

ORANGE COUNTY LANDFILL ROUTE 17M, GOSHEN, NEW YORK (NYSDEC SITE NO. 336007)

SEEP MITIGATION PLAN & ENGINEERING REPORT

Prepared for:

Orange County Department of Public Works
Division of Environmental Facilities and Services
P.O. Box 637
2455-2459 Route 17M
Goshen, New York 10924

Prepared by:

Sterling Environmental Engineering, P.C. 24 Wade Road
Latham, New York 12110

October 31, 2014

"Serving our clients and the environment since 1993"

October 31, 2014

Mr. Bradford Shaw, P.E.
NYS Department of Environmental Conservation
RCRA Permitting Section
Division of Environmental Remediation
Remedial Bureau E, 12th Floor
625 Broadway
Albany, New York 12233-7017

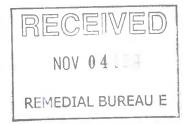
Dolores A. Tuohy, Esq. NYS Department of Environmental Conservation Office of General Counsel 625 Broadway Albany, New York 12233-1500

Ms. Krista Anders
NYS Department of Health
Bureau of Environmental Exposure Investigation
Empire State Plaza
Corning Tower Room 1787
Albany, New York 12237

Subject:

Seep Mitigation Plan & Engineering Report

Orange County Landfill NYSDEC Site No. 336007


STERLING File #2010-15 (Task 313)

Transmitted herewith is the comprehensive Seep Mitigation Plan & Engineering Report. This document is intended to be in full satisfaction of Paragraphs II. B and C of the proposed Order on Consent.

With respect to Paragraph II. D. of the proposed Order on Consent, sediment sampling was not previously discussed and is outside the scope of the December 18, 2013 Work Plan approved by the NYSDEC. Substances of concern with the target seeps have been identified and thoroughly evaluated in the Seep Mitigation Plan & Engineering Report.

We believe sediment sampling of the canal and canal banks is unnecessary. The canal is subject to frequent and significant flooding. Flood deposition and river silt are clearly evident on the canal banks and seep locations. Sediment sampling will be meaningless in terms of characterizing the seeps as the sediments and soils at the seep locations will be strongly influenced by the significant flood deposition on the canal banks. Further, as a practical matter, the Cheechunk Canal is under consideration for dredging as part of a regional flood control project. Future dredging will include sediment characterization in accordance with the permit to dredge.

Via Email (<u>brad.shaw@dec.ny.gov</u>)

"Serving our clients and the environment since 1993"

We are available to discuss the Seep Mitigation Plan & Engineering Report and are prepared to address NYSDEC questions and comments. Upon approval of the plan, Orange County is prepared to:

- Immediately effectuate the expedited remediation of current seeps to protect the seeps, soils and sediments from erosion. This work will proceed immediately by Orange County Department of Public Works manpower and equipment.
- Proceed with completion of the Plans, Specifications and Contract Documents for the construction and implementation of the groundwater recovery and treatment as set forth in Section 5.0 of the Plan. A detailed implementation schedule is set forth in Section 6.3 of the Plan.

Please contact me should you have questions.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President

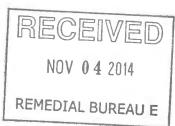
mark.millspaugh@sterlingenvironmental.com

MPM/bc Email/First Class Mail Enclosure (Seep Mitigation Plan & Engineering Report)

cc: Peter S. Hammond, Orange County (phammond@co.orange.ny.us)
Joseph F. Mahoney Esq. (JJMahoney@orangecountygov.com)

S: Sterling Projects 2010 Projects Orange County - 2010-15 Correspondence NYSDEC Seep Mitigation Plan & Engineering Report_Itr.docx

ORANGE COUNTY LANDFILL ROUTE 17M, GOSHEN, NEW YORK (NYSDEC SITE NO. 336007)


SEEP MITIGATION PLAN & ENGINEERING REPORT

Prepared for:

Orange County Department of Public Works
Division of Environmental Facilities and Services
P.O. Box 637
2455-2459 Route 17M
Goshen, New York 10924

Prepared by:

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

October 31, 2014
"Serving our clients and the environment since 1993"

ORANGE COUNTY LANDFILL ROUTE 17M, GOSHEN, NEW YORK (NYSDEC SITE NO. 336007)

SEEP MITIGATION PLAN & ENGINEERING REPORT

Table of Contents

		Page
CERT	TIFICATION	iv
1.0	INTRODUCTION	1
1.0	1.1 Background Information	1
	1.2 Cheechunk Canal	1
	1.3 Landfill Conceptual Model	2
	1.4 Groundwater Seeps	3
	1.5 Site Management Plan (SMP)	5
2.0	LANDFILL ENVIRONMENTAL MONITORING PROGR	AM 6
	2.1 General Landfill Seep Characteristics	8
3.0	SEEP INVESTIGATION AND RESPONSE	9
	3.1 Initial Response	9
	3.2 Leachate Collection System Investigation	9
	3.3 Overburden Piezometer	9
	3.3.1 Installation	10
	3.3.2 Site Stratigraphy	10
	3.3.3 Aquifer Characterization	11
	3.3.4 Sampling	13 16
	3.4 Investigation Findings and Results	16
4.0	MITIGATION ALTERNATIVES	17
	4.1 Canal Bank Erosion Control	17
	4.2 Focused Groundwater Collection and Treatment	17
	4.2.1 Groundwater Extraction	17
	4.2.2 Groundwater Treatment	17
	4.2.3 Treatability Evaluation	18 19
	4.3 Seep Source Collection	19
	4.4 Containment	19
	4.5 In-Situ Groundwater Treatment	19
	4.5.1 Chemical Injection	19
	4.5.2 Permeable Reactive Zone	20
	4.6 Evaluation of Alternatives	20
	4.6.1 Implementability 4.6.2 Effectiveness	20
	4.6.3 Permanence	21
	4.6.4 Cost	21
	4.6.5 Preferred Alternative	21
	4.6.5 Preferred Atternative	
5.0	SEEP MITIGATION PLAN	22
	5.1 Selected Mitigation Alternative	22
Orang	ge County Landfill, NYSDEC Site No. 336007, Orange County, NY Mitigation Plan / Engineering Report – 10/31/2014	Page i #2010-1
Seep	14, Sterling Environmental Engineering, P.C.	

	5.2 5.3 5.4 5.5	Canal Bank Erosion Control Groundwater Collection System Groundwater Treatment Groundwater Conveyance System/Performance Effectiveness Monitoring 5.5.1 Ongoing Environmental Monitoring Program		
6.0	CONST 6.1 6.2 6.3 6.4	Construction Documents Construction Procurement Construction Sequence Startup		
7.0	OPERA 7.1 7.2	ATION AND MAINTENANCE PLAN Operation Maintenance 7.2.1 Canal Banks 7.2.2 Pumps 7.2.3 Recovery Wells 7.2.4 Forcemain 7.2.5 Storage Tank 7.2.6 Treatment System		
		<u>Tables</u>		
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7		Summary of Site Stratigraphy Summary of Surveyed Elevations and Select Water Level Measurements Summary of Field Parameter Measurements (October 6, 2014) Summary of Analytical Results (October 2014) Summary of Historical Analytical Results - Seeps (2012 - 2014) Summary of Historical Analytical Results - Surface Water (2012 - 2014) Evaluation of Mitigation Alternatives		
		<u>Figures</u>		
Figure 2 Figure 3 Figure 3 Figure 3 Figure 3 Figure 4 Figure 5 Figure 5 Figure 5 Figure 1 Figure 1	2 3 4 5A 5B 5C 5C 6 7 8	Site Location Map Site Vicinity Map Post-Closure Monitoring Network Map (2014) Geologic Cross Section A - A' Overburden Groundwater Contour Map (March 18, 2014) Overburden Groundwater Contour Map (September 9, 2014) Overburden Groundwater Contour Map (October 6, 2014) Sample & Seep Location Map October 2014 Sample Location Map 2012, 2013, & 2014 Groundwater / Seep / Surface Water Exceedances Map Seep Mitigation Plan Seep Mitigation Details Wetland Treatment System		

Appendices

	120 Personal
Appendix A	Wallkill River Flood Mitigation Plan Black Dirt Region, Orange County, NY dated August 16, 2013.
Appendix B	STERLING, August 17, 2012, Orange County Landfill - Cheechunk Canal Seep Sampling Work Plan & STERLING, September 20, 2012, Orange County Landfill - Cheechunk Canal Seep Sampling Results.
Appendix C	NYSDEC, August 24, 2012, Region 3/Solid Waste Program, Solid Waste Management Facility Site Visit Report (August 22, 2012) - Orange County Landfill, Town of Goshen, Orange County.
Appendix D	STERLING, October 19, 2012, Orange County Landfill - Work Plan to Evaluate Leachate Collection System.
Appendix E	August 21, 2013 Cheechunk Canal Seep Sampling Analytical Results
Appendix F	STERLING, December 18, 2013, Orange County Landfill - Cheechunk Canal / Landfill Stability and Seep Evaluation.
Appendix G	STERLING, April 4, 2014, Orange County Landfill - Cheechunk Canal / Landfill Seep Evaluation Results.
Appendix H	STERLING, October 20, 2014, Orange County Landfill - Cheechunk Canal / Landfill Seep Evaluation, Pre-Construction Notification to USACOE.
Appendix I	June 12, 2014 Analytical Results
Annendix I	October 6, 2014 Analytical Results

Appendix J October 6, 2014 Analytical Results

Appendix K References

CERTIFICATION

I, Mark P. Millspaugh, P.E., certify that I am currently a New York State registered professional engineer and that this Seep Mitigation Plan & Engineering Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Mark P. Millspaugh, P.E.

10/31/14 Date

2010-15\Report\OCLF Seep Mitigation Plan_toc.docx

1.0 INTRODUCTION

The Orange County Landfill (Landfill), located in the Town of Goshen, Orange County, New York (the County) is registered as a Class 2 Inactive Hazardous Waste Disposal Site, Registry No. 336007 by the New York State Department of Environmental Conservation (NYSDEC). The Landfill was previously remediated subject to the NYSDEC's oversight and approval. A Site Location Map is provided as Figure 1

The monitoring and maintenance program for the Landfill is described in the NYSDEC approved Site Management Plan (SMP), dated June 6, 2014. The County is entering into a Consent Order with the NYSDEC to mitigate landfill impacted seeps observed offsite along the banks of the Cheechunk Canal downgradient from the Landfill on land owned by New York State. This Seep Mitigation Plan & Engineering Report is prepared as required by the anticipated Consent Order and the approved SMP.

1.1 Background Information

The Landfill footprint totals approximately 75-acres within a 300-acre parcel approximately three (3) miles west of the Village of Goshen, west of NYS Route 17M. The property is bounded by the Cheechunk Canal to the southeast and by the old channel of the Wallkill River to the northwest and southwest. The New Hampton Transfer Station is located on the northeast portion of the 300-acre parcel. Property features are present on the aerial photograph presented as Figure 2.

The Orange County Department of Public Works operated the Landfill between 1974 and January 1992. In March 1992, the Landfill was classified by the NYSDEC as a "Class 2" Inactive Hazardous Waste Disposal Site, indicating "a site which the disposal of hazardous waste constitutes a threat to human health or environment". The "threat" was the possibility of the contamination of a principal aquifer underlying the site. The Record of Decision (ROD) dated January 28, 1994 addressed the immediate capping of the wastemass, Operable Unit No. 2, as a means of source control. A perimeter leachate collection system and surface water runoff collection system were installed in November 1995, prior to the capping of the Landfill. Construction of the Landfill cap was completed in November 1995. The final cap directed surface water runoff to onsite recharge/settling basins, eventually discharging into the Wallkill River and Cheechunk Canal. Leachate collected by the perimeter leachate collection system is pumped into leachate tanks and transported offsite for treatment and disposal at permitted wastewater treatment plant (WWTP) facilities.

The March 26, 1998 ROD was issued from the results of the Remedial Investigation/Feasibility Study in 1996 and called for the continued operation and monitoring of the leachate collection system, leachate disposal and continued environmental monitoring of the site, Operable Unit 01, as a whole.

1.2 Cheechunk Canal

The Cheechunk Canal is prone to significant seasonal flooding. The Orange County Soil and Water Conservation District is undertaking a study entitled "Wallkill River Flood Mitigation Implementation Plan Black Dirt Region Orange County, NY". The study area includes the Cheechunk Canal proximate to the Orange County Landfill. The August 16, 2013 "Summary of Further Investigations Regarding Flood Mitigation Study Areas" (provided in Appendix A) includes important observations regarding the Landfill and its relationship to the canal. The study is also evaluating the merits of dredging the canal to aid in flood mitigation.

Flooding at the Landfill site often extends above the tree line at the toe of the mowed slope to the south and east of the wastemass. The flooding condition shown below occurred in September 2011 followed heavy precipitation due to Hurricane Storm Irene.

The summary further notes that with respect to the relationship of the Landfill to the canal, there is "no evidence or data that would support the theory that the current configuration impedes flow". The Landfill limit of waste and the limit of the final cover system are no closer than 125 feet from the normal waterline of the canal.

1.3 Landfill Conceptual Model

The physical characterization, nature and extent of contamination, and contaminant fate and transport have been extensively studied at the unlined landfill since the early 1980's. The distribution and character of geologic materials, occurrence of groundwater, and overall water quality has been well documented since 1987. The conceptual model is as follows:

- Six (6) discrete overburden units exist in the vicinity of the landfill and consist of recent alluvial deposits, highly permeable glaciofluvial deposits, moderate to lowly permeable glaciolacustrine units, moderately permeable glaciolacustrine fine sand deposits, and low to moderately permeable glacial till (Wehran, 1984).
- The Wappinger Group dolostone and Martinsburg Formation shale underlie the glacial deposits at the site (Wehran, 1984).
- Groundwater on the site is unconfined and/or confined conditions.
- Three hydrostratigraphic units have been identified: glaciolacustrine silt and clay, glaciofluvial sand and gravel or glaciolacustrine fine sand, and bedrock. The refuse mass lies over the low permeability glaciolacustrine silt and clay deposits at the site. In areas where the glaciolacustrine

silt and clay is significantly thick it acts as a confining layer for the underlying glaciofluvial sand and gravel aquifer and where this glacial unit is thin or non-existent the sand and gravel aquifer is under unconfined conditions. The bedrock hydrogeologic unit is considered a confined aquifer system.

- The shallow overburden groundwater moves generally in a west-to-east flow direction.
- Groundwater analytical results, collected from post-closure monitoring over two (2) decades
 have consistently documented that the groundwater near the landfill is characterized by elevated
 concentrations of Total Dissolved Solids (TDS), iron and manganese and occasional exceedances
 of drinking water standards for magnesium, ammonia, chloride, phenolics, arsenic, chromium,
 lead, selenium, and sodium.
- Historical surface water quality data has documented that local surface waters are not significantly influenced by the Orange County Landfill.
- Leachate, collected by the perimeter leachate collection system, has reported detectable to elevated concentrations of typical landfill leachate constituents including Total Organic Carbon (TOC), alkalinity, ammonia, Biochemical Oxygen Demand (BOD), chloride, chemical oxygen demand (COD), nitrate, hardness, Total Kjeldahl Nitrogen (TKN), TDS, phenolics, sulfate, arsenic, barium, boron, calcium, chromium, copper, iron, magnesium, manganese, nickel, potassium, sodium, and zinc during post-closure monitoring events.
- Monthly post-closure landfill site inspections have documented that the integrity of the landfill
 cap, drainage structures, leachate collection system, gas venting system and monitoring well
 network to be in good condition.

1.4 Groundwater Seeps

Offsite groundwater seeps have been observed at various locations along the northern and southern banks of the Cheechunk Canal. Seeps are formed when the groundwater table intersects the ground surface. The Cheechunk Canal was reportedly originally constructed in 1824 to drain the upstream portion of the Wallkill River, because valley farmers wanted to create a landscape more suitable for agriculture from the unproductive, swampy area known as the "drowned lands" and to address flooding of the Wallkill River. More recently, the Cheechunk Canal has been dredged by the United States Army Corps of Engineers (USACE) with dredge spoils sidecast onto the canal banks. Some portions of the canal bank were previously armored with rip-rap. Other areas lack any protection from erosion and flooding. In some areas that lack armoring, seeps are evident. Many of the seeps on both sides of the canal are red stained due to naturally occurring oxidized iron. In fact, the prevalent soils of Orange County are derived from glacial till or glaciolacustrine deposits, which are known to contain iron, and red stained groundwater seeps are commonplace.

In 2012, NYSDEC received citizen complaints that seeps were observed immediately downstream of the Landfill. It should be noted that the canal is reportedly owned by New York State. Due to the canal's proximity to the Landfill, the NYSDEC notified Orange County that the seeps may indicate the Landfill perimeter leachate collection system is not functioning properly. The County immediately responded, and has continued to respond, as follows:

 July 16, 2012 - NYSDEC notifies County to prepare a work plan for the sampling, analysis, and assessment of the seeps.

- August 16, 2012 Orange County met with the NYSDEC at the Landfill to inspect the seeps and select sampling locations.
- August 22, 2012 Orange County met with the NYSDEC at the Landfill to inspect the seeps.
 The inspection included canoeing the stretch of the canal along the entire length of the canal
 adjacent to the Landfill. Samples of seeps were collected for laboratory analysis. Notes,
 photographs, and data generated by this inspection were submitted to the NYSDEC on September
 20, 2012 (Appendix B). A NYSDEC Solid Waste Management Facility Site Visit Report, dated
 August 24, 2012 is provided in Appendix C.
- October 19, 2012 Orange County provides a Work Plan for investigation of the perimeter leachate collection system (Appendix D).
- April 11, 2013 and August 19, 2013 Orange County proceeded with investigation of the leachate collection system (LCS) including cleaning and internal video inspection by Closed Circuit Television (CCTV). Mr. Carl Hoffman of the NYSDEC observed the field investigation on April 11, 2013. The findings are described in Section 3.2 below.
- August 21, 2013 Samples of seeps were collected for laboratory analysis. Laboratory analytical results are provided in Appendix E.
- December 13, 2013 Orange County submits a Draft Site Management Plan to NYSDEC.
- December 18, 2013 —Orange County provides a Work Plan to install piezometers between the Landfill and Canal to understand the subsurface conditions and piezometry immediately upgradient of the seeps exhibiting elevated ammonia. A copy of the Work Plan is provided as Appendix F. The Work Plan was approved by the NYSDEC on December 31, 2013.
- February 19 and 20, 2014 Following NYSDEC approval of the Work Plan, six (6) overburden piezometers were installed. A comprehensive letter report summarizing the findings of the piezometer installations is provided as Appendix G.
- June 12, 2014 Orange County collected samples of the seeps and surface water for laboratory analysis.
- October 6 and 8, 2014 Orange County conducted sampling of the overburden groundwater, seeps in accordance with the approved Work Plan. The purpose of monitoring was to understand seasonal fluctuations in groundwater elevation and water quality as the foundation to developing a seep mitigation plan.
- October 20, 2014 Based upon agreements reached at the September 22, 2014 meeting with NYSDEC, Orange County proceeded with steps to immediately address the seeps (see correspondence provided in Appendix H) and a Pre-Construction Notification was submitted to the USACOE.

1.5 Site Management Plan (SMP)

The approved Site Management Plan (SMP) provides the recommended scope of work to continuously monitor the major components of the selected remedy for the Landfill as provided in the NYSDEC Division of Remediation RODs dated January 28, 1994 for Operable Unit No. 2 and March 26, 1998 for Operable Unit 01 as outlined below:

- · Landfill cap;
- Groundwater monitoring wells;
- Leachate collection system;
- Surface water drainage channels;
- Air quality;
- · Property deed restrictions;
- · Post-closure monitoring and maintenance; and
- Contingency plans to protect nearby residents.

The SMP sets forth contingency measures for potential problems associated with groundwater and surface water contamination. If conditions indicative of leachate outbreaks, such as wet spots, dead vegetation, surface sloughing or discoloration are observed during the inspection, the SMP requires further investigation to evaluate the condition and determine the appropriate corrective action.

The condition must be reported to the NYSDEC and an investigation plan must be developed to determine the cause and extent of the observed condition. The investigation plan may include, but is not necessarily limited to, test pit excavations or other appropriate subsurface investigation methods. A remedial action plan must then be developed to address the condition.

If significant offsite migration of surface or groundwater contamination is determined to be occurring, then the potential threat to human health or the environment must be assessed. Factors contributing to this assessment include, but are not limited to:

- Proximity of downgradient groundwater users.
- Distance to environmentally sensitive surface waters or wetlands.
- Evidence of environmental damage, including stressed vegetation, abnormal algal growth, and abnormally high number of fish deaths.
- Deterioration of surface or groundwater quality.

This Seep Mitigation Plan & Engineering Report is prepared as a contingency response, as required by the SMP.

2.0 LANDFILL ENVIRONMENTAL MONITORING PROGRAM

The Landfill and surroundings have been extensively investigated. There are a total of thirty three (33) monitoring wells, which have been monitored regularly since 1990, based on the Long Term Post-Closure Monitoring Program. The NYSDEC approved Closure Plan as modified by the December 23, 2003 post-closure monitoring variance request established the monitoring well network (twenty one (21) monitoring wells and three (3) piezometers), four (4) surface water monitoring locations, and two (2) leachate manhole collections for the Landfill. This Variance Request, approved by the NYSDEC in December 2002, reduced the frequency of monitoring at the landfill to every fifth quarter for 6 NYCRR Part 360 Baseline Parameters.

The data collected from these wells and other monitoring points provide the foundation for the conceptual model and understanding of the Landfill's relationship to the underlying groundwater systems. Environmental monitoring data generated over the last two (2) decades provide a clear understanding of the Landfill's impact upon groundwater quality. The data shows that Landfill related chemistry, such as ammonia, TDS, phenolics, arsenic, iron, etc., are stable with little fluctuation in reported parameter concentrations. Further, the reported horizontal and vertical distribution of the Landfill constituents in groundwater have remained consistent over time. Recent (2013) results from upgradient monitoring wells (MW-230S and MW-230D), downgradient monitoring wells (PZ-4, MW-3B, MW-220, MW-245S and MW-245D), seeps (2012 through 2014), and the downstream surface water sampling location (SW-8) show a completely different geochemical profile compared to the leachate results, as depicted below:

Parameter	Leachate	Upgradient GW	Downgradient GW	Seep	Downstream SW
Ammonia	47 to 560	0.079 to 0.08	0.039 to 9.0	6.3 to 40	non-detect to 0.221
TDS	800 to 3,900	162 to 330	590 to 820	660 to 830	190 to 428
Phenolics	non-detect to 0.024	non-detect	non-detect to 0.0087	non-detect to 0.0054 J	non-detect to
Arsenic	0.022 to 0.26	non-detect to	non-detect to 0.056	0.029 to 0.12	non-detect to 0.014
Iron	15 to 1,100	0.5 to 1.1	1.0 to 6.3	3.2 to 13	0.34 to 3.13
Manganese	0.031 to 0.089	0.13 to 0.47	0.45 to 1.9	0.28 to 1.8	0.052 to 0.28

Source: Cornerstone, 2013 and Sterling, 2012/2013/2014.

All results are expressed in mg/L.

Based on this understanding, Orange County recommended a modification to the currently approved long term monitoring program on December 13, 2013 as considerable data had been generated for decades and the environmental conditions at the site are well understood. In recognition of this, the modified long term monitoring program was approved by the NYSDEC in 2014.

As set forth in the approved SMP, dated June 6, 2014, the approved post-closure environmental monitoring program at the Landfill consists of the collection and analysis of groundwater, surface water and leachate samples and the performance of explosive gas monitoring. Post-closure monitoring has been conducted since 1998. In addition, the monitoring program includes inspections of the Landfill to

observe general conditions, oversee and inspect operation and maintenance activities, and to handle non-routine site issues, such as damage to the Landfill cover system.

Groundwater, surface water and leachate monitoring currently consists of annual sampling of seven (7) groundwater monitoring wells, three (3) surface water locations, and two (2) leachate manholes for 6 NYCRR Part 360-2.11 (effective date December 31, 1988) Baseline Parameters. The monitoring wells consist of an upgradient well pair (two hydrogeologic units: overburden sand and gravel and upper bedrock) and five downgradient monitoring wells located south of the Landfill and north of the Cheechunk Canal. The three surface water sample locations are collected from the Cheechunk Canal south of the Landfill while Leachate samples will continue to be collected from two (2) manholes along the perimeter of the Landfill. In addition, groundwater elevations from twenty-eight (28) monitoring wells are recorded during each monitoring event. Figure 3 shows the post-closure monitoring locations.

In addition, the Institutional and Engineering Control (IC/EC) Plan also outlines steps necessary to manage and implement the controls for the Landfill property and to evaluate such controls for annual certification consistent with the requirements of the ROD, dated March 1998, and NYSDEC DER-10.

The ECs for the Landfill to control the source of contamination and the generation of contaminated leachate include:

- Maintenance of the Landfill cover system that includes layers of fill material, gas venting system and an impermeable membrane.
- Maintenance of groundwater monitoring wells. The groundwater monitoring wells are regularly sampled to observe groundwater quality at the Landfill. The groundwater monitoring wells are located upgradient, downgradient, and cross-gradient of the Landfill. The monitoring wells range between 10 and 88 feet deep and are installed in sand and gravel or bedrock (see Figure 3 for locations).
- Operation and maintenance of ongoing leachate collection of leachate for offsite treatment.
 Leachate collected by the perimeter trench system flows by gravity to sumps. From these
 manhole sumps, leachate is pumped into aboveground storage tanks (ASTs) for subsequent
 removal and transportation to an offsite permitted wastewater treatment plant.
- Maintenance of surface water drainage swales and erosion control features to collect and divert surface water runoff downgradient of sections of the impermeable membrane installed on the Landfill slopes. Terraces and downchutes have been established on both the Landfill footprint and the immediate land surrounding the Landfill for the prevention of standing water on the Landfill footprint and any damage to the Landfill cover system. These surface water features divert excess surface waters away from the Landfill wastemass.
- Site inspections of the final cover system, including inspections for leachate outbreaks, settlement, erosion and insufficient vegetation continue to be completed monthly by Orange County personnel.

2.1 General Landfill Seep Characteristics

The phenomena of groundwater seeps at old, unlined municipal waste landfills have been studied and much has been learned regarding the fate and transport of principal landfill parameters of concern namely iron, manganese, arsenic and ammonia. Research by the NYSDEC staff is at the forefront of the understanding of unlined landfills and their impact on the environment.

It is important to appreciate that red-stained groundwater seeps are commonplace in Orange County. Dissolved iron in groundwater rapidly forms an iron oxide precipitate when groundwater daylights. Iron seeps are common at landfill sites throughout New York due to the release of iron from waste decomposition and the reducing environment of the groundwater impacted by landfill releases. A reducing environment causes more naturally occurring iron and other metals, such as arsenic, to be dissolved from the soils underlying old landfills.

Readers of this landfill Seep Mitigation Plan are strongly encouraged to review the various studies and research into how unlined landfills behave and the typical makeup of groundwater influenced by unlined landfills.^{1,2}

One published study of environmental monitoring data from 42 unlined landfills in New York provides a statistical analysis of groundwater impacts by typical landfill indicator constituents.

At the most affected seep the concentrations of key indicator parameters are as follows:

Parameter of Interest	Reported Range
Ammonia	6.3 - 40 mg/L
Arsenic	0.048 - 0.12 mg/L
Iron	3.2 - 13 mg/L
Manganese	0.28 - 1.8 mg/L

For these same parameters the evaluation of 42 unlined landfills indicates the following:

Parameter of Interest	Reported Range
Ammonia	ND - 200 mg/L
Arsenic	ND – 15.5 mg/L
Iron	ND - 1,330 mg/L
Manganese	ND - 81 mg/L

Clearly, in comparison with the 42 unlined landfills subject to the study, the Orange County Landfill seeps show an impact within the range typically encountered and well below the maximum range experiences within the State.

Further, the seep data shows no presence of volatile organic compounds (VOCs), petroleum constituents or heavy metals that can be present in landfill leachates. The exceedances experienced at the seep represent minor exceedances of the NYSDEC promulgated drinking water standards.

¹ "An Assessment of Groundwater Quality Monitoring Data Collected at Unlined Municipal Solid Waste Landfills." Presented by Steven Parisio of NYSDEC Region 3, Bolton Landing, NY. May 8, 2007.

² "Historic Fill & Old Landfills: Tools for Delineation.", Presented by Steven Parisio of NYSDEC Region 3, May 20, 2014.

3.0 SEEP INVESTIGATION AND RESPONSE

3.1 Initial Response

A joint inspection of the Canal was conducted on August 22, 2012 with NYSDEC, Orange County, and STERLING. The inspection included canoeing the entire stretch of Canal along the Landfill site. The on water inspection included Mr. Steven Parisio and Mr. Carl Hoffman from the NYSDEC. Based on observed conditions several seeps were selected for sampling. It was noted that some seeps were present on the opposite side of the Canal from the Landfill and at locations removed from the Landfill. The entire stretch of Canal along Orange County's property has been extensively disturbed in the past by dredging the Canal. Excavated material has been sidecast and has not been graded. As a result, the canal banks are poorly drained and in some areas precipitation runoff is trapped upslope contributing to the existence of the observed seeps.

Results from the August 22, 2012 and August 21, 2013 inspections and sampling are provided in Appendices B and E.

3.2 Leachate Collection System Investigation

On April 11, 2013 and August 19, 2013, attempts were made to inspect the perimeter leachate collection system immediately upgradient from the groundwater seeps. Self-propelled robotic camera units were unable to fully access the leachate collection pipe at the connection to the manhole.

Subsequently, push-style video cameras were manually advanced into the leachate collection pipe as far as possible (approximately 140 feet in April 2013, and approximately 175 feet in August 2013). Overall, the perforated leachate collection pipe that was able to be inspected appeared to be in good condition, with no apparent blockages. In August 2013, a jet-vac hose (with no camera) was successfully advanced approximately 190 feet.

Based upon the information obtained and the design of the collection system, the perimeter leachate collection system was determined to be functioning as the installed leachate collection pipe is surrounded by permeable stone. Accordingly, leachate and groundwater is collected and conveyed through the system to the leachate manhole even if the perforated pipe were damaged or blocked. As a result, further efforts to conduct internal video inspection were suspended.

3.3 Overburden Piezometer

On February 19 and 20, 2014, six (6) temporary shallow overburden piezometers (PZ-14-1 through PZ-14-6) were installed between the Landfill's perimeter access road and the seeps near the Cheechunk Canal bank to better understand the subsurface hydrology between the limit of waste and the seeps northwest of the Cheechunk Canal and southeast of the perimeter access road (Figure 2). The Cheechunk Canal/Seep Evaluation Letter Report was submitted to the NYSDEC on April 4, 2014 (Appendix G).

Upon completion of sampling, each borehole was either converted into a 1½-inch (PZ-14-1, PZ-14-2, PZ-14-4, and PZ-14-6) or a 2-inch inside diameter (I.D.) temporary piezometer (PZ-14-3 and PZ-14-5) with a five (5) foot long section of 0.01-inch (10 slot) machine slotted PVC well. As detailed in Table 1, the total depths ranged from 28.91 feet below ground surface (bgs) at PZ-14-4 to 39.5 feet bgs at PZ-14-1. The screened intervals were set in the uppermost portion of the overburden hydrogeologic unit (glaciolacustrine fine sand) to obtain basic aquifer data (groundwater flow direction, gradients, horizontal

hydraulic conductivity, aquifer transmissivity, and aquifer yield) and define the hydrogeologic relationship between the Landfill and the seeps identified on the northern bank of the Cheechunk Canal.

The elevation for the top of the piezometer casings (measuring points) were measured with an engineer's level from the measuring point of nearby monitoring well MW-3B to allow for direct comparison of groundwater level measurements routinely collected at the Landfill. The apparent elevations of the Canal bank seeps downgradient from the piezometers, as well as the water level of the Canal, were also determined in the same manner. It should be noted that the slope in this portion of the site ranged from 24% to 28%.

Following installation, three (3) synoptic rounds of groundwater elevation measurements were collected on February 20, March 18, and March 27, 2014 to gain a complete understanding of the local hydrostratigraphy, define groundwater flow direction and gradients, and build a conceptual profile between the Landfill and the Cheechunk Canal.

In addition, field hydraulic conductivity testing was performed on two (2) of the temporary overburden piezometers (PZ-14-3 and PZ-14-5) to characterize the horizontal hydraulic conductivity of the aquifer and a short-term two (2) hour constant rate pumping test was performed at temporary piezometer PZ-14-3 to further define aquifer characteristics, such as yield and transmissivity (Appendix G).

Groundwater in each temporary piezometer between the Landfill and the seeps were also sampled for 6 NYCRR Part 360 field parameters (specific conductivity, temperature, pH, and Eh). Due to weather conditions, the subject seep area could not be evaluated as the Canal water level was higher than the seep elevation.

3.3.1 Installation

The temporary overburden piezometers were installed using a track-mounted Geoprobe® to a depth sufficient to encounter the upper overburden aquifer (glaciolacustrine fine sand), which underlies the Cheechunk Canal (Figure 2). At each location, soil samples were collected on a continuous basis from ground surface to termination depth using the Macro-core® MC5 soil sampler. Each borehole was logged to define the local model of the critical site stratigraphy as it relates to the Landfill and the Cheechunk Canal (Appendix G).

Upon completion of sampling, each borehole was either converted into a 1½-inch (PZ-14-1, PZ-14-2, PZ-14-4, and PZ-14-6) or a 2-inch inside diameter (I.D.) temporary piezometer (PZ-14-3 and PZ-14-5) with a five (5) foot long section of 0.01-inch (10 slot) machine slotted PVC well. As detailed in Table 1, the total depths ranged from 28.91 feet below ground surface (bgs) at PZ-14-4 to 39.5 feet bgs at PZ-14-1. The screened intervals were set in the uppermost portion of the overburden hydrogeologic unit (glaciolacustrine fine sand) to obtain basic aquifer data (groundwater flow direction, gradients, horizontal hydraulic conductivity, aquifer transmissivity, and aquifer yield) and define the hydrogeologic relationship between the Landfill and the seeps identified on the northern bank of the Cheechunk Canal.

3.3.2 Site Stratigraphy

The field investigation, performed between February and March 2014, was used to define the local geologic conditions, hydrogeologic setting, and environmental parameters as well as serve as the core of understanding to remediate the subject seeps). Findings are detailed below.

The critical site stratigraphy between the Landfill and the canal has been defined as follows:

Glaciolacustrine Silt and Clay: Moist grayish brown clayey silt to silty clay; stiff to moderately stiff; occasionally to frequently varved; lowly permeable; and, moderately plastic. As presented in Table 1, this unit was encountered at surface to depths ranging from 24.4 to 34.1 feet bgs, which is consistent with historical data collected near this portion of the Landfill and the Cheechunk Canal. Stearns & Wheler reported that this silt and clay layer thins toward the northeast from approximately 60 feet to 20 feet. The base of the glaciolacustrine silt and clay unit is approximately three (3) to five (5) feet above the subject seep(s).

Glaciolacustrine Sand: Wet fine sand; medium dense; moderately permeable; and, laminated. The top of this water-bearing unit is between 355.52 (PZ-14-1) and 357.43 (PZ-14-3) and feet in elevation and slightly tilts to the north away from the Cheechunk Canal (Table 1 and Figure 4). Again, this field data is consistent with historic geoenvironmental data collected from historical investigations/remedial investigation which reports this unit as being 25 to 35 feet in thickness. The base of the glaciolacustrine sand unit was not encountered during the course of this investigation.

Glacial Till: Basal lodgement till is a dense, unstratified diamict of poorly sorted sediment emplaced on bedrock by the base of the glacier during ice advance. It often has large erratics oriented in the direction of the ice movement. The glacial till unit, which was not encountered during this investigation, is lowly permeable and is not considered a water bearing zone.

3.3.3 Aquifer Characterization

The hydrogeologic nature of the piezometer installations was interpreted using historic well logs, slug tests, groundwater elevation data, geologic cross sections, and publications. The hydrogeologic setting was further refined from information obtained from the recent drilling, surveying, overburden groundwater measurements, hydraulic conductivity testing, and the short-term pumping test.

Complex vertical and horizontal stratigraphic relationships exist between the glacial deposits on the site. As shown in Figure 4, the Cheechunk Canal dissects the glacially-derived overburden often cutting down through the glaciolacustrine silt and clay deposits, creating a hydraulic connection between the overburden groundwater unit (glaciolacustrine fine sand) and the Cheechunk Canal (Wallkill River). In general, the low hydraulic conductivity of the glaciolacustrine silt and clay, which underlies a large portion of the Landfill, limits recharge to underlying hydrogeologic units such as the glaciolacustrine fine sand (encountered). The glaciolacustrine silt and clay unit is not a water-bearing zone.

Hydraulic conductivity estimates in the overburden hydrogeologic unit (glaciolacustrine fine sand) were determined using slug tests. The data obtained were analyzed using the Bouwer and Rice method (1989). This method consists of quickly lowering or raising water levels in a well and measuring its rate of recovery. Although originally designed for use in unconfined aquifers, the authors (Bouwer and Rice) determined that most of the head difference "y" between the static water table and water level in the piezometer is dissipated in the vicinity of the piezometer around the screen and slotted section, the method is also applicable to confined or semi-confined conditions. Hydraulic conductivity of the overburden hydrogeologic unit ranged from 9.29 x 10⁻⁶ feet/min (4.72 x 10⁻⁶ cm/sec) to 2.35 x 10⁻⁵ feet/min (1.19 x 10⁻⁵ cm/sec).

Groundwater flow in the overburden hydrogeologic unit was determined using depth to groundwater measurements collected from the temporary overburden piezometers between February 20, 2014 and October 6, 2014 (Table 2 and Figures 5A, 5B, and 5C). This data, in conjunction with historical well log data and plots of changes in groundwater elevation over time, suggest that the glaciolacustrine fine sand

unit is currently in semi-confined to confined conditions. Therefore, the directions of groundwater flow are based on the potentiometric surface of the glaciolacustrine fine sand, not strictly elevations of the water table surface.

Groundwater flow in the overburden west or north of the Canal is to the east-southeast (Figures 5A, 5B, and 5C), discharging to the Canal that acts as a discharge zone and a groundwater flow boundary separating flow regimes on either side of the Canal. Overburden piezometers PZ-14-2, PZ-14-3, and PZ-14-4 are located immediately upgradient of the subject seep(s); the water level at the subject seep is variable but is approximately nine (9) to eleven (11) feet below the potentiometric surface observed at the lowermost piezometers (PZ-14-2, PZ-14-3 and PZ-14-4). The actual location of the piezometer array was successful at locating the groundwater that is likely causing the subject seeps (Figure 6). There is little potential for contamination to flow between the Canal and to areas east or south of the Canal based on previous investigations conducted at the Landfill. The direction of groundwater movement can be understood in the fact that groundwater always flows in the direction of decreasing head. The rate of movement, on the other hand, is dependent on the hydraulic gradient, which is the change in head per unit distance. The change in head measurement is ideally in the direction where the maximum difference of head decrease occurs. The hydraulic gradient (the change in head divided by the change in distance) on the Orange County property is seasonally variable and ranged from 0.0077 ft./ft. to 0.0133 ft./ft. based on data collected in late winter (March 18, 2014, Figure 5A) and was significantly greater in early September 2014, ranging from 0.0398 ft./ft. to 0.0557 ft./ft. when the subject seep(s) were evident (September 9, 2014, Figure 5B). The moderately steep-sloped lands between the Orange County property line and the Cheechunk Canal exhibits a consistently steeper hydraulic gradient and is less seasonally variable and is best represented by the data collected in early October 2014, ranging from 0.1216 ft./ft. to 0.0.1538 ft./ft. (October 6, 2014, Figure 5C).

An aquifer overlain by a bed of material that has a significantly lower hydraulic conductivity is termed as confined. As was observed during the field investigation, the potentiometric surface of the confined aquifer was 3.5 to 8.5 feet above the base of the overlying confining layer (Tables 1 and 2 and Figure 4). The least seasonal variability was observed in the three (3) uppermost overburden piezometers (PZ-14-1, PZ-14-5, and PZ-14-6). Water levels in confined aquifers are typically slow to respond to storm events or droughts and therefore typically exhibit minor fluctuations. A semi-confined or "leaky" confined aquifer is characterized by a low permeability layer (i.e., glaciolacustrine silt and clay) that permits water to slowly flow through it. Groundwater in these aquifers respond more quickly to changes in precipitation.

Review of site groundwater measurement data, collected between February and October 2014, indicates that the upper portion of the site is in confined conditions while the lowermost plateau, where seeps have been reported, is likely under unconfined conditions (Figures 4 and 6). The similarity between the potentiometric surface elevation and the subject seep(s) elevation suggests that there is seasonal hydraulic connection between the Cheechunk Canal and site groundwater. If groundwater was totally confined, no hydraulic connection would exist between the Canal and local overburden groundwater. The semi-confinement can be the result of leakage through the saturated overlying low permeability layer (glaciolacustrine silt and clay) or through fractures/varved planes in the silt and clay.

Seepage velocities were also calculated in this overburden hydrogeologic unit using the following equation:

 $V = KI \over n$

Where "V" is the seepage velocity in distance per unit time; "K" is the hydraulic conductivity at the borehole (in distance per unit time); "I" is the hydraulic gradient (dimensionless); and, "n" is the estimated effective porosity. The lowest possible values for "n" were used to estimate highest seepage velocities. Seepage velocities indicate a range from 2.57x10⁻⁴ feet/day (0.094 feet/year) to 1.2x10⁻³ feet/day (0.438 feet/year).

On March 18, 2014, a two (2) hour constant flow rate pumping test was conducted on PZ-14-3 (Figure 6). Initial pumping at 2 gallons per minute (gpm) resulted in complete drawdown at piezometer PZ-14-3; the pumping rate was reduced to provide further evaluation of the overburden aquifer characteristics. Pump flow rate (0.38 to 0.4 gpm) and overburden piezometer water levels were monitored every 15 minutes throughout the two (2) hour test. A drawdown of 7.8 feet was observed during the pumping period, dropping 7.33 feet in the first five (5) minutes and steadily dropped 0.46 foot over the remainder of the pumping test period (Appendix G). Based on this information, the specific capacity was calculated as being 0.05 gpm/ft with a transmissivity of 75 ft²/day. The adjacent piezometers were lowered by 0.19 foot (PZ-14-6) to 0.29 foot (PZ-14-2), demonstrating good connection to the localized low rate pumping activity (Appendix G).

3.3.4 Sampling

Results from the August 22, 2012 and August 21, 2013 inspections and sampling are provided in Appendices B and E, respectively.

Following the inspection, the County provided a Work Plan to conduct a subsurface investigation downgradient of the Landfill and immediately upslope of the observed seep closest to the Landfill. The Work Plan was approved by NYSDEC on December 31, 2013. The investigation proceeded on February 19 and 20, 2014 consisted of installing six (6) piezometers to define the groundwater elevations and to allow for sample collection. Results of the NYSDEC approved investigation were provided to the NYSDEC by letter dated April 4, 2014.

Synoptic rounds of water levels from overburden piezometers and Cheechunk Canal have been collected since February 20, 2014 (Table 2). Recent inspections conducted by STERLING on August 21, 2014, September 4, 2014, September 9, 2014, and October 6, 2014 identified five (5) seeps; no flowing seeps were observed.

Additional seep and surface water sampling was performed on June 12, 2014 and October 6 - 8, 2014 (Figure 7). The June 12, 2014 sampling event consisted of the collection of five (5) seep samples (Upstream: GW-B and GW-1; at seep area (GW-2); and, Downstream: (GW-3)) and two surface water samples (Upstream: SW-01 and Downstream: SW-02). These samples were analyzed for NYSDEC Baseline parameters and results are provided on Appendix I, Figures 6 and 8, and Tables 5 and 6. The October 6, 2014 sampling event consisted of the collection of two overburden groundwater samples, collected from PZ-14-3 and PZ-14-5, one seep sample (Seep Monitoring Point) in the vicinity of the most persistent seep, and three (3) surface water samples (Upstream: SW-5; slightly downstream of the seep area (SW-Seep-DS; and, Downstream: (SW-8)). These samples were analyzed for NYSDEC Baseline parameters and results are provided in Appendix J, Figures 6 and 8, and Tables 4, 5, and 6. Sampling results for field parameters, overburden groundwater, seeps, and surface water are summarized below.

Field Parameters

On March 27, 2014 and October 6, 2014, overburden groundwater in each temporary overburden piezometer, between the Landfill and the seeps, were sampled for 6 NYCRR Part 360 field parameters, including specific conductivity, temperature, pH, and Eh (Table 3). Due to weather conditions, the subject seep area could not be evaluated in February and March 2014 as it was covered with ice or submerged during this period.

As detailed in Appendix G, the specific conductance from overburden groundwater ranged from 0.607 millisiemens per centimeter (mS/cm) at PZ-14-4 to 1.230 mS/cm at PZ-14-5. The specific conductance of the water sample is the measure of its ability to carry an electrical current under specific conditions and is typically an indication of the concentration of TDS in the groundwater. A specific conductance value that is markedly different from those obtained in nearby piezometers may indicate a different source of the groundwater or leakage from a formation that contains water of a different quality. Specific conductance values from 2012 and 2014 seep sampling ranged from 0.695 mS/cm at Seep GW-03 on August 22, 2012 to 1.339 mS/cm at GW-D on August 21, 2013 (Tables 4, 5, and 6).

As detailed in Table 3 of Appendix G, the redox potential in the overburden aquifer is sensitive to organic matter associated with landfill leachate and of concentrations of redox-active components such as the mineralization of the groundwater. Oxidizing-reducing reactions result in a change of the charge of an ion as it gains or loses an electron. These reactions are almost always facilitated by bacteria that are able to gain energy from the reactions. The most common cause of reducing reactions is organic matter, either in solid form or as dissolved organic carbon. Water in contact with air will have an Eh in the range of 350 milliVolts (mV) to 500mV. Microbially mediated redox processes may decrease the redox potential to values as low as -300mV. The redox potential from overburden groundwater ranged from -90.2 mV at PZ-14-1 to 214.8 mV at PZ-14-5. Oxidation-Reduction Potential (ORP) values from 2012 and 2014 seep sampling ranged from -90.6 mV at Seep GW-01 on August 22, 2012 to 31 mV at GW-3 on June 12, 2014 (Table 5). The redox potential at PZ-14-5 is considered the most irregular.

At any given temperature, there is a specific concentration of a dissolved mineral's constituents in the groundwater that is in contact with that mineral. Even minor changes in groundwater temperature can cause detectable changes in TDS. It should be noted that the temperature of the upper piezometers (PZ-14-1, PZ-14-5, and PZ-14-6) were consistently higher than the lower piezometers (PZ-14-2, PZ-14-3, and PZ-14-4). The temperature at PZ-14-5 is notably higher than others collected on March 27, 2014 and October 6, 2014.

The pH is actually a measure of the hydrogen ion (H+) availability (activity). The hydrogen ion is very small and is able to enter and disrupt mineral structures so that they can contribute dissolved constituents to groundwater. Consequently, the greater the hydrogen ion availability the lower the pH and the higher the TDS in groundwater. The pH readings collected from overburden groundwater ranged from 7.00 standard units (s.u.) at PZ-14-1 to 7.75 s.u. at PZ-14-2. In comparison, 2012 and 2014 seep sampling reported pH readings that ranged from 6.77 s.u. (Seep GW-3) on June 12, 2014 to 7.15 s.u. (GW-D) on August 21, 2013. No direct conclusions can be made based on comparison of pH readings obtained from the piezometers.

Two (2) one (1) liter samples were collected for comparison of water quality field parameters at the start and end of the short-term pumping test, which was performed at PZ-14-3. No significant changes or fluctuations were observed in the field parameters.

Field parameter and leachate indicator analytical results for 2013 from nearby environmental monitoring points (four (4) overburden groundwater monitoring wells (MW-3B, PZ-4, MW-220, MW-222), two (2)

surface water locations (SW-5 and SW-8), and one (1) leachate location (MH-7)) were reviewed to further evaluate the potential presence of leachate impacted groundwater. Only total dissolved solids (TDS) exceeded the class GA standard (500 mg/L) at these select monitoring wells, ranging from 730 mg/L (MW-3B) to 860 mg/L (MW-222). Ammonia was only detected above the NYSDEC GA standard (2 mg/L) at monitoring wells MW-3B (4.4 mg/L) and MW-222 (12 mg/L). In comparison, 2013 results for TDS and ammonia from nearby leachate (MH-7) was 3,900 mg/L and 560 mg/L, respectively.

Overburden Groundwater

As shown in Figure 8 and Table 4, groundwater from overburden piezometers PZ-14-3 and PZ-14-5 showed no presence of volatile organic compounds (VOCs) and exceedances of select leachate indicator parameters such as ammonia (ranging from 5.3 to 9.1 mg/L), total cyanide (0.23 mg/L) and phenolics (0.026 mg/L) at PZ-14-5, TDS (680 to 780 mg/L), and turbidity (240 to 450 mg/L). The higher levels of ammonia and TDS at PZ-14-5 correlate to the analysis of field parameter results summarized above. Inorganic analytes that slightly exceeded NYSDEC groundwater standards include arsenic (0.057 - 0.094 mg/L), iron (4.8 - 18 mg/L), magnesium (54 - 56 mg/L), manganese (1.0 - 2.0 mg/L), and sodium (60 - 87 mg/L).

Seeps

Review of historical and recent seep analytical results (water quality parameters) for upstream seep sample locations (GW-B and GW-01 or GW-1), seep samples in the vicinity of the piezometer array (GW-03, GW-D, GW-2 and Seep Monitoring Point (10/6/2014), and downstream seep samples (GW-3 and GW-A) are provided in Figure 8 and Table 5. Results showed no presence of VOCs, petroleum constituents or heavy metals frequently observed in landfill leachates. Further, as the seeps ultimately discharge into the Cheechunk Canal, a Class C surface water, the promulgated surface water standards are exceeded for ammonia, TDS, iron, occasionally dissolved oxygen. Several slight exceedance of phenols have also been observed.

Surface Water

Review of historical surface water analytical results (water quality parameters) for upstream surface water sample locations (SW-13, SW-5, and SW-01), nearby surface water samples (SW-Seep DS), and downstream surface water samples (SW-02 and SW-8) revealed no exceedances of T.O.G.S. 1.1.1 Ambient Water Quality Standards for Class C Surface Water Quality standards, except for iron (ranging from 0.22 mg/L to 9.17 mg/L (Figure 8 and Table 6), three isolated historical field pH exceedances (ranging from 9.02 to 9.33 s.u. upstream of the site (SW-05) and 8.81 s.u. at the downstreammost location (SW-8)), and one phenol exceedance (0.0072 mg/L) at SW-5 in 2000 and at SW-8 (0.0115 mg/L) in September 2002 (Figure 8 and Table 6).

3.4 Investigation Findings and Results

The piezometer installations confirm a lowly permeable glaciolacustrine silt and clay unit exists at surface to depths ranging from 24.4 to 34.1 feet bgs. The base of this geologic unit tilts to the north away from the Cheechunk Canal. Underlying the silt and clay unit is moderately permeable glaciolacustrine fine sand, which is typically 25 to 35 feet in thickness.

The overlying glaciolacustrine silt and clay unit is not a water-bearing zone and limits recharge to underlying hydrogeologic units while the overburden hydrogeologic unit discharges into and is hydraulically connected to the Cheechunk Canal. Groundwater in the glaciolacustrine fine sand unit reveals semi-confined conditions with groundwater flow being to the east-southeast with a moderate hydraulic gradient between the Landfill and the canal. Two (2) hours of constant rate pumping (0.38 to 0.4 gpm) at PZ-14-3 revealed the following: 1). A drawdown of 7.8 feet at the wellhead; 2). Lowering of the potentiometric surface between 0.19 foot (PZ-14-6) to 0.29 foot (PZ-14-2) within the piezometer array, demonstrating a good connection within the overburden hydrogeologic unit and the Cheechunk Canal (at low pumping rates); 3). The specific capacity and transmissivity values are low for the overburden hydrogeologic unit between the Landfill and the canal; and, 4). The actual location of the piezometer array was successful at locating the groundwater that is connected to the subject seep(s).

Results from leachate, upgradient monitoring wells (MW-230S and MW-230D), downgradient monitoring wells (PZ-4, MW-3B, MW-220, MW-245S and MW-245D), seeps (2012 through 2014), and the downstream surface water sampling location (SW-8) indicate a completely different geochemical profile compared to the leachate results, as depicted below:

Parameter	Leachate	Upgradient GW	Downgradient GW	Seep	Downstream SW
Ammonia	47 to 560	0.079 to 0.08	0.039 to 9.0	6.3 to 40	non-detect to 0.221
TDS	800 to 3,900	162 to 330	590 to 820	660 to 830	190 to 428
Phenolics	non-detect to 0.024	non-detect	non-detect to 0.0087	non-detect to 0.0054 J	non-detect to
Arsenic	0.022 to 0.26	non-detect to 0.0093	non-detect to 0.056	0.029 to 0.12	non-detect to 0.014
Iron	15 to 1,100	0.5 to 1.1	1.0 to 6.3	3.2 to 13	0.34 to 3.13
Manganese	0.031 to 0.089	0.13 to 0.47	0.45 to 1.9	0.28 to 1.8	0.052 to 0.28

Source: Cornerstone, 2013 and Sterling, 2012/2013/2014.

All results are expressed in mg/L.

4.0 MITIGATION ALTERNATIVES

Various remedial technologies exist to eliminate or reduce impacts from the seeps to the environment and canal. The following alternatives are evaluated.

4.1 Canal Bank Erosion Control

This option provides for controlling erosion of canal bank at the location of the seeps. Obvious seep areas will be armored to control erosion. Existing, active seeps on the northern bank of the canal will be properly armored by overlaying with a medium to heavy duty (depending on the geomechanical properties of the underlying soils) woven geotextile filter fabric and covered by at least twenty-four (24) inches of NYSDOT medium stone fill rip-rap.

4.2 Focused Groundwater Collection and Treatment

4.2.1 Groundwater Extraction

Groundwater collection will consist of groundwater removal immediately upgradient of the seeps by depressing the water table to flatten the groundwater gradient. This would effectively halt the migration of groundwater toward the seeps. One or more recovery wells will be installed upgradient of the seeps outside of the flood zone of the canal, and continually pumped to maintain a specific drawdown in the well(s). Creating a zone of influence around the recovery well(s) will remove the gradient and eliminate groundwater flow towards the seeps.

Based on the aquifer characteristics at the proposed groundwater collection well, initial pumping rates of 6 to 10 gpm are projected (approximately 9,000 to 14,000 gpd). Upon facilitating the desired drawdown conditions, lower pumping rates are anticipated to maintain the drawdown condition.

4.2.2 Groundwater Treatment

The County is pursuing two (2) options to treat the collected groundwater. It is not feasible to collect and truck all collected groundwater to distant offsite permitted wastewater treatment plants (WWTPs). Accordingly, Orange County is proposing to simultaneously pursue the following options to treat the collected groundwater:

1. Constructed Wetland Treatment System

Constructed wetlands and biofilters have been demonstrated as very effective in treating landfill impacted groundwater. Two (2) locations have been identified on the Landfill property as suitable for construction of lined wetlands. One totals 1.7 acres in area, the other 1.9 acres.

Initially, collected groundwater will be trucked to a constructed wetland at one or more of the locations indicated on Figure 11. Groundwater will be discharged to a lined forebay which will be sized to initially receive groundwater delivery by tank truck in 6,000 gallon batch deliveries (later to be hard-piped once pumping rates and daily treatment volumes are known).

The constructed wetland will be developed by stripping existing vegetation and grading the footprint to prevent runon of stormwater. The wetlands will be configured as presented on Figure 11. The wetland will be underlined with a 20 mil flexible membrane liner. Above the liner, a suitable wetland substrate will be installed to an average depth of 12 to 24 inches, depending on

the chosen wetland vegetation. The substrate will provide the media for growth of wetland vegetation.

The collected groundwater will be slowly unloaded onto the forebay of the wetland biofilter. Influent to the wetland will flow from the forebay via wetland treatment cell via perforated pipe. The water will flow to the treatment cell where the ammonia will be removed through nitrification. Hardy wetland vegetation will be employed, namely phragmites (common reed) and typhya (cattails).

2. Mid-Hudson Psychiatric Center Wastewater Treatment Plant

The existing WWTP is located between Training Center Lane and Mid-Hudson Psychiatric Center Road on the south side of NYS Route 17M, approximately 4,600 feet from the Landfill. The existing WWTP is reportedly permitted for 80,000 gallons per day (gpd) of sanitary wastewater and an additional 20,000 gpd of "other" wastewater for a total of 100,000 gpd. Reportedly, the plant is reportedly currently operating at 45,000 gpd average daily flow. Accordingly, there is surplus capacity to treat up to 55,000 gpd of groundwater from the seep mitigation.

Discussions have initiated between Orange County and New York State Office of Mental Health with respect to utilizing this surplus wastewater treatment capacity to treat the collected groundwater. If the Mid-Hudson Psychiatric Center WWTP is agreeable, initial treatment of groundwater could commence upon NYSDEC Division of Water concurrence that the groundwater may be accepted for treatment.

In such case, groundwater will be initially trucked and unloaded into the plant headworks utilizing Orange County's 6,000 gallon tanker (potentially to be hard-piped in the future).

As described above, 9,000 to 14,000 gpd are initially expected to be collected for treatment, reducing to lower rates once the desired drawdown is achieved. Therefore, there may initially be two (2) tanker loads per day on average, later reducing to one (1) load per day.

The tanker will slowly unload into the headworks of the WWTP so as to minimally impact the treatment process. Unloading over a six (6) hour period amounts to an incremental flow of approximately 16 gpm (25% of permitted average daily flow).

Batch delivery to the treatment works can be timed such that a delivery at the start of the work day can be allowed to slowly unload until mid-afternoon. The afternoon delivery can be timed to unload overnight. Operating in this manner will provide for equalization of the flow into the WWTP minimizing potential impacts on the plant and treatment process.

4.2.3 Treatability Evaluation

The groundwater to be collected upgradient of the seeps is minimally impacted with Ammonia as the most significant parameter requiring treatment. Landfill leachate treatability studies conducted on low strength leachates and groundwater demonstrate treatment system operations are most challenging where the strength and volume of water to be treated vary significantly. Neither appears to be the case at the Orange County Landfill. As reported in Sections 2.0 and 3.0, the groundwater elevation upgradient of the seeps are relatively stable. Based on historical data, the concentration range of dissolved iron and ammonia in groundwater south of the Landfill have also remained relatively stable. Heavy metals have

not been reported in the groundwater to be treated. For this reason, a site specific treatability study is not envisioned.

4.3 Seep Source Collection

This option involves collection of groundwater directly from the various seep locations. Shallow collection trenches (one to two feet deep) will be excavated at the seep locations, and plumbed to drain by gravity flow to a sump equipped with a pump.

The installation will require disturbance of the stream bank, excavation of previously dredged material and the installed collection system will be at a location regularly subjected to significant flooding. Accordingly, the design must provide for protection from flooding and the system operation will be designed to terminate operations when the flood stage of the canal exceeds the elevation of the collection trench. Such is necessary as the pumping system cannot be sized to operate when surcharged by flood waters.

The groundwater will be collected and treated as discussed in Section 4.2.

4.4 Containment

This option involves construction of a low permeable slurry wall or installation of sheet piles to impede the groundwater flow path to the seeps to the canal. Recovery wells or a collection trench will be installed upgradient of the barrier to remove groundwater behind the barrier.

Upgradient groundwater of the containment will be collected and treated as discussed in Section 4.2.2.

4.5 In-Situ Groundwater Treatment

Several technologies are available to provide in-situ treatment of the groundwater before it discharges along the banks of the canal.

4.5.1 Chemical Injection

This option involves the installation of groundwater injection wells to inject substances into the groundwater for subsurface treatment before the seeps discharge along the banks of the canal.

Proprietary products such as Metals Remediation Compound (MRC[©]) by Regenesis can be used to reduce metals contamination through precipitation and/or sorption to soil particles.

Ammonia in groundwater is typically treated by groundwater extraction and injection of treated water back to the subsurface. Accordingly, this option would require additional installation of groundwater extraction wells along with the injection wells.

4.5.2 Permeable Reactive Zone

This option involves the construction of a permeable reactive zone or trench upgradient of the groundwater seeps, which would passively treat groundwater and remove or break down contaminants, releasing treated water downgradient of the treatment zone.

A trench would be installed uphill from the seeps along the canal, and the trench would be backfilled with reactive media. Proprietary reactive media are available such as NitrexTM (a mixture of wood chips and

lime) for treatment of nitrate, ammonia, and dissolved organic nitrogen through denitrification, and PhosphexTM (a mixture of by-product of the steel industry and limestone) for metals removal via precipitation and adsorption.

4.6 Evaluation of Alternatives

In accordance with DER-10, the mitigation alternatives are evaluated primarily on the basis of implementability, effectiveness, permanence and cost for construction, operation and maintenance. An evaluation summary of the seep mitigation alternatives is provided as Table 7.

A common element of all alternatives is the armoring of the unprotected banks of the Cheechunk Canal where the seeps and erosion are occurring. The Orange County Department of Public Works can proceed with this work immediately upon approval of this Seep Mitigation Plan & Engineering Report.

4.6.1 Implementability

All technologies evaluated for the purposes of selecting a mitigation approach are implementable. It is generally preferred to avoid excavation and infrastructure installation within the flood zones. Annual flood elevations of the canal along the Landfill site results in as much as 20 feet of water over the seep elevation. Additionally, the degree of difficulty associated with implementing containment systems, seep source collection systems, or permeable reactive barriers is generally greater when compared to other treatment technologies.

As previously noted, the observed seeps indicating Landfill derived chemistry are located on the northern bank of the Cheechunk Canal. Containment structures, collection trenches, and reactive trenches installed in close proximity to the canal would be difficult to install due to the steep slope of the bank and composition of the previously dredged canal sediments on the banks and composition of the underlying soils. Similarly, containment structures and reactive trenches installed upgradient of groundwater flow will need to be installed outside the flood zone of the canal at a much greater depth, thus increasing the effort and cost of installation. Lastly, trenching across sensitive soils such as those observed at the project site may cause instability of the canal banks.

4.6.2 Effectiveness

The assessment of the effectiveness of various technologies focused upon the reduction/elimination of groundwater seeps into the canal as well as the feasibility to treat potentially impacted seep groundwater.

Containment systems will effectively reduce and, under ideal conditions, prevent seep groundwater from reaching the canal.

In-situ treatment of seep groundwater effectively treats potentially impacted groundwater. Notwithstanding, regular fluctuations of the canal flood stage would limit the effective operation of a seep source collection system as surface water from the canal would inevitably be collected by a collection trench installed near the location of the observed seeps. Ineffective collection of seep groundwater is not expected with a focused groundwater collection system as described in Section 4.2.

Chemical injection involves bench and pilot scale testing to determine an acceptable treatment formula and dosing rate in consideration of in-situ treatment of seep groundwater utilizing chemical injection technology.

The use of permeable reactive barriers is a well-documented technology with proven effectiveness, although the effectiveness of permeable reactive barriers is highly dependent on the proper delineation of site geology as well as bench and pilot scale evaluation prior to full implementation.

4.6.3 Permanence

Treatment technologies installed at or near the canal bank would be subject to significant flooding and potential damage. As such, concerns regarding long term maintenance and permanence are associated with the implementation of containment systems, seep source collection systems, and/or permeable reactive barriers.

In-situ treatment of groundwater, chemical injection technologies, and focused groundwater collection could be installed outside the flood zone but will require a continuous and long term operational effort.

4.6.4 Cost

The life-cycle costs of the remedial technologies considered for this evaluation are comparable. Although the capital costs for the installation of containment systems or permeable reactive barriers is generally greater than those for pump and treat systems and chemical injection technologies, the lower operational costs for such systems would result in a comparable, and potentially lower, life-cycle cost.

However, containment systems, seep source collection systems, or permeable reactive barriers installed near the bank of the canal are subject to flooding and fluctuations in canal stage. Unexpected costs associated with maintenance and repair from damaging flood events should be avoided by implementing design modifications, or an alternative technology altogether. As previously noted, trenches installed at a distance from the canal bank and upgradient of groundwater flow will have to be installed at a much greater depth, vastly increasing the effort and cost of installation.

4.6.5 Preferred Alternative

As canal bank erosion control armoring is readily implementable, effective and provides significant cost benefit, this protective measure will be included in the selected remedy. Based on an evaluation of various seep mitigation technologies, a focused groundwater collection and treatment, as described in Section 4.2, is the preferred approach. This technology is readily implementable with a comparable lifecycle cost to other technologies. The collection and treatment of groundwater effectively reduces/eliminates the discharge of groundwater seeps into the canal. It is favored over a seep source point collection system as all necessary mitigation groundwater collection infrastructure can be installed without disturbance of the canal banks and outside of the flood zone. Seep groundwater will be treated at a permitted wastewater treatment plant or constructed wetland system after collection from recovery well(s).

5.0 SEEP MITIGATION PLAN

5.1 Selected Mitigation Alternatives

The selected mitigation alternative consists of canal bank erosion control, focused groundwater collection and treatment, described as follows.

5.2 Canal Bank Erosion Control

Canal banks will be protected from erosion by riprap armoring as shown on Figure 9. The active seeps on the northern bank of the canal with demonstrated Landfill related chemistry will be overlain with geotextile filter fabric and covered by at least twenty-four (24) inches of riprap. Approximately 120 cubic yards of riprap will be required. Details of the canal bank erosion control measures are shown on Figure 10. The placement of rip-rap as indicated on Figure 10 will be subject to an USACOE Nationwide Permit and Pre-Construction Notice is required. This remedial work is expected to qualify for a Nationwide Permit No. 38 as the work will proceed as part of the remedy approved by the NYSDEC.

5.3 Groundwater Collection System

The groundwater collection system will consist of one (1) or more six (6) inch diameter recovery wells with submersible pumps to depress the water table upgradient from the seeps, preventing the seeps from discharging along the canal banks.

A recovery well will be installed at the location shown on Figure 9. Prior to system startup, pump tests will be performed with measurements made at the nearby piezometers to further evaluate the hydraulic conductivity of the groundwater aquifer, as well as to verify the radius of influence.

The pump test results will then be used to optimize pumping and system operation and to assess the need for additional recovery wells to produce the desired cone of depression at the established drawdown level, as well as to correctly size the permanent pump installation(s). If deemed necessary, additional recovery wells will be installed cross-gradient from the pilot recovery well as shown on Figure 9.

The recovery well(s) will be equipped with a submersible pump, water level pressure transducer, and pump controller. The pump controller will be capable of adjusting the target drawdown level in the well, and will automatically control the pump to maintain the set level. Groundwater discharged from the recovery well(s) will be conveyed to the temporary holding tank via forcemain as shown on Figure 9.

The forcemain will be sized following the initial pump test and aquifer characterization based upon the anticipated groundwater pumping rates.

The County will provide an existing aboveground 20,000 gallon steel tank to be utilized to collect and hold groundwater pending treatment at a permitted facility or the proposed onsite constructed wetland system. The tank will be equipped with a high level alarm that will automatically shut off the recovery well pump(s) and notify site personnel that the tank is full.

Proposed details of the proposed recovery well(s), forcemain, and storage tank are provided on Figure 10.

5.4 Groundwater Treatment

As discussed in Section 4.2, groundwater treatment will be by an onsite constructed wetland or by discharge to the Mid-Hudson Psychiatric Center WWTP. Discussions with NYS Office of Mental Health have initiated to explore the feasibility of utilizing existing surplus treatment capacity. The County will continue to pursue this option as it represents the most direct, immediately implementable option for treatment of impacted groundwater.

Under this scenario, minor headwork modifications will be made to the WWTP to allow for direct unloading of water from the hauling vehicle. The County will continue delivering the water by truck over initial operations until the need for additional recovery wells and final pumping rates have been established. At that time, the County will consider hard piping the collected water from the wellhead(s) to the WWTP.

Simultaneous with the discussions with New York State Office of Mental Health regarding the use of the WWTP, Orange County will proceed with conducting field percolation tests at the proposed wetland treatment location and will complete the Construction Plans, Specifications and Contract Documents for the treatment system.

5.5 Groundwater Conveyance System / Performance Effectiveness Monitoring

The Landfill inspections and environmental monitoring will continue as set forth in the approved Site Management Plan (SMP). The groundwater collection and treatment works will be monitored on a daily basis during the initial phases of operation as trucking of collected groundwater is proposed. Later, when groundwater is to be pumped to the treatment works, the inspection and monitoring frequency will be adjusted.

5.5.1 Ongoing Environmental Monitoring Program

The Landfill Environmental Monitoring Program (EMP) will continue as currently approved by the NYSDEC. Additional seep monitoring will be conducted as part of the routine monitoring of the groundwater extraction system. During all regular inspections of the Landfill, the installed erosion control measures at the seeps will be inspected. Additionally, following high water conditions in the canal, the seep locations will be inspected after the canal recedes.

6.0 CONSTRUCTION PLAN

Upon NYSDEC approval of the Seep Mitigation Plan & Engineering Report, the County will proceed with production of Construction Plans, Specifications and Contract Documents for the elements of the work that must be subject of competitive bidding under the County's procurement policies. These Construction Documents will consist of the following.

6.1 Construction Documents

INSTRUCTIONS TO BIDDERS

- 1. Invitation
- 2. Delivery of Proposals
- 3. Preparation and Submission
- 4. Interpretation of Bidding Documents

- 5. Inspection of Site
- 6. Addenda
- 7. Resultant Contract
- 8. Proposed Subcontractors and Suppliers
- 9. Alternates
- 10. Project Schedule
- 11. Bidding Documents
- 12. Health and Safety Plan (HASP)
- 13. Community Air Monitoring Plan (CAMP)
- 14. Storm Water Pollution Prevention Plan (SWPPP)
- 15. Dust Control Plan (DCP)

VENDOR AGREEMENT / CONSTRUCTION CONTRACT

STANDARD GENERAL CONDITIONS

Article 1	Definitions and Terminology
Article 2	Preliminary Matters
Article 3	Contract Documents: Intent, Amending, Reuse
Article 4	Availability of Lands; Subsurface and Physical Conditions; Hazardous
	Environmental Conditions; Reference Points
Article 5	Bonds and Insurance
Article 6	Contractor's Responsibilities
Article 7	Other Work at the Site
Article 8	Owner's Responsibilities
Article 9	Engineer's Status During Construction
Article 10	Changes in the Work; Claims
Article 11	Cost of the Work; Allowances; Unit Price Work
Article 12	Change of Contract Price; Change of Contract Times
Article 13	Tests and Inspections; Correction, Removal or Acceptance of Defective
	Work
Article 14	Payments to Contractor and Completion
Article 15	Suspension of Work and Termination
Article 16	Dispute Resolution
Article 17	Miscellaneous

SUPPLEMENTARY CONDITIONS

Article 1	Definitions and Terminology
Article 4	Availability of Lands; Subsurface and Physical Conditions; Hazardous
	Environmental Conditions; Reference Points
Article 5	Bonds and Insurance
Article 6	Contractor's Responsibilities
Article 17	Miscellaneous - Statutory Requirements

EXHIBITS

Exhibit A Specifications

Contract No. 1 - Division 1 - General Requirements

01010	Summary of Work
01030	Progress Meetings
01041	Coordination
01050	Field Engineering
01150	Measurement and Payment
01210	Preconstruction Conference
01310	Construction Schedules
01340	Shop Drawings, Product Data and Samples
01370	Schedule of Values
01410	Testing Laboratory Services
01501	Contractor's Field Office
01540	Security
01560	Temporary Controls
01570	Maintenance and Protection of Traffic
01600	Transportation and Handling of Materials and Equipment
01620	Storage and Protection
01720	Project Record Documents

Contract No. 1 - Division 2 - Site Work

02110	Site Preparation/Clearing and Grubbing
02222	Rough Grading, Excavation and Backfill
02290	Storm Water Drainage
02936	Seed and Mulch
02949	Erosion Control
03000	Mobilization/Demobilization
04000	Dust Control
05000	Health and Safety

Contract No. 1 – Division 3 – Mechanical

03110	Recovery Well Drilling and Construction
03222	Pumps and Controls

Contract No. 1 – Division 4 – Electrical

Exhibit B Bid Form

- 1. Bid Form Contract No. 1
- 2. Statement of Contractor's Qualifications
- 3. Certificate of Insurance

Exhibit C Insurance Requirements

DRAWINGS

Plate 1	Existing Conditions
Plate 2	Site Preparation
Plate 3	Groundwater Recovery Well, Pumps and Controls
Plate 4	Wetland Treatment System
Plate 5	Details
Plate 6	Details

SUPPORTING DOCUMENTS

Site Management Plan (SMP) inclusive of:

- Storm Water Pollution Prevention Plan (SWPPP)
- Community Air Monitoring Plan (CAMP)
- Health and Safety Plan (HASP)

6.2 Construction Procurement

The project is a municipal prevailing rate wage project requiring coordination with New York State Department of Labor. Additionally, the bid process and procurement of a qualified construction contractor must follow Orange County's established procurement policies and procedures.

6.3 Construction Sequence

The following construction sequence is anticipated.

tion Completion
15, 2014
15, 2014*
31, 2014
, 2015
5, 2015
015
15
15
)15
015
015
June 30, 2015
2015

^{*}To be performed by Orange County Department of Public Works.

6.4 Startup

Prior to final acceptance of the work, the contractor will perform a startup operation at the pumping rate indicated by the pump test during drilling and installation of the recovery well.

The pumps, controls and system operation will be monitored over the course of a week to verify the drawdown conditions is being maintained and that the pump is cycling properly. Orange County personnel will remove groundwater from the groundwater recovery tank for delivery to the treatment system using Orange County's site tank truck.

Similarly, in the same timeframe the treatment works will be started, in the case of the constructed wetland, initial loads will be slowly unloaded into the forebay. Startup will be monitored to verify water flows freely from the forebay to the constructed wetland cell. Once discharge is noted into the recharge cell, effluent sampling will be performed to verify that the system is effectively removing ammonia and iron.

Following successful startup, the facility will be placed into routine operational mode and will be monitored on a daily basis in conjunction with transport of the groundwater to treatment.

7.0 OPERATION AND MAINTENANCE PLAN

7.1 Operation

The groundwater collection and conveyance system is designed to fully operate in a fully automatic mode. The recovery well system(s) will be equipped with a pressure transducer and pump controller to automatically maintain a set drawdown in the well(s). The groundwater drawdown level will be able to be controlled by the operator at the control panel located near the road.

In the event of a high water condition of the groundwater storage tank, a high-level alarm will activate and the recovery well(s) will shut down automatically.

7.2 Maintenance

Maintenance will be performed regularly and repairs made when necessary so that proper function is not interrupted. The area around the groundwater collection system will be regularly mowed as part of routine Landfill maintenance. Fragile structures (recovery well risers, control panels, electrical conduits, etc.) will be protected by bollards, concrete blocks or other means.

Landfill access roads will be maintained, including plowing during winter.

7.2.1 Canal Banks

The canal banks and riprap erosion control areas shall be inspected during regular monthly landfill inspections as set forth in the Site Management Plan (SMP) for signs of erosion, slope instability and occurrence of new seeps.

7.2.2 Pumps

Pump maintenance shall be performed in accordance with the manufacturer's recommendations, to be provided upon installation of the pump(s). Such will be determined based upon the specific pumping units selected and installed in accordance with the engineer's approvals.

7.2.3 Recovery Wells

The recovery well(s) should be inspected semi-annually. The wells should be checked for damage by frost or landscaping equipment, and should be cleared of surrounding vegetation.

7.2.4 Forcemain

Any exposed portions of the forcemain will be inspected monthly for signs of damage or leaks. The ground above the buried forcemain will be inspected for erosion and wet spots that may indicate a leak.

Manually operated valves should be operated semi-annually. Pipes will be inspected by video camera equipment if deemed necessary.

7.2.5 Storage Tank

The storage tank shall be inspected quarterly for signs of damage or leaks. Manually operated valves should be operated semi-annually. The discharge connection coupler shall be inspected for wear, damage or leaks during each transfer operation.

7.2.6 Treatment System

The treatment system operations will include influent and effluent monitoring for ammonia and iron. The monitoring program can be modified if additional Landfill parameters of concern are identified.

TABLES

I aule I	Summary of Site Stratigraphy
Table 2	Summary of Surveyed Elevations and Select Water Level Measurements
Table 3	Summary of Field Parameter Measurements (October 6, 2014)
Table 4	Summary of Analytical Results (October 2014)
Table 5	Summary of Historical Analytical Results - Seeps (2012 - 2014)
Table 6	Summary of Historical Analytical Results - Surface Water (2012 - 2014)
Table 7	Evaluation of Mitigation Alternatives
10010	2.00

Summary of Site Stratigraphy Orange County Landfill, Goshen, New York

Piezometer I.D.	Measuring Point (MP) Elevation (Site Datum)	Piezometer Stickup (feet)	Ground Surface Elevation (Site Datum)	Glaciolacustrine Silt and Clay/Glaciolacustrine Fine Sand Interface (feet BGS)/[Geologic Contact Elevation]	Screened Interval (feet BGS) / [Screened Elevation]	Total Depth (Feet BGS) / [Bottom Elevation]
PZ-14-1	390.27	0.65	389.62	34.1 / [355.52]	34.5-39.5 / [355.12 - 350.12]	39.50 / [350.12]
PZ-14-2	381.94	0.80	381.14	24.6 / [356.54]	24.5-29.5 / [356.64 - 351.64]	30.26 / [350.88]
PZ-14-3	381.83	0.35	381.48	24.4 / [357.43]	24.92 -29.92 / [356.56 - 351.56]	29.92 / [351.56]
PZ-14-4	381.77	1.35	380.42	23.9 / [356.52]	23.91-28.91 / [356.51 - 351.51]	28.91 / [351.51]
PZ-14-5	392.22	2.17	390.05	33.5/ [356.55]	32.9-37.9 / [357.15 - 352.15]	37.86 / [352.19]
PZ-14-6	391.11	0.88	390.23	33.85 / [356.38]	34.2-39.2 / [356.03 - 351.03]	39.20 / [351.03]

©2014, Sterling Environmental Engineering, P.C.

Table 2
Summary of Surveyed Elevations and Select Water Level Measurements
Orange County Landfill, Goshen, New York

Piezometer I.D.	Northing	Easting	Ground Surface Elevation (Site Datum)	Measuring Point (MP) Elevation (Site Datum)	February 20, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	March 18, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	September 9, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	October 6, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]
PZ-14-1	N 41° 23' 19.50"	W 74° 24' 4.85"	389.62	390.27	27.69 / [362.58]	26.29 / [363.98]	28.67 / [361.60]	29.06 / [361.21]
PZ-14-2	N 41° 23' 19.21"	W 74° 24' 4.60"	381.14	381.94	20.21 / [361.73]	18.24 / [363.70]	21.24 / [360.70]	21.53 / [360.41]
PZ-14-3	N 41° 23' 19.39"	W 74° 24' 4.22"	381.48	381.83	20.10 / [361.73]	18.30 / [363.53]	21.09 / [360.74]	21.39 / [360.44]
PZ-14-4	N 41° 23' 19.54"	W 74° 24' 3.79"	380.42	381.77	19.88 / [361.89]	18.23 / [363.54]	20.92 / [360.85]	21.23 / [360.54]
PZ-14-5	N 41° 23' 19.70"	W 74° 24' 4.45"	390.05	392.22	29.58 / [362.64]	28.32 / [363.90]	29.53 / [362.69]	30.94 / [361.28]
PZ-14-6	N 41° 23' 19.88"	W 74° 24' 4.06"	390.23	391.11	28.61 / [362.50]	27.27 / [363.41]	29.32 / [361.79]	29.74 / [361.37]
SG-1	N 41° 23' 18.66"	W 74° 24' 4.11"		357.49				
SG-2	N 41° 23' 18.54"	W 74° 24' 4.04"		354.99			4.28 / [350.71]	4.72 / [350.27]

Notes:

Northing and Easting coordinates are in New York State Plane.

©2014, Sterling Environmental Engineering, P.C.

TABLE 3

Summary of Field Parameter Measurements (October 6, 2014) Orange County Landfill, Goshen, New York

					Groundwa	ter Locations			Seep Location		Surface Wat	ter Locations		Leachate
Parameter	Title 6 Part 703.5 Standards	Units	PZ-14-1 ^[3]	PZ-14-2 ^[3]	PZ-14-3	PZ-14-4 ^[3]	PZ-14-5	PZ-14-6 ^[3]	Seep Monitoring Point	SW-13 (Upstream)	SW-5 (Upstream)	SW-Seep DS	SW-8 (Dwonstream)	MH-5
Static Water Level [1]		feet	29.06	21.53	21.39	21.23	31.93	29.74						***
Specific Conductance	***	mS/cm ^c	1.094 (1.113)	1.022 (0.698)	1.041 (0.859)	1.014 (0.607)	1.223 (1.230)	1.006 (1.001)	1.246	0.790	0.806	0.787	0.788	1.775
Temperature		°C	16.02 (13.56)	15.15 (12.68)	18.00 (12.96)	15.27 (12.36)	19.80 (14.15)	16.07 (13.66)	16.09	15.79	16.00	15.39	15.47	17.11
Turbidity		NTU	899	235	77.6	291	75.0	165						
pH	6.5 <ph< 8.5<="" td=""><td>S.U.</td><td>7.22 (7.00)</td><td>7.31 (7.41)</td><td>7.65 (7.03)</td><td>7.10 (7.21)</td><td>7.75 (7.03)</td><td>7.14 (7.12)</td><td>6.95</td><td>7.46</td><td>7.36</td><td>7.56</td><td>7.61</td><td>7.50</td></ph<>	S.U.	7.22 (7.00)	7.31 (7.41)	7.65 (7.03)	7.10 (7.21)	7.75 (7.03)	7.14 (7.12)	6.95	7.46	7.36	7.56	7.61	7.50
ORP		mV	-82.7 (-90.2)	-84.5 (3.10)	-40.4 (38.2)	-55.7 (47.5)	17.8 (214.8)	-64.9 (-15.9)	-58.8	516.9	-138.6	490.1	495.8	204.4
Dissolved Oxygen	> 3.0 [2]	mg/L	1.50 (1.76)	1.89 (2.77)	1.69 (1.19)	1.40 (1.44)	0.69 (1.29)	1.80 (1.72)	2.85	5.71	4.51	3.74	4.83	0.79

NOTES:

Values in parentheses reflect field parameter measurements collected on March 18, 2014.

Values in BOLD indicate an exceedance of applicable water quality standard or guidance value.

--- No standard or not measured.

© 2014, Sterling Environmental Engineering, P.C.

^[1] Measured from the top of the PVC casing to water surface.

^[2] Standard only applies to surface water samples.

^[3] Only field measurements were taken at these locations, no sample.

Table 4

Summary of Analytical Results (October 2014)

Orange County Landfill, Goshen, New York

			Groundwat	er Samples	Surface Water	Seep Sample	Location	Sı	rface Water	Sample Loca	tions	Leachate
Analyte and Method	Units	Groundwater Standard and Guidance Values ^(A)	PZ-14-3	PZ14-5	Standard and Guidance Values ^(B)	Seep Monitoring Point	DUP-1	SW-13 (Upstream)	SW-5 (Upstream)	SW-Seep DS	SW-8 (Downstream)	MH-5
Volatile Organic Compounds												
1,1,1-Trichloroethane	μg/L	5.0	0.39 U	0.39 U		0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	3.9 U
1,1,2,2-Tetrachloroethane	μg/L	5.0	0.26 U	0.26 U	22	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	2.6 U
1,1,2-Trichloroethane	μg/L	1.0	0.48 U	0.48 U		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	4.8 U
1,1-Dichloroethane	μg/L	5.0	0.59 U	0.59 U	en spen	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	5.9 U
1,1-Dichloroethene	μg/L	5.0	0.85 U	0.85 U		0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	8.5 U
1,2-Dichlorobenzene	μg/L	3.0	0.44 U	0.44 U	5 (2)	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	4.4 U
1,2-Dichloroethane	μg/L	0.6(1)	0.60 U	0.60 U		0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	6.0 U
1,2-Dichloropropane	μg/L	1.0	0.61 U	0.61 U	***	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	6.1 U
1,3-Dichlorobenzene	μg/L	3.0	0.54 U	0.54 U	5 (2)	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	5.4 U
1.4-Dichlorobenzene	μg/L	3.0	0.51 U	0.51 U	5 (2)	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	5.1 U
2-Chloroethyl vinyl ether	μg/L		1.9 U	1.9 U		1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	19 U
Benzene	µg/L	1.0	0.60 U	0.60 U	10	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	6.0 U
Bromodichloromethane	μg/L	50	0.54 U	0.54 U		0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	5.4 U
Bromoform	μg/L	50	0.47 U	0.47 U		0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	4.7 U
Bromomethane	μg/L	5.0	1.2 U	1.2 U		1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	12 U
Carbon tetrachloride	μg/L	5.0	0.51 U	0.51 U		0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	5.1 U
Chlorobenzene	μg/L	5,0	0.48 U	0.48 U	5	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	4.8 U
Chloroethane	μg/L	5.0	0.87 U	0.87 U		0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	20 J
Chloroform	μg/L	7.0	0.54 U	0.54 U		0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	5.4 U
Chloromethane	μg/L	5.0	0.64 U	0.64 U		0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	6.4 U
cis-1,2-Dichloroethene	μg/L	5.0	0.57 U	0.57 U		0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	5.7 U
cis-1,3-Dichloropropene	μg/L	0.4	0.33 U	0.33 U		0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	3.3 U
Dibromochloromethane	μg/L	50	0.41 U	0.41 U	***	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	4.1 U
Dichlorodifluoromethane	μg/L	5.0	0.28 U	0.28 U		0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	2.8 U
Ethylbenzene	μg/L	5.0	0.46 U	0.46 U	17	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	4.6 U
Methylene Chloride	μg/L	5.0	0.81 U	0.81 U	200	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	8.1 U
m-Xylene & p-Xylene	μg/L	5.0 (2)	1.1 U	1.1 U	65 (2)	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	11 U
o-Xylene	μg/L	5.0	0.43 U	0.43 U	65 (2)	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	4.3 U
Tetrachloroethene	μg/L	5.0	0.34 U	0.34 U	1.0	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	3.4 U
Toluene	μg/L	5.0	0.45 U	0.45 U	6,000	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	4.5 U
trans-1,2-Dichloroethene	μg/L	5.0	0.59 U	0.59 U		0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	5.9 U
trans-1,3-Dichloropropene	μg/L	0.4(1)(2)	0.44 U	0.44 U		0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	4.4 U
Trichloroethene	μg/L	5.0	0.60 U	0.60 U	40	0,60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	6.0 U
Trichlorofluoromethane	μg/L	5.0	0.45 U	0.45 U		0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	4.5 U
Vinyl chloride	μg/L	2.0	0.75 U	0.75 U		0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	7.5 U
Xylenes, Total	μg/L	5.0	1.1 U	1.1 U	65	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	11 U

Table 4

Summary of Analytical Results (October 2014)

Orange County Landfill, Goshen, New York

		Groundwater	Groundwat	ter Samples	Surface Water	Seep Sample	Location	Si	urface Water	Sample Locat	ions	Leachate
Analyte and Method	Units	Standard and Guidance Values ^(A)	PZ-14-3	PZ-14-5	Standard and Guidance Values ^(B)	Seep Monitoring Point	DUP-1	SW-13 (Upstream)	SW-5 (Upstream)	SW-Seep DS	SW-8 (Downstream)	MH-5
Leachate Indicator Parameters												
Alkalinity, Total	mg/L		570 B	600 B		590	620	210 B	230	230 B	220 B	1300 B
Ammonia	mg/L	2.0	5.3	9.1 B	(3)	6.9	7.0	0.009 U	0.009 U	0.058 B	0.014 JB	130 B
Biochemical Oxygen Demand	mg/L		2.0 U	7.1 b	was:	6.1	5.2	2.0 H	2.0 U	2.0 Hb	2.0 U	16 b
Chemical Oxygen Demand	mg/L	***	23 B	32 B		21	15	6.4 JB^	21 B	23 B	21 B	250 B
Chloride	mg/L	250	61	79		81	84	100	100	100	100	520
Color	Color Units	15	5.0 U	5.0 U		60	50	25	25	25	25	40
Cyanide, Total	mg/L	0.2	0.005 U	0.23	0.0052	0.01 U	0.12	0.005 ^	0.005 ^	0.005 U	0.005 ^	0.0083 J
Hardness	mg/L		610	580		490	500	240	230	240	240	760
Nitrate as N	mg/L	10	0.69	0.090		0.02 U	0.02 U	2.1	2.1	2.1	2.1	0.24
Phenolics, Total Recoverable	mg/L	0.001 ⁽¹⁾	0.005 U	0.026	0.001 ⁽¹⁾	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0075 J
Sulfate	mg/L	250	34	30		4.7	5.9	33	33	34	34	4.6
Total Dissolved Solids	mg/L	500	680	780		720	740	390	420	410	400	1000
Total Kieldahl Nitrogen	mg/L	***	5.9	9.2		8.5 B	8.2 B	0.94	0.75	0.8	0.41	140
Total Organic Carbon	mg/L		3.2	8.9		4.4	4.4	4.1	4.1	4.1	4.1	57
Turbidity	NTU	5.0	450	240	-	76	73	28	29	23	22	440
Total Metals												
Aluminum, Total Recoverable	mg/L		6.3	0.73		0.19 J	0.06 U	0.54	0.4	0.16 J	0.47	0.16 J
Antimony, Total Recoverable	mg/L	0.003 ⁽¹⁾	0.0068 U	0.0068 U		0.0068 U	0.0064 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U
Arsenic, Total Recoverable	mg/L	0.025	0.094	0.057	0.15 ⁽⁵⁾	0.11	0.12	0.0056 U	0.0056 U	0.0062 J	0.0098 J	0.031
Barium, Total Recoverable	mg/L	1.0	0.63	0.51		0.86	0.93	0.041	0.04	0.043	0.041	1.9
Beryllium, Total Recoverable	mg/L	0.003 ⁽¹⁾	0.00047 J	0.0003 U	(4)	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U
Boron, Total Recoverable	mg/L	1.0	0.18	0.21	10	0.24	0.24	0.046	0.045	0.048	0.045	1.0
Cadmium. Total Recoverable	mg/L	0.005	0.0005 U	0.0005 U	(4)	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Calcium, Total Recoverable	mg/L	_	180	140		130	130	59	58	61	61	180
Chromium, Total Recoverable	mg/L	0.05	0.028	0.0076	(4)	0.0018 J	0.0017 J	0.0015 J	0.001 U	0.0015 J	0.001 J	0.0054
Chromium, hexavalent	mg/L	0.05	0.005 U	0.005 U	0.011(5)	0.005 U	0.005 H	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Copper, Total Recoverable	mg/L	0.2	0.091	0.0072 J	(4)	0.0026 J	0.0018 J	0.0054 J	0.0051 J	0.0052 J	0.005 J	0.0038 J
Iron, Total Recoverable	mg/L	0.3	18 B	4.8 B	0.3	8.6	9.1	0.54 B	0.4 B	0.22 B	0.46 B	47 B
Lead. Total Recoverable	mg/L	0.025	0.017	0.003 U	(4)	0.0032 J	0.003 U	0.003 U	0.003 U	0.003 U	0.0031 J	0.003 U
Magnesium, Total Recoverable	mg/L	35 ⁽¹⁾	56	54		63	63	23	23	23	23	53
Manganese, Total Recoverable	mg/L	0.3	2.0	1.0		0.76 B	0.76 B	0.13	0.13	0.13	0.12	2.2
Mercury, Total Recoverable	mg/L	0.0007	0.00012 U	0.00012 U	0.7	0.00012 U	0.0001 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U
Nickel, Total Recoverable	mg/L	0.1	0.025	0.028	(4)	0.0094 J	0.0099 J	0.0016 J	0.0018 J	0.0018 J	0.002 J	0.028
Potassium. Total Recoverable	mg/L		9.3	9.8		16	16	3.8	3.7	3.7	3.8	67
Selenium, Total Recoverable	mg/L	0.01	0.0087 U	0.0087 U		0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 ป	0.0087 U
Silver, Total Recoverable	mg/L	0.05	0.0017 U	0.0017 U		0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U
Sodium, Total Recoverable	mg/L	20	60	87		64	66	52	52	52	52	370
Thallium, Total Recoverable	mg/L	0.0005 ⁽¹⁾	0.01 U	0.01 U	0.008 ⁽¹⁾	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Zinc, Total Recoverable	mg/L	2 0(1)	0.087 B	0.026 B	(4)	0.0094 JB	0.0071 JB	0.0071 JB	0.023 B	0.041 B	0.012 B	0.014 B

Table 4

Summary of Analytical Results (October 2014) Orange County Landfill, Goshen, New York

		Groundwater	Groundwa	ter Samples	Surface Water	Seep Sample I	ocation	Si	urface Water	Sample Locat	ions	Leachate
Analyte and Method	Units	Standard and Guidance Values ^(A)	PZ-14-3	PZ-14-5	Standard and Guidance Values ^(B)	Seep Monitoring Point	DUP-1	SW-13 (Upstream)	SW-5 (Upstream)	SW-Seep DS	SW-8 (Downstream)	MH-5
Dissolved Metals										2.00		
Aluminum, Dissolved	mg/L	-	8.7	2.7								
Antimony, Dissolved	mg/L		0.0068 U	0.0068 U								
Arsenic, Dissolved	mg/L		0.092	0.055								
Barium, Dissolved	mg/L		0.59	0.47								
Beryllium, Dissolved	mg/L	***	0.00048 J	0.0003 U								
Boron, Dissolved	mg/L	-	0.17 B	0.20 B		_			10 M fr			
Cadmium, Dissolved	mg/L	***	0.0005 U	0.0005 U			abrate dat					
Calcium, Dissolved	mg/L		150	130								
Chromium, Dissolved	mg/L	900	0.032	0.016			***	produce				
Copper, Dissolved	mg/L		0.083 B	0.011 B			***					
Iron, Dissolved	mg/L	4600	22	7.7				-				
Lead, Dissolved	mg/L		0.015	0.0051 J			***				<u></u>	
Magnesium, Dissolved	mg/L		54	52								
Manganese, Dissolved	mg/L		1.7	1.1								•••
Mercury, Dissolved	mg/L	_	0.00012 U	0.00012 U								
Nickel, Dissolved	mg/L		0.030	0.032								
Potassium, Dissolved	mg/L		9.1	9.7								
Selenium, Dissolved	mg/L		0.0087 U	0.0087 U		440						
Silver, Dissolved	mg/L	***	0.0017 U	0.0017 U								***
Sodium, Dissolved	mg/L		58	85								
Thallium, Dissolved	mg/L		0.010 U	0.01 U				Name .				
Zinc, Dissolved	mg/L		0.087 B	0.036 B				nee				

Values in BOLD indicate exceedance of applicable groundwater and surface water quality standard.

Berylium (mg/L): SW-13 = 1.1; SW-5 = 1.1; SW SEEP DS = 1.1; and SW-8 = 1.1

Cadmium (mg/L): SW-13 = 0.01; SW-5 = 0.01; SW SEEP DS = 0.01; and SW-8 = 0.01

Chromium: (mg/L): SW-13 = 1.17; SW-5 = 1.13; SW SEEP DS = 1.17; and SW-8 = 1.7

Copper (mg/L): SW-13 = 0.03; SW-5 = 0.03; SW SEEP DS = 0.03; and SW-8 = 0.03

Lead (mg/L): SW-13 = 0.25; SW-5 = 0.24; SW SEEP DS = 0.25; and SW-8 = 0.25

Nickel (mg/L): SW-13 = 0.98; SW-5 = 0.95; SW SEEP DS = 0.98; and SW-8 = 0.98

Zinc (mg/L): SW-13 = 0.25; SW-5 = 0.24; SW SEEP DS = 0.25; and SW-8 = 0.25

- U = Compound is not detected at or above laboratory method detection limit.
- J = Result is less than the laboratory reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- B = Compound was found in the blank and the sample.
- b = Result detected in the unseeded control blank (USB).
- H = Sample was prepped or analyzed beyond specified holding time.
- ^ = Instrument related QC exceeds the control limits.

DUP-1 was collected at the Seep Monitoring Point location.

© 2014, Sterling Environmental Engineering, P.C.

^{--- =} Not analyzed or no applicable standard.

⁽A) = T.O.G.S. 1.1.1 Ambient Water Quality Standards for Class GA Groundwater

⁽B) = T.O.G.S. 1.1.1 Ambient Water Quality Standards for Class C Surface Water

^{(1) =} Laboratory Method Detection Limit is greater than or equal to the applicable water quality standard.

