1.1	
2-Nitroaniline	ND		ug/l		5.0	0.50	
3-Nitroaniline	ND		ug/l		5.0	0.81	
4-Nitroaniline	ND		ug/l		5.0	0.80	
Dibenzofuran	ND		ug/l		2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l		5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61	
p-Chloro-m-cresol	ND		ug/l		2.0	0.35	

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D
Analytical Date: 07/18/19 00:44

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 07/16/19 17:22

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01	Batch:	WG1260590-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	59	10-120
4-Terphenyl-d14	90	41-149

L1931312

Project Name: HVRA Lab Number:

Project Number: 18.8090 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/17/19 21:17 Extraction Date: 07/16/19 17:32

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG1260602-1	
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/17/19 21:17 Extraction Date: 07/16/19 17:32

Analyst: DV

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):
 01
 Batch:
 WG1260602-1

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	94	41-149

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/25/19 09:29 Extraction Date: 07/23/19 08:50

Analyst: MA

Parameter	Result	Qualifier	Units	5	RL	MDL
1,4 Dioxane by 8270D-SIM - Mansfi	eld Lab for	sample(s):	01	Batch:	WG126317	7-1
1,4-Dioxane	ND		ng/l	I	150	33.9

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
1,4-Dioxane-d8	37	15-110		

Project Name:HVRALab Number:L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 07/30/19 14:05 Extraction Date: 07/29/19 09:45

Analyst: AJ

Parameter R	Result	Qualifier	Units	RL		MDL
Perfluorinated Alkyl Acids by Isotope [WG1265710-1	Dilution -	· Mansfield I	Lab for	sample(s):	04-06	Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		0.408
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		0.396
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.238
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.328
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.225
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.376
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.236
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1.33
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		0.688
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.312
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.504
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.304
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1.21
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		0.648
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.260
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		0.980
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		0.580
N-Ethyl Perfluorooctanesulfonamidoacetic Ad (NEtFOSAA)	cid ND		ng/l	2.00		0.804
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.372
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.327
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.248
PFOA/PFOS, Total	ND		ng/l	2.00		0.236

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 07/30/19 14:05 Extraction Date: 07/29/19 09:45

Analyst: AJ

Parameter Result Qualifier Units RL MDL

Perflueringted Alleyl Acids by Isotope Dilution Manefield Lab for comple(s): 04.06 Ratch:

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 04-06 Batch: WG1265710-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	98	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	75	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	90	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	91	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	67	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	69	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	23	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	79	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	90	33-143

Project Name: HVRA
Project Number: 18.8090

Lab Number: L1931312

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	iated sample(s):	01 Batch:	WG1260590-2	2 WG1260590-3		
Bis(2-chloroethyl)ether	68		72		40-140	6	30
3,3'-Dichlorobenzidine	66		69		40-140	4	30
2,4-Dinitrotoluene	68		71		48-143	4	30
2,6-Dinitrotoluene	73		84		40-140	14	30
4-Chlorophenyl phenyl ether	68		73		40-140	7	30
4-Bromophenyl phenyl ether	75		80		40-140	6	30
Bis(2-chloroisopropyl)ether	89		91		40-140	2	30
Bis(2-chloroethoxy)methane	82		75		40-140	9	30
Hexachlorocyclopentadiene	57		65		40-140	13	30
Isophorone	78		80		40-140	3	30
Nitrobenzene	80		78		40-140	3	30
NDPA/DPA	74		75		40-140	1	30
n-Nitrosodi-n-propylamine	84		85		29-132	1	30
Bis(2-ethylhexyl)phthalate	68		81		40-140	17	30
Butyl benzyl phthalate	78		80		40-140	3	30
Di-n-butylphthalate	72		77		40-140	7	30
Di-n-octylphthalate	70		80		40-140	13	30
Diethyl phthalate	77		80		40-140	4	30
Dimethyl phthalate	77		86		40-140	11	30
Biphenyl	62		67		40-140	8	30
4-Chloroaniline	74		77		40-140	4	30
2-Nitroaniline	74		81		52-143	9	30
3-Nitroaniline	60		63		25-145	5	30

Project Name: HVRA
Project Number: 18.8090

Lab Number: L1931312

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PPD mits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s)	: 01 Batch:	WG1260590-2	2 WG1260590-3		
4-Nitroaniline	67		70		51-143	4	30
Dibenzofuran	67		69		40-140	3	30
1,2,4,5-Tetrachlorobenzene	58		66		2-134	13	30
Acetophenone	66		66		39-129	0	30
2,4,6-Trichlorophenol	74		82		30-130	10	30
p-Chloro-m-cresol	83		86		23-97	4	30
2-Chlorophenol	71		73		27-123	3	30
2,4-Dichlorophenol	71		76		30-130	7	30
2,4-Dimethylphenol	62		57		30-130	8	30
2-Nitrophenol	76		79		30-130	4	30
4-Nitrophenol	73		74		10-80	1	30
2,4-Dinitrophenol	70		70		20-130	0	30
4,6-Dinitro-o-cresol	81		87		20-164	7	30
Phenol	55		62		12-110	12	30
3-Methylphenol/4-Methylphenol	75		77		30-130	3	30
2,4,5-Trichlorophenol	72		85		30-130	17	30
Carbazole	78		83		55-144	6	30
Atrazine	110		120		40-140	9	30
Benzaldehyde	69		68		40-140	1	30
Caprolactam	56		51		10-130	9	30
2,3,4,6-Tetrachlorophenol	73		77		40-140	5	30

Project Name: HVRA

Project Number:

18.8090

Lab Number:

L1931312

Report Date:

07/31/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1260590-2 WG1260590-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	61	64	21-120
Phenol-d6	55	61	10-120
Nitrobenzene-d5	79	79	23-120
2-Fluorobiphenyl	71	77	15-120
2,4,6-Tribromophenol	73	77	10-120
4-Terphenyl-d14	83	83	41-149

Project Name: HVRA
Project Number: 18.8090

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab A	ssociated sam	ole(s): 01 Bat	ch: WG126	60602-2 WG1260	602-3	
Acenaphthene	81		83		40-140	2	40
2-Chloronaphthalene	78		80		40-140	3	40
Fluoranthene	83		92		40-140	10	40
Hexachlorobutadiene	59		60		40-140	2	40
Naphthalene	73		75		40-140	3	40
Benzo(a)anthracene	84		93		40-140	10	40
Benzo(a)pyrene	86		96		40-140	11	40
Benzo(b)fluoranthene	86		96		40-140	11	40
Benzo(k)fluoranthene	87		98		40-140	12	40
Chrysene	82		91		40-140	10	40
Acenaphthylene	81		85		40-140	5	40
Anthracene	84		92		40-140	9	40
Benzo(ghi)perylene	85		94		40-140	10	40
Fluorene	82		86		40-140	5	40
Phenanthrene	82		90		40-140	9	40
Dibenzo(a,h)anthracene	90		100		40-140	11	40
Indeno(1,2,3-cd)pyrene	90		98		40-140	9	40
Pyrene	83		92		40-140	10	40
2-Methylnaphthalene	77		78		40-140	1	40
Pentachlorophenol	88		101		40-140	14	40
Hexachlorobenzene	83		87		40-140	5	40
Hexachloroethane	63		66		40-140	5	40

Project Name: HVRA

18.8090

Project Number:

Lab Number:

L1931312

Report Date:

07/31/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1260602-2 WG1260602-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	60	64	21-120
Phenol-d6	50	54	10-120
Nitrobenzene-d5	83	85	23-120
2-Fluorobiphenyl	75	76	15-120
2,4,6-Tribromophenol	97	105	10-120
4-Terphenyl-d14	92	101	41-149

Project Name: HVRA
Project Number: 18.8090

Lab Number: L1931312

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated samp	le(s): 01	Batch: WG12631	77-2 WG	1263177-3		
1,4-Dioxane	110		108		40-140	2	30

Surrogate	LCS	LCSD	Acceptance
	%Recovery (Qual %Recovery	Qual Criteria
1,4-Dioxane-d8	35	34	15-110

Project Name: HVRA
Project Number: 18.8090

Lab Number: L1931312

Report Date: 07/31/19

arameter	LCS %Recovery	LCSD Qual %Recove		%Recovery Limits	RPD	RPD Qual Limits	s
erfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	04-06 Batch:	WG1265710-2	WG1265710-3		
Perfluorobutanoic Acid (PFBA)	111	108		67-148	3	30	
Perfluoropentanoic Acid (PFPeA)	112	108		63-161	4	30	
Perfluorobutanesulfonic Acid (PFBS)	100	98		65-157	2	30	
Perfluorohexanoic Acid (PFHxA)	123	119		69-168	3	30	
Perfluoroheptanoic Acid (PFHpA)	118	112		58-159	5	30	
Perfluorohexanesulfonic Acid (PFHxS)	85	82		69-177	4	30	
Perfluorooctanoic Acid (PFOA)	119	111		63-159	7	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	107	107		49-187	0	30	
Perfluoroheptanesulfonic Acid (PFHpS)	104	100		61-179	4	30	
Perfluorononanoic Acid (PFNA)	114	110		68-171	4	30	
Perfluorooctanesulfonic Acid (PFOS)	78	75		52-151	4	30	
Perfluorodecanoic Acid (PFDA)	118	116		63-171	2	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	110	92		56-173	18	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	99	102		60-166	3	30	
Perfluoroundecanoic Acid (PFUnA)	113	106		60-153	6	30	
Perfluorodecanesulfonic Acid (PFDS)	83	83		38-156	0	30	
Perfluorooctanesulfonamide (FOSA)	112	95		46-170	16	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	89	103		45-170	15	30	
Perfluorododecanoic Acid (PFDoA)	96	94		67-153	2	30	
Perfluorotridecanoic Acid (PFTrDA)	122	104		48-158	16	30	
Perfluorotetradecanoic Acid (PFTA)	111	104		59-182	7	30	

Project Name: HVRA

Lab Number:

L1931312

Project Number: 18.8090

Report Date:

07/31/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 04-06 Batch: WG1265710-2 WG1265710-3

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	103		108		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		105		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	81		92		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95		97		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	95		100		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	99		115		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	93		98		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85		100		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92		95		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85		98		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90		95		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	72		89		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	82		84		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90		94		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29		39		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80		70		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	88		92		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	103		98		33-143	

PCBS

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 **Report Date:** 07/31/19

SAMPLE RESULTS

 Lab ID:
 L1931312-01
 Date Collected:
 07/16/19 13:20

 Client ID:
 HVRA-AAG-PW01
 Date Received:
 07/16/19

Sample Location: AAG HANGAR Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 07/18/19 21:08
Analytical Date: 07/20/19 18:21 Cleanup Method: EPA 3665A

Analytical Date: 07/20/19 18:21 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 07/19/19

Cleanup Method: EPA 3660B Cleanup Date: 07/19/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Are also 4040	ND			0.000	0.024	4	^
Aroclor 1016	ND		ug/l	0.083	0.034	Į.	Α
Aroclor 1221	ND		ug/l	0.083	0.067	1	Α
Aroclor 1232	ND		ug/l	0.083	0.046	1	Α
Aroclor 1242	ND		ug/l	0.083	0.039	1	Α
Aroclor 1248	ND		ug/l	0.083	0.049	1	Α
Aroclor 1254	ND		ug/l	0.083	0.039	1	Α
Aroclor 1260	ND		ug/l	0.083	0.032	1	Α
Aroclor 1262	ND		ug/l	0.083	0.035	1	А
Aroclor 1268	ND		ug/l	0.083	0.034	1	Α
PCBs, Total	ND		ug/l	0.083	0.032	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	Α
Decachlorobiphenyl	102		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В
Decachlorobiphenyl	94		30-150	В

Project Name: HVRA Lab Number: L1931312

Project Number: 18.8090 Report Date: 07/31/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 07/19/19 14:54

Analyst: WR

Extraction Method: EPA 3510C
Extraction Date: 07/18/19 21:08
Cleanup Method: EPA 3665A
Cleanup Date: 07/19/19
Cleanup Date: EPA 3660B
Cleanup Date: 07/19/19

Parameter	Result	Qualifier	Units	R	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG126177	77-1
Aroclor 1016	ND		ug/l	0.0)83	0.034	А
Aroclor 1221	ND		ug/l	0.0)83	0.067	Α
Aroclor 1232	ND		ug/l	0.0)83	0.046	А
Aroclor 1242	ND		ug/l	0.0)83	0.039	А
Aroclor 1248	ND		ug/l	0.0	083	0.049	Α
Aroclor 1254	ND		ug/l	0.0)83	0.039	Α
Aroclor 1260	ND		ug/l	0.0)83	0.032	Α
Aroclor 1262	ND		ug/l	0.0	083	0.035	Α
Aroclor 1268	ND		ug/l	0.0	083	0.034	Α
PCBs, Total	ND		ug/l	0.0)83	0.032	Α

		Acceptano	ce
Surrogate	%Recovery Qualifi	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78	30-150	Α
Decachlorobiphenyl	95	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74	30-150	В
Decachlorobiphenyl	89	30-150	В

Project Name: HVRA Project Number:

18.8090

Lab Number: L1931312

Report Date:

07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associ	iated sample(s)	: 01 Batch:	WG1261777-2	2 WG1261777-3	3			
Aroclor 1016	28	Q	85		40-140	100	Q	50	Α
Aroclor 1260	26	Q	86		40-140	108	Q	50	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	24	Q	78		30-150	Α
Decachlorobiphenyl	31		100		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	24	Q	75		30-150	В
Decachlorobiphenyl	31		92		30-150	В

METALS

 Project Name:
 HVRA
 Lab Number:
 L1931312

 Project Number:
 18.8090
 Report Date:
 07/31/19

SAMPLE RESULTS

Lab ID:L1931312-01Date Collected:07/16/19 13:20Client ID:HVRA-AAG-PW01Date Received:07/16/19Sample Location:AAG HANGARField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	ND		mg/l	0.0100	0.00327	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Antimony, Total	0.00097	J	mg/l	0.00400	0.00042	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00022	J	mg/l	0.00050	0.00016	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Barium, Total	0.05878		mg/l	0.00050	0.00017	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Calcium, Total	102.		mg/l	0.100	0.0394	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Chromium, Total	0.00024	J	mg/l	0.00100	0.00017	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00039	J	mg/l	0.00050	0.00016	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Copper, Total	0.02239		mg/l	0.00100	0.00038	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Iron, Total	0.0299	J	mg/l	0.0700	0.0191	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Lead, Total	0.00238		mg/l	0.00100	0.00034	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Magnesium, Total	18.6		mg/l	0.0700	0.0242	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Manganese, Total	0.1805		mg/l	0.00100	0.00044	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/22/19 11:22	07/23/19 02:18	EPA 7470A	1,7470A	GD
Nickel, Total	0.00071	J	mg/l	0.00200	0.00055	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Potassium, Total	2.44		mg/l	0.100	0.0309	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Sodium, Total	157.		mg/l	0.100	0.0293	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM
Zinc, Total	0.00774	J	mg/l	0.01000	0.00341	1	07/20/19 11:10	07/22/19 20:17	EPA 3005A	1,6020B	AM

 Project Name:
 HVRA
 Lab Number:
 L1931312

 Project Number:
 18.8090
 Report Date:
 07/31/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for san	nple(s):	01 Batc	h: WG12	:62436-1					
Aluminum, Total	ND		mg/l	0.0100	0.00327	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Antimony, Total	0.00090	J	mg/l	0.00400	0.00042	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Barium, Total	ND		mg/l	0.00050	0.00017	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Calcium, Total	ND		mg/l	0.100	0.0394	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100	0.00017	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Iron, Total	0.0215	J	mg/l	0.0700	0.0191	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Magnesium, Total	ND		mg/l	0.0700	0.0242	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Manganese, Total	ND		mg/l	0.00100	0.00044	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Nickel, Total	ND		mg/l	0.00200	0.00055	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Potassium, Total	ND		mg/l	0.100	0.0309	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Sodium, Total	ND		mg/l	0.100	0.0293	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Thallium, Total	0.00028	J	mg/l	0.00050	0.00014	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	07/20/19 11:10	07/22/19 17:35	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s)	: 01 Batc	h: WG12	262816-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	9 1	07/22/19 11:22	07/23/19 01:25	5 1,7470A	GD

Project Name: HVRA Lab Number: L1931312 Project Number: 18.8090

Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: HVRA
Project Number: 18.8090

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample						
Aluminum, Total	106	-	80-120	-		
Antimony, Total	82	-	80-120	-		
Arsenic, Total	114	-	80-120	-		
Barium, Total	107	-	80-120	-		
Beryllium, Total	103	-	80-120	-		
Cadmium, Total	110	-	80-120	-		
Calcium, Total	113	-	80-120	-		
Chromium, Total	102	-	80-120	-		
Cobalt, Total	102	-	80-120	-		
Copper, Total	100	-	80-120	-		
Iron, Total	107	-	80-120	-		
Lead, Total	115	-	80-120	-		
Magnesium, Total	114	-	80-120	-		
Manganese, Total	102	-	80-120	-		
Nickel, Total	101	-	80-120	-		
Potassium, Total	113	-	80-120	-		
Selenium, Total	105	-	80-120	-		
Silver, Total	102	-	80-120	-		
Sodium, Total	104	-	80-120	-		
Thallium, Total	111	-	80-120	-		
Vanadium, Total	104	-	80-120	-		

Project Name: HVRA
Project Number: 18.8090

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Ass	sociated sample(s): 01 Batch: WG12	262436-2			
Zinc, Total	105	-	80-120	-	
Total Metals - Mansfield Lab Ass	sociated sample(s): 01 Batch: WG12	262816-2			
Mercury, Total	100	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HVRA **Project Number:** 18.8090

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG126243	86-3 W	G1262436-4	QC Sample	: L1931	311-02	Client ID:	MS Sample
Aluminum, Total	0.220	2	2.32	105		2.44	111		75-125	5	20
Antimony, Total	0.00098J	0.5	0.6594	132	Q	0.6382	128	Q	75-125	3	20
Arsenic, Total	0.00168	0.12	0.1306	107		0.1286	106		75-125	2	20
Barium, Total	0.06271	2	2.182	106		2.173	106		75-125	0	20
Beryllium, Total	ND	0.05	0.05055	101		0.05250	105		75-125	4	20
Cadmium, Total	ND	0.051	0.05754	113		0.05617	110		75-125	2	20
Calcium, Total	149.	10	154	50	Q	160	110		75-125	4	20
Chromium, Total	0.00065J	0.2	0.2011	100		0.2029	101		75-125	1	20
Cobalt, Total	0.01258	0.5	0.5162	101		0.5182	101		75-125	0	20
Copper, Total	0.00214	0.25	0.2467	98		0.2623	104		75-125	6	20
Iron, Total	1.73	1	2.87	114		2.96	123		75-125	3	20
Lead, Total	0.00090J	0.51	0.6560	129	Q	0.5707	112		75-125	14	20
Magnesium, Total	71.0	10	77.0	60	Q	80.1	91		75-125	4	20
Manganese, Total	2.978	0.5	3.239	52	Q	3.289	62	Q	75-125	2	20
Nickel, Total	0.04437	0.5	0.5478	101		0.5475	101		75-125	0	20
Potassium, Total	3.05	10	13.6	106		14.0	110		75-125	3	20
Selenium, Total	ND	0.12	0.126	105		0.141	118		75-125	11	20
Silver, Total	ND	0.05	0.05230	105		0.05168	103		75-125	1	20
Sodium, Total	10.1	10	20.0	99		20.4	103		75-125	2	20
Thallium, Total	ND	0.12	0.1486	124		0.1308	109		75-125	13	20
Vanadium, Total	ND	0.5	0.5205	104		0.5172	103		75-125	1	20

