

OCT 6 - 2003

Ms. Maria Jon U.S. Environmental Protection Agency Emergency and Remedial Response Division Eastern New York Section 290 Broadway New York, New York 10007 September 26, 2008 Project No. 104-0012

July 2008 Sampling Report
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Dear Ms. Jon:

Please find enclosed three copies of the *July 2007 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.* The report summarizes the methods and findings of the 2008 annual sampling program for Operable Unit 2. Groundwater, surface water, and sediment were sampled during this program.

Stable to decreasing concentrations of volatile organic compounds (VOCs) were reported for affected monitoring wells. A downward trend in chlorinated VOCs is now apparent in OW-2 and OW-6.

Please note in Section 7.0 that we have requested a few modifications for the 2009 sampling program. Based on long-term nondetectable VOCs at MW-1, OW-8, and OW-25 and declining concentrations in OW-2 and OW-6, it is proposed that MW-1, OW-8, and OW-25 be eliminated from the 2009 annual monitoring program. It is also proposed to continue surface water sampling for VOC analysis at SW-1 and SW-2 in Gold Creek, but to eliminate sediment sampling at SED-1 and SED-2. Surface water is a more sensitive and specific indicator of potential risks of discharge of groundwater to surface water. With these proposed changes, the summer of 2009 monitoring round would include:

- MW-4

- OW-10R

- OW-21

- OW-2

- OW-13R

- OW-22

- OW-5

- OW-18

- SW-1 and SW-2

- OW-6

- OW-19

Do not hesitate to call (412.374.0989) or email (bjones@cardinalres.com) if you have questions about this report.

Sincerely,

CARDINAL RESOURCES LLC

Barbara H. Jones Jano

Principal

cc: Carroll & Dubies PRP Group

Ken Karwowski - USFWS Fay S. Navratil - NYSDOH

July 2008 Sampling Report

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Prepared for:

Kolmar Laboratories, Inc. Jonathan A. Murphy, Esq.

Wickhen Products, Inc. Robert J. Glasser, Esq.

Prepared by:

Cardinal Resources LLC 1505 East Carson Street, Suite 200 Pittsburgh, Pennsylvania 15203

Project No. 104-0012-0300

September 2008

July 2008 Sampling Report

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Prepared for:

Kolmar Laboratories, Inc. Jonathan A. Murphy, Esq.

Wickhen Products, Inc. Robert J. Glasser, Esq.

Prepared by:

Cardinal Resources LLC 1505 East Carson Street, Suite 200 Pittsburgh, Pennsylvania 15203

Project No. 104-0012-0300

September 2008

Table of Contents

1.0	Intro	oduction	1
	1.1	Site Setting	1
	1.2	Land and Resource Use	
	1.3	History of Waste Disposal and Contamination	
	1.4	Overview of Remedies	
		1.4.1 OU1 Remedy	
		1.4.2 OU2 Remedy	
	1.5	Overview of 2006 Groundwater Monitoring Program	
	1.6	Resumption of Annual Monitoring Program	
2.0	Grou	undwater Sample Collection	4
	2.1	Groundwater Elevations	
	2.2	Equipment	
	2.3	Well Purging and Sampling	4
3.0	Colle	ection of Surface Water and Sediment Samples	6
	3.1	Surface Water Sampling	6
	3.2	Sediment Sampling	6
4.0	Grou	undwater Results	8
	4.1	Groundwater Elevations	
	4.2	Summary of Groundwater Quality Results	8
	4.3	Trends for Chlorinated VOCs	
	4.4	Benzene Concentration Trends	
	4.5	Achievement of MCLs and SGVs	
	4.6	Monitored Natural Attenuation Trends	11
5.0	Gold	d Creek Sampling Results	12
	5.1	Surface Water Results	
	5.2	Sediment Results	
	5.3	Discussion	12
6.0	Data	Quality Review	13
	6.1	Introduction	
	6.2	Results of Data Review	
		6.2.1 Field QC Samples	14
		6.2.2 Data Quality and Usability	14
7.0	Sum	nmary and Conclusions	15
8.0		erences	
J.U	11010	/I VIIVVU	

List of Tables

Table 1	Groundwater Field Stabilization Parameters - July 2008
Table 2	Groundwater and Surface Water Elevation Data - July 22, 2008
Table 3	Summary of Detected TCL Volatile Organic Compounds in Groundwater - July 2008
Table 4	Natural Attenuation Parameters - July 2008
Table 5	MCL and SGV Exceedances, 1999, 2004, 2006, 2007, and 2008
Table 6	July 2008 - Detected Volatile Organic Compounds - Surface Water and Sediment
	Sampling Locations in Gold Creek
Table 7	Weighting and Scoring of Natural Attenuation Parameters
Table B-1	Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater
Table B-2	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water
Table B-3	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment

List of Figures

Figure 1	Site Location Map
Figure 2	Groundwater Contour Map - July 2008
Figure 3	Volatile Organic Compound Exceedances in Groundwater - July 2008
Figure 4	Chlorinated VOC Concentration Trends in OW-5 and OW-13/OW-13R,
	Pre-Excavation to July 2008
Figure 5	Chlorinated VOC Concentration Trends in OW-2 and OW-6, 2006-2008
Figure 6	Benzene Concentration Trends in Selected Monitoring Wells, Pre-Excavation to July 2008
Figure 7	Benzene Concentration Trends Based on Distance from Source
Figure 8	Benzene Concentrations in Groundwater - July 2008

List of Appendices

Appendix A	Laboratory Reports with Marked Form Is from Data Review
Appendix B	Historic Groundwater, Surface Water, and Sediment Results
Appendix C	Data Quality Review - Checklists

1.0 Introduction

This report summarizes the methods and results of a field sampling program performed in July 2008 at the Carroll and Dubies Superfund Site (Site), Town of Deerpark, Orange County, New York. The field work followed the August 2005 Supplemental Sampling Work Plan (Cardinal Resources LLC [Cardinal Resources], 2005) approved by the United States Environmental Protection Agency (U.S. EPA), and incorporates the recommendations of the *November 2006 Sampling Report* (Cardinal Resources, 2007). The July 2008 sampling and analysis event included 13 wells comprising the revised monitoring well network: MW-1, MW-4, OW-2, OW-5, OW-6, OW-8, OW-10R, OW-13R, OW-18, OW-19, OW-21, OW-22, and OW-25. The purpose of this sampling program is to document volatile organic compound (VOC) concentrations in the outwash aquifer at the site, and in surface water and sediment in Gold Creek.

1.1 Site Setting

The three-acre Site is located in the Town of Deerpark in Orange County, New York, which is approximately 3,000 feet northeast of the City of Port Jervis, New York (Figure 1). The Site is situated on the northwestern flank of the Neversink Valley. Gold Creek lies approximately 1,500 feet to the east, and the Neversink River is located approximately 2,000 feet beyond Gold Creek.

The Site is underlain by sand and gravel deposits of glacial and glaciofluvial origin. Groundwater monitoring wells on the Site have been completed in the outwash unit, found above a low-permeability till zone that functions as an aquitard. The outwash unit consists of fine to coarse sand with fine to coarse gravel. The direction of groundwater flow is generally toward the southeast.

1.2 Land and Resource Use

The immediate surrounding area includes undeveloped woodlands to the north; undeveloped woodlands and a sand and gravel quarry pit to the northeast; the closed City of Port Jervis landfill, the Orange County Transfer Station, and a concrete products fabrication company to the south; and a sparsely vegetated, shale bedrock hillside to the west. In 2004, the City of Port Jervis began a small sand and gravel operation on land it owns, immediately to the southeast of the former lagoons, in the vicinity of OW-5 and OW-6.

1.3 History of Waste Disposal and Contamination

In 1971, the three-acre Carroll and Dubies Site began operating as a disposal facility consisting of a series of lagoons. The majority of wastes disposed in the lagoons were septic waste, municipal sewage sludge, and solid waste. The Site also received liquid industrial wastes from approximately 1971 to 1979.

Over time, waste constituents in the lagoons leached into groundwater and affected the outwash aquifer. VOCs were of particular concern because of their dispersion in the aquifer and relative risk. Benzene, vinyl chloride, and other VOCs were found through a series of investigations to exceed Applicable or Relevant and Appropriate Requirements (ARARs) in Site wells.

1.4 Overview of Remedies

The remedies selected for the Site were defined by two operable units (OU), the waste lagoons themselves, and the impacted groundwater. Remedies were selected and executed to remove wastes from the lagoons, restore the Site to a safe and stable condition, and promote and track improvements in groundwater quality.

1.4.1 OU1 Remedy

The goals of the OU1 remedy conducted in 1999 were to prevent further leaching of contaminants into groundwater, and to reduce the risks to potential future workers at the Site who could come in contact with lagoon wastes. The steps in this process were:

- Excavation of all wastes from Lagoons 1, 2, 3, 4, 6, 7, and 8, along with surrounding soils that exceeded specified levels for indicator chemicals.
- Appropriate management of all excavated wastes and soils.
- Placement of imported clean fill in the excavations, followed by grading for drainage control and vegetation.

1.4.2 OU2 Remedy

The goals of the ongoing OU2 remedy, which was initiated in 1999, have been to use natural attenuation to reduce or eliminate the risks associated with the ingestion of Site groundwater for future Site workers and to protect Gold Creek from Site-related impacts. The steps in the program are:

- Execution of a groundwater monitoring program in accordance with Work Plans and other documents prepared for the project and approved by the U.S. EPA.
- With each sampling round, a report is prepared for U.S. EPA that documents the progress made in achieving the remedial goals.

1.5 Overview of 2006 Groundwater Monitoring Program

A supplemental sampling program was initiated in February 2006 in response to the five-year review. Part of the program was to install two new monitoring wells, OW-24 and OW-25, east and south of OW-2, OW-5, and OW-6 (Figure 2), to determine the extent of the chlorinated VOC plume in the vicinity of OW-2, OW-5, and OW-6. Two existing monitoring wells that were not part of the ongoing groundwater monitoring network, OW-17 and OW-23, down gradient and to the west of OW-2, OW-5, and OW-6, were also redeveloped and sampled.

Groundwater was sampled three more times in 2006: in May, August, and November. In May and November 2006, seven B Series wells (OW-2, OW-5, OW-6, OW-17, OW-23, OW-24, and OW-25) in the vicinity of the chlorinated VOC plume were sampled. In August 2006, the sampling program included the 19 wells evaluated in February. In each round, samples were analyzed for VOCs and selected monitored natural attenuation (MNA) parameters, including the dissolved gases ethane, ethene, and methane.

The purpose of quarterly sampling of the wells in the vicinity of the chlorinated VOC plume was to evaluate trends through an entire hydrologic cycle. In all four sampling rounds, the results for the chlorinated VOC plume have been consistent. Tetrachloroethene (PCE) and trichloroethene (TCE) and their degradation products (chloroethane, 1,2-dichloroethene, and vinyl chloride) were nondetectable in OW-24 and OW-25. In OW-17 and OW-23, chlorinated VOCs were occasionally detected at low, estimated concentrations below the reporting limit, and below state and federal groundwater criteria. Chlorinated VOC impacts at OW-2, OW-5, and OW-6 remain localized. For additional information on the February, May, August, and November 2006 sampling events, refer to the respective quarterly reports (Cardinal Resources, April 2006, July 2006, November 2006, and January 2007).

1.6 Resumption of Annual Monitoring Program

In June 2007, the annual groundwater monitoring program resumed, and has continued in 2008.

2.0 Groundwater Sample Collection

This section describes methods used to collect groundwater samples for analysis. The results of the groundwater sampling and analysis program are provided in Section 3.0.

2.1 Groundwater Elevations

Before sampling began, groundwater elevations for all site wells were determined from measured depths to water from the reference point elevations. The depth to groundwater was measured using an electronic water-level meter and recorded in a monitoring well sampling form.

2.2 Equipment

Dedicated low-flow bladder pumps were used to purge and sample the entire 2008 monitoring well network, with the exception of wells OW-13R, OW-18, and OW-25. These wells were sampled using a downhole bladder pump that was decontaminated initially and after sampling each well by:

- · Washing with low phosphate detergent and tap water
- · Rinsing with tap water
- Rinsing with deionized water
- Air drying

Clean disposable tubing and a clean disposable bladder were used for each well sampled with the reusable bladder pump.

2.3 Well Purging and Sampling

All wells were purged using low-flow (100 to 200 milliliters per minute [mL/min]) techniques. During purging of each monitoring well, temperature, dissolved oxygen (DO), reduction/oxidation (redox) potential, specific conductance (conductivity), pH, and turbidity were monitored and recorded on field forms in average intervals of 5 minutes. Groundwater field parameters were measured with a YSI Model 556 MPS-10 multiparameter unit equipped with a flow-through cell and a Lamotte Turbidity Meter Model 2020, which were calibrated prior to sampling activities. The goal was to obtain three consecutive readings of the field parameters within the following ranges:

- ±1.0 degree centigrade (°C) for temperature
- ±10% or ±0.3 milligrams per liter (mg/L) for DO (whichever is greater)
- ±10 millivolts (mV) for redox potential
- ±3% for conductivity
- ±0.1 for pH
- ±10% or ±2 nephelometric turbidity units (NTUs) for turbidity (whichever is greater)

The final stabilized readings prior to sample collection for each of the monitoring wells are provided in Table 1. Groundwater purged from the monitoring wells was generally clear and contained little suspended sediment. When purging was complete, groundwater samples were collected at a flow rate of between 100 and 200 mL/min directly from the pump tubing. Samples were placed immediately on ice for overnight shipment to TestAmerica Laboratories (formerly Severn Trent Laboratories), North Canton, Ohio.

3.0 Collection of Surface Water and Sediment Samples

As part of the ongoing evaluation of conditions in Gold Creek, surface water and sediment samples were collected from two locations along Gold Creek, SED-1/SW-1 (downstream) and SED-2/SW-2 (upstream) (Figure 2). The results from the Gold Creek sampling program are provided in Section 5.0.

3.1 Surface Water Sampling

Two surface water samples were collected from Gold Creek at the established locations that have been sampled throughout the OU2 monitoring period at SW-1, the downstream sample, and SW-2, the upstream sample (Figure 2).

Samples were collected for VOCs in accordance with the *Field Sampling and Analysis Plan Addendum* (Shield Environmental Associates, Inc., 1998), using a disposable container provided by the laboratory to collect and transfer the sample water at each location to the VOC sample vials. The sample bottles were labeled appropriately, placed in a cooler with ice, and sent to the laboratory for analysis.

Surface water elevations were determined at the two locations sampled, and also at the quarry pond, which was not sampled.

3.2 Sediment Sampling

Two sediment samples were collected from the established locations coinciding with SW-1 and SW-2 (Figure 2), and were designated SED-1 and SED-2. The samples were collected at the sediment/water interface.

The sampling approach was designed to collect samples with relatively lower moisture content. First, a decontaminated 8-inch diameter polyvinyl chloride (PVC) pipe, approximately 2 feet in length, was driven into the sediments to about 1 foot below the sediment surface. A decontaminated hand pump was then used to draw off water from the surface of the sediments, and the upper layer of muck and debris was scraped from the surface. The samples were collected using a stainless-steel scoop. The stainless-steel scoop, pump, and PVC pipe were decontaminated between sediment sampling locations.

This technique has been demonstrated to increase the solids content of the sediment samples, compared to previous sampling events. Higher solids concentrations improve the analytical reporting limits.	

4.0 Groundwater Results

This section describes the results of the July 2008 sampling event and presents a discussion of site-wide groundwater conditions.

4.1 Groundwater Elevations

The groundwater elevations for this sampling round are presented in Table 2. Associated groundwater elevation contours are shown in Figure 2.

The groundwater elevations in the wells were on the average about 0.39 foot lower than observed in June 2007; the direction of groundwater flow and gradient were about the same. Groundwater on site flows toward the southeast and Gold Creek. The groundwater gradient across the former lagoon site is approximately 0.090. This gradient transitions to a lower gradient, at about the location of the towpath. From the towpath to Gold Creek, the gradient is very shallow, approximately 0.001. The steeper gradient on the western side of the site is due to the depth to bedrock along the valley wall. As the depth to bedrock increases towards the valley floor, the thickness of the alluvial fill increases and the groundwater gradient flattens.

4.2 Summary of Groundwater Quality Results

VOCs detected in groundwater analysis in the July 2008 sampling event are presented in Table 3. Laboratory analytical reports, including marked Form Is from the data validation process, are included in Appendix A in hard copy. An electronic copy of the entire data package is also provided. Historical data of detected organic compounds have been combined with the most recent data and are presented in Table B-1 in Appendix B. In tables, graphs, and discussion, the qualifier "J" with a reported concentration means an estimated result, with the analyses positively identified but the numerical value an approximate concentration. The qualifier "U" means that the analysis was not detected above the reported quantitation limit.

A variety of MNA (monitored natural attenuation) field and laboratory parameters were analyzed in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, March 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume.

Eleven VOCs were detected in various wells during this sampling event, five of which exceeded regulatory limits. Regulatory exceedances of VOCs in groundwater are reported in Table 5 and plotted in Figure 3.

VOC concentrations in monitoring wells in the July 2008 sampling are within the ranges seen in 2007, with concentrations for exceeding constituents lower in 11 out of 16 instances compared to June 2007. In the remainder of this section, specific groundwater trends and conditions are discussed in greater detail, including:

- Concentration trends for chlorinated VOCs
- Concentration trends for benzene
- Achievement of regulatory limits in monitoring wells
- MNA trends

4.3 Trends for Chlorinated VOCs

Chlorinated VOCs are the predominant constituents on the eastern side of the site, particularly in OW-2, OW-5, and OW-6, but are detectable in other locations, including OW-13/OW-13R. Compared to OW-2 and OW-6, groundwater at OW-5 and OW-13/OW-13R is generally higher in methane or total organic carbon (TOC), has lower redox (is more reduced), and is more amenable to reductive dechlorination. In these locations, chlorinated VOCs in general show a downward trend over time (Figure 4). Note that for OW-5 the decline in primary chlorinated VOCs, tetrachloroethene, and trichloroethene, has been slow, but relatively smooth; patterns for 1,2-dichloroethene, a degradation product, have been downward but more variable.

In OW-2 and OW-6, downward trends in total chlorinated VOC concentrations are also apparent beginning in 2006 (Figure 5). Two of the three chlorinated VOCs exceeding criteria in OW-2 (1,2-dichloroethene [total] and tetrachloroethene) were the lowest ever recorded in 2008. In OW-6, exceeding constituents were the lowest since 2002.

4.4 Benzene Concentration Trends

As was reviewed in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), different VOCs have predominated in different areas downgradient of the former lagoons. Benzene has predominated in several monitoring wells in the southwestern areas of the Site, with the highest concentrations observed in MW-4, OW-10R, and OW-13R. Benzene was below the federal Maximum Contaminant Level (MCL) of 5 ug/L in July 2008 in MW-4, OW-18, OW-19, OW-21, and OW-22,

although not below the New York State Standard or Guidance Value (SGV) of 1 ug/L. Benzene exceeded the MCL of 5 ug/L in only two monitoring wells in July 2008, OW-10R (5.7 ug/L) and OW-13R (6.5 ug/L). The OW-13R benzene result was the lowest ever reported for this well.

Benzene continues to exhibit an overall downward trend in individual wells with the historically the high concentrations, OW-10R, OW-13R, and OW-22, illustrated in Figure 6. There has also been a flattening and mass decline of the benzene plume along the groundwater flow path, as illustrated in Figure 7. This depiction shows how the benzene concentration has declined 2 to 3 orders of magnitude since 1999 in OW-10R and OW-13R, closest to the source area. The benzene concentration in OW-18, which is located approximately 850 feet downgradient of the former lagoons, has also shown a decline since 1999, from 4.7 ug/L in February 1999 to 1.5 ug/L in July 2008.

Benzene slightly exceeded the state SGV of 1 ug/L in OW-18 (1.5 ug/L) and OW-19 (1.4 ug/L) in 2008, but was not detected down gradient in Gold Creek surface water or sediment (Table 6). The extent of benzene in groundwater in July 2008 is depicted in Figure 8. Figure 9 shows benzene concentrations in groundwater in February 1999, before OU1 was initiated. Clearly, the benzene concentration in groundwater has substantially declined in concentration.

4.5 Achievement of MCLs and SGVs

The Supporting Documentation for Five-Year Review (Cardinal Resources, 2005) described how in the five years between completion of OU1 remediation in 1999 and 2004, some, but not all, of the MCLs and state groundwater SGVs had been met in groundwater wells downgradient of the former lagoons. Table 5 summarizes these findings through the current sampling round. Only wells consistently monitored from 1999 through 2008 are shown in this table and graph for comparison purposes so that the same wells are compared each time. In July 2008, there were 16 SGV exceedances and 6 MCL exceedances, which ties last years sampling event as the lowest ever. The overall trend since 1999 indicates that there has been improvement in groundwater quality relative to MCLs and SGVs.

4.6 Monitored Natural Attenuation Trends

A variety of MNA field and laboratory parameters have been analyzed over time in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume. The patterns seen in July 2008 are consistent with the observations presented previously:

- Methane concentrations of 50 ug/L or greater are observed in monitoring wells to the west and south, coincident with wells in the area where benzene predominates.
- Relatively high TOC, 2 mg/L or greater, is typically found in the same area as elevated methane concentrations.
- Most often, lower DO and lower redox potential indicating reduced conditions are found within the same area.

Table 7 illustrates the variability of conditions conducive to, or indicative of, natural attenuation of chlorinated VOCs across the site. This weighting and scoring table is adapted form U.S. EPA's technical protocol for natural attenuation of chlorinated aliphatic hydrocarbons (U.S. EPA, 1997). It shows a high score for OW-10R, located close to the former lagoons on the western side of the Site, moderate scores for OW-13R and OW-2, and a low score for OW-25, on the eastern side of the site.

5.0 Gold Creek Sampling Results

Refer to Section 3.0 for a description of the methods for surface water and sediment sample collection along the creek. Table 6 provides the results for VOCs detected in surface water and sediment samples collected from two locations along Gold Creek (Figure 2).

The results are arranged in the table from the sampling location furthest downstream (SED-1/SW-1) to the furthest upstream (SED-2/SW-2). These are the established sampling locations that have been used throughout the OU2 monitoring program.

5.1 Surface Water Results

Surface water samples here were nondetectable for VOCs (Table 6). Historic SW-1 and SW-2 samples occasionally had low, estimated concentrations of VOCs below New York State Surface Water Standards (Appendix B, Table B-2).

5.2 Sediment Results

2-Butanone was detected in each of the three sediment samples collected (SED-1, SED-1 DUP, SED-2), with the results below reporting limits and qualified as J (estimated), shown in Table 6. 2-Butanone is often common laboratory artifacts, although were not reported in the associated laboratory blanks. A low concentration of toluene below reporting limits was also detected in the upstream sample, SED-2. The findings are comparable to what was observed previously in SED-1 and SED-2.

5.3 Discussion

The results for the two sampling locations along Gold Creek are consistent with past observations for SED-1/SW-1 and SED-2/SW-2. That is, there are occasional low detections of VOCs in surface water and sediment. Detections have occurred in locations upstream and downstream of the former lagoons. The results also show that there is no apparent relationship between upgradient groundwater conditions and the surface water quality of Gold Creek.

Based on the nondetectable to low detections of VOCs in upstream and downstream samples that do not exceed conservative ecological criteria, there is no evidence that ecological conditions in Gold Creek are being adversely affected by the Site.

6.0 Data Quality Review

Data quality review, also called data validation, was performed on the analytical data packages to assure that quality and usability requirements were met.

6.1 Introduction

A Tier II data quality review of the sample data package was completed using U.S. EPA guidelines. The Tier II data evaluation consisted of a review of data package completeness and a quality control (QC) review, as summarized in the QC forms provided by the laboratory, covering:

- Signed transmittal page
- Data package narrative
- Sample transmittal documentation
- Standard VOC QC forms for:
 - Surrogate recovery
 - Matrix spike/matrix spike duplicate (MS/MSD) recovery
 - Laboratory check samples
 - Method blank summary
 - Instrument performance check
 - Internal standard summary and retention time (RT) summary
 - Initial calibration data
 - Continuing calibration data
- Form Is and raw data for field samples, blanks, laboratory control samples, MS/MSDs
- Copies of logbook pages documenting sample preparation, extract transfer, instruments, and sample tracking
- Holding times
- Form Is and raw data for field and QC samples
- Field duplicates and field, trip, and decontamination blanks.

Checklists documenting the review of two laboratory sample delivery groups (SDGs) are provided in Appendix C.

6.2 Results of Data Review

The hand-marked, qualified Form Is are provided in Appendix A with the laboratory reports. Results in Tables 3, 6, B-1, B-2, and B-3 reflect the qualified data. The data qualifiers used as a result of the data review are:

- U The analyses were analyzed for, but were not detected above the reported sample quantitation limit.
- J The analyses were positively identified; the associated numerical value is the approximate concentration of the analyses in the sample.
- UJ The analyses were not detected above the reported quantitation limit, but the reported quantitation limit is approximate.

The data packages were complete and appropriately organized, and all relevant supporting information was provided.

6.2.1 Field QC Samples

The field QC samples for VOC analyses were one surface water duplicate (SW-1); one sediment duplicate (SED-1); one groundwater duplicate (OW-13R); one MS/MSD pair (OW-13R); one decontamination blank for the pump (pump rinsate); three field blanks; and three trip blanks. A field blank was collected for each of the three sampling days, and a trip blank was included with each sample cooler.

6.2.2 Data Quality and Usability

Although there were some qualifications as estimated or nondetectable values that resulted from the data quality review process, the analytical results are usable and of acceptable quality; no results have been rejected.

7.0 **Summary and Conclusions**

The 2008 annual monitoring program for the Carroll and Dubies site continues as part of the OU2 remedy. The findings are:

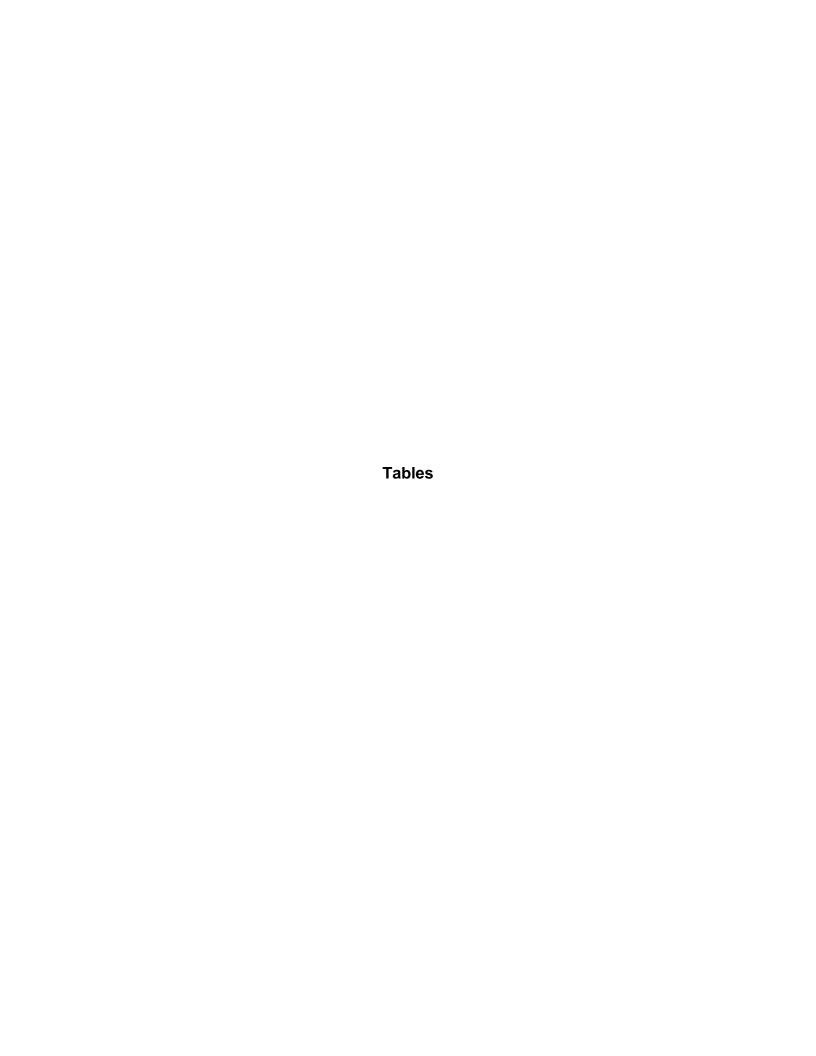
- Chlorinated VOC and benzene concentrations were, in most cases, the same as or lower in July 2008, compared to previous sampling rounds. A downward trend in chlorinated VOC concentrations is now apparent in OW-2 and OW-6.
- Chlorinated VOCs were not detected in MW-1, OW-8, and OW-25, which bound the site on the east.

VOCs were nondetectable in surface water, and present in low, estimated concentrations in upstream and downstream sediment samples in Gold Creek.

These results support the U.S. EPA's conclusions in the Protectiveness Statement contained in its Five-Year Review Report:

"Because the implemented remedial actions at OUs at the Carroll and Dubies Sewage Disposal Site are protective, the Site is protective of human health and the environment. There are no exposure pathways that would result in unacceptable risks and none are expected as long as the institutional controls, which are in place, and the natural attenuation remedy selected in the decision documents for the Site continue to be property monitored and maintained."

Based on long-term nondetectable VOCs at MW-1, OW-8, and OW-25 and declining concentrations in OW-2 and OW-6, it is proposed that MW-1, OW-8, and OW-25 be eliminated from the 2009 annual monitoring program. It is also proposed to continue surface water sampling for VOC analysis at SW-1 and SW-2 in Gold Creek, but to eliminate sediment sampling at SED-1 and SED-2. Surface water is a more sensitive and specific indicator of potential risks of discharge of groundwater to surface water. With these proposed changes, the summer of 2009 monitoring round would include:


> - MW-4 - OW-18 - OW-2 - OW-19 - OW-5 - OW-21 - OW-22 - OW-6 - OW-10R

- SW-1 and SW-2

- OW-13R

8.0 References

- Cardinal Resources LLC, July 2007, *June 2007 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York,* Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources LLC, January 2007, November 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, November 2006, August 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, July 2006, May 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, April 2006, February 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources, Inc., August 2005, Supplemental Sampling Work Plan, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources, Inc., March 2005, Supporting Documentation for Five-Year Review, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Shield Environmental Associates Inc., 1998, Field Sampling and Analysis Plan Addendum, Carroll & Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- United States Environmental Protection Agency, 1997, Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Groundwater, EPA/540/R-97/504, Office of Research and Development, Washington, DC.

Table 1 Groundwater Field Stabilization Parameters July 2008

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Temperature (°C)	Dissolved Oxygen (mg/L)	Redox (mV)	Specific Conductance (uS/cm)	pH (standard units)	Turbidity (NTUs)
MW-1	07/24/08	11.63	0.24	148.2	190	6.27	6.86
MW-4	07/24/08	14.60	0.28	-10.2	561	6.52	6.74
OW-2	07/24/08	14.78	0.39	212.7	115	5.40	6.07
OW-5	07/23/08	13.63	2.32	112.8	226	6.14	6.73
OW-6	07/23/08	13.40	2.59	138.2	77	5.82	6.53
OW-8	07/23/08	11.63	0.67	12.0	109	6.31	75.4
OW-10R	07/22/08	12.47	0.19	-20.8	433	6.69	2.00
OW-13R	07/22/08	14.22	0.13	-57.9	516	6.79	240 ⁽¹⁾
OW-18	07/22/08	12.26	0.13	-34.1	415	6.28	29.00
OW-19	07/22/08	14.80	0.65	-17.3	441	6.37	12.00
OW-21	07/23/08	13.74	5.80	30.9	414	6.05	5.15
OW-22	07/23/08	13.35	1.09	-26.9	408	6.19	7.20
OW-25	07/23/08	12.71	4.86	134.7	106	6.28	_(2)

Notes:

mg/L = milligrams per liter

mV = milliVolts

uS/cm = microsiemens per centimeter

NTU = nephelometric turbidity units

⁽¹⁾Sample reportedly had a dark color, resulting in an inaccurate turbidity reading.

⁽²⁾Dark color in sample interfered with turbidity readings.

Table 2
Groundwater and Surface Water Elevation Data⁽¹⁾
July 22, 2008
Carroll and Dubies Superfund Site

Town of Deerpark, Orange County, New York

Well No.	Top of Casing Elevation or Staff Gauge ⁽²⁾	Screened Interval	Depth to Groundwater or Surface Water	Groundwater or Surface Water Elevation	
MW-1	469.39	28.5 - 43.5	35.37	434.02	
MW-4	470.13	35.3 - 50.3	39.38	430.75	
OW-2	472.33	30.0 - 47.0	41.73	430.60	
OW-3	472.70	30.0 - 46.5	42.45	430.25	
OW-4	473.33	26.5 - 27.5	36.35	436.98	
OW-5	459.85	25.5 - 45.5	29.36	430.49	
OW-6	464.40	31.4 - 51.4	33.88	430.52	
OW-8	464.63	34.6 - 54.6	34.03	430.60	
OW-9	472.91	25.3 - 35.3	31.60	441.31	
OW-10R	469.27	29.0 - 39.0	32.32	436.95	
OW-13R	457.69	25.0 - 35.0	27.40	430.29	
OW-15	472.05	22.0 - 32.0	13.42	458.63	
OW-16	453.90	18.0 - 28.0	23.80	430.10	
OW-17	447.18	11.0 - 21.0	16.98	430.20	
OW-18	444.57	11.0 - 21.0	14.70	429.87	
OW-19	438.69	5.0 - 15.0	8.95	429.74	
OW-21	467.46	37.1 - 47.1	37.45	430.01	
OW-22	467.10	38.0 - 48.0	37.10	430.00	
OW-23	444.73	29.0 - 39.0	14.70	430.03	
OW-24	446.77	14.4 - 24.4	16.71	430.06	
OW-25	452.47	20.0 - 30.0	22.18	430.29	
SW-1 ⁽³⁾	432.01	-	4.51	427.50	
SW-2 ⁽³⁾	432.01	-	2.12	429.89	
SW-3 ⁽³⁾	437.44	-	6.45	430.99	

Notes:

⁽¹⁾Data reported in feet; elevations relative - mean sea level; 1988 National Geodetic Vertical Datum.

