

April 13, 2017

Mr. Bradford Shaw, P.E. NYS Department of Environmental Conservation **RCRA Permitting Section** Division of Environmental Remediation Remedial Bureau E, 12th Floor 625 Broadway Albany, New York 12233-7017

RECEIVED

APR 1 4 2017

REMEDIAL BUREAU E

Subject: Orange County Landfill NYSDEC Site No. 336007 2016 Periodic Review Report

STERLING File #2010-15

Dear Mr. Shaw,

In accordance with the approved Site Management Plan, enclosed please find the Periodic Review Report for the January 1, 2016 through December 31, 2016 period.

Please contact me should you have questions.

Very truly yours,

STERLING ENVIRONMENTAL ENGINEERING, P.C.

Mark P. Millspaugh, P.E.

President

mark.millspaugh@sterlingenvironmental.com

MPM/bc Email/First Class Mail Enclosure

Peter S. Hammond, Orange County (phammond@co.orange.ny.us) cc:

Joseph F. Mahoney Esq. (JJMahoney@orangecountygov.com)

S:\Sterling\Projects\2010 Projects\Orange County - 2010-15\Correspondence\NYSDEC_2016_PRR_Transmittal Letter.docx

"Serving our clients and the environment since 1993"

2016 PERIODIC REVIEW REPORT (January 1, 2016 – January 31, 2017

ORANGE COUNTY LANDFILL NYSDEC SITE NO. 336007 ROUTE 17M, GOSHEN, NEW YORK

Prepared for:

Orange County Department of Public Works
Division of Environmental Facilities and Services
P.O. Box 637
2455-2459 Route 17M
Goshen, New York 10924

Prepared by:

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

April 13, 2017

2016 PERIODIC REVIEW REPORT (January 1, 2016 – January 31, 2017

ORANGE COUNTY LANDFILL NYSDEC SITE NO. 336007 ROUTE 17M, GOSHEN, NEW YORK

Table of Contents

	<u>Pag</u>	<u>e</u>
CERTI	ICATIONii	i
EXECU	TIVE SUMMARY	1
1.0	INTRODUCTION	2
2.0	SITE OVERVIEW	3
3.0	PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS 3.1 Groundwater Quality 3.2 Surface Water Quality 3.3 Leachate Quality 3.4 Air Quality 3.5 Seeps	4 7 7 8
4.0	INSTITUTIONAL/ENGINEERING CONTROL PLAN COMPLIANCE 4.1 Institutional Controls 4.1.1 Deed Restrictions 4.2 Engineering Controls 4.2.1 Part 360 Landfill Cover System 4.2.2 Leachate Collection System 4.2.3 Groundwater Monitoring Wells 4.2.4 Surface Water Runoff Features 4.3 IC/EC Certification 1	999900
5.0	MONITORING PLAN COMPLIANCE	1 2 2
6.0	OPERATION AND MAINTENANCE PLAN COMPLIANCE1	3
7.0	CONCLUSIONS AND RECOMMENDATIONS1	4

Figures

Figure 1 Figure 2	Site Location Map Sample Location Map	
Figure 3	Groundwater Contour Map - Overburden Hydrogeologic Unit	
	<u>Tables</u>	

Table 1	Summary of Field Parameter Measurements (January 25-26, 2017)
Table 2	Summary of Water Elevation Measurements (January 25-26, 2017)
Table 3	Summary of Groundwater Analytical Results (January 25-26, 2017)
Table 4	Summary of Surface Water Analytical Results (January 25-26, 2017)
Table 5	Summary of Leachate Analytical Results (January 25-26, 2017)

Appendices

Orange County Landfill Post-Closure Field Inspection Documents and Monthly
Inspection Reports
Orange County Leachate Volume Collected from Leachate Collection System
NYSDEC Institutional and Engineering Controls Certification Form
2017 PCM Sampling Event Forms
Analytical Report

S:\Sterling\Projects\2010 Projects\Orange County - 2010-15\Reports\Periodic Review Report\2016 PRR\Orange County LF PRR 2016_041317docx.docx

CERTIFICATION

I, Mark P. Millspaugh, P.E., certify that I am a New York State registered professional engineer and that this Periodic Review Report (PRR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in accordance with the DER-approved work plan and any DER-approved modifications.

EXECUTIVE SUMMARY

The Orange County Landfill (Landfill) is located in the Town of Goshen, Orange County, New York (refer to Figure 1) and is registered as a Class 2 lnactive Hazardous Waste Disposal Site ("the Site"), Registry No. 3-36-007 by the New York State Department of Environmental Conservation (NYSDEC).

The NYSDEC issued a Record of Decision (ROD) on January 28, 1994 for Operable Unit No. 2 that required construction of a final cover over the Landfill waste mass, which was completed in 1995. A second ROD addressing the Site as a whole, including any contamination that may have migrated from the waste mass, was issued on March 26, 1998 for Operable Unit 01. The selected remedies for the Landfill include Institutional Controls (IC) through a Declaration of Covenants and Restrictions that restricts disturbance of the Landfill cover and places restrictions on site uses, and Engineering Controls (EC) provided by the Landfill cover and leachate collection systems, air and water quality monitoring, regular inspections and maintenance activities. Post-closure water and air quality monitoring, leachate removal, inspections and maintenance at the Landfill have been provided by Orange County since 1996. A Site Management Plan (SMP) was approved by the NYSDEC on August 5, 2014, which incorporates the Institutional/Engineering Control (IC/EC) Plan, the Inspection and Monitoring Plan, and the Operation and Maintenance Plan to provide for the continual post-closure monitoring and maintenance of the Landfill.

An annual Periodic Review Report (PRR) is required to document site management activities outlined in the SMP. This PRR covers the period January 1, 2016 to January 31, 2017.

The remedial program implemented at the Landfill has been successful in meeting the remedial objectives set forth in the RODs. Leachate generation and contaminant migration through groundwater has been reduced, contaminated surface run-off and direct human/animal contact with waste is eliminated, and Landfill gas migration/buildup is prevented. Discolored groundwater seeps exhibiting some leachate characteristics have been observed along the banks of the Cheechunk Canal, downgradient of the Landfill. In 2016, the County completed the Supplemental Sediment Investigation (SSI) and submitted the SSI Report on August 19, 2016; completed the Constructed Wetland Treatment System Feasibility Study; submitted a revised Remedial Action Work Plan (RAWP) to the NYSDEC addressing the observed seeps; and conducted weekly inspections of the seep locations.

Based on the results of activities performed in 2016 through January 2017, no changes to the approved SMP are recommended. The requirements for discontinuing site management have not been met. As such, continued compliance with the approved SMP, including additional required submittals and actions addressing the seeps, is recommended.

1.0 INTRODUCTION

The Orange County Landfill (Landfill) is located in the Town of Goshen, Orange County, New York (refer to Figure 1) and is registered as a Class 2 Inactive Hazardous Waste Disposal Site, Registry No. 3-36-007 by the NYSDEC.

An annual PRR is required to document site management activities outlined in the SMP. This PRR covers the period January 1, 2016 to January 31, 2017.

1.1 Summary of Site Contamination and Site History

The NYSDEC issued a Record of Decision (ROD) on January 28, 1994 for Operable Unit No. 2 that required construction of a final cover over the Landfill waste mass, which was completed in 1995. A second ROD addressing the site as a whole, including any contamination that may have migrated from the waste mass, was issued on March 26, 1998 for Operable Unit 01. The selected remedies for the Landfill include Institutional Controls (IC) through a Declaration of Covenants and Restrictions that restricts disturbance of the Landfill cover and places restrictions on site uses, and Engineering Controls (EC) provided by the Landfill cover and leachate collection systems, air and water quality monitoring, regular inspections and maintenance activities. Post-closure water and air quality monitoring, leachate removal, inspections and maintenance at the Landfill have been provided by Orange County since 1996. A Site Management Plan (SMP) was approved by the NYSDEC on August 5, 2014, which incorporates the Institutional/Engineering Control (IC/EC) Plan, the Inspection and Monitoring Plan, and the Operation and Maintenance Plan to provide for the continual post-closure monitoring and maintenance of the Landfill.

1.2 Effectiveness of the Remedial Program and Compliance

The remedial program implemented at the Landfill has been successful in meeting the remedial objectives set forth in the RODs. Leachate generation and contaminant migration through groundwater has been reduced, contaminated surface run-off and direct human/animal contact with waste is eliminated, and Landfill gas migration/buildup is prevented. Discolored groundwater seeps exhibiting some leachate characteristics have been observed along the banks of the Cheechunk Canal, downgradient of the Landfill. In 2016, the County completed the Supplemental Sediment Investigation (SSI) and submitted the SSI Report on August 19, 2016; completed the Constructed Wetland Treatment System Feasibility Study; submitted a revised Remedial Action Work Plan (RAWP) to the NYSDEC addressing the observed seeps; and conducted weekly inspections of the seep locations.

1.3 Recommendations

Based on the results of activities performed in 2016 through January 2017, no changes to the approved SMP are recommended. The requirements for discontinuing site management have not been met. As such, continued compliance with the approved SMP, including additional required submittals and actions addressing the seeps, is recommended.

2.0 SITE OVERVIEW

The Landfill consists of a 75-acre waste mass on a 300-acre rural parcel approximately three (3) miles west of the Village of Goshen on the south side of Route 17M in the Town of Goshen, Orange County, New York (see Figure 1).

The Landfill property is bounded by the Cheechunk Canal to the southeast and by the Old Channel of the Wallkill River to the northwest and southwest. To the northwest of the Landfill, a proposed Landfill expansion of an additional 75-acres was intended. The expansion project was never completed nor used for landfilling. To the northeast edge of the Landfill lies a landfill-to-gas energy system facility. The New Hampton Transfer Station is located on the northeast border of the 300-acre parcel.

The Orange County Department of Public Works operated the Landfill between 1974 and January 1992. Approximately 7,000,000 cubic yards of predominantly municipal waste was disposed, however waste oil, septic sludge, industrial waste and hazardous waste are documented to have also reportedly been disposed at the Landfill.

The Landfill was classified as a "Class 2" Inactive Hazardous Waste Disposal Site by the NYSDEC in March 1992, Site Number 336007. The NYSDEC issued two RODs, dated January 1994 and March 1998, respectively. The January 1994 ROD accelerated the capping of the Landfill and the March 1998 ROD addressed contamination that may have migrated from the waste mass.

The selected remedies for the Landfill include institutional and engineering controls. Institutional control (IC) is provided in the form of a Declaration of Covenants and Restrictions that restricts disturbance of the Landfill cover and places restrictions on site uses. Engineering controls (EC) are provided by the Landfill cover and leachate collection systems, annual air and water quality monitoring, regular inspections and maintenance activities.

The ongoing post-closure activities are outlined by the approved SMP and are based on the requirements of the Technical Guidance for Site Investigation and Remediation (DER-10), Section 6.2. The June 6, 2014 SMP (approved by the NYSDEC on August 5, 2014) incorporates the IC/EC Plan, the Inspection and Monitoring Plan, and the Operation and Maintenance Plan, which provide for the continual post-closure monitoring and maintenance of the Landfill.

Since January 1996, Orange County has submitted Post-Closure Monitoring and Maintenance reports to the NYSDEC documenting the Landfill inspection, environmental monitoring, and leachate management activities. Since 2014, the NYSDEC has required annual documentation in the form of a PRR.

This PRR covers inspection, monitoring, operating and maintenance activities, and compliance for the period from January 1, 2016 through January 31, 2017.

3.0 PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The Landfill has been subject to a Post-Closure Monitoring and Maintenance Program (PCMMM) since January 1996. The PCMMM, revised in January 1999, December 2002 and June 2014, provides for regular site inspections, groundwater, surface water and leachate monitoring, leachate collection and management, mowing, and Landfill gas management. Monitoring locations are shown on Figure 2.

3.1 Groundwater Quality

Historical results obtained over two decades of monitoring indicate groundwater near the Landfill is characterized by concentrations of turbidity, Total Dissolved Solids (TDS), iron, and manganese and occasional concentrations of ammonia, bromide, chloride, phenolics, sulfate, arsenic, beryllium, cadmium, chromium, copper, lead, magnesium, nickel, selenium, sodium, and thallium that exceed groundwater standards (NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1), Ambient Water Quality Standards and Guidance Values (June 1998)). Historically, leachate indicator parameters such as alkalinity, ammonia, Chemical Oxygen Demand (COD), chloride, sulfate, TDS, TKN, and Total Organic Carbon (TOC) along with inorganic compounds such as iron, magnesium, manganese, potassium, and sodium were evaluated.

Groundwater quality results in 2017 indicate no significant differences in data trends where exceedances were historically observed.

The chart below shows where the highest concentration areas for certain parameters are:

Parameter	Highest Concentration Areas
Alkalinity	MW-3B and PZ-4
Ammonia	MW-3B and MW-245D
COD	MW-245S
Chloride	MW-233D
Sulfate	MW-220 and MW-233S
TDS	MW-220 and PZ-4
TKN	MW-233S
TOC	MW-3B and MW-233S
Iron	MW-220 and MW-245S
Magnesium	MW-220, MW-233S, and PZ-4
Manganese	MW-220, MW-233S, and MW-245S
Potassium	MW-245S and MW-245D
Sodium	MW-233D

As described in Section 4.2.3 below, in 2017 the upgradient well pair MW-233 (MW-233S / MW-233D) was sampled in replacement of upgradient well pair MW-230 (MW-230S / MW-230D). No VOCs were detected at any of the overburden or bedrock monitoring wells sampled in 2017.

The 2017 field parameters and groundwater elevations for site groundwater are presented in Tables 1 and 2, respectively. A groundwater contour map for the overburden hydrogeologic unit is provided as Figure 3. Analytical results for monitoring well samples are summarized in Table 3 and are compared to the NYSDEC TOGS 1.1.1, June 1998.

A detailed summary of reported parameter exceedances for the 2017 event is provided below.

Parameter Exceeding Water Quality Standard (TOGS 1.1.1)	Monitoring Well Location (Analytical Result)						
Turbidity (5 NTU)	Upgradient Overburden (MW-233S (90.1 NTU)), Upgradient Bedrock (MW-233D (11.51 mg/L)), Downgradient Overburden (MW-3B (5.15 mg/L), MW-220 (277.4 mg/L), and PZ-4 (9.35 mg/L)), and Downgradient Bedrock (MW-245D (12.37 mg/L))						
Ammonia (2.0 mg/L)	Downgradient Overburden (MW-3B (2.29 mg/L) and Downgradient Bedrock (MW-245D (4.24 mg/L))						
Color* (15 Color Units (CU))	Downgradient Overburden (MW-3B (32 CU), MW-220 (30 CU), and MW-245S (52 CU)), and Downgradient Bedrock (MW-245D (16 CU))						
Phenolics (0.001 mg/L)	Upgradient Overburden (MW-233S (0.028 mg/L**)) and Downgradient Overburden (MW-3B (0.007 mg/L**), MW-220 (0.008 mg/L**), and PZ-4 (0.011 mg/L**))						
TDS (500 mg/L)	Upgradient Overburden (MW-233S (540 mg/L)), Upgradient Bedrock (MW-233D (550 mg/L)), and Downgradient Overburden (MW-3B (630 mg/L), MW-220 (700 mg/L), MW-245S (630 mg/L), and PZ-4 (720 mg/L))						
Arsenic (0.025 mg/L)	Downgradient Overburden (MW-3B (0.0305 mg/L) and MW-245S (0.1686 mg/L))						
Iron (0.3 mg/L***)	Upgradient Overburden (MW-233S (0.127 mg/L***)), Downgradient Overburden (MW-3B (0.815 mg/L***), MW-220 (3.63 mg/L***), MW-245S (11.1 mg/L**), and PZ-4 (0.294 mg/L***)), and Downgradient Bedrock (MW-245D (1.17 mg/L***))						
Magnesium (35 mg/L)	Upgradient Overburden (MW-233S (46 mg/L)), and Downgradient Overburden (MW-220 (46 mg/L), and PZ-4 (44 mg/L))						
Manganese (0.3 mg/L***)	Upgradient Overburden (MW-233S (2.145 mg/L***)), Downgradient Overburden (MW-3B (0.6728 mg/L***), MW-220 (1.571 mg/L***), MW-245S (1.783 mg/L***), and PZ-4 (0.4129 mg/L***)), and Downgradient Bedrock (MW-245D (0.2291 mg/L***))						
Sodium (20 mg/L)	Upgradient Bedrock (MW-233D (109 mg/L)), Downgradient Overburden (MW-3B (41.4 mg/L), and MW-245S (51.3 mg/L), and Downgradient Bedrock (MW-245D (51.5 mg/L)						

* Standard based on EPA Part 5, Subpart 5-1 Public Water Systems – Tables 1 and 5.

** Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

*** The sum of iron and manganese must not exceed 0.5 mg/L.

A summary of current groundwater quality compared to historical results is presented below:

- MW-3B (Downgradient) TOGS 1.1.1 exceedances for turbidity, ammonia, color, phenolics, TDS, arsenic, iron, manganese, and sodium were reported. Turbidity, ammonia, TDS, iron, manganese, and sodium have consistently exceeded their applicable standard at this downgradient monitoring well since 2011. The reported result for phenolics is associated with a "J" qualifier which indicates that the result is above the laboratory method detection limit; however, it is approximated below the laboratory reporting limit. TDS, arsenic, iron, manganese, and sodium results slightly decreased from the 2014 and 2015 levels, and appear to be stable and within the published historical range for each analyte. Ammonia, TDS, arsenic, iron, manganese, and sodium concentrations have exhibited a decreasing trend and some analytes are at their lowest levels since 2009 (ammonia, TDS, arsenic, and sodium) or since 1997 (iron and manganese). The reported concentrations for phenolics has increased compared to 2014 and 2015 results.
- MW-220 (Downgradient) TOGS 1.1.1 exceedances for turbidity, color, phenolics, TDS, iron, magnesium, and manganese were reported during this sampling event. Turbidity, TDS, iron, magnesium, and manganese have consistently exceeded their applicable standard at this downgradient monitoring well. Values of these parameters are comparable to those from 2015. The reported result for phenolics is associated with a "J" qualifier which indicates that the result is above the laboratory method detection limit; however, it is approximated below the laboratory reporting limit. Water quality parameter results for turbidity, TDS, and magnesium were stable and at the lower end of their published historical range. Iron decreased in comparison to 2014 and 2015 results and is also at the lower end of the published historical range. The reported concentrations for phenolics and manganese slightly increased compared to 2014 and 2015 results but were still within their published range.
- <u>MW-233S Upgradient</u>) TOGS 1.1.1 exceedances for turbidity, phenolics, TDS, iron, magnesium, and manganese were reported during this sampling event. The reported result for phenolics is associated with a "J" qualifier which indicates that the result is above the laboratory method detection limit; however, it is approximated below the laboratory reporting limit. Analytical results for this monitoring well are comparable to the reported results for 2015.
- <u>MW-233D (Upgradient)</u> TOGS 1.1.1 exceedances for turbidity, TDS, and sodium were reported. Analytical results for this upgradient monitoring well are similar to the reported results for 2015.
- MW-245S (Downgradient) TOGS 1.1.1 exceedances for color, TDS, arsenic, iron, manganese, and sodium were reported during this sampling event. TDS and manganese results are stable and within the published historical range for each analyte. Arsenic increased from 2015 concentrations but were similar to 2012 and 2014 results. Iron increased from 2015 concentrations but were similar to 2013 and 2014 results and significantly lower than 2012 results. Sodium concentrations slightly increased compared to 2015 results and have steadily risen since 2012; the 2011 sodium results was very similar to the 2017 sodium result.
- MW-245D (Downgradient) TOGS 1.1.1 exceedances for turbidity, ammonia, color, iron, manganese, and sodium were reported. Turbidity, iron, and sodium consistently exceed their applicable standard. Past TDS results exceeded the TOGS 1.1.1 standard between 2012 and 2015; the 2017 TDS result was less than 500 mg/L standard. Ammonia levels slightly increased compared to 2015 results but are notably lower than 2012, 2013, and 2014 levels. Iron increased

from 2015 concentrations but were less than 2012 results and within the published historical range. Sodium results are also within the published historical range and have slightly dropped since 2014.

• PZ-4 (Downgradient) - TOGS 1.1.1 exceedances for turbidity, phenolics, TDS, iron, magnesium, and manganese were reported during this sampling event. TDS, iron, and manganese have consistently TOGS 1.1.1 standards. The reported result for phenolics is associated with a "J" qualifier which indicates that the result is above the laboratory method detection limit; however, it is approximated below the laboratory reporting limit. Water quality parameter results for turbidity, TDS, and magnesium were stable and at the lower end of the published historical range. Iron decreased from 2012 to 2015 concentrations and is below the historical range and at the lower end of the published historical range. The reported concentrations for phenolics and manganese slightly increased compared to 2014 and 2015 results but were still at the lower end of their published historical range.

3.2 Surface Water Quality

The 2017 analytical data for site surface water are presented in Table 4. The surface water samples were collected from downstream surface water monitoring locations SW-5 and SW-8 and upstream surface water monitoring location SW-13.

Reported concentrations for total aluminum exceeded the TOGS 1.1.1 Class C surface water quality standard of 0.1 mg/L at SW-13 (0.974 mg/L), SW-5 (0.662 mg/L) and SW-8 (1.04 mg/L). Review of historical concentrations (1999 - 2017) indicate that 2017 aluminum results for upstream and downstream samples were elevated but similar to each other and within the upper limits of the historical range.

The surface water samples collected from SW-13 (upstream) and SW-8 (downstream) exceeded the TOGS 1.1.1 Class C surface water quality standard for iron (0.3 mg/L). The 2017 iron result at the upstream location SW-13 (1.72 mg/L) is higher than its historical average, which is also higher than the downstream sample collected at SW-8 (1.67 mg/L). The 2017 iron concentrations at SW-13 and SW-8 were on the higher end of past reported concentrations at those locations.

There were no volatile organic compounds detected above method detection limits in any of the surface water samples collected. No water quality parameters or other total recoverable metals, besides aluminum and iron, exceeded standards or guidance values. A comparison of upstream (background conditions) to downstream water quality indicates that no downstream surface water results exceeded upstream conditions, including water quality parameters such as alkalinity, ammonia, chloride, magnesium, and sodium.

3.3 Leachate Quality

The 2017 analytical results for leachate collected from manhole 7 (MH-7) and manhole 15 (MH-15) are summarized in Table 5 and are generally consistent with previous results. Leachate water quality is generally characterized by detectable to elevated concentrations of leachate indicators such as alkalinity, ammonia, COD, chloride, hardness, nitrate, sulfate, TDS, TKN, and TOC and inorganic parameters, including aluminum, antimony, arsenic, barium, boron, calcium, chromium (total), cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc. Inorganic parameters that were not detected include: beryllium, cadmium, hexavalent chromium, mercury, selenium, silver, and thallium.

The VOCs benzene (12 μ g/L) and chlorobenzene (estimated as 19 μ g/L) were detected at MH-7; 1,4-dichlorobenzene (estimated as 1.7 μ g/L), benzene (0.68 μ g/L), chlorobenzene (estimated as 0.76 μ g/L), chloroethane (estimated as 2.1 μ g/L),and vinyl chloride (estimated as 0.18 μ g/L) were detected at MH-15.

3.4 Air Quality

In accordance with the SMP, Landfill gas monitoring consists of measuring explosive gas (Lower Explosive Limit, or LEL) and VOCs in the headspace at each monitoring well/piezometer and leachate manholes MH-7 and MH-15 and along the Landfill perimeter at designated locations shown on Figure 3. Explosive gas measurements were obtained with a QRAE multi-gas monitor while VOC measurements were obtained with a miniRAE 3000 photoionization detector (PID). VOCs are also analyzed in post-closure groundwater and surface water samples.

Explosive gas was detected at wells MW-222, MW-303S, and MW-303D with LEL readings of >100%, >100%, and 4%, respectively. Headspace monitoring at two monitoring well locations, MW-207SA and MW-303S, revealed the presence of VOCs with PID readings of 0.6 parts per million (ppm) and 3.8 ppm, respectively. All other air monitoring locations measured no VOCs and 0% LEL.

A perimeter explosive gas survey was performed on January 26, 2017. Lower Explosive Level (LEL) gas measurements were collected at approximately 100-foot intervals from the subsurface Landfill perimeter from temporary probe holes installed at depths of 12 to 18 inches. A detection of 21% LEL was observed along the western perimeter of the Landfill immediately north of the MW-223 monitoring well pair and immediately south of the perimeter access road. Three (3) additional readings were taken, each ten (10) feet farther from the Landfill perimeter until no explosive gas was detected. The final reading of 0.0% LEL was located approximately 20 feet northwest of the western perimeter access road. This indicates that explosive gas is not migrating off the Landfill property and remains localized. STERLING will continue to monitor explosive gas. The January 2017 air quality monitoring survey for explosive gas, H₂S, and VOCs indicated the Landfill is in full compliance with the requirements set forth in 6 NYCRR 360-2.15(k)(4) and 2.17(f).

3.5 Seeps

In accordance with the SMP, observation for leachate outbreaks is the focus of weekly inspections performed by Orange County personnel. Conditions indicative of leachate outbreaks, such as wet spots, dead vegetation, surface sloughing or discoloration are documented, if present. Further, weekly inspection in the historical leachate seep area included photo-documentation and collection of hydrologic and hydrogeologic data. Based on this information, the surface water level in the historic leachate seep area was lower than the seep elevation line of 357.25 feet amsl during the following periods: June 10, 2016 through July 29, 2016 and August 19, 2016 through November 10, 2016.

Seep samples were not collected during the 2017 PCM sampling event as the water level in the Canal was above the seeps. In support of the ongoing seep evaluation, the County completed the Supplemental Sediment Investigation (SSI) and submitted the SSI Report on August 19, 2016; completed the Constructed Wetland Treatment System Feasibility Study; submitted a revised Remedial Action Work Plan (RAWP) to the NYSDEC addressing the observed seeps; and conducted weekly inspections of the seep locations. The County is poised to complete the Seep Mitigation Work upon NYSDEC's approval of the RAWP and issuance of any required Federal permit.

4.0 INSTITUTIONAL/ENGINEERING CONTROL PLAN COMPLIANCE

The multiple institutional and engineering controls for the Landfill implemented by the RODs and documented in the SMP continue to be in place and performing as designed. These controls were reviewed and evaluated through this PRR.

4.1 Institutional Controls

Institutional Controls (IC) include non-physical means of enforcing a restriction on the use of real property that limits human and environmental exposure, restricts the use of groundwater, provides notice to the potential owners, operators, or members of the public, or prevents actions that would interfere with the effectiveness of the remedial program or with the effectiveness and/or integrity of operation, maintenance or monitoring activities at or pertaining to the Landfill property.

4.1.1 Deed Restrictions

The IC for the Landfill is in the form of a Declaration of Covenants and Restrictions filed with the deed for the Landfill property. The Declaration of Covenants and Restrictions was executed on June 13, 2014, and continues to protect both human health and the integrity of the Landfill. No uses, disturbances or interferences have been allowed by Orange County. Any future use to the Landfill footprint must be approved by Orange County and NYSDEC. The underlying groundwater is not a source of drinking water for nearby residents.

4.2 Engineering Controls

Engineering Controls (EC) include physical barriers or methods employed to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination to ensure the long-term effectiveness of the remedial program, or eliminate potential exposure pathways to contamination. The following sections describe the ECs and their goals as part of the remedy for the Landfill from the ROD dated March 1998.

4.2.1 Part 360 Landfill Cover System

Installation of the standard Part 360 Landfill cover system (completed in November 1995) minimizes infiltration of precipitation to wastes and the resultant generation of leachate, and prevents the release of previously disposed wastes. The cover system is regularly inspected by Orange County to evaluate its performance and assess the physical condition of the following Landfill components: settlement and erosion of Landfill cover, vegetative growth, slope stability, damage due to presence of vector populations over or near Landfill cover (i.e., burrow holes), monitoring well and Landfill gas vent integrity, presence or absence of leachate outbreaks, surface water drainage structures, site fencing, gates and access roads, and evidence of trespassing. A completed Inspection Checklist, Institutional and Engineering Control Form, and select photographs from the annual site inspection and monthly site inspections are provided in Appendix A. The Landfill appears secure, stable, and the Landfill cover is intact with no evidence of stressed vegetation or damage due to settlement or active vectors. No evidence was observed of significant settlement or evidence of erosion of the Landfill cover. There were no observed leachate discharges or iron-stained soils during the Annual Landfill Inspection. The stormwater drainage system appeared to be functioning as designed.

During the monthly post-closure field inspections conducted throughout 2016, the Landfill cover system was observed to be well maintained and remains in good condition. Completed inspection reports are included in Appendix A. No damage to the Landfill cover system was observed. Beyond the regular ongoing post-closure care, no actions or special maintenance is required for the Part 360 Landfill cover system at this time.

4.2.2 Leachate Collection System

The leachate collection system is located along the perimeter of the waste mass. Leachate from the waste mass is collected by underground pipes which flow by gravity to sumps. From these sumps, leachate is pumped into aboveground storage tanks (ASTs) where it is regularly removed for offsite treatment. Modifications to the collection system were introduced with the March 1998 ROD where approximately 950 feet of additional leachate collection piping was installed to contain leachate outbreaks encountered during excavation of a new drainage ditch along the southeastern perimeter road.

The perimeter leachate collection system continues to function as designed. Records regarding leachate removal and treatment are provided in Appendix B. Orange County removed 225,322 gallons from Leachate Tanks 1 - 4 and 221,468 gallons from Leachate Tanks 5 - 7 in 2016. The total leachate removed from the Landfill in 2016 was 446,790 gallons for treatment at an offsite permitted facility. The total leachate removed from the Landfill in 2015 was 488,259 gallons

4.2.3 Groundwater Monitoring Wells

Existing groundwater monitoring wells are located along the upgradient, crossgradient, and downgradient perimeter of the Landfill waste mass. The wells are used to monitor groundwater quality around the Landfill property. Monitoring wells are routinely checked for sediment buildup in the well using depth to bottom measurements and the integrity of the outer casing, lid and lock. These monitoring wells are sampled every fifth quarter for 6 NYCRR Part 360 Baseline Parameters for indication of contamination by the Landfill waste mass.

Monitoring wells MW-230D and the MW-235 well pair (MW-235S/MW-235D) were damaged by mowing activities. Accordingly, MW-233S (Overburden) and MW-233D (Bedrock) were sampled as substitutes for the upgradient well pair location for the 2017 sampling event. The County will revise the SMP groundwater monitoring program to memorialize the change in upgradient monitoring location from MW-230S/MW-230D to MW-233S/MW-233D, as documented in STERLING's previous Notification Letter to the NYSDEC Project Manager. Section 4.4.3 of the SMP will also be revised to remove MW-235S/MW-235D from the list of monitoring wells required to collect groundwater measurements given that they no longer exist (destroyed by mowing contractor) and groundwater flow patterns are well documented north of the closed Landfill. Overall, the monitoring well network is functioning as designed and Orange County will continue the approved annual monitoring program.

4.2.4 Surface Water Runoff Features

Surface water runoff features are located on and around the Landfill property. Terraces and riprap downchutes on the Landfill waste mass direct stormwater runoff to the Landfill perimeter drainage ditches successfully preventing the occurrence of standing water on the Landfill. The surface water runoff is directed into perimeter drainage ditches into drainage basins to reduce particulates and sediment before it ultimately enters into the Cheechunk Canal. These surface water runoff features are checked monthly for sediment buildup, overgrowth of vegetation, overflow of drainage ditches or basins, improper

drainage of terraces and downchutes, and sloughing of the Landfill cover. Appendix A contains documentation of monthly inspections of the surface water runoff features in 2016. Based on the observed conditions, no corrective measures are needed for the surface water management features. Orange County will continue to perform monthly inspections.

4.3 IC/EC Certification

As required by DER-10, Section 6.3(a), the completed and signed NYSDEC IE/EC Certification Form is provided as Appendix C. All ICs/ECs are in place and functioning as designed. The previously noted seeps between the canal and Landfill are the subject of a NYSDEC approved Remedial Action Work Plan.

5.0 MONITORING PLAN COMPLIANCE

The Landfill was granted a post-closure monitoring variance by the NYSDEC in December 2002 reducing the monitoring of the Landfill from quarterly monitoring to every fifth quarter. The NYSDEC approved further modifications to the monitoring plan on August 5, 2014. Monitoring includes collection of groundwater, surface water, and leachate samples for analysis of 6 NYCRR Part 360 Baseline parameters, as well as water level measurements from select monitoring wells, and air quality monitoring. Monitoring wells and sample locations are shown on Figure 2. The following sections describe the monitoring requirements for groundwater, surface water, leachate, and air quality.

5.1 Groundwater Monitoring

The recently updated groundwater monitoring program provides for collection of water quality samples from one piezometer location (PZ-4) and six (6) monitoring wells spread out around the Landfill property. In addition, static water level measurements were measured from twenty-one (21) additional overburden and bedrock monitoring wells and piezometers. A groundwater contour map is provided in Figure 3.

Depth to water measurements were obtained at or near the Landfill perimeter to determine groundwater elevations in the overburden and upper bedrock aquifer systems. Groundwater flow direction in the overburden aquifer is to the east-southeast towards the Cheechunk Canal (see Figure 3). Groundwater flow direction in the bedrock aquifer is similar, which is consistent with historical reports. Groundwater gradients are similar in both aquifer systems and upward vertical gradients are noted throughout the Landfill perimeter. These vertical gradients are consistent with historical trends.

During the 2017 sampling event, samples were obtained from seven (7) monitoring wells at four downgradient locations and one upgradient location using low flow methodology and analyzed for 6 NYCRR Part 360 Baseline parameters. Since upgradient bedrock well MW-230D could not be sampled an upgradient sample was collected from the overburden hydrogeologic unit (MW-233S) and bedrock hydrogeologic unit (MW-233D) at the MW-233 well pair, which is located approximately 1,150 feet east of MW-230 well pair and upgradient of the Landfill.

As described in Section 3.1, results generally show groundwater samples collected upgradient and downgradient of the Landfill waste mass indicate no significant differences in data trends where exceedances were historically observed.

Overall, the groundwater monitoring program meets the remedial objectives by providing suitable means to determine the effectiveness of the selected remedy. Orange County will continue groundwater monitoring according to the approved SMP along with the recommended modification described above.

5.2 Surface Water Monitoring

The approved surface water monitoring program consists of annual sampling of three (3) locations (SW-13, SW-5, and SW-8) along the Cheechunk Canal adjacent to the Landfill footprint. These locations are located upgradient, cross-gradient, and downgradient of the Landfill (see Figure 2).

Surface water sampling for the 2017 event included sampling of the three (3) surface water monitoring locations in the Cheechunk Canal. These surface water samples were analyzed for 6 NYCRR Part 360 Baseline parameters and compared to TOGS 1.1.1 standards and guidance values. The surface water monitoring program meets the remedial objectives for the site in that it provides direct means to determine the effectiveness of the selected remedy. Orange County will continue surface water monitoring according to the approved SMP.

5.3 Leachate Monitoring

Leachate monitoring consisted of sampling of two (2) manhole locations, labeled MH-7 and MH-15, located on the eastern and western edges of the Landfill footprint respectively. During the 2017 monitoring event, leachate samples were collected from MH-7 and MH-15, which were analyzed for 6 NYCRR Part 360 Baseline parameters.

Section 4.2.1.1 of the approved SMP requires that if conditions indicative of leachate outbreaks such as wet spots, dead vegetation, surface sloughing or discoloration are observed near the Landfill, further remediation investigation is warranted to evaluate the condition and determine the appropriate corrective action. The leachate monitoring program is consistent with the approved SMP for the site. Orange County will continue leachate monitoring according to the approved SMP and will implement the following remedial measures as detailed in the revised Remedial Action Work Plan (RAWP) and approved by the NYSDEC on March 20, 2017:

- a) Excavation and removal of impacted soil at the seeps:
- b) Installation of recovery well(s);
- c) Upgradient groundwater withdrawal by the installed recovery well(s) to eliminate the seeps; and,
- d) Offsite transportation and disposal of withdrawn upgradient groundwater.

5.4 Air Quality Monitoring

Air quality monitoring includes field measurements of explosive gas and VOC levels in the headspaces of the manholes, piezometers, and monitoring wells sampled during each monitoring event. VOC analyses are also performed on collected groundwater, surface water, and leachate samples. Results of the air quality monitoring are described in Section 3.4.

The air quality monitoring program meets the remedial objectives to evaluate the effectiveness of the selected remedy in that it provides a direct means to determine if Landfill gases are prevented from migration and buildup. Orange County will continue air quality monitoring according to the approved SMP.

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Operation and Maintenance (O&M) Plan for the Landfill, outlined in the approved SMP, consists of the following components:

- Repair, if necessary, of the Landfill cover system in accordance with approved specification materials and methods;
- Annual mowing of the vegetated cover system;
- Annual or more frequent mowing of grass-lined ditches;
- Addition, if necessary, of soil amendments (fertilizer, lime) to the cover system;
- Annual or more frequent clearing of drainage swales, ditches and downchutes;
- Investigation of stressed vegetation and gas odors;
- Vector control;
- Snow plowing and upkeep of the perimeter access road;
- Collection, removal and disposal of leachate;
- Preventative maintenance of leachate pumps; and,
- Repair or replacement, if necessary, of monitoring wells and piezometers.

Between January 1, 2016 and January 31, 2017, the following O&M activities were performed:

- Monthly inspections of the Landfill cap and cover materials, surface water drainage features, monitoring wells, leachate collection system, and the Landfill property (Appendix A);
- Mowing of the Landfill cover system in June, July, and August, 2016;
- Regular leachate removal from aboveground storage tanks for treatment at permitted facilities (Appendix B);
- Groundwater, surface water, leachate, and air quality monitoring performed on January 25 and 26, 2017 (Field Forms provided in Appendix D); and,
- Weekly inspection of seeps.

Operational issues were addressed by Landfill staff, including:

- It was noted in the October, November and December 2015 inspections that the circuit board for L-1 was not operational. The circuit board was replaced in early January 2016;
- It was noted in the December 2016 inspection report that leachate collection tanks L-2 and L-4 were disconnected due to ice buildup. L-5 had a crack in the connection pipe.

Operation and maintenance of the property continues to protect human health and the overall integrity of the Landfill. There were no deficiencies in complying with the O&M Plan between January 1, 2016 through January 31, 2017 reporting period. The components of the remedy subject to O&M requirements (Landfill cover, gas venting and leachate collection systems, surface water runoff features are functioning as designed. The integrity of the monitoring network remains intact although one of the upgradient bedrock monitoring wells (MW-230D) is damaged and the missing MW-235 well pair, used for water level measurements only, is absent. Due to past damage at the MW-230 well pair (MW-230D), upgradient well pair MW-233 (MW-233S/MW-233D) was used as a suitable replacement for the 2017 PCM sampling event. The SMP will be revised accordingly. Regular inspections performed by Orange County personnel continue to show compliance with the March 1998 remedy determined for the Landfill, with the

exception of the seeps. Orange County will implement the following approved remedial measures in 2017:

- a) Tree removal within the sediment removal work zone;
- b) Excavate and remove impacted soil at the seep area when USACE permit is issued;
- c) Install, develop and test recovery well(s) to withdraw upgradient groundwater; and,
- d) Development of an onsite groundwater treatment system as set forth in the RAWP.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Landfill continues to comply with the required activities set forth in the SMP for the subject reporting period. The ICs and ECs implemented at the Site continue to function as designed. The environmental monitoring plan for the Landfill is ongoing and remains in accordance with the approved variance granted by the NYSDEC in August 2014. Orange County will continue to perform regular inspections to maintain the integrity of the Landfill and surrounding property and protect human health and the environment.

The following conclusions are made based on observations and analytical results collected during the reporting period (January 1, 2016 through January 31, 2017):

- Groundwater flow direction in the overburden and bedrock aquifer systems is to the eastsoutheast towards the Cheechunk Canal. Groundwater gradients are similar in both aquifer systems and upward vertical gradients are noted throughout the Landfill perimeter.
- No site-related VOCs were detected at or above the respective laboratory method detection limits.
- Applicable TOGS 1.1.1 groundwater standards were exceeded for phenolics, TDS, arsenic, iron, magnesium, manganese and sodium, as described in Section 3.1.
- Groundwater quality results indicate no significant differences in data trends where exceedances were historically observed.
- Applicable TOGS 1.1.1 Class C surface water standards were exceeded for aluminum and iron, at
 all surface water sampling locations (SW-5, SW-8, and SW-13). A comparison of upstream
 (background conditions) to downstream surface water quality indicates that no downstream
 surface water results exceeded upstream conditions, including water quality parameters
 historically tracked such as alkalinity, ammonia, chloride, hardness, magnesium, and sodium.
- The 2017 analytical results for leachate collected from onsite manholes are consistent with previous results.
- The January 2017 air quality monitoring survey for explosive gas, H₂S, and VOCs indicated the Landfill is in full compliance with the requirements set forth in 6 NYCRR 360-2.15(k)(4) and 2.17(f).
- Monitoring well MW-230D is damaged and monitoring well pair MW-235 is missing, due to
 mowing activities. The County revised the SMP groundwater monitoring program to memorialize
 the change in upgradient well pair from MW-230S/MW-230D to MW-233S/MW-233D as

documented in STERLING's previous Notification Letters to the NYSDEC Project Manager. A petition to revise Section 4.4.3 of the SMP will also be made to remove MW-235S/MW-235D from the list of wells required to collect groundwater measurements given that they no longer exist (destroyed by mowing contractor) and groundwater flow patterns are well documented north of the closed Landfill.

- The Landfill appears secure, stable, and the Landfill cover is intact with no evidence of stressed vegetation, damage due to settlement, erosion or active vectors.
- The stormwater drainage system appears to be functioning as designed.
- In support of the ongoing seep issue, Orange County conducted weekly inspections of the seep locations and will continue to pursue implementation of the approved RAWP.

S:\Sterling\Projects\2010 Projects\07ange County - 2010-15\Reports\Periodic Review Report\07016 PRR\07ange County LF PRR 2016 041317docx.docx

FIGURES

Sterling Environmental Engineering, P.C.

24 Wade Road + Latham, New York 12110

SITE LOCATION MAP ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE COUNTY LANDFILL

TOWN OF GOSHEN

ORANGE CO., N.Y.

PROJ. No.: 2013-29 DATE:

12/3/14 | SCALE:

1" = 2000' DWG. NO. 2010-15038 FIGURE

DATED FEBRUARY 14, 2013.

2. AERIAL PHOTOGRAPHY FROM NEW YORK STATWIDE DIGITAL ORTHOIMAGERY PROGRAM, PHOTOGRAPHY CIRCA 2013.

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

PROJ. No.: 2010-15 DATE:

12/3/14 | SCALE:

ORANGE COUNTY LANDFILL

1"=500' DWG. NO. 2010-15039 FIGURE

ORANGE CO., N.Y.

TOWN OF GOSHEN

LIMIT OF WASTE

PROPERTY BOUNDARY

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

GROUNDWATER CONTOUR MAP -OVERBURDEN HYDROGEOLOGIC UNIT ORANGE CO. DEPT. OF PUBLIC WORKS ORANGE COUNTY LANDFILL

(IN FEET)

1 inch = 500 ft.

TOWN OF GOSHEN

ORANGE CO., N.Y.