Matrix Spike Analysis Batch Quality Control

Project Name: HVRA **Project Number:** 18.8090

Lab Number:

L1931312

Report Date:

07/31/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recove Limits	•	RPD Limits
Total Metals - Mansfield Lab	o Associated sam	ole(s): 01	QC Batch I	D: WG1262436-3	WG1262436-4	QC Sample:	L1931311-02	Client ID:	MS Sample
Zinc, Total	0.01409	0.5	0.5370	104	0.6631	130	Q 75-125	21	Q 20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1262816-3	WG1262816-4	QC Sample:	L1931311-02	Client ID:	MS Sample
Mercury, Total	ND	0.005	0.00252	50	Q 0.00249	50	Q 75-125	1	20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: **HVRA** L1931312 Project Number: 18.8090

Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1931312-01 Date Collected: 07/16/19 13:20 Client ID: HVRA-AAG-PW01 Date Received: 07/16/19 Not Specified Sample Location: AAG HANGAR Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	07/18/19 11:45	07/18/19 15:13	1,9010C/9012E	B LH

Project Name: Lab Number: HVRA L1931312 Project Number: 18.8090

Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for samp	ole(s): 01	Batch:	: WG12	61461-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	07/18/19 11:45	07/18/19 14:56	1,9010C/9012	2B LH

L1931312

Lab Control Sample Analysis Batch Quality Control

Project Name: HVRA
Project Number: 18.8090

Lab Number:

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s)	: 01 B	atch: WG1261461	-2 WG12	61461-3				
Cyanide, Total	107		103		85-115	4		20	

Matrix Spike Analysis Batch Quality Control

Project Name: HVRA **Project Number:** 18.8090

Lab Number:

L1931312

Report Date:

07/31/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	/ Qual	Recovery Limits	RPD	RPD Qual Limits
General Chemistry - Westborou Sample	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126146	61-4 WG	1261461-5	QC Sam	ple: L19312	71-01	Client ID: MS
Cyanide, Total	ND	0.2	0.203	102		0.194	97		80-120	5	20

Lab Number: L1931312

Report Date: 07/31/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Number: 18.8090

Project Name:

Cooler Custody Seal

HVRA

A Absent A1 Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1931312-01A	Plastic 250ml HNO3 preserved	A	<2	<2	2.9	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1931312-01B	Plastic 250ml NaOH preserved	Α	>12	>12	2.9	Υ	Absent		TCN-9010(14)
L1931312-01C	Amber 120ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8082-LVI(7)
L1931312-01D	Amber 120ml unpreserved	Α	N/A	N/A	2.9	Υ	Absent		NYTCL-8082-LVI(7)
L1931312-01E	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1931312-01F	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1931312-01G	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1931312-01H	Amber 250ml unpreserved	Α	7	7	2.9	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1931312-02A	Plastic 250ml Trizma preserved	Α	NA		2.9	Υ	Absent		HOLD-537(14)
L1931312-03A	Plastic 250ml Trizma preserved	Α	NA		2.9	Υ	Absent		HOLD-537(14)
L1931312-03B	Plastic 250ml Trizma preserved	Α	NA		2.9	Υ	Absent		HOLD-537(14)
L1931312-04A	2 Plastic Trizma/1 Plastic/1 H20+Trizma	A1	NA		3.4	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1931312-04B	2 Plastic Trizma/1 Plastic/1 H20+Trizma	A1	NA		3.4	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1931312-05A	2 Plastic/1 Plastic/1 H20 Plastic	A1	NA		3.4	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1931312-06A	2 Plastic/1 Plastic/1 H20 Plastic	A1	NA		3.4	Υ	Absent		A2-NY-537-ISOTOPE(14)

Project Name: Lab Number: L1931312 HV/RA **Project Number: Report Date:** 18.8090 07/31/19

GLOSSARY

Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEF

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:HVRALab Number:L1931312Project Number:18.8090Report Date:07/31/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- $R \hspace{10mm}$ Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 HVRA
 Lab Number:
 L1931312

 Project Number:
 18.8090
 Report Date:
 07/31/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 13

Page 1 of 1

Published Date: 7/30/2019 3:17:52 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	5	Page	_		Date I	.ab	1	7	114	0/19	ALPHA Job# 2 1931	312
8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliverables Billing Information ☐ ASP-A						星 基基金		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		IVRA							1+1					110
			AG Hung	er				EQuis		ile)		EQui	S (4 File)	PO#	
Client Information		Project # 15, 80					- Consent	Other		- Tues		-			400
Client: CT Ma		(Use Project name as P	roject#)				The state of the s		SECTION SEC	remen				Disposal Site Informa	ion
	ymond Autice	Project Manager: 571	m M by	n Pa	vid L	ent		NYTO			P. Samuel	NY Pa		Please identify below loc	
	, NY 12603	ALPHAQuote #:						AWQ S	Standa	rds		NY CF	2-51	applicable disposal facilit	es.
Phone: 514-7	783-7400	Turn-Around Time		NEW PERSON				NY Re	stricted	Use		Other		Disposal Facility:	
Fax:		Standard	d 🗸	Due Date:				NY Un	restrict	ed Use	8			NJ I	1Y
Email:		Rush (only if pre approved	d) 🔲	# of Days				NYC S	ewer C	Dischar	ge			Other:	
These samples have b	peen previously analyze	ed by Alpha					ANAI	YSIS	· //				20.00	Sample Filtration	I
Other project specifi	c requirements/comm	nents:						0	- 22		890			Done	0
- 53//135	the same was process	d. lent @	ctmale.	com				P. SKEN	SVOCS	PCBs	th. 1s			Lab to do Preservation Lab to do	a I
Please specify Metals	s or TAL.							0		1	ME	>			В
			0.11		1 220 00		PFAS	4	1	~	78	5		(Please Specify belo	(w)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	(5154,030)	Sample Matrix	Sampler's Initials	P	1	756	76	TA	-		Sample Specific Comm	ants II
	11. 2.2	111 411	Date	Time		1011030005	-	_		800		-		Sample Specific Comm	ents e
31312-01	HURA -	AAG- ANOI	07/11/19	1320	Water	Lom	1	X	X	X	K	1			- 11 3
							_			-		-	\vdash		_
							-	_				0 0			
							_						\vdash		
									- 4	_					
									v = 5			, -b			
K NESS CONT															
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N			Cor	tainer Type	P	A	A	A	P	P		Please print clearly and completely. Sa	amples can
C = HNO ₃ D = H ₂ SO ₄	V = Vial G = Glass B = Bacteria Cup				F	reservative		A	A	A	C	E		not be logged in ar turnaround time clo	ock will not
E = NaOH F = MeOH	C = Cube	Relinquished	Byr	Date	/Time		Receiv	od By				Date	/Time	start until any ambi resolved, BY EXEC	
S = NaHSO ₄	O = Other E = Encore	(a) -	<i></i>	2/		CISac					7/1	- 4	E SERVICE	THIS COC, THE C	LIENT
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = Other	D = BOD Bottle	Grando	Hi	4/19			10	4	26		7/1	619	17:4	TO BE BOUND BY	ALPHA'S
Form No: 01-25 HC (rev. 3	0. Sept 2012)		400	() (e	23 23	411	10	20	1	1	125	प्रकार	27.7	(See reverse side.)	
je 56 of 57	- coperoroj		-			/			-	/				1	

_	NEW YORK	Service Centers			Page		San San San San		A STATE OF THE PARTY OF	THE RESIDENCE OF THE PARTY OF T	
ALPHA	CHAIN OF	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V			/ 01		Date R	ec'd	18/19	ALPHA Job#	
ALL THAT	CUSTODY	Tonawanda, NY 14150: 275 Co		5	-		in La	10	LOIL I	11931312	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	Co Milita	18 A		200 M	Deliverables	Marie I		Billing Information	
8 Walkup Dr. TEL 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: HV	RA	7.6			ASP-A		ASP-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: AA		e/		- 1	EQuIS	(1 File)	EQuIS (4 File)	PO#	
Client Information	STEP STATE	Project # 18.80				- 1	Other				
Client: C.T. Ma	10	(Use Project name as Pr				10	Regulatory R	equiremen	US SEE	Disposal Site Information	
			arida		W 10-	6	NY TOO	S	NY Part 375	Please identify below location of	
Address: 12 Ray	mond for	ALPHAQuote #:	2010 6	27/	- 4	- 7	AWQ S	andards	NY CP-51	applicable disposal facilities.	
Purglikeers		Turn-Around Time	10 Bridge	Acres 64	4000000	OF REAL PROPERTY.	NY Res	tricted Use	Other	Disposal Facility:	
Phone: 845 59	21166	Standard Standard	X	Due Date:	-		NY Unit	stricted Use		□ NJ □ NY	
Fax:	e Ctmole le		The second secon	# of Days:				wer Discharg	10	Other:	
			"	# OI Days.	-	-	ANALYSIS			Sample Filtration	
These samples have be		And the second s				-	AMALIGIO	1 1			
Other project specific	requirements/com	nents:			_	137				Lab to do	
		1	1 4	The second			im			Preservation	
Sond Peguli	to to dol	ente cyma	10000	m		-	MOM	- 1 1		Lab to do	
Please specify Metals	or TAL.						62	- 1 1		(Disease Consider haland	
							W.4			(Please Specify below)	
ALPHA Lab ID	S	ample ID	Colle	ection	Sample	Sampler's	24				
(Lab Use Only)		arripre re	Date	Time	Matrix	Initials	12			Sample Specific Comments	
131312 -4	HURA-A	AG-PW01	2/0/	4 10 cm	w	PL	X			100	
-5	FB Field	Blank	7/17/19	10:00	w	70	X				
-06	TATE OF	Blank	7/17/19	10:00	w	DC	X				
	1		1								
			17 17								
				17 5 1							
	-		11/				100				
		- 7	- 3								
Preservative Code:	Container Code	Westboro: Certification I	No: MAG35							Please print clearly, legibly	
A = None	P = Plastic	The state of the s			Cor	ntainer Type	P			and completely. Samples ca	
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification I	NO. INIAU 15				0			not be logged in and	
D = H ₂ SO ₄	G = Glass					Preservative	0			turnaround time clock will no	
E = NaOH	B = Bacteria Cup C = Cube			5.00			Descripted Pro		Date/Time	start until any ambiguities ar resolved. BY EXECUTING	
F = MeOH G = NaHSO ₄	O = Other	Relinquished	Ву:	Date/	177	- A - A - A	Received By:		7-12-19 170		
$H = Na_2S_2O_3$	E = Encore	W. Al	1/2	7/17/	19/106	-	ALL		11-1-	HAS READ AND AGREES	
K/E = Zn Ac/NaOH	n = ROD Rome	BOD Bottle 201 4-17-19 22 NAC 7/18/18					250	AC !	1/1/18 700	TO BE BOUND BY ALPHA	
O = Other						OM	11011010				
Form No: 01-25 HC (rev. 3	0-Sept-2013)	-ph		Alleia	0525	185-	= EV	1	7/18/1903:25	N.T.S.O.T.S.O.O.T. T103.W	

ANALYTICAL REPORT

Lab Number: L1932867

Client: C.T. Male Associates

12 Raymond Avenue Poughkeepsie, NY 12603

ATTN: David Lent
Phone: (845) 454-4400

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Report Date: 08/02/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

L1932867

08/02/19

07/24/19

Lab Number:

Report Date:

07/24/19 14:50

Project Name: HUDSON VALLEY REGIONAL AIRPORT

TRIP BLANK

WATER

Project Number: 18.8090

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1932867-01	OUTFALL-003-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 11:30	07/24/19
L1932867-02	OUTFALL-002-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 11:50	07/24/19
L1932867-03	OUTFALL-004-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 12:10	07/24/19
L1932867-04	OUTFALL-005-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 12:30	07/24/19
L1932867-05	OUTFALL-006-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 13:15	07/24/19
L1932867-06	OUTFALL-007-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 13:30	07/24/19
L1932867-07	FIRE POND-01-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 14:00	07/24/19
L1932867-08	FIRE POND-01-W	WATER	WAPPINGERS FALLS, NY	07/24/19 14:10	07/24/19
L1932867-09	FIRE POND-02-S	SOIL	WAPPINGERS FALLS, NY	07/24/19 14:25	07/24/19
L1932867-10	FIRE POND-02-W	WATER	WAPPINGERS FALLS, NY	07/24/19 14:35	07/24/19
L1932867-11	FIELD BLANK	WATER	WAPPINGERS FALLS, NY	07/24/19 14:45	07/24/19

WAPPINGERS FALLS, NY

L1932867-12

L1932867

Lab Number:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Report Date: 08/02/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.									

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1932867-05: The sample identified as "OUTFALL-006-S" on the chain of custody was identified as "no id's on label" on the container label. At the client's request, the sample is reported as "OUTFALL-006-S".

Perfluorinated Alkyl Acids by Isotope Dilution

L1932867-06 and -09: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

The WG1266495-4 MS recoveries, performed on L1932867-08, are outside the acceptance criteria for 1h,1h,2h,2h-perfluorooctanesulfonic acid (6:2fts) (24%) and perfluorooctanesulfonic acid (pfos) (29%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Galle Por Elizabeth Porta

Authorized Signature:

Title: Technical Director/Representative

Date: 08/02/19

ORGANICS

SEMIVOLATILES

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMPLE RESULTS

D / O II / I 0 07/04/40 44 00

Report Date:

 Lab ID:
 L1932867-01
 Date Collected:
 07/24/19 11:30

 Client ID:
 OUTFALL-003-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3570

Analytical Method: 1,8270D-SIM Extraction Date: 07/28/19 09:35
Analytical Date: 07/31/19 03:32

Analyst: PS Percent Solids: 71%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mans	field Lab					
1,4-Dioxane	ND		ug/kg	10.4	2.65	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			78		,	15-110

L1932867

07/24/19 11:30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

08/02/19

Report Date:

Lab Number:

Date Collected:

Lab ID: L1932867-01 Client ID: OUTFALL-003-S

Sample Location: WAPPINGERS FALLS, NY Date Received: 07/24/19

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 122,537(M) Analytical Date: 08/01/19 06:59

Analyst: JW 71% Percent Solids:

Extraction Method: EPA 537(M) **Extraction Date:** 07/30/19 14:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.033	J	ug/kg	1.25	0.028	1
Perfluoropentanoic Acid (PFPeA)	0.098	J	ug/kg	1.25	0.058	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.25	0.049	1
Perfluorohexanoic Acid (PFHxA)	0.083	J	ug/kg	1.25	0.066	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.25	0.057	1
Perfluorohexanesulfonic Acid (PFHxS)	1.86		ug/kg	1.25	0.076	1
Perfluorooctanoic Acid (PFOA)	0.085	J	ug/kg	1.25	0.053	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.25	0.225	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.25	0.171	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.25	0.094	1
Perfluorooctanesulfonic Acid (PFOS)	7.57		ug/kg	1.25	0.163	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.25	0.084	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.25	0.360	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.25	0.252	1
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.25	0.059	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.25	0.192	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.25	0.123	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.25	0.106	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.25	0.088	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.25	0.256	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.25	0.068	1
PFOA/PFOS, Total	7.66	J	ug/kg	1.25	0.053	1

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

Report Date: 08/02/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932867-01 07/24/19 11:30

Date Received: Client ID: 07/24/19 OUTFALL-003-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	90	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	88	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	89	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	63	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	91	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	65	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	59	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	83	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	59	26-160

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 11:50

Lab Number:

Report Date:

L1932867-02

Date Received: Client ID: 07/24/19 OUTFALL-002-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Lab ID:

Extraction Method: EPA 537(M) Matrix: Soil

Extraction Date: 07/30/19 14:00 Analytical Method: 122,537(M) Analytical Date: 08/01/19 07:15

Analyst: JW 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.035	J	ug/kg	1.14	0.026	1
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.14	0.053	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.14	0.045	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.14	0.060	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.14	0.052	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.14	0.069	1
Perfluorooctanoic Acid (PFOA)	0.109	J	ug/kg	1.14	0.048	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.14	0.205	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.14	0.156	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.14	0.086	1
Perfluorooctanesulfonic Acid (PFOS)	1.09	J	ug/kg	1.14	0.149	1
Perfluorodecanoic Acid (PFDA)	0.103	J	ug/kg	1.14	0.077	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.14	0.328	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.14	0.230	1
Perfluoroundecanoic Acid (PFUnA)	0.153	J	ug/kg	1.14	0.054	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.14	0.175	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.14	0.112	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.14	0.097	1
Perfluorododecanoic Acid (PFDoA)	0.225	J	ug/kg	1.14	0.080	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.14	0.234	1
Perfluorotetradecanoic Acid (PFTA)	0.137	J	ug/kg	1.14	0.062	1
PFOA/PFOS, Total	1.20	J	ug/kg	1.14	0.048	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 11:50

Report Date:

Lab ID: L1932867-02 Date Received: Client ID: 07/24/19 OUTFALL-002-S

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	88	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	85	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	92	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	75	26-160

08/02/19

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMPLE RESULTS

L1932867-02 D Date Collected: 07/24/19 11:50

Client ID: OUTFALL-002-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Extraction Method: EPA 3570

Analytical Method: 1,8270D-SIM Extraction Date: 07/28/19 09:35
Analytical Date: 07/31/19 03:59

Analyst: PS Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield La	b					
1,4-Dioxane	ND		ug/kg	93.4	23.8	10
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			74		,	15-110

L1932867

08/02/19

Lab Number:

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab ID: L1932867-03 Date Collected: 07/24/19 12:10

Client ID: OUTFALL-004-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 537(M)

Analytical Method: 122,537(M) Extraction Date: 07/30/19 14:00
Analytical Date: 08/01/19 07:49