⁽²⁾Top of casing and gauge staff elevations surveyed by Maser Consulting P.A.

⁽³⁾Water elevation measured from top of surveyed staff gauge.

Table 3 Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L) July 2008

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Compound	NYSDEC SGV	U.S. EPA MCL	MW-1 07/24/08	MW-4 07/24/08	OW-2 07/24/08	OW-5 07/23/08	OW-6 07/23/08	OW-8 07/23/08	OW-10R 07/22/08	OW-13R 07/22/08	OW-13R DUP 07/22/08
Acetone	50 (G)*	NE	10 U	10 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1 (S)	5	1.0 U	4.4	2.0 U	0.53 J	1.0 U	1.0 U	5.7	6.5 J	6.8 J
Chlorobenzene	5 (S)*	100	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.71 J	1.0 U	1.0 U
Chloroethane	5 (S)*	NE	2.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	0.48 J	2.0 U	2.0 U
1,2-Dichloroethene (total)	5 (S)*	70	1.0 U	1.0 U	30	10	16	1.0 U	0.46 J	1.0 U	1.0 U
Ethylbenzene	5 (S)*	700	1.0 U	0.48 J	0.96 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5 (S)*	5	1.0 U	1.0 U	59	4.4	31	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5 (S)*	1,000	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5 (S)*	5	1.0 U	0.28 J	11	1.8	6.3	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2 (S)	2	2.0 U	2.0 U	4.0 U	0.28 J	2.0 U	2.0 U	0.80 J	0.70 J	0.70 J
Xylenes (total)	5 (S)*	10,000	1.0 U	1.0 U	1.1 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Compound	NYSDEC SGV	U.S. EPA MCL	OW-18 07/22/08	OW-19 07/22/08	OW-21 07/23/08	OW-22 07/23/08	OW-25 07/23/08
Acetone	50 (G)*	NE	10 U				
Benzene	1 (S)	5	1.5	1.4	1.8	1.9	1.0 U
Chlorobenzene	5 (S)*	100	6.9	11	1.0 U	4.6	1.0 U
Chloroethane	5 (S)*	NE	0.40 J	0.91 J	2.0 U	2.0 U	2.0 U
1,2-Dichloroethene (total)	5 (S)*	70	1.0 U	0.49 J	1.0 U	1.0 U	1.0 U
Ethylbenzene	5 (S)*	700	1.0 U				
Tetrachloroethene	5 (S)*	5	1.0 U				
Toluene	5 (S)*	1,000	1.0 U	1.0 U	1.0 U	0.17 J	1.0 U
Trichloroethene	5 (S)*	5	1.0 U				
Vinyl Chloride	2 (S)	2	2.0 U	0.62 J	0.74 J	0.32 J	2.0 U
Xylenes (total)	5 (S)*	10,000	1.0 U	1.0 U	1.0 U	0.66 J	1.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values for groundwater

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater

NE = Not established; no criteria specified

U = The analyte was analyzed for, but was not detected above the reported quantitation limit.

J = Estimated result; result is less than reporting limit.

Red = Concentrations detected at or above regulatory limit

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified.

Acetone was detected in some groundwater samples; however, the results were qualified during the data validation process as not detected (U) at or above the reported levels, due to the presence of acetone in the associated method blank.

^{* =} The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

Table 4 Natural Attenuation Parameters July 2008

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Alkalinity (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Ferrous Iron (mg/L)*	Methane (ug/L)	Laboratory Nitrate (mg/L)	Redox (mV)	Sulfate (mg/L)	Sulfide (mg/L)	TOC (mg/L)
MW-1	07/24/08	110	3.5	0.24	ND	ND	0.0	7.2 J	0.40	148.2	13.3	ND	2
MW-4	07/24/08	140	76.3	0.28	ND	ND	3.2	200 J	ND	-10.2	71.7	1.1	2
OW-2	07/24/08	34	3.5	0.39	ND	0.86 J	0.0	0.26 J	2.1	212.7	19.1	1.1	ND
OW-5	07/23/08	94	4.8	2.32	ND	ND	0.0	ND	1.20	112.8	38.3	1.6	1
OW-6	07/23/08	28	1.0	2.59	ND	ND	0.0	ND	0.10	138.2	17.6	1.6	ND
OW-8	07/23/08	49	1.6	0.67	ND	ND	2.5	0.74	ND	12.0	10.8	ND	ND
OW-10R	07/22/08	270	1.3	0.19	ND	0.33 J	4.2	510	ND	-20.8	26.4	1.1	2
OW-13R	07/22/08	330	4.1	0.13	ND / ND	ND / ND	4.0	370 / 450	ND	-57.9	22.2	ND	3
OW-18	07/22/08	210	4.4	0.13	ND	ND	4.3	330	ND	-34.1	7.8	ND	7
OW-19	07/22/08	200	8.4	0.65	ND	0.30 J	5.1	700	ND	-17.3	10.9	1.1	6
OW-21	07/23/08	240	3.3	5.80	ND	ND	4.6	50	ND	30.9	28.8	1.6	2
OW-22	07/23/08	210	5.2	1.09	ND	ND	3.5	560	ND	-26.9	8.3	4.6	5
OW-25	07/23/08	58	1.1	4.86	ND	ND	0.0	ND	0.20	134.7	11.7	3.2	ND

Notes:

mg/L = milligrams per liter

ug/L = micrograms per liter

*Ferrous iron was measured in the field (Hach kit).

mV = milliVolts

TOC = total organic carbon

ND = Not detected

U = Analyte not detected at method reporting limit.

J = Estimated result; result is less than the reporting limit.

Table 5 MCL and SGV Exceedances, 1999, 2004, 2006, 2007, and 2008 Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

		MCL	SGV ug/L	_	99	-	04		2006	Aug 2006		Jun 2007		July 2008	
Well	Compound	ug/L			dance			Excee			dance		dance		dance
	Dannana	_	4	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV
MW-4	Benzene	5	1	X	X		Х		Х	Х	Х	Х	Х		Х
	1,2-Dichloroethene (1,2-DCE)	70	5		Х										
	Benzene	5	1				Х								—
OW-2	Tetrachloroethene (PCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Trichloroethene (TCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5	Х	Х	Х	Х	Х	Χ	Х	Χ		Χ		Х
	Tetrachloroethene (PCE)	5	5	Х	Х	Х	Х			Х	Х				
OW-5	Trichloroethene (TCE)	5	5	Х	Χ										
	1,2-Dichloroethene (1,2-DCE)	70	5		Χ		Χ		Χ		Χ		Χ		Х
	Tetrachloroethene (PCE)	5	5	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х
OW-6	Trichloroethene (TCE)	5	5			Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5		Х		Х		Х		Х		Х		Х
	Benzene	5	1	Χ	Х	Χ	Χ		Χ	Χ	Χ		Х	Χ	Х
OW 40/D)*	Chlorobenzene	100	5		Х										
OW-10(R)*	Methylene chloride	5	5	Х	Х										
	Toluene	1,000	5		Х										
	Benzene	5	1	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5		Х										
OW-13 - OW-13R**	Methylene chloride	5	5	Х	Х										
OW-1310	Toluene	1,000	5		Х										
	Vinyl chloride	2	2	Х	Х	Х	Х								
	Benzene	5	1		Х		Χ	Х	Χ		Х		Х		Х
OW-18	Chlorobenzene	100	5				Х		Х		Х		Х		Х
	Xylenes (total)	10,000	5						Х						
	Benzene	5	1	Х	Х		Х		Х		Х		Х		Х
	Chlorobenzene	100	5		Х		Х		Х		Х		Х		Х
OW-19	Chloroethane	NA	5		Х										
	Vinyl chloride	2	2	X	Х			Х	Х	Х	Х				
OW-21	Benzene	5	1	X	Х		Х		Х		X		Х		Х
	Benzene	5	1	X	X		X	Х	X		X		X		Х
OW-22	Chlorobenzene	100	5		X		X	<u> </u>	X		X		 ^		
- · ·	Vinyl chloride	2	2	Х	X										
	Total					9	20	0	10	10	10	6	16	e	16
	ıvlaı			17	28	9	20	9	19	10	19	6	16	6	16

Notes

^{*}OW-10 was replaced with OW-10R in 2000. OW-10 was abandoned because it was within the OU1 construction area.

 $^{^{\}star\star}\text{OW-13R}$ was installed in February 2006 to replace OW-13.

Table 6 July 2008

Detected Volatile Organic Compounds Surface Water and Sediment Sampling Locations in Gold Creek

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Location		SED-1 (Downs	SED-2 / SW-2 (Upstream)			
Sample	SED-1	SED-1 DUP	SW-1	SW-1 DUP	SED-2	SW-2
Constituent	ug/kg	ug/kg	ug/L	ug/L	ug/kg	ug/L
Acetone	24 U	26 U	10 U	10 U	78 UJ	10 U
2-Butanone	2.9 J	5.9 J	10 U	10 U	19 J	10 U
Toluene	6.1 U	6.5 U	1.0 U	1.0 U	0.90 J	1.0 U

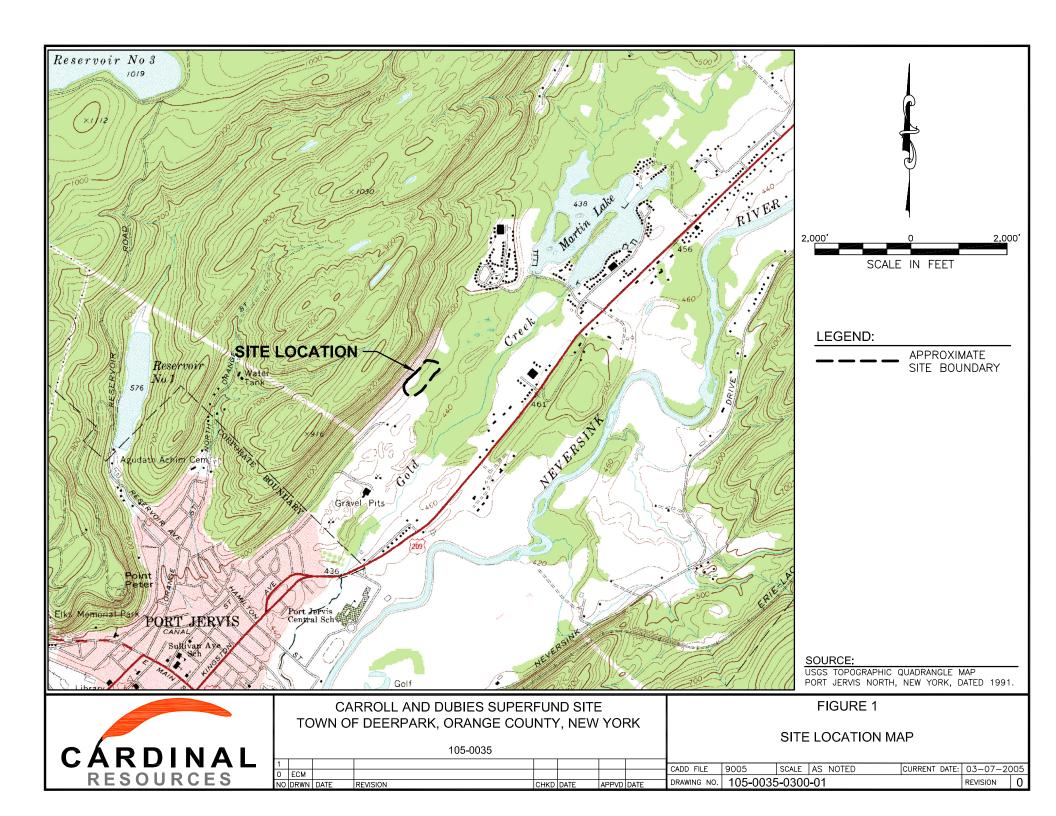
Notes:

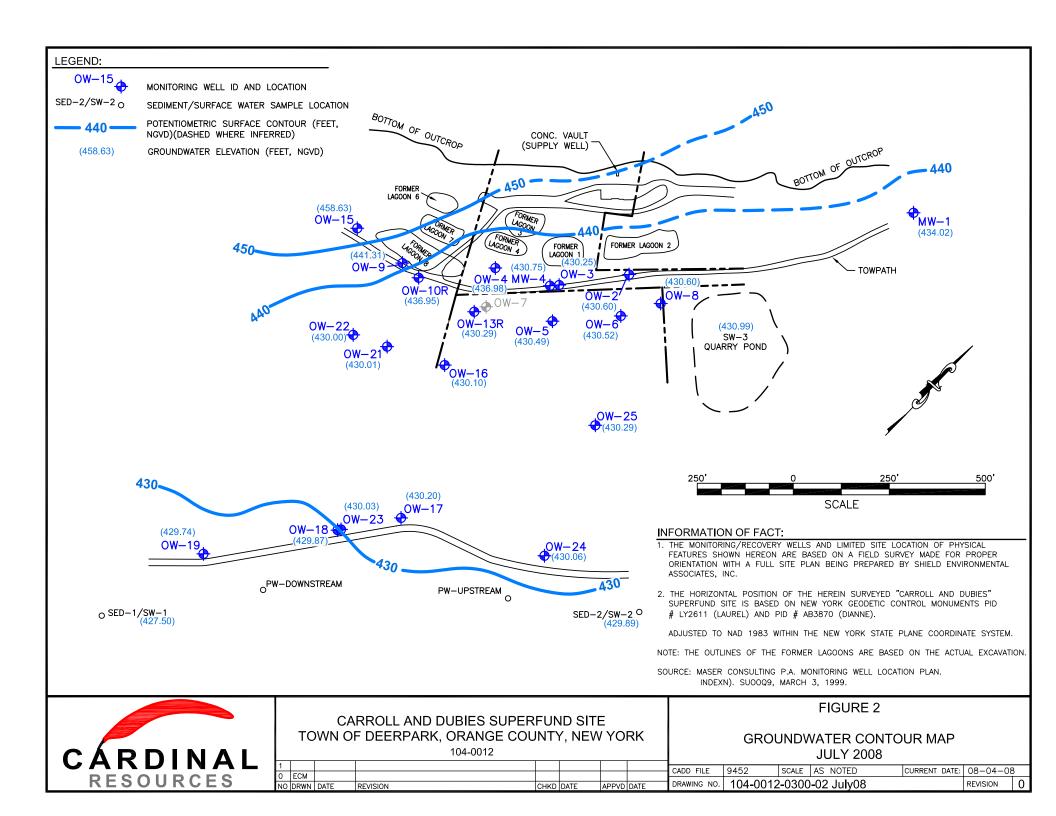
U = The analyte was analyzed for but not detected above the quantitation limit.

Blue = Detected constituents

Acetone was reported in surface water and sediment samples; however, the results were qualified during the data validation process as not detected (U) at or above the reported levels due to the presence of acetone in the associated method blank.

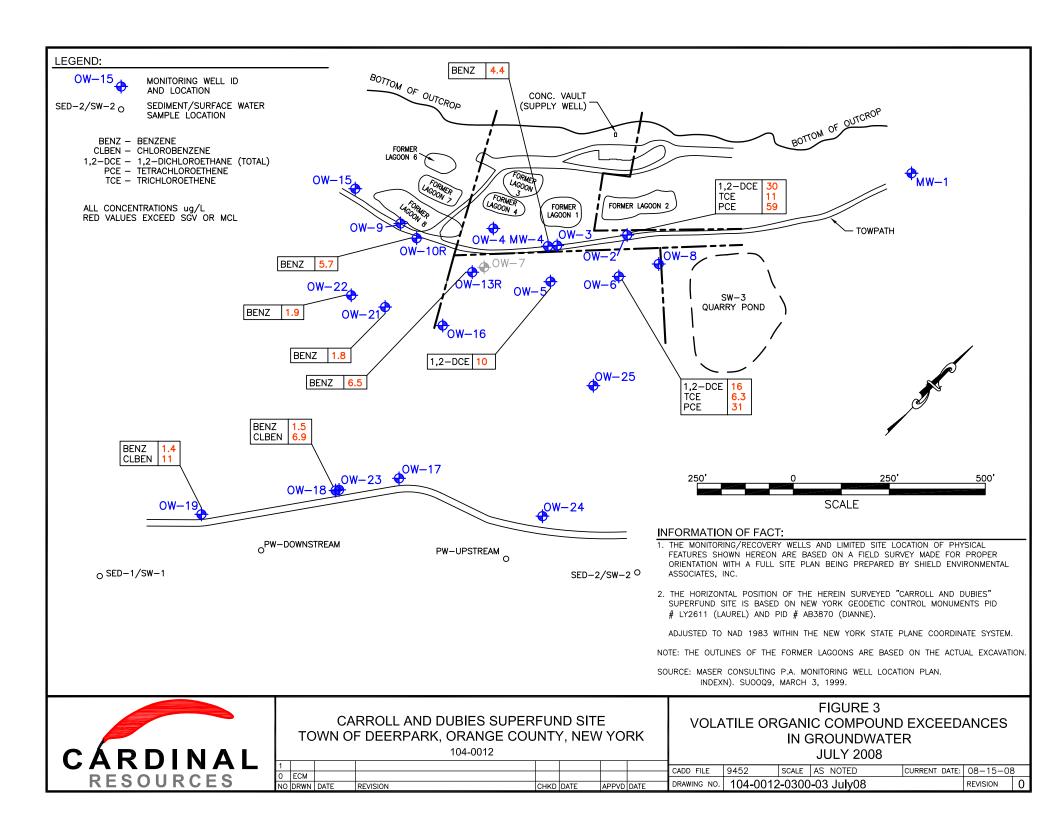
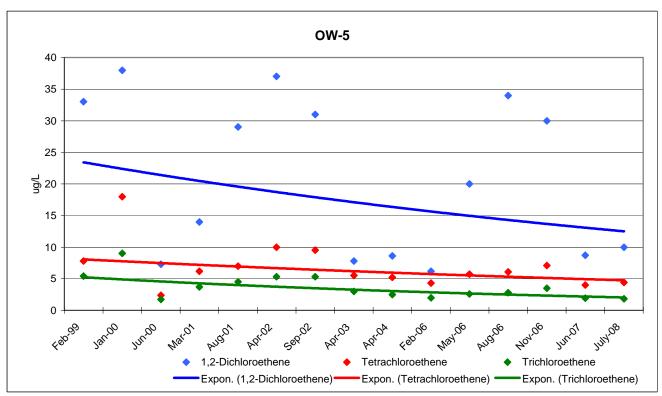
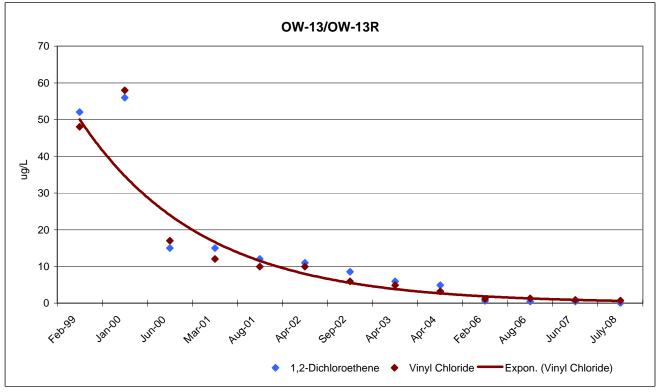
J = Estimated result; less than the reporting limit.

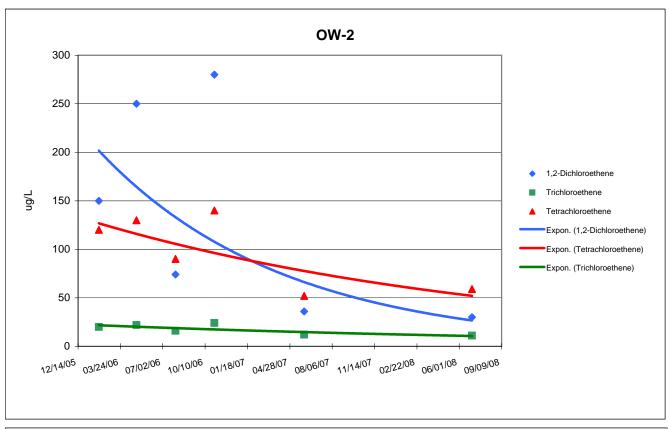

Table 7 Weighting and Scoring of Natural Attenuation Parameters July 2008


Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Analyte	Concentration Indicating Conditions for Reductive Dechlorination	Ranking Value	OW-2	OW-10R	OW-13R	OW-25
Dissolved Oxygen	<0.5 mg/L	3	3	3	3	-
Dissolved Oxygen	>1 mg/L	-3	-	-	-	-3
Nitrate	<1 mg/L	2	-	2	2	2
Iron (II)	>1 mg/L	3	-	3	3	-
Sulfate	<20 mg/L	2	2	-	-	2
Oxidation Reduction Potential (ORP)	<50 mV	1	-	1	1	-
	<-100 mV	2	-	-	-	-
Temperature	>20°C	1	-	-	-	-
Carbon Dioxide	>2x background	1	NA	NA	NA	NA
Alkalinity	>2x background	1	-	1	1	-
Chloride	>2x background	2	-	-	-	-
BTEX	>0.1 mg/L	2	-	-	-	-
1,2-Dichloroethene	Detected	2	2	2	-	-
Vinyl Chloride	Detected	2	-	2	2	-
Chloroethane	Detected	2	-	2	-	-
1,1-Dichloroethene	Detected	2	-	-	-	-
1,1-Dichloroethane	Detected	2	-	-	-	-
Methane	Detected	2	2	2	2	-
Ethane	Detected	2	-	-	-	-
Ethene	Detected	2	2	2	-	-
Total Score			11	20	14	1

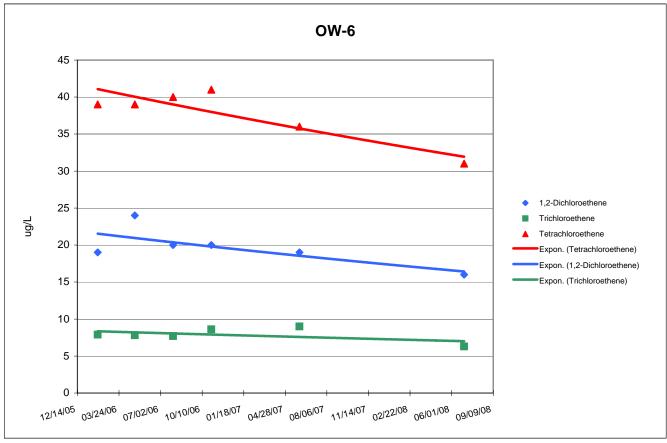
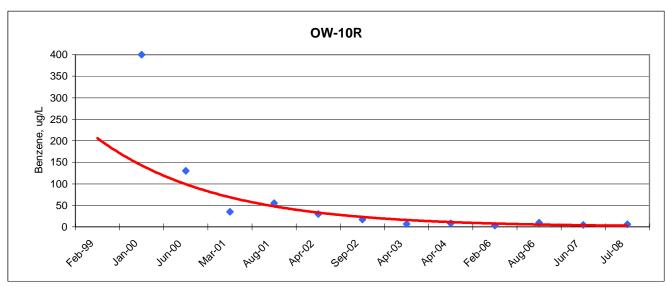
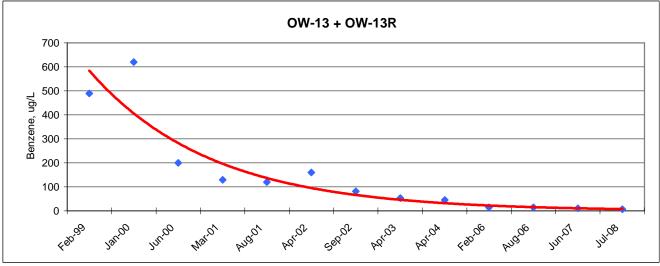
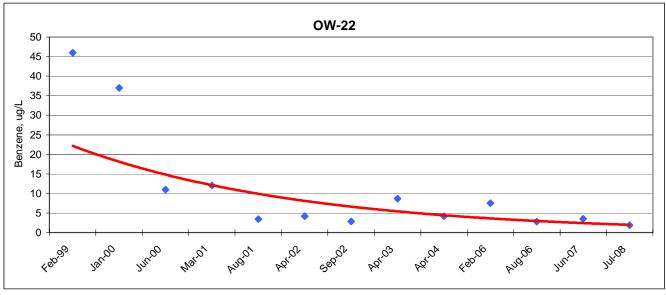
Source: U.S. EPA, 1997.

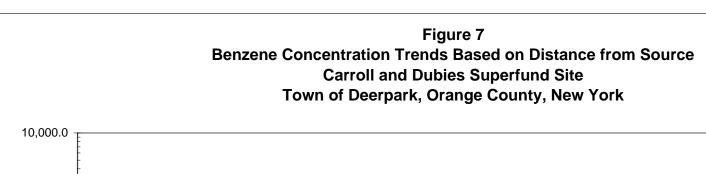




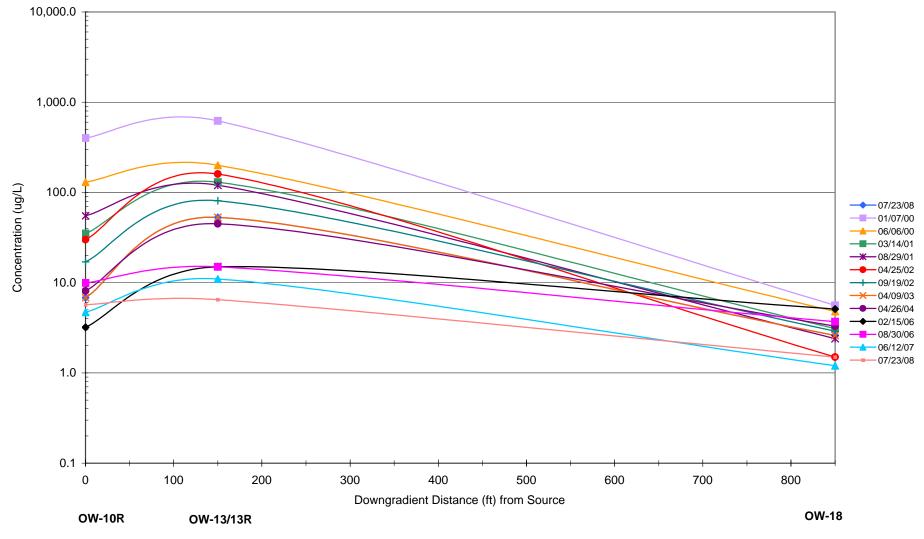

Figure 4
Chlorinated VOC Concentration Trends in OW-5 and OW-13/OW-13R
Pre-Excavation to July 2008

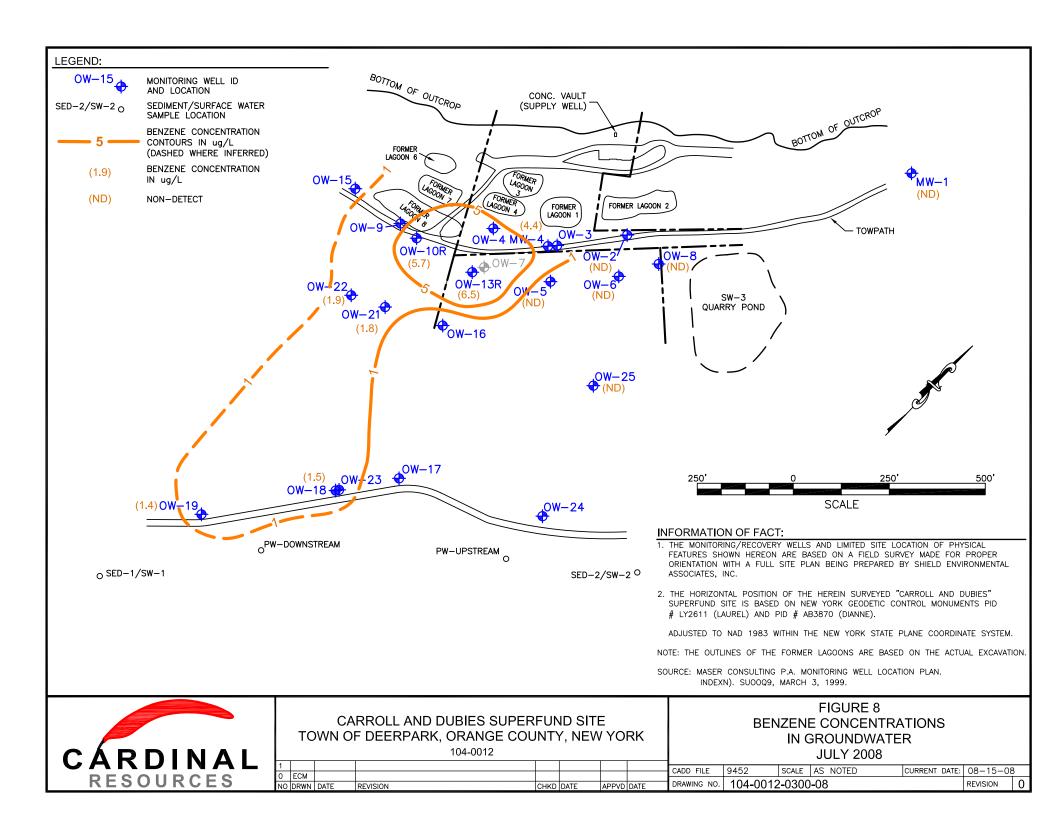
Note: OW-13R was not sampled during the May and November 2006 sampling rounds.

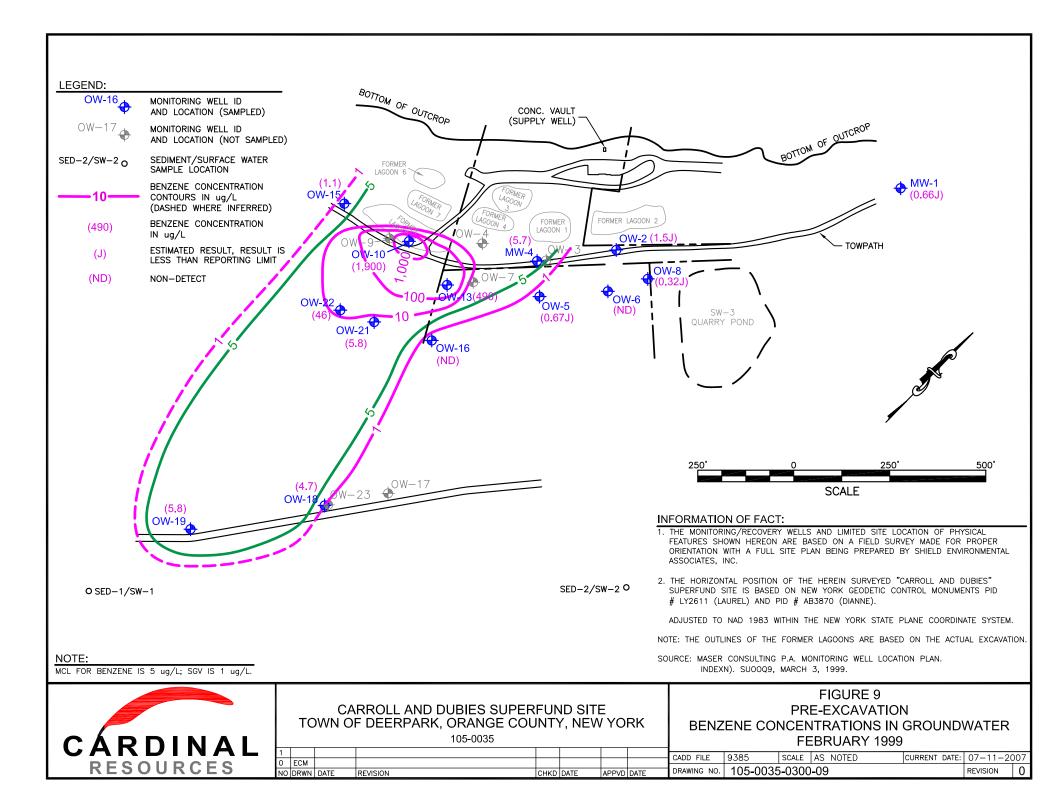
Figure 5
Chlorinated VOC Concentration Trends in OW-2 and OW-6, 2006-2008


Figure 6
Benzene Concentration Trends in Selected Monitoring Wells
Pre-Excavation to July 2008






Note: OW-10R, OW-13R, and OW-22 were not sampled during the May and November 2006 samping rounds.

Note: OW-10R, OW-13R, and OW-18 were not sampled in the May and November 2006 sampling rounds.

Appendix A

Laboratory Reports with Marked Form Is from Data Review

Analytical Report - SDG #: 8G23112

Table of Contents

Analytical Report Cover Page 8G23112	1
Case Narrative	2
Executive Summary	7
Analytical Method Summary	12
Sample Summary	14
Shipping and Receiving Documents	17
GC/MS Volatile Data	24
Dissolved Gases/RSK Data	60
General Chemistry Data	80
Total # of Pages in this Document	106

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 104-0012-0200

CARROLL & DUBIES (C&D) SDG #: 8G23112

Barbara Jones

Cardinal Resources

TESTAMERICA LABORATORIES, INC.

Nathan Pietras Project Manager

August 11, 2008

CASE NARRATIVE

CASE NARRATIVE

8G23112

The following report contains the analytical results for fourteen water samples and two quality control samples submitted to TestAmerica North Canton by Shield Environmental from the Carroll & Dubies (C&D) Site, project number 104-0012. The samples were received July 23, 2008 and July 24, 2008, according to documented sample acceptance procedures.

This SDG consists of (2) laboratory ID's: A8G230112 and A8G240111.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Barbara Jones and Steve Bodnar on August 04, 2008 and August 05, 2008. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

Any reference within this document to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.)