^{(2) =} Applies to the sum of 1,2-1,3-1,4-Dichlorobenzene, or Applies to each individual isomer, or applies to the sum of m-, o-, and p-xylenes, or applies to the sum of cis-trans 1,3-Dichloropropene.

^{(3) =} Surface water standard for ammonia (mg/L) is interpolated using the temperatures and pH of the individual samples. SW-13 = 2.18; SW-5 = 2.19; SW SEEP DS = 2.14; and SW-8 = 2.10

^{(4) =} Surface Water Standard for Berylium, Cadmium, Chromium, Copper, Lead, Nickel, and Zinc are based on the individual sample's hardness.

^{(5) =} Standard applies to the dissolved form, not total recoverable.

Summary of Historical Analytical Results - Seeps (2012 - 2014) Orange County Landfill, Goshen, New York

Analyte	Units	Surface Water Standard and		V-B e of Canal)		1/GW-1 de of Canal)		Seep Monito (North Side			GW-3 (North Side of Canal)	-	W-A le of Canal)
		Guidance Values ^(A)	8/21/2013	6/12/2014	8/22/2012	6/12/2014	8/22/2012 (GW-03)	8/21/2013 (GW-D)	6/12/2014 (GW-2)	10/6/2014	6/12/2014	8/21/2013	6/12/2014
Field Measurements				Make Make					a sequence of		he was		
Temperature	°C		21.75	16.83	20.77	13.81	23.88	19.01	14.47	16.09	15.66	20.57	15.12
Dissolved Oxygen	mg/L	<4		8.1	9.3	1,98	8.17	6.54	2.39	2.85	9.18	5.68	9.08
Oxidation Reduction Potential	mV		-7.0	232	-90.6	-\$5.0	-77	-55	14.1	-58.8	31	9.6	252.3
pH	S.U.	6.5-8.5	7.46	7.7	7.03	6.85		7.15	6.83	6.95	6.77	7.48	6.92
Specific Conductivity	mS/cm ^c		0.426	0.438	0.7772	1.265	0.695	1.339	1.162	1.246	1.247	0.420	0.426
Water Quality Parameters		100	- 1		1 1-11-11	- (OB)							
Alkalinity	mg/L	_	130 B	260	640	560	850	640	610	590	630	170 B	130
Ammonia	mg/L	(2)	0.075	0.14	40	18	13	8.0	8.8	6.9	6.3	0.018 /	0.016 J
Biochemical Oxygen Demand	mg/L		2.0 b	2.2 b	2.0 U	2.00	5.8 b	13	2.0 U	6.1	14 b	2.0 U	<2.0
Bromide	mg/L	_	0.073 U^	_	0.65	-	0.75	1.0 ^	-	-	_	0.073	-
Chemical Oxygen Demand	mg/L		210	110	21	31	22	188	5.0 U	21	21	18	24
Chloride	mg/L		3.0	0.82	82	73	63	73	58	81	54	23	44
Color	Color Units		400	140	150	25	35	100	15	60	5.0	50	60
Cyanide	mg/L	0.0052	0.012 B	0.005 U	0.005 U	0.das U	0.005 U	0.005 U	0.0053 J	0.01 U	0.005 U	0.005 U	0.005 U
Nitrate	mg/L		0.28	0.31	0.011 U	0.076	0.26	0.075 U	0.57	0.02 U	0.02 U	0.33	0.45
	mg/L	0.001(1)	0.0069 J	0.005 U	0.0054 J	0.005 U	0.005 U	0.005 JH	0.005 U	0.01 U	0.005 U	0.005 U	0,005 U
Phenois Sulfate	mg/L	0.001	86	23	19	4.7	7.7	10	11	4.7	67	27	17
	-	500	430	420	680	690	780	830	660	720	780	250	280
Total Dissolved Solids	mg/L	300	240	250	530	490	540	760	500	490	600	180	160
Total Hardness	mg/L		4.1 B	2.7	38	16	12	8.2	8.6	8.5 B	6.8	0.50	0.41
Total Kjeldahl Nitrogen	mg/L mg/L		67	46	6.1	6.0	6.0	5.5 b	5.9	4.4	5.5	5.6	6.9
Total Organic Carbon	NTU		7.6	160	66	320	1.0 U	7100	120	76	150	7.6	12
Turbidity	NIU		7.0	100	- 00	320	1.00	7100	120	The state of			
Metal Parameters	mg/L	_	0.67	6.3	0.22	0.60	0.80	4.4	1.4	0.19 J	0.21	0.23	0.37
Aluminum	mg/L		0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U
Antimony		0.15(3)		-	0.094	0.12	0.048	0.11	0.086	0.11	0.029	0.0056 U	0.0056 U
Arsenic	mg/Ł		0.0056 U	0.0058 J	1	1.2	1	0.90	0.38	0.11	0.029	0.022	0.021
Barium	mg/L		0.032	0.074	0.44 0.0003 U	0.0003 U	0.33 0.0003 U	0.0003 U	0.0003 U	0,0003 U	0.0003 U	0.0003 U	0.0003
Berylium	mg/L	1.1	0.0003 U	0.00045 J	0.0003 U	0.0003 U	0.0003 U	0.003 0	0.0003 U	0.24	0.0003 G	0.092	0.003 0.023 B
Boron	mg/L	10	0.080	0.027 B			0.0005 U	0.0014	0.00062 J	0.0005 U	0.0005 U	0.0005 U	0.0005
Cadmium	mg/L		0.0005 U	0.0005 ป	0.0005 U	0.00094 J 92	130	140	120	130	150	56	49
Calcium	mg/L	*	72	. 76	1	0.0010 U	0.0011 J	0.0058	0.0020 J	0.0018 J	0.0010	0.001 U	0.001 U
Chromium	mg/L		0.0018 J	0.0078	0.001 U 0.005 U	0.0010 U	0.00111	0.0079 JH	0.0020 J	0.005 U	0.0010 0.005 U	0.001 JH	0.001 U
Chromium, Hexavalent	mg/L	0.011	0.005 UH	0.005 U	+	0.0063 J	0.0034 J	0.0051	0.003 U	0.005 0	0.0024 J	0.00063 U	0.00063 U
Cobalt	mg/L	0.005	0.0065	0.0014 j	0.00063 U	-	-	0.0031	0.0019 J	0.0026 J	0.0024 J	0.0044 J	0.00063 U
Соррег	mg/L		0.04	0.012	0.0016 U	0.0016 U	0.00381	_	-		13	0.34	0.53
Iron	mg/L	0.3	1.5	8.0	6.5	11	3.2	12	5.3	0.0032 J	0.0030 U	0.003	0.003 U
Lead	mg/L		0.003 U	0.007 3	0.003 U	0.003 U	0.003 U	0.0075	0.0042 J		_	9.3	8.8
Magnesium	mg/L		12	16	41	57	51	57	44	63	48		-
Manganese	mg/L		0.93	1.0	0,54	0.28	1.7	1.1	1.8	0.76 B	1.4	0.047	0.063
Mercury	mg/L	0.0007	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U 0.0013 U	0.00012 U
Nickel	mg/L		0.027	0.018	0.0093 J	0.013	0.009 J	0.015	0.0091 J	0.0094 J	0.0073	2.2 B	0.0013 U
Potassium	mg/L	-	3.3 B	4.4	23	19	15	13 B	12	16	8,0		
Selenium	mg/L	0.0046(1)	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U
Silver	mg/L	0.0001	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U
Sodium	mg/L	_	2.0	3.2	81	65	59	64	45	64	45	16	24
Thailium	mg/L	0.008	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Vanadium	mg/L	0.014	0.0015 U	0.0015 U	0.0017 J	0.0015 U	0.0074	0.0067	0.0015 U		0.0015 U	0.0015 U	0,0015 U
Zinc	mg/L		0.011	0.028	0.0096 JB	0.012	0.010 B	0.033	0.020	0.0094 JB	0.0054 J	0.0017 J	0.0029 J

Values in BOLD indicate exceedance of applicable groundwater and surface water quality standard.

Seep Monitoring Point (8/22/2012) = No pH value, can't interpolate standard; Seep Monitoring Point (8/21/2013) = 1.5; Seep Monitoring Point (6/12/2014) = 2.2; Seep Monitoring Point (10/6/2014) = 2.2; GW-A (8/21/2013) = 1.5; and, GW-A (6/12/2014) = 2.2

* = Surface water standards for Cadmium, Chromium, Copper, Lead, Nickel, and Zinc are based on the samples hardness for Class C streams.

Cadmilum (mg/L): GW-B(8/21/2013) = 0.01, GW-B(6/12/2014) = 0.01, GW-1/GW-01(8/22/2012) = 0.03, GW-1/GW-01(6/12/2014) = 0.02, Seep Monitoring Point(8/22/2012) = 0.03, Seep Monitoring Point(8/22/2012) = 0.04,

Seep Monitoring Point(6/12/2014) = 0.02, Seep Monitoring Point(10/8/2014) = 0.02, GW-3(6/12/2014) = 0.03, GW-4(8/21/2013) = 0.01, GW-4(6/12/2014) = 0.01

Chromium: (mg/L): GW-8(8/21/2013) = 1.17, GW-8(6/12/2014) = 1.12, GW-1/GW-01(8/22/2012) = 2.23, GW-1/GW-01(6/12/2014) = 2.09, Seep Monitoring Point(8/22/2012) = 2.27, Seep Monitoring Point(8/21/2013) = 3.00,

Seep Monitoring Point(6/12/2014) = 2.13, Seep Monitoring Point(10/6/2014) = 2.09, GW-3(6/12/2014) = 2.47, GW-A(8/21/2013) = 0.92, GW-A(6/12/2014) = 0.84

Copper (mg/L): GW-B(8/21/2013) = 0.03, GW-B(6/12/2014) = 0.03, GW-1/GW-01(8/22/2012) = 0.06, GW-1/GW-01(6/12/2014) = 0.06, Seep Monitoring Point(8/22/2012) = 0.07, Seep Monitoring Point(8/21/2013) = 0.09,

Copper (mg/L): GW-B(8/21/2013) = 0.03, GW-B(6/12/2014) = 0.03, GW-1/GW-01(8/22/2012) = 0.06, GW-1/GW-01(6/12/2014) = 0.06, Seep Monitoring Point(10/6/2014) = 0.06, GW-3(6/12/2014) = 2.47, GW-A(8/21/2013) = 0.07, GW-A(6/12/2014) = 0.02

 $\textbf{Lead (mg/L): GW-B(B/21/2013)} = 0.25, \ GW-B(B/1/2014) = 0.26, \ GW-1/GW-01(B/22/2012) = 0.56, \ GW-1/GW-01(B/12/2014) = 0.52, \ Seep \ Monitoring \ Point(B/22/2012) = 0.57, \ Seep \ Monitoring \ Point(B/21/2013) = 0.80, \ Point(B/21$

Seep Monitoring Point(6/12/2014) = 0.53, Seep Monitoring Point(10/6/2014) = 0.52, GW-3(6/12/2014) = 0.54, GW-4(8/21/2013) = 0.18, GW-4(6/12/2014) = 0.16

Nickel (mg/L): GW-8(8/21/2013) = 0.98, GW-8(6/12/2014) = 1.02, GW-1/GW-01(8/22/2012) = 1.92, GW-1/GW-01(6/12/2014) = 1.80, Seep Monitoring Point(8/22/2012) = 1.95, Seep M

Seep Monitoring Point(6/12/2014) = 1.83, Seep Monitoring Point(10/6/2014) = 1.80, GW-3(6/12/2014) = 2.13, GW-4(8/21/2013) = 0.77, GW-4(6/12/2014) = 0.70

Zinc (mg/L): GW-8(8/21/2013) = 0.25, GW-8(6/12/2014) = 0.25, GW-1/GW-01(8/22/2012) = 0.48, GW-1/GW-01(6/12/2014) = 0.45, Seep Monitoring Point(8/22/2012) = 0.49, Seep Monitoring Point(8/22/2012) = 0.49, Seep Monitoring Point(8/21/2013) = 0.25, GW-1/GW-01(6/12/2014) = 0.25, GW-1/GW-01(6/12/2014) = 0.45, Seep Monitoring Point(8/21/2013) = 0.49, Seep Monitoring Point(8/21/2014) = 0.49, Seep Monitoring Point(8/21/201

Seep Monitoring Point(6/12/2014) = 0.46, Seep Monitoring Point(10/6/2014) = 0.45, GW-3(6/12/2014) = 0.53, GW-A(6/21/2013) = 0.19, GW-A(6/12/2014) = 0.17

U = Compound is not detected at or above laboratory method detection limit.

J = Result is less than the laboratory reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

B = Compound was found in the blank and the sample.

b = Result detected in the unseeded control blank (USB).

H = Sample was prepped or analyzed beyond specified holding time.

 $^{\rm A}$ = Instrument related QC exceeds the control limits.

^{--- =} Not analyzed or no applicable standard.

⁽A) = T.O.G.S. 1.1.1 Ambient Water Quality Standards for Class C Surface Water. Part 703.3 for pH, D.O., TDS, Color, and Trubidity.

^{(1) =} Laboratory Method Detection Limit is greater than or equal to the applicable water quality standard.

⁽²⁾ Surface Water Standard for ammonia, in mg/L, is interpolated from the samples pH and temperature. GW-B (8/21/2013) = 1.5, GW-B (6/12/2014) = 2.04, GW-1/GW-01 (8/22/2012) = 1.5, GW-1/GW-01 (6/12/2014) = 2.2,

^{(3) =} Standard applies to the dissolved form, not total recoverable.

TABLE 6

Summary of Historical Analytical Results - Surface Water (2012 - 2014) Orange County Landfill, Goshen, New York

Analyte	Units	Surface Water Standard and Guidance		SW-13 pstream)	_	W-S tream)		W-01 stream)	SW-Seep DS (Downstream)		r-02** nstream)	(Don	SW-8 wnstream)
		Values ^(A)	10/6/2014	Historical Range	10/6/2014	Historical Range	8/22/2012	6/12/2014	10/6/2014	8/22/2012	6/12/2014	10/6/2014	Historical Range
Field Measurements													
Temperature	°C		15.79	0.3-25.3	16	0.1-25.4	22.17	18,63	15.39	23.25	18.67	15.47	0.2-25.91
Dissolved Oxygen	mg/L	< 4	5.71	6.79-12.68	4.51	5.2-10.8	6.78	8.13	3.74	6.68	8.04	4.83	6-11.28
Oxidation Reduction Potential	mV	840	516.9	-137-380	-138.6	-162-370	43.9	235.3	490.1	-20.6	235.1	495.8	-186-395
pH	S.U.	6.5-8.5	7.46	7.18-9.02	7.36	7.01-9.33	7.78	7.85	7.56	7.80	7.72	7.61	7.0-8.81
Specific Conductivity	m5/cm ^c		0.79	285-576	0.806	290-684	0.479	0.492	0.787	0.488	0.492	0.788	300-4940
Water Quality Parameters													
Alkalinity	mg/L		210 B	44-187	230	62.9-160	130 B	130	230 B	140 B	140	220 B	65.2-189
Ammonia	mg/L	(2)	0.009 U	0.03-0.51 U	0.009 U	0.03-0.155 U	0.049	0.053	0.058 B	0.21	0.053	0.014 JB	0.03 U-0.221
Biochemical Oxygen Demand	mg/L		2.0 H	2.0-7.0 U	2.0 U	2.0 U-8.0	3.3 b	2.0 U	2.0 Hb	2.0 U	2.0 U	2.0 U	2.0 U-14
Bromide	mg/L		2.011	0.1 U-1.0 U		0.1 U-1.0 U	0.1 U		***	0.1 U			0.1 U-1.0 U
Chemical Oxygen Demand	mg/L		6.4 JB^	10 U-50	21	10 U-105	14	10	23 B	14	9.01	21 B	6.0-34
Chloride	mg/L	ene	100	23-82	100	28.9-79	46	61	100	47	61	100	30-80
Chromium, Hexavalent	mg/L	0.011	0.005 U	0.004 U-0.01 U	0.005 U	0.004 U-0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	< 0.005	0.004 U-0.01
Color	Color Units		25	5.0 U-750	25	5.0 U-750	40	35	25	50	40	25	5.0 U-500
Cyanide	mg/L	0.0052	0.005^	0.005 U-0.01 U	0.005^	0.005 U-0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005^	0.005 U-0.01 U
Hardness	mg/L		240	96.7-260	230	99.8-242	18 J	180	240	180	180	240	102-238
Nitrate	mg/L		2.1	0.4-1.82	2.1	0.1 U-1.72	0.77	0.91	2.1	0.83	0.93	2.1	0.1 U-3.3
Phenois	mg/L	0.005	0.005 U	0.002 U-0.0045 U	0.005 U	0.002 U- 0.007 2	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	<0.005	0.002 U-0.0115
Sulfate	mg/L		33	11-91	33	7.5-100	19	14	34	19	14	34	8.5-100
Total Dissolved Solids	mg/L	500	390	172-404	420	156-446	300	310	410	300	310	400	190-428
Total Kjeldahl Nitrogen	mg/L		0.94	0.58-1.45	0.75	0.5-7.52	2.4	0.41	0.8	0.97	0.44	0.41	0.58-1.76
Total Organic Carbon	mg/L		4.1	4.5-18	4.1	4.2-11	5.8	4.4	4.1	5.5	4.4	4.1	4.4-18
Turbidity	NTU		28	5.6-130	29	8.7-95	37	16	23	29	17	22	5.8-112
Metal Parameters					Plante Little	1 22 1 2 2 1 1 1 1			THE PARTY	- 1-17 - 1			
Aluminum	mg/L		0.54	0.08-0.991	0.4	0.13-0.941	1.5	0.57	0.16 J	1.6	0.55	0.47	0.12-1
Antimony	mg/L	****	0.0068 U	0.0068 U-0.06 U	0.0068 U	0.0044 U-0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.0068 U	0.05 U-0.12
Arsenic	mg/L	0.15(3)	0.0056 U	0.002 U-0.02 U	0.0056 U	0.001-0.014	0.0056 U	0.0056 U	0.0062 J	0.0056 U	0.0056 U	0.0098 J	0.002 U-0.014
	mg/L	0.25	0.041	0.017-0.2 U	0.04	0.016-0.2	0.033	0.024	0.043	0.039	0.024	0.041	0.2 U-0.037
Barium Beryllium	mg/L		0.0003 U	0.0003 U-0.02 U	0.0003 U	0.0003 U-0.02 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U	0.0003 U-0.02 U
Boron	mg/L	10	0.0003 0	0.026-0.5 U	0.045	0.048 U-0.066	0.035 B	0.022 B	0.048	0.036 B	0.023 B	0.045	0.025 U-0.053
	mg/L	*	0.0005 U	0.0005 U-0.02 U	0.0005 U	0.0005 U-0.02 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U-0.02 U
Cadmium	mg/L		59	28.1-67	58	27.5-61.4	45	43	61	46	44	61	26.8-60.6
Calcium Chromium	mg/L		0.0015 J	0.001 U-0.02 U	0.001 U	0.0009 U-0.02 U	0.0016 J	0.001 U	0.0015 U	0.0022 J	0,001 U	0.001 J	0.001 U-0.02 U
Cobalt	mg/L	0.005	0.00131	0.0019 U-0.05 U		0.0019 U-0.05 U	0.00067 J	0.00063 U		0.0019 U	0.00063 U		0.0019 U-0.05 U
	mg/L	*	0.0054 J	0.0013 0-0.03 0 0.0053-0.017 U	0.0051	0.003 U-0.025 U	0.0034 J	0.0016 U	0.0052 J	0.00313	0.0017 J	0.005 J	0.0021-0.025 U
Copper		0.3	0.54 B	0.36-8.2	0.4	0.285-9.17	1.4	0.81	0.22 B	1.4	0.77	0.46	0.34-3.13
Iron	mg/L	0.3	0.003 U	0.001 U-0.014	0.003 U	0.0019 U-0.013	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.0031 J	0.001 U-0.02 U
Lead	mg/L		23	6.44-22.7	23	7.55-22.2	15	15	23	16	15	23	7.57-21.2
Magnesium	mg/L		0.13	0.048-1.0	0.13	0.055-0.22	0.14	0.11	0.13	0.15	0.11	0.12	0.052-0.28
Manganese	mg/L		0.00012 U	0.0012 U-0.001 U	0.00012 U	0.00012 U-0.001 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U	0.00012 U-0.001 U
Mercury	mg/L	0.0007	0.000120	0.0013 U-0.04 U	0.00012 0	0.00012 U-0.001 U	0.00012 U	0.00120	0.00012 U	0.00012 0	0.0012 U	0.002 J	0.0013 U-0.04 U
Nickel	mg/L		3.8	1.4-5.22	3.7	1.6-4.98	3.2	1.8	3.7	3.3	1.8	3.8	1.2-4.92
Potassium	mg/L		0.0087 U	0.001 U-0.059	0.0087 U	0.001 U-0.077 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.0087 U	0.001 U-0.079
Selenium	mg/L	0.00046	-							0.0087 U	0.0037 U	0.0017 U	0.0015-0.01 U
Silver	mg/L	0.0001(1)	0.0017 U	0.0012-0.01 U	0.0017 U	0.0017 U-0.01	0.0017 U	0.0017 U	0.0017 U			52	15-40
Sodium	mg/L		52	14.9-41	52	15-38.6	29	32	52	30	32	-	-
Thallium	mg/L	0.008(1)	0.01 U	0.001 U-0.022	0.01 U	0.001 U-0.023	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.001 U-0.02 U
Vanadium	mg/L	0.014		0.002 U-0.274		0.002 U-0.01 U	0.0043 J	0.0015 U		0.0033 J	0.0015 U	and the same of th	0.002 U-0.02 U
Zinc	mg/L	*	0.0071 JB	0.0043-0.149	0.023 B	0.028 U-0.0023	0.0069 JB	0.0061	0.041 B	0.0095 JB	0.0055 J	0.012 B	0.004-0.0345

Values in BOLD indicate exceedance of applicable groundwater and surface water quality standard.

Copper (mg/L): SW-13 = 0.03; SW-01(8/22/2012) = 0.003; SW-01(8/22/2012) = 0.003; SW-01(8/12/2014) = 0.02; SW-5 = 0.03; SW SEEP DS = 0.03; SW-02(8/22/2012) = 0.02; SW-02(6/12/2014) = 0.02; and SW-8 = 0.03
Lead (mg/L): SW-13 = 0.25; SW-01(8/22/2012) = 0.01, SW-01(6/12/2014) = 0.18; SW-5 = 0.24; SW SEEP DS = 0.25; SW-02(8/22/2012) = 0.18; SW-02(6/12/2014) = 0.18; and SW-8 = 0.25

Nickel (mg/L): SW-13 = 0.25; SW-01(8/22/2012) = 0.11; SW-01(6/12/2014) = 0.77; SW-5 = 0.95; SW SEEP DS = 0.98; SW-02(8/22/2012) = 0.77; SW-02(6/12/2014) = 0.77; and SW-8 = 0.98 Zinc (mg/L): SW-13 = 0.25; SW-01(8/22/2012) = 0.03; SW-01(6/12/2014) = 0.19; SW-5 = 0.24; SW SEEP DS = 0.25; SW-02(8/22/2012) = 0.19; SW-02(6/12/2014) = 0.19; and SW-8 = 0.25

^{--- =} Not analyzed or no applicable standard.

⁽A) = T.O.G.S. 1.1.1 Ambient Water Quality Standards for Class C Surface Water

^{(1) =} Laboratory Method Detection Limit is greater than or equal to the applicable water quality standard.

^{(2) =} Surface water standard for ammonia (mg/L) is interpolated using the temperatures and pH of the individual samples. SW-13 = 2.18; SW-01(8/22/2012) = 1.34; SW-01(8/12/2014) = 1.21; SW-5 = 2.19; SW SEEP DS = 2.14; SW-02(8/22/2012) = 1.31; SW-02(6/12/2014) = 1.41; and SW-8 = 2.10.

^{(3) =} Standard applies to the dissolved form.

^{* =} Surface Water Standard for Berylium, Cadmium, Chromium, Copper, Lead, Nickel, and Zinc are based on the individual sample's hardness.

Beryllium (mg/L): SW-13 = 1.1; SW-01(8/22/2012) = 0.011; SW-01(8/12/2014) = 1.1; SW-01(8/12/2014) = 1.1; SW-02(8/22/2012) = 1.1; SW-02(8/22/2012) = 1.1; SW-02(8/12/2014) = 1.1; and SW-8 = 1.1 Cadmium (mg/L): SW-13 = 0.01; SW-01(8/12/2014) = 0.006; SW-01(8/12/2014) = 0.007; SW-5 = 0.01; SW-01(8/12/2012) = 0.01; SW-01(8/12/2014) = 0.007; SW-01(8/12/2014) = 0.007; SW-01(8/12/2014) = 0.01; SW-01(8/12/2014) = 0.007; SW-01(8/12/2014) =

^{** =} Sampling Location SW-02 at distinct locations (see Figure 4).

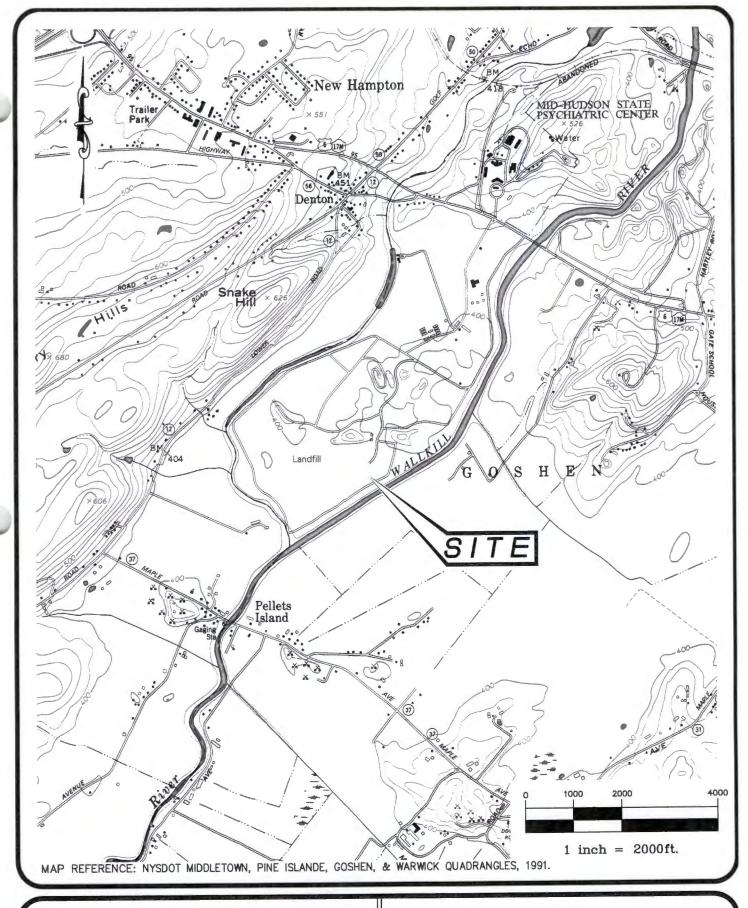
U = Compound is not detected at or above laboratory method detection limit.

J = Result is less than the laboratory reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

B = Compound was found in the blank and the sample.

b = Result detected in the unseeded control blank (USB).

H = Sample was prepped or analyzed beyond specified holding time.


^{*=} Instrument related QC exceeds the control limits.

Evaluation of Mitigation Alternatives Orange County Landfill, Goshen, New York

Response Action	Technology	Implementability	Effectiveness and Permanence	Cost Remarks
Containment	Geotextile filter fabric or Geomembrane w/ Riprap	Moderately difficult to install and maintain due to location and slope.	Effectively controls seep from reaching canal, no associated treatment of seep, potential negative ecological impacts, and will likely require maintenance.	
Containment	Slurry Wall	Moderately difficult to install and maintain due to location and slope.	Effectively prevents seep from reaching canal. Will likely require maintenance. Effectiveness could be reduced due to movement of Canal bank.	Likely maintenance costs. Recurring operational costs.
Groundwater Collection	Focused Groundwater Collection Treatment	Readily implementable.	Effectively prevents seep from reaching canal and treats groundwater contamination. Continuous operation of pump required.	
Seep Source Collection	Seep Source Point Collection	Moderately difficult to maintain due to fluctuations of the canal stage.	Effectively prevents seep from reaching canal and treats present contamination. Continuous operation of pump required. Potentially ineffective operation due to frequent flooding of the canal stage.	Recurring operational costs
In-situ Treatment	Chemical Injection	Readily implementable.	Effectiveness of technology currently unknown. Continuous operation of pump required.	Bench / pilot scale testing costs. Recurring operational costs.
In-situ Treatment	Reactive Trench	Moderately difficult to install and maintain due to location, slope, and is prone to site flooding.	Effectively prevents seep from reaching canal. Will likely require maintenance.	Likely maintenance costs.

FIGURES

Figure 1	Site Location Map
Figure 2	Site Vicinity Map
Figure 3	Post-Closure Monitoring Network Map (2014)
Figure 4	Geologic Cross Section A - A'
Figure 5A	Overburden Groundwater Contour Map (March 18, 2014)
Figure 5B	Overburden Groundwater Contour Map (September 9, 2014)
Figure 5C	Overburden Groundwater Contour Map (October 6, 2014)
Figure 6	Sample & Seep Location Map
Figure 7	October 2014 Sample Location Map
Figure 8	2012, 2013, & 2014 Groundwater / Seep / Surface Water Exceedances Map
Figure 9	Seep Mitigation Plan
Figure 10	Seep Mitigation Details
Figure 11	Wetland Treatment System

S ERLING

Sterling Environmental Engineering, P.C.

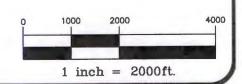
24 Wade Road • Latham, New York 12110

ORANGE CO. DEPT. OF PUBLIC WORKS
ORANGE COUNTY LANDFILL

TOWN OF GOSHEN

ORANGE CO., N.Y.

PROJ. No.: 2013-29 DATE: 10/31/14 SCALE: 1" = 2000' DWG. NO. 2010-15026 FIGURE


APPROXIMATE PROPERTY BOUNDARY

APPROXIMATE LIMIT OF WASTE

MAP REFERENCES:

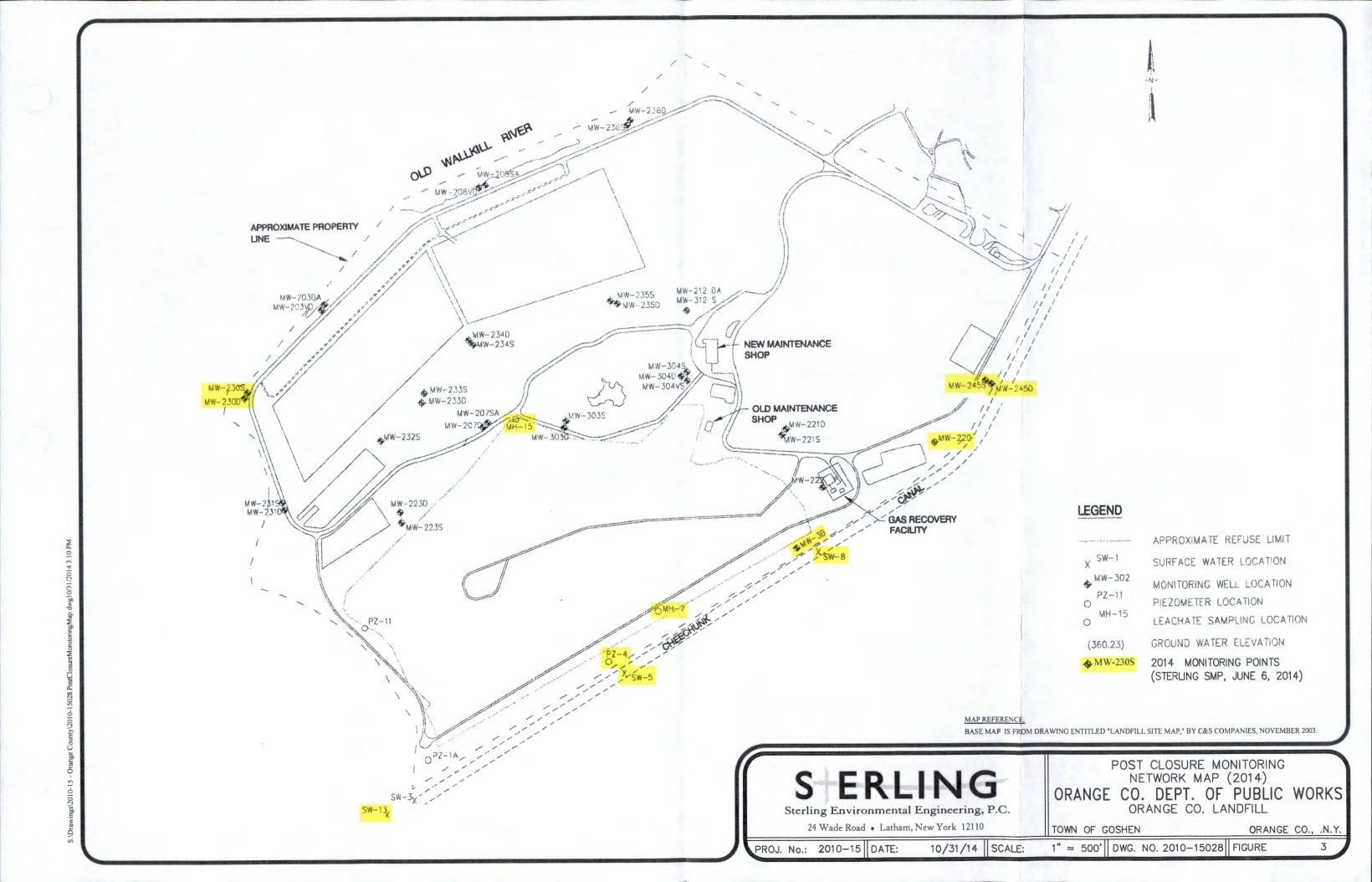
1. PROPERTY BOUNDARY AND LIMIT OF WASTE FROM DRAWINGS ENTITLED "OVERALL PLAN AND RESTRICTED PARCEL," BY THOMAS J. BARRY, DATED FEBRUARY 14, 2013.

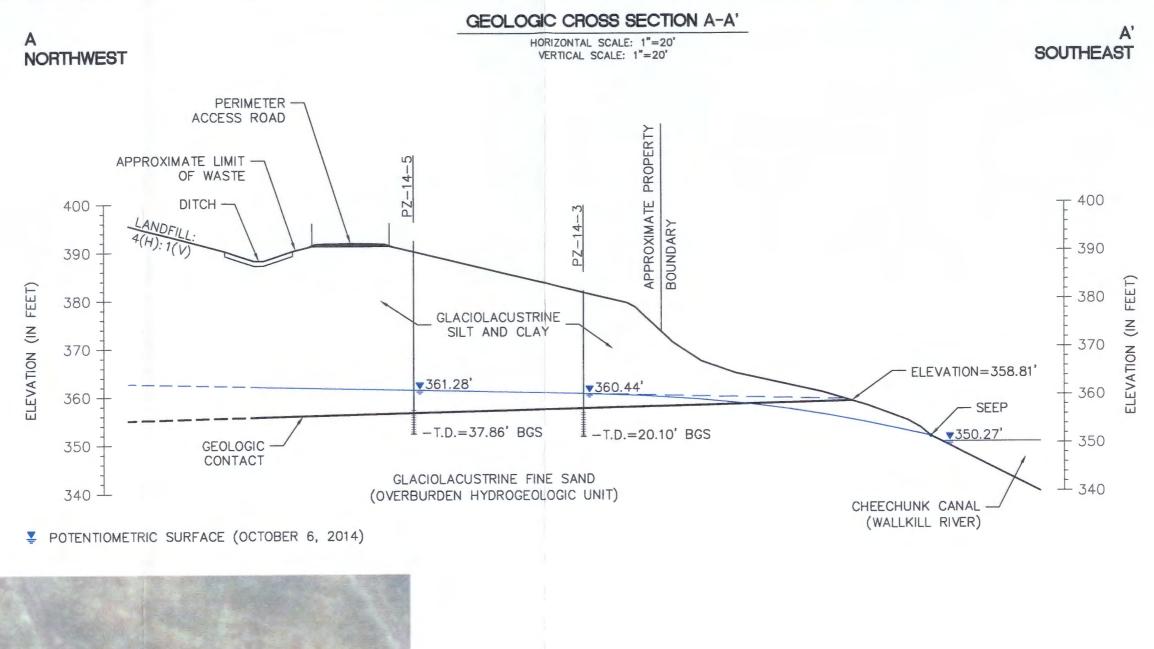
2. AERIAL PHOTOGRAPH FROM GOOGLE EARTH IMAGERY, DATED 2013.

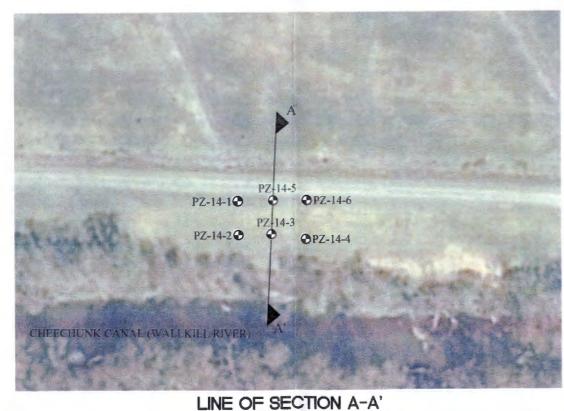
Sterling Environmental Engineering, P.C.

24 Wade Road + Latham, New York 12110

SITE VICINITY MAP ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE COUNTY LANDFILL


TOWN OF GOSHEN


ORANGE CO., N.Y


PROJ. No.: 2010-15 DATE:

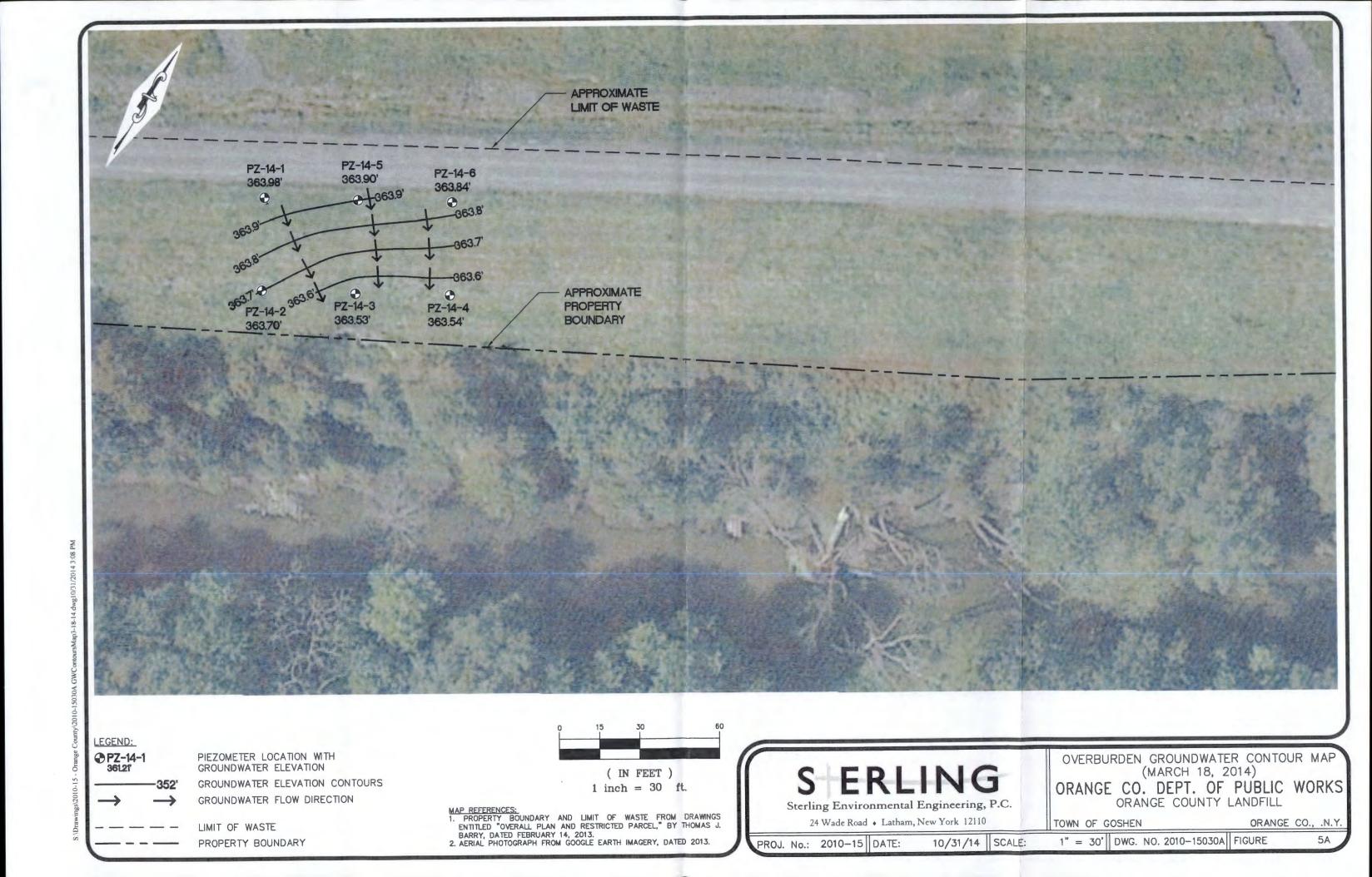
10/31/14 | SCALE:

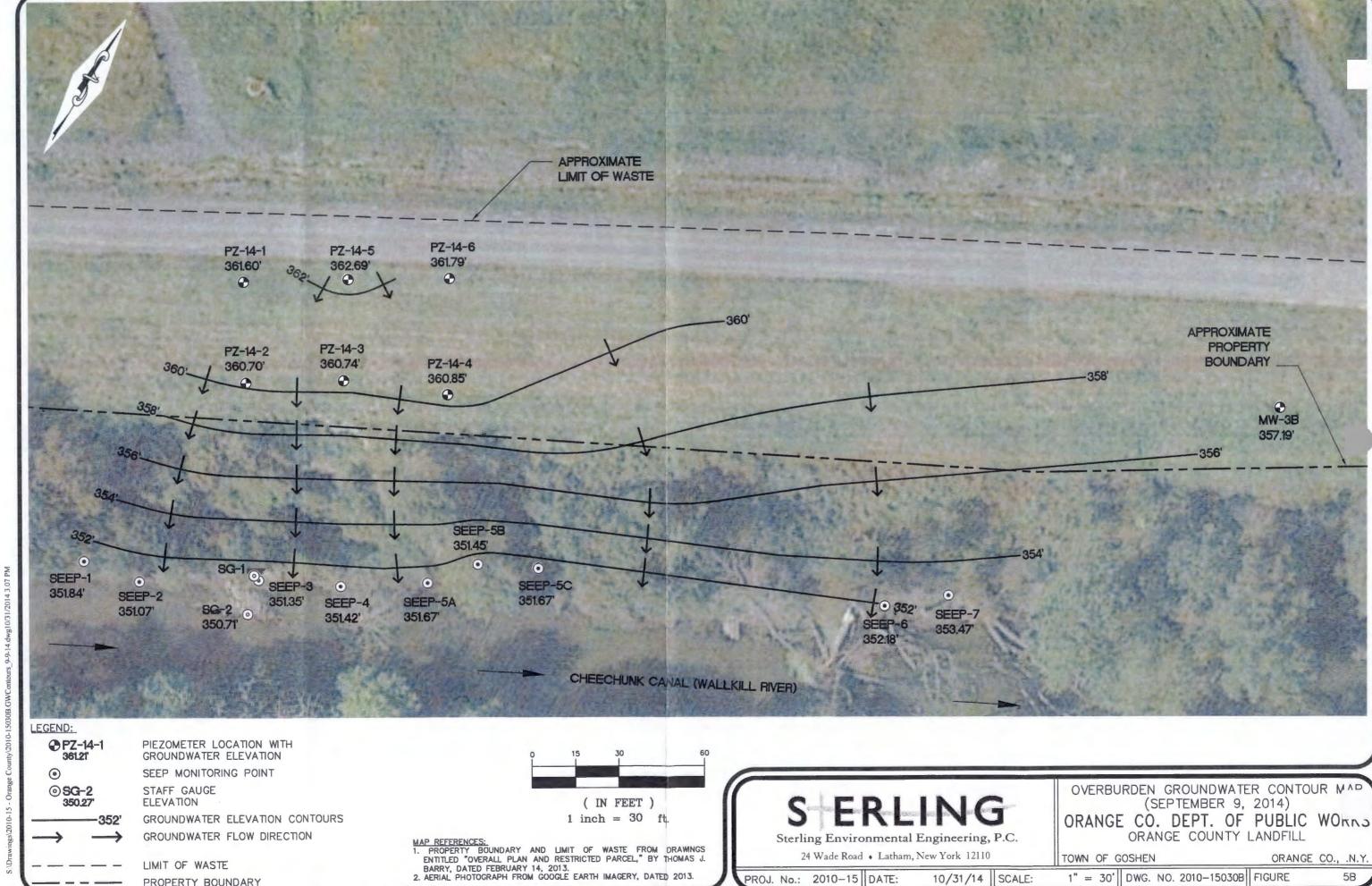
1" = 1000' DWG. NO. 2010-15027 FIGURE

SCALE: 1" =100'

Sterling Environmental Engineering, P.C. 24 Wade Road . Latham, New York 12110

PROJ. No.: 2010-15 DATE:


10/31/14 | SCALE:


AS NOTED DWG. NO. 2010-15029 FIGURE

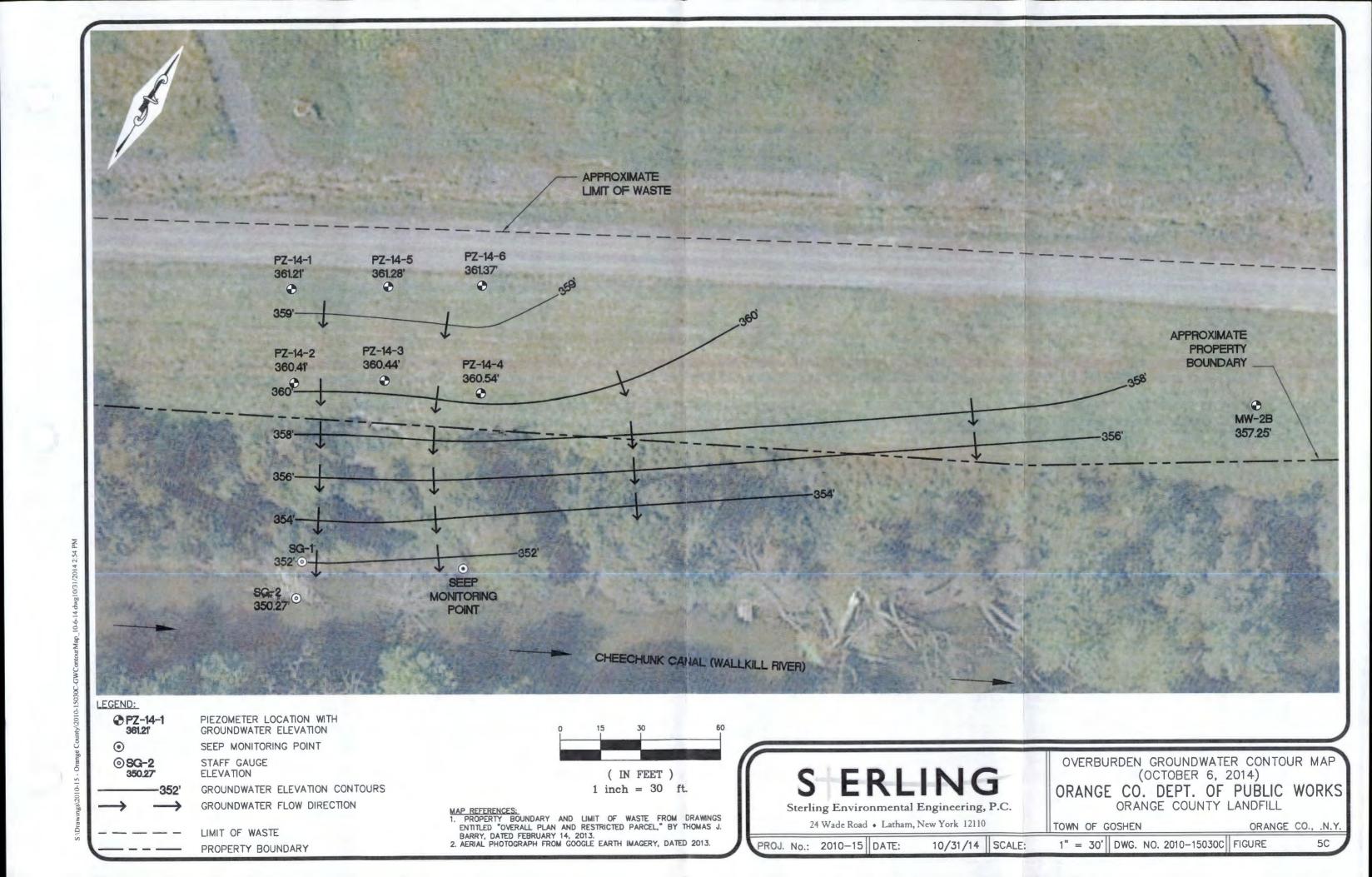
TOWN OF GOSHEN

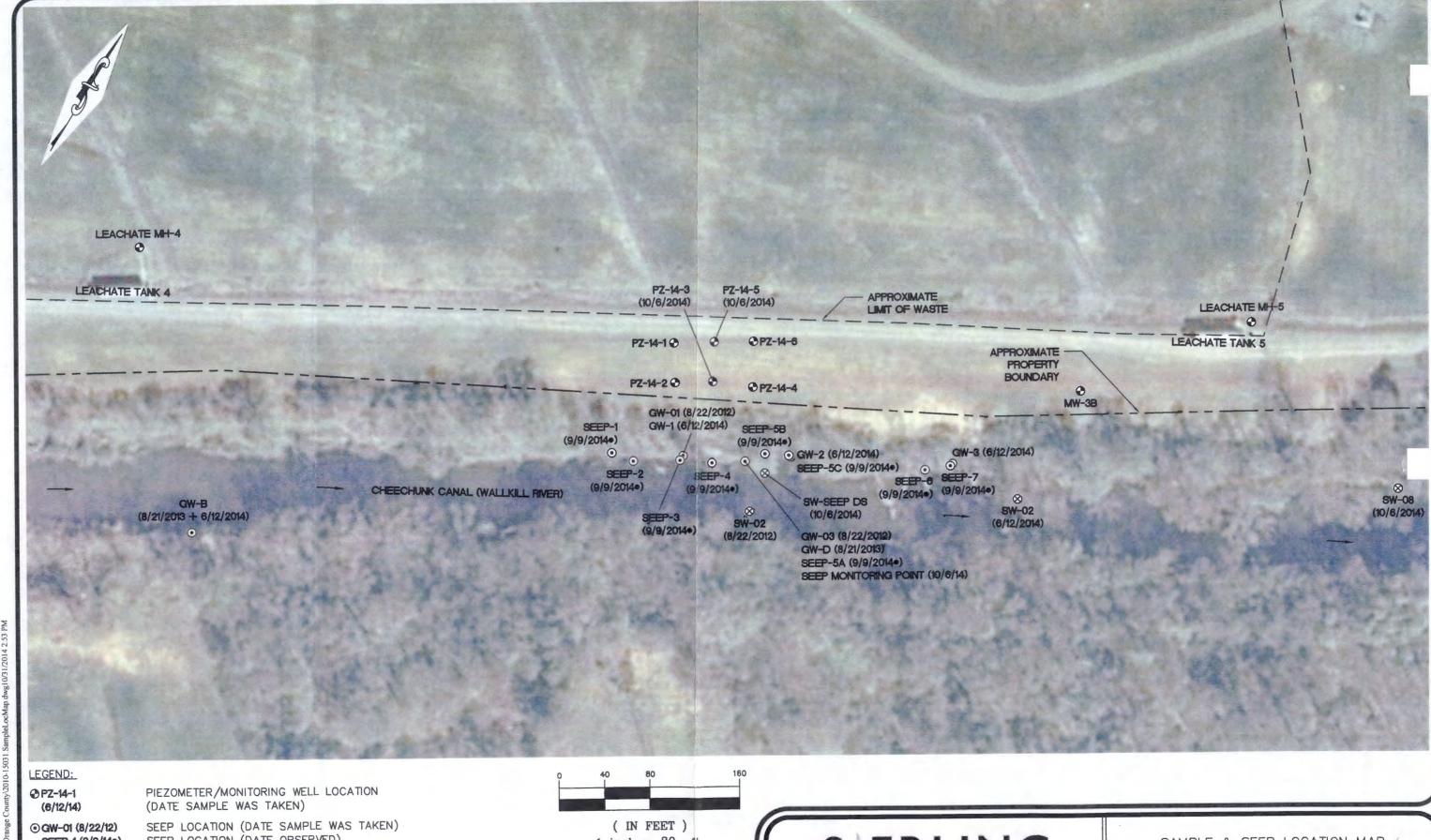
GEOLOGIC CROSS SECTION A-A'

ORANGE CO. DEPT. OF PUBLIC WOLLS ORANGE COUNTY LANDFILL

24 Wade Road . Latham, New York 12110

PROJ. No.: 2010-15 DATE:


10/31/14 | SCALE:


TOWN OF GOSHEN

1" = 30' DWG. NO. 2010-15030B FIGURE

LIMIT OF WASTE

PROPERTY BOUNDARY

SEEP-1 (9/9/14*)

SEEP LOCATION (DATE OBSERVED)

⊗SW-02 (8/22/12)

SURFACE WATER LOCATION (DATE SAMPLE WAS TAKEN)

LIMIT OF WASTE PROPERTY BOUNDARY 1 inch = 80 ft.

MAP REFERENCES:

1. PROPERTY BOUNDARY AND LIMIT OF WASTE FROM DRAWINGS ENTITLED
"OVERALL PLAN AND RESTRICTED PARCEL," BY THOMAS J. BARRY,

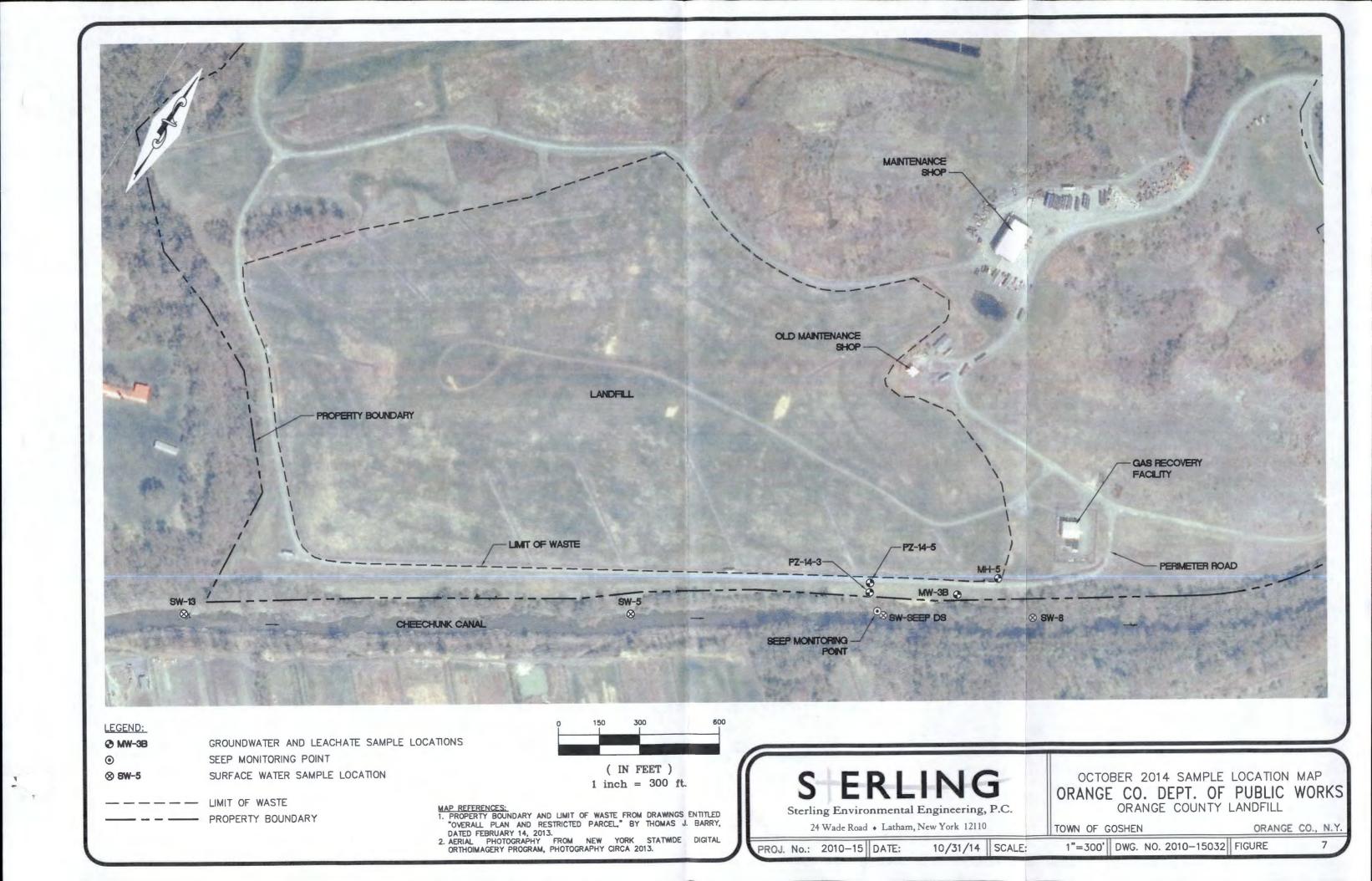
DATED FEBRUARY 14, 2013.

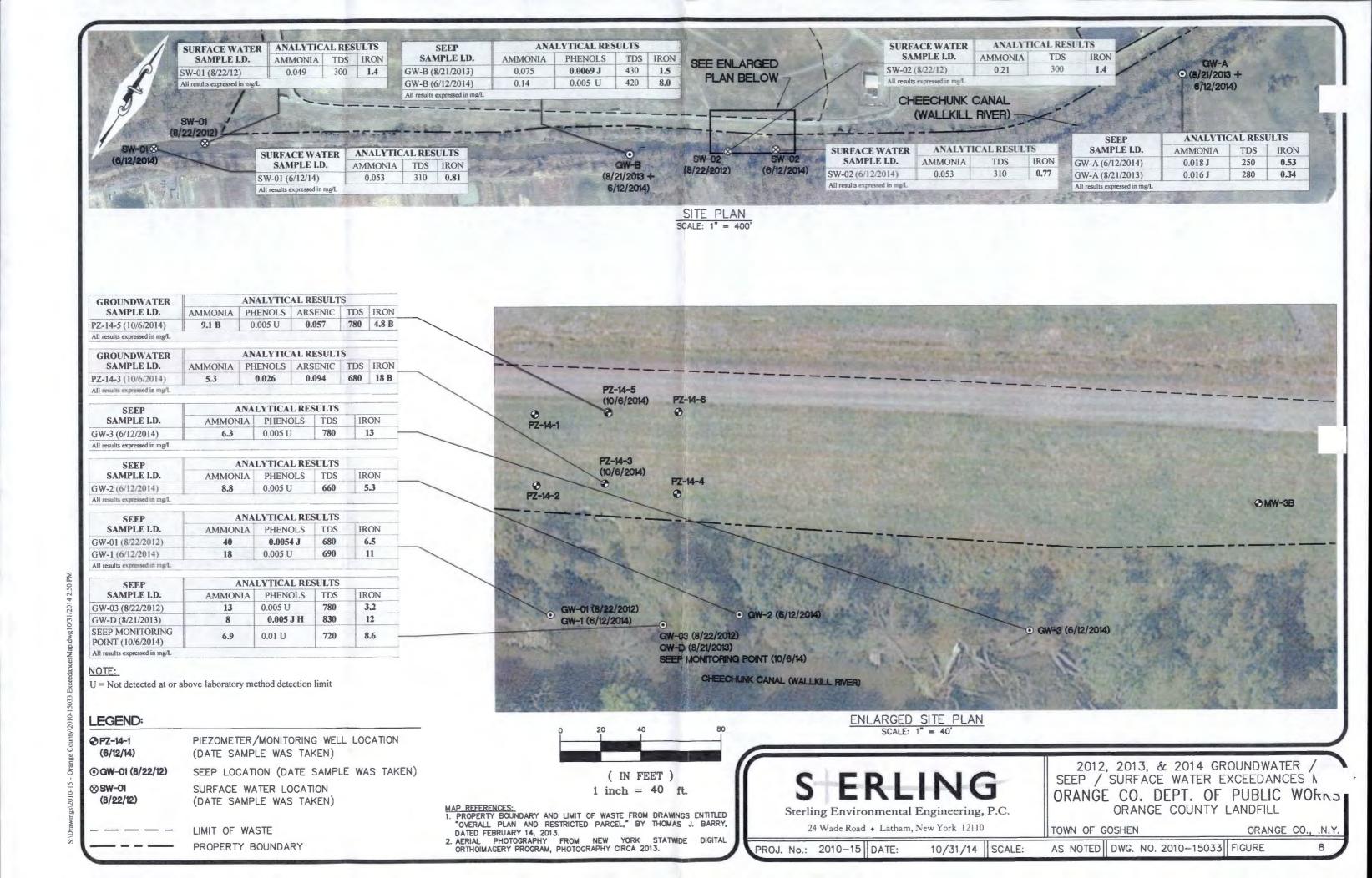
2. AERIAL PHOTOGRAPHY FROM NEW YORK STATWDE DIGITAL ORTHOIMAGERY PROGRAM, PHOTOGRAPHY CIRCA 2013.

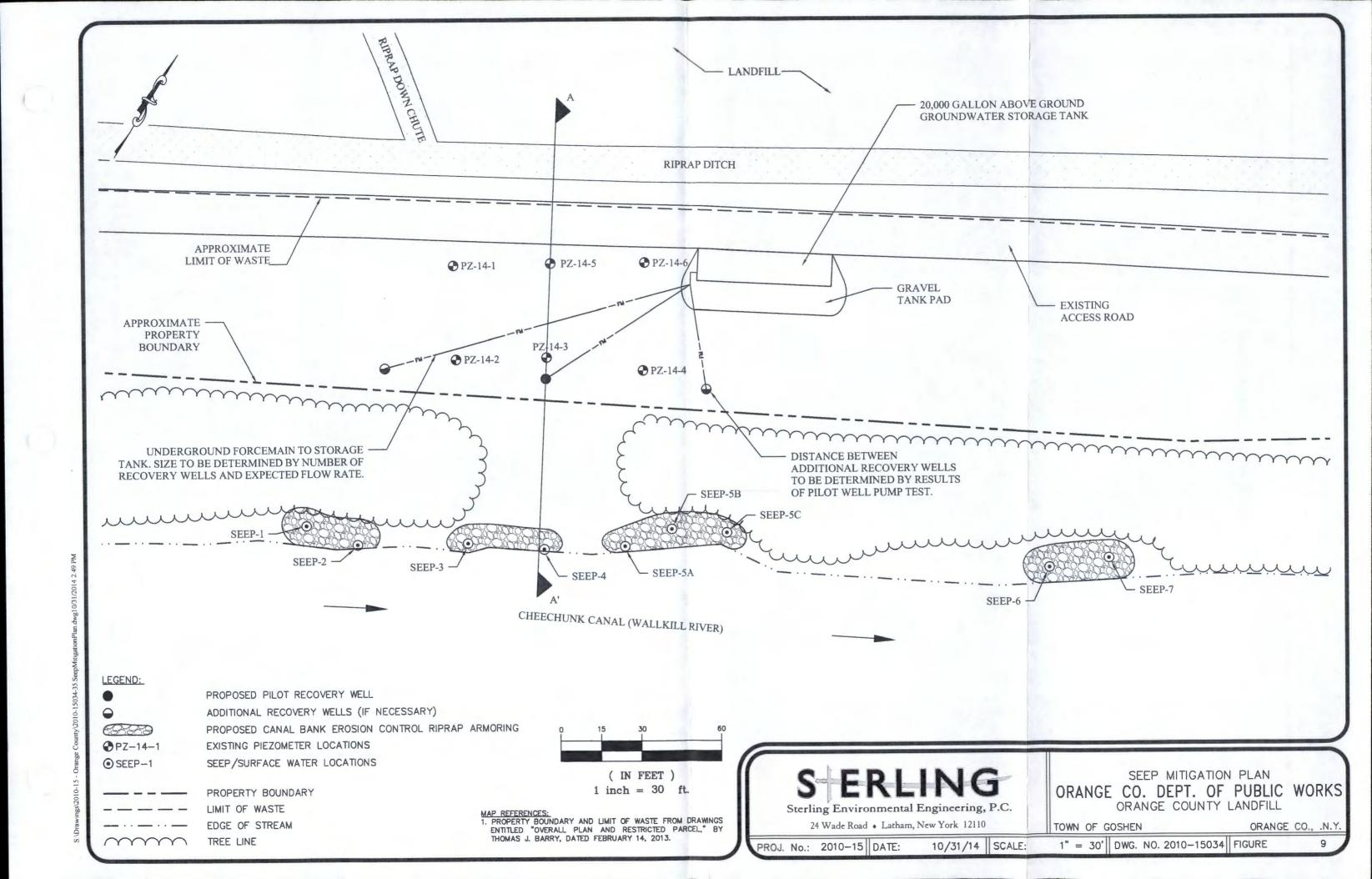
ERLING

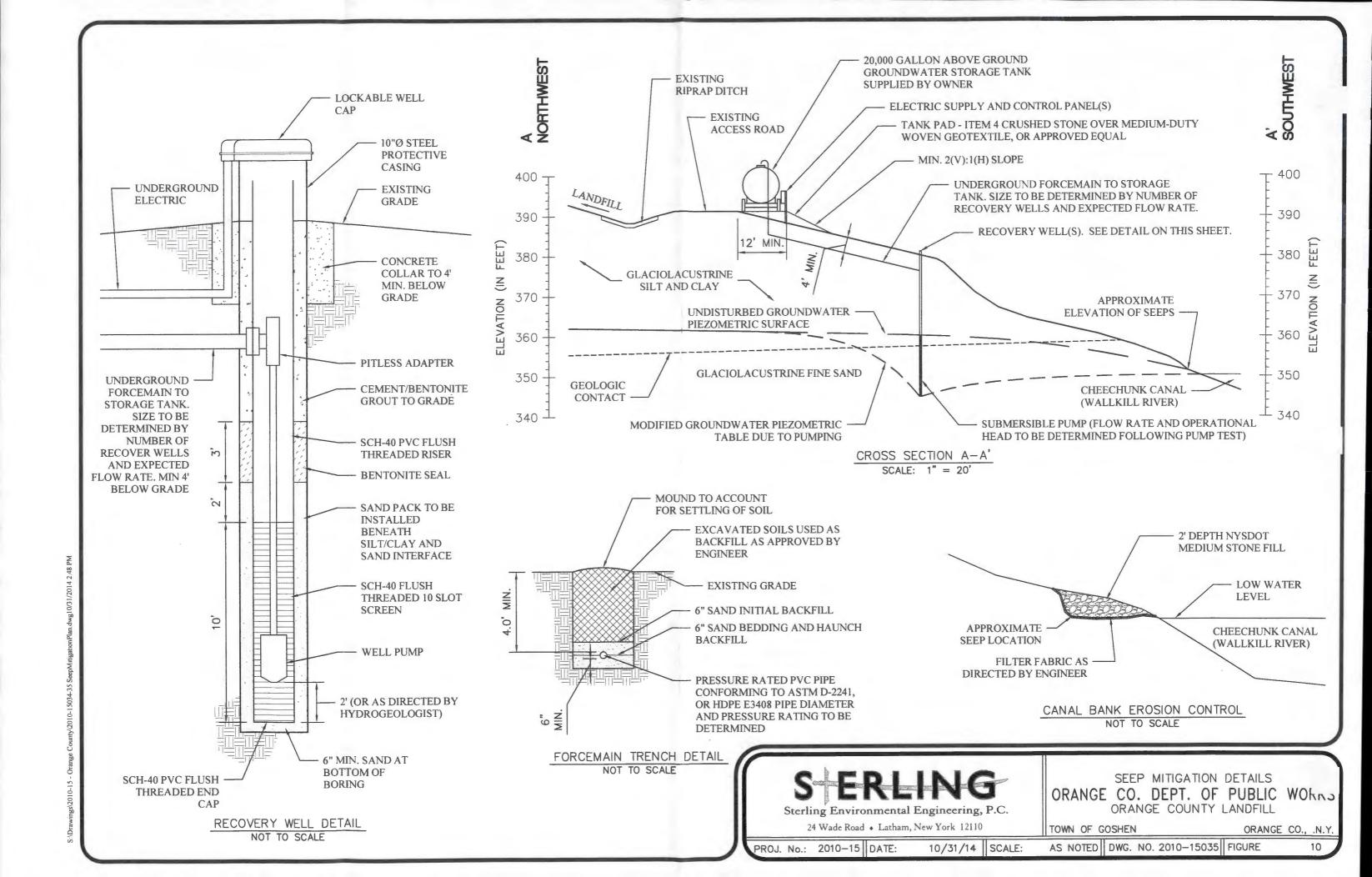
Sterling Environmental Engineering, P.C.

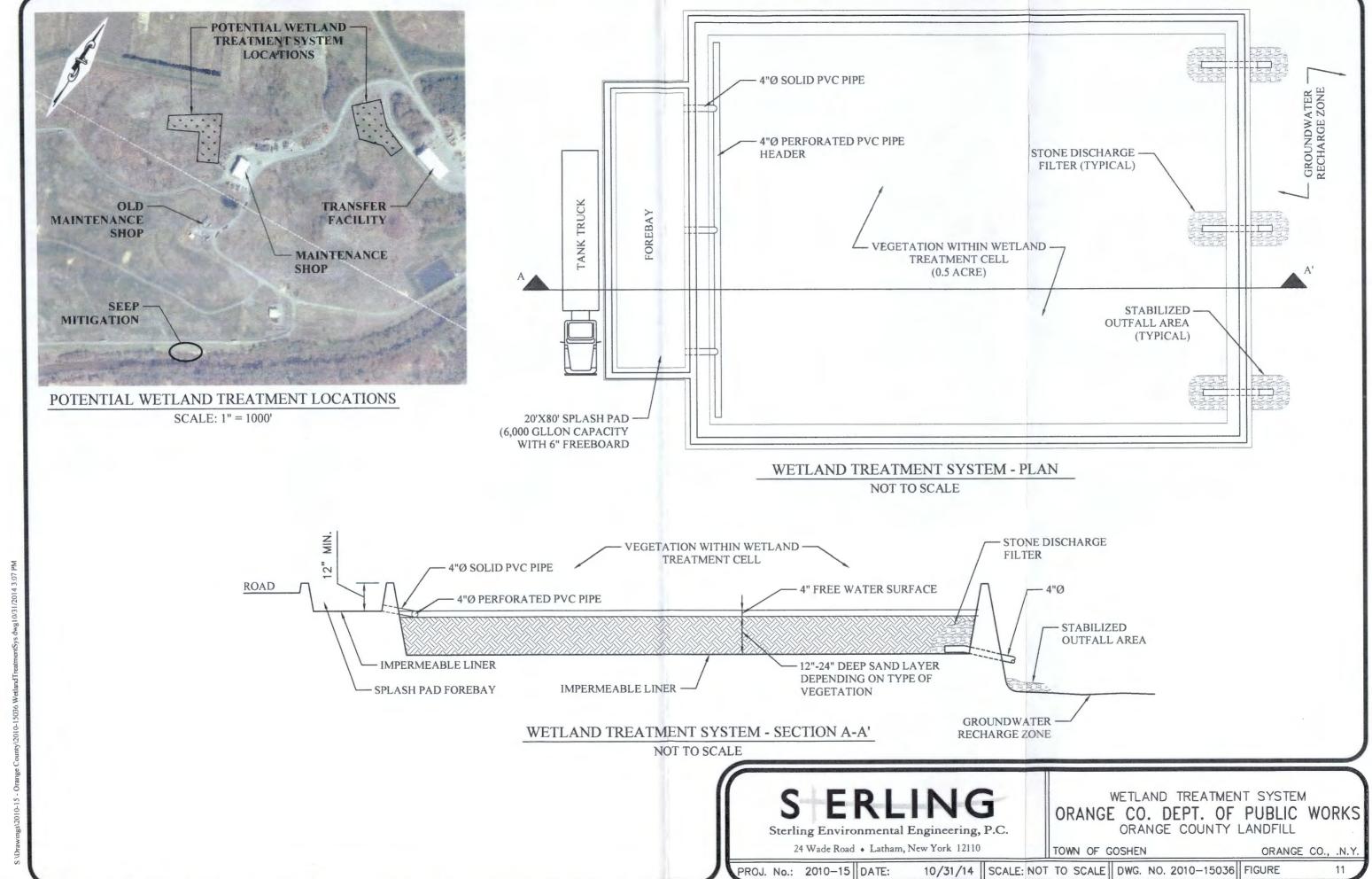
24 Wade Road . Latham, New York 12110


SAMPLE & SEEP LOCATION MAP ORANGE CO. DEPT. OF PUBLIC WCMM. ORANGE COUNTY LANDFILL


TOWN OF GOSHEN


PROJ. No.: 2010-15 DATE:


10/31/14 | SCALE:


1" = 80' DWG. NO. 2010-15031 FIGURE

APPENDIX A

WALLKILL RIVER FLOOD MITIGATION PLAN BLACK DIRT REGION, ORANGE COUNTY, NY DATED AUGUST 16, 2013

Wallkill River Flood Mitigation Implementation Plan Black Dirt Region, Orange County, NY

Summary of Further Investigations Regarding Flood Mitigation Study Areas August 16, 2013

Introduction

Based on our July 10, 2013 meeting in Pine Island and on-going discussions with the Soil and Water Conservation District (SWCD) regarding the flood mitigation plan for the Black Dirt Region, we have explored several alternatives in further detail. The same modeling approach was used as previously discussed. We evaluated each alternative for the 2 year and 10 year storm events. For each alternative, we have summarized the advantages and disadvantages to allow the SWCD to make an informed decision on which alternatives to pursue with the current funding as well as potential future funding opportunities. The alternatives considered include:

- Cheechunk Canal Extension (1930's geometry)
- Cheechunk Canal Extension (Floodplain geometry)
- Dredging the Existing Cheechunk Canal to remove sediment
- Remove portion of Celery Ave Rock Ledge
- Remove portion of Pochuck Rock Ledge
- Remove portion of Wallkill Rock Ledge
- Impacts of Orange County Landfill

Cheechunk Canal Extension (1930's geometry)

This alternative looks at extending the Cheechunk Canal south from the end of the existing canal towards Oil City Road. The extension was modeled with the geometry laid out in the 1930's Army Corps of Engineers Project. This alternative would cost approximately \$1,800-\$2,000 per foot or \$10 million per mile to construct.

Advantages/Benefits

- 3" decrease in 2-year storm upstream of the junction with Pochuck Creek
- 2" decrease in 10-year storm upstream of the junction with Pochuck Creek

- ½" increase in water elevations through the existing Cheechunk Canal for the 2-year storm
- minimal increase in peak flows for the 2-year and 10-year storm at the Orange County Landfill
- Minimal increase in water elevation through the existing Cheechunk Canal for the 10-year storm
- Impact to agricultural land, loss of land due to construction of the canal
- Regulatory (NYS DEC, US ACOE, FEMA, U.S. Fish Wildlife, NYSHPO)

Cheechunk Canal Extension (90' Floodplain Geometry)

This alternative extends the Cheechunk Canal south from the end of the existing canal towards Oil City Road, but in lieu of excavating a new channel, this alternative investigates adding capacity by creating a lower floodplain along the banks of the existing river. The floodplain was modeled as a 90 foot floodplain on either side of the main channel. As part of this alternative, the Mayjack Bridge was removed to accommodate the wider floodplain. The lower floodplain associated with this alternative provides storm storage. The cumulative benefit of this storage area is realized as the floodplain is progressed upstream. The lower water surface elevations at Oil City Road are a result of this increased storage area. This alternative would cost approximately \$1800-\$2,000 per foot or \$10 million per mile to construct.

Advantages/Benefits

- 1"decrease in 2-year storm upstream of the junction with Pochuck Creek and increasing to 9" at Oil City Road
- 1" decrease in 10-year storm upstream of the junction with Pochuck Creek and increasing to 10" at Oil City Road
- minimal decrease in peak flows for the 2-year storm at the Orange County Landfill
- Suitable with various avenues of future funding
- Environmental Benefits may ease regulatory hurdles
- Costs may be considerably offset by incorporating value of soil in removal or relocation options.
- Relocation of usable soil could be used to offset adjacent agricultural subsidence.

Disadvantages/Considerations

- minimal increase in peak flows for the 10-year storm at the Orange County Landfill
- Impact to agricultural land, loss of land due to construction of the canal
- Regulatory (NYS DEC, FEMA, US ACOE) although potential benefits over canal extension alone.

Cheechunk Canal Extension (200' Floodplain Geometry)

This alternative is similar to the alternative above, except the floodplain was expanded to 200 feet either side of the channel. This results in an increased benefit, but also increases the extent of the impact. The water surface changes from the model are summarized below and the remaining advantages/disadvantages are similar to those listed above.

- 3"decrease in 2-year storm upstream of the junction with Pochuck Creek and increasing to 14"
 at Oil City Road
- 2" decrease in 10-year storm upstream of the junction with Pochuck Creek and increasing to 18"
 at Oil City Road

Comparison of Cheechunk Canal Extension - 1930's vs Floodplain Configuration

Impact	1930's Geometry	90' Floodplain Geometry	200' Floodplain Geometry
Cost	\$10M/mile	\$10M/mile	\$12M/mile
2-year drop in Water Surface Near Pochuck Creek Near Oil City Road	3" 3"	1" 9"	3" 14"
10-year drop in Water Surface Near Pochuck Creek Near Oil City Road	2" 2" .	1"	2" 18"
Active agricultural land impacted by construction	55-60 acres (approx.)	40-45 acres (approx.)	45-50 acres (approx.)
Regulatory hurdles	High	Moderate	Moderate
Funding Opportunities	Few	Several	Several

Dredging the Existing Cheechunk Canal to remove sediment

This alternative evaluates removing the sediment from the bottom of the Cheechunk Canal to increase conveyance of the Canal. This alternative assumed approximately 2' of sediment build up that would be removed through the length of the canal. The excavation of sediment would be transitioned at either end to match the streambed elevation of the Wallkill River upstream and downstream of the canal. The modeling results of this alternative are similar to adding a floodplain bench to the canal which was previously investigated. This alternative also presents a few negative factors that must be considered. The cost to dredge the entire length of the canal would be \$4,000,000-\$5,000,000. This cost could increase if the dredged material is found to include contaminated material. This cost does not include the future maintenance cost associated with repeating this operation in the future as the canal will accumulate silt in the future.

Advantages/Benefits

- 6"decrease in 2-year storm immediately through the canal, transitioning to less than an inch at Oil City Road.
- 5" decrease in 10-year storm immediately through the canal, transitioning to less than ½ inch at Oil City Road.

- Minimal increase in peak flows for the 2-year and 10-year storms at the Orange County Landfill
- Sediment has potential for containing hazardous waste.
- Lowering invert of the canal would further entrench the river and result in streambank erosion.
 This option would require transitioning the invert elevation to upstream and downstream and

may require grade control in these areas to prevent incision and streambank erosion from traveling upstream.

- Lowering the invert may cause undermining issues at bridge crossings
- Lowering the invert would lower the groundwater table in the adjacent areas.
- Regulatory (NYS DEC, US ACOE, FEMA, NYSHPO)
- Although deliberated, it has not been confirmed that deposition has occurred in the canal since
 the original construction. Prior to progressing with this alternative, the extent and rate of
 deposition should be verified by field measurements to validate that the proposed modeled
 alternative agrees with the actual field conditions.
- Sediment removal may provide some temporary relief, as shown by the alternative modeled, but the returns will diminish as sediment will likely redeposit over time, requiring future repetitive maintenance.

Remove Portion of the Celery Avenue Rock Ledge

This alternative evaluates lowering the elevation of the rock ledge to increase conveyance. The removal would consist of a 40 foot wide by 4 foot deep notch in the ledge. The streambed immediately upstream of the ledge would be regraded to transition the lower rock ledge to the existing streambed elevation. In addition streambed stabilization methods would be employed above the rock cut to prevent future erosion of the stream. This alternative would cost approximately \$220,000 to construct.

Advantages/Benefits

- 3-4"decrease in 2-year storm immediately upstream of the rock ledge, transitioning to no benefits upstream of the confluence with Quaker/Black Walnut Creek
- ½" decrease in 10-year storm immediately upstream of the rock ledge, no benefits through the rest of the model.
- Minimal decrease in peak flows for the 2-year storm at the Orange County Landfill

- Minimal increase in peak flows for the 10-year storm at the Orange County Landfill
- Requires soil boring(s) to evaluate effect on ground water levels
- Regulatory (NYS DEC, US ACOE, FEMA)
- Lowering the channel elevation may further entrench the river and result in streambank erosion. May require grade control and/or streambank stabilization
- Must maintain bankfull channel dimensions to maintain sediment conveyance
- Removal of rock ledges impacts smaller storms more than large events. During the larger storm
 events the rock ledge is submerged, therefore removing a portion of the ledge has decreased
 benefit.

Remove Portion of the Pochuck Rock Ledge

This alternative evaluates lowering the elevation of the rock ledge to increase conveyance. The removal would consist of a 40 foot wide by 3 foot deep notch in the ledge. The streambed immediately upstream of the ledge would be regraded to transition the lower rock ledge to the existing streambed elevation. In addition streambed stabilization methods would be employed above the rock cut to prevent future erosion of the stream. This alternative would cost approximately \$200,000 to construct.

Advantages/Benefits

- 4"decrease in 2-year storm immediately upstream of the rock ledge, transitioning to a 2" decrease at Glenwood Road
- 8"decrease in 10-year storm immediately upstream of the rock ledge, transitioning to a 2" decrease at Glenwood Road

Disadvantages/Considerations

- Minimal increase in peak flows for the 2-year and 10-year storms at the Orange County Landfill
- Lowering the channel elevation may further entrench the river and result in streambank erosion. May require grade control and/or streambank stabilization.
- Regulatory (NYS DEC, US ACOE, FEMA, NYSHPO)

Remove Portion of the Wallkill Rock Ledges

This alternative evaluates the lowering of the rock ledges on the Wallkill River downstream of Oil City Road. There was not sufficient geometry to accurately model this alternative. Based on approximations in the model, we expect small 1-2" benefits upstream of the rock ledges only. In addition streambed stabilization methods would be employed above the rock cut to prevent future erosion of the stream. This alternative would cost approximately \$200,000 to construct.

Advantages/Benefits

Minor decrease in water elevations upstream of the rock ledge

- Only impacts areas upstream of the ledge
- Potential impacts to Federal Wetlands/Duck Ponds upstream
- Lowering the channel elevation may further entrench the river and result in streambank erosion. May require grade control and/or streambank stabilization.
- Regulatory (NYS DEC, US ACOE, FEMA, NYSHPO)
- Removal of rock ledges impacts smaller storms more than large events. During larger storm
 events the rock ledge is submerged, therefore removing a portion of the ledge has decreased
 benefit.

Impacts of Orange County Landfill

While it is understood that the construction of the Landfill may have resulted in some alteration of the river channel in the vicinity of the landfill, there appears to be no evidence or data that would support the theory that the current configuration impedes flows. Reviews of the County's records from the Landfill's slope failure indicate that it was at an isolated location and the damage was predominately rectified. Again, there is no evidence or data that supports the supposition that the minor change in landfill shape and size due to the failure impacts the capacity of the Wallkill River to convey water through the Black Dirt Region.

APPENDIX B

STERLING, AUGUST 17, 2012, ORANGE COUNTY LANDFILL - CHEECHUNK CANAL SEEP SAMPLING WORK PLAN

STERLING, SEPTEMBER 20, 2012, ORANGE COUNTY LANDFILL - CHEECHUNK CANAL SEEP SAMPLING RESULTS

August 17, 2012

Ms. Susan Edwards, P.E.
Chief, Remedial Section D
NYS Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau E, 12th Floor
625 Broadway
Albany, New York 12233-7017

Subject:

Orange County Landfill

NYS Inactive Hazardous Waste Site No. 336007 Cheechunk Canal Seep Sampling Work Plan

STERLING File #2010-15

Dear Ms. Edwards,

In response to your letter dated July 16, 2012, the following Work Plan is provided outlining the sampling methodology and procedures for the sampling of seeps along the Cheechunk Canal adjacent to the Orange County Landfill to determine whether the seeps contain leachate constituents and to determine if the Landfill is impacting the canal.

A meeting was conducted August 16, 2012 at the Landfill with Steven Parisio and Carl Hoffman of the NYSDEC and Sterling Environmental Engineering, P.C. (STERLING). Due to heavy vegetation and limited access, the selection of sampling locations could not be finalized. We will return with a boat during the field sampling event to access the seep locations.

Field Sampling:

Sampling will be conducted by STERLING on August 22, 2012 at the following locations:

- Aqueous and floc samples will be obtained at up to three (3) seep locations adjacent to the canal near the closed landfill.
- An aqueous and floc sample will be obtained at one (1) seep location adjacent to canal upstream
 of and away from the potential influence of the closed landfill.
- One (1) aqueous grab sample will be obtained from the leachate manhole. A floc sample cannot be obtained at this location.
- Two (2) aqueous grab samples will be obtained from the canal; one (1) adjacent to the largest observed seep and one (1) upstream of the landfill site.

This results in a total of seven (7) aqueous samples and four (4) floc samples. A boat will be furnished by STERLING.

"Serving our clients and the environment since 1993"

The grab samples will be obtained at the water surface using a wide mouth glass jar. The aqueous samples will be obtained by use of a peristaltic pump and dedicated tubing.

Field parameters will be measured as follows.

Water Depth, pH, Specific Conductivity, Temperature, and Oxidation Reduction Potential (ORP) measurements will be recorded in the field on data sheets, and provided in the report for sampled locations.

Aqueous samples will be analyzed for NYSDEC 6 NYCRR 360 "Baseline Parameters".

In accordance with NYSDEC's request, floc samples will be analyzed for TOC, Iron, Aluminum, Si, Mn, and Arsenic.

Additionally, an explosive gas survey of the landfill perimeter will be conducted.

Reporting:

A final letter report and original laboratory data sheets will be prepared with appropriate observations and conclusions.

Please contact me should you have any questions.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President

mark@sterlingenvironmental.com

MPM/bc Email/First Class Mail

Peter Hammond, Orange County Department of Public Works cc: Steven Parisio, PG, NYSDEC Region 3 Carl Hoffman, P.E., NYSDEC Central Office

2010-15/Correspondence/NYSDEC_Cheechunk Canal Seep Sampling Work Plan_ltr.doc

September 20, 2012

Ms. Susan Edwards, P.E. Chief, Remedial Section D NYS Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, 12th Floor 625 Broadway Albany, New York 12233-7017

Subject:

Orange County Landfill

NYS Inactive Hazardous Waste Site No. 336007

Cheechunk Canal Seep Sampling STERLING File #2010-15 (Task 310)

Dear Ms. Edwards,

In accordance with the August 17, 2012 Work Plan approved by the NYSDEC, Sterling Environmental Engineering, P.C. (STERLING) met with the NYSDEC at the Orange County Landfill on August 16, 2012 for the purpose of selecting sampling locations. Due to the limited accessibility of the shoreline of the Cheechunk Canal, the NYSDEC deferred the decision on sampling locations until the August 22, 2012 sampling event.

On August 22, 2012, STERLING provided a canoe so that NYSDEC personnel could inspect the entire riverbank along the Landfill in order to identify seep locations and to select suitable, representative sampling locations. Based upon the inspection, samples were obtained as follows:

- Aqueous and floc samples were obtained at two (2) seep locations adjacent to the canal near the closed Landfill. These locations are shown as Seep 1 and Seep 3 on Figure 1.
- One (1) background floc sample was obtained at the seep location indicated as Seep 2 on Figure 1
 containing precipitate similar in appearance to the aforementioned floc samples adjacent to canal,
 at a location not adjacent to the footprint of the closed Landfill.
- One (1) aqueous grab sample was obtained from the leachate manhole shown as LMH1 in Figure
 1. A floc sample was not obtained at this location as there was no visible precipitate.
- Two (2) aqueous grab samples were obtained from the canal; one (1) adjacent to the largest observed seep shown as SW02 and one (1) upstream of the Landfill site shown as SW01 (see Figure 1).

This results in a total of five (5) aqueous samples and three (3) floc samples.

"Serving our clients and the environment since 1993"

Samples were submitted to TestAmerica, Inc. located in Amherst, NY. The analytical results are summarized by Tables 1 through 3 attached. The full laboratory analytical reports are also provided with this letter.

FINDINGS:

Floc sample results are summarized by Table 1 along with a comparison to Soil Cleanup Objectives (SCOs) stated in CP-51 and 6 NYCRR 375-6. Comparisons are also made to the reported natural range for soils in New York State.

The floc results are consistent with natural occurring levels and are not indicative of a release from the Landfill. In fact, the results for Seep 2, which is not situated in an area which would be influenced by the Landfill, are comparable to the locations near the Landfill. Further, seeps and surficial red staining are also evident on the south side of the canal which cannot be caused by any Landfill influence.

Regarding the analysis of water samples collected at the identified seep and surface water locations, field parameters and sample analytical results are presented in Tables 2 and 3. This data was compared to the surface and groundwater post-closure monitoring data reported in the July 2012 report by Cornerstone Environmental summarizing the 2012 post-closure monitoring event. The two seep locations sampled are nearest to existing groundwater wells PZ-4, MW-3B and MW-222. No appreciable differences were noted in comparing the seep sample results to the reported site groundwater condition.

Ammonia was detected in all seep and surface water locations in excess of the surface water standards ranging from 0.049 mg/l to 40.0 mg/l. Ammonia levels reported for the groundwater at wells PZ-4, MW-3B and MW-222 indicate a range of 0.13 to 5.2 mg/l. While Ammonia levels reported for Seep 1 and Seep 3 are elevated relative to the surface water sample locations in the canal, we also note Ammonia is present in the upgradient groundwater monitoring wells.

Iron was detected in all seep and surface water locations in excess of the surface water standards ranging from 1.4 to 6.5 mg/l. A review of Iron levels reported for groundwater wells PZ-4, MW-3B and MW-222 indicate a range of 2.05 to 126 mg/l. Elevated Iron is also noted in groundwater wells upgradient of the Landfill. The observed Iron concentrations at Seeps 1 and 3 are much lower than the concentration observed in nearby groundwater.

The analysis of the leachate sample from LMH1 was reviewed and compared to the water sample results at the seep locations. Typical leachate parameters (Ammonia, Iron, Manganese, Phenol, etc.) present in the leachate are also present in the seeps at much lower concentrations and except for Ammonia and Iron all parameters are within the applicable surface water standards at the seep locations.

There were no reported exceedances of volatile or semi-volatile parameters at the seep locations.

CONCLUSION:

The analyses of seep, surface water and flocculent samples are consistent with previously reported groundwater quality at the site. The data does not indicate a release from the Landfill has or is currently occurring. The water quality reported for the seeps is within the naturally occurring range. In fact, other

seeps and reddish stained areas exist along both sides of the Cheechunk Canal including areas removed from the Landfill.

Accordingly, no further response is recommended regarding these seeps.

Please contact me should you have any questions.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President
mark@sterlingenvironmental.com

MPM/bc Email/First Class Mail Attachments

cc: Peter Hammond, Orange County Department of Public Works

Steven Parisio, PG, NYSDEC Region 3 Carl Hoffman, P.E., NYSDEC Central Office

2010-15/Correspondence/NYSDEC_Cheechunk Canal Seep Sampling Results_ltr.doc

TABLE 1 Orange County Landfill 2012 Floc Sample Results

Lab Name: TestAmerica Buffalo

Customer: Sterling Environmental Engineering PC

Job No: 480-24283-1 Date :09/04/2012

Date Sampled

08/22/12

METALS BY 6010B (SOLID) MG/KG

Analyte	CP-51 Standard or Guidance Value (PPM)	6 NYCRR Part 375-6* (PPM)	Reported New York Soil Natural Range ⁽¹⁾ (PPM)	Floc 1		Floc 2		Floc 3	
Aluminum	10,000	NA	11,000 - 22,000	11,000	Π	11.000		15,000	T
Arsenic	NA	13 a	2.2 - 28	44		15		25	
Iron	2,000	NA	0 - 30,000	27,000	В	25,000	В	33,000	В
Manganese	NA	1,600 a	146 - 2,285	470		1,100	T	750	T
Selenium	NA	3.9 a	0.4 - 5.1	0.79	U	0.92	U	0.77	U

GENERAL CHEMISTRY BY 900	ENERAL CHEMISTRY BY 9060 (SOLID) MG/KG otal Organic Carbon NA NA 120 B 2800 B 23 B								
Total Organic Carbon	NA	NA	NA	120	В	2800	В	23	В

Notes:

NA - No standard or guidance value is available for these substances.

- B Compound was found in the blank and sample.
- U Indicates the analyte was analyzed for but not detected.
- * Unrestricted Use Soil Cleanup Objectives Table 375-6.8(a)
- (1) = New York State Brownfield Cleanup Program Development of Soil Cleanup Objectives Techinical Support Document, Appendix D Concentration of Selected Analytes in Rural New York State Surface Soils: A Summary Report on the Statewide Rural Surface Soil Survey, dated August 2005.
- a For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the NYSDEC and Department of Health rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

TABLE 2

Orange County Landfill

2012 Seep Sampling - Water Quality Monitoring

Field Parameters Measurements Obtained 8/22/2012

Parameter	Title 6 Part 703.5	Units	Seep 01 (Adjacent to Landfill)	Seep 03 (Adjacent to Landfill)	SW01 (Canal Upstream of Landfill)	SW02 (Canal Adjacent to Seep 03)	LMH1 (Leachate Manhole)
Specific Conductance		mS/cm ^c	0.772	0.695	0.479	0.488	3.129
Temperature	0-0-	degrees C	20.77	23.88	22.17	23.25	24.16
рН	6.5 <ph< 8.5<="" td=""><td>pH Units</td><td>7.03</td><td></td><td>7.78</td><td>7.80</td><td></td></ph<>	pH Units	7.03		7.78	7.80	
ORP		mV	-90.6	-77.0	43.9	-20.6	-46.1
Dissolved Oxygen		mg/L	9.3	8.17	6.78	6.68	8.05

Values in BOLD indicate an exceedance of applicable water quality standard or guidance value.

--- = No standard or not measured.