Analyst: JW Percent Solids: 25%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.278	J	ug/kg	3.53	0.080	1
Perfluoropentanoic Acid (PFPeA)	0.201	J	ug/kg	3.53	0.162	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	3.53	0.138	1
Perfluorohexanoic Acid (PFHxA)	0.236	J	ug/kg	3.53	0.185	1
Perfluoroheptanoic Acid (PFHpA)	0.245	J	ug/kg	3.53	0.159	1
Perfluorohexanesulfonic Acid (PFHxS)	2.15	J	ug/kg	3.53	0.213	1
Perfluorooctanoic Acid (PFOA)	0.462	J	ug/kg	3.53	0.148	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	3.53	0.633	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	3.53	0.481	1
Perfluorononanoic Acid (PFNA)	0.455	J	ug/kg	3.53	0.264	1
Perfluorooctanesulfonic Acid (PFOS)	7.80		ug/kg	3.53	0.458	1
Perfluorodecanoic Acid (PFDA)	0.589	J	ug/kg	3.53	0.236	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	3.53	1.01	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	3.53	0.710	1
Perfluoroundecanoic Acid (PFUnA)	0.760	J	ug/kg	3.53	0.165	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	3.53	0.540	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	3.53	0.346	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	3.53	0.298	1
Perfluorododecanoic Acid (PFDoA)	0.557	J	ug/kg	3.53	0.247	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	3.53	0.721	1
Perfluorotetradecanoic Acid (PFTA)	0.335	J	ug/kg	3.53	0.190	1
PFOA/PFOS, Total	8.26	J	ug/kg	3.53	0.148	1

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMDI E DESIII T

Report Date: 08/02/19

SAMPLE RESULTS

Lab ID: L1932867-03 Date Collected: 07/24/19 12:10

Client ID: OUTFALL-004-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	74	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	79	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	73	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	73	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	77	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	76	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	63	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	73	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	76	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	60	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	79	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	8	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	55	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	72	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63	26-160

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: D L1932867-03 07/24/19 12:10 Date Received: Client ID: OUTFALL-004-S 07/24/19

WAPPINGERS FALLS, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3570 Matrix: Soil

Extraction Date: 07/28/19 09:35 Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 04:26

Analyst: PS 25% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield La	ab					
1,4-Dioxane	ND		ug/kg	127	32.3	4
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			75			15-110

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: L1932867-04 07/24/19 12:30

Date Received: Client ID: 07/24/19 OUTFALL-005-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537(M) Matrix: Soil

Extraction Date: 07/30/19 14:00 Analytical Method: 122,537(M) 08/01/19 08:05 Analytical Date:

Analyst: JW 68% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.653	J	ug/kg	1.34	0.030	1
Perfluoropentanoic Acid (PFPeA)	3.37		ug/kg	1.34	0.062	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.34	0.052	1
Perfluorohexanoic Acid (PFHxA)	1.52		ug/kg	1.34	0.070	1
Perfluoroheptanoic Acid (PFHpA)	1.09	J	ug/kg	1.34	0.060	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.34	0.081	1
Perfluorooctanoic Acid (PFOA)	0.637	J	ug/kg	1.34	0.056	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.51		ug/kg	1.34	0.240	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.34	0.183	1
Perfluorononanoic Acid (PFNA)	0.560	J	ug/kg	1.34	0.100	1
Perfluorooctanesulfonic Acid (PFOS)	1.84		ug/kg	1.34	0.174	1
Perfluorodecanoic Acid (PFDA)	0.253	J	ug/kg	1.34	0.090	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	1.86		ug/kg	1.34	0.384	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.34	0.270	1
Perfluoroundecanoic Acid (PFUnA)	0.405	J	ug/kg	1.34	0.063	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.34	0.205	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.34	0.131	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.34	0.113	1
Perfluorododecanoic Acid (PFDoA)	0.193	J	ug/kg	1.34	0.094	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.34	0.274	1
Perfluorotetradecanoic Acid (PFTA)	0.089	J	ug/kg	1.34	0.072	1
PFOA/PFOS, Total	2.48	J	ug/kg	1.34	0.056	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 12:30

Report Date:

Lab ID: L1932867-04 Date Received: Client ID: 07/24/19 OUTFALL-005-S

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	81	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	90	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	82	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	83	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	67	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	85	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	80	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	78	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	9	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	60	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	78	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	75	26-160

08/02/19

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMPLE RESULTS

DAMI LE RESOLTS

Lab ID: L1932867-04 D Date Collected: 07/24/19 12:30

Client ID: OUTFALL-005-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3570

Analytical Method: 1,8270D-SIM Extraction Date: 07/28/19 09:35
Analytical Date: 07/31/19 04:53

Analyst: PS Percent Solids: 68%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	ld Lab					
1,4-Dioxane	ND		ug/kg	42.6	10.9	4
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			69		,	15-110

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: L1932867-05 07/24/19 13:15

Date Received: Client ID: 07/24/19 OUTFALL-006-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537(M) Matrix: Soil

Extraction Date: 07/30/19 14:00 Analytical Method: 122,537(M) Analytical Date: 08/01/19 08:22

Analyst: JW 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.080	J	ug/kg	1.20	0.027	1
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.20	0.055	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.20	0.047	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.20	0.063	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.20	0.054	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.20	0.073	1
Perfluorooctanoic Acid (PFOA)	0.137	J	ug/kg	1.20	0.050	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.20	0.215	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.20	0.164	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.20	0.090	1
Perfluorooctanesulfonic Acid (PFOS)	0.360	J	ug/kg	1.20	0.156	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.20	0.080	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.20	0.344	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.20	0.242	1
Perfluoroundecanoic Acid (PFUnA)	0.056	J	ug/kg	1.20	0.056	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.20	0.184	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.20	0.118	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.20	0.101	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.20	0.084	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.20	0.245	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.20	0.065	1
PFOA/PFOS, Total	0.497	J	ug/kg	1.20	0.050	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 13:15

Report Date:

L1932867-05 Date Received: Client ID: 07/24/19 OUTFALL-006-S

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	80	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	89	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	77	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	89	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	71	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	79	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	89	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	84	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	2	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	63	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	60	26-160

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 13:15

Report Date:

Lab ID: D L1932867-05 Date Received: Client ID: OUTFALL-006-S 07/24/19

WAPPINGERS FALLS, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3570 Matrix: Soil

Extraction Date: 07/28/19 09:35 Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 05:20

Analyst: PS 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mar	nsfield Lab					
1,4-Dioxane	ND		ug/kg	33.7	8.59	4
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			70			15-110

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: L1932867-06 07/24/19 13:30

Date Received: Client ID: 07/24/19 OUTFALL-007-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537(M) Matrix: Soil

Extraction Date: 07/30/19 14:00 Analytical Method: 122,537(M) 08/01/19 08:38 Analytical Date:

Analyst: JW 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ug/kg	1.06	0.024	1
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.06	0.049	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.06	0.042	1
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.06	0.056	1
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.06	0.048	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.06	0.064	1
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	1.06	0.045	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.06	0.191	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.06	0.145	1
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.06	0.080	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.06	0.138	1
Perfluorodecanoic Acid (PFDA)	ND		ug/kg	1.06	0.071	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.06	0.305	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.06	0.214	1
Perfluoroundecanoic Acid (PFUnA)	ND		ug/kg	1.06	0.050	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.06	0.163	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.06	0.104	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.06	0.090	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.06	0.075	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.06	0.218	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.06	0.058	1
PFOA/PFOS, Total	ND		ug/kg	1.06	0.045	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 13:30

Report Date:

Lab ID: L1932867-06 Date Received: Client ID: 07/24/19 OUTFALL-007-S

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

erfluoro[13C4]Butanoic Acid (MPFBA) erfluoro[13C5]Pentanoic Acid (M5PFPEA)	69 78		60-153
, ,			
5 FO O A 4000/D 4 F F A 11 (440DEDO)			65-182
rfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		70-151
rfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	70		61-147
rfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72		62-149
rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	82		63-166
rfluoro[13C8]Octanoic Acid (M8PFOA)	74		62-152
I,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	58		32-182
rfluoro[13C9]Nonanoic Acid (M9PFNA)	78		61-154
rfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78		65-151
rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74		65-150
I,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	71		25-186
Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	53		45-137
rfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	79		64-158
rfluoro[13C8]Octanesulfonamide (M8FOSA)	0	Q	1-125
Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	52		42-136
rfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71		56-148
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	48		26-160

08/02/19

Report Date:

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

D Date Collected: L1932867-06 07/24/19 13:30

Lab ID: Date Received: Client ID: OUTFALL-007-S 07/24/19 Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3570 Matrix: Soil

Extraction Date: 07/28/19 09:35 Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 05:47

Analyst: PS 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,4 Dioxane by 8270D-SIM - Mansfi	eld Lab						
1,4-Dioxane	ND		ug/kg	32.2	8.20	4	
Surrogate			% Recovery	Qualifier		otance teria	
1 4-Dioxane-d8			73		1	5-110	

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:00

Lab Number:

Report Date:

Lab ID: L1932867-07 Date Received: Client ID: 07/24/19 FIRE POND-01-S

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537(M) Matrix: Soil

Extraction Date: 07/30/19 14:00 Analytical Method: 122,537(M) Analytical Date: 08/01/19 08:55

Analyst: JW 73% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.245	J	ug/kg	1.29	0.029	1
Perfluoropentanoic Acid (PFPeA)	0.422	J	ug/kg	1.29	0.059	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.29	0.050	1
Perfluorohexanoic Acid (PFHxA)	0.342	J	ug/kg	1.29	0.068	1
Perfluoroheptanoic Acid (PFHpA)	0.160	J	ug/kg	1.29	0.058	1
Perfluorohexanesulfonic Acid (PFHxS)	2.27		ug/kg	1.29	0.078	1
Perfluorooctanoic Acid (PFOA)	0.213	J	ug/kg	1.29	0.054	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.29	0.231	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.29	0.176	1
Perfluorononanoic Acid (PFNA)	0.147	J	ug/kg	1.29	0.097	1
Perfluorooctanesulfonic Acid (PFOS)	11.6		ug/kg	1.29	0.167	1
Perfluorodecanoic Acid (PFDA)	0.122	J	ug/kg	1.29	0.086	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.29	0.370	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.29	0.260	1
Perfluoroundecanoic Acid (PFUnA)	0.243	J	ug/kg	1.29	0.060	1
Perfluorodecanesulfonic Acid (PFDS)	0.345	J	ug/kg	1.29	0.197	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.29	0.126	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.29	0.109	1
Perfluorododecanoic Acid (PFDoA)	0.128	J	ug/kg	1.29	0.090	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.29	0.263	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.29	0.070	1
PFOA/PFOS, Total	11.8	J	ug/kg	1.29	0.054	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:00

Report Date:

Lab ID: L1932867-07

Date Received: Client ID: 07/24/19 FIRE POND-01-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	82	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	93	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	83	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	85	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	69	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	89	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	87	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	1	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	61	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	80	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62	26-160

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Lab ID: D Date Collected: 07/24/19 14:00 L1932867-07

Date Received: Client ID: FIRE POND-01-S 07/24/19 Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3570 Matrix: Soil

Extraction Date: 07/28/19 09:35 Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 06:13

Analyst: PS 73% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield La	ab					
1,4-Dioxane	ND		ug/kg	41.2	10.5	4
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			72		,	15-110

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/24/19 14:10 L1932867-08

Date Received: Client ID: 07/24/19 FIRE POND-01-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/26/19 18:55 Analytical Method: 1,8270D-SIM Analytical Date: 07/27/19 02:26

Analyst: MA

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mans	field Lab					
1,4-Dioxane	ND		ng/l	163	36.8	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			42			15-110

L1932867

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:10

Report Date:

Lab ID: L1932867-08 Date Received: Client ID: 07/24/19 FIRE POND-01-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 07/30/19 19:30 Analytical Method: 122,537(M) Analytical Date: 08/01/19 03:24

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	36.2		ng/l	1.82	0.372	1
Perfluoropentanoic Acid (PFPeA)	107		ng/l	1.82	0.361	1
Perfluorobutanesulfonic Acid (PFBS)	6.27		ng/l	1.82	0.217	1
Perfluorohexanoic Acid (PFHxA)	70.4		ng/l	1.82	0.299	1
Perfluoroheptanoic Acid (PFHpA)	24.4		ng/l	1.82	0.205	1
Perfluorohexanesulfonic Acid (PFHxS)	83.4		ng/l	1.82	0.343	1
Perfluorooctanoic Acid (PFOA)	26.1		ng/l	1.82	0.215	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	292		ng/l	1.82	1.22	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.70		ng/l	1.82	0.628	1
Perfluorononanoic Acid (PFNA)	4.46		ng/l	1.82	0.285	1
Perfluorooctanesulfonic Acid (PFOS)	214		ng/l	1.82	0.460	1
Perfluorodecanoic Acid (PFDA)	0.945	J	ng/l	1.82	0.277	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	6.36		ng/l	1.82	1.10	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.82	0.591	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.82	0.237	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.82	0.894	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.82	0.529	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.82	0.734	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.82	0.339	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.82	0.298	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.82	0.226	1
PFOA/PFOS, Total	240		ng/l	1.82	0.215	1

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMPLE RESULTS

Report Date: 08/02/19

Lab ID: L1932867-08 Date Collected: 07/24/19 14:10

Client ID: FIRE POND-01-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	79	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	82	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	69	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	92	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	77	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	150	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	92	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	50	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	73	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	31	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	46	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	64	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	68	33-143

L1932867

08/02/19

07/24/19 14:25

Not Specified

07/24/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1932867-09

Client ID: FIRE POND-02-S

Sample Location: WAPPINGERS FALLS, NY

Sample Depth:

Matrix: Soil

Analytical Method: 122,537(M) Analytical Date: 08/01/19 09:11

Analyst: JW 82% Percent Solids:

Extraction Method: EPA 537(M)

Extraction Date: 07/30/19 14:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.342	J	ug/kg	1.21	0.027	1
Perfluoropentanoic Acid (PFPeA)	0.737	J	ug/kg	1.21	0.056	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.21	0.047	1
Perfluorohexanoic Acid (PFHxA)	0.218	J	ug/kg	1.21	0.064	1
Perfluoroheptanoic Acid (PFHpA)	0.215	J	ug/kg	1.21	0.055	1
Perfluorohexanesulfonic Acid (PFHxS)	0.208	J	ug/kg	1.21	0.073	1
Perfluorooctanoic Acid (PFOA)	0.212	J	ug/kg	1.21	0.051	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.21	0.217	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.21	0.165	1
Perfluorononanoic Acid (PFNA)	0.206	J	ug/kg	1.21	0.091	1
Perfluorooctanesulfonic Acid (PFOS)	7.83		ug/kg	1.21	0.157	1
Perfluorodecanoic Acid (PFDA)	0.100	J	ug/kg	1.21	0.081	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ug/kg	1.21	0.347	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ug/kg	1.21	0.244	1
Perfluoroundecanoic Acid (PFUnA)	0.132	J	ug/kg	1.21	0.057	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.21	0.185	1
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.21	0.118	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ug/kg	1.21	0.102	1
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.21	0.085	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.21	0.247	1
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.21	0.065	1
PFOA/PFOS, Total	8.04	J	ug/kg	1.21	0.051	1

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932867-09 07/24/19 14:25

Date Received: Client ID: 07/24/19 FIRE POND-02-S Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

			Criteria	
erfluoro[13C4]Butanoic Acid (MPFBA)	61		60-153	
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	67		65-182	
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	73		70-151	
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	Q	61-147	
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	60	Q	62-149	
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	73		63-166	
erfluoro[13C8]Octanoic Acid (M8PFOA)	62		62-152	
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	50		32-182	
erfluoro[13C9]Nonanoic Acid (M9PFNA)	66		61-154	
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	66		65-151	
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	62	Q	65-150	
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	58		25-186	
-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	33	Q	45-137	
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	66		64-158	
erfluoro[13C8]Octanesulfonamide (M8FOSA)	1		1-125	
-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	30	Q	42-136	
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	59		56-148	
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	19	Q	26-160	

08/02/19

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090

SAMPLE RESULTS

Lab ID: L1932867-09 D Date Collected: 07/24/19 14:25

Client ID: FIRE POND-02-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3570

Analytical Method: 1,8270D-SIM Extraction Date: 07/28/19 09:35
Analytical Date: 07/31/19 06:39

Analyst: PS Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansf	ield Lab					
1,4-Dioxane	ND		ug/kg	34.5	8.81	4
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			68			15-110

L1932867

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:35

Report Date:

Lab ID: L1932867-10 Date Received: Client ID: 07/24/19 FIRE POND-02-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 07/30/19 19:30 Analytical Method: 122,537(M) Analytical Date: 08/01/19 03:40

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	35.1		ng/l	1.79	0.366	1
Perfluoropentanoic Acid (PFPeA)	99.6		ng/l	1.79	0.355	1
Perfluorobutanesulfonic Acid (PFBS)	6.39		ng/l	1.79	0.213	1
Perfluorohexanoic Acid (PFHxA)	65.2		ng/l	1.79	0.294	1
Perfluoroheptanoic Acid (PFHpA)	22.8		ng/l	1.79	0.202	1
Perfluorohexanesulfonic Acid (PFHxS)	78.0		ng/l	1.79	0.337	1
Perfluorooctanoic Acid (PFOA)	23.8		ng/l	1.79	0.211	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	226		ng/l	1.79	1.19	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.79		ng/l	1.79	0.616	1
Perfluorononanoic Acid (PFNA)	4.26		ng/l	1.79	0.280	1
Perfluorooctanesulfonic Acid (PFOS)	195		ng/l	1.79	0.452	1
Perfluorodecanoic Acid (PFDA)	1.03	J	ng/l	1.79	0.272	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	5.28		ng/l	1.79	1.09	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.79	0.581	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.79	0.233	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.79	0.878	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.79	0.520	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.79	0.720	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.79	0.333	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.79	0.293	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.79	0.222	1
PFOA/PFOS, Total	219		ng/l	1.79	0.211	1

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:35

Report Date:

Lab ID: L1932867-10 Date Received: Client ID: 07/24/19 FIRE POND-02-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	81	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	83	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	85	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	66	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	71	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	80	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	145	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	77	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	85	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	44	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	64	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	42	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	66	33-143

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Lab ID: D Date Collected: L1932867-10 07/24/19 14:35

Date Received: Client ID: 07/24/19 FIRE POND-02-W WAPPINGERS FALLS, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/26/19 18:55 Analytical Method: 1,8270D-SIM Analytical Date: 07/27/19 02:50

Analyst: MA

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab					
1,4-Dioxane	ND		ng/l	600	136.	4
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			45			15-110

L1932867

08/02/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:45

Report Date:

Lab ID: L1932867-11

Date Received: Client ID: 07/24/19 FIELD BLANK

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 07/30/19 19:30 Analytical Method: 122,537(M) Analytical Date: 08/01/19 04:13

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.08	0.425	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.08	0.412	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.08	0.248	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.08	0.342	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.08	0.234	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.08	0.392	1
Perfluorooctanoic Acid (PFOA)	1.24	J	ng/l	2.08	0.246	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.08	1.39	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.08	0.717	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.08	0.325	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.08	0.525	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.08	0.317	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.08	1.26	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.08	0.675	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.08	0.271	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.08	1.02	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.08	0.604	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.08	0.838	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.08	0.388	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.08	0.341	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.08	0.258	1
PFOA/PFOS, Total	1.24	J	ng/l	2.08	0.246	1