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 2.3 and 2.9°C.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for OW13R had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

DISSOLVED GASES/RSK

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for OW13R had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals
contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be
twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants
listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride, Acetone, 2-Butanone	Phthalate Esters	Copper, Iron, Zinc, Lead, Calcium,	Copper, Iron, Zinc, Lead
		Magnesium, Potassium, Sodium, Barium, Chromium, Manganese	

North Canton

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), OhioVAP (#CL0024), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA _CWA 061807.doc

EXECUTIVE SUMMARY

North Canton

8G23112 : A8G230112

DADAMETED	DEGIIM	REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
OW18 07/22/08 09:45 001				
Methane	330	0.50	ug/L	RSK SOP-175
Chloroethane	0.40 J	2.0	ug/L	SW846 8260B
Benzene	1.5	1.0	ug/L	SW846 8260B
Chlorobenzene	6.9	1.0	ug/L	SW846 8260B
Chloride	4.4	1.0	mg/L	MCAWW 300.0A
Sulfate	7.8	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	7	1	mg/L	MCAWW 415.1
Total Alkalinity	210	5.0	mg/L	MCAWW 310.1
OW19 07/22/08 11:40 002				
Ethene	0.30 J	0.50	ug/L	RSK SOP-175
Methane	700	0.50	ug/L	RSK SOP-175
Vinyl chloride	0.62 J	2.0	ug/L	SW846 8260B
Chloroethane	0.91 J	2.0	ug/L	SW846 8260B
<pre>1,2-Dichloroethene (total)</pre>	0.49 J	1.0	ug/L	SW846 8260B
Benzene	1.4	1.0	ug/L	SW846 8260B
Chlorobenzene	11	1.0	ug/L	SW846 8260B
Total Sulfide	1.1	1.0	mg/L	MCAWW 376.1
Chloride	8.4	1.0	mg/L	MCAWW 300.0A
Sulfate	10.9	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	6	1	mg/L	MCAWW 415.1
Total Alkalinity	200	5.0	mg/L	MCAWW 310.1
OW10R 07/22/08 13:00 003				
Ethene	0.33 J	0.50	ug/L	RSK SOP-175
Methane	510	0.50	ug/L	RSK SOP-175
Vinyl chloride	0.80 J	2.0	ug/L	SW846 8260B
Chloroethane	0.48 J	2.0	ug/L	SW846 8260B
1,2-Dichloroethene	0.46 J	1.0	ug/L	SW846 8260B
(total)			A-1-1-2-2-2	
Benzene	5.7	1.0	ug/L	SW846 8260B
Chlorobenzene	0.71 J	1.0	ug/L	SW846 8260B
Total Sulfide	1.1	1.0	mg/L	MCAWW 376.1
Chloride	1.3	1.0	mg/L	MCAWW 300.0A
Sulfate	26.4	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	2	1	mg/L	MCAWW 415.1
Total Alkalinity	270	5.0	mg/L	MCAWW 310.1

8G23112 : A8G230112

OW13R	PARAMETER 07/22/08 14:10 004	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
	Methane Vinyl chloride Benzene Chloride Sulfate Total Organic Carbon Total Alkalinity	370 0.70 J 6.5 4.1 22.2 3 330	0.50 2.0 1.0 1.0 1.0	ug/L ug/L ug/L mg/L mg/L mg/L	RSK SOP-175 SW846 8260B SW846 8260B MCAWW 300.0A MCAWW 300.0A MCAWW 415.1 MCAWW 310.1
OW DUP	Methane Vinyl chloride Benzene Chloride Sulfate Total Organic Carbon Total Alkalinity	450 0.70 J 6.8 4.0 21.9 3	0.50 2.0 1.0 1.0 1.0	ug/L ug/L ug/L mg/L mg/L mg/L	RSK SOP-175 SW846 8260B SW846 8260B MCAWW 300.0A MCAWW 300.0A MCAWW 415.1 MCAWW 310.1
FIELD	BLANK 1 07/22/08 11:30 006 Chloroform	0.33 J	1.0	ug/L	SW846 8260B
PUMP R	INSE 07/22/08 15:00 007			<i>J</i> ,	
тртр в	Acetone Chloroform 2-Butanone LANK 07/22/08 008	1.6 J 0.29 J 1.4 J	10 1.0 10	ug/L ug/L ug/L	SW846 8260B SW846 8260B SW846 8260B
INIT D	Acetone	9.5 J	10	ug/L	SW846 8260B

8G23112 : A8G240111

PARAMETER	RESULT	REPORTIN LIMIT	NG UNITS	ANALYTICAL METHOD
FIELD BLANK 07/23/08 09:00 001				
Chloroform	0.36 J	1.0	ug/L	SW846 8260B
OW22 07/23/08 09:10 002				
Methane Vinyl chloride Benzene Toluene Chlorobenzene Xylenes (total) Total Sulfide Chloride Sulfate Total Organic Carbon Total Alkalinity OW21 07/23/08 10:15 003	560 0.32 J 1.9 0.17 J 4.6 0.66 J 4.6 5.2 8.3 5	0.50 2.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L	RSK SOP-175 SW846 8260B SW846 8260B SW846 8260B SW846 8260B MCAWW 376.1 MCAWW 300.0A MCAWW 300.0A MCAWW 415.1 MCAWW 310.1
Methane Vinyl chloride Benzene Total Sulfide Chloride Sulfate Total Organic Carbon Total Alkalinity	50 0.74 J 1.8 1.6 3.3 28.8 2	0.50 2.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L mg/L mg/L mg/L	RSK SOP-175 SW846 8260B SW846 8260B MCAWW 376.1 MCAWW 300.0A MCAWW 300.0A MCAWW 415.1 MCAWW 310.1
OW5 07/23/08 11:15 004 Vinyl chloride 1,2-Dichloroethene (total) Trichloroethene Benzene Tetrachloroethene Total Sulfide Chloride Sulfate Nitrate as N Total Organic Carbon Total Alkalinity	0.28 J 10 1.8 0.53 J 4.4 1.6 4.8 38.3 1.2 1	2.0 1.0 1.0 1.0 1.0 1.0 1.0 0.10	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B MCAWW 376.1 MCAWW 300.0A MCAWW 300.0A MCAWW 300.0A MCAWW 415.1 MCAWW 310.1

8G23112 : A8G240111

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
OW6 07/23/08 12:15 005				
1,2-Dichloroethene (total)	16	1.0	ug/L	SW846 8260B
Trichloroethene	6.3	1.0	ug/L	SW846 8260B
Tetrachloroethene	31	1.0	ug/L	SW846 8260B
Total Sulfide	1.6	1.0	mg/L	MCAWW 376.1
Chloride	1.0	1.0	mg/L	MCAWW 300.0A
Sulfate	17.6	1.0	mg/L	MCAWW 300.0A
Nitrate as N	0.10	0.10	mg/L	MCAWW 300.0A
Total Alkalinity	28	5.0	mg/L	MCAWW 310.1
OW8 07/23/08 13:30 006	0.74	0.50	ug/L	RSK SOP-175
Chloride	1.6	1.0	mg/L	MCAWW 300.0A
Sulfate	10.8	1.0	mg/L	MCAWW 300.0A
Total Alkalinity	49	5.0	mg/L	MCAWW 310.1
OW25 07/23/08 14:35 007				
Total Sulfide	3.2	1.0	mg/L	MCAWW 376.1
Chloride	1.1	1.0	mg/L	MCAWW 300.0A
Sulfate	11.7	1.0	mg/L	MCAWW 300.0A
Nitrate as N	0.20	0.10	mg/L	MCAWW 300.0A
Total Alkalinity	58	5.0	mg/L	MCAWW 310.1
TRIP BLANK 2 07/23/08 008				
Acetone	9.4 J	10	ug/L	SW846 8260B

METHOD SUMMARY

North Canton

ANALYTICAL METHODS SUMMARY

8G23112

PARAMETER		ANALYTICAL METHOD
Alkalinit	У	MCAWW 310.1
Chloride		MCAWW 300.0A
Dissolved	Gases in Water	RSK SOP-175
Nitrate a	s N	MCAWW 300.0A
Sulfate	(MCAWW 300.0A
Sulfide		MCAWW 376.1
Total Org	anic Carbon	MCAWW 415.1
Volatile	Organics by GC/MS	SW846 8260B
Reference	s:	
MCAWW	"Methods for Chemical Analysis of Water EPA-600/4-79-020, March 1983 and subseque	
RSK	Sample Prep and Calculations for Dissolve in Water Samples Using a GC Headspace Equation Technique, RSKSOP-175, REV. 0, 8/11/94,	uilibration
SW846	"Test Methods for Evaluating Solid Waste Methods", Third Edition, November 1986 as	

SAMPLE SUMMARY

North Canton

SAMPLE SUMMARY

8G23112 : A8G230112

WO # S	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KR1JT	001	OW18	07/22/08	09.45
KR1JV	002	OW19	07/22/08	Michigan States
KR1JW	003	OW10R	07/22/08	
KR1JX	004	OW13R	07/22/08	
KR1J1	005	OW DUPLICATE	07/22/08	
KR1J2	006	FIELD BLANK 1	07/22/08	11:30
KR1J3	007	PUMP RINSE	07/22/08	
KR1J4	800	TRIP BLANK	07/22/08	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SAMPLE SUMMARY

8G23112 : A8G240111

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME_
KR3RA	001	FIELD BLANK	07/23/08	09:00
KR3RD	002	OW22	07/23/08	ADMINISTRAÇÃO
KR3RH	003	OW21	07/23/08	
KR3RJ	004	OW5	07/23/08	
KR3RL	005	OW6	07/23/08	
KR3RM	006	8WO	07/23/08	2014/12/2010 12/2014 12/2014 12/2014
KR3RN	007	OW25	07/23/08	
KR3RP	800	TRIP BLANK 2	07/23/08	an or metal
10200 W	_ 8			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SHIPPING AND RECEIVING DOCUMENTS

2. Relinquished by 3. Relinquished By Relinquished By ☐ 24 Hours Possible Hazard Identification Containers for each sample may be combined on one line) Custody Record AL-4124 (1007) Chain of im Around Time Required Address Non-Hazard 0w 18 000019 DW 10 R 0 W 13R 0W13R 0 E 1 W D Sample I.D. No. and Description 48 Hours 3 ☐ Flammable SAUNOSA) ☐ 7 Days 100-100 ☐ Skin Irritant C+0 14 Days 15303 ☐ Poison B 4 1-22-04 0945 21 Days Date Subder ☐ Unknown 1500 띡0 1300 1140 1130 Other_ Time Date Site Contact Voneding Temperature on Receipt _ Drinking Water? Yés □ No Air ☐ Return To Client Sample Disposal 4 × Aqueous Matrix 1630 Time 374-0989 Soil Unpres Disposal By Lab 1. Received By 3. Received By OC Requirements (Specify) Received By H2SO4 Containers & Preservatives HNO3 4 × THE LEADER IN ENVIRONMENTAL TESTING estAmerico ☐ Archive For Analysis (Attach list if more space is needed)

Lab Numbe

Page

9

Special Instructions/ Conditions of Receipt

Chain of Custody Number 073069

DISTRIBUTION: WHITE - Returned to Client with Beand: CANIADY . Clause with the Car

Comments

Months

(A fee may be assessed if samples are retained longer than 1 month)

Date

Time

Date 7-23.08

Time

0970

Date

Time

TestAmerica Coole	r Receipt Form/	Narrative	Lot Number: 10/7	[AN112
North Canton Facil	ity			
Client CARDINA	IL RES.	Project	By: 1956	S
Cooler Received on	7.23.09	Opened on 7-23 8	(Sign	nature)
FedEx UPS DHL	FAS Stetso	n Client Drop Off Test	America Courier Other	•
TestAmerica Cooler #	Multip	ple Coolers 🗍 Foam Box 🗍	Client Cooler Other	
1. Were custody seals	on the outside of the	cooler(s)? Yes \(\Bar{\text{No}} \) No \(\Bar{\text{P}} \)	Intact? Yes \ \ No \ \	NA P
If YES, Quantity			III. 100 110	ואיי דו
Were custody seals	on the outside of coo	oler(s) signed and dated?	Yes No T] NA 🗁
Were custody seals	on the bottle(s)?	or to organize and dates.	Yes No	
If YES, are there any			163 [] 140 [1
2. Shippers' packing sli			Yes ☑ No ☐	1
		ole(s)? Yes TNo 🗌	Relinquished by clier	
Were the custody pa	ners signed in the ar	onronriate place?	Yes — No	
5 Packing material use	d. Bubble Wran	-	ther	1
6 Cooler temperature	inon receipt 7	3 °C See back of form t	tiler	一
METHOD:	R A Other	2 See nack of form	or multiple coolers/temps	
	ce 🗗 Blue ice [- -	
7. Did all bottles arrive	in accel condition () le	Dry Ice Water	None 🗌	•
8. Could all bottle labels	n good condition (or	nbroken)?	Yes No	3
parameter and the second control of the seco			Yes ☑ No ☐	**************************************
9. Were sample(s) at th			Yes 🛮 No 🗆	NA 🗌
10. Were correct bottle(s			Yes 🖸 No 🗌	
11. Were air bubbles >6				NA 🗌
12. Sufficient quantity red	eived to perform inc	dicated analyses?	Yes 🔃 No 🗌	L.
13. Was a trip blank pres	ent in the cooler(s)?	Yes ☑ No ☐ Were VO	As on the COC? Yes 🛮	No 🗌
Contacted PM	Date	by	via Verbal 🗌 Voice N	/lail ☐ Other ☐
Concerning				And the second s
	CONTROL OF THE PROPERTY OF THE PROPERTY OF			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD	CARLES CALL REPORTED TO A CONTRACT			
14. CHAIN OF CUSTOD The following discrepance	les occurred:			
14. CHAIN OF CUSTOD The following discrepance	les occurred:			
14. CHAIN OF CUSTOD The following discrepance	les occurred:	were received after the		me had expired.
14. CHAIN OF CUSTOD The following discrepance	les occurred:	were received after the	recommended holding tir	
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s)	les occurred:		recommended holding tir were received in a bro	oken container.
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s)	les occurred:		recommended holding tir	oken container.
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA	les occurred:	were received wit	recommended holding tir were received in a brown the bubble >6 mm in diame	oken container. ter. (Notify PM)
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s)	N ATION	were received wit	recommended holding tir were received in a brown in diame	ter. (Notify PM)
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) Sample(s) to meet recommended phoronomical phoronom	N ATION H level(s). Nitric Acid Los Acid Lot# 092006-HO	were received wit	recommended holding tirwere received in a bro h bubble >6 mm in diame vere further preserved in s	ter. (Notify PM) ample receiving
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended ph	N ATION H level(s). Nitric Acid Los Acid Lot# 092006-HO	were received wit	recommended holding tirwere received in a bro h bubble >6 mm in diame vere further preserved in s	ter. (Notify PM) ample receiving
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) Sample(s) to meet recommended phoronomical phoronom	N ATION H level(s). Nitric Acid Los Acid Lot# 092006-HO	were received wit were received wit were received with were received and zero and z	recommended holding tirewere received in a brown brown in diame for the following the preserved in some state Lot# 050205-(CH3COO)	oken container. ter. (Notify PM) ample receiving Hydroxide Lot# 0)2N/NaOH.
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended phorasor -NaOH; Hydrochloric What time was preservati Client ID	N ATION I level(s). Nitric Acid Lot# 092006-HC ve added to sample(were received wit	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended plo73007 -NaOH; Hydrochloric What time was preservati	N H level(s). Nitric Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirewere received in a brown brown in diame for the following the preserved in some state Lot# 050205-(CH3COO)	ter. (Notify PM) ample receiving Hydroxide Lot#)₂ZN/NaOH.
14. CHAIN OF CUSTOD The following discrepance 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended phorason -NaOH; Hydrochloric What time was preservation Client ID 186 19	N ATION I level(s). Nitric Acid Let Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) to meet recommended phoracommended phoracommende	N ATION I level(s). Nitric Acid Le Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended phorasor -NaOH; Hydrochloric What time was preservati Client ID 18 19 10 13	N ATION I level(s). Nitric Acid Le Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) to meet recommended phoracommended phoracommende	N ATION I level(s). Nitric Acid Le Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.
14. CHAIN OF CUSTOE The following discrepance 15. SAMPLE CONDITIO Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERV Sample(s) to meet recommended phorasor -NaOH; Hydrochloric What time was preservati Client ID 18 19 10 13	N ATION I level(s). Nitric Acid Le Acid Lot# 092006-HC ve added to sample(were received wit were received wit were received with were received and zero and z	recommended holding tirwere received in a brown in diame tere further preserved in solution. Joseph 031808-H2SO4; Sodium tetate Lot# 050205-(CH3COO	ter. (Notify PM) ample receiving Hydroxide Lot# 1)2ZN/NaOH.

TestAmerica Cooler Receipt Form/Narrative North Canton Facility **Initials** рН Date Client ID Method Coolant Cooler Temp °C Discrepancies Cont'd . . . manage of the state of the state of

Chain of Custody Record

TestAmerico

Relinquished By 2. Relinquished By 24 Hours 1. Relinquish Possible Hazard Identification um Around Time Required Sample I.D. No. and Description Containers for each sample may be combined on one line) Contraction of the 104-0012-0300 Project Name and Location (Selve) + Dubies (C+D) Field Blank GE MO 0W25 OW & OW S 0006 505 E, Cardinal Kesources 15000g ☐ 48 Hours ☐ Flammable ☐ 7 Days Cassas ☐ Skin Initant 14 Days 15003 इने. इंडि ☐ Poison B 30-5° 21 Days Date reported. **1435** 1215 0110 1330 1015 三万 Unknown 0980 ☐ Other Time Date Project Manager Barb Jones Telephone Number (Area Code) IT-ax Number Sample Disposal

Return To Client Matrix fored. Sed. Time 1700 Soil X 8598 0393 9594 W HE more more more more more × Disposal By Lab Art

OC Requirements (Specify) 3. Received By Received By Received By THE LEADER IN ENVIRONMENTAL TESTING ☐ Archive For × <u>×</u> × × × × × more space is needed, Analysis (Attach list if 7-23-08 Months te (N (A fee may be assessed if samples are retained longer than 1 month) Page Chain of Custody Number Date 7.248 Conditions of Receipt Special Instructions/ 740 Time Time 9

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

North Canton

TestAmerica Coole North Canton Facil	r Receipt Form/Narrative Lot Numbe	r: 18124	DIII .
The state of the s		72	
	Project By: 9-24-8 Opened on 7-24-8		5
Cooler Received on		(Signatur	e)
FedEx La UPS LI DHL	. ☐ FAS ☐ Stetson ☐ Client Drop Off ☐ TestAmerica Courie	r 🗌 Other	
TestAmerica Cooler #		· 🔲 Other	
	on the outside of the cooler(s)? Yes \(\Boxed{\text{No } \text{ \text{\$\infty}\$}} \) Intact? Yes	☐ No ☐ N	A 🛂
If YES, Quantity			C
Were custody seals	on the outside of cooler(s) signed and dated?	☐ No ☐ N	Α ΪΣΡ
Were custody seals	on the bottle(s)?		
If YES, are there any	exceptions?		
	p attached to the cooler(s)?	No I	
	AN TOWN IN THE PROPERTY OF THE	ned by client? Y	es IVAIA
		No 🗆	es (73/40 [
5. Packing material use	d: Bubble Wrap 🖺 Foam 🕡 None 🗌 Other	TAN L	
6 Cooler temperature	pon receipt 2.9 °C See back of form for multiple coo	Jaro/tampa 🗆	
	R Other	ileis/temps	
AND AND ADDRESS OF THE AND AND ADDRESS OF THE AND ADDRESS OF THE A			
	ce M Blue Ice Dry Ice Water None		
	in good condition (Unbroken)? Yes		
The second secon		☑ No □	
			A 🔲
		No 🗆	
11. Were air bubbles >6		☑ No 🔲 N	Α 🔲
12. Sufficient quantity red	ceived to perform indicated analyses? Yes	Ď No □	
	ent in the cooler(s)? Yes 📈 No 🗌 Were VOAs on the COC	? Yes NO No	
Contacted PM	Date by via Verbal		
Concerning			
14. CHAIN OF CUSTOE)Y		
The following discrepance	ies occurred:	150	100 M C 81
in the second se			
	2. 3		
37		\$1	
*			ns.
AE CAMOUE COMOUTION	A	**************************************	
15. SAMPLE CONDITIO	The state of the s		
Sample(s)	were received after the recommender		
Sample(s)		ved in a broker	
Sample(s) DWZZ	were received with bubble >6 m	m in diameter.	(Notify PM)
16. SAMPLE PRESERV	ATION		
Sample(s)	were further pre	served in samp	le receivina
to meet recommended pl	Hevel(s). Nitric Acid Lot# 113007-HNO3: Sulfuric Acid Lot# 031808-H25	Oa: Sodium Hyd	roxide Lot#
0/300/ -NaOH; Hydrochlori	c Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot# 05020)5-(CH₃COO) ₂ ZN	VNaOH.
What time was preservati	ive added to sample(s)?	.v esp. 14.74	30
Client ID	pH	Date	Initials
	8		
			
			1
		A CONTRACTOR OF THE CONTRACTOR	

		a ² - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
Client ID	<u>р</u> Н	<u>Date</u>	Initials		
	The second secon				
Cooler	Temp °C	<u>Method</u>	Coolant		
я'					
screpancies Cont'd					
		3	9		
			The straight desired		
		-			
i y s eriora ny y nys	eg cagba seeings				

GCMS VOLATILE DATA

North Canton

24

Client Sample ID: OW18

GC/MS Volatiles

Lot-Sample #...: A8G230112-001 Work Order #...: KR1JT1AJ Matrix..... WG

Date Sampled...: 07/22/08 09:45 Date Received..: 07/23/08 Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	0.40 J	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
<pre>1,2-Dichloroethene (total)</pre>	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.5	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	6.9	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
QUAD 0.00 TO	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	•
Dibromofluoromethane	93	(73 - 122)	
1,2-Dichloroethane-d4	98	(61 - 128)	
Toluene-d8	93	(76 - 110)	
4-Bromofluorobenzene	94	(74 - 116)	

Client Sample ID: OW18

GC/MS Volatiles

Lot-Sample #...: A8G230112-001 Work Order #...: KR1JT1AJ Matrix.....: WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW19

GC/MS Volatiles

Lot-Sample #...: A8G230112-002 Work Order #...: KR1JV1AJ Matrix..... WG

Date Sampled...: 07/22/08 11:40 Date Received..: 07/23/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method.....: SW846 8260B

DADAMEMED	D.D.O.L.T. III	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.62 J	2.0	ug/L
Chloroethane	0.91 J	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	0.49 J	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.4	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	11	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
S. Sonto M. Berkero serios e númberos — se especialido pasentinos e	(- 1 2)/		49/11
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	1000000000000000000000000000000000000	
1,2-Dichloroethane-d4	99	(61 - 128)	
Toluene-d8	94	(76 - 110)	
4-Bromofluorobenzene	90	Record to the second to the se	
- Dromorraoropenzene	90	(74 - 116)	

Client Sample ID: OW19

GC/MS Volatiles

Lot-Sample #...: A8G230112-002 Work Order #...: KR1JV1AJ Matrix...... WG

NOTE(S):

North Canton

J Estimated result. Result is less than RL.

Client Sample ID: OW10R

GC/MS Volatiles

Lot-Sample #...: A8G230112-003 Work Order #...: KR1JW1AJ Matrix..... WG

Date Sampled...: 07/22/08 13:00 Date Received..: 07/23/08

Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

PARAMETER RESULT LIMIT UNITS	
Chloromethane ND 2.0 ug/L	
Bromomethane ND 2.0 ug/L	
Vinyl chloride 0.80 J 2.0 ug/L	
Chloroethane 0.48 J 2.0 ug/L	
Methylene chloride ND 1.0 ug/L	
Acetone ND 10 ug/L	
Carbon disulfide ND 1.0 ug/L	
1,1-Dichloroethene ND 1.0 ug/L	
1,1-Dichloroethane ND 1.0 ug/L	
1,2-Dichloroethene 0.46 J 1.0 ug/L	
(total)	
Chloroform ND 1.0 ug/L	
1,2-Dichloroethane ND 1.0 ug/L	
2-Butanone ND 10 ug/L	
1,1,1-Trichloroethane ND 1.0 ug/L	
Carbon tetrachloride ND 1.0 ug/L	
Bromodichloromethane ND 1.0 ug/L	
1,2-Dichloropropane ND 1.0 ug/L	
cis-1,3-Dichloropropene ND 1.0 ug/L	
Trichloroethene ND 1.0 ug/L	
Dibromochloromethane ND 1.0 ug/L	
1,1,2-Trichloroethane ND 1.0 ug/L	
Benzene 5.7 1.0 ug/L	
trans-1,3-Dichloropropene ND 1.0 ug/L	
Bromoform ND 1.0 ug/L	
4-Methyl-2-pentanone ND 5.0 ug/L	
2-Hexanone ND 10 ug/L	
Tetrachloroethene ND 1.0 ug/L	
1,1,2,2-Tetrachloroethane ND 1.0 ug/L	
Toluene ND 1.0 ug/L	
Chlorobenzene 0.71 J 1.0 ug/L	
Ethylbenzene ND 1.0 ug/L	
Styrene ND 1.0 ug/L	
Xylenes (total) ND 1.0 ug/L	
PERCENT RECOVERY	
SURROGATE RECOVERY LIMITS	
Dibromofluoromethane 94 (73 - 122)	
1,2-Dichloroethane-d4 100 (61 - 128)	
Toluene-d8 93 (76 - 110)	
4-Bromofluorobenzene 96 (74 - 116)	

Client Sample ID: OW10R

GC/MS Volatiles

Lot-Sample #...: A8G230112-003 Work Order #...: KR1JW1AJ Matrix...... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW13R

GC/MS Volatiles

Lot-Sample #...: A8G230112-004 Work Order #...: KR1JX1A1 Matrix...... WG

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	·
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	0.70 J	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Acetone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethene	ND	1.0	ug/L	
(total)			2000 301 2000	
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	1201
Benzene	6.5	1.0	ug/L	per low ms/msD recovery BN9 9/9/08
trans-1,3-Dichloropropene	ND	1.0	ug/L	14 = 1 m = 0
Bromoform	ND	1.0	ug/L	MISTAISD
4-Methyl-2-pentanone	ND	5.0	ug/L	recovery
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	2110
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	DAC
Toluene	ND	1.0	ug/L	1 5
Chlorobenzene	ND	1.0	ug/L	9/9/08
Ethylbenzene	ND	1.0	ug/L	. , , ,
Styrene	ND	1.0	ug/L ug/L	
Xylenes (total)	ND	1.0	character management	
nytenes (cour)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	93	$\frac{111113}{(73 - 122)}$		
1,2-Dichloroethane-d4	99	(61 - 128)		
Toluene-d8	96	(76 - 110)		
1 5 61		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

(Continued on next page)

(74 - 116)

91

4-Bromofluorobenzene

Client Sample ID: OW13R

GC/MS Volatiles

Lot-Sample #...: A8G230112-004 Work Order #...: KR1JX1A1 Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A8G230112-005 Work Order #...: KR1J11AJ Matrix....: WG
Date Sampled...: 07/22/08 Date Received..: 07/23/08
Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	0.70 J	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Acetone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	¥
1,1-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethene	ND	1.0	ug/L	
(total)			30-19-10-10-10-10-10-10-10-10-10-10-10-10-10-	
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	ch
Dibromochloromethane	ND	1.0	ug/L	1. Sie
1,1,2-Trichloroethane	ND 🔨	1.0	ug/L	10
Benzene	6.8	1.0	ug/L	qualisted o
trans-1,3-Dichloropropene	ND	1.0	ug/L	y of a
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	100 IN 3,
2-Hexanone	ND	10	ug/L	heronary
Tetrachloroethene	ND	1.0	ug/L	N S
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	16 a
Chlorobenzene	ND	1.0	ug/L	``
Ethylbenzene	ND	1.0	ug/L	$\sim 10^{-1}$
Styrene	ND	1.0	ug/L	My 14
Xylenes (total)	ND	1.0	ug/L	od, v
				(0)
	PERCENT	RECOVERY		$\langle V \rangle_{A}$
SURROGATE	RECOVERY	LIMITS	_	
Dibromofluoromethane	90	(73 - 122)	
1,2-Dichloroethane-d4	96	(61 - 128)	
Toluene-d8	95	(76 - 110)	
4-Bromofluorobenzene	91	(74 - 116)	

Client Sample ID: OW DUPLICATE

GC/MS Volatiles

Lot-Sample #...: A8G230112-005 Work Order #...: KR1J11AJ

Matrix....: WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: A8G230112-006 Work Order #...: KR1J21AA Matrix...... WQ

Date Sampled...: 07/22/08 11:30 Date Received..: 07/23/08

Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	0.33 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	(73 - 122)	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	95	(76 - 110)	
4-Bromofluorobenzene	89	(74 - 116)	

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: A8G230112-006 Work Order #...: KR1J21AA

Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: PUMP RINSE

GC/MS Volatiles

Lot-Sample #...: A8G230112-007 Work Order #...: KR1J31AA Matrix...... WQ

Date Sampled...: 07/22/08 15:00 Date Received..: 07/23/08

Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	1.6 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	0.29 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	1.4 J	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	(73 - 122)	
1,2-Dichloroethane-d4	102	(61 - 128)	
Toluene-d8	92	(76 - 110)	
4-Bromofluorobenzene	90	(74 - 116)	

Client Sample ID: PUMP RINSE

GC/MS Volatiles

Lot-Sample #...: A8G230112-007 Work Order #...: KR1J31AA Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A8G230112-008 Work Order #...: KR1J41AA Matrix...... WQ

Date Sampled...: 07/22/08 Date Received..: 07/23/08
Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Method..... SW846 8260B

		REPORTING	i
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	9.5 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
<pre>1,2-Dichloroethene (total)</pre>	ИД	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	 4
Dibromofluoromethane	96	(73 - 122	
1,2-Dichloroethane-d4	106	(61 - 128	
Toluene-d8	95	(76 - 110	
4-Bromofluorobenzene	90	(74 - 116)

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A8G230112-008 Work Order #...: KR1J41AA

Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK

GC/MS Volatiles

Lot-Sample #...: A8G240111-001 Work Order #...: KR3RA1AA Matrix..... WQ

Date Sampled...: 07/23/08 09:00 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

*		REPORTIN	ic
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)		127 A T	- 5 /
Chloroform	0.36 J	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
(1,2	1.0	чу/ п
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	1000000000000000000000000000000000000	2)
1,2-Dichloroethane-d4	104	(61 - 12	
Foluene-d8	95	(76 - 11	
4-Bromofluorobenzene	88	(74 - 11)	

Client Sample ID: FIELD BLANK

GC/MS Volatiles

Lot-Sample #...: A8G240111-001 Work Order #...: KR3RA1AA Matrix..... WQ

NOTE(S):

North Canton

J Estimated result. Result is less than RL.