PROJ. No.: 2010-15 DATE: 02/13/2017 SCALE:

1"=500' DWG. NO. 2010-15071 FIGURE

TABLE 1

Summary of Field Parameter Measurements (January 25-26, 2017) Orange County Landfill, Goshen, New York

	Title 6 Part 703.3				Groundwa	iter Sample	Locations			Surface Water Location			Manhole	Leachate
Parameter	Standards	Units	MW-3B	MW-220	MW-233S	MW-233D	MW-245S	MW-245D	PZ-4	SW-13	SW-5	SW-8	MH-7	MH-15
Static Water Level 1		feet	24.71	18.48	13.69	17.81	30.52	29.94	13.35		***			
Specific Conductivity		mS/cm ^c	0.885	1.223	0.980	1.069	1.193	0.939	1.273	0.581	0.731	0.749	8.456	1.915
Temperature		degrees C	9.70	8.86	8.23	7.47	8.12	8.26	9.14	1.27	0.86	1.16	1.88	7.49
рН	6.5 <ph< 8.5<="" td=""><td>pH Units</td><td>8.0</td><td>8.0</td><td>7.1</td><td>8.0</td><td>8.2</td><td>8.3</td><td>7.8</td><td>7.9</td><td>8.3</td><td>8.1</td><td>7.5</td><td>8.3</td></ph<>	pH Units	8.0	8.0	7.1	8.0	8.2	8.3	7.8	7.9	8.3	8.1	7.5	8.3
ORP		mV	57.0	25.6	202.9	109.1	11.0	6.3	99.8	211.9	141.0	117.2	34.2	20.3
Turbidity ²	5	NTU	5.15	277.4	90.10	11.51	4.978	12.37	9.35	12.44	39.2	28.12	129.3	189.9
Dissolved Oxygen 3	> 6.0	mg/L	2.02	1,22	2.61	4.08	1.24	1.25	1.33	11.29	10.31	11.13	5.29	4.05

NOTES:

Values in BOLD indicate an exceedance of applicable water quality standard.

Upgradient Monitoring well

Downgradient monitoring well

¹ Measured from the top of the PVC well to water surface.

² Turbidity standard applies to grounwater samples only.

³ Dissolved Oxygen standard applies to surface water samples only.

⁻⁻ No standard or not measured.

Table 2
Summary of Water Elevation Measurements (January 25-26, 2017)
Orange County Landfill, Goshen NY

Well I.D.	Measuring Point Elevation (feet amsl)	Static Water Level (feet)	Groundwater Elevation (feet amsl)
MW-207D	390.02	18.70	371.32
MW-207SA	389.74	17.57	372.17
MW-220	378.94	18.48	360,46
MW-221S	381.44	17.81	363.63
MW-221D	381.21	15.56	365.65
MW-222	382.49	19.74	362.75
MW-223S	389.25	16.56	372.69
MW-223D	389.36	16.85	372.51
MW-230S	385.6	11.75	373.85
MW-230D	385.35	W	ell Damaged
MW-231D	387.67*	15.55	372.12
MW-232S	388.64	14.60	
MW-233S	389.29	13.69	375.60
MW233D		17.81	
MW-234S	390.63	18.91	371.72
MW-234D	390.1	18.20	371.90
MW-235S	388.04		
MW-235D	393.74		
MW-245S	391.13	30.52	360.61
MW-245D	391.08	29.94	361.14
MW-303S	389.85	18.38	371.47
MW-303D	389.83	18.17	371.66
MW-304VS	390.72	4.51	386.21
MW-304S	390.92	26.74	364.18
MW-304D	390.08	25.30	364.78
MW-312S	387.87*	17.39	368.25
MW-3B	386.43	24.71	361.72
PZ-11	390.41	17.45	372.96
PZ-14-1 [†]	390.27	27.32	362.95
PZ-14-2 [†]	381.94	19.24	362.70
PZ-14-3 [†]	381.83	19.30	362.53
PZ-14-4 [†]	381.77	19.25	362.52
PZ-14-5 [†]	392.22	29.41	362.81
PZ-14-6 [†]	391.11	28.36	362.75
PZ-1A	385.28	12.71	372.57
PZ-4	382.34	13.35	368.99

All other Measuring Point Elevations were obtain from Table 1 of the 2013 Monitoring Event for the Orange County Landfill, prepared by Cornerstone Environmental Group, LLC., dated September 2013.

^{--- =} Not measured or no available data

^t= Measuring point elevation surveyed by Sterling Environmental Engineering, P.C. on September 6, 2014.

^{* =} Measuring point elevation obtained from Table 3-2 of the Remedial Investigation Report for the Orange County Landfill - DRAFT, prepared by Stearns & Wheler, dated March 1995.

Table 3

Summary of Groundwater Analytical Results (January 25-26, 2017)

Orange County Landfill, Goshen, New York

Analyte	Groundwater	MW-3B (Dov	MW-3B (Downgradient)		MW-220 (Downgradient)		Upgradient)	MW-233D (Upgradient)	MW-245S (Do	owngradient)	MW-245D (Do	owngradient)	PZ-4 (Dow	1/25/2017 504 0.075 U 11* 0.122 3.4 J 39.4 0.01 U 6 0.005 U 630 0.1 U 0.011 J 117 720 0.176 J
Analyse	Standard ^(A)	11/17/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/17/2015	1/25/2017
Water Quality Parameters (mg/L)							Till a								
Alkalinity, Total		520	527	478	459	334	333	193	186	364	328	271	286	460	504
Ammonia	2.0	5.2	2.29	0.052 J	0.055 J	0.024 J	0.026 J	0.075 U	0.075 U	0.161	0.097	1.91	4.24	0.462	0.075 U
Biochemical Oxygen Demand (BOD)		2 U	14*	2 U	9.6*	2 U	9*	2 U	8.8*	2 U	24*	5.9	15*	2 U	11*
Bromide	2.0		0.287		0.05 U		0.05 U				0.05 U		0.017 J		0.122
Chemical Oxygen Demand (COD)		19	10	5.5 J	20	10 U	10	10 U	10	12	49	19	8.2 J	12	3.4 J
Chloride	250	63.6	54.1	24.5	21.2	1.41	1.79	120	116	90.9	68.1	38.2	34.7	36.9	39.4
Chromium, hexavalent	0.05	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Color (Color Units)	15 ^(B)	32	32	220	30	5 U	13	9	9	46	52	16	16	17	6
Cyanide, Total	0.2	0.005 U	0.005 U	0.005 U	0.005 U	0.001 J	0.003 J	0.003 J	0.005 U	0.005 U	0.005 ·U	0.005 U	0.005 U	0.005 U	0.005 U
Hardness		470	420	550	650	450	510	200	220	480	460	310	320	570	630
Nitrate as N	10	0.1 U	0.022 J	0.11	0.095 J	0.27	0.22	0.086 J	0.058 J	0.086 J	0.044 J	2.7	0.033 J	0.3	0.1 U
Phenolics, Total Recoverable	0.001 ^(C)	0.03 U	0.007 J	0.03 U	0.008 J	0.03 U	0.028 J	0.03 U	0.03 U	0.009 J	0.03 U	0.03 U	0.03 U	0.03 U	0.011 J
Sulfate	250	40	35.5	154	164	183	163	140	124	176	142	141	123	143	117
Total Dissolved Solids (TDS)	500	650	630	690	700	550	540	550	550	740	630	500	460	670	720
Total Kjeldahl Nitrogen (TKN)		4.58	2.63	0.378	0.622	0.271 J	7.34	0.322	0.252 J	0.335	0.379	1.37	4.82	0.357	0.176 J
Total Organic Carbon (TOC)		4.04	3.43	3.95	2.13	3.89	3.02	2.26	0.61	2.62	2.23	1.9	1.28	1.85	1.24

Values in BOLD indicate an exceedance of applicable water quality standard.

U = Sample concentration was not detected at or above the reporting limit.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

\\server02\shared\Sterling\Projects\2010 Projects\2010 Projects\2010 Tables.xlsx

^{^ =} Instrument related QC exceeds the control limits.

^{* =} The polyseed value and recovery percentages exceed the acceptance criteria. Re-analysis could not be performed due to the expiration of the method required holding time. All positive results are considered to have a potentially high bias.

⁽A) = NY TOGs 1.1.1: Water Quality Stds & Guidance Values: GA Water Class for Standard and Guidance Values; Eff. June 1998

⁽B) = Standards based on EPA Part 5, Subpart 5-1 Public Water Systems - Tables 1 and 5.

 $^{^{(}C)}$ = The sample specific reporting limit does not support the applicable groundwater standard.

 $^{^{(}D)}$ = The sum of iron and manganese concentrations must not exceed 0.5 mg/L.

⁻⁻⁻ No standard or not measured.

Table 3

Summary of Groundwater Analytical Results (January 25-26, 2017)

Orange County Landfill, Goshen, New York

Analyte	Groundwater	MW-3B (Do	wngradient)	MW-220 (Do	wngradient)	MW-2335 (Upgradient)	MW-233D (Upgradient)	MW-24SS (Do	wngradient)	MW-245D (D	2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 1.5 U 1.5 U 1.5 U 1.5 U 2.5 U 2.5 U 2.5 U 2.5 U 0.5 U 0.5 U 0.5 U 0.5 U 2.5 U 2.5 U 2.5 U 2.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U		
Alloyse	Standard ^(A)	11/17/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/17/2015	1/25/2017
Volatile Organic Compounds (μg	/L)														
1,1,1-Trichloroethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
1,1,1,2-Tetrachloroethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
1,1,2-Trichloroethane	1.0	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U						
1,1-Dichloroethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
1,1-Dichloroethene	5.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
1,2-Dichlorobenzene	3.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
1,2-Dichloropropane	5.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
1,4-Dichlorobenzene	3.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
2-Chloroethyl vinyl ether		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Benzene	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Bromodichloromethane	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Bromoform	50	2 U	2 U	2 U	2 U	2· U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Bromomethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Carbon tetrachloride	5.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Chlorobenzene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Chloroethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2,5 U	2.5 U						
Chloroform	7.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Chloromethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
cis-1,2-Dichloroethene	5.0	***													
cis-1,3-Dichloropropene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Dibromochloromethane	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Dichlorodifluoromethane	5.0	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Methylene Chloride	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
m-Xylene & p-Xylene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
o-Xylene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Tetrachloroethene	5.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Toluene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
trans-1.2-Dichloroethene	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
trans-1,3-Dichloropropene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Trichloroethene	5.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Trichlorofluoromethane	5.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Vinyl chloride	2.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	2.0									10				10	

Values in BOLD indicate an exceedance of applicable water quality standard.

U = Sample concentration was not detected at or above the reporting limit.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

^{^ =} Instrument related QC exceeds the control limits.

^{* =} The polyseed value and recovery percentages exceed the acceptance criteria. Re-analysis could not be performed due to the expiration of the method required holding time. All positive results are considered to have a potentially high bias.

⁽A) = NY TOGs 1.1.1; Water Quality Stds & Guidance Values: GA Water Class for Standard and Guidance Values; Eff. June 1998

 $^{^{(}B)}$ = Standards based on EPA Part 5, Subpart 5-1 Public Water Systems - Tables 1 and 5.

 $^{^{(}C)}$ = The sample specific reporting limit does not support the applicable groundwater standard.

 $^{^{(}D)}$ = The sum of iron and manganese concentrations must not exceed 0.5 mg/L.

⁻⁻⁻ No standard or not measured.

Table 3

Summary of Groundwater Analytical Results (January 25-26, 2017)

Orange County Landfill, Goshen, New York

Analyte	Groundwater	MW-3B (Do	wngradient)	MW-220 (Do	wngradient)	MW-2335 (Upgradient)	MW-233D (Upgradient)	MW-2455 (Do	owngradient)	MW-245D (D	owngradient)	PZ-4 (Dow	ngradient)
	Standard ^(A)	11/17/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/16/2015	1/25/2017	11/17/2015	1/25/2017
Total Recoverable Metals (mg/L)														1 3333	172572617
Aluminum	n-min	0.019	0.034	0.264	0.153	0.006 J	0.02	0.022	0.013	0.482	4.83	0.022	0.025	0.059	0.028
Antimony	0.003 ^(C)	0.0002 J	0.002 U	0.002 U	0.002 U	0.002 U	0.004 U	0.0021	0.004 U	0.002 U	0.0004 J	0.001 J	0.002 U	0.0007 J	0.002 U
Arsenic	0.025	0.0447	0.0305	0.0261	0.0221	0.0006	0.0009 U	0.0008	0.0007	0.0392	0.1686	0.0029	0.0057	0.0111	0.0095
Barium	1.0	0.3146	0.1404	0.0658	0.0826	0.0537	0.0989	0.0418	0.0351	0.0885	0.1225	0.0852	0.0893	0.036	0.0404
Beryllium	0.003	0.0005 U	0.0005 U	0.0005 U	0.0001 J	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0004 J	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Boron	1.0	0.206	0.13	0.0368	0.0469	0.0197 J	0.019 J	0.0895	0.0968	0.0248 J	0.0229 J	0.049	0.0504	0.101	0.105
Cadmium	0.005	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 J	0.0007	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0009	0.0006	0.0002 U	0.0002 U
Calcium	do use he	130	130	161	180	127	130	51.4	54	147	130	85.1	82	160	180
Chromium	0.05	0.0024 J	0.0009 J	0.0029	0.0021	0.0114	0.0007 J	0.0027	0.0013	0.0022	0.008	0.0018 J	0.0045	0.0047	0.0007 J
Cobalt			0.0003 J		0.0013		0.001		0.0005 U		0.0028		0.0002 J		0.0005 U
Copper	2.0	0.0004 J	0.0006 J	0.001	0.0023	0.0014	0.0078	0.0024	0.0014	0.0015	0.0091	0.0011	0.0017	0.0012	0.00098 J
Iron ^(D)	0.3	1.55	0.815	4.24	3.63	0.085	0.127	0.125	0.086	2.06	11.1	0.291	1.17	0.584	0.294
Lead	0.025	0.0017	0.0011	0.0036	0.0073	0.001 U	0.001 U	0.0022	0.0011	0.0024	0.017	0.0027	0.0068	0.0016	0.0004 J
Magnesium	35	32	24	41.2	46	41.8	46	19	22	33.5	30	26.7	28	40	44
Manganese ^(D)	0.3	0.94	0.6728	1.006	1.571	1.085	2.145	0.0614	0.0332	1.801	1.783	0.1974	0,2291	0.1398	0.4129
Mercury	0.0007	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.002 U	0.0002 U	0.002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Nickel	0.1	0.0072	0.0045	0.0039	0.0029	0.0105	0.0124	0.0025	0.0012 J	0.0027	0.0066	0.0041	0.0039	0.0039	0.0026
Potassium		4.57	1.86	3.3	3.22	2.76	2.88	2	1.99	2.08	3.69	4.1	3.99	2.7	3.15
Selenium	0.01	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U						
Silver	0.05	0.0004 U	0.0004 U	0.0004 U	0.0004 U	0.0004 U	0.0004 U	0.0004 U	0.0004 U						
Sodium	20	54.9	41.4	13.3	18.4	1.59	2.27	109	109	48.2	51,3	54.6	51,5	17.5	19.6
Thallium	0.0005 ^(C)	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0001 J	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Vanadium		***	0.005 U		0.005 U		0.005 U		0.005 U		0.0093	0.0003 0	0.005 U	0.0003 0	0.0005 U
Zinc	2.0	0.0199	0.0101	0.0093 J	0.0098 J	0.0053 J	0.0268	0.0364	0.0079 J	0.0072 J	0.0217	0.0813	0.0947	0.0059 J	0.0051 J

Values in BOLD indicate an exceedance of applicable water quality standard.

U = Sample concentration was not detected at or above the reporting limit.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

^ = Instrument related QC exceeds the control limits.

* = The polyseed value and recovery percentages exceed the acceptance criteria. Re-analysis could not be performed due to the expiration of the method required holding time. All positive results are considered to have a potentially high bias.

(A) = NY TOGs 1.1.1: Water Quality Stds & Guidance Values: GA Water Class for Standard and Guidance Values; Eff. June 1998

 $^{(B)}$ = Standards based on EPA Part 5, Subpart 5-1 Public Water Systems - Tables 1 and 5.

(C) = The sample specific reporting limit does not support the applicable groundwater standard for some samples.

 $^{(D)}$ = The sum of iron and manganese concentrations must not exceed 0.5 mg/L.

--- No standard or not measured.

Summary of Surface Water Analytical Results (January 25-26, 2017) Orange County Landfill, Goshen, New York

Analyte	Surface Water	SW-13 (U	pstream)	SW-5 (Do	wnstream)	SW-8 (Dov	vnstream)	
Analyte	Standard ^(A)	11/17/2015	1/25/2017	11/17/2015	1/25/2017	11/17/2015	1/25/2017	
Water Quality Parameters (mg/L)	3823331							
Alkalinity, Total	1	97.3	70.9	98.4	70.9	97.6	71.3	
Ammonia	(B)	0.043 J	0.209	0.056 J	0.193	0.034 J	0.176	
Biochemical Oxygen Demand (BOD)		2 U	8.7*	2 U	8.8*	2 U	8.9*	
Bromide			0.05 U		0.05 U		0.05 U	
Chemical Oxygen Demand (COD)		24	42	19	39	35	37	
Chloride	***	75.8	91.6	75.1	90.1	75	86	
Chromium, hexavalent	0.011 ^(C)	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	
Color (Color Units)		48	52	54	54	54	44	
Cyanide, Total	0.0052	0.005 U	0.002 J	0.001 J	0.005 U	0.005 U	0.004 J	
Hardness as calcium carbonate		150	180	150	180	140	180	
Nitrate as N		0.58	3.9	0.58	3.9	0.57	3.9	
Phenolics, Total Recoverable	0.001 ^(D)	0.008 J	0.03 U	0.005 J	0.03 U	0.03 U	0.03 U	
Sulfate		31.4	70.7	31.2	69.1	32	68.3	
Total Dissolved Solids (TDS)		250	340	250	320	250	340	
Total Kjeldahl Nitrogen (TKN)		0.755	1.49	0.666	1.27	0.715	1.15	
Total Organic Carbon (TOC)		7.62	9.63	7.58	8.7	7.61	8.94	
/olatile Organic Compounds (μg/L)						'		
,1,1-Trichloroethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
1.1.2-Tetrachloroethane	***	2.5 U	2.5 U	2.5 U	2.5 U.	2,5 U	2.5 U	
1.2-Trichloroethane		1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	
,1-Dichloroethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
1-Dichloroethene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
,2-Dichlorobenzene	5 ^(E)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
,2-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
,2-Dichloropropane		0.5 U	0.5 U	1 U	1 U	1 U	1 U	
Approximately and the second second	5 ^(E)						2.5 U	
,3-Dichlorobenzene		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		
,4-Dichlorobenzene	5 ^(E)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
-Chloroethyl vinyl ether		10 U	10 U	10 U	10 U	10 U	10 U	
Benzene	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Bromoform		2 U	2 U	2 U	2 U	2 U	2 U	
Bromomethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
arbon tetrachloride		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
'hlorobenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
hloroethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
Chloroform	4004	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
'hloromethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
is-1,2-Dichloroethene								
is-1.3-Dichloropropene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Dichlorodifluoromethane		5 U	5 U	5 U	5 U	5 U	5 U	
thylbenzene	17	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
Methylene Chloride	200	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
n-Xylene & p-Xylene	65 ^(E)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
-Xylene	65 ^(E)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
etrachloroethene	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
oluene	6,000	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
rans-1,2-Dichloroethene	***	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
rans-1,3-Dichloropropene		0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	
richloroethene	40	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
richlorofluoromethane		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
/inyl chloride		1 U	1 U	1 U	1 U	1 U	1 U	
kylenes, Total	65	400						
Metals, Total Recoverable (mg/L)								
Aluminum	0.1	0.085	0.974	0.087	0.662	0.073	1.04	
Antimony		0.0001 J	0.004 U	0.0002 J	0.004 U	0.0002 J	0.004 U	
Arsenic	0.15 ^(C)	0.0008	0.0015	0.0009	0.0012	0.0008	0.0015	
Barium		0.0175	0.0277	0.0184	0.024	0.0189	0.0266	
Beryllium	(F)	0.0005 U	0.0001 J	0.0005 U	0.0005 U	0.0005 U	0.0001 J	
Boron	10	0.0206 J	0.0225 J	0.0223 J	0.0221 J	0.0197 J	0.0225 J	
	(F)	0.0200 J 0.0002 U	0.00225 J	0.0002 U	0.0001 J	0.0002 U	0.0001 J	
Cadmium			0.00015 J 52	39	52	37	52	
Calcium	(F)	39						
hromium		0.0056	0.0017	0.0074	0.0016	0.0064	0.0017	
obalt	0.005		0.0017		0.0013		0.0016	
Copper	(F)	0.0015	0.0059	0.0016	0.0013	0.0016	0.0046	
ron	0.3	0.407	1.72	0.396	0.0036	0.354	1.67	
ead	(F)	0.0003 J	0.002	0.0003 J	0.001	0.0003 J	0.0015	
Aagnesium		12	12	12	12	12	12	
Manganese		0.0747	0.197	0.0771	0.1373	0.0758	0.1798	
Mercury	0.7	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	
	(F)	0.0044	0.0033	0.006	0.0027	0.0043	0.0034	
Nickel Potassium		2.17	2.66	2.24	2.69	2.19	2.7	
otassium		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	
		0.003 U 0.0004 U	0.003 U 0.0004 U	0.003 U	0.003 U	0.003 U	0.003 U	
Silver		41.1	47	40.3	46.7	38.8	45.6	
Sodium	0.008		0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	
Thallium	0.008	0.0005 U	0.0005 U 0.0017 J		0.0005 U	0.0005 0	0.0003 U	
Vanadium	14 (F)							
fine	(P)	0.0072 J	0.0343	0.01	0.0248	0.0069 J	0.0321	

Notes:

Values in **BOLD** indicate an exceedance of applicable water quality standard.

U = Compound is not detected at or above laboratory method detection limit.

Berylium (mg/L): SW-13 = 1.1, 1.1; SW-5 = 1.1, 1.1; and SW-8 = 1.1, 1.1 Cadmium (mg/L): SW-13 = 0.01, 0.007; SW-5 = 0.01, 0.007; and SW-8 = 0.01, 0.007

Cadmium (mg/L): SW-13 = 0.01, 0.007; SW-5 = 0.01, 0.007; and SW-8 = 0.01, 0.007 Chromium: (mg/L): SW-13 = 1.17, 0.922; SW-5 = 1.13, 0.922; and SW-8 = 1.7, 0.922

Copper (mg/L): SW-13 = 0.03, 0.023; SW-5 = 0.03, 0.023; and SW-8 = 0.03, 0.023

Lead (mg/L): SW-13 = 0.25, 0.183; SW-5 = 0.24, 0.183; and SW-8 = 0.25, 0.183 Nickel (mg/L): SW-13 = 0.98, 0.77; SW-5 = 0.95, 0.77; and SW-8 = 0.98, 0.77

Zinc (mg/L): SW-13 = 0.25, 0.193; SW-S = 0.24, 0.193; and SW-8 = 0.25, 0.193

J = Result is less than the laboratory reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

^{^ =} Instrument related QC exceeds the control limits.

have a potentially high bias. $^{(A)} = \text{T.O.G.S.} \ 1.1.1 \ \text{Ambient Water Quality Standards for Class C Surface Water}$

^{(8) =} Surface water standard for ammonia (mg/L) is interpolated using the temperatures and pH of the individual samples. The values represent the 2015 and 2017 standards, respectively:

SW-13 = 2.18, 1.82; SW-5 = 2.19, 0.812; and SW-8 = 2.10, 1.25. $^{(C)}$ = Standard applies to the dissolved form, not total recoverable.

^{(0) =} Laboratory Method Detection Limit is greater than or equal to the applicable water quality standard.

⁽E) = Applies to the sum of 1,2-1,3-1,4-Dichlorobenzene, or Applies to each individual isomer, or applies to the sum of m-, o-, and p-xylenes, or applies to the sum of cis-trans 1,3-

⁽F) = Surface Water Standard for Berylium, Cadmium, Chromium, Copper, Lead, Nickel, and Zinc are based on the individual sample's hardness. The values represent the 2015 and 2017 standards respectively.

⁻⁻⁻ No standard or not measured.

Table 5 Summary of Leachate Analytical Results (January 25-26, 2017) Orange County Landfill, Goshen, New York

Analyte	М	1-7	MH-15	
	11/17/2015	1/26/2017	11/17/2015	1/26/2017
Water Quality Parameters (mg/L)				
Alkalinity, Total	2,720	2,540	1,320	691
Ammonia	400	416 490*	98 10 U	38.9 120*
Biochemical Oxygen Demand (BOD)	20 U	11.5		0.895
Bromide Chemical Oxygen Demand (COD)	540	770	330	84
Chloride	1,350	1,340	461	130
Color (Color Units)	330	370	260	180
Cyanide, Total	0.003 J	0.004 J	0.001 J	0.002 J
Hardness as calcium carbonate	630	1200	720	450
Nitrate as N	0.027 J	0.11	1.6	0.095 J
Phenolics, Total Recoverable	0.015 J	0.019 J	0.009 J	0.006 J
Sulfate .	41.7	50.7	21.6	7.13
Total Dissolved Solids (TDS)	3,400	3,400	1,700	790
Total Kjeldahl Nitrogen (TKN)	384	479	95.4	37.1
Total Organic Carbon (TOC)	200	172	106	28.3
Volatile Organic Compounds (µg/L)		,	,	
1,1,1-Trichloroethane	2.5 U	25 U	2.5 U	2.5 U
1,1,1,2-Tetrachloroethane	2.5 U	25 U	2.5 U	2.5 U
1,1,2-Trichloroethane	1.5 U	15 U	1.5 U	1.5 U
1,1-Dichloroethane	2.5 U	25 U	2.5 U	2.5 U
1,1-Dichloroethene	0.5 U	5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	2.5 U	25 U	2.5 U	2.5 U
1,2-Dichloroethane	0.5 U	5 U	0.5 U	0.5 L
1,2-Dichloropropane	1 U	10 U	1 U	1 L
1,3-Dichlorobenzene	2.5 U	25 U	2.5 U	2.5 L
1,4-Dichlorobenzene	3.9	25 U	1.3 J	1.7 J
2-Chloroethyl vinyl ether	10 U	25 U	10 U	10 U
Benzene	14	12	0.39 J	0.68
Bromodichloromethane	0.5 U	5 U	0.5 U	0.5 L
Bromoform	2 U	20 U	2 U	2 (
Bromomethane	2.5 U	25 U	2.5 U	2.5 L
Carbon tetrachloride	0.5 U	5 U	0.5 U	0.5 L
Chlorobenzene	22	19 J	2.5 U	0.76 J
Chloroethane	1.8 J	25 U	2.5 U	2.1 J
Chloroform	2.5 U	25 U	2.5 U	2.5 L
Chloromethane	2.5 U	25 U	2.5 U	2.5 L
cis-1,2-Dichloroethene				0.5.1
cis-1,3-Dichloropropene	0.5 U	5 U	0.5 U	0.5 L
Dibromochloromethane	0.5 U	5 U	0.5 U	0.5 t
Dichlorodifluoromethane	5 U	50 U	5 U	5 U
Ethylbenzene	15	25 U	2.5 U	2.5 L
Methylene Chloride	2.5 U	25 U	2.5 U	2.5 U 2.5 U
m-Xylene & p-Xylene	0.72 J	25 U 25 U	2.5 U 2.5 U	2.5 U
o-Xylene	2.5 U			_
Tetrachloroethene	0.5 U	5 U	0.5 U	0.5 L
Toluene	2.5 U	25 U	2.5 U	2.5 L
trans-1,2-Dichloroethene	2.5 U	25 U	2.5 U	2.5 L
trans-1,3-Dichloropropene	0.5 U	5 U	0.5 U	0.5 L
Trichloroethene	0.5 U 2.5 U	5 U 25 U	0.5 U 2.5 U	0.5 U 2.5 U
Trichlorofluoromethane			-	0.18 J
Vinyl chloride	1 U	10 U 25 U	1 U 2.5 U	2.5 U
Xylenes, Total	2.5 U	23 U		2.3 (
Metals, Total Recoverable (mg/L)	0.422	2.1	0.009 J	0.008 J
Antimony	0.422	0.0015 J	0.009 J 0.0005 J	0.008 J
Antimony	0.0032	0.0015 J	0.0062	0.004
Arsenic Barium	0.0166	0.0114	0.0062	0.1074
Beryllium	0.0005 U	0.2145 0.0005 U	0.2791 0.0005 U	0.1074 0.0005 L
Boron	3.21	3.21	1.45	0.0003 (
Cadmium	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Calcium	140	370	190	130
Chromium	0.0146	0.0106	0.0078	0.0021
Chromium, hexavalent	0.01 U	0.0100 0.01 U	0.0078 0.008 J	0.0021 0.01 U
Cobalt	0.01 0	0.0092	0.008 J	0.002
Copper	0.0017	0.0057	0.0007 J	0.002 0.001 U
ron	12.5	17.3	7.26	15
Lead	0.0026	0.0053	0.0001 J	0.001 L
Magnesium	71	78	62	30
Manganese	0.3844	0.6703	2.089	1.878
Mercury	0.0002 U	0.0703 0.0002 U	0.0002 U	0.0002 L
Nickel	0.0002 0	0.0002 0	0.0002 0	0.0002 0
Potassium	192	94.5	79.2	24
Selenium	0.005 U	0.005 U	0.005 U	0.005 U
Silver	0.003 U	0.003 U 0.0004 U	0.003 U 0.0004 U	0.003 U
Sodium	640	423	416	97.7
Thallium	0.0005 U	0.0005 U	0.0005 U	0.0005 L
		-		0.0003 C
Zinc	0.0096 J	0.0122	0.0028 J	U.UI C

BOLD values indicate a detected volatile organic compound.

U = Sample concentration was not detected at or above the reporting limit.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the

concentration is an approximate value.

* = The polyseed value and recovery percentages exceed the acceptance criteria. Re-analysis could not be performed due to the expiration of the method required holding time. All positive results are considered to have a potentially high bias.

--- No standard or not measured.

APPENDIX A

ORANGE COUNTY LANDFILL POST-CLOSURE FIELD INSPECTION DOCUMENTS AND MONTHLY INSPECTION REPORTS

	Staff Gauge Inspection Report for Wallkill River Near Orange County Landfill				
Note:	Staff Gauge readings are to be performed once a week.				
	Staff Gauge readings are to be performed the day after a storm event.				
	Staff Gauge zero mark approximately installed at elevation 356'.				

Date / Initials		Staff Gauge Reading (Feet)	Approximate Elevation of water	Reason for taking the Reading (Ex: Weekly Reading, or Storm Event Reading)	Additional Comments/Notes
		(i ser)	(Staff Gauge Reading + 356')		
/29/2015	R.H.	3.00	359.00	Weekly Reading	Seep Covered
5/6/2015	R.H.	2.00	358.00	Weekly Reading	Seep Covered
/13/2015	R.H.	2.00	358.00	Weekly Reading	Seep Covered
/20/2015	R.H.	2.25	358.25	Weekly Reading	Seep Covered
/27/2015	R.H.	2.75	358.75	Weekly Reading	Seep Covered
3/3/2015	K.S.	2.25	358.25	Weekly Reading	Seep Covered
/10/2015	K.S.	2.25	358.25	Weekly Reading	Seep Covered
/17/2015	R.H.	2.50	358.50	Weekly Reading	Seep Covered
/24/2015	R.H.	2.25	358.25	Weekly Reading	Seep Covered
//1/2015	R.H.	2.00	358.00	* Weekly Reading	Seep Covered
7/8/2015	R.H.	2.00	358.00	Weekly Reading	Seep Covered
/15/2015	R.H.	1.25	357.25	Weekly Reading	Seep Covered
/22/2015	R.H.	1.00	357.00	Weekly Reading	Seep Exposed
/29/2015	G.L.P.	0.75	356.75	Weekly Reading	Seep Exposed
3/5/2015	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
/12/2015	G.L.P.	1.25	357.25	Weekly Reading / Day After Storm Event	Seep Covered
/19/2015	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
/26/2015	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
3/2/2015	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
9/9/2015	G.L.P.	0.25	356.75	Day After Storm Event	Seep Exposed
/11/2015	G.L.P.	1.25	357.25	Day After Storm Event	Seep Covered
/15/2015			357.00	Weekly Reading	Seep Exposed
/16/2015	G.L.P.	1.00		Weekly Reading	Seep Exposed
/23/2015	G.L.P.	0.25	356.25		Seep Covered
/28/2016	G.L.P.	5.00	361.00	Weekly Reading / Day After Storm Event	
0/5/2015	G.L.P.	3.25	359.25	Weekly Reading	Seep Covered
0/8/2015	G.L.P.	1.75	357.75	Weekly Reading	Seep Covered
0/15/2015	G.L.P.	1.00	357.00	Weekly Reading	Seep Exposed
0/16/2015	G.L.P.	1.25	357.25	Weekly Reading / Day After Storm Event	Seep Covered
0/29/2015	G.L.P.	4.50	360.50	Weekly Reading / Day After Storm Event	Seep Covered
1/4/2015	G.L.P.	1.75	357.75	Weekly Reading	Seep Covered
1/13/2015	G.L.P.	3.00	359.00	Weekly Reading / Day After Storm Event	Seep Covered
1/16/2015	G.L.P.	2.25	358.25	Weekly Reading	Seep Covered
1/18/2015	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
1/20/2015	G.L.P.	4.00	360.00	Day After Storm Event	Seep Covered
1/27/2015	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
2/3/2015	G.L.P.	4.50	360.50	Weekly Reading / Day After Storm Event	Seep Covered
12/4/2015	G.L.P.	4.00	360.00	Weekly Reading	Seep Covered
2/11/2015	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
2/18/2015	G.L.P.	4.75	360.75	Weekly Reading / Day After Storm Event	Seep Covered
2/24/2015	G.L.P.	6.00	362.00	Weekly Reading / Day After Storm Event	Seep Covered
2/31/2015	G.L.P.	6.00	362.00	Weekly Reading / Day After Storm Event	Seep Covered

	Staff Gauge Inspection Report for Wallkill River Near Orange County Landfill				
Note:	Staff Gauge readings are to be performed once a week.				
	Staff Gauge readings are to be performed the day after a storm event.				
	Staff Gauge zero mark approximately installed at elevation 356'.				

Date /	Initials	Staff Gauge Reading (Feet)	Approximate Elevation of water (Staff Gauge Reading + 356')	Reason for taking the Reading (Ex: Weekly Reading, or Storm Event Reading)	Additional Comments/Notes
1/8/2016	G.L.P.	3.00	359.00	Weekly Reading	Seep Covered
/13/2016	G.L.P.	5.00	361.00	Weekly Reading	Seep Covered
/22/2016	G.L.P.	2.75	358.75	Weekly Reading	Seep Covered
/29/2016	G.L.P.	2.50	358.50	Weekly Reading	Seep Covered
2/5/2016	G.L.P.	5.75	361.75	Weekly Reading	Seep Covered
2/8/2016	G.L.P.	3.75	359.75	Weekly Reading	Seep Covered
/11/2016	G.L.P.	3.00	359.00	Weekly Reading	Seep Covered
/19/2016	G.L.P.	5.00	361.00	Weekly Reading	Seep Covered
/22/2016	G.L.P.	3.50	359.50	Weekly Reading	Seep Covered
/25/2016	G.L.P.	Above 8.50	#VALUE!	Weekly Reading	Seep Covered
/29/2016	G.L.P.	7.75	363.75	Weekly Reading	Seep Covered
3/4/2016	G.L.P.	4.50	360.50	Weekly Reading	Seep Covered
/11/2016	G.L.P.	3.00	359.00	Weekly Reading	Seep Covered
/16/2016	G.L.P.	3.00	359.00	Weekly Reading	Seep Covered
/18/2016	G.L.P.	2.75	358.75	Weekly Reading	Seep Covered
/25/2016	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
1/1/2016	G.L.P.	1.75	357.75	Weekly Reading	Seep Covered
4/8/2016	G.L.P.	3.25	359.25	Weekly Reading / Day After Storm Event	Seep Covered
/15/2016	G.L.P.	2.25	358.25	Weekly Reading	Seep Covered
/22/2016	G.L.P.	1.50	357.50	Weekly Reading	Seep Covered
/29/2016	G.L.P.	1.50	357.50	Weekly Reading/Currently Raining	Seep Covered
5/4/2016	G.L.P.	5.25	361.25	Weekly Reading	Seep Covered
5/6/2016	G.L.P.	4.00	360.00	Weekly Reading/Day After Rain Storm	Seep Covered
/12/2016	G.L.P.	2.75	358.75	Weekly Reading	Seep Covered
/19/2016	G.L.P.	2.25	358.25	Weekly Reading	Seep Covered
/27/2016	G.L.P.	1.25	357.25	Weekly Reading	Seep Covered
/31/2016	G.L.P.	1.25	357.25	Weekly Reading	Seep Covered
6/9/2016	G.L.P.	1.50	357.50	Weekly Reading	Seep Covered
/13/2016	G.L.P.	1.00	357.00	Weekly Reading	Seep Exposed
/17/2016	G.L.P.	0.75	356.75	Weekly Reading	Seep Exposed
/24/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
3/28/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
7/1/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
7/5/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
7/8/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
7/15/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
7/21/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Emosed
7/29/2016	G.L.P.	0.75	356.75	Weekly Reading	Seep Exposed
8/1/2016	G.L.P.	6.25	362.25	Weekly Reading / Day After Storm Event	Seep Covered
8/5/2016	G.L.P.	1.25	357.25	Day After Storm Event	Seep Covered
3/12/2016	G.L.P.	4.25	360.25	Day of Storm Event	Seep Covered
3/19/2016	G.L.P.	1.00	357.00	Weekly Reading	Seep Expressed

	Staff Gauge Inspection Report for Wallkill River Near Orange County Landfill				
Note:	Staff Gauge readings are to be performed once a week.				
	Staff Gauge readings are to be performed the day after a storm event.				
	Staff Gauge zero mark approximately installed at elevation 356'.				
-	Staff Guage readings below, based on April 2015 survey and replacement gauge.				

Date / lo	nitials	Staff Gauge Reading (Feet)	Approximate Elevation of water (Staff Gauge Reading + 356')	Reason for taking the Reading (Ex: Weekly Reading, or Storm Event Reading)	Additional Comments/Notes
3/25/2016	G.L.P.	0.75	356.75	Weekly Reading	Seep Exposed
9/2/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
9/8/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
/16/2016	G.L.P.	0.00	356.00	Weekly Reading	Seep Exposed
/23/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
/30/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
0/7/2016	G.L.P.	0.25	356.25	· Weekly Reading	Seep Exposed
0/14/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
0/21/2016	G.L.P.	0.25	356.25	Weekly Reading	Seep Exposed
0/28/2016	G.L.P.	1.00	357.00	Weekly Reading	Seep Exposed
1/4/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
1/10/2016	G.L.P.	0.50	356.50	Weekly Reading	Seep Exposed
1/17/2016	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
1/18/2016	G.L.P.	1.50	357.50	Weekly Reading	Seep Covered
1/23/2016	G.L.P.	1.50	357,50	Weekly Reading	Seep Covered
1/30/2016	G.L.P.	4.25	360.25	Weekly Reading / Day After Storm Event	Seep Covered
2/1/2016	G.L.P.	7.75	363.75	Weekly Reading / Day After Storm Event	Seep Covered
2/9/2016	G.L.P.	3.25	359.25	Weekly Reading	Seep Covered
2/16/2016	G.L.P.	2.00	358.00	Weekly Reading	Seep Covered
2/23/2016	G.L.P.	2.25	358.25	Weekly Reading	Seep Covered
2/29/2016	G.L.P.	3.00	359.00	Weekly Reading	Seep Covered
1/5/2017	G.L.P.	4.50	360.50	Weekly Reading	Seep Covered
1/6/2017	G.L.P.	3.75	359.75	Weekly Reading	Seep Covered
1/11/2017	G.L.P.	2.50	358.50	Weekly Reading	Seep Covered
1/12/2017	G.L.P.	3.25	359.25	Weekly Reading	Seep Covered
1/20/2017	G.L.P.	3.50	359.50	Weekly Reading	Seep Covered
1/27/2017	G.L.P.	6.50	362.50	Weekly Reading	Seep Covered
2/3/2017	G.L.P.	3.25	359.25	Weekly Reading	Seep Covered
2/10/2017	G.L.P.	3.25	359.25	Weekly Reading	Seep Covered

ANNUAL MONITORING AND MAINTENANCE OPERATIONS CHECKLIST ORANGE COUNTY LANDFILL YEAR 2016

TASK DESCRIPTION	TASK FREQUENCY	SK FREQUENCY MONTH TASK W					TASK W	AS COMPLETED [2]					
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
Mowing	Bi-annually								8/24				
Monthly Inspections (Internal)	Monthly	15 ^m	CS 16#	KS 15th	15th	KS 16+4	KS 15th	KS 14th	KS 1544	KS 14th	174	15th	KS 15#
Annual Post-Closure Monitoring Report Submitted to NYSDEC ⁽¹⁾	Every Fifth Quarter												
Periodic Review Report Submitted to NYSDEC	Annually												

⁽¹⁾ Annual Monitoring includes groundwater monitoring, surface water monitoring, leachate monitoring, and explosive gas monitoring.

⁽²⁾ Upon completeion of the task, the appropriate space should be initial and dated by the person that completed the task.

Dat	e: 1/15/16	Performed By:	Sherwood
1.	Access road condition	Good · Fair	Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly	Has not been maintained properly
3,	Roadside ditches, culverts & other site drainage ways	Unobstructed Obst	tructed * Sediments
4.	Catch Basins	Unobstructed Obs	tructed * Sediments
5,	Detention Basin	Unobstructed Obs	structed * Sediments
6.	Terraces	Unobstructed Obs	structed * Sediments
7.	Terraces downchutes	Unobstructed Obs	structed * Sediments
8.	Terraces headwall	Unobstructed Obs	structed * Sediments
9.	Grass condition	Good Poo	or Dead
10.	Other Plants Present	Burdock Th	distle Other
1.	Woody Plants	Not on cap Pre	esent* Date Removed:
2.	Capped Gas Wells	Good Condition Da	amaged*
13.	Surface crosion	None Mi	inor Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement So	oil movement present*
15,	Cracks (Within landfill cover)		andfill cover crack(s) are visible* Note Measurement, Location & Description)
16.	Geomembrane liner exposed	₩ □ Yo	es
17.	Sertlement		cttlement is visible* Note Measurement, Location & Description)
18	Most recent moving date: 9/23/	5	
19	. Stressed vegetation	No Y	'es*
20	. Damage to leachate cleanouts	No Y	es
21	. Monitoring Wells	Secure with locks D	Pamagad*
22	. Litter present	No Y	es Est. removal dato:
23	. Evidence of ponded water	None	Dbserved* Suspected *
24	. Tailen vees	None I	resent on cup 4 Est, removal date;
25	. Evidence of trespass	V'cs4	₹0
	. Evidence of motor vehicle trespass	No Avio/Truck	Motorcycle ATV
23	7. Woodelnick/rodem holes in cap	No 1	'es Dere Back filled:
21	3. Evidence of lightning strike	No No	'es *

29.	Unauthorized materials present	No	—), cε ∗	
30.	Dead Animals present	No	Yes*	
31.	Oil slick on adjacent waters	V 140	Yes *	
ŧ	Damaged leachate manholes	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Yes *	
33.	Leachate seeps	No	Yes Stain Color:	
			Length:	
34.	Leachate fluid	Puddle *	Stream * None	
35.	Gulls/seavenger birds present	No	Yes *	
36.	Other animal foraging evidence	No No	Yes *	
37.	No smoking warnings	Present	Missing/Damaged	
38.	Survey Monuments	Undisturbed	Disturbed	
39.	Leachate Collection tanks and piping	35. Condens	sate Tanks	
	L-1 OK Problem *	C - 1	OK Problem *	
	L-2 OK Problem *	C-2	OK Problem *	
(L-3 OK Problem *	C - 3	OK Problem *	
	L-4 OK Problem *	C – 4	(Maintenance Shop)	
	L-5 VOK Problem *		OK Problem *	
	L-7 OK Problem *			

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

	L-1	nas	peen	repair	red.				
·				description described described as a second					
							·		
				•					
									_
									_
PRECTIVE	TION TAKE	J. /	-1 60	box	Sud 2	3 16.16	(- C)	2 0 1	
RRECTIVE A	CTION TAKE	N:	=1 has	been	fixed. 1	Braker	was r	no good.	
RRECTIVE A	CTION TAKE	N:	=1 has	bæn	fixed. i	Braker	was r	no good.	
RRECTIVE A	CTION TAKE	N:	=1 has	bæn	fixed. 1	Braker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed. 1	Bruker	was r	no good.	
RRECTIVE A	CTION TAKE	N:		bæn	fixed. 1	Braker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed. 1	Braker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed 1	Bruker	was r	no good.	
PRECTIVE A	CTION TAKE	N:		bæn	fixed. 1	Braker	was r	no good.	
PRRECTIVE A	CTION TAKE	N:		bæn	fixed.	Bruker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed. 1	Braker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed. 1	Braker	was r	no good.	
RRECTIVE	CTION TAKE	N:		bæn	fixed. 1		was r	no good.	