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932867-11 07/24/19 14:45

Date Received: Client ID: 07/24/19 FIELD BLANK Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	71	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	75	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	92	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	54	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	84	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	70	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	55	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	43	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	68	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	14	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	41	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	64	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	67	33-143

L1932867

08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/24/19 14:50

Lab Number:

Report Date:

Lab ID: L1932867-12 Date Received: Client ID: 07/24/19

TRIP BLANK Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 07/30/19 19:30 Analytical Method: 122,537(M) Analytical Date: 08/01/19 04:30

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.78	0.363	1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.78	0.352	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.78	0.212	1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.78	0.292	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.78	0.200	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.78	0.334	1	
Perfluorooctanoic Acid (PFOA)	0.886	J	ng/l	1.78	0.210	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.78	1.18	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.78	0.612	1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.78	0.278	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.78	0.448	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.78	0.270	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.78	1.08	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.78	0.576	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.78	0.231	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.78	0.872	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.78	0.516	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.78	0.715	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.78	0.331	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.78	0.291	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.78	0.221	1	
PFOA/PFOS, Total	0.886	J	ng/l	1.78	0.210	1	

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867

Project Number: Report Date: 18.8090 08/02/19

SAMPLE RESULTS

Date Collected: 07/24/19 14:50

Date Received: Client ID: 07/24/19 TRIP BLANK

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

L1932867-12

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	103	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	75	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	87	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	51	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	80	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	73	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	54	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	53	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	73	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	13	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	47	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	69	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78	33-143

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 **Report Date:** 08/02/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/27/19 00:49 Extraction Date: 07/26/19 18:55

Analyst: MA

Parameter	Result	Qualifier	Units	RL	MDL	
1,4 Dioxane by 8270D-SIM - Mansfi	eld Lab for	sample(s):	08,10	Batch: WG12	265196-1	
1,4-Dioxane	ND		ng/l	150	33.9	

		Acceptance
Surrogate	%Recovery Q	lualifier Criteria
1,4-Dioxane-d8	36	15-110

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 **Report Date:** 08/02/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3570
Analytical Date: 07/31/19 02:09 Extraction Date: 07/28/19 09:35

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
1,4 Dioxane by 8270D-SIM - Mansfi	eld Lab fo	r sample(s):	01-07,09	Batch:	WG1265516-1	
1,4-Dioxane	ND		ug/kg	8.00	2.04	

		Acceptance
Surrogate	%Recovery 0	Qualifier Criteria
		_
1,4-Dioxane-d8	77	15-110

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932867

Report Date: 08/02/19

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Analytical Date: 07/31/19 22:42

Analyst: JW

Extraction Method: EPA 537(M)
Extraction Date: 07/30/19 14:00

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope VG1266199-1	Dilution -	Mansfield	Lab for sa	ample(s):	01-07,09 Batch:	
Perfluorobutanoic Acid (PFBA)	0.098	J	ug/kg	1.00	0.023	
Perfluoropentanoic Acid (PFPeA)	ND		ug/kg	1.00	0.046	
Perfluorobutanesulfonic Acid (PFBS)	ND		ug/kg	1.00	0.039	
Perfluorohexanoic Acid (PFHxA)	ND		ug/kg	1.00	0.053	
Perfluoroheptanoic Acid (PFHpA)	ND		ug/kg	1.00	0.045	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ug/kg	1.00	0.061	
Perfluorooctanoic Acid (PFOA)	ND		ug/kg	1.00	0.042	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ug/kg	1.00	0.180	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ug/kg	1.00	0.136	
Perfluorononanoic Acid (PFNA)	ND		ug/kg	1.00	0.075	
Perfluorooctanesulfonic Acid (PFOS)	ND		ug/kg	1.00	0.130	
Perfluorodecanoic Acid (PFDA)	0.113	J	ug/kg	1.00	0.067	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	l ND		ug/kg	1.00	0.287	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	: ND		ug/kg	1.00	0.202	
Perfluoroundecanoic Acid (PFUnA)	0.048	J	ug/kg	1.00	0.047	
Perfluorodecanesulfonic Acid (PFDS)	ND		ug/kg	1.00	0.153	
Perfluorooctanesulfonamide (FOSA)	ND		ug/kg	1.00	0.098	
N-Ethyl Perfluorooctanesulfonamidoacetic (NEtFOSAA)	Acid ND		ug/kg	1.00	0.085	
Perfluorododecanoic Acid (PFDoA)	ND		ug/kg	1.00	0.070	
Perfluorotridecanoic Acid (PFTrDA)	ND		ug/kg	1.00	0.204	
Perfluorotetradecanoic Acid (PFTA)	ND		ug/kg	1.00	0.054	
PFOA/PFOS, Total	ND		ug/kg	1.00	0.042	

EPA 537(M)

07/30/19 14:00

Lab Number:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Report Date:

Project Number: 18.8090 08/02/19

> Method Blank Analysis **Batch Quality Control**

Analytical Method: 122,537(M) Extraction Method: 07/31/19 22:42 Analytical Date: **Extraction Date:**

Analyst: JW

> **Parameter** Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-07,09 WG1266199-1

Acceptance Criteria %Recovery Qualifier Surrogate (Extracted Internal Standard) Perfluoro[13C4]Butanoic Acid (MPFBA) 76 60-153 Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 83 65-182 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 88 70-151 Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 81 61-147 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 82 62-149 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 88 63-166 Perfluoro[13C8]Octanoic Acid (M8PFOA) 84 62-152 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 70 32-182 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 88 61-154 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 90 65-151 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 82 65-150 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 76 25-186 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-58 45-137 NMeFOSAA) Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 87 64-158 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 1 1-125 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 57 42-136 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 78 56-148 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 66 26-160

EPA 537

07/30/19 19:30

Lab Number:

Extraction Method:

Extraction Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Report Date: 08/02/19

Method Blank Analysis
Batch Quality Control

122,537(M)

08/01/19 05:03

Analyst: JW

Analytical Method:

Analytical Date:

Parameter Result Qualifier Units RL MDL Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 08,10-12 WG1266495-1 Perfluorobutanoic Acid (PFBA) ND 2.00 0.408 ng/l Perfluoropentanoic Acid (PFPeA) ND 0.396 ng/l 2.00 0.238 Perfluorobutanesulfonic Acid (PFBS) ND ng/l 2.00 ND 2.00 0.328 Perfluorohexanoic Acid (PFHxA) ng/l Perfluoroheptanoic Acid (PFHpA) ND ng/l 2.00 0.225 Perfluorohexanesulfonic Acid (PFHxS) ND 2.00 0.376 ng/l Perfluorooctanoic Acid (PFOA) 0.876 J 2.00 ng/l 0.236 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00 1.33 (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) ND 2.00 0.688 ng/l Perfluorononanoic Acid (PFNA) ND ng/l 2.00 0.312 Perfluorooctanesulfonic Acid (PFOS) ND 2.00 0.504 ng/l Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 0.304 1H.1H.2H.2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 1.21 (8:2FTS) N-Methyl Perfluorooctanesulfonamidoacetic ND 2.00 0.648 ng/l Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) ND 2.00 0.260 ng/l Perfluorodecanesulfonic Acid (PFDS) ND ng/l 2.00 0.980 Perfluorooctanesulfonamide (FOSA) ND ng/l 2.00 0.580 N-Ethyl Perfluorooctanesulfonamidoacetic Acid ND 0.804 ng/l 2.00 (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) ND 2.00 0.372 ng/l Perfluorotridecanoic Acid (PFTrDA) ND ng/l 2.00 0.327 Perfluorotetradecanoic Acid (PFTA) ND 2.00 0.248 ng/l PFOA/PFOS, Total 0.876 2.00 0.236 J ng/l

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number:

Project Number: 18.8090 **Report Date:** 08/02/19

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 08/01/19 05:03 Extraction Date: 07/30/19 19:30

Analyst: JW

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 08,10-12 Batch: WG1266495-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	95	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	93	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	96	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	64	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	101	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	94	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	85	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	80	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	98	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	45	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	66	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	87	33-143

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Lab Number:

L1932867

Report Date:

08/02/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated samp	le(s): 08,10	Batch: WG12	265196-2	WG1265196-3				
1,4-Dioxane	122		119		40-140	2		30	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery Qu	ual Criteria
1,4-Dioxane-d8	36	38	15-110

08/02/19

Lab Control Sample Analysis Batch Quality Control

HUDSON VALLEY REGIONAL AIRPORT

Lab Number: L1932867

Project Number: 18.8090

Project Name:

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated sample	(s): 01-07,09	Batch: W	G1265516-2	WG1265516-3			
1,4-Dioxane	108		108		40-140	0		30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery Qual	Criteria
1,4-Dioxane-d8	80	81	15-110

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932867

Report Date: 08/02/19

Parameter	LCS %Recovery	LCSE Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01-07,09 Batch:	WG1266199-2	WG1266199-	3
Perfluorobutanoic Acid (PFBA)	107	107		71-135	0	30
Perfluoropentanoic Acid (PFPeA)	107	107		69-132	0	30
Perfluorobutanesulfonic Acid (PFBS)	100	101		72-128	1	30
Perfluorohexanoic Acid (PFHxA)	115	114		70-132	1	30
Perfluoroheptanoic Acid (PFHpA)	103	104		71-131	1	30
Perfluorohexanesulfonic Acid (PFHxS)	112	112		67-130	0	30
Perfluorooctanoic Acid (PFOA)	107	107		69-133	0	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	103	120		64-140	15	30
Perfluoroheptanesulfonic Acid (PFHpS)	106	107		70-132	1	30
Perfluorononanoic Acid (PFNA)	111	111		72-129	0	30
Perfluorooctanesulfonic Acid (PFOS)	91	93		68-136	2	30
Perfluorodecanoic Acid (PFDA)	114	114		69-133	0	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	104	98		65-137	6	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	108	115		63-144	6	30
Perfluoroundecanoic Acid (PFUnA)	100	98		64-136	2	30
Perfluorodecanesulfonic Acid (PFDS)	111	110		59-134	1	30
Perfluorooctanesulfonamide (FOSA)	98	133		67-137	30	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	101	103		61-139	2	30
Perfluorododecanoic Acid (PFDoA)	108	104		69-135	4	30
Perfluorotridecanoic Acid (PFTrDA)	102	102		66-139	0	30
Perfluorotetradecanoic Acid (PFTA)	120	123		69-133	2	30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number:

L1932867

Project Number: 18.8090 Report Date:

08/02/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07,09 Batch: WG1266199-2 WG1266199-3

	LCS		LCSD		Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	73		77		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	81		84		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	91		87		70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76		80		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		82		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		86		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	82		85		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	76		67		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	85		87		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	94		88		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82		84		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	76		83		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67		68		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88		89		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	1		1		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	68		67		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	83		83		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	72		71		26-160	

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932867

Report Date: 08/02/19

rameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	08,10-12 Batch:	WG1266495-2	WG1266495-	-3
Perfluorobutanoic Acid (PFBA)	92	92		67-148	0	30
Perfluoropentanoic Acid (PFPeA)	98	96		63-161	2	30
Perfluorobutanesulfonic Acid (PFBS)	96	95		65-157	1	30
Perfluorohexanoic Acid (PFHxA)	103	102		69-168	1	30
Perfluoroheptanoic Acid (PFHpA)	93	93		58-159	0	30
Perfluorohexanesulfonic Acid (PFHxS)	100	97		69-177	3	30
Perfluorooctanoic Acid (PFOA)	99	95		63-159	4	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	90	96		49-187	6	30
Perfluoroheptanesulfonic Acid (PFHpS)	99	102		61-179	3	30
Perfluorononanoic Acid (PFNA)	100	99		68-171	1	30
Perfluorooctanesulfonic Acid (PFOS)	83	82		52-151	1	30
Perfluorodecanoic Acid (PFDA)	101	101		63-171	0	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	92	100		56-173	8	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	88	88		60-166	0	30
Perfluoroundecanoic Acid (PFUnA)	85	87		60-153	2	30
Perfluorodecanesulfonic Acid (PFDS)	92	94		38-156	2	30
Perfluorooctanesulfonamide (FOSA)	88	92		46-170	4	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	86	86		45-170	0	30
Perfluorododecanoic Acid (PFDoA)	90	92		67-153	2	30
Perfluorotridecanoic Acid (PFTrDA)	94	96		48-158	2	30
Perfluorotetradecanoic Acid (PFTA)	104	106		59-182	2	30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number:

L1932867

Project Number: 18.8090 Report Date:

08/02/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 08,10-12 Batch: WG1266495-2 WG1266495-3

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	88		89		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		105		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90		96		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84		86		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84		86		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		98		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		89		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	64		73		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86		93		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	88		92		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78		85		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	79		85		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	62		70		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		87		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	37		40		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	56		66		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	72		80		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78		81		33-143	

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932867

Report Date: 08/02/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is OUTFALL-003-S	sotope Dilution	- Mansfield	Lab Assoc	iated sample(s):	01-07,09	QC Bat	ch ID: WG1266	6199-4	QC Samp	le: L193	2867-01	Client ID:
Perfluorobutanoic Acid (PFBA)	0.033J	6.05	6.35	105		-	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	0.098J	6.05	6.61	109		-	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	6.05	5.98	99		-	-		72-128	-		30
Perfluorohexanoic Acid (PFHxA)	0.083J	6.05	7.14	118		-	-		70-132	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	6.05	6.43	106		-	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	1.86	6.05	8.64	112		-	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	0.085J	6.05	6.44	106		-	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	6.05	6.30	104		-	-		64-140	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	6.05	6.94	115		-	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	ND	6.05	6.90	114		-	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	7.57	6.05	13.1	91		-	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	ND	6.05	6.72	111		-	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	6.05	5.92	98		-	-		65-137	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	6.05	7.00	116		-	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	6.05	5.94	98		-	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	6.05	6.91	114		-	-		59-134	-		30
Perfluorooctanesulfonamide (FOSA)	ND	6.05	6.69	111		-	-		67-137	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	6.05	6.00	99		-	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	ND	6.05	6.43	106		-	-		69-135	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	6.05	6.14	101		-	-		66-139	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	6.05	7.23	120		-	-		69-133	-		30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932867

Report Date:

08/02/19

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	' Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07,09 QC Batch ID: WG1266199-4 QC Sample: L1932867-01 Client ID: OUTFALL-003-S

	MS	6	M	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	86				25-186	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77				32-182	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	59				42-136	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63				45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88				64-158	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	85				65-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	83				61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83				62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	91				63-166	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	81				56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	49				26-160	
Perfluoro[13C4]Butanoic Acid (MPFBA)	86				60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	91				65-182	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	36				1-125	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89				65-151	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	85				62-152	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86				61-154	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92				70-151	

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

 Lab Number:
 L1932867

 Report Date:
 08/02/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is FIRE POND-01-W	sotope Dilutio	on - Mansfield	Lab Assoc	iated sample(s):	08,10-12	QC Ba	tch ID: WG1266	6495-4	QC Samp	le: L193	2867-08	Client ID:
Perfluorobutanoic Acid (PFBA)	36.2	37.6	69.1	88		-	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	107	37.6	146	104		-	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	6.27	37.6	42.9	97		-	-		65-157	-		30
Perfluorohexanoic Acid (PFHxA)	70.4	37.6	110	105		-	-		69-168	-		30
Perfluoroheptanoic Acid (PFHpA)	24.4	37.6	60.4	96		-	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	83.4	37.6	126	113		-	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	26.1	37.6	62.2	96		-	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	292	37.6	301	24	Q	-	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	2.70	37.6	39.4	98		-	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	4.46	37.6	42.2	100		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	214	37.6	225	29	Q	-	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	0.945J	37.6	40.4	107		-	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	6.36	37.6	40.7	91		-	-		56-173	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	37.6	34.1	91		-	-		60-166	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	37.6	32.3	86		-	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	37.6	30.8	82		-	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	ND	37.6	33.8	90		-	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	37.6	32.1	85		-	-		45-170	-		30
Perfluorododecanoic Acid (PFDoA)	ND	37.6	32.6	87		-	-		67-153	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	37.6	35.2	94		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	37.6	39.0	104		-	-		59-182	-		30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932867

Report Date:

08/02/19

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	' Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 08,10-12 QC Batch ID: WG1266495-4 QC Sample: L1932867-08 Client ID: FIRE POND-01-W

	MS	S	M:	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	88				7-170
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	147				1-244
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	47				23-146
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	52				1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	71				40-144
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	71				38-144
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	63				21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	67				30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	84				47-153
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65				24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	68				33-143
Perfluoro[13C4]Butanoic Acid (MPFBA)	79				2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	81				16-173
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	28				1-87
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	83				42-146
Perfluoro[13C8]Octanoic Acid (M8PFOA)	77				36-149
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	79				34-146
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87				31-159

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

th Quality Control

Lab Number: L1932867

Report Date: 08/02/19

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - Mans Client ID: OUTFALL-002-S	sfield Lab Associated sa	ample(s): 01-07,09	QC Batch ID:	WG1266199-5	QC Sample: L1932867-02
Perfluorobutanoic Acid (PFBA)	0.035J	0.045J	ug/kg	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ug/kg	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ug/kg	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ug/kg	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ug/kg	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ug/kg	NC	30
Perfluorooctanoic Acid (PFOA)	0.109J	0.077J	ug/kg	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ug/kg	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ug/kg	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ug/kg	NC	30
Perfluorooctanesulfonic Acid (PFOS)	1.09J	0.828J	ug/kg	NC	30
Perfluorodecanoic Acid (PFDA)	0.103J	0.085J	ug/kg	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ug/kg	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ug/kg	NC	30
Perfluoroundecanoic Acid (PFUnA)	0.153J	0.148J	ug/kg	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ug/kg	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ug/kg	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ug/kg	NC	30
Perfluorododecanoic Acid (PFDoA)	0.225J	0.204J	ug/kg	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ug/kg	NC	30

08/02/19

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: Report Date:

RPD Native Sample Duplicate Sample RPD Parameter Units Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07,09 QC Batch ID: WG1266199-5 QC Sample: L1932867-02 Client ID: OUTFALL-002-S

Perfluorotetradecanoic Acid (PFTA)	0.137J	0.136J	ug/kg	NC	30
PFOA/PFOS, Total	1.20J	0.905J	ug/kg	NC	30

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	88	83	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	94	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92	88	70-151
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84	80	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85	79	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96	85	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87	83	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68	67	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94	85	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95	92	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90	79	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	85	76	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68	67	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	92	86	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29	2	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64	55	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89	79	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	75	64	26-160

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932867
Report Date: 08/02/19