Client Sample ID: OW22

GC/MS Volatiles

Lot-Sample #...: A8G240111-002 Work Order #...: KR3RD1AJ Matrix..... WG

Date Sampled...: 07/23/08 09:10 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.32 J	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
<pre>1,2-Dichloroethene (total)</pre>	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.9	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	0.17 J	1.0	ug/L
Chlorobenzene	4.6	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	0.66 J	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	(73 - 12	2)
1,2-Dichloroethane-d4	103	(61 - 12	8)
Toluene-d8	89	(76 - 11)	
4-Bromofluorobenzene	89	(74 - 11)	

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	89	(76 - 110)	
4-Bromofluorobenzene	8.9	(74 - 116)	

Client Sample ID: OW22

GC/MS Volatiles

Lot-Sample #...: A8G240111-002 Work Order #...: KR3RD1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW21

GC/MS Volatiles

Lot-Sample #...: A8G240111-003 Work Order #...: KR3RH1AJ Matrix..... WG

Date Sampled...: 07/23/08 10:15 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.74 J	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.8	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	94	(76 - 110)	
4-Bromofluorobenzene	90	(74 - 116)	

Client Sample ID: OW21

GC/MS Volatiles

Lot-Sample #...: A8G240111-003 Work Order #...: KR3RH1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW5

GC/MS Volatiles

Lot-Sample #...: A8G240111-004 Work Order #...: KR3RJ1AJ Matrix..... WG

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.28 J	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
<pre>1,2-Dichloroethene (total)</pre>	10	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	1.8	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	0.53 J	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	4.4	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
CHDDOCAME	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	(73 - 122)	
1,2-Dichloroethane-d4	106	(61 - 128)	
Toluene-d8	92	(76 - 110)	
4-Bromofluorobenzene	85	(74 - 116)	

Client Sample ID: OW5

GC/MS Volatiles

Lot-Sample #...: A8G240111-004 Work Order #...: KR3RJ1AJ Matrix...... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW6

GC/MS Volatiles

Lot-Sample #...: A8G240111-005 Work Order #...: KR3RL1AJ Matrix..... WG

Date Sampled...: 07/23/08 12:15 Date Received..: 07/24/08 Analysis Date..: 07/29/08

Prep Date....: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	16	1.0	ug/L
(total)	0	1.0	ug/ n
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L ug/L
2-Butanone	ND	10	ug/L ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	6.3	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L ug/L
Bromoform	ND	1.0	ug/L ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	31	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
Ayrenes (cocar)	MD	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	$\frac{110113}{(73 - 122)}$	
1,2-Dichloroethane-d4	107	(61 - 128	
Toluene-d8	93	(76 - 110	
4-Bromofluorobenzene	90	(74 - 116	75
. DIOMOITHOLODENZENE	90	(14 - 110	J

North Canton

Client Sample ID: OW8

GC/MS Volatiles

Lot-Sample #...: A8G240111-006 Work Order #...: KR3RM1AJ Matrix..... WG

Date Sampled...: 07/23/08 13:30 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTIN	IC.
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	
(total)	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND ND		ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane		1.0	ug/L
Benzene	ND	1.0	ug/L
	ND	1.0	ug/L
trans-1,3-Dichloropropene Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
Tetrachloroethene	ND	10	ug/L
CORP. TO SECURITY AND SECURITY AND AN ACCORDANCE OF CONTRACT OF CONTRACT AND ACCORDANCE OF CONTRACT AN	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	DEDCEME		
CHDDOCATE	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(73 - 12	
1,2-Dichloroethane-d4	108	(61 - 12	20 15
Toluene-d8	92	(76 - 11	
4-Bromofluorobenzene	87	(74 - 11	6)

North Canton

Client Sample ID: OW25

GC/MS Volatiles

Lot-Sample #...: A8G240111-007 Work Order #...: KR3RN1AJ Matrix..... WG

Date Sampled...: 07/23/08 14:35 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date... 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			56 V/22 - 620 H/20 //50
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	101	(73 - 122)	
1,2-Dichloroethane-d4	108	(61 - 128)	
Toluene-d8	94	(76 - 110)	
4-Bromofluorobenzene	88	(74 - 116)	

Client Sample ID: TRIP BLANK 2

GC/MS Volatiles

Lot-Sample #...: A8G240111-008 Work Order #...: KR3RP1AA Matrix..... WQ

Date Sampled...: 07/23/08 Date Received..: 07/24/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	9.4 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			-5
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	99	(73 - 122)	
1,2-Dichloroethane-d4	103	(61 - 128)	
Toluene-d8	94	(76 - 110)	
4-Bromofluorobenzene	86	(74 - 116)	

Client Sample ID: TRIP BLANK 2

GC/MS Volatiles

Lot-Sample #...: A8G240111-008 Work Order #...: KR3RP1AA

Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 8G23112

MB Lot-Sample #: A8G300000-13

Work Order #...: KTC631AA

Matrix..... WATER

MB Lot-Sample #: A8G300000-139

Prep Date....: 07/28/08 Prep Batch #...: 8212139 Final Wgt/Vol..: 5 mL

Analysis Date..: 07/28/08

Initial Wgt/Vol: 5 mL

Dilution Factor: 1 Initia

REPORTING

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	2.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Acetone	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
<pre>1,2-Dichloroethene (total)</pre>	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	10	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	0.48 J	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	95	(73 - 12)	22)	
1,2-Dichloroethane-d4	99	(61 - 12		
Toluene-d8	95	(76 - 11		
4 5 61 1		, , ,	1970	

(Continued on next page)

(74 - 116)

90

4-Bromofluorobenzene

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 8G23112

Work Order #...: KTC631AA

Matrix..... WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G23112 Work Order #...: KTC631AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8G300000-139 KTC631AD-LCSD

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8212139

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	94	(63 - 130)			SW846 8260B
	93	(63 - 130)	1.9	(0-20)	SW846 8260B
Trichloroethene	88	(75 - 122)			SW846 8260B
	84	(75 - 122)	4.3	(0-20)	SW846 8260B
Benzene	85	(80 - 116)			SW846 8260B
	84	(80 - 116)	1.4	(0-20)	SW846 8260B
Toluene	90	(74 - 119)			SW846 8260B
	87	(74 - 119)	3.8	(0-20)	SW846 8260B
Chlorobenzene	94	(76 - 117)			SW846 8260B
	92	(76 - 117)	2.3	(0-20)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	'S	
Dibromofluoromethane		94	(73 -	122)	
		94	(73 -	122)	
1,2-Dichloroethane-d4		103	(61 -	128)	
	(20)	100	(61 -	128)	
Toluene-d8		99	(76 -	110)	
		96	(76 -	110)	
4-Bromofluorobenzene		106	(74 -	116)	
		104	(74 -	116)	
MOTE (C) -					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G23112 Work Order #...: KTC631AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8G300000-139 KTC631AD-LCSD

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8212139

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURED)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,1-Dichloroethene	10	9.4	ug/L	94		SW846 8260B
	10	9.3	ug/L	93	1.9	SW846 8260B
Trichloroethene	10	8.8	ug/L	88		SW846 8260B
	10	8.4	ug/L	84	4.3	SW846 8260B
Benzene	10	8.5	ug/L	85		SW846 8260B
	10	8.4	ug/L	84	1.4	SW846 8260B
Toluene	10	9.0	ug/L	90		SW846 8260B
	10	8.7	ug/L	87	3.8	SW846 8260B
Chlorobenzene	10	9.4	ug/L	94		SW846 8260B
	10	9.2	ug/L	92	2.3	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE	_		RECOVERY	LIMITS		
Dibromofluoromethane			94	(73 - 122))	
			94	(73 - 122)	
1,2-Dichloroethane-d4			103	(61 - 128)	
			100	(61 - 128)	
Toluene-d8			99	(76 - 110))	
			96	(76 - 110))	
4-Bromofluorobenzene			106	(74 - 116)	
			104	(74 - 116)	
NOTE(S):						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G23112 Work Order #...: KR1JX1A2-MS Matrix..... WG

MS Lot-Sample #: A8G230112-004 KR1JX1A3-MSD

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

PARAMETER 1,1-Dichloroethene Trichloroethene	PERCENT RECOVERY 87 83 82 72	RECOVERY LIMITS (62 - 130) (62 - 130) (62 - 130)	5.0	RPD LIMITS (0-20)	SW846 SW846	8260B 8260B 8260B
Benzene	82 71 a	(62 - 130) (78 - 118) (78 - 118)	13 8.0	(0-20) (0-20)	SW846	8260B 8260B 8260B
Toluene	87 79	(70 - 119) (70 - 119)	9.1	(0-20)	SW846	
Chlorobenzene	91 82	(76 - 117) (76 - 117)	10	(0-20)	SW846 SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		95		(73 - 122))	
		92		(73 - 122)	
1,2-Dichloroethane-d4		103		(61 - 128)	
		101		(61 - 128)	
Toluene-d8		99		(76 - 110)	
		99		(76 - 110		
4-Bromofluorobenzene		109		(74 - 116		
		106		(74 - 116		
				2 5 5 1 2	N/2	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G23112 Work Order #...: KR1JX1A2-MS Matrix..... WG

MS Lot-Sample #: A8G230112-004 KR1JX1A3-MSD

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/29/08 Analysis Date..: 07/29/08

Prep Batch #...: 8212139

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10	8.7	ug/L	87		SW846 8260B
	ND	10	8.3	ug/L	83	5.0	SW846 8260B
Trichloroethene	ND	10	8.2	ug/L	82		SW846 8260B
	ND	10	7.2	ug/L	72	13	SW846 8260B
Benzene	6.5	10	15	ug/L	82		SW846 8260B
	6.5	10	14	ug/L	71 a	8.0	SW846 8260B
Toluene	ND	10	8.7	ug/L	87		SW846 8260B
	ND	10	7.9	ug/L	79	9.1	SW846 8260B
Chlorobenzene	ND	10	9.1	ug/L	91		SW846 8260B
	ND	10	8.2	ug/L	82	10	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	95	(73 - 122)
	92	(73 - 122)
1,2-Dichloroethane-d4	103	(61 - 128)
	101	(61 - 128)
Toluene-d8	99	(76 - 110)
	99	(76 - 110)
4-Bromofluorobenzene	109	(74 - 116)
	106	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

DISSOLVED GASES/RSK DATA

North Canton

Client Sample ID: OW18

GC Volatiles

Lot-Sample #...: A8G230112-001 Work Order #...: KR1JT1AH Matrix....: WG
Date Sampled...: 07/22/08 09:45 Date Received..: 07/23/08
Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8204152

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

Method..... RSK SOP-175

REPORTING PARAMETER RESULT UNITS LIMIT Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 330 0.50 ug/L

Client Sample ID: OW19

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	07/22/08 11:40 07/24/08	Work Order #: Date Received: Analysis Date:	07/23/08	Matrix WG
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1 mL	Final Wgt/Vol: 1 mL
		Method:	RSK SOP-17	5
PARAMETER		RESULT	REPORTING LIMIT	UNITS
Ethane		ND	0.50	ug/L
Ethene		0.30 J	0.50	ug/L
Methane		700	0.50	ug/L
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: OW10R

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	07/22/08 13:00 07/24/08	Work Order #: Date Received: Analysis Date:	07/23/08	Matrix WG
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1 mL	Final Wgt/Vol: 1 mL
		Method:	RSK SOP-17	5
PARAMETER		RESULT	REPORTING LIMIT	UNITS
Ethane		ND	0.50	ug/L
Ethene		0.33 J	0.50	ug/L
Methane		510	0.50	ug/L
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: OW13R

GC Volatiles

Lot-Sample #...: A8G230112-004 Work Order #...: KR1JX1AW Matrix..... WG Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08 Prep Batch #...: 8204152

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 370 0.50 ug/L

Client Sample ID: OW DUPLICATE

GC Volatiles

Lot-Sample #...: A8G230112-005 Work Order #...: KR1J11AH Matrix...... WG

Date Sampled...: 07/22/08 Date Received..: 07/23/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8204152

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 450 0.50 ug/L

North Canton

Client Sample ID: OW22

GC Volatiles

Lot-Sample #...: A8G240111-002 Work Order #...: KR3RD1AH Matrix..... WG Date Sampled...: 07/23/08 09:10 Date Received..: 07/24/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08 Prep Batch #...: 8206339 Dilution Factor: 1

Initial Wgt/Vol: 1 mL

Method....: RSK SOP-175

Final Wgt/Vol..: 1 mL

		REPORTIN	IG .
PARAMETER	RESULT	LIMIT	UNITS
Ethane	ND	0.50	ug/L
Ethene	ND	0.50	ug/L
Methane	560	0.50	ug/L

Client Sample ID: OW21

GC Volatiles

Lot-Sample #...: A8G240111-003 Work Order #...: KR3RH1AH Matrix..... WG Date Sampled...: 07/23/08 10:15 Date Received..: 07/24/08 Analysis Date..: 07/24/08

Prep Date....: 07/24/08 Prep Batch #...: 8206339

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 50 0.50 ug/L

Client Sample ID: OW5

GC Volatiles

Lot-Sample #...: A8G240111-004 Work Order #...: KR3RJ1AH Matrix.....: WG

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method..... RSK SOP-175

 Ethene
 ND
 0.50
 ug/L

 Methane
 ND
 0.50
 ug/L

Client Sample ID: OW6

GC Volatiles

Lot-Sample #...: A8G240111-005 Work Order #...: KR3RL1AH Matrix..... WG

Date Sampled...: 07/23/08 12:15 Date Received..: 07/24/08

Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method.....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane ND 0.50 ug/L

Client Sample ID: OW8

GC Volatiles

Lot-Sample #:	A8G240111-006	Work Order #: KR3RM1AH	Matrix WG
Date Sampled:	07/23/08 13:30	Date Received: 07/24/08	
Prep Date:	07/24/08	Analysis Date: 07/24/08	
Prep Batch #:	8206339		

Dilution Factor: 1 Initial Wgt/Vol: 1 mL

Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method..... RSK SOP-175

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Ethane	ND	0.50	ug/L
Ethene	ND	0.50	ug/L
Methane	0.74	0.50	ug/L

Client Sample ID: OW25

GC Volatiles

Lot-Sample #...: A8G240111-007 Work Order #...: KR3RN1AH Matrix..... WG

Date Sampled...: 07/23/08 14:35 Date Received..: 07/24/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method..... RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane ND 0.50 ug/L

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: 8G23112

Work Order #...: KRXF31AA

Matrix..... WATER

MB Lot-Sample #: A8G220000-152

Prep Date....: 07/23/08

Final Wgt/Vol..: 1 mL

Analysis Date..: 07/23/08

Prep Batch #...: 8204152

Dilution Factor: 1

Initial Wgt/Vol: 1 mL

REPORTING

		TUDE OF TE	.10	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methane	ND	0.50	ug/L	RSK SOP-175
Ethane	ND	0.50	ug/L	RSK SOP-175
Ethene	ND	0.50	ug/L	RSK SOP-175

NOTE(S):

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: 8G23112

Work Order #...: KR4QJ1AA

Matrix..... WATER

MB Lot-Sample #: A8G240000-339

Prep Date....: 07/24/08

Final Wgt/Vol..: 1 mL

Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1

Initial Wgt/Vol: 1 mL

REPORTING

		IVEL OUT I	LIVO		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Ethane	ND	0.50	ug/L	RSK SOP-175	ä
Ethene	ND	0.50	ug/L	RSK SOP-175	
Methane	ND	0.50	ug/L	RSK SOP-175	

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KRXF31AC Matrix...... WATER

LCS Lot-Sample#: A8G220000-152

Prep Date....: 07/23/08 Analysis Date..: 07/23/08

Prep Batch #...: 8204152

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

PERCENT RECOVERY PARAMETER RECOVERY LIMITS METHOD Methane 96 (75 - 127)RSK SOP-175 Ethane 95 (74 - 138)RSK SOP-175 Ethene 93 (73 - 140)RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KRXF31AC Matrix...... WATER

LCS Lot-Sample#: A8G220000-152

Prep Date....: 07/23/08 Analysis Date..: 07/23/08

Prep Batch #...: 8204152

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Methane	73	70	ug/L	96	RSK SOP-175
Ethane	140	130	ug/L	95	RSK SOP-175
Ethene	130	120	ug/L	93	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KR4QJ1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8G240000-339 KR4QJ1AD-LCSD

Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Methane	96	(75 - 127)			RSK SOP-175
	97	(75 - 127)	0.61	(0-30)	RSK SOP-175
Ethane	95	(74 - 138)			RSK SOP-175
	96	(74 - 138)	0.76	(0-30)	RSK SOP-175
Ethene	94	(73 - 140)			RSK SOP-175
	95	(73 - 140)	0.83	(0-30)	RSK SOP-175
Acetylene	81	(70 - 130)			RSK SOP-175
	83	(70 - 130)	2.0	(0-30)	RSK SOP-175

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KR4QJ1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8G240000-339 KR4QJ1AD-LCSD

Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8206339

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	SPIKE	MEASUREI)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
Methane	73	70	ug/L	96		RSK SOP-175
	73	71	ug/L	97	0.61	RSK SOP-175
Ethane	140	130	ug/L	95		RSK SOP-175
	140	130	ug/L	96	0.76	RSK SOP-175
Ethene	130	120	ug/L	94		RSK SOP-175
	130	120	ug/L	95	0.83	RSK SOP-175
Acetylene	120	96	ug/L	81		RSK SOP-175
	120	98	ug/L	83	2.0	RSK SOP-175
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KR1JX1AX-MS Matrix...... WG

MS Lot-Sample #: A8G230112-004 KR1JX1A0-MSD

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8204152

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD	
Methane	135 a	(75 - 127)		(1000)	RSK SOP-175	
	203 a	(75 - 127)	10	(0-30)	RSK SOP-175	
Ethane	93	(74 - 138)			RSK SOP-175	
	90	(74 - 138)	3.7	(0-30)	RSK SOP-175	
Ethene	91	(73 - 140)			RSK SOP-175	
	88	(73 - 140)	3.8	(0-30)	RSK SOP-175	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 8G23112 Work Order #...: KR1JX1AX-MS Matrix..... WG

MS Lot-Sample #: A8G230112-004 KR1JX1A0-MSD

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08 Prep Date....: 07/24/08 Analysis Date..: 07/24/08

Prep Batch #...: 8204152

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD
Methane	370	73	470	ug/L	135 a		RSK SOP-175
	370	73	520	ug/L	203 a	10	RSK SOP-175
Ethane	ND	140	130	ug/L	93		RSK SOP-175
	ND	140	120	ug/L	90	3.7	RSK SOP-175
Ethene	ND	130	120	ug/L	91		RSK SOP-175
	ND	130	110	ug/L	88	3.8	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

GENERAL CHEMISTRY DATA

North Canton 80

Client Sample ID: OW18

General Chemistry

Lot-Sample #...: A8G230112-001

Work Order #...: KR1JT

Matrix..... WG

Date Sampled...: 07/22/08 09:45 Date Received..: 07/23/08

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Chloride	4.4	1.0	mg/L	MCAWW 300.0A	07/23/08	8206077
		Dilution Fact	or: 1			
Nitrate as N	ND	0.10 Dilution Fact	mg/L or: 1	MCAWW 300.0A	07/23/08	8206075
Sulfate	7.8	1.0 Dilution Factor	mg/L or: 1	MCAWW 300.0A	07/23/08	8206076
Total Alkalinity	210	5.0 Dilution Facto	mg/L or: 1	MCAWW 310.1	07/25/08	8207255
Total Organic Carbon		1 Dilution Facto	mg/L or: 1	MCAWW 415.1	07/24/08	8206180
Total Sulfide	ND	1.0	mg/L or: 1	MCAWW 376.1	07/25/08	8207376

Client Sample ID: OW19

General Chemistry

Lot-Sample #...: A8G230112-002 Work Order #...: KR1JV Matrix.....: WG

Date Sampled...: 07/22/08 11:40 Date Received..: 07/23/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	8.4	1.0 ution Facto	mg/L or: 1	MCAWW 300.0A	07/23/08	8206077
Nitrate as N	ND Dil	0.10 ution Facto	mg/L or: 1	MCAWW 300.0A	07/23/08	8206075
Sulfate	10.9	1.0 ution Facto	mg/L or: 1	MCAWW 300.0A	07/23/08	8206076
Total Alkalinity	200	5.0 ution Facto	mg/L or: 1	MCAWW 310.1	07/25/08	8207255
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW 415.1	07/24/08	8206180
Total Sulfide	1.1 Dil.	1.0 ution Facto	mg/L or: 1	MCAWW 376.1	07/25/08	8207376

Client Sample ID: OW10R

General Chemistry

Lot-Sample #...: A8G230112-003 Work Order #...: KR1JW Matrix.....: WG

Date Sampled...: 07/22/08 13:00 Date Received..: 07/23/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.3	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/23/08	8206077
Nitrate as N	ND Dil	0.10 ution Fact	mg/L or: 1	MCAWW 300.0A	07/23/08	8206075
Sulfate	26.4 Dil	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/23/08	8206076
Total Alkalinity	270 Dil	5.0 ution Facto	mg/L or: 1	MCAWW 310.1	07/25/08	8207255
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW 415.1	07/24/08	8206180
Total Sulfide	1.1 Dil	1.0 ution Facto	mg/L or: 1	MCAWW 376.1	07/25/08	8207376

Client Sample ID: OW13R

General Chemistry

Lot-Sample #...: A8G230112-004

Work Order #...: KR1JX

Matrix....: WG

Date Sampled...: 07/22/08 14:10 Date Received..: 07/23/08

PARAMETER	RESULT	RL	UNITS	METHO)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	4.1	1.0 Dilution Facto	mg/L r: 1	MCAWW	300.0A	07/23/08	8206077
Nitrate as N	ND	0.10 Dilution Facto	mg/L r: 1	MCAWW	300.0A	07/23/08	8206075
Sulfate	22.2	1.0 Dilution Facto	mg/L r: 1	MCAWW	300.0A	07/23/08	8206076
Total Alkalinity	330	5.0 Dilution Facto	mg/L r: 1	MCAWW	310.1	07/25/08	8207255
Total Organic Carbon		1 Dilution Facto	mg/L r: 1	MCAWW	415.1	07/24/08	8206180
Total Sulfide	ND	1.0 Dilution Facto	mg/L r: 1	MCAWW	376.1	07/25/08	8207376

Client Sample ID: OW DUPLICATE

General Chemistry

Lot-Sample #...: A8G230112-005

Work Order #...: KR1J1

Matrix....: WG

Date Sampled...: 07/22/08

Date Received..: 07/23/08

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	4.0	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/23/08	8206077
Nitrate as N	ND Dil	0.10 ution Facto	mg/L or: 1	MCAWW	300.0A	07/23/08	8206075
Sulfate	21.9	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/23/08	8206076
Total Alkalinity	330	5.0 ution Facto	mg/L or: 1	MCAWW	310.1	07/25/08	8207255
Total Organic Carbon		1 ntion Facto	mg/L or: 1	MCAWW	415.1	07/24/08	8206180
Total Sulfide	ND Dilu	1.0 Ition Facto	mg/L or: 1	MCAWW	376.1	07/25/08	8207376

Client Sample ID: OW22

General Chemistry

Lot-Sample #...: A8G240111-002

Work Order #...: KR3RD

Matrix....: WG

Date Sampled...: 07/23/08 09:10 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	METHOD)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	5.2	1.0	mg/L	MCAWW	300.0A	07/25/08	8210370
		Dilution Facto	or: 1				
Nitrate as N	ND	0.10	mg/L	MCAWW	300.0A	07/25/08	8210374
		Dilution Facto	or: 1				
Sulfate	8.3	1.0	mg/L	MCAWW	300.0A	07/25/08	8210375
		Dilution Facto	or: 1				
Total Alkalinity	210	5.0	mg/L	MCAWW	310.1	08/01/08	8214055
	8	Dilution Facto	r: 1				
Total Organic Carbon	5	1	mg/L	MCAWW	415.1	07/28/08	8211052
		Dilution Facto	r: 1			•	
Total Sulfide	4.6	1.0	mg/L	MCAWW	376.1	07/29/08	8211422
	1	Dilution Facto	0 =000			regulation of transferror of the Co.	

Client Sample ID: OW21

General Chemistry

Lot-Sample #...: A8G240111-003

Work Order #...: KR3RH

Matrix....: WG

Date Sampled...: 07/23/08 10:15 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	3.3 Dil	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/25/08	8210370
Nitrate as N	ND Dil	0.10 ution Facto	mg/L or: 1	MCAWW 300.0A	07/25/08	8210374
Sulfate	28.8	1.0 ution Facto	mg/L or: 1	MCAWW 300.0A	07/25/08	8210375
Total Alkalinity	240	5.0 ution Facto	mg/L or: 1	MCAWW 310.1	08/01/08	8214055
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW 415.1	07/28/08	8211052
Total Sulfide	1.6	1.0	mg/L or: 1	MCAWW 376.1	07/29/08	8211422

Client Sample ID: OW5

General Chemistry

Lot-Sample #...: A8G240111-004

Work Order #...: KR3RJ

Matrix....: WG

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	METHO:	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	4.8	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210370
Nitrate as N	1.2	0.10 ution Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210374
Sulfate	38.3	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210375
Total Alkalinity	94	5.0 ution Facto	mg/L or: 1	MCAWW	310.1	08/01/08	8214055
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW	415.1	07/28/08	8211052
Total Sulfide	1.6	1.0	mg/L or: 1	MCAWW	376.1	07/29/08	8211422

Client Sample ID: OW6

General Chemistry

Lot-Sample #...: A8G240111-005

Work Order #...: KR3RL

Matrix..... WG

Date Sampled...: 07/23/08 12:15 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARA ANALYS	ATION- IS DATE	PREP BATCH #
Chloride	1.0	1.0 ution Fact	mg/L or: 1	MCAWW 300.	0A 07/25/0	08	8210370
Nitrate as N	0.10	0.10 ution Fact	mg/L or: 1	MCAWW 300.	0A 07/25/0	08	8210374
Sulfate	17.6	1.0 ution Fact	mg/L or: 1	MCAWW 300.	OA 07/25/0)8	8210375
Total Alkalinity	28 Dil	5.0 ution Facto	mg/L or: 1	MCAWW 310.	1 08/01/0)8	8214055
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW 415.	1 07/28/0)8	8211052
Total Sulfide	1.6	1.0 ution Facto	mg/L or: 1	MCAWW 376.	1 07/29/0)8	8211422

Client Sample ID: OW8

General Chemistry

Lot-Sample #...: A8G240111-006

Work Order #...: KR3RM

Matrix....: WG

Date Sampled...: 07/23/08 13:30 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	МЕТНОІ	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.6	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210370
Nitrate as N	ND Dil	0.10	mg/L or: 1	MCAWW	300.0A	07/25/08	8210374
Sulfate	10.8	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210375
Total Alkalinity	49 Dil	5.0 ution Facto	mg/L or: 1	MCAWW	310.1	07/31/08	8214056
Total Organic Carbon		1 ution Facto	mg/L or: 1	MCAWW	415.1	07/28/08	8211052
Total Sulfide	ND Dil	1.0 ution Facto	mg/L or: 1	MCAWW	376.1	07/29/08	8211422

Client Sample ID: OW25

General Chemistry

Lot-Sample #...: A8G240111-007

Work Order #...: KR3RN

Matrix....: WG

Date Sampled...: 07/23/08 14:35 Date Received..: 07/24/08

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.1 Dilu	1.0 ition Facto	mg/L or: 1	MCAWW	300.0A	07/25/08	8210370
Nitrate as N	0.20	0.10	mg/L or: 1	MCAWW	300.0A	07/25/08	8210374
Sulfate	11.7	1.0	mg/L or: 1	MCAWW	300.0A	07/25/08	8210375
Total Alkalinity	58	5.0 tion Facto	mg/L or: 1	MCAWW	310.1	08/01/08	8214055
Total Organic Carbon		1 tion Facto	mg/L or: 1	MCAWW	415.1	07/28/08	8211052
Total Sulfide	3.2 Dilu	1.0 tion Facto	mg/L or: 1	MCAWW	376.1	07/29/08	8211422

METHOD BLANK REPORT

General Chemistry

Matrix..... WATER

Client Lot #...: 8G23112

REPORTING PREPARATION-PREP PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE BATCH # Chloride Work Order #: KR3JJ1AA MB Lot-Sample #: A8G240000-077 ND mg/L MCAWW 300.0A 07/23/08 8206077 Dilution Factor: 1 Chloride Work Order #: KR9G11AA MB Lot-Sample #: A8G280000-370 MCAWW 300.0A ND 1.0 mg/L 07/25/08 8210370 Dilution Factor: 1 Work Order #: KR3JG1AA MB Lot-Sample #: A8G240000-075 Nitrate as N 0.10 mg/L MCAWW 300.0A ND 07/23/08 8206075 Dilution Factor: 1 Nitrate as N Work Order #: KR9HK1AA MB Lot-Sample #: A8G280000-374 ND 0.10 MCAWW 300.0A mg/L 07/25/08 8210374 Dilution Factor: 1 Sulfate Work Order #: KR3JH1AA MB Lot-Sample #: A8G240000-076 1.0 ND mg/L MCAWW 300.0A 07/23/08 8206076 Dilution Factor: 1 Sulfate Work Order #: KR9H61AA MB Lot-Sample #: A8G280000-375 ND 1.0 mg/L MCAWW 300.0A 07/25/08 8210375 Dilution Factor: 1 Total Alkalinity Work Order #: KR6FG1AA MB Lot-Sample #: A8G250000-255 ND 5.0 MCAWW 310.1 mq/L 07/25/08 8207255 Dilution Factor: 1 Total Alkalinity Work Order #: KTGMR1AA MB Lot-Sample #: A8H010000-055 5.0 mg/L ND MCAWW 310.1 07/31/08 8214055 Dilution Factor: 1 Total Alkalinity Work Order #: KTGMX1AA MB Lot-Sample #: A8H010000-056 ND 5.0 mg/L MCAWW 310.1 07/31/08 8214056 Dilution Factor: 1 Work Order #: KR3QJ1AA MB Lot-Sample #: A8G240000-180 Total Organic Carbon

(Continued on next page)

mq/L

mq/L

Dilution Factor: 1

Dilution Factor: 1

MCAWW 415.1

Work Order #: KR92L1AA MB Lot-Sample #: A8G290000-052

MCAWW 415.1

07/24/08

07/28/08

Total Organic Carbon

ND

ND

8206180

8211052

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 8G23112

Matrix.... WATER

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Sulfide	ND	Work Order 1.0 Dilution Fact	#: KR7AG1AA mg/L or: 1	MB Lot-Sample #: MCAWW 376.1	A8G250000-376 07/25/08	8207376
Total Sulfide	ND	Work Order 1.0 Dilution Fact	#: KTCAV1AA mg/L or: 1	MB Lot-Sample #: MCAWW 376.1	A8G290000-422 07/29/08	8211422
NOTE(S):						

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: 8G23112 Matrix..... WATER

PARAMETER Chloride	PERCENT RECOVERY 97 97	LIMITS RPD LIMITS METHOD ANALYSIS DATE B WO#:KR3JJ1AC-LCS/KR3JJ1AD-LCSD LCS Lot-Sample#: A8G240 (90 - 110) MCAWW 300.0A 07/23/08 8	
Chloride	98 98	WO#:KR9G11AC-LCS/KR9G11AD-LCSD LCS Lot-Sample#: A8G280 (90 - 110)	1210370
Nitrate as N	100 100	WO#:KR3JG1AC-LCS/KR3JG1AD-LCSD LCS Lot-Sample#: A8G240 (90 - 110)	000-075 206075 206075
Nitrate as N	100 100		000-374 210374 210374
Sulfate	97 97		000-076 206076 206076
Sulfate	97 97	WO#: KR9H61AC-LCS/KR9H61AD-LCSD LCS Lot-Sample#: A8G280 (90 - 110) MCAWW 300.0A 07/25/08 8 (90 - 110) 0.20 (0-20) MCAWW 300.0A 07/25/08 8 Dilution Factor: 1	
Total Sulfide	10 4	WO#:KTCAV1AC-LCS/KTCAV1AD-LCSD LCS Lot-Sample#: A8G290(79 - 104)	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: 8G23112

Matrix..... WATER

D1 D1 14DED	SPIKE	MEASURED		PERCNT	0.0000000000000000000000000000000000000	MARCHA PROFILE CONTRACTOR		PREPARATION-	PREP
PARAMETER Chloride	AMOUNT	AMOUNT	UNITS	RECVRY			0900	ANALYSIS DATE	BATCH #
Chroride	F0 0				BJJIA			ple#: A8G24000	
	50.0	48.6	mg/L	97	E - E - E		300.0A	07/23/08	8206077
	50.0	48.7	mg/L	97	0.20	MCAWW	300.0A	07/23/08	8206077
		D	ilution Fact	cor: 1					
Chloride		WO#	:KR9G11AC	-LCS/KR9	9G11A	D-LCSD	LCS Lot-Sam	ple#: A8G28000	0-370
	50.0	49.1	mg/L	98			300.0A	07/26/08	8210370
	50.0	48.9	mg/L	98	0.40	MCAWW	300.0A	07/26/08	8210370
		D	ilution Fact	or: 1					
W1624									
Nitrate as N					BJG1A	D-LCSD	LCS Lot-Sam	ple#: A8G24000	0-075
	2.5	2.5	mg/L	100			300.0A	07/23/08	8206075
	2.5	2.5	mg/L	100	0.0	MCAWW	300.0A	07/23/08	8206075
		D	ilution Fact	or: 1					
Nitrate as N		WO#	:KR9HK1AC	-LCS/KR9	HK1A	D-LCSD	LCS Lot-Sam	ple#: A8G28000	0-374
	2.5	2,5	mg/L	100			300.0A	07/26/08	8210374
	2.5	2.5	mg/L	100	0.0		300.0A	07/26/08	8210374
		D	ilution Fact				000.011	07720700	0210374
Sulfate		WO#	:KR3JH1AC-	-LCS/KR3	JH1AI	D-LCSD	LCS Lot-Sam	ple#: A8G24000	0-076
	50.0	48.6	mg/L	97		MCAWW	300.0A	07/23/08	8206076
	50.0	48.7	mg/L	97	0.20	MCAWW	300.0A	07/23/08	8206076
		D.	ilution Fact	or: 1					
Sulfate		#O#	· KR9H61AC-	-I.CS/KRO	н61 ді)-I CSD	ICS Int-Sam	ple#: A8G28000	0 275
	50.0	48.7	mg/L	97	HOLM		300.0A	07/25/08	
	50.0	48.6	mg/L		0.20		300.0A	07/25/08	8210375
	50.0		ilution Fact		0.20	MCAWW	300.0A	07/25/08	8210375
		Б.	rracion racc	J					
Total Sulfide	9	WO#	:KTCAV1AC-	-LCS/KTC	AV1AI	D-LCSD	LCS Lot-Sam	ple#: A8G290000	0-422
	19	19	mg/L	100		MCAWW		07/29/08	8211422
	19	19	mg/L	102	2.5	MCAWW		07/29/08	8211422
is .		Di	ilution Fact	or: 1				reducation incomment to the own	ensone (Control Tol) Telemone (Control Control

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #.	: 8G23112			Matrix: WATER
PARAMETER Total Alkalin		LIMITS METHOD	LCS	PREPARATION- PREP ANALYSIS DATE BATCH # Lot-Sample#: A8G250000-255 07/25/08 8207255
Total Alkalin	103	Work Order #: KTGMR1AC (90 - 127) MCAWW 310.1 Dilution Factor: 1		Lot-Sample#: A8H010000-055 07/31/08 8214055
Total Alkalini	102			Lot-Sample#: A8H010000-056 07/31/08 8214056
Total Organic	Carbon 105			Lot-Sample#: A8G240000-180 07/24/08 8206180
Total Organic	Carbon 104	Work Order #: KR92L1AC (88 - 115) MCAWW 415.1 Dilution Factor: 1		Lot-Sample#: A8G290000-052 07/28/08 8211052
Total Sulfide	99	Work Order #: KR7AG1AC (79 - 104) MCAWW 376.1 Dilution Factor: 1		Lot-Sample#: A8G250000-376 07/25/08 8207376

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix..... WATER

PARAMETER Total Alkali			UNITS Work Order #	RECVRY: KR6FG1	METHOD IAC LCS Lot-Sampl MCAWW 310.1	ANZ e#:	ALYSIS DATE A8G250000-2	55
Total Alkali	nity 49.2			103	IAC LCS Lot-Sampl MCAWW 310.1			
Total Alkali	nity 49.2			102	AC LCS Lot-Sampl MCAWW 310.1			
Total Organi	c Carbon 19	20		105	AC LCS Lot-Sampl MCAWW 415.1			
Total Organi	c Carbon 19	19		104	AC LCS Lot-Sample			
Total Sulfid	e 19			99	AC LCS Lot-Sample		AMERICAN AND AND AND ADDRESS OF THE	

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix..... WG

Date Sampled...: 07/23/08 13:30 Date Received..: 07/24/08

PARAMETER Chloride	PERCENT RECOVERY 101 100	WO#: KR (80 - 120) (80 - 120) 1.	RPD PD LIMITS METHOD R1JX1AU-MS/KR1JX1AV-MSD MCAWW 300.0A 1 (0-20) MCAWW 300.0A Factor: 1	MS Lot-Sample #: A8G230112-004 07/23/08 8206077
Nitrate as N	100	(80 - 120) (80 - 120) 0.	R1JX1AM-MS/KR1JX1AN-MSD MCAWW 300.0A 0 (0-20) MCAWW 300.0A Factor: 1	
Sulfate	102 101	(80 - 120) (80 - 120) 0.	R1JX1AQ-MS/KR1JX1AR-MSD MCAWW 300.0A 82 (0-20) MCAWW 300.0A Factor: 1	
Total Alkalin		(10 - 160) (10 - 160) 1.		MS Lot-Sample #: A8G230112-004 07/25/08 8207255 07/25/08 8207255
Total Alkalin		(10 - 160) (10 - 160) 6.		MS Lot-Sample #: A8G240111-006 07/31/08 8214056 07/31/08 8214056
Total Organic		(72 - 136) (72 - 136) 0.		MS Lot-Sample #: A8G230112-004 07/24/08 8206180 07/24/08 8206180
Total Sulfide		(75 - 107) (75 - 107) 1.8	1JX1AJ-MS/KR1JX1AK-MSD MCAWW 376.1 8 (0-20) MCAWW 376.1 Factor: 1	MS Lot-Sample #: A8G230112-004 07/25/08 8207376 07/25/08 8207376