C:\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD VALLETLL RIVER LEGEND TERRACE LOCATION APPROXIMATE REFUSE UNIT SURFACE WATER LOCATION **⊕** ₩₩-302 MONITORING WELL LOCATION **●** P7-2280 APPROXIMATE PROPERTY LINE (TYP) g um-2340 U₩-3015 1 PZ-2250 950 PZ-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP JOB No.: 2535 DATE: 03/96 SCALE: 1" = 600'

D	rate: 2/16/16	Performed By Ken Sherwood	
}.	Access road condition	Good Fair Poor*	
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly like not been maintained properly	
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed	
4.	. Catch Basins	Unobstructed Obstructed * Sediments	
5.	. Detention Basin	Unobstructed Obstructed * Sediments	
6.	. Теттасся	Unobstructed Obstructed * Sediments	
7.	. Terraces downchutes	Unobstructed Obstructed Sediments	
8	. Terraces headwall	Unobstructed Obstructed * Scdiments	
9	. Grass condition	Good Poor Dead	
1	0. Other Plants Present	Burdock Dhistle Other	
	1. Woody Plants	Not on cap Present* Date Removed:	
٠	.2. Capped Gas Wells	Good Condition Damaged*	
1	13. Surface crosion	None Minor Needs repair *	
] 1	14. Landfill Stability (Sloughing)	No soil movement Soil movement present*	
]	15. Cracks (Within landfill cover)	No Cracks Visible Landfill cover crack(s) are visible* (Note Measurement, Location & Description)	
	16. Geomembrane liner exposed	No Yes	
	17. Settlement	No Settlement visible Scttlement is visible* (Note Measurement, Location & Description)	ı
	18. Most recent moving date: $9/23/15$	<u></u>	
	19. Stressed vegetation	No Yes*	
	20. Damage to leachate cleanouts	No Yes	
	21. Monitoring Wells	Secure with locks Damaged*	
	22. Litter present	No Yes Est. removal date:	
	23. Evidence of ponded water	None Observed* Suspected *	
	24. Tallen wees	None Present on cap 4 Est, removal date:	
	25. Evidence of trespass	□)'es¹ No	
(. Evidence of motor vehicle trespass	No Auto/Truck Motorcycle ATV	
	27. Woodehuck/rodem holes in cap	No Yes Date Back filled:	
	28. Evidence of lightning strike	No Yes*	

29.	Unauthorized materials present	N'o	Yes *
30.	Dead Animals present	No	Yes *
31.	Oil slick on adjacent waters	No	Yes *
	Damaged leachate manholes	No	Yes *
33.	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Lenchate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
39.	Leachate Collection tanks and piping	35. Condensa	ate Tanks
	L-1 OK Problem *	C - 1	OK Problem *
	L-2 OK Problem *	C-2	Problem *
<	L-3 OK Problem *	C - 3	VOK Problem *
	L-4 OK Problem*	C – 4	(Maintenance Shop)
	L-5 OK Problem *		OK Problem *
	L-7 OK Problem *		

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

COMMENTS:	
CORRECTIVE ACTION TAKEN;	
	BY:
,	DATE:

C:\\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLRILL RIVER LEGEND APPROXIMATE DOWNCHUTE / TEFRACE LOCATION **⊕**N₩-302 MONITORING WELL LOCATION PREZOMETER LOCATION ● P7-2180 PROPERTY LINE (TYP) g 600-2345 600-2345 HENKOUPHENT / MUNITERINE DOOP NA-3312 6₂₈ NA-S119 aros.wu PZ-228T P2-7250 GEA PL-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP JOB No.: 2535 DATE: 03/96 SCALE: 1" = 600'

Dat	e: 3/15/16	Performed By.	En Sherwood	
1.	Access road condition	Good	Fair Poor*	
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained p	properly Hus not been maintained properly	
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed	Obstructed * Sediments	
4.	Catch Basins	Unobstructed	Obstructed * Sediments	
5,	Detention Basin	Unobstructed	Obstructed * Sediments	
6.	Terraces	Unobstructed	Obstructed * Sediments	
7.	Terraces downchutes	Unobstructed	Obstructed * Sediments	
8.	Terraces headwall	Unobstructed	Obstructed * Sediments	
9.	Grass condition	Good	Poor Dead	
10.	Other Plants Present	Burdock	Thistle Other	
11.	Woody Plants	Not on cap	Present* Date Removed:	
2.	Capped Gas Wells	Good Condition	Damaged*	
13.	Surface erosion	None	Minor Needs repair *	
14.	Landfill Stability (Sloughing)	No soil movement	Soil movement present*	
15.	Cracks (Within landfill cover)	No Cracks Visible	Landfill cover crack(s) are visible* (Note Measurement, Location & Description)	
16.	Geomembrane liner exposed	No	Yes	
17.	/ /	No Settlement visible	(Note Measurement, Location & Description)	
18	. Most recent mowing date: 9/23/15	<u>, </u>		
19	. Stressed vegetation	No	Yes*	
20	. Damage to leachate cleanouts	No	Yes	
21	. Monitoring Wells	Secure with locks	Damaged*	
22	. Litter present	No	Yes Est, removal date:	-
23	Evidence of ponded water	None	Observed* Suspected *	
24	. Tallen wees	None	Present on cap 4 Est, removal date:	-
2.5	5. Evidence of trespass	Y'es*	No No	
	. Evidence of motor vehicle trespass	No Au	o/Truck Motorcycle ATV	
23	7. Woodehuek/rodent holes in cap	No.	Yes Date Back filled:	
21	B. Evidence of lightning strike	No	Yes*	

29.	Unauthorized materials present	No.),ce *	
3().	Dead Animals present	No	Yes *	
31.	Oil slick on adjacent waters	No	Yes *	
	Damaged leachate manholes	No.	Yes *	
33.	Leachate seeps	No	Yes Stain Color:	
			Length:	
34.	Leachate fluid	Puddle *	Street None	
			Stream * None	
35.	,	No	Yes *	
36.	Other animal foraging evidence	No	Yes *	
37.	No smoking warnings	Present	Missing/Damaged	
38.	Survey Monuments	Undisturbed	Disturbed	
20	Leachate Collection tanks and piping	25 0- 1	ort. To d	
39.	Deachate Confection tanks and piping	35. Condensa	ate 1 anks	
	L-1 OX Problem *	C - 1	OK Problem *	
	L-2 OK Problem *	C-2	OK Problem *	
ζ.	L-3 OK Problem *	C - 3	OK Problem *	
	L-4 OK Problem *	C – 4	(Maintenance Shop)	
	L-5 OK Problem*		OK Problem *	
	L-7 OK Problem *			

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

CORRECTIVE ACTION TAKEN;	OMMENTS:	
CORRECTIVE ACTION TAKEN:		
CORRECTIVE ACTION TAKEN:	·	
ORRECTIVE ACTION TAKEN:		
ORRECTIVE ACTION TAKEN:		
		The second secon
	1	
BY:		
BY:		
13 3 :		D.V.
DATE:		DATE:

C:\\IOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLKILL RIVER LEGEND TERRACE LOCATION APPROXIMATE REPUSE UNIT MW-2360 SURFACE WATER LOCATION ₩-302 WONTORING WELL LOCATION ₱₹-2180 APPROXUATE PROPERTY LINE (TYP) Q LW-234 LW-2345 HENCOUPHENT / MAJITEMANCE SHOP Q⁵³ HW-2210 WW-3215 PZ-2281 PZ-2250 GEPA PZ-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP DATE: 03/96 JOB No.: 2535 SCALE: 1" = 600"

Dat	e: 4/15/1 6	Performed By:	in Sherwood	
1.	Access road condition	Good	Fair	Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained p	properly Has not bec	en maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed	Obstructed *	Sediments
4.	Catch Basins	Unobstructed	Obstructed *	Sediments
5.	Detention Basin	Unobstructed	Obstructed *	Sediments
6.	Terraces	Unobstructed	Obstructed *	Sediments
7.	Terraces downclintes	Unobstructed	Obstructed *	Sediments
8.	Terraces headwall	Unobstructed	Obstructed *	Sediments
9.	Grass condition	Good	Poor	Dead
10.	Other Plants Present	Burdock	Thistle	Other
11.	Woody Plants	Not on cap	Present*	Date Removed:
.2.	Capped Gas Wells	Good Condition	Damaged*	
13.	Surface crosion	None	Minor	Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement	Soil movement pres	ent*
15.	Cracks (Within landfill cover)	No Cracks Visible	Landfill cover crack (Note Measurement	(s) are visible* , Location & Description)
16.	Geomembrane liner exposed	No No	Yes	
17.	Settlement	No Settlement visible		,* , Location & Description)
18.	Most recent mowing date: 9/23/15			
19.	Stressed vegetation	No	Yes*	
20.	Damage to leachate cleanouts	No	Yes	
21.	Monitoring Wells	Secure with locks	Damaged*	
22.	Litter present	No	Y'es	Est. removal date:
23.	Evidence of ponded water	None	()bserved*	Suspected *
24	. Tallen wees	None	Present on cap *	Est, temoval date:
25	. Evidence of trespass	Y'est	No	
	. Evidence of motor vehicle trespass	No Am	o/Treek Motoreyele	VEA
27	. Woodchuck/rodem holes in cap	No	Yes	Date Rack filled:
28	. Evidence of lightning strike	No	Yes *	

29.	Unauthorized materials present		140		, * .	
30.	Dead Animals present		No	Y'es	£ *	
31.	Oil slick on adjacent waters		No	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 *	
I	Damaged leachate manholes		No	Yes	s *	
33.	Leachate seeps		IN No	Ye	s Si	ain Color:
					L	ength:
34.	Leachate fluid		Puddle *	Str	ream *	None
35.	Gulls/scavenger birds present		No	Yo	os *	
36.	Other animal foraging evidence		No	Ye	es *	
37.	No smoking warnings		Present	M	issing/Damaged	
38.	Survey Monuments		Undisturbed	Di	isturhed	
39.	Leachate Collection tanks and pip	ing	35, Condens	ate Tanks		
	L-1 OX	Problem *	C-1	ОК	Problem *	
	L-2 OK	Problem *	C-2	Ок	Problem *	
(L-3 OK	Problem *	C - 3	Ок	Problem *	
	L-4 DOK	Problem *	C – 4	(Maintenance S	Shop)	
	L-5 OK	Problem *		Ок	Problem *	
	L-7 OK	Problem *				

^{* =} Enter comment on next page and mark location on map with an "X" and item number

DMMENTS:		

PRRECTIVE ACTION TAKEN:		
PRRECTIVE ACTION TAKEN:		
PRRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
RRECTIVE ACTION TAKEN:		
PRRECTIVE ACTION TAKEN:		
PRRECTIVE ACTION TAKEN:		
DRRECTIVE ACTION TAKEN:		
DRRECTIVE ACTION TAKEN:		
PRRECTIVE ACTION TAKEN:		
DRRECTIVE ACTION TAKEN:		
DRRECTIVE ACTION TAKEN:	BY:	

Date	e: <u>5/16/16</u>	Performed By Sherwood
1.	Access road condition	Good Pair Poor*
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly Has not been maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed * Sediments
4.	Catch Basins	Unobstructed Obstructed * Sediments
5,	Detention Basin	Unobstructed Obstructed * Sediments
6.	Теттасся	Unobstructed Obstructed * Sediments
7.	Terraces downchutes	Unobstructed Obstructed * Sediments
8.	Terraces headwall	Unobstructed Obstructed * Sediments
9.	Grass condition	Good Poor Dead
10.	Other Plants Present	Burdock Thistle Other
11.	Woody Plants	Not on cap Present* Date Removed:
.2.	Capped Gas Wells	Good Condition Damaged*
13.	Surface crosion	None Minor Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement Soil movement present*
15.	Cracks (Within landfill cover)	No Cracks Visible Landfill cover crack(s) are visible* (Note Measurement, Location & Description)
16.	Geomembrane liner exposed	No Yes
17	Settlement	No Settlement visible Settlement is visible* (Note Measurement, Location & Description)
18	. Most recent mowing date: $\frac{9}{23}/13$	5
19	. Stressed vegetation	No Yes*
20	. Damage to leachaie cleanouts	No Yes
21	. Monitoring Wells	Secure with locks Damaged*
22	Litter present	No Yes Est. removal date:
23	6. Evidence of ponded water	None (Observed* Suspected *
24	l. Tallen trees	Rone Present on cap * Est, removal date:
2:	5. Evidence of trespass	Yest No
	. Evidence of motor vehicle trespass	No Avio/Truck Moiorcycle ATV
2	7. Woodchuck/rodem holes in cap	Yes Date Back filled:
2	8. Evidence of lightning strike	No Yes*

29.	Unauthorized materials present	No	Υ΄eε *
30.	Dead Animals present	No No	Yes *
31.	Oil slick on adjacent waters	No	Yes *
	Damaged leachate manholes	140	Yes *
33.	Leachate seeps	140	Yes Stain Color:
			Length:
34,	Leachate fluid	Puddle *	Stream * None
35.	Gulls/seavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
39.	Leachate Collection tanks and piping	35. Condens	sate Tanks
	L-1 OK Problem	a * C - 1	OK Problem *
	L-2 OK Probler	n * C-2	OK Problem *
(L-3 OK Problem	m * C - 3	OK Problem *
	L-4 OK Proble	n * C – 4	(Maintenance Shop)
	L-5 OK Proble	m *	OK Problem *
	L-7 OK Proble	m *	

^{* =} Enter comment on next page and mark location on map with an "X" and item number

DMMENTS:	
RRECTIVE ACTION TAKEN:	
PRRECTIVE ACTION TAKEN:	
PRRECTIVE ACTION TAKEN:	
RRECTIVE ACTION TAKEN:	

C:\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLKILL RIVER LEGEND APPROXIMATE NOWNCHUTE / TERRACE LOCATION ₩W-236D **⊕** NW-302 WONTORING WELL LOCATION PREZOMETER LOCATION ₱ ₽₹~2280 APPROXUATE PROPERTY UNE (TYP) g LTW-234 KW-2345 HENCOUPHENT / HASITUHANCE SHOP 2218 144-7215 PZ-2250 GEA ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP JOB No.: 2535 DATE: 03/96 SCALE: 1" = 600'

Dat	e: 6/15/16	Performed By:	en Sherwood	
1.	Access road condition	Good	Fair	Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained p	properly Has not been	en maintained properly
3,	Roadside ditches, culverts & other site drainage ways	Unobstructed	Obstructed *	Sediments
4.	Catch Basins	Unobstructed	Obstructed *	Sediments
5.	Detention Basin	Unobstructed	Obstructed *	Sediments
6.	Terraces	Unobstructed	Obstructed *	Sediments
7.	Terraces downchutes	Unobstructed	Obstructed *	Sediments
8.	Terraces headwall	Unobstructed	Obstructed *	Sediments
9.	Grass condition	Good	Poor	Dead
10.	Other Plants Present	Burdock	Thistle	Other
1.	Woody Plants	Not on cap	Present*	Date Removed:
2.	Capped Gas Wells	Good Condition	Damaged*	
13.	Surface crosion	None	Minor	Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement	Soil movement pres	eent *
15.	Cracks (Within landfill cover)	No Cracks Visible	Landfill cover crack (Note Measurement	s(s) are visible* I, Location & Description)
16	Geomembrane liner exposed	No	Ycs	
17	. Settlement	No Settlement visible		e* t, Location & Description)
18	. Most recent mowing date: 9/23/15			•
19	. Stressed vegetation	No	Yes*	
20	. Damage to leachate cleanouts	No	Yes	
21	Monitoring Wells	Secure with locks	Damaged*	
22	. Litter present	No	\tag{'es}	Est. removal date:
23	. Evidence of ponded water	None	Observed*	Suspected *
24	i. Tallen vees	None	Present on cup *	Est, removal date:
2.5	5. Evidence of trespass	1'cs*	No	
	. Evidence of motor vehicle trespass	No Am	o/Truck Motorcycle	ATV
2	7. Woodelniek/rodem holes in cap	No	Y'es	Pare Back filled:
2	8. Evidence of lightning strike	No	7.58 *	

29.	Unauthorized materials present	No	/'CE *
30.	Dead Animals present	No	Yes*
31.	Oil slick on adjacent waters	No	Y'es *
.,	Damaged leachate manholes	No	Yes *
33.	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Yes *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
39.	Leachate Collection tanks and piping	35. Condensa	ate Tanks
	L-1 OK Problem *	C - 1	OK Problem *
	L-2 OK Problem *	C – 2	OK Problem *
<	L-3 OK Problem *	C - 3	OK Problem *
	L-4 OK Problem *	C-4	(Maintenance Shop)
	L-5 OK Problem*		OK Problem *
	L-7 OK Problem *		

^{* =} Enter comment on next page and mark location on map with an "X" and item number

COMMENTS:	
\(\frac{1}{2}\)	
	·
CORRECTIVE ACTION TAKEN:	
1	
	₽/.
	ВУ:
	DATE:

C:\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLKILL RIVER LEGEND TERRACE LOCATION APPROXIMATE REFUSE UNIT SURFACE WATER LOCATION MONITORING WELL LOCATION **₽NW~302** PIEZOMETER LOCATION **●** P7-2280 APPROXIMATE PROPERTY LINE (TYP) Ma-3742 na-2010 na-2012 HENCOUPHENT / MAJITHANKE SHOP B¹⁰ HM-2210 HW-3215 UW-3015 PZ-228T 72-2250 SEP 72-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP JOB No.: 2535 DATE: 03/96 SCALE: 1" = 600'

Dat	e: 7/14/16	Performed By: Ken Sherwood
1.	Access road condition	Good Pair Poor*
2.	Access Control (Monitoring of Access road & entrance into landfill property)	11as been maintained properly 13as not been maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed Obstructed * Sediments
4.	Catch Basins	Unobstructed Obstructed * Sediments
5.	Detention Basin	Unobstructed
6.	Terraces	Unobstructed Obstructed * Sediments
7.	Terraces downchutes	Unobstructed Obstructed * Sediments
8.	Terraces headwall	Unobstructed Obstructed * Sediments
9.	Grass condition	Good Poor Dead
10.	Other Plants Present	Burdock Thistle Other
1.	Woody Plants	Not on cap Present* Date Removed:
2.	Capped Gas Wells	Good Condition Damaged*
13.	Surface crosion	None Minor Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement Soil movement present*
15.	Cracks (Within landfill cover)	No Cracks Visible Landfill cover crack(s) are visible* (Note Measurement, Location & Description)
16.	Geomembrane liner exposed	No Yes
17.	Settlement	No Settlement visible Settlement is visible* (Note Measurement, Location & Description)
18.	Most recent moving date: 6/22/16	<u> </u>
19.	Stressed vegetation	No Yes*
20	Damage to leachate cleanouts	No Yes
21	. Monitoring Wells	Secure with locks Damaged*
22	. Litter present	No Yes Est. removal date:
23	. Evidence of ponded water	None Observed* Suspected *
24	. Tallen trees	None Present on cap * Est, removal date:
25	. Evidence of trespass	Yes* No
	. Evidence of motor vehicle trespass	No Auto/Truck Motorcycle ATV
27	. Woodelnek/rodent holes in cap	No Yes Date Back filled:
28	3. Evidence of lightning strike	No Yes*

29.	Unauthorized materials present	No	Yes *
30.	Dead Animals present	No	Yes *
31.	Oil slick on adjacent waters	No	Yes*
	Damaged leachate manholes	11/0	Yes *
33,	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
20		25.0	
39.	Leachate Collection tanks and piping	35. Condens	isate Tanks
	L-1 OK Probl	cm * C - 1	OK Problem *
	L-2 OK Probl	em * C-2	OK Problem *
•	L-3 OK Probl	em * C - 3	OK Problem *
(L-4 OK Probl	em * C-4	(Maintenance Shop)
	L-5 OK Prob	lem *	OK Problem *
	L-7 OK Prob	lem *	

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

MMEN'TS:		,	

DRRECTIVE ACTION TAKEN:			
DRRECTIVE ACTION TAKEN:	·		
DRRECTIVE ACTION TAKEN:	·		
DRRECTIVE ACTION TAKEN:			
ORRECTIVE ACTION TAKEN:			
ORRECTIVE ACTION TAKEN:			

C:\\IOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLRILL RIVER LEGEND APPROXIMATE DOWNORUTE / TEPRACE LOCATION SURFACE WATER LOCATION MONITORING WELL LOCATION **⊕ NW-302** PREZONETER LOCATION ■ P7-228D PPROXIMATE PROPERTY UNE (TYP) HENCOUPLENT / MAJITUHANCE SHOP PZ-228T PZ-7250 950 PZ-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP DATE: 03/96 JOB No.: 2535 SCALE: 1" = 600'

Dat	e: 8/15/16	Performed By: Yen Shen	æd
1.	Access road condition	Good Pair	Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly	Has not been maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed Obstructed	* Sediments
4.	Catch Basins	Unobstructed Obstructed	* Sediments
5.	Detention Basin	Unobstructed Obstructed	1* Sediments
6.	Terraces	Unobstructed Obstructed	3 * Sediments
7.	Terraces downchutes	Unobstructed Obstructe	f * Sediments
8.	Terraces headwall	Unobstructed Obstructe	d * Sediments
9.	Grass condition	Good Poor	Dead
10.	Other Plants Present	Burdock Thistle	Other
1.	Woody Plants	Not on cap Present*	Date Removed:
2.	Capped Gas Wells	Good Condition Damageo	*
13.	Surface crosion	None Minor	Nceds repair *
14.	Landfill Stability (Sloughing)	No soil movement Soil mov	rement present*
15.	Cracks (Within landfill cover)		cover crack(s) are visible* casurement, Location & Description)
16.	Geomembrane liner exposed	No Yes	
17.	Settlement		nt is visible* casurement, Location & Description)
18.	Most recent mowing date: 7/13/16		
19.	Stressed vegetation	No Yes*	
20	Damage to leachate cleanouts	No Yes	
21	. Monitoring Wells	Secure with locks Damage	d [∗] .
22	. Litter present	No Yes	Est. removal date:
23	. Evidence of ponded water	None (16 (16 (16)	ed* Suspected *
24	. Fallen vres	None Present	on cap 4 Est, removal date:
2.5	. Evidence of trespass	1'cs* No	
	. Evidence of motor vehicle trespass	No Amo/Truck	Motorcycle ATV
27	. Woodehuck/rodem holes in cap	No Yes	Dete Back filled:
28	3. Evidence of lightning strike	No Yes*	

30. Dead Animals present No	29.	Unauthorized materials present	No	Yes *	
Damaged leachate manholes 33. Leachate seeps No Yes * Length: Length: Length: 34. Leachate fluid 35. Gulls/scavenger birds present No Yes * None None No Yes * None 36. Other animal foraging evidence No Yes * None None Yes * None None Yes * None None Yes *	30.	Dead Animals present	No	Yes *	
23. Leachate seeps No	31.	Oil slick on adjacent waters	No	Y'es *	
Length: 34. Leachate fluid	•	Damaged leachate manholes	No.	Yes *	
34. Leachate fluid	33.	Leachate seeps	No	Yes Stain Color:	
35. Gulls/scavenger birds present 36. Other animal foraging evidence 37. No smoking warnings 38. Survey Monuments 39. Leachate Collection tanks and piping 30. Condensate Tanks 10. Leachate Collection tanks and piping 30. Condensate Tanks 10. Leachate Collection tanks and piping 31. Condensate Tanks 10. Leachate Collection tanks and piping 32. Condensate Tanks 10. Leachate Collection tanks and piping 33. Condensate Tanks 10. Leachate Collection tanks and piping 34. Certain Correction tanks 10. Leachate Collection tanks and piping 10. Certain Correction tanks 10. Certain Correction t				Length:	
36. Other animal foraging evidence 37. No smoking warnings 38. Survey Monuments 39. Leachate Collection tanks and piping 30. Condensate Tanks 40. C-2	34.	Leachate fluid	Puddle *	Stream * No	ne
37. No smoking warnings 38. Survey Monuments 39. Leachate Collection tanks and piping 30. Leachate Collection tanks and piping 30. Condensate Tanks 30. Leachate Collection tanks and piping 31. Condensate Tanks 32. Condensate Tanks 33. Condensate Tanks 34. C-1 OK Problem * 35. Condensate Tanks 36. Condensate Tanks 37. C-1 OK Problem * 38. Survey Monuments 39. Leachate Collection tanks and piping 30. Condensate Tanks 30. C-1 OK Problem * 30. C-2 OK Problem * 30. C-2 OK Problem * 30. C-3 OK Problem * 30. C-4 (Maintenance Shop) 30. C-4 (Maintenance Shop) 31. Condensate Tanks 40. C-2 OK Problem * 40. C-3 OK Problem *	35.	Gulls/scavenger birds present	No	Ycs *	
38. Survey Monuments Undisturbed Disturbed 39. Leachate Collection tanks and piping 35. Condensate Tanks L-1 OK Problem * C-1 OK Problem * L-2 OK Problem * C-2 OK Problem * L-3 OK Problem * C-3 OK Problem * L-4 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *	36.	Other animal foraging evidence	No.	Yes *	
39. Leachate Collection tanks and piping 35. Condensate Tanks L-1 OK Problem * C-1 OK Problem * L-2 OK Problem * C-2 OK Problem * L-3 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *	37.	No smoking warnings	Present	Missing/Damaged	
L-1 OK Problem * L-2 OK Problem * C-1 OK Problem * L-2 OK Problem * C-3 OK Problem * L-4 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *	38.	Survey Monuments	Undisturbe	d Disturbed	
L-2 OK Problem * C-2 OK Problem * L-3 OK Problem * C-3 OK Problem * L-4 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *	39.	Leachate Collection tanks and piping	35. Con	iensate Tanks	
L-3 OK Problem * C-3 OK Problem * L-4 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *		L-1 OK Prob	cm * C -	1 OK Problem *	
L-4 OK Problem * C-4 (Maintenance Shop) L-5 OK Problem *		L-2 OR Prob	cm * C -	2 Problem *	
L-5 OK Problem *	· (L-3 OK Prob	lem * C-	3 OK Problem *	
		L-4 OK Prob	lem * C-	4 (Maintenance Shop)	
L-7 OK Problem *		L-5 OK Prot	lem *	OK Problem *	
		L-7 OK Prot	lem *		

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

MMENTS:			
,			
		-	
RRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
PRRECTIVE ACTION TA	AKEN:		
DRRECTIVE ACTION TA	AKEN:		
DRRECTIVE ACTION TA	AKEN:		
DRRECTIVE ACTION TA			

C:\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLD WALLRILL RIVER LEGEND APPROXIMATE ROWNCHUTE , ₩W-236D X SM-1 SURFACE WATER LOCATION MONITORING WELL LOCATION PIEZOMETER LOCATION **●** P7-2280 APPROXIMATE PROPERTY LINE (TYP) PZ-2750 GEP PZ-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP JOB No.: 2535 DATE: 03/96 SCALE: 1" = 600'

Dat	e: 9/14/16	Performed By: New Sherwood
1.	Access road condition	Good Pair Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly Bas not been maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed Obstructed * Sediments
4.	Catch Basins	Unobstructed Obstructed Sediments
5.	Detention Basin	Unobstructed Obstructed * Sediments
6.	Terraces	Unobstructed Obstructed Sediments
7.	Terraces downchutes	Unobstructed Obstructed * Sediments
8.	Terraces headwall	Unobstructed Obstructed Sediments
9.	Grass condition	Good Poor Dead
10.	Other Plants Present	Burdock Thistle Other
11.	Woody Plants	Not on cap Present* Date Removed:
2.	Capped Gas Wells	Good Condition Damaged*
13.	Surface crosion	None Minor Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement Soil movement present*
15.	Cracks (Within landfill cover)	No Cracks Visible Landfill cover crack(s) are visible* (Note Measurement, Location & Description)
16.	Geomembrane liner exposed	No Yes
	Settlement	No Settlement visible Settlement is visible* (Note Measurement, Location & Description)
18.	Most recent mowing date: 8/24/16	
	Stressed vegetation	No Yes*
20.	Damage to leachate cleanouts	No Yes
21.	Monitoring Wells	Secure with locks Damaged*
22.	Litter present	No Yes Est. removal date:
23	Evidence of ponded water	None Observed* Suspected *
24	Lallen uces	None Present on cup * Est, removal date:
25	. Evidence of trespass	Y'cs* No
	. Evidence of motor vehicle trespass	No Aoto/Truck Motorcycle ATV
27	. Woodchuck/rodem holes in cap	No Yes Pare Back filled:
28	. Evidence of lightning strike	No Yes*

29.	Unauthorized materials present	NO NO	Yes*
30.	Dead Animals present	No	Yes *
31.	Oil slick on adjacent waters	No	Y'es *
	Damaged leachate manholes	No	Yes *
33.	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
20	Landara Callerdan today a A. C.	25.0	
39.	Leachate Collection tanks and piping	35. Condensat	Le Tanks
	L-1 OK Problem *	C - 1	OK Problem *
	L-2 OK Problem *	C – 2	OK Problem *
		C 2	THOUSAN THE PROPERTY OF THE PR
	L-3 OK Problem *	C - 3	OK Problem *
	L-4 OK Problem*	C – 4	(Maintenance Shop)
	L-5 OK Problem *		OK Problem *
	L-7 OK Problem *		
	2 Trought		

^{* =} Enter comment on next page and mark location on map with an "X" and item number

COMMENTS:	
CORRECTIVE ACTION TAKEN:	
	DV.
	BY:
	BY:

SCALE: 1" = 600'

JOB No.: 2535

ORANGE COUNTY LANDFILL SITE MANAGEMENT PLAN

MONTHLY POST-CLOSURE FIELD INSPECTION REPORT ORANGE COUNTY

Dat	e: 10/17/16	Performed By: Yen	Shenwood	
1.	Access road condition	Good] Fair	
2.	Access Control (Monitoring of Access road & entrance into landfill property)	Has been maintained properly	ly Has not bee	n maintained properly
3.	Roadside ditches, culverts & other site drainage ways	Unobstructed	Obstructed *	Sediments
4.	Catch Basins	Unobstructed	Obstructed *	Sediments
5,	Detention Basin	Unobstructed	Obstructed *	Sediments
6.	Terraces	Unobstructed	Obstructed *	Sediments
7.	Terraces downchutes	Unobstructed	Obstructed *	Sediments
8.	Terraces headwall	Unobstructed	Obstructed *	Sediments
9.	Grass condition	Good	Poor	Dead
10.	Other Plants Present	Burdock	Thistle	Other
` 1.	Woody Plants	Not on cap	Present*	Date Removed:
.2.	Capped Gas Wells	Good Condition	Damaged*	
13.	Surface crosion	None	Minor	Needs repair *
14.	Landfill Stability (Sloughing)	No soil movement	Soil movement prese	ent*
15.	Cracks (Within landfill cover)	No Cracks Visible	Landfill cover crack (Note Measurement,	(s) arc visible* Location & Description)
16.	Geomembrane liner exposed	No	Y cs	
17.	Settlement	No Settlement visible	Settlement is visible (Note Measurement,	* , Location & Description)
18.	Most recent mowing date: 8/24/16	- 144 444		
19.	Stressed vegetation	No	Yes*	
20.	Damage to leachate cleanouts	No	Yes	
21.	Monitoring Wells	Secure with locks	Damaged*	
22.	Litter present	No	Yes	Est. removal date:
23.	Evidence of ponded water	None	Observeó*	Suspected *
24	. Tallen wees	None	Present on cap *	Est, removal date:
25	. Evidence of trespass	'Y'cs'	No	
	. Evidence of motor vehicle trespass	No Amo/True	dt Motoreyele	ATV
27	. Woodchuck/rodent holes in cap	No	Yes	Dete Back filled:
28	. Evidence of lightning strike	No	Y'es *	

29.	Unauthorized materials present	No	Yes *
30.	Dead Animals present	No	Yes *
31.	Oil slick on adjacent waters	No	Y'es *
	Damaged leachate manholes	No	Yes *
33.	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
20	Leachate Collection tanks and piping	25.0	
39.	Leachate Correction tanks and piping	35. Condens	ate I anks
	L-1 OK Problem *	C-1	OK Problem *
	L-2 OK Problem*	C-2	OK Problem *
c	L-3 OK Problem *	C - 3	OK Problem *
	L-4 OK Problem *	C – 4	(Maintenance Shop)
	L-5 OK Problem *		OK Problem *
	L-7 OK Problem *		

^{*} = Enter comment on next page and mark location on map with an "X" and item number

CORRECTIVE ACTION TAKEN:	
CORRECTIVE ACTION TAKEN:	
	*
BY:	
DATE:	

C:\\IOBS\MRY\#2535\2535F-2A.DWG 03/12/96 OLB WALLRILL RIVER LEGEND APPROXIMATE ROWNCHUTE, TERRACE LOCATION × SW-1 WOHITORING WELL LOCATION **⊕NW-302 ₽** P₹-2280 PREZOMETER LOCATION APPROXIMATE PROPERTY LINE (TYP) G 178-2345 B²⁸ HW−2210 WW−3215 PZ-7250 SEPA PZ-2255 ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A ENVIRONMENTAL ENGINEERS & SCIENTISTS FIELD INSPECTION SITE MAP DATE: 03/96 JOB No.: 2535 SCALE: 1" = 600'

ORANGE COUNTY LANDFILL SITE MANAGEMENT PLAN

MONTHLY POST-CLOSURE FIELD INSPECTION REPORT ORANGE COUNTY

Da	te: 11/15/16	Pe	erformed By: V e	n S	herwood	Market - Market Ball 1 - All Common of Australia (Australia) - Common of A
J.	Access road condition		Good		Fair	Poor *
2.	Access Control (Monitoring of Access road & entrance into landfill property)		Has been maintained p	roperly	Has not bee	n maintained properly
3.	Roadside ditches, culverts & other site drainage ways		Unobstructed		Obstructed *	Sediments
4.	Catch Basins		Unobstructed		Obstructed *	Sediments
5,	Detention Basin		Unobstructed		Obstructed *	Sediments
6.	Теттасеѕ		Unobstructed		Obstructed *	Sediments
7.	Terraces downchutes		Unobstructed		Obstructed *	Sediments
8.	Terraces headwall		Unobstructed		Obstructed *	Sediments
9.	Grass condition		Good		Poor	Dead
10.	Other Plants Present		Burdock		Thistle	Other
1.	Woody Plants	W	Not on cap		Present*	Date Removed:
2.	Capped Gas Wells		Good Condition		Damaged*	
13.	Surface crosion	W	None		Minor	Needs repair *
14.	Landfill Stability (Sloughing)	2	No soil movement		Soil movement prese	
15.	Cracks (Within landfill cover)		No Cracks Visible		Landfill cover crack(
16.	Geomembrane liner exposed		No		Yes	bootivit & Description)
17.	Settlement		No Settlement visible		Scattlement is visible	Location & Description)
18.	Most recent mowing date: 8/24/16				(who measurement,	Location & Description)
19.	Stressed vegetation		No		Yes*	
20.	Damage to leachate cleanouts		No		Yes	
21.	Monitoring Wells	W	Secure with locks		Damaged*	
22.	Litter present	V	No		Yes	Est. removal date:
23.	Evidence of ponded water		None		Observed*	Suspected *
24.	l allen wees	V	Rone		Present on cap *	Est, removal date:
25,	Evidence of trespass		1'cs*	V	No	
	Evidence of motor vehicle trespass		No Auto/	Trock	Motorcycle	ATV
27.	Woodelnick/rodent holes in cap	V	No		Yes	Date Backfilled:
28.	Evidence of lightning strike	V	No		Yes *	

	The state of the s		
29.	Unauthorized materials present	No	Yes v
30.	Dead Animals present	No	Yes *
31.	Oil slick on adjacent waters	140	Y'es *
32.	Damaged leachate manholes	140	Yes *
33.	Leachate seeps	140	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/seavenger birds present	No	Yes *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
2.0			
39.	Leachate Collection tanks and piping	35. Condens	ate Tanks
	L-1 OK Problem *	C-1	OK Problem *
	L-2 OK Problem*	C-2	OK Problem *
	L-3 OK Problem *	C - 3	OK Problem *
	L-4 OK Problem *	C – 4	(Maintenance Shop)
	L-5 OK Problem *		OK Problem *
	L-7 OK Problem *		

^{* =} Enter comment on next page and mark location on map with an "X" and item number

COMMENTS:	
CORRECTIVE ACTION TAKENS	
CORRECTIVE ACTION TAKEN:	
CORRECTIVE ACTION TAKEN;	BY:DATE:

DATE: 03/96

JOB No.: 2535

SCALE: 1" = 600"

FIELD INSPECTION SITE MAP

ORANGE COUNTY LANDFILL SITE MANAGEMENT PLAN

MONTHLY POST-CLOSURE FIELD INSPECTION REPORT ORANGE COUNTY

Dat	e: 12/15/16	Pe	rformed By: 🏑	en a	Sherwood	
1.	Access road condition		Good		Fair	Poor*
2.	Access Control (Monitoring of Access road & entrance into landfill property)		Has been maintained p	roperly	Has not bee	n maintained properly
3.	Roadside ditches, culverts & other site drainage ways		Unobstructed		Obstructed *	Sediments
4.	Catch Basins		Unobstructed		Obstructed *	Sediments
5.	Detention Basin		Unobstructed		Obstructed *	Sediments
6.	Terraces		Unobstructed		Obstructed *	Sediments
7.	Terraces downchutes		Unobstructed		Obstructed *	Sediments
8.	Terraces headwall		Unobstructed		Obstructed *	Sediments
9.	Grass condition		Good		Poor	Dead
10.	Other Plants Present		Burdock		Thistle	Other
1.	Woody Plants	W	Not on cap		Present*	Date Removed:
12.	Capped Gas Wells		Good Condition		Damaged*	
13.	Surface crosion		None		Minor	Needs repair *
14.	Landfill Stability (Sloughing)		No soil movement		Soil movement prese	ent*
15.	Cracks (Within landfill cover)		No Cracks Visible		Landfill cover cracke (Note Measurement,	(s) are visible* Location & Description)
16.	Geomembrane liner exposed		No		Yes	
17.	Settlement	V	No Settlement visible	2	Settlement is visible (Note Measurement,	* Location & Description)
18.	Most recent mowing date: 5/24/16	0				
19.	Stressed vegetation		No		Yes*	
20.	Damage to leachate cleanouts		No		Yes	
21.	Monitoring Wells		Secure with locks		Damaged*	
22.	Litter present		No		Yes	Est. removal date:
23.	Evidence of ponded water		None		()bservcó*	Suspected *
24,	l'allen vees		None		Present on cup *	Est, removal date:
25,	Evidence of trespass		J'es*		No	
	Evidence of motor vehicle trespass		No Avic	/Treck	Motoreyele	ATV
27.	Woodchuck/rodem holes in cap) No) Yes	Dete Back filled:
28.	Evidence of lightning strike		No) Y'es *	

29.	Unzuthorized materials present	No)'ce *
30.	Dead Animals present	No	
31.	Oil slick on adjacent waters	No	Yes*
32.	Damaged leachate manholes	No	Yes *
J3.	Leachate seeps	No	Yes Stain Color:
			Length:
34.	Leachate fluid	Puddle *	Stream * None
35.	Gulls/scavenger birds present	No	Ycs *
36.	Other animal foraging evidence	No	Yes *
37.	No smoking warnings	Present	Missing/Damaged
38.	Survey Monuments	Undisturbed	Disturbed
20	Leachate Collection tanks and piping	35. Conden	cote Turke
37.	Leachate Confection lanks and piping	33. Conden	Sale Falls
	L-1 OK Problem	* C - 1	OK Problem *
	L-2 OK Problem	c - 2	OK Problem *
- ç	L-3 OK Problem	1 * C - 3	OK Problem *
	L-4 OK Probles	n * C – 4	(Maintenance Shop)
	L-5 OK Problem	n *	OK Problem *
	L-7 OK Proble	n *	

 $[\]star$ = Enter comment on next page and mark location on map with an "X" and item number

IMENTS:_	1-2 and 1-4 and 0 ()	
4-9	L-2 and L-4 were found disconnected from Ice build, has a crack in the Connection pipe itsect.	g
	Track in the connection pipe itself.	
	•	
***********	DATE: 12/15/16	
	DATE: 12/15/16	

C:\JOBS\MRY\#2535\2535F-2A.DWG 03/12/96 LEGEND APPROXIMATE DOWNCHUTE / TERRACE LOCATION SURFACE WATER LOCATION **₽** PZ~2280 APPROXIMATE PROPERTY UNE (TYP) g uw-2345 ₽⁵⁸ µ₩-2210 ₩₩-3215 PZ-2250 ^{SEPA} PZ-225S ORANGE COUNTY LANDFILL TOWN OF GOSHEN, NEW YORK FIGURE 2A FIELD INSPECTION SITE MAP DATE: 03/96 JOB No.: 2535 SCALE: 1" = 600'

APPENDIX B

ORANGE COUNTY LEACHATE VOLUME COLLECTED FROM LEACHATE COLLECTION SYSTEM

From Date: 1/1/2016 to 12/31/2016

From Material: 047 to 049

Direction: ALL

Print Date: 2/17/2017

Print Time: 8:48AM

Truck ID	Ticket Date	Ticket Number	Unit	Net		Material	Tax	Other	Tota
77		= 1		Outgoing					
Material: Customer	048		Cook Jr. Inc MANHOLES	Note = 048: Re	efers to	Leachate Tanks 1-4			
1717	1/4/16	2151917	4878.049 Ga	20.000	tn			\$0.00	\$0.00
1717	1/6/16	2152217	2107.317 Ga	8.640	tn			\$0.00	\$0.00
1717	1/6/16	2152264	5131.707 Ga	21.040	tn			\$0.00	\$0.00
1717	1/14/16	2153302	3351.220 Ga	13.740	tn			\$0.00	\$0.00
1717	1/15/16	2153388	4846.341 Ga	19.870	tn			\$0.00	\$0.00
1717	1/15/16	2153437	4939.024 Ga	20.250	tn			\$0.00	\$0.00
1717	1/19/16	2153744	4982.927 Ga	20.430	tn			\$0.00	\$0.00
1717	1/19/16	2153793	5107.317 Ga	20.940	tn			\$0.00	\$0.00
1717	1/19/16	2153832	3092.683 Ga	12.680	tn			\$0.00	\$0.00
1717	2/4/16	2155583	2358.537 Ga		tn			\$0.00	\$0.00
1717	2/4/16	2155607	5131.707 Ga		tn			\$0.00	\$0.00
1717	2/4/16	2155668	5129.268 Ga	1 21.030	tn			\$0.00	\$0.00
1717	2/10/16	2156342	4970.732 Ga		tn			\$0.00	\$0.00
1717	2/16/16	2156738	3973.171 Ga					\$0.00	\$0.00
1717	2/16/16	2156775	5017.073 Ga		tn			\$0.00	\$0.00
1717	2/22/16	2157618	4197.561 Ga		tn			\$0.00	\$0.00
1717	3/4/16	2159012	2882.927 Ga					\$0.00	\$0.00
1717	3/4/16	2159016	2207.317 Ga					\$0.00	\$0.00
1717	3/4/16	2159056	5029.268 Ga					\$0.00	\$0.00
1715	3/15/16	2160574	6770.732 Ga					\$0.00	\$0.00
1717	3/30/16	2162916	4985.366 Ga		tn			\$0.00	\$0.00
1717	3/31/16	2162981	1356.098 Ga		tn			\$0.00	\$0.00
1717	3/31/16	2163048	4948.780 Ga					\$0.00	\$0.00
1717	5/2/16	2168015	1463.415 Ga	6.000	tn			\$0.00	\$0.00
1717	5/2/16	2168024	1704.878 Ga					\$0.00	\$0.00
1717	5/5/16	2168614	4760.976 Ga					\$0.00	\$0.00
1717	5/6/16	2168715	1719.512 Ga	7.050	tn			\$0.00	\$0.00
1717	5/25/16	2171748	4890.244 Ga	20.050	tn			\$0.00	\$0.00
1715	5/27/16	2172125	6412.195 Ga	26.290	tn			\$0.00	\$0.00
1717	5/31/16	2172320	4629.268 Ga	18.980	tn			\$0.00	\$0.00
1717	5/31/16	2172386	5146.341 Ga	1 21.100	tn			\$0.00	\$0.00
1717	6/17/16	2175508	4685.366 Ga	19.210	tn			\$0.00	\$0.00
1717	6/21/16	2175925	4721.951 Ga	19.360	tn			\$0.00	\$0.00
1717	6/21/16	2176050	4848.780 Ga	al 19.880	tn			\$0.00	\$0.00
1717	7/12/16	2179510	4700.000 Ga	19.270	tn			\$0.00	\$0.0
1715	7/20/16	2180680	5902.439 Ga	24.200	tn			\$0.00	\$0.00
1717	7/20/16	2180741	4824.390 Ga	al 19.780	tn			\$0.00	\$0.0
1715	7/20/16	2180748	6892.683 Ga	28.260	tn			\$0.00	\$0.0
1717	9/20/16	2190418	5190.244 Ga	21.280	tn			\$0.00	\$0.0
1717	9/21/16	2190533	4548.780 Ga	18.650	tn			\$0.00	\$0.0
1717	9/21/16	2190592	5143.902 Ga	21.090	tn			\$0.00	\$0.0