Parameter	Native Sample	Duplicate Sampl	e Units	RPD		RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution - Mans Client ID: FIRE POND-02-W	sfield Lab Associated s	ample(s): 08,10-12	QC Batch ID: WG ²	1266495-5	QC Sample:	L1932867-10
Perfluorobutanoic Acid (PFBA)	35.1	33.8	ng/l	4		30
Perfluoropentanoic Acid (PFPeA)	99.6	94.1	ng/l	6		30
Perfluorobutanesulfonic Acid (PFBS)	6.39	5.91	ng/l	8		30
Perfluorohexanoic Acid (PFHxA)	65.2	61.7	ng/l	6		30
Perfluoroheptanoic Acid (PFHpA)	22.8	21.3	ng/l	7		30
Perfluorohexanesulfonic Acid (PFHxS)	78.0	74.5	ng/l	5		30
Perfluorooctanoic Acid (PFOA)	23.8	26.8	ng/l	12		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	226	211	ng/l	7		30
Perfluoroheptanesulfonic Acid (PFHpS)	1.79	2.04	ng/l	13		30
Perfluorononanoic Acid (PFNA)	4.26	3.77	ng/l	12		30
Perfluorooctanesulfonic Acid (PFOS)	195	185	ng/l	5		30
Perfluorodecanoic Acid (PFDA)	1.03J	1.00J	ng/l	NC		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	5.28	4.97	ng/l	6		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC		30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC		30

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Batch Quality Control

Lab Number: L1932867

Report Date: 08/02/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - Mansf Client ID: FIRE POND-02-W	field Lab Associated s	sample(s): 08,10-12 QC	Batch ID: WO	61266495-5	QC Sample: L1932867-1	0
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30	
PFOA/PFOS, Total	219	212	ng/l	0	30	

Surrogate (Extracted Internal Standard)	0/ D 000/07/	Ouglifier	9/ D agayany	Ouglifier	Acceptance Criteria	
Surrogate (Extracted internal Standard)	%Recovery	Quaimer	%Recovery	Qualifier	Cilleria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	81		85		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	83		88		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	85		89		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	66		69		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	71		75		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		94		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	80		81		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	145		154		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		84		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	77		79		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66		68		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	85		82		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	44		46		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	64		63		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25		23		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	42		42		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60		62		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	66		67		33-143	

INORGANICS & MISCELLANEOUS

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-01
 Date Collected:
 07/24/19 11:30

 Client ID:
 OUTFALL-003-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - I	Mansfield Lab									
Solids, Total	71.1		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-02
 Date Collected:
 07/24/19 11:50

 Client ID:
 OUTFALL-002-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	82.3		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-03
 Date Collected:
 07/24/19 12:10

 Client ID:
 OUTFALL-004-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Man	sfield Lab									
Solids, Total	24.5		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-04
 Date Collected:
 07/24/19 12:30

 Client ID:
 OUTFALL-005-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - I	Mansfield Lab									
Solids, Total	68.2		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

Lab ID: L1932867-05 Date Collected: 07/24/19 13:15

Client ID: OUTFALL-006-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - I	Mansfield Lab									
Solids, Total	80.1		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-06
 Date Collected:
 07/24/19 13:30

 Client ID:
 OUTFALL-007-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	87.6		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

 Lab ID:
 L1932867-07
 Date Collected:
 07/24/19 14:00

 Client ID:
 FIRE POND-01-S
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	72.9		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932867

Project Number: 18.8090 Report Date: 08/02/19

SAMPLE RESULTS

Lab ID: L1932867-09 Date Collected: 07/24/19 14:25

Client ID: FIRE POND-02-S Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - N	Mansfield Lab									
Solids, Total	82.3		%	0.100	0.100	1	-	07/26/19 01:15	121,2540G	CC

Lab Duplicate Analysis

Batch Quality Control

Lab Number: L1932867

08/02/19 Project Number: 18.8090 Report Date:

Parameter	Native Sam	nple D	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Mansfield Lab Asse	ociated sample(s): 01-07,09	QC Batch ID:	WG1264732-1	QC Sample:	L1932616-01	Client ID:	DUP Sample
Solids, Total	77.5		77.1	%	1		10

Project Name:

HUDSON VALLEY REGIONAL AIRPORT

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932867
Report Date: 08/02/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1932867-01A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-01B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-01C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-02A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-02B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-02C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-03A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-03B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-03C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-04A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-04B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-04C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-05A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-05B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-05C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-06A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-06B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-06C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-07A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
L1932867-07B	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
L1932867-07C	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L1932867-08A	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1932867-08A1	Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)

Lab Number: L1932867

Report Date: 08/02/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Container Information			Final	Temp			Frozen	
Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
Plastic 250ml Trizma preserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
Plastic 250ml Trizma preserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
Glass 60mL/2oz unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(14)
Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(28)
Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
Amber 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
Plastic 250ml Trizma preserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
Plastic 250ml Trizma preserved	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
2 Plastic/1 Plastic/1 H20 Plastic	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
2 Plastic/1 Plastic/1 H20 Plastic	Α	NA		3.8	Υ	Absent		A2-NY-537-ISOTOPE(14)
	Container Type Plastic 250ml Trizma preserved Plastic 250ml Trizma preserved Glass 60mL/2oz unpreserved Plastic 8oz unpreserved Plastic 2oz unpreserved for TS Amber 250ml unpreserved Amber 250ml unpreserved Plastic 250ml Trizma preserved Plastic 250ml Trizma preserved 2 Plastic/1 Plastic/1 H20 Plastic	Container Type Cooler Plastic 250ml Trizma preserved A Plastic 250ml Trizma preserved A Glass 60mL/2oz unpreserved A Plastic 8oz unpreserved A Plastic 2oz unpreserved for TS A Amber 250ml unpreserved A Plastic 250ml Trizma preserved A Plastic 190ml Trizma preserved A Plastic 250ml Trizma preserved A Plastic 191ml Trizma preserved A	Container Type Plastic 250ml Trizma preserved A NA Plastic 250ml Trizma preserved A NA Glass 60mL/2oz unpreserved A NA Plastic 8oz unpreserved A NA Plastic 2oz unpreserved A NA Amber 250ml unpreserved A NA Plastic 250ml Trizma preserved A NA Amber 250ml unpreserved A NA Plastic 250ml Trizma preserved A NA	Container Type Cooler PH Plastic 250ml Trizma preserved A NA Plastic 250ml Trizma preserved A NA Glass 60mL/2oz unpreserved A NA Plastic 8oz unpreserved A NA Plastic 2oz unpreserved A NA Amber 250ml unpreserved A NA Plastic 250ml Trizma preserved A NA	Container Type Cooler PH PH remp Plastic 250ml Trizma preserved A NA 3.8 Plastic 250ml Trizma preserved A NA 3.8 Glass 60mL/2oz unpreserved A NA 3.8 Plastic 8oz unpreserved A NA 3.8 Plastic 2oz unpreserved for TS A NA 3.8 Amber 250ml unpreserved A NA 3.8 Plastic 250ml Trizma preserved A NA 3.8 Plastic 250ml Trizma preserved A NA 3.8 Plastic 250ml Trizma preserved A NA 3.8 2 Plastic/1 Plastic/1 H20 Plastic A NA 3.8	Container Type Cooler pH remp deg C Pres Plastic 250ml Trizma preserved A NA 3.8 Y Plastic 250ml Trizma preserved A NA 3.8 Y Glass 60mL/2oz unpreserved A NA 3.8 Y Plastic 8oz unpreserved A NA 3.8 Y Plastic 2oz unpreserved for TS A NA 3.8 Y Amber 250ml unpreserved A NA 3.8 Y Plastic 250ml Trizma preserved A NA 3.8 Y Plastic 250ml Trizma preserved A NA 3.8 Y 2 Plastic/1 Plastic/1 H20 Plastic A NA 3.8 Y	Container Type Cooler PH PH deg C Pres Seal Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Glass 60mL/2oz unpreserved A NA 3.8 Y Absent Plastic 8oz unpreserved A NA 3.8 Y Absent Plastic 2oz unpreserved A NA 3.8 Y Absent Plastic 2oz unpreserved A NA 3.8 Y Absent Amber 250ml unpreserved A NA 3.8 Y Absent Amber 250ml unpreserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent	Container Type Cooler pH pH deg C Pres Seal Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Glass 60mL/2oz unpreserved A NA 3.8 Y Absent Plastic 8oz unpreserved A NA 3.8 Y Absent Plastic 2oz unpreserved A NA 3.8 Y Absent Plastic 2oz unpreserved for TS A NA 3.8 Y Absent Amber 250ml unpreserved A NA 3.8 Y Absent Amber 250ml unpreserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent Plastic 250ml Trizma preserved A NA 3.8 Y Absent 2 Plastic/1 Plastic/1 H20 Plastic A NA 3.8 Y Absent

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932867 **Project Number: Report Date:** 18.8090 08/02/19

GLOSSARY

Acronyms

EDL

EMPC

LCSD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEF

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:HUDSON VALLEY REGIONAL AIRPORTLab Number:L1932867Project Number:18.8090Report Date:08/02/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:HUDSON VALLEY REGIONAL AIRPORTLab Number:L1932867Project Number:18.8090Report Date:08/02/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:08021917:57

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 13 Published Date: 7/30/2019 3:17:52 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Wh Albany, NY 12205: 14 Wall Tonawanda, NY 14150: 27 Project Information	ker Way 5 Cooper Ave, Suite 10	05	Page	-	Deli	Date	Lab	d T	1251	19		ALPHA Job # L193267 Billing Information	1
8 Walkup Dr. TEL: 568-898-9220	320 Forbes Blvd TEL 508-822-9300			Acris a-1	Alcoret			ASP			X A	SP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: H_; Project Location: V	N. Animeres	Fells	NY		1		IS (1 F	File)	7	QuIS (4	File)	PO#	
Client Information	W 4255	Project # 18.50		1-11-1	. V. /		1	Othe		Chall		780000-1801	30.03(7)#1.1		
The second secon	le Associates	(Use Project name a				5	Regi	ulatory	Requ	iiremer	nt	1000	800	Disposal Site Information	
	mond Avenue	Project Manager:	Dave Le	nt		-		NYT	ogs	No.	□ N	Y Part 37	5	Please identify below location of	of
PorghKespsic		ALPHAQuote #:	75.	300				AWQ	Standa	ards	□ N	Y CP-51		applicable disposal facilities.	
	54-4400	Turn-Around Time		0		CHI S		NYR	estricte	d Use		ther		Disposal Facility:	
Fax:	1000	Stand	dard 🔀	Due Date				NYU	nrestric	ted Use	8			NJ NY	
Email: d. lente	ctmale. com	Rush (only if pre appro	oved)	# of Days				NYC:	Sewer	Dischar	ge			Other:	
These samples have b	een previously analyz	ed by Alpha	5.55				ANA	LYSIS	3					Sample Filtration	
Other project specific	results to	d. lent @ c+	male . 10r	n			PF#s	1,4 dioxano	Total So	PFAS				Done Lab to do Preservation Lab to do	o t a l B
ALPHA Lab ID		ample ID	Colle	ection	Sample	Sampler's		(47)	1.65					(Please Specify below)	t
(Lab Use Only)	58	ample to	Date	Time	Matrix	Initials		1000						Sample Specific Comments	B
9 32867.01	Outfall -	003 - 5	07/24	1130	Soil	DO	X	X	X						3
- 07	Outfall -	002-5	07/24	1150	Soil	BM	X	X	X			K			3
103	Outfull -	004-5	07/24	1210	Soil	Om	X	x	X						3
-04	Out fell -	025 -5	0//24	1230	50.1	bon	X	X	X						3
-05	Outfall-	026 -5	07/24	13/5	Soil	Um	X	×	X						3
-06	Oct fall - 6	07 -5	07/24	1330	50:1	DI	X	X	X					1	3
-07	FirePord -	01-5	07/24	1400	50:1	BM	X	X	x						3
-40	Fire Pond -	01 -W	09/24	1410	wite	MIN		X		X			_		4
-09	Fire Pand-	-02-5	07/24	1400	501	001	X	X	X						3
Preservative Code:	The second secon	-02 - W	07/34	1435	Work	19m	_	X		X	_	_	_		4
A = None B ≈ HCI	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup Westboro: Certification No: MA935 Container Ty Mansfield: Certification No: MA015 Preservati		tainer Type	P	A	P	P				Please print clearly, legibly and completely. Samples ca				
C = HNO ₃ D = H ₂ SO ₄ E = NaOH			reservative	AAAO		0				not be logged in and turnaround time clock will start until any ambiguities					
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished By: Date/Time			Recei	ved By		_	D	ate/Time		resolved, BY EXECUTIN	IG		
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Bon Wage	m	7/24/19 1900 July		VOD AAL 7/24/19 1			1611	THAS READ AND AGREES					
Form No: 01-25 HC (rev. 3	0-Sept-2013)	Man		7/45/15 1	7.5	2	12		=		7/2	5/19 17	:19	(See reverse side.)	U.

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (r Way	05	Page		D	ate Rec'd in Lab	7/25/	19	ALPHA JOBS 328	67
Westborough, MA 01581 8 Walkup Dr. TEL 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Location:	Jun Vall Vappinger	lex Reys	ind A	ifort		SP-A	-	ASP-B EQuIS (4 File)	Billing Information Same as Client Info	
Client Information	In Ann to	Project # 18.80	Present Present			- 1	-	tory Require	ment	1000	Disposal Site Information	
Phone: 845-45 Fax: Email: J. /cnd	NY 12603	(Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time Standa Rush (only if pre approv	Dave ard 🔀	Leof Due Date: # of Days:				Y TOGS WQ Standard Y Restricted Y Unrestricte YC Sewer Di	us De Co	NY Part 375 NY CP-51 Other	Please identify below location applicable disposal facilities. Disposal Facility: NJ NY Other:	of
These samples have b	All Completes and the second	red by Alpha					ANALY	'SIS	<u></u>		Sample Filtration	T
Other project specific requirements/comm		ments: L+innle.com v	with re-	solls			pras				Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID (Lab Use Only)	S	ample ID	Coll	ection Time	Sample Matrix	Sampler's Initials					Sample Specific Comments	t i e
-11	Fiel	J Black	7/24	1445	W	NM	×					7
-12	Te		7/24	1450	W	1517	X)
		40										
	73.7				- 8							
					111							\perp
	135		-				\vdash	-	+			+
	100					- 6						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass P = Posterio Com	Westboro: Certification Mansfield: Certification			1,450	tainer Type Preservative	P				Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w	es can
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquishe David To	nn	07/2 7/34/10 7/24/15	1900	Man &	25	By:	- 7/25 - 7/29	19 0100	TERMS & CONDITION:	NG IT EES PHA'S

ANALYTICAL REPORT

Lab Number: L1932869

Client: C.T. Male Associates

12 Raymond Avenue Poughkeepsie, NY 12603

ATTN: David Lent
Phone: (845) 454-4400

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Report Date: 08/07/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932869

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1932869-01	OUTFALL-007-W	WATER	WAPPINGERS FALLS, NY	07/23/19 14:00	07/24/19
L1932869-02	OUTFALL-006-W	WATER	WAPPINGERS FALLS, NY	07/23/19 14:15	07/24/19
L1932869-03	OUTFALL-003-W	WATER	WAPPINGERS FALLS, NY	07/23/19 14:30	07/24/19
L1932869-04	FIELD BLANK	WATER	WAPPINGERS FALLS, NY	07/23/19 14:40	07/24/19
L1932869-05	OUTFALL-002-W	WATER	WAPPINGERS FALLS, NY	07/23/19 15:00	07/24/19
L1932869-06	OUTFALL-004-W	WATER	WAPPINGERS FALLS, NY	07/23/19 15:10	07/24/19
L1932869-07	OUTFALL-005-W	WATER	WAPPINGERS FALLS, NY	07/23/19 15:20	07/24/19
L1932869-08	OUTFALL-001-W	WATER	WAPPINGERS FALLS, NY	07/23/19 15:45	07/24/19
L1932869-09	TRIP BLANK	WATER	WAPPINGERS FALLS, NY	07/23/19 16:00	07/24/19

Project Name:HUDSON VALLEY REGIONAL AIRPORTLab Number:L1932869Project Number:18.8090Report Date:08/07/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Case Narrative (continued)

Report Submission

August 07, 2019: This final report includes the results of all requested analyses.

August 01, 2019: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1932869-09: The Trip Blank has a result for acetone present above the reporting limit. The sample vial was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

Perfluorinated Alkyl Acids by Isotope Dilution

L1932869-06: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

The WG1268635-2/-3 LCS/LCSD RPDs, associated with L1932869-01 through -08, are above the acceptance criteria for perfluoroheptanesulfonic acid (pfhps) (39%), perfluorooctanesulfonic acid (pfos) (38%), and perfluorodecanesulfonic acid (pfds) (33%).

WG1268999-1: The continuing calibration standard had the response for Perfluorooctanesulfonamide (FOSA) outside the acceptance criteria for the method. This value represents less than 10% of all compounds; therefore, the calibration was accepted.

WG1268999-5: The continuing calibration standard had the response for Perfluoroctanesulfonic Acid-Branched (br-PFOS) outside of acceptance criteria. The response for Perfluoroctanesulfonic Acid (PFOS) was within acceptance criteria; therefore, no further action was taken.

WG1268999-5: The continuing calibration standard had the response for 1H,1H,2H,2H-

Perfluorodecanesulfonic Acid (8:2FTS) above the acceptance criteria for the method. The associated samples were non-detect; therefore, no further action was taken.