TABLE 3 Orange County Landfill 2012 Seep Sampling - Water Quality Results August 22, 2012

				August 22, 201	2						
							SW01 Canal	5W02	Seep 01	Seep 03	LMHI
Analyte	CAS Number	Units	Specific Method		Reports To	Reg 1	Upstream of	Canal Adjacent	Adjacent to	Adjacent to Landfill	Leachate Manhole
1 1104 104							Landfill	to Seep 03	Landfill		
							08/22/12	08/22/12	08/22/12	08/22/12	08/22/12
1,1,1-Trichloroethane	71-55-6	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	***	ND	ND	ND	ND	ND ND
1,1,2,2-Tetrachloroethane	79-34-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	andrig	ND ND	ND ND	ND ND	ND ND	ND
1,1,2-Trichloroethane	79-00-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	00.0	ND	ND	ND	ND ND	ND
1,1-Dichloroethane	75-34-3 75-35-4	ug/L ug/L	Volatile Organic Compounds (GC/MS) Volatile Organic Compounds (GC/MS)	624_5ML 624_5ML	MDL	000	ND	ND	ND	ND	ND
1,1-Dichloroethene 1,2,3-Trichloropropane	96-18-4	ug/L	Volatile Organic Compounds (GC/MS)	624 5ML	MDL	and the	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	96-12-8	ug/L	Volatile Organic Compounds (GC/MS)	624 SML	MDL	D-00E	ND	ND	ND	ND	ND
1,2-Dibromoethane	106-93-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	man-et.	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	95-50-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	5(1)	ND	ND	ND	ND	ND
1,2-Dichloroethane	107-06-2	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	***	ND	ND	ND	ND	ND ND
1,2-Dichloropropane	78-87-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	F/1)	ND ND	ND ND	ND ND	ND ND	ND
1,3-Dichlorobenzene	541-73-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML 624_5ML	MDL	5(1) 5(1)	ND	ND	ND	ND	ND
1,4-Dichlorobenzene 2-Butanone (MEK)	106-46-7 78-93-3	ug/L ug/L	Volatile Organic Compounds (GC/MS) Volatile Organic Compounds (GC/MS)	624 5ML	MDL	2(1)	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	110-75-8	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	0-95	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	440	ND	ND	ND	ND	ND
Acetone	67-64-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND	ND	ND	3.9 J	47 J
Acrylonitrile	107-13-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	part	ND	ND	ND	ND	ND
Alkalinity, Total	N/A	mg/L	Alkalinity	310.2	MRL	045	130 B	140 B	640	850	1500
Aluminum	7429-90-5	mg/L	Metals (ICP)	6010B	MRL		1.5	1.6	0.22	0.8	ND 190
Ammonia	7664-41-7	mg/L	Nitrogen, Ammonia	350.1	MRL	0.044	0.049 ND	0.21 ND	40 ND	ND ND	190 ND
Antimony	7440-36-0	mg/L	Metals (ICP)	6010B	MRL	0.15	ND	ND	0.094	0.048	0.016
Arsenic	7440-38-2 7440-39-3	mg/L mg/L	Metals (ICP) Metals (ICP)	6010B	MRL	0.15	0.033	0.039	0.44	0.33	0.15
Barium Benzene	71-43-2	ug/L	Volatile Organic Compounds (GC/MS)	624 5ML	MDL	0.01	ND	ND	ND	ND	ND
Beryllium	7440-41-7	mg/L	Metals (ICP)	6010B	MDL	0.00	ND*	ND*	ND*	ND*	ND
Biochemical Oxygen Demand	N/A	mg/L	BOD, 5-Day	5210B	MDL		3.3 b	ND	ND	5.8 b	13 b
Boron	7440-42-8	mg/L	Metals (ICP)	6010B	MRL	10	0.035 B	0.036 B	0.37 B	0.23 B	1.7 B
Bromide	24959-67-9	mg/L	Anions, Ion Chromatography	300.0_28D	MRL		ND	ND	0.65	0.75	ND ND
Bromodichloromethane	75-27-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform	75-25-2 74-83-9	ug/L	Volatile Organic Compounds (GC/MS) Volatile Organic Compounds (GC/MS)	624_5ML 624_5ML	MDL	000	ND ND	ND ND	ND	ND	ND
Bromomethane Cadmium	7440-43-9	ug/L mg/L	Metals (ICP)	6010B	MDL	0.8	ND	ND	ND	ND	ND
Calcium	7440-70-2	mg/L	Metals (ICP)	6010B	MRL	***	45	46	100	130	140
Carbon disulfide	75-15-0	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	***	ND	ND	ND	ND	ND
Carbon tetrachloride	56-23-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	produ	ND	ND	ND	ND	ND
Chemical Oxygen Demand	N/A	mg/L	COD	410.4	MRL	me+	14	15	21	22	380
Chloride	16887-00-6	mg/L	Anions, Ion Chromatography	300.0_28D	MRL	0110	46	47	82	63	870
Chlorobenzene	108-90-7	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	5	ND	ND ND	ND ND	ND ND	ND ND
Chloroethane	75-00-3	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	200	ND ND	ND	ND	ND	ND
Chloroform Chloromethane	67-66-3 74-87-3	ug/L ug/L	Volatile Organic Compounds (GC/MS) Volatile Organic Compounds (GC/MS)	624 5ML	MDL		ND	ND	ND	ND	ND
Chromium	7440-47-3	mg/L	Metals (ICP)	6010B	MDL	0.47	0.0016 J	0.0022 J	ND	0.0011 J	0.0030 J
Chromium, hexavalent	18540-29-9	mg/L	Chromium, Hexavalent	7196A	MDL	0.011	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	10061-01-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	+44	ND	ND	ND	ND	ND
Cobalt	7440-48-4	mg/L	Metals (ICP)	6010B	MDL	0.005	0.00067 J	ND	ND	0.0034 J	0.014
Color	N/A	Color Units	Color, Colorimetric	2120B	MRL	0.00	40	50	150 ND	35 0.0038 J	0.0054 J
Copper Cvanide, Total	7440-50-8 57-12-5	mg/L	Metals (ICP) Cyanide, Total and/or Amenable	6010B 9012A	MDL	0.89	0.0034 J ND	0.0031 J ND	ND	ND	0.0054 J
Dibromochloromethane	124-48-1	mg/L ug/L	Volatile Organic Compounds (GC/MS)	624 5ML	MDL	0.0032	ND	ND	ND	ND	ND
Dichlorodifluoromethane	75-71-8	ug/L	Volatile Organic Compounds (GC/MS)	624 5ML	MDL	10-04	ND	ND	ND	ND	ND
Ethylbenzene	100-41-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	0.017 GV	ND	ND	ND	ND	ND
Hardness	N/A	mg/L	Hardness, Total	2340C	MRL	dragate	18 J	180	530	540	860
Iron	7439-89-6	mg/L	Metals (ICP)	60108	MRL	0.3	1.4	1.4	6.5	3.2	5.6
Lead	7439-92-1	mg/L	Metals (ICP)	6010B	MDL	0.45	ND	ND	ND	ND	ND
Magnesium	7439-95-4	mg/L	Metals (ICP)	6010B	MRL	***	15	16	41	51	65
Manganese	7439-96-5	mg/L	Metals (ICP)	6010B 7470A	MRL	0.0007	0.14 ND	0.15 ND	0.54 ND	1.7 ND	0.45 ND
Mercury Methylene Chloride	7439-97-6 75-09-2	mg/L ug/L	Mercury (CVAA) Volatile Organic Compounds (GC/MS)	624_5ML	MDL	0.0007	ND	ND	ND	ND	ND
m-Xylene & p-Xylene	179601-23-1	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	65(2)	ND	ND	ND	ND	ND
Nickel	7440-02-0	mg/L	Metals (ICP)	6010B	MRL	0.99	0.0015 J	0.0016 J	0.0093 J	0.0090 J	0.06
Nitrate as N	14797-55-8	mg/L	Nitrogen, Nitrate-Nitrite	NITRATE_CALC	MDL	9479	0.77	0.83	ND	0.26	ND
o-Xylene	95-47-6	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	65(2)	ND	ND	ND	ND	ND
Phenolics, Total Recoverable	N/A	mg/L	Phenolics, Total Recoverable	9066	MRL	200	ND	ND	0.0054 J	ND	0.011
Potassium	7440-09-7	mg/L	Metals (ICP)	6010B	MRL	0.0046	3.2	3.3 ND	23	15 ND	150
Selenium Silver	7782-49-2 7440-22-4	mg/L	Metals (ICP) Metals (ICP)	6010B 6010B	MDL	0.0046	ND ND	ND ND	ND ND	ND ND	ND ND
Sodium	7440-22-4	mg/L mg/L	Metals (ICP)	6010B	MRL	0.0001	29	30	81	59	590
Styrene	100-42-5	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND ND	ND	ND	ND	ND
Sulfate	14808-79-8	mg/L	Anions, Ion Chromatography	300.0_28D	MRL	No. Alley	19	19	19	7.7	160
Tetrachloroethene	127-18-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	1 GV	ND	ND	ND	ND	ND
Thallium	7440-28-0	mg/L	Metals (ICP)	6010B	MDL	0.008	ND	ND	ND	ND	ND
Toluene	108-88-3	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	0.1	ND	ND	ND	ND	ND
Total Dissolved Solids	N/A	mg/L	Solids, Total Dissolved (TDS)	2540C_CALCD	MRL		300	300	680	780	2700
Total Kjeldahl Nitrogen Total Organic Carbon	N/A 7440-44-0	mg/L	Nitrogen, Total Kjeldahl	351.2	MRL	500	2.4	0.97	38 6.1	6	140 78
Total Organic Carbon trans-1,2-Dichloroethene	156-60-5	mg/L ug/L	Organic Carbon, Total (TOC) Volatile Organic Compounds (GC/MS)	9060 624 5ML	MRL	644	5.8 ND	5.5 ND	ND	ND	ND
trans-1,3-Dichloropropene	10061-02-6	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	110-57-6	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	000	ND	ND	ND	ND	ND
Trichloroethene	79-01-6	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	40	ND	ND	ND	● ND	ND
Trichlorofluoromethane	75-69-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	000	ND	ND	ND	ND	ND
Turbidity	N/A	NTU	Turbidity, Nephelometric	180.1	MRL	a-gré	37	29	66	ND	33
Vanadium	7440-62-2	mg/L	Metals (ICP)	6010B	MRL	0.014	0.0043 J	0.0033 J	0.0017 J	0.0074	0.0057
Vinyl acetate	108-05-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL		ND	ND	ND	ND	ND
Vinyl chloride	75-01-4	ug/L	Volatile Organic Compounds (GC/MS)	624_5ML	MDL	CE(2)	ND	ND	ND	ND	ND
Xylenes, Total	1330-20-7 7440-66-6	ug/L	Volatile Organic Compounds (GC/MS) Metals (ICP)	624_5ML	MDL	65(2)	ND OOGO LB	ND 0.0005 t B	ND O COOC + P	ND 0.010.0	ND 0.0045 LB
Zinc		mg/L	INVESTALS LIE PE	6010B	MRL	2.96	0.0069 J B	0.0095 J B	0.0096 J B	0.010 B	0.0045 J B

T.O.G.S. 1.1.1 Surface Water Standards C Streams. Reg 1

Bold = Value indicates reported concentration exceeds applicable water quality standard.

B = Compound was found in the blank and sample.

GV = Guidance Value

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

(1) = Applies to the sum of 1,2-, 1,3- and 1,4-Dichlorobenzene.

(2) = Applies to the sum of m-, o- and p-Xylene.

* = 11 ug/L, when hardness is less than or equal to 75 ppm; 1,100 ug/L when hardness is greater than 75 ppm

MDL = Method Detection Limit

MRL = Method Reporting Limit ND = Not Detected

--- = No Existing Standard

b = Result Detected in the USB

APPENDIX C

NYSDEC, AUGUST 24, 2012, REGION 3/SOLID WASTE PROGRAM, SOLID WASTE MANAGEMENT FACILITY SITE VISIT REPORT (AUGUST 22, 2012) - ORANGE COUNTY LANDFILL, TOWN OF GOSHEN, ORANGE COUNTY

Facility Name/Location:	Orange County Landfill, T-Goshen, Orange County
Date of Site Visit:	August 22, 2012
DEC Staff Present:	Steven Parisio, Carl Hoffman
Others Present:	Mark Millspaugh, Nathan Shafer Sterling Environmental Engineering P.C.
Background Information:	Concerns have been expressed by the public regarding "orange goo" seeping from the bank of the Cheechunk Canal (Wallkill River) downslope of the landfill. The County has agreed to collect and analyze environmental samples to determine whether these discharges are impacting water quality or otherwise pose a threat to the environment. After consultation with Department staff, a sampling plan was submitted on August 17, 2012 by Sterling Environmental Engineering P.C on behalf of the County. The plan includes sampling of groundwater (from seeps), surface water and leachate for Part 360 baseline parameters and sampling of iron flocs for iron, TOC, arsenic and other selected metals.
Purpose of Site Visit:	To observe and assist with sampling and to collect split samples for analysis by the Department's contact lab.
New Issues and Follow- up Required:	Department staff collected 3 water samples and 2 iron floc samples which were splits of samples collected by Sterling. Table 1 provides a summary of the samples collected and Figure 1 shows the sampling locations.
Report prepared by:	Steven Parisio
Report Date:	August 24, 2012

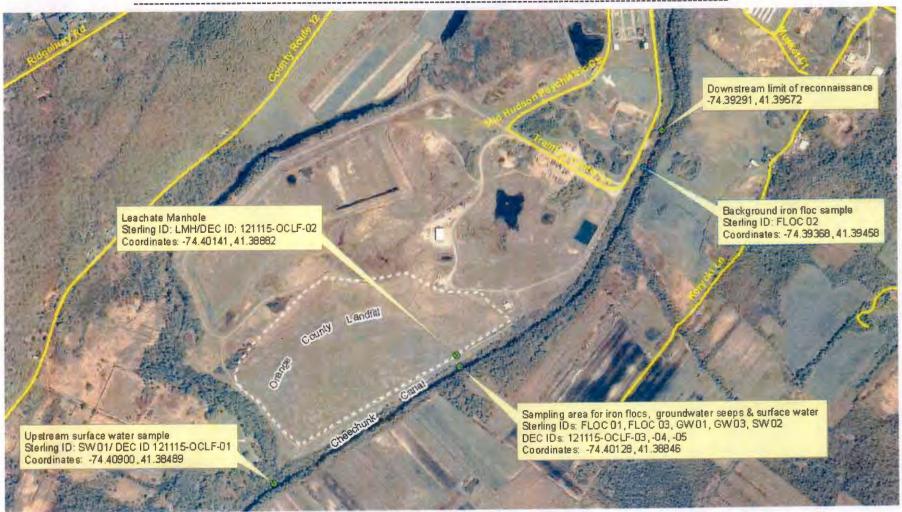
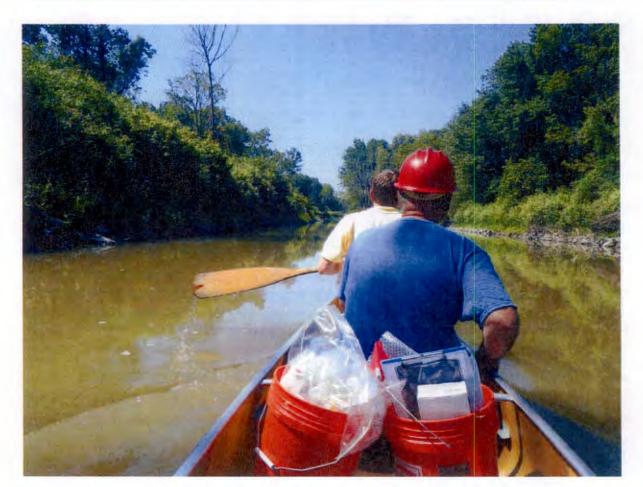
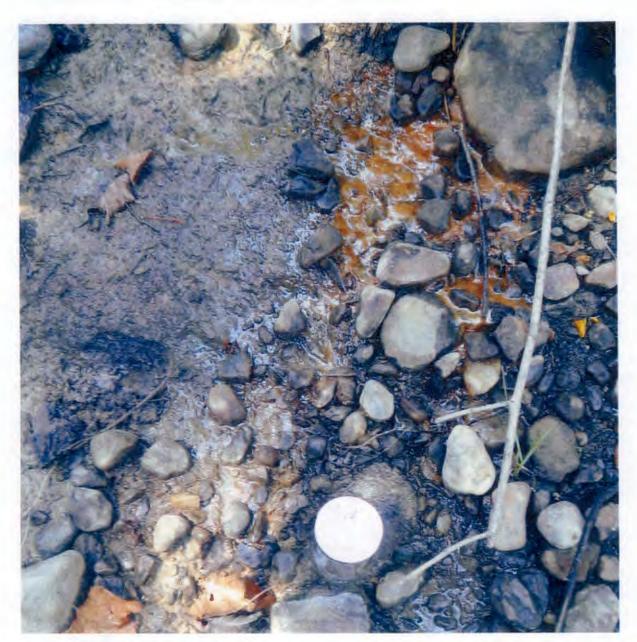



Figure 1. Orange County Landfill and vicinity, August 22, 2012 sampling locations.


Sterling Sample ID	DEC Split Sample ID	Sample ID Time		Longitude	Sample Description/Comments
FLOC 02	NA	11:00	N41.39458	W74.39368	Background sample of grey silt w/iron floc coatings; No DEC split due to insufficient sample volume
SW 01	121115-OCLF-01	12:11	N41.38489	W74.40900	Surface water from Cheechunk Canal upstream of landfill
LMH	121115-OCLF-02	13:00	N41.38882	W74.40141	Leachate from manhole upslope of seeps
FLOC 01	121115-OCLF-04	13:15	N41.38846	W74.40131	Gray silt with iron floc coating on river bank downslope of leachate manhole; Upstream and smaller of two adjacent seeps
FLOC 03	121115-OCLF-05	13:40	N41.38846	W74.40128	Gray silt with iron floc coating on river bank downslope of leachate manhole; Downstream and larger of two adjacent seeps
GW 03	121115-OCLF-03	14:00	N41.38846	W74.40128	Groundwater discharging from seep in area of sample FLOC 03 (DEC Split 121115-OCLF-05)
SW 02	NA	14:00	N41.38846	W74.40128	Surface water where seeps with iron flocs enter the Cheechunk Canal
GW 01	NA	15:00	N41.38846	W74.40131	Groundwater discharging from seep in area of sample FLOC 01 (DEC Split 121115-OCLF-04)

A thorough reconnaissance of the Cheechunk Canal was carried out using a canoe provided by Sterling. Both banks were examined along a stretch extending from the upstream end of the landfill to a point well beyond the downstream end of the landfill (see figure 1). Several flowing seeps with iron flocs were observed in the area immediately downslope of the leachate manhole. Dried iron floc residues without active seepage were observed at two locations considered to be outside of the influence of landfill-derived groundwater contamination.

Iron floc residues were observed adhering to exposed plant roots in an erosional gully in the bank of the canal opposite the landfill.. No moisture was present on the day of our sampling event. This is the location where seepage and iron flocs had been observed by Department staff during a site visit on April 18, 2012. A sample was collected from this location but was not submitted for analysis because a more suitable background sample was observed further downstream.

Sterling collected a floc sample (FLOC 02) from the northwest bank (landfill side) of the canal at a location far enough downstream to be outside of the immediate influence of landfill-derived groundwater contamination. The sample consisted of gray silt with a coating of iron floc. A DEC split sample was not collected due to inadequate sample volume. No groundwater sample was collected here because the rate and volume of the seep was inadequate to allow collection of a liquid sample.

An upstream surface water sample (SW 01) was collected by Sterling in the Cheechunk Canal. A split sample (121115-OCLF-01) was collected by DEC staff.

An iron floc sample (Sterling FLOC 01, DEC split 121115-OCLF-04) and a groundwater seep sample (Sterling GW 01) was collected from this location which is downslope of the leachate manhole. Iron floc was present as only a thin film on the surface of the gray silt and a pure iron floc sample could not be collected. The iron floc sample consisted of gray silt with a thin coating of iron floc.

Slightly downstream of the FLOC 02 sampling location, a larger area of seepage and iron floc was observed. Iron floc sample FLOC3 (Sterling ID) and 121115-OCLF-05 (DEC split) were collected here. Iron floc was present as only a thin film on the surface of the gray silt and a pure iron floc sample could not be collected. The iron floc sample consisted of gray silt with a thin coating of iron floc.

Groundwater seeping out of the area of iron floc deposition at sample location FLOC 03 was collected using a peristaltic pump. A small depression was excavated in the seepage channel downstream of the iron floc deposits and just upstream of where the seep enters the canal. By letting the silt settle out and by keeping the end of the pump tubing just below the water surface, a turbidity-free sample of the seep discharge was collected. This was sample GW 03 (Sterling) and 121115-OCLF-05 (DEC split sample).

APPENDIX D

STERLING, OCTOBER 19, 2012, ORANGE COUNTY LANDFILL - WORK PLAN TO EVALUATE LEACHATE COLLECTION SYSTEM

October 19, 2012

Ms. Susan Edwards, P.E.
Chief, Remedial Section D
NYS Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau E, 12th Floor
625 Broadway
Albany, New York 12233-7017

Subject:

Orange County Landfill

Work Plan to Evaluate Leachate Collection System

STERLING File #2010-15 (Task 310)

Dear Ms. Edwards,

On Monday, October 15, 2012, I met with Mr. Peter Hammond and Mr. Brian Ritzinger at the Orange County Landfill to determine an appropriate course of action to assess the integrity of the existing leachate collection system upslope of the recently sampled seeps and leachate manhole. Results of the sampling were provided to the New York State Department of Environmental Conservation (NYSDEC) by letter dated September 20, 2012 and were also the subject of a conference call with the NYSDEC on October 10, 2012.

Following the meeting at the Landfill, Brian Ritzinger and I inspected leachate Tanks 4 and 5 along with the adjacent pump chambers. We also inspected the manhole between leachate Tanks 4 and 5 which was previously observed to contain a pump and riser pipe. It is this manhole and pump system that Mr. Carl Hoffman specifically mentioned during the October 10, 2012 conference call.

Brian Ritzinger and I determined that the leachate collection trenches convey collected leachate by gravity to the sumps adjacent to the leachate tanks. Manhole MH-9, upon further evaluation, is no longer in use and the electrical service is not connected. Operational records indicate the manhole is regularly pumped out when the leachate tanks are emptied.

Insomuch as the pump and forcemain from MH-9 are not in use, there is no need to conduct an integrity test of the forcemain. Rather, Orange County will proceed to obtain price quotes from qualified contractors capable of performing internal video inspections of the leachate collection trench pipes between leachate Tanks 4 and 5.

The County has determined it cannot use the inspection equipment maintained by the Sewer Department due to access limitations and observed explosive atmosphere. This inspection will require the services of a trained, qualified contractor.

The County has determined that competitive quotes should be obtained and Sterling Environmental Engineering, P.C. is proceeding to develop the Request for Proposals.

"Serving our clients and the environment since 1993"

Please contact me should you have any questions.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President

mark@sterlingenvironmental.com

Mark P. Millypurp

MPM/bc Email/First Class Mail

cc: Peter Hammond, Orange County Department of Public Works

Steven Parisio, PG, NYSDEC Region 3 Carl Hoffman, P.E., NYSDEC Central Office

2010-15/Correspondence/NYSDEC_Work Plan To Evaluate Leachate Collection System_ltr.doc

APPENDIX E

AUGUST 21, 2013 CHEECHUNK CANAL SEEP SAMPLING ANALYTICAL RESULTS

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-44452-1

Client Project/Site: Orange County Landfill

For:

Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Nathan J Shaffer

Authorized for release by: 9/4/2013 3:48:31 PM

Fix Shope

Lisa Shaffer, Project Manager I lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	12
QC Association Summary	24
Lab Chronicle	30
Certification Summary	33
Method Summary	34
Sample Summary	
Chain of Custody	36
Receipt Checklists	

Definitions/Glossary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

3

Qualifiers

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

General Chemistry

Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
*	LCS or LCSD exceeds the control limits	
Α	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.	
В	Compound was found in the blank and sample.	
b	Result Detected in the Unseeded Control blank (USB).	

Glossary

RPD TEF

TEQ

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

0100001		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
<u> </u>	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

Case Narrative

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill TestAmerica Job ID: 480-44452-1

Job ID: 480-44452-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-44452-1

Comments

No additional comments.

Receipt

The samples were received on 8/23/2013 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

HPLC

Method(s) 300.0: The continuing calibration verification (CCV) for Bromide associated with batch 135669 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other analytical or quality issues were noted.

Metals

Method(s) 6010B: The Method Blank for batch 480-135533 contained total potassium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples GW-A (480-44452-1), GW-B (480-44452-2), GW-D (480-44452-3) was not performed.

Method(s) 6010B: The Method Blank for batch 480-136979 contained dissolved aluminum, banum, calcium, manganese, and zinc above the method detection limits. These target analyte concentrations were less than the reporting limits (RLs); therefore, re-extraction and/or re-analysis of sample GW-D (480-44452-3) was not performed.

No other analytical or quality issues were noted.

General Chemistry

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure: GW-D (480-44452-3). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 310.2: The method blank for batch 136002 contained Alkalinity above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.GW-A (480-44452-1), GW-B (480-44452-2), GW-D (480-44452-3)

Method(s) 351.2: The method blank for batch 135990 contained TKN above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.GW-B (480-44452-2), GW-D (480-44452-3)

Method(s) SM 5210B: For batch # 135640, the USB dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L. The associated sample results are reported. (USB 480-135640/1)

Method(s) 7196A: The following samples were received outside of holding time: GW-A (480-44452-1), GW-B (480-44452-2), GW-D (480-44452-3).

Method(s) 335.4, 9012A: The method blank for batch 135893 contained Cyanide above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. GW-B (480-44452-2)

No other analytical or quality issues were noted.

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: GW-A

Lab Sample ID: 480-44452-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.23		0.20	0.060	mg/L	1	_	6010B	Total/NA
Barium	0.022		0.0020	0.00070	mg/L	1		6010B	Total/NA
Boron	0.092		0.020	0.0040	mg/L	1		6010B	Total/NA
Calcium	56		0.50	0.10	mg/L	1		6010B	Total/NA
Соррег	0.0044	J	0.010	0.0016	mg/L	1		6010B	Total/NA
Iron	0.34		0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	9.3		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.047		0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	2.2	В	0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	16		1.0	0.32	mg/L	1		6010B	Total/NA
Zinc	0.0017	J	0.010	0.0015	mg/L	1		6010B	Total/NA
Chloride	23		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	27		2.0	0.35	mg/L	1		300.0	Total/NA
Alkalinity, Total	170	В	50	20	mg/L	5		310.2	Total/NA
Ammonia	0.018	J	0.020	0.0090	mg/L	1		350.1	Total/NA
Total Kjeldahl Nitrogen	0.50		0.20	0.15	mg/L	1		351.2	Total/NA
Nitrate as N	0.33		0.050	0.020	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	18		10	5.0	mg/L	1		410.4	Total/NA
Chromium, hexavalent	0.0087	J H	0.010	0.0050	mg/L	1		7196A	Total/NA
Total Organic Carbon	5.6		1.0	0.43	mg/L	1		9060	Total/NA
Hardness	180		4.0	1.1	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	250		10	4.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac'	D	Method	Ргер Тур
Turbidity	7.6		1.0	1.0	NTU	1		180.1	Total/NA
Color	50		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Client Sample ID: GW-B

Lab Sample ID: 480-44452-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Aluminum	0.67		0.20	0.060	mg/L	1	6	010B	Total/NA
Barium	0.032		0.0020	0.00070	mg/L	1	6	6010B	Total/NA
Boron	0.080		0.020	0.0040	mg/L	1	6	010B	Total/NA
Calcium	72		0.50	0.10	mg/L	1	6	010B	Total/NA
Chromium	0.0018	J	0.0040	0.0010	mg/L	1	6	010B	Total/NA
Cobalt	0.0065		0.0040	0.00063	mg/L	1	6	010B	Total/NA
Copper	0.040		0.010	0.0016	mg/L	1	6	010B	Total/NA
Iron	1.5		0.050	0.019	mg/L	1	6	010B	Total/NA
Magnesium	12		0.20	0.043	mg/L	1	6	6010B	Total/NA
Manganese	0.93		0.0030	0.00040	mg/L	1	6	010B	Total/NA
Nickel	0.027		0.010	0.0013	mg/L	1	6	6010B	Total/NA
Potassium	3.3	В	0.50	0.10	mg/L	1	6	5010B	Total/NA
Sodium	2.0		1.0	0.32	mg/L	1	6	6010B	Total/NA
Zinc	0.011		0.010	0.0015	mg/L	1	6	5010B	Total/NA
Chloride	3.0		0.50	0.28	mg/L	1	3	300.0	Total/NA
Sulfate	86		2.0	0.35	mg/L	1	3	300.0	Total/NA
Alkalinity, Total	130	В	50	20	mg/L	5	3	310.2	Total/NA
Ammonia	0.075		0.020	0.0090	mg/L	1	3	350.1	Total/NA
Total Kjeldahl Nitrogen	4.1	В	0.40	0.30	mg/L	2	3	351.2	Total/NA
Nitrate as N	0.28		0.050	0.020	mg/L	1	3	353.2	Total/NA
Chemical Oxygen Demand	210		10	5.0	mg/L	1	4	410.4	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: GW-B (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.012	8	0.010	0.0050	mg/L	1	_	9012A	Total/NA
Total Organic Carbon	67		1.0	0.43	mg/L	1		9060	Total/NA
Phenolics, Total Recoverable	0.0069	J	0.010	0.0050	mg/L	1		9066	Total/NA
Hardness	240		4.0	1.1	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	430		10	4.0	mg/L	1		SM 2540C	Total/NA
Biochemical Oxygen Demand	2.0	b	2.0	2.0	mg/L	1		SM 5210B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	19		1.0	1.0	NTU	1	_	180.1	Total/NA
Color	400		50	50	Color Units	10		SM 2120B	Total/NA

Client Sample ID: GW-D

						And the second second second second
1	.ab	Sam	ple	ID:	480-	44452-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Aluminum	4.4		0.20	0.060	mg/L	1	6010B	Total/NA
Arsenic	0.11		0.010	0.0056	mg/L	1	6010B	Total/NA
Barium	0.90		0.0020	0.00070	mg/L	1	6010B	Total/NA
Boron	0.25		0.020	0.0040	mg/L	1	6010B	Total/NA
Cadmium	0.0014		0.0010	0.00050	mg/L	1	6010B	Total/NA
Calcium	140		0.50	0.10	mg/L	1	6010B	Total/NA
Chromium	0.0058		0.0040	0.0010	mg/L	1	6010B	Total/NA
Cobalt	0.0051		0.0040	0.00063	mg/L	1	6010B	Total/NA
Соррег	0.013		0.010	0.0016	mg/L	1	6010B	Total/NA
ron	12		0.050	0.019	mg/L	1	6010B	Total/NA
ead	0.0075		0.0050	0.0030	mg/L	1	6010B	Total/NA
Magnesium	57		0.20	0.043	mg/L	1	6010B	Total/NA
Manganese	1.1		0.0030	0.00040	mg/L	1	6010B	Total/NA
Nickel	0.015		0.010	0.0013	mg/L	1	6010B	Total/NA
Potassium	13	В	0.50	0.10	mg/L	1	6010B	Total/NA
Sodium	64		1.0	0.32	mg/L	1	6010B	Total/NA
/anadium	0.0067		0.0050	0.0015	mg/L	1	6010B	Total/NA
Zinc	0.033		0.010	0.0015	mg/L	1	6010B	Total/NA
Numinum	0.15	JB	0.20	0.060	mg/L	1	6010B	Dissolved
Barium	0.66	В	0.0020	0.00070	mg/L	1	6010B	Dissolved
Boron	0.20		0.020	0.0040	mg/L	1	6010B	Dissolved
Cadmium	0.00054	J	0.0010	0.00050	mg/L	1	6010B	Dissolved
Calcium	130	В	0.50	0.10	mg/L	1	6010B	Dissolved
Copper	0.0045	J	0.010	0.0016	mg/L	1	6010B	Dissolved
.ead	0.0040	J	0.0050	0.0030	mg/L	1	6010B	Dissolved
Magnesium	52		0.20	0.043	mg/L	1	6010B	Dissolved
Manganese	0.12	В	0.0030	0.00040	mg/L	1	6010B	Dissolved
Nickel	0.0084	J	0.010	0.0013	mg/L	1	6010B	Dissolved
Potassium	11		0.50	0.10	mg/L	1	6010B	Dissolved
Sodium	62		1.0	0.32	mg/L	1	6010B	Dissolved
Zinc	0.0066	JB	0.010	0.0015	mg/L	1	6010B	Dissolved
Bromide	1.0	A *	0.20	0.073	mg/L	1	300.0	Total/NA
Chloride	73		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	10		2.0	0.35	mg/L	1	300.0	Total/NA
Alkalinity, Total	640	В	100	40		10	310.2	Total/NA
Ammonia	8.0		0.10	0.045	_	5	350.1	Total/NA
Total Kjeldahl Nitrogen	8.2	В	1.0		mg/L	5	351.2	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: GW-D (Continued)

Lab Sample ID: 480-44452-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nitrate as N	0.075	-	0.050	0.020	mg/L	1	_	353.2	Total/NA
Chemical Oxygen Demand	18		10	5.0	mg/L	1		410.4	Total/NA
Chromium, hexavalent	0.0079	JH	0.010	0.0050	mg/L	1		7196A	Total/NA
Total Organic Carbon	5.5		1.0	0.43	mg/L	1		9060	Total/NA
Hardness	760		10	2.6	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	830		40	16	mg/L	1		SM 2540C	Total/NA
Biochemical Oxygen Demand	13	b	2.0	2.0	mg/L	1		SM 5210B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	7100		25	25	NTU	25	_	180.1	Total/NA
Color	100		50	50	Color Units	10		SM 2120B	Total/NA

Client Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Client Sample ID: GW-A

Date Collected: 08/21/13 16:40 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-1

Matrix: Water

Method: 6010B - Metals (ICP) Analyte	Popult	Qualifier	RL	MDL	11-14	_			
Aluminum	0.23	Qualifier	0.20	0.060		D	Prepared	Analyzed	Dil Fac
Antimony					mg/L		08/23/13 08:20	08/23/13 19:17	1
	ND		0.020	0.0068			08/23/13 08:20	08/23/13 19:17	1
Arsenic	ND		0.010	0.0056	-		08/23/13 08:20	08/23/13 19:17	1
Barium	0.022		0.0020	0.00070	-		08/23/13 08:20	08/23/13 19:17	1
Beryllium	ND		0.0020	0.00030	mg/L		08/23/13 08:20	08/23/13 19:17	1
Boron	0.092		0.020	0.0040	mg/L		08/23/13 08:20	08/23/13 19:17	1
Cadmium	ND		0.0010	0.00050	mg/L		08/23/13 08:20	08/23/13 19:17	1
Calcium	56		0.50	0.10	mg/L		08/23/13 08:20	08/23/13 19:17	1
Chromium	ND		0.0040	0.0010	mg/L		08/23/13 08:20	08/23/13 19:17	1
Cobalt	ND		0.0040	0.00063	mg/L		08/23/13 08:20	08/23/13 19:17	1
Copper	0.0044	J	0.010	0.0016	mg/L		08/23/13 08:20	08/23/13 19:17	1
iron	0.34		0.050	0.019	mg/L		08/23/13 08:20	08/23/13 19:17	1
Lead	ND		0.0050	0.0030	mg/L		08/23/13 08:20	08/23/13 19:17	1
Magnesium	9.3		0.20	0.043	mg/L		08/23/13 08:20	08/23/13 19:17	1
Manganese	0.047		0.0030	0.00040	mg/L		08/23/13 08:20	08/23/13 19:17	1
Nickel	ND		0.010	0.0013	mg/L		08/23/13 08:20	08/23/13 19:17	1
Potassium	2.2	В	0.50	0.10	mg/L		08/23/13 08:20	08/23/13 19:17	1
Selenium	ND		0.015	0.0087	mg/L		08/23/13 08:20	08/23/13 19:17	1
Silver	ND		0.0030	0.0017	mg/L		08/23/13 08:20	08/23/13 19:17	1
Sodium	16		1.0	0.32	mg/L		08/23/13 08:20	08/23/13 19:17	1
Thallium	ND		0.020	0.010	mg/L		08/23/13 08:20	08/23/13 19:17	1
Vanadium	ND		0.0050	0.0015	mg/L		08/23/13 08:20	08/23/13 19:17	11
Zinc	0.0017	J	0.010	0.0015	ma/L		08/23/13 08:20	08/23/13 19:17	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/L		08/23/13 08:35	08/23/13 13:35	1

-	ND		0.00020	0.00012	mg/L		08/23/13 08:35	08/23/13 13:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND	A *	0.20	0.073	mg/L			08/24/13 02:26	1
Chloride	23		0.50	0.28	mg/L			08/24/13 02:26	1
Sulfate	27		2.0	0.35	mg/L			08/26/13 18:06	1
Alkalinity, Total	170	В	50	20	mg/L			08/26/13 21:27	5
Ammonia	0.018	J	0.020	0.0090	mg/L			08/23/13 16:01	1
Total Kjeldahl Nitrogen	0.50		0.20	0.15	mg/L		08/26/13 07:41	08/26/13 18:41	1
Nitrate as N	0.33		0.050	0.020	mg/L			08/23/13 10:30	1
Chemical Oxygen Demand	18		10	5.0	mg/L			08/27/13 16:49	1
Chromium, hexavalent	0.0087	JH	0.010	0.0050	mg/L			08/23/13 07:45	1
Cyanide, Total	ND		0.010	0.0050	mg/L		08/23/13 11:26	08/26/13 09:20	1
Total Organic Carbon	5.6		1.0	0.43	mg/L			08/23/13 16:46	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		08/26/13 08:00	08/27/13 17:35	. 1
Hardness	180		4.0	1.1	mg/L			08/27/13 12:49	1
Total Dissolved Solids	250		10	4.0	mg/L			08/26/13 15:11	1
Biochemical Oxygen Demand	ND		2.0	2.0				08/23/13 10:08	1
Analyte	Resuit	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	7.6		1.0	1.0	NTU	_		08/23/13 06:00	1
Color	50		5.0	5.0	Color Units			08/23/13 11:30	1

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: GW-B

Date Collected: 08/21/13 16:25 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-2

Matrix: Water

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.67		0.20	0.060	mg/L		08/23/13 08:20	08/23/13 19:19	1
Antimony	ND		0.020	0.0068	mg/L		08/23/13 08:20	08/23/13 19:19	1
Arsenic	ND		0.010	0.0056	mg/L		08/23/13 08:20	08/23/13 19:19	1
Barium	0.032		0.0020	0.00070	mg/L		08/23/13 08:20	08/23/13 19:19	1
Beryllium	ND		0.0020	0.00030	mg/L		08/23/13 08:20	08/23/13 19:19	1
Boron	0.080		0.020	0.0040	mg/L		08/23/13 08:20	08/23/13 19:19	1
Cadmium	ND		0.0010	0.00050	mg/L		08/23/13 08:20	08/23/13 19:19	1
Calcium	72		0.50	0.10	mg/L		08/23/13 08:20	08/23/13 19:19	1
Chromium	0.0018	J	0.0040	0.0010	mg/L		08/23/13 08:20	08/23/13 19:19	1
Cobalt	0.0065		0.0040	0.00063	mg/L		08/23/13 08:20	08/23/13 19:19	1
Copper	0.040		0.010	0.0016	mg/L		08/23/13 08:20	08/23/13 19:19	1
Iron	1.5		0.050	0.019	mg/L		08/23/13 08:20	08/23/13 19:19	1
Lead	ND		0.0050	0.0030	mg/L		08/23/13 08:20	08/23/13 19:19	1
	12		0.20	0.043	mg/L		08/23/13 08:20	08/23/13 19:19	1
Magnesium	0.93		0.0030	0.00040	mg/L		08/23/13 08:20	08/23/13 19:19	1
Manganese	0.027		0.010	0.0013	-		08/23/13 08:20	08/23/13 19:19	1
Nickel	3.3	R	0.50		mg/L		08/23/13 08:20	08/23/13 19:19	1
Potassium	ND		0.015	0.0087	•		08/23/13 08:20	08/23/13 19:19	1
Selenium	ND		0.0030	0.0017	_		08/23/13 08:20	08/23/13 19:19	1
Silver	2.0		1.0		mg/L		08/23/13 08:20	08/23/13 19:19	1
Sodium	ND		0.020		mg/L		08/23/13 08:20	08/23/13 19:19	1
Thallium	ND		0.0050	0.0015			08/23/13 08:20	08/23/13 19:19	1
Vanadium Zinc	0.011		0.010	0.0015			08/23/13 08:20	08/23/13 19:19	1
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/23/13 08:35	08/23/13 13:37	1
Luce									
General Chemistry			-1			_	Downson	A not mod	Dil Fac
Analyte	Result		RL		Unit	D	Prepared	Analyzed 08/24/13 02:36	1
Bromide	ND	A *	0.20	0.073					1
Chloride	3.0		0.50	0.28				08/24/13 02:36	1
Sulfate	86		2.0		mg/L			08/26/13 18:17	5
Alkalinity, Total	130		50	20	-			08/26/13 21:27	1
Ammonia	0.075		0.020	0.0090			00/00/42 07/50	08/23/13 16:02 08/26/13 20:17	2
Total Kjeldahl Nitrogen		В	0.40	0.30	_		08/26/13 07:50	08/23/13 10:31	1
Nitrate as N	0.28		0.050	0.020				08/30/13 23:30	1
Chemical Oxygen Demand	210		10		mg/L			08/23/13 07:45	1
Chromium, hexavalent		Н	0.010		mg/L		08/23/13 11:26	08/26/13 09:21	1
Cyanide, Total	0.012		0.010		mg/L		00/23/13 11.20	08/23/13 17:14	1
Total Organic Carbon	67		1.0		mg/L		09/26/13 09:00	08/27/13 17:44	1
Phenolics, Total Recoverable	0.0069		0.010	0.0050	*		08/26/13 08:00	08/27/13 17:49	1
Hardness	240)	4.0	1.1	_				1
Total Dissolved Solids	430		10	4.0		,		08/26/13 15:12	1
Biochemical Oxygen Demand	2.0) b	2.0	2.0	mg/L			08/23/13 10:08	
Analyte	Resul	t Qualifier	RL		Unit	D	Prepared	Analyzed	Dii Fac
Turbidity	19)	1.0	1.0	NTU			08/23/13 06:00	1
			50		Color Units			08/23/13 11:30	10

Client Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Client Sample ID: GW-D

Date Collected: 08/21/13 16:00 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-3

Matrix: Water

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	4.4		0.20	0.060	mg/L		08/23/13 08:20	08/23/13 19:21	1
Antimony	ND		0.020	0.0068	mg/L		08/23/13 08:20	08/23/13 19:21	1
Arsenic	0.11		0.010	0.0056	mg/L		08/23/13 08:20	08/23/13 19:21	1
Barium	0.90		0.0020	0.00070	mg/L		08/23/13 08:20	08/23/13 19:21	1
Beryllium	ND		0.0020	0.00030	mg/L		08/23/13 08:20	08/23/13 19:21	1
Boron	0.25		0.020	0.0040	mg/L		08/23/13 08:20	08/23/13 19:21	1
Cadmium	0.0014		0.0010	0.00050	mg/L		08/23/13 08:20	08/23/13 19:21	1
Calcium	140		0.50	0.10	mg/L		08/23/13 08:20	08/23/13 19:21	1
Chromium	0.0058		0.0040	0.0010	mg/L		08/23/13 08:20	08/23/13 19:21	1
Cobalt	0.0051		0.0040	0.00063	mg/L		08/23/13 08:20	08/23/13 19:21	1
Copper	0.013		0.010	0.0016	mg/L		08/23/13 08:20	08/23/13 19:21	1
Iron	12		0.050	0.019	mg/L		08/23/13 08:20	08/23/13 19:21	1
Lead	0.0075		0.0050	0.0030	mg/L		08/23/13 08:20	08/23/13 19:21	1
Magnesium	57		0.20	0.043	mg/L		08/23/13 08:20	08/23/13 19:21	1
Manganese	1.1		0.0030	0.00040	mg/L		08/23/13 08:20	08/23/13 19:21	1
Nickel	0.015		0.010	0.0013	mg/L		08/23/13 08:20	08/23/13 19:21	1
Potassium	13	В	0.50	0.10	mg/L		08/23/13 08:20	08/23/13 19:21	1
Selenium	ND		0.015	0.0087	mg/L		08/23/13 08:20	08/23/13 19:21	1
Silver	ND		0.0030	0.0017	mg/L		08/23/13 08:20	08/23/13 19:21	1
Sodium	64		1.0	0.32	mg/L		08/23/13 08:20	08/23/13 19:21	1
Thallium	ND		0.020	0.010	mg/L		08/23/13 08:20	08/23/13 19:21	1
Vanadium	0.0067		0.0050	0.0015	mg/L		08/23/13 08:20	08/23/13 19:21	1/
Zinc	0.033		0.010	0.0015	mg/L		08/23/13 08:20	08/23/13 19:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.15	JB	0.20	0.060	mg/L		09/03/13 09:40	09/03/13 16:06	1
Antimony	ND		0.020	0.0068	mg/L		09/03/13 09:40	09/03/13 16:06	1
Arsenic	ND		0.010	0.0056	mg/L		09/03/13 09:40	09/03/13 16:06	1
Barium	0.66	В	0.0020	0.00070	mg/L		09/03/13 09:40	09/03/13 16:06	1
Beryllium	ND		0.0020	0.00030	mg/L		09/03/13 09:40	09/03/13 16:06	1
Boron	0.20		0.020	0.0040	mg/L		08/27/13 08:20	08/28/13 17:10	1
Cadmium	0.00054	J	0.0010	0.00050	mg/L		09/03/13 09:40	09/03/13 16:06	1
Calcium	130	В	0.50	0.10	mg/L		09/03/13 09:40	09/03/13 16:06	1
Chromium	ND		0.0040	0.0010	mg/L		09/03/13 09:40	09/03/13 16:06	1
Cobalt	ND		0.0040	0.00063	mg/L		09/03/13 09:40	09/03/13 16:06	1
Copper	0.0045	J	0.010	0.0016	mg/L		09/03/13 09:40	09/03/13 18:17	1
Iron	ND		0.050	0.019	mg/L		09/03/13 09:40	09/03/13 16:06	1
Lead	0.0040	J	0.0050	0.0030	mg/L		09/03/13 09:40	09/03/13 16:06	1
Magnesium	52		0.20	0.043	mg/L		09/03/13 09:40	09/03/13 16:06	1
Manganese	0.12	В	0.0030	0.00040	mg/L		09/03/13 09:40	09/03/13 16:06	1
Nickel	0.0084	J	0.010	0.0013	mg/L		09/03/13 09:40	09/03/13 16:06	1
Potassium	11		0.50	0.10	mg/L		09/03/13 09:40	09/03/13 16:06	1
Selenium	ND		0.015	0.0087	mg/L		09/03/13 09:40	09/03/13 16:06	1
Silver	ND		0.0030	0.0017	mg/L		09/03/13 09:40	09/03/13 16:06	1
Bodium	62		1.0	0.32	mg/L		09/03/13 09:40	09/03/13 16:06	1
Thallium	ND		0.020	0.010	-		09/03/13 09:40	09/03/13 16:06	1
Vanadium	ND		0.0050	0.0015	-		09/03/13 09:40	09/03/13 16:06	1
Zinc	0.0066	JB	0.010	0.0015	-		09/03/13 09:40	09/03/13 16:06	

Client Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Client Sample ID: GW-D

Date Collected: 08/21/13 16:00 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-3

Matrix: Water

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	4441114	0.00020	0.00012	mg/L		08/23/13 08:35	08/23/13 13:39	1
Statute of TATOA Blocking (CVAA) Di	ecolund								
Method: 7470A - Mercury (CVAA) - Di Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		08/27/13 08:30	08/27/13 13:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.0	A *	0.20	0.073	mg/L			08/24/13 02:46	1
Chloride	73		0.50	0.28	mg/L			08/24/13 02:46	1
Sulfate	10		2.0	0.35	mg/L			08/26/13 18:27	1
Alkalinity, Total	640	В	100	40	mg/L			08/26/13 22:04	10
Ammonia	8.0		0.10	0.045	mg/L			08/23/13 17:00	5
Total Kjeldahl Nitrogen	8.2	В	1.0	0.75	mg/L		08/26/13 07:50	08/26/13 20:53	5
Nitrate as N	0.075		0.050	0.020	mg/L			08/23/13 10:32	1
Chemical Oxygen Demand	18		10	5.0	mg/L			08/27/13 16:49	1
Chromium, hexavalent	0.0079	JH	0.010	0.0050	mg/L			08/23/13 07:45	1
Cyanide, Total	ND		0.010	0.0050	mg/L		08/23/13 11:26	08/26/13 09:22	1
Total Organic Carbon	5.5		1.0	0.43	mg/L			08/23/13 17:41	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		08/26/13 08:00	08/27/13 17:44	1
Hardness	760		10	2.6	mg/L			08/27/13 12:49	1
Total Dissolved Solids	830		40	16	mg/L			08/26/13 15:13	1
Biochemical Oxygen Demand	13	b	2.0	2.0	mg/L			08/23/13 10:08	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	7100		25	25	NTU			08/23/13 06:00	25
Color	100		50	50	Color Units			08/23/13 11:30	10

QC Sample Results

RL

MDL Unit

MB MB

Result Qualifier

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-135533/1-A Matrix: Water

Analysis Batch: 135857

Analyte

Client Sample ID: Method Blank Prep Type: Total/NA Pren Batch: 135533

Prepared

Prep Batch: 135533										
	Analyzed	Dil Fac								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								
0	08/23/13 18:18	1								

						rilaryzou	
Aluminum	ND	0.20	0.060	mg/L	 08/23/13 08:20	08/23/13 18:18	1
Antimony	ND	0.020	0.0068	mg/L	08/23/13 08:20	08/23/13 18:18	1
Arsenic	ND	0.010	0.0056	mg/L	08/23/13 08:20	08/23/13 18:18	1
Barium	ND	0.0020	0.00070	mg/L	08/23/13 08:20	08/23/13 18:18	1
Beryllium	ND	0.0020	0.00030	mg/L	08/23/13 08:20	08/23/13 18:18	1
Boron	ND	0.020	0.0040	mg/L	08/23/13 08:20	08/23/13 18:18	1
Cadmium	ND	0.0010	0.00050	mg/L	08/23/13 08:20	08/23/13 18:18	1
Calcium	ND	0.50	0.10	mg/L	08/23/13 08:20	08/23/13 18:18	1
Chromium	ND	0.0040	0.0010	mg/L	08/23/13 08:20	08/23/13 18:18	1
Cobalt	ND	0.0040	0.00063	mg/L	08/23/13 08:20	08/23/13 18:18	1
Copper	ND	0.010	0.0016	mg/L	08/23/13 08:20	08/23/13 18:18	1
Iron	ND	0.050	0.019	mg/L	08/23/13 08:20	08/23/13 18:18	1
Lead	ND	0.0050	0.0030	mg/L	08/23/13 08:20	08/23/13 18:18	1
Magnesium	ND	0.20	0.043	mg/L	08/23/13 08:20	08/23/13 18:18	1
Manganese	ND	0.0030	0.00040	mg/L	08/23/13 08:20	08/23/13 18:18	1
Nickel	ND	0.010	0.0013	mg/L	08/23/13 08:20	08/23/13 18:18	1
Potassium	0.225 J	0.50	0.10	mg/L	08/23/13 08:20	08/23/13 18:18	1
Selenium	ND	0.015	0.0087	mg/L	08/23/13 08:20	08/23/13 18:18	1
Silver	ND	0.0030	0.0017	mg/L	08/23/13 08:20	08/23/13 18:18	1
Sodium	ND	1.0	0.32	mg/L	08/23/13 08:20	08/23/13 18:18	1
Thallium	ND	0.020	0.010	mg/L	08/23/13 08:20	08/23/13 18:18	1
Vanadium	ND	0.0050	0.0015	mg/L	08/23/13 08:20	08/23/13 18:18	1
Zinc	ND	0.010	0.0015	mg/L	08/23/13 08:20	08/23/13 18:18	1

Lab Sample ID: LCS 480-135533/2-A

Matrix: Water

Analysis Batch: 135857

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 135533

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	10.3		mg/L		103	B0 - 120	
Antimony	0.200	0.202		mg/L		101	80 - 120	
Arsenic	0.200	0.202		mg/L		101	80 - 120	
Barium	0.200	0.207		mg/L		103	80 - 120	
Beryllium	0.200	0.204		mg/L		102	80 - 120	
Boron	0.200	0.204		mg/L		102	80 - 120	
Cadmium	0.200	0.203		mg/L		102	80 - 120	
Calcium	10.0	10.0		mg/L		100	80 _ 120	
Chromium	0.200	0.208		mg/L		104	80 - 120	
Cobalt	0.200	0.200		mg/L		100	80 - 120	
Copper	0.200	0.206		mg/L		103	80 - 120	
Iron	10.0	9.99		mg/L		100	80 - 120	
Lead	0.200	0.197		mg/L		98	80 - 120	
Magnesium	10.0	10.3		mg/L		103	80 - 120	
Manganese	0.200	0.202		mg/L		101	80 - 120	
Nickel	0.200	0.197		mg/L		99	80 - 120	•
Potassium	10.0	10.2		mg/L		102	80 - 120	
Selenium	0.200	0.199		mg/L		99	80 - 120	
Silver	0.0500	0.0521		mg/L		104	80 - 120	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-135533/2-A

Matrix: Water

Analysis Batch: 135857

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 135533

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sodium	10.0	9.94		mg/L		99	80 - 120	
Thallium	0.200	0.199		mg/L		99	80 _ 120	
Vanadium	0.200	0.204		mg/L		102	80 - 120	
Zinc	0.200	0.196		mg/L		98	80 - 120	

Lab Sample ID: MB 480-135891/1-B

Matrix: Water

Analyte

Boron

Analysis Batch: 136502

MB MB

ND

Result Qualifier

Spike

Added

0.200

Spike

Added

0.200

0.020

LCS LCS

0.206

0.208

Result Qualifier

LCSD LCSD

Result Qualifier

MDL Unit 0.0040 mg/L

Unit

mg/L

Unit

mg/L

Prepared 08/27/13 08:20 08/28/13 16:22

Dil Fac Analyzed

Lab Sample ID: LCS 480-135891/2-B

Matrix: Water

Analysis Batch: 136502

Analyte

Boron

Lab Sample ID: LCSD 480-135891/15-B

Matrix: Water

Analysis Batch: 136502

Analyte

Boron

Lab Sample ID: MB 480-136834/1-B

Matrix: Water

Analysis Batch: 137111

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 136029

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 136029

%Rec. Limits %Rec 80 - 120 103

Client Sample ID: Lab Control Sample Dup

Prep Type: Dissolved

Prep Batch: 136029 %Rec.

Limit RPD Limits %Rec 80 - 120 104

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 136979

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.124	J	0.20	0.060	mg/L		09/03/13 09:40	09/03/13 15:18	1
Antimony	ND		0.020	0.0068	mg/L		09/03/13 09:40	09/03/13 15:18	1
Arsenic	ND		0.010	0.0056	mg/L		09/03/13 09:40	09/03/13 15:18	1
Barium	0.000960	J	0.0020	0.00070	mg/L		09/03/13 09:40	09/03/13 15:18	1
Beryllium	ND		0.0020	0.00030	mg/L		09/03/13 09:40	09/03/13 15:18	1
Cadmium	ND		0.0010	0.00050	mg/L		09/03/13 09:40	09/03/13 15:18	1
Calcium	0.388	J	0.50	0.10	mg/L		09/03/13 09:40	09/03/13 15:18	1
Chromium	0.00198		0.0040	0.0010	mg/L		09/03/13 09:40	09/03/13 15:18	1
Cobalt	ND		0.0040	0.00063	mg/L		09/03/13 09:40	09/03/13 15:18	1
Copper	ND		0.010	0.0016	mg/L		09/03/13 09:40	09/03/13 15:18	1
Iron	0.0279		0.050	0.019	mg/L		09/03/13 09:40	09/03/13 15:18	1
	ND.		0.0050	0.0030			09/03/13 09:40	09/03/13 15:18	1
Lead	ND		0.20	0.043	mg/L		09/03/13 09:40	09/03/13 15:18	1
Magnesium	0.000680		0.0030	0.00040			09/03/13 09:40	09/03/13 15:18	1
Manganese	0.000880 ND		0.010	0.0013			09/03/13 09:40	09/03/13 15:18	1
Nickel			0.50	0.10	-		09/03/13 09:40	09/03/13 15:18	1
Potassium	ND			0.0087	-		09/03/13 09:40	09/03/13 15:18	1
Selenium	ND		0.015				09/03/13 09:40	09/03/13 15:18	1
Silver	ND		0.0030	0.0017	mg/L		09/03/13 09.40	00,00,.010.10	

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 480-136834/1-B

Lab Sample ID: LCS 480-136834/2-B

Matrix: Water

Matrix: Water

Analysis Batch: 137111

Client Sample ID: Method Blank Prep Type: Dissolved

Prep Batch: 136979

MD	INID							
Analyte Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium ND		1.0	0.32	mg/L.		09/03/13 09:40	09/03/13 15:18	1
Thallium ND		0.020	0.010	mg/L		09/03/13 09:40	09/03/13 15:18	1
Vanadium		0.0050	0.0015	mg/L		09/03/13 09:40	09/03/13 15:18	1
Zinc 0.00416	J	0.010	0.0015	mg/L		09/03/13 09:40	09/03/13 15:18	1

MD MD

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Analysis Batch: 137111	Spike		LCS				Prep Batch: 136979 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	10.4		mg/L		104	80 - 120
Antimony	0.200	0.203		mg/L		101	80 _ 120
Arsenic	0.200	0.206		mg/L		103	80 - 120
Barium	0.200	0.208		mg/L		104	80 - 120
Beryllium	0.200	0.205		mg/L		103	80 - 120
Cadmium	0.200	0.204		mg/L		102	80 - 120
Calcium	10.0	10.6		mg/L		106	80 - 120
Chromium	0.200	0.206		mg/L		103	80 - 120
Cobalt	0.200	0.201		mg/L		100	80 - 120
Copper	0.200	0.213		mg/L		106	80 - 120
Iron	10.0	10.1		mg/L		101	80 - 120
Lead	0.200	0.199		mg/L		100	80 - 120
Magnesium	10.0	10.1		mg/L		101	80 - 120
Manganese	0.200	0.202		mg/L		101	80 - 120
Nickel	0.200	0.198		mg/L		99	80 - 120
Potassium	10.0	9.96		mg/L		99	80 - 120
Selenium	0.200	0.205		mg/L		102	80 - 120
Silver	0.0500	0.0520		mg/L		104	80 - 120
Sodium	10.0	9.97		mg/L		100	80 - 120
Thallium	0.200	0.203		mg/L		102	80 - 120
Vanadium	0.200	0.206		mg/L		103	80 - 120
Zinc	0.200	0.204		-			
	0.200	0.204		mg/L		102	80 - 120

Lab Sample ID: LCSD 480-136834/3-B

Matrix: Water

Analysis Batch: 137111

Client Sample ID: Lab Control Sample Dup

Prep Type: Dissolved

-	Analysis Baton. 107111							Prep E	Batch: 13	36979
-		Spike	LCSD	LCSD				%Rec.		RPD
-	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Aluminum	10.0	10.5		mg/L.		105	80 - 120	1	20
-	Antimony	0.200	0.201		mg/L		101	80 _ 120	1	20
-	Arsenic	0.200	0.204		mg/L		102	80 - 120	1	20
-	Barium	0.200	0.208		mg/L		104	80 - 120	0	20
	Beryllium	0.200	0.206		mg/L		103	80 - 120	0	20
	Cadmium	0.200	0.204		mg/L		102	80 - 120	0	20
	Calcium	10.0	10.6		mg/L		106	80 - 120	1	20
l	Chromium	0.200	0.208		mg/L		104	80 _ 120	1	20
	Cobalt	0.200	0.199		mg/L		100	80 - 120	1	20
ĺ	Copper	0.200	0.208		mg/L		104	80 - 120	2	20
	Iron	10.0	10.1		mg/L		101	80 - 120	0	20

Client: Sterling Environmental Engineering PC
Project/Site: Orange County Landfill

Analysis Batch: 136156

Analyte

Mercury

Lab Sample ID: LCSD 480-136834/3-B										ah Contro		
							Clier	nt San	nple ID: i			
Matrix: Water										Prep Ty		
Analysis Batch: 137111										•	Batch: 1	
			Spike		LCSD					%Rec.	222	RPE
Analyte			Added		Qualifi		Init	D	%Rec	Limits	RPD	Limi
Lead			0.200	0.198			ng/L		99	80 - 120	1	20
Magnesium			10.0	10.2			ng/L		102	80 - 120	0	20
Manganese			0.200	0.203			ng/L		101	80 - 120	0	20
Nickel			0.200	0.197			ng/L		98	80 - 120	0	20
Potassium			10.0	9.97			ng/L		100	80 - 120	1	2
Selenium			0.200	0.206			ng/L		103	80 - 120	2	2
Silver			0.0500	0.0508			ng/L		102	80 - 120	0	
Sodium			10.0	9.99			ng/L		100	80 - 120		2
Thallium			0.200	0.202			ng/L		101	80 - 120	0	2
Vanadium			0.200	0.206			ng/L		103	80 - 120	0	2
Zinc			0.200	0.205		n	ng/L		103	80 _ 120	1	2
flethod: 7470A - Mercury (CVAA)					_							
Lab Sample ID: MB 480-135544/1-A									Client S	Sample ID:		
Matrix: Water										Prep T	ype: To	tal/N
Analysis Batch: 135676										Prep I	Batch: 1	3554
	MB	MB										
Analyte	Result	Qualifier	RL		MDL I	Unit	1) i	Prepared	Analyz	ted	Dil Fa
Mercury	ND		0.00020	0.0	00012	mg/L		08/	23/13 08:3	5 08/23/13	12:50	
Lab Sample ID: LCS 480-135544/2-A								Clien	t Sample			
Lab Sample ID: LCS 480-135544/2-A Matrix: Water								Clien	t Sample	-	Гуре: То	tal/N/
and the second s								Clien	t Sample	Prep		tal/N/
Matrix: Water			Spike		LCS					Prep %Rec.	Гуре: То	tal/N/
Matrix: Water			Added	Result	Qualif		Unit	Clien	%Rec	Prep %Rec. Limits	Гуре: То	tal/N/
Matrix: Water Analysis Batch: 135676					Qualif		Unit mg/L			Prep %Rec.	Гуре: То	tal/N/
Matrix: Water Analysis Batch: 135676 Analyte Mercury			Added	Result	Qualif				%Rec 102	Prep %Rec. Limits	Type: To Batch: 1	tal/N/ 13554
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D			Added	Result	Qualif				%Rec 102	Prep %Rec. Limits 80 - 120	Type: To Batch: 1	tal/N/ 13554
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water			Added	Result	Qualif				%Rec 102	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty	Method	I Blan
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D	МВ	MB	Added	Result	Qualif				%Rec 102	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty	Type: To Batch: 1	I Blan
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156		MB Qualifier	Added 0.00667	0.00683	Qualif	r	mg/L	D	%Rec 102	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty	Method pe: Dis	I Blan
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water		MB Qualifier	Added	Result 0.00683	Qualif	Unit	mg/L	D	%Rec 102 Client \$	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep	Methodope: Dis Batch: 1	Blan solve
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156 Analyte	Result		Added 0.00667	Result 0.00683	Qualif	Unit	mg/L	D	%Rec 102 Client \$ Prepared (27/13 08:3	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep Analy: 0 08/27/13	Method pe: Dis Batch: 1	Blan solve 13603 Dil Fa
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156 Analyte Mercury	Result		Added 0.00667	Result 0.00683	Qualif	Unit	mg/L	D	%Rec 102 Client \$ Prepared (27/13 08:3	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep Analy: 0 08/27/13	Method pe: Dis Batch: 1	Blan solve 13603 Dil Fa
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156 Analyte Mercury Lab Sample ID: LCS 480-135891/2-D Matrix: Water	Result		Added 0.00667	Result 0.00683	Qualif	Unit	mg/L	D	%Rec 102 Client \$ Prepared (27/13 08:3	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep Analy: 0 08/27/13 e ID: Lab C Prep Ty	Method pe: Dis Batch: 1	Blan solve 13603 Dil Fa
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156 Analyte Mercury Lab Sample ID: LCS 480-135891/2-D	Result		Added 0.00667	0.00683	Qualif	Unit	mg/L	D	%Rec 102 Client \$ Prepared (27/13 08:3	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep Analy: 0 08/27/13 e ID: Lab C Prep Ty	Method pe: Dis Batch: 1 Method pe: Dis Batch: 1 13:02 ontrol S pe: Dis	Blan solve 13603 Dil Fa
Matrix: Water Analysis Batch: 135676 Analyte Mercury Lab Sample ID: MB 480-135891/1-D Matrix: Water Analysis Batch: 136156 Analyte Mercury Lab Sample ID: LCS 480-135891/2-D Matrix: Water	Result		Added 0.00667 RL 0.00020	0.00683	MDL	Unit mg/L	mg/L	D	%Rec 102 Client \$ Prepared 27/13 08:3	Prep %Rec. Limits 80 - 120 Sample ID: Prep Ty Prep Analy: 0 08/27/13 e ID: Lab C Prep Ty Prep	Method pe: Dis Batch: 1 Method pe: Dis Batch: 1 13:02 ontrol S pe: Dis	Blan solve 13603 Dil Fa

TestAmerica Buffalo

Prep Batch: 136034

RPD

2

RPD

Limit

20

%Rec.

Limits

80 - 120

D %Rec

96

Spike

Added

0.00667

LCSD LCSD

0.00643

Result Qualifier

Unit

mg/L

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Client Sample ID: Method Blank

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 480-135512/3

Matrix: Water

Analyte

Turbidity

Analysis Batch: 135512

Prep Type: Total/NA

MB MB Result Qualifier RL RL Unit Prepared Analyzed Dil Fac 1.0 NTU ND 1.0 08/23/13 06:00

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-135669/52

Matrix: Water

Analysis Batch: 135669

Client Sample ID: Method Blank Prep Type: Total/NA

	IND	IIIO							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND	A	0.20	0.073	mg/L			08/24/13 00:14	1
Chloride	ND		0.50	0.28	mg/L			08/24/13 00:14	1
Sulfate	0.452	l v	2.0	0.35	mg/L			08/24/13 00:14	1

Lab Sample ID: LCS 480-135669/51 Client Sample ID: Lab Control Sample Matrix: Water

Prep Type: Total/NA Analysis Batch: 135669

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Bromide 2.00 2.34 mg/L 90 - 110 117 Chloride 20.0 20 4 mg/L 102 90 - 110 Sulfate 20.0 21.9 mg/L 109 90 - 110

MD MD

Lab Sample ID: MB 480-135910/28

Matrix: Water

Analysis Batch: 135910

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Bromide ND 0.20 0.073 mg/L 08/26/13 17:56 Chloride ND 0.50 0.28 mg/L 08/26/13 17:56 Sulfate ND 2.0 0.35 mg/L 08/26/13 17:56

Lab Sample ID: LCS 480-135910/27 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 135910

		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1	Bromide	2.00	2.02		mg/L		101	90 _ 110	
1	Chloride	20.0	20.5		mg/L		102	90 - 110	
	Sulfate	20.0	21.3		mg/L		106	90 - 110	

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-136002/100 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 136002

MR MR Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed Alkalinity, Total ND 4.0 mg/L 08/26/13 19:40

TestAmerica Buffalo

Prep Type: Total/NA

Lab Sample ID: MB 480-136002/126 Matrix: Water Analysis Batch: 136002 MB MB Analyte Result Qualifier RL MDL Alkalinity, Total 4.05 J 10 4.0 Lab Sample ID: MB 480-136002/74 Matrix: Water Analysis Batch: 136002 MB MB Analyte Result Qualifier RL MDL Alkalinity, Total ND 10 4.0 Lab Sample ID: LCS 480-136002/125 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qualifier Analysis Batch: 136002 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Armonia ND 0.020 0.0000			Client S	Sample ID: Metho	d Blank
Analysis Batch: 136002 Analyte Result Qualifier RL MDL Alkalinity, Total 4.05 J 10 4.0 Alkalinity, Total 4.05 J 10 4.0 Lab Sample ID: MB 480-136002/74 Matrix: Water Analysis Batch: 136002 Analyte Result Qualifier RL MDL Alkalinity, Total 50.0 Lab Sample ID: LCS 480-136002/125 Matrix: Water Analyte Added Result Qualifier Solo 53.4 Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qualifier Solo 53.4 Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qualifier Solo 50.8 Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qualifier Solo 50.8 Analyte Added Result Qualifier Solo 52.5 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analyte Result Qualifier RL MDL			Onone o	Prep Type:	
Analyte					
Alkalinity, Total 4.05 J 10 4.0 Lab Sample ID: MB 480-136002/74 Matrix: Water Analysis Batch: 136002 Alkalinity, Total ND 10 4.0 Lab Sample ID: LCS 480-136002/125 Matrix: Water Analysis Batch: 136002 Alkalinity, Total 50.0 53.4 Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Alkalinity, Total 50.0 53.4 Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qualifier Alkalinity, Total 50.0 50.8 LCS LCS LCS Analyte Added Result Qualifier Alkalinity, Total 50.0 50.8 Analyte Added Result Qualifier Analysis Batch: 136002 Analyte Added Result Qualifier Analysis Batch: 136002 Analyte Added Result Qualifier Alkalinity, Total 50.0 52.5 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analyte Result Qualifier RL MDL Anmonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195					
Alkalinity, Total Alkalinity, T	Unit	D	Prepared	Analyzed	Dil Fac
Matrix: Water Analysis Batch: 136002 Analyte Result Qualifier RL MDL Alkalinity, Total ND 10 4.0 Analysis Batch: 136002 Analyte Analysis Batch: 136002 Analyte Added Result Qualifier Analyte Added Result Qualifier Alkalinity, Total 50.0 52.5 Analyte Added Result Qualifier Result Analysis Batch: 135721 Analyte Result Qualifier Result Qualifier Result Qualifier Result Qualifier Result Qualifier Result Analysis Batch: 135721	mg/L			08/26/13 20:30	
Analysis Batch: 136002 Analyte Result Qualifier RL MDL Alkalinity, Total ND 10 4.0 Lab Sample ID: LCS 480-136002/125 Matrix: Water Analyte Added Result Qualifier Alkalinity, Total So.0 53.4 Analyte Added Result Qualifier Analysis Batch: 136002 Spike LCS LCS Analyte Added Result Qualifier Analysis Batch: 136002 Analyte Added Result Qualifier Alkalinity, Total So.0 50.8 LCS LCS LCS Analyte Added Result Qualifier Analysis Batch: 136002 Analyte Added Result Qualifier Analysis Batch: 136002 Spike LCS LCS LCS Analyte Added Result Qualifier Analyte Added Result Qualifier RL MDL Analyte Result Qualifier RL MDL			Client S	Sample ID: Metho	
Mailyte Result Qualifier RL MDL				Prep Type:	Total/N/
Result Qualifier RL MDL					
Alkalinity, Total	Unit	D	Prepared	Analyzed	Dil Fa
Analysis Batch: 136002 Analysis Batch: 135721/147 Matrix: Water Analysis Batch: 135721				08/26/13 17:13	
Malysis Batch: 136002 Analyte	Trigge ca				
Analysis Batch: 136002 Analyte		Clier	nt Sample	e ID: Lab Control Prep Type:	
Spike LCS LCS					
Spike LCS LC				%Rec.	
Lab Sample ID: LCS 480-136002/73 Matrix: Water Analysis Batch: 136002 Analyte Added Result Qual Alkalinity, Total 50.0 50.8 LCS LCS Analyte Added Result Qual Alkalinity, Total 50.0 50.8 Analysis Batch: 136002 Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Analyte Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL	ifier Unit	D	%Rec	Limits	
Matrix: Water Analysis Batch: 136002 Analyte	mg/L		107	90 - 110	
Matrix: Water Analysis Batch: 136002 Analyte		Clier	nt Sample	e ID: Lab Contro	Samp
Spike LCS LCS Added Result Qual Ukalinity, Total 50.0 50.8 Added Result Qual Addrix: Water Spike LCS LCS Analysis Batch: 136002 Spike LCS LCS Added Result Qual Added Result Qual Added Result Qual Added Result Qual Analysis Batch: 135721 MB MB Analysis Batch: 135721 ND 0.020 0.0090 Analysis Sample ID: MB 480-135721/195 ND 0.020 0.0090 Analysis Batch: 135721/195 ND 0.020 0.0090 Analysis Batch: 135721/195 ND 0.020 0.0090 Analysis Batch: 135721/195 ND 0.020 Analysis Batch: 135721/195 ND Analysis Batch: 136002				Prep Type:	Total/N
Spike LCS LCS Added Result Qual Alkalinity, Total 50.0 50.8 Analysis Batch: 136002 Analysis Batch: 135721 Analysis Batch: 136002 Analysis Batch:					
Alkalinity, Total 50.0 50.8 Lab Sample ID: LCS 480-136002/99 Matrix: Water Analysis Batch: 136002 Spike LCS LCS Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195				%Rec.	
Lab Sample ID: LCS 480-136002/99 Matrix: Water Analysis Batch: 136002 Spike LCS LCS Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195		D		Limits	
Matrix: Water Analysis Batch: 136002 Spike LCS LCS Analyte Added Result Qual Alkalinity, Total 50.0 52.5 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195	mg/L		102	90 - 110	
Analysis Batch: 136002 Analyte Added Result Qual Alkelinity, Total 50.0 52.5 Spike LCS LCS Analyte Added Result Qual Ethod: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195		Clie	nt Sample	e ID: Lab Contro	
Spike LCS LCS Added Result Qual Alkalinity, Total 50.0 52.5 Iethod: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195				Prep Type:	lotal/N
Analyte Added Result Qualifier RL MDL Analyte ND 0.020 0.0090				%Rec.	
Solid Soli	ifier Unit	D	%Rec	Limits	
Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195	mg/L		105	90 - 110	
Lab Sample ID: MB 480-135721/147 Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195					
Matrix: Water Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195					
Analysis Batch: 135721 MB MB Analyte Result Qualifier RL MDL Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195			Client	Sample ID: Methe Prep Type:	
MB MB Result Qualifier RL MDL					
Ammonia ND 0.020 0.0090 Lab Sample ID: MB 480-135721/195					
Lab Sample ID: MB 480-135721/195		D	Prepared	Analyzed	Dil F
	mg/L			08/23/13 15:59	
			Client	Sample ID: Meth	od Blai
				Prep Type:	Total/N
Analysis Batch: 135721					
MB MB					
Analyte Result Qualifier RL MDL	Unit	D	Prepared	Analyzed 08/23/13 16:46	Dil F

Project/Site: Orange County Landfill

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: MB 480-135721/219

Matrix: Water

Analysis Batch: 135721

MR MR

Analyte Result Ammonia

Qualifier ND

RL **MDL** Unit 0.020 0.0090 mg/L D Prepared

Analyzed 08/23/13 17:10 Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 480-135721/51

Matrix: Water

Analysis Batch: 135721

MB MB

Analyte Result Qualifier Ammonia ND

RL 0.020

MDL Unit 0.0090 mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Prepared Analyzed 08/23/13 14:25

Client Sample ID: Lab Control Sample

Dil Fac

Dil Fac

Lab Sample ID: LCS 480-135721/148

Matrix: Water

Analysis Batch: 135721

Analyte Ammonia

Spike Added 1.00

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

1.00

LCS LCS Result Qualifier 1.01

LCS LCS

0.991

Result Qualifier

LCS LCS

LCS LCS

0.990

Result Qualifier

0.991

Result Qualifier

Unit D %Rec mg/L

D

%Rec

%Rec. Limits 90 - 110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 135721

Ammonia Lab Sample ID: LCS 480-135721/220

Lab Sample ID: LCS 480-135721/196

Matrix: Water Analysis Batch: 135721

Analyte

Ammonia

Lab Sample ID: LCS 480-135721/52

Matrix: Water Analysis Batch: 135721

Analyte Ammonia Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

Limits

90 - 110

%Rec D %Rec Limits

Client Sample ID: Lab Control Sample

90 - 110

Prep Type: Total/NA

%Rec. %Rec

Limits 90 - 110

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-135895/1-A Matrix: Water

Analysis Batch: 135990

Result Qualifier Total Kjeldahl Nitrogen

ND

RL 0.20 MDL Unit 0.15 mg/L

Prepared 08/26/13 07:41

Analyzed 08/26/13 16:56

Client Sample ID: Method Blank

Dil Fac

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 135895

									Client	Sample	ID: Lab Control	Sample
Lab Sample ID: LCS 480-135895/2-A								Ì	Jileile	oampie	Prep Type:	
Matrix: Water											Prep Batch	
Analysis Batch: 135990			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qualifie	er Uni	t	D	%Rec	Limits	
Total Kjeldahl Nitrogen			2.50		2.53		mg/	L	_	101	90 - 110	
Total Housell Midogory												
Lab Sample ID: MB 480-135901/1-A										Client Sa	ample ID: Metho	od Blank
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 135990											Prep Batch	: 135901
	MB	MB										
Analyte	Result	Qualifier		RL		MDL U	nit	D	Р	repared	Analyzed	Dil Fac
Totat Kjeldahl Nitrogen	0.167	J		0.20		0.15 m	ıg/L		08/2	6/13 07:50	08/26/13 16:56	1
Lab Sample ID: LCS 480-135901/2-A								(Client	Sample	ID: Lab Control	
Matrix: Water											Prep Type:	
Analysis Batch: 135990											Prep Batch	: 135901
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qualific	er Un	t	D	%Rec	Limits	_
Total Kjeldahl Nitrogen			2.50		2.54		mg	/L		102	90 - 110	
ethod: 410.4 - COD			199									
Lab Sample ID: MB 480-136178/27										Client S	ample ID: Methi	od Hispi
Matrix: Water										Olleric 5	ample ID: Metho Prep Type:	
Matrix: Water										Onent o		
Matrix: Water		мв				MDI	1-24				Prep Type:	Total/NA
Matrix: Water Analysis Batch: 136178 ^{Analyte}	Result	MB Qualifier		RL 10		MDL U		D	P	Prepared	Prep Type:	Total/NA
Matrix: Water Analysis Batch: 136178 ^{Analyte}				RL		MDL U		D	P		Prep Type:	Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand	Result		1					D	P	Prepared	Prep Type:	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3	Result							D	P	Prepared	Analyzed 08/27/13 16:49	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water	Result							D	P	Prepared	Analyzed 08/27/13 16:49 sample ID: Metho	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water	Result							D	P	Prepared	Analyzed 08/27/13 16:49 sample ID: Metho	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178	Result ND MB	Qualifier					ng/L	D		Prepared	Analyzed 08/27/13 16:49 sample ID: Metho	Dil Fac od Blank Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte	Result ND MB	Qualifier		10	5	5.0 m	ng/L Jnit			Prepared Client S	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type:	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand	Result ND MB Result	Qualifier		10	,	5.0 m	ng/L Jnit	D) F	Prepared Client S Prepared	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28	Result ND MB Result	Qualifier		10	,	5.0 m	ng/L Jnit	D) F	Prepared Client S Prepared	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49	Dil Facod Blank Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water	Result ND MB Result	Qualifier		10	,	5.0 m	ng/L Jnit	D) F	Prepared Client S Prepared	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water	Result ND MB Result	Qualifier	0.01	10	,	5.0 m	ng/L Jnit	D) F	Prepared Client S Prepared	Analyzed 08/27/13 16:49 sample ID: Methore Type: Analyzed 08/27/13 16:49 e ID: Lab Contro	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178	Result ND MB Result	Qualifier	Spike	10		5.0 m	Jnit Ing/L	D	Clien	Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Control Prep Type: %Rec.	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Analyte	Result ND MB Result	Qualifier	Added	10	Result	MDL L 5.0 n	ng/L Unit ng/L	D) F	Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Contro Prep Type: %Rec. Limits	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Analyte	Result ND MB Result	Qualifier		10		MDL L 5.0 n	Jnit Ing/L	D	Clien	Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Control Prep Type: %Rec.	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand	Result ND MB Result	Qualifier	Added	10	Result	MDL L 5.0 n	ng/L Unit ng/L	D iit y/L	Clien	Prepared Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methore Type: Analyzed 08/27/13 16:49 e ID: Lab Contro Prep Type: %Rec. Limits 90 - 110	Dil Fac
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4	Result ND MB Result	Qualifier	Added	10	Result	MDL L 5.0 n	ng/L Unit ng/L	D iit y/L	Clien	Prepared Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Contro Prep Type: %Rec. Limits	Dil Factor Dil Factor Dil Factor Dil Factor Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4 Matrix: Water Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4 Matrix: Water	MB Result ND	Qualifier	Added	10	Result	MDL L 5.0 n	ng/L Unit ng/L	D iit y/L	Clien	Prepared Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Controprep Type: %Rec. Limits 90 - 110 e ID: Lab Controprep Type:	Dil Factor Dil Factor Dil Factor Dil Factor Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4 Matrix: Water Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4 Matrix: Water	Result ND MB Result	Qualifier	Added 25.0	10 RL 10	Result 22.5	MDL L 5.0 n	ng/L Unit ng/L	D iit y/L	Clien	Prepared Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methor Prep Type: Analyzed 08/27/13 16:49 e ID: Lab Controprep Type: %Rec. Limits 90 - 110 e ID: Lab Controprep Type:	Dil Factorial Sample Total/NA
Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: MB 480-136178/3 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/28 Matrix: Water Analysis Batch: 136178 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 480-136178/4	MB Result ND	Qualifier	Added	10 RL 10	Result 22.5	MDL L 5.0 n	Jnit ng/L ier Ur	D iit	Clien	Prepared Client S Prepared t Sample	Analyzed 08/27/13 16:49 sample ID: Methore Type: Analyzed 08/27/13 16:49 e ID: Lab Controprep Type: %Rec. Limits 90 - 110 e ID: Lab Controprep Type:	Dil Factorial Sample Total/NA

Client Sample ID: Method Blank

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 410.4 - COD (Continued)

Lab Sample ID: MB 480-136903/3

Matrix: Water

Analysis Batch: 136903

MB MB

Analyte Result Qualifier Chemical Oxygen Demand

ND

MDL Unit 5.0 mg/L Prepared

Analyzed 08/30/13 23:30

Prep Type: Total/NA

Dil Fac

Lab Sample ID: LCS 480-136903/4

Matrix: Water

Analysis Batch: 136903

Analyte Chemical Oxygen Demand 200

Spike LCS LCS Added

RI

0.010

RL

10

Result Qualifler 188

Unit mg/L Limits

Client Sample ID: Lab Control Sample

90 - 110

%Rec.

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-135649/3

Matrix: Water

Analysis Batch: 135649

MB MB

Analyte Result Qualifier Chromium, hexavalent ND

MDL Unit 0.0050 mg/L Prepared

Analyzed 08/23/13 07:45

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 ₋ 115

%Rec.

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-135649/4

Matrix: Water

Analysis Batch: 135649

Analyte

Chromium, hexavalent

Lab Sample ID: 480-44452-1 MS

Matrix: Water

Analysis Batch: 135649

Chromium, hexavalent

0.0087 JH

Result Qualifier

Sample Sample

Spike Added 0.0500

Spike

habbA

0.0500

MS MS Result Qualifler 0.0592

LCS LCS

0.0470

Result Qualifier

Unit mg/L

Unit

mg/L

%Rec Limits 101 85 _ 115

%Rec

Client Sample ID: GW-B Prep Type: Total/NA

Client Sample ID: GW-A

Prep Type: Total/NA

Lab Sample ID: 480-44452-2 DU Matrix: Water

Matrix: Water

Analyte

Cyanide, Total

Analysis Batch: 135649

Analyte

Sample Sample Result Qualifier Chromium, hexavalent ND H

DU DU Result Qualifier ND

Unit mg/L Limit

Prep Type: Total/NA

Prep Batch: 135629

15

Method: 9012A - Cyanide, Total and/or Amenable

Lab Sample ID: MB 480-135629/1-A

Analysis Batch: 135893

мв мв

Result Qualifler 0.00623 J

RL 0.010

MDL Unit 0.0050 mg/L

Prepared 08/23/13 11:26

Analyzed 08/26/13 09:05

Client Sample ID: Method Blank

Dil Fac

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 9012A -	Cyanide,	Total and/or	Amenable	(Continued)

Lab Sample ID: LCS 480-135629/2-A

Matrix: Water

Analysis Batch: 135893

Analyte Cyanide, Total

Spike Added

0.400

LCS LCS Result

Qualifier 0.390

D Unit mg/L

%Rec 98

Limits

90_110

Prep Type: Total/NA

Prep Batch: 135629

Client Sample ID: Lab Control Sample

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-135841/3

Lab Sample ID: LCS 480-135841/4

Matrix: Water

Analysis Batch: 135841

Total Organic Carbon

Matrix: Water

MR MR Result Qualifier ND

RL 1.0

RI

0.010

Spike

Added

0.100

Spike

Added

0.100

MDI Unit 0.43 mg/L Prepared

Analyzed 08/23/13 15:24

Client Sample ID: Method Blank

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

%Rec.

Analysis Batch: 135841

Analyte

Total Organic Carbon

Spike Added 60.0

LCS LCS Result Qualifier 59.1

MDI Unit

0.0050 mg/L

LCS LCS

0.0984

MS MS

0.102

Result Qualifier

DU DU

0.00518 J

Result Qualifier

Result Qualifier

%Rec Unit D mg/L

D

Unit

mg/L

Unit

mg/L

Unit

mg/L

Prepared

08/26/13 08:00

%Rec

%Rec

95

D

Limits 98

90 _ 110

Method: 9066 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-135940/1-A

Matrix: Water

Analysis Batch: 136188

MR MR

Sample Sample

Sample Sample

ND

Result Qualifier

0.0069 J

Result Qualifier

Result Qualifier Analyte ND Phenolics, Total Recoverable

Lab Sample ID: LCS 480-135940/2-A

Matrix: Water Analysis Batch: 136188

Analyte Phenolics, Total Recoverable

Lab Sample ID: 480-44452-2 MS Matrix: Water

Lab Sample ID: 480-44452-1 DU

Analysis Batch: 136188

Phenolics, Total Recoverable

Matrix: Water

Analysis Batch: 136188

Analyte Phenolics, Total Recoverable Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 135940

Dil Fac

Client Sample ID: Lab Control Sample

Analyzed

08/27/13 16:28

Prep Type: Total/NA Prep Batch: 135940

Limits

90 - 110

60 - 143

Client Sample ID: GW-B

Prep Type: Total/NA Prep Batch: 135940

%Rec. Limits

Client Sample ID: GW-A

Prep Type: Total/NA Prep Batch: 135940

RPD Limit

> NC 20

Lab Sample ID: MB 480-135950/1

Matrix: Water

Total Dissolved Solids

Analyte

Analysis Batch: 135950

Lab Sample ID: MB 480-135638/3												Client 9	Sample ID:	Method	Rlan
Matrix: Water												Official (Type: To	
Analysis Batch: 135638													Пор	ype. ic	Juanny
		MB	MB												
Analyte	Re	esult	Qualifier		RL		RL	Unit		D	Pr	epared	Analy	zed	Dil Fa
Color		ND			5.0		5.0	Color	Units				08/23/13	11:30	
Lab Sample ID: LCS 480-135638/4										Cli	ent	Sample	e ID: Lab C	ontrol S	Sample
Matrix: Water										0111	0110	oumpi		Type: To	
Analysis Batch: 135638													Пор	турс. те	Julii 147
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Color				30.0		30.0			Color U	nits	_	100	90 - 110		
lethod: SM 2340C - Hardness,	Total														·····
Lab Sample ID: MB 480-136133/27												Client 9	Sample ID:	Method	l Blan
Matrix: Water												Ollelle (Гуре: То	
Analysis Batch: 136133													Пор	. y po. 10	JUG 17 1 17
-		MB	MB												
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analy	zed	Dil Fa
Hardness		ND			2.0		0.53	mg/L					08/27/13	12:48	
Lab Sample ID: LCS 480-136133/28										Cli	ent	Sample	e ID: Lab C	ontrol S	Sampl
Matrix: Water														Гуре: То	
Analysis Batch: 136133														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
fardness				120		132			mg/L		_	110	90 - 110		-
_ab Sample ID: 480-44452-1 MS													Client Sar	nple ID:	: GW-
Matrix: Water														Гуре: То	
Analysis Batch: 136133														,,,	
	Sample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
lardness	180			200		384			mg/L		_	100	74 - 130		
ab Sample ID: 480-44452-2 DU													Client Sar	nple ID:	: GW-I
Matrix: Water														Гуре: То	
Analysis Batch: 136133														•	
	Sample					DU	DU								RP
Analyte	Result	Qual	ifier			Result	Qual	ifier	Unit		D			RPD	Lim
Hardness	240					256			mg/L		_			8	1

. . .

