November 9, 2005

Mr. Gary Casper New York Department of Environmental Conservation Division of Solid and Hazardous Materials 625 Broadway, 9th Floor Albany, New York, 12233

RECEIVED

Re: Former Star Facility Mountainville, New York NOV 1 4 2005 Bureau of Hazardous Wasto & Radiation Management Owision of Solid & Hazardous Addotion

Dear Mr. Casper

The purpose of this letter is to present the results of the sub-slab vapor and indoor air sampling performed at the above-referenced site in accordance with the approved Site Investigation Work Plan. Additionally, as described below, a conceptual approach to mitigation of the sub-slab vapor detected is presented for your approval.

Sub-slab Vapor and Indoor Air Sampling

The sub-slab vapor and indoor air sampling was performed on September 21 and 22, 2005. The results are summarized on the enclosed Tables 1 and 2 and Figure 1. Sampling and analysis were performed in accordance with the approved work plan dated September 2005.

The results were compared to the criteria in the New York State Department of Health (NYSDOH) draft document titled *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. As we understand it, based on the draft guidance document criteria, the sub-slab vapor and indoor air sampling results indicate a need for further monitoring in the private residence and mitigation measures are required for the warehouse.

Building Description

The Former Star Facility is a former manufacturing building presently used primarily for warehousing operations. The one-story building is approximately 700 feet long by 260 feet wide. Based on available information, three additions were made to the original building, all constructed with concrete floor slabs on grade in the 1950s. The building floor plan is shown on the attached Figure 2.

Based on observations recorded during recent groundwater monitoring well installation activities, the soil below the concrete floor slab was found to be a mixture of gravel, sand, and silt, expected to be of low to moderate permeability. The condition of the floor slab is in part unknown since several areas are covered with finished flooring and/or product packaging. In several areas where the floor slab is exposed, cracks are present and it is apparent that parts of the floor slab have been patched, likely after removal of equipment.

Mr. Gary Casper New York State Department of Environmental Conservation Page 2 November 9, 2005

Sub-slab Depressurization System

A sub-slab depressurization system (SSDS) is proposed to mitigate vapor intrusion from below the floor slab to the indoor building space. However, the effectiveness of a SSDS may be impacted by the apparent less than optimum permeability of the sub-slab soil. Accordingly, TRC is proposing a phased approach to the SSDS implementation.

The first phase of the SSDS design will be a pilot program to determine the effectiveness of sub-slab depressurization using conventional techniques. One pit will be installed below the manufacturing building slab. Additionally, visible, major floor slab cracks and defects will be repaired and monitoring points will be installed radially outward from the pit, as illustrated in the attached Figure 2. Proposed design details for the sub-slab depressurization pit and monitoring points are illustrated in Figure 3.

After installation of the pit and monitoring points, a vacuum will be applied at the pit and the monitoring points will be used to measure the pressure differential between the indoor air and the sub-slab air and to determine the pit's zone of influence. The effectiveness of the sub-slab depressurization pit will be compared to the requirements outlined in the NYSDOH draft guidance document and the United States Environmental Protection Agency (USEPA) document titled *Radon Prevention in the Design and Construction of Schools and Other Large Buildings* (i.e., a minimum sub-slab pressure of –0.002 inches of water <u>column</u>). If the first phase proves the one <u>sub-slab</u> depressurization pit to be effective at the site, a SSDS to depressurize the entire building sub-slab will be installed.

I trust you will find the approach described above to be acceptable. Nevertheless, we will await your approval prior to proceeding.

What is it does not prove feasible as a "onesabslab" dynassuration pit" system? - Propose Lensin & melti \$5505 - Propose Joints leftertine system

Mr. Gary Casper New York State Department of Environmental Conservation Page 3 November 9, 2005

Please do not hesitate to contact me at (212) 221-7822 if you have any questions.

Very truly yours TRC ENGINEERS, INC. David S. Glass, P.E. Assistant Vice President

Attachments

Table 1	Results of Sub-Slab Vapor Analyses
Table 2	Results of Air Sampling Analyses
Figure 1	Summary of Results of Sub-Slab Vapor and Indoor Air Sampling
Figure 2	Sub-Slab Depressurization System Phase I Plan
Figure 3	Sub-Slab Depressurization System Phase I Details

cc: P. Catizone J. Guido

TRC

TABLE 1 FORMER STAR FACILITY MOUNTAINVILLE, NEW YORK RESULTS OF SUB-SLAB VAPOR ANALYSES

Sample Location	SS-1	SS-2	SS-3	SS-4	Trip Blank	
Date Collected	09/22/05	09/22/05	09/22/05	09/21/05		
Compound	ug/m ³	ug/m ³	ug/m³	ug/m ³	ug/m ³	
1,1,1-Trichloroethane (TCA)	37	23,000	680	100	ND	
1,1-Dichloroethane	18	6900	440	ND	ND	
1,1-Dichloroethene	ND	ND	2,800	ND	ND	
1,2,4-Trimethylbenzene	ND	ND	NĐ	7.3	2.4	
1,3,5-Trimethylbenzene	ND	ND	ND	3	0.64 J	
2-Propanol	ND	ND	ND	ND	4.3	
4-Ethyltoluene	ND	ND	ND	5.9	ND	,
Acetone	ND	ND	67	55	17	stigation
Benzene	ND	ND	ND	0.66	1.6	m' terie
Carbon disulfide	ND	2,200	ND	ND	2.8	Cr
Chloroform	21	ND	49	ND	ND	Lu notin
Chloromethane	ND	ND	ND	ND	0.98	why
cis-1,2-Dichloroethene	590	310,000	ND	ND	ND	in door
Ethanol	ND	ND	440	14	89	
Ethylbenzene	ND	ND	ND	2.1	1.8	
Trichlorofluoromethane (Freon 11)	ND	ND	ND	1.5	1.5	
Dichloro-difluoro-methane (Freon 12)	ND	ND	ND	- 2.4	2.7	
Methyl ethyl ketone	ND	ND	ND	23	2.2	
Methyl tert-butyl ether	ND	ND	ND	7.3	2.8	
o-Xylene	ND	ND	ND	3.6	2.2	
m,p-Xylene	ND	ND	ND	9.8	6.6	
Styrene	ND	ND	ND	1.5	1.2	
Tetrachloroethylene (PCE)	3500	36,000	3,000	62	ND	
Toluene	ND	ND	ND	5.6	6.6	
trans-1,2-Dichloroethene	ND	(4.600)	ND	ND	ND	
Trichloroethene (TCE)	5700	710,000	460	ND	ND	