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Case Narrative (continued)

Total Metals

The WG1264989-3 MS recovery, performed on L1932869-08, is outside the acceptance criteria for potassium (130%). A post digestion spike was performed and yielded an unacceptable recovery of 127%. The serial dilution recovery was not applicable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1264989-3 MS recovery for sodium (167%), performed on L1932869-08, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/07/19

600, Jew Word Kelly Stenstrom

ORGANICS

VOLATILES

L1932869

Not Specified

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Report Date: 08/07/19

Lab Number:

Lab ID: L1932869-08

Client ID: OUTFALL-001-W

Sample Location: WAPPINGERS FALLS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/29/19 21:56

Analyst: PD Date Collected: 07/23/19 15:45

Date Received: 07/24/19 Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - We	/olatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Trichloroethene	ND		ug/l	0.50	0.18	1				
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1				

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

L1932869-08

SAMPLE RESULTS

Date Collected: 07/23/19 15:45

Report Date:

Client ID: Date Received: 07/24/19 OUTFALL-001-W

WAPPINGERS FALLS, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	7.5		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	87	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	115	70-130	

L1932869

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1932869-09 Date Collected: 07/23/19 16:00

Client ID: TRIP BLANK Date Received: 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/29/19 22:22

Analyst: PD

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane	Volatile Organics by GC/MS - Westk	oorough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1-Chlorobenzene ND ug/l 0.50 0.18 1 1-Chlorobenzene ND ug/l 0.50 0.18 1 1-Chlorobenzene ND ug/l 0.50 0.13 1 1-1,1-Trichloroethane ND ug/l 0.50 0.13 1 1-1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromoform ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofutoromethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 1,1,1,2-Trichloroethane ND ug/l 0.50 0.16 1 1,1,1,2-Trichloroethane ND ug/l 0.	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1 1,1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND Ug/l 1.5 0.50 1	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1 seromodichloromethane ND ug/l 0.50 0.19 1 1 seromodichloropropene ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1 seromoform ND ug/l 0.50 0.14 1 1 seromoform ND ug/l 0.50 0.14 1 1 seromoform ND ug/l 0.50 0.17 1 1 seromoform ND ug/l 0.50 0.17 1 1 seromoform ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 1 1 seromoform ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloroethane ND ug/l 0.50 0.17 1 1 chloroethane ND ug/l 0.50 0.17 1 1 chloroethane ND ug/l 0.50 0.17 1 1 chloroethane ND ug/l 0.50 0.17 1 1 ctrans-1,2-Dichloroethene ND ug/l 0.50 0.18 1	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane 0.92 J ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane 0.92 J ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 1 1,2,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1 1,2,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1 1,2,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 1,2,2-Tetrachloroethane ND ug/l 0.50 0.18 1 1 1,3,3,3,4 1 1 1,3,4 1 1 1,4,4	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane 0.92 J ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Tichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.17 1 Trichloroethene ND ug/l 0.50 0.18 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane 0.92 J ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane 0.92 J ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloromethane	0.92	J	ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene ND ug/l 0.50 0.18 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
0	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	ND		ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 16:00

Report Date:

Lab ID: L1932869-09 Date Received: Client ID: 07/24/19 TRIP BLANK

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough La 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether	ND ND ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
				0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
	–	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	5.7	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
1,4-Dioxane	ND	ug/l	250	61.	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	88	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	113	70-130	

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/19 19:25

Analyst: PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough La	b for sample(s): 0	8-09 Batch:	WG1266319-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/19 19:25

Analyst: PK

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	o for sample(s): 08-09	Batch:	WG1266319-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/19 19:25

Analyst: PK

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 08-09
 Batch:
 WG1266319-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 111 70-130 Toluene-d8 88 70-130 4-Bromofluorobenzene 86 70-130 Dibromofluoromethane 112 70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	08-09 Batch: W	/G1266319-3 V	WG1266319-4			
Methylene chloride	84		82		70-130	2		20
1,1-Dichloroethane	90		86		70-130	5		20
Chloroform	93		89		70-130	4		20
Carbon tetrachloride	120		110		63-132	9		20
1,2-Dichloropropane	84		82		70-130	2		20
Dibromochloromethane	98		96		63-130	2		20
1,1,2-Trichloroethane	79		78		70-130	1		20
Tetrachloroethene	100		97		70-130	3		20
Chlorobenzene	89		86		75-130	3		20
Trichlorofluoromethane	120		100		62-150	18		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	110		100		67-130	10		20
Bromodichloromethane	92		89		67-130	3		20
trans-1,3-Dichloropropene	72		70		70-130	3		20
cis-1,3-Dichloropropene	81		79		70-130	3		20
Bromoform	81		80		54-136	1		20
1,1,2,2-Tetrachloroethane	72		72		67-130	0		20
Benzene	86		83		70-130	4		20
Toluene	81		78		70-130	4		20
Ethylbenzene	85		80		70-130	6		20
Chloromethane	100		95		64-130	5		20
Bromomethane	64		63		39-139	2		20
Vinyl chloride	95		88		55-140	8		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	08-09 Batch: W0	G1266319-3 WG1266319-4		
Chloroethane	90		82	55-138	9	20
1,1-Dichloroethene	98		93	61-145	5	20
trans-1,2-Dichloroethene	95		90	70-130	5	20
Trichloroethene	94		87	70-130	8	20
1,2-Dichlorobenzene	95		91	70-130	4	20
1,3-Dichlorobenzene	93		90	70-130	3	20
1,4-Dichlorobenzene	93		90	70-130	3	20
Methyl tert butyl ether	94		94	63-130	0	20
p/m-Xylene	90		90	70-130	0	20
o-Xylene	90		90	70-130	0	20
cis-1,2-Dichloroethene	93		90	70-130	3	20
Styrene	90		90	70-130	0	20
Dichlorodifluoromethane	130		120	36-147	8	20
Acetone	96		93	58-148	3	20
Carbon disulfide	86		80	51-130	7	20
2-Butanone	87		88	63-138	1	20
4-Methyl-2-pentanone	78		77	59-130	1	20
2-Hexanone	76		76	57-130	0	20
Bromochloromethane	110		110	70-130	0	20
1,2-Dibromoethane	90		90	70-130	0	20
1,2-Dibromo-3-chloropropane	81		81	41-144	0	20
Isopropylbenzene	90		85	70-130	6	20
1,2,3-Trichlorobenzene	96		94	70-130	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	08-09 Batch:	WG1266319-3	WG1266319-4			
1,2,4-Trichlorobenzene	90		89		70-130	1		20
Methyl Acetate	96		94		70-130	2		20
Cyclohexane	110		100		70-130	10		20
1,4-Dioxane	98		98		56-162	0		20
Freon-113	120		110		70-130	9		20
Methyl cyclohexane	100		93		70-130	7		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	114	112	70-130
Toluene-d8	90	89	70-130
4-Bromofluorobenzene	86	86	70-130
Dibromofluoromethane	115	113	70-130

SEMIVOLATILES

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: 07/23/19 14:00 L1932869-01 Date Received: Client ID: 07/24/19 OUTFALL-007-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/29/19 17:05 Analytical Method: 1,8270D-SIM Analytical Date: 07/30/19 14:40

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Man	sfield Lab					
1,4-Dioxane	ND		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			37			15-110

L1932869

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

L1932869-01

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 14:00

Lab Number:

Report Date:

Date Received: Client ID: 07/24/19 OUTFALL-007-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Lab ID:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 09:48

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	9.13		ng/l	1.90	0.388	1
Perfluoropentanoic Acid (PFPeA)	5.05		ng/l	1.90	0.376	1
Perfluorobutanesulfonic Acid (PFBS)	1.09	J	ng/l	1.90	0.226	1
Perfluorohexanoic Acid (PFHxA)	4.67		ng/l	1.90	0.312	1
Perfluoroheptanoic Acid (PFHpA)	3.54		ng/l	1.90	0.214	1
Perfluorohexanesulfonic Acid (PFHxS)	2.90		ng/l	1.90	0.357	1
Perfluorooctanoic Acid (PFOA)	10.5		ng/l	1.90	0.224	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.90	1.27	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.90	0.654	1
Perfluorononanoic Acid (PFNA)	1.11	J	ng/l	1.90	0.296	1
Perfluorooctanesulfonic Acid (PFOS)	4.23		ng/l	1.90	0.479	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.289	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.90	1.15	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.616	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.247	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.90	0.932	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.90	0.551	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.764	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.354	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.311	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.236	1
PFOA/PFOS, Total	14.7		ng/l	1.90	0.224	1

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

5.0000

Report Date: 08/07/19

SAMPLE RESULTS

Lab ID: L1932869-01 Date Collected: 07/23/19 14:00

Client ID: OUTFALL-007-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	74	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	76	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	79	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	70	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	59	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	81	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	72	36-149
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	92	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	71	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	68	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	61	38-144
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	67	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	59	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	57	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	33	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	49	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	53	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	51	33-143

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: Report Date: 18.8090

SAMPLE RESULTS

Lab ID: Date Collected: L1932869-02 07/23/19 14:15

Date Received: Client ID: 07/24/19 OUTFALL-006-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/29/19 17:05 Analytical Method: 1,8270D-SIM Analytical Date: 07/30/19 15:17

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	d Lab					
1,4-Dioxane	ND		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			36			15-110

L1932869

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 14:15

Report Date:

Lab ID: L1932869-02 Date Received: Client ID: 07/24/19 OUTFALL-006-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 10:05

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	7.64		ng/l	1.96	0.400	1
Perfluoropentanoic Acid (PFPeA)	5.22		ng/l	1.96	0.388	1
Perfluorobutanesulfonic Acid (PFBS)	1.10	J	ng/l	1.96	0.233	1
Perfluorohexanoic Acid (PFHxA)	3.78		ng/l	1.96	0.322	1
Perfluoroheptanoic Acid (PFHpA)	2.80		ng/l	1.96	0.221	1
Perfluorohexanesulfonic Acid (PFHxS)	3.15		ng/l	1.96	0.369	1
Perfluorooctanoic Acid (PFOA)	6.16		ng/l	1.96	0.231	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.96	1.30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.96	0.674	1
Perfluorononanoic Acid (PFNA)	1.14	J	ng/l	1.96	0.306	1
Perfluorooctanesulfonic Acid (PFOS)	2.68		ng/l	1.96	0.494	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.96	0.298	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.96	1.19	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.96	0.635	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.96	0.255	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.96	0.961	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.96	0.569	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.96	0.788	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.96	0.365	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.96	0.321	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.96	0.243	1
PFOA/PFOS, Total	8.84		ng/l	1.96	0.231	1

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: Report Date: 18.8090 08/07/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932869-02 07/23/19 14:15

Date Received: Client ID: 07/24/19 OUTFALL-006-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	59	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	83	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	78	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	92	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	69	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	71	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	47	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	64	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	11	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	45	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	54	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	47	33-143

08/07/19

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPI F RESI

SAMPLE RESULTS

Lab ID: L1932869-03 Date Collected: 07/23/19 14:30

Client ID: OUTFALL-003-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/29/19 17:05
Analytical Date: 07/30/19 16:40

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mai	nsfield Lab					
1,4-Dioxane	ND		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			38			15-110

L1932869

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 14:30

Report Date:

Lab ID: L1932869-03

Date Received: Client ID: 07/24/19 OUTFALL-003-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 10:22

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	10.6		ng/l	1.98	0.405	1
Perfluoropentanoic Acid (PFPeA)	51.4		ng/l	1.98	0.393	1
Perfluorobutanesulfonic Acid (PFBS)	2.04		ng/l	1.98	0.236	1
Perfluorohexanoic Acid (PFHxA)	44.6		ng/l	1.98	0.325	1
Perfluoroheptanoic Acid (PFHpA)	6.29		ng/l	1.98	0.223	1
Perfluorohexanesulfonic Acid (PFHxS)	234		ng/l	1.98	0.373	1
Perfluorooctanoic Acid (PFOA)	8.30		ng/l	1.98	0.234	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	143		ng/l	1.98	1.32	1
Perfluoroheptanesulfonic Acid (PFHpS)	4.15		ng/l	1.98	0.682	1
Perfluorononanoic Acid (PFNA)	0.659	J	ng/l	1.98	0.310	1
Perfluorooctanesulfonic Acid (PFOS)	339		ng/l	1.98	0.500	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.98	0.302	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.98	1.20	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.98	0.643	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.98	0.258	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.98	0.972	1
Perfluorooctanesulfonamide (FOSA)	0.647	J	ng/l	1.98	0.575	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.98	0.798	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.98	0.369	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.98	0.325	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.98	0.246	1
PFOA/PFOS, Total	347		ng/l	1.98	0.234	1

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 14:30

Report Date:

Lab ID: L1932869-03 Date Received: Client ID: 07/24/19 OUTFALL-003-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	70	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	71	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	60	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	74	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	86	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	61	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	38	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	55	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	40	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	49	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	48	33-143

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 14:40

Report Date:

Lab ID: L1932869-04

Date Received: Client ID: 07/24/19 FIELD BLANK Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/06/19 18:50

Analyst: ΑJ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.80	0.368	1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.80	0.357	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.80	0.215	1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.80	0.296	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.80	0.203	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.80	0.339	1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.80	0.213	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.80	1.20	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.80	0.621	1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.80	0.282	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.80	0.455	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.80	0.274	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.80	1.09	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.80	0.585	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.80	0.235	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.80	0.884	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.80	0.523	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.80	0.726	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.80	0.336	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.80	0.295	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.80	0.224	1	
PFOA/PFOS, Total	ND		ng/l	1.80	0.213	1	

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: Report Date: 18.8090 08/07/19

SAMPLE RESULTS

Date Collected: 07/23/19 14:40

L1932869-04 Date Received: Client ID: 07/24/19 FIELD BLANK Field Prep: Not Specified

Sample Location: WAPPINGERS FALLS, NY

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	89	2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106	16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	118	31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91	21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91	30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	132	47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91	36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85	1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97	34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	129	42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83	38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	58	7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	48	1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82	40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	45	23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	81	24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	81	33-143	

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPLE RESULTS

PLE RESULTS

Report Date:

 Lab ID:
 L1932869-05
 Date Collected:
 07/23/19 15:00

 Client ID:
 OUTFALL-002-W
 Date Received:
 07/24/19

Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/29/19 17:05
Analytical Date: 07/30/19 17:30

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	eld Lab					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			40		,	15-110

L1932869

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:00

Lab Number:

Report Date:

Lab ID: L1932869-05 Date Received: Client ID: 07/24/19 OUTFALL-002-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 10:38

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							
Perfluorobutanoic Acid (PFBA)	2.20		ng/l	1.98	0.403	1	
Perfluoropentanoic Acid (PFPeA)	0.877	J	ng/l	1.98	0.391	1	
Perfluorobutanesulfonic Acid (PFBS)	1.03	J	ng/l	1.98	0.235	1	
Perfluorohexanoic Acid (PFHxA)	1.34	J	ng/l	1.98	0.324	1	
Perfluoroheptanoic Acid (PFHpA)	0.893	J	ng/l	1.98	0.222	1	
Perfluorohexanesulfonic Acid (PFHxS)	28.1		ng/l	1.98	0.372	1	
Perfluorooctanoic Acid (PFOA)	2.39		ng/l	1.98	0.233	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.98	1.32	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.98	0.680	1	
Perfluorononanoic Acid (PFNA)	0.427	J	ng/l	1.98	0.308	1	
Perfluorooctanesulfonic Acid (PFOS)	13.4		ng/l	1.98	0.498	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.98	0.300	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.98	1.20	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.98	0.640	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.98	0.257	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.98	0.968	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.98	0.573	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.98	0.794	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.98	0.368	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.98	0.323	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.98	0.245	1	
PFOA/PFOS, Total	15.8		ng/l	1.98	0.233	1	

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPLE RESULTS

Report Date:

Lab ID: L1932869-05 Date Collected: 07/23/19 15:00

Client ID: OUTFALL-002-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	74	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	86	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	68	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	56	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	84	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	75	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	61	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	59	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	39	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	54	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	38	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	47	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	44	33-143

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

L1932869-06

SAMPLE RESULTS

Date Collected: 07/23/19 15:10

Report Date:

Date Received: Client ID: 07/24/19 OUTFALL-004-W Not Specified

Sample Location: Field Prep: WAPPINGERS FALLS, NY

Sample Depth:

Lab ID:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/29/19 17:05 Analytical Method: 1,8270D-SIM Analytical Date: 07/30/19 18:10

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Man	sfield Lab					
1,4-Dioxane	ND		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			35			15-110

L1932869

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:10

Report Date:

Lab ID: L1932869-06 Date Received: Client ID: 07/24/19 OUTFALL-004-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 10:55

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	5.92		ng/l	1.98	0.403	1
Perfluoropentanoic Acid (PFPeA)	1.71	J	ng/l	1.98	0.391	1
Perfluorobutanesulfonic Acid (PFBS)	2.54		ng/l	1.98	0.235	1
Perfluorohexanoic Acid (PFHxA)	1.79	J	ng/l	1.98	0.324	1
Perfluoroheptanoic Acid (PFHpA)	1.37	J	ng/l	1.98	0.222	1
Perfluorohexanesulfonic Acid (PFHxS)	14.7		ng/l	1.98	0.372	1
Perfluorooctanoic Acid (PFOA)	2.75		ng/l	1.98	0.233	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.98	1.32	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.98	0.680	1
Perfluorononanoic Acid (PFNA)	0.818	J	ng/l	1.98	0.308	1
Perfluorooctanesulfonic Acid (PFOS)	12.7		ng/l	1.98	0.498	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.98	0.300	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.98	1.20	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.98	0.640	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.98	0.257	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.98	0.968	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.98	0.573	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.98	0.794	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.98	0.368	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.98	0.323	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.98	0.245	1
PFOA/PFOS, Total	15.5		ng/l	1.98	0.233	1

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPLE RESULTS

Report Date: 08/07/19

Lab ID: L1932869-06 Date Collected: 07/23/19 15:10

Client ID: OUTFALL-004-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

urrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
erfluoro[13C4]Butanoic Acid (MPFBA)	101		2-156	
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	89		16-173	
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95		31-159	
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69		21-145	
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	71		30-139	
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94		47-153	
erfluoro[13C8]Octanoic Acid (M8PFOA)	96		36-149	
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	229		1-244	
erfluoro[13C9]Nonanoic Acid (M9PFNA)	107		34-146	
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98		42-146	
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86		38-144	
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	199	Q	7-170	
-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	79		1-181	
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	87		40-144	
erfluoro[13C8]Octanesulfonamide (M8FOSA)	46		1-87	
-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	63		23-146	
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71		24-161	
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	53		33-143	

08/07/19

Report Date:

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPLE RESULTS

OAMI EL KLOOLIO

Lab ID: L1932869-07 Date Collected: 07/23/19 15:20

Client ID: OUTFALL-005-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/29/19 17:05
Analytical Date: 07/30/19 18:50

Analyst: PS

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	ansfield Lab				
1,4-Dioxane	ND	ng/l	150	33.9	1
Surrogate		% Recovery	Qualifie		eptance riteria
1.4-Dioxane-d8		38			15-110

L1932869

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 07/23/19 15:20 L1932869-07

Date Received: Client ID: 07/24/19 OUTFALL-005-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 11:44

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	104		ng/l	1.87	0.382	1	
Perfluoropentanoic Acid (PFPeA)	470		ng/l	1.87	0.371	1	
Perfluorobutanesulfonic Acid (PFBS)	4.33		ng/l	1.87	0.223	1	
Perfluorohexanoic Acid (PFHxA)	246		ng/l	1.87	0.307	1	
Perfluoroheptanoic Acid (PFHpA)	82.5		ng/l	1.87	0.211	1	
Perfluorohexanesulfonic Acid (PFHxS)	11.0		ng/l	1.87	0.352	1	
Perfluorooctanoic Acid (PFOA)	14.9		ng/l	1.87	0.221	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	114		ng/l	1.87	1.25	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.87	0.644	1	
Perfluorononanoic Acid (PFNA)	2.62		ng/l	1.87	0.292	1	
Perfluorooctanesulfonic Acid (PFOS)	9.24		ng/l	1.87	0.472	1	
Perfluorodecanoic Acid (PFDA)	0.412	J	ng/l	1.87	0.285	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	2.03		ng/l	1.87	1.13	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.87	0.607	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.87	0.243	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.87	0.918	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.87	0.543	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.87	0.753	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.87	0.348	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.87	0.306	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.87	0.232	1	
PFOA/PFOS, Total	24.1		ng/l	1.87	0.221	1	