Page 1 of 4

From Date: 1/1/2016 to 12/31/2016

From Material: 047 to 049

4/4/16

1717

2163480

Direction: ALL

Print Date: 2/17/2017

Print Time: 8:49AM

\$0.00

\$0.00

Truck ID	Ticket Date	Ticket Number	Unit	Net		Material	Tax	Other	Total
1717	9/23/16	2190819	5175.610 Gal	21.220	tn			\$0.00	\$0.00
1717	9/23/16	2190876	4843.902 Gal	19.860	tn			\$0.00	\$0.00
1717	10/6/16	2192868	4526.829 Gal	18.560	tn			\$0.00	\$0.00
1719	10/28/16	2196128	6729.268 Gal	27.590	tn			\$0.00	\$0.00
1717	12/12/16	2202517	3114.634 Gal	12.770	tn			\$0.00	\$0.00
1717	12/14/16	2202733	1931.707 Gal	7.920	tn			\$0.00	\$0.00
1717	12/14/16	2202838	4697.561 Gal	19.260				\$0.00	\$0.00
1717	12/15/16	2202946	4978.049 Gal	20.410				\$0.00	\$0.00
1717	12/15/16	2202993	4748.780 Gal	19.470				\$0.00	\$0.00
1717	12/16/16	2203125	4995.122 Gal	20.480				\$0.00	\$0.00
Fred A. Coo Tickets: 51	k Jr. Inc Totals		225321.948 Gal	923.820	tn			\$0.00	\$0.00

LEACH. - MANHOLES Totals 225321.948 Gal 923.820 tn \$0.00 \$0.00 **Tickets: 51**

Note = 049: Refers to Leachate Tanks 5-7 Fred A. Cook Jr. Inc Material: 049 NEW CONST.-DITCH/POND Customer: 140 \$0.00 \$0.00 1/4/16 2151852 4878.049 Gal 20.000 1717 \$0.00 \$0.00 1717 1/6/16 2152209 2841.463 Gal 11.650 tn \$0.00 \$0.00 1717 1/13/16 2153138 1953.659 Gal 8.010 tn \$0.00 \$0.00 1717 1/13/16 2153165 4973.171 Gal 20.390 tn \$0.00 \$0.00 2153294 1560.976 Gal 1717 1/14/16 6.400 tn \$0.00 \$0.00 1/18/16 2153693 5100.000 Gal 20.910 tn 1717 \$0.00 \$0.00 5087.805 Gal 1/19/16 2153713 20.860 tn 1717 \$0.00 \$0.00 1/19/16 2153822 2019.512 Gal 8.280 tn 1717 \$0.00 \$0.00 1/22/16 2154275 5009.756 Gal 20.540 tn 1717 \$0.00 \$0.00 2155578 2751.220 Gal 11.280 tn 1717 2/4/16 \$0.00 \$0.00 2/9/16 2156179 982.927 Gal 4.030 tn 1717 \$0.00 \$0.00 1717 2/9/16 2156185 4051.220 Gal 16.610 tn \$0.00 \$0.00 2/9/16 2156224 4990.244 Gal 20.460 tn 1717 \$0.00 \$0.00 20.660 1717 2/10/16 2156303 5039.024 Gal tn \$0.00 \$0.00 2/16/16 2156734 880.488 Gal 3.610 tn 1717 \$0.00 \$0.00 2/24/16 2157862 2890.244 Gal 11.850 tn 1717 \$0.00 \$0.00 2/24/16 2157868 2112.195 Gal 8.660 tn 1717 \$0.00 \$0.00 2157901 5126.829 Gal 21.020 1717 2/24/16 tn \$0.00 \$0.00 3/11/16 2159979 1670.732 Gal 6.850 tn 1717 \$0.00 \$0.00 1717 3/11/16 2160016 4980.488 Gal 20.420 tn \$0.00 \$0.00 2160109 5092.683 Gal 20.880 1717 3/11/16 tn \$0.00 \$0.00 1717 3/17/16 2160967 2534.146 Gal 10.390 tn \$0.00 \$0.00 2161987 1404.878 Gal 5.760 tn 1717 3/24/16 \$0.00 \$0.00 1717 3/25/16 2162094 4982.927 Gal 20.430 tn \$0.00 \$0.00 3/25/16 2162181 5136.585 Gal 21.060 tn 1717 \$0.00 \$0.00 5.500 tn 1717 3/31/16 2162975 1341.463 Gal

20.590 tn

5021.951 Gal

From Date: 1/1/2016 to 12/31/2016

From Material: 047 to 049

Direction: ALL

Tickets: 65

Print Date: 2/17/2017

Print Time: 8:49AM

Truck	Ticket	Ticket						
ID	Date	Number	Unit	Net		Material Tax	Other	Total
1717	4/4/16	2163525	5117.073 Gal	20.980	tn		\$0.00	\$0.00
1717	4/14/16	2165076	1090.244 Gal	4.470	tn		\$0.00	\$0.00
1717	4/21/16	2166092	2078.049 Gal	8.520	tn		\$0.00	\$0.00
1717	4/21/16	2166095	2936.585 Gal	12.040	tn		\$0.00	\$0.00
1717	4/27/16	2167289	3770.732 Gal	15.460	tn		\$0.00	\$0.00
1717	5/2/16	2168091	3080.488 Gal	12.630	tn		\$0.00	\$0.00
1717	5/2/16	2168141	3139.024 Gal	12.870	tn		\$0.00	\$0.00
1717	5/12/16	2169514	2370.732 Gal	9.720	tn		\$0.00	\$0.00
1717	5/12/16	2169523	2675.610 Gal	10.970	tn		\$0.00	\$0.00
1717	5/12/16	2169578	3041.463 Gal	12.470	tn		\$0.00	\$0.00
1717	5/12/16	2169640	5100.000 Gal	20.910	tn		\$0.00	\$0.00
1715	5/27/16	2172044	6851.220 Gal	28.090	tn		\$0.00	\$0.00
1717	5/31/16	2172486	1400.000 Gal	5.740	tn		\$0.00	\$0.00
1717	5/31/16	2172548	5168.293 Gal	21,190	tn		\$0.00	\$0.00
1717	6/16/16	2175305	2478.049 Gal	10.160	tn		\$0.00	\$0.00
1717	6/17/16	2175441	4829.268 Gal	19.800	tn		\$0.00	\$0.00
1717	6/21/16	2175991	4946.341 Gal	20.280	tn		\$0.00	\$0.00
1717	6/29/16	2177514	843.902 Gal	3.460	tn		\$0.00	\$0.00
1717	7/12/16	2179385	1248.780 Gal	5.120	tn		\$0.00	\$0.00
1717	7/12/16	2179394	3619.512 Gal	14.840	tn		\$0.00	\$0.00
1717	7/12/16	2179448	5200.000 Gal	21.320	tn		\$0.00	\$0.00
1717	7/20/16	2180684	446.341 Gal	1.830	tn		\$0.00	\$0.00
1717	7/20/16	2180696	4439.024 Gal	18.200	tn		\$0.00	\$0.00
1717	7/30/16	2182411	1114.634 Gal	4.570	tn		\$0.00	\$0.00
1717	7/30/16	2182431	5729.268 Gal	23.490	tn		\$0.00	\$0.00
1717	9/1/16	2187654	2926.829 Gal	12.000	tn		\$0.00	\$0.00
1717	9/1/16	2187666	821.951 Gal	3.370	tn		\$0.00	\$0.00
1717	9/20/16	2190303	1973.171 Gal	8.090	tn		\$0.00	\$0.00
1717	9/20/16	2190310	2858.537 Gal	11.720	tn		\$0.00	\$0.00
1717	9/20/16	2190351	5014.634 Gal	20.560	tn		\$0.00	\$0.00
1717	9/23/16	2190933	5209.756 Gal	21.360	tn		\$0.00	\$0.00
1717	10/6/16	2192783	4336.585 Gal	17.780	tn		\$0.00	\$0.00
1715	10/28/16	2196043	2892.683 Gal	11.860	tn		\$0.00	\$0.00
1715	10/28/16	2196053	4024.390 Gal	16.500	tn		\$0.00	\$0.00
1717	12/8/16	2202039	4782.927 Gal	19.610	tn		\$0.00	\$0.00
1717	12/14/16	2202731	2482.927 Gal	10.180	tn		\$0.00	\$0.00
1717	12/14/16	2202765	4951.220 Gal	20.300	tn		\$0.00	\$0.00
1717	12/15/16	2202897	2063.415 Gal	8.460	tn		\$0.00	\$0.00
Fred A. Coo Tickets: 65	ok Jr. Inc Totals		221468.292 Gal	908.020	tn		\$0.00	\$0.00
NEW CONS	TDITCH/POND	Totals	221468.292 Gal	908.020	tn		\$0.00	\$0.00

From Date: 1/1/2016 to 12/31/2016

From Material: 047 to 049

Direction: ALL

Print Date: 2/17/2017

Print Time: 8:49AM

Truck ID	Ticket Date	Ticket Number	Unit	Net	Material	Tax	Other	Total
Outgoin	g Totals			1831.840 tn			\$0.00	\$0.00
	bound Com	bined Totals		1,831.84	\$0.00	\$0.00	\$0.00	\$0.00

APPENDIX C

NYSDEC INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site Details	Box 1	
Site No	336007		
Site Na	me Orange County Landfill		
City/To	dress: ROUTE 17M Zip Code: 10924 vn: Goshen Orange eage: 75.0		
Reporti	ng Period: January 1, 2016 to January 31, 2017		
		YES	NO
1. lst	e information above correct?	X	
		Λ	
If N	O, include handwritten above or on a separate sheet.		
2. Has	some or all of the site property been sold, subdivided, merged, or undergone a map amendment during this Reporting Period?		X
	there been any change of use at the site during this Reporting Period e6NYCRR 375-1.11(d))?		X
	e any federal, state, and/or local permits (e.g., building, discharge) been issued or at the property during this Reporting Period?		X
	ou answered YES to questions 2 thru 4, include documentation or evidence documentation has been previously submitted with this certification form.		
5. Istl	e site currently undergoing development?		X
		Box2	
		YES	NO
	ne current site use consistent with the use(s) listed below? sed Landfill	X	NO
7. Are	all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
As des	ective Measures Work Plan must be submitted along with this form to address these cribed in Section 4.2.2 of the Periodic Review Report, seeps have been investigated by NYSDEC pursuant to the Order on Consent	e issues. through w	ork plans
Signatu	e of Owner, Remedial Party or Designated Representative Date		

SITE NO. 336007 Box3

Description of Institutional Controls

Parcel

Owner

Institutional Control

16-1-1.1

1. C. Dept. Envrion. Facilities Services

Monitoring Plan O&M Plan

Box4

Description of Engineering Controls

Parcel

Engineering Control

16-1-1.1

Cover System Leachate Collection

Engineering Control Details for Site No. 336007

Parcel: 16-1-1.1

This is a municipal landfill that has been capped under Title 3, with leachate collection and gas collection. Periodic groundwater monitoring and inspections and reporting in accordance with the 1997 OM &M plan (and updates thereto) are required.

Box5

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
- 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 336007

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

Icertify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Peter S. Hammond	at	2455-2459 Route 17M, Gost	nen, New York 10924-0637			
print name		print business address				
am certifying as Owner			(Owner or Remedial Party			
for the Site named in the Site Oetai	ls Section	n of this form.				
- Kito+	-		4-13-17			
Signature of Owner, Remedial Part Rendering Certification	y, or Des	ignated Representative	Date			

IC/EC CERTIFICATIONS

Box7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. Tunderstand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Mark P. Millspaugh, P.E.

at 24 Wade Road, Latham, New York 12110

print name

print business address

am certifying as a Professional Engineer for the

Orange County Department of Public Works

Remedial Party)

signature of Professional Engineer, for the Ov

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

MID OF MEN

Date

APPENDIX D

2017 PCM SAMPLING EVENT FORMS

WATER LEVEL MEASUREMENTS

Sterling Environmental Engineering, P.C.

24 Wade Road Latham, N.Y. 12110

Project Name: Orange County LF

Project No. 2010-15

Location New Hampton, NY

Weather: Overcast, Rainy, 35-45°F

Field Personnel: Cody Sargood, Joe Spaulding

Measuring Device: Water Level Indicator

Well	Date	Time	Total Well Depth	Depth to Water	Measuring Point	Meas. Pt. Elevation	Caic. Water Level Elev.	PID Reading (ppm)	4-Gas Reading (%LEL/CO/H2S/O2)	Remarks
PZ-1A	1/26/2017	954	75.25	12.71	Top PVC	385.28	372.57	0.0	0/0/0/19.2	
MW-222	1/26/2017	1155	25,35	19.74	Top PVC	382.49	362.75	0.0	>100/0/0/15.9	
MW-221S	1/26/2017	1142	20.93	17.81	Top PVC	381.44	363.63	0.0	0/0/0/19.2	
MW-221D	1/26/2017	1144	20.93	15.56	Top PVC	381.29	365.73	0.0	0/0/0/19,2	
MW-304S	1/26/2017	1107	27.63	26.74	Top PVC	390.92	364,18	0.0	0/0/0/19.2	
MW-304VS	1/26/2017	1105	5.14	4.51	Top PVC	390.72	386.21	0.0	0/0/0/19.2	
MW-304D	1/26/2017	1109	57.15	25.3	Top PVC	390.08	364.78	0.0	0/0/0/19.2	
MW-312S	1/26/2017	1100	19.93	17.39	Top PVC	385.93	368,54	0.0	0/0/0/19.2	
MW-303S	1/26/2017	1118	22.45	18.38	Top PVC	389.95	371.57	3.8	>100/0/0/0	
MW-207D	1/26/2017	1130	55.80	18.7	Top PVC	390.92	372,22	0.0	0/0/0/19.2	
MW-207SA	1/26/2017	1127	24.88	17.57	Top PVC	389.74	372,17	0.6	0/0/0/19.2	
PZ-14-5	1/26/2017	1159	39.84	29.41	Top PVC	392.08	362.67	0.0	0/0/0/19.2	
PZ-14-1	1/26/2017	1206	39.86	27.32	Top PVC	390.10	362.78	0.0	0/0/0/19.2	
PZ-14-2	1/26/2017	1205	30.20	19.24	Top PVC	381.84	362.60	0.0	0/0/0/19.2	
PZ-14-3	1/28/2017	1204	29.94	19.3	Top PVC	381,71	362,41	0.0	0/0/0/19.2	
PZ-14-4	1/26/2017	1203	30.22	19.25	Top PVC	381.70	362.45	0,0	0/0/0/19.2	
PA-14-6	1/26/2017	1201	37,20	28.36	Top PVC	390.95	362.59	0.0	0/0/0/19.2	
PZ-11	1/26/2017	1000	25,10	17.45	Top PVC	390.41	372.96	0.0	0/0/0/19.2	
MW-230D	1/25/2017	1011		400	Top Steel	385.51	0000	0.0	0/0/0/19.2	Obstruction @ 4.90
MW-230S	1/25/2017	1009	12.82	11,75	Top PVC	385.60	373.85	0.0	0/0/0/19.2	
MW-223S	1/26/2017	1020	62.85	16.56	Top PVC	389.25	372.69	0.0	0/0/0/19.2	
MW-223D	1/28/2017	1023	63.39	16.85	Top PVC	389,36	372.51	0.0	0/0/0/19,2	
MW-232S	1/26/2017	1035	23,20	14.60	Top PVC	388.64	374.04	0.0	0/0/0/19.2	
MW-234S	1/26/2017	1040	38.88	18.91	Top PVC	389.29	370.38	0.0	0/0/0/19.2	
MW-234D	1/26/2017	1042	81,50	18.2	Top PVC	390.10	371.90	0.0	0/0/0/19,2	
PZ-4	1/25/2017	1055	54.30	13.35	Top PVC	382.34	368.99	0.0	0/0/0/19.2	
MW-231D	1/26/2017	1006	52.68	15.55	Top PVC		***	0,0	0/0/0/19.2	
MW-233S	1/25/2017	850	19.92	13.69	Top PVC	389.29	375.60	0.0	0/0/0/19.2	
MW-233D	1/25/2017	930	102.98	17.81	Top PVC	***		0.0	0/0/0/19.2	
MW-303D	1/26/2017	1120	69,49	18.17	Top PVC	389,83	371.66	0.0	4/0/0/19.2	
MW-3B	1/25/2017	1200	52,81	24,71	Top PVC	386 43	361.72	0.0	0/0/0/19.2	
MW-245S	1/25/2017	1410	46.85	30.52	Top PVC	391,13	360.61	0.0	0/0/0/19.2	
MW-245D	1/25/2017	1445	80.50	29.94	Top PVC	391.08	361,14	0,0	0/0/0/19.2	
MW-220	1/25/2017	1315	30.00	18.48	Top PVC	378.94	360.46	0.0	0/0/0/19.2	
MW-235S	1/26/2017	1050		-	mio mio	388.04	***	000	6-0-0	Could not be located
MW-235D	1/26/2017	1050	000	***		393.74	***			Could not be located

SURFACE WATER DATA FORM

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

Project Name: Orange County Landfill

Project No. 2010-15

Date: January 25, 2017

Field Personnel: Joseph Spaulding, Cody Sargood

Measuring Devices: YSI, Hannah pH Stick,

WGZ - 2B - Turbidity Meter

	Date	Time	Temp (°C)	Spec. Cond. (mS)	рН .	ORP (mV)	Turbidity (NTUs)	Dissolved Oxygen (mg/L
SW-13	1/25/2017	10:00	1.27	0.581	7.9	211.9	12.44	11,29
SW-5	1/25/2017	11:10	0.86	0.731	8.3	141.0	39.23	10.31
SW-8	1/25/2017	12:15	1.16	0.749	8.1	117.2	28.12	11.13

444								
					-			
							*	

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER **FIELD DATA LOG**

1.	CLIENT:	Orange	County
----	---------	--------	--------

SAMPLED BY: C5
WEATHER CONDITIONS: Portly Cloudy, 35°F

DATE: 1-25-17 TIME: 12:00 PM

Location: Town of Ramapo L	andfill					Sam	ple ID: M	W-3B		
PRESERVA	TIVE: Ice, HNO3	, NaOH, HCL,	H2SO4	4	. WELL EVAC					
ANALYSES REQUESTED: Par	rt 360 Baselin	4, 1988	Reju		Well Depth (wd):	51 81	(64)	D) 4		- " 1
# OF CONTAINEDS: 12		•						Diameter (d	-	
SAMPLING METHOD: 400	Flow Monso	DOM FURNIS		рер	th to Water (dw):			Water Colum		
		1						$4 \times d^2 \text{ (wd-dw)}$		(gallons)
SAMPLES FILTERED:	☐ YES ☐				Avg. Flow Rate:	0,100	min)	Purge Vo	ol: <u>13.76</u>	(gallons)
DUPLICATE SAMPLE:	YES [NO		Lengt	of Time Purged:	25	minutes)	Purge Start Tim	e: jl:30	_
LOW FLOW: YES	NO				Amount Purged:	2.5	gallons)	Purge Dept	h: 24,71	
T Manager Land B. A.T.			Flow Rate		Sp. Cond					
2. WATER LEVEL DATA		Time	(L/min)	pH	mg/L	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
		11:33	0.1	8.1	0.374	9.99	11.96	7.01	87.2	24.71
MEASURING POINT: Top of P	VC casing	11:36	0.1	79	0.798	9.18	6.51	3,52	89.2	24.71
Other:		11:39	0.1	80	0.848	9.35	6.82	2.33	79.7	24.71
METHOD OF MEASUREMENT: Wat	ter Level Indicator	11.42	0.1	8.0	0.870	9.47	2.33	2.11	59.7	24.71
		11:45	0.1	8.0	0,835	9.70	5.15	2.02	\$7.0	24.71
3. FIELD PARAMETERS										
INSTRUMENT	CALIBRATED									
pH Meter – Hanna pH stick	9/									
Conductivity Meter – YSI 556XL						-				
Temperature – YSI 556XL	团,									
Turbidity Meter – Xinrui	Y _									
DO Meter - YSI 556XL										
ORP Meter - YSI 556XL	<u> </u>									
Other -										
5. NOTES: Y DOG 6	uple colketed									
* UUP 30	men convice.									

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

4	CLIENT:	Orango	County
4.	CLIEIAI.	Orange	Country

SAMPLED BY: CS

WEATHER CONDITIONS: Pactly Sunny, \$100 F

DATE: 1-25-17 TIME: 1315

Location: Town of Ramapo	Landfill					Sam	ple ID: 🗥 🗸	1-220		
PRESERVA		NaOH, HCL, F	12504	4	. WELL EVAC	UATION D	ATA			
ANALYSES REQUESTED: Po	art 360 Base	line, 198	8 Regs		Well Depth (wd):	20 186	/f+\	Diameter (d	i): 2.0	0 (in)
								Water Colum		
# OF CONTAINERS: 3 SAMPLING METHOD: \(\subseteq \sigma \)	Flow Mongo	on Pump		рери	th to Water (dw):					
SAMPLING METHOD: 1	☐ YES ☑	(Na			1			$4 \times d^2 \text{ (wd-dw)}$		(gallons)
SAMPLES FILTERED:	☐ 4F2 Ā	INO			Avg. Flow Rate:				ol: 5.64	(gallons)
DUPLICATE SAMPLE:	☐ YES ☑	NO			of Time Purged:		(minutes)	Purge Start Tim		
LOW FLOW: YES	NO				Amount Purged:	2.5	(gallons)	Purge Dept	h: 18.47	_
			Flow Rate		Sp. Cond					
2. WATER LEVEL DATA		Time	(L/min)	рН	mg/L	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
		12:50	Out	8.1	1.22 i.22		280.5	2.83	41.0	18.48
ASURING POINT: 🗹 Top of	PVC casing	12:53	0.1	8.0	1.124	9.17	304.5	1.83	33.4	18.45
er:		12:58	0.1	8.6	1.223	8.91	331,5	1.41	28.5	19.46
THOD OF MEASUREMENT: W	ater Level Indicator	1301	Pal	8.0	1.224	8.88	280.1	1.30	26.8	18.44
MOD OF MEASUREMENT.	ater bever maicator	1305	011	6.0	1. 223	586	277.4	1,22	25.6	18,44
3. FIELD PARAMETERS										1
INSTRUMENT	CALIBRATED									
pH Meter Hanna pH stick	9									
Conductivity Meter – YSI 556XL	M									
Temperature – YSI 556XL										
Turbidity Meter – Xinrui	回									
DO Meter – YSI 556XL										
ORP Meter - YSI 556XL	Y									
Other -										
5. NOTES:	/ w . n									
slightly turbid	, Yellow Brown	1								
slightly turbid	1 1 0									
No motor 1	VO Shell									

SERLING Sterling Environmental Engineering, P.C.

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

1.	CLIENT:	Orange	County
			- 0

SAMPLED BY: CS

WEATHER CONDITIONS: Cloudy, 300 F

DATE:	1/	1	>	1	1	7
TIME:	Q	. 4	57	5		

Location: Town of Ramapo	Landfill					Sam	nple ID: 1	W-23	30	
PRESERV	ATIVE: Ice, HNO3	, NaOH, HCL,	H2SO4	4	. WELL EVAC			<i>(</i>)	s/)	
ANALYSES REQUESTED:	+ 360 Backing	31 Gens								
# OF CONTAINERS: 13		07 - 13			Well Depth (wd):			Diameter (0 (in)
SAMPLING METHOD: SS M	Ones marin			Dept	th to Water (dw):			Water Colum		7 (ft)
SAMPLES FILTERED:		A						$04 \times d^2 \text{ (wd-dw)}$	1= 1.02	(gallons)
	YES V				Avg. Flow Rate:		(du/min)	Purge V	ol: 3.175	(gallons)
DUPLICATE SAMPLE:	☐ YES ☑	NO		Length	of Time Purged:	30	(minutes)	Purge Start Tin	ne: 8:20	
LOW FLOW: YES	NO				Amount Purged:	2,25	(gallons)	Purge Dep		
• *************************************			Flow Rate		Sp. Cond					
2. WATER LEVEL DATA		Time	(L/min)	pH	mg/L	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
_	_	8:20	0.075	6.0	0.961	2117	142.1	3.21	130.7	15.70
EASURING POINT: Top of	PVC casing	8.26	0075	6.7	0.470	7.81	123.8	3.05	220,5	13.70
ner:		823	0.075	7.0	0.970	780	120.5	3.04	220.1	13.70
ETHOD OF MEASUREMENT: W	ater Level Indicator	8:32	0.075	7.1	0.970	7.78	113.0	3.07	218.5	13.70
		8:35	0.075	7.1	0.970	8.39	103.0	2.81	2/16.3	13.70
3. FIELD PARAMETERS		8:38	0.075	7.1	0.480	岁. 入3	90.10	2.61	209.8	13.70
							10,10	2/6/	202.4	1370
INSTRUMENT	CALIBRATED									
pH Meter – Hanna pH stick	V									
Conductivity Meter - YSI 556XL	90									
Temperature – YSI 556XL	V									
Turbidity Meter – Xinrui	V									
DO Meter – YSI 556XL	4		1							
ORP Meter YSI 556XL	V									
Other -										
5. NOTES:										
No odor, No st	ly turbid,									
No odor, No st	2110									

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

1.	CLIENT: Orange County		
	SAMPLED BY: CS		200
	WEATHER CONDITIONS:	Cloudy	321

DATE: 1/35/17 TIME: 9:30

Location: Town of Ramapo Landfill					Sam	ple ID: Al	W-23	30	
PRESERVATIVE: Ice, HNO3,	NaOH, HCL,	H2SO4	4	. WELL EVAC	UATION D				
# OF CONTAINERS: 13	cline, 198	88 Reys		Well Depth (wd): th to Water (dw):			Diameter Water Colu		
SAMPLING METHOD: SS Mars on Pump SAMPLES FILTERED: DUPLICATE SAMPLE: LOW FLOW: YES NO LOW FLOW: YES NO				Depth to Water (dw): 17. \$1 (ft) Water Column: Well Volume = (5.904 x d² (wd-dw)) = Avg. Flow Rate: 0.07.5 (nlumin) Purge Vol: 1 Length of Time Purged: 20 (minutes) Purge Start Time: Amount Purged: 1.5 (gallons) Purge Depth:					
2. WATER LEVEL DATA	Time	Flow Rate (L/min)	Нq	Sp. Cond mg/L	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
,	9:06	0.075	7.7	1.054	8.34	19.32	10.52	111.2	18.95
EASURING POINT: Top of PVC casing	4:09	0.075	7.9	1.064	8.05	16,50	5.23	111.3	19.20
ner:	4:12	0.075	8:0	1.069	7.66	14.39	4.78	1112.3	19.55
ETHOD OF MEASUREMENT: Water Level Indicator	9:15 9:18	0.075	8.0	1.069	7.68	12.11	4.08	109.1	17.70
3. FIELD PARAMETERS									
INSTRUMENT CALIBRATED	-								
pH Meter – Hanna pH stick	-								
Conductivity Meter – YSI 556XL									
Temperature – YSI 556XL							1		
Turbidity Meter – Xinrui									
DO Meter – YSI 556XL									
ORP Meter - YSI 556XL									
Other -									
5. NOTES:			- Command						

Sterling Environmental Engineering, P.C.

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

1. CLIENT: Orange County SAMPLED BY: CS

Location: Town of Ramano Landfill

WEATHER CONDITIONS: Cloudy, 35%

DATE: 1-25-17 TIME: 14/0

Sample ID: MW-245 S

PRESERVA	TIVE: Ice, HNO3,	NaOH, HCL,	H2SO4	4.	WELL EVAC	UATION DA	ATA			
# OF CONTAINERS: 13 SAMPLING METHOD: Low Flow Monson Pump					Well Depth (wd): h to Water (dw): Avg. Flow Rate:	30.52 Well	(ft) Volume = (5.90	Diameter (d). Water Column 4 x d ² (wd-dw)) = Purge Vol	2.67	-
SAMPLES FILTERED: DUPLICATE SAMPLE: LOW FLOW: YES	YES V			Length	of Time Purged: Amount Purged:	0-25	(minutes)	Purge Start Time		-
A WATER LEVEL DATA		Time	Flow Rate (L/min)	рН	Sp. Cond mg/L	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
2. WATER LEVEL DATA		12:48	0.075	8.4	1.189	8.68	884.5	3.69	20:3	30,53
EASURING POINT: Top of	Duc and an I	1351	0.075	8.3	1.191	8.70	582.5		12.9	30,54
EASURING POINT: V Top of I	PVC casing	1354	0.075	8.2	1.194	8.38	541.6		12.1	30,55
ner:		1357	0.075	a.1	1.192	8,27	490.4		11.5	30,55
ETHOD OF MEASUREMENT: Wa	ater Level Indicator	1400	0 075	8.2	1.197	8.22	507.7 497.8	1.26	11.0	30.55
3. FIELD PARAMETERS	CALIBRATED	1406	30							
pH Meter – Hanna pH stick	CALIBROALD									
Conductivity Meter - YSI 556XL	P.									
Temperature – YSI 556XL	V									
Turbidity Meter – Xinrui	V									
DO Meter - YSI 556XL	W.									
ORP Meter - YSI 556XL	M									
Other -										
5. NOTES: Light Brisn of	idor, No									

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

1.	CLIENT:	Orange	County
----	---------	---------------	--------

SAMPLED BY: (5

WEATHER CONDITIONS: Cloudy, 350F

DATE:	1-25-1
TIME:	1445

Location: Town of Ramapo L	Sample ID: 475 D									
PRESERVATIVE: Ice, HNO3, NaOH, HCL, H2SO4				4. WELL EVACUATION DATA						
ANALYSES REQUESTED: Pa	rt 360 Basel	m, 1988	Rigs	W	/ell Depth (wd):	30.50	ft)	Diameter (d		_
# OF CONTAINERS: 13		2	•	Depth	to Water (dw):	29,94 1	ft)	Water Colum		_
# OF CONTAINERS: 13 SAMPLING METHOD: Low	Flow Musica	1000					Volume = (5.904	$1 \times d^2 \text{ (wd-dw)}$	= 8,24	(gallons)
SAMPLES FILTERED:	YES T	NO			Avg. Flow Rate:		du/min)		ol: 24.75	(gallons)
DUPLICATE SAMPLE:	YES V				of Time Purged:	10		Purge Start Tim	e: 14:26	<u> </u>
LOW FLOW: YES				,	Amount Purged:	1.5	gallons)	Purge Dept	h: 29.93	
			Flow Rate		Sp. Cond	Temp. °C	Turbidity	DO	ORP (mV)	Water Level
2. WATER LEVEL DATA		1420	(L/min)	pH Q 3	mg/L		54.60	2.48	0.7	24.44
		14:23	0:1	8.3	0.438	8.11	17.99	1.71	203	19.95
EASURING POINT: Top of P	PVC casing	14.73	01	8.3	0.937	8.21	16.58	1.31	14.0	29.95
er:		1426	0.1	8.3	0.939	8.26	12.37	1.25	6.3	29.95
ETHOD OF MEASUREMENT: Wa 3. FIELD PARAMETERS	ter Level Indicator									
INSTRUMENT	CALIBRAJED									
pH Meter – Hanna pH stick	7					/				
Conductivity Meter - YSI 556XL	V									
Temperature – YSI 556XL	T I									
Turbidity Meter – Xinrui	V.							-		
DO Meter - YSI 556XL	9									
ORP Meter - YSI 556XL					-					
Other -										
5. NOTES:										
cleur, no odar										

ORANGE COUNTY COUNTY OF ORANGE LANDFILL

GROUNDWATER FIELD DATA LOG

1. CLIENT: Orange C	county
---------------------	--------

SAMPLED BY: CS
WEATHER CONDITIONS: FORthy Cloudy, 35 F

	110 = 11-
DATE:	1/43 41
TIME:	10.55

Location: Town of Ramapo Landfill	Sample ID: PZ - 4								
PRESERVATIVE: Ice,	4. WELL EVACUATION DATA								
ANALYSES REQUESTED: Port 360 B	aseline, 1988	Regs		Well Depth (wd):	5430	(ft)	Diameter ((d): 2.0	00 (in)
				h to Water (dw):		• •	Water Colum		-
SAMPLING METHOD: Low Flow Men	sour Pump		Dept	into water (uw).			4 x d ² (wd-dw)		(gallons)
SAMPLING METHOD: 200	YES NO			Avg. Flow Rate:				/ol: 20.05	
									(gailOits)
	YES W NO			of Time Purged:	_	(minutes)	Purge Start Tin		
LOW FLOW: YES NO				Amount Purged:	1.5	(gallons)	Purge Dep	rth: 13.37	_
		Flow Rate		Sp. Cond				000 (-14)	Water Level
2. WATER LEVEL DATA	Time	(L/min) 0,075	7. 7	/,245	7,46	Turbidity 9.5 4	1.66	97. (13.35
	10:30	0.075	7.7	1.260	7.31	10.63	1.61	89.4	1336
EASURING POINT: Top of PVC casing	10:36	0.075	7.8	1267	9.22	10.15	1.48	85.0	13.36
ner:	10:39	0.075	7.8	1,273	8.11	14.53	1.25	92.6	13.36
ETHOD OF MEASUREMENT: Water Level India		11,075	7.8	1.273	9,14	7,35	1.33	98.8	13.37
3. FIELD PARAMETERS									
INSTRUMENT CALIBRATE	D								
pH Meter – Hanna pH stick	•								
Conductivity Meter – YSI 556XL									
Temperature – YSI 556XL									
Turbidity Meter – Xinrui									-
DO Meter – YSI 556XL						-			
ORP Meter - YSI 556XL						+	+		
Other -					-	-	1		
5. NOTES:									

GROUNDWATER QUALITY DATA FORM

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

Project Name:

Project No.

Date:

1/25/17

Field Personnel:

Measuring Device: YSI, Water level Indicator, pH Stick, Turbidity Meter

Welli ID#	Depth to Water (feat BMP)	Water Level Elev.	Time	Spec. Cond. (ms/cm)	ORP (mV)	pH	Turklidity (NETWA)	Temp.	DO mg/L
MW -2375	13.69	375,60	850	0.980	202,9	7.1	90.10	8.23	2.61
MV.233D	17.81		930	1.069	109.1	8.0	11.51	7.47	4.08
12-4	1005 13.25	368.99	10:55	1,273	79.8	7.8	9.35	9.14	1.33
MW-38	24,71	261.72	1200	0.885	57.0	8.0	5.15	9.70	2.02
MW-220	18.48	360.46	1315	1.223	25.6	8.0	277.4	8.86	1.22
MW-2455	30.52	360.61	1410	1.193	11.0	8.2	45704.97	y 8.12	1.24
Mr-2450	29.94	361.14	1445	0.939	6.3	83	12.37	8.26	1.25
-									

REMARKS:

Leach to SANRING BECOM

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110 PID- 0.7 LEL-100%

PROJECT NAME Orange County LF PROJECT NUMBER 20010 SITE LOCATION Orange County, NY	WELL ID MH-7 DATE /-26-17 WELL VOLUMES: 2" Diam. = 0.16 gal/ft
01 4 10 111	4" Diam. = 0.65 gal/ft. 6" Diam. = 1.47 gal/ft.
	Pepth to Well Bottom 21.72 Ref. Elev. — Vell Casing Diameter Purging Method Purging Time Start Time Stop —
OBSERVATIONS Color Light Gram Lation Odor Turbidity Fairly Twitch Sheen Presence of NAPL Other Remarks	strong sulphy/henchate ofar slight rainton show present on surface
SAMPLING INFORMATION Field Personnel Sampling Method Sample Date Sample Description Analysis Basiline Parameters (44) R	8:10
FIELD MEASUREMENTS Temperature pH Conductance Turbidity Redox DO Well Vol.	
CALIBRATION: Temperature pH Conductance Turbidity Redox	INSTRUMENT ID: YSI 556 Hanna pH (tick YSI 556 Xingui, two lightly methor

W

Dissolved Oxygen

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

PIO = 0.0 ppm 4-600 = 0.0 feb

WELL ID MH -15 PROJECT NAME DATE 1-26-17 PROJECT NUMBER SITE LOCATION WELL VOLUMES: 2" Diam. = 0.16 gal/ft 4" Diam. = 0.65 gal/ft. **GENERAL** 6" Dlam. = 1.47 gal/ft. Weather Conditions Site Access/Conditions Physical Condition of Well PURGING INFORMATION Depth to Well Bottom 15,57 Ref. Elev. Depth to Water Well Casing Diameter Water Column Height Purging Method Well Volume Purging Time Start Time Stop Actual Volume Evacuated Depth to Water Prior to Sampling Remarks **OBSERVATIONS** Odor Color Sheen **Turbidity** Other Presence of NAPL Remarks SAMPLING INFORMATION Field Personnel Sampling Method 850 Time Sample Date Sample Description Analysis FIELD MEASUREMENTS Well Vol. 1 Well Vol. 2 Well Vol. 3 Temperature pH Conductance Turbidity Redox DO INSTRUMENT ID: CALIBRATION: Temperature pH stick pH 556 Conductance Tubidity Mese **Turbidity** 556 Redox

Dissolved Oxygen

431 556

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05		e 1_ of 1_			Rec		1/2	51	17		ALPHA Job # LITO 250G
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Project Information						Verabl				1 405		Annahara.	Billing Information
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:	Orange Cour	nty - Baselini	e 88 Regs		-			F11-1		ASF		-	Same as Client Info
		Project Location:	NY				┨┝	EQU	•	rile)	L	EQU	ıIS (4	rile)	PO#
Client Information		Project # 2010 -		~				Othe			5.0	4-			
Client: Sterling E		(Use Project name as Project name)	oject#)				Reg	ulator		nicewe	nt				Disposal Site Information
Address: 24 Wade I	Rd	Project Manager:					4 1	ТҮМ			_		Part 375	5	Please identify below location of
Latham, NY 12110		ALPHAQuote #:							Stand		_	-	CP-51		applicable disposal facilities.
Phone: 518-456-4	900	Turn-Around Time							lestricte		h	Othe	er.		Disposal Facility:
Fax: 518-456-3	532	Standard		Due Date	90				Inrestri						□ nn □ na
Email: joe.spauld	ing@sterlingenvironme	Rush (only if pre approved)		# of Days	S:			NYC	Sewer	Discha	irge				Other: NA
These samples have b	een previously analyz	ed by Alpha					ANA	LYSI	3						Sample Filtration
Baseline 88 Regs Wet LAG Sugges A Please specify Metals		4.Br.Cl.NO3, Justo, Color, He manta (_com, mark,			emortal, co	~	Tphenol	Chem Parameters	Total Metals (Baseline 88)	NH3 TKN COD	Alk (No Headspace)	T0C	VOC (Baseline 88)	"Dissolved Metals"	☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Colle	ection Time	Sample Matrix	Sampler's Initials		Wet	Fotal A	Z	AK		8	Ö	Sample Specific Comments
	MH-15				Water		v	×	v	v	v	×	l _v		
	444 7				vvater		Y	Y_	, .	×	X	Х	x	-	
02506 -10	SW-5		160/17	1110	Water	CO	х	X	Y	X	X	X	x	1	
ii	Sw=8		1/25/17	1215	Water	Cos	X	X	v	X	X	X	X	-	
19	Sw - 13		1/25/17	1000	Water	0	X	x	X	X	X	x	x	1	
	~		1105/11	1000	Water		X	X	v	X	X	×	×		
	11				Water		Ŷ	Î,	v	-	^ v	Î~			
	11/	VV			Water					^	Û		V	1	
	11/		77		Vac	5	2		-	^	-	^	-	-	
	Trip-Blank			/	Lab Water								X		Trip Blank
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No				tainer Type	A	Р	Р	Р	Р	V	v		Please print clearly, legibly and completely. Samples cannot be logged in and
E = NaOH	B = Bacteria Cup						D	A	С	D	Α	D	В		turnaround time clock will no
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished E	By:	1/25-17	Time 1615	TAM	18	ved B	1.1	111/	2/	(\-\) 5-1	/Time	800	start until any ambiguities at resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA!
Form No: 01-25 (rev. 30-S	ent-2013)	1000 1000 N	/	250/1	2300	au		0	1		110	5/17	1 23		TERMS & CONDITIONS.

.