Analyzed

08/26/13 15:07

Client Sample ID: Method Blank

Prepared

Prep Type: Total/NA

Dil Fac

RL

10

MDL Unit

4.0 mg/L

MB MB

ND

Result Qualifier

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-135950/2

Matrix: Water

Spike Added

503

Spike

Added

198

LCS LCS

465

Result Qualifier

%Rec Unit

mg/L

Limits 85 - 115

92

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Total Dissolved Solids

Analysis Batch: 135950

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-135640/1 USB

Matrix: Water

Analyte

Analyte

Analysis Batch: 135640

Biochemical Oxygen Demand

USB USB

Result Qualifier ND

2.0

MDL Unit 2.0 mg/L Prepared

Analyzed 08/23/13 10:08

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-135640/2

Matrix: Water

Analysis Batch: 135640

Biochemical Oxygen Demand

LCS LCS

213

Unit Result Qualifier mg/L %Rec 107 %Rec. Limits 85 - 115

Client Sample ID: Lab Control Sample

TestAmerica Buffalo

9/4/2013

Page 23 of 37

-	-		-			
-	•	_	4 -	. 1	-	
m	я	0	r:	ы	e	

Prep	Batch:	135533
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	3005A	
480-44452-2	GW-B	Total/NA	Water	3005A	
480-44452-3	GW-D	Total/NA	Water	3005A	
LCS 480-135533/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-135533/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 135544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	7470A	
480-44452-2	GW-B	Total/NA	Water	7470A	
480-44452-3	GW-D	Total/NA	Water	7470A	
LCS 480-135544/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-135544/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 135676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	7470A	135544
480-44452-2	GW-B	Total/NA	Water	7470A	135544
480-44452-3	GW-D	Total/NA	Water	7470A	135544
LCS 480-135544/2-A	Lab Control Sample	Total/NA	Water	7470A	135544
MB 480-135544/1-A	Method Blank	Total/NA	Water	7470A	135544

Analysis Batch: 135857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	6010B	135533
480-44452-2	GW-B	Total/NA	Water	6010B	135533
480-44452-3	GW-D	Total/NA	Water	6010B	135533
LCS 480-135533/2-A	Lab Control Sample	Total/NA	Water	6010B	135533
MB 480-135533/1-A	Method Blank	Total/NA	Water	6010B	135533

Filtration Batch: 135891

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	FILTRATION	-
LCS 480-135891/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCS 480-135891/2-D	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 480-135891/15-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
LCSD 480-135891/15-D	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
MB 480-135891/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 480-135891/1-D	Method Blank	Dissolved	Water	FILTRATION	

Prep Batch: 136029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	3005A	135891
LCS 480-135891/2-B	Lab Control Sample	Dissolved	Water	3005A	135891
LCSD 480-135891/15-B	Lab Control Sample Dup	Dissolved	Water	3005A	135891
MB 480-135891/1-B	Method Blank	Dissolved	Water	3005A	135891

Pren Batch: 136034

Prep Batch: 136034					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	7470A	135891
LCS 480-135891/2-D	Lab Control Sample	Dissolved	Water	7470A	135891

TestAmerica Buffalo

Page 24 of 37

Metals (Continued)

Prep	Batch:	136034	(Continued)
------	--------	--------	-------------

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCSD 480-135891/15-D	Lab Control Sample Dup	Dissolved	Water	7470A	135891
1	MB 480-135891/1-D	Method Blank	Dissolved	Water	7470A	135891

Analysis Batch: 136156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	7470A	136034
LCS 480-135891/2-D	Lab Control Sample	Dissolved	Water	7470A	136034
LCSD 480-135891/15-D	Lab Control Sample Dup	Dissolved	Water	7470A	136034
MB 480-135891/1-D	Method Blank	Dissolved	Water	7470A	136034

Analysis Batch: 136502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	@W-D	Dissolved	Water	6010B	136029
LCS 480-135891/2-B	Lab Control Sample	Dissolved	Water	6010B	136029
LCSD 480-135891/15-B	Lab Control Sample Dup	Dissolved	Water	6010B	136029
MB 480-135891/1-B	Method Blank	Dissolved	Water	6010B	136029

Filtration Batch: 136834

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	FILTRATION	
LCS 480-136834/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 480-136834/3-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
MB 480-136834/1-B	Method Blank	Dissolved	Water	FILTRATION	

Prep Batch: 136979

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	3005A	136834
LCS 480-136834/2-B	Lab Control Sample	Dissolved	Water	3005A	136834
LCSD 480-136834/3-B	Lab Control Sample Dup	Dissolved	Water	3005A	136834
MB 480-136834/1-B	Method Blank	Dissolved	Water	3005A	136834

Analysis Batch: 137111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Dissolved	Water	6010B	136979
LCS 480-136834/2-B	Lab Control Sample	Dissolved	Water	6010B	136979
	Lab Control Sample Dup	Dissolved	Water	6010B	136979
LCSD 480-136834/3-B		Dissolved	Water	6010B	136979
MB 480-136834/1-B	Method Blank	Dissolved	* 12.0		

Analysis Batch: 137177

480-44452-3 GW-D Dissolved Visiter GUIDS		Lab Sample ID 480-44452-3	Client Sample ID	Prep Type Dissolved	Matrix Water	Method 6010B	136979
--	--	------------------------------	------------------	------------------------	-----------------	-----------------	--------

General Chemistry

Analysis Batch: 135512

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	180.1	
480-44452-2	GW-B	Total/NA	Water	180.1	
480-44452-3	GW-D	Total/NA	Water	180.1	
LCS 480-135512/4	Lab Control Sample	Total/NA	Water	180.1	

Client Sample ID

Lab Control Sample

Method Blank

GW-A

GW-B

GW-D

General Chemistr	y (Continued)				
Analysis Batch: 1355	12 (Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
MB 480-135512/3	Method Blank	Total/NA	Water	180.1	1 TOP Dates
Prep Batch: 135629					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-44452-1	GW-A	Total/NA	Water	9012A	- Top Butter
480-44452-2	GW-B	Total/NA	Water	9012A	
480-44452-3	GW-D	Total/NA	Water	9012A	
LCS 480-135629/2-A	Lab Control Sample	Total/NA	Water	9012A	
MB 480-135629/1-A	Method Blank	Total/NA	Water	9012A	

Anal	VSIS	Batch:	135640

Analysis Batch: 135638

Lab Sample ID

480-44452-1

480-44452-2

480-44452-3

LCS 480-135638/4

MB 480-135638/3

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	SM 5210B	1 top Baten
480-44452-2	GW-B	Total/NA	Water	SM 5210B	
480-44452-3	GW-D	Total/NA	Water	SM 5210B	
LCS 480-135640/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-135640/1 USB	Method Blank	Total/NA	Water	SM 5210B	

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Method

SM 2120B

SM 2120B

SM 2120B

SM 2120B

SM 2120B

Analysis Batch: 135649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	7196A	1 Top Date
480-44452-1 MS	GW-A	Total/NA	Water	7196A	
480-44452-2	GW-B	Total/NA	Water	7196A	
480-44452-2 DU	GW-B	Total/NA	Water	7196A	
480-44452-3	GW-D	Total/NA	Water	7196A	
LCS 480-135649/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-135649/3	Method Blank	Total/NA	Water	7196A	

Analysis Batch: 135661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	353.2	1 Top Date
480-44452-2	GW-B	Total/NA	Water	353.2	
480-44452-3	GW-D	Total/NA	Water	353.2	

Analysis Batch: 135669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	300.0	- Top Duton
480-44452-2	GW-B	Total/NA	Water	300.0	
480-44452-3	GW-D	Total/NA	Water	300.0	
LCS 480-135669/51	Lab Control Sample	Total/NA	Water	300.0	
MB 480-135669/52	Method Blank	Total/NA	Water	300.0	

TestAmerica Buffalo

9/4/2013

Prep Batch

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

General Chemistry (Continued)

Analysis	Batch:	135721
-----------------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GWA	Total/NA	Water	350.1	
480-44452-2	GW-B	Total/NA	Water	350.1	
480-44452-3	GW-D	Total/NA	Water	350.1	
LCS 480-135721/148	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-135721/196	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-135721/220	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-135721/52	Lab Control Sample	. Total/NA	Water	350.1	
MB 480-135721/147	Method Blank	Total/NA	Water	350.1	
MB 480-135721/195	Method Blank	Total/NA	Water	350.1	
MB 480-135721/219	Method Blank	Total/NA	Water	350.1	
MB 480-135721/51	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 135841

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	Total/NA	Water	9060	
	Total/NA	Water	9060	
GW-B	1			
GW-D	Total/NA	Water	9060	
Lab Control Sample	Total/NA	Water	9060	
Method Blank	Total/NA	Water	9060	
	Lab Control Sample	GW-A GW-B GW-D Lab Control Sample Total/NA Total/NA Total/NA	GW-A Total/NA Water GW-B Total/NA Water GW-D Total/NA Water Lab Control Sample Total/NA Water	Total/NA Water 9060

Analysis Batch: 135893

T	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID		Total/NA	Water	9012A	135629
480-44452-1	GW-A				135629
480-44452-2	GW-B	Total/NA	Water	9012A	
1111111111111	GW-D	Total/NA	Water	9012A	135629
480-44452-3		T-1-101A	Water	9012A	135629
LCS 480-135629/2-A	Lab Control Sample	Total/NA			425020
MB 480-135629/1-A	Method Blank	Total/NA	Water	9012A	135629

Prep Batch: 135895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	351.2	
LCS 480-135895/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-135895/1-A	Method Blank	Total/NA	Water	351.2	

Prep Batch: 135901

Late Campile ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID		Total/NA	Water	351.2	
480-44452-2	GW-B		***************************************	054.0	
480-44452-3	GW-D	Total/NA	Water	351.2	
	Lab Control Sample	Total/NA	Water	351.2	
LCS 480-135901/2-A	Lab Control Sample		185-4	351.2	
MB 480-135901/1-A	Method Blank	Total/NA	Water	331.2	

Analysis Batch: 135910

i sh Compie ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID	GW-A	Total/NA	Water	300.0	
480-44452-1		Total/NA	Water	300.0	
480-44452-2	GW-B	Total/NA	Water	300.0	
480-44452-3	GW-D	Total/NA	Water	300.0	
LCS 480-135910/27	Lab Control Sample		Water	300.0	
MB 480-135910/28	Method Blank	Total/NA	AAGIEI	000.0	

Project/Site: Orange County Landfill

General Chemistry (Continued)

Prep	Batch:	135940
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	Distill/Phenol	Lich Parell
480-44452-1 DU	GW-A	Total/NA	Water	Distill/Phenol	
480-44452-2	GW-B	Total/NA	Water	Distill/Phenol	
480-44452-2 MS	GW-B	Total/NA	Water	Distill/Phenol	
480-44452-3	GW-D	Total/NA	Water	Distill/Phenol	
LCS 480-135940/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-135940/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Analysis Batch: 135950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	SM 2540C	- Top Daten
480-44452-2	GW-B	Total/NA	Water	SM 2540C	
480-44452-3	GW-D	Total/NA	Water	SM 2540C	
LCS 480-135950/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-135950/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 135990

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	351.2	135895
480-44452-2	GW-B	Total/NA	Water	351.2	135901
180-44452-3	GW-D	Total/NA	Water	351.2	135901
CS 480-135895/2-A	Lab Control Sample	Total/NA	Water	351.2	135895
_CS 480-135901/2-A	Lab Control Sample	Total/NA	Water	351.2	135991
MB 480-135895/1-A	Method Blank	Total/NA	Water	351.2	
MB 480-135901/1-A	Method Blank	Total/NA	Water	351.2	135895 135901

Analysis Batch: 136002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	310.2	1 Top Date
480-44452-2	GW-B	Total/NA	Water	310.2	
480-44452-3	GW-D	Total/NA	Water	310.2	
LCS 480-136002/125	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-136002/73	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-136002/99	Lab Control Sample	Total/NA	Water	310.2	
MB 480-136002/100	Method Blank	Total/NA	Water	310.2	
MB 480-136002/126	Method Blank	Total/NA	Water	310.2	
MB 480-136002/74	Method Blank	Total/NA	Water	310.2	

Analysis Batch: 136133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-1	GW-A	Total/NA	Water	SM 2340C	- rep Batci
480-44452-1 MS	GW-A	Total/NA	Water	SM 2340C	
480-44452-2	GW-B	Total/NA	Water	SM 2340C	
480-44452-2 DU	GW-B	Total/NA	Water	SM 2340C	
480-44452-3	GW-D	Total/NA	Water	SM 2340C	
LCS 480-136133/28	Lab Control Sample	Total/NA	Water	SM 2340C	
MB 480-136133/27	Method Blank	Total/NA	Water	SM 2340C	

Analysis Batch: 136178

nod Prep Batch	atch
4	Prep B

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

General Chemistry (Continued)

Analysis Batch: 136178 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-3	GW-D	Total/NA	Water	410.4	
LCS 480-136178/28	Lab Control Sample	Total/NA	Water	410.4	
	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-136178/4		Total/NA	Water	410.4	
MB 480-136178/27	Method Blank	Total/NA	Water	410.4	
MB 480-136178/3	Method Blank	IOCAII/NA	440101		

Analysis Batch: 136188

	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID		Total/NA	Water	9066	135940
480-44452-1	GW-A		Water	9066	135940
480-44452-1 DU	GW-A	Total/NA			135940
480-44452-2	GW-B	Total/NA	Water	9066	
480-44452-2 MS	GW-B	Total/NA	Water	9066	135940
		Total/NA	Water	9066	135940
480-44452-3	GW-D		Water	9066	135940
LCS 480-135940/2-A	Lab Control Sample	Total/NA			
MB 480-135940/1-A	Method Blank	Total/NA	Water	9066	135940

Analysis Batch: 136903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-44452-2	GW-B	Total/NA	Water	410.4	
		Total/NA	Water	410.4	
LCS 480-136903/4	Lab Control Sample		Water	410.4	
MB 480-136903/3	Method Blank	Total/NA	v valei	410.1	

Page 29 of 37

Client Sample iD: GW-A Date Collected: 08/21/13 16:40 Date Received: 08/23/13 02:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	7470A			135544	08/23/13 08:35	JRK	TAL BUF	
Total/NA	Analysis	7470A		1	135676	08/23/13 13:35	JRK	TAL BUF	
Total/NA	Prep	3005A			135533	08/23/13 08:20	NMD2	TAL BUF	
Total/NA	Analysis	6010B		1	135857	08/23/13 19:17	LMH	TAL BUF	
Total/NA	Analysis	180.1		1	135512	08/23/13 06:00	LMK	TAL BUF	
Total/NA	Analysis	SM 2120B		1	135638	08/23/13 11:30	LAW	TAL BUF	
Total/NA	Analysis	SM 5210B		1	135640	08/23/13 10:08	MDL	TAL BUF	
Total/NA	Analysis	7196A		1	135649	08/23/13 07:45	MDL	TAL BUF	
Total/NA	Analysis	353.2		1	135661	08/23/13 10:30	RMB	TAL BUF	
Total/NA	Analysis	300.0		1	135669	08/24/13 02:26	KRC	TAL BUF	
Total/NA	Analysis	350.1		1	135721	08/23/13 16:01	KMF	TAL BUF	
Total/NA	Analysis	9060		1	135841	08/23/13 16:46	KRC	TAL BUF	
Total/NA	Prep	9012A			135629	08/23/13 11:26	KWJ	TAL BUF	
Total/NA	Analysis	9012A		1	135893	08/26/13 09:20	KWJ	TAL BUF	
Total/NA	Analysis	300.0		1	135910	08/26/13 18:06	KRC	TAL BUF	
Total/NA	Analysis	SM 2540C		1	135950	08/26/13 15:11	KS	TAL BUF	
Total/NA	Prep	351.2			135895	08/26/13 07:41	LAW	TAL BUF	
Total/NA	Analysis	351.2		1	135990	08/26/13 18:41	NCH	TAL BUF	
Total/NA	Analysis	310.2		5	136002	08/26/13 21:27	JME	TAL BUF	
Total/NA	Analysis	SM 2340C		1	136133	08/27/13 12:49	KWJ	TAL BUF	
Total/NA	Analysis	410.4		1	136178	08/27/13 16:49	JMB	TAL BUF	
Total/NA	Prep	Distill/Phenol			135940	08/26/13 08:00	CLT	TAL BUF	
Total/NA	Analysis	9066		1	136188	08/27/13 17:35	NCH	TAL BUF	

Client Sample ID: GW-B Date Collected: 08/21/13 16:25 Date Received: 08/23/13 02:00

Lab Sample ID: 480-44452-2

Matrix: Water

Prep Type	Batch	Batch Method	-	Dilution	Batch	Prepared		
	Туре		Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			135544	08/23/13 08:35	JRK	TAL BUF
Total/NA	Analysis	7470A		1	135676	08/23/13 13:37	JRK	TAL BUF
Total/NA	Prep	3005A			135533	08/23/13 08:20	NMD2	TAL BUF
Total/NA	Analysis	6010B		1	135857	08/23/13 19:19	LMH	TAL BUF
Total/NA	Analysis	180.1		1	135512	08/23/13 06:00	LMK	TAL BUF
Total/NA	Analysis	SM 2120B		10	135638	08/23/13 11:30	LAW	TAL BUF
Total/NA	Analysis	SM 5210B		1	135640	08/23/13 10:08	MDL	TAL BUF
Total/NA	Analysis	7196A		1	135649	08/23/13 07:45	MDL	TAL BUF
Total/NA	Analysis	353.2		1	135661	08/23/13 10:31	RMB	TAL BUF
Total/NA	Analysis	300.0		1	135669	08/24/13 02:36	KRC	TAL BUF
Total/NA	Analysis	350.1		1	135721	08/23/13 16:02	KMF	TAL BUF
Total/NA	Analysis	9060		1	135841	08/23/13 17:14	KRC	TAL BUF

Client Sample ID: GW-B Date Collected: 08/21/13 16:25 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Prep	9012A			135629	08/23/13 11:26	KWJ	TAL BUF
Total/NA Total/NA	Analysis	9012A		1	135893	08/26/13 09:21	KWJ	TAL BUF
Total/NA	Analysis	300.0		1	135910	08/26/13 18:17	KRC	TAL BUF
Total/NA	Analysis	SM 2540C		1	135950	08/26/13 15:12	KS	TAL BUF
Total/NA	Prep	351.2			135901	08/26/13 07:50	LAW	TAL BUF
Total/NA	Analysis	351.2		2	135990	08/26/13 20:17	NCH	TAL BUF
Total/NA	Analysis	310.2		5	136002	08/26/13 21:27	JME	TAL BUF
Total/NA	Analysis	SM 2340C		1	136133	08/27/13 12:49	KWJ	TAL BUF
	Prep	Distill/Phenol			135940	08/26/13 08:00	CLT	TAL BUF
Total/NA Total/NA	Analysis	9066		1	136188	08/27/13 17:44	NCH	TAL BUF
Total/NA	Analysis	410.4		1	136903	08/30/13 23:30	JMB	TAL BUF

Client Sample ID: GW-D
Date Collected: 08/21/13 16:00

Date Received: 08/23/13 02:00

Lab Sample ID: 480-44452-3

Matrix: Water

1		Batch	Batch		Dilution	Batch	Prepared	A bund	Lab
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	TAL BUF
	Total/NA	Prep	7470A			135544	08/23/13 08:35	JRK	
þ	Total/NA	Analysis	7470A		1	135676	08/23/13 13:39	JRK	TAL BUF
•	Total/NA	Prep	3005A			135533	08/23/13 08:20	NMD2	TAL BUF
	Total/NA	Analysis	6010B		1	135857	08/23/13 19:21	LMH	TAL BUF
		Filtration	FILTRATION			135891	08/26/13 11:00	NMD2	TAL BUF
	Dissolved		7470A			136034	08/27/13 08:30	JRK	TAL BUF
	Dissolved	Prep	7470A 7470A		1	136156	08/27/13 13:07	JRK	TAL BUF
	Dissolved	Analysis			•	135891	08/26/13 11:00	NMD2	TAL BUF
	Dissolved	Filtration	FILTRATION			136029	08/27/13 08:20	NMD2	TAL BUF
	Dissolved	Prep	3005A			1365029	08/28/13 17:10	AMH	TAL BUF
	Dissolved	Analysis	6010B		1				TAL BUF
	Dissolved	Filtration	FILTRATION			136834	08/30/13 15:52	NMD2	
	Dissolved	Prep	3005A			136979	09/03/13 09:40	NMD2	TAL BUF
	Dissolved	Analysis	6010B		1	137111	09/03/13 16:06	АМН	TAL BUF
	Dissolved	Filtration	FILTRATION			136834	08/30/13 15:52	NMD2	TAL BUF
	Dissolved	Prep	3005A			136979	09/03/13 09:40	NMD2	TAL BUF
	Dissolved	Analysis	6010B		1	137177	09/03/13 18:17	AMH	TAL BUF
	Total/NA	Analysis	180.1		25	135512	08/23/13 06:00	LMK	TAL BUF
		•	SM 2120B		10	135638	08/23/13 11:30	LAW	TAL BUF
	Total/NA	Analysis			1	135640	08/23/13 10:08	MDL	TAL BUF
	Total/NA	Analysis	SM 5210B						TAL BUF
	Total/NA	Analysis	7196A		1	135649	08/23/13 07:45		
	Total/NA	Analysis	353.2		1	135661	08/23/13 10:32	RMB	TAL BUF
	Total/NA	Analysis	300.0		1	135669	08/24/13 02:46	KRC	TAL BUF
					5	135721	08/23/13 17:00	KMF	TAL BUF
	Total/NA	Analysis	350.1				08/23/13 17:41	KRC	TAL BUF
	Total/NA	Analysis	9060		1	135841			
	Total/NA	Prep	9012A			135629			TAL BUF
	Total/NA	Analysis	9012A		1	135893	08/26/13 09:22	KWJ	TAL BUF

TestAmerica Buffalo

9/4/2013

Page 31 of 37

Lab Chronicle

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Client Sample ID: GW-D

Date Collected: 08/21/13 16:00 Date Received: 08/23/13 02:00 Lab Sample ID: 480-44452-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	135910	08/26/13 18:27	KRC	TAL BUF
Total/NA	Analysis	SM 2540C		1	135950	08/26/13 15:13	KS	TAL BUF
Total/NA	Prep	351.2			135901	08/26/13 07:50	LAW	TAL BUF
Total/NA	Analysis	351.2		5	135990	08/26/13 20:53	NCH	TAL BUF
Total/NA	Analysis	310.2		10	136002	08/26/13 22:04	JME	TAL BUF
Total/NA	Analysis	SM 2340C		1	136133	08/27/13 12:49	KWJ	TAL BUF
Total/NA	Analysis	410.4		1	136178	08/27/13 16:49	JMB	TAL BUF
Total/NA	Prep	Distill/Phenol			135940	08/26/13 08:00	CLT	TAL BUF
Total/NA	Analysis	9066		1	136188	08/27/13 17:44	NCH	TAL BUF
							11011	INE BUI

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
rkansas DEQ	State Program	6	88-0686	10-06-13	
	NELAP	9	1169CA	09-30-13	
alifornia	State Program	1	PH-0568	09-30-14	
onnecticut	NELAP	4	E87672	06-30-14	
orida	State Program	4	N/A	03-31-09 *	
eorgia	State Program	4	N/A	03-31-14	
eorgia	State Program	4	956	03-31-09 *	
eorgia	NELAP	5	200003	09-30-13	
inois	State Program	7	374	03-01-09 *	
wa	State Program	7	374	03-15-15	
wa	NELAP	7	E-10187	01-31-14	
ansas	State Program	4	90029	12-31-08 *	
entucky		4	90029	12-31-13	
(entucky	State Program	4	30	04-01-14	
(entucky (UST)	State Program	6	02031	06-30-14	
ouisiana	NELAP	1	NY00044	12-04-14	
Maine	State Program	3	294	03-31-14	
Maryland	State Program	1	M-NY044	06-30-14	
Massachusetts	State Program	5	9937	04-01-09 *	
Michigan	State Program	5	9937	04-01-14	
Michigan	State Program	5	036-999-337	12-31-13	
Minnesota	NELAP	1	2337	11-17-13	
New Hampshire	NELAP	2	NY455	06-30-14	
New Jersey	NELAP		10026	04-01-14	
New York	NELAP	2	R-176	03-31-14	
North Dakota	State Program	8	9421	08-31-14	
Oklahoma	State Program	6	NY200003	06-09-14	
Oregon	NELAP	10	68-00281	07-31-14	
Pennsylvania	NELAP	3		12-31-13	
Rhode Island	State Program	1	LAO00328	04-01-14	
Tennessee	State Program	4	TN02970	07-31-14	
Texas	NELAP	6	T104704412-11-2	11-22-14	
USDA	Federal		P330-11-00386	09-14-13 *	
Virginia	NELAP	3	460185	09-14-13	
Washington	State Program	10	C784	02-10-14	
West Virginia DEP	State Program	3	252		
Wisconsin	State Program	5	998310390	09-30-13	

10

^{*} Expired certification is currently pending renewal and is considered valid.

Method Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-44452-1

Method	Method Description	Protocol	Laboratori
6010B	Metals (ICP)	SW846	Laboratory
7470A	Mercury (CVAA)		TAL BUF
180.1	Turbidity, Nephelometric	SW846	TAL BUF
800.0	Anions, Ion Chromatography	MCAWW	TAL BUF
10.2	Alkalinity	MCAWW	TAL BUF
50.1	Nitrogen, Ammonia	MCAVVV	TAL BUF
51.2	Nitrogen, Total Kjeldahl	MCAVVV	TAL BUF
53.2	Nitrate	MCAWW	TAL BUF
10.4	COD	EPA	TAL BUF
196A	Chromium, Hexavalent	MCAVVV	TAL BUF
012A		SW846	TAL BUF
060	Cyanide, Total and/or Amenable	SW846	TAL BUF
066	Organic Carbon, Total (TOC)	SW846	TAL BUF
	Phenolics, Total Recoverable	SW846	TAL BUF
M 2120B	Color, Colorimetric	SM	TAL BUF
M 2340C	Hardness, Total	SM	TAL BUF
M 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
M 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Lab Caracte ID	Client Sample ID	Matrix	Collected	Received
Lab Sample ID	Cligit Sample is	105.1	08/21/13 16:40	08/23/13 02:00
480-44452-1	GM-A	Water	08/21/13 10.40	00/20/10 02:00
		Water	08/21/13 16:25	08/23/13 02:00
480-44452-2	GW-B	410(C)		
480-44452-3	GW-D	Water	08/21/13 16:00	08/23/13 02:00
400-44402-3	GAA-D			

TestAmerica Albany

25 Kraft Road Albany, NY 12205

Chain of Custody Record

Carrier Tracking No(s). COC No Client Information Shaffer, Lisa E 480-38789-10237.1 Client Contact: Nathan Shaffer lisa.shaffer@testamericainc.com Page 1 of 1 Sterling Environmental Engineering PC **Analysis Requested** Due Date Requested: Preservation Codes: 24 Wade Road A-HCL M - Hexane TAT Requested (days): B - NaOH N - None Latham C - Zn Acetate O - AsNaO2 State, Zip D - Nitric Acid P - Na2O4S NY, 12110 E - NaHSQ4 Q - Na2SO3 R - Na2S2SO3 F - MeOH S13-156 4166 G - Amchlor S - H2SO4 Purchase Order not required H - Ascorbic Acid T - TSP Dodecahydrate 1 - Ice J - DI Water K - EDTA L - EDA U - Acetone nathan shaffer@sterlingenvironmental.com V-MCAA Project Name Project #. W - ph 4-5 5210B - Biochemical Oxygen Orange County Landfill Z - other (specify) 48005786 Number of conta New York 350.1, 351.2, 410.4 2340C - Hardness Matrix Sample Type (W-water, S-solid, Sample (C=comp. Sample Identification Sample Date Time G=grab) BT=Tissue, A=A Special Instructions/Note: Preservation Code: Water 4:06 * iF insufficient Water 2 Water analysis to be Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Deliverable Requested: I. II, IV, Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by: Date: 0200 Custody Seals Intact: Custody Seal No. Cooler Temperature(s) °C and Other Remarks 27# A No

Page 36 of 37

9/4/2013

14

Login Sample Receipt Checklist

Client: Sterling Environmental Engineering PC

Job Number: 480-44452-1

Login Number: 44452

List Number: 1 Creator: Wienke, Robert K List Source: TestAmerica Buffalo

Question	Answer Comment	
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True STERLING	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68691-1 Client Project/Site: Orange County Landfill Sampling Event: Leachate Baseline

For:

Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Mr. Mark Williams

Ane Pentye

Authorized for release by: 10/17/2014 11:26:04 AM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
	8
	9
	20
Lab Chronicle	24
Certification Summary	25
	27
Sample Summary	28
Detection Limit Exceptions Summary	29
Chain of Custody	30
Receipt Checklists	31

Definitions/Glossary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

ualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

В Compound was found in the blank and sample.

General Chemistry

Qualifier	Qualifier Description
b	Result Detected in the Unseeded Control blank (USB).
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD Recovery exceeds the control limits
Α	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Glossary

Abbreviation	These commonly	used abbreviations may	or may	not be	present in this report
	The second		, 01 11143	110000	procent in and report

Listed under the "D" column to designate that the result is reported on a dry weight basis

Contains Free Liquid Contains no Free Liquid

Duplicate error ratio (normalized absolute difference)

Dil Fac

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

MDA Minimum detectable activity EDL Estimated Detection Limit MDC Minimum detectable concentration

ML Minimum Level (Dioxin) NC Not Calculated

ND

PQL Practical Quantitation Limit

RER Relative error ratio

RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

%R Percent Recovery CFL

DLC Decision level concentration

MDI Method Detection Limit

Not detected at the reporting limit (or MDL or EDL if shown)

QC Quality Control

Reporting Limit or Requested Limit (Radiochemistry)

Case Narrative

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Job ID: 480-68691-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-68691-1

Comments

No additional comments.

Receipt

The samples were received on 10/7/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.8° C, 3.9° C and 4.2° C.

GC/MS VOA

Method(s) 624: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MH-5 (480-68691-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The method blank for batch 480-206499 contained total iron and zinc above the method detection limits. These target analyte concentrations were less than the reporting limits (RLs); therefore, re-extraction and/or re-analysis of samples MH-5 (480-68691-1) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: Associated samples were filtered prior to analysis. Results are reported as true color. MH-5 (480-68691-1)

Method(s) 350.1: The method blank for batch 206737 contained ammonia above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed. MH-5 (480-68691-1)

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample(s) deviated from the standard procedure: MH-5 (480-68691-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) SM 5210B: The USB dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L. The associated sample results in batch 206654 are reported. (USB 480-206654/1)

Method(s) 310.2: The method blank for batch 207719 contained Alkalintiy above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.MH-5 (480-68691-1)

Method(s) 410.4: The method blank for batch 208155 contained chemical oxygen demand above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.MH-5 (480-68691-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Client Sample ID: MH-5

Lab Sample ID: 480-68691-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroethane	20	J	50	8.7	ug/L	10		624	Total/NA
Aluminum	0.16	J	0.20	0.060	mg/L	1		6010C	Total/NA
Arsenic	0.031		0.015	0.0056	mg/L	1		6010C	Total/NA
Barium	1.9		0.0020	0.00070	mg/L	1		6010C	Total/NA
Boron	1.0		0.020	0.0040	mg/L	1		6010C	Total/NA
Calcium	180		0.50	0.10	mg/L	1		6010C	Total/NA
Chromium	0.0054		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0038	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	47	В	0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	53		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	2.2		0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.028		0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	67		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	370		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.014	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Chloride	520		2.5	2.0	mg/L	5		300.0	Total/NA
Sulfate	4.6		2.0	0.13	mg/L	1		300.0	Total/NA
Alkalinity, Total	1300	В	500	200	mg/L	50		310.2	Total/NA
Ammonia	130	В	2.0	0.90	mg/L	100		350.1	Total/NA
Total Kjeldahl Nitrogen	140		10	7.5	mg/L	50		351.2	Total/NA
Nitrate as N	0.24		0.050	0.020	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	250	В	40	20	mg/L	4		410.4	Total/NA
Cyanide, Total	0.0083	J	0.010	0.0050	mg/L	1		9012B	Total/NA
ptal Organic Carbon	57		1.0	0.43	mg/L	1		9060A	Total/NA
nenolics, Total Recoverable	0.0075	J	0.010	0.0050	mg/L	1		9066	Total/NA
Hardness as calcium carbonate	760		20	5.3	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	1000		20	8.0	mg/L	1		SM 2540C	Total/NA
Biochemical Oxygen Demand	16	b	2.0	2.0	mg/L	1		SM 5210B	Total/NA
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Turbidity	440		1.0	1.0	NTU	1		180.1	Total/NA
Color	40		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Lab Sample ID: 480-68691-1

Matrix: Leachate

Client Sample ID: MH-5

Date Collected: 10/06/14 15:30
Date Received: 10/07/14 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	- 1) Pr	epared	Analyzed	Dil Fac
,1,1-Trichtoroethane	ND		50	3.9	ug/L				10/09/14 03:54	10
,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L				10/09/14 03:54	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L				10/09/14 03:54	10
I,1-Dichloroethane	ND		50	5.9	ug/L				10/09/14 03:54	10
I,1-Dichloroethene	ND		50	8.5	ug/L				10/09/14 03:54	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L				10/09/14 03:54	10
1,2-Dichloroethane	ND		50	6.0	ug/L				10/09/14 03:54	10
1,2-Dichloropropane	ND		50	6.1	ug/L				10/09/14 03:54	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L				10/09/14 03:54	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L				10/09/14 03:54	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L				10/09/14 03:54	10
Benzene	ND		50	6.0	ug/L				10/09/14 03:54	10
Bromodichloromethane	ND		50	5.4	ug/L				10/09/14 03:54	10
Bromoform	ND		50	4.7	ug/L				10/09/14 03:54	10
Bromomethane	ND		50	12	ug/L				10/09/14 03:54	10
Carbon tetrachloride	ND		50	5.1	ug/L				10/09/14 03:54	10
Chlorobenzene	ND		50	4.8	ug/L				10/09/14 03:54	10
Chloroethane	20	J	50	8.7	ug/L				10/09/14 03:54	10
Chloroform	ND		50	5.4	ug/L				10/09/14 03:54	10
Chloromethane	ND		50	6.4	ug/L				10/09/14 03:54	10
cis-1,2-Dichloroethene	ND		50	5.7	ug/L				10/09/14 03:54	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L				10/09/14 03:54	10
Dibromochloromethane	ND		50	4.1	ug/L				10/09/14 03:54	10
Dichlorodifluoromethane	ND		50	2.8	ug/L				10/09/14 03:54	10
Ethylbenzene	ND		50	4.6	ug/L				10/09/14 03:54	10
Methylene Chloride	ND		50	8.1					10/09/14 03:54	10
m-Xylene & p-Xylene	ND		100	11	ug/L				10/09/14 03:54	10
o-Xylene	ND		50	4.3					10/09/14 03:54	10
Tetrachloroethene	ND		50		ug/L				10/09/14 03:54	10
Toluene	ND		50	4.5	-				10/09/14 03:54	10
trans-1,2-Dichloroethene	ND		50	5.9	-				10/09/14 03:54	10
trans-1,3-Dichloropropene	ND		50		ug/L				10/09/14 03:54	10
Trichloroethene	ND		50	6.0					10/09/14 03:54	10
Trichlorofluoromethane	ND		50	4.5					10/09/14 03:54	10
Vinyl chloride	ND		50	7.5	_				10/09/14 03:54	10
Xylenes, Total	ND		100	11	ug/L				10/09/14 03:54	10
Surrogate	%Recovery	Qualifier	Limits				P	repared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		72 - 130						10/09/14 03:54	10
4-Bromofluorobenzene (Surr)	98		69 ₋ 121						10/09/14 03:54	10
Toluene-d8 (Surr)	98		70 - 123						10/09/14 03:54	10

and the same of th	Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Aluminum	0.16	J	0.20	0.060	mg/L		10/08/14 08:55	10/08/14 19:44	1
	Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/08/14 19:44	1
	Arsenic	0.031		0.015	0.0056	mg/L		10/08/14 08:55	10/08/14 19:44	1
	Barium	1.9		0.0020	0.00070	mg/L		10/08/14 08:55	10/08/14 19:44	1
	Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/08/14 19:44	1 /
	Boron	1.0		0.020	0.0040	mg/L		10/08/14 08:55	10/08/14 19:44	1

Client Sample Results

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68691-1

Project/Site: Orange County Landfill

Date Collected: 10/06/14 15:30
Date Received: 10/07/14 09:00

Lab Sample ID: 480-68691-1

Matrix: Leachate

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/08/14 19:44	
Calcium	180		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:44	
Chromium	0.0054		0.0040	0.0010	mg/L		10/08/14 08:55	10/08/14 19:44	
Copper	0.0038	J	0.010	0.0016	mg/L		10/08/14 08:55	10/08/14 19:44	
ron	47	В	0.050	0.019	mg/L		10/08/14 08:55	10/08/14 19:44	
ead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/08/14 19:44	
lagnesium .	53		0.20	0.043	mg/L		10/08/14 08:55	10/08/14 19:44	
Manganese	2.2		0.0030	0.00040	mg/L		10/08/14 08:55	10/08/14 19:44	
lickel	0.028		0.010	0.0013	mg/L		10/08/14 08:55	10/08/14 19:44	
Potassium	67		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:44	
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/08/14 19:44	
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/08/14 19:44	
Godium	370		1.0	0.32	mg/L		10/08/14 08:55	10/08/14 19:44	
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/08/14 19:44	
Zinc	0.014	В	0.010	0.0015	mg/L		10/08/14 08:55	10/08/14 19:44	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Hercury	ND		0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 12:09	
General Chemistry									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
hloride	520		2.5	2.0	mg/L			10/13/14 16:15	
Sulfate	4.6		2.0	0.13	mg/L			10/10/14 03:07	
Alkalinity, Total	1300	В	500	200	mg/L			10/14/14 15:32	
Ammonia	130	В	2.0	0.90	mg/L			10/08/14 23:01	1
Total Kjeldahi Nitrogen	140		10	7.5	mg/L		10/09/14 09:14	10/10/14 04:23	
litrate as N	0.24		0.050	0.020	mg/L			10/07/14 21:58	
Chemical Oxygen Demand	250	В	40	20	mg/L			10/16/14 09:12	
Chromium, hexavalent	ND		0.010	0.0050	mg/L			10/07/14 11:08	
Cyanide, Total	0.0083	J	0.010	0.0050	mg/L		10/13/14 15:25	10/13/14 22:52	
otal Organic Carbon	57		1.0	0.43	mg/L			10/12/14 08:05	
Phenolics, Total Recoverable	0.0075	J	0.010	0.0050	mg/L		10/09/14 09:30	10/13/14 20:36	
lardness as calcium carbonate	760		20	5.3	mg/L			10/09/14 11:55	
Total Dissolved Solids	1000		20	8.0	mg/L			10/09/14 23:42	
	46	b	2.0	2.0	mg/L			10/08/14 14:37	
Biochemical Oxygen Demand	10								
Biochemical Oxygen Demand Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F

Surrogate Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Leachate

Prep Type: Total/NA

				Percent Su	rrogate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample iD	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-68691-1	MH-5	102	98	98	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rrogate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
LCS 480-206699/6	Lab Control Sample	100	101	101	
MB 480-206699/8	Method Blank	104	101	99	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

Page 8 of 31

10/17/2014

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-206699/8

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/08/14 23:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/08/14 23:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/08/14 23:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/08/14 23:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/08/14 23:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/08/14 23:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/08/14 23:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/08/14 23:03	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/08/14 23:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/08/14 23:03	1
Benzene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/08/14 23:03	1
Bromoform	ND		5.0	0.47	ug/L			10/08/14 23:03	1
Bromomethane	ND		5.0	1.2	ug/L			10/08/14 23:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/08/14 23:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/08/14 23:03	1
Chloroethane	ND		5.0	0.87	ug/L			10/08/14 23:03	1
Chloroform	ND		5.0	0.54	ug/L		*	10/08/14 23:03	1
hloromethane	ND		5.0	0.64	ug/L			10/08/14 23:03	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/08/14 23:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/08/14 23:03	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/08/14 23:03	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/08/14 23:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/08/14 23:03	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/08/14 23:03	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/08/14 23:03	1
o-Xylene	ND		5.0	0.43	ug/L			10/08/14 23:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/08/14 23:03	1
Toluene	ND		5.0	0.45	ug/L			10/08/14 23:03	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/08/14 23:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
Trichloroethene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/08/14 23:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/08/14 23:03	1
Xylenes, Total	ND		10	1.1	ug/L			10/08/14 23:03	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 480-206699/6

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 206699

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: Lab Control Sample

10/08/14 23:03

10/08/14 23:03

10/08/14 23:03

Prep Type: Total/NA

Allalysis Datch. 200099								
	Spike	LCS	LCS				%Rec.	
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.6		ug/L		93	52 - 162	

72 - 130

69 - 121

70 - 123

104

101

99

Project/Site: Orange County Landfill

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-206699/6

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Allalyolo Datolii 20000	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	20.0	18.8		ug/L		94	46 - 157	
1,1,2-Trichloroethane	20.0	18.6		ug/L		93	52 _ 150	
1,1-Dichloroethane	20.0	19.6		ug/L		98	59 - 155	
1,1-Dichloroethene	20.0	18.6		ug/L		93	1 _ 234	
1,2-Dichlorobenzene	20.0	19.6		ug/L		98	18 - 190	
1,2-Dichloroethane	20.0	19.1		ug/L		96	49 - 155	
1,2-Dichloropropane	20.0	18.4		ug/L		92	1 - 210	
1,3-Dichlorobenzene	20.0	19.3		ug/L		97	59 - 156	
1,4-Dichlorobenzene	20.0	19.2		ug/L		96	18 - 190	
2-Chloroethyl vinyl ether	20.0	17.0	J	ug/L		85	1 - 305	
Benzene	20.0	19.6		ug/L		98	37 - 151	
Bromodichloromethane	20.0	18.1		ug/L		91	35 - 155	
Bromoform	20.0	17.4		ug/L		87	45 - 169	
Bromomethane	20.0	24.4		ug/L		122	1 - 242	
Carbon tetrachloride	20.0	18.1		ug/L		91	70 - 140	
Chlorobenzene	20.0	19.1		ug/L		96	37 - 160	
Chloroethane	20.0	22.3		ug/L		111	14 - 230	
Chloroform	20.0	19.4		ug/L		97	51 - 138	
Chloromethane	20.0	19.2		ug/L		96	1 - 273	
cis-1,2-Dichloroethene	20.0	19.6		ug/L		98		
cis-1,3-Dichloropropene	20.0	18.4		ug/L		92	1 - 227	
Dibromochloromethane	20.0	18.3		ug/L		91	53 - 149	
Dichlorodifluoromethane	20.0	17.2		ug/L		86		
Ethylbenzene	20.0	20.1		ug/L		100	37 - 162	
Methylene Chloride	20.0	18.4		ug/L		92	1 - 221	
m-Xylene & p-Xylene	20.0	19.5		ug/L		97	79 - 120	
o-Xylene	20.0	20.8	1	ug/L		104	79 - 120	
Tetrachloroethene	20.0	18.5		ug/L		92	64 - 148	
Toluene	20.0	19.5	;	ug/L		98	47 - 150	
trans-1,2-Dichloroethene	20.0	19.4	}	ug/L		97	54 - 156	
trans-1,3-Dichloropropene	20.0	19.6	3	ug/L		98	17 - 183	
Trichloroethene	20.0	19.0)	ug/L		95	71 - 157	
Trichlorofluoromethane	20.0	18.8	3	ug/L		94	17 - 181	
Vinyl chloride	20.0	18.4	1	ug/L		92	1 - 251	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
4-Bromofluorobenzene (Surr)	101		69 - 121
Toluene-d8 (Surr)	101		70 - 123

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-206499/1-A

Matrix: Water

Analysis Batch: 207036

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 206499

мв мв RL Prepared Analyzed Dil Fac Analyte Result Qualifier MDL Unit 0.20 10/08/14 08:55 10/09/14 13:26 ND 0.060 mg/L Aluminum

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-206499/1-A

Matrix: Water

Analysis Batch: 207036

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 206499

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/09/14 13:26	1
Arsenic	ND		0.015	0.0056	mg/L		10/08/14 08:55	10/09/14 13:26	1
Barium	ND		0.0020	0.00070	mg/L		10/08/14 08:55	10/09/14 13:26	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Boron	ND		0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/09/14 13:26	1
Calcium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Chromium	ND		0.0040	0.0010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Copper	ND		0.010	0.0016	mg/L		10/08/14 08:55	10/09/14 13:26	1
Iron	0.0326	J	0.050	0.019	mg/L		10/08/14 08:55	10/09/14 13:26	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Magnesium	ND		0.20	0.043	mg/L		10/08/14 08:55	10/09/14 13:26	1
Manganese	ND		0.0030	0.00040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Nickel	ND		0.010	0.0013	mg/L		10/08/14 08:55	10/09/14 13:26	1
Potassium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/09/14 13:26	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/09/14 13:26	1
Sodium	ND		1.0	0.32	mg/L		10/08/14 08:55	10/09/14 13:26	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Zinc	0.00455	J	0.010	0.0015	mg/L		10/08/14 08:55	10/09/14 13:26	1

Lab Sample ID: LCS 480-206499/2-A

Matrix: Water

Analysis Batch: 206924

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 206499

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	8.95		mg/L		89	80 - 120	
Antimony	0.200	0.192		mg/L		96	80 - 120	
Arsenic	0.201	0.184		mg/L		92	80 - 120	
Barium	0.200	0.217		mg/L		108	80 - 120	
Beryllium	0.201	0.197		mg/L		98	80 - 120	
Cadmium	0.201	0.188		mg/L		94	80 - 120	
Chromium	0.201	0.188		mg/L		94	80 - 120	
Copper	0.201	0.214		mg/L		107	80 - 120	
Iron	10.0	9.07		mg/L		91	80 - 120	
Lead	0.201	0.187		mg/L		93	80 - 120	
Magnesium	10.0	10.2		mg/L		101	80 - 120	
Manganese	0.201	0.202		mg/L		101	80 - 120	
Nickel	0.201	0.183		mg/L		91	80 - 120	
Potassium	10.0	9.25		mg/L		92	80 - 120	
Selenium	0.201	0.189		mg/L		94	80 - 120	
Silver	0.0500	0.0528		mg/L		106	80 - 120	
Sodium	10.0	9.32		mg/L		93	80 - 120	
Zinc	0.201	0.206		mg/L		103	80 - 120	

Client Sample ID: Method Blank

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-206575/1-A

Matrix: Water

Analyte Mercury

Analyte

Mercury

Turbidity

Analysis Batch: 206912

мв мв

MB MB

MB MB

ND

Qualifier

Qualifier

Result

ND

Result Qualifier ND

RL MDL Unit 0.00020 0.00012 mg/L

D

Prepared 10/08/14 10:50

10/09/14 12:06

Analyzed Dil Fac

Prep Type: Total/NA Prep Batch: 206575

Prep Type: Total/NA

Prep Batch: 206575

Lab Sample ID: LCS 480-206575/2-A

Matrix: Water

Analysis Batch: 206912

Spike Added 0.00667

Result Qualifier 0.00675

1.0

RL

0.50

2.0

RL

0.50

2.0

Spike

Added

50.0

50.0

LCS LCS

RL Unit

1.0 NTU

MDL Unit

0.41 mg/L

0.13 mg/L

LCS LCS

47.7

47.3

Result Qualifier

MDL Unit

0.41 mg/L

0.13 mg/L

Unit

mg/L

mg/L

Unit ma/L D %Rec 101

Prepared

80 - 120

Client Sample ID: Lab Control Sample

%Rec. Limits

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 480-206480/3

Matrix: Water

Analysis Batch: 206480

Analyte

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 240-150879/27 Matrix: Water

Analysis Batch: 150879

Analyte Result Chloride ND

Sulfate

Analyte

Chloride

Lab Sample ID: LCS 240-150879/28

Matrix: Water

Analysis Batch: 150879

Sulfate Lab Sample ID: MB 240-151358/27

Matrix: Water

Analysis Batch: 151358

MB MB Analyte Result Qualifier

Chloride ND Sulfate ND

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Dil Fac

Analyzed 10/07/14 23:00

Client Sample ID: Method Blank

Prep Type: Total/NA

10/10/14 01:10 10/10/14 01:10

Analyzed

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

90 - 110

%Rec. D %Rec Limits 95 90 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prepared Analyzed Dil Fac 10/13/14 20:21

10/13/14 20:21

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 240-151358/3	Lab	Sample	ID:	MB	240-1	51358/3
--------------------------------	-----	--------	-----	----	-------	---------

Matrix: Water

Analysis Batch: 151358

Client Sample ID: Method Blank

Prep Type: Total/NA

1		MID	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	ND		0.50	0.41	mg/L			10/13/14 13:47	1
	Sulfate	ND		2.0	0.13	mg/L			10/13/14 13:47	1

Lab Sample ID: LCS 240-151358/28

Matrix: Water

Analyte

Chloride

Sulfate

Analysis Batch: 151358

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 50.0 53.2 mg/L 106 90 - 110 50.0 49.0 mg/L 98 90 - 110

Lab Sample ID: LCS 240-151358/4

Matrix: Water

Analysis Batch: 151358

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Think you Datoil 10 1000								
		Spike	LCS	LCS				%Rec.	
1	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Chloride	50.0	52.7		mg/L	_	105	90 - 110	
1	Sulfate	50.0	48.9		mg/L		98	90 - 110	
	<u></u>								

ethod: 310.2 - Alkalinity

Lab Sample ID: MB 480-207719/185

Matrix: Water

Analyte

Analysis Batch: 207719

Client	Sample	ID:	Meth	od	Blank	
	Pro	ep 1	vpe:	To	tal/NA	

D Prepared Analyzed Dil Fac 10/14/14 15:04

Lab Sample ID: MB 480-207719/192

Matrix: Water

Alkalinity, Total

Analysis Batch: 207719

Client Sample ID: Method Blank

Prepared

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL

мв мв

ND

Result Qualifier

Result Qualifier

4.00 J

Dil Fac MDI Unit D Prepared Analyzed 10/14/14 15:06 Alkalinity, Total 10 4.0 ND ma/L

RL

10

RL

10

MDL Unit

4.0 mg/L

MDL Unit

4.0 mg/L

Lab Sample ID: MB 480-207719/203

Matrix: Water

Analyte

Analysis Batch: 207719

Client Sample ID: Method Blank

Analyzed

10/14/14 15:17

Dil Fac

Prep Type: Total/NA MB MB

Lab Sample ID: LCS 480-207719/186

Matrix: Water

Alkalinity, Total

Analysis Batch: 207719

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec Spike LCS LCS Added Result Qualifier %Rec Limits Analyte Alkalinity, Total 50.0 51.4 mg/L 103 90 - 110

Matrix: Water

Alkalinity, Total

Analyte

Analysis Batch: 207719

Lab Sample ID: LCS 480-207719/193

Spike Limits Added Result Qualifier Unit D %Rec 50.0 51.0 mg/L 102 90 - 110

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-207719/204 Matrix: Water Prep Type: Total/NA

Analysis Batch: 207719 LCS LCS %Rec.

Spike Limits Analyte Added Result Qualifier Unit D %Rec 100 90 _ 110 Alkalinity, Total 50.0 50.2 mg/L

Method: 350.1 - Nitrogen, Ammonia

Client Sample ID: Method Blank Lab Sample ID: MB 480-206737/3

Matrix: Water Prep Type: Total/NA Analysis Batch: 206737

MB MB

RL MDL Unit Analyzed Dil Fac Result Qualifier D Prepared Analyte 0.00905 J 0.020 0.0090 mg/L 10/08/14 22:54 Ammonia

Client Sample ID: Method Blank Lab Sample ID: MB 480-206737/75 Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737

MB MB

Dil Fac Result Qualifier RL MDL Unit D Analyzed Analyte Prepared 0.020 10/08/14 23:56 Ammonia 0.0111 J 0.0090 mg/L

Lab Sample ID: LCS 480-206737/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737 Spike LCS LCS

%Rec. Added Limits Analyte Result Qualifler Unit D %Rec 0.997 100 90 - 110 Ammonia 1.00 mg/L

Lab Sample ID: LCS 480-206737/76 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 0.990 mg/L 99 90 - 110

Lab Sample ID: 480-68691-1 MS Client Sample ID: MH-5 Matrix: Leachate Prep Type: Total/NA

Analysis Batch: 206737 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifler Unit %Rec Limits Ammonia 130 20.0 143 4 ma/L 90 90 - 110

Page 14 of 31

TestAmerica Buffalo

10/17/2014

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

10/09/14 18:23

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Method:	351.2	- Nitrogen,	Total	Kjeldahl
---------	-------	-------------	-------	----------

Lab Sample ID: MB 480-206899/1-A Matrix: Water Analysis Batch: 207003						Client Sa	Prep Type:	Total/NA	
Analysis Baton, 201000	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 480-206899/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

0.20

ND

Prep Batch: 206899

0.15 mg/L

10/09/14 09:14

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Total Kjeldahl Nitrogen 2.50 2.59 104 90 - 110 mg/L

Method: 410.4 - COD

Analysis Batch: 207003

Total Kjeldahl Nitrogen

Lab Sample ID: MB 480-208155/27	Client Sample ID: Method Blank				
Matrix: Water	Prep Type: Total/NA				
Analysis Batch: 208155					

MB MB MDL Unit Prepared Analyzed Dil Fac Analyte Result Qualifier

Chemical Oxygen Demand 8.34 J 10 5.0 ma/L 10/16/14 09:12

Lab Sample ID: MB 480-208155/3 **Jatrix: Water**

nalysis Batch: 208155

MB MB Analyzed Dil Fac Result Qualifier RL MDL Unit Prepared Analyte

10/16/14 09:12 10 5.0 mg/L Chemical Oxygen Demand ND Client Sample ID: Method Blank

Lab Sample ID: MB 480-208155/51

Matrix: Water

Analysis Batch: 208155

Result Qualifier MDL Unit Analyzed Dil Fac D Prepared RL 5.0 mg/L 10 10/16/14 09:12 Chemical Oxygen Demand 7.37 J

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-208155/28 Prep Type: Total/NA Matrix: Water

Analysis Batch: 208155 %Rec. Spike LCS LCS Added Result Qualifier Unit %Rec Limits

Analyte 26.7 107 90 - 110 Chemical Oxygen Demand 25.0 mg/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-208155/4 Prep Type: Total/NA Matrix: Water

Analysis Batch: 208155 %Rec. ICS ICS Spike Limits Added Result Qualifier Unit %Rec Analyte 90 - 110 25.0 25.1 mg/L 100 Chemical Oxygen Demand

Client Sample ID: Lab Control Sample

Method:	410.4 -	COD	(Continued)
---------	---------	-----	-------------

Lab Sample ID: LCS 480-208155/52			Client Sample II	D: Lab Control Sample
Matrix: Water				Prep Type: Total/NA
Analysis Batch: 208155				
	Spike	LCS LCS		%Rec.
			D 01 D	1.1

1		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Chemical Oxygen Demand	25.0	22.5		mg/L	-	90	90 - 110	

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: LCS 480-206384/4

Cyanide, Total

Client Sample ID: Method Blank Lab Sample ID: MB 480-206384/3 Prep Type: Total/NA Matrix: Water Analysis Batch: 206384

MB MB MDL Unit Analyzed Dil Fac Result Qualifier RL Prepared Analyte 10/07/14 11:08 0.010 0.0050 mg/L Chromium, hexavalent ND

Prep Type: Total/NA Matrix: Water Analysis Batch: 206384 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

0.0500 0.0520 104 85 - 115 Chromium, hexavalent mg/L Client Sample ID: MH-5 Lab Sample ID: 480-68691-1 MS

Prep Type: Total/NA Matrix: Leachate Analysis Batch: 206384 Spike MS MS %Rec. Sample Sample Added Result Qualifier %Rec Limits Result Qualifier Unit Analyte 0.100 ND 0.160 F1 160 85 - 115 mg/L Chromium, hexavalent

Method: 9012B - Cyanide, Total andor Amenable

Client Sample ID: Method Blank Lab Sample ID: MB 480-207517/1-A Matrix: Water Prep Type: Total/NA Analysis Batch: 207541 Prep Batch: 207517 MB MB

Dil Fac Analyte Result Qualifler RL MDL Unit Prepared Analyzed 0.010 10/13/14 15:25 10/13/14 22:41 Cyanide, Total ND A 0.0050 mg/L

Lab Sample ID: LCS 480-207517/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 207541 Prep Batch: 207517 Spike LCS LCS Added Limits Result Qualifler Unit D Analyte %Rec

0.232

ma/L

0.250

Lab Sample ID: 480-68691-1 MS Client Sample ID: MH-5 Matrix: Leachate Prep Type: Total/NA Analysis Batch: 207541 Prep Batch: 207517 Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier D Limits Analyte Unit %Rec 0.100 0.0427 F1 90 - 110 Cyanide, Total 0.0083 J mg/L

TestAmerica Buffalo

90 - 110

93

QC Sample Results

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68691-1

Project/Site: Orange County Landfill

Method:	9060A	- Organic	Carbon,	Total	(TOC)
---------	-------	-----------	---------	-------	-------

Lab Sample ID: MB 480-207429/27

Matrix: Water

Analysis Batch: 207429

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Dil Fac Analyzed RL MDL Unit D Analyte Result Qualifier Prepared 10/12/14 04:47 **Total Organic Carbon** 1.0 ND 0.43 mg/L

Lab Sample ID: LCS 480-207429/28

Matrix: Water

Analysis Batch: 207429

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 101 Total Organic Carbon 60.0 60.8 mg/L 90 - 110

Method: 9066 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-206888/1-A

Matrix: Water

Analysis Batch: 207542

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 206888

MB Analyzed Dil Fac RL MDL Unit Prepared Result Qualifier Analyte 0.010 10/09/14 09:30 10/13/14 19:12 0.0050 mg/L Phenolics, Total Recoverable ND

Lab Sample ID: LCS 480-206888/2-A

fatrix: Water

Analysis Batch: 207542

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 206888

LCS LCS Spike %Rec Limits Analyte Added Result Qualifier Unit D 90 - 110 Phenolics, Total Recoverable 0.100 0.106 mg/L 106

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-206725/3

Matrix: Water

Analysis Batch: 206725

Client Sample ID: Method Blank

Prep Type: Total/NA

MB

MB

Analyzed Dil Fac RL Unit D Prepared Result Qualifier RL Analyte 10/07/14 23:20 5.0 5.0 Color Units Color ND

Lab Sample ID: LCS 480-206725/4

Matrix: Water

Analyte

Color

Analysis Batch: 206725

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. Spike LCS LCS limits Added Result Qualifier Unit D %Rec 30.0 30.0 Color Units 100 90 _ 110 RL

2.0

Client Sample ID: Method Blank

Analyzed

Analyzed 10/09/14 11:55

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 480-206969/51

Matrix: Water

Analysis Batch: 206969

MB MB

Analyte Hardness as calcium carbonate ND

Result Qualifier

RL 2.0 MDL Unit 0.53 mg/L

MDL Unit

0.53 mg/L

D Prepared

Unit

mg/L

D

Prepared

%Rec

97

10/09/14 11:55

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Prep Type: Total/NA

Dil Fac

Dil Fac

Lab Sample ID: MB 480-206969/75

Matrix: Water

Analysis Batch: 206969

MB MB

Analyte Result Qualifier ND

Hardness as calcium carbonate

Lab Sample ID: LCS 480-206969/52 Matrix: Water

Analysis Batch: 206969

Analyte Hardness as calcium carbonate

Lab Sample ID: LCS 480-206969/76

Matrix: Water

Analysis Batch: 206969

Analyte

Hardness as calcium carbonate

Spike Added 298

Spike

Added

298

LCS LCS Result Qualifier 284

LCS LCS

288

Result Qualifier

MDL Unit

LCS LCS

485

Result Qualifier

4.0 mg/L

Unit

mg/L

Unit D mg/L

D

%Rec

Prepared

%Rec

96

Limits 90 - 110

Client Sample ID: Method Blank

Analyzed

10/09/14 23:42

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 - 115

Client Sample ID: Method Blank

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-206989/1

Matrix: Water

Analysis Batch: 206989

MB MB Analyte Result

Total Dissolved Solids

Lab Sample ID: LCS 480-206989/2 Matrix: Water

Analysis Batch: 206989

Analyte Total Dissolved Solids

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-206654/1 Matrix: Water

Analysis Batch: 206654

Analyte Biochemical Oxygen Demand

USB USB Result Qualifier

ND

Qualifier

ND

RL 2.0

RL

10

Spike

Added

504

MDL Unit 2.0 mg/L D Prepared

Analyzed

Dil Fac 10/08/14 14:37

Prep Type: Total/NA

TestAmerica Buffalo

10/17/2014

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: LCS 480-206654/2

Matrix: Water

Analysis Batch: 206654

Biochemical Oxygen Demand

Spike Added 198

LCS LCS Result Qualifier 203

Unit mg/L %Rec 102 %Rec. Limits 85 - 115

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

QC Association Summary

TestAmerica Job ID: 480-68691-1

Client: Sterling Environmental Engineering P	U
Project/Site: Orange County Landfill	

MB 240-151358/3

Method Blank

GC/MS VOA					
Analysis Batch: 206699					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	624	
LCS 480-206699/6	Lab Control Sample	Total/NA	Water	624	
MB 480-206699/8	Method Blank	Total/NA	Water	624	
-					
Metals		The state of the s			
Prep Batch: 206499					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	3005A	
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-206499/1-A	Method Blank	Total/NA	Water	3005A	
Prep Batch: 206575					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	7470A	
LCS 480-206575/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-206575/1-A	Method Blank	Total/NA	Water	74 7 0A	
Analysis Batch: 206912					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	7470A	206575
LCS 480-206575/2-A	Lab Control Sample	Total/NA	Water	7470A	206575
MB 480-206575/1-A	Method Blank	Total/NA	Water	7470A	206575
Analysis Batch: 206924					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	6010C	206499
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	6010C	206499
Analysis Batch: 207036					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-206499/1-A	Method Blank	Total/NA	Water	6010C	206499
General Chemistry				110000000000000000000000000000000000000	
Analysis Batch: 150879					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	300.0	
LCS 240-150879/28	Lab Control Sample	Total/NA	Water	300.0	
MB 240-150879/27	Method Blank	Total/NA	Water	300.0	
Analysis Batch: 151358					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68691-1	MH-5	Total/NA	Leachate	300.0	
LCS 240-151358/28	Lab Control Sample	Total/NA	Water	300.0	
LCS 240-151358/4	Lab Control Sample	Total/NA	Water	300.0	
MB 240-151358/27	Method Blank	Total/NA	Water	300.0	
MD 040 454050/0	Mathed Blank	Total/NA	Motor	300.0	

TestAmerica Buffalo

Total/NA

Water

300.0

TestAmerica Job ID: 480-68691-1

QC Association Summary

Client: Sterling Environmental Engineering PC

~oject/Site: Orange County Landfill

Analysis Batch: 206384					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-6	Total/NA	Leachate	7196A	
480-68691-1 MS	MH-5	Total/NA	Leachate	7196A	
LCS 480-206384/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-206384/3	Method Blank	Total/NA	Water	7196A	
Analysis Batch: 206477					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-6	Total/NA	Leachate	353.2	
Analysis Batch: 206480					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	180.1	
LCS 480-206480/4	Lab Control Sample	Total/NA	Water	180.1	
MB 480-206480/3	Method Blank	Total/NA	Water	180.1	
Analysis Batch: 206654					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 5210B	
LCS 480-206654/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-206654/1	Method Blank	Total/NA	Water	SM 5210B	
Analysis Batch: 206725					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 2120B	
LCS 480-206725/4	Lab Control Sample	Total/NA	Water	SM 2120B	
MB 480-206725/3	Method Blank	Total/NA	Water	SM 2120B	
Analysis Batch: 206737					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	350.1	
480-68691-1 MS	MH-5	Total/NA	Leachate	350.1	
LCS 480-206737/4	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-206737/76	Lab Control Sample	Total/NA	Water	350.1	
MB 480-206737/3	Method Blank	Total/NA	Water	350.1	
MB 480-206737/75	Method Blank	Total/NA	Water	350.1	
Prep Batch: 206888					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	Distill/Phenol	
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-206888/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
Prep Batch: 206899					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-6	Total/NA	Leachate	351.2	
LCS 480-206899/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-206899/1-A	Method Blank	Total/NA	Water	351.2	
Analysis Batch: 206969					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 2340C	

QC Association Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

nalysis Batch: 206969	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-206969/52	Lab Control Sample	Total/NA	Water	SM 2340C	
LCS 480-206969/76	Lab Control Sample	Total/NA	Water	SM 2340C	
MB 480-206969/51	Method Blank	Total/NA	Water	SM 2340C	
MB 480-206969/75	Method Blank	Total/NA	Water	SM 2340C	
nalysis Batch: 206989					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 2540C	
LCS 480-206989/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-206989/1	Method Blank	Total/NA	Water	SM 2540C	
nalysis Batch: 207003	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-68691-1	MH-5	Total/NA	Leachate	351.2	20689
LCS 480-206899/2-A	Lab Control Sample	Total/NA	Water	351.2	20689
MB 480-206899/1-A	Method Blank	Total/NA	Water	351.2	20689
nalysis Batch: 20742	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68691-1	MH-5	Total/NA	Leachate	9060A	
LCS 480-207429/28	Lab Control Sample	Total/NA	Water	9060A	
MB 480-207429/27	Method Blank	Total/NA	Water	9060A	
rep Batch: 207517					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68691-1	MH-5	Total/NA	Leachate	9012B	.,,,,
480-68691-1 MS	MH-5	Total/NA	Leachate	9012B	
LCS 480-207517/2-A	Lab Control Sample	Total/NA	Water	9012B	
MB 480-207517/1-A	Method Blank	Total/NA	Water	9012B	
nalysis Batch: 20754	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-68691-1	MH-5	Total/NA	Leachate	9012B	20751
480-68691-1 MS	MH-5	Total/NA	Leachate	9012B	20751
LCS 480-207517/2-A	Lab Control Sample	Total/NA	Water	9012B	20751
MB 480-207517/1-A	Method Blank	Total/NA	Water	9012B	2075
nalysis Batch: 20754	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-68691-1	MH-5	Total/NA	Leachate	9066	2068
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	9066	2068
MB 480-206888/1-A	Method Blank	Total/NA	Water	9066	2068
nalysis Batch: 20771	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-68691-1	MH-5	Total/NA	Leachate	310.2	
1 00 100 0077101100	Lab Control Sample	. Total/NA	Water	310.2	
LCS 480-207719/186	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/186 LCS 480-207719/193					
	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/193		Total/NA Total/NA	Water Water	310.2 310.2	

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

General Chemistry (Continued)

Analysis Batch: 207719 (Continued)

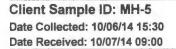
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-207719/203	Method Blank	Total/NA	Water	310.2	

Analysis Batch: 208155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	410.4	
LCS 480-208155/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/4	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/52	Lab Control Sample	Total/NA	Water	410.4	
MB 480-208155/27	Method Blank	Total/NA	Water	410.4	
MB 480-208155/3	Method Blank	Total/NA	Water	410.4	
MB 480-208155/51	Method Blank	Total/NA	Water	410.4	

q

Lab Chronicle


Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Lab Sample ID: 480-68691-1

Matrix: Leachate

	Batch	Batch	Dilu	ition	Batch	Prepared		
Prep Type	Type	Method	Run Fa	ctor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		10	206699	10/09/14 03:54	ABF	TAL BUF
Total/NA	Prep	3005A			206499	10/08/14 08:55	SLB	TAL BUF
Total/NA	Analysis	6010C		1	206924	10/08/14 19:44	AMH	TAL BUF
Total/NA	Prep	7470A			206575	10/08/14 10:50	LRK	TAL BUF
Total/NA	Analysis	7470A		1	206912	10/09/14 12:09	LRK	TAL BUF
Total/NA	Analysis	180.1		1	206480	10/07/14 23:00	CLT	TAL BUF
Total/NA	Analysis	300.0		5	151358	10/13/14 16:15	LKG	TAL CAN
Total/NA	Analysis	300.0		1	150879	10/10/14 03:07	JMB	TAL CAN
Total/NA	Analysis	310.2		50	207719	10/14/14 15:32	NCH	TAL BUF
Total/NA	Analysis	350.1		100	206737	10/08/14 23:01	RS	TAL BUF
Total/NA	Prep	351.2			206899	10/09/14 09:14	LAW	TAL BUF
Total/NA	Analysis	351.2		50	207003	10/10/14 04:23	CLT	TAL BUF
Total/NA	Analysis	353.2		1	206477	10/07/14 21:58	RS	TAL BUF
Total/NA	Analysis	410.4		4	208155	10/16/14 09:12	KMF	TAL BUF
Total/NA	Analysis	7196A		1	206384	10/07/14 11:08	NCH	TAL BUF
Total/NA	Prep	9012B			207517	10/13/14 15:25	MDL	TAL BUF
Total/NA	Analysis	9012B		1	207541	10/13/14 22:52	RS	TAL BUF
Total/NA	Analysis	9060A		1	207429	10/12/14 08:05	MRF	TAL BUF
Total/NA	Prep	Distill/Phenol			206888	10/09/14 09:30	MRF	TAL BUF
Total/NA	Analysis	9066		1	207542	10/13/14 20:36	JMB	TAL BUF
Total/NA	Analysis	SM 2120B		1	206725	10/07/14 23:20	RS	TAL BUF
Total/NA	Analysis	SM 2340C		1	206969	10/09/14 11:55	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	206989	10/09/14 23:42	JMB	TAL BUF
Total/NA	Analysis	SM 5210B		1	206654	10/08/14 14:37	MDL	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

TestAmerica Job ID: 480-68691-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Arkansas DEQ	State Program	6	88-0688	07-06-15	
California	State Program	9	1169CA	09-30-14 *	
Connecticut	State Program	1	PH-0568	09-30-14 *	
Florida	NELAP	4	E87672	06-30-15	
Georgia	State Program	4	N/A	03-31-15	
Georgia	State Program	4	956	03-31-15	
Illinois	NELAP	5	200003	09-30-14 *	
lowa	State Program	7	374	03-01-15	
Kansas	NELAP	7	E-10187	01-31-15	
Kentucky (DW)	State Program	4	90029	12-31-14	
Kentucky (UST)	State Program	4	30	03-31-15	
Louisiana	NELAP	6	02031	06-30-14 *	
Maine	State Program	1	NY00044	12-04-14	
Maryland	State Program	3	294	03-31-15	
Massachusetts	State Program	1	M-NY044	06-30-15	
Michigan	State Program	5	9937	03-31-15	
Minnesota	NELAP	5	036-999-337	12-31-14	
New Hampshire	NELAP	1	2337	11-17-14	
New Jersey	NELAP	2	NY455	06-30-15	
New York	NELAP	2	10026	03-31-15	
North Dakota	State Program	8	R-176	03-31-14 *	
Oklahoma	State Program	6	9421	08-31-15	
Oregon	NELAP	10	NY200003	06-09-15	
Pennsylvania	NELAP	3	68-00281	07-31-15	
Rhode Island	State Program	1	LAQ00328	12-30-14	
Tennessee	State Program	4	TN02970	03-31-15	
Texas	NELAP	6	T104704412-11-2	07-31-15	
USDA	Federal		P330-11-00386	11-22-14	
Virginia	NELAP	3	460185	09-14-15	
Washington	State Program	10	C784	02-10-15	
West Virginia DEP	State Program	3	252	09-30-14 *	
Wisconsin	State Program	5	998310390	08-31-15	

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	01144CA	06-30-14 *
California	State Program	9	2927	04-30-15
Connecticut	State Program	1	PH-0590	12-31-14
Florida	NELAP	4	E87225	06-30-15
Georgia	State Program	4	N/A	06-30-15
Illinois	NELAP	5	200004	07-31-15
Kansas	NELAP	7	E-10336	01-31-15
Kentucky (UST)	State Program	4	58	06-30-15
L-A-B	DoD ELAP		L2315	07-18-16
Minnesota	NELAP	5	039-999-348	12-31-14
Nevada	State Program	9	OH-000482008A	07-31-15
New Jersey	NELAP	2	OH001	06-30-15
New York	NELAP	2	10975	03-31-15

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Laboratory: TestAmerica Canton (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Ohio VAP	State Program	5	CL0024	10-31-15
Pennsylvania	NELAP	3	68-00340	08-31-15
Texas	NELAP	6		08-31-15
USDA	Federal		P330-13-00319	11-26-16
√irginia	NELAP	3	460175	09-14-15
Washington	State Program	10	C971	01-12-15
West Virginia DEP	State Program	3	210	12-31-14
Wisconsin	State Program	5	999518190	08-31-15
Wisconsin	State Program	5	999518190	-80

SM

SM

SM

SM

TestAmerica Job ID: 480-68691-1

TAL BUF

TAL BUF

TAL BUF

TAL BUF

Method Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
180.1	Turbidity, Nephelometric	MCAWW	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL CAN
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
9066	Phenolics, Total Recoverable	SW846	TAL BUF

Protocol References:

SM 2120B

SM 2340C

SM 2540C

SM 5210B

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

BOD, 5-Day

Color, Colorimetric

Hardness, Total (mg/l as CaC03)

Solids, Total Dissolved (TDS)

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-68691-1	MH-5	Leachate	10/06/14 15:30	10/07/14 09:00

13

Detection Limit Exceptions Summary

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68691-1

Project/Site: Orange County Landfill

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
300.0	Leachate	Chloride	rng/L	0.50	1

TestAmerica E 10 Hazelmood Drive

Chain of Custody Record

040128 TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Amberst,	HY 14228	
Phone: 71	16.691.2686	

TARABA DE LITTE ATOMA DELLE MONE HERBETT BEIDER FRIITS BEIDER 1916 1916 1816 1817 18

Phone: 716.691.2684	stody		ıram:	DW	NPDE	S	RC	TRA		other:											restAmerica La	TAL-821	
Client Contact	Project M	anager:	Mark	1/11	A 4	Site	e Cor	ntact	: (0	de	Sai	-	d	Date:		01	6/1	4			COC No:		
Company Name: Sterling Envicenmental	Tel/Fax:				1,000	Lab	Cor	ntact	: Lin			affe		Carri							_1_ of _1	_ COCs	
Address: 24 Wate Boad		Analysis 1	Turnaroun	d Time		\Box	T							T						1 1	Sampler:		
City/State/Zip: 15than NY 12110	CALEN	DAR DAYS	X wo	RKING DA	YS	11	1.3	힏		9			-	1		1				1 1	For Lab Use Only:	:	
Phone: (518)456 - 4900	TA	T if different	from Below _			1 1:	2 4	[L'es	à-	1	Nitite		8 -	1 4				1 8	Walk-in Client:		
Fax:			2 weeks			3		7		द्ध ।	7.4.			(olo-	1400	0					Lab Sampling:		
Project Name: Orange County Landfill			1 week	50	Lys	5	2 2			Phen	1,1		5	0	3	1 2							
Site: OC Land Fill			2 days		,	0	2 -	7 5		1	9		1	t	3	5- 01				1	Job / SDG No.:		
PO# 2010-15			1 day			E .	2	-1	3	- 2 F	100		rate	- T	-	¿ - S							
			Sample			Sample (Y/N)	Cl. L. L. J.	10	3-	3	4 .4	V	75	Twebil!	0 7	2 4						100	
	Sample	Sample	Type (C=Comp,		# of	e e	5 5	600	Me	3 6	500	0	5	4	ACK.	X 2						,	
Sample Identification	Date	Time	G=Grab)	Matrix		Filtered	6	-	1	-	20	>		1	Ile	-					Sample Spr	ecific Notes	3:
Seep Monitoring Point	10/6/14	9:15	G	Water	8	N	V			X	X	X			1								
DUP-1		-	1		8				\$	XX	X	X	2			1							
MH-5		15:30			17		X	X	X	XX	X	X	X	X		(X						1. 3	
SW-8		15:15	Var		17		1			1	1	4	1	1	1			·			3.		
Trip Blanks	V	~	_	V	2	V.	V	V	V	1	1	L	V	1	1	V							
•															1								
											23												
				12.														,					
			,	1												-							
						П																	
reservation used to leavy after samples of Afternos	5≐NaOH (6	Offet (T. Poplar	100									#"., " "				10.						All the Control
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	se List any El					e															d longer firan 1 mg		,
Non-Hazard	Poison 6	3	Unkne	חשכ				Return	n to Ci	ient		{	Dis	posal	by Lai	0		ZA	othive f	or	1 Months		
pecial Instructions/QC Requirements & Comments:	5 Day	, To	T; A.	na hy s	s.L	ist	ed	6	2~	B	ot	He	s ,-	M	058	\$.	·~p	es	to		1 Months arrive for	Scep-	-imp
Custody Seals Intact: Yes No	Custody Se										emp.						Corr				Therm ID No:		
delinguished by:	Company:	1		Date/Ti	me:	F	Recei	ved		1	1	_			C	oppo	Dy:				Date 1 md	090	v
Relinquished by:	Company:	ling-		IO/ Date/Ti				ved t	ру:	(1				C	omp	aray:	4			Date/Firne:		
			*				٠				/							Ť.					
elinquished by:	Company:			Date/Ti	me.	F	Recei	ved i	n Lat	orati	ory by	у.			C	ompa	any:		1.14		Date/Time:		

16

Login Sample Receipt Checklist

Client: Sterling Environmental Engineering PC

Job Number: 480-68691-1


Login Number: 68691

List Number: 1

Creator: Janish, Carl M

List Source: TestAmerica Buffalo

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
mple collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	STERLING	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	N/A		
Chlorine Residual checked.	N/A		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68692-1 Client Project/Site: Orange County Landfill Sampling Event: Groundwater Baseline

For: Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Mr. Mark Williams

Ame Pentyne

Authorized for release by: 10/17/2014 11:17:32 AM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Table of Contents

Cover Page	
Table of Contents	2
Definitions/Glossary	
Case Narrative	1
Detection Summary	5
Client Sample Results	
Surrogate Summary	14
QC Sample Results	15
20 Association Cultimary	29
Lab Official	34
Settilication Summary	36
vietilod Sullillary	38
Sample Summary	39
Detection Limit Exceptions outlinary	40
Chair of Custody	41
Receipt Checklists	42

Definitions/Glossary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

RPD

TEF

TestAmerica Job ID: 480-68692-1

Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chen	istry
Qualifier	Qualifier Description
b	Result Detected in the Unseeded Control blank (USB).
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
OFI	
UFL	Contains Free Liquid
	Contains Free Liquid Contains no Free Liquid
CNF	Contains no Free Liquid
CNF	
CNF DER	Contains no Free Liquid Duplicate error ratio (normalized absolute difference)
CNF DER Fac , RA, RE, IN	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor
CNF DER Fac , RA, RE, IN DLC	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
CNF DER Fac , RA, RE, IN DLC MDA	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration
CNF DER Fac , RA, RE, IN DLC MDA EDL	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity
CNF DER Fac , RA, RE, IN DLC MDA EDL MDC	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit
CNF DER Fac , RA, RE, IN DLC MDA EDL MDC MDC MDC	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration
CNF DER FAC , RA, RE, IN DLC MDA EDL MDC MDC MDC MDL	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit
CNF DER Fac , RA, RE, IN DLC MDA EDL MDC MDC MDL ML NC	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit Minimum Level (Dioxin)
CNF DER FAC RA, RE, IN DLC MDA EDL MDC MDL ML NC ND	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit Minimum Level (Dioxin) Not Calculated
CNF DER Fac , RA, RE, IN DLC MDA EDL MDC MDL ML NC ND PQL	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit Minimum Level (Dioxin) Not Calculated Not detected at the reporting limit (or MDL or EDL if shown)
	Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit Minimum Level (Dioxin) Not Calculated Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Job ID: 480-68692-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-68692-1

Comments

No additional comments.

Receipt

The samples were received on 10/7/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 3.8° C, 3.9° C and 4.2° C.

Except:

Method(s) 7196A: The following samples were received outside of holding time: PZ-14-3 (480-68692-2), PZ-14-5 (480-68692-1). No time listed, therefore default TALS time of 00:00 was used.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010C: The method blank for batch 480-206494 contained dissolved copper and zinc above the method detection limits. These target analyte concentrations were less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples PZ-14-3 (480-68692-2), PZ-14-5 (480-68692-1) was not performed.

Method(s) 6010C: The method blank for batch 480-206494 contained dissolved boron above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples PZ-14-3 (480-68692-2), PZ-14-5 (480-68692-1) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: Associated samples were filtered prior to analysis. Results are reported as true color. (480-68692-1 DU), PZ-14-3 (480-68692-2), PZ-14-5 (480-68692-1)

Method(s) 350.1: The method blank for batch 206737 contained ammonia above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed. PZ-14-5 (480-68692-1)

Method(s) SM 5210B: The USB dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L. The associated sample results in batch 206522 are reported. (USB 480-206522/1)

Method(s) SM 5210B: The sample duplicate precision for the following sample associated with batch 206522 was outside control limits: (480-68692-2 DU).

Method(s) 310.2: The method blank for batch 207719 contained Alkalintiy above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.PZ-14-5 (480-68692-1)

Method(s) 310.2: The method blank for batch 207973 contained Alkalinity above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.PZ-14-3 (480-68692-2)

Method(s) 410.4: The method blank for batch 208155 contained chemical oxygen demand above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.PZ-14-3 (480-68692-2), PZ-14-5 (480-68692-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Sterling Environmental Engineering PC pject/Site: Orange County Landfill

Client Sample ID: PZ-14-5

Lab Sample iD: 480-68692-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Aluminum	0.73		0.20	0.060	mg/L	1	6010C	Total/NA
Arsenic	0.057		0.015	0.0056	mg/L	1	6010C	Total/NA
Barium	0.51		0.0020	0.00070	mg/L	1	6010C	Total/NA
Boron	0.21		0.020	0.0040	mg/L	1	6010C	Total/NA
Calcium	140		0.50	0.10	mg/L	1	6010C	Total/NA
Chromium	0.0076		0.0040	0.0010	mg/L	1	6010C	Total/NA
Copper	0.0072	J	0.010	0.0016	mg/L	1	6010C	Total/NA
Iron	4.8	В	0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	54		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	1.0		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.028		0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	9.8		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	87		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.026	В	0.010	0.0015	_	1	6010C	Total/NA
Aluminum	2.7		0.20	0.060		1	6010C	Dissolved
Arsenic	0.055		0.015	0.0056	mg/L	1	6010C	Dissolved
Barium	0.47		0.0020	0.00070	_	1	6010C	Dissolved
Boron	0.20	В	0.020	0.0040	-	1	6010C	Dissolved
Calcium	130		0.50		mg/L	1	6010C	Dissolved
Chromium	0.016		0.0040	0.0010		1	6010C	Dissolved
Copper	0.011	B	0.010	0.0016		1	6010C	Dissolved
iron	7.7	5	0.050	0.019	mg/L	1	6010C	Dissolved
Lead	0.0051	4	0.010	0.0030	_	1	6010C	Dissolved
1agnesium	52	Ü	0.20	0.043	-	1	6010C	Dissolved
Manganese	1.1		0.0030	0.00040		1	6010C	Dissolved
Nickel	0.032		0.010	0.0013		1	6010C	Dissolved
Potassium	9.7		0.50	0.10	•	1	6010C	Dissolved
Sodium	85		1.0	0.10	-	1	6010C	Dissolved
	0.036	В	0.010	0.0015	-	1	6010C	Dissolved
Zinc Chloride	79	В	0.50	0.0015	-	1	300.0	Total/NA
	30		2.0	0.41	mg/L	1	300.0	Total/NA
Sulfate		В	100			10	310.2	Total/NA
Alkalinity, Total	600				mg/L	10	350.1	Total/NA
Ammonia	9.1	В	0.20	0.090	-	5		Total/NA
Total Kjeldahl Nitrogen	9.2		1.0		mg/L		351.2	
Nitrate as N	0.090	_	0.050	0.020		1	353.2	Total/NA
Chemical Oxygen Demand	32	В	10	5.0	-	1	410.4 9012B	Total/NA Total/NA
Cyanide, Total	0.23		0.010	0.0050	mg/L	1		
Total Organic Carbon	8.9		1.0	0.43	mg/L	1	9060A 9066	Total/NA Total/NA
Phenolics, Total Recoverable	0.026		0.010	0.0050		1		Total/NA
Hardness	580		10	2.6	mg/L	1	SM 2340C	
Total Dissolved Solids	780		10	4.0	mg/L	1	SM 2540C	Total/NA
Biochemical Oxygen Demand	7.1	b	2.0	2.0	mg/L	1	SM 5210B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac		Prep Type
Turbidity	240		1.0	1.0	NTU	1	180.1	Total/NA

Client Sample ID: PZ-14-3

Lab Sample ID: 480-68692-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	6.3		0.20	0.060	mg/L	1		6010C	Total/NA
Arsenic	0.094		0.015	0.0056	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

10/17/2014

Detection Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Client Sample ID: PZ-14-3 (Continued)

Lab Sample ID: 480-68692-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Barium	0.63	-	0.0020	0.00070	mg/L	1	6010C	Total/NA
Beryllium	0.00047	J	0.0020	0.00030	mg/L	1	6010C	Total/NA
Boron	0.18		0.020	0.0040	mg/L	1	6010C	Total/NA
Calcium	180		0.50	0.10	mg/L	1	6010C	Total/NA
Chromium	0.028		0.0040	0.0010	mg/L	1	6010C	Total/NA
Copper	0.091		0.010	0.0016	mg/L	1	6010C	Total/NA
ron	18	В	0.050	0.019	mg/L	1	6010C	Total/NA
ead	0.017		0.010	0.0030	mg/L	1	6010C	Total/NA
Magnesium	56		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	2.0		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.025		0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	9.3		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	60		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.087	В	0.010	0.0015	mg/L	1	6010C	Total/NA
Aluminum	8.7		0.20	0.060	mg/L	1	6010C	Dissolved
Arsenic	0.092		0.015	0.0056	mg/L	1	6010C	Dissolved
Barium	0.59		0.0020	0.00070	mg/L	1	6010C	Dissolved
Beryllium	0.00048	J	0.0020	0.00030	mg/L	1	6010C	Dissolved
Boron	0.17	В	0.020	0.0040	mg/L	1	6010C	Dissolved
Calcium	150		0.50	0.10	mg/L	1	6010C	Dissolved
Chromium	0.032		0.0040	0.0010	mg/L	1	6010C	Dissolved
Copper	0.083	В	0.010	0.0016	mg/L	1	6010C	Dissolved
Iron	22		0.050	0.019	mg/L	1	6010C	Dissolved
Lead	0.015		0.010	0.0030	mg/L	1	6010C	Dissolved
Magnesium	54		0.20	0.043	mg/L	1	6010C	Dissolved
Manganese	1.7		0.0030	0.00040	mg/L	1	6010C	Dissolved
Nickel	0.030		0.010	0.0013	mg/L	1	6010C	Dissolved
Potassium	9.1		0.50	0.10	_	1	6010C	Dissolved
Sodium	58		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.087	В	0.010	0.0015	_	1	6010C	Dissolved
Chloride	61		0.50	0.41	mg/L	1	300.0	Total/NA
Sulfate	34		2.0	0.13	-	1	300.0	Total/NA
Alkalinity, Total	570	В	100	40	-	10	310.2	Total/NA
Ammonia	5.3		0.10	0.045	_	5	350.1	Total/NA
Total Kjeldahl Nitrogen	5.9		0.40	0.30		2	351.2	Total/NA
Nitrate as N	0.69		0.050	0.020	_	1	353.2	Total/NA
Chemical Oxygen Demand	23	В	10	5.0	_	1	410.4	Total/NA
Total Organic Carbon	3.2		1.0	0.43		1	9060A	Total/NA
Hardness	610		10	2.6		1	SM 2340C	Total/NA
Total Dissolved Solids	680		10	4.0	mg/L	1	SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL		Dil Fac	D Method	Ргер Тур
Turbidity	450		1.0	1.0		1	180.1	Total/NA

Client Sample ID: TB1

Lab Sample ID: 480-68692-3

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

client Sample ID: PZ-14-5

Lab Sample ID: 480-68692-1

Date Collected: 10/06/14 12:55 Date Received: 10/07/14 09:00 Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/09/14 04:19	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/09/14 04:19	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/09/14 04:19	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/09/14 04:19	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/09/14 04:19	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/09/14 04:19	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/09/14 04:19	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/09/14 04:19	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/09/14 04:19	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/09/14 04:19	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/09/14 04:19	1
Benzene	ND		5.0	0.60	ug/L			10/09/14 04:19	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/09/14 04:19	1
Bromoform	ND		5.0	0.47	ug/L			10/09/14 04:19	1
Bromomethane	ND		5.0	1.2	ug/L			10/09/14 04:19	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/09/14 04:19	1
Chlorobenzene	, ND		5.0	0.48	ug/L			10/09/14 04:19	1
Chloroethane	ND		5.0	0.87	ug/L			10/09/14 04:19	1
Chloroform	ND		5.0	0.54	ug/L			10/09/14 04:19	1
Chloromethane	ND		5.0	0.64	ug/L			10/09/14 04:19	1
sis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/09/14 04:19	1
is-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/09/14 04:19	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/09/14 04:19	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/09/14 04:19	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/09/14 04:19	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/09/14 04:19	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/09/14 04:19	1
o-Xylene	ND		5.0	0.43	ug/L			10/09/14 04:19	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/09/14 04:19	1
Toluene	ND		5.0	0.45	ug/L			10/09/14 04:19	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/09/14 04:19	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/09/14 04:19	1
Trichloroethene	ND		5.0	0.60	ug/L			10/09/14 04:19	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/09/14 04:19	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/09/14 04:19	1
Xylenes, Total	ND		10	1.1	ug/L			10/09/14 04:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		72 - 130			•		10/09/14 04:19	1
4-Bromofluorobenzene (Surr)	104		69 - 121					10/09/14 04:19	1
Toluene-d8 (Surr)	99		70 - 123					10/09/14 04:19	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.73		0.20	0.060	mg/L		10/08/14 08:55	10/08/14 19:13	1
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/08/14 19:13	1
Arsenic	0.057		0.015	0.0056	mg/L		10/08/14 08:55	10/08/14 19:13	1
Barium	0.51		0.0020	0.00070	mg/L		10/08/14 08:55	10/08/14 19:13	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/08/14 19:13	1
Boron	0.21		0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:47	1

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68692-1

Project/Site: Orange County Landfill

Client Sample ID: PZ-14-5

Date Collected: 10/06/14 12:55 Date Received: 10/07/14 09:00

Lab Sample ID: 480-68692-1

Matrix: Ground Water

Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/08/14 19:13	1
Calcium 140		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:47	1
Chromium 0.0076		0.0040	0.0010	mg/L		10/08/14 08:55	10/08/14 19:13	1
Copper 0.0072	J	0.010	0.0016	mg/L		10/08/14 08:55	10/08/14 19:13	1
ron 4.8	В	0.050	0.019	mg/L		10/08/14 08:55	10/08/14 19:13	1
_ead NC		0.010	0.0030	mg/L		10/08/14 08:55	10/08/14 19:13	1
Magnesium 54		0.20	0.043	mg/L		10/08/14 08:55	10/08/14 19:13	1
Manganese 1.0		0.0030	0.00040	mg/L		10/08/14 08:55	10/08/14 19:13	1
Nickel 0.028		0.010	0.0013	mg/L		10/08/14 08:55	10/08/14 19:13	1
Potassium 9.8		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:13	1
Selenium NE)	0.025	0.0087	mg/L		10/08/14 08:55	10/08/14 19:13	1
Silver)	0.0060	0.0017	mg/L		10/08/14 08:55	10/08/14 19:13	1
Sodium 87		1.0		mg/L		10/08/14 08:55	10/08/14 19:13	1
Thallium NE		0.020	0.010	mg/L		10/08/14 08:55	10/08/14 19:13	1
Zinc 0.026		0.010	0.0015	-		10/08/14 08:55	10/08/14 19:13	1
Method: 6010C - Metals (ICP) - Dissolved								
	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum 2.3	7	0.20	0.060	mg/L		10/08/14 08:57	10/08/14 23:45	1
Antimony)	0.020	0.0068	mg/L		10/08/14 08:57	10/08/14 23:45	1
Arsenic 0.05	5	0.015	0.0056	mg/L		10/08/14 08:57	10/08/14 23:45	1
3arium 0.4	7	0.0020	0.00070	mg/L		10/08/14 08:57	10/08/14 23:45	1
Beryllium NE		0.0020	0.00030	mg/L		10/08/14 08:57	10/08/14 23:45	1
Boron 0.20	В	0.020	0.0040	mg/L		10/08/14 08:57	10/09/14 14:19	1
Cadmium NI		0.0020	0.00050	mg/L		10/08/14 08:57	10/08/14 23:45	1
Calcium 13)	0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:45	1
Chromium 0.010	5	0.0040	0.0010	mg/L		10/08/14 08:57	10/08/14 23:45	1
Copper 0.01	1 B	0.010	0.0016	mg/L		10/08/14 08:57	10/08/14 23:45	1
Iron 7.	7	0.050	0.019	mg/L		10/08/14 08:57	10/08/14 23:45	1
Lead 0.005	1 J	0.010	0.0030	mg/L		10/08/14 08:57	10/08/14 23:45	1
Magnesium 5	2	0.20	0.043	mg/L		10/08/14 08:57	10/08/14 23:45	1
Wanganese 1.	1	0.0030	0.00040	mg/L		10/08/14 08:57	10/08/14 23:45	1
Nickel 0.03	2	0.010	0.0013	mg/L		10/08/14 08:57	10/08/14 23:45	1
Potassium 9.	7	0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:45	1
Selenium NI)	0.025	0.0087	mg/L		10/08/14 08:57	10/08/14 23:45	1
Silver)	0.0060	0.0017	mg/L		10/08/14 08:57	10/08/14 23:45	1
Sodium 8	5	1.0	0.32	mg/L		10/08/14 08:57	10/08/14 23:45	1
Thallium NI)	0.020	0.010	mg/L		10/08/14 08:57	10/08/14 23:45	1
Zinc 0.03	6 B	0.010	0.0015	mg/L		10/08/14 08:57	10/08/14 23:45	1
Method: 7470A - Mercury (CVAA)								
	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dii Fac
Mercury	D	0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 11:27	1
Method: 7470A - Mercury (CVAA) - Dissolved								
	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<u> </u>	0.00020	0.00012	ma/t		10/13/14 08:55	10/13/14 13:40	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

ojoobono. Orango odanty Land

Lab Sample ID: 480-68692-1

Matrix: Ground Water

Date Collected: 10/06/14 12:55
Date Received: 10/07/14 09:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79		0.50	0.41	mg/L			10/10/14 01:49	1
Sulfate	30		2.0	0.13	mg/L			10/10/14 01:49	1
Alkalinity, Total	600	В	100	40	mg/L			10/14/14 15:18	10
Ammonia	9.1	В	0.20	0.090	mg/L			10/08/14 23:04	10
Total Kjeldahi Nitrogen	9.2		1.0	0.75	mg/L		10/09/14 09:14	10/10/14 04:00	5
Nitrate as N	0.090		0.050	0.020	mg/L			10/07/14 21:59	1
Chemical Oxygen Demand	32	В	10	5.0	mg/L			10/16/14 09:12	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			10/07/14 11:08	1
Cyanide, Total	0.23		0.010	0.0050	mg/L		10/13/14 15:25	10/13/14 22:55	1
Total Organic Carbon	8.9		1.0	0.43	mg/L			10/12/14 08:34	1
Phenolics, Total Recoverable	0.026		0.010	0.0050	mg/L		10/09/14 09:30	10/13/14 20:36	1
Hardness	580		10	2.6	mg/L			10/09/14 11:55	1
Total Dissolved Solids	780		10	4.0	mg/L			10/10/14 23:57	1
Biochemical Oxygen Demand	7.1	b	2.0	2.0	mg/L			10/07/14 23:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	240		1.0	1.0	NTU			10/07/14 23:00	1
Color	ND		5.0	5.0	Color Units			10/07/14 23:20	1

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: 480-68692-2

Matrix: Ground Water

Client Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25 Date Received: 10/07/14 09:00

Method: 6010C - Metals (ICP)

Boron

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/09/14 04:44	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/09/14 04:44	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/09/14 04:44	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/09/14 04:44	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/09/14 04:44	1
1,2-Dichlorobenzene	· ND		5.0	0.44	ug/L			10/09/14 04:44	1
1,2-Dichtoroethane	ND		5.0	0.60	ug/L			10/09/14 04:44	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/09/14 04:44	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/09/14 04:44	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/09/14 04:44	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/09/14 04:44	1
Benzene	ND		5.0	0.60	ug/L			10/09/14 04:44	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/09/14 04:44	1
Bromoform	ND		5.0	0.47	ug/L			10/09/14 04:44	1
Bromomethane	ND		5.0	1.2	ug/L			10/09/14 04:44	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/09/14 04:44	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/09/14 04:44	1
Chloroethane	ND		5.0	0.87	ug/L			10/09/14 04:44	1
Chloroform	ND		5.0	0.54	ug/L			10/09/14 04:44	1
Chloromethane	ND		5.0	0.64	ug/L			10/09/14 04:44	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/09/14 04:44	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/09/14 04:44	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/09/14 04:44	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/09/14 04:44	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/09/14 04:44	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/09/14 04:44	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/09/14 04:44	1
o-Xylene	ND		5.0	0.43	ug/L			10/09/14 04:44	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/09/14 04:44	1
Toluene	ND		5.0	0.45	ug/L			10/09/14 04:44	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/09/14 04:44	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/09/14 04:44	1
Trichloroethene	ND		5.0	0.60	ug/L			10/09/14 04:44	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/09/14 04:44	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/09/14 04:44	1
Xylenes, Total	ND		10	1.1	ug/L			10/09/14 04:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		72 - 130					10/09/14 04:44	1
4-Bromofluorobenzene (Surr)	98		69 - 121					10/09/14 04:44	1
Toluene-d8 (Surr)	99		70 - 123					10/09/14 04:44	1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6.3		0.20	0.060	mg/L		10/08/14 08:55	10/08/14 19:15	1
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/08/14 19:15	1
Arsenic	0.094		0.015	0.0056	mg/L		10/08/14 08:55	10/08/14 19:15	1
Barium	0.63		0.0020	0.00070	mg/L		10/08/14 08:55	10/08/14 19:15	1
Beryllium	0.00047	J	0.0020	0.00030	mg/L		10/08/14 08:55	10/08/14 19:15	17

0.020

0.0040 mg/L

TestAmerica Buffalo

10/09/14 13:57

10/08/14 08:55

0.18

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68692-1

Project/Site: Orange County Landfill

ient Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25 Date Received: 10/07/14 09:00

Lab Sample ID: 480-68692-2

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/08/14 19:15	4
Calcium	180		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:57	1
Chromium	0.028		0.0040	0.0010	mg/L		10/08/14 08:55	10/08/14 19:15	•
Copper	0.091		0.010	0.0016	mg/L		10/08/14 08:55	10/08/14 19:15	
ron	18	В	0.050	0.019	mg/L		10/08/14 08:55	10/08/14 19:15	
Lead	0.017		0.010	0.0030	mg/L		10/08/14 08:55	10/08/14 19:15	
Magnesium	56		0.20	0.043	mg/L		10/08/14 08:55	10/08/14 19:15	4
Manganese	2.0		0.0030	0.00040	mg/L		10/08/14 08:55	10/08/14 19:15	1
Nickel	0.025		0.010	0.0013	mg/L		10/08/14 08:55	10/08/14 19:15	•
Potassium	9.3		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:15	
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/08/14 19:15	
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/08/14 19:15	
Sodium	60		1.0	0.32	mg/L		10/08/14 08:55	10/08/14 19:15	
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/08/14 19:15	
Zinc	0.087	В	0.010	0.0015	mg/L		10/08/14 08:55	10/08/14 19:15	
Method: 6010C - Metals (ICP) - Disa	solved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	8.7		0.20	0.060	mg/L		10/08/14 08:57	10/08/14 23:47	
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:57	10/08/14 23:47	
Arsenic	0.092		0.015	0.0056	mg/L		10/08/14 08:57	10/08/14 23:47	
arium	0.59		0.0020	0.00070	mg/L		10/08/14 08:57	10/08/14 23:47	
Beryllium	0.00048	J	0.0020	0.00030	mg/L		10/08/14 08:57	10/08/14 23:47	
Boron	0.17	В	0.020	0.0040	mg/L		10/08/14 08:57	10/09/14 14:29	
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:57	10/08/14 23:47	
Calcium	150		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:47	
Chromium	0.032		0.0040	0.0010	mg/L		10/08/14 08:57	10/08/14 23:47	
Copper	0.083	В	0.010	0.0016	mg/L		10/08/14 08:57	10/08/14 23:47	
ron	22		0.050	0.019	mg/L		10/08/14 08:57	10/08/14 23:47	
_ead	0.015		0.010	0.0030	mg/L		10/08/14 08:57	10/08/14 23:47	
Magnesium	54		0.20	0.043	mg/L		10/08/14 08:57	10/08/14 23:47	
Manganese	1.7		0.0030	0.00040	mg/L		10/08/14 08:57	10/08/14 23:47	
Nickel	0.030		0.010	0.0013	mg/L		10/08/14 08:57	10/08/14 23:47	
Potassium	9.1		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:47	
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:57	10/08/14 23:47	
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:57	10/08/14 23:47	
Sodium	58		1.0	0.32	mg/L		10/08/14 08:57	10/08/14 23:47	
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:57	10/08/14 23:47	
Zinc	0.087	В	0.010	0.0015	mg/L		10/08/14 08:57	10/08/14 23:47	
Method: 7470A - Mercury (CVAA)					10.3				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 11:29	
Method: 7470A - Mercury (CVAA) -						_		A mod	B.1. F
Analyte		Qualifier	RL	MEDI	Unit	D	Prepared	Analyzed	Dil Fa

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: 480-68692-2

Matrix: Ground Water

Client Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25 Date Received: 10/07/14 09:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61		0.50	0.41	mg/L			10/10/14 02:47	1
Sulfate	34		2.0	0.13	mg/L			10/10/14 02:47	1
Alkalinity, Total	570	В	100	40	mg/L			10/15/14 08:45	10
Ammonia	5.3		0.10	0.045	mg/L			10/09/14 00:43	5
Total Kjeldahl Nitrogen	5.9		0.40	0.30	mg/L		10/09/14 09:14	10/10/14 04:00	2
Nitrate as N	0.69		0.050	0.020	mg/L			10/07/14 22:00	1
Chemical Oxygen Demand	23	В	10	5.0	mg/L			10/16/14 09:12	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			10/07/14 11:08	1
Cyanide, Total	ND		0.010	0.0050	mg/L		10/13/14 15:25	10/13/14 22:56	1
Total Organic Carbon	3.2		1.0	0.43	mg/L			10/12/14 09:02	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		10/09/14 09:30	10/13/14 20:36	1
Hardness	610		10	2.6	mg/L			10/09/14 11:55	1
Total Dissolved Solids	680		10	4.0	mg/L			10/13/14 00:14	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			10/07/14 23:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	450		1.0	1.0	NTU			10/07/14 23:00	1
Color	ND		5.0	5.0	Color Units			10/07/14 23:20	1

Analyte	: Compounds (G0 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L		,	10/09/14 05:09	-
,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/09/14 05:09	
,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/09/14 05:09	1
,1-Dichloroethane	ND		5.0	0.59	ug/L			10/09/14 05:09	1
,1-Dichloroethene	ND		5.0	0.85	ug/L			10/09/14 05:09	1
,2-Dichlorobenzene	ND		5.0		ug/L			10/09/14 05:09	1
,2-Dichloroethane	ND		5.0	0.60	ug/L			10/09/14 05:09	1
,2-Dichloropropane	ND		5.0	0.61	ug/L			10/09/14 05:09	1
,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/09/14 05:09	1
,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/09/14 05:09	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/09/14 05:09	1
Benzene	ND		5.0	0.60	ug/L			10/09/14 05:09	1
romodichloromethane	ND		5.0	0.54	ug/L			10/09/14 05:09	1
romoform	ND		5.0	0.47	ug/L			10/09/14 05:09	1
romomethane	ND		5.0		ug/L			10/09/14 05:09	1
arbon tetrachloride	ND		5.0	0.51	ug/L			10/09/14 05:09	1
hlorobenzene	ND		5.0		ug/L			10/09/14 05:09	1
hloroethane	ND		5.0		ug/L			10/09/14 05:09	-
hioroform	ND		5.0	0.54	ug/L			10/09/14 05:09	1
hloromethane	ND		5.0	0.64	ug/L			10/09/14 05:09	1
is-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/09/14 05:09	1
s-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/09/14 05:09	1
ibromochloromethane	ND		5.0	0.41	ug/L			10/09/14 05:09	1
ichlorodifluoromethane	ND		5.0	0.28	ug/L			10/09/14 05:09	1
thylbenzene	ND		5.0	0.46	ug/L			10/09/14 05:09	1
fethylene Chloride	ND		5.0	0.81	ug/L			10/09/14 05:09	1
n-Xylene & p-Xylene	ND		10	1.1	ug/L			10/09/14 05:09	1
-Xylene	ND		5.0	0.43	ug/L			10/09/14 05:09	1
etrachloroethene	ND		5.0	0.34	ug/L			10/09/14 05:09	
oluene	ND		5.0	0.45	ug/L			10/09/14 05:09	
ans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/09/14 05:09	
ans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/09/14 05:09	
richloroethene	ND		5.0	0.60	ug/L			10/09/14 05:09	
richlorofluoromethane	ND		5.0		ug/L			10/09/14 05:09	
/inyl chloride	ND		5.0		ug/L			10/09/14 05:09	
ylenes, Total	ND		10		ug/L			10/09/14 05:09	•
Currogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	104		72 - 130			-		10/09/14 05:09	
-Bromofluorobenzene (Surr)	98		69 - 121					10/09/14 05:09	
Toluene-d8 (Surr)	98		70 - 123					10/09/14 05:09	

Surrogate Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Ground Water

Prep Type: Total/NA

				Percent Surre	ogate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-68692-1	PZ-14-5	104	104	99	
480-68692-2	PZ-14-3	105	98	99	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Surr	rogate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
4 80-68692 -3	TB1	104	98	98	
LCS 480-206699/6	Lab Control Sample	100	101	101	
MB 480-206699/8	Method Blank	104	101	99	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

10/17/2014

Page 14 of 42

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-206699/8

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Method Blank

Prep Type: Total/NA мв мв

	мв	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/08/14 23:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/08/14 23:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/08/14 23:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/08/14 23:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/08/14 23:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/08/14 23:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/08/14 23:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/08/14 23:03	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/08/14 23:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/08/14 23:03	1
Benzene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/08/14 23:03	1
Bromoform	ND		5.0	0.47	ug/L			10/08/14 23:03	1
Bromomethane	ND		5.0	1.2	ug/L			10/08/14 23:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/08/14 23:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/08/14 23:03	1
Chloroethane	ND		5.0	0.87	ug/L			10/08/14 23:03	1
Chloroform	ND		5.0	0.54	ug/L			10/08/14 23:03	1
hloromethane	ND		5.0	0.64	ug/L			10/08/14 23:03	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/08/14 23:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/08/14 23:03	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/08/14 23:03	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/08/14 23:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/08/14 23:03	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/08/14 23:03	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/08/14 23:03	1
o-Xylene	ND		5.0	0.43	ug/L			10/08/14 23:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/08/14 23:03	1
Toluene	ND		5.0	0.45	ug/L			10/08/14 23:03	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/08/14 23:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
Trichloroethene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/08/14 23:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/08/14 23:03	1
Xylenes, Total	ND		10	1.1	ug/L			10/08/14 23:03	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Limits 1,2-Dichloroethane-d4 (Surr) 104 72 - 130 4-Bromofluorobenzene (Surr) 101 69 - 121 Toluene-d8 (Surr) 99 70 - 123

10/08/14 23:03 10/08/14 23:03 10/08/14 23:03

Lab Sample ID: LCS 480-206699/6

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Daton. 200033	Spike	LCS	LCS				%Rec.	
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.6		ug/L		93	52 - 162	

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-206699/6

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 200099		Spike	LCS	LCS				%Rec.	
Analyte		Added		Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachioroethane		20.0	18.8		ug/L		94	46 - 157	
1,1,2-Trichloroethane		20.0	18.6		ug/L		93	52 _ 150	
1,1-Dichloroethane		20.0	19.6		ug/L		98	59 - 155	
1.1-Dichloroethene		20.0	18.6		ug/L		93	1 - 234	
1,2-Dichlorobenzene		20.0	19.6		ug/L		98	18 - 190	
1,2-Dichloroethane		20.0	19.1		ug/L		96	49 - 155	
1,2-Dichloropropane		20.0	18.4		ug/L		92	1 - 210	
1,3-Dichlorobenzene		20.0	19.3		ug/L		97	59 _ 156	
1,4-Dichlorobenzene		20.0	19.2		ug/L		96	18 - 190	
2-Chloroethyl vinyl ether		20.0	17.0	J	ug/L		85	1 - 305	
Benzene		20.0	19.6		ug/L		98	37 _ 151	
Bromodichloromethane		20.0	18.1		ug/L		91	35 - 155	
Bromoform		20.0	17.4		ug/L		87	45 - 169	
Bromomethane		20.0	24.4		ug/L		122	1 - 242	
Carbon tetrachloride		20.0	18.1		ug/L		91	70 - 140	
Chlorobenzene		20.0	19.1		ug/L		96	37 - 160	
Chloroethane		20.0	22.3		ug/L		111	14 - 230	
Chloroform		20.0	19.4		ug/L		97	51 - 138	
Chloromethane		20.0	19.2		ug/L		96	1 - 273	
cis-1,2-Dichloroethene		20.0	19.6		ug/L		98		
cis-1,3-Dichloropropene		20.0	18.4		ug/L		92	1 - 227	
Dibromochloromethane		20.0	18.3		ug/L		91	53 - 149	
Dichlorodifluoromethane		20.0	17.2		ug/L		86		
Ethylbenzene		20.0	20.1		ug/L		100	37 - 162	
Methylene Chloride		20.0	18.4		ug/L		92	1 - 221	
m-Xylene & p-Xylene		20.0	19.5	5	ug/L		97	79 - 120	
o-Xylene		20.0	20.8	3	ug/L		104	79 - 120	
Tetrachloroethene		20.0	18.5	5	ug/L		92	64 - 148	
Toluene		20.0	19.5	5	ug/L		98	47 - 150	
trans-1,2-Dichloroethene		20.0	19.4	l .	ug/L		97	54 - 156	
trans-1,3-Dichloropropene		20.0	19.6	3	ug/L		98	17 - 183	
Trichloroethene		20.0	19.0)	ug/L		95	71 - 157	
Trichlorofluoromethane		20.0	18.8	3	ug/L		94	17 - 181	
Vinyl chloride		20.0	18.4	1	ug/L		92	1 _ 251	
	LCS LCS								
Surmanta		Limite							
Surrogate	%Recovery Qualifier	Limits							

1,2-Dichloroethane-d4 (Surr) 100 72 - 130 4-Bromofluorobenzene (Surr) 101 69 - 121 70 - 123 Toluene-d8 (Surr) 101

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-206499/1-A

Matrix: Water

Analyte

Aluminum

Analysis Batch: 207036

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 206499

MB MB Result Qualifier Prepared Analyzed Dil Fac ND 0.20 10/08/14 08:55 10/09/14 13:26 0.060 mg/L

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-206499/1-A Matrix: Water

Analysis Batch: 207036

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 206499

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/09/14 13:26	1
Arsenic	ND		0.015	0.0056	mg/L		10/08/14 08:55	10/09/14 13:26	1
Barium	ND		0.0020	0.00070	mg/L		10/08/14 08:55	10/09/14 13:26	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Boron	ND		0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/09/14 13:26	1
Calcium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Chromium	ND		0.0040	0.0010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Copper	ND		0.010	0.0016	mg/L		10/08/14 08:55	10/09/14 13:26	1
Iron	0.0326	J	0.050	0.019	mg/L		10/08/14 08:55	10/09/14 13:26	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Magnesium	ND		0.20	0.043	mg/L		10/08/14 08:55	10/09/14 13:26	1
Manganese	ND		0.0030	0.00040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Nickel	ND		0.010	0.0013	mg/L		10/08/14 08:55	10/09/14 13:26	1
Potassium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/09/14 13:26	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/09/14 13:26	1
Sodium	ND		1.0	0.32	mg/L		10/08/14 08:55	10/09/14 13:26	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/09/14 13:26	1
inc	0.00455	J	0.010	0.0015	mg/L		10/08/14 08:55	10/09/14 13:26	1

Lab Sample ID: LCS 480-206499/2-A

Matrix: Water

Analysis Batch: 206924

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 206499

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	8.95		mg/L		89	80 - 120	
Antimony	0.200	0.192		mg/L		96	80 - 120	
Arsenic	0.201	0.184		mg/L		92	80 - 120	
Barium	0.200	0.217		mg/L		108	80 - 120	
Beryllium	0.201	0.197		mg/L		98	80 - 120	
Cadmium	0.201	0.188		mg/L		94	80 - 120	
Chromium	0.201	0.188		mg/L		94	80 - 120	
Copper	0.201	0.214		mg/L		107	80 - 120	
Iron	10.0	9.07		mg/L		91	80 - 120	
Lead	0.201	0.187		mg/L		93	80 - 120	
Magnesium	10.0	10.2		mg/L		101	80 - 120	
Manganese	0.201	0.202		mg/L		101	80 - 120	
Nickel	0.201	0.183		mg/L		91	80 - 120	
Potassium	10.0	9.25		mg/L		92	80 - 120	
Selenium	0.201	0.189		mg/L		94	80 - 120	
Silver	0.0500	0.0528		mg/L		106	80 - 120	
Sodium	10.0	9.32		mg/L		93	80 - 120	
Zinc	0.201	0.206		mg/L		103	80 - 120	

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-206499/2-A Prep Type: Total/NA Matrix: Water Prep Batch: 206499 Analysis Batch: 207036

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	0.200	0.201		mg/L		100	80 - 120	
Calcium	10.0	9.78		mg/L		98	80 - 120	
Thallium	0,200	0.206		mg/L		103	80 - 120	

Lab Sample ID: MB 480-206494/1-A

Matrix: Water

Analysis Batch: 206785

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 206494

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		10/08/14 08:57	10/08/14 23:14	1
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:57	10/08/14 23:14	1
Arsenic	ND		0.015	0.0056	mg/L		10/08/14 08:57	10/08/14 23:14	1
Barium	ND		0.0020	0.00070	mg/L		10/08/14 08:57	10/08/14 23:14	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:57	10/08/14 23:14	1
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:57	10/08/14 23:14	1
Calcium	ND		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:14	1
Chromium	ND		0.0040	0.0010	mg/L		10/08/14 08:57	10/08/14 23:14	1
Copper	0.00182	J	0.010	0.0016	mg/L		10/08/14 08:57	10/08/14 23:14	1
Iron	ND		0.050	0.019	mg/L		10/08/14 08:57	10/08/14 23:14	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:57	10/08/14 23:14	1
Magnesium	ND		0.20	0.043	mg/L		10/08/14 08:57	10/08/14 23:14	1
Manganese	ND		0.0030	0.00040	mg/L		10/08/14 08:57	10/08/14 23:14	1
Nickel	ND		0.010	0.0013	mg/L		10/08/14 08:57	10/08/14 23:14	1
Potassium	ND		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:14	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:57	10/08/14 23:14	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:57	10/08/14 23:14	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:57	10/08/14 23:14	1
Zinc	0.00545	J	0.010	0.0015	mg/L		10/08/14 08:57	10/08/14 23:14	1

Lab Sample ID: MB 480-206494/1-A

Matrix: Water

Analysis Batch: 207038

Analysis Batch: 206785

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 206494

		IND	IVID							
-	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-	Boron	0.0104	J	0.020	0.0040	mg/L		10/08/14 08:57	10/09/14 14:13	1
	Sodium	ND		1.0	0.32	mg/L		10/08/14 08:57	10/09/14 14:13	1

Lab Sample ID: LCS 480-206494/2-A Client Sample ID: Lab Control Sample Matrix: Water

Prep Type: Total Recoverable

Prep Batch: 206494

	,	Spike	LCS	LCS				%Rec.	
	Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
	Aluminum	10.0	8.81		mg/L		88	80 - 120	
,	Antimony	0.200	0.191		mg/L		96	80 - 120	
	Arsenic	0.201	0.181		mg/L		90	80 - 120	
	Barium	0.200	0.213		mg/L		106	80 - 120	
	Beryllium	0.201	0.192		mg/L		96	80 - 120	
	Cadmium	0.201	0.185		mg/L		92	80 - 120	
	Calcium	10.0	8.46		mg/L		84	80 - 120	

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

lethod: 6010C - Metals (ICP) (Continued)

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Sample ID: LCS 480-206494/2-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total Recoverable

Analysis Batch: 206785 Prep Batch: 206494

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.201	0.182		mg/L		91	80 - 120	
Copper	0.201	0.201		mg/L		100	80 - 120	
Iron	10.0	8.88		mg/L		89	80 - 120	
Lead	0.201	0.182		mg/L		91	80 - 120	
Magnesium	10.0	9.86		mg/L		99	80 - 120	
Manganese	0.201	0.198		mg/L		99	80 - 120	
Nickel	0.201	0.181		mg/L		90	80 - 120	
Potassium	10.0	9.19		mg/L		92	80 - 120	
Selenium	0.201	0.180		mg/L		90	80 - 120	
Silver	0.0500	0.0513		mg/L		103	80 - 120	
Thallium	0.200	0.199		mg/L		100	80 - 120	
Zinc	0.201	0.196		mg/L		98	80 - 120	

Lab Sample ID: LCS 480-206494/2-A

Matrix: Water

Analysis Batch: 207038

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 206494

- 1									
1		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
ĺ	Boron	0.200	0.209		mg/L		104	80 - 120	
-	Sodium	10.0	9.51		mg/L		95	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-206574/1-A

Matrix: Water

Analysis Batch: 206912

Client	Sample	ID:	Meth	od	Blank
	Dre	on I	vno:	To	tal/NA

Client Sample ID: Lab Control Sample

Prep Batch: 206574

Prep Type: Total/NA Prep Batch: 206574

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mereury	ND		0.00020	0.00012	mg/L		10/08/14 10:50	10/09/14 11:15	1

Lab Sample ID: LCS 480-206574/2-A

мв мв

Matrix: Water

Analysis Batch: 206912 Spike LCS LCS Added Result Qualifier Unit

%Rec. Analyte %Rec Limits Mercury 0.00667 0.00712 80 - 120 mg/L 107

Lab Sample ID: MB 480-207374/1-A

Matrix: Water

Analysis Batch: 207557

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 207374

MB MB RL DII Fac Analyte Result Qualifier MDL Unit Prepared Analyzed Mercury 0.00020 10/13/14 08:55 10/13/14 13:32 ND 0.00012 mg/L

Spike

Added

0.00667

Spike

Added

0.00667

Spike

Added

0.00667

Sample Sample

ND

Result Qualifier

Sample Sample

Qualifier

MB MB

ND

Sample Sample

Qualifier

MB MB

ND

ND

Result Qualifier

Result

240

Result Qualifier

Result

ND

LCS LCS Result Qualifier

> MS MS

Result Qualifler

MSD MSD

Qualifler

RL Unit

1.0 NTU

Du Du

247

Result Qualifier

MDL Unit

0.13 mg/L

0.41 mg/L

Result

0.00675

RL

1.0

0.00710

0.00685

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

NTU

D

D

D

D

%Rec

106

%Rec

%Rec

Prepared

D

101

103

Client Sample ID: Lab Control Sample

Limits

80 - 120

Limits

80 - 120

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

10/07/14 23:00

Client Sample ID: Method Blank

Analyzed

10/10/14 01:10 10/10/14 01:10

Client Sample ID: Lab Control Sample

%Rec.