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:20

Report Date:

Lab ID: L1932869-07 Date Received: Client ID: 07/24/19 OUTFALL-005-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	80	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	72	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	74	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	57	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	54	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	76	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	80	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	151	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	76	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	73	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	88	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	68	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	44	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	47	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	48	33-143

L1932869

08/07/19

07/30/19 22:32

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:45

Lab Number:

Report Date:

Lab ID: L1932869-08 Date Received: Client ID: 07/24/19 OUTFALL-001-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** Analytical Method: 1,8270D Analytical Date: 07/31/19 13:00

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	4.1		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

CAMPLE DEC

Report Date:

SAMPLE RESULTS

Lab ID: L1932869-08 Date Collected: 07/23/19 15:45

Client ID: OUTFALL-001-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	/estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	52	21-120	
Phenol-d6	47	10-120	
Nitrobenzene-d5	76	23-120	
2-Fluorobiphenyl	65	15-120	
2,4,6-Tribromophenol	43	10-120	
4-Terphenyl-d14	68	41-149	

08/07/19

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090

SAMPLE RESULTS

I LL NEGOLIO

Report Date:

Lab ID: Date Collected: 07/23/19 15:45

Client ID: OUTFALL-001-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/29/19 17:05
Analytical Date: 07/30/19 19:29

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	eld Lab					
1,4-Dioxane	ND		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			39			15-110

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: Report Date: 18.8090 08/07/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932869-08 07/23/19 15:45

Date Received: Client ID: 07/24/19 OUTFALL-001-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/30/19 22:34 Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 15:56

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.06	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.11		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Chrysene	0.04	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	0.04	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:45

Report Date:

Lab ID: L1932869-08 Date Received: Client ID: 07/24/19 OUTFALL-001-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	44	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	80	41-149

L1932869

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT**

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:45

Report Date:

Lab ID: L1932869-08 Date Received: Client ID: 07/24/19 OUTFALL-001-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 08/05/19 11:56 Analytical Method: 122,537(M) Analytical Date: 08/07/19 11:28

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	29.0		ng/l	2.02	0.413	1
Perfluoropentanoic Acid (PFPeA)	87.2		ng/l	2.02	0.401	1
Perfluorobutanesulfonic Acid (PFBS)	4.19		ng/l	2.02	0.241	1
Perfluorohexanoic Acid (PFHxA)	57.4		ng/l	2.02	0.332	1
Perfluoroheptanoic Acid (PFHpA)	22.6		ng/l	2.02	0.228	1
Perfluorohexanesulfonic Acid (PFHxS)	69.9		ng/l	2.02	0.380	1
Perfluorooctanoic Acid (PFOA)	21.4		ng/l	2.02	0.239	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	214		ng/l	2.02	1.35	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.64	J	ng/l	2.02	0.696	1
Perfluorononanoic Acid (PFNA)	5.65		ng/l	2.02	0.316	1
Perfluorooctanesulfonic Acid (PFOS)	140		ng/l	2.02	0.510	1
Perfluorodecanoic Acid (PFDA)	1.29	J	ng/l	2.02	0.308	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	1.93	J	ng/l	2.02	1.23	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.02	0.656	1
Perfluoroundecanoic Acid (PFUnA)	0.729	J	ng/l	2.02	0.263	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.02	0.992	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.02	0.587	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.02	0.814	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.02	0.376	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.02	0.331	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.02	0.251	1
PFOA/PFOS, Total	161		ng/l	2.02	0.239	1

08/07/19

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090

SAMPLE RESULTS

Date Collected: 07/23/19 15:45

Report Date:

Lab ID: L1932869-08 Date Received: Client ID: 07/24/19 OUTFALL-001-W

Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	75	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	79	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	78	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	63	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	56	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	75	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	74	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	121	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	73	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	57	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	49	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	63	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	36	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	44	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	54	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	51	33-143

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/30/19 10:37 Extraction Date: 07/29/19 17:05

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
1,4 Dioxane by 8270D-SIM - Mans	sfield Lab for	sample(s):	01-03,05-08	Batch:	WG1265862-1	
1,4-Dioxane	ND		ng/l	150	33.9	

		Acceptance			
Surrogate	%Recovery (Qualifier Criteria			
1,4-Dioxane-d8	41	15-110			

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/01/19 00:24

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 07/30/19 18:35

Parameter	Result	Qualifier	Units	ı	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	80	Batch:	WG1266486-1	
Bis(2-chloroethyl)ether	ND		ug/l	2	2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l	į	5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l	į	5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l	į	5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l	2	2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l	2	2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l	2	2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l	į	5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l	į	5.0	1.2	
Nitrobenzene	ND		ug/l	2	2.0	0.77	
NDPA/DPA	ND		ug/l	2	2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l	į	5.0	0.64	
Bis(2-ethylhexyl)phthalate	2.5	J	ug/l	(3.0	1.5	
Butyl benzyl phthalate	ND		ug/l	į	5.0	1.2	
Di-n-butylphthalate	ND		ug/l	į	5.0	0.39	
Di-n-octylphthalate	ND		ug/l	į	5.0	1.3	
Diethyl phthalate	ND		ug/l	į	5.0	0.38	
Dimethyl phthalate	ND		ug/l	į	5.0	1.8	
Biphenyl	ND		ug/l	2	2.0	0.46	
4-Chloroaniline	ND		ug/l	į	5.0	1.1	
2-Nitroaniline	ND		ug/l	į	5.0	0.50	
3-Nitroaniline	ND		ug/l	į	5.0	0.81	
4-Nitroaniline	ND		ug/l	į	5.0	0.80	
Dibenzofuran	ND		ug/l	2	2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l	į	5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l	ţ	5.0	0.61	
p-Chloro-m-cresol	ND		ug/l	2	2.0	0.35	

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Lab Number:

L1932869

Report Date:

08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/01/19 00:24

Analyst: CB Extraction Method: EPA 3510C

07/30/19 18:35 Extraction Date:

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	80	Batch:	WG1266486-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	66	15-120
2,4,6-Tribromophenol	38	10-120
4-Terphenyl-d14	63	41-149

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932869

Report Date: 08/07/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/31/19 15:06

Pyrene

2-Methylnaphthalene

Pentachlorophenol

Hexachlorobenzene

Hexachloroethane

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 07/30/19 18:36

Qualifier RL MDL **Parameter** Result Units Batch: WG1266487-1 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 08 0.01 Acenaphthene ND ug/l 0.10 2-Chloronaphthalene ND ug/l 0.20 0.02 ND 0.02 Fluoranthene ug/l 0.10 Hexachlorobutadiene ND ug/l 0.50 0.05 ND 0.05 Naphthalene ug/l 0.10 ND 0.02 Benzo(a)anthracene ug/l 0.10 Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 ND 0.01 Chrysene 0.10 ug/l Acenaphthylene 0.01 ND ug/l 0.10 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene ND ug/l 0.02 0.10 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 ND 0.01 Indeno(1,2,3-cd)pyrene ug/l 0.10

ug/l

ug/l

ug/l

ug/l

ug/l

0.10

0.10

0.80

0.80

0.80

0.02

0.01

0.01

0.06

ND

ND

ND

ND

ND

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/31/19 15:06 Extraction Date: 07/30/19 18:36

Analyst: DV

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):08Batch: WG1266487-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 52 21-120 Phenol-d6 41 10-120 Nitrobenzene-d5 23-120 73 2-Fluorobiphenyl 73 15-120 2,4,6-Tribromophenol 95 10-120 4-Terphenyl-d14 88 41-149

L1932869

08/07/19

Lab Number:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 08/07/19 05:06 Extraction Date: 08/05/19 11:56

Analyst: AJ

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope NG1268635-1	Dilution	- Mansfield I	_ab for sa	ample(s): (01-08 Batch:	
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.328	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00	1.21	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic A (NEtFOSAA)	cid ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	
PFOA/PFOS, Total	ND		ng/l	2.00	0.236	

L1932869

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number:

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 08/07/19 05:06 Extraction Date: 08/05/19 11:56

Analyst: AJ

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-08 Batch: WG1268635-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	95	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	100	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	111	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	102	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	89	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	89	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	56	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	53	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	59	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	76	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	80	33-143

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Lab Number:

L1932869

Report Date:

08/07/19

Parameter	LCS %Recovery Q	LCSD ual %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated sample(s): 01-03,05-08 Batch	: WG1265862-2	2 WG1265862-3			
1,4-Dioxane	118	118		40-140	0		30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	I %Recovery Q	ual Criteria
1,4-Dioxane-d8	36	41	15-110

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	08 Batch:	WG1266486-2	2 WG1266486-3			
Bis(2-chloroethyl)ether	70		77		40-140	10	30	
3,3'-Dichlorobenzidine	64		67		40-140	5	30	
2,4-Dinitrotoluene	77		88		48-143	13	30	
2,6-Dinitrotoluene	76		86		40-140	12	30	
4-Chlorophenyl phenyl ether	67		78		40-140	15	30	
4-Bromophenyl phenyl ether	59		63		40-140	7	30	
Bis(2-chloroisopropyl)ether	55		58		40-140	5	30	
Bis(2-chloroethoxy)methane	74		86		40-140	15	30	
Hexachlorocyclopentadiene	56		61		40-140	9	30	
Isophorone	76		88		40-140	15	30	
Nitrobenzene	71		82		40-140	14	30	
NDPA/DPA	72		80		40-140	11	30	
n-Nitrosodi-n-propylamine	80		91		29-132	13	30	
Bis(2-ethylhexyl)phthalate	71		87		40-140	20	30	
Butyl benzyl phthalate	83		97		40-140	16	30	
Di-n-butylphthalate	73		86		40-140	16	30	
Di-n-octylphthalate	82		97		40-140	17	30	
Diethyl phthalate	80		92		40-140	14	30	
Dimethyl phthalate	75		90		40-140	18	30	
Biphenyl	65		75		40-140	14	30	
4-Chloroaniline	60		69		40-140	14	30	
2-Nitroaniline	73		86		52-143	16	30	
3-Nitroaniline	64		72		25-145	12	30	

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	08 Batch:	WG1266486-2	2 WG1266486-3		
4-Nitroaniline	70		83		51-143	17	30
Dibenzofuran	68		76		40-140	11	30
1,2,4,5-Tetrachlorobenzene	57		63		2-134	10	30
Acetophenone	70		78		39-129	11	30
2,4,6-Trichlorophenol	69		77		30-130	11	30
p-Chloro-m-cresol	77		92		23-97	18	30
2-Chlorophenol	73		83		27-123	13	30
2,4-Dichlorophenol	74		84		30-130	13	30
2,4-Dimethylphenol	71		79		30-130	11	30
2-Nitrophenol	74		84		30-130	13	30
4-Nitrophenol	76		90	Q	10-80	17	30
2,4-Dinitrophenol	74		81		20-130	9	30
4,6-Dinitro-o-cresol	85		98		20-164	14	30
Phenol	55		66		12-110	18	30
3-Methylphenol/4-Methylphenol	77		91		30-130	17	30
2,4,5-Trichlorophenol	67		80		30-130	18	30
Carbazole	74		87		55-144	16	30
Atrazine	94		105		40-140	11	30
Benzaldehyde	70		77		40-140	10	30
Caprolactam	43		50		10-130	15	30
2,3,4,6-Tetrachlorophenol	64		71		40-140	10	30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number: L1932869

Project Number: 18.8090 Report Date:

08/07/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 08 Batch: WG1266486-2 WG1266486-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	63	72	21-120
Phenol-d6	57	67	10-120
Nitrobenzene-d5	83	91	23-120
2-Fluorobiphenyl	69	76	15-120
2,4,6-Tribromophenol	56	62	10-120
4-Terphenyl-d14	66	77	41-149

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS-SIM - West	borough Lab A	ssociated sample(s): 08 Batch	n: WG1266487-2 WG1266	6487-3	
Acenaphthene	68	78	40-140	14	40
2-Chloronaphthalene	70	84	40-140	18	40
Fluoranthene	79	78	40-140	1	40
Hexachlorobutadiene	57	73	40-140	25	40
Naphthalene	62	79	40-140	24	40
Benzo(a)anthracene	77	73	40-140	5	40
Benzo(a)pyrene	74	71	40-140	4	40
Benzo(b)fluoranthene	78	74	40-140	5	40
Benzo(k)fluoranthene	81	76	40-140	6	40
Chrysene	73	71	40-140	3	40
Acenaphthylene	77	89	40-140	14	40
Anthracene	77	78	40-140	1	40
Benzo(ghi)perylene	68	68	40-140	0	40
Fluorene	73	80	40-140	9	40
Phenanthrene	75	75	40-140	0	40
Dibenzo(a,h)anthracene	83	77	40-140	8	40
Indeno(1,2,3-cd)pyrene	80	75	40-140	6	40
Pyrene	79	77	40-140	3	40
2-Methylnaphthalene	69	83	40-140	18	40
Pentachlorophenol	49	48	40-140	2	40
Hexachlorobenzene	75	77	40-140	3	40
Hexachloroethane	58	80	40-140	32	40

08/07/19

Lab Control Sample Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number: L1932869

Project Number: 18.8090 Report Date:

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 08 Batch: WG1266487-2 WG1266487-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	49	56	21-120
Phenol-d6	42	46	10-120
Nitrobenzene-d5	67	76	23-120
2-Fluorobiphenyl	69	72	15-120
2,4,6-Tribromophenol	95	82	10-120
4-Terphenyl-d14	89	75	41-149

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

rameter	LCS %Recovery	LCSD Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
erfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01-08 Batch:	WG1268635-2	WG1268635-3		
Perfluorobutanoic Acid (PFBA)	106	108		67-148	2		30
Perfluoropentanoic Acid (PFPeA)	112	112		63-161	0		30
Perfluorobutanesulfonic Acid (PFBS)	107	108		65-157	1		30
Perfluorohexanoic Acid (PFHxA)	116	119		69-168	3		30
Perfluoroheptanoic Acid (PFHpA)	106	116		58-159	9		30
Perfluorohexanesulfonic Acid (PFHxS)	101	104		69-177	3		30
Perfluorooctanoic Acid (PFOA)	115	102		63-159	12		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	104	106		49-187	2		30
Perfluoroheptanesulfonic Acid (PFHpS)	108	160		61-179	39	Q	30
Perfluorononanoic Acid (PFNA)	116	113		68-171	3		30
Perfluorooctanesulfonic Acid (PFOS)	86	126		52-151	38	Q	30
Perfluorodecanoic Acid (PFDA)	111	113		63-171	2		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	102	93		56-173	9		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	114	138		60-166	19		30
Perfluoroundecanoic Acid (PFUnA)	112	112		60-153	0		30
Perfluorodecanesulfonic Acid (PFDS)	96	134		38-156	33	Q	30
Perfluorooctanesulfonamide (FOSA)	88	98		46-170	11		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	94	96		45-170	2		30
Perfluorododecanoic Acid (PFDoA)	89	86		67-153	3		30
Perfluorotridecanoic Acid (PFTrDA)	92	88		48-158	4		30
Perfluorotetradecanoic Acid (PFTA)	119	98		59-182	19		30

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number:

L1932869

Project Number: 18.8090 Report Date:

08/07/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-08 Batch: WG1268635-2 WG1268635-3

	LCS		LCSD		Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	96		98		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	103		105		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89		128		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96		95		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97		95		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	98		135		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		98		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77		117		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	100		93		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91		86		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86		83		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	75		109		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67		50		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		76		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	57		53		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	71		59		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	85		78		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		71		33-143	

Matrix Spike Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Report Date: 08/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is OUTFALL-004-W	sotope Dilution	n - Mansfield	Lab Associ	ated sample(s):	01-08	QC Batch	ID: WG126863	5-4 (QC Sample:	L193286	9-06	Client ID:
Perfluorobutanoic Acid (PFBA)	5.92	39.5	45.1	99		-	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	1.71J	39.5	40.7	103		-	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	2.54	39.5	40.4	96		-	-		65-157	-		30
Perfluorohexanoic Acid (PFHxA)	1.79J	39.5	45.7	116		-	-		69-168	-		30
Perfluoroheptanoic Acid (PFHpA)	1.37J	39.5	42.3	107		-	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	14.7	39.5	62.3	120		-	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	2.75	39.5	42.8	101		-	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	39.5	37.9	96		-	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	39.5	43.4	110		-	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	0.818J	39.5	43.1	109		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	12.7	39.5	51.3	98		-	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	ND	39.5	41.9	106		-	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	39.5	35.3	89		-	-		56-173	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	39.5	33.2	84		-	-		60-166	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	39.5	35.0	89		-	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	39.5	35.0	89		-	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	ND	39.5	33.0	84		-	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	39.5	35.8	91		-	-		45-170	-		30
Perfluorododecanoic Acid (PFDoA)	ND	39.5	36.7	93		-	-		67-153	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	39.5	29.8	75		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	39.5	39.1	99		-	-		59-182	-		30

Matrix Spike Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

HODGON VALLET REGIONAL AIRI ON

Lab Number:

L1932869

Project Number: 18.8090

Report Date:

08/07/19

	Native	MS	MS	MS		MSD	MSD	Re	ecovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual l	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-08 QC Batch ID: WG1268635-4 QC Sample: L1932869-06 Client ID: OUTFALL-004-W

	MS	8	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	153				7-170	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	209				1-244	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	60				23-146	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	70				1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75				40-144	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	75				38-144	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64				21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	63				30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	81				47-153	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	63				24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	49				33-143	
Perfluoro[13C4]Butanoic Acid (MPFBA)	93				2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	82				16-173	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	42				1-87	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82				42-146	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89				36-149	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94				34-146	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	81				31-159	

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Quality Control

Lab Number: L1932869

Report Date: 08/07/19

Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution - I D: OUTFALL-001-W	Mansfield Lab Associated sa	ample(s): 01-08 QC	Batch ID: WG1268	3635-5 (QC Sample: L	1932869-08 Client
Perfluorobutanoic Acid (PFBA)	29.0	29.2	ng/l	1		30
Perfluoropentanoic Acid (PFPeA)	87.2	86.0	ng/l	1		30
Perfluorobutanesulfonic Acid (PFBS)	4.19	4.23	ng/l	1		30
Perfluorohexanoic Acid (PFHxA)	57.4	56.2	ng/l	2		30
Perfluoroheptanoic Acid (PFHpA)	22.6	22.3	ng/l	1		30
Perfluorohexanesulfonic Acid (PFHxS)	69.9	69.4	ng/l	1		30
Perfluorooctanoic Acid (PFOA)	21.4	21.6	ng/l	1		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	214	218	ng/l	2		30
Perfluoroheptanesulfonic Acid (PFHpS)	1.64J	1.32J	ng/l	NC		30
Perfluorononanoic Acid (PFNA)	5.65	5.57	ng/l	1		30
Perfluorooctanesulfonic Acid (PFOS)	140	140	ng/l	0		30
Perfluorodecanoic Acid (PFDA)	1.29J	1.32J	ng/l	NC		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	1.93J	1.59J	ng/l	NC		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	0.729J	0.558J	ng/l	NC		30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC		30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC		30