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix...... WG

Date Sampled...: 07/23/08 13:30 Date Received..: 07/24/08

PARAMETER Chloride		SPIKE AMT 50.0 50.0	54.8 54.2	_UNITS KR1JX1AU-MS mg/L mg/L ion Factor: 1	PERCNT RECVRY /KR1JX1 101 100	RPD	METHOD D MS Lot-Samp MCAWW 300.0A MCAWW 300.0A	PREPARATION- ANALYSIS DATE le #: A8G230112 07/23/08 07/23/08	PREP <u>BATCH #</u> -004 8206077 8206077
Nitrate a	s N		WO#:	KR1JX1AM-MS	/KR1JX1	AN-MS	D MS Lot-Samp	le #: A8G230112	-004
	ND	2.5	2.5	mg/L	100		MCAWW 300.0A	07/23/08	8206075
	ND	2.5	2.5 Dilut:	mg/L ion Factor: 1	100	0.0	MCAWW 300.0A	07/23/08	8206075
Sulfate			WO#:	KR1JX1AO-MS	/KR1.TX1	AR-MS	D MS Lot-Samp	le #: A8G230112	-004
	22.2	50.0	73.4	mg/L	102	1111 110	MCAWW 300.0A	07/23/08	8206076
	22.2	50.0	72.8	mg/L	101	0.82	MCAWW 300.0A	07/23/08	8206076
				ion Factor: 1	101	0.02	Henw Sould	07723700	8200076
Total Alk	alinity		WO#:	KR1JX1AC-MS	/KR1JX1	AD-MS	D MS Lot-Samp	le #: A8G230112	-004
	330	500	570	mg/L	47		MCAWW 310.1	07/25/08	8207255
	330	500	560	mg/L	45	1.4	MCAWW 310.1	07/25/08	8207255
			Diluti	on Factor: 1					020/200
Total Alka	alinity		WO#:	KR3RM1AK-MS	/KR3RM1.	AL-MS	D MS Lot-Samp	le #: A8G240111	-006
	49	500	500	mg/L	90		MCAWW 310.1	07/31/08	8214056
	49	500	470	mg/L	84	6.2	MCAWW 310.1	07/31/08	8214056
			Diluti	on Factor: 1					322,7000
Total Orga	anic Carl	bon	WO#:	KR1JX1AF-MS	/KR1JX1	AG-MS	D MS Lot-Samp	le #: A8G230112-	-004
	3	25	30	mg/L	107		MCAWW 415.1	07/24/08	8206180
	3	25	30	mg/L	108	0.42	MCAWW 415.1	07/24/08	8206180
			Diluti	on Factor: 1					
Total Sul	fide		WO#:	KR1JX1AJ-MS	/KR1JX1	AK-MSI	D MS Lot-Samp	le #: A8G230112-	-004
	ND	19	18	mg/L	90		MCAWW 376.1		8207376
	ND	19	17	mg/L	88	1.8	MCAWW 376.1	07/25/08	8207376
			Diluti	on Factor: 1				ACCOUNT OF COUNTY SERVER	

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G23112

Matrix..... WG

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08

PARAMETER Chloride	PERCENT RECOVERY	RECOVERY LIMITS METHOD Work Order #: KR3RJ1AK (80 - 120) MCAWW 300.0A Dilution Factor: 1	PREPARATION- PREP ANALYSIS DATE BATCH # MS Lot-Sample #: A8G240111-004 07/25/08 8210370
Nitrate as N	104	Work Order #: KR3RJ1AL (80 - 120) MCAWW 300.0A Dilution Factor: 1	MS Lot-Sample #: A8G240111-004 07/25/08 8210374
Sulfate	101	Work Order #: KR3RJ1AM (80 - 120) MCAWW 300.0A Dilution Factor: 1	MS Lot-Sample #: A8G240111-004 07/25/08 8210375

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G23112

Matrix..... WG

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08

PARAMETER Chloride	SAMPLE AMOUNT 4.8		MEASURED AMOUNT UNITS Work Order #: 54.9 mg/L Dilution Factor: 1	METHOD	PREPARATION- ANALYSIS DATE ample #: A8G240 07/25/08	PREP BATCH # 0111-004 8210370
Nitrate as N	1.2	2.5	Work Order #: 3.8 mg/L Dilution Factor: 1	MS Lot-S MCAWW 300.0A	ample #: A8G240 07/25/08	0111-004 8210374
Sulfate	38.3	50.0	Work Order #: 88.8 mg/L Dilution Factor: 1	MS Lot-S MCAWW 300.0A	ample #: A8G240 07/25/08	0111-004 8210375

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix..... WATER

Date Sampled...: 07/30/08 10:15 Date Received..: 07/31/08

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS METHOD	PREPARATION- PREP ANALYSIS DATE BATCH #
Total Alkali	nity	WO#:	KTFA01AP-MS/KTFA01AQ-MSD	
	105	(10 - 160)	MCAWW 310.1	07/31/08 8214055
	95	(10 - 160)	9.6 (0-24) MCAWW 310.1	07/31/08 8214055
		Dilu	tion Factor: 1	
Total Organi	c Carbon	WO#:	KR5351AK-MS/KR5351AL-MSD	MS Lot-Sample #: A8G250135-001
	106	(72 - 136)	MCAWW 415.1	07/28/08 8211052
	103	(72 - 136)	2.9 (0-20) MCAWW 415.1	07/28/08 8211052
		Dilut	tion Factor: 1	

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G23112

Matrix..... WATER

Date Sampled...: 07/30/08 10:15 Date Received..: 07/31/08

PARAMETER	SAMPLE AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alka	linity		WO#:	KTFA01AP-MS/	KTFA01	Q-MSI	MS Lot-Sampl	e #: A8G310134	-005
	24.7	500	549	mg/L	105		MCAWW 310.1	07/31/08	8214055
	24.7	500	499	mg/L	95	9.6	MCAWW 310.1	07/31/08	8214055
			Diluti	on Factor: 1					
Total Orga	nic Carb	oon	WO#:	KR5351AK-MS/	KR5351A	L-MSI	O MS Lot-Sampl	e #: A8G250135-	-001
	ND	25	27	mg/L	106		MCAWW 415.1	07/28/08	8211052
	ND	25	26	mg/L	103	2.9	MCAWW 415.1	07/28/08	8211052
			Diluti	on Factor: 1					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix..... WATER

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

	PERCENT	RECOVERY	PREPA	ARATION-	PREP
PARAMETER	RECOVERY	LIMITS METHOD	_ ANAL	YSIS DATE	BATCH #
Chloride	109	Work Order #: KR5471AM			#: A8G250135-004
	109	(80 - 120) MCAWW 300.0A Dilution Factor: 1	U	7/26/08	8210370
Nitrate as N		Work Order #: KR5301A2	MS Lo	ot-Sample	#: A8G250132-005
	96	(80 - 120) MCAWW 300.0A Dilution Factor: 1	0.5	7/26/08	8210374
Nitrate as N		Work Order #: KR5471AL			#: A8G250135-004
	108	(80 - 120) MCAWW 300.0A Dilution Factor: 1	07	7/26/08	8210374
Sulfate	101	Work Order #: KR5301A3		St. Carrier Street St. Carrier St.	#: A8G250132-005
	101	(80 - 120) MCAWW 300.0A Dilution Factor: 1	07	7/26/08	8210375
Sulfate	109	Work Order #: KR5471AN			#: A8G250135-004
	109	(80 - 120) MCAWW 300.0A Dilution Factor: 1	0 /	7/26/08	8210375

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G23112 Matrix..... WATER

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

		AMT	AMOUNT UNITS Work Order #:	RECOVERY KR5471AM	PREPARATION- PREP METHOD ANALYSIS DATE BATCH # MS Lot-Sample #: A8G250135-004 MCAWW 300.0A 07/26/08 8210370
Nitrate as N		2.5		96	MS Lot-Sample #: A8G250132-005 MCAWW 300.0A 07/26/08 8210374
Nitrate as N	0.40	2.5			MS Lot-Sample #: A8G250135-004 MCAWW 300.0A 07/26/08 8210374
Sulfate	49.7	50.0		101	MS Lot-Sample #: A8G250132-005 MCAWW 300.0A 07/26/08 8210375
	13.3			109	MS Lot-Sample #: A8G250135-004 MCAWW 300.0A 07/26/08 8210375
MORE (O)					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

END OF REPORT

North Canton 106

Analytical Report - SDG #: 8G25135

Table of Contents

Analytical Report Cover Page 8G25135	1
Case Narrative	2
Executive Summary	9
Analytical Method Summary	12
Sample Summary	14
Shipping and Receiving Documents	16
GC/MS Volatile Data	21
Dissolved Gases/RSK Data	64
General Chemistry Data	75
Total # of Pages in this Document	95

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 104-0012-0200

CARROLL & DUBIES (C&D) SDG #: 8G25135

Barbara Jones

Cardinal Resources

TESTAMERICA LABORATORIES, INC.

Nathan Pietras Project Manager

August 20, 2008

CASE NARRATIVE

CASE NARRATIVE

8G25135

The following report contains the analytical results for three solid samples, seven water samples and one quality control sample submitted to TestAmerica North Canton by Cardinal Resources, LLC from the Carroll & Dubies (C&D) Site, project number 104-0012-0200. The samples were received July 25, 2008, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Barbara Jones on August 12, 2008, and Barbara Jones, and Steve Bodnar on August 19, 2008. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

Any reference within this document to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.)

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 3.4°C.

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for batch(es) 8217320 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The surrogate recoveries were outside of criteria (high) for sample(s) FIELD BLANK 3. Since the sample was ND, no corrective action was necessary.

The internal standard areas were outside acceptance limits for sample(s) SED 2 due to matrix effects. (Refer to IS report following this Case Narrative for additional detail.)

DISSOLVED GASES/RSK

Result concentration exceeds the calibration range. Refer to the sample report pages for the affected compound(s) flagged with "E".

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

Sample(s) MW4, and MW1 were analyzed past the holding time. Results are reported with and elevated RL of 1ug/L as per agreement with the client.

Two analyses were used to report the sample(s) MW4 due to high analyte concentrations.

CASE NARRATIVE (continued)

GENERAL CHEMISTRY

Sample(s) MW4 was analyzed within hold for Nitrate. The instrument injected the sample incorrectly and sample needed reanalyzed outside of hold. Sample was reanalyzed and data was reported.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals
contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be
twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants
listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride, Acetone, 2-Butanone	Phthalate Esters	Copper, Iron, Zinc, Lead, Calcium, Magnesium, Potassium, Sodium, Barium, Chromium, Manganese	Copper, Iron, Zinc, Lead

North Canton 6

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

nelac

TestAmerica North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),
Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), OhioVAP (#CL0024), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA _CWA 061807.doc

(s10H

Data File: $\c \SVa3ux14.i\R80728B-IC.b\146733.D$

Report Date: 29-Jul-2008 09:43

TestAmerica North Canton

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: a3ux14.i Lab File ID: 146733.D Lab Smp Id: KR55J1AC

Analysis Type: VOA Quant Type: ISTD

Operator: 2807

Calibration Date: 28-JUL-2008

Calibration Time: 14:28 Client Smp ID: SED 2

Level: LOW Sample Type: SOIL

Method File: \\cansvr11\dd\chem\MSV\a3ux14.i\R80728B-IC.b\8260SUX14.m

Misc Info: R80728B-IC,8260SUX14,,2807

1	entrativa diget com a control consistence de la Control de la Control de la Servicio de la Servicio de la Control	1	AREA 1	LIMIT		
1	COMPOUND	STANDARD	LOWER	UPPER	SAMPLE %DIFF	
=	=======================================		-	========	======= ======	
1	1 Fluorobenzene	1,557,808	7789041	3,115,616	1076785 -30.88	
1	2 Chlorobenzene-d5	911579	4557901	1823158		41.500
1	3 1,4-Dichlorobenze	4291151	214558	858230	73,695 -82.83 <-	17.1 %
1_		' 1	1	í		

L	1	RT LI	MIT	Ī	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	: ======= =	====== =	====== =	=======	======
1 Fluorobenzene	6.68	6.18	7.18	6.681	-0.00
2 Chlorobenzene-d5	9.40	8.901	9.901	9.401	-0.00
3 1,4-Dichlorobenze	11.37	10.87	11.87	11.37	-0.00
	1	i	1		

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area. RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY - Detection Highlights

8G25135 : A8G250135

			REPORTIN	G	ANALYTICAL
PARAMETER		RESULT	LIMIT	UNITS	METHOD
		· · · · · · · · · · · · · · · · · · ·	_ ======		11011100
OW2 07/24/08 11:55 0	01				
Ethene		0.86 J	1.0	ug/L	RSK SOP-175
Methane		0.26 J	1.0	ug/L	RSK SOP-175
Acetone		2.4 J,B	20	ug/L	SW846 8260B
1,2-Dichloroet	hene	30	2.0	ug/L	SW846 8260B
(total)				1 3 .8	
Trichloroethen	е	11	2.0	ug/L	SW846 8260B
Tetrachloroeth	ene	59	2.0	ug/L	SW846 8260B
Ethylbenzene		0.96 J	2.0	ug/L	SW846 8260B
Xylenes (total)	1.1 J	2.0	ug/L	SW846 8260B
Total Sulfide		1.1	1.0	mg/L	MCAWW 376.1
Chloride		3.5	1.0	mg/L	MCAWW 300.0A
Sulfate		19.1	1.0	mg/L	MCAWW 300.0A
Nitrate as N		2.1	0.10	mg/L	MCAWW 300.0A
Total Alkalini	tv	34	5.0	mg/L	MCAWW 310.1
	- <i>4</i>	· .	3.0	mg/ n	HCHWW 310.1
MW4 07/24/08 13:00 0	02				
Methane		1600 E	1.0	ug/L	RSK SOP-175
Methane		200	1.0	ug/L	RSK SOP-175
Acetone		1.2 J,B	10	ug/L	SW846 8260B
Trichloroethene	3	0.28 J	1.0	ug/L	SW846 8260B
Benzene		4.4	1.0	ug/L	SW846 8260B
Ethylbenzene		0.48 J	1.0	ug/L	SW846 8260B
Total Sulfide		1.1	1.0	mg/L	MCAWW 376.1
Chloride		76.3	1.0	mg/L	MCAWW 300.0A
Sulfate		71.7	1.0	mg/L	MCAWW 300.0A
Total Organic (Carbon	2	1	mg/L	MCAWW 415.1
Total Alkalinit		140	5.0	mg/L	MCAWW 310.1
FIELD BLANK 3 07/24/08	3 13:10 003			5, -	
Acetone		2.0 J,B	10	ug/L	SW846 8260B
Chloroform		0.37 J	1.0	ug/L	SW846 8260B
		3.37	1.0	49/11	DW040 0200B
MW1 07/24/08 14:10 00	04				
Methane		7.2	1.0	ug/L	RSK SOP-175
Acetone		1.3 J,B	1.0	ug/L ug/L	SW846 8260B
Chloride		3.5	1.0	mg/L	
Sulfate		13.3	1.0	-	MCAWW 300.0A MCAWW 300.0A
Nitrate as N		0.40	0.10	mg/L	
Total Organic C	'arhon	2		mg/L	MCAWW 300.0A
Total Alkalinit			1	mg/L	MCAWW 415.1
TOTAL AIRGILIII	· Y	110	5.0	mg/L	MCAWW 310.1

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

8G25135 : A8G250135

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
SW1 07/24/08 14:40 005				
Acetone	4.9 J,B	10	ug/L	SW846 8260B
SED 1 07/24/08 14:50 006				
Acetone 2-Butanone Percent Solids SW2 07/24/08 15:30 007	17 J,B 2.9 J 82.4	24 24 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD
Acetone	1.5 J,B	10		GV10.4.6. 0.0.6.0.7
Xylenes (total)	1.1	1.0	ug/L ug/L	SW846 8260B SW846 8260B
SED 2 07/24/08 15:40 008				
Acetone 2-Butanone Toluene Percent Solids	78 B 19 J 0.90 J 49.2	41 41 10 10.0	ug/kg ug/kg ug/kg %	SW846 8260B SW846 8260B SW846 8260B MCAWW 160.3 MOD
SW DUP 07/24/08 009				
Acetone	5.6 J,B	10	ug/L	SW846 8260B
SED DUP 07/24/08 010				
Acetone 2-Butanone Percent Solids	26 B 5.9 J 77.3	26 26 10.0	ug/kg ug/kg %	SW846 8260B SW846 8260B MCAWW 160.3 MOD
TRIP BLANK 3 07/24/08 011				
Acetone	10 B	10	ug/L	SW846 8260B

METHOD SUMMARY

North Canton

ANALYTICAL METHODS SUMMARY

8G25135

PARAMETER	3	ANALYTICAL METHOD
Nitrate a Sulfate Sulfide Total Ord Total Res	d Gases in Water	MCAWW 310.1 MCAWW 300.0A RSK SOP-175 MCAWW 300.0A MCAWW 300.0A MCAWW 376.1 MCAWW 415.1 MCAWW 160.3 MOD SW846 8260B
Reference	•	5.010 02000
MCAWW	"Methods for Chemical Analysis of Water EPA-600/4-79-020, March 1983 and subsequ	and Wastes", ent revisions.
RSK	Sample Prep and Calculations for Dissolv in Water Samples Using a GC Headspace Eq Technique, RSKSOP-175, REV. 0, 8/11/94,	uilibration
SW846	"Test Methods for Evaluating Solid Waste Methods", Third Edition, November 1986 a	, Physical/Chemical nd its updates.

SAMPLE SUMMARY

North Canton

SAMPLE SUMMARY

8G25135 : A8G250135

WO #_	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KR535 KR54P KR54T KR547 KR55A KR55D KR55F KR55F KR55J KR55P KR55R	001 002 003 004 005 006 007 008 009 010	OW2 MW4 FIELD BLANK 3 MW1 SW1 SED 1 SED 2 SED 2 SW DUP SED DUP TRIP BLANK 3	07/24/08 07/24/08 07/24/08 07/24/08 07/24/08 07/24/08 07/24/08 07/24/08 07/24/08 07/24/08	13:00 13:10 14:10 14:40 14:50 15:30
NOTE (S) :			

NOIF (2):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SHIPPING AND RECEIVING DOCUMENTS

Chain of Custody Record

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Client Cordina) 3. Relinquished By Relinquished By 1. Relinquished by 24 Hours Sample I.D. No. and Description Containers for each sample may be combined on one line) Im Around Time Required Non-Hazard 505 E. Name and La 33 S SP ☐ 48 Hours ☐ Flammable 104-0010-000 (95%) Resources Skin Irritant 14 Days 15003 (4) 7-24-08 Selve Selves Poison B 21 Days Date □ Uпкпомп 140 山口 1530 1450 1310 るが 300 Time Date 7-24-68 ☐ Other ☐ Return To Client × × X × Matrix × ~ × 1700 Time Soil 8598 0292 9609 X メ Disposal By Lab An Unpres 3. Received By 2. Received By × H2SO4 Containers & Preservatives HNO3 X HCI NaOH ☐ Archive For Analysis (Attach list if more space is needed) × × × Months longer than 1 month) (A fee may be assessed if samples are retained Page Date Chain of Custody Number 000068 アーストロア Special Instructions/ Conditions of Receipt Time Time Time 0930

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

North Canton

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy client Cardinal Keswiller Comments 3. Relinquished By 2. Relinquished By 24 Hours 1. Relinquished By Sample I.D. No. and Description
(Containers for each sample may be combined on one line): Contract/Purchase Order/Quote No. Project Name and Location (State) AL-4142 (0408) Possible Hazard Identification rum Around Time Required Non-Hazard ☐ 48 Hours ☐ Flammable ☐ 7Days Skin Irritant 14 Days Zip Code ☐ Poison B アードーの 7-24-08 La & TRIMING Date 21 Days ☐ Unknown Time Тв/ephone Number (Area) Other_ Site Contact Date 7-24-08 Project Manager Band Johes ☐ Return To Client Sample Disposal × Vage des Aqueous Matrix 3598 0292 9609 Sød. Time 1700 Soil Unpres Nother Titles 1. Received By 3. Received By 2. Received By H2504 Containers & Preservatives HNO3 × HCI NaOH ZnAc/ NaOH 0959 ☐ Archive For × Analysis (Attach list if more space is needed) 7-24-08 Months (A fee may be assessed if samples are retained longer than 1 month) Page_ Date Date 7-25-08 Special Instructions/ Conditions of Receipt Тіте Time of. 0930 North Canton

TestAmerica Coole	er Receipt Form/N	arrative	Lot Numbe	r: A8625	12135
North Canton Facil	lity			ing Par printer	
Client Cardinal		Project	By:	100	taligi tiliti i katikaa
Cooler Received on	7-25-08	Opened on 7-25-08		(Signatur	2
FedEx UPS DHL	L ☐ FAS ☐ Stetson	☐ Client Drop Off ☐ Test	America Courie	r 🗆 Other	c)
TestAmerica Cooler #	TAILLO Multiple	Coolers Foam Box	Client Cooler	Other Other	
1. Were custody seals	on the outside of the c	ooler(s)? Yes \(\Bar{\chi}\) No \(\Bar{\chi}\)	Intact? Voc	☐ No ☐ N	^ []
If YES, Quantity		55.57(6)1 163 🔲 140 🗵	illact: 165		A 🔟
	on the outside of cools	er(s) signed and dated?	Voc		A [3]
Were custody seals	on the bottle(s)?	signed and dated?	Yes		A 🗠
If YES, are there any			Yes	□ No □	
	ip attached to the coole	21/6/2	Voc	The Na T	
	accompany the sample			☑ No □	
Were the custody page.	pers signed in the app	ropriate place?	Reiniquisn	ed by client? Y	es E No
5. Packing material use	od: Bubble Wran	Foam None C	Yes	☑ No □	
6 Cooler temperature	upon receipt 7 4	°C See back of form	tner		
METHOD:	IR Other	°C See back of form	ror multiple coo	iers/temps 🔲	
					
					
 Did all bottles arrive Could all bottle labels 			Yes	The second second	
			Yes		
9. Were sample(s) at th			Yes	The second second second	Α 🔲
10. Were correct bottle(s) used for the test(s) in	idicated?	Yes		
11. Were air bubbles >6			Yes [A 🔲
12. Sufficient quantity red			Yes [⊿ No □	
13. vvas a trip blank pres	sent in the cooler(s)?	Yes 🛭 No 🗌 Were VO			
Contacted PM	Date	by	via Verbal	U Voice Mail [Other 🗌
Concerning					
14. CHAIN OF CUSTOE	The state of the s				
The following discrepance	ies occurred:				
- 44					
	Y				
JE CAMPIE ON DES					
15. SAMPLE CONDITIO					
Sample(s)		were received after the	recommended	holding time h	ad expired.
Sample(s)			were receive	ved in a broken	container.
Sample(s)					
16. SAMPLE PRESERV		were received with	th bubble >6 mr	n in diameter.	
	ATION	were received with	th bubble >6 mr	n in diameter.	
Sample(s)		<u> </u>	vere further pres	served in samn	(Notify PM)
to meet recommended pl	H level(s). Nitric Acid Lo	v vt# 113007-HNO3 Sulfuric Acid	vere further pres	served in samp	(Notify PM) le receiving
to meet recommended ph 073007 -NaOH; Hydrochlori	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl;	vv v# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac	vere further pres	served in samp	(Notify PM) le receiving
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl;	vv v# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac	vere further pres	served in samp	(Notify PM) le receiving
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s)	vv v# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac	vere further pres	served in samp	(Notify PM) le receiving
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID 0 W Z	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ウィ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydi 5-(CH₃COO)₂ZN	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID 0 W Z	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ウィ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.
to meet recommended ph 073007 -NaOH; Hydrochlori What time was preservati Client ID pw 2 Mw4	H level(s). Nitric Acid Loi ic Acid Lot# 092006-HCl; ive added to sample(s) ッタ	v t# 113007-HNO₃; Sulfuric Acid i Sodium Hydroxide and Zinc Ac i?	vere further pres	served in samp O₄; Sodium Hydr 5-(CH₃COO)₂ZN <u>Date</u>	(Notify PM) le receiving roxide Lot# //NaOH.

	ity <u>pH</u>	Date	Initia
-			<u> </u>
			ļ
			
			<u> </u>
8			
		(A. 1	
1.			
*			
		W 2000 Mark 1970 - 2000 - 2000 2000	
Cooler#	Temp. °C	Method	Coolar
		*	
		*	
			S-25 - 10 CO
		0.00	

GCMS VOLATILE DATA

North Canton

Client Sample ID: OW2

GC/MS Volatiles

Lot-Sample #:	A8G250135-001	Work Order #:	KR5351AJ	Matrix:	WG
Date Sampled:	07/24/08 11:55	Date Received:	07/25/08		
Prep Date:	08/01/08	Analysis Date:	08/01/08		
Prep Batch #:	8217320				
Dilution Factor:	2	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol:	5 mL
		Method:			

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	4.0	ug/L	
Bromomethane	ND	4.0	ug/L	
Vinyl chloride	ND	4.0	ug/L	
Chloroethane	ND	4.0	ug/L	
Methylene chloride	ND	2.0	ug/L	
Acetone	2, A J, B	20	ug/L	method blank
Carbon disulfide	2,1 J,B ND 20U	2.0	ug/L	De tect
1,1-Dichloroethene	ND Z	2.0	ug/L	method blank detect 919108
1,1-Dichloroethane	ND	2.0	ug/L	919108
1,2-Dichloroethene	30	2.0	ug/L	
(total)				
Chloroform	ND	2.0	ug/L	
1,2-Dichloroethane	ND	2.0	ug/L	
2-Butanone	ND	20	ug/L	
1,1,1-Trichloroethane	ND	2.0	ug/L	
Carbon tetrachloride	ND	2.0	ug/L	
Bromodichloromethane	ND	2.0	ug/L	
1,2-Dichloropropane	ND	2.0	ug/L	
cis-1,3-Dichloropropene	ND	2.0	ug/L	
Trichloroethene	11	2.0	ug/L	
Dibromochloromethane	ND	2.0	ug/L	
1,1,2-Trichloroethane	ND	2.0	ug/L	
Benzene	ND	2.0	ug/L	
trans-1,3-Dichloropropene	ND	2.0	ug/L	
Bromoform	ND	2.0	ug/L	
4-Methyl-2-pentanone	ND	10	ug/L	
2-Hexanone	ND	20	ug/L	
Tetrachloroethene	59	2.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	
Toluene	ND	2.0	ug/L	
Chlorobenzene	ND	2.0	ug/L	
Ethylbenzene	0.96 J	2.0	ug/L	
Styrene	ND	2.0	ug/L	
Xylenes (total)	1.1 J	2.0	ug/L	
	DEDCENT	DECOVERY		

	PERCENT	RECOVERY LIMITS	
SURROGATE	RECOVERY		
Dibromofluoromethane	93	(73 - 122)	
1,2-Dichloroethane-d4	99	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	88	(74 - 116)	

(Continued on next page)

Client Sample ID: OW2

GC/MS Volatiles

Lot-Sample #...: A8G250135-001 Work Order #...: KR5351AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW4

GC/MS Volatiles

Lot-Sample #...: A8G250135-002 Work Order #...: KR54P1AJ Matrix..... WG

Date Sampled...: 07/24/08 13:00 Date Received..: 07/25/08

Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	=
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Acetone	1.2 J, B	10	ug/L	method Blank
Carbon disulfide	ND 104	1.0	ug/L	method Blank defect 9/9/08
1,1-Dichloroethene	ND	1.0	ug/L	defect
1,1-Dichloroethane	ND	1.0	ug/L	9/9/08
1,2-Dichloroethene	ND	1.0	ug/L	
(total)			J	
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	0.28 J	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	4.4	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	0.48 J	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
			-5, -	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	104	(73 - 122)		
1,2-Dichloroethane-d4	111	(61 - 128)		
Toluene-d8	99	(76 - 110)		
4-Bromofluorobenzene	84	(74 - 116)		

(74 - 116)

(Continued on next page)

Client Sample ID: MW4

GC/MS Volatiles

Lot-Sample #...: A8G250135-002 Work Order #...: KR54P1AJ Matrix...... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FIELD BLANK 3

GC/MS Volatiles

Lot-Sample #...: A8G250135-003 Work Order #...: KR54T1AA Matrix..... WQ Date Sampled...: 07/24/08 13:10 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08 Prep Batch #...: 8214078 Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	11. 1 Black
Methylene chloride	ND	1.0	ug/L	method a rance
Acetone	2.0 J,B 10	10	ug/L	method Blank letect BNO 9/9/08
Carbon disulfide	ND W	1.0	ug/L	2110
1,1-Dichloroethene	ND	1.0	ug/L	BNC
1,1-Dichloroethane	ND	1.0	ug/L	10/05
1,2-Dichloroethene	ND	1.0	ug/L	9/9/08
(total)				
Chloroform	0.37 J	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
			5,	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	106	(73 - 122)	•	
1,2-Dichloroethane-d4	112	(61 - 128)		
Toluene-d8	114 *	(76 - 110)		
4-Bromofluorobenzene	83	(74 - 116)		
	克克尔尔			

(Continued on next page)

Client Sample ID: FIELD BLANK 3

GC/MS Volatiles

Lot-Sample #...: A8G250135-003 Work Order #...: KR54T1AA Matrix..... WQ

NOTE(S):

^{*} Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW1

GC/MS Volatiles

Lot-Sample #...: A8G250135-004 Work Order #...: KR5471AJ Matrix...... WG Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

Prep Date....: 07/31/08 Analysis Date.:: 07/31/08

Prep Batch #...: 8214078

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND /	1.0	ug/L	
Acetone	1.3 J,B	10	ug/L	7474 10 102 10
Carbon disulfide	ND INU	1.0	ug/L	we shod Blank.
1,1-Dichloroethene	ND / O C	1.0	ug/L	10/0-
1,1-Dichloroethane	ND	1.0	ug/L	defect
1,2-Dichloroethene	ND	1.0	ug/L	BUO
(total)				rethod Blank Detect BNO 9/9/08
Chloroform	ND	1.0	ug/L	9/0108
1,2-Dichloroethane	ND	1.0	ug/L	7/9/08
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	108	$\frac{111113}{(73 - 122)}$	i.	
1,2-Dichloroethane-d4	114	(61 - 128)		
Toluene-d8	109	(76 - 110)		
4-Bromofluorobenzene	82	(74 - 116)		
	52	(11 110)		

(Continued on next page)

Client Sample ID: MW1

GC/MS Volatiles

Lot-Sample #...: A8G250135-004 Work Order #...: KR5471AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SW1

GC/MS Volatiles

Lot-Sample #...: A8G250135-005 Work Order #...: KR55A1AA Matrix..... WG Date Sampled...: 07/24/08 14:40 Date Received..: 07/25/08 Analysis Date..: 07/31/08

Prep Date....: 07/31/08 Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		DEDODETNO		
PARAMETER	RESULT	REPORTING LIMIT	INTEG	
Chloromethane	ND	$-\frac{11M11}{2.0}$	UNITS	2
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND /		ug/L	
Acetone	4.9 J/B	1.0 10	ug/L	11-1 11 1
Carbon disulfide	ND ND	1.0	ug/L	method Blank detect 9/9/08
1,1-Dichloroethene	ND 10U	1.0	ug/L	sofect
1,1-Dichloroethane	ND 10	1.0	ug/L	015125/
1,2-Dichloroethene	ND		ug/L	9/9/08
(total)	IAD	1.0	ug/L	
Chloroform	ND	1.0	/T	
1,2-Dichloroethane	ND		ug/L	
2-Butanone	ND	1.0 10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND		ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L ug/L	
2-Hexanone	ND	10	ug/L ug/L	
Tetrachloroethene	ND	1.0	ug/L ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L ug/L	
Toluene	ND	1.0	ug/L ug/L	
Chlorobenzene	ND	1.0	ug/L ug/L	
Ethylbenzene	ND	1.0	ug/L ug/L	
Styrene	ND	1.0	ug/L ug/L	
Xylenes (total)	ND	1.0	ug/L ug/L	
-1-1-11-1	ND	1.0	ug/ L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	106	$\frac{213113}{(73 - 122)}$	-0	
1,2-Dichloroethane-d4	113	(61 - 128)		
Toluene-d8	104	(76 - 110)		
4-Bromofluorobenzene	81	(74 - 116)		

(Continued on next page)

Client Sample ID: SW1

GC/MS Volatiles

Lot-Sample #...: A8G250135-005 Work Order #...: KR55A1AA Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SED 1

GC/MS Volatiles

Lot-Sample #...: A8G250135-006 Work Order #...: KR55D1AC Matrix....: SD

Date Sampled...: 07/24/08 14:50 Date Received..: 07/25/08

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8211228

Dilution Factor: 1 Initial Wgt/Vol: 5 g Final Wgt/Vol.: 5 mL

% Moisture....: 18 Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	12	ug/kg	
Bromomethane	ND	12	ug/kg	
Vinyl chloride	ND	12	ug/kg	
Chloroethane	ND	12	ug/kg	
Methylene chloride	ND	6.1	ug/kg	
Acetone	17 J, B	24	ug/kg	0110 010108
Carbon disulfide	ND 2900	6.1	ug/kg	BN() 4141 2
1,1-Dichloroethene	ND	6.1	ug/kg	in black
1,1-Dichloroethane	ND	6.1	ug/kg	method blank
1,2-Dichloroethene	ND	6.1	ug/kg	as tect
(total)				BNO 919108 method blank detect
Chloroform	ND	6.1	ug/kg	
1,2-Dichloroethane	ND	6.1	ug/kg	
2-Butanone	2.9 J	24	ug/kg	
1,1,1-Trichloroethane	ND	6.1	ug/kg	
Carbon tetrachloride	ND	6.1	ug/kg	
Bromodichloromethane	ND	6.1	ug/kg	
1,2-Dichloropropane	ND	6.1	ug/kg	
cis-1,3-Dichloropropene	ND	6.1	ug/kg	
Trichloroethene	ND	6.1	ug/kg	
Dibromochloromethane	ND	6.1	ug/kg	
1,1,2-Trichloroethane	ND	6.1	ug/kg	
Benzene	ND	6.1	ug/kg	
trans-1,3-Dichloropropene	ND	6.1	ug/kg	
Bromoform	ND	6.1	ug/kg	500
4-Methyl-2-pentanone	ND	24	ug/kg	
2-Hexanone	ND	24	ug/kg	
Tetrachloroethene	ND	6.1	ug/kg	
1,1,2,2-Tetrachloroethane	ND	6.1	ug/kg	
Toluene	ND	6.1	ug/kg	
Chlorobenzene	ND	6.1	ug/kg	
Ethylbenzene	ND	6.1	ug/kg	
Styrene	ND	6.1	ug/kg	
Xylenes (total)	ND	6.1	ug/kg	
	PERCENT	RECOVERY		
SUPPOCATE	DECOVERY	TEMETOR		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	88	(59 - 138)
1,2-Dichloroethane-d4	87	(61 - 130)
Toluene-d8	87	(60 - 143)
4-Bromofluorobenzene	86	(47 - 158)

(Continued on next page)

Client Sample ID: SED 1

GC/MS Volatiles

Lot-Sample #...: A8G250135-006 Work Order #...: KR55D1AC Matrix....: SD

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- J Estimated result. Result is less than RL.
- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SW2

GC/MS Volatiles

Lot-Sample #...: A8G250135-007 Work Order #...: KR55F1AA Matrix...... WG

Date Sampled...: 07/24/08 15:30 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND /	1.0	ug/L	
Acetone	1.5 J/B	10	ug/L	2600
Carbon disulfide	ND / DU	1.0	ug/L	MEALLOCA
1,1-Dichloroethene	ND 10	1.0	ug/L	Blank
1,1-Dichloroethane	ND	1.0	ug/L	setect
1,2-Dichloroethene	ND	1.0	ug/L	
(total)				method Blank Setect 13119 919108
Chloroform	ND	1.0	ug/L	0011/1/08
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	1.1	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	99	$\frac{111113}{(73 - 122)}$		
1,2-Dichloroethane-d4	107	(61 - 128)		
Toluene-d8	104	(76 - 110)		
4-Bromofluorobenzene	80	(74 - 116)		
	-	113 110)		

(Continued on next page)

Client Sample ID: SW2

GC/MS Volatiles

Lot-Sample #...: A8G250135-007 Work Order #...: KR55F1AA Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SED 2

GC/MS Volatiles

Lot-Sample #: A8G250135-008 Date Sampled: 07/24/08 15:40 Prep Date: 07/28/08 Prep Batch #: 8211228 Dilution Factor: 1 % Moisture: 51	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol: Method	07/25/08 07/28/08 5 g	Fi	trix: SD
PARAMETER Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,1-Dichloroethane	RESULT ND	REPORTING LIMIT 20 W5 20 W5 20 W5 20 W5 10 W5 10 W5 10 W5	UNITS ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	BHQ 919108 method Blunk detect
1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND ND ND ND ND ND ND ND	10 UT 10 UT 10 UT 10 UT 10 UT	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone	ND	10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 41 UJ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	For low IS recovery, all mondetocks UJ,
2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (total)	ND	41 UT 10 UT 10 UT 10 UT 10 UT 10 UT 10 UT	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	BHO) 9/10/08
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	PERCENT RECOVERY 96 91 119	RECOVERY LIMITS (59 - 138) (61 - 130) (60 - 143) (47 - 158)		

(Continued on next page)

Client Sample ID: SED 2

GC/MS Volatiles

Lot-Sample #...: A8G250135-008 Work Order #...: KR55J1AC Matrix...... SD

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated result. Result is less than RL.