Limits

Client Sample ID: PZ-14-5

Prep Type: Total/NA

RPD

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 207374

Client Sample ID: PZ-14-5

Client Sample ID: PZ-14-5

Prep Type: Dissolved

Prep Batch: 207374

RPD

Prep Type: Total/NA

RPD

Limit

Dil Fac

RPD

Limit

Dil Fac

20

20

Prep Type: Dissolved

Prep Batch: 207374

Method: 7470A	- Mercury (CVAA)	(Continued)

Lab Sample ID: LCS 480-207374/2-A

Matrix: Water Analysis Batch: 207557

Analyte

Mercury

Mercury

Mercury

Lab Sample ID: 480-68692-1 MS Matrix: Ground Water

Analysis Batch: 207557

Analyte

Lab Sample ID: 480-68692-1 MSD **Matrix: Ground Water**

Analysis Batch: 207557

Analyte

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 480-206480/3

Matrix: Water

Analysis Batch: 206480

Analyte Turbidity

Lab Sample ID: 480-68692-1 DU

Matrix: Ground Water Analysis Batch: 206480

Analyte

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 240-150879/27

Matrix: Water

Turbidity

Chloride

Analysis Batch: 150879

Analyte

Sulfate Lab Sample ID: LCS 240-150879/28

Matrix: Water

Analysis Batch: 150879

Spike Analyte Chloride Sulfate 50.0

LCS LCS Added Result Qualifier 50.0 47 7

RL

0.50

2.0

47.3

mg/L mg/L

Unit D %Rec

90 - 110 95 95 90 - 110

Prepared

TestAmerica Buffalo

Prep Type: Total/NA

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Analyte

Alkalinity, Total

TestAmerica Job ID: 480-68692-1

Method: 300.0	- Anions,	, ion	Chromatography	(Continued)
---------------	-----------	-------	----------------	-------------

Lab Sample ID: 480-68692-1 MS Matrix: Ground Water												(lient Samp Prep T		
Analysis Batch: 150879													i ich i	, pc. 10	, can i u
Analysis Baton. 100075	Sample	Sam	pie	Spike		MS	MS						%Rec.		
Analyte	Result		•	Added		Result		lifier	Unit		D	%Rec	Limits		
Chloride	79	- Cuu		50.0		128	Q G G		mg/L		_	98	80 - 120	_	
Sulfate	30			50.0		80.2			mg/L			100	80 - 120		
Lab Sample ID: 480-68692-1 MSD												(lient Samp	le ID: P	7.14.
Matrix: Ground Water													Prep T		
Analysis Batch: 150879													riep i	ypo. Ic	/UCII/14/
Allalysis Batcii. 150879	Sample	Sam	nle	Spike		MSD	MSE	1					%Rec.		RPI
Analyte	Result		•	Added		Result			Unit		D	%Rec	Limits	RPD	Lim
Chloride		Qua	iiiier				Qua	imer							
	79			50.0		123			mg/L			88	80 - 120	4	2
Sulfate	30			50.0		77.2			mg/L			94	80 _ 120	4	2
Method: 310.2 - Alkalinity															
Lab Sample ID: MB 480-207719/185												Client 5	Sample ID: I	Method	Blan
Matrix: Water													Prep T		
Analysis Batch: 207719													i icp i	, pc. 10	, can a
Allalysis Batch. 201119		MR	MB												
Analyte	D		Qualifier		RL		MDI	Unit		D	p	repared	Analyz	ed	Dil Fa
Alkalinity, Total		ND	Quantitot		10			mg/L		- <u>-</u> -		1000100	10/14/14		
ab Sample ID: MB 480-207719/192												Client S	Sample ID: I	Method	Blan
Matrix: Water													Prep T	ype: To	tal/N
Analysis Batch: 207719													•		
, , , , , , , , , , , , , , , , , , , ,		MB	MB												
Analyte	R	esuit	Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dil Fa
Alkalinity, Total		ND			10			mg/L		-		•	10/14/14		
Lab Sample ID: MB 480-207719/203												Client S	Sample ID: I	Method	Blan
Matrix: Water													Prep T	ype: To	tal/N
Analysis Batch: 207719															
-		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dii Fa
Alkalinity, Total		4.00	J		10		4.0	mg/L					10/14/14	5:17	
Lab Sample ID: LCS 480-207719/186	6									Cli	ent	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Water										- 11			Prep T		_
Analysis Batch: 207719														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Allalysis Batcii. 2017 19				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result			Unit		D	%Rec	Limits		
Alkelinity, Total				50.0		51.4	Quu		mg/L		_	103	90 - 110		
									_						
Lab Sample ID: LCS 480-207719/193	3									Cli	ent	Sample	D: Lab Co	ntrol S	ampl
Matrix: Water													Prep Ty		
Analysis Batch: 207719															
, 510 - 410111 - 4511 10				Spike		LCS	LCS						%Rec.		
				- 1											

Result Qualifier

51.0

Unit

mg/L

%Rec

102

Limits

90 - 110

Added

50.0

Client Sample ID: Method Blank

Analyzed

10/15/14 08:34

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Prepared

Method: 3	310.2 -	Alkalinity	(Continued)
-----------	---------	------------	-------------

Lab Sample ID: LCS 480-207719/204 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water

Analysis Batch: 207719

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 90 - 110 Alkalinity, Total 50.0 50.2 mg/L 100

Lab Sample ID: MB 480-207973/12

Matrix: Water

Analyte

Analysis Batch: 207973

Prep Type: Total/NA MB MB

MDL Unit

4.0 mg/L

Lab Sample ID: MB 480-207973/26

Matrix: Water

Alkalinity, Total

Analysis Batch: 207973

MB MB

Result Qualifier

5.07

MDL Unit Dil Fac Analyte Result Qualifler RL Prepared Analyzed 10/15/14 08:38 Alkalinity, Total 4.34 J 4.0 mg/L

RL

10

Lab Sample ID: LCS 480-207973/13

Matrix: Water

Analysis Batch: 207973

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 50.0 mg/L 105 90 - 110 Alkalinity, Total 52.6

Lab Sample ID: LCS 480-207973/27

Matrix: Water

Analysis Batch: 207973

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 50.0 51.5 103 Alkalinity, Total ma/L 90 - 110

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-206737/123 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 206737

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 10/09/14 00:39 0.020 Ammonia ND 0.0090 mg/L

Lab Sample ID: MB 480-206737/3

Matrix: Water

Analysis Batch: 206737

Result Qualifier RL Dil Fac Analyte MDL Unit D Prepared Analyzed 0.00905 J 0.020 10/08/14 22:54 Ammonia 0.0090 mg/L

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Method Blank

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Method:	350.1	- Nitrogen,	Ammonia	(Continued)
		-		4 /

Lab Sample ID: MB 480-206737/75 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737

MB MB Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Ammonia 0.0111 J 0.020 10/08/14 23:56 0.0090 mg/L

Lab Sample ID: MB 480-206737/99 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737

MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte Ammonia 0.00994 J 0.020 0.0090 mg/L 10/09/14 00:18

Lab Sample ID: LCS 480-206737/100 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 206737

Spike LCS LCS %Rec. Analyte Added Result Qualifler Unit %Rec Limits D 90 - 110 Ammonia 1.00 0.990 mg/L 99

Lab Sample ID: LCS 480-206737/124 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 206737 LCS LCS Spike %Rec. halyte Added Result Qualifier Unit D %Rec Limits

mg/L 90 _ 110 Ammonia 1.00 0.989 99

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-206737/4 Matrix: Water

Analysis Batch: 206737

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Ammonia 1.00 0.997 mg/L 100 90 - 110

Lab Sample ID: LCS 480-206737/76 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 206737

Spike LCS LCS %Rec. Result Qualifier Limits Analyte Added Unit D %Rec 99 90 - 110 Ammonia 1.00 0.990 mg/L

Method: 351.2 - Nitrogen, Total Kjeldahl

Client Sample ID: Method Blank Lab Sample ID: MB 480-206899/1-A Prep Type: Total/NA **Matrix: Water** Prep Batch: 206899 Analysis Batch: 207003

MB MB Dil Fac Result RL MDL Unit Prepared Analyzed Analyte Qualifier 0.20 0.15 10/09/14 09:14 10/09/14 18:23 Total Kjeldahl Nitrogen ND mg/L

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Project/Site: Orange County Landfill

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: LCS 480-206899/2-A					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 207003							Prep Batch: 206899
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Kieldahi Nitrogen	2.50	2.59		ma/L		104	90 - 110

Method:	440 4		COD
METHOR	410.4	-	COD

Matrix: Water

Lab Sample ID: MB 480-208155/27

Matrix: Water							Prep Type:	Total/NA
Analysis Batch: 208155								
	MB	MB						
Analyte	Result	Qualifier	RI	MDL Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Kaznır	Qualifier	KL	MIDI	Offic	U	riepared	Allalyzeu	Dirac	
Chemical Oxygen Demand	8.34	J	10	5.0	mg/L			10/16/14 09:12	1	
Total for										
Lab Sample ID: MB 480-208155/3							Client Sa	mple ID: Metho	d Blank	

Analysis Batch: 208155									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Ources Demand	MD		10	5.0	ma/l	_		10/16/14 00:12	- 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	ND		10	5.0	mg/L	 _		10/16/14 09:12	1
Lab Sample ID: MB 480-208155/51							Client Sa	mple ID: Metho	d Blank

Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 208155									
	MB	MB							
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	7.37	J	10	5.0	mg/L			10/16/14 09:12	1

Lab Sample ID: LCS 480-208155/28 Matrix: Water			Client Sample ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 208155	Spike	LCS LCS	%Rec.

ĺ		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifler	Unit	D	%Rec	Limits	
-	Chemical Oxygen Demand	25.0	26.7		mg/L	_	107	90 _ 110	

Lab Sample ID: LCS 480-208155/4 Matrix: Water					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 208155								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	25.0	25.1		mg/L		100	90 - 110	

Lab Sample ID: LCS 480-208155/52 Matrix: Water					Client	Sample	ID: Lab Cont Prep Type	rol Sample e: Total/NA
Analysis Batch: 208155								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	25.0	22.5		mg/L		90	90 - 110	

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: MB 480-206384/3 Matrix: Water											Client S	ample ID: Meti Prep Type	
Analysis Batch: 206384													
		B MB											
Analyte Chromium, hexavalent	Resu	t Qualifier		RL 0.010		MDL 0050			D	P	repared	Analyzed 10/07/14 11:08	Dil F
on on one of the original of t	141			0.010	0.	0000	Hight					10/07/14 11:00	,
Lab Sample ID: LCS 480-206384/4									CI	ient	Sample	ID: Lab Contr	ol Samp
Matrix: Water												Prep Type	: Total/N
Analysis Batch: 206384			Spike		1.00	LCS						%Rec.	
Analyte			Added		Result		ifier	Unit		D	%Rec	%Rec.	
Chromium, hexavalent			0.0500		0.0520	Quan	illes	mg/L		-	104	85 ₋ 115	
			0.0000		0.0020			g. =			101	00-710	
Lab Sample ID: 480-68692-2 MS											C	lient Sample II	D: PZ-14
Matrix: Ground Water												Prep Type	: Total/N
Analysis Batch: 206384													
	Sample Sa		Spike			MS						%Rec.	
Analyte	Result Qu	alifier	Added		Result		ifier	Unit		D	%Rec	Limits	
Chromium, hexavalent	ND		0.0500		0.103	F1		mg/L			205	85 _ 115	
ethod: 9012B - Cyanide, Tota	l andor A	Menable)								0		
Lab Sample ID: MB 480-207517/1-A Matrix: Water											Client S	ample ID: Meti Prep Type	
nalysis Batch: 207541												Prep Bato	h. 2075
												Fieh Date	11. 2013
		B MB											
	Resu	t Qualifier		RL		MDL			D		repared	Analyzed	Dill
•	Resu			RL 0.010		MDL 0050					repared 3/14 15:25	Analyzed	Dil I
Cyanide, Total	Resu	t Qualifier								10/1	3/14 15:25	Analyzed	Dill
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A	Resu	t Qualifier								10/1	3/14 15:25	Analyzed 10/13/14 22:41	Dil I
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water	Resu	t Qualifier			0.	0050				10/1	3/14 15:25	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc	ol Samp
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541	Resu	t Qualifier	Spike		0.	0050 LCS	mg/L			10/1	3/14 15:25 Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec.	ol Samp
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte	Resu	t Qualifier	Added		LCS Result	0050 LCS	mg/L	Unit		10/1	3/14 15:25 Sample %Rec	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc %Rec. Limits	Dil F ol Samp
Analyte Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total	Resu	t Qualifier	-		0.	0050 LCS	mg/L	Unit mg/L		10/1	3/14 15:25 Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec.	Dil F ol Samp
Cysnide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total	Resul	t Qualifier	Added		LCS Result	0050 LCS	mg/L			10/1	3/14 15:25 Sample %Rec	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc %Rec. Limits	Dil F ol Samp
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total Method: 9060A - Organic Carbo	Resul	t Qualifier	Added		LCS Result	0050 LCS	mg/L			ient	3/14 15:25 Sample %Rec 93	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc %Rec. Limits 90 - 110	ol Samp : Total/h h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total	Resul	t Qualifier	Added		LCS Result	0050 LCS	mg/L			ient	3/14 15:25 Sample %Rec 93	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc %Rec. Limits	ol Samp : Total/h h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water	Resul	t Qualifier	Added		LCS Result	0050 LCS	mg/L			ient	3/14 15:25 Sample %Rec 93	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110	ol Sam : Total/l h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water	Resul	t Qualifier	Added		LCS Result	0050 LCS	mg/L			ient	3/14 15:25 Sample %Rec 93	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110	ol Samp : Total/I h: 2075
cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total Bethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429	Resul NI On, Total Mi Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.			ient	3/14 15:25 Sample %Rec 93	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type Prep Batc %Rec. Limits 90 - 110 ample ID: Meti Prep Type: Analyzed	ol Samp : Total// h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429	Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.		CI	ient	3/14 15:25 Sample %Rec 93 Client S.	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110 ample iD: Meti Prep Type:	ol Samp : Total/I h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429 Analyte Total Organic Carbon	Resul NI On, Total Mi Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.		CI	ient D	3/14 15:25 Sample %Rec 93 Client Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110 ample iD: Meti Prep Type: Analyzed 10/12/14 04:47	ol Samp : Total// h: 2075
Jab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Janalyte Janalyte Janalyte Janalyte Janalyte Janalyte Janalyte Jab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429 Janalyte Jana	Resul NI On, Total Mi Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.		CI	ient D	3/14 15:25 Sample %Rec 93 Client Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110 ample ID: Meti Prep Type: Analyzed 10/12/14 04:47	ol Sami
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429 Analyte Total Organic Carbon Lab Sample ID: LCS 480-207429/28 Matrix: Water	Resul NI On, Total Mi Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.		CI	ient D	3/14 15:25 Sample %Rec 93 Client Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110 ample iD: Meti Prep Type: Analyzed 10/12/14 04:47	ol Samp : Total/I h: 2075
Cyanide, Total Lab Sample ID: LCS 480-207517/2-A Matrix: Water Analysis Batch: 207541 Analyte Cyanide, Total ethod: 9060A - Organic Carbo Lab Sample ID: MB 480-207429/27	Resul NI On, Total Mi Resul	(TOC)	Added	0.010	LCS Result 0.232	LCS Quali	mg/L.		CI	ient D	3/14 15:25 Sample %Rec 93 Client Sample	Analyzed 10/13/14 22:41 ID: Lab Contro Prep Type: Prep Batc %Rec. Limits 90 - 110 ample ID: Meti Prep Type: Analyzed 10/12/14 04:47	ol Samp : Total/I h: 2075

Client Sample ID: Method Blank

Method: 9066 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-206888/1-A

Matrix: Water

Analysis Batch: 207542

MR MR

Result Qualifier Analyte Phenolics, Total Recoverable ND

RL MDL Unit 0.010 0.0050 mg/L

Prepared

10/09/14 09:30

Dil Fac Analyzed 10/13/14 19:12

Prep Type: Total/NA

Prep Batch: 206888

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 206888

Lab Sample ID: LCS 480-206888/2-A

Matrix: Water

Analysis Batch: 207542

Analyte 0.100 Phenolics, Total Recoverable

Spike Added

LCS LCS Result Qualifler 0.106

Unit D %Rec 106 mg/L

Limits 90 - 110

Client Sample ID: Lab Control Sample

%Rec

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-206725/3

Matrix: Water

Analysis Batch: 206725

MR MR

Analyte Result Qualifier Color ND

RL RL Unit 5.0 5.0

D Color Units

Analyzed 10/07/14 23:20

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-206725/4

Matrix: Water

Analysis Batch: 206725

Analyte Color

Lab Sample ID: 480-68692-1 DU Matrix: Ground Water

Analysis Batch: 206725

Sample Sample Analyte Result Qualifler Color ND

Spike Added 30.0

LCS LCS Result Qualifier 30.0

טם טם

ND

Result Qualifler

Unit Color Units

Unit

Color Units

D %Rec 100

D

Prepared

%Rec. Limits 90 - 110

Prep Type: Total/NA

Client Sample ID: PZ-14-5 Prep Type: Total/NA

RPD Limit RPD 20

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 480-206969/51

Matrix: Water

Analyte

Hardness

Analysis Batch: 206969

MR MR

ND

Result Qualifier ND

RL 2.0

MDL Unit 0.53 mg/L Prepared

Analyzed 10/09/14 11:55

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: MB 480-206969/75

Matrix: Water

Analysis Batch: 206969

Analyte Result Qualifier

Hardness

MB MB

RL 2.0

MDL Unit 0.53 mg/L D Prepared

Analyzed 10/09/14 11:55

Dil Fac

QC Sample Results

Client: Sterling Environmental Engineering PC

Analyte

Biochemical Oxygen Demand

TestAmerica Job ID: 480-68692-1

	otal (mg	y/I as Ca	C03) (C	ontin	ued)								
Lab Sample ID: LCS 480-206969/52									Cli	ent	Sample	ID: Lab Control	Samp
Matrix: Water												Prep Type: T	otal/N
Analysis Batch: 206969													
Analyte			Spike Added		LCS	Qualifie		Unit		D	%Rec	%Rec. Limits	
Hardness			298		288	Qualific	and the same of th	ng/L		_	97	90 - 110	
Lab Sample ID: LCS 480-206969/76									Cli	ent	Sample	ID: Lab Control	-
Matrix: Water Analysis Batch: 206969												Prep Type: 1	otal/N
Analysis Batch: 200909			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qualifie	r l	Unit		D	%Rec	Limits	
Hardness			298		284	-	r	mg/L			95	90 - 110	
lethod: SM 2540C - Solids, Total	l Discol	und (TD)	2)										
iethod. Swi 2540C - Solids, Total	DISSOI	ved (TD	0)										
Lab Sample ID: MB 480-207217/1											Client S	ample ID: Metho	
Matrix: Water												Prep Type: 1	otal/N
Analysis Batch: 207217	МВ	MR											
Analyte		Qualifier		RL		MDL Ur	iit		D	Pi	repared	Analyzed	Dil F
Total Dissolved Solids	ND			10		4.0 mg]/L					10/10/14 23:57	
Lab Sample ID: LCS 480-207217/2 Matrix: Water Analysis Batch: 207217 Analyte			Spike Added		LCS	LCS Qualifie	r I	Unit		D	%Rec	Prep Type: 1 %Rec. Limits	
Total Dissolved Solids			504		500	Quanne		mg/L		_	99	85 - 115	
ab Sample ID: MB 480-207341/1		***									Client S	ample ID: Metho	
Analysis Batch: 207341		MB				MDL Ur	sit		D	Pi	repared	Analyzed	Dil F
		Qualifier		PI			1114				oparea		
Analyte		Qualifier		RL 10		4.0 mg	g/L		-			10/13/14 00:14	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2	Result	Qualifier					3/L		-		Sample	ID: Lab Control	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water	Result	Qualifier					g/L		-		Sample		
Analysis Batch: 207341 Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water Analysis Batch: 207341	Result	Qualifier	Spike				3/L		-		Sample	ID: Lab Control	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water	Result	Qualifier	Added		LCS Result	4.0 mg	r I	Unit	-		%Rec	PID: Lab Control Prep Type: 7 %Rec. Limits	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water Analysis Batch: 207341	Result	Qualifier			LCS	4.0 mg	r I	Unit mg/L	-	ient		Prep Type: 1	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water Analysis Batch: 207341	Result	Qualifier	Added		LCS Result	4.0 mg	r I		-	ient	%Rec	PID: Lab Control Prep Type: 7 %Rec. Limits	
Analyte Total Dissolved Solids Lab Sample ID: LCS 480-207341/2 Matrix: Water Analysis Batch: 207341 Analyte Total Dissolved Solids	Result	Qualifier	Added		LCS Result	4.0 mg	r I		-	D	%Rec 102	PID: Lab Control Prep Type: 7 %Rec. Limits	otal/N

TestAmerica Buffalo

Analyzed

10/07/14 23:53

D

Prepared

Dil Fac

RL

2.0

MDL Unit

2.0 mg/L

Result Qualifier

ND

QC Sample Results

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68692-1

Client Sample ID: PZ-14-3

Project/Site: Orange County Landfill

Lab Sample ID: 480-68692-2 DU

Method:	SM	5210B	- BOD,	5-Day	(Continued)
---------	----	-------	--------	-------	-------------

Lab Sample ID: LCS 480-206522/2 Matrix: Water					Client	Sample	Prep Type: Total/NA
Analysis Batch: 206522							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifler	Unit	D	%Rec	Limits
Riochemical Ovygen Demand	198	215		ma/l		109	85 115

4	Matrix. Ground water							FIE	p Type. To	MINIO
-	Analysis Batch: 206522									
		Sample	Sample	DU	DU					RPD
1	Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
	Biochemical Oxygen Demand	ND		 5.02		mg/L		-	NC	20

TestAmerica Job ID: 480-68692-1

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

GC/MS VOA

Analysis E	Batch:	206699
------------	--------	--------

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5		Total/NA	Ground Water	624	
480-68692-2	PZ-14-3		Total/NA	Ground Water	624	
480-68692-3	TB1		Total/NA	Water	624	
LCS 480-206699/6	Lab Control Sample		Total/NA	Water	624	
MB 480-206699/8	Method Blank	1	Total/NA	Water	624	

Metals

Prep Batch: 206494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	3005A	
480-68692-2	PZ-14-3	Dissolved	Ground Water	3005A	
LCS 480-206494/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 480-206494/1-A	Method Blank	Total Recoverable	Water	3005A	

Prep Batch: 206499

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	3005A	
480-68692-2	PZ-14-3	Total/NA	Ground Water	3005A	
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-206499/1-A	Method Blank	Total/NA	Water	3005A	

ep Batch: 206574

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
PZ-14-5	Total/NA	Ground Water	7470A	
PZ-14-3	Total/NA	Ground Water	7470A	
Lab Control Sample	Total/NA	Water	7470A	
Method Blank	Total/NA	Water	7470A	
	PZ-14-5 PZ-14-3 Lab Control Sample	PZ-14-5 Total/NA PZ-14-3 Total/NA Lab Control Sample Total/NA	PZ-14-5 Total/NA Ground Water PZ-14-3 Total/NA Ground Water Lab Control Sample Total/NA Water	PZ-14-5 Total/NA Ground Water 7470A PZ-14-3 Total/NA Ground Water 7470A Lab Control Sample Total/NA Water 7470A

Analysis Batch: 206785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	6010C	206494
480-68692-2	PZ-14-3	Dissolved	Ground Water	6010C	206494
LCS 480-206494/2-A	Lab Control Sample	Total Recoverable	Water	6010C	206494
MB 480-206494/1-A	Method Blank	Total Recoverable	Water	6010C	206494

Analysis Batch: 206912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	7470A	206574
480-68692-2	PZ-14-3	Total/NA	Ground Water	7470A	206574
LCS 480-206574/2-A	Lab Control Sample	Total/NA	Water	7470A	206574
MB 480-206574/1-A	Method Blank	Total/NA	Water	7470A	206574

Analysis Batch: 206924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	6010C	206499
480-68692-2	PZ-14-3	Total/NA	Ground Water	6010C	206499
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	6010C	206499

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Metals	(Continued)
122-0-001-0-1	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Analysis Batch: 207	036	
---------------------	-----	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	6010C	206499
480-68692-2	PZ-14-3	Total/NA	Ground Water	6010C	206499
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	6010C	206499
MB 480-206499/1-A	Method Blank	Total/NA	Water	6010C	206499

Analysis Batch: 207038

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
PZ-14-5	Dissolved	Ground Water	6010C	206494
PZ-14-3	Dissolved	Ground Water	6010C	206494
Lab Control Sample	Total Recoverable	Water	6010C	206494
Method Blank	Total Recoverable	Water	6010C	206494
	PZ-14-5 PZ-14-3 Lab Control Sample	PZ-14-5 Dissolved PZ-14-3 Dissolved Lab Control Sample Total Recoverable	PZ-14-5 PZ-14-3 Dissolved Ground Water Dissolved Ground Water Total Recoverable Water	PZ-14-5 Dissolved Ground Water 6010C PZ-14-3 Dissolved Ground Water 6010C Lab Control Sample Total Recoverable Water 6010C

9

Prep Batch: 207374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	7470A	
480-68692-1 MS	PZ-14-5	Dissolved	Ground Water	7470A	
480-68692-1 MSD	PZ-14-5	Dissolved	Ground Water	7470A	
480-68692-2	PZ-14-3	Dissolved	Ground Water	7470A	
LCS 480-207374/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-207374/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 207557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	7470A	207374
480-68692-1 MS	PZ-14-5	Dissolved	Ground Water	7470A	207374
480-68692-1 MSD	PZ-14-5	Dissolved	Ground Water	7470A	207374
480-68692-2	PZ-14-3	Dissolved	Ground Water	7470A	207374
LCS 480-207374/2-A	Lab Control Sample	Total/NA	Water	7470A	207374
MB 480-207374/1-A	Method Blank	Total/NA	Water	7470A	207374

General Chemistry

Analysis Batch: 150879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	300.0	
480-68692-1 MS	PZ-14-5	Total/NA	Ground Water	300.0	
480-68692-1 MSD	PZ-14-5	Total/NA	Ground Water	300.0	
480-68692-2	PZ-14-3	Total/NA	Ground Water	300.0	
LCS 240-150879/28	Lab Control Sample	Total/NA	Water	300.0	
MB 240-150879/27	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 206384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	7196A	
480-68692-2	PZ-14-3	Total/NA	Ground Water	7196A	
480-68692-2 MS	PZ-14-3	Total/NA	Ground Water	7196A	
LCS 480-206384/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-206384/3	Method Blank	Total/NA	Water	7196A	

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Client Sample ID	Prep Type			Prep Batc
PZ-14-3	Total/NA	Ground Water	353.2	
Client Sample ID	Prep Type	Matrix	Method	Prep Batc
PZ-14-5	Total/NA	Ground Water	180.1	
PZ-14-5	Total/NA	Ground Water	180.1	
PZ-14-3	Total/NA	Ground Water	180.1	
Lab Control Sample	Total/NA	Water	180.1	
Method Blank	Total/NA	Water	180.1	
Client Sample ID	Prep Type	Matrix	Method	Prep Batc
PZ-14-5	Total/NA	Ground Water	SM 5210B	
PZ-14-3	Total/NA	Ground Water	SM 5210B	
PZ-14-3	Total/NA	Ground Water	SM 5210B	
Lab Control Sample	Total/NA	Water	SM 5210B	
Method Blank	Total/NA	Water	SM 5210B	
Client Sample ID	Pren Tyne	Matrix .	Method	Prep Bato
		Ground Water	SM 2120B	
		Ground Water	SM 2120B	
			SM 2120B	
Method Blank	Total/NA	Water	SM 2120B	
Client Sample ID	Prep Type	Matrix	Method	Prep Batc
P2-14-5	Total/NA	Ground Water	350.1	
PZ-14-3	Total/NA	Ground Water	350.1	
Lab Control Sample	Total/NA	Water	350.1	
Lab Control Sample	Total/NA	Water	350.1	
Lab Control Sample	Total/NA	Water	350.1	
Lab Control Sample	Total/NA	Water	350.1	
Method Blank	Total/NA	Water	350.1	
Method Blank	Total/NA	Water	350.1	
Method Blank	Total/NA	Water	350.1	
Method Blank	Total/NA	Water	350.1	
Client Sample ID	Prep Type	Matrix	Method	Prep Bato
87-14- 5	Total/NA	Ground Water	Distill/Phenol	
PZ-14-3	Total/NA	Ground Water	Distill/Phenol	
Lab Control Sample	Total/NA	Water	Distill/Phenol	
Method Blank	Total/NA	Water	Distill/Phenol	
Client Sample ID	Prep Type	Matrix	Method	Prep Bato
	PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-3 Lab Control Sample Method Blank Client Sample ID PZ-14-3 Lab Control Sample Method Blank Client Sample ID PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-5 PZ-14-3 Lab Control Sample Method Blank Client Sample ID PZ-14-5 PZ-14-3 Lab Control Sample Method Blank	PZ-14-5 Total/NA PZ-14-3 Total/NA Client Sample ID Prep Type PZ-14-5 Total/NA PZ-14-5 Total/NA PZ-14-3 Total/NA Lab Control Sample Total/NA Method Blank Total/NA Client Sample ID Prep Type PZ-14-3 Total/NA Lab Control Sample Total/NA Method Blank Total/NA Client Sample ID Prep Type PZ-14-5 Total/NA PZ-14-5 Total/NA Lab Control Sample Total/NA Method Blank Total/NA Client Sample ID Prep Type PZ-14-3 Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Method Blank Total/NA Method Blank Total/NA Method Blank Total/NA Method Blank Total/NA	PZ-14-5 Total/NA Ground Water PZ-14-3 Total/NA Ground Water Client Sample ID Prep Type Matrix PZ-14-5 Total/NA Ground Water PZ-14-5 Total/NA Ground Water PZ-14-3 Total/NA Water Lab Control Sample Total/NA Water Method Blank Total/NA Ground Water PZ-14-6 Total/NA Ground Water PZ-14-3 Total/NA Ground Water PZ-14-3 Total/NA Water Method Blank Total/NA Water Client Sample ID Prep Type Matrix PZ-14-5 Total/NA Ground Water PZ-14-5 Total/NA Ground Water PZ-14-5 Total/NA Ground Water PZ-14-5 Total/NA Water Method Blank Total/NA Water Client Sample ID Prep Type Matrix PZ-14-5 Total/NA Water Client Sample ID <td< td=""><td> PZ-14-6</td></td<>	PZ-14-6

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Betely 200900 (C					
rep Batch: 206899 (Co	ontinued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-206899/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-206899/1-A	Method Blank	Total/NA	Water	351.2	
nalysis Batch: 20696	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	SM 2340C	
480-68692-2	PZ-14-3	Total/NA	Ground Water	SM 2340C	
LCS 480-206969/52	Lab Control Sample	Total/NA	Water	SM 2340C	
LCS 480-206969/76	Lab Control Sample	Total/NA	Water	SM 2340C	
MB 480-206969/51	Method Blank	Total/NA	Water	SM 2340C	
MB 480-206969/75	Method Blank	Total/NA	Water	SM 2340C	
nalysis Batch: 20700	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	351.2	206899
480-68692-2	PZ-14-3	Total/NA	Ground Water	351.2	206899
LCS 480-206899/2-A	Lab Control Sample	Total/NA	Water	351.2	20689
MB 480-206899/1-A	Method Blank	Total/NA	Water	351.2	20689
nalysis Batch: 20721	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-68692-1	PZ-14-5	Total/NA	Ground Water	SM 2540C	T TEP Date
LCS 480-207217/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-207217/2	Method Blank	Total/NA	Water	SM 2540C	
nalysis Batch: 20734 Lab Sample ID	1 Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-68692-2	PZ-14-3	Total/NA	Ground Water	SM 2540C	
LCS 480-207341/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-207341/1	Method Blank	Total/NA	Water	SM 2540C	
nalysis Batch: 20742	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68692-1	PZ-14-5	Total/NA	Ground Water	9060A	
480-68692-2	PZ-14-3	Total/NA	Ground Water	9060A	
LCS 480-207429/28	Lab Control Sample	Total/NA	Water	9060A	
MB 480-207429/27	Method Blank	Total/NA	Water	9060A	
rep Batch: 207517					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68692-1	PZ-14-5	Total/NA	Ground Water	9012B	
480-68692-2	PZ-14-3	Total/NA	Ground Water	9012B	
LCS 480-207517/2-A	Lab Control Sample	Total/NA	Water	9012B	
MB 480-207517/1-A	Method Blank	Total/NA	Water	9012B	
nalysis Batch: 20754	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-68692-1	PZ-14-5	Total/NA	Ground Water	9012B	20751
480-68692-2	PZ-14-3	Total/NA	Ground Water	9012B	20751
400-00032-2					
LCS 480-207517/2-A	Lab Control Sample	Total/NA	Water	9012B	20751

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

G	en	eral	Che	mistry	(Continued)	į

	Analy	sis	Batch:	207542
--	-------	-----	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	9066	206888
480-68692-2	PZ-14-3	Total/NA	Ground Water	9066	206888
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	9066	206888
MB 480-206888/1-A	Method Blank	Total/NA	Water	9066	206888

Analysis Batch: 207719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	310.2	
LCS 480-207719/186	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/193	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/204	Lab Control Sample	Total/NA	Water	310.2	
MB 480-207719/185	Method Blank	Total/NA	Water	310.2	
MB 480-207719/192	Method Blank	Total/NA	Water	310.2	
MB 480-207719/203	Method Blank	Total/NA	Water	310.2	

Analysis Batch: 207973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-2	PZ-14-3	Total/NA	Ground Water	310.2	
LCS 480-207973/13	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207973/27	Lab Control Sample	Total/NA	Water	310.2	
MB 480-207973/12	Method Blank	Total/NA	Water	310.2	
MB 480-207973/26	Method Blank	Total/NA	Water	310.2	

halysis Batch: 208155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	410.4	
480-68692-2	PZ-14-3	Total/NA	Ground Water	410.4	
LCS 480-208155/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/4	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/52	Lab Control Sample	Total/NA	Water	410.4	
MB 480-208155/27	Method Blank	Total/NA	Water	410.4	
MB 480-208155/3	Method Blank	Total/NA	Water	410.4	
MB 480-208155/51	Method Blank	Total/NA	Water	410.4	
ma .					

Lab Chronicle

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Client Sample ID: PZ-14-5

Lab Sample ID: 480-68692-1

Matrix: Ground Water

Date Collected: 10/06/14 12:55 Date Received: 10/07/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
otal/NA	Analysis	624		1	206699	10/09/14 04:19	ABF	TAL BUF
Dissolved	Prep	3005A			206494	10/08/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	206785	10/08/14 23:45	LMH	TAL BUF
Dissolved	Prep	3005A			206494	10/08/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	207038	10/09/14 14:19	LMH	TAL BUF
Total/NA	Prep	3005A			206499	10/08/14 08:55	SLB	TAL BUF
Total/NA	Analysis	6010C		1	206924	10/08/14 19:13	AMH	TAL BUF
Total/NA	Prep	3005A			206499	10/08/14 08:55	SLB	TAL BUF
Total/NA	Analysis	6010C		1	207036	10/09/14 13:47	AMH	TAL BUF
Dissolved	Prep	7470A			207374	10/13/14 08:55	LRK	TAL BUF
Dissolved	Analysis	7470A		1	207557	10/13/14 13:40	LRK	TAL BUF
Total/NA	Prep	7470A			206574	10/08/14 10:50	LRK	TAL BUF
Total/NA	Analysis	7470A		1	206912	10/09/14 11:27	LRK	TAL BUF
Total/NA	Analysis	180.1		1	206480	10/07/14 23:00	CLT	TAL BUF
Total/NA	Analysis	300.0		1	150879	10/10/14 01:49	JMB	TAL CAN
Total/NA	Analysis	310.2		10	207719	10/14/14 15:18	NCH	TAL BUF
Total/NA	Analysis	350.1		10	206737	10/08/14 23:04	RS	TAL BUF
Total/NA	Prep	351.2			206899	10/09/14 09:14	LAW	TAL BUF
otal/NA	Analysis	351.2		5	207003	10/10/14 04:00	CLT	TAL BUF
Total/NA	Analysis	353.2		1	206477	10/07/14 21:59	RS	TAL BUF
otal/NA	Analysis	410.4		1	208155	10/16/14 09:12	KMF	TAL BUF
Total/NA	Analysis	7196A		1	206384	10/07/14 11:08	NCH	TAL BUF
Total/NA	Prep	9012B			207517	10/13/14 15:25	MDL	TAL BUF
Total/NA	Analysis	9012B		1	207541	10/13/14 22:55	RS	TAL BUF
Totai/NA	Analysis	9060A		1	207429	10/12/14 08:34	MRF	TAL BUF
Total/NA	Prep	Distill/Phenol			206888	10/09/14 09:30	MRF	TAL BUF
Total/NA	Analysis	9066		1	207542	10/13/14 20:36	JMB	TAL BUF
Total/NA	Analysis	SM 2120B		1	206725	10/07/14 23:20	RS	TAL BUF
otal/NA	Analysis	SM 2340C		1	206969	10/09/14 11:55	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	207217	10/10/14 23:57	JMB	TAL BUF
Total/NA	Analysis	SM 5210B		1	206522	10/07/14 23:53	LAW	TAL BUF

Client Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25

Date Received: 10/07/14 09:00

Lab Sam	ple ID:	480-68692-2
---------	---------	-------------

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	206699	10/09/14 04:44	ABF	TAL BUF
Dissolved	Prep	3005A			206494	10/08/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	206785	10/08/14 23:47	LMH	TAL BUF
Dissolved	Prep	3005A			206494	10/08/14 08:57	SLB	TAL BUF
Dissolved	Analysis	6010C		1	207038	10/09/14 14:29	LMH	TAL BUF

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: PZ-14-3
Date Collected: 10/06/14 11:25
Date Received: 10/07/14 09:00

Lab Sample ID: 480-68692-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005 A			206499	10/08/14 08:55	SLB	TAL BUF
Total/NA	Analysis	6010C		1	206924	10/08/14 19:15	AMH	TAL BUF
Total/NA	Prep	3005A			206499	10/08/14 08:55	SLB	TAL BUF
Total/NA	Analysis	6010C		1	207036	10/09/14 13:57	AMH	TAL BUF
Dissolved	Prep	7470A			207374	10/13/14 08:55	LRK	TAL BUF
Dissolved	Analysis	7470A		1	207557	10/13/14 13:47	LRK	TAL BUF
Total/NA	Prep	7470A			206574	10/08/14 10:50	LRK	TAL BUF
Total/NA	Analysis	7470A		1	206912	10/09/14 11:29	LRK	TAL BUF
Total/NA	Analysis	180.1		1	206480	10/07/14 23:00	CLT	TAL BUF
Total/NA	Analysis	300.0		1	150879	10/10/14 02:47	JMB	TAL CAN
Total/NA	Analysis	310.2		10	207973	10/15/14 08:45	NCH	TAL BUF
Total/NA	Analysis	350.1		5	206737	10/09/14 00:43	RS	TAL BUF
Total/NA	Prep	351.2			206899	10/09/14 09:14	LAW	TAL BUF
Total/NA	Analysis	351.2		2	207003	10/10/14 04:00	CLT	TAL BUF
Total/NA	Analysis	353.2		1	206477	10/07/14 22:00	RS	TAL BUF
Total/NA	Analysis	410.4		1	208155	10/16/14 09:12	KMF	TAL BUF
Total/NA	Analysis	7196A		1	206384	10/07/14 11:08	NCH	TAL BUF
otal/NA	Prep	9012B			207517	10/13/14 15:25	MDL	TAL BUF
otal/NA	Analysis	9012B		1	207541	10/13/14 22:56	RS	TAL BUF
Total/NA	Analysis	9060A		1	207429	10/12/14 09:02	MRF	TAL BUF
Total/NA	Prep	Distill/Phenol			206888	10/09/14 09:30	MRF	TAL BUF
Total/NA	Analysis	9066		1	207542	10/13/14 20:36	JMB	TAL BUF
Total/NA	Analysis	SM 2120B		1	206725	10/07/14 23:20	RS	TAL BUF
Total/NA	Analysis	SM 2340C		1	206969	10/09/14 11:55	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	207341	10/13/14 00:14	VAJ	TAL BUF
Total/NA	Analysis	SM 5210B		1	206522	10/07/14 23:53	LAW	TAL BUF

Client Sample ID: TB1

Date Collected: 10/06/14 00:00 Date Received: 10/07/14 09:00 Lab Sample ID: 480-68692-3

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
1	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	624		1	206699	10/09/14 05:09	ABF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Arkansas DEQ	State Program	6	88-0686	07-06-15	
California	State Program	9	1169CA	09-30-14 *	
Connecticut	State Program	1	PH-0568	09-30-14 *	
Florida	NELAP	4	E87672	06-30-15	
Georgia	State Program	4	N/A	03-31-15	
Georgia	State Program	4	956	03-31-15	
Illinois	NELAP	5	200003	09-30-14 *	
iowa	State Program	7	374	03-01-15	
Kansas	NELAP	7	E-10187	01-31-15	
Kentucky (DW)	State Program	4	90029	12-31-14	
Kentucky (UST)	State Program	4	30	03-31-15	
Louisiana	NELAP	6	02031	06-30-14 *	
Maine	State Program	1	NY00044	12-04-14	
Maryland	State Program	3	294	03-31-15	
Massachusetts	State Program	1	M-NY044	06-30-15	
Michigan	State Program	5	9937	03-31-15	
Minnesota	NELAP	5	036-999-337	12-31-14	
New Hampshire	NELAP	1	2337	11-17-14	
New Jersey	NELAP	2	NY455	06-30-15	
New York	NELAP	2	10026	03-31-15	
North Dakota	State Program	8	R-176	03-31-14 *	
Oklahoma	State Program	6	9421	08-31-15	
Oregon	NELAP	10	NY200003	06-09-15	
Pennsylvania	NELAP	3	68-00281	07-31-15	
Rhode island	State Program	1	LAO00328	12-30-14	
Tennessee	State Program	4	TN02970	03-31-15	
Texas	NELAP	6	T104704412-11-2	07-31-15	
USDA	Federal		P330-11-00386	11-22-14	
Virginia	NELAP	3	460185	09-14-15	
Washington	State Program	10	C784	02-10-15	
West Virginia DEP	State Program	3	252	09-30-14 *	
Wisconsin	State Program	5	998310390	08-31-15	

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	011 44C A	06-30-14 *
California	State Program	9	2927	04-30-15
Connecticut	State Program	1	PH-0590	12-31-14
Florida	NELAP	4	E87225	06-30-15
Georgia	State Program	4	N/A	06-30-15
Illinois	NELAP	5	200004	07-31-15
Kansas	NELAP	7	E-10336	01-31-15
Kentucky (UST)	State Program	4	58	06-30-15
L-A-B	DoD ELAP		L2315	07-18-16
Minnesota	NELAP	5	039-999-348	12-31-14
Nevada	State Program	9	OH-000482008A	07-31-15
New Jersey	NELAP	2	OH001	06-30-15
New York	NELAP	2	10975	03-31-15

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Sterling Environmental Engineering PC project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

aboratory: TestAmerica Canton (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Ohio VAP	State Program	5	CL0024	10-31-15
Pennsylvania	NELAP	3	68-00340	08-31-15
Texas	NELAP	6		08-31-15
USDA	Federal		P330-13-00319	11-26-16
Virginia	NELAP	3	460175	09-14-15
Washington	State Program	10	C971	01-12-15
West Virginia DEP	State Program	3	210	12-31-14
Wisconsin	State Program	5	999518190	08-31-15

Method Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Method	Method Description	Protocol	Laboratory
524	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
180.1	Turbidity, Nephelometric	MCAVW	TAL BUF
300.0	Anions, Ion Chromatography	MCAVW	TAL CAN
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAVW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAVW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAVW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
9066	Phenolics, Total Recoverable	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Buffalo

Page 38 of 42

10/17/2014

Sample Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-68692-1	12:148	Ground Water	10/06/14 12:55	10/07/14 09:00
480-68692-2	PZ-14-3	Ground Water	10/06/14 11:25	10/07/14 09:00
480-68692-3	TB1	Water	10/06/14 00:00	10/07/14 09:00

Detection Limit Exceptions Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
300.0	Ground Water	Chloride	mg/L	0.50	1

14

Test rica Bu

Relinquished by:

Company:

Chain Custody Record

039837

THE LEADER IN ENVIRONMENTAL TESTING
TestAmerica Laboratories, Inc.

Anherst, NY 14228 Phone: 716.691.2608 m: DW NPDES RCRA TAL-8210 (0713) Project Manager: Manager: COC No: Site Contact: Date: / D **Client Contact** COCs Tel/Fax: Lab Contacto Carrier: Company Name: **Analysis Turnaround Time** Sampler: For Lab Use Only: CALENDAR DAYS WORKING DAYS Walk-in Client: TAT if different from Below Phone: Lab Sampling: Fax: County Landfill Project Name: Orange Job / SDG No .: 2 days Site: PO# 1 day Sample Type Sample Sample (C=Comp, Date Time G=Grab) Matrix Cont. Sample Specific Notes: Sample Identification GW 10/6 Preservation Used 11-Co. 22-HEL G-1/250/2 S-Hulod S-NaOH 6-Quint Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Archive for Skin Irritant Polson B Unknown Return to Client Disposal by Lab Non-Hazard Flammable Special Instructions/QC Requirements & Comments: herm ID No.: Cooler Temp. (°C): Obs'd: Corr'd: Custody Seal No .: Custody Seals Intact: Yes Date/Time: Date/Time: Received by: Company: Company: Relinquished by: 10-4-14 0900 Date/Time: Date/Time: Received by: Relinquished by: Company:

#2 3,8,3.9, 4.2

Date/Time:

Company:

Date/Time:

Received in Laboratory by:

Login Sample Receipt Checklist

Client: Sterling Environmental Engineering PC

Job Number: 480-68692-1

Login Number: 68692

List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No: No date or time on COC or containers
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	False	CR+6
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No: No date or time on COC or sample containers
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	sterling
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

APPENDIX F

STERLING, DECEMBER 18, 2013, ORANGE COUNTY LANDFILL - CHEECHUNK CANAL / LANDFILL STABILITY AND SEEP EVALUATION

December 18, 2013

Mr. Bradford Shaw, P.E.
NYS Department of Environmental Conservation
RCRA Permitting Section
Division of Environmental Remediation
Remedial Bureau E, 12th Floor
625 Broadway
Albany, New York 12233-7017

Subject:

Orange County Landfill

Cheechunk Canal/Landfill Seep Evaluation STERLING File #2010-15 (Task 312)

Dear Mr. Shaw,

In accordance with the schedule provided by Peter Hammond's September 20, 2013 letter, Sterling Environmental Engineering, P.C. (STERLING) provides this work plan to determine if the seeps are impacted by the Landfill and if so, propose mitigation strategies.

In accordance with your letter of November 25, 2013, evaluation of the stability of the slope between the most recent canal slope failure and the closed Orange County Landfill can be deferred.

Seep Evaluation:

STERLING proposes to install approximately nine (9) temporary piezometers (small diameter groundwater observation wells) between the Landfill and the seeps near the canal bank failure in order to understand the subsurface hydrology between the limit of waste and the seeps (see Figure 1, attached).

The piezometers will be installed using a track-mounted geoprobe to a depth sufficient to straddle the groundwater surface at each location (estimated to be less than 20 feet). At each location, soil samples will be collected on a continuous basis from ground surface to termination depth using the geoprobe soil sampler. Upon completion of sampling, each borehole will be converted into a 1-¼ inch diameter standpipe piezometer by installing machine slotted PVC well screen and riser. We expect the piezometer installations can be completed in two (2) days depending on depths and conditions encountered at each borehole.

The elevation of the top of the piezometer casings (measuring points) will be measured with an engineer's level from the measuring point of nearby monitoring well MW-3B to allow for direct comparison of groundwater level measurements routinely collected at the Landfill. The apparent elevations of the canal bank seeps downgradient from the piezometers, as well as the water level of the canal, will be determined in the same manner.

Following installation, groundwater in each observation well between the Landfill and the seeps will be sampled for 6 NYCRR Part 360 field parameters (Conductivity, Temperature, pH and Eh). STERLING

"Serving our clients and the environment since 1993"

may additionally recommend that groundwater samples be obtained from one or more of the piezometers and analyzed for leachate indicator parameters. Static groundwater levels will be periodically measured, with additional readings as directed by STERLING. County personnel can be trained to assist with periodic readings, if necessary.

Borehole logs, sampling results, and periodic measurements of groundwater levels will be evaluated to determine the nature of the seep. STERLING will provide a final report providing an opinion as to the impact of the Landfill on the seep, along with mitigation strategies based upon the findings or recommendations for additional investigatory work if necessary.

The investigative work described above can be performed within six (6) weeks of NYSDEC's approval of the Work Plan, weather permitting. Based upon the results of the investigation, the proposed design of a mitigation system will be provided to the NYSDEC which will likely consist of a recovery well (or wells) or collection trench with a sump. Such can be installed following NYSDEC approval of the design.

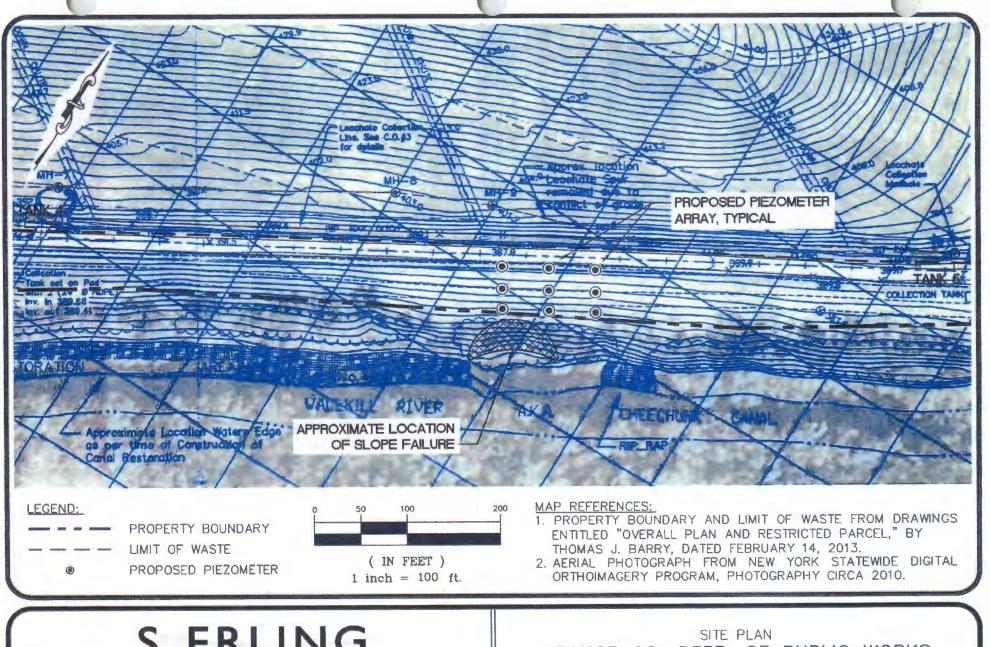
Please contact me should you have any questions or require additional clarification.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President


mark.millspaugh@sterlingenvironmental.com

MPM/bc Email/First Class Mail Attachment (Figure 1)

cc: Peter S. Hammond, Orange County

Joseph F. Mahoney Esq.

2010-15\Correspondence\NYSDEC Geotechnical Evaluation_ltr_121813.doc

S ERLING

Sterling Environmental Engineering, P.C.

24 Wade Road . Latham, New York 12110

ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE CO. LANDFILL

TOWN OF GOSHEN

ORANGE CO., N.Y.

PROJ. No.:

2010-15

DATE:

10/4/13

SCALE:

1" = 100'

DWG. NO.

2010-15013

FIGURE

APPENDIX G

STERLING, APRIL 4, 2014, ORANGE COUNTY LANDFILL - CHEECHUNK CANAL / LANDFILL SEEP EVALUATION RESULTS

April 4, 2014

Mr. Bradford Shaw, P.E.

NYS Department of Environmental Conservation
RCRA Permitting Section
Division of Environmental Remediation
Remedial Bureau E, 12th Floor
625 Broadway
Albany, New York 12233-7017

Subject:

Orange County Landfill

Cheechunk Canal/Landfill Seep Evaluation STERLING File #2010-15 (Task 313)

Dear Mr. Shaw,

Sterling Environmental Engineering, P.C. (STERLING) provides this letter report to summarize results from our recent investigation to determine if the seeps are impacted by the Landfill, located in the Town of New Hampton, New York (Figure 1). The following includes a summary of work performed, a characterization of the geologic and hydrogeologic setting, recommendations for additional field investigation, and the proposed design of a mitigation system.

SUMMARY OF WORK PERFORMED:

On February 19 and 20, 2014, six (6) temporary piezometers (PZ-14-1 through PZ-14-6) were installed between the Landfill's perimeter access road and the seeps near the Cheechunk Canal bank (referred to as "Project Area") to better understand the subsurface hydrology between the limit of waste and the seeps (Figure 2).

The temporary piezometers were installed using a track-mounted Geoprobe® to a depth sufficient to encounter the glaciolacustrine sand aquifer, which underlies the Cheechunk Canal (Figure 3). At each location, soil samples were collected on a continuous basis from ground surface to termination depth using the Macro-core® MC5 soil sampler. Each borehole was logged to define the local model of the critical site stratigraphy as it relates to the Landfill and the Cheechunk Canal (Appendix A).

Upon completion of sampling, each borehole was either converted into a 1½-inch (PZ-14-1, PZ-14-2, PZ-14-4, and PZ-14-6) or a 2-inch inside diameter (I.D.) temporary piezometer (PZ-14-3 and PZ-14-5) with a five (5) foot long section of 0.01-inch (10 slot) machine slotted PVC well. As detailed in Table 1, the total depths ranged from 28.91 feet below ground surface (bgs) at PZ-14-4 to 39.5 feet bgs at PZ-14-1. The screened intervals were set in the uppermost portion of the overburden hydrogeologic unit (glaciolacustrine fine sand) to obtain basic aquifer data (groundwater flow direction, gradients, horizontal hydraulic conductivity, aquifer transmissivity, and aquifer yield) and define the hydrogeologic relationship between the Landfill and the seeps identified on the northern bank of the Cheechunk Canal.

"Serving our clients and the environment since 1993"

The elevation for the top of the piezometer casings (measuring points) were measured with an engineer's level from the measuring point of nearby monitoring well MW-3B to allow for direct comparison of groundwater level measurements routinely collected at the Landfill. The apparent elevations of the Canal bank seeps downgradient from the piezometers, as well as the water level of the Canal, were also collected in the same manner. It should be noted that the slope in the Project Area ranged from 24% to 28%.

Following installation, three (3) synoptic rounds of groundwater elevation measurements were collected on February 20, March 18, and March 27, 2014 to gain a complete understanding of the local hydrostratigraphy, define groundwater flow direction and gradients, and build a conceptual profile between the Landfill and the Chcechunk Canal.

In addition, field hydraulic conductivity testing was performed on two (2) of the temporary piezometers (PZ-14-3 and PZ-14-5) to characterize the horizontal hydraulic conductivity of the aquifer and a short-term two (2) hour constant rate pumping test was performed at temporary piezometer PZ-14-3 to further define aquifer characteristics, such as yield and transmissivity (Appendix B).

Groundwater in each temporary piezometer between the Landfill and the seeps were also sampled for 6 NYCRR Part 360 field parameters (specific conductivity, temperature, pH, and Eh). Due to weather conditions, the subject seep area could not be evaluated as it was covered with ice or meltwater runoff.

FIELD INVESTIGATION FINDINGS:

The field investigation, performed between February and March 2014, was used to define the local geologic conditions, hydrogeologic setting, and environmental parameters in the Project Area as well as serve as the core of understanding to remediate the subject seep. Findings are detailed below:

Geologic Setting

The critical site stratigraphy in the vicinity of the Project Area has been defined as follows:

Glaciolacustrine Silt and Clay: Moist grayish brown clayey silt to silty clay; stiff to moderately stiff; occasionally to frequently varved; lowly permeable; and moderately plastic. As presented in Table 1, this unit was encountered at surface to depths ranging from 24.4 to 34.1 feet bgs, which is consistent with historical data collected near this portion of the Landfill and the Cheechunk Canal. Stearns & Wheler reported that this silt and clay layer thins toward the northeast from approximately 60 feet to 20 feet. The base of the glaciolacustrine silt and clay unit is approximately three (3) to five (5) feet below the subject seep(s).

Glaciolacustrine Sand: Wet fine sand; medium dense; moderately permeable; and laminated. The top of this water-bearing unit is between 65.25 (PZ-14-1) and 66.81 (PZ-14-3) feet in elevation (site datum) and slightly tilts to the north away from the Cheechunk Canal (Table 1 and Figure 3). Again, this field data is consistent with historic geoenvironmental data collected near the Project Area which reports this unit as being 25 to 35 feet in thickness. The base of the glaciolacustrine sand unit was not encountered during the course of this investigation.

Glacial Till: Basal lodgement till is a dense, unstratified diamict of poorly sorted sediment emplaced on bedrock by the base of the glacier during ice advance. It often has large erratics oriented in the direction of the ice movement. The glacial till unit, which was not encountered during this investigation, is lowly permeable and is not considered a water bearing zone.

• Hydrogeologic Setting

The hydrogeologic nature of the Project Area was interpreted using historic well logs, slug tests, groundwater elevation data, geologic cross sections, and publications. The hydrogeologic setting for the Project Area was further refined from information obtained from the recent drilling, surveying, overburden groundwater measurements, hydraulic conductivity testing, and the short-term pumping test.

Complex vertical and horizontal stratigraphic relationships exist between the glacial deposits on the site and Project Area. As shown in Figure 3, the Cheechunk Canal dissects the glacially-derived overburden in the vicinity of the Project Area, often cutting down through the glaciolacustrine silt and clay deposits, creating a hydraulic connection between the overburden groundwater unit (glaciolacustrine sand) and the Cheechunk Canal (Wallkill River). In general, the low hydraulic conductivity of the glaciolacustrine silt and clay, which underlies a large portion of the Landfill, limits recharge to underlying hydrogeologic units such as the glaciolacustrine sand (encountered) and ice contact sand and gravel deposits (not encountered). The glaciolacustrine silt and clay unit is not a water-bearing zone.

Hydraulic conductivity estimates in the overburden hydrogeologic unit (glaciolacustrine sand) were determined using slug tests. The data obtained from the Project Area were analyzed using the Bouwer and Rice method (1989). This method consists of quickly lowering or raising water levels in a well and measuring its rate of recovery (Appendix B). Although originally designed for use in unconfined aquifers, the authors (Bouwer and Rice) determined that most of the head difference "y" between the static water table and water level in the piezometer is dissipated in the vicinity of the piezometer around the screen and slotted section, the method is also applicable to confined or semi-confined conditions, such as in the Project Area. Hydraulic conductivity of the overburden hydrogeologic unit ranged from 9.29 x 10⁻⁶ feet/min (4.72 x 10⁻⁶ cm/sec) to 2.35 x 10⁻⁵ feet/min (1.19 x 10⁻⁵ cm/sec).

Groundwater flow in the overburden hydrogeologic unit was determined using depth to groundwater measurements collected from temporary piezometers on February 20, March 18, and March 27, 2014 (Table 2). This data, in conjunction with historical well log data and plots of changes in groundwater elevation over time, suggest that the glaciolacustrine sand unit is currently in semi-confined to confined conditions in the Project Area. Therefore, the directions of groundwater flow are based on the potentiometric surface of the glaciolacustrine sand, not strictly elevations of the water table surface.

Groundwater flow in the overburden west or north of the Canal is to the east-southeast (Figure 4), discharging to the Canal that acts as a discharge zone and a groundwater flow boundary separating flow regimes on either side of the Canal. Overburden piezometer PZ-14-4 is located immediately upgradient of the subject seep(s); although the subject seep could not be directly

measured it is likely less than one (1) foot lower than the potentiometric surface observed at PZ-14-4. The actual location of the piezometer array was successful at locating the groundwater that is likely causing the subject seeps. There is little potential for contamination to flow between the Canal and to areas east or south of the Canal based on previous investigations conducted at the Landfill. The direction of groundwater movement can be understood in the fact that groundwater always flows in the direction of decreasing head. The rate of movement, on the other hand, is dependent on the hydraulic gradient, which is the change in head per unit distance. The change in head measurement is ideally in the direction where the maximum difference of head decrease occurs. In the Project Area, the hydraulic gradient (the change in head divided by the change in distance) ranged from 0.00769 ft./ft. to 0.0133 ft./ft. based on data collected from March 18, 2014 (Figure 4).

An aquifer overlain by a bed of material that has a significantly lower hydraulic conductivity is termed as confined. As was observed during the field investigation, the potentiometric surface of the confined aquifer was 6.5 to 8.5 feet above the base of the overlying confining layer (Tables 1 and 2 and Figure 3). Water levels in confined aquifers are typically slow to respond to storm events or droughts and therefore typically exhibit minor fluctuations. A semi-confined or "leaky" confined aquifer is characterized by a low permeability layer (i.e., glaciolacustrine silt and clay) that permits water to slowly flow through it. Groundwater in these aquifers responds more quickly to changes in precipitation. The similarity between the potentiometric surface elevation and the subject seep(s) elevation suggests that there is seasonal hydraulic connection between the Cheechunk Canal and site groundwater. If groundwater was confined, no hydraulic connection would exist between the Canal and site groundwater. The semi-confinement can be the result of leakage through the saturated overlying low permeability layer (glaciolacustrine silt and clay) or through fractures/varved planes in the silt and clay.

Seepage velocities were also calculated in this overburden hydrogeologic unit using the following equation:

 $V = \underline{KI}_n$

Where "V" is the seepage velocity in distance per unit time; "K" is the hydraulic conductivity at the borehole (in distance per unit time); "I" is the hydraulic gradient (dimensionless); and, "n" is the estimated effective porosity. The lowest possible values for "n" were used to estimate highest seepage velocities. Seepage velocities at the Project Area indicate a range from 2.57×10^{-4} feet/day (0.094 feet/year) to 1.2×10^{-3} feet/day (0.438 feet/year).

On March 18, 2014, a two (2) hour constant flow rate pumping test was conducted on PZ-14-3 (Figure 2). Initial pumping at 2 gallons per minute (gpm) resulted in complete drawdown at piezometer PZ-14-3; the pumping rate was reduced to provide further evaluation of the overburden aquifer characteristics. Pump flow rate (0.38 to 0.4 gpm) and overburden piezometer water levels were monitored every 15 minutes throughout the two (2) hour test. A drawdown of 7.8 feet was observed during the pumping period, dropping 7.33 feet in the first five (5) minutes and steadily dropped 0.46 foot over the remainder of the pumping test period (Appendix B). Based on this information, the specific capacity was calculated as being 0.05 gpm/ft with a transmissivity of 75 ft²/day. The adjacent piezometers were lowered by 0.19 foot (PZ-14-6) to

0.29 foot (PZ-14-2), demonstrating good connection to the localized low rate pumping activity (Appendix B).

• Environmental Setting

On March 27, 2014 overburden groundwater in each temporary piezometer, between the Landfill and the seeps, were sampled for 6 NYCRR Part 360 field parameters, including specific conductivity, temperature, pH, and Eh (Table 3). Due to weather conditions, the subject seep area could not be evaluated as it was covered with ice or submerged during this period.

As detailed in Table 3, the specific conductance from overburden groundwater ranged from 0.607 millisiemens per centimeter (mS/cm) at PZ-14-4 to 1.230 mS/cm at PZ-14-5. The specific conductance of the water sample is the measure of its ability to carry an electrical current under specific conditions and is typically an indication of the concentration of total dissolved solids (TDS) in the groundwater. A specific conductance value that is markedly different (anomalous) from those obtained in nearby piezometers may indicate a different source of the groundwater or leakage from a formation that contains water of a different quality. Specific conductance values from 2012 and 2013 seep sampling ranged from 0.695 mS/cm at Seep 03 on August 22, 2012 to 1.339 mS/cm at GW-03 on August 21, 2013. The specific conductance at PZ-14-5 is considered the most anomalous from the set of field parameters collected on March 27, 2014.

As detailed in Table 3, the redox potential in the overburden aquifer is sensitive to organic matter associated with landfill leachate and of concentrations of redox-active components such as the mineralization of the groundwater. Oxidizing-reducing reactions result in a change of the charge of an ion as it gains or loses an electron. These reactions are almost always facilitated by bacteria that are able to gain energy from the reactions. The most common cause of reducing reactions is organic matter, either in solid form or as dissolved organic carbon. Water in contact with air will have an Eh in the range of 350 milliVolts (mV) to 500mV. Microbially mediated redox processes may decrease the redox potential to values as low as -300mV. The redox potential from overburden groundwater ranged from -90.2 mV at PZ-14-1 to 214.8 mV at PZ-14-5. Oxidation Reduction Potential (ORP) values from 2012 and 2013 seep sampling ranged from 9.6 mV at Seep GW-A on August 21, 2013 to -90.6 mV at GW-01 on August 22, 2012. The redox potential at PZ-14-5 is considered the most irregular while the reading at PZ-14-1 is consistent with ORP values at one of the historical seeps.

At any given temperature, there is a specific concentration of a dissolved mineral's constituents in the groundwater that is in contact with that mineral. Even minor changes in groundwater temperature can cause detectable changes in TDS. It should be noted that the temperature of the upper piezometers (PZ-14-1, PZ-14-5, and PZ-14-6) were over 2° Fahrenheit warmer than the lower piezometers (PZ-14-2, PZ-14-3, and PZ-14-4). The temperature at PZ-14-5 is decidedly higher than others collected on March 27, 2014.

The pH is actually a measure of the hydrogen ion (H+) availability (activity). The hydrogen ion is very small and is able to enter and disrupt mineral structures so that they can contribute dissolved constituents to groundwater. Consequently, the greater the hydrogen ion availability the lower the pH and the higher the TDS in groundwater. The pH readings collected from

overburden groundwater ranged from 7.0 standard units (s.u.) at PZ-14-1 to 7.41 s.u. at PZ-14-2. In comparison, 2012 and 2013 seep sampling reported pH readings that ranged from 7.03 s.u. (Seep GW-01) on August 22, 2012 to 7.48 s.u. (GW-A) on August 21, 2013. No direct conclusions can be made based on comparison of pH readings obtained within the Project Area.

Two (2) one (1) liter samples were collected for comparison of water quality field parameters at the start and end of the short-term pumping test, which was performed at PZ-14-3. No significant changes or fluctuations were observed in the field parameters.

The current New York State Department of Environmental Conservation (NYSDEC) approved Post-Closure Monitoring (PCM) Program provides for an annual monitoring schedule consisting of sampling twenty six (26) monitoring wells, four (4) surface water locations, and two (2) leachate manholes for field parameters. Annual sampling is performed in accordance with the Field Sampling Plan, Sampling QA/QC protocol, 1999 revision of the Orange County Landfill Post Closure Monitoring and Maintenance Operations Manual, and the 2003 Orange County PCM variance request approved by the NYSDEC.

Orange County provided the NYSDEC with a Site Management Plan (SMP) for the closed landfill. The SMP also included a request to modify the annual PCM Program. Under the prior (6 NYCRR Part 360) closure, the County performed PCM and annual reporting. During 2014, the annual sampling event is to be performed in October. At present, the NYSDEC has not approved or commented upon the SMP and proposed modification to the annual monitoring program. In prior negotiation with the NYSDEC regarding the need for a SMP, Orange County and the NYSDEC agreed the existing post-closure monitoring program should be carefully evaluated in light of the substantial body of available information. The data allows assessment of long-term trends by well location. Overall, the Landfill monitoring data indicates that the system is stable with some wells showing gradual improvement with time.

Design of a seep mitigation system solely based on limited field parameter data is questionable and may not reflect leachate impacted groundwater given that many of these field parameters are also within the observed range of naturally occurring waters. 2013 field parameter and leachate indicator analytical results from nearby environmental monitoring points (four (4) overburden groundwater monitoring wells (MW-3B, PZ-4, MW-220, MW-222), two (2) surface water locations (SW-5 and SW-8), and one (1) leachate location (MH-7)) were reviewed to further evaluate the potential presence of leachate impacted groundwater. Only total dissolved solids (TDS) exceeded the class GA standard (500 mg/L) at these select monitoring wells, ranging from 730 mg/L (MW-3B) to 860 mg/L (MW-222). Ammonia was only detected slightly above the NYSDEC GA standard (2 mg/L) at monitoring wells MW-3B (4.4 mg/L) and MW-222 (12 mg/L). In comparison, 2013 results for TDS and ammonia from nearby leachate (MH-7) was 3,900 mg/L and 0.64 mg/L, respectively. This environmental monitoring data does not reveal that leachate-impacted groundwater exists in this portion of the Landfill. Further, other reliable leachate indicators, such as chloride, field pH, nitrate (as N), phenols, sulfate, and Volatile Organic Compounds (VOCs) were either nondetect or below their respective NYSDEC GA standard.

Review of historical surface water analytical results (water quality parameters) for nearby surface water samples SW-5 and SW-8 revealed no exceedances of Class C Surface Water Quality standards, except for one (1) minor exceedance of field pH (9.33 s.u.) and phenols (0.0072 mg/L) at SW-5 in 1999 and 2000, respectively, and field pH (8.81 s.u.) and phenols (0.0115 mg/L) at SW-8 in 1999 and September 2002, respectively.

CONCLUSIONS:

Six (6) shallow borings were completed on a moderate to steep slope (24 to 28%) to define the geologic conditions within the Project Area. A lowly permeable glaciolacustrine silt and clay unit exists at surface to depths ranging from 24.4 to 34.1 feet bgs and is characterized as moist grayish brown clayey silt to silty clay that is stiff to moderately stiff and occasionally to frequently varved. The base of this geologic unit is approximately three (3) to five (5) feet below the subject seep(s), which is located along the north or west bank of the Cheechunk Canal. This geologic contact actually tilts to the north away from the Cheechunk Canal. Underlying the silt and clay unit is moderately permeable glaciolacustrine sand, which is wet fine sand that is medium dense, laminated, and typically 25 to 35 feet in thickness.

Each boring was converted into temporary overburden piezometers, screening the uppermost portion of the overburden hydrogeologic unit (glaciolacustrine fine sand). The overlying glaciolacustrine silt and clay unit is not a water-bearing zone and limits recharge to underlying hydrogeologic units. The overburden hydrogeologic unit discharges into and is hydraulically connected to the Cheechunk Canal. Hydraulic conductivity of the overburden hydrogeologic unit ranged from 9.29 x 10⁻⁶ feet/min (4.72 x 10⁻⁶ cm/sec) to 2.35 x 10⁻⁵ feet/min (1.19 x 10⁻⁵ cm/sec) in the Project Area. Groundwater in the glaciolacustrine sand unit reveals semi-confined conditions with groundwater flow being to the east-southeast with a moderate hydraulic gradient in the Project Area. Two (2) hours of constant rate pumping (0.38 to 0.4 gpm) at PZ-14-3 revealed the following: 1). A drawdown of 7.8 feet at the wellhead; 2). Lowering of the potentiometric surface between 0.19 foot (PZ-14-6) to 0.29 foot (PZ-14-2) within the piezometer array (Project Area), demonstrating a good connection within the overburden hydrogeologic unit and the Cheechunk Canal (at low pumping rates); 3). The specific capacity and transmissivity values are low for the overburden hydrogeologic unit in the Project Area; and, 4). The actual location of the piezometer array was successful at locating the groundwater that is connected to the subject seep(s).

At the time of the field investigation the seep area was covered with ice and/or submerged. Review of field parameter data from the recently installed overburden piezometers revealed elevated temperature, specific conductivity, and ORP at PZ-14-5, which is located in the center of the piezometer array. Figure 4 presents likely groundwater flowlines from the piezometers to the vicinity of SEEP-3, indicating a continuity of groundwater, which was observed to be most anomalous at PZ-14-5.

2013 field parameter and leachate indicator analytical results from nearby environmental monitoring points (four (4) overburden groundwater monitoring wells (MW-3B, PZ-4, MW-220, MW-222), two (2) surface water locations (SW-5 and SW-8), and one (1) leachate location (MH-7)) were reviewed to further evaluate the potential presence of leachate impacted groundwater in the vicinity of the seep. Ammonia was only detected slightly above the NYSDEC GA standard (2 mg/L) at monitoring wells MW-3B (4.4 mg/L) and MW-222 (12 mg/L). In comparison, 2013 results for TDS and ammonia from nearby leachate (MH-7) was 3,900 mg/L and 0.64 mg/L, respectively. This environmental monitoring data does not reveal that leachate-impacted groundwater exists in this portion of the Landfill. Other

reliable leachate indicators, such as chloride, field pH, nitrate (as N), phenols, sulfate, and Volatile Organic Compounds (VOCs) were either nondetect or below their respective NYSDEC GA standard.

RECOMMENDATIONS:

Prior seep sampling results were from grab samples. Once the Cheechunk Canal recedes, such that the seep(s) are accessible, a well point should be hand driven (or a concrete/brick containment should be installed) to enable collection of seep samples that are an accurate representation of water quality.

A sample from each overburden piezometer, the subject seep, and the Cheechunk Canal should be collected and analyzed for 6 NYCRR Part 360 leachate indicator parameters to supplement available data in order to develop a clearer picture and to finalize selection and design of a mitigation system. This supplemental data will be coordinated with the ongoing environmental monitoring program and results will be compared to the extensive historic environmental monitoring database and data from the ongoing sampling of leachate, surface water, and groundwater monitoring program, as outlined in the Draft SMP, dated December 13, 2013. The Draft SMP provides that contingency measures are in-place if offsite contaminant migration is identified and, through assessment, is considered a potential threat to human health and the environment.

Additionally, we recommend that static groundwater levels should be periodically measured to better understand the seasonal variability and hydrogeologic relationship between the overburden hydrogeologic unit and the seep(s)/Cheechunk Canal. In addition, additional readings should be collected from the seep(s) and a staff gauge on the Cheechunk Canal.

MITIGATION SYSTEM:

The following mitigation measures are under consideration at this time.

- No Action Continue regular monitoring of the Cheechunk Canal upstream and downstream of the Landfill to assess impacts to surface water.
- Intercept Impacted Water Upslope of Seep Install a dry well or recovery well upslope of the seep above the flood elevation to be located along the flowpath indicating the greatest potential impact to groundwater. Use controlled pumping to dewater the seep(s) so it is not discharging at surface.
- Alter Redox Potential of Groundwater in Project Area Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contaminants, and generate undesirable byproducts, such as dissolved manganese (Mn²+), ferrous iron (Fe²+), hydrogen sulfide (H₂S), and methane (CH₄). Changing the redox processes that occur in an aquifer system and documenting the spatial distribution may positively influence the concentrations of natural or anthropogenic contaminants observed in historical seeps along the northern bank of the Cheechunk Canal.

Please contact me should you have any questions or require additional clarification.

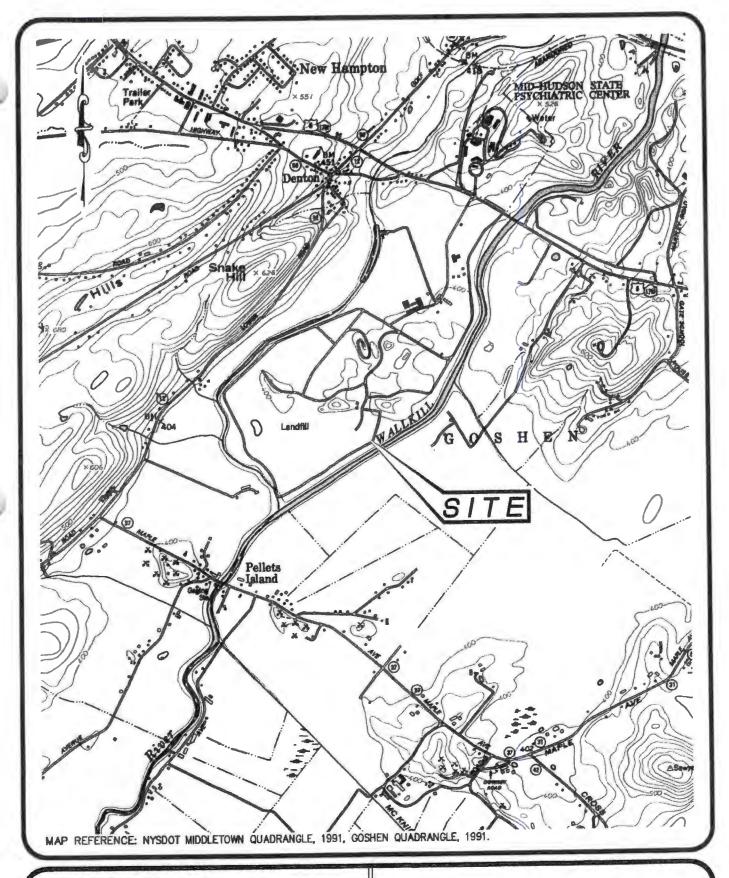
Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President

mark.millspaugh@sterlingenvironmental.com


MPM/bc Email/First Class Mail Attachments

cc: Peter

Peter S. Hammond, Orange County Joseph F. Mahoney Esq.

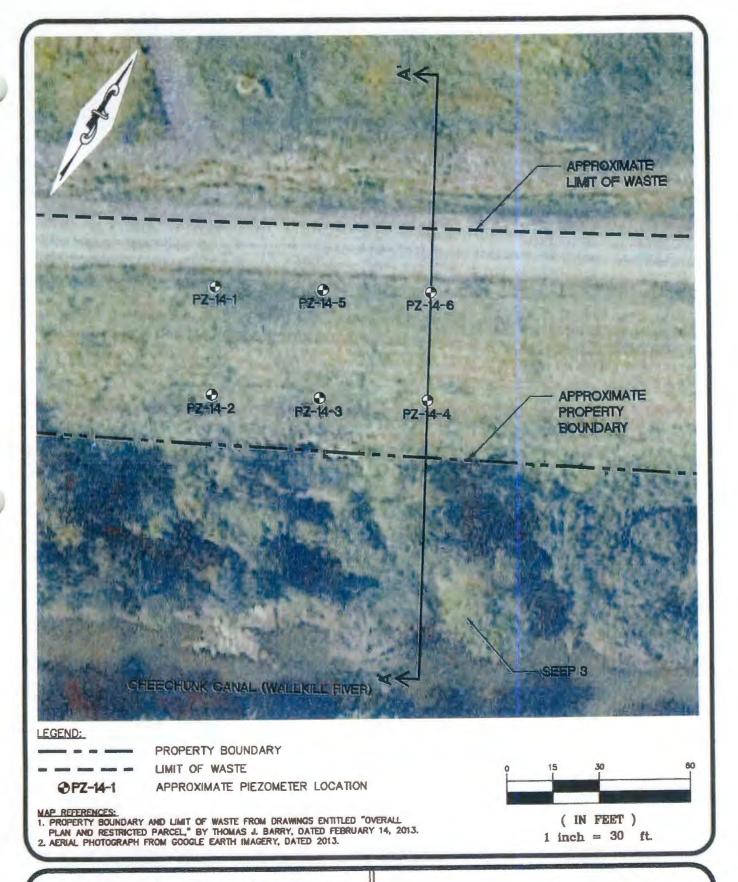
S:\Sterling\Projects\2010 Projects\Orange County - 2010-15\Correspondence\NYSDEC_Summary of Seep Evaluation_ltr_04_04_2014.docx

FIGURES

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

SITE LOCATION MAP ORANGE COUNTY LANDFILL 21 TRAINING CENTER LANE


TOWN OF NEW HAMPTON

ORANGE CO., N.Y.

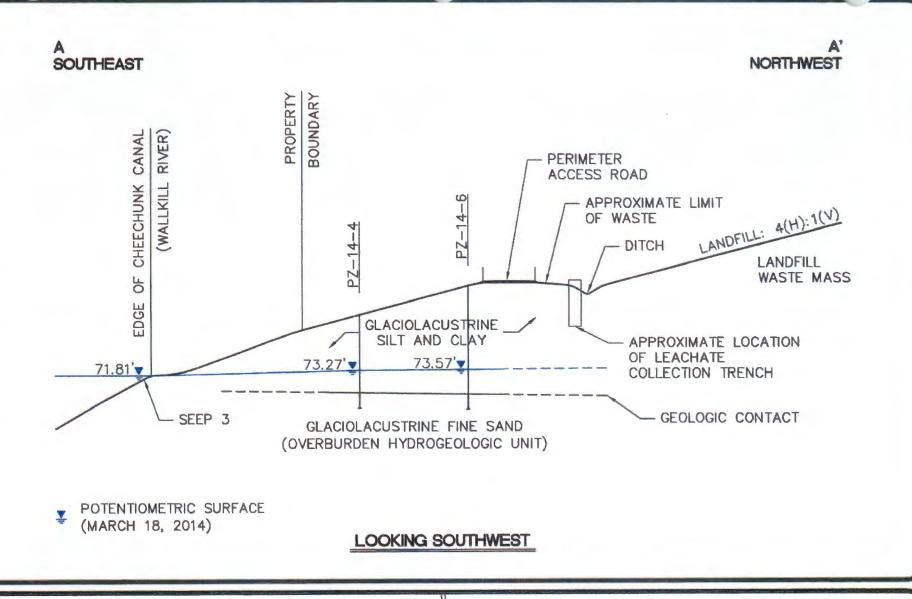
PROJ. No.: 2010-15 DATE:

3/28/14 | SCALE:

1" = 2000' DWG. NO. 2010-15014 FIGURE

S ERLING

Sterling Environmental Engineering, P.C.


24 Wade Road . Latham, New York 12110

BORING/PIEZOMETER LOCATION MAP ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE CO. LANDFILL

TOWN OF NEW HAMPTON

ORANGE CO., N.Y.

PROJ. No.: 2010-15 DATE: 3/28/14 SCALE: 1" = 30' DWG. NO. 2010-15015 FIGURE 2

S ERLING

Sterling Environmental Engineering, P.C.

24 Wade Road . Latham, New York 12110

CONCEPTUAL PROFILE ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE CO. LANDFILL

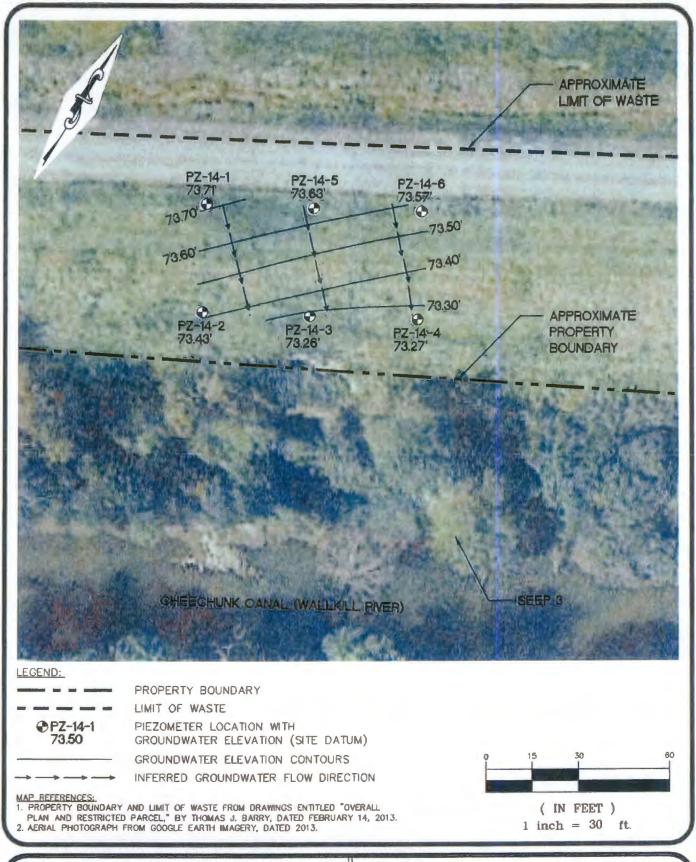
TOWN OF NEW HAMPTON

ORANGE CO., N.Y.