<u> ALPHA</u>	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Welker Tonawanda, NY 14150: 275 C	Way	05	Pag	e 1 of 1_			Rec		25	m			ALPHA Job# 1170050G	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deli	verabi	es						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Orange Cour	nty - Baseline	e 88 Regs			ASF	P-A			ASP	-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	NY					EQL	ılS (1	File)		EQu	IS (4 I	File)	PO#	
Client Information		Project # 2010	-15					Othe	er	,						
lient: Sterling Env	& Eng	(Use Project name as P	Project #)				Reg	ulator	y Req	uireme	nt				Disposal Site Information	
ddress: 24 Wade Re	d	Project Manager:						T YN	ogs	,		NY P	art 375	-	Please identify below location	of
atham, NY 12110		ALPHAQuote #:						AWC) Stand	lards		NY C	P-51		applicable disposal facilities.	
hone: 518-456-49	00	Turn-Around Time						NYR	testrict	ed Use	7	Other	г		Disposal Facility:	
ax: 518-456-35	32	Standar		Due Date	:			ן אין [Inrestri	cted Us	se ·				□ NJ ☑ NY	
mail: joe.spauldir	ng@sterlingenvironme	Rush (only if pre approve	d)	# of Days	:			NYC	Sewer	Discha	rge				Other: NA	
hese samples have be	en previously analyze	ad by Alpha					ANA	LYSI	5						Sample Filtration	c
ther project specific								5	88)						Done	1
lease specify Metals	or TAL.	4.Br.Cl.NO3, Itarb, Color, H					Tphenol	Chem Parameters	Total Metals (Baseline	NH3 TKN COD	(No Headspace)	T0C	VOC (Baseline 88)	*Dissolved Metals**	Preservation Mahala [V] Lab to do (Please Specify below)	1
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Date	Time	Sample Matrix	Sampler's Initials		Wet	Total		¥.		>	0	Sample Specific Comments) e
02506-01	MW-23	35	1/25/17	850	Water	(60)	Х	х	Х	х	X	X	х	X		. 1
03	MW - 233	O D		930	Water	0	х	x	х	х	х	X	х	X		1:
03	MW-38			1200	Water	0	х	х	Х	х	х	X	х	X		1:
04	MW- 220			1315	Water	(0)	X	X	Х	Х	Х	x	х	X		1
0.5	MW - 2453	`		1410	Water	(0)	х	X	x	х	х	Х	х	X		1:
OG	MW-24/5	D		1445	Water	0	X	Х	X	х	Х	Х	х	X		1
07	REN PZ-	4		1055	Water	0	х	х	x	x	х	X	х	x		1;
11	MS/MSD			1215	Water	(2)	x	Х	х	x	X	X	X	X		12
08	Dup		1		water	a	X	X	X	X	X	×	X	X	•	13
09	Trip Blank		したいフ		Lab Water	(ce)							Х		Trip Blank	
= None = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification I			Con	tainer Type	А	Р	Р	Р	Р	v	v	P	Please print clearly, legit and completely. Sample:	
	V = Vial G = Glass				P	reservative	D	А	С	D	А	D	В	Α	not be logged in and turnaround time clock wi start until any ambiguities	li not
= H ₂ SO ₄ = NaOH	B = Bacteria Cup										1		-		onth dry arrivigulus	~ U1C
= H ₂ SO ₄ = NaOH = MeOH	B = Bacteria Cup C = Cube O = Other	Relinquished	Ву:	Date/	Time		Receiv						Time	_	resolved, BY EXECUTIN	
$= H_2SO_4$ $= NaOH$ $= MeOH$ $= NaHSO_4$ $= Na_2S_2O_3$	C = Cube	Xn 6	By:	Date/	Time :	Tom				V	1-7	5-17		_	resolved, BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE	G

	NEW YORK	Service Centers								1.	17-	7.1	7			
A	NEW YORK	Mahwah, NJ 07430: 35 White				ge 1		Date	e Rec	ed !	~!	1	/			
ΔLPHA	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walks Tonawanda, NY 14150: 275		105		of 1			Lab	+	A	7	H		L170250	1
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Del	iverab	les				LD		Billing Information	0
TEL: 508-898-9220	TEL 508-822-9300	Project Name:	Orange Co	unty - Baselir	ne 88 Reas		TK	ASI	P-A		T	ASF	P-B	-	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	NY				17	_	ulS (1	File)		_	ulS (4	File)	PO#	
Client Information		Project # 2010-	15				1 7	Oth	•	,			(,		
Client: Sterling E	nv & Eng	(Use Project name as					Red			uiremi	ent	->-			Disposal Site Information	7
Address: 24 Wade I		Project Manager: Ma		ami			- Carrier	NY	distribution			NYE	Part 375			-
Latham, NY 12110		ALPHAQuote #:					1 7	AWO	Stand	dards			CP-51		Please identify below location of applicable disposal facilities.	AT .
Phone: 518-456-4	900	Turn-Around Time				~~~		_		ed Use		Othe	er		Disposal Facility:	
Fax: 518-456-3	532	Standa	ard 🔽	Due Dat	e:		1 -] NY I	Jorestri	icted U:					□ NJ ☑ NY	
Email: joe.spauld	ing@sterlingenvironme	Rush (only if pre approve	ed)	# of Day				NYC	Sewer	Discha	arge				Other: NA	
These samples have b	peen previously analyze	ed by Alpha					ANA	ALYSI	S			·			Sample Filtration	
Other project specific								100	38			T	T	T		o t
Baseline 88 Regs Wet	Chem: BOD, TDS, SO4	4,Br,Cl,NO3,Turb,Color,I	lex				1	ters	Je 8		8		8	7 07	☐ Done	а
Cody Source de	esterly enven	intal com moule	Hismas	selela es	· · · · · · /	.1	I_	aŭ.	seli	lö.	spa		8	etai	Preservation	
Please specify Metals	S OF TAL.	1 201 1 2010	WI THE FEE	1 1867 1 101811	יין רישרונונים וייי	41	phenol	Par	Ba	Z	ade	202	i i	2	Lab to do	В
			A CONTRACTOR OF THE CONTRACTOR				를	E	20	Ę	1 ±	15	Bas) N		0
ALPHA Lab ID	T		Col	lection	I comple	To	1	Wet Chem Parameters	Me	NH3 TKN COD	Alk (No Headspace)		VOC (Baseline 88)	"Dissolved Metals"	(Please Specify below)	t
(Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials		Wet	Total Metals (Baseline 88)		₹		×	1		l e
92506 .13	MH-7		1/26/18	810	Water	ES	V	1,	+		-	-			Sample Specific Comments	-
III.	MH - 15		1/25/17	815	Water	(C)	X	X	X	X	X	X	X			12
	7764 - 75		1/40/11	013		100	X	X	X	X	X	X	X			12
					Water		X	X	X	X	X	X	X			12
				17	Water		X	X	X	X	X	X	X			12
	//	100	+ 7		Water		X	X	-X-	X	X	X	X=			12
		- //	-		Water		X	X	-X	X	X	X	X			12
					Water		X	X	X	X	Х	Х	X			12
					Water		X	X	X	Х	Х	X	X			12
15	Trie Diauli		16 1/1	G- 1		10		-	-		-	-				
Preservative Code:	Trip Blank Container Code		1/26/17	900	Lab Water	CD		-	-			-	X		Trip Blank	2
4 = None	P = Plastic	Westboro: Certification			Cor	tainer Type									Planca point clearly, legibl	ls a
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification	No: MA015				Α	Р	Р	P	P	V	V		Please print clearly, legible and completely. Samples	
D = H ₂ SO ₄	G = Glass				F	Preservative									not be logged in and	
= NaOH	B = Bacteria Cup C = Cube			,			D	A	С	D	Α	D	В		turnaround time clock will	
= MeOH 3 = NaHSO ₄	O = Other	Relinguished	By:		/Time			ved By				Date	/Time		start until any ambiguities resolved. BY EXECUTING	
$I = Na_2S_2O_3$	E = Encore	Con 1m		1/25/17	1545	19hyl	Ho	My	AV	7/	1-2	6-1	7 110	45	THIS COC, THE CLIENT	
C/E = Zn Ac/NaOH D = Other	D = BOD Bottle	When 94th	ne	1-26-17	Ho: 45	11/21	,	nh	es				215		HAS READ AND AGREES	
, — Ott (8)	· ·				15:45								KI		TO BE BOUND BY ALPH, TERMS & CONDITIONS.	A'S
orm No: 01-25 (rev. 30-Se	pt-2013)														THING IS SONDITIONS.	

APPENDIX E

ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number:

L1702506

Client:

Sterling Environmental Eng

24 Wade Road

Latham, NY 12110

ATTN:

Cody Sargood

Phone:

(518) 456-4900

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Report Date:

02/06/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date: 02/06/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1702506-01	MW-233S	WATER	NY	01/25/17 08:50	01/25/17
L1702506-02	MW-233D	WATER	NY	01/25/17 09:30	01/25/17
L1702506-03	MW-3B	WATER	NY	01/25/17 12:00	01/25/17
L1702506-04	MW-220	WATER	NY	01/25/17 13:15	01/25/17
L1702506-05	MW-245S	WATER	NY	01/25/17 14:10	01/25/17
L1702506-06	MW-245D	WATER	NY	01/25/17 14:45	01/25/17
L1702506-07	PZ-4	WATER	NY	01/25/17 10:55	01/25/17
L1702506-08	DUP	WATER	NY	01/25/17 00:00	01/25/17
L1702506-09	TRIP BLANK	WATER	NY	01/25/17 00:00	01/25/17
L1702506-10	SW-5	WATER	NY	01/25/17 11:10	01/25/17
L1702506-11	SW-8	WATER	NY	01/25/17 12:15	01/25/17
L1702506-12	SW-13	WATER	NY	01/25/17 10:00	01/25/17
L1702506-13	MH-7	WATER	NY	01/26/17 08:10	01/26/17
L1702506-14	MH-15	WATER	NY	01/26/17 08:50	01/26/17
L1702506-15	TRIP BLANK	WATER	NY	01/26/17 09:00	01/26/17

Project Name:

ORANGE COUNTY- BASELINE 88 REG

L1702506 02/06/17

Project Number:

2010-15

Lab Number: Report Date:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506 02/06/17

Project Number:

2010-15

Report Date:

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

L1702506-14: The sample collection time was obtained from the container labels, as specified by the client.

Volatile Organics

L1702506-01 through -15: The pH of the sample was less than two. It should be noted that 2-Chloroethylvinyl ether breaks down under acidic conditions.

L1702506-13: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

The WG973916-6/-7 MS/MSD recoveries, performed on L1702506-11, are below the acceptance criteria for 2-chloroethylvinyl ether (0%) due to the pH of the sample being less than two. It should be noted that 2-Chloroethylvinyl ether breaks down under acidic conditions.

Total Metals

The WG973148-4 MSD recovery for calcium (70%), performed on L1702506-11, does not apply because the sample concentration is greater than four times the spike amount added.

The WG973562-3 MS recovery for sodium (129%), performed on L1702506-11, does not apply because the sample concentration is greater than four times the spike amount added.

Dissolved Metals

L1702506-03 and -08: The dissolved results are greater than the total results for some metals. The sample containers were verified as being labeled correctly by the laboratory.

The WG973620-1 Method Blank, associated with L1702506-01 through -08, has a concentration above the reporting limit for Barium. Since the associated sample concentrations are greater than 10x the blank

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Case Narrative (continued)

concentration for this analyte, no corrective action is required.

Cyanide, Total

L1702506-13: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Phenolics, Total

The WG972755-4 MS recovery (5%), performed on L1702506-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

BOD, 5 day

WG973040: The polyseed value (1.35 ppm) associated with this batch was above the acceptance criteria (0.6-1.0ppm) for the method; however, re-analysis could not be performed due to the expiration of the method required holding time. The results of the original analyses are reported; however, all positive results are considered to have a potentially high bias.

The WG973040-2 LCS recovery (131%), associated with L1702506-01 through -08 and -10 through -14, is outside the acceptance criteria. Due to the expiration of the method required holding time, no further action was taken.

The WG973040-3 MS recovery (179%), performed on L1702506-11, is above the acceptance criteria. Reanalysis could not be performed due to expiration of the sample holding time.

Nitrogen, Nitrate

The WG973298-3 Laboratory Duplicate RPD (9%), performed on L1702506-13, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

Nitrogen, Total Kjeldahl

The WG974203-4 MS recovery (12%), performed on L1702506-13, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Morris

Title: Technical Director/Representative

Date: 02/06/17

ORGANICS

VOLATILES

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number: L1702506

Report Date:

02/06/17

Lab ID:

L1702506-01

Client ID: Sample Location: MW-233S NY

Matrix:

Water

Analytical Method:

1,8260C

Analytical Date:

01/31/17 16:10

Analyst:

NL

Date Collected:

01/25/17 08:50

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-01

Client ID:

MW-233S

Sample Location: NY Date Collected:

01/25/17 08:50

Date Received:

Field Prep:

01/25/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

	8/ Parameter	Ouglifian	Acceptance
Surrogate	% Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	122		70-130
Toluene-d8	104		70-130
4-Bromofluorobenzene	108		70-130
Dibromofluoromethane	101		70-130

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-02

Client ID:

MW-233D

Sample Location:

NY

Matrix:

Water

Analytical Method:

1,8260C

Analytical Date:

01/31/17 16:37

Analyst:

NL

Date Collected:	01/25/17 09:30
Date Received:	01/25/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
rans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
richloroethene richloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number:

L1702506

Report Date:

02/06/17

Lab ID: Client ID: L1702506-02 MW-233D

Sample Location:

NY

Date Collected:

01/25/17 09:30

Date Received: Field Prep:

01/25/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/I	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	122		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	103		70-130	

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-03

Client ID:

MW-3B

Sample Location: Matrix:

NY

Water

Analytical Method:

1,8260C

Analytical Date:

01/31/17 17:05

Analyst:

NL

Date Collected:

01/25/17 12:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
oluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
rans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
I,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: **ORANGE COUNTY- BASELINE 88 REG** Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-03

NY

Client ID: Sample Location:

MW-3B

Date Collected:

01/25/17 12:00

Date Received:

01/25/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	125		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	105		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number: L1702506

Report Date: 02/06/17

Lab ID: L1702506-04 Client ID: MW-220

Sample Location: NY

Matrix: Water Analytical Method: 1,8260C Analytical Date:

01/31/17 17:33

Analyst: NL Date Collected: 01/25/17 13:15 Date Received: 01/25/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab		=			
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

L1702506

Lab Number: Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-04

MW-220 NY

Date Collected: Date Received: 01/25/17 13:15

Client ID: Sample Location:

Field Prep:

01/25/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	125		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	105		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number: L1702506

Report Date:

02/06/17

Lab ID: Client ID: L1702506-05 MW-245S

Sample Location: Matrix:

NY Water

Analytical Method: Analytical Date:

1,8260C 01/31/17 18:01

Analyst:

NL

Date Collected:

01/25/17 14:10 01/25/17

Date Received: Field Prep:

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - We	stborough Lab					
Chlorodrom ND ug/l 2.5 0.70 1 1 2 2 2 2 3 3 3 3 3 3	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 10 0.70 1 1 1 1 1 1 1 1 1	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 J,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 L,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Fetrachloroethene ND ug/l 2.5 0.70 1 Chloroberazene ND ug/l 2.5 0.70 1 Frichlorofluoromethane ND ug/l 2.5 0.70 1 J,2-Dichloroethane ND ug/l 2.5 0.70 1 Romodichloromethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromoform ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 1 Bromomethane ND ug/l 2.5 0.70 1<	Chloroform	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND Ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
ND	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
ND	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1-Trichloroethane ND ug/l 2.5 0.70 1 1 1 1 1 1 1 1 1	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
ND	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	3romodichloromethane	ND		ug/l	0.50	0.19	1
ND ug/l 2.0 0.65 1 1 1 1 1 1 1 1 1	rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
ND	sis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chlorothane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 I,1-Dichloroethane ND ug/l 0.50 0.17 1 I,1-Dichloroethene ND ug/l 0.50 0.17 1 Irichloroethene ND ug/l 0.50 0.17 1 Irichloroethene ND ug/l 0.50 0.18 1 I,2-Dichlorobenzene ND ug/l 2.5 0.70 1 I,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 I,1-Dichloroethene ND ug/l 0.50 0.17 1 Irrichloroethene ND ug/l 2.5 0.70 1 I,2-Dichlorobenzene ND ug/l 2.5 0.70 1 I,3-Dichlorobenzene ND ug/l 2.5 0.70 1 I,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Toluene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 I,1-Dichloroethane ND ug/l 0.50 0.17 1 rans-1,2-Dichloroethane ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 0.50 0.18 1 I,2-Dichlorobenzene ND ug/l 2.5 0.70 1 I,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 rans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Bromomethane	ND		ug/l	2.5	0.70	1
I,1-Dichloroethene ND ug/l 0.50 0.17 1 rans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Frichloroethene ND ug/l 0.50 0.18 1 I,2-Dichlorobenzene ND ug/l 2.5 0.70 1 I,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
rans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1
Frichloroethene ND ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	ND		ug/l	0.50	0.18	1
-0	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
,4-Dichlorobenzene ND ug/l 2.5 0.70 1	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Lab Number:

Project Number: 2010-15

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-05

Client ID:

MW-245S

Sample Location: NY

Date Collected:

01/25/17 14:10

Date Received:

01/25/17

	Fleid Pro	ep:	Not Specified	
nits	RL	MDL	Dilution Factor	

Result	Qualifier	Units	RL	MDL	Dilution Factor	
tborough Lab						-
ND		ug/l	2.5	0.70	1	
ND		ug/l	2.5	0.70	1	
ND		ug/l	5.0	1.0	1	
ND		ug/l	2.5	0.70	1	
	tborough Lab ND ND ND	tborough Lab ND ND ND	tborough Lab ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.5 ND ug/l 5.0	ND ug/l 2.5 0.70 ND ug/l 2.5 0.70 ND ug/l 5.0 1.0	ND ug/l 2.5 0.70 1 ND ug/l 2.5 0.70 1 ND ug/l 5.0 1.0 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	127		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	104		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab ID: Client ID: L1702506-06 MW-245D

Sample Location:

NY

Matrix: Analytical Method: Water 1,8260C

Analytical Date:

01/31/17 18:29

Analyst:

NL

A	MI	PI	F	R	FS	П	17	IS

Date Collected:

Lab Number:

Report Date:

01/25/17 14:45

L1702506

02/06/17

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
I,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
sis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
/inyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
rans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORAI

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-06

Client ID:

MW-245D

Sample Location:

NY

Date Collected:

01/25/17 14:45

Date Received:

01/25/17

Field Prep: Not Specified

Parameter	Result Qualifier Units		Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	

% Recovery	Qualifier	Acceptance Criteria
127		70-130
104		70-130
103		70-130
106		70-130
	127 104 103	127 104 103

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Client ID:

L1702506-07 PZ-4

Sample Location:

NY Water

Matrix: Analytical Method:

1,8260C

Analytical Date:

01/31/17 18:56

Analyst:

Lab ID:

NL

Date Collected:

01/25/17 10:55

Date Received:

01/25/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/I	0.50	0.16	1
sis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
rans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

2010-15

Lab Number: Report Date:

L1702506

Project Number:

SAMPLE RESULTS

02/06/17

Lab ID:

L1702506-07

Date Collected: Date Received: 01/25/17 10:55

Client ID:

PZ-4 NY

01/25/17

Sample Location:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
p/m-Xylene .	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	128		70-130
Toluene-d8	102		70-130
4-Bromofluorobenzene	102		70-130
Dibromofluoromethane	106		70-130

L1702506

02/06/17

Project Name: ORANGE COUNTY- BASELINE 88 REG

Report Date:

Project Number: 2010-15 **SAMPLE RESULTS**

Lab ID: L1702506-08

DUP Client ID: NY Sample Location:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 01/30/17 17:58

Analyst:

BD

Date Collected: 01/25/17 00:00 Date Received: 01/25/17 Field Prep: **Not Specified**

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Тоluепе	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L1702506

02/06/17

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1702506-08

Client ID: DUP Sample Location: NY

Date Collected: 01/25/17 00:00

Date Received: 01/25/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	97		70-130	

L1702506

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Report Date: 02/06/17

Lab Number:

Lab ID: Client ID: L1702506-09 TRIP BLANK

Sample Location: Matrix:

NY Water

Analytical Method:

1,8260C

Analytical Date:

01/31/17 19:24

Analyst:

NL

Date Collected: 01/25/17 00:00 Date Received: 01/25/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/I	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/I	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

ORANGE COUNTY- BASELINE 88 REG **Project Name:**

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-09

Date Collected:

01/25/17 00:00

Client ID:

TRIP BLANK

Date Received:

01/25/17

Sample Location:

NY

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachioroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	127		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	108		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Client ID:

L1702506-10 SW-5

Sample Location: Matrix:

NY

Analytical Method:

Water 1,8260C

Analytical Date:

01/30/17 18:21

Analyst:

Lab ID:

BD

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

01/25/17 11:10

L1702506

02/06/17

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

Sample Location:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID: Client ID: L1702506-10

SW-5

SW-

Date Collected:

01/25/17 11:10

Date Received: Field Prep: 01/25/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
		Qualifier	Office		-	Ditation Factor
Volatile Organics by GC/MS - We	siborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1 1 1 2-Tetrachloroethane	ND		ua/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier		
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

SAMPLE RESULTS

Lab ID: L1702506-11

Client ID:

SW-8

Sample Location:

NY

Matrix:

Water

Analytical Method: Analytical Date:

1,8260C 01/30/17 18:44

Analyst:

BD

Date Collected:

Lab Number:

Report Date:

01/25/17 12:15

L1702506

02/06/17

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/I	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-11

Client ID: Sample Location: **SW-8** NY

Date Collected:

01/25/17 12:15

Date Received:

Field Prep:

01/25/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESUL

Lab ID:

L1702506-12

Client ID:

SW-13

Sample Location: Matrix:

NY

IVIAUIX.

Water

Analytical Method: Analytical Date: 1,8260C 01/30/17 19:07

Analyst:

BD

SAMPLE RESULTS

Date Collected:

01/25/17 10:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND	·	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/I	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
richlorofluoromethane	ND		ug/l	2.5	0.70	1
,2-Dichloroethane	ND		ug/l	0.50	0.13	1
,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Berizene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
rans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-12

Client ID:

Sample Location:

NY

SW-13

Date Collected:

01/25/17 10:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria					
1,2-Dichloroethane-d4	99		70-130					
Toluene-d8	98		70-130					
4-Bromofluorobenzene	100		70-130					
Dibromofluoromethane	99		70-130					

L1702506

02/06/17

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab ID: L1702506-13 D

Client ID: MH-7 Sample Location: NY

Matrix: Water

Analytical Method: 1,8260C Analytical Date: 01/30/17 19:30

Analyst:

BD

Date Collected: 01/26/17 08:10

Lab Number:

Report Date:

Date Received: 01/26/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/I	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
2-Chloroethylvinyl ether	ND		ug/l	100	7.0	10
Carbon tetrachloride	ND		ug/I	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	19	J	ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
rans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
Benzene	12		ug/l	5.0	1.6	10
oluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
rans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15 Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-13

D

Date Collected:

01/26/17 08:10

Client ID:

MH-7 NY

Date Received:

01/26/17

Sample Location:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

L1702506

02/06/17

Not Specified

Project Name: ORANGE COUNTY- BASELINE 88 REG

01/30/17 19:53

Project Number: 2010-15

SAMPLE RESULTS

Date Collected: 01/26/17 08:50

Lab ID: L1702506-14 Date Received: 01/26/17

Client ID: MH-15 Sample Location: NY

Matrix: Water Analytical Method: 1,8260C

Analyst: BD

Analytical Date:

Field Prep:

Lab Number:

Report Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	0.76	J	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/I	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	0.68		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.18	J	ug/l	1.0	0.07	1
Chloroethane	2.1	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	1.7	J	ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-14

Client ID: Sample Location: MH-15

NY

Date Collected:

01/26/17 08:50

Date Received:

01/26/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	98		70-130	

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Date Collected:

L1702506 02/06/17

L1702506-15

Sample Location: NY Matrix:

Water 1,8260C

Analytical Method: Analytical Date:

01/31/17 19:52

TRIP BLANK

Analyst:

Lab ID:

Client ID:

NL

01/26/17 09:00

Date Received:

Lab Number:

Report Date:

01/26/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
,1,1-Trichloroethane	ND		ug/I	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
sis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
/inyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

Lab Number: Report Date: 02/06/17

L1702506

Lab ID:

L1702506-15

Date Collected:

01/26/17 09:00

Client ID:

TRIP BLANK

Date Received: Field Prep:

01/26/17 Not Specified

Sample Location: NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					100 100
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichtoroethane-d4	129		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	108		70-130	

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260C

01/30/17 13:00

Analyst:

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS -	Westborough Lat	o for sample	(s):	08,10-14	Batch:	WG973916-5
Methylene chloride	ND		ug/l	2.5	5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	5	0.70
Chloroform	ND		ug/l	2.5	5	0.70
2-Chloroethylvinyl ether	ND		ug/l	10		0.70
Carbon tetrachloride	ND		ug/l	0.5	0	0.13
1,2-Dichloropropane	ND		ug/l	1.0)	0.14
Dibromochloromethane	ND		ug/l	0.5	0	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	5	0.50
Tetrachloroethene	ND		ug/l	0.5	0	0.18
Chlorobenzene	ND		ug/l	2.5	5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	5	0.70
1,2-Dichloroethane	ND		ug/l	0.5	0	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	5	0.70
Bromodichloromethane	ND		ug/l	0.5	0	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.5	0	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.5	0	0.14
Bromoform	ND		ug/l	2.0)	0.65
Benzene	ND		ug/l	0.5	0	0.16
Toluene	ND		ug/l	2.5	5	0.70
Ethylbenzene	ND		ug/l	2.5	5	0.70
Chloromethane	ND		ug/l	2.5	5	0.70
Bromomethane	ND		ug/l	2.5	5	0.70
Vinyl chloride	ND		ug/l	1.0)	0.07
Chloroethane	ND		ug/l	2.5	5	0.70
1,1-Dichloroethene	ND		ug/l	0.5	0	0.17
trans-1,2-Dichloroethene	ND		ug/l	2.5	5	0.70
Trichloroethene	ND		ug/l	0.5	0	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	5	0.70

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

1,8260C

01/30/17 13:00

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sampl	e(s): 08	,10-14 Batch	: WG973916-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	93		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	97		70-130

Project Name: ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Method Blank Analysis
Batch Quality Control

Analytical Method:

1,8260C

Analytical Date:

01/31/17 13:23

Analyst:

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07,09,15	Batch: WG974451-5	5
Methylene chloride	ND	ug/	2.5	0.70	
1,1-Dichloroethane	ND	ug/	2.5	0.70	
Chloroform	ND	ug/	2.5	0.70	
2-Chloroethylvinyl ether	ND	ug/	10	0.70	
Carbon tetrachloride	ND	ug/	0.50	0.13	
1,2-Dichloropropane	ND	ug/	1.0	0.14	
Dibromochloromethane	ND	ug/	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/	1.5	0.50	
Tetrachloroethene	ND	ug/	0.50	0.18	
Chlorobenzene	ND	ug/	2.5	0.70	
Trichlorofluoromethane	ND	ug/	2.5	0.70	
1,2-Dichloroethane	ND	ug/	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/	2.5	0.70	
Bromodichloromethane	ND	ug/	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14	
Bromoform	ND	ug/	2.0	0.65	
Berizene	ND	ug/	0.50	0.16	
Toluene	ND	ug/	2.5	0.70	
Ethylbenzene	ND	ug/	2.5	0.70	
Chloromethane	ND	ug/	2.5	0.70	
Bromomethane	ND	ug/	2.5	0.70	
Vinyl chloride	ND	ug/	1.0	0.07	
Chloroethane	ND	ug/	2.5	0.70	
1,1-Dichloroethene	ND	ug/	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/	1 2.5	0.70	
Trichloroethene	ND	ug/	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/	2.5	0.70	

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260C

Analytical Date:

01/31/17 13:23

Analyst:

Parameter	Result	Qualifier Uni	Qualifier Units		MDL	
Volatile Organics by GC/MS	· Westborough Lab	for sample(s):	:	01-07,09,15	Batch:	WG974451-5
1,4-Dichlorobenzene	ND	uç	g/l	2.5		0.70
p/m-Xylene	ND	uç	g/l	2.5		0.70
o-Xylene	ND	uç	g/I	2.5		0.70
Dichlorodifluoromethane	ND	uç	g/I	5.0		1.0
1,1,1,2-Tetrachloroethane	ND	uç	g/l	2.5		0.70

		Acceptance
%Recovery	Qualifier	Criteria
119		70-130
105		70-130
109		70-130
101		70-130
	119 105 109	%Recovery Qualifier 119 105 109

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual 9	%Recovery Limits	RPD	Quai	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated sample(s):	08,10-14 Batch	: WG973916-3	3 WG973916-4			
Methylene chloride	98	95		70-130	3	1	20
1,1-Dichloroethane	110	100		70-130	10		20
Chloroform	100	100		70-130	0		20
2-Chloroethylvinyl ether	82	82		70-130	0		20
Carbon tetrachloride	86	81		63-132	6		20
1,2-Dichloropropane	100	100		70-130	0		20
Dibromochloromethane	100	97		63-130	3	1	20
1,1,2-Trichloroethane	95	96		70-130	1	1	20
Tetrachloroethene	110	100		70-130	10	1	20
Chlorobenzene	110	100		75-130	10		20
Trichlorofluoromethane	90	84		62-150	7		20
1,2-Dichloroetharie	99	97		70-130	2		20
1,1,1-Trichloroethane	100	97		67-130	3		20
Bromodichloromethane	100	99		67-130	.1		20
trans-1,3-Dichloropropene	87	84		70-130	4		20
cis-1,3-Dichloropropene	93	90		70-130	3		20
1,1-Dichloropropene	100	97		70-130	3		20
Bromoform	98	95		54-136	3	1	20
1,1,2,2-Tetrachloroethane	95	93		67-130	2		20
Benzene	110	110		70-130	0		20
Toluene	110	100	F.	70-130	10	10	20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

arameter	LCS %Recovery Quai	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated sample(s):	08,10-14 Batch:	WG973916-3	WG973916-4			
Ethylbenzene	110	100		70-130	10		20
Chloromethane	110	100		64-130	10		20
Bromomethane	120	110		39-139	9		20
Vinyl chloride	100	92		55-140	8		20
Chloroethane	120	100		55-138	18		20
1,1-Dichloroethene	100	95		61-145	5		20
trans-1,2-Dichloroethene	110	100		70-130	10		20
Trichloroethene	100	98		70-130	2		20
1,2-Dichlorobenzene	100	100		70-130	0	1	20
1,3-Dichlorobenzene	110	100		70-130	10		20
1,4-Dichlorobenzene	100	100		70-130	0		20
Methyl tert butyl ether	95	91		63-130	4		20
p/m-Xylene	110	105		70-130	5		20
o-Xylene	110	110		70-130	Ü		20
cis-1,2-Dichloroethene	100	100		70-130	0		20
Dibromomethane	100	96		70-130	4		20
1,2,3-Trichloropropane	83	81		64-130	2		20
Acrylonitrile	94	92		70-130	2		20
Isopropyl Ether	100	99		70-130	1		20
tert-Butyl Alcohol	88	94		70-130	7		20
Styrene	110	110		70-130	0	1	20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated sample(s):	08,10-14 Batch:	WG973916-3 WG973916-4			
Dichlorodifluoromethane	83	. 78	36-147	6		20
Acetone	120	89	58-148	30	Q	20
Carbon disulfide	100	93	51-130	7		20
2-Butanone	90	83	63-138	8	4	20
Vinyl acetate	91	90	70-130	1		20
4-Methyl-2-pentanone	71	72	59-130	1		20
2-Hexanone	76	72	57-130	5		20
Acrolein	84	85	40-160	1		20
Bromochloromethane	100	100	70-130	0		20
2,2-Dichloropropane	94	88	63-133	7		20
1,2-Dibromoethane	98	97	70-130	1		20
1,3-Dichloropropane	99	97	70-130	2		20
1,1,1,2-Tetrachloroethane	100	100	64-130	0		20
Bromobenzene	110	100.	70-130	10		20
n-Butylbenzene	110	100	53-136	10	-	20
sec-Butylbenzene	110	100	70-130	10		20
tert-Butylbenzene	110	100	70-130	10		20
o-Chlorotoluene	120	110	70-130	9		20
p-Chlorotoluene	110	110	70-130	0	Second Second	20
1,2-Dibromo-3-chloropropane	88	87	41-144	1		20
Hexachlorobutadiene	98	98	63-130	0		20

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough La	ab Associated sample(s):	08,10-14 Batch:	WG973916-3 WG973916-4		
Isopropylbenzene	110	110	70-130	0	20
p-Isopropyltoluene	410	110	70-130	0	20
Naphthalene	78	85	70-130	9	20
n-Propylbenzene	110.	110	69-130	0	20
1,2,3-Trichlorobenzene	. 84.	91	70-130	8	20
1,2,4-Trichlorobenzene	96	97	70-130	1	20
1,3,5-Trimethylbenzene	110	110	64-130	0	20
1,2,4-Trimethylbenzene	110	110	70-130	0	20
Methyl Acetate	84	83	70-130	1	20
Ethyl Acetate	89	87	70-130	2	20
Cyclohexane	75	72	70-130	4	20
Ethyl-Tert-Butyl-Ether	84	82	70-130	2	20
Tertiary-Amyl Methyl Ether	80	77	66-130	4	20
1,4-Dioxane	80	88	56-162	10	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	82	77	70-130	6	20
p-Diethylbenzene	110	110	70-130	0	20
p-Ethyltoluene	110	110	70-130	0	20
1,2,4,5-Tetramethylbenzene	100	100	70-130	0	20
Tetrahydrofuran	95	95	58-130	0	20
Ethyl ether	100	96	59-134	4	20
trans-1,4-Dichloro-2-butene	95	93	70-130	2	20

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	Qual	LC:	_	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	b Associated s	ample(s):	08,10-14	Batch:	WG973916-3	WG973916-4			
lodomethane	96		9	94		70-130	2		20
Methyl cyclohexane	79		7	4		70-130	7		20

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
1,2-Dichloroethane-d4	96		96		70-130
Toluene-d8	101		101		70-130
4-Bromofluorobenzene	99		100		70-130
Dibromofluoromethane	100		99		70-130

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery Q	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough La	b Associated sam	ple(s): 01-07,09,15 Ba	tch: WG974451-3 WG97445	1-4	
Methylene chloride	84	88	70-130	5	20
1,1-Dichloroethane	110	120	70-130	9	20
Chloroform	100	110	70-130	10	20
2-Chloroethylvinyl ether	73	74	70-130	1	20
Carbon tetrachloride	88	97	63-132	10	20
1,2-Dichloropropane	110	120	70-130	9	20
Dibromochloromethane	86	95	63-130	10	20
1,1,2-Trichloroethane	100	110	70-130	10	20
Tetrachloroethene	90	97	70-130	7	20
Chlorobenzene	97	100	75-130	3	20
Trichlorofluoromethane	81	86	62-150	6	20
1,2-Dichloroethane	120	120	70-130	0	20
1,1,1-Trichloroethane	95	100	67-130	5	20
Bromodichloromethane	95	100	67-130	5	20
trans-1,3-Dichloropropene	95	100	70-130	5	20
cis-1,3-Dichloropropene	91	100.	7Ò-130	9	20
1,1-Dichloropropene	100	110	70-130	10	20
Bromoform	80	90	54-136	12	20
1,1,2,2-Tetrachloroethane	110	110	67-130	0	20
Benzene	100	110	70-130	10	20
Toluene	100	110	70-130	10	20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Volatile Organics by GC/MS - Westborou	ah Lah Associated sample/s):			Limits	RPD	Qual	Limits
volatile Organics by GC/MS - Westborou	gri Lab Associated Sample(s).	01-07,09,15 Bat	ch: WG97	4451-3 WG97445	51-4		
Ethylbenzene	100	110		70-130	10		20
Chloromethane	130	140	Q	64-130	7		20
Bromomethane	71	72		39-139	1	į.	20
Vinyl chloride	110	120		55-140	9		20
Chloroethane	110	110		55-138	0		20
1,1-Dichloroethene	79	86		61-145	8		20
trans-1,2-Dichloroethene	78	84		70-130	7		20
Trichloroethene	99	110		70-130	11		20
1,2-Dichlorobenzene	92	100		70-130	8		20
1,3-Dichlorobenzene	95	100		70-130	5		20
1,4-Dichlorobenzene	94	100		70-130	6	,	20
Methyl tert butyl ether	75	81		63-130	8		20
p/m-Xylene	95	105		70-130	10	1	20
o-Xylene	90	100		70-130	11		20
cis-1,2-Dichloroethene	94	100		70-130	6		20
Dibromomethane	94	100		70-130	6		20
1,2,3-Trichloropropane	110	120		64-130	9		20
Acrylonitrile	110	120		70-130	9		20
Isopropyl Ether	110	120		70-130	9		20
tert-Butyl Alcohol	70	90		70-130	25	Q	20
Styrene	90	100		70-130	11		20

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westbo	orough Lab Associated sa	ample(s):	01-07,09,15 Batc	h: WG97	4451-3 WG97445	1-4		
Dichlorodifluoromethane	160	Q	160	Q	36-147	0		20
Acetone	120		110		58-148	9		20
Carbon disulfide	73		94		51-130	25	Q	20
2-Butanone	120		120		63-138	0		20
Vinyl acetate	120			130		70-130	8	
4-Methyl-2-pentanone	87		96		59-130	10		20
2-Hexanone	93		78.		57-130	4		20
Bromochloromethane	94		99		70-130	5		20
2,2-Dichloropropane	100		110		63-133	10		20
1,2-Dibromoethane	93		100		70-130	7	1	20
1,3-Dichloropropane	100		110		70-130	10		20
1,1,1,2-Tetrachloroethane	90		99		64-130	10		20
Bromobenzene	92		98		70-130	6		20
n-Butylbenzene	89		96		53-136	. 8		20
sec-Butylbenzene	94		100	٠	70-130	6		20
tert-Butylbenzene	78		86		70-130	10	1	20
o-Chlorotoluene	100		120		70-130	18		20
p-Chlorotoluene	100		110		70-130	10	1	20
1,2-Dibromo-3-chloropropane	73		82		41-144	12	1	20
Hexachlorobutadiene	76		83		63-130	9		20
Isopropylbenzene	98		110		70-130	12		20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Quai	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07,09,15 Bate	ch: WG974	1451-3 WG97445	1-4		
p-Isopropyltoluene	85		94		70-130	10	1	20
Naphthalene	91		94		70-130	3	1	20
n-Propylbenzene	100		110		69-130	10		20
1,2,3-Trichlorobenzene	83		88		70-130	6		20
1,2,4-Trichlorobenzene	82		86		70-130	5		20
1,3,5-Trimethylbenzene	97		110		64-130	13		20
1,2,4-Trimethylbenzene	94		100		70-130	6		20
Methyl Acetate	100		110		70-130	10		20
Ethyl Acetate	120		130		70-130	8		20
Cyclohexane	120		130		70-130	8	N.	20
Ethyl-Tert-Butyl-Ether	100		110		70-130	10		20
Tertiary-Amyl Methyl Ether	85		93		66-130	9		20
1,4-Dioxane	40	Q	84		56-162	71	Q	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	83		88		70-130	6		20
p-Diethylbenzene	87		95		70-130	9		20
p-Ethyltoluene	98		110		70-130	11		20
1,2,4,5-Tetramethylbenzene	120		130		70-130	. 8	0	20
Tetrahydrofuran	96		120		58-130	22	Q	20
Ethyl ether	83		87		59-134	5		20
trans-1,4-Dichloro-2-butene	120		140	Q	70-130	15		20
lodomethane	52	Q	51	Q	70-130	2	1	20

Project Name:

Project Number:

ORANGE COUNTY- BASELINE 88 REG

2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07,09,15 Batcl	n: WG97	4451-3 WG974451	1-4		
Methyl cyclohexane	96		100		70-130	4		20

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
1.2-Dichloroethane-d4	117		116		70-130
Toluene-d8	105		105		70-130
4-Bromofluorobenzene	105		105		70-130
Dibromofluoromethane	99		97		70-130

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS SW-8	- Westborough	Lab Asso	ociated sample(s): 08,10-14	QC Batch	ID: WG97	'3916-6 WG97	3916-7	QC Sample	e: L170	2506-11	Client ID:
Methylene chloride	ND	10	8.7	87		9.3	93		70-130	7		20
1,1-Dichloroethane	ND	10	9.4	94		10	100		70-130	6		20
Chloroform	ND	10	9.2	92		10	100		70-130	8		20
2-Chloroethylvinyl ether	ND	10	ND	0	Q	ND	0	Q	70-130	NC		20
Carbon tetrachloride	ND	10	7.7	77		8.6	86		63-132	11		20
1,2-Dichloropropane	ND	10	9.4	94		10	100		70-130	6		20
Dibromochloromethane	ND	10	8.6	86		9.4	94		63-130	9		20
1,1,2-Trichloroethane	ND	10	9.1	91		9.9	99		70-130	8		20
Tetrachloroethene	ND	10	8.6	86		9.5	95		70-130	10		20
Chlorobenzene	ND	10	8.8	88		9.7	97		75-130	10		20
Trichlorofluoromethane	ND	10	9.5	95		10	100		62-150	5		20
1,2-Dichloroethane	ND	10	9.3	93		10	100		70-130	7		20
1,1,1-Trichloroethane	ND	10	9.3	93		10	100		67-130	7		20
Bromodichloromethane	ND	10	9.0	90		9.8	98		67-130	9		20
trans-1,3-Dichloropropene	ND	10	7.2	72		7.9	79		70-130	9		20
cis-1,3-Dichloropropene	ND	10	7.3	73		8.0	80		70-130	9		20
1,1-Dichloropropene	ND	10	9.1	91		9.9	99		70-130	8		20
Bromoform	ND	10	8.2	82		8.9	89		54-136	8		20
1,1,2,2-Tetrachloroethane	ND	10	9.1	91		9.6	96		67-130	5		20
Benzene	ND	10	9.7	97		10	100		70-130	3		20
Toluene	ND	10	9.0	90		9.8	98		70-130	9		20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2

2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/N	MS - Westborough La	ab Assoc	ciated sample	e(s): 08,10-14	QC Batch I	D: WG97	3916-6 WG97	3916-7	QC Sample	e: L170	2506-11	Client ID:
Ethylbenzene	ND	10	8.6	86		9.5	95		70-130	10		20
Chloromethane	ND	10	8.5	85		9.2	92		64-130	8		20
Bromomethane	ND	10	7.9	79		9.3	93		39-139	16		20
Vinyl chloride	ND	10	8.9	89	i "	9.8	98		55-140	10		20
Chloroethane	ND	10	9.2	92		10	100		55-138	8		20
1,1-Dichloroethene	ND	10	9.2	92	i	10	100		61-145	8		20
trans-1,2-Dichloroethene	ND	10	9.0	90		9.8	98		70-130	9		20
Trichloroethene	ND	10	8.8	88		9.5	95		70-130	8		20
1,2-Dichlorobenzene	ND	10	8.6	86		9.4	94		70-130	9		20
1,3-Dichlorobenzene	ND	10	8.6	86		9.2	92		70-130	7		20
1,4-Dichlorobenzene	ND	10	8.5	85	i	9.2	92		70-130	8		20
Methyl tert butyl ether	ND	10	8.6	86		9.5	95		63-130	10		20
p/m-Xylene	ND	20	18	90		20	100		70-130	11		20
o-Xylene	ND	20	18	90	i	20	100		70-130	11		20
cis-1,2-Dichloroethene	ND	10	9.1	91		10	100		70-130	8		20
Dibromomethane	ND	10	9.3	93	9	9.8	98		70-130	5		20
1,2,3-Trichloropropane	ND	10	8.1	81	1	9.6	96		64-130	17		20
Acrylonitrile	ND	10	9.3	93		10	100		70-130	7		20
Isopropyl Ether	ND	10	9.0	90		9.9	99		70-130	10		20
tert-Butyl Alcohol	ND	50	49	98		52	104		70-130	6		20
Styrene	ND	20	18	90		20	100		70-130	11		20