Client Sample ID: SW DUP

GC/MS Volatiles

Lot-Sample #...: A8G250135-009 Work Order #...: KR55P1AA Matrix...... WQ

Date Sampled...: 07/24/08 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	5.6 J, B	10	ug/L BNO
Carbon disulfide	ND IN I	1.0	ug/L
1,1-Dichloroethene	ND 10	1.0	ug/L 9/9/08
1,1-Dichloroethane	ND	1.0	ug/L blank
1,2-Dichloroethene	ND	1.0	ug/L method lack
(total)			ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	103	$\overline{(73 - 122)}$	
1,2-Dichloroethane-d4	109	(61 - 128)	2.
Toluene-d8	104	(76 - 110)	
4 D	0.0		

(Continued on next page)

(74 - 116)

82

4-Bromofluorobenzene

Client Sample ID: SW DUP

GC/MS Volatiles

Lot-Sample #...: A8G250135-009 Work Order #...: KR55P1AA Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SED DUP

GC/MS Volatiles

Lot-Sample #: A8G250135-010 Date Sampled: 07/24/08	Work Order #: Date Received:	07/25/08	Matri	ĸ: SQ
Prep Date: 07/28/08	Analysis Date:	07/28/08		
Prep Batch #: 8211228 Dilution Factor: 1	Initial Wat/Wal.	E ~	mil	61_L /17_1
% Moisture: 23	<pre>Initial Wgt/Vol: Method</pre>			Wgt/Vol: 5 mL
6 MOISCUIE 23	Method	5W040 820U	В	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	13	ug/kg	-
Bromomethane	ND	13	ug/kg	
Vinyl chloride	ND	13	ug/kg	
Chloroethane	ND	13	ug/kg	method Blank detect 1820 919108
Methylene chloride	ND	6.5	ug/kg	101 1 on tock
Acetone	26 B 0 (1 h	26	ug/kg	Blank derect
Carbon disulfide	ND Z	6.5	ug/kg	0110
1,1-Dichloroethene	ND	6.5	ug/kg	BN()
1,1-Dichloroethane	ND	6.5	ug/kg	
1,2-Dichloroethene	ND	6.5	ug/kg	919108
(total)				1111
Chloroform	ND	6.5	ug/kg	
1,2-Dichloroethane	ND	6.5	ug/kg	
2-Butanone	5.9 J	26	ug/kg	
1,1,1-Trichloroethane	ND	6.5	ug/kg	
Carbon tetrachloride	ND	6.5	ug/kg	
Bromodichloromethane	ND	6.5	ug/kg	
1,2-Dichloropropane	ND	6.5	ug/kg	
cis-1,3-Dichloropropene	ND	6.5	ug/kg	
Trichloroethene	ND	6.5	ug/kg	
Dibromochloromethane	ND	6.5	ug/kg	
1,1,2-Trichloroethane	ND	6.5	ug/kg	
Benzene	ND	6.5	ug/kg	
trans-1,3-Dichloropropene	ND	6.5	ug/kg	
Bromoform	ND	6.5	ug/kg	
4-Methyl-2-pentanone	ND	26	ug/kg	
2-Hexanone	ND	26	ug/kg	
Tetrachloroethene	ND	6.5	ug/kg	
1,1,2,2-Tetrachloroethane	ND	6.5	ug/kg	
Toluene	ND	6.5	ug/kg	
Chlorobenzene	ND	6.5	ug/kg	
Ethylbenzene	ND	6.5	ug/kg	
Styrene	ND	6.5	ug/kg	
Xylenes (total)	ND	6.5	ug/kg	
	PERCENT	PECOVERY		
SURROGATE	RECOVERY	RECOVERY		
Dibromofluoromethane	90	LIMITS (59 - 138)		
1,2-Dichloroethane-d4	89	(59 - 138)		
Toluene-d8	88	(61 - 130)		
TOTUCHE UU	00	(60 - 143)		

(Continued on next page)

(47 - 158)

87

4-Bromofluorobenzene

Client Sample ID: SED DUP

GC/MS Volatiles

Lot-Sample #...: A8G250135-010 Work Order #...: KR55R1AC Matrix...... SQ

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated result. Result is less than RL.

Client Sample ID: TRIP BLANK 3

GC/MS Volatiles

Lot-Sample #...: A8G250135-011 Work Order #...: KR55V1AA Matrix..... WQ

Date Sampled...: 07/24/08 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		DEDODETNO		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	10 , 21 ,
Acetone	10/8/00	10	ug/L	method Blank
Carbon disulfide	ND	1.0	ug/L	method Blank detect BNJ-09 (9/9)
1,1-Dichloroethene	ND	1.0	ug/L	devect
1,1-Dichloroethane	ND	1.0	ug/L	BN()-19
1,2-Dichloroethene	ND	1.0	ug/L	(910)
(total)		STANK ITO	3 ·	(1/4)
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	104	(73 - 122)		
1,2-Dichloroethane-d4	112	(61 - 128)		
Toluene-d8	100	(76 - 110)		
4-Bromofluorobenzene	78	(74 - 116)		

(Continued on next page)

Client Sample ID: TRIP BLANK 3

GC/MS Volatiles

Lot-Sample #...: A8G250135-011 Work Order #...: KR55V1AA Matrix..... WQ

NOTE(S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

GC/MS Volatiles

Client Lot #...: 8G25135

MB Lot-Sample #: A8G290000-228

Analysis Date..: 07/28/08

Dilution Factor: 1

Work Order #...: KTAFA1AA

Matrix..... SOLID

Final Wgt/Vol..: 5 mL

Prep Date....: 07/28/08

Prep Batch #...: 8211228
Initial Wgt/Vol: 5 g

REPORTING

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Chloromethane	ND	10	ug/kg	SW846 8260B		
Bromomethane	ND	10	ug/kg	SW846 8260B		
Vinyl chloride	ND	10	ug/kg	SW846 8260B		
Chloroethane	ND	10	ug/kg	SW846 8260B		
Methylene chloride	ND	5.0	ug/kg	SW846 8260B		
Acetone	7.4 J	20	ug/kg	SW846 8260B		
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B		
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B		
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B		
<pre>1,2-Dichloroethene (total)</pre>	ND	5.0	ug/kg	SW846 8260B		
Chloroform	ND	5.0	ug/kg	SW846 8260B		
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B		
2-Butanone	ND	20	ug/kg	SW846 8260B		
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B		
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B		
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B		
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B		
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B		
Trichloroethene	ND	5.0	ug/kg	SW846 8260B		
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B		
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B		
Benzene	ND	5.0	ug/kg	SW846 8260B		
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B		
Bromoform	ND	5.0	ug/kg	SW846 8260B		
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B		
2-Hexanone	ND	20	ug/kg	SW846 8260B		
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B		
Toluene	ND	5.0	ug/kg	SW846 8260B		
Chlorobenzene	ND	5.0	ug/kg ug/kg	SW846 8260B		
Ethylbenzene	ND	5.0	ug/kg ug/kg	SW846 8260B		
Styrene	ND	5.0	ug/kg	SW846 8260B		
Xylenes (total)	ND	5.0	ug/kg ug/kg			
(2004)	ND	5.0	ug/kg	SW846 8260B		
	PERCENT	RECOVERY	r:			
SURROGATE	RECOVERY	LIMITS				
Dibromofluoromethane	89	$\frac{11M115}{(59 - 13)}$	201			
1,2-Dichloroethane-d4	90	(61 - 13				
Toluene-d8	87					
TOTACHE GO	0 /	(60 - 14	3)			

(Continued on next page)

(47 - 158)

85

4-Bromofluorobenzene

GC/MS Volatiles

Client Lot #...: 8G25135

Work Order #...: KTAFA1AA

Matrix..... SOLID

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTGNP1AA Matrix......: WATER

MB Lot-Sample #: A8H010000-078

Prep Date....: 07/31/08 Final Wgt/Vol.: 5 mL

Analysis Date.: 07/31/08 Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

;•·		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Chloromethane	ND	2.0	ug/L	SW846 8260B	
Bromomethane	ND	2.0	ug/L	SW846 8260B	
Vinyl chloride	ND	2.0	ug/L	SW846 8260B	
Chloroethane	ND	2.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
Acetone	1.1 J	10	ug/L	SW846 8260B	
Carbon disulfide	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
(total)					
Chloroform	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
2-Hexanone	ND	10	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B .	
Toluene	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND	1.0	ug/L	SW846 8260B	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS	_		
Dibromofluoromethane	100	(73 - 122			
1,2-Dichloroethane-d4	107	(61 - 128			
Toluene-d8	102	(76 - 110))		
4-Bromofluorobenzene	83	(74 - 116	5)		

(Continued on next page)

GC/MS Volatiles

Client Lot #...: 8G25135

Work Order #...: KTGNP1AA

Matrix..... WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTKRN1AA Matrix....: WATER

MB Lot-Sample #: A8H040000-320

Prep Date....: 08/01/08 Final Wgt/Vol..: 5 mL

Analysis Date..: 08/01/08 Prep Batch #...: 8217320

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

		REPORTI		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	2.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Acetone	1.4 J	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
(total)				
Chloroform	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	10	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	ľ	
SURROGATE	RECOVERY	LIMITS	22 - 300a °	
Dibromofluoromethane	102	(73 - 12)	22)	
1,2-Dichloroethane-d4	107	(61 - 12	28)	
Toluene-d8	101	(76 - 11	10)	
4-Bromofluorobenzene	79	174 - 11		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	102	(73 - 122)
1,2-Dichloroethane-d4	107	(61 - 128)
Toluene-d8	101	(76 - 110)
4-Bromofluorobenzene	79	(74 - 116)

(Continued on next page)

GC/MS Volatiles

Client Lot #...: 8G25135

Work Order #...: KTKRN1AA Matrix....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTAFA1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A8G290000-228 KTAFA1AD-LCSD

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8211228

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	90	(55 - 142)	Seminary water	· · · · · · · · · · · · · · · · · · ·	SW846 8260B
	96	(55 - 142)	6.5	(0-27)	SW846 8260B
Trichloroethene	88	(70 - 131)			SW846 8260B
	91	(70 - 131)	2.8	(0-23)	SW846 8260B
Benzene	90	(75 - 129)			SW846 8260B
	92	(75 - 129)	1.6	(0-20)	SW846 8260B
Toluene	94	(71 - 130)			SW846 8260B
	97	(71 - 130)	4.1	(0-24)	SW846 8260B
Chlorobenzene	87	(75 - 127)			SW846 8260B
	89	(75 - 127)	1.7	(0-22)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Dibromofluoromethane		86	(59 -	138)	
		89	(59 -	138)	
1,2-Dichloroethane-d4		84	(61 -	130)	
		83	(61 -	130)	
Toluene-d8		90	(60 -	143)	
		93	(60 -	143)	
4-Bromofluorobenzene		89	(47 -	158)	
		90	(47 -	158)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTAFA1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A8G290000-228 KTAFA1AD-LCSD

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8211228

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	SPIKE	MEASURED		PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
<pre>1,1-Dichloroethene</pre>	50	45	ug/kg	90		SW846 8260B
	50	48	ug/kg	96	6.5	SW846 8260B
Trichloroethene	50	44	ug/kg	88		SW846 8260B
	50	46	ug/kg	91	2.8	SW846 8260B
Benzene	50	45	ug/kg	90		SW846 8260B
	50	46	ug/kg	92	1.6	SW846 8260B
Toluene	50	47	ug/kg	94		SW846 8260B
	50	49	ug/kg	97	4.1	SW846 8260B
Chlorobenzene	50	44	ug/kg	87		SW846 8260B
	50	44	ug/kg	89	1.7	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
Dibromofluoromethane			86	(59 - 138)	
			89	(59 - 138)	
1,2-Dichloroethane-d4			8 4	(61 - 130)	
			83	(61 - 130)	
Toluene-d8			90	(60 - 143)	
			93	(60 - 143)	
4-Bromofluorobenzene			89	(47 - 158))	
			90	(47 - 158))	
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTGNP1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H010000-078 KTGNP1AD-LCSD

Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1

Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	96	(63 - 130)		X 	SW846 8260B
	107	(63 - 130)	11	(0-20)	SW846 8260B
Trichloroethene	89	(75 - 122)			SW846 8260B
	99	(75 - 122)	11	(0-20)	SW846 8260B
Benzene	90	(80 - 116)			SW846 8260B
	102	(80 - 116)	13	(0-20)	SW846 8260B
Toluene	97	(74 - 119)			SW846 8260B
	110	(74 - 119)	13	(0-20)	SW846 8260B
Chlorobenzene	90	(76 - 117)			SW846 8260B
	104	(76 - 117)	14	(0-20)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Dibromofluoromethane		95	(73 -	122)	
		95	(73 -	122)	
1,2-Dichloroethane-d4		99	(61 -	128)	
		101	(61 -	128)	
Toluene-d8		107	(76 -	110)	
		108	(76 -	110)	
4-Bromofluorobenzene		106	(74 -	116)	
		106	(74 -	116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTGNP1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H010000-078 KTGNP1AD-LCSD

Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURED		PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO	D
1,1-Dichloroethene	10	9.6	ug/L	96	()	SW846	8260B
	10	11	ug/L	107	11	SW846	8260B
Trichloroethene	10	8.9	ug/L	89		SW846	8260B
	10	9.9	ug/L	99	11	SW846	8260B
Benzene	10	9.0	ug/L	90		SW846	8260B
	10	10	ug/L	102	13	SW846	8260B
Toluene	10	9.7	ug/L	97		SW846	8260B
	10	11	ug/L	110	13	SW846	8260B
Chlorobenzene	10	9.0	ug/L	90		SW846	8260B
	10	10	ug/L	104	14	SW846	8260B
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS	_		
Dibromofluoromethane			95	(73 - 122))		
			95	(73 - 122))		
1,2-Dichloroethane-d4			99	(61 - 128)		
			101	(61 - 128)		
Toluene-d8			107	(76 - 110)		
			108	(76 - 110))		
4-Bromofluorobenzene			106	(74 - 116))		
			106	(74 - 116)		
NOTE(S):							

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTKRN1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H040000-320 KTKRN1AD-LCSD

Prep Date....: 08/01/08 Analysis Date..: 08/01/08

Prep Batch #...: 8217320

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)
1,1-Dichloroethene	96	(63 - 130)	8) A 		SW846	8260B
	107	(63 - 130)	11	(0-20)	SW846	8260B
Trichloroethene	90	(75 - 122)			SW846	8260B
	100	(75 - 122)	10	(0-20)	SW846	8260B
Benzene	90	(80 - 116)			SW846	8260B
	100	(80 - 116)	11	(0-20)	SW846	8260B
Toluene	97	(74 - 119)			SW846	8260B
	109	(74 - 119)	11	(0-20)	SW846	8260B
Chlorobenzene	90	(76 - 117)			SW846	8260B
	100	(76 – 117)	11	(0-20)	SW846	8260B
GVDDOGATH		PERCENT	RECOV			
SURROGATE		RECOVERY	LIMIT	<u>S</u>		
Dibromofluoromethane		97	(73 -	122)		
		96	(73 -	122)		
1,2-Dichloroethane-d4		98	(61 -	128)		
		98	(61 -	128)		
Toluene-d8		108	(76 -	110)		
		108	(76 -	110)		
4-Bromofluorobenzene		102	(74 -	116)		
		106	(74 -	116)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KTKRN1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H040000-320 KTKRN1AD-LCSD

Prep Date....: 08/01/08 Analysis Date..: 08/01/08

Prep Batch #...: 8217320

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURED		PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO!	D
1,1-Dichloroethene	10	9.6	ug/L	96		SW846	8260B
	10	11	ug/L	107	11	SW846	8260B
Trichloroethene	10	9.0	ug/L	90		SW846	8260B
	10	10	ug/L	100	10	SW846	8260B
Benzene	10	9.0	ug/L	90		SW846	8260B
	10	10	ug/L	100	11	SW846	8260B
Toluene	10	9.7	ug/L	97		SW846	8260B
	10	11	ug/L	109	11	SW846	8260B
Chlorobenzene	10	9.0	ug/L	90		SW846	8260B
	10	10	ug/L	100	11	SW846	8260B
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
Dibromofluoromethane			97	(73 - 122))		
			96	(73 - 122))		
1,2-Dichloroethane-d4			98	(61 - 128)		
			98	(61 - 128)		
Toluene-d8			108	(76 - 110)		
			108	(76 - 110)		
4-Bromofluorobenzene			102	(74 - 116))		
			106	(74 - 116)		
NOME (C) -							

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

MS Lot-Sample #: A8G250135-006 KR55D1AE-MSD

Date Sampled...: 07/24/08 14:50 Date Received..: 07/25/08

Prep Date....: 07/28/08 Analysis Date..: 07/28/08

Prep Batch #...: 8211228

Dilution Factor: 1 Initial Wgt/Vol: 5 g Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)
1,1-Dichloroethene	100	(43 - 147)	1		SW846	8260B
	98	(43 - 147)	2.0	(0-27)	SW846	8260B
Trichloroethene	88	(46 - 143)			SW846	8260B
	89	(46 - 143)	1.2	(0-23)	SW846	8260B
Benzene	91	(55 - 138)			SW846	8260B
	93	(55 - 138)	2.2	(0-20)	SW846	8260B
Toluene	97	(46 - 147)			SW846	8260B
夏 9 55	100	(46 - 147)	3.3	(0-24)	SW846	8260B
Chlorobenzene	87	(49 - 139)			SW846	8260B
	91	(49 - 139)	4.5	(0-22)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS	_:	
Dibromofluoromethane		87		(59 - 138)	
1 2 2 2 1		88		(59 - 138)	
1,2-Dichloroethane-d4		79		(61 - 130)	
		81		(61 - 130)	
Toluene-d8		93		(60 - 143))	
		96		(60 - 143))	
4-Bromofluorobenzene		91		(47 - 158))	
		89		(47 - 158))	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR55D1AD-MS Matrix....: SD

MS Lot-Sample #: A8G250135-006 KR55D1AE-MSD

Date Sampled...: 07/24/08 14:50 Date Received..: 07/25/08 Analysis Date..: 07/28/08

Prep Date....: 07/28/08

Prep Batch #...: 8211228

Dilution Factor: 1 Initial Wgt/Vol: 5 g Final Wgt/Vol..: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	THUOMA	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	61	61	ug/kg	100	Na take asset in	SW846 8260B
	ND	61	59	ug/kg	98	2.0	SW846 8260B
Trichloroethene	ND	61	54	ug/kg	88		SW846 8260B
	ND	61	54	ug/kg	89	1.2	SW846 8260B
Benzene	ND	61	55	ug/kg	91		SW846 8260B
	ND	61	56	ug/kg	93	2.2	SW846 8260B
Toluene	ND	61	59	ug/kg	97		SW846 8260B
	ND	61	61	ug/kg	100	3.3	SW846 8260B
Chlorobenzene	ND	61	53	ug/kg	87		SW846 8260B
	ND	61	55	ug/kg	91	4.5	SW846 8260B

	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	87	(59 - 138)			
	88	(59 - 138)			
1,2-Dichloroethane-d4	79	(61 - 130)			
	81	(61 - 130)			
Toluene-d8	93	(60 - 143)			
	96	(60 - 143)			
4-Bromofluorobenzene	91	(47 - 158)			
	89	(47 - 158)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR55A1AC-MS Matrix...... WG

MS Lot-Sample #: A8G250135-005 KR55A1AD-MSD

Date Sampled...: 07/24/08 14:40 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	95	(62 - 130)			SW846 8260B
	100	(62 - 130)	5.2	(0-20)	SW846 8260B
Trichloroethene	86	(62 - 130)			SW846 8260B
	93	(62 - 130)	8.6	(0-20)	SW846 8260B
Benzene	90	(78 - 118)			SW846 8260B
	97	(78 - 118)	7.5	(0-20)	SW846 8260B
Toluene	97	(70 - 119)			SW846 8260B
	103	(70 - 119)	6.4	(0-20)	SW846 8260B
Chlorobenzene	89	(76 - 117)			SW846 8260B
	95	(76 - 117)	7.2	(0-20)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE	<u></u>	RECOVERY		LIMITS	_
Dibromofluoromethane		100		(73 - 122))
		97		(73 - 122)
1,2-Dichloroethane-d4		102		(61 - 128)
		102		(61 - 128)
Toluene-d8		109		(76 - 110)
		107		(76 - 110)
4-Bromofluorobenzene		106		(74 - 116)
		104		(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR55A1AC-MS Matrix..... WG

MS Lot-Sample #: A8G250135-005 KR55A1AD-MSD

Date Sampled...: 07/24/08 14:40 Date Received..: 07/25/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

Final Wgt/Vol..: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10	9.5	ug/L	95	- 	SW846 8260B
	ND	10	10	ug/L	100	5.2	SW846 8260B
Trichloroethene	ND	10	8.6	ug/L	86		SW846 8260B
	ND	10	9.3	ug/L	93	8.6	SW846 8260B
Benzene	ND	10	9.0	ug/L	90		SW846 8260B
	ND	10	9.7	ug/L	97	7.5	SW846 8260B
Toluene	ND	10	9.7	ug/L	97		SW846 8260B
	ND	10	10	ug/L	103	6.4	SW846 8260B
Chlorobenzene	ND	10	8.9	ug/L	89		SW846 8260B
	ND	10	9.5	ug/L	95	7.2	SW846 8260B

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	100	(73 - 122)		
	97	(73 - 122)		
1,2-Dichloroethane-d4	102	(61 - 128)		
	102	(61 - 128)		
Toluene-d8	109	(76 - 110)		
	107	(76 - 110)		
4-Bromofluorobenzene	106	(74 - 116)		
	104	(74 - 116)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR4TF1A5-MS Matrix....: WATER

MS Lot-Sample #: A8G240236-008 KR4TF1A6-MSD

Date Sampled...: 07/23/08 11:35 Date Received..: 07/24/08 Analysis Date..: 07/31/08

Prep Date....: 07/31/08

Prep Batch #...: 8214078

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO	D
1,1-Dichloroethene	100	(62 - 130)			SW846	8260B
	107	(62 - 130)	6.0	(0-20)	SW846	8260B
Trichloroethene	96	(62 - 130)			SW846	8260B
	101	(62 - 130)	5.3	(0-20)	SW846	8260B
Benzene	98	(78 - 118)			SW846	8260B
	100	(78 - 118)	2.1	(0-20)	SW846	8260B
Toluene	107	(70 - 119)			SW846	8260B
	110	(70 - 119)	3.1	(0-20)	SW846	8260B
Chlorobenzene	96	(76 - 117)			SW846	8260B
	101	(76 - 117)	4.6	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	ž	RECOVERY		LIMITS		
Dibromofluoromethane		98		(73 - 122))	
		97		(73 - 122))	
1,2-Dichloroethane-d4		107		(61 - 128))	
		105		(61 - 128))	
Toluene-d8		109		(76 - 110))	
		109		(76 - 110))	
4-Bromofluorobenzene		104		(74 - 116))	
		105		(74 - 116)	i	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR4TF1A5-MS Matrix.....: WATER

MS Lot-Sample #: A8G240236-008 KR4TF1A6-MSD

Date Sampled...: 07/23/08 11:35 Date Received..: 07/24/08 Prep Date....: 07/31/08 Analysis Date..: 07/31/08

Prep Batch #...: 8214078

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	TNUOMA	AMT	TNUOMA	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10	10	ug/L	100	,	SW846 8260B
	ND	10	11	ug/L	107	6.0	SW846 8260B
Trichloroethene	ND	10	9.6	ug/L	96		SW846 8260B
	ND	10	10	ug/L	101	5.3	SW846 8260B
Benzene	ND	10	9.8	ug/L	98		SW846 8260B
	ND	10	10	ug/L	100	2.1	SW846 8260B
Toluene	ND	10	11	ug/L	107		SW846 8260B
	ND	10	11	ug/L	110	3.1	SW846 8260B
Chlorobenzene	ND	10	9.6	ug/L	96		SW846 8260B
	ND	10	10	ug/L	101	4.6	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	98	(73 - 122)
	97	(73 - 122)
1,2-Dichloroethane-d4	107	(61 - 128)
	105	(61 - 128)
Toluene-d8	109	(76 - 110)
	109	(76 - 110)
4-Bromofluorobenzene	104	(74 - 116)
	105	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR7QC1AN-MS Matrix..... WATER

MS Lot-Sample #: A8G260101-003 KR7QC1AP-MSD

Date Sampled...: 07/24/08 17:55 Date Received..: 07/26/08

Prep Date....: 08/01/08 Analysis Date..: 08/01/08

Prep Batch #...: 8217320

Dilution Factor: 33.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOI)
1,1-Dichloroethene	88	(62 - 130)			SW846	8260B
	94	(62 - 130)	6.5	(0-20)	SW846	8260B
Trichloroethene	140 a	(62 - 130)			SW846	8260B
	162 a	(62 - 130)	4.1	(0-20)	SW846	8260B
Benzene	84	(78 - 118)			SW846	8260B
	90	(78 - 118)	6.4	(0-20)	SW846	8260B
Toluene	92	(70 - 119)			SW846	8260B
	100	(70 - 119)	8.2	(0-20)	SW846	8260B
Chlorobenzene	87	(76 - 117)			SW846	8260B
	93	(76 - 117)	7.2	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		93		(73 - 122)	Ī	
		94		(73 - 122)		
1,2-Dichloroethane-d4		96		(61 - 128)		
		93		(61 - 128)		
Toluene-d8		106		(76 - 110)		
		107		(76 - 110)		
4-Bromofluorobenzene		101		(74 - 116)		
		101		(74 - 116)		
				,		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 8G25135 Work Order #...: KR7QC1AN-MS Matrix..... WATER

MS Lot-Sample #: A8G260101-003 KR7QC1AP-MSD

Date Sampled...: 07/24/08 17:55 Date Received..: 07/26/08 Prep Date....: 08/01/08 Analysis Date..: 08/01/08

Prep Batch #...: 8217320 Dilution Factor: 33.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	330	290	ug/L	88		SW846 8260B
	ND	330	310	ug/L	94	6.5	SW846 8260B
Trichloroethene	1300	330	1800	ug/L	140 a		SW846 8260B
	1300	330	1800	ug/L	162 a	4.1	SW846 8260B
Benzene	ND	330	280	ug/L	84		SW846 8260B
	ND	330	300	ug/L	90	6.4	SW846 8260B
Toluene	ND	330	310	ug/L	92		SW846 8260B
	ND	330	330	ug/L	100	8.2	SW846 8260B
Chlorobenzene	ND	330	290	ug/L	87		SW846 8260B
	ND	330	310	ug/L	93	7.2	SW846 8260B

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	93	(73 - 122)		
	94	(73 - 122)		
1,2-Dichloroethane-d4	96	(61 - 128)		
	93	(61 - 128)		
Toluene-d8	106	(76 - 110)		
	107	(76 - 110)		
4-Bromofluorobenzene	101	(74 - 116)		
	101	(74 - 116)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

DISSOLVED GASES/RSK DATA

North Canton

Client Sample ID: OW2

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date:	07/24/08 11:55	Work Order #: Date Received: Analysis Date:	07/25/08	Matrix WG
Prep Batch #:	CONTROL IN IN TO SEVERE	imarjoro baccii.	00/0//00	
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1 mL	Final Wgt/Vol: 1 mL
		Method:	RSK SOP-17	5
PARAMETER		DECHIE	REPORTING	LINETTO .
Ethane		RESULT	LIMIT	UNITS
		ND	1.0	ug/L
Ethene		0.86 J	1.0	ug/L
Methane		0.26 J	1.0	ug/L

J Estimated result. Result is less than RL.

NOTE(S):

Client Sample ID: MW4

GC Volatiles

Lot-Sample #:	A8G250135-002	Work Order #	: KR54P1AH	Matrix WG	
Date Sampled:	07/24/08 13:00	Date Received	: 07/25/08		
Prep Date:	08/07/08	Analysis Date	: 08/08/08		
Prep Batch #:	8220059				
Dilution Factor:	1	Initial Wgt/Vol	: 1 mL	Final Wgt/Vol: 1 m	ıL
		Method	: RSK SOP-17	75	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	
Ethane		ND	1.0	ug/L	
Ethene		ND	1.0	ug/L	
Methane		1600 E	1.0	ug/L	
				3.000%	

E Estimated result. Result concentration exceeds the calibration range.