PROJ. No.:

2010-15

DATE:


4/1/14

SCALE:

NOT TO SCALE

DWG. NO.

2010-15016 | FIGURE

Sterling Environmental Engineering, P.C.

24 Wade Road . Latham, New York 12110

GROUNDWATER CONTOUR MAP (OVERBURDEN HYDROGEOLOGIC UNIT)-MARCH 18, 2014 ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE CO. LANDFILL

TOWN OF NEW HAMPTON

ORANGE CO., N.Y.

PROJ. No.: 2010-15 DATE:

3/28/14 | SCALE:

1" = 30' DWG. NO. 2010-15017 FIGURE

TABLES

Table 1
Summary of Borings/Piezometer Information
Orange County Landfill, New Hampton, New York

Piezometer I.D.	Ground Surface Elevation (Site Datum)	Piezometer Stickup (feet)	Assumed MP Elevation* (Site Datum)	Screened Interval /	Total Depth (Feet BGS) / [Bottom Elevation]	Glaciolacustrine (Silt and Clay)/Glaciolacustrine Sand (Fine Sand) Interface (feet BGS) / [Geologic Contact Elevation]
PZ-14-1	99.35	0.65	100.00	34.5-39.5 / [64.85 - 59.85]	39.5 / [59.85]	34.1 / [65.25]
PZ-14-2	90.87	0.80	91.67	24.5-29.5 / [66.37 - 61.37]	30.26 / [60.61]	24.6 / [66.27]
PZ-14-3	91.21	0.35	91.56	24.92 -29.92 / [66.29 - 61.29]	29.92 / [61.29]	24.4 / [66.81]
PZ-14-4	90.15	1.35	91.50	23.91-28.91 / [66.24 - 61.24]	28.91 / [61.24]	23.9 / [66.25]
PZ-14-5	99.78	2.17	101.95	32.9-37.9 / [66.88 - 61.88]	37.86 / [61.92]	33.5 / [66.28]
PZ-14-6	99.96	0.88	100.84	34.2-39.2 / [65.76 - 60.76]	39.20 / [60.76]	33.85 / [66.11]

^{*} Assume PZ-14-1 MP (Top of PVC) is elevation 100.00 feet.

Table 2
Summary of Groundwater Elevation Data
Orange County Landfill, New Hampton, New York

Piezometer I.D.	February 20, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	March 18, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	March 27, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	
PZ-14-1	27.69 / [72.31]	26.29 / [73.71]	26.27 / [73.73]	
PZ-14-2	20.21 / [71.46]	18.24 / [73.43]	18.37 / [73.30]	
PZ-14-3	20.10 / [71.46]	18.30 / [73.26]	18.31 / [73.25]	
PZ-14-4	19.88 / [71.62]	18.23 / [73.27]	18.39 / [73.11]	
PZ-14-5	29.58 / [72.37]	28.32 / [73.63]	28.31 / [73.64]	
PZ-14-5 PZ-14-6	28.61 / [72.23]	27.27 / [73.57]	27.15 / [73.69]	

Table 3

Summary of Water Quality Information
Orange County Landfill, New Hampton, New York

Sample ID	Temperature (°F)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	pH (s.u.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
PZ-14-1	56.41	1.113	1.76	7.00	-90.2	24.3
PZ-14-2	54.82	0.698	2.77	7.41	3.1	39.0
PZ-14-3	55.33	0.859	1.19	7.03	38.2	102.7
PZ-14-4	54.25	0.607	1.44	7.21	47.5	33.0
PZ-14-5	57.47	1.230	1.29	7.03	214.8	37.8
PZ-14-6	56.59	1.011	1.72	7.12	-15.9	117.0

APPENDIX A

Page	1	of	2
B-			-

						Boring N	o. <u>PZ-14-1</u>
Projec	ct Nan	ne:	Orange Cou	nty Lan	dfill – Cheechunk Canal/Seep Evaluation	Project No.:	2010-15
Client	Nam	e:	Orange Cou	nty Dep	partment of Public Works	Date:	February 19, 2014
Locat	ion:		Goshen, NY	7		Logged By:	Mark Williams
Veatl	her/Te	mp.:	12°F - 40°F,	1.55" F	Precip (wintry mix) Winds (1-3mph)	Checked By:	Peter Kelleher, P.E.
Drilli	ng Co.	:	Zebra Envir	onment	al Corp.	Depth:	39.5' bgs
Drille	r:		Jason Frede	rick		Equipment:	Geoprobe® 7720 DT
Date S	Starte	d:	February 19	, 2014		Surface Elev.:	99.35' (Site Datum)
Date (Comp	leted:	February 19, 2014			Depth Elev.:	59.85' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LO (color, grain size and amount, tex DEPOSITIONAL UN (outwash, till, lacustrine, m	ture, moisture)	COMMENTS
			5			for maint (MI)	
			3		BrGr Cy\$l, fS; no odor; med. stif	i, moist (ML).	
			10		BrGr C&\$; no odor; med. stiff; low to n (ML/CL).	nod. plasticity; moist	
		in a	601				
			15		BrGr \$&Cl(-),vfS(\$); no odor; stiff; occ. to plasticity; moist (ML/C	o freq. vvd; low to mod CL).	d. ,
			20		Gr C&\$; no odor; stiff to hard; occ. to freq. mod. plasticity; moist (ML/CL).	vvd (partings 0.4 – 0.3	1');
			25		(GLACIOLACUSTRINE SILT	AND CLAY)	

			-
Page	2	of	2
age	2	0.2	

						Boring N	lo. PZ-14-1
Project Name: Client Name: Location: Weather/Temp.:			nty Dep	dfill – Cheechunk Canal/Seep Evaluation artment of Public Works	Project No.: Date: Logged By: Checked By:	2010-15 February 19/20, 2014 Mark Williams Peter Kelleher, P.E.	
Drille Date	ng Co. er: Starte Comp	d:	Jason Freder February 19 February 19	rick , 2014	al Corp.	Depth: Equipment: Surface Elev.: Depth/Datum:	39.5'bgs Geoprobe® 7720 DT 99.35' (Site Datum) 59.85' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LO (color, grain size and amount, te DEPOSITIONAL U (outwash, till, lacustrine, t	xture, moisture)	COMMENTS
			30		Gr C&\$; no odor; soft to mod. stiff; of plasticity; moist (ML/Gr Cy\$; no odor; mod. stiff to soft; freq. v to wet (ML). (GLACIOLACUSTRINE SILT	CL). vd; mod. plasticity; mo	
			35		GrfS, sCy\$; no odor; med. dens GrfS, l(-)Cy\$; no odor; med. den	se; wet (SM/ML).	11/4"I.D. Schedule 40 PVC overburden piezometer installed of February 20, 2014. 10-slot PVC screen: 34.5 -39.5'bgs.
			40		Boring terminated at 39.5 feet below groun	nd surface (bgs).	J4.3 -37.3 Ugs.

Page	1	of	2
	Annual Publishers and Parket Street		-

						Boring N	o. PZ-14-2
Client	orange County Landfill – Cheechunk Canal/Seep County Department of Public Works Cation: Goshen, NY 12°F - 40°F, 1.55" Precip (wintry mix) Winds (1-3)			partment of Public Works	Project No.: Date: Logged By: Checked By:	2010-15 February 19, 2014 Mark Williams Peter Kelleher, P.E.	
Drille Drille Date !	r:	Jason Frederick d: February 19, 2014			al Corp.	Depth: Equipment: Surface Elev.: Depth Elev.:	30' bgs Geoprobe® 7720 DT 90.87' (Site Datum) 60.61' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LOC (color, grain size and amount, text DEPOSITIONAL UN (outwash, till, lacustrine, m	ture, moisture) IT	COMMENTS
			5		Gr C&\$; no odor; mod. stiff; occ. vvd; m (ML/CL). Gr \$&C no odor; mod. stiff; occ. to freq. vv plasticity; moist (ML/C	d; mod. (0.01° parting	(s);
			10		Gr \$&C no odor; stiff; freq. vvd (0.04 – plasticity; moist (ML/C	EL).	
			20		Gr C&\$; no odor; stiff; occ freq. vvd); m wet (ML/CL). Gr \$&C no odor; mod. stiff to stiff; oc	c freq. vvd; mod.	Depth to Groundwater = 18.24' bgs (March 18, 2014)
			25		plasticity; moist to wet (M (GLACIOLACUSTRINE SILT GrfS, aCy\$; no odor; med. dense; (GLACIOLACUSTRINE)	AND CLAY) 24.1 wet (SM/ML)	б ³

-	-	- 0	3
Page	4	of	4

						Boring No.	PZ-14-2
Client			nty Dej	dfill – Cheechunk Canal/Seep Evaluation Project No.: partment of Public Works Date: Logged By: Checked By:		2010-15 February 19, 2014 Mark Williams Peter Kelleher, P.E.	
Drille Date	ng Co. er: Starte Comp	d:	Zebra Envir Jason Frede February 19 February 19	rick , 2014	al Corp.	Depth: Equipment: Surface Elev.: Depth/Datum:	30'bgs Geoprobe® 7720 DT 90.87' (Site Datum) 60.61' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil	DESCRIPTIVE LO (color, grain size and amount, ter DEPOSITIONAL UI (outwash, till, lacustrine, n	cture, moisture) NIT	COMMENTS
			30		GrfS, t\$; no odor; med. dense; wet; GrmfS (GLACIOLACUSTRIN) Boring terminated at 30.26 feet below ground	E SAND) 30.26°	1¼"I.D. Schedule 40 PVC overburden piezometer installed on February 20, 2014. 10-slot PVC screen: 24.5 -29.5'bgs.
	log i		35				
			45				

Page	1	of	2
	Annual State of the State of th	-	-

						Boring N	o. <u>PZ-14-3</u>
Project Name: Client Name: Location: Weather/Temp.: Drilling Co.: Driller: Date Started: Date Completed:		Orange County Landfill – Cheechunk Canal/Seep Evaluation Orange County Department of Public Works Goshen, NY 12°F - 40°F, 1.55" Precip (wintry mix) Winds (1-3mph)			Project No.: Date: Logged By: Checked By:	2010-15 February 19, 2014 Mark Williams Peter Kelleher, P.E.	
		d:	Zebra Environmental Corp. Jason Frederick February 19, 2014 February 19, 2014			Depth: Equipment: Surface Elev.: Depth Elev.:	30' bgs Geoprobe® 7720 DT 91.21' (Site Datum) 61.29' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	(color, grain size and amount, text	DESCRIPTIVE LOG (color, grain size and amount, texture, moisture) DEPOSITIONAL UNIT (outwash, till, lacustrine, muck, fill)	
			5		Br-GrBr Cy\$; no odor; occ. mtld; mod. stiff plasticity; dry to moist (MI) Gr C&\$; no odor; mod. stiff; freq. vvd (plasticity; moist to wet (MI)	oartings 0.01'); mod.	
			10		BrGr Cy\$; no odor; mod. stiff; freq. vvd (plasticity; moist to wet (M)	partings 0.01'); mod. L/CL).	
			15		BrGr Cy\$; no odor; mod. stiff to stiff; freq. mod. plasticity; moist (MI		Depth to Groundwater = 18.30' bgs (March 18, 2014)
0			20	ä	BrGr Cy\$; no odor; soft to mod. stiff; mar moist (ML/CL). (GLACIOLACUSTRINE SILT DkGrfS, I(-)\$; med. dense; wet (GLACIOLACUSTRINE S	AND CLAY) 24.4 (SM/ML).	,

Page	2	of	2
rage	2	OI	-

						Boring N	o. <u>PZ-14-3</u>
roje	ct Nan	1e:	Orange Cou	nty Lan	dfill - Cheechunk Canal/Seep Evaluation	Project No.:	2010-15
lient	Name	e:	Orange Cou	nty Dep	artment of Public Works	Date:	February 19, 2014
ocat	ion:		Goshen, NY	*		Logged By:	Mark Williams
Veatl	her/Te	mp,:	See page 1 c	of 2		Checked By:	Peter Kelleher, P.E.
rilli	ng Co.	•	Zebra Envir	onmenta	al Corp.	Depth:	30'bgs
rille			Jason Frede	rick	Parist*	Equipment:	Geoprobe® 7720 DT
ate :	Starte	d:	February 19	, 2014	10.0025	Surface Elev.:	91.21' (Site Datum)
ate	Comp	leted:	February 19, 2014			Depth/Datum:	61.29' (Site Datum)
Sample No. Blow Counts		Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LOG (color, grain size and amount, texture, moisture) DEPOSITIONAL UNIT (outwash, till, lacustrine, muck, fill)		COMMENTS
			30		Grmf(+)S; no odor; med.dense; lamin	00.00	2"I.D. Schedule 40 PVC overburden piezometer installed of February 20, 2014. 10-slot PVC screen: 24.92 -29.92'bgs.
			30		Boring terminated at 29.92 feet below ground	nd surface (bgs).	
			35				
			40				
			45		tue who is a wife		
			50		A Davids		

Page	1	of	2
Lago		~-	-

						Boring N	o. <u>PZ-14-4</u>
Proiec	et Nam	ie:	Orange Cour	nty Land	fill - Cheechunk Canal/Seep Evaluation	Project No.:	2010-15
	Name				artment of Public Works	Date:	February 20, 2014
Locati			Goshen, NY			Logged By:	Mark Williams
	her/Te	mp.:			ip, Winds (1-4mph)	Checked By:	Peter Kelleher, P.E.
Drillin	ng Co.		Zebra Enviro	onmenta	1 Corp.	Depth:	30' bgs
Drille		•	Jason Freder			Equipment:	Geoprobe® 7720 DT
	Starte	d.	February 20			Surface Elev.:	90.15' (Site Datum)
	Comp		February 20			Depth Elev.:	61.24' (Site Datum)
Depth	Sample No.	Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LOG (color, grain size and amount, texture, moisture) DEPOSITIONAL UNIT (outwash, till, lacustrine, muck, fill)		COMMENTS
			5		GrBr Cy\$; no odor; occ. mtld; mod. stiff to 0.01'); low to mod. plasticity; dry BrGr \$&C to Cy\$; no odor; mod. stiff to s 0.01'); low to mod. plasticity; m	to moist (ML).	
			10		BrGr \$&C to \$yC; no odor; mod. stiff; od 0.01'); mod. plasticity; mois	cc. to freq. vvd (parting t (ML/CL).	32
			15		Gr Cy\$ to \$&C no odor; mod. stiff; occ. t - 0.07"); mod. plasticity; moist to	o freq. vvd (partings 0 o wet (ML/CL).	Depth to Groundwater
			20		GrCy\$ to \$&C no odor; mod. stiff; massiv	re; moist to wet (ML/C	= 18.23' bgs (March 18, 2014)
			25		(GLACIOLACUSTRINE SIL DkGrmf(+)fS, l(-)Cy\$; no odor; med. c (GLACIOLACUSTRINE	lense; wet (SM/ML).	9,

Page	2	of	2
" me		0.4	_

						Boring No.	PZ-14-4
Project Name: Client Name: Location: Weather/Temp.: Drilling Co.: Driller: Date Started: Date Completed:		e:	Orange County Landfill – Cheechunk Canal/Seep Evaluation Orange County Department of Public Works Goshen, NY See page 1 of 2		Project No.: Date: Logged By: Checked By:	2010-15 February 20, 2014 Mark Williams Peter Kelleher, P.E.	
		d:	Zebra Envir Jason Frede February 20 February 20	rick , 2014	al Corp.	Depth: Equipment: Surface Elev.: Depth/Datum:	38.91'bgs Geoprobe® 7720 DT 90.15' (Site Datum) 61.24' (Site Datum)
Depth Sample No. Blow Counts		Graphic Log 1"=5"		Unified Soil	DESCRIPTIVE LO (color, grain size and amount, te DEPOSITIONAL U (outwash, till, lacustrine, r	xture, moisture) NIT	COMMENTS
			30		Grmf(+)S; no odor; med.dense; lamin (GLACIOLACUSTRINE : Boring terminated at 28.91 feet below ground	SAND) 28.91	2"I.D. Schedule 40 PVC overburden piezometer installed o February 20, 2014. 10-slot PVC screen: 23.91 -28.91'bgs.
		i i i	40				
			50				

Page	1	of	2
8-		tona .	NAME OF TAXABLE PARTY.

					D 1 4 27	2010 16
Project No				fill - Cheechunk Canal/Seep Evaluation	Project No.:	2010-15 February 20, 2014
Client Na				artment of Public Works	Date:	February 20, 2014 Mark Williams
Location:		Goshen, NY		W. 4. (1. 4	Logged By:	Peter Kelleher, P.E.
Veather/	Temp.:	23°F - 50°F,	U" Preci	p, Winds (1-4mph)	Checked By:	Telea Renenci, I. E.
Prilling C	o.:	Zebra Envir	onmenta	l Corp.	Depth:	38' bgs
riller:		Jason Freder	rick		Equipment:	Geoprobe® 7720 DT
Date Star	ted:	February 20	, 2014		Surface Elev.:	99.78' (Site Datum)
Date Com	pleted:	February 20	, 2014		Depth Elev.:	61.92' (Site Datum)
Depth Sample No.	Graphic Log 1"=5" DESCRIPTIVE LOG (color, grain size and amount, texture, moisture) DEPOSITIONAL UNIT (outwash, till, lacustrine, muck, fill)		ture, moisture)	COMMENTS		
			1 0	BrGr Cy\$; no odor; occ. mtld; med. sti	ff; moist (ML/CL).	
		5		BrGr Cy\$; no odor; med. stiff;	moist (ML).	
		10		BrGr C&\$; no odor; med. stiff; low to n (ML/CL).	nod. plasticity; moist	
		15		BrGr-Gr \$&Ct, vfS(\$); no odor; mod. stif plasticity; moist (ML/C	f; occ.vvd; low to mod. CL).	
		20		Gr Cy\$ to \$&C no odor; mod. stiff; occ. 0.07'); low to mod. plasticity; m	vvd (partings = 0.04 – oist (ML/CL).	
		25		(GLACIOLACUSTRINE SILT	'AND CLAY)	4

-	-		
Page	2	of	4

						Boring N	o. PZ-14-5
Project Name: Client Name: Location: Weather/Temp.: Drilling Co.: Driller: Date Started: Date Completed:		Orange County Landfill – Cheechunk Canal/Seep Evaluation Orange County Department of Public Works Goshen, NY See page 1 of 2		Project No.: Date: Logged By: Checked By:	2010-15 February 20, 2014 Mark Williams Peter Kelleher, P.E.		
		Zebra Environmental Corp. Jason Frederick February 20, 2014 February 20, 2014			Depth: Equipment: Surface Elev.: Depth/Datum:	38'bgs Geoprobe® 7720 DT 99.78' (Site Datum) 61.92' (Site Datum)	
Depth Sample No. Blow Counts		Blow Counts	Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LO (color, grain size and amount, ter DEPOSITIONAL UI (outwash, till, lacustrine, n	kture, moisture) NIT	COMMENTS
			30		Gr Cy\$ to \$&C no odor; mod. stiff; occ. 0.05'); mod. plasticity; wet to me Gr Cy\$; no odor; soft to mod. stiff; massive wet (ML). (GLACIOLACUSTRINE SILT	oist (ML/CL). e; low plasticity; moist	Depth to Groundwater = 28.32' bgs (March 18, 2014) to 2"I.D. Schedule 40 PVC overburden
			35		DkGrmf(+)S, t\$; laminated; med. dense Gr-DkGrfS; no odor; dense; (GLACIOLACUSTRIN	wet (SM).	piezometer installed or February 20, 2014. 10-slot PVC screen: 32.9 -34.9'bgs.
			40		Boring terminated at 37.86 feet below ground	nd surface (bgs).	
			45				

Daga	1	of	2
Page	l.	UL	Great

						Boring N	o. PZ-14-6	
rojec	et Nan	ne:	Orange Cou	nty Land	fill - Cheechunk Canal/Seep Evaluation	Project No.:	2010-15	
					artment of Public Works	Date:	February 20, 2014	
Location: Goshen, NY						Logged By:	Mark Williams	
Weath	her/Te	mp.:	Annah yan ya maraka		p, Winds (1-4mph)	Checked By:	Peter Kelleher, P.E.	
 Drillin	ng Co.	:	Zebra Envir	onmenta	l Corp.	Depth:	39.2' bgs	
rille	-		Jason Frede	rick		Equipment:	Geoprobe® 7720 DT	
Date S	Starte	d:	February 20	, 2014		Surface Elev.:	99.96' (Site Datum)	
Date (Comp	leted:	February 20			Depth Elev.:	60.76' (Site Datum)	
Sample No. Blow Counts			Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LO (color, grain size and amount, tex DEPOSITIONAL UN (outwash, till, lacustrine, m	texture, moisture) COMMENT		
					BrGr Cy\$; no odor; occ. mtld; mod. s BrGr Cy\$ to \$&C no odor; mod. stif			
			5		Brot Cy5 to 5&C, no odor, mod. sin	i, moist (WE CE).		
			10		BrGr C&\$; no odor; mod. stiff; low to r (ML/CL).	nod. plasticity; moist		
			15		BrGr-Gr \$&C to Cy\$; no odor; mod. stift plasticity; moist (ML/6	f; occ.vvd; low to mod CL).	i	
			20		Gr Cy\$; no odor; mod. stiff; occ.vvd; low (ML/CL).	to mod. plasticity; mo	ist	
			25		(GLACIOLACUSTRINE SILT	r and clay)		

Page	2	of	2
	_	-	

						Boring No. PZ-14-6				
Project Name: Client Name: Location: Weather/Temp.:				inty De	ndfill – Cheechunk Canal/Seep Evaluation partment of Public Works	Project No.: Date: Logged By: Checked By:	2010-15 February 20, 2014 Mark Williams Peter Kelleher, P.E.			
Drilling Co.: Driller: Date Started: Date Completed:		d:	Zebra Envir Jason Frede February 20 February 20	rick), 2014	tal Corp.	Depth: Equipment: Surface Elev.: Depth/Datum:	39.2'bgs Geoprobe® 7720 DT 99.96' (Site Datum) 60.76' (Site Datum)			
Depth Sample No. Blow Counts			Graphic Log 1"=5'	Unified Soil Classification	DESCRIPTIVE LO (color, grain size and amount, tex DEPOSITIONAL UP (outwash, till, lacustrine, m	cture, moisture)	COMMENTS			
			- 30 - 35 - 40		Gr Cy\$; no odor; soft to mod. stiff; occ. to from the control of t	t (ML/CL). s low plasticity; moist to the control of the control	Depth to Groundwater = 27.27' bgs (March 18, 2014) 11/4"I.D. Schedule 40 PVC overburden piezometer installed of			
			50							

APPENDIX B

Summary of Survey and Project Information - Orange County Landfill Seep Evaluation

24.4 / [66.81]

23.9 / [66.25]

33.5 / [66.28]

33.85 / [66.11]

18.30 / [73.26]

18.23 / [73.27]

28.32 / [73.63]

27.27 / [73.57]

20.10 / [71.46]

19.88 / [71.62]

29.58 / [72.37]

28.61 / [72.23]

24.92 -29.92 / [66.29 - 61.29] | 29.92 / [61.29]

23.91-28.91 / [66.24 - 61.24] | 28.91 / [61.24]

34.2-39.2 / [65.76 - 60.76] | 39.20 / [60.76]

32.9-37.9 / [66.88 - 61.88]

37.86 / [61.92]

Piezometer	Assumed Elevation (Site Datum)	delta Z - 1st Setup	delta Z - 2nd Setup	delta Z - 3rd Setup	Piezometer Stickup (feet)	Ground Surface Elevation	Glaciolacustrine (Silt and Clay)/Glaciolacustrine (Fine Sand) Interface (feet BGS)/[Geologic Contact Elevation]	Screened Interval / [Screened Elevation]	(Feet BGS) /	February 20, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]	March 18, 2014 Depth to Groundwater (feet BMP {Top of PVC}) / [Groundwater Elevation]
1.0.	(MP)	(to MP)	(to MP)	(to MP)							
PZ-14-1	100.00	-3.31			0.65	99.35	34.1 / [65.25]	34.5-39.5 / [64.85 - 59.85]	39.5 / [59.85]		26.29 / [73.71]
PZ-14-2	91.67	-11.64			0.80	90.87	24.6 / [66.27]	24.5-29.5 / [66.37 - 61.37]	30.26 / [60.61]	20.21 / [71.46]	18.24 / [73.43]

91.21

90.15

99.78

99.96

0.35

1.35

2.17

0.88

0.40

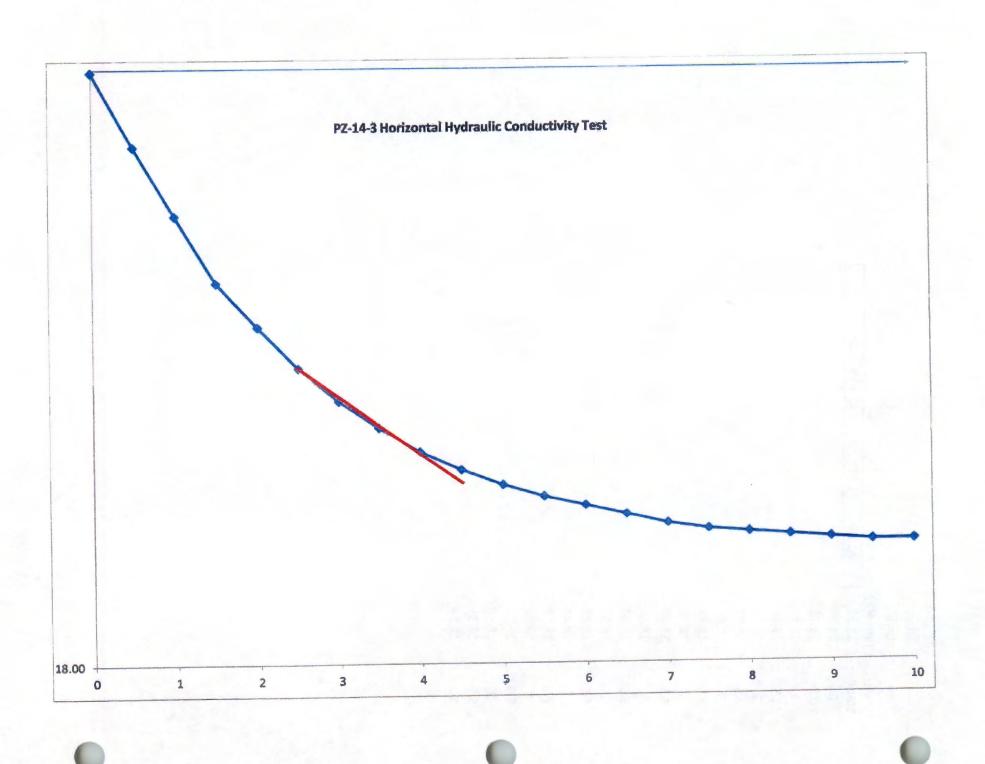
PZ-14-4 91.50 -11.81 PZ-14-5 101.95 -1.36 PZ-14-6 100.84 -2.47 -7.15 MW-3B MH-5 -19.35 Canal 71.81

-11.75

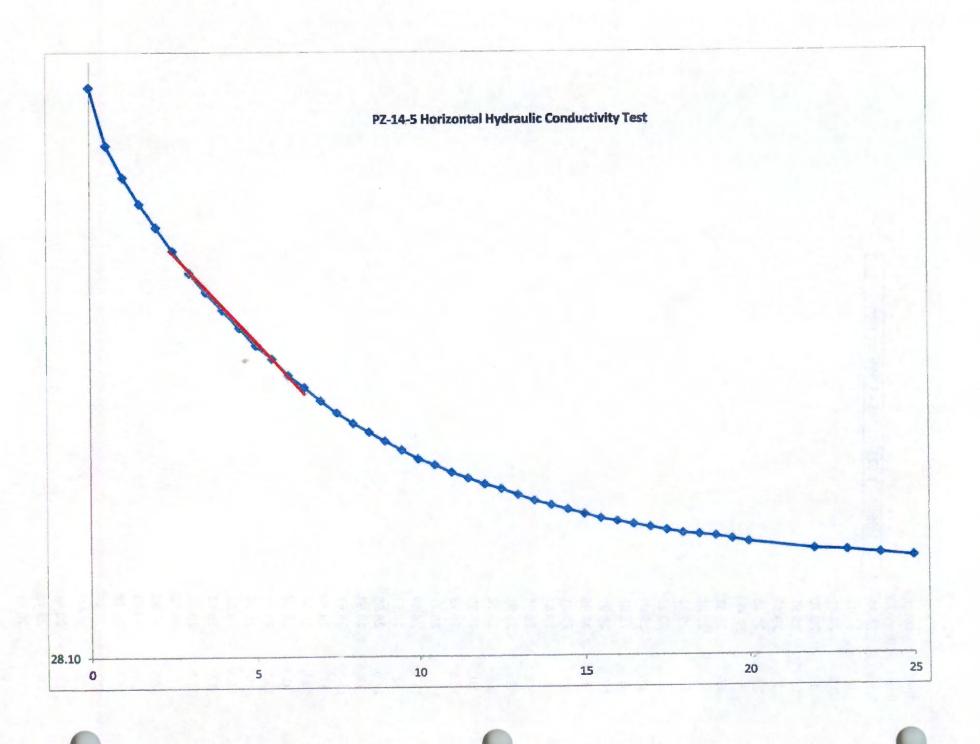
100.00

ft

Assign PZ-14-1 MP Elev =

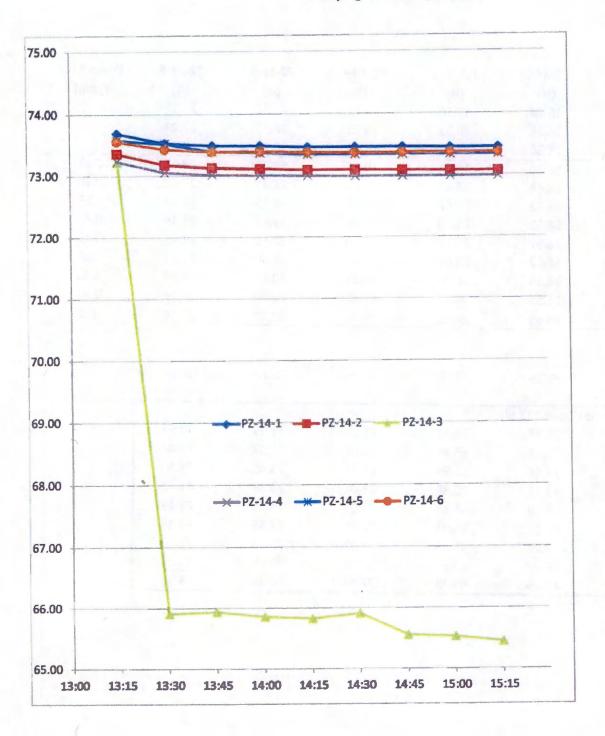

91.67

91.56


PZ-14-2

PZ-14-3

	PZ-14-3 Water				
Time	Level				
(sec)	(from MP)				_
Static	18.33	1.66	1.577	18.41 95% recovery	
0	19.99				
0.5	19.73				
1	19.49				
1.5	19.26				
2	19.11				
2.5	18.97				
3	18.86				
3.5	18.77				
4	18.69				
4.5	18.63				
5	18.58				
5.5	18.54				
6	18.51				
6.5	18.48				
7	18.45				
7.5	18.43				
8	18.42				
8.5	18.41				
9	18.40				
9.5	18.39				
10	18.39				


```
PZ-14-5
          Water
Time
           Level
(min)
         (from MP)
                                   1.577
                                             28.43 95% recovery
Static
           28.35
                          1.66
 0
           30.01
 0.5
           29.81
  1
           29.70
 1.5
           29.61
  2
           29.53
 2.5
           29.45
  3
          29.375
 3.5
           29.31
  4
           29.25
 4.5
           29.19
  5
           29.13
 5.5
           29.09
  6
           29.03
 6.5
           28.99
  7
           28.95
 7.5
           28.91
  8
           28.87
 8.5
           28.84
  9
           28.81
 9.5
           28.78
           28.75
 10
           28.73
10.5
 11
           28.71
           28.69
11.5
 12
           28.67
12.5
           28.65
 13
           28.63
           28.61
 13.5
 14
           28.60
           28.58
 14.5
 15
           28.57
 15.5
            28.55
 16
           28.54
 16.5
            28.53
            28.52
 17
            28.51
 17.5
            28.50
 18
            28.50
 18.5
  19
            28.49
 19.5
            28.48
  20
            28.47
  22
           28.445
            28.44
  23
  24
            28.43
  25
            28.42
```


Pumping Test Data (PZ-14-3)

Time	PZ-14-1 (ft)	PZ-14-2 (ft)	PZ-14-3 (ft)	PZ-14-4 (ft)	PZ-14-5 (ft)	PZ-14-6 (ft)	Pump Rate (gpm)
9:30	26.29	18.24	18.30	18.23	28.32	27.27	
11:50	26.30	18.28	18.33	18.25	28.35	27.27	
13:10	26.30	18.30	18.33	18.26	28.36	27.27	
13:15	26.30	18.30	18.33	18.26	28.36	27.27	0.33
13:30	26.46	18.48	25.65	18.44	28.42	27.40	0.40
13:45	26.50	18.53	25.62	18.48	28.55	27.44	0.38
14:00	26.51	18.55	25.70	18.49	28.57	27.44	0.38
14:15	26.53	18.57	25.73	18.50	28.60	27.45	0.38
14:30	26.53	18.57	25.65	18.51	28.60	27.46	0.36
14:45	26.53	18.58	26.00	18.51	28.60	27.46	0.41
15:00	26.54	18.59	26.03	18.51	28.60	27.46	0.38
15:15	26.54	18.59	26.11	18.51	28.60	27.46	0.40
max delta	-0.24	-0.29	-7.78	-0.25	-0.24	-0.19	
sing water lev	els as elevation	ns (Canal ~71.8')):				7
13:15	73.70	73.37	73.23	73.24	73.59	73.57	
13:30	73.54	73.19	65.91	73.06	73.53	73.44	
13:45	73.50	73.14	65.94	73.02	73.40	73.40	
14:00	73.50	73.12	65.86	73.01	73.38	73.40	1
14:15	73.47	73.10	65.83	73.00	73.35	73.39	
14:30	73.47	73.10	65.91	72.99	73.35	73.38	
14:45	73.47	73.09	65.56	72.99	73.35	73.38	
15:00	73.46	73.09	65.53	72.99	73.35	73.38	
15:15	73.46	73.08	65.45	72.99	73.35	73.38	1

Pumping Test Data (PZ-14-3)

Sample ID BEFORE	Time Collected 13:20; 3/18/14	Time Analyzed 16:50; 3/19/14	Temp. C 13.05	Cond. mS/cm (S) 1.189	Cond. mS/cm 0.918	DO % 12.2	DO mg/L 1.28	pH SU 6.92	ORP mV -51.0	Turbidity NTU
AFTER	15:15; 3/18/14	17:10; 3/19/14	13.13	1.176	0.910	20.1	2.1	6.93	-34.2	

APPENDIX H

OCTOBER 20, 2014, ORANGE COUNTY LANDFILL - CHEECHUNK CANAL / LANDFILL SEEP EVALUATION, PRE-CONSTRUCTION NOTIFICATION TO USACOE

ORANGE COUNTY DEPARTMENT OF PUBLIC WORKS DIVISION OF ENVIRONMENTAL FACILITIES & SERVICES

Charles W. Lee, P.E.

Peter S. Hammond
Deputy Commissioner

Steven M. Neuhaus County Executive

P.O. Box 637, 2455-2459 Route 17M Goshen, New York 10924-0637 www.orangecountygov.com/efs

Tel: (845) 291-2640 • Fax: (845) 291-2665

October 20, 2014

Department of the Army New York District, Corps of Engineers ATTN: Regulatory Branch 26 Federal Plaza New York, New York 10278

Subject:

Pre-Construction Notification for Nationwide Permit No. 38

Canal Bank Stabilization Orange County, New York

Attached please find form 4345 serving as the Pre-Construction Notification (PCN) for a United States Army Corp of Engineers (USACOE) Nationwide Permit (NWP) 38 to disturb less than 1/10 acre of wetlands for stream bank stabilization of the Cheechunk Canal (Wallkill River) downhill from the closed Orange County Landfill located in the Town of Goshen, Orange County, New York (see attached figures).

Please contact me should you have any questions or comments.

Best Agards,

Peter S. Hammond

Orange County Department of Public Works
Division of Environmental Facilities and Services

Attachments

Cc: Joseph Mahoney, Orange County

Mark Millspaugh, Sterling Environmental

U.S. ARMY CORPS OF ENGINEERS APPLICATION FOR DEPARTMENT OF THE ARMY PERMIT

33 CFR 325. The proponent agency is CECW-CO-R.

Form Approved -OMB No. 0710-0003 Expires: 31-AUGUST-2013

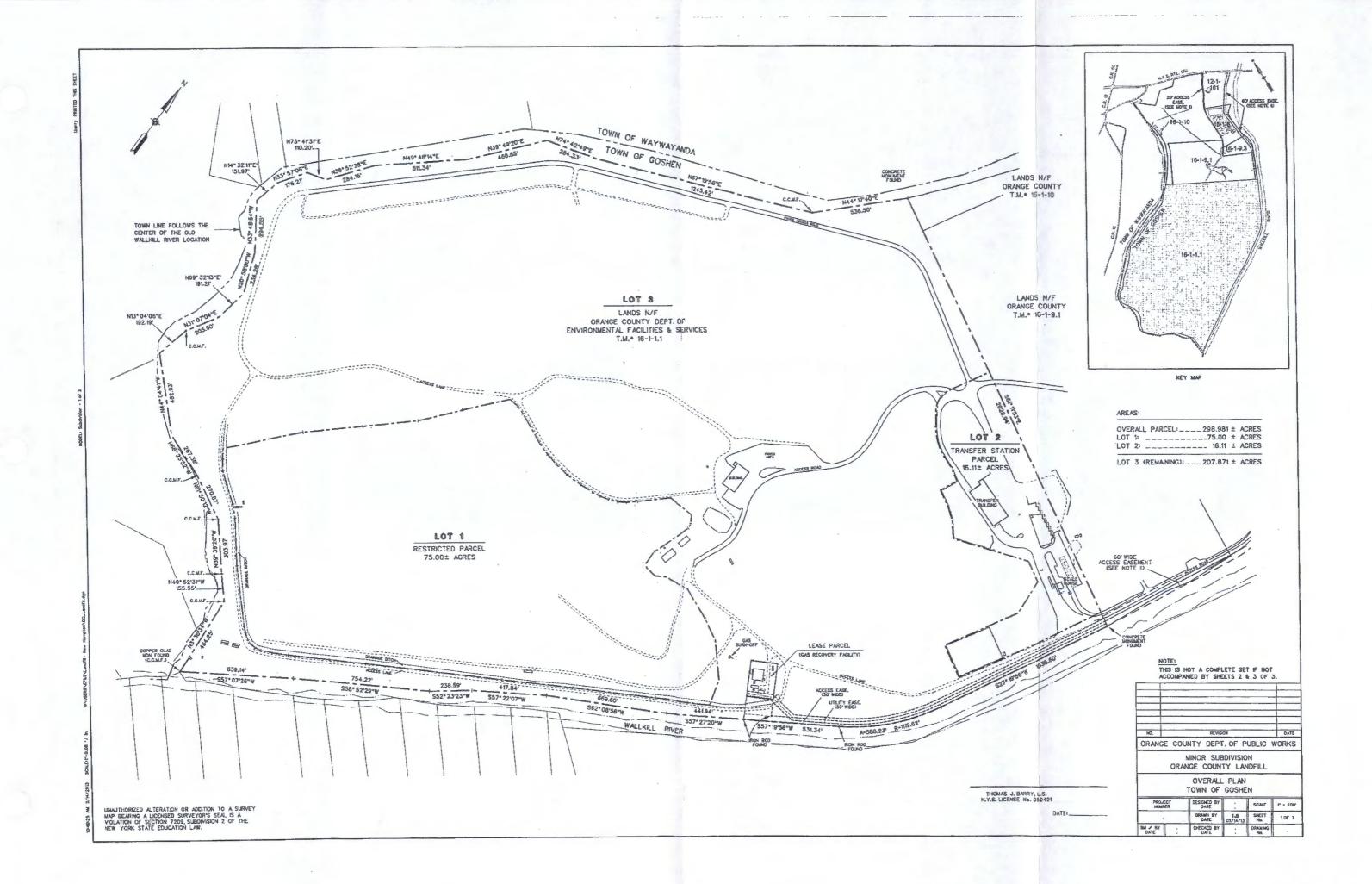
Public reporting for this collection of information is estimated to average 11 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters, Executive Services and Communications Directorate, Information Management Division and to the Office of Management and Budget, Paperwork Reduction Project (0710-0003). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. Please DO NOT RETURN your form to either of those addresses. Completed applications must be submitted to the District Engineer having jurisdiction over the location of the proposed activity.

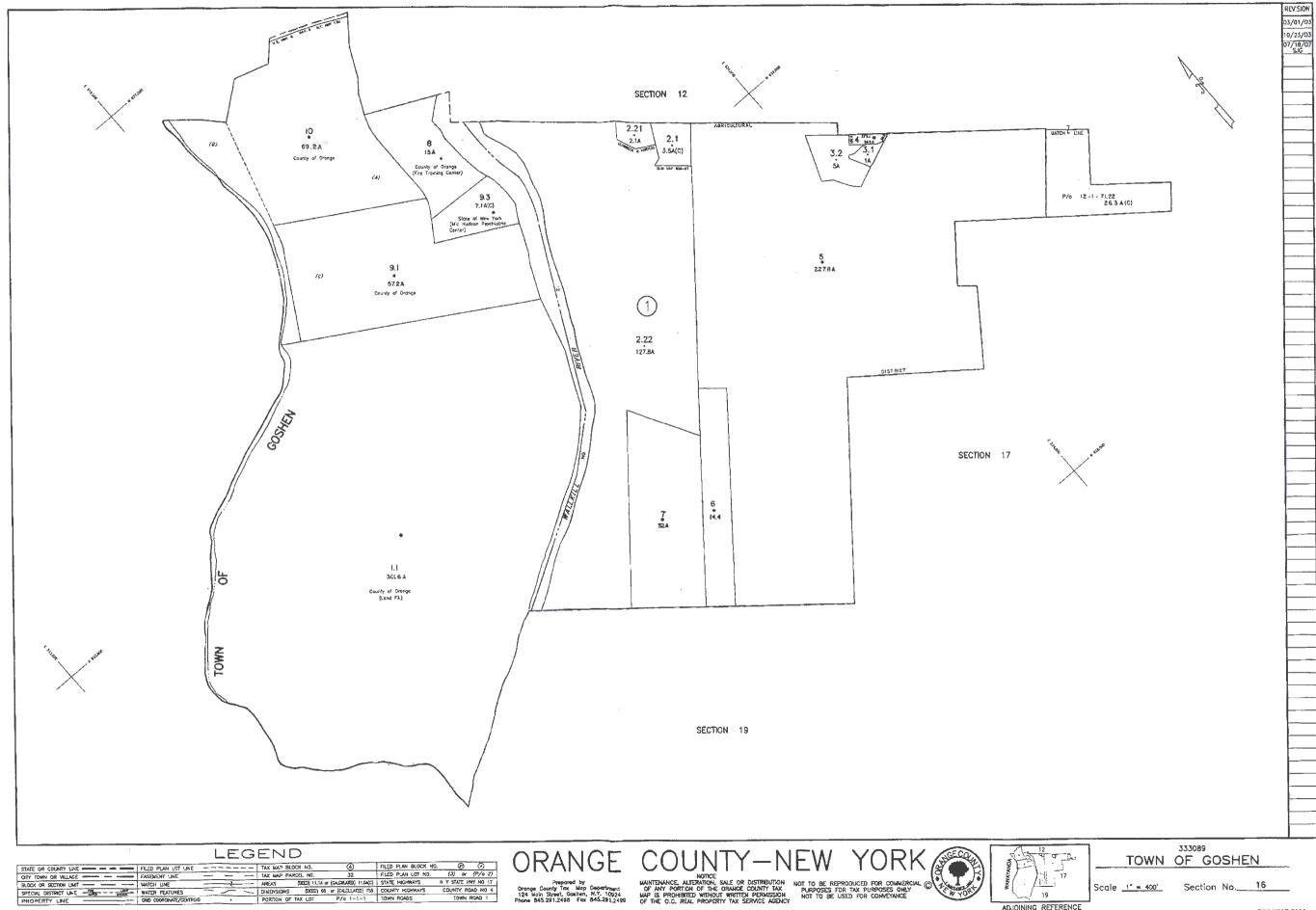
PRIVACY ACT STATEMENT

Authorities: Rivers and Harbors Act, Section 10, 33 USC 403; Clean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sanctuaries Act, Section 103, 33 USC 1413; Regulatory Programs of the Corps of Engineers; Final Rule 33 CFR 320-332. Principal Purpose: Information provided on this form will be used in evaluating the application for a permit. Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public and may be made available as part of a public notice as required by Federal law. Submission of requested information is voluntary, however, if information is not provided the permit application cannot be evaluated nor can a permit be issued. One set of original drawings or good reproducible copies which show the location and character of the proposed activity must be attached to this application (see sample drawings and/or instructions) and be submitted to the District Engineer having jurisdiction over the location of the proposed activity. An application that is not completed in full will be returned.

		(ITEMS 1 THRU 4 TO BE	FILLED BY THE COR	?S)			
1. APPLICATION NO.	2. FIE	ELD OFFICE CODE	3. DATE RECEIVED	4. DATE APPLICATION COMPLETE			
		(ITEMS BELOW TO BE	FILLED BY APPLICAN	IT)			
5. APPLICANT'S NAME			8. AUTHORIZED AGE	ENT'S NAME A	ND TITLE ((agent is not re	quired)
First - Peter	Middle -S.	Last - Hammond	First - Mark	Middle -P.		Last - Mil	spaugh
Company - Orange Co	ounty Dept. of Publi	ic Works	Company - Sterling	Environment	al Enginee	ering, P.C.	
E-mail Address - phamr	mond@co.orange.n	y.us	E-mail Address - mari	k.millspaugh(@sterlinge	environmenta	il.com
6. APPLICANT'S ADDR	RESS:		9. AGENT'S ADDRES	SS:			-
Address- 2455-2459 I	Route 17M, PO Box	x 637	Address- 24 Wade	Road			
City - Goshen	State - NY	Zip - 10924 Country - USA	City - Latham	State - 1	NY Z	Zip - 12110	Country - USA
7. APPLICANTS PHON	NE NOs. WAREA COI	DE	10. AGENTS PHONE	NOs. WAREA	CODE		
a. Residence	b. Business	c. Fax	a. Residence	b. Busines	ss	c. Fax	
845-742-2852	845-291-2641	845-291-2665	518-573-4796	518-456-	4900	518-456	-3532
		STATEMENT OF	AUTHORIZATION				
 I hereby authorize, supplemental information 	Mark P. Millspaug) n in support of this per	mit application SIGNATURE OF APPLI	s my agent in the process) -20 - 14 DATE		u to idinor, op	ion request,
	NA.	AME, LOCATION, AND DESCR	IPTION OF PROJECT	OR ACTIVITY			
12. PROJECT NAME C Canal Bank Stabiliza		ilons)					
13. NAME OF WATER	BODY, IF KNOWN (IF	applicable)	14. PROJECT STRE	ET ADDRESS	(if applicabl	le)	
Cheechunk Canal (Al	KA Wallkill River))	Address 21 Training	ng Center Lan	e		
15. LOCATION OF PRO Latitude: •N 41.38875		itude: •W 74.40061	City - New Hampto	on :	State- NY	Z	ip- 10958
		KNOWN (see instructions)					
State Tax Parcel ID 16	-1-2.22		range County, Town	of Goshen			
Section - 16	Township	- Town of Goshen	Range -				

17. DIRECTIONS TO THE SITE		
)		
18. Nature of Activity (Description of pro-	oject, include all features)	
Filter fabric and up to three (3) feet from higher up on the canal bank.	of rip rap fill in certain locations. Fabric will be p	placed by hand, and stone will be placed by a crane
10 Project Durness (Describe the reas	on or purpose of the project, see instructions)	×
13. Project ruipose (Describe the reas	or or purpose of the project, see instructions)	
The purpose of this project is to sta	bilize the canal banks at select locations where slo	ughing is occurring.
		·
USE	BLOCKS 20-23 IF DREDGED AND/OR FILL MATERIAL	LIS TO BE DISCHARGED
20. Reason(s) for Discharge		
Stabilization and erosion control.		
Stabilization and Crosson Control.		
21. Type(s) of Material Being Discharge	ed and the Amount of Each Type in Cubic Yards:	
Туре	Туре	Type
Amount in Cubic Yards	Amount in Cubic Yards	Amount in Cubic Yards
Rip rap - Less than 10 Cubic Yard		
 Surface Area in Acres of Wetlands Acres Less than 4,356 Square Fer 	or Other Waters Filled (see Instructions)	
or	these than I/IV Acie)	
Linear Feet		
23. Description of Avoidance Minimize	ttion, and Compensation (see instructions)	
		fabric, and careful placement of rip rap by crane from
above. Excavation of shoreline is	not proposed.	

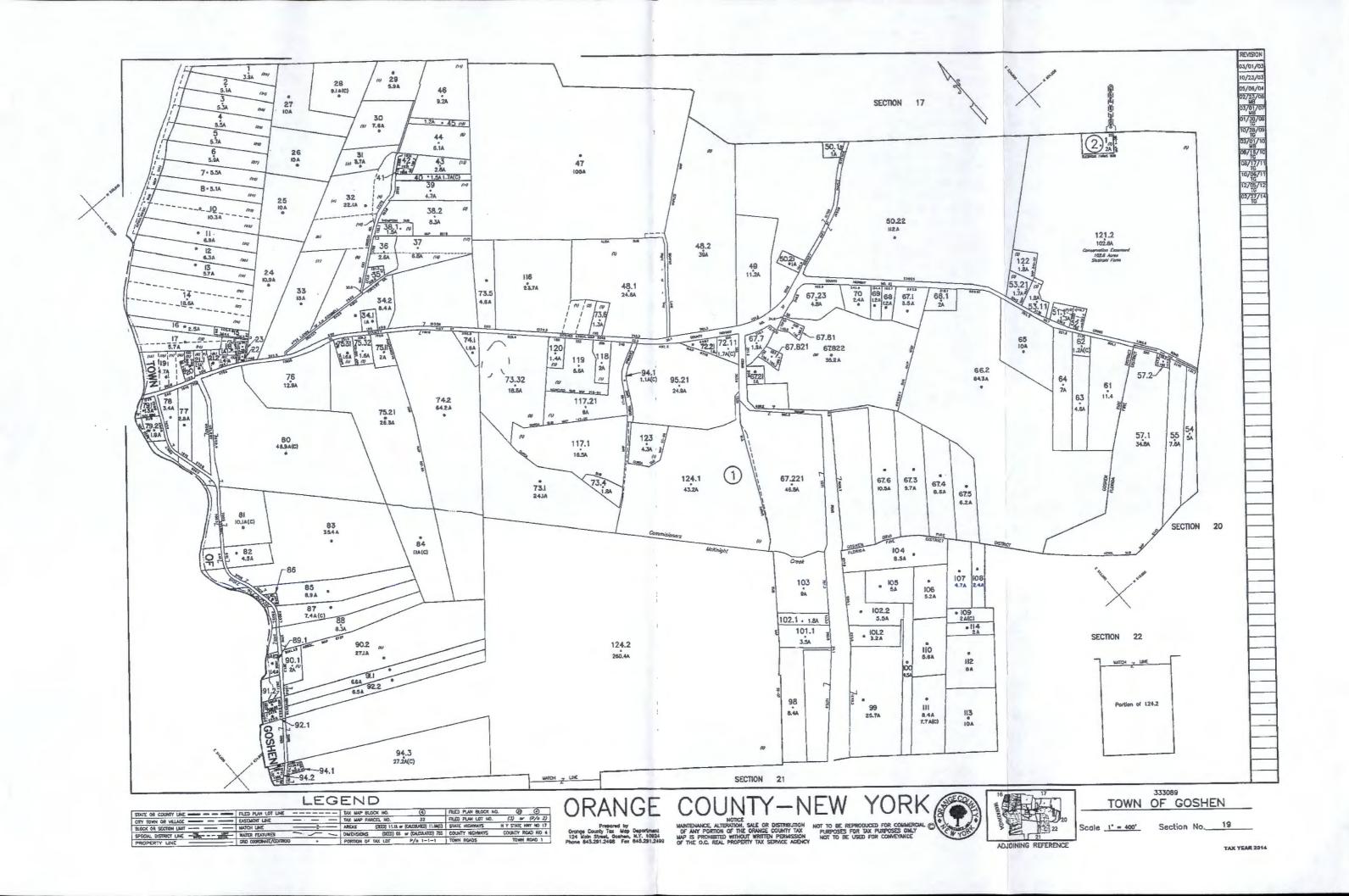

ENG FORM 4345, JUL 2013 Page 2 of 3


5. Addresses of Adjo	pining Property Owners, Lessee	s, Etc., Whose Property	Adjoins the Waterbody (if mor	re than can be entered here, please a	ttach a supplemental list).
Address- NOTE -	CHEECHUNK CANAL IS	S OWNED BY STATE	E OF NEW YORK.		
lity -		State -	Zip -		
Address-					
City -		State -	Zip -		
. Address-					
City -		State -	Zip -		
. Address-					
City -		State -	Zip -		
. Address-					
City -		State -	Zip -		
3. List of Other Cert	ificates or Approvals/Denials re	ceived from other Federal			
AGENCY	TYPE APPROVAL*	NUMBER	DATE APPLIED	DATE APPROVED	DATE DENIED
NYSDEC	Landfill SMP		June 2014		
		Correct Correct Corre			
	not restricted to zoning, building				
complete and accurat	reby/made for permit or permits le./I further certify that I posses	to authorize the work deases the authority to underta	scribed in this application. I ke the work described here	in or am acting as the duly a	in this application is outhorized agent of the
pplicant.) 101	// //	10-20-14 DATE	ADA	7	and ola

The Application must be signed by the person who desires to undertake the proposed activity (applicant) or it may be signed by a duly authorized agent if the statement in block 11 has been filled out and signed.

18 U.S.C. Section 1001 provides that: Whoever, in any manner within the jurisdiction of any department or agency of the United States knowingly and willfully falsifies, conceals, or covers up any trick, scheme, or disguises a material fact or makes any false, fictitious or fraudulent statements or representations or makes or uses any false writing or document knowing same to contain any false, fictitious or fraudulent statements or entry, shall be fined not more than \$10,000 or imprisoned not more than five years or both.

ENG FORM 4345, JUL 2013



ADJOINING REFERENCE

TOWN OF GOSHEN

Scale <u>1° = 400'</u>

APPENDIX I

JUNE 12, 2014 ANALYTICAL RESULTS

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-61861-1 Client Project/Site: Orange County Landfill Sampling Event: Groundwater Baseline

For: Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Stephen Burton

Fise Shoffe

Authorized for release by: 6/27/2014 2:51:39 PM

Lisa Shaffer, Project Manager II (716)504-9816

lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Definitions/Glossary

Client: Sterling Environmental Engineering PC Toject/Site: Orange County Landfill

TEQ

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-61861-1

Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chen	nistry
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
b	Result Detected in the Unseeded Control blank (USB).
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
<u> </u>	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
A	Minimum detectable activity
DL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Job ID: 480-61861-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-61861-1

Comments

No additional comments.

Receipt

The samples were received on 6/13/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 3.0° C, 3.2° C and 3.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010C: The method blank for batch 480-187751 contained total boron above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples GW-1 (480-61861-7), GW-2 (480-61861-8), GW-3 (480-61861-6), GW-A (480-61861-2), GW-B (480-61861-3), SW-01 (480-61861-5), SW-02 (480-61861-4) was not performed.

Method(s) 6010C: The method blank for batch 480-187896 contained dissolved zinc above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples GW-1 (480-61861-7), GW-2 (480-61861-8), GW-3 (480-61861-6), GW-A (480-61861-2), GW-B (480-61861-3), SW-01 (480-61861-5), SW-02 (480-61861-4) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: The sample was filtered prior to analysis, therefore the analytical result must be reported as true color. GW-2 (480-61861-8), GW-3 (480-61861-6), GW-B (480-61861-3)

Method(s) 353.2: The method blank for batch 187689 contained nitrite above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.SW-02 (480-61861-4)

Method(s) SM 5210B: The USB dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L. The associated sample results in batch 187695 are reported. (USB 480-187695/1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: GW-A

Lab Sample ID: 480-61861-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.37	***************************************	0.20	0.060	mg/L	1	_	6010C	Total/NA
Barium	0.021		0.0020	0.00070	mg/L	1		6010C	Total/NA
Boron	0.023	В	0.020	0.0040	mg/L	1		6010C	Total/NA
Calcium	49		0.50	0.10	mg/L	1		6010C	Total/NA
Iron	0.53		0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	8.8		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.063		0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	1.8		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	24		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.0029	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Barium	0.14		0.0020	0.00070	mg/L	1		6010C	Dissolved
Boron	0.022		0.020	0.0040	mg/L	1		6010C	Dissolved
Calcium	46		0.50	0.10	mg/L	1		6010C	Dissolved
Chromium	0.0031	J	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0017	J	0.010	0.0016	mg/L	1		6010C	Dissolved
ron	0.099		0.050	0.019	mg/L	1		6010C	Dissolved
Magnesium	8.4		0.20	0.043	mg/L	1		6010C	Dissolved
Manganese	0.038		0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.0013	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	1.6		0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	25		1.0	0.32	mg/L	1		6010C	Dissolved
Žinc	0.0042	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Chloride	44		0.50	0.28	mg/L	1		300.0	Total/NA
fulfate	17		2.0	0.35	mg/L	1		300.0	Total/NA
Alkalinity, Total	130		50	20	mg/L	5		310.2	Total/NA
Ammonia	0.016	J	0.020	0.0090	mg/L	1		350.1	Total/NA
Total Kjeldahl Nitrogen	0.41		0.20	0.15	mg/L	1		351.2	Total/NA
Nitrate as N	0.45		0.050	0.020	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	24		10	5.0	mg/L	1		410.4	Total/NA
Total Organic Carbon	6.9		1.0	0.43	mg/L	1		9060A	Total/NA
Hardness	160		4.0	1.1	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	280		10	4.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	12		1.0	1.0	NTU	1		180.1	Total/NA
Color	60		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Client Sample ID: GW-B

Lab Sample ID: 480-61861-3

Analyte Resu	t Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum 6.	3	0.20	0.060	mg/L	1	_	6010C	Total/NA
Arsenic 0.005	3 J	0.015	0.0056	mg/L	1		6010C	Total/NA
Barium 0.07	4	0.0020	0.00070	mg/L	1		6010C	Total/NA
Beryllium 0.0004	5 J	0.0020	0.00030	mg/L	1		6010C	Total/NA
Boron 0.02	7 B	0.020	0.0040	mg/L	1		6010C	Total/NA
Calcium 7	5	0.50	0.10	mg/L	1		6010C	Total/NA
Chromium 0.007	3	0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper 0.01	2	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron 8.		0.050	0.019	mg/L	1		6010C	Total/NA
Lead 0.007		0.010	0.0030	mg/L	1		6010C	Total/NA
Magnesium 1		0.20	0.043	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: GW-B (Continued)

Lab Sample ID: 480-61861-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	1.0		0.0030	0.00040	mg/L	1	-	6010C	Total/NA
Nickel	0.018		0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	4.4		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	3.2		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.028		0.010	0.0015	mg/L	1		6010C	Total/NA
Aluminum	0.14	J	0.20	0.060	mg/L	1		6010C	Dissolved
Barium	0.27		0.0020	0.00070	mg/L	1		6010C	Dissolved
Boron	0.020		0.020	0.0040	mg/L	1		6010C	Dissolved
Calcium	72		0.50	0.10	mg/L	1		6010C	Dissolved
Chromium	0.0038	J	0.0040	0.0010	mg/L	1		6010C	Dissolved
Cobalt	0.0014	J	0.0040	0.00063	mg/L	1		6010C	Dissolved
Copper	0.0054	J	0.010	0.0016	mg/L	1		6010C	Dissolved
Iron	0.22		0.050	0.019	mg/L	1		6010C	Dissolved
Magnesium	15		0.20	0.043	mg/L	1		6010C	Dissolved
Manganese	0.44		0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.010		0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	2.2		0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	4.1		1.0	0.32	mg/L	1		6010C	Dissolved
Zinc	0.0055	JB	0.010	0.0015	mg/L	1		6010C	Dissolved
Chloride	0.82		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	23		2.0	0.35	mg/L	1		300.0	Total/NA
Alkalinity, Total	260		100	40	mg/L	10		310.2	Total/NA
Ammonia	0.14		0.020	0.0090	mg/L	1		350.1	Total/NA
Total Kjeldahl Nitrogen	2.7		0.20	0.15	mg/L	1		351.2	Total/NA
Nitrate as N	0.31		0.050	0.020	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	110		10	5.0	mg/L	1		410.4	Total/NA
Total Organic Carbon	46		1.0	0.43	mg/L	1		9060A	Total/NA
Hardness	250		10	2.6	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	420		10	4.0	mg/L	1		SM 2540C	Total/NA
Biochemical Oxygen Demand	2.2	b	2.0	2.0	mg/L	1		SM 5210B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	160		1.0	1.0	NTU	1	-	180.1	Total/NA
Color	140		10	10	Color Units	2		SM 2120B	Total/NA

Client Sample ID: SW-02

Lab Sample ID: 480-61861-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.55		0.20	0.060	mg/L	1	_	6010C	Total/NA
Barium	0.024		0.0020	0.00070	mg/L	1		6010C	Total/NA
Boron	0.023	В	0.020	0.0040	mg/L	1		6010C	Total/NA
Calcium	44		0.50	0.10	mg/L	1		6010C	Total/NA
Copper	0.0017	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	0.77		0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	15		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.11		0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	1.8		0.50	0.10	mg/L	1		6010C	Total/NA
Sodjum	32		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.0055	J	0.010	0.0015	mg/L	1		6010C	Total/NA
Barium	0.021		0.0020	0.00070	mg/L	1		6010C	Dissolved
Boron	0.021		0.020	0.0040	mg/L	1		6010C	Dissolved

This Detection Summary does not include radiochemical test results.

Client: Sterling Environmental Engineering PC "roject/Site: Orange County Landfill

Client Sample ID: SW-02 (Continued)

Lab Sample ID: 480-61861-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	thod	Prep Type
Calcium	42		0.50	0.10	mg/L	1	601	OC.	Dissolved
Chromium	0.0019	J	0.0040	0.0010	mg/L	1	601	10C	Dissolved
Copper	0.0016	J	0.010	0.0016	mg/L	1	601	10C	Dissolved
ron	0.026	J	0.050	0.019	mg/L	1	601	10C	Dissolved
Magnesium	15		0.20	0.043	mg/L	1	601	10C	Dissolved
Manganese	0.0062		0.0030	0.00040	mg/L	1	601	10C	Dissolved
Potassium	1.5		0.50	0.10	mg/L	1	601	10C	Dissolved
Selenium	0.0090	J	0.025	0.0087	mg/L	1	601	10C	Dissolved
Sodium	32		1.0	0.32	mg/L	1	601	10C	Dissolved
Zinc	0.0028	JB	0.010	0.0015	mg/L	1	601	10C	Dissolved
Chloride	61		0.50	0.28	mg/L	1	300).0	Total/NA
Sulfate	14		2.0	0.35	mg/L	1	300).0	Total/NA
Alkalinity, Total	140		50	20	mg/L	5	310).2	Total/NA
Ammonia	0.053		0.020	0.0090	mg/L	1	350).1	Total/NA
Total Kjeldahl Nitrogen	0.44		0.20	0.15	mg/L	1	351	1.2	Total/NA
Nitrate as N	0.93		0.050	0.020	mg/L	1	353	3.2	Total/NA
Chemical Oxygen Demand	9.0	J	10	5.0	mg/L	1	410).4	Total/NA
Total Organic Carbon	4.4		1.0	0.43	mg/L	1	906	60A	Total/NA
Hardness	180		4.0	1.1	mg/L	1	SM	1 2340C	Total/NA
Total Dissolved Solids	310		10	4.0	mg/L	1	SM	1 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D Me	thod	Prep Type
Turbidity	17		1.0	1.0	NTU '	1	180	0.1	Total/NA
Color	40		5.0	5.0	Color Units	1	SM	12120B	Total/NA

Client Sample ID: SW-01

Lab Sample ID: 480-61861-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Aluminum	0.57		0.20	0.060	mg/L	1	6010C	Total/NA
Barium	0.024		0.0020	0.00070	mg/L	1	6010C	Total/NA
Boron	0.022	В	0.020	0.0040	mg/L	1	6010C	Total/NA
Calcium	43		0.50	0.10	mg/L	1	6010C	Total/NA
Iron	0.81		0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	15		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.11		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.0015	J	0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	1.8		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	32		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.0060	J	0.010	0.0015	mg/L	1	6010C	Total/NA
Barium	0.022		0.0020	0.00070	mg/L	1	6010C	Dissolved
Boron	0.022		0.020	0.0040	mg/L	1	6010C	Dissolved
Calcium	42		0.50	0.10	mg/L	1	6010C	Dissolved
Chromium	0.0015	J	0.0040	0.0010	mg/L	1	6010C	Dissolved
Iron	0.095		0.050	0.019	mg/L	1	6010C	Dissolved
Magnesium	16		0.20	0.043	mg/L	1	6010C	Dissolved
Manganese	0.0059		0.0030	0.00040	mg/L	1	6010C	Dissolved
Potassium	1.6		0.50	0.10	mg/L	1	6010C	Dissolved
Sodium	33		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.0047	JB	0.010	0.0015	mg/L	1	6010C	Dissolved
Chloride	61		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	14		2.0	0.35	mg/L	1	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-61861-1

Project/Site: Orange County Landfill

Client Sample ID: SW-01 (Continued)

Lab Sample ID: 480-61861-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity, Total	130		50	20	mg/L	5		310.2	Total/NA
Ammonia	0.053		0.020	0.0090	mg/L	1		350.1	Total/NA
Total Kieldahl Nitrogen	0.41		0.20	0.15	mg/L	1		351.2	Total/NA
Nitrate as N	0.91		0.050	0.020	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	10		10	5.0	mg/L	1		410.4	Total/NA
Total Organic Carbon	4.4		1.0	0.43	mg/L	1		9060A	Total/NA
Hardness	180		4.0	1.1	mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	310		10	4.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	16		1.0	1.0	NTU	1	_	180.1	Total/NA
Color	35		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Client Sample ID: GW-3

Lab Sample ID: 480-61861-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Aluminum	0.21		0.20	0.060	mg/L	1	6010C	Total/NA
Arsenic	0.029		0.015	0.0056	mg/L	1	6010C	Total/NA
Barium	0.49		0.0020	0.00070	mg/L	1	6010C	Total/NA
Boron	0.17	В	0.020	0.0040	mg/L	1	6010C	Total/NA
Calcium	150		0.50	0.10	mg/L	1	6010C	Total/NA
ron	13		0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	48		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	1.4		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.0073	J	0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	8.0		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	45		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.0054	J	0.010	0.0015	mg/L	1	6010C	Total/NA
Arsenic	0.010	J	0.015	0.0056	mg/L	1	6010C	Dissolved
Barium	0.43		0.0020	0.00070	mg/L	1	6010C	Dissolved
Boron	0.17		0.020	0.0040	mg/L	1	6010C	Dissolved
Calcium	140		0.50	0.10	mg/L	1	6010C	Dissolved
Chromium	0.0018	J	0.0040	0.0010	mg/L	1	6010C	Dissolved
Cobalt	0.0024	J	0.0040	0.00063	mg/L	1	6010C	Dissolved
Magnesium	48		0.20	0.043	mg/L	1	6010C	Dissolved
Manganese	1.2		0.0030	0.00040	mg/L	1	6010C	Dissolved
Nickel	0.0064	J	0.010	0.0013	mg/L	1	6010C	Dissolved
Potassium	7.9		0.50	0.10	mg/L	1	6010C	Dissolved
Selenium	0.0091	J	0.025	0.0087	mg/L	1	6010C	Dissolved
Sodium	45		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.0041	JB	0.010	0.0015	mg/L	1	6010C	Dissolved
Chloride	54		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	67		2.0	0.35	mg/L	1	300.0	Total/NA
Alkalinity, Total	630		100	40	mg/L	10	310.2	Total/NA
Ammonia	6.3		0.10	0.045	mg/L	5	350.1	Total/NA
Total Kjeldahl Nitrogen	6.8		0.40	0.30	mg/L	2	351.2	Total/NA
Chemical Oxygen Demand	21		10	5.0	mg/L	1	410.4	Total/NA
Total Organic Carbon	5.5		1.0	0.43	mg/L	1	9060A	Total/NA
Hardness	600		20	5.3	mg/L	1	SM 2340C	Total/NA
Total Dissolved Solids	780		10	4.0	mg/L	1	SM 2540C	Total/NA
Biochemical Oxygen Demand	14	b	2.0	2.0	mg/L	1	SM 5210B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: GW-3 (Continued)

Lab Sample ID: 480-61861-6

	Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
	Turbidity	150		1.0	1.0	NTU	1		180.1	Total/NA
-	Color	5.0		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Client Sample ID: GW-1

Lab Sample ID: 480-61861-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Aluminum	0.60		0.20	0.060	mg/L	1	6	010C	Total/NA
Arsenic	0.12		0.015	0.0056	mg/L	1	6	010C	Total/NA
Barium	1.2		0.0020	0.00070	mg/L	1	6	010C	Total/NA
Boron	0.27	В	0.020	0.0040	mg/L	1	6	010C	Total/NA
Cadmium	0.00094	J	0.0020	0.00050	mg/L	1	6	010C	Total/NA
Calcium	92		0.50	0.10	mg/L	1	6	010C	Total/NA
ron	11		0.050	0.019	mg/L	1	6	010C	Total/NA
Magnesium	57		0.20	0.043	mg/L	1	6	010C	Total/NA
Vanganese	0.28		0.0030	0.00040	mg/L	1	6	010C	Total/NA
Nickel	0.013		0.010	0.0013	mg/L	1	6	010C	Total/NA
otassium	19		0.50	0.10	mg/L	1	6	010C	Total/NA
Sodium	65		1.0	0.32	mg/L	1	6	010C	Total/NA
Zinc	0.012		0.010	0.0015	mg/L	1	6	010C	Total/NA
Arsenic	0.037		0.015	0.0056	mg/L	1	6	010C	Dissolved
Barium	1.1		0.0020	0.00070	mg/L	1	6	010C	Dissolved
Boron	0.28		0.020	0.0040	mg/L	1	6	010C	Dissolved
Calcium	89		0.50	0.10	mg/L	1	6	010C	Dissolved
Chromium	0.0019	J	0.0040	0.0010	mg/L	1	6	010C	Dissolved
Cobalt	0.00063	J	0.0040	0.00063	mg/L	1	6	010C	Dissolved
ron		J	0.050	0.019	mg/L	1	6	010C	Dissolved
_ead	0.0038		0.010	0.0030		1	6	010C	Dissolved
Magnesium	60		0.20	0.043	mg/L	1	6	010C	Dissolved
Manganese	0.23		0.0030	0.00040	mg/L	1	6	6010C	Dissolved
Nickel	0.012		0.010	0.0013	_	1	6	6010C	Dissolved
Potassium	19		0.50	0.10	-	1	6	010C	Dissolved
Sodium	65		1.0	0.32		1	6	010C	Dissolved
Zinc	0.0057	JB	0.010	0.0015	-	1	6	010C	Dissolved
Chloride	73		0.50	0.28	-	1	3	300.0	Total/NA
Sulfate	4.7		2.0	0.35	_	1	3	300.0	Total/NA
Alkalinity, Total	560		100	40		10	3	310.2	Total/NA
Ammonia	18		0.20	0.090	•	10	3	350.1	Total/NA
Total Kjeldahl Nitrogen	16		2.0	1.5	•	10	3	351.2	Total/NA
Nitrate as N	0.076		0.050	0.020		1	3	353.2	Total/NA
Chemical Oxygen Demand	31		10	5.0	_	1	4	110.4	Total/NA
Total Organic Carbon	6.0		1.0	0.43	_	1	9	9060A	Total/NA
Hardness	490		4.0	1.1	-	1		SM 2340C	Total/NA
Total Dissolved Solids	690		10	4.0		1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	DI	Method	Prep Type
Turbidity	320		1.0	1.0	NTU	1		180.1	Total/NA
Color	25		5.0	5.0	Color Units	1		SM 2120B	Total/NA

Client Sample ID: GW-2

Lab Sample ID: 480-61861-8

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: GW-2 (Continued)

Lab Sample ID: 480-61861-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Juminum	1.4		0.20	0.060	mg/L	1	6010C	Total/NA
rsenic	0.086		0.015	0.0056	mg/L	1	6010C	Total/NA
Barium	0.38		0.0020	0.00070	mg/L	1	6010C	Total/NA
Boron	0.17	В	0.020	0.0040	mg/L	1	6010C	Total/NA
Cadmium	0.00062	J	0.0020	0.00050	mg/L	1	6010C	Total/NA
Calcium	120		0.50	0.10	mg/L	1	6010C	Total/NA
Chromium	0.0020	J	0.0040	0.0010	mg/L	1	6010C	Total/NA
Copper	0.0027	J	0.010	0.0016	mg/L	1	6010C	Total/NA
Iron	5.3		0.050	0.019	mg/L	1	6010C	Total/NA
Lead	0.0042	J	0.010	0.0030	mg/L	1	6010C	Total/NA
Magnesium	44		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	1.8		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.0091	J	0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	12		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	45		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.020		0.010	0.0015	mg/L	1	6010C	Total/NA
Arsenic	0.049		0.015	0.0056	mg/L	1	6010C	Dissolved
Barium	0.40		0.0020	0.00070	mg/L	1	6010C	Dissolved
Boron	0.18		0.020	0.0040	mg/L	1	6010C	Dissolved
Calcium	120		0.50	0.10	mg/L	1	6010C	Dissolved
Chromium	0.0020	J	0.0040	0.0010	mg/L	1	6010C	Dissolved
Cobalt	0.0019	J	0.0040	0.00063	mg/L	1	6010C	Dissolved
Magnesium	45		0.20	0.043	mg/L	1	6010C	Dissolved
Manganese	1.6		0.0030	0.00040	mg/L	1	6010C	Dissolved
Nickel	0.0071	J	0.010	0.0013	mg/L	1	6010C	Dissolved
Potassium	12		0.50	0.10	mg/L	1	6010C	Dissolved
Sodium	47		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.0088	JB	0.010	0.0015	mg/L	1	6010C	Dissolved
Chloride	58		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	11		2.0	0.35	mg/L	1	300.0	Total/NA
Alkalinity, Total	610		100	40	mg/L	10	310.2	Total/NA
Ammonia	8.8		0.10	0.045	mg/L	5	350.1	Total/NA
Total Kjeldahl Nitrogen	8.6		1.0	0.75	mg/L	5	351.2	Total/NA
Nitrate as N	0.57		0.050	0.020	mg/L	1	353.2	Total/NA
Cyanide, Total	0.0053	J	0.010	0.0050	mg/L	1	9012B	Total/NA
Total Organic Carbon	5.9		1.0	0.43	mg/L	1	9060A	Total/NA
Hardness	500		10	2.6	mg/L	1	SM 2340C	Total/NA
Total Dissolved Solids	660		10	4.0	mg/L	1	SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D Method	Prep Type
Turbidity	120		1.0	1.0	NTU	1	180.1	Total/NA
Color	15		5.0	5.0	Color Units	1	SM 2120B	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-61861-9

No Detections.

This Detection Summary does not include radiochemical test results.

Beryllium

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L	autonomic com		06/18/14 05:07	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 05:07	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 05:07	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 05:07	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 05:07	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 05:07	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 05:07	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 05:07	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 05:07	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 05:07	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 05:07	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 05:07	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 05:07	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 05:07	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 05:07	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 05:07	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 05:07	1
Chloroetharie	ND		5.0	0.87	ug/L	*		06/18/14 05:07	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 05:07	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 05:07	1
is-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 05:07	1
s-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 05:07	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 05:07	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 05:07	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 05:07	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/18/14 05:07	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 05:07	1
o-Xylene	ND		5.0		ug/L			06/18/14 05:07	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/18/14 05:07	1
Toluene	ND		5.0	0.45	ug/L			06/18/14 05:07	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 05:07	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			06/18/14 05:07	1
Trichloroethene	ND		5.0	0.60	ug/L			06/18/14 05:07	1
Trichlorofluoromethane	ND		5.0		ug/L			06/18/14 05:07	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/18/14 05:07	1
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 05:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					06/18/14 05:07	1
4-Bromofluorobenzene (Surr)	95		69 - 121					06/18/14 05:07	1
Toluene-d8 (Surr)	97		70 - 123					06/18/14 05:07	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.37		0.20	0.060	mg/L		06/16/14 08:00	06/18/14 22:05	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 08:00	06/18/14 22:05	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:05	1
Barium	0.021		0.0020	0.00070	mg/L		06/16/14 08:00	06/18/14 22:05	1
					- 0		00/40/44 00:00	06/49/44 22:05	

TestAmerica Buffalo

06/18/14 22:05

06/18/14 22:05

06/16/14 08:00

06/16/14 08:00

0.0020

0.020

0.00030 mg/L

0.0040 mg/L

ND

0.023 B

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Lab Sample ID: 480-61861-2

TestAmerica Job ID: 480-61861-1

Matrix: Water

Client Sample ID: GW-A

Date Collected: 06/12/14 14:00 Date Received: 06/13/14 09:00

Wethod: 6010C - Metals (ICP) (Contin Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ИD		0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:05	1
Calcium	49		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:05	1
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:05	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:05	1
ron	0.53		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:05	1
ead	ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:05	1
Magnesium	8.8		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:05	1
Manganese	0.063		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:05	1
Nickel	ND		0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:05	1
Potassium	1.8		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:05	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:05	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:05	1
Sodium	24		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:05	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 08:00	06/18/14 22:05	1
Zinc	0.0029	J	0.010	0.0015	mg/L		06/16/14 08:00	06/18/14 22:05	1
Method: 6010C - Metals (ICP) - Disso	lved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Numinum	ND		0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:31	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:31	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:31	1
Barium	0.14		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:31	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:31	1
Boron	0.022		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:31	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:31	1
Calcium	46		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:31	1
Chromium	0.0031	J	0.0040	0.0010	_		06/16/14 12:05	06/20/14 14:31	1
Cobalt	ND		0.0040	0.00063	-		06/16/14 12:05	06/20/14 14:31	1
Copper	0.0017	i.	0.010	0.0016	_		06/16/14 12:05	06/20/14 14:31	1
ron	0.099	· ·	0.050	0.019			06/16/14 12:05	06/20/14 14:31	1
Lead	ND		0.010	0.0030	-		06/16/14 12:05	06/20/14 14:31	1
Magnesium	8.4		0.20	0.043	_		06/16/14 12:05	06/20/14 14:31	1
Manganese	0.038		0.0030	0.00040			06/16/14 12:05	06/20/14 14:31	1
Nickel	0.0013	.1	0.010	0.0013	-		06/16/14 12:05	06/20/14 14:31	4
Potassium	1.6		0.50		mg/L		06/16/14 12:05	06/20/14 14:31	
Selenium	ND		0.025	0.0087	_		06/16/14 12:05	06/20/14 14:31	
Silver	ND		0.0060	0.0017	-		06/16/14 12:05	06/20/14 14:31	
			1.0		mg/L		06/16/14 12:05	06/20/14 14:31	
Sodium Thallium	25 ND		0.020		mg/L		06/16/14 12:05	06/20/14 14:31	
Vanadium	ND		0.0050	0.0015	_		06/16/14 12:05	06/20/14 14:31	
Zinc	0.0042	JB	0.010	0.0015	-		06/16/14 12:05	06/20/14 14:31	
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/16/14 14:30	06/17/14 10:03	
Method: 7470A - Mercury (CVAA) - D	issolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	ma/l	_	06/17/14 10:15	06/17/14 14:02	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ment Sample ID: GW-A

Date Collected: 06/12/14 14:00 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-2

General Chemistry Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride 44		0.50	0.28	mg/L	MACO.		06/20/14 11:22	1
Sulfate 17		2.0	0.35	mg/L			06/20/14 11:22	1
Alkalinity, Total 130		50	20	mg/L			06/20/14 12:52	5
Ammonia 0.016	J	0.020	0.0090	mg/L			06/17/14 12:47	1
Total Kjeldahl Nitrogen 0.41		0.20	0.15	mg/L		06/18/14 19:32	06/19/14 10:12	1
Nitrate as N 0.45		0.050	0.020	mg/L			06/13/14 16:24	1
Chemical Oxygen Demand 24		10	5.0	mg/L			06/16/14 17:30	1
Chromium, hexavalent NE		0.010	0.0050	mg/L			06/13/14 09:59	1
Cyanide, Total ND		0.010	0.0050	mg/L		06/19/14 17:30	06/20/14 10:32	1
Total Organic Carbon 6.9		1.0	0.43	mg/L			06/17/14 13:22	1
Phenolics, Total Recoverable NE		0.010	0.0050	mg/L		06/23/14 17:30	06/24/14 11:20	1
Hardness 160		4.0	1.1	mg/L			06/24/14 10:32	1
Total Dissolved Solids 280		10	4.0	mg/L			06/16/14 23:16	1
Biochemical Oxygen Demand ND		2.0	2.0	mg/L			06/13/14 17:39	1
	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity 12	-	1.0	1.0	NTU			06/13/14 08:37	1
Color 60		5.0	5.0	Color Units			06/13/14 11:17	1

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Client Sample ID: GW-B Date Collected: 06/12/14 14:45 Date Received: 06/13/14 09:00

Barium

Boron

Beryllium

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 05:31	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 05:31	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 05:31	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 05:31	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 05:31	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 05:31	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 05:31	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 05:31	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 05:31	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 05:31	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 05:31	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 05:31	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 05:31	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 05:31	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 05:31	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 05:31	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 05:31	1
Chloroethane	ND		5.0	0.87	ug/L			06/18/14 05:31	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 05:31	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 05:31	1
sis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 05:31	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 05:31	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 05:31	1
Dichlorodifluoromethane	ND		5.0		ug/L			06/18/14 05:31	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 05:31	1
Methylene Chloride	ND		5.0	0.81				06/18/14 05:31	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 05:31	1
-Xylene	ND		5.0		ug/L			06/18/14 05:31	1
Tetrachloroethene	ND		5.0		ug/L			06/18/14 05:31	1
Toluene	ND		5.0		ug/L			06/18/14 05:31	1
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 05:31	1
rans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/18/14 05:31	1
Trichloroethene	ND		5.0	0.60	ug/L			06/18/14 05:31	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			06/18/14 05:31	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/18/14 05:31	1
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 05:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130					06/18/14 05:31	1
4-Bromofluorobenzene (Surr)	94		69 - 121					06/18/14 05:31	1
Toluene-d8 (Surr)	98		70 - 123					06/18/14 05:31	1
Wethod: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6.3		0.20	0.060	mg/L		06/16/14 08:00	06/18/14 22:10	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 08:00	06/18/14 22:10	1
Arsenic	0.0058	J	0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:10	1

TestAmerica Buffalo

06/18/14 22:10

06/18/14 22:10

06/18/14 22:10

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

0.0020

0.0020

0.020

0.074

0.00045 J

0.027 B

0.00070 mg/L

0.00030 mg/L

0.0040 mg/L

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ient Sample ID: GW-B

Date Collected: 06/12/14 14:45 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:10	
Calcium	76		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:10	
Chromium	0.0078		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:10	
Copper	0.012		0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:10	
iron	8.0		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:10	
Lead	0.0070	J	0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:10	
Magnesium	16		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:10	
Manganese	1.0		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:10	
Nickel	0.018		0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:10	
Potassium	4.4		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:10	
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:10	
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:10	
Sodium	3.2		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:10	
Thallium	ND		0.020	0.010	_		06/16/14 08:00	06/18/14 22:10	
Zinc	0.028		0.010	0.0015	-		06/16/14 08:00	06/18/14 22:10	
Mathed COACC Matel (ICD) Disc	alvad								
Method: 6010C - Metals (ICP) - Diss ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Atuminum	0.14	J	0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:34	
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:34	
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:34	
Barium	0.27		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:34	
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:34	
Boron	0.020		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:34	
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:34	
Calcium	72		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:34	
Chromium	0.0038	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 14:34	
Cobalt	0.0014		0.0040	0.00063	mg/L		06/16/14 12:05	06/20/14 14:34	
Copper	0.0054		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 14:34	
ron	0.22		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:34	
_ead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 14:34	
Magnesium	15		0.20	0.043	-		06/16/14 12:05	06/20/14 14:34	
	0.44		0.0030	0.00040	•		06/16/14 12:05	06/20/14 14:34	
Manganese Nickel	0.010		0.010	0.0013			06/16/14 12:05	06/20/14 14:34	
Potassium	2.2		0.50	0.10	-		06/16/14 12:05	06/20/14 14:34	
Selenium	ND		0.025	0.0087	-		06/16/14 12:05	06/20/14 14:34	
Silver	ND		0.0060	0.0017			06/16/14 12:05	06/20/14 14:34	
Sodium	4.1		1.0		mg/L		06/16/14 12:05	06/20/14 14:34	
Thallium	ND		0.020		mg/L		06/16/14 12:05	06/20/14 14:34	
√anadium	ND		0.0050	0.0015			06/16/14 12:05	06/20/14 14:34	
Zinc	0.0055	JB	0.010	0.0015	_		06/16/14 12:05	06/20/14 14:34	
Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020	0.00012	mg/L		06/16/14 14:30	06/17/14 10:11	
Method: 7470A - Mercury (CVAA) -	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020	0.00012			06/17/14 10:15	06/17/14 14:55	

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Client Sample ID: GW-B

Date Collected: 06/12/14 14:45 Date Received: 06/13/14 09:00 TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-3

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.82		0.50	0.28	mg/L	_		06/20/14 11:32	1
Sulfate	23		2.0	0.35	mg/L			06/20/14 11:32	1
Alkalinity, Total	260		100	40	mg/L			06/20/14 12:30	10
Ammonia	0.14		0.020	0.0090	mg/L			06/24/14 18:38	1
Total Kjeldahl Nitrogen	2.7		0.20	0.15	mg/L		06/18/14 19:32	06/19/14 10:12	1
Nitrate as N	0.31		0.050	0.020	mg/L			06/13/14 16:27	1
Chemical Oxygen Demand	110		10	5.0	mg/L			06/16/14 17:30	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:03	1
Cyanide, Total	ND		0.010	0.0050	mg/L		06/20/14 15:55	06/23/14 08:24	1
Total Organic Carbon	46		1.0	0.43	mg/L			06/17/14 14:19	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/23/14 17:30	06/24/14 11:14	1
Hardness	250		10	2.6	mg/L			06/24/14 10:29	1
Total Dissolved Solids	420		10	4.0	mg/L			06/16/14 23:18	1
Biochemical Oxygen Demand	2.2	b	2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifler	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	160		1.0	1.0	NTU			06/13/14 10:32	1
Color	140		10	10	Color Units			06/13/14 11:17	2

client Sample ID: SW-02 Date Collected: 06/12/14 14:30 Date Received: 06/13/14 09:00

Barium

Boron

Beryllium

Lab Sample ID: 480-61861-4

Matrix: Water

Method: 624 - Volatile Organic Co Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 05:55	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 05:55	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 05:55	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 05:55	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 05:55	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 05:55	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 05:55	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 05:55	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 05:55	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 05:55	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 05:55	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 05:55	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 05:55	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 05:55	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 05:55	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 05:55	1
Chlorobenzene	ND	1	5.0	0.48	ug/L			06/18/14 05:55	1
Chloroethane	ND		5.0	0.87	ug/L			06/18/14 05:55	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 05:55	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 05:55	1
gis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 05:55	4
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 05:55	•
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 05:55	•
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 05:55	
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 05:55	•
Methylene Chloride	ND		5.0	0.81	ug/L			06/18/14 05:55	
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 05:55	
o-Xylene	ND		5.0	0.43	ug/L			06/18/14 05:55	
Tetrachloroethene	ND		5.0	0.34	ug/L			06/18/14 05:55	
Toluene	ND		5.0	0.45	ug/L			06/18/14 05:55	
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 05:55	
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/18/14 05:55	
Trichloroethene	ND		5.0	0.60	ug/L			06/18/14 05:55	
Trichlorofluoromethane	ND		5.0	0.45	ug/L			06/18/14 05:55	
Vinyl chloride	ND		5.0	0.75	ug/L			06/18/14 05:55	
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 05:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					06/18/14 05:55	
4-Bromofluorobenzene (Surr)	96		69 - 121					06/18/14 05:55	
Toluene-d8 (Surr)	100		70 _ 123					06/18/14 05:55	
Method: 6010C - Metals (ICP)						_	Business	Analyzad	Dil Fa
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.55		0.20		mg/L		06/16/14 08:00	06/18/14 22:08	
Antimony	ND		0.020	0.0068	_		06/16/14 08:00	06/18/14 22:08	
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:08	

TestAmerica Buffalo

06/18/14 22:08

06/18/14 22:08

06/18/14 22:08

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

0.0020

0.0020

0.020

0.024

ND

0.023 B

0.00070 mg/L

0.00030 mg/L

0.0040 mg/L

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-4

Matrix: Water

Client Sample ID: SW-02

Date Collected: 06/12/14 14:30 Date Received: 06/13/14 09:00

Method: 6010C - Metals (ICP) (Continued) Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium ND		0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:08	1
Calcium 44		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:08	1
Chromium ND		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:08	1
Copper 0.0017	J	0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:08	1
ron 0.77		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:08	1
Lead ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:08	1
Magnesium 15		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:08	1
Manganese 0.11		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:08	1
Nickel ND		0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:08	1
Potassium 1.8		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:08	1
Selenium ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:08	1
Silver ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:08	1
Sodium 32		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:08	1
Thallium ND		0.020	0.010	mg/L		06/16/14 08:00	06/18/14 22:08	1
Zinc 0.0055	J	0.010	0.0015	-		06/16/14 08:00	06/18/14 22:08	1
Method: 6010C - Metals (ICP) - Dissolved Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum ND		0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:37	1
Antimony		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:37	1
Arsenic ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:37	1
Barium 0.021		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:37	1
Beryllium ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:37	1
Boron 0.021		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:37	1
Cadmium ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:37	1
Calcium 42		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:37	1
Chromium 0.0019		0.0040	0.0010	_		06/16/14 12:05	06/20/14 14:37	1
Cobalt ND		0.0040	0.00063	•		06/16/14 12:05	06/20/14 14:37	1
Copper 0.0016		0.010	0.0016	•		06/16/14 12:05	06/20/14 14:37	1
Iron 0.026		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:37	1
Lead ND		0.010	0.0030	_		06/16/14 12:05	06/20/14 14:37	1
Magnesium 15		0.20	0.043	mg/L		06/16/14 12:05	06/20/14 14:37	1
Manganese 0.0062		0.0030	0.00040	-		06/16/14 12:05	06/20/14 14:37	1
Nickel ND		0.010	0.0013			06/16/14 12:05	06/20/14 14:37	1
Potassium 1.5		0.50		mg/L		06/16/14 12:05	06/20/14 14:37	1
Selenium 0.0090		0.025	0.0087	_		06/16/14 12:05	06/20/14 14:37	1
Silver ND		0.0060	0.0017	-		06/16/14 12:05	06/20/14 14:37	1
Sodium 32		1.0		mg/L		06/16/14 12:05	06/20/14 14:37	1
Thallium ND		0.020		mg/L		06/16/14 12:05	06/20/14 14:37	1
Vanadium ND		0.0050	0.0015	-		06/16/14 12:05	06/20/14 14:37	1
Zinc 0.0028		0.010	0.0015	•		06/16/14 12:05	06/20/14 14:37	1
Method: 7470A - Mercury (CVAA) Analyte Result	Qualifier	RL	MD	Unit	D	Prepared	Analyzed	Dil Fac
Mercury ND		0.00020	0.00012			06/16/14 14:30	06/17/14 10:09	1
TELL TELL TELL TELL TELL TELL TELL TELL		0.00020	0.00012	TIMP E		55/10/17 17:50	30/1//17 10:03	
Method: 7470A - Mercury (CVAA) - Dissolved						2-47		
-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury		0.00020	0.00012	mg/L		06/17/14 10:15	06/17/14 14:28	1

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ment Sample ID: SW-02

Lab Sample ID: 480-61861-4

Date Collected: 06/12/14 14:30 Date Received: 06/13/14 09:00

General Chemistry Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61	Qualifier	0.50	0.28	mg/L			06/20/14 11:43	1
Sulfate	14		2.0	0.35	-			06/20/14 11:43	1
Alkalinity, Total	140		50	20	mg/L			06/20/14 12:52	5
Ammonia	0.053		0.020	0.0090	mg/L			06/17/14 12:54	1
Total Kjeldahl Nitrogen	0.44		0.20	0.15	mg/L		06/18/14 19:32	06/19/14 10:12	1
Nitrate as N	0.93		0.050	0.020	mg/L			06/13/14 17:05	1
Chemical Oxygen Demand	9.0	J	10	5.0	mg/L			06/16/14 17:30	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:45	1
Cyanide, Total	ND		0.010	0.0050	mg/L		06/20/14 15:55	06/23/14 08:25	1
Total Organic Carbon	4.4		1.0	0.43	mg/L			06/17/14 17:10	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/23/14 17:30	06/24/14 11:20	1
Hardness	180		4.0	1.1	mg/L			06/24/14 10:39	1
Total Dissolved Solids	310		10	4.0	mg/L			06/16/14 23:20	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	17		1.0	1.0	NTU			06/13/14 10:32	1
Color	40		5.0	5.0	Color Units			06/13/14 11:17	1

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: SW-01 Date Collected: 06/12/14 15:12 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-5

Matrix: Water

flethod: 624 - Volatile Organic		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 06:19	1
,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 06:19	1
,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 06:19	1
,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 06:19	1
,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 06:19	1
,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 06:19	1
,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 06:19	1
,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 06:19	1
,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 06:19	1
,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 06:19	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 06:19	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 06:19	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 06:19	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 06:19	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 06:19	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 06:19	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 06:19	1
Chloroethane	ND		5.0	0.87	ug/L			06/18/14 06:19	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 06:19	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 06:19	1
is-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 06:19	1
is-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 06:19	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 06:19	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 06:19	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 06:19	1
Wethylene Chloride	ND		5.0	0.81	ug/L			06/18/14 06:19	1
n-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 06:19	1
p-Xylene	ND		5.0	0.43	ug/L			06/18/14 06:19	•
Tetrachloroethene	^ ND		5.0	0.34	ug/L			06/18/14 06:19	
Toluene	ND		5.0	0.45	ug/L			06/18/14 06:19	•
rans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 06:19	•
rans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/18/14 06:19	•
Frichloroethene	ND		5.0	0.60	ug/L			06/18/14 06:19	•
Trichlorofluoromethane	ND		5.0	0.45	ug/L			06/18/14 06:19	
/inyl chloride	ND		5.0	0.75	ug/L			06/18/14 06:19	
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 06:19	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					06/18/14 06:19	
4-Bromofluorobenzene (Surr)	97		69 - 121					06/18/14 06:19	
Toluene-d8 (Surr)	100		70 - 123					06/18/14 06:19	