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS SW-8	- Westborough	Lab Associ	ciated sample	e(s): 08,10-14	QC Batch ID: WG97	73916-6 WG97	3916-7	QC Sample	e: L170	2506-11	Client ID:
Dichlorodifluoromethane	ND	10	7.0	70	7.5	75		36-147	7		20
Acetone	2.4J	10	11	110	11	110		58-148	0		20
Carbon disulfide	ND	10	8.0	80	8.8	88		51-130	10		20
2-Butanone	ND	10	8.9	89	9.9	99		63-138	11		20
Vinyl acetate	ND	10	7.7	77	8.7	87		70-130	12		20
4-Methyl-2-pentanone	ND	10	6.9	69	7.4	74		59-130	7		20
2-Hexanone	ND	10	7.0	70	7.7	77		57-130	10		20
Acrolein	ND	10	7.7	77	8.4	84		40-160	9		20
Bromochloromethane	ND	10	9.2	92	10	100		70-130	8		20
2,2-Dichloropropane	ND	10	7.0	70	7.9	79		63-133	12		20
1,2-Dibromoethane	ND	10	8.8	88	9.7	97		70-130	10		20
1,3-Dichloropropane	ND	10	9.1	91	9.9	99		70-130	8		20
1,1,1,2-Tetrachloroethane	ND	10	8.8	88	9.5	95		64-130	8		20
Bromobenzene	ND	10	8.8	88	9.4	94		70-130	7		20
n-Butylbenzene	ND	10	8.2	82	9.0	90		53-136	9		20
sec-Butylbenzene	ND	10	8.4	84	9.2	92		70-130	9		20
tert-Butylbenzene	ND	10	8.4	84	9.2	92		70-130	9		20
o-Chlorotoluene	ND	10	9.4	94	10	100		70-130	6		20
p-Chlorotoluene	ND	10	8.7	87	9.3	93		70-130	7		20
1,2-Dibromo-3-chloropropane	ND	10	7.2	72	8.4	84		41-144	15		20
Hexachlorobutadiene	ND	10	7.4	74	8.2	82		63-130	10		20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS SW-8	- Westborough	Lab Ass	ociated sample((s): 08,10-14	QC Batch I	D: WG97	3916-6 WG97	3916-7	QC Sample	e: L170	2506-11	Client ID:
Isopropylbenzene	ND	10	8.6	86		9.5	95		70-130	10		20
p-Isopropyltoluene	ND	10	8.4	84		9.3	93		70-130	10		20
Naphthalene	ND	10	7.0	70		8.4	84		70-130	18		20
n-Propylbenzene	ND	10	8.6	86	į.	9.3	93		69-130	8		20
1,2,3-Trichlorobenzene	ND	10	7.4	74		8.6	86		70-130	15		20
1,2,4-Trichlorobenzene	ND	10	7.6	76	i	8.7	87		70-130	13		20
1,3,5-Trimethylbenzene	ND	10	8.6	86		9.4	94		64-130	9		20
1,2,4-Trimethylbenzene	ND	10	8.6	86	i	9.5	95		70-130	10		20
Methyl Acetate	ND	10	8.5	85	i	8.9	89		70-130	5		20
Ethyl Acetate	ND	10	8.1J	81	1	8.6J	86		70-130	6		20
Cyclohexane	ND	10	7.7J	77	i	8.4J	84		70-130	8		20
Ethyl-Tert-Butyl-Ether	ND	10	7.6	76	ì	8.4	84		70-130	10		20
Tertiary-Amyl Methyl Ether	ND	10	7.2	72	ì	7.9	79		66-130	9		20
1,4-Dioxane	ND	500	430	86	i i	520	104		56-162	19		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10 [°]	8.7	87		9.5	95		70-130	9		20
p-Diethylbenzene	ND	10	8.1	81		8.9	89		70-130	9		20
p-Ethyltoluene	ND	10	8.6	86		9.4	94		70-130	9		20
1,2,4,5-Tetramethylbenzene	ND	10	7.7	77		8.6	86		70-130	11		20
Tetrahydrofuran	ND	10	9.7	97		10	100		58-130	3		20
Ethyl ether	ND	10	9.3	93	i.	10	100		59-134	7		20
trans-1,4-Dichloro-2-butene	ND	10	7.2	72	i .	8.5	85		70-130	17		20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Add		MS ound	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - SW-8	- Westborough L	.ab A	Associate	d sample	e(s): 08,10-14	QC Batch	ID: WG97	73916-6 WG97	3916-7	QC Sample	e: L170	2506-11	Client ID:
lodomethane	ND	1	0	6.4	64	Q	8.1	81		70-130	23	Q	20
Methyl cyclohexane	ND	1	0	7.9J	79	ĺ.	8.8J	88		70-130	11		20

	MS	3	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		102		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	100		100		70-130	
Toluene-d8	99		100		70-130	

METALS

Project Name:

ORANGE COUNTY- BASELINE 88 REG

SAMPLE RESULTS

Lab Number:

L1702506

Project Number:

Sample Location:

2010-15

Report Date:

02/06/17

Lab ID: Client ID:

Matrix:

L1702506-01

MW-233S

NY

Water

Date Collected:

01/25/17 08:50

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Aluminum, Total	0.020		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0009		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Barium, Total	0.0989		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Boron, Total	0.0190	J	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 00:52	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0007		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Calcium, Total	130		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 00:52	EPA 3005A	1,6010C	AB
Chromium, Total	0.0007	J	mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0010		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Copper, Total	0.0078		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Iron, Total	0.127		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Lead, Total	ND		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Magnesium, Total	46.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 00:52	EPA 3005A	1,6010C	AB
Manganese, Total	2.145		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:17	EPA 7470A	1,7470A	BV
Nickel, Total	0.0124		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Potassium, Total	2.88		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Sodium, Total	2.27		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Zinc, Total	0.0268		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 10:57	EPA 3005A	1,6020A	DB
Total Hardness by	y SM 2340E	3 - Mansfie	ld Lab								
Hardness	510		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 00:52	EPA 3005A	1,6010C	AB

Project Name: ORANGE COUNTY- BASELINE 88 REG

2010-15

Lab Number:

L1702506

Project Number:

Report Date:

02/06/17

Lab ID: Client ID: L1702506-01

Date Collected: Date Received: 01/25/17 08:50

Sample Location:

MW-233S NY

01/30/17 11:48 01/30/17 15:12 EPA 3005A

01/25/17

Motor

2.69

ND

ND

1.97

ND

ND

ND

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

0.100

0.005

0.0004

0.100

0.0005

0.0050

0.0100

0.031

0.002

0.0002

0.029

0.0001

0.0016

0.0034

1

1

1

1

1

1

1

Field Prep:

Not Specified

Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	0.006	J	mg/l	0.010	0.003	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Antimony, Dissolved	0.0004	J	mg/l	0.0040	0.0004	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.00047	J	mg/l	0.00050	0.00017	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0472		mg/l	0.0005	0.0002	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.0179	J	mg/l	0.0300	0.0016	1	01/30/17 11:48	3 01/31/17 01:12	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Calcium, Dissolved	130		mg/l	0.10	0.035	1	01/30/17 11:48	3 01/31/17 01:12	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Copper, Dissolved	0.0005	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	46.		mg/l	0.10	0.015	1	01/30/17 11:48	3 01/31/17 01:12	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.0009	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	8 01/30/17 15:12	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	3 01/31/17 13:50	EPA 7470A	1,7470A	BV
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	01/30/17 11:48	3 01/30/17 15:12	EPA 3005A	1,6020A	DB

SAMPLE RESULTS

DB

DB

DB

DB

DB

DB

DB

1,6020A

1,6020A

1,6020A

1,6020A

1,6020A

1,6020A

1,6020A

Potassium, Dissolved

Selenium, Dissolved

Silver, Dissolved

Sodium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Zinc, Dissolved

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

SAMPLE RESULTS

L1702506 02/06/17

Report Date:

Lab ID: Client ID: L1702506-02 MW-233D

Sample Location:

NY

Matrix:

Water

Date Collected:

Lab Number:

01/25/17 09:30

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.013		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0007		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Barium, Total	0.0351		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Boron, Total	0.0968		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 00:56	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Calcium, Total	54.		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 00:56	EPA 3005A	1,6010C	AB
Chromium, Total	0.0013		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Cobalt, Total	ND		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Copper, Total	0.0014		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Iron, Total	0.086		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Lead, Total	0.0011		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Magnesium, Total	22.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 00:56	EPA 3005A	1,6010C	AB
Manganese, Total	0.0332		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:19	EPA 7470A	1,7470A	BV
Nickel, Total	0.0012	J	mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Potassium, Total	1.99		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Sodium, Total	109		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Zinc, Total	0.0079	J	mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:00	EPA 3005A	1,6020A	DB
Total Hardness by	y SM 2340E	3 - Mansfie	ld Lab								
Hardness	220		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 00:56	EPA 3005A	1,6010C	AB

Project Name: ORANGE COUNTY- BASELINE 88 REG

L1702506 Report Date: **Project Number:** 02/06/17 2010-15

SAMPLE RESULTS

Lab ID: Client ID:

L1702506-02 MW-233D

NY Sample Location: Matrix: Water Date Collected:

Lab Number:

01/25/17 09:30

Date Received:

01/25/17 Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab					4				
Aluminum, Dissolved	0.005	J	mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.00049	J	mg/l	0.00050	0.00017	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0337		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.0938		mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 02:09	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Calcium, Dissolved	55.		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 02:09	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0004	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Copper, Dissolved	0.0006	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	23.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 02:09	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.0015		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	01/31/17 13:55	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0008	J	mg/l	0.0020	0.0006	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Potassium, Dissolved	1.87		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Sodium, Dissolved	103		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB
Zinc, Dissolved	0.0063	J	mg/l	0.0100	0.0034	1	01/30/17 11:48	01/30/17 15:15	EPA 3005A	1,6020A	DB

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

SAMPLE RESULTS

L1702506-03

Client ID:

MW-3B

Sample Location:

NY

Matrix:

Water

Date Collected:

01/25/17 12:00

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab						01100				
Aluminum, Total	0.034		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0305		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Barium, Total	0.1404		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Boron, Total	0.130		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:01	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Calcium, Total	130		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:01	EPA 3005A	1,6010C	AB
Chromium, Total	0.0009	J	mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0003	J	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Copper, Total	0.0006	J	mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Iron, Total	0.815		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Lead, Total	0.0011		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Magnesium, Total	24.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:01	EPA 3005A	1,6010C	AB
Manganese, Total	0.6728		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:24	EPA 7470A	1,7470A	BV
Nickel, Total	0.0045		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Potassium, Total	1.86		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Sodium, Total	41.4		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Variadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Zinc, Total	0.0101		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:03	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	B - Mansfie	ld Lab								
Hardness	420		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:01	EPA 3005A	1,6010C	AB

L1702506

02/06/17

Project Name: ORANGE COUNTY- BASELINE 88 REG

L1702506-03

Project Number: 2010-15

SAMPLE RESULTS

Date Collecte

Date Collected: 01/25/17 12:00

Lab Number:

Report Date:

Client ID: MW-3B Sample Location: NY

Lab ID:

Matrix: Water

Date Received: 01/25/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0216		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.3459		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.206		mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 02:13	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Calcium, Dissolved	140		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 02:13	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0004	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	0.0004	J	mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Copper, Dissolved	ND		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	37.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 02:13	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.8696		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	01/31/17 13:57	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0058		mg/l	0.0020	0.0006	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Potassium, Dissolved	5.44		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Sodium, Dissolved	47.7		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB
Zinc, Dissolved	ND		mg/l	0.0100	0.0034	1	01/30/17 11:48	01/30/17 15:18	EPA 3005A	1,6020A	DB

Project Name:

ORANGE COUNTY- BASELINE 88 REG

SAMPLE RESULTS

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

Client ID:

L1702506-04 MW-220

Sample Location:

NY

Matrix:

Water

Date Collected:

01/25/17 13:15

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	0.153		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0221		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Barium, Total	0.0826		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Beryllium, Total	0.0001	J	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Boron, Total	0.0469		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:05	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Calcium, Total	180		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:05	EPA 3005A	1,6010C	AB
Chromium, Total	0.0021		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/31/17 10:01	EPA 3005A	1,6020A	AM
Cobalt, Total	0.0013		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Copper, Total	0.0023		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Iron, Total	3.63		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Lead, Total	0.0073		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Magnesium, Total	46.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:05	EPA 3005A	1,6010C	AB
Manganese, Total	1.571		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:26	EPA 7470A	1,7470A	BV
Nickel, Total	0.0029		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Potassium, Total	3.22		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Sodium, Total	18.4		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/i	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Zinc, Total	0.0098	J	mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:12	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	650		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:05	EPA 3005A	1,6010C	AB

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

SAMPLE RESULTS

L1702506-04

Client ID:

MW-220

Sample Location: Matrix:

NY Water Date Collected:

01/25/17 13:15

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.010	0.003	1	01/30/17 11:48	8 01/30/17 15:28	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	8 01/30/17 15:28	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0028		mg/l	0.0005	0.0002	1	01/30/17 11:48	8 01/30/17 15:28	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0679		mg/l	0.0005	0.0002	1	01/30/17 11:48	8 01/30/17 15:28	EPA 3005A	1,6020A	DB
Bandlium Dinashad	ND		/I	0.0005	0.0001	4	04/20/47 14:46	0.01/20/17 15:29	EDA 3005A	1 60204	DB

Dissolved Metals - N	Mansfield I :	ah						
Aluminum, Dissolved	ND	40	mg/l	0.010	0.003	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Arsenic, Dissolved	0.0028		mg/l	0.0005	0.0002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Barium, Dissolved	0.0679		mg/l	0.0005	0.0002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Boron, Dissolved	0.0442		mg/l	0.0300	0.0016	1	01/30/17 11:48 01/31/17 02:18 EPA 3005A 1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Calcium, Dissolved	180		mg/l	0.10	0.035	1	01/30/17 11:48 01/31/17 02:18 EPA 3005A 1,6010C	AB
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Cobalt, Dissolved	0.0006		mg/l	0.0005	0.0002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Copper, Dissolved	ND		mg/l	0.0010	0.0004	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	_1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Magnesium, Dissolved	45.		mg/l	0.10	0.015	1	01/30/17 11:48 01/31/17 02:18 EPA 3005A 1,6010C	AB
Manganese, Dissolved	1.121		mg/l	0.0010	0.0004	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53 01/31/17 13:59 EPA 7470A 1,7470A	BV
Nickel, Dissolved	0.00198	J	mg/l	0.00200	0.00056	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Potassium, Dissolved	3.12		mg/l	0.100	0.031	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Sodium, Dissolved	17.3		mg/l	0.100	0.029	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB
Zinc, Dissolved	0.0037	J	mg/l	0.0100	0.0034	1	01/30/17 11:48 01/30/17 15:28 EPA 3005A 1,6020A	DB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15 Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID: Client ID: L1702506-05 MW-245S

Date Collected: Date Received: 01/25/17 14:10 01/25/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	4.83		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Antimony, Total	0.0004	J	mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Arsenic, Total	0.1686		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Banum, Total	0.1225		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Beryllium, Total	0.0004	J	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Boron, Total	0.0229	J	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:09	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Calcium, Total	130		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:09	EPA 3005A	1,6010C	AB
Chromium, Total	0.008		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0028		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Copper, Total	0.0091		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Iron, Total	11.1		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Lead, Total	0.0170		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Magnesium, Total	30.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:09	EPA 3005A	1,6010C	AB
Manganese, Total	1.783		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:28	EPA 7470A	1,7470A	BV
Nickel, Total	0.0066		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Potassium, Total	3.69		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	_ 1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Sodium, Total	51.3		mg/l	0.100	0.029	_ 1_	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Vanadium, Total	0.0093		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Zinc, Total	0.0217		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:15	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	460		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:09	EPA 3005A	1,6010C	AB

ORANGE COUNTY- BASELINE 88 REG Project Name:

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

SAMPLE RESULTS

Date Collected:

01/25/17 14:10

Client ID:

L1702506-05 MW-245S

Date Received:

01/25/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0131		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0791		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.0218	J	mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 02:22	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Calcium, Dissolved	140		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 02:22	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0006	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	0.0003	J	mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Copper, Dissolved	0.0005	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Iron, Dissolved	0.028	J	mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	31.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 02:22	EPA 3005A	1,6010C	AB
Manganese, Dissolved	1.414		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	01/31/17 14:01	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0008	J	mg/l	0.0020	0.0006	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Potassium, Dissolved	1.83		mg/l	0.100	0.031	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 15:31	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Sodium, Dissolved	50.5		mg/l	0.100	0.029	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB
Zinc, Dissolved	ND		mg/l	0.0100	0.0034	1	01/30/17 11:48	3 01/30/17 15:31	EPA 3005A	1,6020A	DB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15 Report Date:

L1702506

SAMPLE RESULTS

02/06/17

Lab ID: Client ID: L1702506-06

MW-245D

Date Collected: Date Received:

Lab Number:

01/25/17 14:45

Sample Location:

NY

01/25/17

Analytical

Matrix:

Water

Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	0.025		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0057		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Barium, Total	0.0893		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Boron, Total	0.0504		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:13	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0006		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Calcium, Total	82.		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:13	EPA 3005A	1,6010C	AB
Chromium, Total	0.0045		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0002	J	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Copper, Total	0.0017		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Iron, Total	1.17		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Lead, Total	0.0068		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Magnesium, Total	28.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:13	EPA 3005A	1,6010C	AB
Manganese, Total	0.2291		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:29	EPA 7470A	1,7470A	BV
Nickel, Total	0.0039		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Potassium, Total	3.99		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Sodium, Total	51.5		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Vaпadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Zinc, Total	0.0947		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:18	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	320		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:13	EPA 3005A	1,6010C	АВ

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-06

Date Collected:

01/25/17 14:45

Client ID:

MW-245D

01/25/17

Sample Location:

NY

Date Received:

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	0.005	J	mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0023		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0873		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.0502		mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 02:53	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	0.0003		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Calcium, Dissolved	86.		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 02:53	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Copper, Dissolved	ND		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	29.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 02:53	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.2210		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	01/31/17 14:03	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0033		mg/l	0.0020	0.0006	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Potassium, Dissolved	4.09		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Sodium, Dissolved	54.0		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	3 01/30/17 15:34	EPA 3005A	1,6020A	DB
Zinc, Dissolved	0.0814		mg/l	0.0100	0.0034	1	01/30/17 11:48	01/30/17 15:34	EPA 3005A	1,6020A	DB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15 Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID: Client ID: L1702506-07

Sample Location:

PZ-4

NY Matrix: Water Date Collected:

01/25/17 10:55

Date Received:

01/25/17

Field Prep:

No.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Antimony, Total ND mg/l 0.0040 0.004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Arsenic, Total 0.0095 mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Barium, Total 0.0404 mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Beryllium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Beryllium, Total ND mg/l 0.0300 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Boron, Total 0.105 mg/l 0.0300 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Boron, Total ND mg/l 0.0002 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Calcium, Total ND mg/l 0.0002 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Calcium, Total 180 mg/l 0.0010 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Copper, Total 0.0007 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Magnesium, Total 44. mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Magnesium, Total 44. mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Mercury, Total ND mg/l 0.00000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Mercury, Total ND mg/l 0.00000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Mercury, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND	Total Metals - Mar	nsfield Lab										
Arsenic, Total 0.0095 mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Barium, Total 0.0404 mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Beryllium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Beryllium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Boron, Total 0.105 mg/l 0.0300 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6010C Cadmium, Total ND mg/l 0.0002 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6010C Cadmium, Total 180 mg/l 0.10 0.035 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6010C Chromium, Total 0.0007 J mg/l 0.0010 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Copper, Total 0.00098 J mg/l 0.0010 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Magnesium, Total 44. mg/l 0.001 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Mercury, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Mercury, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A Selenium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1.6020A	Aluminum, Total	0.028		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Barium, Total 0.0404 mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A	Antimony, Total	ND		mg/l	0.0040	0.0004	_ 1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Beryllium, Total ND	Arsenic, Total	0.0095		mg/l	0.0005	0.0002	_ 1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Boron, Total 0.105 mg/l 0.0300 0.0016 1 01/27/17 11:42 01/30/17 01:18 EPA 3005A 1,6010C	Barium, Total	0.0404		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Cadmium, Total ND mg/l 0.0002 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Calcium, Total 180 mg/l 0.10 0.035 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6010C Chromium, Total 0.0007 J mg/l 0.0010 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Copper, Total 0.00098 J mg/l 0.00100 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0000 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.0000 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Solium, Total ND mg/l 0.0005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Solium, Total ND mg/l 0.0005 0.000 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Solium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Calcium, Total 180 mg/l 0.10 0.035 1 01/27/17 11:42 01/28/17 01:18 EPA 3005A 1,6010C Chromium, Total 0.0007 J mg/l 0.0010 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Copper, Total 0.00098 J mg/l 0.0010 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0020 0.0006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/2	Boron, Total	0.105		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:18	EPA 3005A	1,6010C	AB
Chromium, Total 0.0007 J mg/l 0.0010 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Copper, Total 0.00098 J mg/l 0.0010 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Iron, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0002 0.0006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.0005 0.0001 1 01	Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Cobalt, Total ND mg/l 0.0005 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Copper, Total 0.00098 J mg/l 0.00100 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Nickel, Total ND mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.1000 0.031 1 01/27/17 11:42 01/30/17 11:2	Calcium, Total	180		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:18	EPA 3005A	1,6010C	AB
Copper, Total 0.00098 J mg/l 0.00100 0.00038 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A lron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A lead, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A lead, Total 0.4129 mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6010C lead, Total ND mg/l 0.00020 0.00006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A lickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0002 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A leading, Total ND mg/l 0.0050 0.0016 1 01	Chromium, Total	0.0007	J	mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Iron, Total 0.294 mg/l 0.050 0.019 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6010C Manganese, Total 0.4129 mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6010C Mercury, Total ND mg/l 0.0020 0.0006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Cobalt, Total	ND		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Lead, Total 0.0004 J mg/l 0.0010 0.0003 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6010C Manganese, Total 0.4129 mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.0020 0.0006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21	Copper, Total	0.00098	J	mg/l	0.00100	0.00038	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Magnesium, Total 44. mg/l 0.10 0.015 1 01/27/17 11:42 01/28/17 01:18 EPA 3005A 1,6010C Manganese, Total 0.4129 mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.0006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A </td <td>Iron, Total</td> <td>0.294</td> <td></td> <td>mg/l</td> <td>0.050</td> <td>0.019</td> <td>1</td> <td>01/27/17 11:42</td> <td>01/30/17 11:21</td> <td>EPA 3005A</td> <td>1,6020A</td> <td>DB</td>	Iron, Total	0.294		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Manganese, Total 0.4129 mg/l 0.0010 0.0004 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Lead, Total	0.0004	J	mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Mercury, Total ND mg/l 0.00020 0.00006 1 01/26/17 11:09 01/31/17 13:31 EPA 7470A 1,7470A Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A	Magnesium, Total	44.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:18	EPA 3005A	1,6010C	AB
Nickel, Total 0.0026 mg/l 0.0020 0.0006 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Manganese, Total	0.4129		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Potassium, Total 3.15 mg/l 0.100 0.031 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:31	EPA 7470A	1,7470A	BV
Selenium, Total ND mg/l 0.005 0.002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Nickel, Total	0.0026		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Silver, Total ND mg/l 0.0004 0.0002 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Potassium, Total	3.15		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Sodium, Total 19.6 mg/l 0.100 0.029 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Thallium, Total ND mg/l 0.0005 0.0001 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Vanadium, Total ND mg/l 0.0050 0.0016 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Sodium, Total	19.6		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Zinc, Total 0.0051 J mg/l 0.0100 0.0034 1 01/27/17 11:42 01/30/17 11:21 EPA 3005A 1,6020A Total Hardness by SM 2340B - Mansfield Lab	Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Total Hardness by SM 2340B - Mansfield Lab	Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
	Zinc, Total	0.0051	J	mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:21	EPA 3005A	1,6020A	DB
Hardness 630 mg/l 0.66 NA 1 01/27/17 11:42 01/28/17 01:18 EPA 3005A 1,6010C	Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
	Hardness	630		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:18	EPA 3005A	1,6010C	AB

L1702506

Project Name: **ORANGE COUNTY- BASELINE 88 REG**

Lab Number:

Project Number: Report Date: 02/06/17 2010-15

SAMPLE RESULTS

Lab ID: L1702506-07

Client ID: PZ-4 NY Sample Location: Matrix:

Water

Date Collected: 01/25/17 10:55

Date Received: 01/25/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0045		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.0374		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.102		mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 02:58	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Calcium, Dissolved	180		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 02:58	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0004	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Copper, Dissolved	0.0008	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Iron, Dissolved	ND		mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	45.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 02:58	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.3788		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	01/27/17 15:53	01/31/17 14:04	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0025		mg/l	0.0020	0.0006	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Potassium, Dissolved	3.08		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/i	0.005	0.002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Sodium, Dissolved	18.9		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB
Zinc, Dissolved	0.0045	J	mg/l	0.0100	0.0034	1	01/30/17 11:48	01/30/17 15:37	EPA 3005A	1,6020A	DB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15 Lab Number:

L1702506

Report Date:

SAMPLE RESULTS

02/06/17

Lab ID:

L1702506-08

Date Collected:

01/25/17 00:00

Client ID:

DUP

Date Received:

01/25/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab						1 12				
Aluminum, Total	0.028		mg/l	0.010	0.003	1	01/27/17 11:42	01/31/17 10:04	EPA 3005A	1,6020A	AM
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0296		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Barium, Total	0.1348		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Boron, Total	0.122		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:39	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Calcium, Total	120		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:39	EPA 3005A	1,6010C	AB
Chromium, Total	0.0006	J	mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0004	J	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Copper, Total	0.0007	J	mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Iron, Total	0.763		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Lead, Total	0.0012		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Magnesium, Total	22.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:39	EPA 3005A	1,6010C	AB
Manganese, Total	0.6442		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:33	EPA 7470A	1,7470A	BV
Nickel, Total	0.0039		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Potassium, Total	1.72		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Sodium, Total	40.5		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Zinc, Total	0.0112		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:24	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	B - Mansfie	ld Lab								
Hardness	390		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:39	EPA 3005A	1,6010C	AB

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

L1702506-08

SAMPLE RESULTS

Date Collected:

01/25/17 00:00

Client ID:

DUP

Date Received:

01/25/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Antimony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Arsenic, Dissolved	0.0243		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Barium, Dissolved	0.3515		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Beryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Boron, Dissolved	0.207		mg/l	0.0300	0.0016	1	01/30/17 11:48	01/31/17 03:02	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND		mg/i	0.0002	0.0001	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Calcium, Dissolved	150		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 03:02	EPA 3005A	1,6010C	AB
Chromium, Dissolved	0.0007	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Cobalt, Dissolved	0.0003	J	mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Copper, Dissolved	ND		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Iron, Dissolved	0.027	J	mg/l	0.050	0.019	_1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Magnesium, Dissolved	38.		mg/l	0.10	0.015	1	01/30/17 11:48	01/31/17 03:02	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.8905		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Mercury, Dissolved	ND		mg/i	0.00020	0.00006	1	01/27/17 15:53	01/31/17 14:10	EPA 7470A	1,7470A	BV
Nickel, Dissolved	0.0059		mg/l	0.0020	0.0006	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Potassium, Dissolved	5.54		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Selenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Sodium, Dissolved	47.8		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Vanadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB
Zinc, Dissolved	ND		mg/i	0.0100	0.0034	1	01/30/17 11:48	01/30/17 15:40	EPA 3005A	1,6020A	DB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

L1702506-10

Client ID:

SW-5

Sample Location:

Matrix:

NY Water Date Collected:

01/25/17 11:10

Date Received:

01/25/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	0.662		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0012		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Barium, Total	0.0240		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Boron, Total	0.0221	J	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:44	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0001	J	mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Calcium, Total	52.		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:44	EPA 3005A	1,6010C	AB
Chromium, Total	0.0016		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0013		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Copper, Total	0.0036		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Iron, Total	1.04		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Lead, Total	0.0010		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Magnesium, Total	12.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:44	EPA 3005A	1,6010C	AB
Manganese, Total	0.1373		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:48	EPA 7470A	1,7470A	BV
Nickel, Total	0.0027		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Potassium, Total	2.69		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	11	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Sodium, Total	46.7		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Vanadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Zinc, Total	0.0248		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:27	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	180		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:44	EPA 3005A	1,6010C	AB

SAMPLE RESULTS

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number:

2010-15

Report Date:

Date Collected:

Date Received:

02/06/17

Lab ID:

SAMPLE RESULTS

L1702506-11

Client ID:

SW-8

Sample Location:

Matrix:

NY Water

Field Prep:

01/25/17 12:15

01/25/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	1.04		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0015		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Barium, Total	0.0266		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Beryllium, Total	0.0001	J	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Boron, Total	0.0225	J	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 00:16	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0001	J	mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Calcium, Total	52.		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 00:16	EPA 3005A	1,6010C	AB
Chromium, Total	0.0017		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0016		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Copper, Total	0.0046		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Iron, Total	1.67		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Lead, Total	0.0015		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Magnesium, Total	12.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 00:16	EPA 3005A	1,6010C	AB
Manganese, Total	0.1798		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 12:57	EPA 7470A	1,7470A	BV
Nickel, Total	0.0034		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Potassium, Total	2.70		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Sodium, Total	45.6		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Vanadium, Total	0.0018	J	mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Zinc, Total	0.0321		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 10:54	EPA 3005A	1,6020A	DB
Total Hardness by	y SM 2340E	3 - Mansfie	ld Lab							1	
Hardness	180		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 00:16	EPA 3005A	1,6010C	AB

Project Name: ORANGE COUNTY- BASELINE 88 REG

2010-15

Lab Number:

L1702506

Project Number:

Report Date:

02/06/17

Lab ID:

SAMPLE RESULTS

L1702506-12

Client ID: Sample Location: SW-13

Matrix:

NY

Water

Date Collected:

01/25/17 10:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	0.974		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0015		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Barium, Total	0.0277		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Beryllium, Total	0.0001	J	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Boron, Total	0.0225	J	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:48	EPA 3005A	1,6010C	AB
Cadmium, Total	0.00015	J	mg/l	0.00020	0.00006	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Calcium, Total	52.		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:48	EPA 3005A	1,6010C	AB
Chromium, Total	0.0017		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0017		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Copper, Total	0.0059		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Iron, Total	1.72		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Lead, Total	0.0020		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Magnesium, Total	12.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:48	EPA 3005A	1,6010C	AB
Manganese, Total	0.1970		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/26/17 11:09	01/31/17 13:35	EPA 7470A	1,7470A	BV
Nickel, Total	0.0033		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Potassium, Total	2.66		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Sodium, Total	47.0		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Vanadium, Total	0.0017	J	mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Zinc, Total	0.0343		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:30	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	180		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:48	EPA 3005A	1,6010C	AB

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

Lab ID:

L1702506-13

Date Collected:

SAMPLE RESULTS

01/26/17 08:10

Client ID:

MH-7

Date Received:

01/26/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	2.10		mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Antimony, Total	0.0015	J	mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0114		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Barium, Total	0.2145		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Boron, Total	3.21		mg/l	0.0600	0.0032	1	01/27/17 11:42	01/28/17 01:52	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Calcium, Total	370		mg/l	0.20	0.070	1	01/27/17 11:42	01/28/17 01:52	EPA 3005A	1,6010C	AB
Chromium, Total	0.0106		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0092		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Copper, Total	0.0057		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Iron, Total	17.3		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Lead, Total	0.0053		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Magnesium, Total	78.		mg/l	0.20	0.031	1	01/27/17 11:42	01/28/17 01:52	EPA 3005A	1,6010C	AB
Manganese, Total	0.6703		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/27/17 10:42	01/30/17 19:13	EPA 7470A	1,7470A	EA
Nickel, Total	0.0359		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Potassium, Total	94.5		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:34	EPA 3005A	1,6020A	DB
Sodium, Total	423		mg/l	0.100	0.029	1	01/27/17 11:42	2 01/30/17 11:34	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	2 01/30/17 11:34	EPA 3005A	1,6020A	DB
Vanadium, Total	0.0114		mg/l	0.0050	0.0016	1	01/27/17 11:42	2 01/30/17 11:34	EPA 3005A	1,6020A	DB
Zinc, Total	0.0122		mg/l	0.0100	0.0034	1	01/27/17 11:42	2 01/30/17 11:34	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	B - Mansfie	ld Lab								
Hardness	1200		mg/l	1.3	NA	1	01/27/17 11:42	2 01/28/17 01:52	EPA 3005A	1,6010C	AB

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

SAMPLE RESULTS

02/06/17

Lab ID:

L1702506-14

Client ID:

MH-15

Sample Location: Matrix:

NY Water Date Collected:

01/26/17 08:50

Date Received:

01/26/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	0.008	J	mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Antimony, Total	ND		mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Arsenic, Total	0.0020		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Barium, Total	0.1074		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Beryllium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Boron, Total	0.487		mg/l	0.0300	0.0016	1	01/27/17 11:42	01/28/17 01:57	EPA 3005A	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Calcium, Total	130		mg/l	0.10	0.035	1	01/27/17 11:42	01/28/17 01:57	EPA 3005A	1,6010C	AB
Chromium, Total	0.0021		mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Cobalt, Total	0.0020		mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Copper, Total	ND		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Iron, Total	15.0		mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Lead, Total	ND		mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Magnesium, Total	30.		mg/l	0.10	0.015	1	01/27/17 11:42	01/28/17 01:57	EPA 3005A	1,6010C	AB
Manganese, Total	1.878		mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	01/27/17 10:42	01/30/17 19:15	EPA 7470A	1,7470A	EA
Nickel, Total	0.0091		mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Potassium, Total	24.0		mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Selenium, Total	ND		mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Silver, Total	ND		mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Sodium, Total	97.7		mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Thallium, Total	ND		mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Vапadium, Total	ND		mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Zinc, Total	ND		mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 11:37	EPA 3005A	1,6020A	DB
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	450		mg/l	0.66	NA	1	01/27/17 11:42	01/28/17 01:57	EPA 3005A	1,6010C	AB

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

02/06/17

Project Number: 2010-15

Report Date:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01-08,10	-12 Bate	ch: WG	972766-1				
Mercury, Total	ND	mg/l	0.00020	0.0000	6 1	01/26/17 11:09	01/31/17 12:53	3 1,7470A	BV
			Prep Infe	ormatic	on .				

Digestion Method:

EPA 7470A

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sa	mple(s):	13-14	Batch: Wo	G97312	2-1				
Mercury, Total	0.00009	J	mg/l	0.00020	0.0000	6 1	01/27/17 10:42	01/30/17 19:00	1,7470A	EA
				Prep Info	ormatic	n				
			Digestic	on Method:	EPA	7470A				

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01-08,10	-14 Bate	ch: WG	973148-1				
Boron, Total	ND	mg/l	0.0300	0.0016	1	01/27/17 11:42	01/27/17 23:59	1,6010C	AB
Calcium, Total	ND	mg/l	0.10	0.035	1	01/27/17 11:42	01/27/17 23:59	1,6010C	AB
Magnesium, Total	ND	mg/l	0.10	0.015	1	01/27/17 11:42	01/27/17 23:59	1,6010C	AB

Prep Information

Digestion Method: **EPA 3005A**

mg/l

Parameter	Result Qualifier	Units	RL	MDL		tion ctor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	ab for san	nple(s):	01-08,10	-14	Batch:	WG973148-1			
Hardness	ND	mg/l	0.66	NA		1	01/27/17 11:42	01/27/17 23:59	9 1,6010C	AB

Magnesium, Total

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method:

EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals -	Mansfield Lab	for sample	e(s): 01-08	Batch	: WG97	73268-1	150			
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	3 1	01/27/17 15:53	01/31/17 13:36	1,7470A	BV

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-08,10	-14 Bate	ch: WG	973562-1				
Aluminum, Total	ND	mg/l	0.010	0.003	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Antimony, Total	ND	mg/l	0.0040	0.0004	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Arsenic, Total	ND	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Barium, Total	ND	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Beryllium, Total	ND	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Cadmium, Total	ND	mg/l	0.0002	0.0001	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Chromium, Total	ND	mg/l	0.0010	0.0002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Cobalt, Total	ND	mg/l	0.0005	0.0002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Copper, Total	ND	mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Iron, Total	ND	mg/l	0.050	0.019	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Lead, Total	ND	mg/l	0.0010	0.0003	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Manganese, Total	ND	mg/l	0.0010	0.0004	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Nickel, Total	ND	mg/l	0.0020	0.0006	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Potassium, Total	ND	mg/l	0.100	0.031	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Selenium, Total	ND	mg/l	0.005	0.002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Silver, Total	ND	mg/l	0.0004	0.0002	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Sodium, Total	ND	mg/l	0.100	0.029	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Thallium, Total	ND	mg/l	0.0005	0.0001	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Vanadium, Total	ND	mg/l	0.0050	0.0016	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB
Zinc, Total	ND	mg/l	0.0100	0.0034	1	01/27/17 11:42	01/30/17 10:35	1,6020A	DB

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method:

EPA 3005A

Dissolved Metals - Mansfield Lab for sample(s): 01-08 Batch: WG973620-1	arameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Antimony, Dissolved ND mg/l 0.0040 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Arsenic, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Berium, Dissolved 0.0013 mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Beryllium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Chromium, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0000 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0000 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.0000 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.0000 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0000 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg	ssolved Metals - Ma	insfield Lab	for sample	e(s): 01-0	8 Batch	: WG97	73620-1				
Arsenic, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Barium, Dissolved 0.0013 mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Beryllium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Chromium, Dissolved 0.0007 J mg/l 0.0010 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved ND mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 <t< td=""><td>ıminum, Dissolved</td><td>0.004</td><td>J</td><td>mg/l</td><td>0.010</td><td>0.003</td><td>1</td><td>01/30/17 11:48</td><td>01/30/17 14:51</td><td>1,6020A</td><td>DB</td></t<>	ıminum, Dissolved	0.004	J	mg/l	0.010	0.003	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Barium, Dissolved 0.0013 mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Beryllium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Chromium, Dissolved 0.0007 J mg/l 0.0010 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14	timony, Dissolved	ND		mg/l	0.0040	0.0004	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Beryllium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Chromium, Dissolved 0.0007 J mg/l 0.0010 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:	senic, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Cadmium, Dissolved ND mg/l 0.0002 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Chromium, Dissolved 0.0007 J mg/l 0.0010 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.002 0.0006 1 01/30/17 11:48 01/30/17 14:5	rium, Dissolved	0.0013		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Chromium, Dissolved O.0007 J mg/l O.0010 O.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Cobalt, Dissolved ND mg/l O.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved O.0005 J mg/l O.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved O.026 J mg/l O.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l O.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l O.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l O.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l O.002 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l O.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Soliver, Dissolved ND mg/l O.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Soliver, Dissolved ND mg/l O.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Soliver, Dissolved ND mg/l O.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Soliver, Dissolved ND mg/l O.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l O.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A	ryllium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Cobalt, Dissolved ND mg/l 0.0005 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Iron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A<	dmium, Dissolved	ND		mg/l	0.0002	0.0001	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Copper, Dissolved 0.0005 J mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A lron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.000 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.100 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Ng/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A	romium, Dissolved	0.0007	J	mg/l	0.0010	0.0002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Iron, Dissolved 0.026 J mg/l 0.050 0.019 1 01/30/17 11:48 01/30/17 14:51 1,6020A Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A	balt, Dissolved	ND		mg/l	0.0005	0.0002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Lead, Dissolved ND mg/l 0.0010 0.0003 1 01/30/17 11:48 01/30/17 14:51 1,6020A Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A	pper, Dissolved	0.0005	J	mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Manganese, Dissolved ND mg/l 0.0010 0.0004 1 01/30/17 11:48 01/30/17 14:51 1,6020A Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A	n, Dissolved	0.026	J	mg/l	0.050	0.019	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Nickel, Dissolved ND mg/l 0.0020 0.0006 1 01/30/17 11:48 01/30/17 14:51 1,6020A Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	ad, Dissolved	ND		mg/l	0.0010	0.0003	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Potassium, Dissolved ND mg/l 0.100 0.031 1 01/30/17 11:48 01/30/17 14:51 1,6020A Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	anganese, Dissolved	ND		mg/l	0.0010	0.0004	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Selenium, Dissolved ND mg/l 0.005 0.002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	ckel, Dissolved	ND		mg/I	0.0020	0.0006	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Silver, Dissolved ND mg/l 0.0004 0.0002 1 01/30/17 11:48 01/30/17 14:51 1,6020A Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	tassium, Dissolved	ND		mg/l	0.100	0.031	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Sodium, Dissolved ND mg/l 0.100 0.029 1 01/30/17 11:48 01/30/17 14:51 1,6020A Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	lenium, Dissolved	ND		mg/l	0.005	0.002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Thallium, Dissolved ND mg/l 0.0005 0.0001 1 01/30/17 11:48 01/30/17 14:51 1,6020A Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	ver, Dissolved	ND		mg/l	0.0004	0.0002	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Vanadium, Dissolved ND mg/l 0.0050 0.0016 1 01/30/17 11:48 01/30/17 14:51 1,6020A	dium, Dissolved	ND		mg/l	0.100	0.029	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
•	allium, Dissolved	ND		mg/l	0.0005	0.0001	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
Zinc Dissolved ND mg/l 0.0100 0.0034 1 01/30/17 11:48 01/30/17 14:51 1.6020A	ınadium, Dissolved	ND		mg/l	0.0050	0.0016	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB
and, stated the state of the st	nc, Dissolved	ND		mg/l	0.0100	0.0034	1	01/30/17 11:48	01/30/17 14:51	1,6020A	DB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - M	lansfield Lab	for sample	e(s): 01-0	8 Batch	: WG9	73623-1				
Boron, Dissolved	ND		mg/l	0.0300	0.0016	5 1	01/30/17 11:48	01/31/17 01:03	3 1,6010C	AB
Calcium, Dissolved	ND		mg/l	0.10	0.035	1	01/30/17 11:48	01/31/17 01:03	3 1,6010C	AB

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Magnesium, Dissolved

ND

mg/l

1,6010C

AB

Prep Information

Digestion Method:

EPA 3005A

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

2010-15

Report Date:

02/06/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associat	ed sample(s): 01-08,10-12	Batch:	WG972766-2					
Mercury, Total	104		-		80-120	-		
Total Metals - Mansfield Lab Associat	ed sample(s): 13-14 Bato	h: WG97	3122-2					
Mercury, Total	108		-		80-120	-		
Total Metals - Mansfield Lab Associat	ed sample(s): 01-08,10-14	Batch:	WG973148-2					
Boron, Total	111				80-120	-		
Calcium, Total	100				80-120	-		
Magnesium, Total	100				80-120	-		
Total Hardness by SM 2340B - Mansfi	eld Lab Associated sample	e(s): 01-0	8,10-14 Batch: V	/G973148-2	2			
Hardness	103		-		80-120	-		
Dissolved Metals - Mansfield Lab Ass	ociated sample(s): 01-08	Batch: W	/G973268-2		- 1			
Mercury, Dissolved	100		-		80-120	-		

Project Name:

Project Number:

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated	d sample(s): 01-08,10-14	Batch: WG973562-2			
Aluminum, Total	98		80-120	-	
Antimony, Total	93		80-120	-	
Arsenic, Total	102		80-120	-	
Barium, Total	99		80-120	-	
Beryllium, Total	101	-	80-120	-	
Cadmium, Total	103	•	80-120	-	
Chromium, Total	96		80-120	-	
Cobalt, Total	97		80-120	•	
Copper, Total	99	•	80-120	-	
Iron, Total	102		80-120	-	
Lead, Total	106		80-120	-	
Manganese, Total	98	•	80-120	-	
Nickel, Total	101		80-120	-	
Potassium, Total	100		80-120		
Selenium, Total	99		80-120	-	
Silver, Total	99		80-120	-	
Sodium, Total	108	•	80-120	-	
Thallium, Total	98	_ ·	80-120	-	
Vanadium, Total	98	•	80-120	-	
Zinc, Total	95		80-120	-	

ORANGE COUNTY- BASELINE 88 REG **Project Name:**

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab A	ssociated sample(s): 01-08	Batch: WG973620-2			
Aluminum, Dissolved	97		80-120	-	
Antimony, Dissolved	93		80-120	-	
Arsenic, Dissolved	101		80-120	-	
Barium, Dissolved	98	-	80-120	-	
Beryllium, Dissolved	104		80-120	~	
Cadmium, Dissolved	103		80-120	-	
Chromium, Dissolved	96	-	80-120	-	
Cobalt, Dissolved	98		80-120	-	
Copper, Dissolved	102		80-120	-	
Iron, Dissolved	97	-	80-120	-	
Lead, Dissolved	100		80-120	-	
Manganese, Dissolved	98	-	80-120	-	
Nickel, Dissolved	100		80-120	-	
Potassium, Dissolved	100	·	80-120	-	
Selenium, Dissolved	111		80-120		
Silver, Dissolved	100	-	80-120		
Sodium, Dissolved	104	-	80-120	-	
Thallium, Dissolved	93	-	80-120	-	
Vanadium, Dissolved	101		80-120		
Zinc, Dissolved	97		80-120	-	

Project Name:

Project Number:

ORANGE COUNTY- BASELINE 88 REG

2010-15

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab	Associated sample(s): 01-08	Batch: WG973623-2			
Boron, Dissolved	106		80-120	-	
Calcium, Dissolved	110	-	80-120	-	
Magnesium, Dissolved	100	-	80-120		

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield L	ab Associated sam	ple(s): 01-08	10-12	QC Batch ID: V	VG9727	66-3 WG97	2766-4 QC S	Sample	: L1702506-	11 C	lient ID:	SW-8
Mercury, Total	ND	0.005	0.00514	103		0.00493	99		75-125	4		20
Гotal Metals - Mansfield L	ab Associated sam	ple(s): 13-14	QC Ba	tch ID: WG973	122-3	QC Sample	e: L1702735-0	1 Cli	ent ID: MS	Sample	ê	
Mercury, Total	0.00012J	0.005	0.00530	106		-	-		75-125	-		20
Total Metals - Mansfield L	ab Associated sam	ple(s): 01-08	,10-14	QC Batch ID: V	VG9731	48-3 WG97	3148-4 QC	Sample	: L1702506-	11 C	lient ID:	SW-8
Boron, Total	0.0225J	1	1.15	115		1.11	111		75-125	4		20
Calcium, Total	52.	10	61	90		59	70	Q	75-125	3		20
Magnesium, Total	12.	10	22	100		21	90		75-125	5		20
Total Hardness by SM 23 Client ID: SW-8	40B - Mansfield Lal	o Associated	sample(s	s): 01-08,10-14	QC B	atch ID: WG	973148-3 W	G9 7 314	8-4 QC Sa	mple:	L17025	06-11
Hardness	• 180	66.2	240	91		230	76		75-125	4		20
Dissolved Metals - Mansfi	ield Lab Associated	sample(s): 0	1-08 Q	C Batch ID: Wo	G97326	3-3 QC S	ample: L1702	506-01	Client ID:	MW-2	338	
Mercury, Dissolved	ND	0.005	0.00500	100		-	-		75-125	-		20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield I	Lab Associated sar	mple(s): 01-0	08,10-14	QC Batch ID: WG	973562-3 WG9	73562-4 QC Sa	mple: L1702506-1	11 Client ID	: SW-8
Aluminum, Total	1.04	2	2.94	95	2.82	89	75-125	4	20
Antimony, Total	ND	0.5	0.5084	102	0.4828	96	75-125	5	20
Arsenic, Total	0.0015	0.12	0.1298	107	0.1228	101	75-125	6	20
Barium, Total	0.0266	2	2.076	102	2.013	99	75-125	3	20
Beryllium, Total	• 0.0001J	0.05	0.0515	103	0.0523	105	75-125	2	20
Cadmium, Total	0.0001J	0.051	0.0529	.104	0.0520	102	75-125	2	20
Chromium, Total	0.0017	0.2	0.2009	100	0.2011	100	75-125	0	20
Cobalt, Total	0.0016	0.5	0.5137	102	0.4940	98	75-125	4	20
Copper, Total	0.0046	0.25	0.2640	104	0.2525	99	75-125	4	20
Iron, Total	1.67	1	2.57	90	2.46	79	75-125	4	20
Lead, Total	0.0015	0.51	0.5542	108	0.5434	tos	75-125	2	20
Manganese, Total	0.1798	0.5	0.6863	101	0.6771	99	75-125	1	20
Nickel, Total	0.0034	0.5	0.5099	101	0.5048	100	75-125	1	20
Potassium, Total	2.70	10	13.0	103	12.4	97	75-125	5	20
Selenium, Total	ND	0.12	0.123	102	0.115	96	75-125	7	20
Silver, Total	ND	0.05	0.0511	102	0.0502	100	75-125	2	20
Sodium, Total	45.6	10	58.5	129	Q 56.7	111	75-125	3	20
Thallium, Total	ND	0.12	0.1220	102	0.1172	98	75-125	4	20
Vanadium, Total	0.0018J	0.5	0.5203	104	0.5156	103	75-125	1	20
Zinc, Total	0.0321	0.5	0.5215	98	0.5113	96	75-125	2	20

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
d Lab Associated	d sample(s):	:01-08 Q	C Batch ID: WG973620	-3 QC	Sample: L1702506-01	Client ID:	MW-233S	
0.006J	2	2.04	102	-		75-125	-	20
0.0004J	0.5	0.4927	98	-		75-125	•	20
0.00047J	0.12	0.1238	103	-	-	75-125	-	20
0.0472	2	2.045	100	-	•	75-125	-	20
ND	0.05	0.0526	105	-	-	75-125	-	20
ND	0.051	0.0516	101	-	•	75-125	-	20
0.0003J	0.2	0.1987	99	-	-	75-125	-	20
ND	0.5	0.4969	99	-	-	75-125	-	20
0.0005J	0.25	0.2561	102	-	-	75-125	_	20
ND	1	1.05	105	-	-	75-125	-	20
ND	0.51	0.5380	105	-	-	75-125	-	20
0.0009J	0.5	0.5075	102	-	-	75-125	-	20
ND	0.5	0.4936	99	-	-	75-125	-	20
2.69	10	13.2	105	-	-	75-125	-	20
ND	0.12	0.128	107	-	-	75 -125	-	20
ND	0.05	0.0508	102	-	-	75-125	-	20
1.97	10	13.1	111	-	-	75-125	-	20
ND	0.12	0.1180	98	-	-	75-125	-	20
ND	0.5	0.5120	102	-		75-125	-	20
ND	0.5	0.5029	100	-	-	75-125	-	20
	Sample 1 Lab Associated 0.006J 0.0004J 0.00047J 0.0472 ND ND 0.0003J ND 0.0005J ND ND 0.0009J ND 2.69 ND ND 1.97 ND ND	Sample Added d Lab Associated sample(s): 0.006J 2 0.0004J 0.5 0.00047J 0.12 0.0472 2 ND 0.051 ND 0.051 0.0003J 0.2 ND 0.5 0.0005J 0.25 ND 1 ND 0.51 0.0009J 0.5 0.5 ND 0.5 2.69 10 ND 0.12 ND 0.05 1.97 10 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.5	Sample Added Found d Lab Associated sample(s): 01-08 Q 0.006J 2 2.04 0.0004J 0.5 0.4927 0.00047J 0.12 0.1238 0.0472 2 2.045 ND 0.05 0.0526 ND 0.051 0.0516 0.0003J 0.2 0.1987 ND 0.5 0.4969 0.0005J 0.25 0.2561 ND 1 1.05 ND 0.51 0.5380 0.0009J 0.5 0.5075 ND 0.5 0.4936 2.69 10 13.2 ND 0.12 0.128 ND 0.05 0.0508 1.97 10 13.1 ND 0.12 0.1180 ND 0.5 0.5120	Sample Added Found %Recovery I Lab Associated sample(s): 01-08 QC Batch ID: WG973620 0.006J 2 2.04 102 0.0004J 0.5 0.4927 98 0.00047J 0.12 0.1238 103 0.0472 2 2.045 100 ND 0.05 0.0526 105 ND 0.051 0.0516 101 0.0003J 0.2 0.1987 99 0.0005J 0.25 0.2561 102 ND 1 1.05 105 ND 0.51 0.5380 105 0.0009J 0.5 0.5075 102 ND 0.5 0.4936 99 2.69 10 13.2 105 ND 0.12 0.128 107 ND 0.05 0.0508 102 1.97 10 13.1 111 ND 0.12 0.1180 98	Sample Added Found %Recovery Found ILab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC 0.006J 2 2.04 102 - 0.0004J 0.5 0.4927 98 - 0.00047J 0.12 0.1238 103 - 0.0472 2 2.045 100 - ND 0.05 0.0526 105 - ND 0.051 0.0516 101 - 0.0003J 0.2 0.1987 99 - ND 0.5 0.4969 99 - 0.0005J 0.25 0.2561 102 - ND 1 1.05 105 - ND 0.51 0.5380 105 - ND 0.5 0.4936 99 - 2.69 10 13.2 105 - ND 0.12 0.128 107 - <td< td=""><td>Sample Added Found %Recovery Found %Recovery It Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 0.006J 2 2.04 102 - - 0.0004J 0.5 0.4927 98 - - - 0.00047J 0.12 0.1238 103 - - - ND 0.0472 2 2.045 100 - - - ND 0.051 0.0516 105 - - - ND 0.051 0.0516 101 - - - ND 0.5 0.4969 99 - - - ND 0.5 0.2561 102 - - - ND 0.51 0.5380 105 - - - ND 0.51 0.5380 105 - - - ND 0.5 0.4936 99</td><td>Sample Added Found %Recovery Found %Recovery Limits B Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 Client ID: Client</td><td> Sample Added Found WRecovery Found WRecovery Limits RPD I Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 Client ID: MW-233S 0.006J 2 2.04 102 - </td></td<>	Sample Added Found %Recovery Found %Recovery It Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 0.006J 2 2.04 102 - - 0.0004J 0.5 0.4927 98 - - - 0.00047J 0.12 0.1238 103 - - - ND 0.0472 2 2.045 100 - - - ND 0.051 0.0516 105 - - - ND 0.051 0.0516 101 - - - ND 0.5 0.4969 99 - - - ND 0.5 0.2561 102 - - - ND 0.51 0.5380 105 - - - ND 0.51 0.5380 105 - - - ND 0.5 0.4936 99	Sample Added Found %Recovery Found %Recovery Limits B Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 Client ID: Client	Sample Added Found WRecovery Found WRecovery Limits RPD I Lab Associated sample(s): 01-08 QC Batch ID: WG973620-3 QC Sample: L1702506-01 Client ID: MW-233S 0.006J 2 2.04 102 -

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals -	Mansfield Lab Associat	ed sample(s)	: 01-08	QC Batch ID: WG973623	-3 QC	Sample: L1702506-01	Client ID:	MW-233S	
Boron, Dissolved	0.0179J	1	1.10	110	-	-	75-125	-	20
Calcium, Dissolved	130	10	140	100			75-125		20
Magnesium, Dissolv	ed 46.	10	57	110	-	-	75-125	-	20

L1702506

Lab Duplicate Analysis
Batch Quality Control

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

02/06/17 **Report Date:**

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 13-	14 QC Batch ID: V	WG973122-4 QC Sample:	L1702735-01	Client ID:	DUP Sample	
Mercury, Total	0.00012J	0.00012J	mg/l	NC		20
Dissolved Metals - Mansfield Lab Associated sample(s):	01-08 QC Batch	ID: WG973268-4 QC San	nple: L170250	6-01 Clier	nt ID: MW-233	BS
Mercury, Dissolved	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	ample(s): 01-08 QC Batch ID	: WG973620-4 QC San	nple: L170250	06-01 Client ID:	MW-233S
Aluminum, Dissolved	0.006J	0.005J	mg/l	NC	20
Antimony, Dissolved	0.0004J	0.0011J	mg/l	NC	20
Arsenic, Dissolved	0.00047J	0.00048J	mg/l	NC	20
Barium, Dissolved	0.0472	0.0460	mg/l	3	20
Beryllium, Dissolved	ND	ND	mg/i	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	0.0003J	0.0002J	mg/l	NC	20
Cobalt, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	0.0005J	0.0005J	mg/l	NC	20
Iron, Dissolved	ND	ND	mg/l	NC	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Manganese, Dissolved	te000.0	Ue000.0	mg/l	NC	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Potassium, Dissolved	2.69	2.79	mg/l	4	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Sodium, Dissolved	1.97	1.98	mg/l	1	20
Thallium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	ND	mg/l	NC	20

Lab Duplicate Analysis
Batch Quality Control

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter		Nativ	e Sample	Duplicate S	Sample	Units	RPD	RPD	Limits
Dissolved Metals - Mansfield Lab	Associated sample(s):	01-08	QC Batch ID:	WG973620-4	QC Sample:	L1702506-0	1 Client ID:	MW-233S	
Zinc, Dissolved			ND	ND		mg/l	NC		20
Dissolved Metals - Mansfield Lab	Associated sample(s):	01-08	QC Batch ID:	WG973623-4	QC Sample:	L1702506-0	1 Client ID:	MW-233S	
Boron, Dissolved		0	.0179J	0.0180	J	mg/l	NC		20
Calcium, Dissolved			130	130		mg/l	0		20
Magnesium, Dissolved			46.	46		mg/l	0		20

INORGANICS & MISCELLANEOUS

Project Name: ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date: 02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-01

Client ID:

MW-233S

Sample Location:

NY

Matrix:

Water

Date Collected:

01/25/17 08:50

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Color, Apparent	13		A.P.C.U.	5.0	5.0	1	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	333.	m	g CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	540		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:08	1,9010C/9012B	JO
Nitrogen, Ammonia	0.026	J	mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:45	44,350.1	AT
Nitrogen, Nitrate	0.22		mg/l	0.10	0.019	1		01/26/17 18:41	44,353.2	MR
Nitrogen, Total Kjeldahl	7.34		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:00	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	10.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:33	44,410.4	TL
BOD, 5 day	9.0		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	3.02		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	0.028	J	mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:11	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:13	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	Lab							
Bromide	ND		mg/l	0.050	0.010	1	-	01/26/17 17:56	44,300.0	AU
Chloride	1.79		mg/l	0.500	0.054	1.	-	01/26/17 17:56	44,300.0	AU
Sulfate	163.		mg/l	25.0	3.75	25	-	01/26/17 22:32	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

Matrix:

L1702506-02

Client ID:

MW-233D

Sample Location: NY

Water

Date Collected:

01/25/17 09:30

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Color, Apparent	9.0		A.P.C.U.	5.0	5.0	1	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	186.	m	g CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	550		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:09	1,9010C/9012B	JO
Nitrogen, Ammonia	ND		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:46	44,350.1	AT
Nitrogen, Nitrate	0.058	J	mg/l	0.10	0.019	1	-	01/26/17 18:42	44,353.2	MR
Nitrogen, Total Kjeldahl	0.252	J	mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:00	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	10.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:34	44,410.4	TL
BOD, 5 day	8.8		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	0.610		mg/l	0.500	0.114	1		01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:17	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:14	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	Lab							
Bromide	0.890		mg/l	0.050	0.010	1	-	01/26/17 18:08	44,300.0	AU
Chloride	116.		mg/l	12.5	1.35	25	-	01/26/17 22:44	44,300.0	AU
Sulfate	124.		mg/l	25.0	3.75	25	-	01/26/17 22:44	44,300.0	AU

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-03

MW-3B

Client ID: Sample Location:

NY

Matrix:

Water

Date Collected:

01/25/17 12:00

Date Received:

01/25/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab								9	
Color, Apparent	32		A.P.C.U.	5.0	5.0	1	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	527.	m	g CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	630		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:10	1,9010C/9012B	JO
Nitrogen, Ammonia	2.29		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:47	44,350.1	AT
Nitrogen, Nitrate	0.022	J	mg/l	0.10	0.019	1	-	01/26/17 18:43	44,353.2	MR
Nitrogen, Total Kjeldahl	2.63		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:01	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	10.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:34	44,410.4	TL
BOD, 5 day	14.		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	3.43		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	0.007	J	mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:18	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:15	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	Lab							
Bromide	0.287		mg/l	0.050	0.010	1	-	01/26/17 18:20	44,300.0	AU
Chloride	54.1		mg/l	5.00	0.541	10	-	01/26/17 22:56	44,300.0	AU
Sulfate	35.5		mg/l	1.00	0.150	1	-	01/26/17 18:20	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-04

Client ID:

MW-220

Sample Location: NY

Matrix:

Water

Date Collected:

01/25/17 13:15

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Color, Apparent	30		A.P.C.U.	5.0	5.0	1	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	459.	m	g CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	700		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:10	1,9010C/9012B	JO
Nitrogen, Ammonia	0.055	J	mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:50	44,350.1	AT
Nitrogen, Nitrate	0.095	J	mg/l	0.10	0.019	1	-	01/26/17 18:45	44,353.2	MR
Nitrogen, Total Kjeldahl	0.622		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:02	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	20.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:34	44,410.4	TL
BOD, 5 day	9.6		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	2.13		mg/l	1.00	0.228	2		01/26/17 07:06	121,5310C	DW
Phenolics, Total	0.008	J	mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:20	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:16	1,7196A	KA
Anions by Ion Chromatog	graphy - West	tborough	Lab					3 - 0		
Bromide	ND		mg/l	0.050	0.010	1		01/26/17 18:32	44,300.0	AU
Chloride	21.2		mg/l	0.500	0.054	1	-	01/26/17 18:32	44,300.0	AU
Sulfate	164.		mg/l	25.0	3.75	25		01/26/17 23:08	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-05

Client ID:

MW-245S

Sample Location: NY

Matrix:

Water

Date Collected:

01/25/17 14:10

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Color, Apparent	52		A.P.C.U.	10	10.	2	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	328.	r	ng CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	630		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:11	1,9010C/9012B	JO
Nitrogen, Ammonia	0.097		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:51	44,350.1	AT
Nitrogen, Nitrate	0.044	J	mg/l	0.10	0.019	1	-	01/26/17 18:46	44,353.2	MR
Nitrogen, Total Kjeldahl	0.379		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:03	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	49.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:34	44,410.4	TL
BOD, 5 day	24.		mg/I	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	2.23		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:21	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:16	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	n Lab				The state of the s			
Bromide	ND		mg/l	0.050	0.010	1	-	01/26/17 18:44	44,300.0	AU
Chloride	68.1		mg/l	12.5	1.35	25	-	01/26/17 23:20	44,300.0	AU
Sulfate	142.		mg/l	25.0	3.75	25	-	01/26/17 23:20	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG

Report Dat

Project Number: 2010-15

Report Date: 02/06/17

SAMPLE RESULTS

Lab ID: L1702

Client ID:

Matrix:

L1702506-06 MW-245D

Sample Location: NY

n: NY Water Date Collected:

Lab Number:

01/25/17 14:45

Date Received:

01/25/17

L1702506

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat	b								
Color, Apparent	16		A.P.C.U.	5.0	5.0	1	-	01/26/17 04:50	121,2120B	KA
Alkalinity, Total	286.	m	g CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	460		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:12	1,9010C/9012B	JO
Nitrogen, Ammonia	4.24		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:52	44,350.1	AT
Nitrogen, Nitrate	0.033	J	mg/l	0.10	0.019	1	-	01/26/17 18:47	44,353.2	MR
Nitrogen, Total Kjeldahl	4.82		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:04	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	8.2	J	mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:34	44,410.4	TL
BOD, 5 day	15.		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	1.28		mg/l	1.00	0.228	2		01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:22	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:45	01/26/17 03:17	1,7196A	KA
Anions by Ion Chromatog	graphy - West	tborough	Lab							
Bromide	0.017	J	mg/l	0.050	0.010	1	-	01/26/17 18:56	44,300.0	AU
Chloride	34.7		mg/l	0.500	0.054	1	-	01/26/17 18:56	44,300.0	AU
Sulfate	123.		mg/l	25.0	3.75	25	-	01/26/17 23:32	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-07

Client ID:

PZ-4

Water

Sample Location: NY Matrix:

Date Collected:

01/25/17 10:55

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Color, Apparent	6.0		A.P.C.U.	5.0	5.0	1	-	01/26/17 05:02	121,2120B	KA
Alkalinity, Total	504.	r	ng CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	720		mg/I	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:14	1,9010C/9012B	JO
Nitrogen, Ammonia	ND		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:53	44,350.1	AT
Nitrogen, Nitrate	ND		mg/l	0.10	0.019	1	-	01/26/17 18:49	44,353.2	MR
Nitrogen, Total Kjeldahl	0.176	J	mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:05	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	3.4	J	mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:35	44,410.4	TL
BOD, 5 day	11.		mg/l	5.0	NA	2.5	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	1.24		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	0.011	J	mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:23	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:15	01/26/17 02:57	1,7196A	KA
Anions by Ion Chromatog	graphy - West	tborough	n Lab							
Bromide	0.122		mg/l	0.050	0.010	1	-	01/26/17 19:44	44,300.0	AU
Chloride	39.4		mg/l	0.500	0.054	1	-	01/26/17 19:44	44,300.0	AU
Sulfate	117.		mg/l	25.0	3.75	25	-	01/27/17 00:08	44,300.0	AU

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-08

Client ID:

DUP

Sample Location:

NY

Matrix:

Water

Date Collected:

01/25/17 00:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Color, Apparent	17		A.P.C.U.	5.0	5.0	1	-	01/26/17 05:02	121,2120B	KA
Alkalinity, Total	524.		mg CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	620		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND		mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:15	1,9010C/9012B	JO
Nitrogen, Ammonia	2.79		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:54	44,350.1	AT
Nitrogen, Nitrate	0.022	J	mg/l	0.10	0.019	1	-	01/26/17 18:50	44,353.2	MR
Nitrogen, Total Kjeldahl	3.09		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:08	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	13.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:35	44,410.4	TL
BOD, 5 day	13.		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	3.52		mg/l	0.500	0.114	1	_	01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:24	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:15	01/26/17 02:58	1,7196A	KA
Anions by Ion Chromatog	graphy - West	boroug	h Lab							
Bromide	0.285		mg/l	0.050	0.010	1	-	01/26/17 19:56	44,300.0	AU
Chloride	54.8		mg/l	5.00	0.541	10	-	01/27/17 00:20	44,300.0	AU
Sulfate	35.6		mg/l	1.00	0.150	1	-	01/26/17 19:56	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-10

Date Collected:

01/25/17 11:10

Client ID:

SW-5

Date Received:

01/25/17

Sample Location:

NY

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat							11112000	191
Color, Apparent	54	A.P.C.U.	10	10.	2	-	01/26/17 05:02	121,2120B	KA
Alkalinity, Total	70.9	mg CaCO3/L	2.00	NA	1		01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	320	mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	ND	mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:16	1,9010C/9012B	JO
Nitrogen, Ammonia	0.193	mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:55	44,350.1	AT
Nitrogen, Nitrate	3.9	mg/l	0.10	0.019	1	-	01/26/17 18:51	44,353.2	MR
Nitrogen, Total Kjeldahl	1.27	mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:09	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	39.	mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:35	44,410.4	TL
BOD, 5 day	8.8	mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	8.70	mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND	mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:25	4,420.1	AW
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	01/26/17 02:15	01/26/17 02:58	1,7196A	KA
Anions by Ion Chromatog	raphy - West	tborough Lab	-	- 1					
Bromide	ND	mg/I	0.050	0.010	1	-	01/26/17 20:08	44,300.0	AU
Chloride	90.1	mg/l	5.00	0.541	10	-	01/27/17 00:32	44,300.0	AU
Sulfate	69.1	mg/l	1.00	0.150	1	-	01/26/17 20:08	44,300.0	AU

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-11

Client ID:

SW-8

Sample Location: NY

Matrix:

Water

Date Collected:

01/25/17 12:15

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab									
Color, Apparent	44		A.P.C.U.	10	10.	2	-	01/26/17 05:02	121,2120B	KA
Alkalinity, Total	71.3	m	ng CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	340		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	0.004	J	mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:17	1,9010C/9012B	JO
Nitrogen, Ammonia	0.176		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:55	44,350.1	AT
Nitrogen, Nitrate	3.9		mg/l	0.10	0.019	1	-	01/26/17 18:52	44,353.2	MR
Nitrogen, Total Kjeldahl	1.15		mg/l	0.300	0.066	1	01/30/17 13:07	01/30/17 23:10	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	37.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:35	44,410.4	TL
BOD, 5 day	8.9		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	8.94		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:26	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:15	01/26/17 02:59	1,7196A	KA
Anions by Ion Chromatog	graphy - West	borough	Lab							
Bromide	ND		mg/l	0.050	0.010	1	-	01/26/17 17:44	44,300.0	ΑŲ
Chloride	86.0		mg/l	12.5	1.35	25	-	01/26/17 22:20	44,300.0	AU
Sulfate	68.3		mg/l	1.00	0.150	1	-	01/26/17 17:44	44,300.0	AU

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-12

Client ID:

SW-13

Sample Location: NY

Matrix:

Water

Date Collected:

01/25/17 10:00

Date Received:

01/25/17

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat									
Color, Apparent	52		A.P.C.U.	10	10.	2	-	01/26/17 05:02	121,2120B	KA
Alkalinity, Total	70.9	n	ng CaCO3/L	2.00	NA	1	-	01/26/17 10:32	121,2320B	BR
Solids, Total Dissolved	340		mg/l	10	3.1	1	-	01/26/17 09:40	121,2540C	DW
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	01/26/17 11:00	01/27/17 14:19	1,9010C/9012B	JO
Nitrogen, Ammonia	0.209		mg/l	0.075	0.022	1	01/26/17 12:20	01/26/17 21:58	44,350.1	AT
Nitrogen, Nitrate	3.9		mg/i	0.10	0.019	1	-	01/26/17 19:54	44,353.2	MR
Nitrogen, Total Kjeldahl	1.49		mg/I	0.300	0.066	1	01/30/17 13:07	01/30/17 23:12	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	42.		mg/l	10	2.7	1	01/26/17 18:00	01/26/17 20:35	44,410.4	TL
BOD, 5 day	8.7		mg/l	2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	8.63		mg/l	1.00	0.228	2	-	01/26/17 07:06	121,5310C	DW
Phenolics, Total	ND		mg/l	0.030	0.004	1	01/26/17 10:14	01/26/17 14:31	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/26/17 02:15	01/26/17 03:02	1,7196A	KA
Anions by Ion Chromatog	raphy - West	tborough	Lab							
Bromide	ND		mg/l	0.050	0.010	1	-	01/26/17 20:20	44,300.0	AU
Chloride	91.6		mg/l	5.00	0.541	10	-	01/27/17 00:44	44,300.0	AU
Sulfate	70.7		mg/l	1.00	0.150	1	-	01/26/17 20:20	44,300.0	AU

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-13

Client ID:

MH-7

Sample Location:

NY

Matrix:

Water

Date Collected:

01/26/17 08:10

Date Received:

01/26/17

Field Prep:

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Color, Apparent	370		A.P.C.U.	50	50.	10	-	01/27/17 02:45	121,2120B	KA
Alkalinity, Total	2540		ng CaCO3/L	10.0	NA	5		01/27/17 11:23	121,2320B	BR
Solids, Total Dissolved	3400		mg/l	20	6.1	2	-	01/27/17 09:20	121,2540C	DW
Cyanide, Total	0.004	J	mg/l	0.010	0.003	2	01/27/17 09:37	01/27/17 14:43	1,9010C/9012B	JO
Nitrogen, Ammonia	416.		mg/l	3.75	1.12	50	01/27/17 13:56	01/30/17 22:01	44,350.1	AT
Nitrogen, Nitrate	0.11		mg/l	0.10	0.019	1	-	01/27/17 19:47	44,353.2	CW
Nitrogen, Total Kjeldahl	479.		mg/l	37.5	8.25	125	01/31/17 11:09	01/31/17 22:32	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	770		mg/l	100	27.	10	02/01/17 17:30	02/01/17 19:57	44,410.4	TL
BOD, 5 day	490		mg/l	20	NA	10	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	172.		mg/l	20.0	4.56	40	-	01/27/17 07:02	121,5310C	DW
Phenolics, Total	0.019	J	mg/l	0.030	0.004	1	01/27/17 08:33	01/27/17 13:03	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/27/17 06:00	01/27/17 06:41	1,7196A	KA
Anions by Ion Chromatog	raphy - West	borougl	n Lab							
Bromide	11.5		mg/l	0.500	0.103	10		01/29/17 16:17	44,300.0	JC
Chloride	1340		mg/l	50.0	5.41	100	-	01/29/17 16:41	44,300.0	JC
Sulfate	50.7		mg/l	1.00	0.150	1	-	01/29/17 15:17	44,300.0	JC

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

SAMPLE RESULTS

Lab ID:

L1702506-14

Client ID:

Sample Location: Matrix:

NY Water

MH-15

01/26/17 08:50

Date Collected: Date Received:

01/26/17

Fie	d	Pre	'n
1 10	u	LIC	٦P

Parameter	Result	Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat									77
Color, Apparent	180		A.P.C.U.	40	40.	8	-	01/27/17 02:45	121,2120B	KA
Alkalinity, Total	691.		mg CaCO3/L	4.00	NA	2	-	01/27/17 11:23	121,2320B	BR
Solids, Total Dissolved	790		mg/l	20	6.1	2	-	01/27/17 09:20	121,2540C	DW
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	01/27/17 09:37	01/27/17 13:38	1,9010C/9012B	JO
Nitrogen, Ammonia	38.9		mg/l	0.750	0.225	10	01/27/17 13:56	01/30/17 22:02	44,350.1	AT
Nitrogen, Nitrate	0.095	J	mg/l	0.10	0.019	1	-	01/27/17 19:55	44,353.2	CW
Nitrogen, Total Kjeldahl	37.1		mg/l	3.00	0.660	10	01/30/17 13:07	01/30/17 23:14	4,351.3/.1 (M)	AT
Chemical Oxygen Demand	84.		mg/l	10	2.7	1	02/01/17 17:30	02/01/17 19:57	44,410.4	TL
BOD, 5 day	120		mg/l	5.0	NA	2.5	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
Total Organic Carbon	28.3		mg/l	10.0	2.28	20	-	01/27/17 07:02	121,5310C	DW
Phenolics, Total	0.006	J	mg/l	0.030	0.004	1	01/27/17 08:33	01/27/17 13:04	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	01/27/17 06:00	01/27/17 06:42	1,7196A	KA
Anions by Ion Chromatog	raphy - West	tboroug	h Lab							
Bromide	0.895		mg/l	0.050	0.010	1	-	01/29/17 15:29	44,300.0	JC
Chloride	130.		mg/l	5.00	0.541	10	-	01/29/17 16:29	44,300.0	JC
Sulfate	7.13		mg/l	1.00	0.150	1	-	01/29/17 15:29	44,300.0	JC

Project Name:

ORANGE COUNTY- BASELINE 88 REC

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	F	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab	for sam	ple(s):	07-08	,10-12	2 Batch	: WG972	2621-1			
Chromium, Hexavalent	ND		mg/l	(0.010	0.003	1	01/26/17 02:15	01/26/17 02:55	1,7196A	KA
General Chemistry - We	stborough Lab	for sam	ple(s):	01-06	Bato	h: WG	72622-1				
Chromium, Hexavalent	ND		mg/l	(0.010	0.003	1	01/26/17 02:45	01/26/17 03:12	1,7196A	KA
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	,10-11	Batch	: WG972	2657-1			
Solids, Total Dissolved	ND		mg/l		10	3.1	1	-	01/26/17 09:40	121,2540C	DW
General Chemistry - We	stborough Lab	for sam	ple(s):	12 B	Batch:	WG972	658-1				
Solids, Total Dissolved	ND		mg/l		10	3.1	1		01/26/17 09:40	121,2540C	DW
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	3,10-11	Batch	: WG972	2728-1			
Cyanide, Total	ND		mg/l	(0.005	0.001	1	01/26/17 11:00	01/27/17 13:56	1,9010C/9012E	в јо
General Chemistry - We	stborough Lab	for sam	ple(s):	12 B	Batch:	WG972	729-1				
Cyanide, Total	ND		mg/l	(0.005	0.001	1	01/26/17 11:00	01/27/17 13:56	1,9010C/9012E	в јо
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	3,10-12	2 Batch	: WG972	2744-1			
Alkalinity, Total	ND		mg CaC		2.00	NA	1		01/26/17 10:32	121,2320B	BR
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	Bato	h: WG	72755-1				
Phenolics, Total	ND		mg/l	(0.030	0.004	1	01/26/17 10:14	01/26/17 14:06	4,420.1	AW
General Chemistry - We	stborough Lab	for sam	ple(s):	10-12	Bato	h: WG	972756-1				
Phenolics, Total	ND		mg/l	(0.030	0.004	1	01/26/17 10:14	01/26/17 14:06	4,420.1	AW
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	3,10-12	2 Batch	: WG972	2830-1			
Nitrogen, Ammonia	ND		mg/l	(0.075	0.022	1	01/26/17 12:20	01/26/17 21:29	44,350.1	AT
General Chemistry - We	stborough Lab	for sam	ple(s):	01-08	3,10-12	2 Batch	: WG972	2833-1			
Total Organic Carbon	ND		mg/l	(0.500	0.114	1	-	01/26/17 07:06	121,5310C	DW
General Chemistry - We	estborough Lab	for sam	ple(s):	01-08	3,10-12	2 Batch	: WG972	2900-1			
Chemical Oxygen Demand	3.4	J	mg/l		10	2.7	1	01/26/17 18:00	01/26/17 20:30	44,410.4	TL
General Chemistry - We	estborough Lab	for sam	ple(s):	01-08	3,10-11	Batch	: WG972	2905-1			
Nitrogen, Nitrate	ND		mg/l		0.10	0.019	1	-	01/26/17 18:32	44,353.2	MR
General Chemistry - We	stborough Lab	for sam	ple(s):	12 E	Batch:	WG972	908-1				
Nitrogen, Nitrate	ND		mg/l		0.10	0.019	1		01/26/17 19:42	44,353.2	MR

Project Name: ORANGE COUNTY- BASELINE 88 REC Lab Number:

L1702506

Project Number: 2010-15

Report Date: 02/06/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units		RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wo	estborough Lab	for sam	ple(s):	13-1	4 Ba	tch: WC	973039-1				
Total Organic Carbon	ND		mg/l		0.500	0.114	1	-	01/27/17 07:02	121,5310C	DW
General Chemistry - W	estborough Lab	for sam	ple(s):	01-0	8,10-1	4 Bato	h: WG973	040-1			
BOD, 5 day	ND		mg/l		2.0	NA	1	01/27/17 04:20	01/31/17 22:20	121,5210B	TE
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: WC	973043-1				
Solids, Total Dissolved	ND		mg/		10	3.1	1	-	01/27/17 09:20	121,2540C	DW
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: W0	3973058-1				
Chromium, Hexavalent	ND		mg/		0.010	0.003	1	01/27/17 06:00	01/27/17 06:41	1,7196A	КА
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: W0	3973086-1				
Phenolics, Total	ND		mg/		0.030	0.004	1	01/27/17 08:33	01/27/17 12:59	4,420.1	AW
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: W	3973088-1				
Cyanide, Total	ND		mg/		0.005	0.001	1	01/27/17 09:37	01/27/17 13:24	1,9010C/9012	в ЈО
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: Wo	3973166-1				
Alkalinity, Total	ND		mg CaC		2.00	NA	1	-	01/27/17 11:23	121,2320B	BR
General Chemistry - W	estborough Lab	for sam	nple(s):	13-1	4 Ba	tch: Wo	3973246-1				
Nitrogen, Ammonia	ND		mg/		0.075	0.022	1	01/27/17 13:56	01/30/17 21:28	44,350.1	АТ
Anions by Ion Chromat	tography - West	orough	Lab fo	r sam	nple(s)	: 01-08	,10-12 Ba	tch: WG9732	92-1		
Bromide	ND		mg/		0.050	0.010	1	-	01/26/17 17:20	44,300.0	AU
Chloride	ND		mg/	1	0.500	0.054	1		01/26/17 17:20	44,300.0	AU
Sulfate	ND		mg/	1	1.00	0.150	1	-	01/26/17 17:20	44,300.0	AU
General Chemistry - W	estborough Lab	for san	nple(s):	13-1	14 Ba	tch: W	3973298-1				
Nitrogen, Nitrate	ND		mg/		0.10	0.019	1	-	01/27/17 19:31	44,353.2	CW
Anions by Ion Chromat	tography - Westl	oorough	Lab fo	r san	nple(s)): 13-14	Batch: V	VG973760-1			
Bromide	ND		mg/		0.050	0.010	1	•	01/29/17 14:53	44,300.0	JC
Chloride	ND		mg	1	0.500	0.054	1	-	01/29/17 14:53	44,300.0	JC
Sulfate	ND		mg	1	1.00	0.150	1	-	01/29/17 14:53	44,300.0	JC
General Chemistry - W	estborough Lab	for san	nple(s):	01-0	08,10-	12,14 l	Batch: WG	973769-1			
Nitrogen, Total Kjeldahl	ND		mg		0.300	0.022	1	01/30/17 13:07	01/30/17 22:57	4,351.3/.1 (N) AT
General Chemistry - W	estborough Lab	for san	nple(s):	13	Batch	: WG9	74203-1				
Nitrogen, Total Kjeldahl	0.075	J	mg.		0.300	0.022	1	01/31/17 11:09	01/31/17 22:30	4,351.3/.1 (M	I) AT

Project Name:

ORANGE COUNTY- BASELINE 88 REC

Lab Number:

L1702506

Project Number: 2010-15

Report Date:

02/06/17

Method Blank Analysis
Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab for sam	nple(s): 13	3-14 Ba	itch: Wo	G974479-1				1
Chemical Oxygen Demand	3.4	J	mg/l	10	2.7	1	02/01/17 17:30	02/01/17 19:53	44,410.4	TL

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s)	: 07-08,10-12	Batch: Wo	3972621-2				
Chromium, Hexavalent	101				85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-06 Bato	ch: WG9726	22-2				
Chromium, Hexavalent	102				85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-08,10-11	Batch: W	G972657-2				
Solids, Total Dissolved	88				80-120			
General Chemistry - Westborough Lab	Associated sample(s)	: 12 Batch: \	WG972658-	2				
Solids, Total Dissolved	88		-		80-120			
General Chemistry - Westborough Lab	Associated sample(s)	: 01-08,10-11	Batch: W	G972728-2	WG972728-3			
Cyanide, Total	107		109		85-115	2		20
General Chemistry - Westborough Lab	Associated sample(s)	: 12 Batch:	WG972729-	2 WG9727	29-3			
Cyanide, Total	107		108		85-115	1		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-08,10-12	Batch: W	G972744-2				
Alkalinity, Total	101		-		90-110			10

ORANGE COUNTY- BASELINE 88 REG

ONANGE COOM IT BAGELINE OF NE

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-08	Batch: WG972755-2			
Phenolics, Total	88		70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 10-12	Batch: WG972756-2			
Phenolics, Total	88		70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-08,1	0-12 Batch: WG972830-2			
Nitrogen, Ammonia	91		80-120		20
General Chemistry - Westborough Lab	Associated sample(s): 01-08,1	0-12 Batch: WG972833-2			
Total Organic Carbon	91		90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-08,1	0-12 Batch: WG972900-2			
Chemical Oxygen Demand	98		95-105	_ ·	
General Chemistry - Westborough Lab	Associated sample(s): 01-08,1	0-11 Batch: WG972905-2			
Nitrogen, Nitrate	96	-	90-110	•	
General Chemistry - Westborough Lab	Associated sample(s): 12 Ba	tch: WG972908-2			
Nitrogen, Nitrate	.96		90-110		

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973039-2		,	
Total Organic Carbon	90		90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-08	10-14 Batch: WG973040-2	2		
BOD, 5 day	131 Q		85-115		20
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973043-2			
Solids, Total Dissolved	90		80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973058-2			
Chromium, Hexavalent	.88.		85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973086-2			
Phenolics, Total	94	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973088-2 WG	973088-3		
Cyanide, Total	107	110	85-115	3	20
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG973166-2			
Alkalinity, Total	101		90-110	-	10

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number: 2010-15

Project Name:

Report Date: 02/06/17

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westboroug	gh Lab Associated sample(s): 13-	-14 Batch: WG973246-2			
Nitrogen, Ammonia	96		80-120	-	20
Anions by Ion Chromatography	- Westborough Lab Associated sa	ample(s): 01-08,10-12 Bat	ch: WG973292-2		
Bromide	93	-	90-110	-	
Chloride	104	-	90-110	-	
Sulfate	104		90-110	-	
Nitrogen, Nitrate	gh Lab Associated sample(s): 13- 94 - Westborough Lab Associated sa	-	90-110		
Bromide	91	-	90-110		
Chloride	104	•	90-110	-	
Chloride Sulfate	104		90-110 90-110		
Sulfate		- - 08,10-12,14 Batch: WG97	90-110		
Sulfate	105	- - 08,10-12,14 Batch: WG97 -	90-110		
Sulfate General Chemistry - Westboroug Nitrogen, Total Kjeldahl	105 gh Lab Associated sample(s): 01-		90-110		

Lab Number:

L1702506

Project Name: ORANGE COUNTY- BASELINE 88 REG Project Number: 2010-15

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 13-14	Batch: WG974479-2			
Chemical Oxygen Demand	102		90-110		

Matrix Spike Analysis Batch Quality Control

Project Name: Of

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	11100		covery imits R	PD Qual	RPD Limits
General Chemistry - Westboroug SW-8	gh Lab Asso	ociated samp	ole(s): 07-08	3,10-12 QC E	Batch ID: WG97	'2621-4 WG972	621-5 QC S	Sample: L17	'02506-11	Client ID:
Chromium, Hexavalent	ND	0.1	0.107	107	0.10	05 105	3	35-115	2	20
General Chemistry - Westboroug	gh Lab Asso	ociated samp	ole(s): 01-06	QC Batch II	D: WG972622-	4 QC Sample:	L1702506-0	6 Client II	D: MW-24	5D
Chromium, Hexavalent	ND	0.1	0.099	99		-	8	15-115	-	20
General Chemistry - Westboroug SW-8	gh Lab Asso	ociated samp	ole(s): 01-08	3,10-11 QC B	Batch ID: WG97	2728-4 W G 972	728-5 QC S	Sample: L17	02506-11	Client ID:
Cyanide, Total	0.004J	0.2	0.200	100	0.16	82	8	80-120	20	20
General Chemistry - Westboroug Sample	gh Lab Asso	ociated samp	ole(s): 12	QC Batch ID: V	NG972729-4 V	VG972729-5 Q	C Sample: L1	1702517-03	Client II	D: MS
Cyanide, Total	ND	0.2	0.142	71	Q 0.17	70 85	8	80-120	18	20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-08	3,10-12 QC B	Batch ID: WG97	2744-4 QC Sa	ample: L1702	2506-11 C	lient ID: S	8W-8
Alkalinity, Total	71.3	100	177	106			8	6-116		10
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-08	QC Batch II	D: WG972755-4	4 QC Sample:	L1702506-0	1 Client II	D: MW-23	3S
Phenolics, Total	0.028J	0.4	0.048	5	Q -		7	0-130	-	20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 10-12	QC Batch II	D: WG972756-4	QC Sample:	L1702506-1	1 Client II	D: SW-8	
Phenolics, Total	ND	0.4	0.36	89		-	7	0-130		20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01-08	3,10-12 QC B	Batch ID: WG97	2830-4 QC Sa	ample: L1702	2506-11 C	lient ID: S	8-W8
Nitrogen, Ammonia	0.176	4	3.79	90			8	0-120		20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01-08	3,10-12 QCB	Batch ID: WG97	2833-4 QC Sa	ample: L1702	2506-11 C	lient ID: S	8W-8
Total Organic Carbon	8.94	8	16.7	97			8	0-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Reco		MSD Found	MSD %Recov		ecovery Limits	RPD	RPD Limits
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 01-08	8,10-12	QC Bat	ch ID: WG972	2900-3 QC	Sample: L17	02506-11	Client ID:	SW-8
Chemical Oxygen Demand	37.	47.6	87	1	105				80-120	-	20
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 01-08	8,10-11	QC Bat	ch ID: WG972	2905-4 QC	Sample: L17	02506-11	Client ID:	SW-8
Nitrogen, Nitrate	3.9	4	7.7		95		-		83-113	-	6
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 12	QC Batc	h ID: WO	3972908-4	QC Sample:	L1702526-11	Client I	D: MS Sam	ple
Nitrogen, Nitrate	0.074J	4	3.8		95		-		83-113		6
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 13-1	4 QCB	atch ID:	WG973039-4	QC Samp	le: L1702635	-02 Clie	nt ID: MS S	ample
Total Organic Carbon	811.	1600	2320		94	-			80-120	•	20
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 01-0	8,10-14	QC Bat	tch ID: WG973	3040-3 QC	Sample: L17	02506-11	Client ID:	SW-8
BOD, 5 day	8.9	100	190		179	Q -	-		50-145	-	35
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 13-1	4 QCB	atch ID:	WG973058-4	QC Samp	ole: L1702506	-14 Clie	nt ID: MH-1	5
Chromium, Hexavalent	ND	0.1	0.099	-	99		-		85-115	-	20
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 13-1	4 QCB	atch ID:	WG973086-4	QC Samp	ole: L1702585	-01 Clie	nt ID: MS S	ample
Phenolics, Total	0.005J	0.4	0.41		103	-			70-130	-	20
General Chemistry - Westborou Sample	gh Lab Ass	ociated samp	le(s): 13-1	4 QCB	atch ID:	WG973088-4	WG973088	-5 QC Samp	le: L1702	661-01 CI	ient ID: MS
Cyanide, Total	ND	0.2	0.224		112	0.20	1 /100)	80-120	11	20
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 13-1	4 QCB	atch ID:	WG973166-4	QC Samp	ole: L1702580	-01 Clie	nt ID: MS S	ample
Alkalinity, Total	78.3	100	180		102		-		86-116	•	10