L1932869

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Batch Quality Control

Lab Number:

Report Date: 08/07/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution - Man ID: OUTFALL-001-W	sfield Lab Associated sa	imple(s): 01-08 QC Bat	ch ID: WG126	8635-5	QC Sample:	L1932869-08 Client
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC		30
PFOA/PFOS, Total	161	162	ng/l	0		30

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	% Pocovory	Qualifier	Acceptance Criteria	
		Qualifier		Qualifier		
Perfluoro[13C4]Butanoic Acid (MPFBA)	75		90		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	79		94		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	78		103		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	63		76		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	56		65		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	75		93		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	74		89		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	121		160		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73		88		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	73		91		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66		78		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	57		85		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	49		59		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	63		71		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	36		38		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	44		54		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	54		64		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	51		59		33-143	

PCBS

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/23/19 15:45

Client ID: OUTFALL-001-W Date Received: 07/24/19
Sample Location: WAPPINGERS FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1 8082A Extraction Date: 07/27/19 03:5

Analytical Method: 1,8082A Extraction Date: 07/27/19 03:59
Analytical Date: 07/31/19 03:02 Cleanup Method: EPA 3665A

Analyst: WR Cleanup Date: 07/27/19
Cleanup Method: EPA 3660B
Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.083	0.034	1	А				
Aroclor 1221	ND		ug/l	0.083	0.067	1	Α				
Aroclor 1232	ND		ug/l	0.083	0.046	1	Α				
Aroclor 1242	ND		ug/l	0.083	0.039	1	Α				
Aroclor 1248	ND		ug/l	0.083	0.049	1	Α				
Aroclor 1254	ND		ug/l	0.083	0.039	1	Α				
Aroclor 1260	ND		ug/l	0.083	0.032	1	Α				
Aroclor 1262	ND		ug/l	0.083	0.035	1	Α				
Aroclor 1268	ND		ug/l	0.083	0.034	1	Α				
PCBs, Total	ND		ug/l	0.083	0.032	1	Α				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	Α
Decachlorobiphenyl	90		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	90		30-150	В

L1932869

Lab Number:

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Report Date: Project Number: 18.8090 08/07/19

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 07/28/19 15:21

Analyst: **AWS**

Extraction Method: EPA 3510C 07/27/19 02:26 Extraction Date: Cleanup Method: EPA 3665A Cleanup Date: 07/27/19 Cleanup Method: EPA 3660B Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for sa	mple(s):	80	Batch:	WG1265262-	1
Aroclor 1016	ND		ug/l	0	.083	0.034	Α
Aroclor 1221	ND		ug/l	0	.083	0.067	Α
Aroclor 1232	ND		ug/l	0	.083	0.046	Α
Aroclor 1242	ND		ug/l	0	.083	0.039	Α
Aroclor 1248	ND		ug/l	0	.083	0.049	Α
Aroclor 1254	ND		ug/l	0	.083	0.039	Α
Aroclor 1260	ND		ug/l	0	.083	0.032	Α
Aroclor 1262	ND		ug/l	0	.083	0.035	Α
Aroclor 1268	ND		ug/l	0	.083	0.034	Α
PCBs, Total	ND		ug/l	0	.083	0.032	Α

		Acceptance				
Surrogate	%Recovery Qualif	ier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	83	30-150	А			
Decachlorobiphenyl	103	30-150	Α			
2,4,5,6-Tetrachloro-m-xylene	85	30-150	В			
Decachlorobiphenyl	103	30-150	В			

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number: L1932869

Project Number: 18.8090

Report Date: 08/07/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ated sample(s):	08 Batch:	WG1265262-2	WG1265262-3	}			
Aroclor 1016	86		87		40-140	2		50	Α
Aroclor 1260	87		90		40-140	3		50	А

	LCS	LCSD	Acceptance
Surrogate	%Recovery 0	Qual %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	83	86	30-150 A
Decachlorobiphenyl	92	101	30-150 A
2,4,5,6-Tetrachloro-m-xylene	79	83	30-150 B
Decachlorobiphenyl	94	100	30-150 B

PESTICIDES

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: Report Date: 18.8090 08/07/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932869-08 07/23/19 15:45

Date Received: Client ID: 07/24/19 OUTFALL-001-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:**

07/27/19 03:56 Analytical Method: 1,8081B Analytical Date: 07/28/19 11:54

Analyst: **AMC**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/l	0.014	0.003	1	Α
Lindane	ND		ug/l	0.014	0.003	1	Α
Alpha-BHC	ND		ug/l	0.014	0.003	1	Α
Beta-BHC	ND		ug/l	0.014	0.004	1	Α
Heptachlor	ND		ug/l	0.014	0.002	1	Α
Aldrin	ND		ug/l	0.014	0.002	1	Α
Heptachlor epoxide	ND		ug/l	0.014	0.003	1	Α
Endrin	ND		ug/l	0.029	0.003	1	Α
Endrin aldehyde	ND		ug/l	0.029	0.006	1	Α
Endrin ketone	ND		ug/l	0.029	0.003	1	Α
Dieldrin	ND		ug/l	0.029	0.003	1	Α
4,4'-DDE	ND		ug/l	0.029	0.003	1	Α
4,4'-DDD	ND		ug/l	0.029	0.003	1	Α
4,4'-DDT	ND		ug/l	0.029	0.003	1	Α
Endosulfan I	ND		ug/l	0.014	0.002	1	Α
Endosulfan II	ND		ug/l	0.029	0.004	1	Α
Endosulfan sulfate	ND		ug/l	0.029	0.003	1	Α
Methoxychlor	ND		ug/l	0.143	0.005	1	Α
Toxaphene	ND		ug/l	0.143	0.045	1	Α
cis-Chlordane	ND		ug/l	0.014	0.005	1	Α
trans-Chlordane	ND		ug/l	0.014	0.004	1	Α
Chlordane	ND		ug/l	0.143	0.033	1	Α

Project Name: Lab Number: **HUDSON VALLEY REGIONAL AIRPORT** L1932869

Project Number: 18.8090 **Report Date:** 08/07/19

SAMPLE RESULTS

Lab ID: Date Collected: L1932869-08 07/23/19 15:45

Date Received: Client ID: 07/24/19 OUTFALL-001-W Sample Location: Field Prep: WAPPINGERS FALLS, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	51		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	54		30-150	В
Decachlorobiphenyl	66		30-150	В

L1932869

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number:

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3510C
Analytical Date: 07/27/19 23:50 Extraction Date: 07/27/19 02:24

Analyst: AMC

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides b	y GC - Westboroug	h Lab for	sample(s):	08 Batch	: WG1265260)-1
Delta-BHC	ND		ug/l	0.014	0.003	Α
Lindane	ND		ug/l	0.014	0.003	А
Alpha-BHC	ND		ug/l	0.014	0.003	Α
Beta-BHC	ND		ug/l	0.014	0.004	Α
Heptachlor	ND		ug/l	0.014	0.002	Α
Aldrin	ND		ug/l	0.014	0.002	Α
Heptachlor epoxide	ND		ug/l	0.014	0.003	Α
Endrin	ND		ug/l	0.029	0.003	Α
Endrin aldehyde	ND		ug/l	0.029	0.006	Α
Endrin ketone	ND		ug/l	0.029	0.003	Α
Dieldrin	ND		ug/l	0.029	0.003	Α
4,4'-DDE	ND		ug/l	0.029	0.003	Α
4,4'-DDD	ND		ug/l	0.029	0.003	Α
4,4'-DDT	ND		ug/l	0.029	0.003	Α
Endosulfan I	ND		ug/l	0.014	0.002	Α
Endosulfan II	ND		ug/l	0.029	0.004	Α
Endosulfan sulfate	ND		ug/l	0.029	0.003	Α
Methoxychlor	ND		ug/l	0.143	0.005	Α
Toxaphene	ND		ug/l	0.143	0.045	Α
cis-Chlordane	ND		ug/l	0.014	0.005	А
trans-Chlordane	ND		ug/l	0.014	0.004	Α
Chlordane	ND		ug/l	0.143	0.033	Α

Project Name: HUDSON VALLEY REGIONAL AIRPORT Lab Number: L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3510C
Analytical Date: 07/27/19 23:50 Extraction Date: 07/27/19 02:24

Analyst: AMC

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
Organochlorine Pesticides by GC -	Westboroug	ah Lab for s	ample(s):	08	Batch:	WG1265260	-1

		Acceptano	ce
Surrogate	%Recovery Quality	lier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66	30-150	Α
Decachlorobiphenyl	86	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	67	30-150	В
Decachlorobiphenyl	87	30-150	В

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westborou	ugh Lab Assoc	ciated sample(s)	: 08 Batch:	WG1265260-2	2 WG1265260-3				
Delta-BHC	73		69		30-150	5		20	Α
Lindane	70		68		30-150	2		20	А
Alpha-BHC	73		73		30-150	1		20	А
Beta-BHC	65		64		30-150	1		20	А
Heptachlor	57		54		30-150	6		20	А
Aldrin	69		62		30-150	10		20	А
Heptachlor epoxide	72		70		30-150	2		20	А
Endrin	73		69		30-150	6		20	А
Endrin aldehyde	65		64		30-150	1		20	А
Endrin ketone	72		70		30-150	3		20	А
Dieldrin	75		73		30-150	3		20	А
4,4'-DDE	74		71		30-150	4		20	А
4,4'-DDD	69		67		30-150	4		20	А
4,4'-DDT	69		66		30-150	4		20	А
Endosulfan I	67		65		30-150	3		20	А
Endosulfan II	69		66		30-150	4		20	А
Endosulfan sulfate	71		68		30-150	5		20	А
Methoxychlor	61		59		30-150	3		20	Α
cis-Chlordane	65		62		30-150	4		20	Α
trans-Chlordane	68		64		30-150	6		20	Α

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090 Lab Number:

Report Date:

L1932869 08/07/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 08 Batch: WG1265260-2 WG1265260-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67	59	30-150 A
Decachlorobiphenyl	82	71	30-150 A
2,4,5,6-Tetrachloro-m-xylene	66	56	30-150 B
Decachlorobiphenyl	79	68	30-150 B

METALS

Project Name: Lab Number: HUDSON VALLEY REGIONAL AIRPORT

18.8090

Report Date:

L1932869

08/07/19

Project Number:

SAMPLE RESULTS

L1932869-08

Date Collected:

07/23/19 15:45

Client ID:

Lab ID:

OUTFALL-001-W

Date Received:

07/24/19

Sample Location:

WAPPINGERS FALLS, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Antimony, Total	0.016	J	mg/l	0.050	0.007	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Barium, Total	0.029		mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Beryllium, Total	ND		mg/l	0.005	0.001	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Cadmium, Total	ND		mg/l	0.005	0.001	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Calcium, Total	44.1		mg/l	0.100	0.035	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Chromium, Total	ND		mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Cobalt, Total	ND		mg/l	0.020	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Copper, Total	ND		mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Iron, Total	0.588		mg/l	0.050	0.009	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Lead, Total	ND		mg/l	0.010	0.003	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Magnesium, Total	10.3		mg/l	0.100	0.015	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Manganese, Total	0.712		mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/29/19 13:00	07/29/19 19:30	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.025	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Potassium, Total	2.40	J	mg/l	2.50	0.237	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Selenium, Total	ND		mg/l	0.010	0.004	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Silver, Total	ND		mg/l	0.007	0.003	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Sodium, Total	81.3		mg/l	2.00	0.120	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Thallium, Total	ND		mg/l	0.020	0.003	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Vanadium, Total	ND		mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	AB
Zinc, Total	0.002	J	mg/l	0.050	0.002	1	07/26/19 12:24	07/29/19 21:57	EPA 3005A	1,6010D	АВ

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Lab Number:

L1932869

Project Number: 18.8090

Report Date:

08/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	ld Lab for sample(s):	08 Batcl	n: WG12	264989- ⁻	1				
Aluminum, Total	ND	mg/l	0.100	0.032	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Antimony, Total	ND	mg/l	0.050	0.007	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Arsenic, Total	ND	mg/l	0.005	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Barium, Total	ND	mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Beryllium, Total	ND	mg/l	0.005	0.001	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Cadmium, Total	ND	mg/l	0.005	0.001	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Calcium, Total	ND	mg/l	0.100	0.035	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Chromium, Total	ND	mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Cobalt, Total	ND	mg/l	0.020	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Copper, Total	ND	mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Iron, Total	ND	mg/l	0.050	0.009	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Lead, Total	ND	mg/l	0.010	0.003	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Magnesium, Total	ND	mg/l	0.100	0.015	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Manganese, Total	ND	mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Nickel, Total	ND	mg/l	0.025	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Potassium, Total	ND	mg/l	2.50	0.237	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Selenium, Total	ND	mg/l	0.010	0.004	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Silver, Total	ND	mg/l	0.007	0.003	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Sodium, Total	ND	mg/l	2.00	0.120	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Thallium, Total	ND	mg/l	0.020	0.003	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Vanadium, Total	ND	mg/l	0.010	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB
Zinc, Total	ND	mg/l	0.050	0.002	1	07/26/19 12:24	07/29/19 21:48	1,6010D	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	field Lab for sample(s):	08 Batc	h: WG12	265802-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	9 1	07/29/19 13:00	07/29/19 19:02	1,7470A	EA

Project Name: HUDSON VALLEY REGIONAL AIRPORT **Lab Number:** L1932869

Project Number: 18.8090 Report Date: 08/07/19

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 08 Batch:	WG1264989-2				
Aluminum, Total	102	-	80-120	-		
Antimony, Total	90	-	80-120	-		
Arsenic, Total	116	-	80-120	-		
Barium, Total	100	-	80-120	-		
Beryllium, Total	103	-	80-120	-		
Cadmium, Total	109	-	80-120	-		
Calcium, Total	100	-	80-120	-		
Chromium, Total	100	-	80-120	-		
Cobalt, Total	102	-	80-120	-		
Copper, Total	99	-	80-120	-		
Iron, Total	106	-	80-120	-		
Lead, Total	109	-	80-120	-		
Magnesium, Total	108	-	80-120	-		
Manganese, Total	98	-	80-120	-		
Nickel, Total	102	-	80-120	-		
Potassium, Total	103	-	80-120	-		
Selenium, Total	113	-	80-120	-		
Silver, Total	101	-	80-120	-		
Sodium, Total	101	-	80-120	-		
Thallium, Total	108	-	80-120	-		
Vanadium, Total	103	-	80-120	-		

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sar	mple(s): 08 Batch: WG12	264989-2			
Zinc, Total	107	-	80-120	-	
Total Metals - Mansfield Lab Associated sar	mple(s): 08 Batch: WG12	265802-2			
Mercury, Total	97	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number: L1932869

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sar	nple(s): 08	QC Batch	ID: WG126498	9-3 (QC Sample:	: L1932869-08	Clien	t ID: OUTF	ALL-00	1-W	
Aluminum, Total	ND	2	2.08	104		-	-		75-125	-		20
Antimony, Total	0.016J	0.5	0.519	104		-	-		75-125	-		20
Arsenic, Total	0.003J	0.12	0.142	118		-	-		75-125	-		20
Barium, Total	0.029	2	2.00	98		-	-		75-125	-		20
Beryllium, Total	ND	0.05	0.050	100		-	-		75-125	-		20
Cadmium, Total	ND	0.051	0.055	107		-	-		75-125	-		20
Calcium, Total	44.1	10	55.5	114		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.199	100		-	-		75-125	-		20
Cobalt, Total	ND	0.5	0.492	98		-	-		75-125	-		20
Copper, Total	ND	0.25	0.257	103		-	-		75-125	-		20
Iron, Total	0.588	1	1.66	107		-	-		75-125	-		20
Lead, Total	ND	0.51	0.524	103		-	-		75-125	-		20
Magnesium, Total	10.3	10	20.3	100		-	-		75-125	-		20
Manganese, Total	0.712	0.5	1.21	100		-	-		75-125	-		20
Nickel, Total	ND	0.5	0.490	98		-	-		75-125	-		20
Potassium, Total	2.40J	10	13.0	130	Q	-	-		75-125	-		20
Selenium, Total	ND	0.12	0.138	115		-	-		75-125	-		20
Silver, Total	ND	0.05	0.053	105		-	-		75-125	-		20
Sodium, Total	81.3	10	98.0	167	Q	-	-		75-125	-		20
Thallium, Total	ND	0.12	0.119	99		-	-		75-125	-		20
Vanadium, Total	ND	0.5	0.515	103		-	-		75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Lab Number:

L1932869

Report Date:

08/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	/ RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 08	QC Batch I	D: WG1264989-3	QC Sample:	L1932869-08	Client ID: OUT	FALL-001-W	•
Zinc, Total	0.002J	0.5	0.531	106	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 08	QC Batch I	D: WG1265802-3	WG1265802-4	QC Sample:	L1932554-02	Client ID: MS	S Sample
Mercury, Total	ND	0.005	0.00470	94	0.00476	95	75-125	1	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HUDSON VALLEY REGIONAL AIRPORT

Project Number: 18.8090

Quality ControlLab Number:L1932869Report Date:08/07/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 08	QC Batch ID: WG126498	9-4 QC Sample:	L1932869-08	Client ID: C	OUTFALL-001-W
Aluminum, Total	ND	ND	mg/l	NC	20
Antimony, Total	0.016J	0.008J	mg/l	NC	20
Arsenic, Total	0.003J	0.003J	mg/l	NC	20
Barium, Total	0.029	0.029	mg/l	0	20
Beryllium, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Calcium, Total	44.1	43.5	mg/l	1	20
Chromium, Total	ND	ND	mg/l	NC	20
Cobalt, Total	ND	ND	mg/l	NC	20
Copper, Total	ND	ND	mg/l	NC	20
Iron, Total	0.588	0.585	mg/l	1	20
Lead, Total	ND	ND	mg/l	NC	20
Magnesium, Total	10.3	10.1	mg/l	2	20
Manganese, Total	0.712	0.708	mg/l	1	20
Nickel, Total	ND	ND	mg/l	NC	20
Potassium, Total	2.40J	2.41J	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Sodium, Total	81.3	81.0	mg/l	0	20

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1932869

Project Number: 18.8090

Project Name:

HUDSON VALLEY REGIONAL AIRPORT

08/07/19 Report Date:

Parameter	Native Sample Du	plicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 08	QC Batch ID: WG1264989-4	QC Sample:	L1932869-08	Client ID: OU	TFALL-001-W
Thallium, Total	ND	ND	mg/l	NC	20
Vanadium, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.002J	ND	mg/l	NC	20