Method:	6010C -	Metals ((ICP)
---------	---------	----------	-------

Method: 6010C - Metals (ICP)	Docult	Qualifier	DI	MDI	Linit	D	Prepared	Analyzed	Dil Fac
Analyte	Kesuit	Quantier	NL.	MDL	Ollic		riepareu	Allalyzou	Dirido
Aluminum	0.57		0.20	0.060	mg/L		06/16/14 08:00	06/18/14 22:13	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 08:00	06/18/14 22:13	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:13	1
Barium	0.024		0.0020	0.00070	mg/L		06/16/14 08:00	06/18/14 22:13	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 08:00	06/18/14 22:13	1
Boron	0.022	В	0.020	0.0040	mg/L		06/16/14 08:00	06/18/14 22:13	1
	Antimony Arsenic Barium Beryllium	Aluminum 0.57 Antimony ND Arsenic ND Barium 0.024 Beryllium ND	Aluminum 0.57 Antimony ND Arsenic ND Barium 0.024 Beryllium ND	Aluminum 0.57 0.20 Antimony ND 0.020 Arsenic ND 0.015 Barium 0.024 0.0020 Beryllium ND 0.0020	Aluminum 0.57 0.20 0.060 Antimony ND 0.020 0.068 Arsenic ND 0.015 0.0056 Barium 0.024 0.0020 0.00070 Beryllium ND 0.0020 0.00030	Aluminum 0.57 0.20 0.060 mg/L Antimony ND 0.020 0.0068 mg/L Arsenic ND 0.015 0.0056 mg/L Barium 0.024 0.0020 0.00070 mg/L Beryllium ND 0.0020 0.00030 mg/L	Aluminum 0.57 0.20 0.060 mg/L Antimony ND 0.020 0.068 mg/L Arsenic ND 0.015 0.0056 mg/L Barium 0.024 0.0020 0.00070 mg/L Beryllium ND 0.0020 0.00030 mg/L	Aluminum 0.57 0.20 0.060 mg/L 06/16/14 08:00 Antimony ND 0.020 0.0068 mg/L 06/16/14 08:00 Arsenic ND 0.015 0.0056 mg/L 06/16/14 08:00 Barium 0.024 0.0020 0.00070 mg/L 06/16/14 08:00 Beryllium ND 0.0020 0.00030 mg/L 06/16/14 08:00	Aluminum 0.57 0.20 0.060 mg/L 06/16/14 08:00 06/18/14 22:13 Antimony ND 0.020 0.068 mg/L 06/16/14 08:00 06/18/14 22:13 Arsenic ND 0.015 0.0056 mg/L 06/16/14 08:00 06/18/14 22:13 Barium 0.024 0.0020 0.00070 mg/L 06/16/14 08:00 06/18/14 22:13 Beryllium ND 0.0020 0.0030 mg/L 06/16/14 08:00 06/18/14 22:13

ment Sample ID: SW-01 Date Collected: 06/12/14 15:12

Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-5

Matrix: Water

Method: 6010C - Metals (ICP) (Cont Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND	-	0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:13	
Calcium	43		0.50		mg/L		06/16/14 08:00	06/18/14 22:13	
hromium	ND		0.0040	0.0010			06/16/14 08:00	06/18/14 22:13	
opper	ND		0.010	0.0016	_		06/16/14 08:00	06/18/14 22:13	
on	0.81		0.050	0.019	_		06/16/14 08:00	06/18/14 22:13	
ead	ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:13	
	15		0.20	0.043			06/16/14 08:00	06/18/14 22:13	
lagnesium	0.11		0.0030	0.00040			06/16/14 08:00	06/18/14 22:13	
langanese	0.0015		0.010	0.00040	_		06/16/14 08:00	06/18/14 22:13	
ickel		J	0.50		mg/L		06/16/14 08:00	06/18/14 22:13	
otassium elenium	1.8 ND		0.025	0.0087			06/16/14 08:00	06/18/14 22:13	
			0.0060		-				
ilver	ND			0.0017	_		06/16/14 08:00	06/18/14 22:13	
odium	32		1.0		mg/L		06/16/14 08:00	06/18/14 22:13	
nallium	ND		0.020	0.010			06/16/14 08:00	06/18/14 22:13	
nc	0.0060	J	0.010	0.0015	mg/L		06/16/14 08:00	06/18/14 22:13	
Method: 6010C - Metals (ICP) - Diss		Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil F
nalyte	ND	Quaimer	0.20	0.060			06/16/14 12:05	06/20/14 14:40	Dill
luminum					mg/L				
ntimony	ND		0.020		mg/L		06/16/14 12:05	06/20/14 14:40	
rsenic	ND		0.015	0.0056	-		06/16/14 12:05	06/20/14 14:40	
arium	0.022		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:40	
eryllium	ND		0.0020	0.00030			06/16/14 12:05	06/20/14 14:40	
oron	0.022		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:40	
admium	ND		0.0020	0.00050			06/16/14 12:05	06/20/14 14:40	
alcium	42		0.50		mg/L		06/16/14 12:05	06/20/14 14:40	
hromium	0.0015	J	0.0040	0.0010	-		06/16/14 12:05	06/20/14 14:40	
obalt	ND		0.0040	0.00063	-		06/16/14 12:05	06/20/14 14:40	
opper	ND		0.010	0.0016	_		06/16/14 12:05	06/20/14 14:40	
on	0.095		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:40	
ead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 14:40	
agnesium	16		0.20	0.043	mg/L		06/16/14 12:05	06/20/14 14:40	
anganese	0.0059		0.0030	0.00040	mg/L		06/16/14 12:05	06/20/14 14:40	
ickel	ND		0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 14:40	
otassium	1.6		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:40	
elenium	ND		0.025	0.0087			06/16/14 12:05	06/20/14 14:40	
ilver	ND		0.0060	0.0017	0 -		06/16/14 12:05	06/20/14 14:40	
odium	33		1.0		mg/L		06/16/14 12:05	06/20/14 14:40	
hallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 14:40	
anadium	ND		0.0050	0.0015	mg/L		06/16/14 12:05	06/20/14 14:40	
inc	0.0047	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 14:40	
lethod: 7470A - Mercury (CVAA)									
nalyte .	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
lercury	ND		0.00020	0.00012	mg/L		06/16/14 14:30	06/17/14 10:13	
lethod: 7470A - Mercury (CVAA) - I	Dissolved								
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
fercury	ND		0.00020	0.00012	ma/l		06/17/14 10:15	06/17/14 14:37	

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-5

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61		0.50	0.28	mg/L			06/20/14 11:53	1
Sulfate	14		2.0	0.35	mg/L			06/20/14 11:53	1
Alkalinity, Total	130		50	20	mg/L			06/20/14 12:51	5
Ammonia	0.053		0.020	0.0090	mg/L			06/17/14 12:55	1
Total Kjeldahl Nitrogen	0.41		0.20	0.15	mg/L		06/18/14 19:32	06/19/14 10:12	1
Nitrate as N	0.91		0.050	0.020	mg/L			06/13/14 16:30	1
Chemical Oxygen Demand	10		10	5.0	mg/L			06/16/14 17:30	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:08	1
Cyanide, Total	ND		0.010	0.0050	mg/L		06/19/14 17:30	06/20/14 10:33	1
Total Organic Carbon	4.4		1.0	0.43	mg/L			06/17/14 17:39	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/23/14 20:30	06/24/14 11:08	1
Hardness	180		4.0	1.1	mg/L			06/24/14 10:57	1
Total Dissolved Solids	310		10	4.0	mg/L			06/16/14 23:22	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	16		1.0	1.0	NTU			06/13/14 10:32	1
Color	35		5.0	5.0	Color Units			06/13/14 11:17	1

lient Sample ID: GW-3

Date Collected: 06/12/14 16:40 Date Received: 06/13/14 09:00

Method: 6010C - Metals (ICP)

Analyte

Aluminum

Antimony

Arsenic

Barium

Beryllium

Boron

Lab Sample ID: 480-61861-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 06:43	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 06:43	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 06:43	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 06:43	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 06:43	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 06:43	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 06:43	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 06:43	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 06:43	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 06:43	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 06:43	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 06:43	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 06:43	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 06:43	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 06:43	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 06:43	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 06:43	1
Chloroethane	ND		5.0	0.87	ug/L			06/18/14 06:43	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 06:43	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 06:43	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 06:43	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 06:43	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 06:43	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 06:43	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 06:43	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/18/14 06:43	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 06:43	1
o-Xylene	ND		5.0	0.43	ug/L			06/18/14 06:43	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/18/14 06:43	1
Toluene	ND		5.0	0.45	ug/L			06/18/14 06:43	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 06:43	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/18/14 06:43	1
Trichloroethene	ND		5.0	0.60	ug/L			06/18/14 06:43	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			06/18/14 06:43	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/18/14 06:43	1
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 06:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130					06/18/14 06:43	1
4-Bromofluorobenzene (Surr)	94		69 - 121					06/18/14 06:43	1
Toluene-d8 (Surr)	99		70 - 123					06/18/14 06:43	1

TestAmerica Buffalo

Analyzed

06/18/14 22:16

06/18/14 22:16

06/18/14 22:16

06/18/14 22:16

06/18/14 22:16

06/18/14 22:16

Prepared

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

06/16/14 08:00

Dil Fac

1

1

RL

0.20

0.020

0.015

0.0020

0.0020

0.020

MDL Unit

0.060 mg/L

0.0068 mg/L

0.0056 mg/L

0.00070 mg/L

0.00030 mg/L

0.0040 mg/L

Result Qualifier

0.21

0.029

0.49

ND

0.17 B

ND

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Client Sample ID: GW-3 Date Collected: 06/12/14 16:40 Date Received: 06/13/14 09:00 TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-6

Matrix: Water

Method: 6010C - Metals (ICP) (Contin Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:16	1
Calcium	150		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:16	1
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:16	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:16	1
ron	13		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:16	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:16	1
Magnesium	48		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:16	1
Manganese	1.4		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:16	1
Nickel	0.0073	J	0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:16	1
Potassium	8.0		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:16	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:16	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:16	1
Sodium	45		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:16	1
Thallium	ND		0.020	0.010	_		06/16/14 08:00	06/18/14 22:16	1
Zinc	0.0054	J	0.010	0.0015	_		06/16/14 08:00	06/18/14 22:16	1
Method: 6010C - Metals (ICP) - Disso	lvad								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:52	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:52	1
Arsenic	0.010	J	0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:52	1
Barium	0.43		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:52	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:52	1
Boron	0.17		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:52	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:52	1
Calcium	140		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:52	1
Chromium	0.0018	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 14:52	1
Cobalt	0.0024		0.0040	0.00063	mg/L		06/16/14 12:05	06/20/14 14:52	1
Copper	ND	•	0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 14:52	
Iron	ND		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:52	
Lead	ND		0.010	0.0030			06/16/14 12:05	06/20/14 14:52	
Magnesium	48		0.20		mg/L		06/16/14 12:05	06/20/14 14:52	
Manganese	1.2		0.0030	0.00040	_		06/16/14 12:05	06/20/14 14:52	
Nickel	0.0064	J	0.010	0.0013	_		06/16/14 12:05	06/20/14 14:52	
Potassium	7.9		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:52	
Selenium	0.0091	J	0.025	0.0087	_		06/16/14 12:05	06/20/14 14:52	
Silver	ND		0.0060	0.0017			06/16/14 12:05	06/20/14 14:52	
Sodium	45		1.0		mg/L		06/16/14 12:05	06/20/14 14:52	
Thallium	ND		0.020		mg/L		06/16/14 12:05	06/20/14 14:52	
Vanadium	ND		0.0050		mg/L		06/16/14 12:05	06/20/14 14:52	
Zinc	0.0041	JB	0.010		mg/L		06/16/14 12:05	06/20/14 14:52	
-									
Method: 7470A - Mercury (CVAA)		0		1101	Unit		Dramanad	Anglerad	Dil Fa
Analyte	Result	Qualifier	0.0 0 020	0.00012	Unit ma/L	D	Prepared 06/16/14 14:30	Analyzed 06/17/14 10:14	Dira
Mercury 			0.00020	0.00012	. Trigit		30.10.1111100		
Method: 7470A - Mercury (CVAA) - D					Half	-	Dage	Angliand	Dil Es
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Analyte Mercury	Result		0.00020	0.00012			06/17/14 10:15	06/17/14 14:46	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ment Sample ID: GW-3

Lab Sample ID: 480-61861-6

Date Collected: 06/12/14 16:40 Date Received: 06/13/14 09:00

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	54		0.50	0.28	mg/L			06/20/14 12:03	1
Sulfate	67		2.0	0.35	mg/L			06/20/14 12:03	1
Alkalinity, Total	630		100	40	mg/L			06/20/14 12:30	10
Ammonia	6.3		0.10	0.045	mg/L			06/17/14 15:07	5
Total Kjeldahl Nitrogen	6.8		0.40	0.30	mg/L		06/18/14 19:32	06/19/14 10:43	2
Nitrate as N	ND		0.050	0.020	mg/L			06/13/14 16:31	1
Chemical Oxygen Demand	21		10	5.0	mg/L			06/16/14 17:30	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:13	1
Cyanide, Total	ND		0.010	0.0050	mg/L		06/19/14 17:30	06/20/14 10:34	1
Total Organic Carbon	5.5		1.0	0.43	mg/L			06/17/14 18:07	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/25/14 12:19	06/26/14 09:50	1
Hardness	600		20	5.3	mg/L			06/24/14 11:04	1
Total Dissolved Solids	780		10	4.0	mg/L			06/16/14 23:23	1
Biochemical Oxygen Demand	14	b	2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	150		1.0	1.0	NTU			06/13/14 10:32	1
Color	5.0		5.0	5.0	Color Units			06/13/14 11:17	1

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-7

Matrix: Water

Client Sample ID: GW-1

Date Collected: 06/12/14 16:15 Date Received: 06/13/14 09:00

Barium

Boron

Beryllium

Method: 624 - Volatile Organic Co Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 07:07	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 07:07	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 07:07	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 07:07	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 07:07	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 07:07	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 07:07	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 07:07	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 07:07	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 07:07	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 07:07	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 07:07	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 07:07	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 07:07	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 07:07	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 07:07	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 07:07	1
Chioroethane	ND		5.0	0.87	ug/L			06/18/14 07:07	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 07:07	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 07:07	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 07:07	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 07:07	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 07:07	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 07:07	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 07:07	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/18/14 07:07	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 07:07	1
o-Xylene	ND		5.0	0.43	ug/L			06/18/14 07:07	1
Tetrachioroethene	ND		5.0	0.34	ug/L			06/18/14 07:07	1
Toluene	ND		5.0	0.45	ug/L			06/18/14 07:07	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 07:07	1
trans-1,3-Dichloropropene	ND		5.0	0.44	•			06/18/14 07:07	1
Trichloroethene	ND		5.0	0.60				06/18/14 07:07	1
Trichlorofluoromethane	ND		5.0	0.45	-			06/18/14 07:07	1
Vinyl chloride	ND		5.0	0.75				06/18/14 07:07	1
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 07:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		72 - 130					06/18/14 07:07	
4-Bromofluorobenzene (Surr)	96		69 - 121					06/18/14 07:07	
Toluene-d8 (Surr)	102		70 _ 123					06/18/14 07:07	
Method: 6010C - Metais (ICP)									
Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.60		0.20	0.060	mg/L		06/16/14 08:00	06/18/14 22:19	
Antimony	ND		0.020	0.0068	mg/L		06/16/14 08:00	06/18/14 22:19	
Arsenic	0.12		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:19	
								00/40/44 00:40	

06/16/14 08:00 06/18/14 22:19 06/16/14 08:00 06/18/14 22:19 06/16/14 08:00 06/18/14 22:19

TestAmerica Buffalo

0.0020

0.0020

0.020

1.2

ND

0.27 B

0.00070 mg/L

0.00030 mg/L

0.0040 mg/L

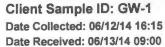
Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ent Sample ID: GW-1

Date Collected: 06/12/14 16:15 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-7

Matrix: Water


Method: 6010C - Metals (ICP) (Continue Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	0.00094	J	0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:19	
Calcium	92		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:19	
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:19	
Copper	ND		0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:19	
ron	11		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:19	
Lead	ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:19	
Magnesium	57		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:19	
Manganese	0.28		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:19	
Nickel	0.013		0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:19	
Potassium	19		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:19	
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:19	
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:19	
Sodium	65		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:19	
Thallium	ND		0.020	0.010	mg/L		06/16/14 08:00	06/18/14 22:19	
Zinc	0.012		0.010	0.0015	mg/L		06/16/14 08:00	06/18/14 22:19	
Method: 6010C - Metals (ICP) - Dissolv	ed								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND	-	0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:56	
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:56	
Arsenic	0.037		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:56	
arium	1.1		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:56	
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:56	
Boron	0.28		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:56	
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:56	
Calcium	89		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:56	
Chromium	0.0019	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 14:56	
Cobalt	0.00063	J	0.0040	0.00063	mg/L		06/16/14 12:05	06/20/14 14:56	
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 14:56	
iron	0.019	J	0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:56	
Lead	0.0038	J	0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 14:56	
Magnesium	60		0.20	0.043	mg/L		06/16/14 12:05	06/20/14 14:56	
Manganese	0.23		0.0030	0.00040	mg/L		06/16/14 12:05	06/20/14 14:56	
Nickel	0.012		0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 14:56	
Potassium	19		0.50		mg/L		06/16/14 12:05	06/20/14 14:56	
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 14:56	
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 14:56	
Sodium	65		1.0	0.32	mg/L		06/16/14 12:05	06/20/14 14:56	
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 14:56	
Vanadium	ND		0.0050	0.0015	mg/L		06/16/14 12:05	06/20/14 14:56	
Zinc	0.0057	JB	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 14:56	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020	0.00012	mg/L		06/17/14 10:15	06/17/14 15:19	
Method: 7470A - Mercury (CVAA) - Dis	solved								
Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020	0.00012	ma/l		06/17/14 10:15	06/17/14 14:58	

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-7

General Chemistry Analyte	Result	Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	73		0.50	0.28	mg/L			06/20/14 12:13	1
Sulfate	4.7		2.0	0.35	mg/L			06/20/14 12:13	1
Alkalinity, Total	560		100	40	mg/L			06/19/14 11:34	10
Ammonia	18		0.20	0.090	mg/L			06/17/14 15:08	10
Total Kjeldahl Nitrogen	16		2.0	1.5	mg/L		06/18/14 19:32	06/19/14 10:39	10
Nitrate as N	0.076		0.050	0.020	mg/L			06/13/14 16:32	1
Chemical Oxygen Demand	31		10	5.0	mg/L			06/19/14 10:09	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:17	1
Cyanide, Total	ND		0.010	0.0050	mg/L		06/20/14 15:55	06/23/14 08:29	1
Total Organic Carbon	6.0		1.0	0.43	mg/L			06/17/14 18:35	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/23/14 20:30	06/24/14 11:08	1
Hardness	490		4.0	1.1	mg/L			06/24/14 09:36	1
Total Dissolved Solids	690		10	4.0	mg/L			06/16/14 23:25	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	320		1.0	1.0	NTU	-		06/13/14 10:32	1
Color	25		5.0	5.0	Color Units			06/13/14 11:17	1

Beryllium

Boron

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 07:30	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 07:30	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 07:30	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 07:30	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 07:30	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 07:30	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 07:30	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 07:30	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 07:30	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 07:30	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 07:30	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 07:30	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 07:30	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 07:30	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 07:30	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 07:30	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 07:30	1
Chloroethane	ND		5.0	0.87	ug/L			06/18/14 07:30	1
Chloroform	ND		5.0	0.54	ug/L			06/18/14 07:30	1
Chloromethane	ND		5.0	0.64	ug/L			06/18/14 07:30	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			06/18/14 07:30	1
¿is-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/18/14 07:30	1
Dibromochloromethane	ND		5.0	0.41	ug/L			06/18/14 07:30	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			06/18/14 07:30	1
Ethylbenzene	ND		5.0	0.46	ug/L			06/18/14 07:30	1
Methylene Chloride	ND		5.0	0.81	ug/L			06/18/14 07:30	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			06/18/14 07:30	1
o-Xylene	ND		5.0	0.43	ug/L			06/18/14 07:30	1
Tetrachloroethene	ND		5.0	0.34	ug/L			06/18/14 07:30	1
Toluene	ND		5.0	0.45	ug/L			06/18/14 07:30	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			06/18/14 07:30	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			06/18/14 07:30	1
Trichloroethene	ND		5.0	0.60	ug/L			06/18/14 07:30	1
Trichlorofluoromethane	ND		5.0		ug/L			06/18/14 07:30	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/18/14 07:30	1
Xylenes, Total	ND		10	1.1	ug/L			06/18/14 07:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					06/18/14 07:30	1
4-Bromofluorobenzene (Surr)	96		69 - 121					06/18/14 07:30	1
Toluene-d8 (Surr)	99		70 - 123					06/18/14 07:30	1
Method: 6010C - Metals (ICP)									m.c. =
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.4		0.20		mg/L		06/16/14 08:00	06/18/14 22:22	1
Antimony	ND		0.020	0.0068			06/16/14 08:00	06/18/14 22:22	1
Arsenic	0.086		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 22:22	1
Barium	0.38		0.0020	0.00070	mg/L		06/16/14 08:00	06/18/14 22:22	1

TestAmerica Buffalo

06/18/14 22:22

06/18/14 22:22

06/16/14 08:00

06/16/14 08:00

0.0020

0.020

0.00030 mg/L

0.0040 mg/L

ND

0.17 B

Client: Sterling Environmental Engineering PC

Method: 6010C - Metals (ICP) (Continued)

Project/Site: Orange County Landfill

Client Sample ID: GW-2 Date Collected: 06/12/14 16:30 Date Received: 06/13/14 09:00

Thallium

Zinc

Analyte

Vanadium

Method: 7470A - Mercury (CVAA)

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-8

Analyzed

Prepared

Matrix: Water

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DilFac
Cadmium	0.00062	J	0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 22:22	1
Calcium	120		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:22	1
Chromium	0.0020	J	0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 22:22	1
Copper	0.0027	J	0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 22:22	1
Iron	5.3		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 22:22	1
Lead	0.0042	J	0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 22:22	1
Magnesium	44		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 22:22	1
Manganese	1,8		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 22:22	1
Nickel	0.0091	J	0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 22:22	1
Potassium	12		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 22:22	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 22:22	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 22:22	1
Sodium	45		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 22:22	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 08:00	06/18/14 22:22	1
Zinc	0.020		0.010	0.0015	mg/L		06/16/14 08:00	06/18/14 22:22	1
Analyte	Result	Qualifler	RL		Unit	D	Prepared	Analyzed	
Method: 6010C - Metals (I		Ovelifier	DI.	MDI	Linit	D	Prenared	Analyzed	Dil Fac
Aluminum	NC		0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:59	1
Antimony	NC	•	0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:59	1
Arsenic	0.049)	0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:59	1
Barium	0.40	1	0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:59	1
Beryllium	NE)	0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:59	1
Boron	0.18	3	0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:59	1
Cadmium	NE)	0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:59	1
Calcium	120		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:59	1
Chromium	0.0020	J	0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 14:59	1
Cobalt	0.0019	J	0.0040	0.00063	mg/L		06/16/14 12:05	06/20/14 14:59	1
Copper	N		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 14:59	1
Iron	N		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:59	1
Lead	N)	0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 14:59	1
Magnesium	4	5	0.20	0.043	mg/L		06/16/14 12:05	06/20/14 14:59	1
Manganese	1.0	6	0.0030	0.00040	mg/L		06/16/14 12:05	06/20/14 14:59	1
Nickel	0.007	1 J	0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 14:59	1
Potassium	1:	2	0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:59	1
Selenium	NI)	0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 14:59	1
Silver	NI)	0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 14:59	1
Sodium	4	7	1.0	0.32	2 mg/L		06/16/14 12:05	06/20/14 14:59	1

Mercury	ND		0.00020	0.00012	mg/L		06/17/14 10:15	06/17/14 15:11	1
Method: 7470A - Mercury (CVAA) - Analyte		Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		06/17/14 10:15	06/17/14 14:43	- 1

0.020

0.0050

0.010

RL

ND

ND

0.0088 JB

Result Qualifler

0.010 mg/L

0.0015 mg/L

0.0015 mg/L

MDL Unit

06/16/14 12:05

06/16/14 12:05

06/16/14 12:05

Prepared

TestAmerica Buffalo

06/20/14 14:59

06/20/14 14:59

06/20/14 14:59

Analyzed

1

1

Dil Fac

6/27/2014

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

ient Sample ID: GW-2

Date Collected: 06/12/14 16:30 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-8

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	58		0.50	0.28	mg/L	_		06/20/14 12:23	1
Sulfate	11		2.0	0.35	mg/L			06/20/14 12:23	1
Alkalinity, Total	610		100	40	mg/L			06/20/14 12:30	10
Ammonia	8.8		0.10	0.045	mg/L			06/17/14 15:09	5
Total Kjeldahl Nitrogen	8.6		1.0	0.75	mg/L		06/18/14 19:32	06/19/14 10:39	5
Nitrate as N	0.57		0.050	0.020	mg/L			06/13/14 16:33	1
Chemical Oxygen Demand	ND		10	5.0	mg/L			06/19/14 10:09	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			06/13/14 10:22	1
Cyanide, Total	0.0053	J	0.010	0.0050	mg/L		06/19/14 17:30	06/20/14 10:36	1
Total Organic Carbon	5.9		1.0	0.43	mg/L			06/17/14 19:03	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		06/23/14 20:30	06/24/14 11:09	1
Hardness	500		10	2.6	mg/L			06/24/14 11:08	1
Total Dissolved Solids	660		10	4.0	mg/L			06/16/14 23:27	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			06/13/14 17:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	120		1.0	1.0	NTU			06/13/14 10:32	1
Color	15		5.0	5.0	Color Units			06/13/14 11:17	1

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-61861-1

Project/Site: Orange County Landfill

Client Sample ID: TRIP BLANK

Date Collected: 06/12/14 13:25 Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-9

Wethod: 624 - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/18/14 07:54	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			06/18/14 07:54	1
1.1.2-Trichloroethane	ND		5.0	0.48	ug/L			06/18/14 07:54	1
.1-Dichloroethane	ND		5.0	0.59	ug/L			06/18/14 07:54	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/18/14 07:54	1
1.2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/18/14 07:54	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/18/14 07:54	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/18/14 07:54	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/18/14 07:54	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/18/14 07:54	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/18/14 07:54	1
Benzene	ND		5.0	0.60	ug/L			06/18/14 07:54	1
Bromodichloromethane	ND		5.0	0.54	ug/L			06/18/14 07:54	1
Bromoform	ND		5.0	0.47	ug/L			06/18/14 07:54	1
Bromomethane	ND		5.0	1.2	ug/L			06/18/14 07:54	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/18/14 07:54	1
Chlorobenzene	ND		5.0	0.48	ug/L			06/18/14 07:54	1
Chloroethane	ND		5.0	0.87				06/18/14 07:54	1
Chloroform	ND		5.0	0.54				06/18/14 07:54	1
Chloromethane	ND		5.0	0.64				06/18/14 07:54	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			06/18/14 07:54	1
	ND		5.0	0.33	-			06/18/14 07:54	1
cis-1,3-Dichtoropropene Dibromochloromethane	ND		5.0		ug/L			06/18/14 07:54	1
	ND		5.0	0.28	_			06/18/14 07:54	1
Dichlorodifluoromethane	ND		5.0	0.46	-			06/18/14 07:54	1
Ethylbenzene Mathylana Oblanda	ND		5.0	0.81				06/18/14 07:54	1
Methylene Chloride	ND		10	1.1	-			06/18/14 07:54	1
m-Xylene & p-Xylene	ND		5.0		ug/L			06/18/14 07:54	1
o-Xylene	ND		5.0		ug/L			06/18/14 07:54	1
Tetrachloroethene	ND		5.0		ug/L			06/18/14 07:54	1
Toluene	ND		5.0		ug/L ug/L			06/18/14 07:54	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			06/18/14 07:54	1
trans-1,3-Dichloropropene	ND ND		5.0		ug/L			06/18/14 07:54	1
Trichloroethene	ND		5.0		ug/L			06/18/14 07:54	1
Trichlorofluoromethane	ND ND		5.0		ug/L			06/18/14 07:54	1
Vinyl chloride Xylenes, Total	ND		10		ug/L			06/18/14 07:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					06/18/14 07:54	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/18/14 07:54	1
Toluene-d8 (Surr)	99		70 - 123					06/18/14 07:54	1

Surrogate Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Surroga	te Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-61861-2	GWA	100	95	97	
480-61861-3	GW-B	103	94	98	
480-61861-4	SW-02	104	96	100	
480-61861-5	SW-01	104	97	100	
480-61861-6	GW-3	103	94	99	
480-61861-7	GW-1	106	96	102	
180-61861-8	GW-2	100	96	99	
480-61861-9	TRIP BLANK	104	97	99	
LCS 480-188163/5	Lab Control Sample	96	97	98	
MB 480-188163/7	Method Blank	101	97	98	

Surrogate Legend

12DCE = 1,2-Dichloroethene-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-188163/7

Matrix: Water

Analysis Batch: 188163

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L		06/17/14 13:19	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L		06/17/14 13:19	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L		06/17/14 13:19	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L		06/17/14 13:19	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L		06/17/14 13:19	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L		06/17/14 13:19	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L		06/17/14 13:19	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L		06/17/14 13:19	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L		06/17/14 13:19	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L		06/17/14 13:19	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L		06/17/14 13:19	1
Benzene	ND	5.0	0.60	ug/L		06/17/14 13:19	1
Bromodichloromethane	ND	5.0	0.54	ug/L		06/17/14 13:19	1
Bromoform	ND	5.0	0.47	ug/L		06/17/14 13:19	1
Bromomethane	ND	5.0	1.2	ug/L		06/17/14 13:19	1
Carbon tetrachloride	ND	5.0	0.51	ug/L		06/17/14 13:19	1
Chlorobenzene	ND	5.0	0.48	ug/L		06/17/14 13:19	1
Chloroethane	ND	5.0	0.87	ug/L		06/17/14 13:19	1
Chloroform	ND	5.0	0.54	ug/L		06/17/14 13:19	1
Chloromethane	ND	5.0	0.64	ug/L		06/17/14 13:19	1
cis-1,2-Dichloroethene	ND	5.0	0.57	ug/L		06/17/14 13:19	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L		06/17/14 13:19	1
Dibromochloromethane	ND	5.0	0.41	ug/L		06/17/14 13:19	1
Dichlorodifluoromethane	ND	5.0	0.28	ug/L		06/17/14 13:19	1
Ethylbenzene	ND	5.0	0.46	ug/L		06/17/14 13:19	1
Methylene Chloride	ND	5.0	0.81	ug/L		06/17/14 13:19	1
m-Xylene & p-Xylene	ND	10	1.1	ug/L		06/17/14 13:19	1
o-Xylene	ND	5.0	0.43	ug/L		06/17/14 13:19	1
Tetrachloroethene	ND	5.0	0.34	ug/L		06/17/14 13:19	1
Toluene	ND	5.0	0.45	ug/L		06/17/14 13:19	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L		06/17/14 13:19	1
trans-1,3-Dichloropropeпе	ND	5.0	0.44	ug/L		06/17/14 13:19	1
Trichloroethene	ND	5.0	0.60	ug/L		06/17/14 13:19	1
Trichlorofluoromethane	ND	5.0	0.45	ug/L		06/17/14 13:19	1
Vinyl chloride	ND	5.0	0.75	ug/L		06/17/14 13:19	1
Xylenes, Total	ND	10	1.1	l ug/L		06/17/14 13:19	1
	MB MB						

-1							
-	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	101		72 - 130		06/17/14 13:19	1
-	4-Bromofluorobenzene (Surr)	97		69 - 121		06/17/14 13:19	1
-	Toluene-d8 (Surr)	98		70 - 123		06/17/14 13:19	1
-1							

Lab Sample ID: LCS 480-188163/5

Matrix: Water

Analysis Batch: 188163								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.0		ug/L	_	100	52 - 16 2	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-188163/5

Matrix: Water

Analysis Batch: 188163

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

,			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane			20.0	19.2		ug/L		96	46 - 157	
1,1,2-Trichloroethane			20.0	19.1		ug/L		96	52 - 150	
1,1-Dichloroethane			20.0	19.5		ug/L		98	59 - 155	
1,1-Dichloroethene			20.0	20.2		ug/L		101	1 - 234	
1,2-Dichlorobenzene			20.0	20.5		ug/L		102	18 - 190	
1,2-Dichloroethane			20.0	19.0		ug/L		95	49 - 155	
1,2-Dichloropropane			20.0	19.0		ug/L		95	1 - 210	
1,3-Dichlorobenzene			20.0	19.6		ug/L		98	59 _ 156	
1,4-Dichlorobenzene			20.0	19.8		ug/L		99	18 - 190	
2-Chloroethyl vinyl ether			20.0	16.9	J	ug/L		84	1 - 305	
Benzene			20.0	20.0		ug/L		100	37 - 151	
Bromodichloromethane			20.0	19.2		ug/L		96	35 - 155	
Bromoform			20.0	16.5		ug/L		83	45 - 169	
Bromomethane			20.0	24.9		ug/L		125	1 - 242	
Carbon tetrachloride			20.0	21.9		ug/L		109	70 - 140	
Chlorobenzene			20.0	20.1		ug/L		100	37 - 160	
Chloroethane			20.0	22.2		ug/L		111	14 - 230	
Chloroform			20.0	19.7		ug/L		99	51 - 138	
Chloromethane			20.0	20.1		ug/L		101	1 - 273	
is-1,2-Dichloroethene			20.0	20.1		ug/L		100		
is-1,3-Dichloropropene			20.0	18.4		ug/L		92	1 - 227	
Dibromochloromethane			20.0	18.4		ug/L		92	53 - 149	
Dichlorodifluoromethane			20.0	20.7		ug/L		104		
Ethylbenzene			20.0	20.6		ug/L		103	37 - 162	
Methylene Chloride			20.0	17.3		ug/L		86	1 - 221	
m-Xylene & p-Xylene			20.0	19.6		ug/L		98	79 - 120	
o-Xylene			20.0	20.0		ug/L		100	79 - 120	
Tetrachloroethene			20.0	20.2		ug/L		101	64 - 148	
Toluene			20.0	19.5		ug/L		98	47 - 150	
trans-1,2-Dichloroethene			20.0	20.3		ug/L		102	54 - 156	
trans-1,3-Dichloropropene			20.0	18.9		ug/L		95	17 - 183	
Trichloroethene			20.0	19.7		ug/L		99	71 ₋ 15 7	
Trichlorofluoromethane			20.0	20.9		ug/L		105	17 - 181	
Vinyl chloride			20.0	20.4		ug/L		102	1 _ 251	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	96		72 - 130							
4-Bromofluorobenzene (Surr)	97		69 - 121							

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-187751/1-A

98

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 188615

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 187751

1		MB	MB								
	\nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F	ac
-	Aluminum	ND		0.20	0.060	mg/L		06/16/14 08:00	06/18/14 21:37		1

70 - 123

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-187751/1-A

Matrix: Water

Analysis Batch: 188615

Client Sample ID: Method Blank
Prep Type: Total/NA
Pren Batch: 187751

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		06/16/14 08:00	06/18/14 21:37	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 08:00	06/18/14 21:37	1
Barium	ND		0.0020	0.00070	mg/L		06/16/14 08:00	06/18/14 21:37	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 08:00	06/18/14 21:37	1
Boron	0.00443	J	0.020	0.0040	mg/L		06/16/14 08:00	06/18/14 21:37	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 08:00	06/18/14 21:37	1
Calcium	ND		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 21:37	1
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 08:00	06/18/14 21:37	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 08:00	06/18/14 21:37	1
Iron	ND		0.050	0.019	mg/L		06/16/14 08:00	06/18/14 21:37	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 08:00	06/18/14 21:37	1
Magnesium	ND		0.20	0.043	mg/L		06/16/14 08:00	06/18/14 21:37	1
Manganese	ND		0.0030	0.00040	mg/L		06/16/14 08:00	06/18/14 21:37	1
Nickel	ND		0.010	0.0013	mg/L		06/16/14 08:00	06/18/14 21:37	1
Potassium	ND		0.50	0.10	mg/L		06/16/14 08:00	06/18/14 21:37	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 08:00	06/18/14 21:37	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 08:00	06/18/14 21:37	1
Sodium	ND		1.0	0.32	mg/L		06/16/14 08:00	06/18/14 21:37	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 08:00	06/18/14 21:37	1
Zinc	ND		0.010	0.0015	mg/L		06/16/14 08:00	06/18/14 21:37	1,

Lab Sample ID: LCS 480-187751/2-A

Matrix: Water

Analysis Batch: 188615

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 187751

Analysis Batch: 188615							Trop Baton. Torro
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	10.4		mg/L		104	80 - 120
Antimony	0.200	0.204		mg/L		102	80 - 120
Arsenic	0.200	0.201		mg/L		100	80 - 120
Barium	0.200	0.206		mg/L		103	80 - 120
Beryllium	0.200	0.202		mg/L		101	80 - 120
Boron	0.200	0.209		mg/L		105	80 - 120
Cadmium	0.200	0.205		mg/L		102	80 - 120
Calcium	10.0	9.76		mg/L		98	80 - 120
Chromium	0.200	0.210		mg/L		105	80 _ 120
Copper	0.200	0.207		mg/L		103	80 - 120
Iron	10.0	9.75		mg/L		97	80 - 120
Lead	0.200	0.203		mg/L		102	80 - 120
Magnesium	10.0	10.8		mg/L		108	80 - 120
Manganese	0.200	0.212		mg/L		106	80 - 120
Nickel	0.200	0.201		mg/L		100	80 - 120
Potassium	10.0	9.78		mg/L		98	80 - 120
Selenium	0.200	0.205		mg/L		103	80 - 120
Silver	0.0500	0.0500		mg/L		100	80 - 120
Sodium	10.0	9.62		mg/L		96	80 - 120
Thallium	0.200	0.214		mg/L		107	80 _ 120
Zinc	0.200	0.208		mg/L		104	80 - 120

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-187770/1-B

Matrix: Water

Analysis Batch: 189205

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 187888

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		06/16/14 12:05	06/20/14 14:22	1
Antimony	ND		0.020	0.0068	mg/L		06/16/14 12:05	06/20/14 14:22	1
Arsenic	ND		0.015	0.0056	mg/L		06/16/14 12:05	06/20/14 14:22	1
Barium	ND		0.0020	0.00070	mg/L		06/16/14 12:05	06/20/14 14:22	1
Beryllium	ND		0.0020	0.00030	mg/L		06/16/14 12:05	06/20/14 14:22	1
Boron	ND		0.020	0.0040	mg/L		06/16/14 12:05	06/20/14 14:22	1
Cadmium	ND		0.0020	0.00050	mg/L		06/16/14 12:05	06/20/14 14:22	1
Calcium	ND		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:22	1
Chromium	ND		0.0040	0.0010	mg/L		06/16/14 12:05	06/20/14 14:22	1
Cobalt	ND		0.0040	0.00063	mg/L		06/16/14 12:05	06/20/14 14:22	1
Copper	ND		0.010	0.0016	mg/L		06/16/14 12:05	06/20/14 14:22	1
Iron	ND		0.050	0.019	mg/L		06/16/14 12:05	06/20/14 14:22	1
Lead	ND		0.010	0.0030	mg/L		06/16/14 12:05	06/20/14 14:22	1
Magnesium	ND		0.20	0.043	mg/L		06/16/14 12:05	06/20/14 14:22	1
Manganese	ND		0.0030	0.00040	mg/L		06/16/14 12:05	06/20/14 14:22	1
Nickel	ND		0.010	0.0013	mg/L		06/16/14 12:05	06/20/14 14:22	1
Potassium	ND		0.50	0.10	mg/L		06/16/14 12:05	06/20/14 14:22	1
Selenium	ND		0.025	0.0087	mg/L		06/16/14 12:05	06/20/14 14:22	1
Silver	ND		0.0060	0.0017	mg/L		06/16/14 12:05	06/20/14 14:22	1
odium	ND		1.0	0.32	mg/L		06/16/14 12:05	06/20/14 14:22	1
Thallium	ND		0.020	0.010	mg/L		06/16/14 12:05	06/20/14 14:22	1
Vanadium	ND		0.0050	0.0015	mg/L		06/16/14 12:05	06/20/14 14:22	1
Zinc	0.00158	J	0.010	0.0015	mg/L		06/16/14 12:05	06/20/14 14:22	1

Lab Sample ID: LCS 480-187770/2-B

Matrix: Water

Analysis Batch: 189205

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Prep Batch: 187888

, manyone batom 100200	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	10.3		mg/L		103	80 - 120	
Antimony	0.200	0.202		mg/L		101	80 - 120	
Arsenic	0.200	0.202		mg/L		101	80 - 120	
Barium	0.200	0.216		mg/L		108	80 - 120	
Beryllium	0.200	0.204		mg/L		102	80 _ 120	
Boron	0.200	0.206		mg/L		103	80 - 120	
Cadmium	0.200	0.200		mg/L		100	80 - 120	
Calcium	10.0	9.43		mg/L		94	80 - 120	
Chromium	0.200	0.198		mg/L		99	80 - 120	
Cobalt	0.200	0.201		mg/L		101	80 - 120	
Copper	0.200	0.204		mg/L		102	80 - 120	
Iron	10.0	9.96		mg/L		100	80 - 120	
Lead	0.200	0.199		mg/L		100	80 - 120	
Magnesium	10.0	10.5		mg/L		105	80 - 120	
Manganese	0.200	0.205		mg/L		102	80 - 120	
Nickel	0.200	0.196		mg/L		98	80 - 120	
Potassium	10.0	9.86		mg/L		99	80 _ 120	
Selenium	0.200	0.204		mg/L		102	80 - 120	
Silver	0.0500	0.0518		mg/L		104	80 - 120	

Client Sample ID: Lab Control Sample

Limits

RPD Limit

Prep Batch: 187888

RPD

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-187770/2-B

Matrix: Water

Analysis Batch: 189205

						Prep Type: Dissolved
						Prep Batch: 187888
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits

	Spike	LCS	LUS				701100.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sodium	10.0	10.1		mg/L		101	80 - 120	
Thallium	0.200	0.210		mg/L		105	80 - 120	
Vanadium	0.200	0.210		mg/L		105	80 - 120	
Zinc	0.200	0.197		mg/L		98	80 - 120	
ZIIIC	0.200							

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 480-187770/3-B Prep Type: Dissolved Matrix: Water

Analysis Batch: 189205						
	Spike	LCSD	LCSD			
Analyte	Added	Result	Qualifier	Unit	D	%Rec
Aluminum	10.0	10.4		mg/L		104

80 - 120 20 20 0.200 0.201 mg/L 101 80 _ 120 0 Antimony 99 80 - 120 20 0.199 mg/L 0.200 Arsenic 20 80 - 120 0 107 0.200 0.215 mg/L Barium 80 _ 120 20 0.205 103 0.200 mg/L Beryllium 104 80 - 120 20 0.208 0.200 mg/L 80 - 120 20 101 Cadmium 0.200 0.203 mg/L 20 80 - 120 9.73 mg/L 97 10.0 Calcium 20 102 80 - 120 3 0.204 mg/L 0.200 Chromium 20 102 80 - 120 2 0.200 0.205 mg/L Cobalt 20 80 - 120 0.200 0.207 mg/L 103 1 Copper 101 80 - 120 2 20 10.0 10.1 mg/L Iron 80 - 120 20 0.200 0.201 ma/L 100 Lead 10.0 10.5 mg/L 105 80 - 120 20 Magnesium 0.200 0.207 mg/L 104 80 - 120 20 Manganese 99 80 _ 120 20 0.200 0.199 mg/L Nickel 9.89 99 80 _ 120 0 20 10.0 mg/L Potassium 0.200 0.204 mg/L 102 80 - 120 0 20 Selenium 20 0.0518 104 80 - 120 0.0500 mg/L Silver 101 80 - 120 20 mg/L 10.0 10.1 Sodium 0 20 0.200 0.210 mg/L 105 80 _ 120 Thallium 20 0.200 0.212 mg/L 106 80 - 120 Vanadium

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-187990/1-A

Matrix: Water

Zinc

Analysis Batch: 188161

Client	Sample	ID:	Meth	od	Blank
	De	om T	Turno:	To	tal/NIA

Client Sample ID: Lab Control Sample

80 - 120

101

Prep Type: Total/NA Prep Batch: 187990

3

20

MR MR Dil Fac D Analyzed Analyte Result Qualifier RL MDL Unit Prepared 06/16/14 14:30 06/17/14 09:26 ND 0.00020 0.00012 mg/L Mercury

0.200

Lab Sample ID: LCS 480-187990/2-A

Matrix: Water

Analysis Batch: 188161

Spike Added Analyte 0.00667 Mercury

LCS LCS Result Qualifier

0.202

mg/L

0.00613

Unit %Rec mg/L 92

Prep Type: Total/NA Prep Batch: 187990 %Rec. Limits

80 - 120 TestAmerica Buffalo

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

06/17/14 14:05

Client Sample ID: Lab Control Sample

Limits

80 _ 120

Client Sample ID: Method Blank

Analyzed

06/17/14 15:04

Client Sample ID: Lab Control Sample

%Rec.

Limits

%Rec.

Limits

%Rec.

75 - 125

80 - 120

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: MB 480-187992/1-A

Matrix: Water

Analysis Batch: 188305

MB

Analyte Result Qualifier Mercury ND

RL 0.00020

LCS LCS

0.00707

RL

RL

0.00020

0.00020

Result Qualifier

MDI Unit

0.00012 mg/L

LCS LCS

0.00693

Result Qualifier

MDL Unit

0.00012 mg/L

LCS LCS

0.00697

MS MS

0.00693

Result Qualifier

MSD MSD

Result Qualifier

Spike

Added

Spike

Added

0.00667

Spike

Added

Spike

Added

0.00667

Spike

0.00667

MB

ND

Qualifier

0.00667

MDL Unit 0.00012 mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Prepared 06/17/14 10:15

%Rec

Prepared

06/17/14 10:15

%Rec

Prepared

06/17/14 10:15

%Rec

%Rec

104

104

D

D

D

106

D

D

Analyzed Dil Fac 06/17/14 13:11

Prep Type: Total/NA

Prep Batch: 187992

Prep Type: Total/NA

Prep Batch: 188082

Prep Type: Total/NA

Prep Batch: 188082

Prep Type: Total/NA

Prep Batch: 188119

Prep Type: Total/NA

Prep Batch: 188119

Client Sample ID: GW-2

Client Sample ID: GW-2 Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 188119

Dil Fac

Dil Fac

Prep Type: Total/NA

Prep Batch: 187992

Lab Sample ID: LCS 480-187992/2-A

Matrix: Water

Analysis Batch: 188305

Analyte Mercury

Lab Sample ID: MB 480-188082/1-A

Matrix: Water

Analysis Batch: 188305

мв мв

Analyte

Result Qualifier

Mercury ND

Lab Sample ID: LCS 480-188082/2-A Matrix: Water

Analysis Batch: 188305

Lab Sample ID: MB 480-188119/1-A

Matrix: Water

nalyte

Mercury

Analysis Batch: 188305

MR Analyte Result

Mercury Lab Sample ID: LCS 480-188119/2-A

Matrix: Water

Analyte

Analyte

Mercury

analyte

Mercury

Analysis Batch: 188305

Mercury

Lab Sample ID: 480-61861-8 MS Matrix: Water

Analysis Batch: 188305

Lab Sample ID: 480-61861-8 MSD Matrix: Water

Analysis Batch: 188305

Sample Sample Result Qualifler ND

Sample Sample Qualifier

Result

ND

Added 0.00667

Result

0.00710

Qualifier ma/L

Unit

D %Rec 106

Limits 75 - 125

TestAmerica Buffalo

6/27/2014

Prep Batch: 188119

Page 39 of 72

RPD RPD Limit

Client Sample ID: Method Blank

20

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 480-187550/27

Matrix: Water

Analysis Batch: 187550

MR MR

Result Qualifier Analyte

RL 1.0 ND

RL Unit 1.0 NTU

Prepared D

Analyzed 06/13/14 08:37

Prep Type: Total/NA

Dil Fac

Lab Sample ID: 480-61861-5 DU

Matrix: Water

Turbidity

Analysis Batch: 187550

Sample Sample Result Qualifier Analyte 16 Turbidity

DU DU Result Qualifier 14.7

Unit NTU

D

Client Sample ID: SW-01 Prep Type: Total/NA

RPD RPD Limit

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-188730/100

Matrix: Water

Analysis Batch: 188730

MR MR

Result Qualifier Analyte Chloride ND ND Sulfate

RL 0.50 2.0

RL

10

RL

10

MDL Unit 0.28 mg/L 0.35 mg/L Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample,

90 . 110

Client Sample ID: Method Blank

Analyzed

06/19/14 10:07

Client Sample ID: Method Blank

Analyzed

06/19/14 11:04

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac Analyzed 06/20/14 09:31 06/20/14 09:31

Lab Sample ID: LCS 480-188730/99

Matrix: Water

Analysis Batch: 188730

Spike Added Analyte 20.0 Chloride 20.0 Sulfate

LCS LCS Result

Qualifier Unit 19.8 mg/L 19.3 mg/L

MDL Unit

MDL Unit

4.0 mg/L

4.0 mg/L

Prep Type: Total/NA %Rec. %Rec

99

96

Prepared

Prepared

Prepared

Limits

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-188771/28

Matrix: Water

Analyte

Analyte

Alkalinity, Total

Alkalinity, Total

Analysis Batch: 188771

MB MB Result Qualifier Analyte

Alkalinity, Total Lab Sample ID: MB 480-188771/46

Matrix: Water Analysis Batch: 188771

Lab Sample ID: MB 480-188771/58 Matrix: Water

Analysis Batch: 188771

Result Qualifier ND

ND

мв мв

ND

Result Qualifier

RL 10 MDL Unit 4.0 mg/L

D

D

Prepared

Analyzed 06/19/14 11:22 Dil Fa

Dil Fac

Dil Fac

TestAmerica Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

wethod:	310.2 -	Alkalinity	(Continued)
Lab Sam	ple ID: L	CS 480-1887	71/27

Matrix: Water

Matrix: Water

Alkalinity, Total

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

Analysis batch: 1887/1								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity Total	50.0	45.3		ma/l		01	90 110	

7 distantity, 1 oct	30.0	70.0	IIIg/L	91	30 - 110	
Lab Sample ID: LCS 480-188771/45				Client Sample	ID: Lab Control S	ample
Matrix: Water					Prep Type: To	tal/NA

Analysis Batch: 188771 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 50.0 52.7 mg/L 105 90 - 110

Lab Sample ID: LCS 480-188771/57 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 188771

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit Alkalinity, Total 50.0 51.1 mg/L 102 90 - 110

Lab Sample ID: MB 480-189017/67 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 189017

MB MB Result Qualifier RL MDL Unit D Analyzed Dil Fac nalyte Prepared 10 06/20/14 12:17 Alkalinity, Total ND 4.0 mg/L

Lab Sample ID: MB 480-189017/92 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 189017

MB MB Result Qualifier RL MDL Unit Analyzed Dil Fac Analyte D Prepared

Alkalinity, Total ND 10 4.0 mg/L 06/20/14 12:51 Lab Sample ID: LCS 480-189017/66 Client Sample ID: Lab Control Sample

Prep Type: Total/NA Analysis Batch: 189017 Spike LCS LCS %Rec. Limits Analyte Added Result Qualifier Unit D %Rec

98 90 - 110 Alkalinity, Total 50.0 49.2 mg/L Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-189017/91

51.4

mg/L

103

90 - 110

Prep Type: Total/NA Matrix: Water Analysis Batch: 189017 Spike LCS LCS %Rec. %Rec Limits Analyte Added Result Qualifier Unit

50.0

RL

RL

RL

0.020

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

MB MB

Qualifler

Result

ND

1.00

0.020

0.020

MDL Unit

mg/L

MDL Unit

0.0090 mg/L

MDL Unit

LCS LCS

ICS ICS

1.03

Result Qualifier

LCS LCS

1.04

Result Qualifier

Result

1.03

0.0090 mg/L

Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L,

0.0090

D

D

Prepared

Prepared

Prepared

%Rec

103

%Rec

103

%Rec

Prepared

Client Sample ID: Method Blank

Analyzed

06/17/14 12:31

Client Sample ID: Method Blank

Analyzed

06/17/14 12:52

Client Sample ID: Method Blank

Analyzed

06/17/14 11:07

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Analyzed

06/17/14 14:01

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Dil Fac

Dil Fac

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-188210/147

Matrix: Water

Analysis Batch: 188210

MB MB

ND

ND

Result Qualifier Analyte NB Ammonia

Lab Sample ID: MB 480-188210/171

Matrix: Water

Analysis Batch: 188210

MR MR Result Qualifier

Analyte

Ammonia

Lab Sample ID: MB 480-188210/51

Matrix: Water

Analysis Batch: 188210

MB MB Result Qualifier

Analyte

Lab Sample ID: LCS 480-188210/148

Matrix: Water

Ammonia

Ammonia

Ammonia

Ammonia

Analyte

Analysis Batch: 188210

Analyte

Lab Sample ID: LCS 480-188210/172

Matrix: Water

Analysis Batch: 188210

Analyte

Lab Sample ID: LCS 480-188210/52

Matrix: Water

Analysis Batch: 188210

Analyte

Lab Sample ID: MB 480-188240/27

Matrix: Water

Analysis Batch: 188240

Ammonia

Lab Sample ID: MB 480-188240/75

Matrix: Water

Analysis Batch: 188240

MR MR

Result Analyte ND Ammonia

Qualifier RL

0.020 0.0090

MDL Unit mg/L

MDL Unit

0.0090 mg/L

D

Prepared

Analyzed 06/17/14 14:49 Dil Fac

Dil Fac

TestAmerica Buffalo

6/27/2014

RL

0.020

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 188543

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Lab Sample ID: LCS 480-188240/28

Matrix: Water

Analysis Batch: 188240

Spike LCS LCS %Rec. Added Result Qualifier Limits Unit D %Rec Analyte 102 90 - 110 1.02 mg/L 1 00 Ammonia

Lab Sample ID: LCS 480-188240/76

Matrix: Water

Analysis Batch: 188240

%Rec. Spike LCS LCS Added Limits Analyte Result Qualifier Unit D %Rec 90 - 110 Ammonia 1.00 1.01 mg/L 101

Lab Sample ID: MB 480-189620/15

Matrix: Water

Analysis Batch: 189620

MB MB

Dil Fac Analyzed RL MDI Unit D Prepared Analyte Result Qualifier 06/24/14 18:28 0.020 Ammonia ND 0.0090 mg/L

Lab Sample ID: LCS 480-189620/16

Matrix: Water

Analysis Batch: 189620

Spike LCS LCS %Rec. Limits Analyte Added Result Qualifier Unit D %Rec Ammonia 1.00 1.03 mg/L 103 90 - 110

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-188543/1-A

Matrix: Water

Analysis Batch: 188683

MR MR

Analyzed Dil Fac Result Qualifier RL MDL Unit D Prepared Analyte 0.20 0.15 mg/L 06/18/14 19:32 06/19/14 09:26 Total Kjeldahl Nitrogen ND

Lab Sample ID: LCS 480-188543/2-A

Matrix: Water

Prep Batch: 188543 Analysis Batch: 188683 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 90 - 110 Total Kjeldahl Nitrogen 2.50 2 34 mg/L 94

Method: 410.4 - COD

Lab Sample ID: MB 480-188035/27

Matrix: Water

Analysis Batch: 188035

MB MB

Prepared Analyzed Dil Fac Result Qualifier RL MDL Unit Analyte 06/16/14 17:30 10 5.0 mg/L Chemical Oxygen Demand ND

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: SW-02

Client Sample ID: SW-01

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Orange County Landfill

Method: 410.4 - COD (Continued)

Lab Sample ID: MB 480-188035/3

Matrix: Water

Analysis Batch: 188035

MB MB

Dil Fac RL MDL Unit Prepared Analyzed Result Qualifier 10 06/16/14 17:30 5.0 mg/L Chemical Oxygen Demand ND

Lab Sample ID: LCS 480-188035/28

Matrix: Water

Analysis Batch: 188035

LCS LCS Spike %Rec. Unit %Rec Limits Added Result Qualifier 98 90 - 110 25.0 24.0 mg/L Chemical Oxygen Demand

Lab Sample ID: LCS 480-188035/4

Matrix: Water

Analysis Batch: 188035

Spike LCS LCS %Rec. Unit D %Rec Limits Added Result Qualifier Analyte 100 90 - 110 mg/L 25.0 24.9 Chemical Oxygen Demand

Lab Sample ID: 480-61861-4 MS

Matrix: Water

Analysis Batch: 188035

Spike MS MS %Rec. Sample Sample Added Result Qualifier Unit D %Rec Limits Result Qualifier Analyte 75 - 125 9.0 J 50.0 59 4 mg/L 101 Chemical Oxygen Demand

Lab Sample ID: 480-61861-5 DU

Matrix: Water

Analysis Batch: 188035

RPD DU DU Sample Sample RPD Limit Result Qualifier Unit Result Qualifier 6.08 mg/L 10 Chemical Oxygen Demand

Lab Sample ID: MB 480-188711/27

Matrix: Water

Analysis Batch: 188711

MR MR

Dil Fac Prepared Analyzed Analyte Result Qualifier RL MDL Unit D 06/19/14 10:17 10 Chemical Oxygen Demand ND 5.0 mg/L

Lab Sample ID: MB 480-188711/3

Matrix: Water

Analysis Batch: 188711

MR MR

Analyzed Dil Fac Prepared Result Qualifier RL MDL Unit D 06/19/14 09:56 Chemical Oxygen Demand ND 10 5.0 mg/L

Lab Sample ID: LCS 480-188711/28

Matrix: Water

Analysis Batch: 188711

%Rec. Spike LCS LCS Result Added Qualifier Unit %Rec Limits Analyte 90 - 110 25.0 26.9 mo/L 108 Chemical Oxygen Demand

TestAmerica Buffalo

Prep Type: Total/NA

QC Sample Results

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: LCS 480-188711/4

Matrix: Water

Chromium, hexavalent

Analysis Batch: 188711

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	25.0	25.6		mg/L		102	90 - 110	

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-187532/27												Client	Sample ID: Metho	od Blank
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
		MB	MB											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Chromium, hexavalent		ND			0.010	0.	0050	mg/L					06/13/14 10:36	1
Lab Sample ID: MB 480-187532/3												Client	Sample ID: Metho	od Biank
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
		MB	MB											
Analyte	R	esuit	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Chromium, hexavalent		ND			0.010	0.	0050	mg/L					06/13/14 08:44	1
Lab Sample ID: LCS 480-187532/28	3									Clie	ent	Sampl	e ID: Lab Control	Sample
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
				Spike		LCS	LCS						%Rec.	
nalyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Chromium, hexavalent				0.0500		0.0454			mg/L			91	65 - 115	
Lab Sample ID: LCS 480-187532/4										Clie	ent	Sampl	e ID: Lab Control	Sample
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Chromium, hexavalent				0.0500		0.0470			mg/L			94	65 _ 115	
Lab Sample ID: 480-61861-4 MS													Client Sample II): SW-02
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
	Sample	Sam	ple	Spike		MS	MS						%Rec.	
Analyte	Result	Qual	lifier	Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Chromium, hexavalent	ND			0.0500		0.0511			mg/L			102	65 11 5	
Lab Sample ID: 480-61861-4 DU													Client Sample II): SW-02
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 187532														
	Sample	Sam	ple			DU	DU							RPD
Analyte	Result	Qua	lifier			Result	Qual	lifier	Unit		D		RP	D Limit

NC

15

ND

mg/L

ND

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-188827/1-A

Matrix: Water

Matrix: Water

Cyanide, Total

Analyte

Analysis Batch: 188961

Analysis Batch: 188961

MR MR

Result Qualifier Analyte ND Cyanide, Total

RL 0.010

MDI Unit 0.0050 mg/L

Prepared 06/19/14 17:30 06/20/14 10:20

Client Sample ID: Method Blank

Analyzed Di! Fac

Prep Type: Total/NA

Prep Batch: 188827

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 188827

Prep Type: Total/NA

Prep Batch: 189045

%Rec.

%Rec Limits Result Qualifier Unit D Added 98 90 - 110 0.250 0.244 mg/L

LCS LCS

Lab Sample ID: MB 480-189045/1-A

Lab Sample ID: LCS 480-188827/2-A

Matrix: Water

Analysis Batch: 189315

Result Qualifier Analyte ND Cyanide, Total

MB MB

MB MB

ND

Result Qualifier

MR MB

Qualifier

Result

ND

RL 0.010

1.0

RL

1.0

MDL Unit 0.0050 mg/L D Prepared 06/20/14 15:55

Analyzed 06/23/14 08:12

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-189045/2-A

Matrix: Water

Cyanide, Total

Analysis Batch: 189315

Analyte

Spike Added 0.400

Spike

LCS LCS Result Qualifier 0.372

MDL Unit

0.43 mg/L

MDL Unit

0.43 mg/L

LCS LCS

62.8

Result Qualifier

Unit mg/L

D

%Rec 93

Prepared

Prepared

D

Unit

mg/L

%Rec. Limits

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-188308/15

Matrix: Water

Analyte

Analysis Batch: 188308

Analyte **Total Organic Carbon**

Lab Sample ID: MB 480-188308/39 Matrix: Water

Analysis Batch: 188308

Total Organic Carbon

Lab Sample ID: LCS 480-188308/16

Matrix: Water Analysis Batch: 188308

Analyte

Spike Added 60.0 Total Organic Carbon

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 189045

90 _ 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

06/17/14 04:48 Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

06/17/14 16:13

Dil Fac

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. Limits

%Rec 90 - 110 105

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: GW-A

Client Sample ID: GW-2

Prep Type: Total/NA

Prep Type: Total/NA

-	,							
-			and an artist of the same of t					
- 71	- All II.	AAAAA	0	O	T-4-1	/TOOL	10 41	
100	ernoa:	MUBUA	- Urganic	Carpon	LOTAL	C I C DC 31	(Continued)	á
on the fire				- and only	1 0 001	(100)	(001161111000)	<i>f</i>

Lab Sample ID: LCS 480-188308/40 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 188308 Spike LCS LCS %Rec. Added %Rec Limits Analyte Result Qualifier Unit D Total Organic Carbon 90 - 110 60.0 62.1 mg/L 104 Client Sample ID: GW-B Lab Sample ID: 480-61861-3 MS **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 188308

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit Total Organic Carbon AR 20.0 60 8 mg/L 76 54 - 131

Lab Sample ID: 480-61861-2 DU

Matrix: Water

Analysis Batch: 188308

DU DU RPD Sample Sample D RPD Limit Analyte Result Qualifier Result Qualifier Unit 20 Total Organic Carbon 6.9 6.95 mg/L

Lab Sample ID: 480-61861-8 DU

Matrix: Water

Analysis Batch: 188308

L	,	Sample	Sample	DU	DU				RPD
	nalyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	Total Organic Carbon	5.9		5.92		mg/L		0.4	20

Method: 9066 - Phenolics, Total Recoverable

Client Sample ID: Method Blank Lab Sample ID: MB 480-189398/1-A Prep Type: Total/NA Matrix: Water Analysis Batch: 189543 Prep Batch: 189398

MB MB MDL Unit Result Qualifier RL Prepared Analyzed Dil Fac 06/23/14 17:30 06/24/14 11:25 Phenolics, Total Recoverable ND 0.010 0.0050 mg/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-189398/2-A Prep Type: Total/NA

Matrix: Water

Prep Batch: 189398 Analysis Batch: 189543 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 90 - 110 Phenolics, Total Recoverable 0.100 0.105 mg/L 105

Lab Sample ID: MB 480-189401/1-A

Matrix: Water

Analysis Batch: 189543

MB MB

Analyzed Dil Fac MDL Unit D Prepared Analyte Result Qualifier RL 06/24/14 11:20 06/23/14 20:30 Phenolics, Total Recoverable ND 0.010 0.0050 mg/L

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 189401

Client Sample ID: Method Blank

Client Sample ID: SW-01

Prep Type: Total/NA

Prep Batch: 189825

Prep Type: Total/NA

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

Method: 9066 - Phenolics, Total Recoverable (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-189401/2-A Prep Type: Total/NA

Matrix: Water Analysis Batch: 189543

Prep Batch: 189401

Spike LCS LCS Added Result Qualifier Unit %Rec Limits Analyte

100 90 - 110 0.100 mg/L 0.100 Phenolics, Total Recoverable

Lab Sample ID: 480-61861-5 DU

Matrix: Water

Prep Batch: 189401 Analysis Batch: 189543

RPD DU DU Sample Sample RPD Limit Qualifier Unit Result Qualifier Result NC 20 mg/L NΩ Phenolics, Total Recoverable ND

Client Sample ID: Method Blank Lab Sample ID: MB 480-189825/1-A Prep Type: Total/NA

Matrix: Water

Analysis Batch: 190040 MR MR

Dil Fac D Prepared Analyzed MDL Unit Result Qualifier RL Analyte 06/26/14 08:51 06/25/14 12:19 0.010 0.0050 mg/L Phenolics, Total Recoverable ND

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-189825/2-A

Matrix: Water

Analysis Batch: 190040

Prep Batch: 189825 LCS LCS Spike Limits Added Result Qualifier Unit %Rec Analyte 90 - 110 mg/L 97 0.100 0.0974 Phenolics, Total Recoverable

Method: SM 2120B - Color, Colorimetric

Client Sample ID: Method Blank Lab Sample ID: MB 480-187631/27 Prep Type: Total/NA Matrix: Water

Analysis Batch: 187631

MB MB Analyzed Dil Fac D Prepared Result Qualifier RL RL Unit Analyte 5.0 Color Units 06/13/14 11:17 5.0 Color ND

Client Sample ID: Method Blank Lab Sample ID: MB 480-187631/3 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 187631 MB

Analyzed Dil Fac RL RL Unit Prepared Result Qualifier Analyte 5.0 5.0 Color Units 06/13/14 11:17 Color ND

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-187631/28 Prep Type: Total/NA Matrix: Water

Analysis Batch: 187631

%Rec. Spike LCS LCS Added D %Rec Limits Result Qualifier Unit Analyte 90 - 110 Color Units 100 Color 30.0 30.0

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: GW-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 2120B - Color,	Colorimetric ((Continued)	
---------------------------	----------------	-------------	--

	Lab Sample ID: LCS 480-187631/4					Client	Sample	ID: Lab Control Sample
-	Matrix: Water							Prep Type: Total/NA
-	Analysis Batch: 187631							
		Spike	LCS	LCS				%Rec.
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
	Color	30.0	30.0		Color Units	-	100	90 - 110

Lab Sample ID: 480-61861-7 DU

Matrix: Water

Matrix: Water

Matrix: Water

Total Dissolved Solids

Analysis Batch: 187631

r	Analysis Batch: 18/631								
I		Sample	Sample	DU	DU				RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
-	Color	25		25.0		Color Units		 0	20

Method: SM 2340C - Hardness, Total

Lab Sample ID: MB 480-189609/27

Lab Sample ID: LCS 480-189609/28

Analysis Batch: 189609							
	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

 Hardness
 ND
 2.0
 0.53 mg/L
 06/24/14 10:50

 Lab Sample ID: MB 480-189609/3
 Client Sample ID: Meth

MR MR

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 189609

	III	1010							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness	ND		2.0	0.53	mg/L	_		06/24/14 09:26	1

Matrix: Water

Analysis Batch: 189609

Spike LCS LCS %Rec.

Analysis Batch: Unit D %Rec Limits

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Hardness
 298
 288
 mg/L
 97
 90 - 110

Lab Sample ID: LCS 480-189609/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 189609 %Rec. Spike Limits Added Result Qualifier Unit %Rec Analyte 298 292 98 90 - 110 Hardness mg/L

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-188045/1 Matrix: Water						Client Sa	mple ID: Methor	
Analysis Batch: 188045								
	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

06/16/14 22:59

QC Sample Results

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: Lab Control Sample

%Rec.

Limits

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 480-188045/2

Matrix: Water

Analysis Batch: 188045

Analysis

Analyte
Total Dissolved Solids

Spike Added

503

LCS LCS
Result Qualifier
488

lifier Unit

D %Rec

97 85 - 115

8

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-187695/1

Matrix: Water

Analysis Batch: 187695

Analyte
Biochemical Oxygen Demand

USB USB
Result Qualifier

r

2.0

MDL Unit

D Prepared

Analyzed 06/13/14 17:39

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

d Dil Fac 7:39 1

Lab Sample ID: LCS 480-187695/2

Matrix: Water

Analysis Batch: 187695

Analyte
Biochemical Oxygen Demand

Spike LCS L

198

LCS LCS
Result Qualifier
208

Unit

mg/L

D %Rec

%Rec.

85 - 115

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

GC/MS VOA

Analysis	Batch:	188163
-----------------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWIA	Total/NA	Water	624	
480-61861-3	GW-B	Total/NA	Water	624	
480-61861-4	SW-02	Total/NA	Water	624	
480-61861-5	SW-01	Total/NA	Water	624	
480-61861-6	GW-3	Total/NA	Water	624	
480-61861-7	GW-1	Total/NA	Water	624	
480-61861-8	GW-2	Total/NA	Water	624	
480-61861-9	TRIP BLANK	Total/NA	Water	624	
LCS 480-188163/5	Lab Control Sample	Total/NA	Water	624	
MB 480-188163/7	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 187751

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA .	. Total/NA	Water	3005A	
480-61861-3	GW-B	Total/NA	Water	3005A	
480-61861-4	SW-02	Total/NA	Water	3005A	
480-61861-5	SW-01	Total/NA	Water	3005A	
480-61861-6	GW-3	Total/NA	Water	3005A	
480-61861-7	GW-1	Total/NA	Water	3005A	
480-61861-8	GW-2	Total/NA	Water	3005A	
CS 480-187751/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-187751/1-A	Method Blank	Total/NA	Water	3005A	

Filtration Batch: 187770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Dissolved	Water	FILTRATION	
480-61861-3	GW-B	Dissolved	Water	FILTRATION	
480-61861-4	SW-02	Dissolved	Water	FILTRATION	
480-61861-5	SW-01	Dissolved	Water	FILTRATION	
480-61861-6	GW-3	Dissolved	Water	FILTRATION	
480-61861-7	GW-1	Dissolved	Water	FILTRATION	
480-61861-8	GW-2	Dissolved	Water	FILTRATION	
LCS 480-187770/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 480-187770/3-B	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
MB 480-187770/1-B	Method Blank	Dissolved	Water	FILTRATION	

Prep Batch: 187888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Dissolved	Water	3005A	187770
480-61861-3	GW-B	Dissolved	Water	3005A	187770
480-61861-4	SW-02	Dissolved	Water	3005A	187770
480-61861-5	SW-01	Dissolved	Water	3005A	187770
480-61861-6	GW-3	Dissolved	Water	3005A	187770
480-61861-7	GW-1	Dissolved	Water	3005A	187770
480-61861-8	GW-2	Dissolved	Water	3005A	187770
LCS 480-187770/2-B	Lab Control Sample	Dissolved	Water	3005A	187770
LCSD 480-187770/3-B	Lab Control Sample Dup	Dissolved	Water	3005A	187770
MB 480-187770/1-B	Method Blank	Dissolved	Water	3005A	187770

TestAmerica Buffalo

6/27/2014

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Metals (Continued)

Prep	Batch:	187990
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	7470A	
480-61861-3	GW-B	Total/NA	Water	7470A	
480-61861-4	SW-02	Total/NA	Water	7470A	
480-61861-5	SW-01	Total/NA	Water	7470A	
480-61861-6	GW-3	Total/NA	Water	7470A	
LCS 480-187990/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-187990/1-A	Method Blank	Total/NA	Water	7470A	
400					

Prep Batch: 187992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Dissolved	Water	7470A	187770
LCS 480-187992/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-187992/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 188082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-3	GW-B	Dissolved	Water	7470A	187770
480-61861-4	SW-02	Dissolved	Water	7470A	187770
480-61861-5	SW-01	Dissolved	Water	7470A	187770
480-61861-6	GW-3	Dissolved	Water	7470A	187770
480-61861-7	GW-1	Dissolved	Water	7470A	187770
480-61861-8	GW-2	Dissolved	Water	7470A	187770
LCS 480-188082/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-188082/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 188119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-7	GW-1	Total/NA	Water	7470A	
480-61861-8	GW-2	Total/NA	Water	7470A	
480-61861-8 MS	GW-2	Total/NA	Water	7470A	
480-61861-8 MSD	GW-2	Total/NA	Water	7470A	
LCS 480-188119/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-188119/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 188161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	7470A	187990
480-61861-3	GW-B	Total/NA	Water	7470A	187990
480-61861-4	SW-02	Total/NA	Water	7470A	187990
480-61861-5	SW-01	Total/NA	Water	7470A	187990
480-61861-6	GW-3	Total/NA	Water	7470A	187990
LCS 480-187990/2-A	Lab Control Sample	Total/NA	Water	7470A	187990
MB 480-187990/1-A	Method Blank	Total/NA	Water	7470A	187990

Analysis Batch: 188305

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
GW-A	Dissolved	Water	7470A	187992
GW-B	Dissolved	Water	7470A	188082
SW-02	Dissolved	Water	7470A	188082
SW-01	Dissolved	Water	7470A	188082
GW-3	Dissolved	Water	7470A	188082
	GW-A GW-B SW-02 SW-01	GW-A Dissolved GW-B Dissolved SW-02 Dissolved SW-01 Dissolved	GW-A Dissolved Water GW-B Dissolved Water SW-02 Dissolved Water SW-01 Dissolved Water	GW-A Dissolved Water 7470A GW-B Dissolved Water 7470A SW-02 Dissolved Water 7470A SW-01 Dissolved Water 7470A

TestAmerica Buffalo

6/27/2014

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Metals (Continued)

Analysis Batch: 188305 (Continued)

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
GW-1	Dissolved	Water	7470A	188082
GW-1	Total/NA	Water	7470A	188119
GW-2	Dissolved	Water	7470A	188082
GW-2	Total/NA	Water	7470A	188119
GW-2	Total/NA	Water	7470A	188119
GW-2	Total/NA	Water	7470A	188119
Lab Control Sample	Total/NA	Water	7470A	187992
Lab Control Sample	Total/NA	Water	7470A	188082
Lab Control Sample	Total/NA	Water	7470A	188119
Method Blank	Total/NA	Water	7470A	187992
Method Blank	Total/NA	Water	7470A	188082
Method Blank	Total/NA	Water	7470A	188119
	GW-1 GW-2 GW-2 GW-2 GW-2 Lab Control Sample Lab Control Sample Lab Control Sample Method Blank Method Blank	GW-1 GW-1 GW-2 Dissolved GW-2 GW-2 GW-2 Total/NA GW-2 Total/NA GW-2 Total/NA Total/NA Lab Control Sample Lab Control Sample Lab Control Sample Lab Control Sample Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Total/NA Method Blank Total/NA	GW-1 GW-1 GW-2 Dissolved Water GW-2 Dissolved Water GW-2 GW-2 Total/NA Water GW-2 Total/NA Water GW-2 Total/NA Water GW-2 Total/NA Water Lab Control Sample Lab Control Sample Lab Control Sample Total/NA Water Lab Control Sample Total/NA Water Water Lab Control Sample Total/NA Water Lab Control Sample Total/NA Water Method Blank Total/NA Water Method Blank Total/NA Water	GW-1 Dissolved Water 7470A GW-1 Total/NA Water 7470A GW-2 Dissolved Water 7470A GW-2 Total/NA Water 7470A GW-2 Total/NA Water 7470A GW-2 Total/NA Water 7470A Lab Control Sample Total/NA Water 7470A Lab Control Sample Total/NA Water 7470A Lab Control Sample Total/NA Water 7470A Method Blank Total/NA Water 7470A Method Blank Total/NA Water 7470A

Analysis Batch: 188615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Total/NA	Water	6010C	187751
480-61861-3	GW-B	Total/NA	Water	6010C	187751
480-61861-4	SW-02	Total/NA	Water	6010C	187751
480-61861-5	SW-01	Total/NA	Water	6010C	187751
480-61861-6	GW-3	Total/NA	Water	6010C	187751
480-61861-7	GW-1	Total/NA	Water	6010C	187751
480-61861-8	GW-2	Total/NA	Water	6010C	187751
₄CS 480-187751/2-A	Lab Control Sample	Total/NA	Water	6010C	187751
MB 480-187751/1-A	Method Blank	Total/NA	Water	6010C	187751
_					

Analysis Batch: 189205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Dissolved	Water	6010C	187888
480-61861-3	GW-B	Dissolved	Water	6010C	187888
480-61861-4	SW-02	Dissolved	Water	6010C	187888
480-61861-5	SW-01	Dissolved	Water	6010C	187888
480-61861-6	GW-3	Dissolved	Water	6010C	187888
480-61861-7	GW-1	Dissolved	Water	6010C	187888
480-61861-8	GW-2	Dissolved	Water	6010C	187888
LCS 480-187770/2-B	Lab Control Sample	Dissolved	Water	6010C	187888
LCSD 480-187770/3-B	Lab Control Sample Dup	Dissolved	Water	6010C	187888
MB 480-187770/1-B	Method Blank	Dissolved	Water	6010C	187888

General Chemistry

Analysis Batch: 187532

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	7196A	
480-61861-3	GW-B	Total/NA	Water	7196A	
480-61861-4	SW-02	Total/NA	Water	7196A	
480-61861-4 DU	SW-02	Total/NA	Water	7196A	
480-61861-4 MS	SW-02	Total/NA	Water	7196A	
480-61861-5	SW-01	Total/NA	Water	7196A	
480-61861-6	GW-3	Total/NA	Water	7196A	
480-61861-7	GW-1	Total/NA	Water	7196A	

QC Association Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

General Chemistry (Continued)

Analysis	Batch:	187532	(Continued)	١
-----------------	--------	--------	-------------	---

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-8	GW-2	Total/NA	Water	7196A	
LCS 480-187532/28	Lab Control Sample	Total/NA	Water	7196A	
LCS 480-187532/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-187532/27	Method Blank	Total/NA	Water	7196A	
MB 480-187532/3	Method Blank	Total/NA	Water	7196A	

Analysis Batch: 187550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	180.1	
480-61861-3	GW-B	Total/NA	Water	180.1	
480-61861-4	SW-02	Total/NA	Water	180.1	
480-61861-5	SW-01	Total/NA	Water	180.1	
480-61861-5 DU	SW-01	Total/NA	Water	180.1	
480-61861-6	GW-3	Total/NA	Water	180.1	
480-61861-7	GW-1	Total/NA	Water	180.1	
480-61861-8	GW-2	Total/NA	Water	180.1	
LCS 480-187550/28	Lab Control Sample	Total/NA	Water	180.1	
MB 480-187550/27	Method Blank	Total/NA	Water	180.1	

Analysis Batch: 187631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Total/NA	Water	SM 2120B	
480-61861-3	GW-B	Total/NA	Water	SM 2120B	
480-61861-4	SW-02	Total/NA	Water	SM 2120B	
480-61861-5	SW-01	Total/NA	Water	SM 2120B	
480-61861-6	GW-3	Total/NA	Water	SM 2120B	
480-61861-7	GW-1	Total/NA	Water	SM 2120B	
480-61861-7 DU	GW-1	Total/NA	Water	SM 2120B	
480-61861-8	GW-2	Total/NA	Water	SM 2120B	
LCS 480-187631/28	Lab Control Sample	Total/NA	Water	SM 2120B	
LCS 480-187631/4	Lab Control Sample	Total/NA	Water	SM 2120B	
MB 480-187631/27	Method Blank	Total/NA	Water	SM 2120B	
MB 480-187631/3	Method Blank	Total/NA	Water	SM 2120B	

Analysis Batch: 187693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	353.2	
480-61861-3	GW-B	Total/NA	Water	353.2	
480-61861-4	SW-02	Total/NA	Water	353.2	
480-61861-5	SW-01	Total/NA	Water	353.2	
480-61861-6	GW-3	Total/NA	Water	353.2	
480-61861-7	GW-1	Total/NA	Water	353.2	
480-61861-8	GW-2	Total/NA	Water	353.2	

Analysis Batch: 187695

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	SM 5210B	
480-61861-3	GW-B	Total/NA	Water	SM 5210B	
480-61861-4	SW-02	Total/NA	Water	SM 5210B	
480-61861-5	SW-01	Total/NA	Water	SM 5210B	- 6
480-61861-6	GW-3	Total/NA	Water	SM 5210B	

General Chemistry (Continued)

Analyeie	Batch:	197605	(Continued)	
Analysis	battin:	10/090	(Conunuea)	ļ

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-7	GW-1	Total/NA	Water	SM 5210B	
480-61861-8	GW-2	Total/NA	Water	SM 5210B	
LCS 480-187695/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-187695/1	Method Blank	Total/NA	Water	SM 5210B	

Analysis Batch: 188035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Total/NA	Water	410.4	
480-61861-3	GW-B	Total/NA	Water	410.4	
480-61861-4	SW-02	Total/NA	Water	410.4	
480-61861-4 MS	SW-02	Total/NA	Water	410.4	
480-61861-5	SW-01	Total/NA	Water	410.4	
480-61861-5 DU	SW-01	Total/NA	Water	410.4	
480-61861-6	GW-3	Total/NA	Water	410.4	
LCS 480-188035/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-188035/4	Lab Control Sample	Total/NA	Water	410.4	
MB 480-188035/27	Method Blank	Total/NA	Water	410.4	
MB 480-188035/3	Method Blank	Total/NA	Water	410.4	

Analysis Batch: 188045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	SM 2540C	
L	GW-B	Total/NA	Water	SM 2540C	
480-61861-4	SW-02	Total/NA	Water	SM 2540C	
480-61861-5	SW-01	Total/NA	Water	SM 2540C	
480-61861-6	GW-3	Total/NA	Water	SM 2540C	
480-61861-7	GW-1	Total/NA	Water	SM 2540C	
480-61861-8	GW-2	Total/NA	Water	SM 2540C	
LCS 480-188045/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-188045/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 188210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Totai/NA	Water	350.1	
480-61861-4	SW-02	Total/NA	Water	350.1	
480-61861-5	SW-01	Total/NA	Water	350.1	
LCS 480-188210/148	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-188210/172	Lab Control Sample	Total/NA	Water	350.1	
_CS 480-188210/52	Lab Control Sample	Total/NA	Water	350.1	
MB 480-188210/147	Method Blank	Total/NA	Water	350.1	
MB 480-188210/171	Method Blank	Total/NA	Water	350.1	
MB 480-188210/51	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 188240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-6	GW-3	Total/NA	Water	350.1	
480-61861-7	GW-1	Total/NA	Water	350.1	
480-61861-8	GW-2	Total/NA	Water	350.1	
LCS 480-188240/28	Lab Control Sample	Total/NA	Water	350.1	
ALCS 480-188240/76	Lab Control Sample	Total/NA	Water	350.1	
MB 480-188240/27	Method Blank	Total/NA	Water	350.1	

QC Association Summary

Client: Sterling Environmental Engineering PC

MB 480-188711/3

Method Blank

TestAmerica Job ID: 480-61861-1

General Chemistry	(Continued)				
nalysis Batch: 18824	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-188240/75	Method Blank	Total/NA	Water	350.1	
nalysis Batch: 18830	В				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	9060A	
480-61861-2 DU	GW-A	Total/NA	Water	9060A	
480-61861-3	GW-B	Total/NA	Water	9060A	
480-61861-3 MS	GW-B	Total/NA	Water	9060A	
480-61861-4	SW-02	Total/NA	Water	9060A	
480-61861-5	SW-01	Total/NA	Water	9060A	
480-61861-6	GW-3	Total/NA	Water	9060A	
480-61861-7	GW-1	Total/NA	Water	9060A	
480-61861-8	GW-2	Total/NA	Water	9060A	
480-61861-8 DU	GW-2	Total/NA	Water	9060A	
LCS 480-188308/16	Lab Control Sample	Total/NA	Water	9060A	
LCS 480-188308/40	Lab Control Sample	Total/NA	Water	9060A	
MB 480-188308/15	Method Blank	Total/NA	Water	9060A	
MB 480-188308/39	Method Blank	Total/NA	Water	9060A	
rep Batch: 188543					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-61861-2	GW-A	Total/NA	Water	351.2	
480-61861-3	GW-B	Total/NA	Water	351.2	
480-61861-4	SW-02	Total/NA	Water	351.2	
480-61861-5	SW-01	Total/NA	Water	351.2	
480-61861-6	GW-3	Total/NA	Water	351.2	
480-61861-7	GW-1	Total/NA	Water	351.2	
480-61861-8	GW-2	Total/NA	Water	351.2	
LCS 480-188543/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-188543/1-A	Method Blank	Total/NA	Water	351.2	
Analysis Batch: 18868	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-61861-2	GW-A	Total/NA	Water	351.2	18854
480-61861-3	GW-B	Total/NA	Water	351.2	18854
480-61861-4	SW-02	Total/NA	Water	351.2	18854
480-61861-5	SW-01	Total/NA	Water	351.2	18854
480-61861-6	GW-3	Total/NA	Water	351.2	18854
480-61861-7	GW-1	Total/NA	Water	351.2	18854
480-61861-8	GW-2	Total/NA	Water	351.2	18854
LCS 480-188543/2-A	Lab Control Sample	Total/NA	Water	351.2	18854
MB 480-188543/1-A	Method Blank	Total/NA	Water	351.2	18854
Analysis Batch: 18871	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-61861-7	GW-1	Total/NA	Water	410.4	
480-61861-8	GW-2	Total/NA	Water	410.4	
LCS 480-188711/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-188711/4	Lab Control Sample	Total/NA	Water	410.4	
MB 480-188711/27	Method Blank	Total/NA	Water	410.4	

TestAmerica Buffalo

Total/NA

Water

410.4

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

General Chemistry (Continued)

Analysis Bat	ch: 188730
---------------------	------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Total/NA	Water	300.0	
480-61861-3	GW-B	Total/NA	Water	300.0	
480-61861-4	SW-02	Total/NA	Water	300.0	
480-61861-5	SW-01	Total/NA	Water	300.0	
480-61861-6	GW-3	Total/NA	Water	300.0	
480-61861-7	GW-1	Total/NA	Water	300.0	
480-61861-8	GW-2	Total/NA	Water	300.0	
LCS 480-188730/99	Lab Control Sample	Total/NA	Water	300.0	
MB 480-188730/100	Method Blank	Total/NA	Water	300.0	
~					

Analysis Batch: 188771

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
GW-1	Total/NA	Water	310.2	
Lab Control Sample	Total/NA	Water	310.2	
Lab Control Sample	Total/NA	Water	310.2	
Lab Control Sample	Total/NA	Water	310.2	
Method Blank	Total/NA	Water	310.2	
Method Blank	Total/NA	Water	310.2	
Method Blank	Total/NA	Water	310.2	
	GW-1 Lab Control Sample Lab Control Sample Lab Control Sample Method Blank Method Blank	GW-1 Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Lab Control Sample Total/NA Method Blank Total/NA Method Blank Total/NA	GW-1 Total/NA Water Lab Control Sample Total/NA Water Lab Control Sample Total/NA Water Lab Control Sample Total/NA Water Method Blank Total/NA Water Method Blank Total/NA Water	GW-1 Total/NA Water 310.2 Lab Control Sample Total/NA Water 310.2 Lab Control Sample Total/NA Water 310.2 Lab Control Sample Total/NA Water 310.2 Method Blank Total/NA Water 310.2 Method Blank Total/NA Water 310.2

Prep Batch: 188827

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	80-61861-2	GWA	Total/NA	Water	9012B	
Ų	480-61861-5	SW-01	Total/NA	Water	9012B	
	480-61861-6	GW-3	Total/NA	Water	9012B	
	480-61861-8	GW-2	Total/NA	Water	9012B	
	LCS 480-188827/2-A	Lab Control Sample	Total/NA	Water	9012B	
	MB 480-188827/1-A	Method Blank	Total/NA	Water	9012B	

Analysis Batch: 188961

Łab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	9012B	188827
480-61861-5	SW-01	Total/NA	Water	9012B	188827
480-61861-6	GW-3	Total/NA	Water	9012B	188827
480-61861-8	GW-2	Total/NA	Water	9012B	188827
LCS 480-188827/2-A	Lab Control Sample	Total/NA	Water	9012B	188827
MB 480-188827/1-A	Method Blank	Tota!/NA	Water	9012B	188827

Analysis Batch: 189017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	310.2	
480-61861-3	GW-B	Total/NA	Water	310.2	
480-61861-4	SW-02	Total/NA	Water	310.2	
480-61861-5	SW-01	Total/NA	Water	310.2	
480-61861-6	GW-3	Total/NA	Water	310.2	
480-61861-8	GW-2	Total/NA	Water	310.2	
LCS 480-189017/66	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-189017/91	Lab Control Sample	Total/NA	Water	310.2	
MB 480-189017/67	Method Blank	Total/NA	Water	310.2	
MB 480-189017/92	Method Blank	Total/NA	Water	310.2	

QC Association Summary

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-61861-1

Project/Site: Orange County Landfill

General Chemistry (Continued)

Prep	Batch:	189045
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-3	GW-B	Total/NA	Water	9012B	
480-61861-4	SW-02	Total/NA	Water	9012B	
480-61861-7	GW-1	Total/NA	Water	9012B	
LCS 480-189045/2-A	Lab Control Sample	Total/NA	Water	9012B	
MB 480-189045/1-A	Method Blank	Total/NA	Water	9012B	

Analysis Batch: 189315

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-3	GW-B	Total/NA	Water	9012B	189045
480-61861-4	SW-02	Total/NA	Water	9012B	189045
480-61861-7	GW-1	Total/NA	Water	9012B	189045
LCS 480-189045/2-A	Lab Control Sample	Total/NA	Water	9012B	189045
MB 480-189045/1-A	Method Blank	Total/NA	Water	9012B	189045

Prep Batch: 189398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	Distill/Phenol	
480-61861-3	GW-B	Total/NA	Water	Distill/Phenol	
480-61861-4	SW-02	Total/NA	Water	Distill/Phenol	
LCS 480-189398/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-189398/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Prep Batch: 189401

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-5	SW-01	Total/NA	Water	Distill/Phenol	
480-61861-5 DU	SW-01	Total/NA	Water	Distill/Phenol	
480-61861-7	GW-1	Total/NA	Water	Distill/Phenol	
480-61861-8	GW-2	Total/NA	Water	Distill/Phenol	
LCS 480-189401/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-189401/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Analysis Batch: 189543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GW-A	Total/NA	Water	9066	189398
480-61861-3	GW-B	Total/NA	Water	9066	189398
480-61861-4	SW-02	Total/NA	Water	9066	189398
480-61861-5	SW-01	Total/NA	Water	9066	189401
480-61861-5 DU	SW-01	Total/NA	Water	9066	189401
480-61861-7	GW-1	Total/NA	Water	9066	189401
480-61861-8	GW-2	Total/NA	Water	9066	189401
LCS 480-189398/2-A	Lab Control Sample	Total/NA	Water	9066	189398
LCS 480-189401/2-A	Lab Control Sample	Total/NA	Water	9066	189401
MB 480-189398/1-A	Method Blank	Total/NA	Water	9066	189398
MB 480-189401/1-A	Method Blank	Total/NA	Water	9066	189401

Analysis Batch: 189609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-2	GWA	Total/NA	Water	SM 2340C	
480-61861-3	GW-B	Total/NA	Water	SM 2340C	
480-61861-4	SW-02	Total/NA	Water	SM 2340C	
480-61861-5	SW-01	Total/NA	Water	SM 2340C	

QC Association Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

General Chemistry (Continued)

Analysis	Batch:	189609	(Continued))
-----------------	--------	--------	-------------	---

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-6	GW-3	Total/NA	Water	SM 2340C	
480-61861-7	GW-1	Total/NA	Water	SM 2340C	
480-61861-8	GW-2	Total/NA	Water	SM 2340C	
LCS 480-189609/28	Lab Control Sample	Total/NA	Water	SM 2340C	
LCS 480-189609/4	Lab Control Sample	Total/NA	Water	SM 2340C	
MB 480-189609/27	Method Blank	Total/NA	Water	SM 2340C	
MB 480-189609/3	Method Blank	Total/NA	Water	SM 2340C	

Analysis Batch: 189620

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
480-61861-3	GW-B	, ,	Total/NA	Water	350.1	
LCS 480-189620/16	Lab Control Sample		Total/NA	Water	350.1	
MB 480-189620/15	Method Blank		Total/NA	Water	350.1	

Prep Batch: 189825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-61861-6	GW-3	Total/NA	Water	Distill/Phenol	
LCS 480-189825/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-189825/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Analysis Batch: 190040

1	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	80-61861-6	GW-3	Total/NA	Water	9066	189825
۳	LCS 480-189825/2-A	Lab Control Sample	Total/NA	Water	9066	189825
	MB 480-189825/1-A	Method Blank	Total/NA	Water	9066	189825

q

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: GW-A
Date Collected: 06/12/14 14:00

Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	624		1	188163	06/18/14 05:07	RAS	TAL BUF	
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF	
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF	
Dissolved	Analysis	6010C		1	189205	06/20/14 14:31	MTM2	TAL BUF	
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF	
otal/NA	Analysis	6010C		1	188615	06/18/14 22:05	MTM2	TAL BUF	
issolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF	
issolved	Prep	7470A			187992	06/17/14 10:15	LRK	TAL BUF	
Dissolved	Analysis	7470A		1	188305	06/17/14 14:02	LRK	TAL BUF	
otal/NA	Prep	7470A			187990	06/16/14 14:30	LRK	TAL BUF	
Γotal/NA	Analysis	7470A		1	188161	06/17/14 10:03	LRK	TAL BUF	
Γotal/NA	Analysis	180.1		1	187550	06/13/14 08:37	VAJ	TAL BUF	
Total/NA	Analysis	300.0		1	188730	06/20/14 11:22	KRC	TAL BUF	
otal/NA	Analysis	310.2		5	189017	06/20/14 12:52	JTS	TAL BUF	
otal/NA	Analysis	350.1		1	188210	06/17/14 12:47	KMF	TAL BUF	
otal/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF	
otal/NA	Analysis	351.2		1	188683	06/19/14 10:12	NCH	TAL BUF	
Total/NA	Analysis	353.2		1	187693	06/13/14 16:24	CLT	TAL BUF	
Total/NA	Analysis	410.4		1	188035	06/16/14 17:30	JMB	TAL BUF	
Γotal/NA	Analysis	7196A		1	187532	06/13/14 09:59	KJ1	TAL BUF	
Total/NA	Prep	9012B			188827	06/19/14 17:30	JMB	TAL BUF	
Total/NA	Analysis	9012B		1	188961	06/20/14 10:32	JTS	TAL BUF	
Total/NA	Analysis	9060A		1	188308	06/17/14 13:22	KRC	TAL BUF	
Total/NA	Prep	Distill/Phenol			189398	06/23/14 17:30	CLT	TAL BUF	
Total/NA	Analysis	9066		1	189543	06/24/14 11:20	NCH	TAL BUF	
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUF	
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 10:32	KMF	TAL BUF	
Γotal/NA	Analysis	SM 2540C		1	188045	06/16/14 23:16	KS	TAL BUF	
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF	

Client Sample ID: GW-B Date Collected: 06/12/14 14:45 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-3

Matrix: Water

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	624		1	188163	06/18/14 05:31	RAS	TAL BUF
Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Analysis	6010C		1	189205	06/20/14 14:34	MTM2	TAL BUF
Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Analysis	6010C		1	188615	06/18/14 22:10	MTM2	TAL BUF
Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
	Type Analysis Filtration Prep Analysis Prep Analysis	Type Method Analysis 624 Filtration FILTRATION Prep 3005A Analysis 6010C Prep 3005A Analysis 6010C	Type Method Run Analysis 624 Filtration FILTRATION Prep 3005A Analysis 6010C Prep 3005A Analysis 6010C	Type Method Run Factor Analysis 624 1 Filtration FILTRATION Prep 3005A Analysis 6010C 1 Prep 3005A Analysis 6010C 1	Type Method Run Factor Number Analysis 624 1 188163 Filtration FILTRATION 187770 Prep 3005A 187888 Analysis 6010C 1 189205 Prep 3005A 187751 Analysis 6010C 1 188615	Type Method Run Factor Number or Analyzed Analysis 624 1 188163 06/18/14 05:31 Filtration FILTRATION 187770 06/14/14 11:38 Prep 3005A 187888 06/16/14 12:05 Analysis 6010C 1 189205 06/20/14 14:34 Prep 3005A 187751 06/16/14 08:00 Analysis 6010C 1 188615 06/18/14 22:10	Type Method Run Factor Number or Analyzed Analyst Analysis 624 1 188163 06/18/14 05:31 RAS Filtration FILTRATION 187770 06/14/14 11:38 ZL Prep 3005A 187888 06/16/14 12:05 EHD Analysis 6010C 1 189205 06/20/14 14:34 MTM2 Prep 3005A 187751 06/16/14 08:00 ZL Analysis 6010C 1 188615 06/18/14 22:10 MTM2

Client Sample ID: GW-B Date Collected: 06/12/14 14:45 Date Received: 06/13/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A	the same of the sa		188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:55	LRK	TAL BUF
Total/NA	Prep	7470A			187990	06/16/14 14:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188161	06/17/14 10:11	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 11:32	KRC	TAL BUF
Total/NA	Analysis	310.2		10	189017	06/20/14 12:30	JTS	TAL BUF
Total/NA	Analysis	350.1		1	189620	06/24/14 18:38	RS	TAL BUF
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF
Total/NA	Analysis	351.2		1	188683	06/19/14 10:12	NCH	TAL BUF
Total/NA	Analysis	353.2		1	187693	06/13/14 16:27	CLT	TAL BUF
Total/NA	Analysis	410.4		1	188035	06/16/14 17:30	JMB	TAL BUF
Total/NA	Analysis	7196A		1	187532	06/13/14 10:03	KJ1	TAL BUF
Total/NA	Prep	9012B			189045	06/20/14 15:55	JMB	TAL BUF
Total/NA	Analysis	9012B		1	189315	06/23/14 08:24	JTS	TAL BUF
Total/NA	Analysis	9060A		1	188308	06/17/14 14:19	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189398	06/23/14 17:30	CLT	TAL BUF
otal/NA	Analysis	9066		1	189543	06/24/14 11:14	NCH	TAL BUF
Total/NA	Analysis	SM 2120B		2	187631	06/13/14 11:17	VAJ	TAL BUF
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 10:29	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:18	KS	TAL BUF
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF

Client Sample ID: SW-02 Date Collected: 06/12/14 14:30 Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-4

Matrix: Water

b	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	188163	06/18/14 05:55	RAS	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189205	06/20/14 14:37	MTM2	TAL BUF
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Total/NA	Analysis	6010C		1	188615	06/18/14 22:08	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	7470A			188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:28	LRK	TAL BUF
Total/NA	Prep	7470A			187990	06/16/14 14:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188161	06/17/14 10:09	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 11:43	KRC	TAL BUF
Total/NA	Analysis	310.2		5	189017	06/20/14 12:52	JTS	TAL BUF

Lab Chronicle

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID: SW-02

Date Collected: 06/12/14 14:30 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	350.1		1	188210	06/17/14 12:54	KMF	TAL BUF
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF
Total/NA	Analysis	351.2		1	188683	06/19/14 10:12	NCH	TAL BUF
Total/NA	Analysis	353.2		1	187693	06/13/14 17:05	CLT	TAL BUF
Total/NA	Analysis	410.4		1	188035	06/16/14 17:30	JMB	TAL BUF
Total/NA	Analysis	7196A		1	187532	06/13/14 10:45	KJ1	TAL BUF
Total/NA	Prep	9012B			189045	06/20/14 15:55	JMB	TAL BUF
Total/NA	Analysis	9012B		1	189315	06/23/14 08:25	JTS	TAL BUF
Total/NA	Analysis	9060A		1	188308	06/17/14 17:10	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189398	06/23/14 17:30	CLT	TAL BUF
Total/NA	Analysis	9066		1	189543	06/24/14 11:20	NCH	TAL BUF
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUF
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 10:39	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:20	KS	TAL BUF
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF

Client Sample ID: SW-01

Date Collected: 06/12/14 15:12 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	188163	06/18/14 06:19	RAS	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189205	06/20/14 14:40	MTM2	TAL BUF
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Total/NA	Analysis	6010C		1	188615	06/18/14 22:13	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	7470A			188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:37	LRK	TAL BUF
Total/NA	Prep	7470A			187990	06/16/14 14:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188161	06/17/14 10:13	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 11:53	KRC	TAL BUI
Total/NA	Analysis	310.2		5	189017	06/20/14 12:51	JTS	TAL BUI
Total/NA	Analysis	350.1		1	188210	06/17/14 12;55	KMF	TAL BUI
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BU
Total/NA	Analysis	351.2		1	188683	06/19/14 10:12	NCH	TAL BUI
Total/NA	Analysis	353.2		1	187693	06/13/14 16:30	CLT	TAL BU
Total/NA	Analysis	410.4		1	188035	06/16/14 17:30	JMB	TAL BU
Total/NA	Analysis	7196A		1	187532	06/13/14 10:08	KJ1	TAL BU
Total/NA	Prep	9012B			188827	06/19/14 17:30	JMB	TAL BU

TestAmerica Buffalo

6/27/2014

Client Sample ID: SW-01 Date Collected: 06/12/14 15:12

Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9012B		1	188961	06/20/14 10:33	JTS	TAL BUF
Total/NA	Analysis	9060A		1	188308	06/17/14 17:39	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189401	06/23/14 20:30	CLT	TAL BUF
Total/NA	Analysis	9066		1	189543	06/24/14 11:08	NCH	TAL BUF
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUF
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 10:57	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:22	KS	TAL BUF
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF

Client Sample ID: GW-3

Date Collected: 06/12/14 16:40 Date Received: 06/13/14 09:00 Lab Sample ID: 480-61861-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	188163	06/18/14 06:43	RAS	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189205	06/20/14 14:52	MTM2	TAL BUF
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Total/NA	Analysis	6010C		1	188615	06/18/14 22:16	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	7470A			188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:46	LRK	TAL BUF
Total/NA	Prep	7470A			187990	06/16/14 14:30	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188161	06/17/14 10:14	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 12:03	KRC	TAL BUF
Total/NA	Analysis	310.2		10	189017	06/20/14 12:30	JTS	TAL BUF
Total/NA	Analysis	350.1		5	188240	06/17/14 15:07	KMF	TAL BUF
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF
Total/NA	Analysis	351.2		2	188683	06/19/14 10:43	NCH	TAL BUF
Total/NA	Analysis	353.2		1	187693	06/13/14 16:31	CLT	TAL BUF
Total/NA	Analysis	410.4		1	188035	06/16/14 17:30	JMB	TAL BUF
Total/NA	Analysis	7196A		1	187532	06/13/14 10:13	KJ1	TAL BUF
Total/NA	Prep	9012B			188827	06/19/14 17:30	JMB	TAL BUF
Total/NA	Analysis	9012B		1	188961	06/20/14 10:34	JTS	TAL BUF
Total/NA	Analysis	9060A		1	188308	06/17/14 18:07	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189825	06/25/14 12:19	RP	TAL BUF
Total/NA	Analysis	9066		1	190040	06/26/14 09:50	NCH	TAL BUF
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUF
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 11:04	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:23	KS	TAL BUF

Lab Chronicle

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Lab Sample ID: 480-61861-6

Matrix: Water

Client Sample ID: GW-3 Date Collected: 06/12/14 16:40 Date Received: 06/13/14 09:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF	

Client Sample ID: GW-1

Date Collected: 06/12/14 16:15

Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-7

Matrix: Water

Bron Tuno	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type Total/NA	Analysis	624	- IXOII	1	188163	06/18/14 07:07	RAS	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189205	06/20/14 14:56	MTM2	TAL BUF
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Total/NA	Analysis	6010C		1	188615	06/18/14 22:19	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	7470A			188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:58	LRK	TAL BUF
Total/NA	Prep	7470A			188119	06/17/14 10:15	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188305	06/17/14 15:19	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 12:13	KRC	TAL BUF
Total/NA	Analysis	310.2		10	188771	06/19/14 11:34	JTS	TAL BUF
Total/NA	Analysis	350.1		10	188240	06/17/14 15:08	KMF	TAL BUF
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF
Total/NA	Analysis	351.2		10	188683	06/19/14 10:39	NCH	TAL BUF
Total/NA	Analysis	353.2		1	187693	06/13/14 16:32	CLT	TAL BUF
Total/NA	Analysis	410.4		1	188711	06/19/14 10:09	KJ1	TAL BUF
Total/NA	Analysis	7196A		1	187532	06/13/14 10:17	KJ1	TAL BUF
Total/NA	Prep	9012B			189045	06/20/14 15:55	JMB	TAL BUF
Total/NA	Analysis	9012B		1	189315	06/23/14 08:29	JTS	TAL BU
Total/NA	Analysis	9060A		1	188308	06/17/14 18:35	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189401	06/23/14 20:30	CLT	TAL BUI
Total/NA	Analysis	9066		1	189543	06/24/14 11:08	NCH	TAL BUI
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUI
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 09:36	KMF	TAL BU
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:25	KS	TAL BU
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BU

Project/Site: Orange County Landfill

Client Sample ID: GW-2

Date Collected: 06/12/14 16:30 Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	188163	06/18/14 07:30	RAS	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	3005A			187888	06/16/14 12:05	EHD	TAL BUF
Dissolved	Analysis	6010C		1	189205	06/20/14 14:59	MTM2	TAL BUF
Total/NA	Prep	3005A			187751	06/16/14 08:00	ZL	TAL BUF
Total/NA	Analysis	6010C		1	188615	06/18/14 22:22	MTM2	TAL BUF
Dissolved	Filtration	FILTRATION			187770	06/14/14 11:38	ZL	TAL BUF
Dissolved	Prep	7470A			188082	06/17/14 10:15	LRK	TAL BUF
Dissolved	Analysis	7470A		1	188305	06/17/14 14:43	LRK	TAL BUF
Total/NA	Prep	7470A			188119	06/17/14 10:15	LRK	TAL BUF
Total/NA	Analysis	7470A		1	188305	06/17/14 15:11	LRK	TAL BUF
Total/NA	Analysis	180.1		1	187550	06/13/14 10:32	VAJ	TAL BUF
Total/NA	Analysis	300.0		1	188730	06/20/14 12:23	KRC	TAL BUF
Total/NA	Analysis	310.2		10	189017	06/20/14 12:30	JTS	TAL BUF
Total/NA	Analysis	350.1		5	188240	06/17/14 15:09	KMF	TAL BUF
Total/NA	Prep	351.2			188543	06/18/14 19:32	CLT	TAL BUF
Total/NA	Analysis	351.2		5	188683	06/19/14 10:39	NCH	TAL BUF
Total/NA	Analysis	353.2		1	187693	06/13/14 16:33	CLT	TAL BUF
otal/NA	Analysis	410.4		1	188711	06/19/14 10:09	KJ1	TAL BUF
Total/NA	Analysis	7196A		1	187532	06/13/14 10:22	KJ1	TAL BUF
Total/NA	Prep	9012B			188827	06/19/14 17:30	JMB	TAL BUF
Total/NA	Analysis	9012B		1	188961	06/20/14 10:36	JTS	TAL BUF
Total/NA	Analysis	9060A		1	188308	06/17/14 19:03	KRC	TAL BUF
Total/NA	Prep	Distill/Phenol			189401	06/23/14 20:30	CLT	TAL BUF
Total/NA	Analysis	9066		1	189543	06/24/14 11:09	NCH	TAL BUF
Total/NA	Analysis	SM 2120B		1	187631	06/13/14 11:17	VAJ	TAL BUF
Total/NA	Analysis	SM 2340C		1	189609	06/24/14 11:08	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	188045	06/16/14 23:27	KS	TAL BUF
Total/NA	Analysis	SM 5210B		1	187695	06/13/14 17:39	CLT	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 06/12/14 13:25 Date Received: 06/13/14 09:00

Lab Sample ID: 480-61861-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	168163	06/18/14 07:54	RAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-14
California	State Program	9	1169CA	09-30-14
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-14 *
Georgia	State Program	4	N/A	03-31-15
llinois	NELAP	5	200003	09-30-14
owa	State Program	7	374	03-01-15
Cansas	NELAP	7	E-10187	01-31-15
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
_ouisiana	NELAP	6	02031	06-30-14 *
Maine	State Program	1	NY00044	12-04-14
Maryland	State Program	3	294	03-31-15
Massachusetts	State Program	1	M-NY044	06-30-14 *
Michigan	State Program	5	9937	03-31-15
Minnesota	NELAP	5	036-999-337	12-31-14
New Hampshire	NELAP	1	2337	11-17-14
New Jersey	NELAP	2	NY455	06-30-14 *
New York	NELAP	2	10026	03-31-15
North Dakota	State Program	8	R-176	03-31-14 *
Oklahoma	State Program	6	9421	08-31-14
Oregon	NELAP	10	NY200003	06-09-15
Pennsylvania	NELAP	3	68-00281	07-31-14
Rhode Island	State Program	1	LAO00328	12-30-14
Tennessee	State Program	4	TN02970	03-31-15
Texas	NELAP	6	T104704412-11-2	07-31-14
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-14
Washington	State Program	10	C784	02-10-15
Wisconsin	State Program	5	998310390	08-31-14

^{*} Certification renewal pending - certification considered valid.