Matrix Spike Analysis Batch Quality Control

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Project Number:

2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
General Chemistry - Westbo	rough Lab Asso	ciated sam	ple(s): 13-14	QC Batch ID: W	/G973246-4	QC Sample: L17	702506-14 Cli	ent ID: MH-	15
Nitrogen, Ammonia	38.9	4	43.0	102	-	-	80-120	-	20
Anions by Ion Chromatograp Client ID: SW-8	hy - Westborou	igh Lab Asso	ociated samp	ole(s): 01-08,10-12	QC Batch	ID: WG973292-3	WG973292-4	QC Sample	: L1702506-
Bromide	ND	0.4	0.357	89	0.358	90	77-119	0	20
Chloride	86.0	100	190	104	189	103	40-151	1	18
Sulfate	68.3	8	73.8	69	73.6	66	60-140	0	20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 13-14	QC Batch ID: W	/G973298-4	QC Sample: L17	702506-13 Clie	ent ID: MH-	7
Nitrogen, Nitrate	0.11	4	3.9	95		-	83-113	1	6
Anions by Ion Chromatograp	hy - Westborou	gh Lab Asso	ociated samp	ole(s): 13-14 QC	Batch ID: Wo	G973760-3 QC	Sample: L1702	506-14 Cli	ent ID: MH-
Bromide	0.895	0.4	1.25	89	• 1	/	77-119		20
Chloride	130.	40	169	97	-	-	40-151	-	18
Sulfate	7.13	8	14.9	97			60-140		20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01-08,	,10-12,14 QC Ba	tch ID: WG9	73769-4 QC Sa	mple: L1702506	6-11 Client	ID: SW-8
Nitrogen, Total Kjeldahl	1.15	8	8.40	91			77-111	-	24
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 13 C	QC Batch ID: WG9	74203-4 Q	C Sample: L1702	506-13 Client	ID: MH-7	
Nitrogen, Total Kjeldahl	479.	8	480	12	- 2	. ,	77-111	-	24
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 13-14	QC Batch ID: W	G974479-3	QC Sample: L17	702763-02 Clie	ent ID: MS 9	Sample
Chemical Oxygen Demand	8.2J	47.6	51	107			80-120		20

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Nati	ve Sample	Du	uplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	07-08,10-12	QC Bato	ch ID: WG9726	21-3 QC Sampl	e: L17025	06-11 Client	ID: SW-8
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-06 QC B	Batch ID:	WG972622-3	QC Sample: L17	02506-06	Client ID: M	1W-245D
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-06 QC E	Batch ID:	WG972632-1	QC Sample: L17	02506-06	Client ID: M	IW-245D
Color, Apparent		16.		16	A.P.C.U.	0		
General Chemistry - Westborough Lab	Associated sample(s):	07-08,10-12	QC Bato	ch ID: WG9726	33-1 QC Sampl	e: L17025	06-11 Clien	ID: SW-8
Color, Apparent		44.		52	A.P.C.U.	17		
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-11	QC Bate	ch ID: WG9726	57-3 QC Sampl	e: L17025	06-11 Clien	ID: SW-8
Solids, Total Dissolved		340		340	mg/l	0		17
General Chemistry - Westborough Lab	Associated sample(s):	12 QC Bato	ch ID: WO	972658-3 Q	C Sample: L1702	516-01 Cli	ent ID: DUF	Sample
Solids, Total Dissolved		6600		6500	mg/l	2		17
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-12	QC Bate	ch ID: WG9727	44-3 QC Sampl	e: L17025	06-11 Clien	ID: SW-8
Alkalinity, Total		71.3		71.0	mg CaCO3/L	0		10
General Chemistry - Westborough Lab	Associated sample(s):	01-08 QC B	Batch ID:	WG972755-3	QC Sample: L17	702506-01	Client ID: N	1W-233S
Phenolics, Total		0.028J		0.009J	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	10-12 QC E	Batch ID:	WG972756-3	QC Sample: L17	702506-11	Client ID: S	8W-8
Phenolics, Total		ND		ND	mg/l	NC		20

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506 Report Date:

Parameter	Nat	ve Sample	Duplicate Sa	mple Uni	ts RPD	RP	D Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-12	QC Batch ID: WG9	72830-3 QC	Sample: L1702	2506-11 Client ID:	SW-8
Nitrogen, Ammonia		0.176	0.200	mg	13		20
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-12	QC Batch ID: WG9	972833-3 QC	Sample: L1702	2506-11 Client ID:	SW-8
Total Organic Carbon		8.94	8.93	mg	0		20
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-12	QC Batch ID: WG9	72900-4 QC	Sample: L1702	2506-11 Client ID:	SW-8
Chemical Oxygen Demand		37.	42	mg	13		20
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-11	QC Batch ID: WG9	72905-3 QC	Sample: L1702	2506-11 Client ID:	SW-8
Nitrogen, Nitrate		3.9	3.9	mg	0		6
General Chemistry - Westborough Lab	Associated sample(s):	12 QC Bato	ch ID: WG972908-3	QC Sample:	L1702526-11 (Client ID: DUP Sar	mple
Nitrogen, Nitrate		0.074J	0.052J	mg	NC NC		6
General Chemistry - Westborough Lab	Associated sample(s):	13-14 QC E	Batch ID: WG973015	-1 QC Sampl	e: L1702506-1	3 Client ID: MH-7	
Color, Apparent		370	360	A.P.C	.U. 3		
General Chemistry - Westborough Lab	Associated sample(s):	13-14 QC E	Batch ID: WG973039	-3 QC Sampl	e: L1702635-0	2 Client ID: DUP	Sample
Total Organic Carbon		811.	842	mg/	1 4		20
General Chemistry - Westborough Lab	Associated sample(s):	01-08,10-14	QC Batch ID: WG9	73040-4 QC	Sample: L1702	2506-11 Client ID:	SW-8
BOD, 5 day		8.9	8.8	mg	1	100	35
General Chemistry - Westborough Lab	Associated sample(s):	13-14 QC B	Batch ID: WG973043	-3 QC Sampl	e: L1702484-0	1 Client ID: DUP	Sample
Solids, Total Dissolved		430	440	mg/	2		17

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number:

L1702506

Report Date:

Parameter	Native Sam	ple	Duplicate Sampl	e Units	RPD		RPD Limits
General Chemistry - Westborough Lab Associated sai	mple(s): 13-14	QC Batch ID	: WG973058-3	QC Sample:	L1702506-14	Client ID:	MH-15
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sa	mple(s): 13-14	QC Batch ID	: WG973086-3	QC Sample:	L1702585-01	Client ID:	DUP Sample
Phenolics, Total	0.005J		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sa	mple(s): 13-14	QC Batch ID	: WG973166-3	QC Sample:	L1702580-01	Client ID:	DUP Sample
Alkalinity, Total	78.3		76.9	mg CaCO3/	L 2		10
General Chemistry - Westborough Lab Associated sa	mple(s): 13-14	QC Batch ID	: WG973246-3	QC Sample:	L1702506-14	Client ID:	MH-15
Nitrogen, Ammonia	38.9		40.4	mg/l	4		20
General Chemistry - Westborough Lab Associated sa	mple(s): 13-14	QC Batch ID): WG973298-3	QC Sample:	L1702506-13	Client ID:	MH-7
Nitrogen, Nitrate	0.11		0.12	mg/l	9	Q	6
Anions by Ion Chromatography - Westborough Lab As	ssociated sample	e(s): 13-14	QC Batch ID: Wo	G973760-4 C	C Sample: L	1702506-1	4 Client ID: MH-15
Chloride	130.		129	mg/l	1		18
Anions by Ion Chromatography - Westborough Lab A	ssociated sample	e(s): 13-14	QC Batch ID: Wo	G973760-4 C	C Sample: L	1702506-1	4 Client ID: MH-15
Bromide	0.895		0.883	mg/i	111		20
Sulfate	7.13		7.13	mg/l	0		20
General Chemistry - Westborough Lab Associated sa	mple(s): 01-08,	10-12,14 QC	C Batch ID: WG9	73769-3 QC	Sample: L17	02506-11	Client ID: SW-8
Nitrogen, Total Kjeldahl	1.15		1.00	mg/i	14		24

ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Project Name:

Lab Number:

L1702506

Report Date:

Parameter	Nati	ve Sa	mple	Duplicate Sam	ple Units	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	13	QC Batch ID: \	NG974203-3	QC Sample: L1	702506-13 CI	ient ID: MH-7
Nitrogen, Total Kjeldahl		479.		505	mg/l	5	24
General Chemistry - Westborough Lab	Associated sample(s):	13-14	QC Batch ID): WG974479-4	QC Sample:	L1702763-02	Client ID: DUP Sample
Chemical Oxygen Demand		8.2J		8.2J	mg/l	NC	20

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal Cooler

Α	Absent
D	Absent
В	Absent
С	Absent
E	Absent
F	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-01A	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1702506-01B	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1702506-01C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1702506-01D	Vial H2SO4 preserved	Α	N/A	2.8	Υ	Absent	TOC-5310(28)
L1702506-01E	Vial H2SO4 preserved	Α	N/A	2.8	Υ	Absent	TOC-5310(28)
L1702506-01F	Amber 500ml H2SO4 preserved	Α	<2	2.8	Υ	Absent	NY-TPHENOL-420(28)
L1702506-01G	Plastic 250ml unpreserved	Α	7	2.8	Y	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-01J	Plastic 500ml H2SO4 preserved	Α	<2	2.8	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-01K	Plastic 250ml NaOH preserved	Α	>12	2.8	Υ	Absent	TCN-9010(14)
L1702506-01L	Plastic 120ml unpreserved w/No H	Α	N/A	2.8	Υ	Absent	ALK-T-2320(14)
L1702506-01M	Plastic 250ml HNO3 preserved	A	<2	2.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),K-6020T(180),CU-6020T(180),NI-6020T(180),NI-6020T(180),NI-6020T(180),B-TI(180),PB-6020T(180),BE-6020T(180),MI-6020T(180),NI-6020T(180),NI-6020T(180),NI-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-71(180),CD-6020T(180),CD-6020T(180),AG-TI(180),CA-TI(180),CO-6020T(180),HG-T(28),MG-TI(180),CA-TI(180),CO-6020T(180),HG-TI(180),CO-6020T(180),HARDT(180)
L1702506-01N	Plastic 250ml unpreserved	Α	7	2.8	Υ	Absent	-
L1702506-01O	Plastic 950ml unpreserved	Α	7	2.8	Υ	Absent	HEXCR-7196(1),BOD-5210(2)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Information Temp									
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)		
L1702506-01X	Plastic 120ml HNO3 preserved spl	A	N/A	2.8	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CD-6020S(180), CN-6020S(180), CR-6020S(180), FE-6020S(180), NA-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), CA-6020S(180), AG-6020S(180), AS-6020S(180), AG-SI(180), SB-6020S(180), AL-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), HG-S(28)		
L1702506-02A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)		
L1702506-02B	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)		
L1702506-02C	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)		
L1702506-02D	Vial H2SO4 preserved	Α	N/A	2.8	Υ	Absent	TOC-5310(28)		
L1702506-02E	Vial H2SO4 preserved	Α	N/A	2.8	Υ	Absent	TOC-5310(28)		
L1702506-02F	Amber 500ml H2SO4 preserved	Α	<2	2.8	Υ	Absent	NY-TPHENOL-420(28)		
L1702506-02G	Plastic 250ml unpreserved	Α	7	2.8	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)		
L1702506-02J	Plastic 500ml H2SO4 preserved	Α	<2	2.8	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)		
L1702506-02K	Plastic 250ml NaOH preserved	Α	>12	2.8	Υ	Absent	TCN-9010(14)		
L1702506-02L	Plastic 120ml unpreserved w/No H	Α	N/A	2.8	Υ	Absent	ALK-T-2320(14)		
L1702506-02M	Plastic 250ml HNO3 preserved	A	<2	2.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),CR-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),BB-F1(180),BB-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AS-6020T(180),CD-6020T(180),AS-602		
L1702506-02N	Plastic 250ml unpreserved	Α	7	2.8	Υ	Absent	-		
L1702506-02O	Plastic 950ml unpreserved	Α	7	2.8	Υ	Absent	HEXCR-7196(1),BOD-5210(2)		
L1702506-02X	Plastic 120ml HNO3 preserved spl	A	N/A	2.8	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CO-6020S(180), CN-6020S(180), CR-6020S(180), FE-6020S(180), NA-6020S(180), NI-6020S(180), NI-6020S(180), AG-6020S(180), TL-6020S(180), AG-6020S(180), AS-6020S(180), AS-6020S(180), AS-6020S(180), CR-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CR-SI(180), CR-SI(180), CD-6020S(180), CR-SI(180), CD-6020S(180), CR-SI(180), CR-SI(180), CD-6020S(180), CR-SI(180), CD-6020S(180), CR-SI(180), CR-SI(180), CD-6020S(180), CR-SI(180), CR-SI(

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)
L1702506-03A	Vial HCl preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-03B	Vial HCI preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-03C	Vial HCI preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-03D	Vial H2SO4 preserved	D	N/A	3.2	Υ	Absent	TOC-5310(28)
L1702506-03E	Vial H2SO4 preserved	D	N/A	3.2	Υ	Absent	TOC-5310(28)
L1702506-03F	Amber 500ml H2SO4 preserved	D	<2	3.2	Υ	Absent	NY-TPHENOL-420(28)
L1702506-03G	Plastic 250ml unpreserved	D	7	3.2	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-03J	Plastic 500ml H2SO4 preserved	D	<2	3.2	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-03K	Plastic 250ml NaOH preserved	D	>12	3.2	Υ	Absent	TCN-9010(14)
L1702506-03L	Plastic 120ml unpreserved w/No H	D	N/A	3.2	Υ	Absent	ALK-T-2320(14)
L1702506-03M	Plastic 250ml HNO3 preserved	D	<2	3.2	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),K-6020T(180),N-6020T(180),CU-6020T(180),NA-6020T(180),B-11(180),PB-6020T(180),B-11(180),PB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AL-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CA-TI(180),CA-TI(180),CO-6020T(180),HARDT(180)
L1702506-03N	Plastic 250ml unpreserved	D	7	3.2	Υ	Absent	-
L1702506-03O	Plastic 950ml unpreserved	D	7	3.2	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-03X	Plastic 120ml HNO3 preserved spl	D	N/A	3.2	Y	Absent	B-SI(180),CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),ZN-6020S(180),CO-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),NI-6020S(180),TL-6020S(180),AG-6020S(180),AS-6020S(180),AG-6020S(180),AS-6020S(180),AG-5020S(180),AS-6020S(180),AC-6020S(180),CA-SI(180),CD-6020S(180),CA-SI(180),CD-6020S(180),HG-S(28)
L1702506-04A	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-04B	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-04C	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-04D	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-04E	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-04F	Amber 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	NY-TPHENOL-420(28)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-04G	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-04J	Plastic 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-04K	Plastic 250ml NaOH preserved	В	>12	2.5	Υ	Absent	TCN-9010(14)
L1702506-04L	Plastic 120ml unpreserved w/No H	В	N/A	2.5	Υ	Absent	ALK-T-2320(14)
L1702506-04M	Plastic 250ml HNO3 preserved	В	<2	2.5	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),CR-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),BB-FI(180),BB-6020T(180),AS-6020T(180),AS-6020T(180),V-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-TI(180),CA-TI(180),CO-6020T(180),HARDT(180)
L1702506-04N	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	-
L1702506-04O	Plastic 950ml unpreserved	В	7	2.5	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-04X	Plastic 120ml HNO3 preserved spl	В	N/A	2.5	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CO-6020S(180), CN-6020S(180), CR-6020S(180), CR-6020S(180), AR-6020S(180), NA-6020S(180), NI-6020S(180), NI-6020S(180), AG-6020S(180), AS-6020S(180), AS-6020S(180), AS-6020S(180), AS-6020S(180), CR-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), HG-S(28)
L1702506-05A	Vial HCI preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-05B	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-05C	Vial HCI preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-05D	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-05E	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-05F	Amber 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	NY-TPHENOL-420(28)
L1702506-05G	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-05J	Plastic 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-05K	Plastic 250ml NaOH preserved	В	>12	2.5	Υ	Absent	TCN-9010(14)
L1702506-05L	Plastic 120ml unpreserved w/No H	В	N/A	2.5	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-05M	Plastic 250ml HNO3 preserved	В	<2	2.5	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),CR-6020T(180),CL-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),B-TI(180),PB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AL-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CA-TI(180),CO-6020T(180),HARDT(180)
L1702506-05N	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	-
L1702506-05O	Plastic 950ml unpreserved	В	7	2.5	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-05X	Plastic 120ml HNO3 preserved spl	В	N/A	2.5	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CO-6020S(180), CR-6020S(180), CR-6020S(180), CR-6020S(180), NA-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), CR-6020S(180), CR-6020S(180
L1702506-06A	Vial HCI preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-06B	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-06C	Vial HCl preserved	В	N/A	2.5	Υ	Absent	NYTCL-8260(14)
L1702506-06D	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-06E	Vial H2SO4 preserved	В	N/A	2.5	Υ	Absent	TOC-5310(28)
L1702506-06F	Amber 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	NY-TPHENOL-420(28)
L1702506-06G	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-06J	Plastic 500ml H2SO4 preserved	В	<2	2.5	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-06K	Plastic 250ml NaOH preserved	В	>12	2.5	Υ	Absent	TCN-9010(14)
L1702506-06L	Plastic 120ml unpreserved w/No H	В	N/A	2.5	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1702506-06M	Plastic 250ml HNO3 preserved	В	<2	2.5	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),K-6020T(180),N-6020T(180),CU-6020T(180),N-6020T(180),B-TI(180),B-TI(180),B-6020T(180),B-6020T(180),B-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-7I(180),AG-TI(180),CA-TI(180),CO-6020T(180),HARDT(180)
L1702506-06N	Plastic 250ml unpreserved	В	7	2.5	Υ	Absent	-
L1702506-06O	Plastic 950ml unpreserved	В	7	2.5	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-06X	Plastic 120ml HNO3 preserved spl	В	N/A	2.5	Y	Absent	B-SI(180),CU-6020S(180),K-6020S(180),SE-6020S(180),SE-6020S(180),BE-6020S(180),BE-6020S(180),CO-6020S(180),CN-6020S(180),CR-6020S(180),CR-6020S(180),BE-6020S(180),BI-6020S(180),NI-6020S(180),AI-6020S(180),AG-6020S(180),AG-6020S(180),AG-6020S(180),AG-6020S(180),AG-6020S(180),CD-6020S(180),CD-6020S(180),AG-6020S(180),CR-SI(180),CD-6020S(180),BI-G020S(180),CR-SI(180),CD-6020S(180),BI-G020S(180)
L1702506-07A	Vial HCI preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-07B	Vial HCl preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-07C	Vial HCl preserved	D	N/A	3.2	Υ	Absent	NYTCL-8260(14)
L1702506-07D	Vial H2SO4 preserved	D	N/A	3.2	Υ	Absent	TOC-5310(28)
L1702506-07E	Vial H2SO4 preserved	D	N/A	3.2	Υ	Absent	TOC-5310(28)
L1702506-07F	Amber 500ml H2SO4 preserved	D	<2	3.2	Υ	Absent	NY-TPHENOL-420(28)
L1702506-07G	Plastic 250ml unpreserved	D	7	3.2	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-07J	Plastic 500ml H2SO4 preserved	D	<2	3.2	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-07K	Plastic 250ml NaOH preserved	D	>12	3.2	Υ	Absent	TCN-9010(14)
L1702506-07L	Plastic 120ml unpreserved w/No H	D	N/A	3.2	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)
L1702506-07M	Plastic 250ml HNO3 preserved	D	<2	3.2	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),CU-6020T(180),CU-6020T(180),B-TI(180),PB-6020T(180),BE-6020T(180),BE-6020T(180),BB-6020T(180),BB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CO-6020T(180),AS-TI(180),AS-TI(18
L1702506-07N	Plastic 250ml unpreserved	D	7	3.2	Υ	Absent	-
L1702506-07O	Plastic 950ml unpreserved	D	7	3.2	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-07X	Plastic 120ml HNO3 preserved spl	D	N/A	3.2	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CO-6020S(180), FE-6020S(180), CR-6020S(180), NA-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), NI-6020S(180), AG-6020S(180), AS-6020S(180), AG-6020S(180), AS-6020S(180), AL-6020S(180), CA-SI(180), CD-6020S(180), HG-S(28)
L1702506-08A	Vial HCl preserved	Е	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-08B	Vial HCI preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-08C	Vial HCI preserved	Е	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-08D	Vial H2SO4 preserved	E	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-08E	Vial H2SO4 preserved	Е	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-08F	Amber 500ml H2SO4 preserved	Е	<2	2.3	Υ	Absent	NY-TPHENOL-420(28)
L1702506-08G	Plastic 250ml unpreserved	Е	7	2.3	Υ	Absent	SO4-300(28), CL- 300(28), COLOR-A-2120(2), BR- 300(28), NO3-353(2), TDS- 2540(7)
L1702506-08J	Plastic 500ml H2SO4 preserved	Е	<2	2.3	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-08K	Plastic 250ml NaOH preserved	E	>12	2.3	Υ	Absent	TCN-9010(14)
L1702506-08L	Plastic 120ml unpreserved w/No H	E	N/A	2.3	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 Report Date: 02/06/17

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-08M	Plastic 250ml HNO3 preserved	Е	<2	2.3	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),K-6020T(180),CU-6020T(180),NI-6020T(180),CU-6020T(180),B-TI(180),PB-6020T(180),B-6020T(180),AS-6020T(
L1702506-08N	Plastic 250ml unpreserved	E	7	2.3	Υ	Absent	-
L1702506-08O	Plastic 950ml unpreserved	E	7	2.3	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-08X	Plastic 120ml HNO3 preserved spl	Е	N/A	2.3	Y	Absent	B-SI(180), CU-6020S(180), K-6020S(180), SE-6020S(180), SE-6020S(180), V-6020S(180), MN-6020S(180), BE-6020S(180), CO-6020S(180), CR-6020S(180), CR-6020S(180), BA-6020S(180), NB-6020S(180), NB-6020S(180), NB-6020S(180), TL-6020S(180), AG-6020S(180), AS-6020S(180), AS-6020S(180), AS-6020S(180), AS-6020S(180), CR-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(180), CD-6020S(180), CA-SI(28)
L1702506-09A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1702506-09B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1702506-10A	Vial HCl preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-10B	Vial HCI preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-10C	Vial HCI preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-10D	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-10E	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-10F	Amber 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	NY-TPHENOL-420(28)
L1702506-10G	Plastic 250ml unpreserved	С	7	4.4	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-10J	Plastic 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-10K	Plastic 250ml NaOH preserved	С	>12	4.4	Υ	Absent	TCN-9010(14)
L1702506-10L	Plastic 120ml unpreserved w/No H	С	N/A	4.4	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-10M	Plastic 250ml HNO3 preserved	С	<2	4.4	4.4 Y Absent		BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),K-6020T(180),CU-6020T(180),CU-6020T(180),B-TI(180),B-TI(180),B-G020T(180),B-G020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-6020T(180),AB-TI(180),CO-6020T(180),AB-TI(180),CO-6020T(180),AB-ABDT(180)
L1702506-10N	Plastic 950ml unpreserved	С	7	4.4	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-11A	Vial HCI preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-11A1	Vial HCI preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11A2	Vial HCl preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11B	Vial HCl preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-11B1	Vial HCI preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11B2	Vial HCI preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11C	Vial HCI preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-11C1	Vial HCl preserved	E	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11C2	Vial HCl preserved	Е	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1702506-11D	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-11D1	Vial H2SO4 preserved	E	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-11D2	Vial H2SO4 preserved	E	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-11E	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-11E1	Vial H2SO4 preserved	E	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-11E2	Vial H2SO4 preserved	E	N/A	2.3	Υ	Absent	TOC-5310(28)
L1702506-11F	Amber 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	NY-TPHENOL-420(28)
L1702506-11F1	Amber 500ml H2SO4 preserved	E	<2	2.3	Υ	Absent	NY-TPHENOL-420(28)
L1702506-11F2	Amber 500ml H2SO4 preserved	E	<2	2.3	Υ	Absent	NY-TPHENOL-420(28)
L1702506-11G	Plastic 250ml unpreserved	С	7	4.4	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-11G1	Plastic 250ml unpreserved	E	7	2.3	Y	Absent	SO4-300(28),CL- 300(28),HEXCR- 7196(1),COLOR-A- 2120(2),BOD-5210(2),BR- 300(28),NO3-353(2),TDS- 2540(7)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1702506-11G2	Plastic 250ml unpreserved	Е	7	2.3	Y	Absent	SO4-300(28),CL- 300(28),HEXCR- 7196(1),COLOR-A- 2120(2),BOD-5210(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-11J	Plastic 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-11J1	Plastic 500ml H2SO4 preserved	Е	<2	2.3	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-11J2	Plastic 500ml H2SO4 preserved	Е	<2	2.3	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-11K	Plastic 250ml NaOH preserved	С	>12	4.4	Υ	Absent	TCN-9010(14)
L1702506-11K1	Plastic 250ml NaOH preserved	Е	>12	2.3	Υ	Absent	TCN-9010(14)
L1702506-11K2	Plastic 250ml NaOH preserved	E	>12	2.3	Υ	Absent	TCN-9010(14)
L1702506-11L	Plastic 120ml unpreserved w/No H	С	N/A	4.4	Υ	Absent	ALK-T-2320(14)
L1702506-11L1	Plastic 120ml unpreserved w/No H	E	N/A	2.3	Υ	Absent	ALK-T-2320(14)
L1702506-11L2	Plastic 120ml unpreserved w/No H	E	N/A	2.3	Υ	Absent	ALK-T-2320(14)
L1702506-11M	Plastic 250ml HNO3 preserved	С	<2	4.4	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),CU-6020T(180),NI-6020T(180),CU-6020T(180),B-TI(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),BE-6020T(180),AG-6020T(180),V-6020T(180),AG-6020T(180),AI-6020T(180),AI-6020T(180),AI-6020T(180),CD-6020T(180),AI-6020T(180),CD-6020T(180),AI-6020T(180),CD-6020T(180),AI-6020T(180),CD-6020T(180),CI-11(180),CO-6020T(180),HARDT(180)
L1702506-11M1	Plastic 250ml HNO3 preserved	E	<2	2.3	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),CL-6020T(180),N-6020T(180),CU-6020T(180),B-11(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	pН	deg C	Pres	Seal	Analysis(*)
L1702506-11M2	Plastic 250ml HNO3 preserved	E	<2	2.3	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),K-6020T(180),CU-6020T(180),NI-6020T(180),B-6020T(180),B-6020T(180),B-6020T(180),BE-6020T(180),BS-6020T(180),AS-6020
L1702506-11N	Plastic 950ml unpreserved	С	7	4.4	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-11N1	Plastic 950ml unpreserved	E	7	2.3	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-11N2	Plastic 950ml unpreserved	E	7	2.3	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-12A	Vial HCl preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-12B	Vial HCI preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-12C	Vial HCl preserved	С	N/A	4.4	Υ	Absent	NYTCL-8260(14)
L1702506-12D	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-12E	Vial H2SO4 preserved	С	N/A	4.4	Υ	Absent	TOC-5310(28)
L1702506-12F	Amber 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	NY-TPHENOL-420(28)
L1702506-12G	Plastic 250ml unpreserved	С	7	4.4	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-12J	Plastic 500ml H2SO4 preserved	С	<2	4.4	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-12K	Plastic 250ml NaOH preserved	С	>12	4.4	Υ	Absent	TCN-9010(14)
L1702506-12L	Plastic 120ml unpreserved w/No H	С	N/A	4.4	Υ	Absent	ALK-T-2320(14)
L1702506-12M	Plastic 250ml HNO3 preserved	С	<2	4.4	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),K-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),B-TI(180),PB-6020T(180),BE-6020T(180),BB-6020T(180),BB-6020T(180),AS-6020T(
L1702506-12N	Plastic 950ml unpreserved	С	7	4.4	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-13A	Vial HCl preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-13B	Vial HCI preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-13C	Vial HCl preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-13D	Vial H2SO4 preserved	F	N/A	3.8	Υ	Absent	TOC-5310(28)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506 **Report Date:** 02/06/17

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1702506-13E	Vial H2SO4 preserved	F	N/A	3.8	Υ	Absent	TOC-5310(28)
L1702506-13F	Amber 500ml H2SO4 preserved	F	<2	3.8	Υ	Absent	NY-TPHENOL-420(28)
L1702506-13G	Plastic 250ml unpreserved	F	7	3.8	Υ	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-13J	Plastic 500ml H2SO4 preserved	F	<2	3.8	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-13K	Plastic 250ml NaOH preserved	F	>12	3.8	Υ	Absent	TCN-9010(14)
L1702506-13L	Plastic 120ml unpreserved w/No H	F	N/A	3.8	Υ	Absent	ALK-T-2320(14)
L1702506-13M	Plastic 250ml HNO3 preserved	F	<2	3.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CR-6020T(180),K-6020T(180),CU-6020T(180),NI-6020T(180),CU-6020T(180),B-11(180),PB-6020T(180),BE-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AG-6020
L1702506-13N	Plastic 950ml unpreserved	F	7	3.8	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-14A	Vial HCl preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-14B	Vial HCl preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-14C	Vial HCl preserved	F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-14D	Vial H2SO4 preserved	F	N/A	3.8	Υ	Absent	TOC-5310(28)
L1702506-14E	Vial H2SO4 preserved	F	N/A	3.8	Υ	Absent	TOC-5310(28)
L1702506-14F	Amber 500ml H2SO4 preserved	F	<2	3.8	Υ	Absent	NY-TPHENOL-420(28)
L1702506-14G	Plastic 250ml unpreserved	F	7	3.8	Y	Absent	SO4-300(28),CL- 300(28),COLOR-A-2120(2),BR- 300(28),NO3-353(2),TDS- 2540(7)
L1702506-14J	Plastic 500ml H2SO4 preserved	F	<2	3.8	Υ	Absent	TKN-351(28),COD-410- LOW(28),NH3-350(28)
L1702506-14K	Plastic 250ml NaOH preserved	F	>12	3.8	Υ	Absent	TCN-9010(14)
L1702506-14L	Plastic 120ml unpreserved w/No H	F	N/A	3.8	Υ	Absent	ALK-T-2320(14)

Project Name: ORANGE COUNTY- BASELINE 88 REG

Project Number: 2010-15

Lab Number: L1702506

Report Date: 02/06/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1702506-14M	Plastic 250ml HNO3 preserved	F	<2	3.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),K-6020T(180),CU-6020T(180),NA-6020T(180),CU-6020T(180),B-TI(180),BB-6020T(180),AB-6020T(180),AS-6020
L1702506-14N	Plastic 950ml unpreserved	F	7	3.8	Υ	Absent	HEXCR-7196(1),BOD-5210(2)
L1702506-15A Vial HCl preserved		F	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1702506-15B Vial HCl preserved		F	N/A	3.8	Υ	Absent	NYTCL-8260(14)

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

GLOSSARY

Acronyms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA

- Environmental Protection Agency.

LCS

- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

- Laboratory Control Sample Duplicate: Refer to LCS.

LFB

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD

Matrix Spike Sample Duplicate: Refer to MS.

NA

- Not Applicable.

NC

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI

- Not Ignitable.

NP

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP

- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that B have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: Lab Number: **ORANGE COUNTY- BASELINE 88 REG** L1702506 Report Date: 02/06/17

Project Number: 2010-15

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted C
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations D of the analyte.
- E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should G be considered estimated.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection. H
- The lower value for the two columns has been reported due to obvious interference.
- M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where NJ the identification is based on a mass spectral library search.
- The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

DU Report with 'J' Qualifiers Report Format:

Project Name:

ORANGE COUNTY- BASELINE 88 REG

Lab Number:

L1702506

Project Number:

2010-15

Report Date:

02/06/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1,

SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Collert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-

06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113

Document Type: Form

Westborruph MA 01581	CUSTODY Tonawanda, NY 14150: 275 Gooper Ave, Westborough, MA 01581 Mansfield, MA 02048			105	Pag	ge 1 of 1			e Ren Lab		A A	7	16		ALPHA 100 025	06
8 Walkup Dr.	320 Forbes Blvd	Project Information					De	liverat	les						Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Orange Co	unty - Baselir	ne 88 Regs			AS	P-A			AS	P-8		Same as Client Info)
		Project Location:	NY					EQ	uIS (1	File)		EQ	uIS (4	File)	PO#	
Client Information		Project # 2010-						Oth	er							
Client: Sterling En	nv & Eng	(Use Project name as					Re	gulato	ry Rec	uirem	ent				Disposal Site Information	n
Address: 24 Wade F	Rd	Project Manager: M.	ark will:	4/10(NY	TOGS] NY	Part 37	5	Please identify below location	n of
Latham, NY 12110		ALPHAQuote #:] [AW	Q Stan	dards		NY	CP-51		applicable disposal facilities.	
Phone: 518-456-49	900	Turn-Around Time						NY	Restric	ted Use		Othe	er		Disposal Facility:	***************************************
Fax: 518-456-35	532		ard 🔽	Due Date	e:		7 [NY Unrestricted Use							□ NJ □ NY	
Email: joe.spauldi	ng@sterlingenvironme	Rush (only if pre approve	ed)	# of Day	s:			NYC Sewer Discharge							Other: N	Α
These samples have be Other project specific							AN.	ALYSI	S						Sample Filtration	
Baseline 88 Regs Wet Chem: BOD, TDS, SO4, Br, CI, NO3, Turb, Color, Hex For dy. Socres destribe Anvironmental. Com moule williamed the line Please specify Metals or TAL.					vironment.		Tphenol	Wet Chem Parameters	Total Metals (Baseline 88)	NH3 TKN COD	Alk (No Headspace)	TOC	VOC (Baseline 88)	"Dissolved Metals"	Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Leb ID	Sar	mple ID	Coll	ection	Sample	Sampler's	1	S C	2	Ż	¥		Ş	Dis		
(Lab Use Only)		TIPIO IE	Date	Time	Matrix	Initials		3	Tot		1		-	12	Sample Specific Comments	e e
11. 20776	MH - 7		1/26/18	810	Water	EN	Х	х	X	X	х	Х	х			1:
· (V	MH-15		1/2/5/17	815	Water	6	X	x	х	X	х	х	x			13
* 1	~		1		Water		х	х	X	x	x	X	х			1:
in the second				-	Water		Х	Х	х	x	X	Х	x			1
	7	2		11	Water		X	х	X_	X_	X	x-	X=-			1
	//	VY	/	0	Water		X	x_	Х	X	X_	x	Х			1:
		8			Water		х	х	x	x	x	X	X			1
					Water		X	Х	x	x	x	x	х			1
· ·																
	Trip Blank		1/26/17	900	Lab Water	CD							x		Trip Blank	- 2
= None	P = Plastic A = Amber Glass V = Vial G = Glass Vestboro: Certification No: MA015 Mansfield: Certification No: MA015			Container Type A		Α	Р	р	Р	Р				Please print clearly, leg and completely. Sample not be logged in and	ibly es can	
= NaOH						D		С	D	Α	D	В		tumaround time clock w		
= NaHSO ₄ C = Na ₂ S ₂ O ₃ E	D = Other E = Encore D = BOD Bottle	Cy/ban	Vert 94 cene 1-26-17-45: 45 17 121				Received By: 'Hury AyA!				Date/Time 1-26-17 Hosts 1/24/19-03-15:45				HAS READ AND AGREES	
Form No: 01-25 (rev. 30-Sept-2013)					15:45		_			**************************************			KH		TO BE BOUND BY ALF TERMS & CONDITIONS	

DIPHA	CHAIN OF A		Whitney Rd, Suite 5 Walker Way			e 1			Rec			à			ALPHA Job#	
******	CUSTODY	Tonawanda, NY 14150: 275 Co	oper Ave, Suite 10	05				- In	LARD	11	25	177			11702506	
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deli	verabl	es						Billing Information	
8 Walkup Dr. TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Orange Cour	nty - Baseline	88 Regs		V	ASF	P-A			ASF	P-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	NY				7	EQ.	ılS (1	File)		EQL	IS (4	File)	PO#	
Client Information		Project # 2010-	-15-				7 [Oth	er	ı						
Client: Sterling Env	v & Eng	(Use Project name as Pr					Regulatory Requirement								Disposal Site Information	
Address: 24 Wade R		Project Manager:	•					NYT	ogs			NYF	art 375	, -	Please identify below location of	of
Latham, NY 12110		ALPHAQuote #:					AWQ Standards NY CP-51								applicable disposal facilities.	
Phone: 518-456-49	000	Turn-Around Time					NY Restricted Use Other								Disposal Facility:	******************
Fax: 518-456-35		Standard		Due Date	:		NY Unrestricted Use								□ NJ ☑ NY	
		Rush (only if pre approved		# of Days	:		NYC Sewer Discharge								Other: NA	
These samples have be							ANA	LYSI	S						Sample Filtration	
Other project specific									88	T	T	T	T	T	Done	t
Baseline 88 Regs Wet Cody Sage 1 Sage	for ling environme	4,Br,CI,NO3, Jurb, Color, He intal. co. m	ex				Tphenol	Wet Chem Parameters	Total Metals (Baseline	NH3 TKN COD	Alk (No Headspace)	T0C	VOC (Baseline 88)	*Dissolved Metals**	Preservation Mataly [] Lab to do (Please Specify below)) B o t
ALPHA Lab ID		1.10	Colle	ection	Sample	Sampler's		100	<u>8</u>	Ž	¥		Š	Ö		l i
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials		Š	To To					*	Sample Specific Comments	е
02506-01	MW-23	35	1/25/17	850	Water	(40)	х	х	Х	х	х	X	Х	X		12
00	MW - 233		111	930	Water	0	х	X	х	x	х	х	Х	X		12
60	MW - 38			1200	Water	0	X	х	Х	Х	x	Х	Х	X		12
04	MW- 220			1315	Water	(0)	Х	х	х	х	X	X	X	X		12
05	MW - 2451	7		1410	Water	(0)	x	X	x	х	X	х	х	X		12
06	MW-245			1445	Water	0	Х	х	х	х	x	х	х	X		12
07	P2 P2-			1055	Water	0	Х	х	х	X	X	Х	Х	X		12
	MS/MSD			1215	Water	0	х	х	x	X	X	X	х	X		12
08					water	(3)	X	X	X	X	×	×	X	X		13
THE RESIDENCE OF THE PROPERTY OF THE PARTY O	Trip Blank		125/17	~-	Lab Water	(w)							X		Trip Blank	2
Preservative Code: A = None	Container Code P = Plastic	Westboro. Certification N			Con	tainer Type							.,	P	Please print clearly, legib	ly
B = HCI A = Amber Glass Mansfield: Certification No: MA015 C = HNO ₃ V = Vial							A	P	Р	P	Р	1	1	+-	and completely. Samples	сап
G = Glass					P	reservative								A	not be logged in and turnaround time clock will	l not
E = NaOH B = Bacteria Cup					,	11 1	D	Α	С	D	Α	D	В	_	start until any ambiguities	
F = MeOH C = Cube Relinquished By: G = NaHSO ₄ O = Other			Date			Recei				-		Time		resolved. BY EXECUTING	G	
H = Na.S.O. E = Encore					1 Will	7 10	NA	1113	V	1.9	5-17	161	5	THIS COC, THE CLIENT		
K/E = Zn Ac/NaOH D = BOD Bottle					70	ph	/	1.	-26		1	501	HAS READ AND AGREE TO BE BOUND BY ALPH			
Janv 1861 1-25-17 2300 dies						1	61	4		17%	25/13	7 2	300	TERMS & CONDITIONS.		
Form No: 01-25 (rev. 30-Sc	rm No: 01-25 (rev. 30-Sept-2013)															

ДІРНА	NEW YO CHAIN CUSTO	OF Mahwah, NJ 07430: 3 Albany, NY 12205: 14	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page 1_			Date Rec'd in Lab 1/25/17						ALPHA Job# L) 70250G		
Westborough, MA			Project Information					Deliverables							Billing Information		
8 Walkup Dr TEL: 508-898-9	220 TEL: 508-822	-9300 Project Name:	Project Name: Orange County - Baseline 88 Regs					ASP-A				ASP-B			Same as Client Info		
FAX: 508-898-9	193 FAX: 508-822	-3288	Project Location: NY					EQuIS (1 File)				EQuIS (4 File)			PO#		
Client Informa	tion		Project # 2010-1						Other								
Client: Ster	ing Env & Eng		(Use Project name as Project #)						y Requ	ureme	ent	Disposal Site Information					
	Vade Rd		Project Manager:						ogs		NY Part 375				Please identify below location of		
Latham, NY 12110		ALPHAQuote #:							AWQ Standards NY CP-51 applicable disposal facilit								
Phone: 518-456-4900		Turn-Around T	Turn-Around Time						estricte	ed Use	1	✓ Other			Disposal Facility:		
Fax: 518-	456-3532	S	Standard Due Date:						NY Unrestricted Use			e			□ NJ ☑ NY		
	paulding@sterlingenv							NYC Sewer Discharge							Other: NA		
	nave been previously							ANALYSIS							Sample Filtration		
			Br.Cl.NO3, Justo, Color, Hex montal.com, mark willians@shedingenisa				Tphenol	Chem Parameters	Fotal Metals (Baseline 88)	NH3 TKN COD	Alk (No Headspace)	TOC	VOC (Baseline 88)	*Dissolved Metals***	Done Lab to do Preservation Lab to do (Please Specify below)		
ALPHA Lab	ID I		Colle	Collection		Sampler's		5	Ž	Z	K E		Š	Dis			
(Lab Use On		Sample ID	Date	Time	Sample Matrix	Initials		Wet	Tota		A			1	Sample Specific Comments		
	-M-H-+	5			Water		×	×	×	×	X	Y	lx_		12		
	AALL	7			Water		x_	v	×	X	X	Х	x		12		
02506 -	10 SW-S	-	165/17	1110	Water	CD	Х	X	x	X	X	Х	x		12		
	11 SW = 8	7	1/25/17	1215	Water	6	х	X	X	Х	Х	X	X		12		
	12 SW - 1	2	1/25/17	1000	Water	0	x	x	X	X	x	X	X		12		
, , , , , , , , , , , , , , , , , , , ,			1125/11		Water		x	x	X	X	X	x	X		12		
		7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Water/		Y_	Y	X	X	×	×	V.		12		
· · · · · · · · · · · · · · · · · · ·	1				Water		X	R	X	X	×	X	X	1	12		
			11		10	>	1					1					
	Trip-Blank			1	Lab Water								X		Trip Blank 2		
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Mansfield: Certific	Westboro: Certification No: MA935 Mansfield: Certification No: MA015					Р	Р	Р	Р	V	V		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not		
E = NaOH F = MeOH	B = Bacteria Cup C = Cube							D A C D				A D B			start until any ambiguities are		
$G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	O = Other E = Encore D = BOD Bottle	Loss	ished By:	Date. 1/25/17 1-25-17	Time 1615 17:15 2300	Tom	Recei	Self	I. P. I.		1/3	5-1	Time	800	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		