Notes:

 $ug/m^3 = micrograms per cubic meter$

ND = Not detected

J = Estimated Value

Bolded results are above the NYSDOH Draft "mitigation" criteria.

Only compounds detected above laboratory reporting limits are listed.

Trip blank leaked, indicating collection of a sample during field sampling and/or transportation of the sample.

TABLE 2 FORMER STAR FACILITY **MOUNTAINVILLE, NEW YORK RESULTS OF AIR SAMPLING ANALYSES**

Sample Location	IA-1	IA-2	IA-2 Duplicate	IA-3	IA-4	OA-1 (Background)	Trip Blank
Date Collected	09/21/05	09/21/05	09/21/05	09/21/05	09/21/05	09/21/05	
Compound	ug/m ³	u <u>g/</u> m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³
1,2,4-Trimethylbenzene	2.3	ND	ND	ND	1.1	ND	2.4
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	0.64 J
2-Propanol	ND	ND	ND	ND	ND	ND	4.3
Acetone	92	31	30	ND	5.3	10	17
Benzene	0.68	ND	ND	ND	ND	ND	1.6
Bromomethane	ND	ND	ND	ND	ND	0.74	ND
Carbon disulfide	ND	ND	ND	ND	ND	ND	2.8
Chloroethane	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.82	ND	ND	ND	0.69	0.75	0.98
cis-1,2-Dichloroethene	1.2	ND	ND	ND	ND	ND	ND
Ethanol	3,200 E	6,600 E	6,600 E	72,000 E	22	57	89
Ethylbenzene	3.9	ND	ND	ND	0.72 J	ND	1.8
Trichlorofluoromethane (Freon 11)	1.6	ND	ND	ND	1.5	1.1	1.5
Dichloro-difluoro-methane (Freon 12)	2.6	ND	ND	ND	2.5	2.7	2.7
Heptane	7.4	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone	5	ND	ND	ND	3.2	ND	2.2
Methyl tert-butyl ether	ND	ND	ND	ND	ND	ND	2.8
o-Xylene	3.6	ND	ND	ND	0.9	ND	2.2
m, p-Xylene	9.6	8	ND	ND	1.8	ND	6.6
Styrene	8.6	ND	ND	ND	0.75	ND	1.2
Tetrachloroethylene (PCE)	2.3	ND	ND	ND	ND	ND	ND
Toluene	12	12	11	ND	0.94	ND	6.6
Trichloroethene (TCE)	26	30	30	ND	ND	ND	ND

Notes:

1 2 2 4 8 6 7 8 8 10 11 12 13 14 13 8 17 18 8 21 22 23 34 35 28 27 28 28 35 34 32 32 32 34 35 36

TRUE NORTH

SOURCE FOR BUILDING FLOORPLAN: RODGER BRALEY

2						
LEGEND		-				
PIT 1 LOCATION OF PROPOSED SUB-SLAB DEPRESSURIZATION PIT						
♦ MP-1 LOCATION OF PROPOSED MONITORING POINT						
DENOTES L (BASED ON	IMITS OF BUILDING ADI AVAILABLE HISTORIC I	DITIONS NFORMATION)				
External Drawing References: 1:/Projects/48715- Star Facility	/Figures/TB- 11x17.dwg STARWAREHOUSE2-RV	T-FleorPlan-Level1.dwg				
FORMER MOUNTAIN	STAR FACILITY VILLE, NEW YOR	к				
TRC TRC ENGINEERS, INC.	Designed by: JG	Date: 11/8/2005				
1430 Broadway New York, New York 10018	Drawn by SMOR	Scale: AS SHOWN				
FIGURE NO. 2 File Name: 2. Phase I Plan and Details.dwg 48715-000						
Drawing Title:						
SUB-SLAB DEPRE	ESSURIZATION	SYSTEM				

xternal Drawing References: I: Projects/48715- Star Fa	cility/Figures/TB- 11x17.dwg STARWAREHOUSE2+RV	Σ-FloorPlan-Level1.dwg	
FORME MOUNTA	ER STAR FACILITY INVILLE, NEW YORI	K	
TRC TRC ENGINEERS, INC.	Designed by: JG	Date: 11/8/2005	
1430 Broadway New York, New York 10018	Drawn by: SMOR	Scale: NOT TO SCALE	
FIGURE NO. 3	File Name: 2- Phase I Plan and Details dwg	Project Number: 48715-0000-00000	
Drawing Title: SUB-SLAB DEPI	RESSURIZATION DETAILS	SYSTEM	