NOTE(S):

in malysis

BHOOS

Client Sample ID: MW4

GC Volatiles

Lot-Sample #...: A8G250135-002 Work Order #...: KR54P2AH Matrix....: WG

Date Sampled...: 07/24/08 13:00 Date Received..: 07/25/08 Prep Date....: 08/15/08 Analysis Date..: 08/15/08

Prep Batch #...: 8231263

Dilution Factor: 2 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method..... RSK SOP-175

REPORTING

Analyzed outside of holding time -BNO 9110108

PARAMETER UNITS

Methane ug/L

North Canton

Client Sample ID: MW1

GC Volatiles

Lot-Sample #: A8G250135-004	Work Order #: KR5471AH	Matrix WG
Date Sampled: 07/24/08 14:10	Date Received: 07/25/08	
Prep Date: 08/07/08	Analysis Date: 08/08/08	
Prep Batch #: 8220059		
Dilution Factor: 1	<pre>Initial Wgt/Vol: 1 mL</pre>	Final Wgt/Vol: 1 mL
	Method RSK SOP-175	

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Ethane	ND	1.0	ug/L
Ethene	ND	1.0	ug/L
Methane	7.2	1.0	ug/L

North Canton

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: 8G25135

Work Order #...: KTQE91AA

Matrix..... WATER

MB Lot-Sample #: A8H070000-059

Prep Date....: 08/07/08

Final Wgt/Vol..: 1 mL

Analysis Date..: 08/07/08

Tnit

Prep Batch #...: 8220059

Dilution Factor: 1

Initial Wgt/Vol: 1 mL

REPORTING

		IVEL OUT I	NG.	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methane	ND	1.0	ug/L	RSK SOP-175
Ethane	ND	1.0	ug/L	RSK SOP-175
Ethene	ND	1.0	ug/L	RSK SOP-175

NOTE(S):

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: 8G25135

Work Order #...: KVA3A1AA

Matrix....: WATER

MB Lot-Sample #: A8H180000-263

Prep Date....: 08/15/08

Final Wgt/Vol..: 1 mL

Analysis Date..: 08/15/08

Dilution Factor: 1

Prep Batch #...: 8231263

Initial Wgt/Vol: 1 mL

REPORTING

PARAMETER

RESULT

LIMIT

UNITS METHOD

Methane

ND

0.50

RSK SOP-175 ug/L

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 8G25135 Work Order #...: KTQE91AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H070000-059 KTQE91AD-LCSD

Prep Date....: 08/07/08 Analysis Date..: 08/07/08

Prep Batch #...: 8220059

Dilution Factor: 1 Final Wgt/Vol.: 1 mL Initial Wgt/Vol: 1 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Methane	97	(75 - 127)		-6 (RSK SOP-175
	100	(75 - 127)	3.0	(0-30)	RSK SOP-175
Ethane	98	(74 - 138)			RSK SOP-175
	101	(74 - 138)	2.6	(0-30)	RSK SOP-175
Ethene	104	(73 - 140)			RSK SOP-175
	106	(73 - 140)	1.8	(0-30)	RSK SOP-175
NOTE (S):					

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 8G25135 Work Order #...: KTQE91AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H070000-059 KTQE91AD-LCSD

Prep Date....: 08/07/08 Analysis Date..: 08/07/08

Prep Batch #...: 8220059

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	SPIKE	MEASURED)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
Methane	73	71	ug/L	97	W-12-30-500	RSK SOP-175
	73	73	ug/L	100	3.0	RSK SOP-175
Ethane	140	130	ug/L	98		RSK SOP-175
	140	140	ug/L	101	2.6	RSK SOP-175
Ethene	130	130	ug/L	104		RSK SOP-175
	130	130	ug/L	106	1.8	RSK SOP-175
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 8G25135 Work Order #...: KVA3A1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H180000-263 KVA3A1AD-LCSD

Prep Date....: 08/15/08 Analysis Date..: 08/15/08

Prep Batch #...: 8231263

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Methane	126	(75 - 127)			RSK SOP-175
	126	(75 - 127)	0.56	(0-30)	RSK SOP-175
Ethane	108	(74 - 138)			RSK SOP-175
	110	(74 - 138)	1.8	(0-30)	RSK SOP-175
Ethene	104	(73 - 140)			RSK SOP-175
	107	(73 - 140)	3.4	(0-30)	RSK SOP-175
Acetylene	47 a	(70 - 130)			RSK SOP-175
	62 a	(70 - 130)	28	(0-30)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 8G25135 Work Order #...: KVA3A1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A8H180000-263 KVA3A1AD-LCSD

Prep Date....: 08/15/08 Analysis Date..: 08/15/08

Prep Batch #...: 8231263
Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	SPIKE	MEASURE)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD ·	METHOD
Methane	73	92	ug/L	126		RSK SOP-175
	73	92	ug/L	126	0.56	RSK SOP-175
Ethane	140	150	ug/L	108		RSK SOP-175
	140	150	ug/L	110	1.8	RSK SOP-175
Ethene	130	130	ug/L	104		RSK SOP-175
	130	140	ug/L	107	3.4	RSK SOP-175
Acetylene	120	56 a	ug/L	47		RSK SOP-175
	120	74 a	ug/L	62	28	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

GENERAL CHEMISTRY DATA

North Canton

Client Sample ID: OW2

General Chemistry

Matrix....: WG

Lot-Sample #...: A8G250135-001 Work Order #...: KR535
Date Sampled...: 07/24/08 11:55 Date Received..: 07/25/08

DADAMEMED	D = 6111 =					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Chloride	3.5	1.0	mg/L	MCAWW	300.0A	07/26/08	8210370
	D	ilution Fact	or: 1				
Nitrate as N	2.1	0.10	mg/L	MCAWW	300.0A	07/26/08	8210374
	D	ilution Fact	or: 1				
Sulfate	19.1	1.0	mg/L	MCAWW	300.0A	07/26/08	8210375
	D	ilution Fact	or: 1				
Total Alkalinity	34	5.0	mg/L	MCAWW	310.1	07/25/08	8212127
	D	ilution Fact	or: 1				
Total Organic Carbon	ND	1	mg/L	MCAWW	415.1	07/28/08	8211052
	D.	ilution Fact	or: 1				
Total Sulfide	1.1	1.0	mg/L	MCAWW	376.1	07/29/08	8211422
	D.	ilution Facto	or: 1				

Client Sample ID: MW4

General Chemistry

Lot-Sample #...: A8G250135-002

Work Order #...: KR54P

Matrix..... WG

Date Sampled...: 07/24/08 13:00 Date Received..: 07/25/08

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	76.3	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/30/08	8213087
Nitrate as N	ND Dilu	0.10	mg/L or: 1	MCAWW	300.0A	07/30/08	8213091
Sulfate	71.7	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/30/08	8213094
Total Alkalinity	140	5.0 ition Facto	mg/L or: 1	MCAWW	310.1	07/25/08	8212127
Total Organic Carbon		1 ition Facto	mg/L or: 1	MCAWW	415.1	07/28/08	8211052
Total Sulfide	1.1 Dilu	1.0	mg/L or: 1	MCAWW	376.1	07/29/08	8211422

Client Sample ID: MW1

General Chemistry

Lot-Sample #...: A8G250135-004

Work Order #...: KR547

Matrix..... WG

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	3.5	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/26/08	8210370
Nitrate as N	0.40	0.10	mg/L or: 1	MCAWW	300.0A	07/26/08	8210374
Sulfate	13.3 Dilu	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/26/08	8210375
Total Alkalinity	110	5.0 ition Facto	mg/L or: 1	MCAWW	310.1	07/25/08	8212127
Total Organic Carbon		1 tion Facto	mg/L or: 1	MCAWW	415.1	07/28/08	8211052
Total Sulfide	ND Dilu	1.0 tion Facto	mg/L or: 1	MCAWW	376.1	07/29/08	8211422

Client Sample ID: SED 1

General Chemistry

Matrix..... SD

Lot-Sample #...: A8G250135-006 Work Order #...: KR55D Date Sampled...: 07/24/08 14:50 Date Received..: 07/25/08

% Moisture....: 18

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	82.4	10.0	%	MCAWW 160.3 MOD	08/04-08/05/05	8217346

North Canton

Client Sample ID: SED 2

General Chemistry

Lot-Sample #...: A8G250135-008

Work Order #...: KR55J

Matrix..... SD

Date Sampled...: 07/24/08 15:40 Date Received..: 07/25/08

% Moisture....: 51

PREPARATION-PREP PARAMETER METHOD ANALYSIS DATE BATCH # Percent Solids 49.2 10.0 MCAWW 160.3 MOD 08/04-08/05/05 8217346

Dilution Factor: 1

Client Sample ID: SED DUP

General Chemistry

Lot-Sample #...: A8G250135-010

Work Order #...: KR55R

Matrix..... SQ

Date Sampled...: 07/24/08

Date Received..: 07/25/08

% Moisture....: 23

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 77.3
 10.0
 %
 MCAWW 160.3 MOD
 08/04-08/05/05
 8217346

Dilution Factor: 1

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	ND	Work Order #: KR9G11AA MB Lot-Sample #: 1.0 mg/L MCAWW 300.0A Dilution Factor: 1		8210370
Chloride	ND	Work Order #: KTE2A1AA MB Lot-Sample #: 1.0 mg/L MCAWW 300.0A Dilution Factor: 1		8213087
Nitrate as N	ND	Work Order #: KR9HK1AA MB Lot-Sample #: 0.10 mg/L MCAWW 300.0A Dilution Factor: 1		8210374
Nitrate as N	ND	Work Order #: KTE2E1AA MB Lot-Sample #: 0.10 mg/L MCAWW 300.0A Dilution Factor: 1		8213091
Sulfate	ND	Work Order #: KR9H61AA MB Lot-Sample #: 1.0 mg/L MCAWW 300.0A Dilution Factor: 1		8210375
Sulfate	ND	Work Order #: KTE2J1AA MB Lot-Sample #: 1.0 mg/L MCAWW 300.0A Dilution Factor: 1		8213094
Total Alkalinity	ND	Work Order #: KTC591AA MB Lot-Sample #: 5.0 mg/L MCAWW 310.1 Dilution Factor: 1		8212127
Total Organic Carb	oon ND	Work Order #: KR92L1AA MB Lot-Sample #: 1 mg/L MCAWW 415.1 Dilution Factor: 1	A8G290000-052 07/28/08	8211052
Total Sulfide	ND	Work Order #: KTCAV1AA MB Lot-Sample #: 1.0 mg/L MCAWW 376.1 Dilution Factor: 1		8211422
NOTE(S):				

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix....: SOLID

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	ND	Work Order 10.0 Dilution Fact	90	MB Lot-Sample #: MCAWW 160.3 MOD	A8H040000-346 08/04-08/05/08	8217346

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: 8G25135

Matrix....: WATER

	PERCENT	RECOVERY RPD PREPARATION- PRE	P
PARAMETER	RECOVERY		
Chloride		WO#:KR9G11AC-LCS/KR9G11AD-LCSD LCS Lot-Sample#: A8G280000	0-370
	98	(90 - 110) MCAWW 300.0A 07/26/08 8210	1370
	98	(90 - 110) 0.40 (0-20) MCAWW 300.0A 07/26/08 8210	0370
		Dilution Factor: 1	
Chloride		WO#:KTE2A1AC-LCS/KTE2A1AD-LCSD LCS Lot-Sample#: A8G310000	0-087
	98		
	98	(90 - 110) MCAWW 300.0A 07/30/08 8213 (90 - 110) 0.0 (0-20) MCAWW 300.0A 07/30/08 8213	3087
		Dilution Factor: 1	
Nitrate as N		WO#:KR9HK1AC-LCS/KR9HK1AD-LCSD LCS Lot-Sample#: A8G280000)-374
	100	(90 - 110) MCAWW 300.0A 07/26/08 8210	
	100	(90 - 110) 0.0 (0-20) MCAWW 300.0A 07/26/08 8210	374
		Dilution Factor: 1	
was v			
Nitrate as N		WO#:KTE2E1AC-LCS/KTE2E1AD-LCSD LCS Lot-Sample#: A8G310000	0-091
		(90 - 110) MCAWW 300.0A 07/30/08 8213	3091
	100	(90 - 110) 0.0 (0-20) MCAWW 300.0A 07/30/08 8213	3091
		Dilution Factor: 1	
		A PROPERTY AND ADDRESS OF THE COURSE OF THE	
Sulfate	6.5	WO#:KR9H61AC-LCS/KR9H61AD-LCSD LCS Lot-Sample#: A8G280000	
	97	(90 - 110) MCAWW 300.0A 07/25/08 8210	
	97	(90 - 110) 0.20 (0-20) MCAWW 300.0A 07/25/08 8210	1375
		Dilution Factor: 1	
Sulfate		NO	
Surrace	99	WO#:KTE2J1AC-LCS/KTE2J1AD-LCSD LCS Lot-Sample#: A8G310000	
	98	(90 - 110) MCAWW 300.0A 07/30/08 8213	
	98	(90 - 110) 0.40 (0-20) MCAWW 300.0A 07/30/08 8213	094
		Dilution Factor: 1	
Total Sulfide		WO#.VECAVIAC ICC/VECAVIAD ICCD ICC I	
TOTAL SUITING	100	WO#:KTCAV1AC-LCS/KTCAV1AD-LCSD LCS Lot-Sample#: A8G290000 (79 - 104) MCAWW 376.1 07/29/08 8211	
	100	0.723700 0211	
	102		422
		Dilution Factor: 1	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: 8G25135

Matrix..... WATER

PARAMETER	SPIKE AMOUNT	MEASURED	PERCN'		машио		PREPARATION-	PREP
Chloride	AMOUNT	AMOUNT UN:			METHO		ANALYSIS DATE	BATCH #
Chioride	50.0	49.1 mg		KJGIIA		300.0A	mple#: A8G28000 07/26/08	0-370 8210370
	50.0	48.9 mg/		0.40		300.0A	07/26/08	8210370
	30.0		ion Factor: 1	0.40	HCAWW	300.0A	07720700	0210370
		DIIde	ton ractor. r					
Chloride		WO#:KTE	2A1AC-LCS/K1	E2A1A	D-LCSD	LCS Lot-Sar	mple#: A8G31000	0-087
	50.0	49.2 mg/				300.0A	07/30/08	8213087
	50.0	49.2 mg/	'L 98	0.0	MCAWW	300.0A	07/30/08	8213087
		Dilut	on Factor: 1					
W. L.		***				SEEF MARK FAMILIES SOCIETY ON THE STREET		
Nitrate as N				R9HK1A			mple#: A8G28000	
	2.5	2.5 mg/		0 0			07/26/08	8210374
	2.5	2.5 mg/		0.0	MCAWW	300.0A	07/26/08	8210374
		Diluti	on Factor: 1					
Nitrate as N		WO#:KTE	2E1AC-LCS/KT	E2E1A	D-LCSD	LCS Lot-Sar	mple#: A8G31000	0-091
	2.5	2.5 mg/				300.0A	07/30/08	8213091
	2.5	2.5 mg/		0.0		300.0A	07/30/08	8213091
		Diluti	on Factor: 1					
Sulfate				9H61A			nple#: A8G28000	0-375
	50.0	48.7 mg/				300.0A	07/25/08	8210375
	50.0	48.6 mg/		0.20	MCAWW	300.0A	07/25/08	8210375
		Diluti	on Factor: 1					
Sulfate		W○#•KTE	2.T1 \C-T CQ /KT	ג דר כיםי	D_1 CCD	ICC Tot Com	nple#: A8G31000	0 004
0411466	50.0	49.3 mg/		EZUIA		300.0A	07/30/08	8213094
	50.0	49.1 mg/		0 40		300.0A	07/30/08	8213094
	50.0	٠, ٠	on Factor: 1	0.40	PICAWW	300.0A	01/30/06	0213094
		22202						
Total Sulfide	9	WO#:KTC	AV1AC-LCS/KT	CAV1A	D-LCSD	LCS Lot-Sam	nple#: A8G29000	0-422
	19	19 mg/			MCAWW		07/29/08	8211422
	19	19 mg/	L 102	2.5	MCAWW	376.1	07/29/08	8211422
		Diluti	on Factor: 1					

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix..... WATER

PARAMETER Total Alkalini	PERCENT RECOVERY ty 102	RECOVERY LIMITS Work Order (90 - 127) Dilution Fact	MCAWW 310.1		PREPARATION- ANALYSIS DATE ot-Sample#: A8G300000- 07/25/08	PREP BATCH # -127 8212127
Total Organic	Carbon 104		MCAWW 415.1	LCS Lo	ot-Sample#: A8G290000- 07/28/08	-052 8211052

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix....: WATER

PARAMETER Total Alkalin	SPIKE AMOUNT	MEASURI AMOUNT	UNITS	PERCNT RECVRY	METHOD AC LCS Lot-Sample	PREPARATION- ANALYSIS DATE	PREP BATCH #
Todal Minari	49	50	mg/L Dilution Factor	102	MCAWW 310.1	07/25/08	8212127
Total Organic	: Carbon 19	19	Work Order # mg/L Dilution Factor	104	AC LCS Lot-Sample	#: A8G290000-0 07/28/08	52 8211052

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G25135 Matrix..... WATER

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08

90 (80 - 120) MCAWW 300.0A 07/30/08 8213087 Nitrate as N Work Order #: KR3RJ1AL MS Lot-Sample #: A8G240111-004 (80 - 120) MCAWW 300.0A 07/25/08 8210374 Nitrate as N 96 Work Order #: KR5301A2 MS Lot-Sample #: A8G250132-005 (80 - 120) MCAWW 300.0A 07/26/08 8210374 Nitrate as N 88 Work Order #: KTCDX1A9 MS Lot-Sample #: A8G290224-001 (80 - 120) MCAWW 300.0A 07/30/08 8213091 Sulfate Work Order #: KR3RJ1AM MS Lot-Sample #: A8G240111-004 (80 - 120) MCAWW 300.0A 07/25/08 8210375	PARAMETER Chloride	PERCENT RECOVERY	RECOVERY LIMITS METHOD Work Order #: KR3RJ1AK (80 - 120) MCAWW 300.0A Dilution Factor: 1	PREPARATION- PREP ANALYSIS DATE BATCH # MS Lot-Sample #: A8G240111-004 07/25/08 8210370
104 (80 - 120) MCAWW 300.0A 07/25/08 8210374 Nitrate as N Work Order #: KR5301A2 MS Lot-Sample #: A8G250132-005 (80 - 120) MCAWW 300.0A 07/26/08 8210374 Nitrate as N Work Order #: KTCDX1A9 MS Lot-Sample #: A8G290224-001 07/30/08 8213091 Nitrate as N Work Order #: KTCDX1A9 MS Lot-Sample #: A8G290224-001 07/30/08 8213091 Sulfate Work Order #: KR3RJ1AM MS Lot-Sample #: A8G240111-004 07/25/08 8210375	Chloride	90	(80 - 120) MCAWW 300.0A	MS Lot-Sample #: A8G290224-001 07/30/08 8213087
96 (80 - 120) MCAWW 300.0A 07/26/08 8210374 Nitrate as N Work Order #: KTCDX1A9 MS Lot-Sample #: A8G290224-001 88 (80 - 120) MCAWW 300.0A 07/30/08 8213091 Sulfate Work Order #: KR3RJ1AM MS Lot-Sample #: A8G240111-004 101 (80 - 120) MCAWW 300.0A 07/25/08 8210375	Nitrate as N	104	(80 - 120) MCAWW 300.0A	
88 (80 - 120) MCAWW 300.0A 07/30/08 8213091 Dilution Factor: 1 Sulfate Work Order #: KR3RJ1AM MS Lot-Sample #: A8G240111-004 101 (80 - 120) MCAWW 300.0A 07/25/08 8210375	Nitrate as N	96	(80 - 120) MCAWW 300.0A	\$\overline{\sigma}\$
101 (80 - 120) MCAWW 300.0A 07/25/08 8210375	Nitrate as N	88	(80 - 120) MCAWW 300.0A	
Dilution Factor: 1	Sulfate	101		
Sulfate Work Order #: KR5301A3 MS Lot-Sample #: A8G250132-005 101 (80 - 120) MCAWW 300.0A 07/26/08 8210375 Dilution Factor: 1	Sulfate	101	(80 - 120) MCAWW 300.0A	
Sulfate Work Order #: KTCDX1CD MS Lot-Sample #: A8G290224-001 88 (80 - 120) MCAWW 300.0A 07/30/08 8213094 Dilution Factor: 1	Sulfate	88	(80 - 120) MCAWW 300.0A	

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G25135 Matrix..... WATER

Date Sampled...: 07/23/08 11:15 Date Received..: 07/24/08

PARAMETER Chloride	AMOUNT	50.0	MEASURED AMOUNT UNITS Work Order #: 54.9 mg/L Dilution Factor: 1	RECOVERY	METHOD	ANALYSIS DATE	BATCH #
Chloride	13.8	50.0	Work Order #: 58.6 mg/L Dilution Factor: 1	90	MS Lot-S MCAWW 300.0A	Sample #: A8G290 07/30/08	0224-001 8213087
Nitrate as N	1.2	2.5	Work Order #: 3.8 mg/L Dilution Factor: 1	104	MS Lot-S MCAWW 300.0A	ample #: A8G240 07/25/08	0111-004 8210374
Nitrate as N	1.0	2.5	Work Order #: 3.4 mg/L Dilution Factor: 1	KR5301A2 96	MS Lot-S MCAWW 300.0A	ample #: A8G250 07/26/08	0132-005 8210374
Nitrate as N	ND	2.5	Work Order #: 2.2 mg/L Dilution Factor: 1	88	MS Lot-S MCAWW 300.0A	ample #: A8G290 07/30/08	224-001 8213091
	38.3	50.0	Work Order #: 88.8 mg/L Dilution Factor: 1	101	MS Lot-S MCAWW 300.0A	ample #: A8G240 07/25/08	111-004 8210375
Sulfate	49.7	50.0	Work Order #: 100 mg/L Dilution Factor: 1	KR5301A3 101	MS Lot-S MCAWW 300.0A	ample #: A8G250 07/26/08	132-005 8210375
Sulfate	16.1	50.0	Work Order #: 60.0 mg/L Dilution Factor: 1	88	MS Lot-S MCAWW 300.0A	ample #: A8G290 07/30/08	224-001 8213094

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix..... WG

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

PARAMETER Chloride	PERCENT RECOVERY	RECOVERY LIMITS METHO Work Order #: (80 - 120) MCAWW Dilution Factor: 1	D ANA	EPARATION- ALYSIS DATE Lot-Sample 07/26/08	PREP BATCH # #: A8G250135-004 8210370
Nitrate as N	108	Work Order #: (80 - 120) MCAWW Dilution Factor: 1		Lot-Sample 07/26/08	#: A8G250135-004 8210374
Sulfate	109	Work Order #: (80 - 120) MCAWW Dilution Factor: 1		Lot-Sample 07/26/08	#: A8G250135-004 8210375

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G25135

Matrix..... WG

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

PARAMETER Chloride	SAMPLE AMOUNT 3.5		MEASURED AMOUNT UNITS Work Order #: 57.8 mg/L	PERCENT RECOVERY KR5471AM 109		PREPARATION- ANALYSIS DATE Sample #: A8G25 07/26/08	
Nitrate as N	0.40	2.5	Dilution Factor: 1 Work Order #: 3.1 mg/L Dilution Factor: 1		MS Lot-S MCAWW 300.0A	Sample #: A8G250 07/26/08	0135-004 8210374
Sulfate	13.3	50.0	Work Order #: 67.7 mg/L Dilution Factor: 1	KR5471AN 109	MS Lot-S MCAWW 300.0A	Sample #: A8G250 07/26/08	0135-004 8210375

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 8G25135 Matrix......... WG

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

PARAMETER	PERCENT RECOVERY	RECOVER LIMITS	RY RPD	RPD LIMITS	METHOD		PREPARATION- PREP ANALYSIS DATE BATCH #
Total Alkali	nity	W	70#: KR53	51AN-MS/	KR5351AP-MSD	MS	Lot-Sample #: A8G250135-001
	94	(10 - 1)	.60)		MCAWW 310.1		07/26/08 8212127
	90	(10 - 1	60) 4.4	(0-24)	MCAWW 310.1		07/26/08 8212127
		D	Dilution Fac	ctor: 1			
Total Organia	c Carbon	W	10#: KR53	51AK-MS/	KR5351AL-MSD	MS	Lot-Sample #: A8G250135-001
	106	(72 - 1)	.36)		MCAWW 415.1		07/28/08 8211052
	103	(72 - 1)	36) 2.9	(0-20)	MCAWW 415.1		07/28/08 8211052
		D	Dilution Fac	ctor: 1			

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 8G25135 Matrix...... WG

Date Sampled...: 07/24/08 14:10 Date Received..: 07/25/08

PARAMETER	SAMPLE AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alka	linity		WO#:	KR5351AN-MS/	KR5351	P-MSI	MS I	ot-Sampl	e #: A8G250135-	-001
	34	500	510	mg/L	94		MCAWW	310.1	07/26/08	8212127
	34	500	480	mg/L	90	4.4	MCAWW	310.1	07/26/08	8212127
			Diluti	lon Factor: 1						
Total Organ	nic Carl	oon	WO#:	KR5351AK-MS/	KR5351A	L-MSI	MS L	ot-Sampl	e #: A8G250135-	-001
1	ND	25	27	mg/L	106		MCAWW	415.1	07/28/08	8211052
ă.	ND.	25	26	mg/L	103	2.9	MCAWW	415.1	07/28/08	8211052
			Diluti	on Factor: 1						

NOTE(S):

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A8G250135 Work Order #...: KR55D-SMP Matrix.....: SD

KR55D-DUP

Date Sampled...: 07/24/08 14:50 Date Received..: 07/25/08

% Moisture....: 18

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Percent Solids					SD Lot-Sample #:	A8G250135-006	
82.4	83.0	%	0.69	(0-20)	MCAWW 160.3 MOD	08/04-08/05/05	8217346

Dilution Factor: 1

END OF REPORT

Appendix B
Historic Groundwater, Surface Water, and Sediment Results

Anal	vto	Acetone	Benzene	Carbon	Carbon	Chloro-	Chloro-	Chloroform	Chloro-	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE	Ethyl-	2-Hexanone	Methylene	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes
,		Acetone		Disulfide	Tetrachloride	benzene	ethane		methane			,	(total)	benzene		Chloride	1,1,2,2-1 OA						(total)
NYSDEC		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/22/93	NR	0.9 J	NR	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.1 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/20/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	0.66 J	<1.0	<1.0	0.40 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	01/05/00	<10	0.65 J,B	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0	0.14 J	<10	0.35 J,B	<1.0	<1.0	-	0.097 J	<1.0	<2.0	<1.0
	06/06/00	<10	0.57 J	<1.0	<1.0	0.30 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/15/01	10 UJ	0.40 J	<1.0	<1.0	0.38 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
MW-1	08/29/01	<10	<1.0	<1.0	<1.0	0.32 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/25/02	10 U	<1.0	<1.0	<1.0	0.17 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/18/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	0.24 J	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.0
	02/15/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U				
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U				
	06/13/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U				
	07/24/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U					
	03/24/93	NR	18 J	NR	<0.5	0.4 J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.3 J	<0.5	NR	<4.1 B,J	<0.5	<0.5	-	0.1 J	<0.5	<0.5	<0.5
	09/26/94	<10	11	<10	<1.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/24/95	<10	15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	5.7	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	<1.0	<0.1	<1.0	9.8	<1.0	<10	<1.0	<1.0	0.16 J	-	0.16 J	0.20 J	<2.0	<1.0
	01/05/00	<10	6.9 B	<1.0	<1.0	0.26 J	<2.0	<1.0	<2.0	0.13 J	<1.0	0.45 J	3.3	<1.0	<10	0.11 J,B	<1.0	<1.0	-	0.090 J	0.15 J	0.30 J	<1.0
	06/06/00	<10	4.8	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	3.8	<1.0	<10	<1.0	<1.0	0.30 J	-	<1.0	<1.0	0.18 J	<1.0
	03/14/01	<10	3.6	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	3.2	<1.0	<10	<1.0	<1.0	0.66 J	-	<1.0	0.42 J	<2.0	<1.0
MW-4	08/29/01	<10	12	<1.0	<1.0	0.21 J	<2.0	<1.0	0.26 J	<1.0	<1.0	<1.0	1.5	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
10100-7	04/25/02	<10	10	<1.0	<1.0	0.21 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.2	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/18/02	<10	7.8	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	2.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.84 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/26/04	10 U	2.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.50 J	<1.0	<10	<1.0	<1.0	0.72 J	-	<1.0	<1.0	<2.0	<1.0
	02/15/06	10 U	3.8	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.53 J	1.0 U	10 U	1.0 U	1.0 U	0.33 J	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/29/06	10 U	9.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U				
	06/13/07	10 U	7.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	10 U	1.0 UJ	1.0 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U				
	07/24/08	10 U	4.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28 J	2.0 U	1.0 U

									TOWIT	n Decip	ark, Orai	ige coul	าty, New	IOIK									
Analyte	е	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl- benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDEC S	SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EPA N	MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
(03/23/93	NR	<0.5	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	55	<0.5	NR	<1.3 B	<0.5	50	-	<0.5	22	<0.5	<0.5
	09/23/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	130	<10	NR	<10	<10	100	-	<10	24	<10	<10
(04/23/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	85	<10	<10	<10	<10	76	-	<10	22	<10	<10
(02/17/99	<50	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	130	<5.0	<50	3.6 J,B	<5.0	86	-	<5.0	22	<10	<5.0
(01/05/00	<10	0.46 J	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0	80	-	<5.0	21	0.72 J	<5.0
(06/06/00	<33	<3.3	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	99	<3.3	<33	<3.3	<3.3	80	-	<3.3	19	<6.7	<3.3
(03/15/01	<100	<10	<10	<10	<10	<20	<10	<20	<10	<10	<10	310	<10	<100	4.6 J	<10	160	-	<10	32	<20	<10
(08/29/01	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	69	<2.5	<25	<2.5	<2.5	61	-	<2.5	15	<5.0	<2.5
OW-2	04/25/02	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	81	<2.5	<25	1.2 U	<2.5	60	-	<2.5	18	0.95 J	<2.5
000-2	09/18/02	<29	<2.9	<2.9	<2.9	<2.9	<5.7	<2.9	<5.7	<2.9	<2.9	<2.9	85	<2.9	<29	<2.9	<2.9	68	-	<2.9	18	<5.7	<2.9
(04/09/03	<120	<12	<12	<12	<12	<25	<12	<25	<12	<12	<12	290	<12	<120	<12	<12	160	-	<12	29	<25	<12
(04/26/04	10 U	1.5 J	<6.7	<6.7	<6.7	<13	<6.7	<13	<6.7	<6.7	<6.7	170	<6.7	<67	<6.7	<6.7	110	-	1.3 J	22	<13	<6.7
(02/15/06	40 U	4.0 U	4.0 U	4.0 U	4.0 U	8.0 U	4.0 U	8.0 U	4.0 U	4.0 U	4.0 U	150	4.0 U	40 U	4.0 U	4.0 U	120	-	4.0 U	20	8.0 U	4.0 U
(05/23/06	80 U	8.0 U	8.0 U	8.0 U	8.0 U	16 U	8.0 U	16 U	8.0 U	8.0 U	8.0 U	250	8.0 U	80 U	8.0 U	8.0 U	130	8.0 U	8.0 U	22	16 U	8.0 U
(08/30/06	25 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	74	2.5 U	25 U	2.5 U	2.5 U	90	2.5 U	2.5 U	16	5.0 U	2.5 U
7	11/29/06	120 U	12 U	12 U	12 U	12 U	25 U	12 U	25 U	12 U	12 U	12 U	280	12 U	120 U	12 U	12 U	140	12 U	12 U	24	25 U	12 U
(06/13/07	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	36	2.0 U	20 U	2.0 UJ	2.0 U	52	2.0 U	2.0 U	12	4.0 U	2.0 U
(07/24/08	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	30	0.96 J	20 U	2.0 U	2.0 U	59	2.0 U	2.0 U	11	4.0 U	1.1 J
(03/23/93	NR	<3.0 J	NR	<0.5	0.1 J	<0.5	<0.5	<1.3	<0.5	<0.6	<0.5	8.0 R	<0.5	NR	<3.8	<0.6	1.0	-	<0.5	<1.3	1.8	<0.6
(09/29/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
(04/25/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7 J	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
(02/18/99	<17	0.67 J	<1.7	<1.7	0.20 J	<3.3	<1.7	<3.3	<1.7	<1.0	<1.7	33	<1.7	<17	1.3 J,B	<1.0	7.8	-	<1.7	5.4	<3.3	<1.7
(01/06/00	1.3 J	0.66 J	<1.0	<1.0	0.29 J	<2.0	<1.0	<2.0	<1.0	<1.0	0.20 J	38	<1.0	<10	0.25 J,B	<1.0	18	-	0.041 J	9.0	0.26 J	<1.0
(06/07/00	<10	0.91 J	<1.0	<1.0	0.19 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.3	<1.0	<10	<1.0	<1.0	2.4	-	<1.0	1.7	<2.0	<1.0
(03/14/01	<10	0.46 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	14	<1.0	<10	<1.0	<1.0	6.2	-	<1.0	3.7	<2.0	<1.0
(08/29/01	<12	<1.2	<1.2	<1.2	0.21 J	<2.5	<1.2	<2.5	<1.2	<1.2	<1.2	29	<1.2	<12	<1.2	<1.2	7.0	-	<1.2	4.5	<2.5	<1.2
OW-5	04/24/02	14 U	0.35 J	<1.4	<1.4	0.20 J	<2.9	<1.4	<2.9	<1.4	<1.4	<1.4	37	<1.4	<14	1.4 U	<1.4	10	-	<1.4	5.3	<2.9	<1.4
(09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	31	<1.0	<10	<1.0	<1.0	9.5	-	<1.0	5.3	<2.0	<1.0
	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	5.5	-	<1.0	3	<2.0	<1.0
(04/25/04	<10	0.38 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	8.6	<1.0	<10	<1.0	<1.0	5.2	-	<1.0	2.5	<2.0	<1.0
(02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	6.2	1.0 U	10 U	1.0 U	1.0 U	4.3	-	1.0 U	2.0	2.0 U	1.0 U
(05/23/06	10 U	0.69 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	20	1.0 U	10 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	2.6	0.27 J	1.0 U
(08/29/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	34	1.4 U	14 U	1.4 U	1.4 U	6.1	1.4 U	1.4 U	2.8 J	0.82 J	1.4 U
	11/29/06	10 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	30	1.0 U	10 U	1.0 U	1.0 U	7.1	1.0 U	1.0 U	3.5	2.0 U	1.0 U
(06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	8.7	1.0 U	10 U	1.0 UJ	1.0 U	4.0	1.0 U	1.0 U	1.9	2.0 U	1.0 U
(07/23/08	1.0 U	0.53 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	10	1.0 U	1.0 U	1.0 U	1.0 U	4.4	1.0 U	1.0 U	1.8	0.28 J	1.0 U

									rown c	or Deerpa	ark, Orar	ige Coul	nty, new	TOIK									
Analy	/te	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl- benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDEC	SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EPA	MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/23/93	NR	<1.3 J	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.1 J	<1.3 J	<0.5	NR	<0.7 J,B	<0.5	13	-	<0.5	<2.9	1.1	<0.5
	09/27/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	4 J	<10	NR	<10	<10	17	-	<10	6.0 J	<10	<10
	04/23/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	-	<10	5.0 J	<10	<10
	02/18/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	3.7 B	<1.0	20	-	<1.0	4.6	<2.0	<1.0
	01/06/00	1.4 J	0.19 J,B	0.58 J	<1.0	<1.0	<2.0	<1.0	0.17 J	<1.0	<1.0	0.28 J	5.1	<1.0	<10	0.26 J,B	<1.0	21	-	<1.0	4.6	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	2.2	<1.0	<10	<1.0	<1.0	14	-	<1.0	2.6	<2.0	<1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.9	<1.0	<10	<1.0	<1.0	19	-	<1.0	3.9	<2.0	<1.0
	08/29/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.7	<1.0	<10	<1.0	<1.0	12	-	<1.0	2.3	<2.0	<1.0
OW-6	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	4.7	<1.0	<10	1.1 U	<1.0	12	-	<1.0	2.9	<2.0	<1.0
	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	15	-	<1.0	3.9	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	0.34 J	<1.0	28	-	<1.0	6.8	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	<1.0	<1.0	32	-	<1.0	6.3	<2.0	<1.0
	02/16/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	19	1.7 U	17 U	1.7 U	1.7 U	39	-	1.7 U	7.9	3.3 U	1.7 U
	05/23/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	24	1.7 U	17 U	1.7 U	1.7 U	39	1.7 U	1.7 U	7.8	3.3 U	1.7 U
	08/31/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	20	1.4 U	14 U	1.4 U	1.4 U	40	1.4 U	1.4 U	7.7	2.9 U	1.4 U
	11/29/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	20	1.7 U	17 U	0.75 J	1.7 U	41	1.7 U	1.7 U	8.6	3.3 U	1.7 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	19	1.0 U	10 U	1.0 UJ	1.0 U	36	1.0 U	1.0 U	9.0	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	10 U	1.0 U	1.0 U	31	1.0 U	1.0 U	6.3	2.0 U	1.0 U
	03/23/93	NR	<0.5	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.8 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/20/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	0.32 J	0.17 J	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<10	<10	0.32 J	<1.0	0.17 J	-	<1.0	<1.0	<2.0	<1.0
	01/06/00	<10	0.49 J	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0	0.14 J	<10	0.35 J,B	<1.0	<1.0	-	0.097 J	<1.0	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-8	08/29/01	<10	0.20 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/24/02	10 U	0.20 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/29/93	NR	37	NR	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NR	2.9 B	<1.0	<1.0	-	0.5 J	<1.0	<1.0	<1.0
OW-10	09/25/94	68	1,100	<10	<10	4 J	<10	<10	<10	<10	<10	<10	<10	9 J	NR	<10	<10	<10	-	8 J	<10	<10	53
	04/27/95	<50	2,600	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	-	<50	<50	<50	30 J
	02/16/99	<2,000	1,900	<200	<200	23 J	<400	<200	<400	<200	<200	<200	<200	<200	<2,000	100 J,B	<200	<200	-	25 J	<200	<400	<200