12

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method	Method Description	Protocol	Laboratory
24	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
80.1	Turbidity, Nephelometric	MCAVW	TAL BUF
300.0	Anions, Ion Chromatography	MCAVW	TAL BUF
10.2	Alkalinity	MCAVW	TAL BUF
50.1	Nitrogen, Ammonia	MCAVW	TAL BUF
51.2	Nitrogen, Total Kjeldahl	MCAVW	TAL BUF
53.2	Nitrate	EPA	TAL BUF
10.4	COD	MCAVW	TAL BUF
196A	Chromium, Hexavalent	SW846	TAL BUF
012B	Cyanide, Total andor Amenable	SW846	TAL BUF
060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
066	Phenolics, Total Recoverable	SW846	TAL BUF
M 2120B	Color, Colorimetric	SM	TAL BUF
M 2340C	Hardness, Total	SM	TAL BUF
M 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-61861-1

Client Sample ID	Matrix	Collected	Received
	Water	06/12/14 14:00	06/13/14 09:00
	Water	06/12/14 14:45	06/13/14 09:00
	Water	06/12/14 14:30	06/13/14 09:00
	Water .	06/12/14 15:12	06/13/14 09:00
	Water	06/12/14 16:40	06/13/14 09:00
	Water	06/12/14 16:15	06/13/14 09:00
	Water	06/12/14 16:30	06/13/14 09:00
	Water	06/12/14 13:25	06/13/14 09:00
	Client Sample ID GW-A GW-B SW-02 SW-01 GW-3 GW-1 GW-2 TRIP BLANK	GW-A GW-B SW-02 SW-01 GW-3 GW-1 GW-2 Water Water Water Water Water	Client Sample ID GW-A GW-B SW-02 Water Water 06/12/14 14:45 SW-01 Water 06/12/14 15:12 GW-3 GW-1 Water 06/12/14 16:40 Water 06/12/14 16:15 GW-2 Water 06/12/14 16:30

13

Test-merica Albany

25 Kraft Road Albany, NY 12205

Chain of Custoc

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTENG

Client Information	Sampler: SD	B			ab PM: Shaffer,	Lisa E		-	48	0-61	861	Cha	in of	Cus	tody				- 1	OC No: 1480-50696-1352	27.1
Client Contact: Stephen Burtoп	Phone: 518	34564	900		-Mail: sa.shafi	fer@te	estam	erica	inc.c	om			1							Page: Page 1 of 2	
Company: Sterling Environmental Engineering PC										naly	rsis	Rec	11109	sted						Job#:	
Address: 24 Wade Road	Due Date Reques	ted:					T											T	110	Preservation Cod	les:
City: Latham State, Zip: NY, 12110	TAT Requested (d	ays):														Calo				A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2SO3
Phone: Email: Stockers button@etadlingers/iscompodel.com	PO#: Purchase Orde WO#:	r not require	d		or No)	o)) The property of		letals			rable		Demand	Solids		353.2 Nibite, Nitrate Calo				G - Amchlor H - Ascorbic Acid 1 - Ice J - DI Water	S - H2SO23 S - H2SO2 T - TSP Dodecahydrate U - Acetone V - MCAA
stephen.burton@sterlingenvironmental.com Project Name: Orange County Landfill	Project #: 48005786				le (Vest	Shieldin Sulfate Bromide		Baseline Metals			Recove	Carbon	Oxygen D	penjossi	_	53.2 NIbri	hexavalent		ntalmers	K-EDTA	W - ph 4-5 Z - other (specify)
Site: New York	SSOW#:				Same	(Sib)th	9.4	380	88		, Tota	rganic	mical (Fotal D	a, Total	53.2, 3		y, Tota	of to	Other:	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water S-solid, O-waste/o BT-Tissue, A	Fleid Filte	Brazionaria	350.1, 351.2	6010C - NY Part	2340C - Hardness	6010C, 7470A	9066 - Phenolica, Total Recoverable	9060A - Total Organic	6210B - Blochemical	2540C_Catcd - Total Dissolved Solids	9012B - Cyanide,	180.1, 21208, 363.2,	7196A - Chromlum,	310.2 - Alkalinit	Total Number	The Second State of the Control of t	structions/Note:
	The same of the sa		r Preserva	relia protect of		×N	100	D	1000	D.	-	A	N		1	N.		N7		PROPERTY AND ADDRESS OF THE PARTY OF THE PAR	Control of the Contro
aw-A	6/12/14	14:45	G	Water Water	- 1	NX	1	X	X	X	X	X	x	X	×	7	7	X	8		
GW-B					-##	H	-		-	H	H-		1	1	H	+	H	1	12		
SW-02	*	14130	Y	Water	IV	1 4	X	V	V	V	Y	V	V	V	V	Y	V	V	15		
Sw-01		15/12		Water	\parallel	Ш	Ш	1	Н	\coprod	Ц	1	1		Ц	1	Ш	\sqcup			
GW-3		16:40		Water		Ш	Ш	1	1						Ц		П	П	118		
GW-1		16115						1.													
Sw-01 Gw-3 Gw-1 Gw-2	V	16:30	V	J	V	1	11	1 "	L	V	1	A	V	1	4	V	4	1	V		
						1															
Possible Hazard Identification Non-Hazard Flammable Skin Initant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unkn	own □ _F	Radiological				Retu	т То	Clier	nt	[L	ispo	sed sal B	if sa y La	mple b	es ai			ed longer than 1 ive For	month) Months
Empty Kit Relinquished by:		Date:			Tim					1				Meth	od of	Shipm	nent.				
Relinquished by:	Date/Time: 6 1 12	-/14 2	20:00	STERL Company	126		ceived	by:	l,	1							Time		4	0900	Company
Reilinquished by:	Date/Time:			Company			ceived				-						/Time				Company
								_		. 0.0		_									
Custody Seals Intact: Custody Seal No.:					* *	Co	oler Te	mpera	ture(s) *Ca	nd Oth	her Re	marks	50	3	,6	,	5	-	3.5	7

25 Kraft Road Albany, NY 12205

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN SNYTE ONMENTAL TESTING

Client Information	Sampler: SAB		PM: affer, Lisa E	Carrier Tracking No(s):	COC No: 480-50696-13527.2
Client Information Client Contact:	Phone: 518 H56491	EV	Mail:	com		Page: Page 2 of 2
Stephen Burton Company:	218 120-141	lisa	a.shaffer@testamericainc.c			Job#:
Sterling Environmental Engineering PC			A COLUMN	Analysis Requested	1 1	Preservation Codes:
Address: 24 Wade Road	Due Date Requested:		14			4
City: Latham	TAT Requested (days):					B - NeOH N - None C - Zn Acetate O - AsNaO2
State, Zip:						D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
NY, 12110 Phone:	PO#:					F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4
FILURE.	Purchase Order not required		_8			H - Ascorbic Acid T - TSP Dodecahydrate U - Acatone
Emall: stephen.burton@sterlingenvironmental.com	WO#:				2	J - DI Water V - MCAA K - EDTA W - ph 4-5
Project Name:	Project#:				ta di	T other (exectly)
Orange County Landfill Site:	48005786 SSOW#:		- Wall		op	Other:
New York			- Asignatus Asig		lo le	â
Sample Identification	Sample Date Time G=	mple Type Comp, Comp, Grab) Matrix (Wowster, Second, Commenced, Commenced, And	두 Fieldsun 7470A - Me		Total Number of conta	Special Instructions/Note:
Sample definition	The second secon	reservation Code	XXV S			
A IAI - A	6/12/14 14:00	Co Water	K in X		1	
SW-02 SW-01 GW-3 GW-1 GW-2	1 14:45	i Water	X			
6:11-03	14:30	Water	J J X			
500-02	15412	1 Water	1111111		6	
<i>>W-01</i>	16:40	Water			8	
GW-3		VValei			1 8	& &
GW-1	16:15					#
GW-2.	V 16:30	4 1	NVV .		5)	
		1				\$ E
					di di	
			Sample Disposal (A fee may be assessed if sam	ples are retail	ned longer than 1 month)
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Unknown Radii	ological	Return To Cit	A fee may be assessed if sam ient Disposal By Lab	□ Arc	chive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	FUISUII D OTTAINITY TRACE		Special Instructions	/QC Requirements:		
	Date:		Time:	Method of Sh	ipment:	
Empty Kit Relinquished by:		Company		1 1- 10	ate/Tiple:	09co Company
Relinquished by: SUO BA	Date/Time: 14 20:00		Received by:		(9 () / M rate/Time:	Company
Relinquished by:	Date/Time:	Company	Received by.	•		
Relinquished by:	Date/Time:	Company	Received by:		eate/Time:	Company
Control Control Control Control			Cooler Temperature	e(s) °C and Other Remarks:	~ 27	,3.5 #1
Custody Seals Intact: Custody Seal No.:				יל"	(1.0	(113

Page 71 of

Testamerica Albany

25 Kraft Road Albany, NY 12205

Chain of Custody Record

Client Information	Sampler:	50	B			ab PM: Shaffer	r, Lisa	аE						Carrier	Trackir	g No(s	3):			COC No: 480-50833-13578	3.1	
Client Contact Stephen Burton			1456 4	1900		-Mail: sa.sha	affer@	@tes	tamer	ricainc.	com									Page: Page 1 of 1		
Company: Sterling Environmental Engineering PC		**									Analy	vsis	Rea	uest	ed					Job #:		
Address: 24 Wade Road	Due Date R	equeste	od:			1.09								Т		1				Preservation Code	98:	
24 Wade Road City: Latham	TAT Reques	sted (da	iys):																17.0	A - HCL B - NaOH	M - Hexane N - None O - AsNeO2	
State, Zip:	-					100												1	414	C - Zn Acetate D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
NY, 12110 Phone:	PO#:					_														F - MeOH G - Amchior	R - Na2S2SO3 S - H2SO4	3
	Purchase Wo#:	Order	not required	d		<u></u>														H - Ascorbic Acid	T - TSP Dodec	cahydrate
Email: stephen.burton@sterlingenvironmental.com						8 OF	(0)(20)	lice											10 A	J - DI Water K - EDTA	V-MCAA W-ph4-5	
Project Name: Orange County Landfill	Project #: 48005786	3				6-(-Y	10	Organica											틝	L-EDA	Z - other (spec	cify)
Site: New York	SSOW#:					Samp	180	olatile										1		Other:		
			Sample	Sample Type (C=comp,	Matrix (w-water s-eolid, O-westero	MEN	Population (Combine	624_5ml_UP - V										- AARTHA AARTHA	Total Number			
Sample Identification	Sample	Date	Time	G=grab) Preserva	BT=Ticsue, A	-Air)		83 N	alaksi Iso'a		T State	1,15.0	4337	aryst G	Legi Sile	2 45.	建筑	2012	Ž	Special Ins	structions/N	ote:
(1) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6/2/	14	15:12	C ₁	Water		2	X	215.6	Strate Miles	Feet By William	d priest for	10/6	94 D.J. 64		1 2 22	Street		3	The same the same	()()()()()()()()()()()()()()()()()()()	
Gw-3			16:40		Water	- 1	I	1											1			
G1W-2	V		16:15	L	Water	r													C L			
SW-01 GW-3 GW-2 GW-A GW-B SW-02			14:00		Water													NO.				
aw-B			14145		Water																	
5W-02			14130		Wate	r												1				
GW-Z TRIP BLANK			16:30		Water	٢	Ц															
TRIP BLANK	1		13:25	1	Wate	r \$	6	V														
· · · · · · · · · · · · · · · · · · ·					Wate	r								_	\perp			13	S.			
					Wate	r									_	1	1		30			
																		. 1				
Possible Hazard Identification Non-Hazard Flammable Skin Initant Pois	on B	Linkne	own ===	Radiological						To Cli		may I			ed if s al Bv L					d longer than 1 i ve For	month) Months	
Deliverable Requested: I, II, III, IV, Other (specify)										ctions		equire	men	s:								
Empty Kit Relinquished by:			Date:			T	ime:		_		1			A	lethod o	of Ship	ment:	1				
Relinquished by:	Date/Time:	1/12	114 2	0:00	Company 576R	4~	16	Rece	wed by	1	U		-			Date	e/Time	1/14	1	04 W	Company	
Relinquished by:	Date/Time:	1			Company			Rece	and by	y.	1		-	****			e/Time		-		Company	
Rellnquished by:	Date/Time:		V.		Company			Rece	eived by	y.						Date	e/Time		_		Company	
Custody Seals Intact A Yes A No				.,				Cool	er Tem	perature	e(s) °C a	and Oth	er Rer	narks:	3	0	,3	2,		3.5 F	41	

Login Sample Receipt Checklist

Client: Sterling Environmental Engineering PC

Job Number: 480-61861-1

List Source: TestAmerica Buffalo

Login Number: 61861 List Number: 1

Creator: Janish, Carl M

Question	Answer	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or ampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
s the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Sampling Company provided.	True	STERLING	
Samples received within 48 hours of sampling.	True		
Samples requiring field filtration have been filtered in the field.	True		
Chlorine Residual checked.	True		

APPENDIX J

OCTOBER 6, 2014 ANALYTICAL RESULTS

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68691-1 Client Project/Site: Orange County Landfill Sampling Event: Leachate Baseline

For: Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Mr. Mark Williams

Ame Pentye

Authorized for release by: 10/17/2014 11:26:04 AM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description .
1	Result is less than the RI, but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
D	Compound was found in the blank and sample

General Chemistry

Qualifier	Qualifier Description
b	Result Detected in the Unseeded Control blank (USB).
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD Recovery exceeds the control limits
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Glossary

TEQ

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
n	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: MH-5

Lab Sample ID: 480-68691-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Meth	nod	Prep Type
Chloroethane	20	J	50	8.7	ug/L	10	624		Total/NA
Aluminum	0.16	J	0.20	0.060	mg/L	1	6010	C	Total/NA
Arsenic	0.031		0.015	0.0056	mg/L	1	6010	C	Total/NA
Barium	1.9		0.0020	0.00070	mg/L	1	6010	C	Total/NA
Boron	1.0		0.020	0.0040	mg/L	1	6010	C	Total/NA
Calcium	180		0.50	0.10	mg/L	1	6010	C	Total/NA
Chromium	0.0054		0.0040	0.0010	mg/L	1	6010	C	Total/NA
Copper	0.0038	J	0.010	0.0016	mg/L	1	6010	C	Total/NA
ron	47	В	0.050	0.019	mg/L	1	6010	C	Total/NA
Magnesium	53		0.20	0.043	mg/L	1	6010	C	Total/NA
Manganese	2.2		0.0030	0.00040	mg/L	1	6010	C	Total/NA
Nickel	0.028		0.010	0.0013	mg/L	1	6010	C	Total/NA
otassium	67		0.50	0.10	mg/L	1	6010	C	Total/NA
Sodium	370		1.0	0.32	mg/L	1	6010	C	Total/NA
Zinc	0.014	В	0.010	0.0015	mg/L	1	6010	C	Total/NA
Chloride	520		2.5	2.0	mg/L	5	300.	0	Total/NA
Sulfate	4.6		2.0	0.13	mg/L	1	300.	0	Total/NA
Alkalinity, Total	1300	В	500	200	mg/L	50	310.	2	Total/NA
Ammonia	130	В	2.0	0.90	mg/L	100	350.	1	Total/NA
Total Kjeldahl Nitrogen	140		10	7.5	mg/L	50	351.	2	Total/NA
Nitrate as N	0.24		0.050	0.020	mg/L	1	353.	2	Total/NA
Chemical Oxygen Demand	250	В	40	20	mg/L	4	410.	4	Total/NA
Cyanide, Total	0.0083	J	0.010	0.0050	mg/L	1	9012	2B	Total/NA
otal Organic Carbon	57		1.0	0.43	mg/L	1	906)A	Total/NA
henolics, Total Recoverable	0.0075	J	0.010	0.0050	mg/L	1	906	3	Total/NA
Hardness as calcium carbonate	760		20	5.3	mg/L	1	SM	2340C	Total/NA
Total Dissolved Solids	1000		20	8.0	mg/L	1	SM	2540C	Total/NA
Biochemical Oxygen Demand	16	b	2.0	2.0	mg/L	1	SM	5210B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac			Prep Type
Turbidity	440		1.0	1.0	NTU	1	180	.1	Total/NA
Color	40		5.0	5.0	Color Units	1	SM	2120B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Client Sample ID: MH-5

Date Collected: 10/06/14 15:30 Date Received: 10/07/14 09:00 Lab Sample ID: 480-68691-1

Matrix: Leachate

Method: 6010C - Metals (ICF) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/08/14 19:44	1
Calcium	180		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:44	1
Chromium	0.0054		0.0040	0.0010	mg/L		10/08/14 08:55	10/08/14 19:44	1
Copper	0.0038	J	0.010	0.0016	mg/L		10/08/14 08:55	10/08/14 19:44	1
Iron	47	В	0.050	0.019	mg/L		10/08/14 08:55	10/08/14 19:44	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/08/14 19:44	1
Magnesium	53		0.20	0.043	mg/L		10/08/14 08:55	10/08/14 19:44	1
Manganese	2.2		0.0030	0.00040	mg/L		10/08/14 08:55	10/08/14 19:44	1
Nickel	0.028		0.010	0.0013	mg/L		10/08/14 08:55	10/08/14 19:44	1
Potassium	67		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:44	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/08/14 19:44	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/08/14 19:44	1
Sodium	370		1.0	0.32	mg/L		10/08/14 08:55	10/08/14 19:44	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/08/14 19:44	1
Zinc	0.014	В	0.010	0.0015	mg/L		10/08/14 08:55	10/08/14 19:44	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L	_	10/08/14 10:50	10/09/14 12:09	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	520		2.5	2.0	mg/L			10/13/14 16:15	5
Sulfate	4.6		2.0	0.13	mg/L			10/10/14 03:07	1
Alkalinity, Total	1300	В	500	200	mg/L			10/14/14 15:32	50
Ammonia	130	В	2.0	0.90	mg/L			10/08/14 23:01	100
Total Kjeldahl Nitrogen	140		10	7.5	mg/L		10/09/14 09:14	10/10/14 04:23	50
Nitrate as N	0.24		0.050	0.020	mg/L			10/07/14 21:58	1
Chemical Oxygen Demand	250	В	40	20	mg/L			10/16/14 09:12	4
Chromium, hexavalent	ND		0.010	0.0050	mg/L			10/07/14 11:08	1
Cyanide, Total	0.0083	J	0.010	0.0050	mg/L		10/13/14 15:25	10/13/14 22:52	1
Total Organic Carbon	57		1.0	0.43	mg/L			10/12/14 08:05	1
Phenolics, Total Recoverable	0.0075	J	0.010	0.0050	mg/L		10/09/14 09:30	10/13/14 20:36	1
Hardness as calcium carbonate	760		20	5.3	mg/L			10/09/14 11:55	1
Total Dissolved Solids	1000		20	8.0	mg/L			10/09/14 23:42	1
Biochemical Oxygen Demand	16	b	2.0	2.0	mg/L			10/08/14 14:37	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	440		1.0	1.0	NTU			10/07/14 23:00	1
Color	40		5.0	5.0	Color Units			10/07/14 23:20	1

Client: Sterling Environmental Engineering PC
Toject/Site: Orange County Landfill

Method: 624 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-206699/8

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dif Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/08/14 23:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/08/14 23:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/08/14 23:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/08/14 23:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/08/14 23:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/08/14 23:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/08/14 23:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/08/14 23:03	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/08/14 23:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/08/14 23:03	1
Benzene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/08/14 23:03	1
Bromoform	ND		5.0	0.47	ug/L			10/08/14 23:03	1
Bromomethane	ND		5.0	1.2	ug/L			10/08/14 23:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/08/14 23:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/08/14 23:03	1
Chloroethane	ND		5.0	0.87	ug/L			10/08/14 23:03	1
Chloroform	ND		5.0	0.54	ug/L			10/08/14 23:03	1
phloromethane	ND		5.0	0.64	ug/L			10/08/14 23:03	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/08/14 23:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/08/14 23:03	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/08/14 23:03	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/08/14 23:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/08/14 23:03	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/08/14 23:03	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/08/14 23:03	1
o-Xylene	ND		5.0	0.43	ug/L			10/08/14 23:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/08/14 23:03	1
Toluene	ND		5.0	0.45	ug/L			10/08/14 23:03	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/08/14 23:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
Trichloroethene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/08/14 23:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/08/14 23:03	1
Xylenes, Total	ND		10	1.1	ug/L			10/08/14 23:03	1
	MB	МВ							

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 104
 72 - 130

 4-Bromofluorobenzene (Surr)
 101
 69 - 121

99

 Prepared
 Analyzed
 Dil Fac

 10/08/14 23:03
 1

 10/08/14 23:03
 1

 10/08/14 23:03
 1

Lab Sample ID: LCS 480-206699/6

Matrix: Water

1,1,1-Trichloroethane

Analyte

Toluene-d8 (Surr)

Analysis Batch: 206699

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifler	Unit	D	%Rec	Limits	
 20.0	18.6		ua/L		93	52 - 162	_

TestAmerica Buffalo

70 - 123

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-206499/1-A

Matrix: Water Analysis Batch: 207036 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 206499

Analysis Batch: 207036	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/09/14 13:26	1
Arsenic	ND		0.015	0.0056	mg/L		10/08/14 08:55	10/09/14 13:26	1
Barium	ND		0.0020	0.00070	mg/L		10/08/14 08:55	10/09/14 13:26	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Boron	ND		0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/09/14 13:26	1
Calcium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Chromium	ND		0.0040	0.0010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Copper	ND		0.010	0.0016	mg/L		10/08/14 08:55	10/09/14 13:26	1
fron	0.0326	J	0.050	0.019	mg/L		10/08/14 08:55	10/09/14 13:26	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Magnesium	ND		0.20	0.043	mg/L		10/08/14 08:55	10/09/14 13:26	1
Manganese	ND		0.0030	0.00040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Nickel	ND		0.010	0.0013	mg/L		10/08/14 08:55	10/09/14 13:26	1
Potassium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/09/14 13:26	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/09/14 13:26	1
Sodium	ND		1.0	0.32	mg/L		10/08/14 08:55	10/09/14 13:26	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Zinc	0.00455	J	0.010	0.0015	mg/L		10/08/14 08:55	10/09/14 13:26	1

Lab Sample ID: LCS 480-206499/2-A

Matrix: Water

Analysis Batch: 206924

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 206499

Principolo Datolii 2002 i	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifler	Unit	D	%Rec	Limits	
Aluminum	10.0	8.95		mg/L		89	80 - 120	
Antimony	0.200	0.192		mg/L		96	80 - 120	
Arsenic	0.201	0.184		mg/L		92	80 - 120	
Barium	0.200	0.217		mg/L		108	80 - 120	
Beryllium	0.201	0.197		mg/L		98	80 - 120	
Cadmium	0.201	0.188		mg/L		94	80 - 120	
Chromium	0.201	0.188		mg/L		94	80 - 120	
Copper	0.201	0.214		mg/L		107	80 - 120	
iron	10.0	9.07		mg/L		91	80 - 120	
Lead	0.201	0.187		mg/L		93	80 - 120	
Magnesium	10.0	10.2		mg/L		101	80 _ 120	
Manganese	0.201	0.202		mg/L		101	80 - 120	
Nickel	0.201	0.183		mg/L		91	80 - 120	
Potassium	10.0	9.25		mg/L		92	80 - 120	
Selenium	0.201	0.189		mg/L		94	80 - 120	
Silver	0.0500	0.0528		mg/L		106	80 _ 120	
Sodium	10.0	9.32		mg/L		93	80 - 120	
Zinc	0.201	0.206		mg/L		103	80 - 120	

Method: 300.0 - Anions, Ion Chron	natography (Continued)
-----------------------------------	------------------------

Lab	Sample	ID: MB	240-151358	3/3
-----	--------	--------	------------	-----

Matrix: Water

Analysis Batch: 151358

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.41	mg/L			10/13/14 13:47	1
Sulfate	ND		2.0	0.13	mg/L			10/13/14 13:47	1

Lab Sample ID: LCS 240-151358/28

Matrix: Water

Analysis Batch: 151358

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Spike	LUS	LCS				%Rec.	
ļ	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
-	Chloride	50.0	53.2		mg/L		106	90 - 110	
	Sulfate	50.0	49.0		mg/L		98	90 - 110	
L	North								

Lab Sample ID: LCS 240-151358/4

Matrix: Water

Analysis Batch: 151358

Client	Sample	ID:	Lab	Control	Sample	

Prep Type: Total/NA

	,, 0.0 200 101000	Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1	Chloride	50.0	52.7	***************************************	mg/L		105	90 - 110	
	Sulfate	50.0	48.9		mg/L		98	90 - 110	

ethod: 310.2 - Alkalinity

Lab Sample ID: MB 480-207719/185

Matrix: Water

Analyte

Analyte

Analysis Batch: 207719

Client	Sample ID: Method Blank
	Prep Type: Total/NA

MB MB MDL Unit Analyzed Dil Fac Result Qualifier RL Prepared 10/14/14 15:04 ND 4.0 mg/L

Lab Sample ID: MB 480-207719/192

Matrix: Water

Alkalinity, Total

Analysis Batch: 207719

Client Sample ID: Method Blank
Prep Type: Total/NA

Analyzed Dil Fac Result Qualifler RL MDL Unit Prepared 10/14/14 15:06 ND 4.0 mg/L

Lab Sample ID: MB 480-207719/203

Matrix: Water

Alkalinity, Total

Analysis Batch: 207719

Client Sample ID: Method Blank

Prep Type: Total/NA MR MR

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/14/14 15:17 Alkalinity, Total 4.00 J 10 4.0 mg/L

Lab Sample ID: LCS 480-207719/186

Matrix: Water

Analyte \kalinity, Total

Analysis Batch: 207719

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. LCS LCS Spike Added Result Qualifler Unit D %Rec Limits mg/L 90 - 110

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: Method Blank

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-206899/1-A

Matrix: Water

Analyte

Analysis Batch: 207003

Result Qualifier ND

RL 0.20

MDL Unit 0.15 mg/L

10/09/14 09:14

10/09/14 18:23

Dil Fac Analyzed

Prep Type: Total/NA

Prep Batch: 206899

Prep Type: Total/NA

Prep Batch: 206899

Lab Sample ID: LCS 480-206899/2-A

Matrix: Water

Total Kieldahl Nitrogen

Analysis Batch: 207003

Added 2.50

Spike LCS LCS

Result Qualifier 2.59

Unit mg/L %Rec Limits 90 - 110

%Rec

Client Sample ID: Lab Control Sample

Method: 410.4 - COD

Total Kjeldahl Nitrogen

Lab Sample ID: MB 480-208155/27

Matrix: Water

Analysis Batch: 208155

Chemical Oxygen Demand

Result Qualifier 8.34 J

MB MB

ND

Result Qualifier

MR MR

7.37 J

Result Qualifier

RL 10

RI

10

RL

10

Spike

Added 25.0

Spike

Added

25 D

MDL Unit 5.0 mg/L

MDL Unit

5.0 mg/L

MDL Unit

Unit

mg/L

Unit

ma/L

5.0 mg/L

LCS LCS Result Qualifier

LCS LCS

25.1

Result Qualifier

26.7

Prepared

Prepared

Prepared

D

Analyzed 10/16/14 09:12 Dil Fac

Dil Fac

Dil Fac

Lab Sample ID: MB 480-208155/3

Matrix: Water

Analysis Batch: 208155

Analyte

Chemical Oxygen Demand

Lab Sample ID: MB 480-208155/51 Matrix: Water

Analysis Batch: 208155

Analyte Chemical Oxygen Demand

Lab Sample ID: LCS 480-208155/28 Matrix: Water

Lab Sample ID: LCS 480-208155/4

Analysis Batch: 208155

Chemical Oxygen Demand

Matrix: Water Analysis Batch: 208155

Analyte Chemical Oxygen Demand Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Method Blank

Analyzed

10/16/14 09:12

Prep Type: Total/NA

Analyzed

10/16/14 09:12

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. %Rec Limits 107 90 - 110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

%Rec Limits 100 90 - 110

Client Sample ID: Method Blank

QC Sample Results

Client: Sterling Environmental Engineering PC gject/Site: Orange County Landfill

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-207429/27

Matrix: Water

Analysis Batch: 207429

MB MB

Analyte Result Qualifier Total Organic Carbon ND

RL 1.0 MDL Unit 0.43 mg/L Prepared

Analyzed 10/12/14 04:47

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Lab Sample ID: LCS 480-207429/28

Matrix: Water

Analysis Batch: 207429

Analyte Total Organic Carbon

Spike Added 60.0

LCS LCS Result Qualifier 60.8

Unit mg/L

Unit

mg/L

%Rec 101

Limits 90 _ 110

%Rec.

Client Sample ID: Lab Control Sample

Method: 9066 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-206888/1-A

Matrix: Water

Analysis Batch: 207542

мв мв

ND

Analyte Phenolics, Total Recoverable Result Qualifier

RL 0.010

Spike

Added

0.100

MDL Unit 0.0050 mg/L

LCS LCS

0.106

Result Qualifier

Prepared 10/09/14 09:30

Analyzed 10/13/14 19:12

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-206888/2-A

datrix: Water

Analysis Batch: 207542

Analyte Phenolics, Total Recoverable Client Sample ID: Lab Control Sample

D

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 206888

Prep Batch: 206888

Prep Type: Total/NA

Prep Type: Tota!/NA

Dil Fac

Limits %Rec 90 - 110 106

Client Sample ID: Method Blank

Analyzed

10/07/14 23:20

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-206725/3

Matrix: Water

Analysis Batch: 206725

MB MB Result Qualifier

Color

Analyte

Color

Lab Sample ID: LCS 480-206725/4

Matrix: Water

Analysis Batch: 206725

Analyte

ND

Spike

Added

30.0

LCS LCS Result Qualifier 30.0

RL

5.0

Unit

RI Unit

5.0 Color Units

Color Units

D

%Rec 100

Prepared

%Rec. Limits

90 - 110

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: LCS 480-206654/2 Matrix: Water					Client	Sample	ID: Lab Contro Prep Type:	
Analysis Batch: 206654	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biochemical Oxygen Demand	198	203		mg/L		102	85 - 115	

Client: Sterling Environmental Engineering PC

__roject/Site: Orange County Landfill

Analysis Batch: 206384					
Analysis Batch: 206384				Mathad	Prep Batch
Lab Sample ID	Client Sample ID	Prep Type Total/NA	Matrix Leachate	Method 7196A	FIED DECI
480-68691-1	MH-5		Leachate	7196A	
480-68691-1 MS	MH-5	Total/NA		7196A	
LCS 480-206384/4	Lab Control Sample	Total/NA	Water		
MB 480-206384/3	Method Blank	Total/NA	Water	7196A	
Analysis Batch: 206477					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	353.2	
Analysis Batch: 206480					
t ah Camala ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID 480-68691-1	MH-5	Total/NA	Leachate	180.1	
LCS 480-206480/4	Lab Control Sample	Total/NA	Water	180.1	
	Method Blank	Total/NA	Water	180.1	
MB 480-206480/3	MERIOD DIGITA	I SMITTEN	. *************************************		
Analysis Batch: 206654					
Lab Sample iD	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 5210B	
LCS 480-206654/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-206654/1	Method Blank	Total/NA	Water	SM 5210B	
Analysis Batch: 206725					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 2120B	
LCS 480-206725/4	Lab Control Sample	Total/NA	Water	SM 2120B	
MB 480-206725/3	Method Blank	Total/NA	Water	SM 2120B	
Analysis Batch: 206737					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	350.1	
480-68691-1 MS	MH-5	Total/NA	Leachate	350.1	
LCS 480-206737/4	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-206737/76	Lab Control Sample	Total/NA	Water	350.1	
MB 480-206737/3	Method Blank	Total/NA	Water	350.1	
MB 480-206737/75	Method Blank	Total/NA	Water	350.1	
Prep Batch: 206888					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	Distill/Phenol	
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-206888/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
Prep Batch: 206899					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-6	Total/NA	Leachate	351.2	
LCS 480-206899/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-206899/1-A	Method Blank	Total/NA	Water	351.2	
Analysis Batch: 206969					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	SM 2340C	

TestAmerica Buffalo

10/17/2014

QC Association Summary

Client: Sterling Environmental Engineering PC

TestAmerica Job ID: 480-68691-1

Project/Site: Orange County Landfill

General Chemistry (Continued)

Analysis Batch: 207719 (Conti	nued)
-------------------------------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-207719/203	Method Blank	Total/NA	Water	310.2	

Analysis Batch: 208155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68691-1	MH-5	Total/NA	Leachate	410.4	
LCS 480-208155/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/4	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/52	Lab Control Sample	Total/NA	Water	410.4	
MB 480-208155/27	Method Blank	Total/NA	Water	410.4	
MB 480-208155/3	Method Blank	Total/NA	Water	410.4	
MB 480-208155/51	Method Blank	Total/NA	Water	410.4	

TestAmerica Buffalo

10/17/2014

Certification Summary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

aboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-15
California	State Program	9	1169CA	09-30-14 *
Connecticut	State Program	1	PH-0568	09-30-14 *
Florida	NELAP	4	E87672	06-30-15
Georgia	State Program	4	N/A	03-31-15
Georgia	State Program	4	956	03-31-15
Illinois	NELAP	5	200003	09-30-14 *
lowa	State Program	7	374	03-01-15
Kansas	NELAP	7	E-10187	01-31-15
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
Louisiana	NELAP	6	02031	06-30-14 *
Maine	State Program	1	NY00044	12-04-14
Maryland	State Program	3	294	03-31-15
Massachusetts	State Program	1	M-NY044	06-30-15
Michigan	State Program	5	9937	03-31-15
Minnesota	NELAP	5	036-999-337	12-31-14
New Hampshire	NELAP	1	2337	11-17-14
New Jersey	NELAP	2	NY455	06-30-15
New York	NELAP	2	10026	03-31-15
North Dakota	State Program	8	R-176	03-31-14 *
Oklahoma	State Program	6	9421	08-31-15
?regon	NELAP	10	NY200003	06-09-15
/ennsylvania	NELAP	3	68-00281	07-31-15
Rhode Island	State Program	1	LAO00328	12-30-14
Tennessee	State Program	4	TN02970	03-31-15
Texas	NELAP	6	T104704412-11-2	07-31-15
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-15
Washington	State Program	10	C784	02-10-15
West Virginia DEP	State Program	3	252	09-30-14 *
Wisconsin	State Program	5	998310390	08-31-15

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	01144CA	06-30-14 *
California	State Program	9	2927	04-30-15
Connecticut	State Program	1	PH-0590	12-31-14
Florida	NELAP	4	E87225	06-30-15
Georgia	State Program	4	N/A	06-30-15
Illinois	NELAP	5	200004	07-31-15
Kansas	NELAP	7	E-10336	01-31-15
Kentucky (UST)	State Program	4	58	06-30-15
L-A-B	DoD ELAP		L2315	07-18-16
Minnesota	NELAP	5	039-999-348	12-31-14
Nevada	State Program	9	OH-000482008A	07-31-15
New Jersey	NELAP	2	OH001	06-30-15
New York	NELAP	2	10975	03-31-15

Certification renewal pending - certification considered valid.

Method Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

Method	Method Description	Protocol	Laboratory
524	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
5010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
180.1	Turbidity, Nephelometric	MCAVW	TAL BUF
300.0	Anions, Ion Chromatography	MCAVW	TAL CAN
310.2	Alkalinity	MCAVW	TAL BUF
350.1	Nitrogen, Ammonia	MCAVW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAVW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
9066	Phenolics, Total Recoverable	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Detection Limit Exceptions Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68691-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
300.0	Leachate	Chloride	mg/L	0.50	1

Login Sample Receipt Checklist

Client: Sterling Environmental Engineering PC

Job Number: 480-68691-1

Login Number: 68691

List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

Question	Answer	Comment	<u> </u>	
Radioactivity either was not measured or, if measured, is at or below background	True			
The cooler's custody seal, if present, is intact.	True			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True			
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			
There are no discrepancies between the sample IDs on the containers and the COC.	True			
Samples are received within Holding Time.	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True			
If necessary, staff have been informed of any short hold time or quick \ensuremath{TAT} needs	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Sampling Company provided.	True	STERLING		
Samples received within 48 hours of sampling.	True			
Samples requiring field filtration have been filtered in the field.	N/A			
Chlorine Residual checked.	N/A			

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68692-1

Client Project/Site: Orange County Landfill Sampling Event: Groundwater Baseline

For:

Sterling Environmental Engineering PC 24 Wade Road Latham, New York 12110

Attn: Mr. Mark Williams

Jone Pant

Authorized for release by: 10/17/2014 11:17:32 AM

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Lisa Shaffer, Project Manager II (716)504-9816 lisa.shaffer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

A	1
V	7
	3
1	_

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J

RL

RPD

TEF TEQ

Qualifier	Qualifier Description
-----------	-----------------------

B Compound was found in the blank and sample.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifler Description
b	Result Detected in the Unseeded Control blank (USB).
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
A	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
ū	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Client Sample ID: PZ-14-5

Lab Sample ID: 480-68692-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.73	-	0.20	0.060	mg/L	1	_	6010C	Total/NA
Arsenic	0.057		0.015	0.0056	mg/L	1		6010C	Total/NA
Barium	0.51		0.0020	0.00070	mg/L	1		6010C	Total/NA
Boron	0.21		0.020	0.0040	mg/L	1		6010C	Total/NA
Calcium	140		0.50	0.10	mg/L	1		6010C	Total/NA
Chromium	0.0076		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0072	J	0.010	0.0016	mg/L	1		6010C	Total/NA
iron	4.8	В	0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	54		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	1.0		0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.028		0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	9.8		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	87		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.026	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Aluminum	2.7		0.20	0.060	mg/L	1		6010C	Dissolved
Arsenic	0.055		0.015	0.0056	mg/L	1		6010C	Dissolved
Barium	0.47		0.0020	0.00070	mg/L	1		6010C	Dissolved
Boron	0.20	В	0.020	0.0040		1		6010C	Dissolved
Calcium	130		0.50		mg/L	1		6010C	Dissolved
Chromium	0.016		0.0040	0.0010		1		6010C	Dissolved
Copper	0.011	В	0.010	0.0016		1		6010C	Dissolved
ron	7.7		0.050	0.019	mg/L	1		6010C	Dissolved
_ead	0.0051	J	0.010	0.0030	_	1		6010C	Dissolved
fagnesium	52		0.20	0.043		1		6010C	Dissolved
Manganese	1.1		0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.032		0.010	0.0013	-	1		6010C	Dissolved
Potassium	9.7		0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	85		1.0		mg/L	1		6010C	Dissolved
Zinc		В	0.010	0.0015		1		6010C	Dissolved
Chloride	79	Ь	0.50	0.41	_	1		300.0	Total/NA
Sulfate	30		2.0		mg/L	1		300.0	Total/NA
	600	В	100		mg/L	10		310.2	Total/NA
Alkalinity, Total	9.1	В	0.20	0.090	_	10		350.1	Total/NA
Ammonia	9.1	В	1.0		mg/L	5		351.2	Total/NA
Total Kjeldahl Nitrogen	0.090		0.050		-	1		353.2	Total/NA
Nitrate as N	0.090	D	10	0.020 5.0	_	1		410.4	Total/NA
Chemical Oxygen Demand Cyanide, Total	0.23	D	0.010	0.0050		1		9012B	Total/NA
	0.23		1.0	0.0050	mg/L mg/L	1		9060A	Total/NA
Fotal Organic Carbon	0.026		0.010	0.0050	mg/L mg/L	1		9066	Total/NA
Phenolics, Total Recoverable	580		10		mg/L mg/L	1		SM 2340C	Total/NA
Hardness			10	4.0	_	1		SM 2540C	Total/NA
Fotal Dissolved Solids	780 7.1	h	2.0		mg/L	1		SM 5210B	Total/NA
Biochemical Oxygen Demand					mg/L			-	
Analyte		Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Turbidity	240		1.0	1.0	NTU	1		180.1	Total/NA

Client Sample ID: PZ-14-3

Lab Sample ID: 480-68692-2

	Analyte	Result	Qualifier	RL	MOL	Unit	Dil Fac	D	Method	Prep Type
	Aluminum	6.3		0.20	0.060	mg/L	1		6010C	Total/NA
]	Arsenic	0.094		0.015	0.0056	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

10/17/2014

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: 480-68692-1

Matrix: Ground Water

Client Sample ID: PZ-14-5

Date Collected: 10/06/14 12:55 Date Received: 10/07/14 09:00

Method: 624 - Volatile Organic	Result Quali		MDL	Unit	D Prepared	Analyzed	Dil Fac
.1.1-Trichloroethane	ND	5.0	0.39	ug/L		10/09/14 04:19	1
,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L		10/09/14 04:19	1
.1.2-Trichloroethane	ND	5.0	0.48	ug/L		10/09/14 04:19	1
,1-Dichloroethane	ND	5.0	0.59	ug/L		10/09/14 04:19	1
1.1-Dichloroetherie	ND	5.0	0.85	ug/L		10/09/14 04:19	- 1
,2-Dichlorobenzene	ND	5.0	0.44	ug/L		10/09/14 04:19	1
.2-Dichloroethane	ND	5.0	0.60	ug/L		10/09/14 04:19	1
I,2-Dichloropropane	ND	5.0	0.61	ug/L		10/09/14 04:19	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L		10/09/14 04:19	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L		10/09/14 04:19	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L		10/09/14 04:19	1
Benzene	ND	5.0	0.60	ug/L		10/09/14 04:19	1
3romodichloromethane	ND	5.0	0.54	ug/L		10/09/14 04:19	1
Bromoform	ND	5.0	0.47	ug/L		10/09/14 04:19	1
Bromomethane	ND	5.0	1.2	ug/L		10/09/14 04:19	1
Carbon tetrachlonde	ND	5.0	0.51	ug/L		10/09/14 04:19	1
Chlorobenzene	, ND	5.0	0.48	ug/L		10/09/14 04:19	1
Chloroethane	ND	5.0	0.87	ug/L		10/09/14 04:19	1
Chloroform	ND	5.0	0.54	ug/L		10/09/14 04:19	1
Chioromethane	ND	5.0	0.64	_		10/09/14 04:19	1
cis-1,2-Dichloroethene	ND	5.0	0.57	ug/L		10/09/14 04:19	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L		10/09/14 04:19	1
Dibromochloromethane	ND	5.0	0.41	ug/L		10/09/14 04:19	1
Dichlorodifluoromethane	ND	5.0	0.28	-		10/09/14 04:19	1
Ethylbenzene	ND	5.0	0.46			10/09/14 04:19	1
Methylene Chloride	ND	5.0	0.81	ug/L		10/09/14 04:19	
m-Xylene & p-Xylene	ND	10	1.1	ug/L		10/09/14 04:19	
o-Xylene	ND	5.0	0.43	ug/L		10/09/14 04:19	
Tetrachloroethene	ND	5.0	0.34			10/09/14 04:19	-
Toluene	ND	5.0	0.45	ug/L		10/09/14 04:19	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L		10/09/14 04:19	
trans-1,3-Dichtoropropene	ND	5.0	0.44	ug/L		10/09/14 04:19	
Trichloroethene	ND	5.0	0.60	ug/L		10/09/14 04:19	
Trichlorofluoromethane	ND	5.0	0.45	ug/L		10/09/14 04:19	
Vinyl chloride	ND	5.0	0.75	ug/L		10/09/14 04:19	
Xylenes, Total	ND	10	1,1	ug/L		10/09/14 04:19	
Surrogate	%Recovery Qua	lifier Limits			Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104	72 - 130				10/09/14 04:19	
4-Bromofluorobenzene (Surr)	104	69 - 121				10/09/14 04:19	
Toluene-d8 (Surr)	99	70 - 123				10/09/14 04:19	

Method: 6010C - Metals (ICP) Analyte Re	ult Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	.73	0.20	0.060	mg/L		10/08/14 08:55	10/08/14 19:13	1
Antimony	ND	0.020	0.0068	mg/L		10/08/14 08:55	10/08/14 19:13	1
Arsenic 0.)57	0.015	0.0056	mg/L		10/08/14 08:55	10/08/14 19:13	1
Barium	.51	0.0020	0.00070	mg/L		10/08/14 08:55	10/08/14 19:13	1
Beryllium	ND	0.0020	0.00030	mg/L		10/08/14 08:55	10/08/14 19:13	1
Boron	.21	0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:47	1

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: 480-68692-1

Matrix: Ground Water

fient Sample ID: PZ-14-5

Date Collected: 10/06/14 12:55 Date Received: 10/07/14 09:00

General Chemistry Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79		0.50	0.41	mg/L			10/10/14 01:49	1
Sulfate	30		2.0	0.13	mg/L			10/10/14 01:49	1
Alkalinity, Total	600	В	100	40	mg/L			10/14/14 15:18	10
Ammonia	9.1	В	0.20	0.090	mg/L			10/08/14 23:04	10
Total Kjeldahl Nitrogen	9.2		1.0	0.75	mg/L		10/09/14 09:14	10/10/14 04:00	5
Nitrate as N	0.090		0.050	0.020	mg/L			10/07/14 21:59	1
Chemical Oxygen Demand	32	В	10	5.0	mg/L			10/16/14 09:12	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			10/07/14 11:08	1
Cyanide, Total	0.23		0.010	0.0050	mg/L		10/13/14 15:25	10/13/14 22:55	1
Total Organic Carbon	8.9		1.0	0.43	mg/L			10/12/14 08:34	1
Phenolics, Total Recoverable	0.026		0.010	0.0050	mg/L		10/09/14 09:30	10/13/14 20:36	1
Hardness	580		10	2.6	mg/L			10/09/14 11:55	1
Total Dissolved Solids	780		10	4.0	mg/L			10/10/14 23:57	1
Biochemical Oxygen Demand	7.1	b	2.0	2.0	mg/L			10/07/14 23:53	1
Analyte	Resuit	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	240		1.0	1.0	NTU			10/07/14 23:00	1
Color	ND		5.0	5.0	Color Units			10/07/14 23:20	1

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Client Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25 Date Received: 10/07/14 09:00 Lab Sample ID: 480-68692-2

Matrix: Ground Water

Method: 6010C - Metals (ICP) (Continued) Analyte Re	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/08/14 19:15	1
Calcium	180		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:57	1
	.028		0.0040	0.0010	mg/L		10/08/14 08:55	10/08/14 19:15	1
	.091		0.010	0.0016	mg/L		10/08/14 08:55	10/08/14 19:15	1
ron	18	В	0.050	0.019	mg/L		10/08/14 08:55	10/08/14 19:15	1
	0.017		0.010	0.0030	mg/L		10/08/14 08:55	10/08/14 19:15	1
Magnesium	56		0.20	0.043	mg/L		10/08/14 08:55	10/08/14 19:15	1
Manganese	2.0		0.0030	0.00040	mg/L		10/08/14 08:55	10/08/14 19:15	1
-	0.025		0.010	0.0013	mg/L		10/08/14 08:55	10/08/14 19:15	1
Potassium	9.3		0.50	0.10	mg/L		10/08/14 08:55	10/08/14 19:15	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/08/14 19:15	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/08/14 19:15	1
Sodium	60		1.0	0.32	mg/L		10/08/14 08:55	10/08/14 19:15	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/08/14 19:15	1
	0.087	В	0.010	0.0015			10/08/14 08:55	10/08/14 19:15	1
Method: 6010C - Metals (ICP) - Dissolved									
	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	8.7		0.20	0.060	mg/L		10/08/14 08:57	10/08/14 23:47	1
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:57	10/08/14 23:47	1
•	0.092		0.015	0.0056	mg/L		10/08/14 08:57	10/08/14 23:47	1
Barium	0.59		0.0020	0.00070	mg/L		10/08/14 08:57	10/08/14 23:47	1
	0048	J	0.0020	0.00030	mg/L		10/08/14 08:57	10/08/14 23:47	1
Boron	0.17		0.020	0.0040	mg/L		10/08/14 08:57	10/09/14 14:29	1
Cadmium	ND	_	0.0020	0.00050	mg/L		10/08/14 08:57	10/08/14 23:47	1
Calcium	150		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:47	1
	0.032		0.0040	0.0010	_		10/08/14 08:57	10/08/14 23:47	1
	0.083	В	0.010	0.0016	mg/L		10/08/14 08:57	10/08/14 23:47	1
Iron	22	_	0.050	0.019	-		10/08/14 08:57	10/08/14 23:47	1
	0.015		0.010	0.0030	-		10/08/14 08:57	10/08/14 23:47	1
Magnesium	54		0.20	0.043			10/08/14 08:57	10/08/14 23:47	1
Manganese	1.7		0.0030	0.00040			10/08/14 08:57	10/08/14 23:47	1
-	0.030		0.010	0.0013	mg/L		10/08/14 08:57	10/08/14 23:47	1
Potassium	9.1		0.50	0.10	mg/L		10/08/14 08:57	10/08/14 23:47	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:57	10/08/14 23:47	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:57	10/08/14 23:47	1
Sodium	58		1.0	0.32	mg/L		10/08/14 08:57	10/08/14 23:47	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:57	10/08/14 23:47	1
	0.087	В	0.010	0.0015	mg/L		10/08/14 08:57	10/08/14 23:47	1
Method: 7470A - Mercury (CVAA)									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012			10/08/14 10:50	10/09/14 11:29	1
Method: 7470A - Mercury (CVAA) - Dissolv	ved								
- ' '		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		10/13/14 08:55	10/13/14 13:47	1

ient Sample ID: TB1

Date Collected: 10/06/14 00:00 Date Received: 10/07/14 09:00

nalyte	Compounds (GC/MS) Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Trichloroethane	ND	5.0	0.39	ug/L			10/09/14 05:09	
1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/09/14 05:09	
1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/09/14 05:09	
1-Dichloroethane	ND	5.0	0.59	ug/L			10/09/14 05:09	
1-Dichloroethene	ND	5.0	0.85	ug/L			10/09/14 05:09	
2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/09/14 05:09	
2-Dichloroethane	ND	5.0	0.60	ug/L			10/09/14 05:09	
2-Dichloropropane	ND	5.0	0.61	ug/L			10/09/14 05:09	
3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/09/14 05:09	
4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/09/14 05:09	
Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/09/14 05:09	
enzene	ND	5.0	0.60	ug/L			10/09/14 05:09	
omodichloromethane	ND	5.0	0.54	ug/L			10/09/14 05:09	
romoform	ND	5.0	0.47	ug/L			10/09/14 05:09	
romomethane	ND	5.0	1.2	ug/L			10/09/14 05:09	
arbon tetrachloride	ND	5.0	0.51	ug/L			10/09/14 05:09	
lorobenzene	ND	5.0	0.48	ug/L			10/09/14 05:09	
nioroethane	ND	5.0		ug/L			10/09/14 05:09	
loroform	ND	5.0	0.54	ug/L			10/09/14 05:09	
ioromethane	ND	5.0		ug/L			10/09/14 05:09	
-1,2-Dichloroethene	ND	5.0	0.57	ug/L			10/09/14 05:09	
-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/09/14 05:09	
bromochioromethane	ND	5.0		ug/L			10/09/14 05:09	
chlorodifluoromethane	ND	5.0		ug/L			10/09/14 05:09	
hylbenzene	ND	5.0		ug/L			10/09/14 05:09	
ethylene Chloride	ND	5.0		ug/L			10/09/14 05:09	
-Xylene & p-Xylene	ND	10		ug/L			10/09/14 05:09	
Xylene x p-xylene	ND	5.0		ug/L			10/09/14 05:09	
etrachloroethene	ND	5.0		ug/L			10/09/14 05:09	
duene	ND	5.0		ug/L			10/09/14 05:09	
ans-1,2-Dichloroethene	ND	5.0		ug/L			10/09/14 05:09	
ans-1,3-Dichloropropene	ND	5.0		ug/L			10/09/14 05:09	
ichloroethene	ND	5.0		ug/L			10/09/14 05:09	
richlorofluoromethane	ND	5.0		ug/L			10/09/14 05:09	
nyl chloride	ND	5.0		ug/L			10/09/14 05:09	
ylenes, Total	ND	10	1.1	-			10/09/14 05:09	
urrogate	%Recovery Qualifie	er Limits	•			Prepared	Analyzed	Dil F
,2-Dichloroethane-d4 (Surr)	104	72 - 130					10/09/14 05:09	
-Bromofluorobenzene (Surr)	98	69 - 121					10/09/14 05:09	
oluene-d8 (Surr)	98	70 - 123					10/09/14 05:09	

Project/Site: Orange County Landfill

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-206699/8

Matrix: Water

Analysis Batch: 206699

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB					,		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/08/14 23:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/08/14 23:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/08/14 23:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/08/14 23:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/08/14 23:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/08/14 23:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/08/14 23:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/08/14 23:03	1
1,4-Dichlorobenzerie	ND		5.0	0.51	ug/L			10/08/14 23:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/08/14 23:03	1
Benzene	· ND		5.0	0.60	ug/L			10/08/14 23:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/08/14 23:03	1
Bromoform	ND		5.0	0.47	ug/L			10/08/14 23:03	1
Bromomethane	ND		5.0	1.2	ug/L			10/08/14 23:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/08/14 23:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/08/14 23:03	1
Chloroethane	ND		5.0	0.87	ug/L			10/08/14 23:03	1
Chloroform	ND	*	5.0	0.54	ug/L			10/08/14 23:03	1
Chloromethane	ND		5.0	0.64	ug/L			10/08/14 23:03	1
cis-1,2-Dichloroethene	ND		5.0	0.57	ug/L			10/08/14 23:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/08/14 23:03	1
Dibromochloromethane	ND		5.0	0.41	ug/L			10/08/14 23:03	1
Dichlorodifluoromethane	ND		5.0	0.28	ug/L			10/08/14 23:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/08/14 23:03	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/08/14 23:03	1
m-Xylene & p-Xylene	ND		10	1.1	ug/L			10/08/14 23:03	1
o-Xylene	ND		5.0	0.43	ug/L			10/08/14 23:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/08/14 23:03	1
Toluene	ND		5.0	0.45	ug/L			10/08/14 23:03	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/08/14 23:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/08/14 23:03	1
Trichloroethene	ND		5.0	0.60	ug/L			10/08/14 23:03	1
Trichlorofluoromethane	ND		5.0	0.45	ug/L			10/08/14 23:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/08/14 23:03	1
Xylenes, Total	ND		10	1.1	ug/L			10/08/14 23:03	1

	MB MB				
Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	72 - 130		10/08/14 23:03	1
4-Bromofluorobenzene (Surr)	101	69 - 121		10/08/14 23:03	1
Toluene-d8 (Surr)	99	70 - 123		10/08/14 23:03	1

Lab Sample ID: LCS 480-206699/6

Matrix: Water

Analysis Batch: 206699

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1.1.1-Trichloroethane	20.0	18.6		ug/L		93	52 - 162

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-206499/1-A

Matrix: Water

Analysis Batch: 207036

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 206499

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		10/08/14 08:55	10/09/14 13:26	1
Arsenic	ND		0.015	0.0056	mg/L		10/08/14 08:55	10/09/14 13:26	1
Barium	ND		0.0020	0.00070	mg/L		10/08/14 08:55	10/09/14 13:26	1
Beryllium	ND		0.0020	0.00030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Boron	ND		0.020	0.0040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Cadmium	ND		0.0020	0.00050	mg/L		10/08/14 08:55	10/09/14 13:26	1
Calcium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Chromium	ND		0.0040	0.0010	mg/L		10/08/14 08:55	10/09/14 13:26	1
Copper	ND		0.010	0.0016	mg/L		10/08/14 08:55	10/09/14 13:26	1
Iron	0.0326	J	0.050	0.019	mg/L		10/08/14 08:55	10/09/14 13:26	1
Lead	ND		0.010	0.0030	mg/L		10/08/14 08:55	10/09/14 13:26	1
Magnesium	ND		0.20	0.043	mg/L		10/08/14 08:55	10/09/14 13:26	1
Manganese	ND		0.0030	0.00040	mg/L		10/08/14 08:55	10/09/14 13:26	1
Nickel	ND		0.010	0.0013	mg/L		10/08/14 08:55	10/09/14 13:26	1
Potassium	ND		0.50	0.10	mg/L		10/08/14 08:55	10/09/14 13:26	1
Selenium	ND		0.025	0.0087	mg/L		10/08/14 08:55	10/09/14 13:26	1
Silver	ND		0.0060	0.0017	mg/L		10/08/14 08:55	10/09/14 13:26	1
Sodium	ND		1.0	0.32	mg/L		10/08/14 08:55	10/09/14 13:26	1
Thallium	ND		0.020	0.010	mg/L		10/08/14 08:55	10/09/14 13:26	1
*Rinc	0.00455	J	0.010	0.0015	mg/L		10/08/14 08:55	10/09/14 13:26	1

Lab Sample ID: LCS 480-206499/2-A

Matrix: Water

Analysis Batch: 206924

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 206499

alysis Datcii. 200324										
,	Spike	LCS	LCS				%Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Aluminum	10.0	8.95		mg/L		89	80 - 120			
Antimony	0.200	0.192		mg/L		96	80 - 120			
Arsenic	0.201	0.184		mg/L		92	80 - 120			
Barium	0.200	0.217		mg/L		108	80 - 120			
Beryllium	0.201	0.197		mg/L		98	80 - 120			
Cadmium	0.201	0.188		mg/L		94	80 - 120			
Chromium	0.201	0.188		mg/L		94	80 - 120			
Copper	0.201	0.214		mg/L		107	80 - 120			
Iron	10.0	9.07		mg/L		91	80 - 120			
Lead	0.201	0.187		mg/L		93	80 - 120			
Magnesium	10.0	10.2		mg/L		101	80 - 120			
Manganese	0.201	0.202		mg/L		101	80 - 120			
Nickel	0.201	0.183		mg/L		91	80 - 120			
Potassium	10.0	9.25		mg/L		92	80 - 120			
Selenium	0.201	0.189		mg/L		94	80 - 120			
Silver	0.0500	0.0528		mg/L		106	80 - 120			
Sodium	10.0	9.32		mg/L		93	80 - 120			
Zinc	0.201	0.206		mg/L		103	80 - 120			

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS	480-206494/2-A
Matrix: Water	

Analysis Batch: 206785

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 206494

Alialysis Batch. 200703	0.11	1.00	1.00				0/ Doe	
	Spike		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.201	0.182		mg/L		91	80 - 120	
Copper	0.201	0.201		mg/L		100	80 _ 120	
Iron	10.0	8.88		mg/L		89	80 - 120	
Lead	0.201	0.182		mg/L		91	80 - 120	
Magnesium	10.0	9.86		mg/L		99	80 - 120	
Manganese	0.201	0.198		mg/L		99	80 - 120	
Nickel	0.201	0.181		mg/L		90	80 - 120	
Potassium	10.0	9.19		mg/L		92	80 - 120	
Selenium	0.201	0.180		mg/L		90	80 - 120	
Silver	0.0500	0.0513		mg/L		103	80 - 120	
Thallium	0.200	0.199		mg/L		100	80 - 120	
Zinc	0.201	0.196		mg/L		98	80 - 120	
-								

Lab Sample ID: LCS 480-206494/2-A

Matrix: Water

Analysis Batch: 207038

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 206494

7.11.01,9.10 20.101.1	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Boron	0.200	0.209		mg/L	_	104	80 - 120
Sodium	10.0	9.51		mg/L		95	80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-206574/1-A

Matrix: Water

Analysis Batch: 206912

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 206574

Dil Fac Analyte Result Qualifier MDL Unit Prepared Analyzed 10/08/14 10:50 10/09/14 11:15 Mercury ND 0.00020 0.00012 mg/L

Lab Sample ID: LCS 480-206574/2-A

Matrix: Water

Analysis Batch: 206912

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 206574

Spike LCS LCS Added Result Qualifier Unit Limits %Rec Analyte Mercury 0.00667 0.00712 107 80 - 120 mg/L

MR MR

Lab Sample ID: MB 480-207374/1-A

Matrix: Water

Analysis Batch: 207557

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 207374

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00012 mg/L 10/13/14 08:55 10/13/14 13:32

QC Sample Results

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Method: 3	300.0 - Anions,	lon	Chromatography	(Continued)
-----------	-----------------	-----	----------------	-------------

Lab Sample ID: 480-68692-1 MS Matrix: Ground Water												С	lient Samp Prep T	le ID: P ype: To	
Analysis Batch: 150879															
,0.0	Sample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride	79			50.0		128			mg/L		states to	98	80 - 120		
Sulfate	30			50.0		80.2			mg/L			100	80 - 120		
Junate	30			30.0		00.2			mg/L			100	00 - 120		
_ab Sample ID: 480-68692-1 MSD												С	lient Samp	le ID: P	Z-14-5
Matrix: Ground Water													_	ype: To	
Analysis Batch: 150879														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analysis Batch. 150075	Sample	Sam	nle	Spike		MSD	MSD						%Rec.		RPD
l mali da	-			Added					Unit		D	%Rec	Limits	RPD	Limi
Analyte	Result	Qua	imer			Result	Quai	mer			0			4	20
Chloride	79			50.0		123			mg/L			88	80 - 120		
Sulfate	30			50.0		77.2			mg/L			94	80 _ 120	4	20
ethod: 310.2 - Alkalinity														Act of Act of the Control of the Con	
Lab Sample ID: MB 480-207719/185												Client S	ample ID:	Method	Biani
•												Ollolli C	•	ype: To	
Matrix: Water													Prep i	ype: 10	ital/NA
Analysis Batch: 207719															
		MB	MB												
nalyte	R	esult	Qualifier		RL		MDL	Unit		D	Pi	repared	Anaiyz	ed	Dil Fa
Alkalinity, Total		ND			10		4.0	mg/L					10/14/14	15:04	1
ch Comple ID, MD 480 207740/402												Client S	sample ID:	Mathod	Blank
Lab Sample ID: MB 480-207719/192												Ciletit			
Matrix: Water													Prep I	ype: To	tai/NA
Analysis Batch: 207719															
		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	PI	repared	Analyz	ed	Dil Fac
Alkalinity, Total		ND			10		4.0	mg/L					10/14/14	15:06	1
Lab Sample ID: MB 480-207719/203												Client S	ample ID:	Method	Blank
Matrix: Water														ype: To	
) po	
Analysis Batch: 207719			140												
			MB		-					_	_		Amalum		Dit 5-
Analyte	R		Qualifier		RL		MDL			D	P	repared	Analyz		Dil Fac
Alkalinity, Total		4.00	J		10		4.0	mg/L					10/14/14	15:17	1
										CI	ient	Sample	ID: Lab Co	ontrol S	ample
ab Sample ID: LCS 480-207719/186	ŝ													ype: To	
	6													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Matrix: Water	õ														
Matrix: Water	õ			Snika		LCS	LCS						%Rec.		
Matrix: Water Analysis Batch: 207719	õ			Spike			LCS	lei	99-14			9/ Bas	%Rec.		
Matrix: Water Analysis Batch: 207719 Analyte	6			Added		Result		lifier	Unit		D	%Rec	Limits		
Matrix: Water Analysis Batch: 207719 Analyte	6							lifier	Unit mg/L		D	%Rec 103			
Matrix: Water Analysis Batch: 207719 Analyte Alkalinity, Total		_		Added		Result		lifier		CI	_	103	Limits	ontrol S	Sample
Matrix: Water Analysis Batch: 207719 Analyte Alkalinity, Total Lab Sample ID: LCS 480-207719/193				Added		Result		lfier		CI	_	103	90 - 110 91D: Lab Co		
Matrix: Water Analysis Batch: 207719 Analyte Alkalinity, Total Lab Sample ID: LCS 480-207719/193 Matrix: Water				Added		Result		lifier		CI	_	103	90 - 110 91D: Lab Co	ontrol S	
Matrix: Water Analysis Batch: 207719 Analyte Alkalinity, Total Lab Sample ID: LCS 480-207719/193 Matrix: Water				Added 50.0		Result 51.4	Qual			CI	_	103	Limits 90 - 110 e ID: Lab Co Prep T		
Lab Sample ID: LCS 480-207719/186 Matrix: Water Analysis Batch: 207719 Analyte Alkelinity, Total Lab Sample ID: LCS 480-207719/193 Matrix: Water Analysis Batch: 207719				Added		Result 51.4	Qual			CI	_	103	90 - 110 91D: Lab Co		

Client Sample ID: Method Blank

Project/Site: Orange County Landfill

Method: 350.1 -	Nitrogen,	Ammonia	(Continued)

Lab Sample ID: MB 480-206737/75

Matrix: Water

Analysis Batch: 206737

MB MB

Result Qualifier Analyte 0.0111 J Ammonia

RL 0.020

MDL Unit 0.0090 mg/L Prepared

10/08/14 23:56 Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Prep Batch: 206899

Lab Sample ID: MB 480-206737/99

Matrix: Water

Analyte

Ammonia

Analysis Batch: 206737

MB MB

Result Qualifler 0.00994

RL 0.020

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

1.00

MDL Unit 0.0090 mg/L

Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

LCS LCS

LCS LCS

LCS LCS

LCS LCS

Qualifier

Qualifier

Result

0.997

Result

0.990

0.989

Result Qualifier

Result

0.990

Prepared

D

D

%Rec

%Rec

%Rec

%Rec

99

D

100

99

99

Analyzed 10/09/14 00:18

Client Sample ID: Lab Control Sample

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec. Limits

90 - 110

Dil Fac

Dil Fac

Lab Sample ID: LCS 480-206737/100

Matrix: Water

Analysis Batch: 206737

Analyte

Ammonia

Lab Sample ID: LCS 480-206737/124 Matrix: Water

Analysis Batch: 206737

Analyte

Ammonia

Lab Sample ID: LCS 480-206737/4 Matrix: Water

Analysis Batch: 206737

Analyte Ammonia

Lab Sample ID: LCS 480-206737/76

Matrix: Water

Ammonia

Analysis Batch: 206737

Analyte

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-206899/1-A

Matrix: Water

Analysis Batch: 207003

Result Qualifier

Analyte Total Kjeldahl Nitrogen MB MB

RI 0.20 ND

0.15 mg/L

MDL Unit

D Prepared

10/09/14 09:14

Analyzed 10/09/14 18:23

Client Sample ID: Method Blank

Dil Fac

OC Sample Results

TestAmerica Job ID: 480-68692-1

Client Sample ID: Method Blank

Analyzed

10/07/14 11:08

Prep Type: Total/NA

		QC	Jaili	ibie i	resui	L	
Client: Sterling Environmental Engineerin Project/Site: Orange County Landfill	ng PC						
Method: 7196A - Chromium, Hex	cavalent		-				
Lab Sample ID: MB 480-206384/3							
Matrix: Water							
Analysis Batch: 206384							
	MB	MB					
Analyte	Result	Qualifier		RL		MDL	Unit
Chromium, hexavalent	ND			0.010	0.	0050	mg/
Lab Sample ID: LCS 480-206384/4							
Matrix: Water							
Analysis Batch: 206384			Spike		LCS	LCS	
Analyte			Added		Result		
			0.0500		0.0520	- ua	
Chromium, hexavalent			0.0000		0.0020		

Prep Type: Total/NA %Rec. D %Rec Limits

Client Sample ID: Lab Control Sample

85 - 115

Client Sample ID: PZ-14-3

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: 480-68692-2 MS **Matrix: Ground Water** Analysis Batch: 206384

MS MS %Rec. Spike Sample Sample %Rec Limits Result Qualifier Unit D Result Qualifier Added Analyte 0,103 F1 205 85 - 115 ND 0.0500 mg/L Chromium, hexavalent

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-207517/1-A **Matrix: Water**

nalysis Batch: 207541

MB MB

Analyte Result Qualifier

Cyanide, Total ND Lab Sample ID: LCS 480-207517/2-A

Matrix: Water Analysis Batch: 207541

Analyte Cyanide, Total

MB MB

ND

Result Qualifier

RL 0.010

Spike

Added

0.250

LCS LCS

0.232

Result Qualifier

MDL Unit 0.0050 mg/L

Unit

mg/L

D

D

%Rec

93

D

Unit

mg/L

Prepared

104

Analyzed Prepared 10/13/14 15:25 10/13/14 22:41

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 207517

Prep Type: Total/NA

Dil Fac

Prep Type: Total/NA

Prep Batch: 207517

Dil Fac

%Rec. Limits 90 - 110

Client Sample ID: Method Blank

Analyzed

10/12/14 04:47

Client Sample ID: Lab Control Sample

Limits

90 - 110

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-207429/27 Matrix: Water Analysis Batch: 207429

Analyte Total Organic Carbon

Lab Sample ID: LCS 480-207429/28 Matrix: Water

Analyte

Analysis Batch: 207429

Spike Added 60.0 Total Organic Carbon

RL MDL Unit 1.0 0.43 mg/L

> LCS LCS Qualifier Result

> > 60.8

Unit mg/L D %Rec 101

Prepared

Prep Type: Total/NA %Rec.

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Dil Fac

Dil Fac

Project/Site: Orange County Landfill

Method: SM 2340C - Hardness, Total (mg/l as CaC03) (Continued)

Lab Sample ID: LCS 480-206969/52

Matrix: Water

Hardness

Analysis Batch: 206969

Analyte

Lab Sample ID: LCS 480-206969/76

Matrix: Water

Analysis Batch: 206969

Analyte

Hardness

Spike Added

298

Spike

Added

504

Spike

Added

504

Spike

Added

298

LCS LCS

10

RL 10 Result Qualifier 284

LCS LCS

288

Result Qualifier

Unit mg/L

Unit

mg/L

D

D

%Rec

97

%Rec 95

Prepared

%Rec

Prepared

%Rec

102

99

Limits 90 - 110

Client Sample ID: Method Blank

Analyzed

10/10/14 23:57

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 - 115

Client Sample ID: Method Blank

Analyzed

10/13/14 00:14

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 - 115

%Rec

LCS LCS

Result

500

MDL Unit

Qualifier

MDL Unit

4.0 ma/L

LCS LCS

512

Result Qualifier

Unit

mg/L

Unit

mg/L

4.0 mg/L

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-207217/1

Matrix: Water

Analysis Batch: 207217

MB MB

Analyte Total Dissolved Solids

Result Qualifier ND

Lab Sample ID: LCS 480-207217/2

Matrix: Water

Analysis Batch: 207217

Analyte

Total Dissolved Solids

Lab Sample ID: MB 480-207341/1

Matrix: Water

Analysis Batch: 207341

Analyte Total Dissolved Solids

Lab Sample ID: LCS 480-207341/2 Matrix: Water

Analysis Batch: 207341

Analyte **Total Dissolved Solids**

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-206522/1

Matrix: Water

Analysis Batch: 206522

Biochemical Oxygen Demand

USB USB Result Qualifier

мв мв Result Qualifier

ND

ND

RL MDL 2.0 2.0

Unit mg/L

Prepared

D

10/07/14 23:53

Client Sample ID: Method Blank

Analyzed Dil Fac

Prep Type: Total/NA

QC Association Summary

Client: Sterling Environmental Engineering PC project/Site: Orange County Landfill

GC/MS VOA

Analysis	Batch:	206699
Allulysis	Duton.	T00000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	624	
480-68692-2	PZ-14-3	Total/NA	Ground Water	624	
480-68692-3	TB1	Total/NA	Water	624	
LCS 480-206699/6	Lab Control Sample	Total/NA	Water	624	
MB 480-206699/8	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 206494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	3 005A	
480-68692-2	PZ-14-3	Dissolved	Ground Water	3005A	
LCS 480-206494/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 480-206494/1-A	Method Blank	Total Recoverable	Water	3005A	

Prep Batch: 206499

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	3005A	with bully
480-68692-2	PZ-14-3	Total/NA	Ground Water	3005A	
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-206499/1-A	Method Blank	Total/NA	Water	3005A	

p Batch: 206574

T	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-68692-1	PZ-14-5	Total/NA	Ground Water	7470A	
1	480-68692-2	PZ-14-3	Total/NA	Ground Water	7470A	
	LCS 480-206574/2-A	Lab Control Sample	Total/NA	Water	7470A	
	MB 480-206574/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 206785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Dissolved	Ground Water	6010C	206494
480-68692-2	PZ-14-3	Dissolved	Ground Water	6010C	206494
LCS 480-206494/2-A	Lab Control Sample	Total Recoverable	Water	6010C	206494
MB 480-206494/1-A	Method Blank	Total Recoverable	Water	6010C	206494

Analysis Batch: 206912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	7470A	206574
480-68692-2	PZ-14-3	Total/NA	Ground Water	7470A	206574
LCS 480-206574/2-A	Lab Control Sample	Total/NA	Water	7470A	206574
MB 480-206574/1-A	Method Blank	Total/NA	Water	7470A	206574

Analysis Batch: 206924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	6010C	206499
480-68692-2	PZ-14-3	Total/NA	Ground Water	6010C	206499
LCS 480-206499/2-A	Lab Control Sample	Total/NA	Water	6010C	206499

QC Association Summary

Client: Sterling Environmental Engineering PC

480-68692-1

480-68692-2

PZ-14-5

PZ-14-3

TestAmerica Job ID: 480-68692-1

Seneral Chemistry	(Continued)				
nalysis Batch: 20647	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	353.2	
480-68692-2	PZ-14-3	Total/NA	Ground Water	353.2	
nalysis Batch: 20648	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	180.1	
480-68692-1 DU	PZ-14-5	Total/NA	Ground Water	180.1	
480-68692-2	PZ-14-3	Total/NA	Ground Water	180.1	
LCS 480-206480/4	Lab Control Sample	Total/NA	Water	180.1	
MB 480-206480/3	Method Blank	Total/NA	Water	180.1	
nalysis Batch: 20652	2				
	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
Lab Sample ID 480-68692-1	PZ-14-5	Total/NA	Ground Water	SM 5210B	
480-68692-2	PZ-14-3	Total/NA	Ground Water	SM 5210B	
480-68692-2 DU	PZ-14-3	Total/NA	Ground Water	SM 5210B	
LCS 480-206522/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-206522/1	Method Blank	Total/NA	Water	SM 5210B	
Analysis Batch: 20672			Market.	Mathad	Prep Batc
Lab Sample ID	Client Sample ID	Prep Type Total/NA	Matrix Ground Water	Method SM 2120B	гіер васс
480-68692-1	PZ-14-5	Total/NA	Ground Water	SM 2120B	
480-68692-1 DU	PZ-14-5	Total/NA	Ground Water	SM 2120B	
480-68692-2	PZ-14-3		Water	SM 2120B	
LCS 480-206725/4	Lab Control Sample Method Blank	Total/NA Total/NA	Water	SM 2120B	
MB 480-206725/3		OLEDNA	VValor	OW 2 1200	
Analysis Batch: 2067:				2.5	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-68692-1	PZ-14-5	Total/NA	Ground Water	350.1	
480-68692-2	PZ-14-3	Total/NA	Ground Water	350.1 350.1	
LCS 480-206737/100	Lab Control Sample	Total/NA	Water		
LCS 480-206737/124	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-206737/4	Lab Control Sample	Total/NA	Water	350.1 350.1	
LCS 480-206737/76	Lab Control Sample	Total/NA	Water	350.1 350.1	
MB 480-206737/123	Method Blank	Total/NA	Water		
MB 480-206737/3	Method Blank	Total/NA	Water	350.1	
MB 480-206737/75	Method Blank	Total/NA	Water	350.1 350.1	
MB 480-206737/99	Method Blank	Total/NA	Water	350.1	
Prep Batch: 206888					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
480-68692-1	PZ-14-5	Total/NA	Ground Water	Distill/Phenol	
480-68692-2	PZ-14-3	Total/NA	Ground Water	Distill/Phenol	
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-206888/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
Prep Batch: 206899					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
490_69602_1	P7-14-5	T-4-1/616	Ground Water	351.2	

TestAmerica Buffalo

Total/NA

Total/NA

Ground Water

Ground Water

351.2

351.2

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

	General	Chemistry	(Continued)
--	---------	-----------	-------------

Analysis	Batch:	207542
-----------------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	9066	206888
480-68692-2	PZ-14-3	Total/NA	Ground Water	9066	206888
LCS 480-206888/2-A	Lab Control Sample	Total/NA	Water	9066	206888
MB 480-206888/1-A	Method Blank	Total/NA	Water	9066	206888

Analysis Batch: 207719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	310.2	
LCS 480-207719/186	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/193	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207719/204	Lab Control Sample	Total/NA	Water	310.2	
MB 480-2077 19/185	Method Blank	Total/NA	Water	310.2	
MB 480-207719/192	Method Blank	Total/NA	Water	310.2	
MB 480-207719/203	Method Blank	Total/NA	Water	310.2	

Analysis Batch: 207973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-2	PZ-14-3	Total/NA	Ground Water	310.2	
LCS 480-207973/13	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-207973/27	Lab Control Sample	Total/NA	Water	310.2	
MB 480-207973/12	Method Blank	Total/NA	Water	310.2	
MB 480-207973/26	Method Blank	Total/NA	Water	310.2	

malysis Batch: 208155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-68692-1	PZ-14-5	Total/NA	Ground Water	410.4	Account of the control of the contro
480-68692-2	PZ-14-3	Total/NA	Ground Water	410.4	
LCS 480-208155/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/4	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-208155/52	Lab Control Sample	Total/NA	Water	410.4	
MB 480-208155/27	Method Blank	Total/NA	Water	410.4	
MB 480-208155/3	Method Blank	Total/NA	Water	410.4	
MB 480-208155/51	Method Blank	Total/NA	Water	410.4	

Lab Chronicle

Client: Sterling Environmental Engineering PC

Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

Lab Sample ID: 480-68692-2

Matrix: Ground Water

Client Sample ID: PZ-14-3

Date Collected: 10/06/14 11:25 Date Received: 10/07/14 09:00

D T	Batch	Batch	Post	Dilution	Batch	Prepared	Analyst	Lab	
Prep Type	Туре	Method 3005A	Run	Factor	Number 206499	or Analyzed 10/08/14 08:55	Analyst	TAL BUF	
Γotal/NA Γotal/NA	Prep Analysis	6010C		1	206924	10/08/14 19:15	AMH	TAL BUF	
Total/NA	•	3005A			206499	10/08/14 08:55	SLB	TAL BUF	
Total/NA	Prep Analysis	6010C		1	207036	10/09/14 13:57	AMH	TAL BUF	
Dissolved	Prep	7470A			207374	10/13/14 08:55	LRK	TAL BUF	
Dissolved	Analysis	7470A		1	207557	10/13/14 08:33	LRK	TAL BUF	
Total/NA	Prep	7470A		,	206574	10/08/14 10:50	LRK	TAL BUF	
Total/NA	Analysis	7470A		1	206912	10/09/14 11:29	LRK	TAL BUF	
Total/NA	Analysis	180.1		1	206480	10/07/14 23:00	CLT	TAL BUF	
Total/NA	Analysis	300.0		1	150879	10/10/14 02:47	JMB	TAL CAN	
Total/NA	Analysis	310.2		10	207973	10/15/14 08:45	NCH	TAL BUF	
Γotal/NA	Analysis	350.1		5	206737	10/09/14 00:43	RS	TAL BUF	
Total/NA	Prep	351.2			206899	10/09/14 09:14	LAW	TAL BUF	
Total/NA	Analysis	351.2		2	207003	10/10/14 04:00	CLT	TAL BUF	
Total/NA	Analysis	353.2		1	206477	10/07/14 22:00	RS	TAL BUF	
Total/NA	Analysis	410.4		1	208155	10/16/14 09:12	KMF	TAL BUF	
Total/NA	Analysis	7196A		1	206384	10/07/14 11:08	NCH	TAL BUF	
Total/NA	Prep	9012B			207517	10/13/14 15:25	MDL	TAL BUF	
Total/NA	Analysis	9012B		1	207541	10/13/14 22:56	RS	TAL BUF	
Total/NA	Analysis	9060A		1	207429	10/12/14 09:02	MRF	TAL BUF	
Total/NA	Prep	Distill/Phenol			206888	10/09/14 09:30	MRF	TAL BUF	
Total/NA	Analysis	9066		1	207542	10/13/14 20:36	JMB	TAL BUF	
Total/NA	Analysis	SM 2120B		1	206725	10/07/14 23:20	RS	TAL BUF	
Total/NA	Analysis	SM 2340C		1	206969	10/09/14 11:55	KMF	TAL BUF	
Total/NA	Analysis	SM 2540C		1	207341	10/13/14 00:14	VAJ	TAL BUF	
Total/NA	Analysis	SM 5210B		1	206522	10/07/14 23:53	LAW	TAL BUF	

Client Sample ID: TB1

Date Collected: 10/06/14 00:00 Date Received: 10/07/14 09:00 Lab Sample ID: 480-68692-3

Matrix: Water

-		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	624		1	206699	10/09/14 05:09	ABF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Buffalo

10/17/2014

Certification Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill TestAmerica Job ID: 480-68692-1

aboratory: TestAmerica Canton (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Ohio VAP	State Program	5	CL0024	10-31-15
Pennsylvania	NELAP	3	68-00340	08-31-15
Texas	NELAP	6		08-31-15
USDA	Federal		P330-13-00319	11-26-16
Virginia	NELAP	3	460175	09-14-15
Washington	State Program	10	C971	01-12-15
West Virginia DEP	State Program	3	210	12-31-14
Wisconsin	State Program	5	999518190	08-31-15

Sample Summary

Client: Sterling Environmental Engineering PC Project/Site: Orange County Landfill

TestAmerica Job ID: 480-68692-1

		the state of the s	The state of the s		
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-68692-1	PZ-14-5	Ground Water	10/06/14 12:55	10/07/14 09:00	
480-68692-2	PZ-14-3	Ground Water	10/06/14 11:25	10/07/14 09:00	
480-68692-3	TB1	Water	10/06/14 00:00	10/07/14 09:00	

13

Test (rica Bu 18 Razeluood Brive

Amberst NY 14228

Possible Hazard Identification:

Non-Hazard

Comments Section if the lab is to dispose of the sample.

Flammable

Company Name:

Project Name: Site:

Address:

PO#

Phone: 716.691.2608

Client Contact

Sample Identification

Project Manager: Manager:

CALENDAR DAYS

Analysis Turnaround Time

2 days

1 day Sample Type

(C=Comp, G=Grab)

TAT if different from Below

Sample

Time

Tel/Fax:

4

Sample

Date

10/6

Polson B

Chain Sustody Record

RCRA

Site Contact:

Lab Contacto

DW NPDES

WORKING DAYS

Matrix

GW

Cont.

039837

Date:

Carrier:

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713) COC No: COCs Sampler: For Lab Use Only: Walk-in Client: Lab Sampling: Job / SDG No .: Sample Specific Notes:

Reservation Used, 11=7ce 22=HCl 3=H2S04, 4=HN03, 5=NaOR 6=Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Archive for Return to Client Disposal by Lab Months

Special Instructions/QC Requirements & Comments: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No .: Custody Seals Intact: Custody Seal No .: Date/Time: Date/Time: Received by Company: Company: Relinquished by: 10-4-14 0900 Relinquished by: Company: Date/Time: Received by: Company: Date/Time:

Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company:

Unknown

#2 3,8,3.9, 4.2

APPENDIX K
REFERENCES

References

- Chillrud, Steven. "Older Landfills and Arsenic: Can Triage Assessments Help Focus Limited Resources?" Boston, MA. October 3-4, 2006.
- Cornerstone. "Environmental Monitoring Program 2013 Monitoring Event: Orange County Landfill." Goshen, NY. September 2013.
- Higgins, James., and Andrew Lugowski. "The Use of a Natural Forested Wetland for Landfill Leachate Polishing in a Cold Climate." June 3-4, 1996.
- Parisio, Steven. "An Assessment of Groundwater Quality Monitoring Data Collected at Unlined Municipal Solid Waste Landfills." Bolton Landing, NY. May 8, 2007.
- Parisio, Steven. "Historic Fill & Old Landfills: Tools for Delineation." May 20, 2014.
- Parisio, Steven., Jeremy Giordano, Eva Knoth, Michael Rispoli, and Sean Rodriguez. "Ambient and Landfill-Impacted Groundwater Quality in the Hudson Valley of Southeastern New York State." Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy Volume 14, Article 28. January 26, 2010.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Appendices A through M." Orange County, NY. March 1995.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Report." Orange County, NY. March 1995.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Volume II, Appendices A through M." Orange County, NY. May 1995.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Volume III, Appendix J Continued." Orange County, NY. May 1995.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Volume III, Appendix J Continued." Orange County, NY. November 1996.
- Stearns & Wheler. "Remedial Investigation Orange County Landfill: Volume IV, Appendix N." Orange County, NY. November 1996.
- Sterling Environmental Engineering. "Orange County Landfill: 2013 Post-Closure Monitoring Summary." Latham, NY. August 20, 2013.
- "Wallkill River Flood Mitigation Implementation Plan Black Dirt Region, Orange County, NY: Summary of Further Investigations Regarding Flood Mitigation Study Areas." Orange County, NY. August 16, 2013.