01/07 06/06	CL Date	Acetone 50 (G) NA	Benzene 1 (S)	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE	Ethyl-	2-Hexanone	Methylene	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes
U.S. EPA MCL Well ID Da 01/07 06/06	CL Date	` ′	1 (S)						memane		,	,	(total)	benzene		Chloride	, , , -		o.y.oo				(total)
Well ID Date 01/07 06/06	Date	NA	` '	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
01/07 06/06			5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
06/06																							
	/07/00	610	400	<17	<17	3.6 J,B	<33	<17	<33	<17	<17	<17	<17	4.3 J	<170	<17	<17	<17	-	8.5 J	<17	10 J	6.2 J
03/14	/06/00	<50	130 J	<5.0	<5.0	3.0 J	<10	<5.0	<10	<5.0	<5.0	<5.0	<5.0	2.2 J	<50	<5.0	<5.0	<5.0	-	0.52 J	<5.0	2.2 J	<5.0
	/14/01	<10	35	<1.0	<1.0	3.6	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	0.89 J	<10	<1.0	<1.0	<1.0	-	0.44 J	<1.0	2.4	<1.0
08/29	/29/01	<20	55	<2.0	<2.0	1.4 J	1.1 J	<2.0	<4.0	<2.0	<2.0	<1.0	3.5	<1.0	<20	<1.0	<2.0	<2.0	-	<1.0	<2.0	9.5	<2.0
	/25/02	<10	30	<1.0	<1.0	4.0	2.8	<1.0	<2.0	<1.0	<1.0	<1.0	2.7	2.0 U	<10	1.2 U	<1.0	<1.0	-	1.0 U	<1.0	4.5	1.0 U
09/10	/19/02	<10	17	<1.0	<1.0	2.9	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.5	0.91 J	<10	<1.0	<1.0	<1.0	-	0.39 J	<1.0	6.3	<1.0
OW-10R	/09/03	<10	6.8	<1.0	<1.0	3.1	0.54 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.43 J	<1.0	<1.0	-	<1.0	<1.0	0.72 J	<1.0
	/26/04	<10	8.1	<1.0	<1.0	2.2	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.57 J	0.22 J	<10	1.0 U	<1.0	<1.0	-	0.27 J	<1.0	0.99 J	<1.0
	/15/06	10 U	3.2	1.0 U	1.0 U	1.4	0.52 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	_	1.0 U	1.0 U	0.47 J	1.3 U
	/29/06	10 U	9.9	1.0 U	1.0 U	1.4	0.92 J	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	0.59 J	0.25 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.7 J	1.0 U
06/13		10 U	4.7	1.0 U	1.0 U	1.4	0.94 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.47 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.89 J	1.0 U
07/22		10 U	5.7	1.0 U	1.0 U	0.71 J	0.48 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.46 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.80 J	1.0 U
	/28/93	NR	230	NR	<1.0	<1.0	<1.0	<1.0	<1.0	0.4 J	<1.0	<1.0	12	0.2 J	NR	1.2 J,B	<1.0	<1.0	-	4.8	0.9 J	<1.0	0.8 J
09/29		<10	40	<10	<10	<10	<10	<10	<10	<10	<10	<10	6 J	<10	NR	<10	<10	<10	_	<10	<10	9 J	<10
	/25/95	<10	350	<10	<10	<10	<10	<10	<10	<10	<10	<10	20	<10	<10	<10	<10	<10	_	<10	<10	34	<10
	/16/99	<330	490	<33	<33	<33	<67	<33	<67	<33	<33	<33	52	<33	<330	18 J,B	<33	<33	_	7.6 J	<33	48 J	<33
	/06/00	<200	620	<20	<20	<20	<40	3.5 J,B	<40	<20	<20	<20	56	2.3 J	<200	<20	<20	<20	_	2.7 J,B	1.3 J	58	<20
06/07	/07/00	<83	200	<8.3	<8.3	0.84 J	<17	<8.3	<17	<8.3	<8.3	<8.3	15	5.5 J	<83	<8.3	<8.3	<8.3	_	<8.3	<8.3	17	<8.3
OW-13	/14/01	<50	130	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	15	4.0 J	<50	3.0 J	<5.0	<5.0		<5.0	<5.0	12	<5.0
	/29/01	<62	120	<6.2	<6.2	<6.2	<12	<6.2	<12	<6.2	<6.2	<6.2	12	<6.2	<62	<6.2	<6.2	<6.2	_	<6.2	1.1 J	9.9 J	<6.2
	/24/02	<56	160	<5.6	<5.6	<5.6	<11	<5.6	<11	<5.6	<5.6	<5.6	11	<5.6	<56	<5.6	<5.6	<5.6	_	5.6 U	1.1 J	9.9 J	<5.6
	/19/02	<33	81	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	8.5	1.8 J	24 J	<3.3	<3.3	<3.3		<3.3	<3.3	5.9 J	<3.3
	/10/03	<25	53	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	5.9	1.6 J	<25	<2.5	<2.5	<2.5	-	<2.5	<2.5	4.9 J	<2.5
04/25		<17	45	<1.7	<1.7	0.38 J	<3.3	<1.7	<3.3	<1.7	<1.7	<1.7	4.9	1.0 J	<17	<1.7	<1.7	<1.7	-	0.31 J	0.67 J	3.2 J	<1.7
		10 U	45 15							1.0 U					10 U				-		1.0 U		
	/20/06			1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	0.60 J	1.0 U	1	1.0 U	1.0 U	1.0 U	1011	0.29 J	ł	1.1 J	1.0 U
OW-13R	/29/06	10 U	15 11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.40 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3 J	1.0 U
	/12/07			1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.86 J	1.0 U
		10 U/10 U	6.5 J/6.8 J	1.0 U/1.0 U	1.0 U/1.0 U		2.0 U/2.0 U	1.0 U/1.0 U			1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	10 U/10 U	1.0 U/1.0 U			1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	0.70 J/0.70 J	1.0 U/1.0 U
	/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR 40	<10	<10	<10	-	<10	<10	<10	<10
	/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	/16/99	<10	1.1	<1.0	<1.0	0.52 J	<2.0	<1.0	<2.0	0.25 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.5 J	<1.0
	/07/00	1.3 J	1.0 B	0.92 J	<1.0	0.64 J	<2.0	<1.0	<2.0	0.31 J	<1.0	0.57 J	<1.0	<1.0	<10	0.35 J,B		<1.0	-	0.074 J	<1.0	1.4 J	<1.0
06/06		<10	0.91 J	<1.0	<1.0	0.60 J	<2.0	<1.0	<2.0	0.28 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.0 J	<1.0
03/14		<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.37 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.1 J	<1.0
OW-15 08/28		2.2 J,B	0.61 J	<1.0	<1.0	0.35 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.52 J	<1.0
04/25	/25/02	<10	0.99 J	<1.0	<1.0	0.47 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	0.91 J	<1.0
09/18	/18/02	<10	0.69 J	<1.0	<1.0	0.43 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
04/08	/08/03	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.33 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0 J	<1.0
04/23	/23/04	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.29 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.90 J	<1.0
02/15	/15/06	10 U	0.88 J	1.0 U	1.0 U	0.53 J	2.0 U	1.0 U	2.0 U	0.24 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.73 J	1.3 U
08/29	/29/06	10 U	0.78 J	1.0 U	1.0 U	0.51 J	2.0 U	1.0 U	0.37 J	0.22 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.82 J	1.0 U

									TOWIT	n Deerp	ark, Orar	ige Coul	ity, new	TOIK									
Analy	rte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl- benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDEC	SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EPA	MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
1	04/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
1	02/17/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	01/06/00	1.4 J	0.082 J,B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.61 J	<1.0	<1.0	<10	0.30 J,B	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	03/14/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-16	08/28/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.36 J	<1.0	<1.0	<10	0.80 J	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
l i	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.9 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1 1	02/17/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
1 1	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.35 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
OW-17	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Ovv-17	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1	11/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	09/23/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
1	04/29/95	<10	12	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	29
1 1	02/17/99	<17	4.7	<1.7	<1.7	3.4	1.0 J	<1.7	<3.3	<1.7	<1.7	<1.7	0.54 J	<1.7	<17	1.0 J,B	<1.7	<1.7	-	<1.7	<1.7	<3.3	1.1 J
1	01/07/00	2.7 J	5.6 B	1.0	<1.0	4.5	3.0	<1.0	<2.0	0.66 J	<1.0	0.29 J	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	0.22 J	0.14 J	0.29 J	1.8
1	06/08/00	<10	4.8	<1.0	<1.0	4.6	1.3 J	<1.0	<2.0	0.24 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
1	03/16/01	10 UJ	3.1	<1.0	<1.0	3.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.4
1	08/28/01	2.3 J,B	2.4 J	<1.0	<1.0	3.6 J	<2.0	<1.0	<2.0	0.18 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.3 J
OW-18	04/24/02	10 U	1.5	<1.0	<1.0	4.3	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.28 J	<1.0	<10	1.6 U	<1.0	<1.0	-	1.0 U	<1.0	<2.0	1.7
1 1	09/17/02	<10	2.9	<1.0	<1.0	5.5	1.3 J	<1.0	<2.0	0.36 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	2.0
1	04/08/03	2.6 J	2.9	<1.0	<1.0	5.6	1.2 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
	04/23/04	10 U	3.3	<1.0	<1.0	7.3	0.74 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
j †	02/17/06	10 U	5.1	1.0 U	1.0 U	10	3.2	1.0 U	2.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.49 J	1.0 U	2.0 U	10
j †	08/30/06	10 U	3.7	1.0 U	1.0 U	7.8	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
j †	06/14/07	10 U	1.2	1.0 U	1.0 U	6.5	0.46 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
j t	07/22/08	10 U	1.5	1.0 U	1.0 U	6.9	0.40 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U

				Carbon	Carbon	Chloro-	Chloro-		Chloro-	l Decip	ark, Orar		1,2-DCE	Ethyl-		Methylene							Xylenes
Analy	/te	Acetone	Benzene	Disulfide	Tetrachloride	benzene	ethane	Chloroform	methane	1,1-DCA	1,2-DCA	1,1-DCE	(total)	benzene	2-Hexanone	Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	(total)
NYSDEC	SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EPA	MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/27/94	<10	10 J	<10	<10	5 J	15	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/28/95	<10	8 J	<10	<10	6 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/17/99	<10	5.8	<1.0	<1.0	7.1	6.1	<1.0	<2.0	0.27 J	<1.0	<1.0	3.3	<1.0	<10	0.16 J,B	<1.0	<1.0	-	0.16 J	0.14 J	10	<1.0
	01/05/00	0.94 J	3.7 B	<1.0	<1.0	10	2.7	<1.0	<2.0	0.16 J	0.27 J	<1.0	1.5	<1.0	<10	0.25 J,B	<1.0	<1.0	-	0.15 J	0.15 J	2.1	<1.0
	06/08/00	<10	2.3	<1.0	<1.0	5.2	1.9 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/16/01	10 UJ	1.7	<1.0	<1.0	3.8	1.4 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.96 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.3 J	<1.0
	08/28/01	2.7 J,B	1.9 J	<1.0	<1.0	7.2 J	0.92 J	<1.0	<2.0	<1.0	<1.0	0.35 J	0.46 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-19	04/23/02	10 U	1.3	<1.0	<1.0	6.5	0.71 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.43 J	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/17/02	<10	0.64 J	<1.0	<1.0	4.9	0.73 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/08/03	2.5 J	3	<1.0	<1.0	4.9	1.7 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.81 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.68 J	<1.0
	04/24/04	10 U	2.1	<1.0	<1.0	6	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.58 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.56 J	<1.0
	02/17/06	10 U	3.4	1.0 U	1.0 U	5.6	1.9 J	1.0 U	<2.0	1.0 U	1.0 U	1.0 U	1.3	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.9	1.0 U
	08/31/06	3.1 J	3.3	1.0 U	1.0 U	13	1.8 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.85 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U
	06/14/07	10 U	2.1	1.0 U	1.0 U	8.8 J	1.3 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.73 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.87 J	1.0 U
	07/22/08	10 U	1.4	1.0 U	1.0 U	11	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.49 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.62 J	1.0 U
	09/22/94	6 J	5 J	<10	<10	<10	<10	10 J	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/29/95	<10	8 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/16/99	<10	5.8	<1.0	<1.0	0.11 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.26 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.89 J	<1.0
	01/04/00	<10	3.8 B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	<1.0	<1.0	<10	0.10 J,B	<1.0	<1.0	-	0.055 J	<1.0	0.46 J	<1.0
	06/07/00	<10	5.4	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.54 J	<1.0
	03/13/01	10 UJ	4.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.70 J	<1.0
	08/30/01	10 U	3.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.38 J	<1.0	<1.0	-	<1.0	<1.0	0.25 J	<1.0
OW-21	04/25/02	<10	2.4	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	0.33 J	<1.0
	09/18/02	<10	2.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.39 J	<1.0
	04/09/03	<10	3.7	<1.0	<1.0	<1.0	<2.0	<1.0	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.51 J	<1.0	<1.0	-	<1.0	<1.0	0.88 J	<1.0
	04/24/04	<10	2.9	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.56 J	<1.0
	02/16/06	10 U	3.0	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.52 J	1.0 U
	08/29/06	10 U	2.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	0.27 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.83 J	1.0 U
	06/13/07	10 U	2.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.67 J	1.0 U
	07/23/08	10 U	1.8	1.0 U	1.0 U	1.0 U	<2.0	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.74 J	1.0 U

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Analy	yte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl- benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDEC		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EPA		NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/24/94	<10	100	<10	<10	9 J	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	5 J
	04/28/95	<10	48	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	<10
	02/17/99	<25	46	<2.5	<2.5	8.0	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	2.4 J	<2.5	<25	1.1 J,B	<2.5	<2.5	-	0.87 J	<2.5	4.2 J	3.5
	01/04/00	1.5 J	37 B	0.41 J	<1.2	5.8	<2.5	<1.2	<2.5	0.21 J	<1.2	<1.2	<1.2	0.098 J	<12	0.23 J,B	<1.2	<1.2	-	0.58 J	0.073 J	1.5 J	1.7
	06/07/00	<10	11	<1.0	<1.0	5.8	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	1.4
	03/13/01	10 UJ	12	<1.0	<1.0	8.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.70 J	<1.0	<10	<1.0	<1.0	<1.0	-	0.56 J	<1.0	0.76 J	1.9
0144.00	08/30/01	10 U	3.4	<1.0	<1.0	4.6	<2.0	0.34 J	<2.0	<1.0	<1.0	<1.0	0.36 J	<1.0	<10	0.36 J	<1.0	<1.0	-	0.45 J	<1.0	<2.0	1.7
OW-22	04/25/02	<10	4.2	<1.0	<1.0	3.7	<2.0	<1.0	<2.0	<1.0	0.29 J	<1.0	<1.0	<1.0	<10	1.2 U	<1.0	<1.0	-	1.0 U	<1.0	0.39 J	2.7 U
	09/18/02	<10	2.9	<1.0	<1.0	4.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.8
	04/09/03	<10	8.7	<1.0	<1.0	8.5	0.66 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	<1.0	<1.0	0.56 J	1.6
	04/24/04	10 U	4.2	<1.0	<1.0	5.9	0.24 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	0.23 J	<1.0	0.32 J	1.1
	02/16/06	10 U	7.5	1.0 U	1.0 U	11	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.59 J	1.0 U	<10	0.59 J	1.0 U	1.0 U	-	0.26 J	1.0 U	0.29 J	1.0
	08/31/06	10 U	2.8	1.0 U	1.0 U	5.3	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.24 J	1.0 U	0.41 J	1.1
	06/14/07	10 U	3.5	1.0 U	1.0 U	4.8	0.26 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.50 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	0.21 J	1.0 U	0.37 J	0.76 J
	07/23/08	10 U	1.9	1.0 U	1.0 U	4.6	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.17 J	1.0 U	0.32 J	0.66 J
	02/17/06	10 U	0.38 J	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.66 J	1.0 U
OW-23	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.44 J	1.0 U	1.0 U	0.39 J	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U
	11/30/06	10 U	0.23 J	1.0 U	1.0 U	1.0 U	0.27 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.22 J	1.0 U	0.51 J	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.22 J	1.0 U	2.0 U	<1.0
OW-24	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.45 J	1.0 U	1.0 U	2.0 U	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	3.6 U	1.0 U	1.0 U	1.0 U	0.18 J	1.0 U	2.0 U	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.17 J	1.0 U	1.0 U	1.0 U
	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
OW-25	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values for groundwater U.S. EPA MCL= United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

< = Analyte not detected at reporting limit

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Red = Concentrations detected at or above regulatory limit

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified

UJ = (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Pre-1999 data from RETEC 1995

Pre-1999 analysis performed by Method 8240

1999 and later analyses performed by Method 8260B

NA = Not applicable; no criteria specified

NR = Analyte not reported

R = Data rejected during validation

 $\label{eq:J} \textbf{J} = \textbf{Estimated result; result is less than reporting limit.}$

9/25/2008

Table B-2
Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	lyte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate
NYSDE	NYSDEC SGV		1 (S)	NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)
U.S. EP	A MCL	NE 5		NE	NE	5	70	5	1,000	2	NE
Sample ID	Date					VOCs					SVOCs
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	0.19 J,B	10 U	0.85 J	1.0 U	1.0 U	0.15 J,B	1.0 U	0.99 J	10 U
	06/08/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-1	03/15/01	10 U	1.0 U	10 U	0.97 J	0.61 J	0.39 J	1.0 U	1.0 U	0.52 J	10 U
(Down-	08/28/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
stream)	04/23/02	10 U	1.0 U	0.60 J	2.0 U	1.0 U	1.0 U	1.5 U	1.0 U	2.0 U	NA
	09/17/02	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	04/08/03	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	04/23/04	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	02/18/06	10 U / 21 U	1.0 U / 1.0 U	10 U / 10 U	0.37 J / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	0.34 J / 0.29 J	NA / NA
SW-1 / Duplicate	06/14/07	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
<u>'</u>	07/24/08	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	06/08/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-2 (Upstream)	03/15/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
(-)	02/18/06	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.53 J	NA
	06/14/07	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	0.21 J	1.0 U	2.0 U	NA
	07/24/08	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA

Table B-2 Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L) Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Anal	yte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate	
NYSDEC SGV		50 (G)	1 (S)	NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)	
U.S. EPA MCL		NE 5		NE	NE	5	70	5	1,000	2	NE	
Sample ID	Date					VOCs					SVOCs	
	08/28/01	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	10 U	
0111.0.1	04/23/02	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.2 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	0.77 J / 10 U	
SW-2 / Duplicate	09/17/02	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA	
·	04/08/03	1.3 J / 2.0 J	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA	
	04/23/04	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA	

Notes:

TCL = Target Compound List

NE = Not established; no criteria specified.

NA = Not analyzed

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) values for groundwater.

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater.

J = Estimated result; result is less than reporting limit.

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified.

Red = Analyte detected at or above SGV or MCL.

Table B-3
Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment (ug/kg)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Anal	yte	Acetone	Benzene	2-Butanone	Carbon Disulfide	1,2- Dichloroethene (total)	Toluene	Trichloro- ethene	Vinyl Chloride	bis(2-Ethylhexyl) phthalate	Di-n-butylphthalate	4-Methylphenol
Sample ID	Date					VOCs					SVOCs	
	09/27/94	58	ND	20 U	NR	ND	ND	ND	20 U	ND	190 J,B	ND
	02/18/99	28 U	6.9 U	28 U	6.9 U	6.9 U	6.9 U	6.9 U	14 U	450 U	77 J	450 U
	01/04/00	370	31 U	82 J	31 U	31 U	31 U	31 U	6.9 J	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	06/08/00	60 JB	13 U	17 J	13 U	13 U	13 U	13 U	27 U	590 J	880 U	880 U
SED 1 (Down	03/15/01	55 J	16 U	62 U	16 U	16 U	16 U	16 U	31 U	1,000 U	1,000 U	1,000 U
stream)	08/28/01	27 J	2.1 J	9.4 J	12 U	4.6 J	1.3 J	12 U	24 U	790 U	790 U	790 U
	04/23/02	R	R	R	R	R	R	R	R	R	R	R
	09/17/02	180 BJ	2.7 J	58 J	3.5 J	2.1 J	54 J	17 U	34 UJ	NA	NA	NA
	04/08/03	110 J	3.4 J	34 J	21 UJ	5.7 J	21 U	21 U	3.0 J	NA	NA	NA
	04/23/04	28 J,FB,TB	10 U	7.2 J	10 U	10 U	10 U	10 U	20 U	NA	NA	NA
SED-1/	02/18/06	460 U / 180 U	11 U / 9.1 U	130 U / 54 U	11 U / 9.1 U	11 U / 9.1 U	1.2 J / 0.95 J	1.9 J / 9.1 U	23 U / 18 U	NA	NA	NA
Duplicate	06/14/07	60 J / 18 J	12 U / 12 U	18 J / 6.9 J	0.62 J / 0.76 J	12 U / 12 U	12 U / 12 U	12 U / 12 U	24 U / 24 U	NA / NA	NA / NA	NA / NA
·	07/24/08	24 U / 26 U	6.1 U / 6.5 U	2.9 J / 5.9 J	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	12 U / 13 U	NA / NA	NA / NA	NA / NA
	09/27/97	76	ND	23 U	NR	ND	ND	ND	23 U	ND	220 J,B	ND
SED-2	02/18/99	140 JB	44 U	50 J	44 U	44 U	44 U	44 U	88 U	2,900 U	370 J	2,900 U
(Upstream)	02/18/06	110 U	16 U	65 U	1.8 J	16 U	2.1 J	16 U	32 U	NA	NA	NA
	06/14/07	76 J	15 U	18 J	1.2 J	15 U	5.5 J	15 U	30 U	NA	NA	NA
	07/24/08	78 UJ	10 U	19 J	10 U	10 U	0.90 J	10 U	20 U	NA	NA	NA
	01/04/00	180 J / 190 U	55 U / 47 U	220 U / 190 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	110 U / 94 U	3,600 U / 3,100 U	3,600 U / 3,100 U	3,600 U / 3,100 U
	06/08/00	150 J / 160 U	46 U / 41 U	49 J / 160 U	46 U / 41 U	46 U / 41 U	13 J / 41 U	46 U / 41 U	91 U / 81 U	2,900 J / 1,500 J	3,000 U / 2,700 U	480 J,# / 2,700 U
	03/15/01	36 UJ / 69 UJ	17 UJ / 17 UJ	70 UJ / 69 UJ	17 U / 17 U	17 UJ / 17 UJ	17 UJ / 17 UJ	17 U / 17 U	35 UJ / 35 UJ	1,200 U / 1,100 U	1,200 U / 1,100 U	1,200 U / 1,100 U
SED-2/	08/28/01	44 J / 22 J	16 U / 13 U	14 J / 7.6 J	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	32 U / 25 U	1,100 U / 830 U	1,100 U / 830 U	1,100 U / 830 U
Duplicate	04/23/02	63 J / 85 UJ	30 UJ / 21 UJ	21 J / 85 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	59 UJ / 42 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	09/17/02	40 B / 29 JB	9.6 U / 9.3 U	17 J / 9.3 J	9.6 U / 9.3 U	9.6 U / 9.3 U	1.0 J / 0.91 J	9.6 U / 9.3 U	19 U / 19 U	NA	NA	NA
	04/08/03	79 J / 27 J	41 U / 44 U	21 J / 180 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	83 U / 88 U	NA	NA	NA
	04/23/04	38 J,FB / 53 U	14 U / 13 U	12 J / 53 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	28 U / 27 U	NA	NA	NA

Notes:

TCL = Target Compound List

ND = Not detected at reporting limit prior to 06/08/00.

< = Not detected at the method detection limit.

NR = Analyte not reported

B = Method blank contamination. The associated method blank contains the analyte at a reportable level.

J = Estimated result; result is less than method reporting limit

TB = Detected in trip blank

NA = Not analyzed

FB = Detected in field blank

Methylene chloride (2.6 ug/kg J, FB, TB) was detected in SED-1 during 4/04 sampling round.

R (DATA VALIDATION QUALIFIER) = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence of the analyte cannot be verified.

^{# =} This value represents a probable combination of 3-methylphenol (m-cresol) and 6-methylphenol (p-cresol).

UJ (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Appendix C
Data Quality Review - Checklists

SDG 8G25135 Tier II VOA Organic Data Review Summary

SDG No./Matrix:

Groundwater, Surface Water,

and Sediment

Completion Date:

09/10/08

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Lab	oratory: TestAmerica, North Car	nton, OH	
	Review Criteria	Data Qualified Yes / No	Comments / Samples Qualified
1.	Data completeness	No	Complete data and QC package.
2.	Preservation/holding time	No	All holding times met.
3.	GC/MS tuning	No	Performance results within QC limits.
4.	Calibration:		
	4A - Initial	No	6-level initial calibration on 07/28/08 for UX14; on 07/25/08 for UX15. Low RRFs for 1,4-dioxane, isobutanol, and n-butanol. No data qualified because these are not reported compounds.
	4B - Continuing	No	UX15 continuing calibration on 07/31/08. Low RRF for 1,4-dioxane, high % drift for 1,2,3-trichlorobenzene, but no qualifications because these are not reported compounds.
5.	Blanks:		
	5A - Laboratory blanks	Yes	Acetone detected in water and solid method blanks: 1.1 J ug/L; 7.4 ug/kg. Acetone detections in MW-1, OW-2, MW-4, SW-1, SW-1 DUP, SED-1, SED-1 DUP, and SED-2 qualified as U at appropriate reporting limit.
	5B - Trip blanks	No	Acetone detected in TB3 below reporting limit. No further qualifica-tion of data because it was already qualified from the lab blanks.
	5C - Field blank	No	Acetone and chloroform (low J values) detected in FB3. No further qualification of data because it was already qualified from the lab blanks.
6.	Surrogate recovery	No	One surrogate (SRG03, toluene-d8) was outside of recovery limits (high) for FB3; the sample was not reanalyzed because it was nondetectable. Not qualified because this is not required for nondetectable value when recovery is high.
7.	Lab-fortified blank	No	Laboratory control samples (LCS) and duplicates were analyzed for low-range water, high-range water, and solid. All were within limits except for one high-range water for trichloroethene (330 ug/L spike). No data qualified because LCS was within limits for low-range water, and field samples were within this range.
8.	Matrix spike/matrix spike duplicates	NA	Three samples only; no MS/MSD.
9.	Field duplicates	No	Duplicates were SW-1 and SW-1 DUP; SED-1 and SED-1 DUP. Water samples nondetect. SED duplicates - 2-butanone only detect (J values). RPD > control limit; however, results were not qualified because these were already J values.

SDG 8G25135 Tier II VOA Organic Data Review Summary

SDC	No./Matrix:	Groundwater, Surface Wand Sediment	Vater, Co	mpletion Date:	09/10/08
Proj	ect No.:	Carroll & Dubies - 104-0	012 Re	viewer:	Barbara Jones
Lab	oratory:	TestAmerica, North Can	ton, OH		
	Revie	ew Criteria	Data Qualified	Comi	ments / Samples Qualified
10. Internal standards performance		Yes		I standards out of control limits for cts already J-qualified; nondetects JJ.	
11.	Compound q	uantitation and reporting	No	Quantitation	checked for OW-2 and satisfactory.
12.	Tentatively id	entified compounds	NA	TIC identifica program.	tion is not required for this

SDG 8G25135 Tier II VOA Organic Data Review Summary RSK Method Dissolved Gases

SDG No./Matrix:

SDG 8G25135

Groundwater

Completion Date:

09/10/08

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Lab	oratory: TestAmerica, North Ca	nton, OH	
	Review Criteria	Data Qualified Yes / No	Comments / Samples Qualified
1.	Data completeness	No	Data package includes QC summary data, raw data, and miscellaneous documentation.
2.	Preservation/holding time	Yes	MW-4 was analyzed within holding time but methane exceeded calibration range (E-qualified by laboratory). It was reanalyzed outside of holding time, and the methane result was qualified as J.
3.	GC/MS tuning	NA	GC rather than GC/MS method.
4.	Calibration:		
	4A - Initial	No	7-level calibration on 08/07/08. RSD is 7% or less; no qualifications.
	4B - Continuing	No	Continuing calibration for reanalysis of MW-4 on 08/13/08. % drift < 2% (okay), except for acetylene (31%). No data qualified because this is not a reported compound.
5.	Blanks:		
	5A - Laboratory blanks	No	Two blanks, one for first analysis and second for reanalysis of MW-4. No detects.
	5B - Trip blanks	NA	Trip blank not analyzed for dissolved gases.
	5C - Equipment rinsates	NA	No rinsate blank for wells in this SGD because of dedicated pumps.
6.	Surrogate recovery	NA	NA for this method.
7.	Lab-fortified blank	No	Two check samples with duplicates; spike recoveries and RPDs within limits for methane, ethane, and ethene. Acetylene out of limits, but not a reported compound for this program.
8.	Matrix spike/matrix spike duplicates	NA	3 samples only; no MS/MSD.
9.	Field duplicates	NA	3 samples only; no field duplicate.
10.	Internal standards performance	NA	NA for this method.
11.	Compound quantitation and reporting	No	Question was sent to laboratory on 09/10/08 regarding quantitation for MW-4. Satisfactory response was received on 09/15/08 and replacement pages were provided.
12.	Tentatively identified compounds	NA	NA for this program.

SDG 8G25135 Tier II General Chemistry Data Review Summary

SDG No./Matrix:

SDG 8G25135

Groundwater and Sediment

Completion Date:

09/10/08

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Lab	oratory: TestAmerica, North Car	nton, OH	
	Review Criteria	Data Qualified Yes / No	Comments / Samples Qualified
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		res / No	MW-1, MW-4, and OW-2 for:
1.	Data completeness	No	- Chloride - Nitrate - Sulfate - Total alkalinity - Total organic carbon - Total sulfide
			SED-1, SED-1 DUP, and SED-2 for percent solids. Original package included sample data, a QC summary, but lacked supportive raw data. An inquiry was sent to the laboratory on 09/10/08, and backup data was provided.
2.	Preservation/holding time	No	All holding times were met except for MW-4 for nitrate. The case narrative reports that for the first analysis, the instrument injected the sample incorrectly. The follow-up analysis was outside of the holding time. The result was nondetectable and is not qualified.
3.	Calibration	No	Calibration data provided for all parameters.
4.	Blanks:		
	4A - Laboratory	No	Method blanks in duplicate for all water parameters; all blanks ND.
	4B - Equipment rinsates	NA	Not applicable for these methods.
5.	Interference check sample	NA	Not applicable for these methods.
6.	Lab-fortified blank	No	LCS and duplicate run for all parameters; recoveries and RPDs within QC limits.
7.	Laboratory duplicate sample	NA	Duplicates for LCS only.
8.	Field duplicate sample	No	Field duplicate for percent solids (SED-1, SED-1 DUP). RPD within QC limits.
9.	Matrix spike sample analysis	NA	No MS/MSD; 3 samples only.
10.	ICP serial dilution	NA	No applicable for these methods.
11.	Sample quantitation and reporting	No	TOC and sulfide quantitation checked for MW-4 and OW-2.

SDG 8G23112 Tier II

VOA Organic Data Review Summary

SDG No./Matrix:

Groundwater:

2 Sample Groups:

A 8G230112 Completion Date:

09/09/08

A 8G240111

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

	Review Criteria	Data Qualified	Comments / Samples Qualified
		Yes / No	•
1.	Data completeness	No	Complete data package with sample summary, QC summary, standards data, and other backup.
2.	Preservation/holding time	No	All samples were analyzed within the required holding time.
3.	GC/MS tuning	No	Form V indicates that GC/MS tuning met specified QC criteria.
4.	Calibration:		
	4A - Initial	No	Initial calibration on 07/15/08. RSDs okay. RRFs low for 1,4-dioxane and n-butanol. These are not reported constituents for this program; therefore there is no data qualification.
	4B - Continuing	No	UX15 continuing calibration on 07/31/08. Low RRF for 1,4-dioxane, high % drift for 1,2,3-trichlorobenzene, but no qualifications because these are not reported compounds.
5.	Blanks:		
	5A - Laboratory blanks	No	One method blank was analyzed and styrene was detected at a concentration below the reporting limit. Styrene was not reported in any of the samples; therefore no results are qualified.
	5B - Trip blanks	No	TB (07/22) and TB2 (07/23). Low concentrations of acetone were detected below the reporting limit, but not in the associated samples; no data qualified.
	5C - Field blank	No	Acetone, chloroform, and 2-butanone were detected in the pump rinse in concentrations below the reporting limits (applies to OW-13R, OW-18, and OW-25). These compounds were not detected in the associated samples.
	5D - Field blanks	No	FB-1 (07/22) and FB (07/23). Chloroform detected below reporting limit. Not detected in the associated samples.
6.	Surrogate recovery	No	Surrogate recoveries (Form II) within the specified QC limits.
7.	Lab-fortified blank	No	2 LCS (check samples and duplicates) were run for low water spike. Recoveries and RPDs were within limits.
8.	Matrix spike/matrix spike duplicates	Yes	MS/MSD run with OW-13R. Benzene recovery was slightly below lower limit (71% vs. 78%), therefore result for OW-13R and OW-13 R-dup were qualified as J.

SDG 8G23112 Tier II VOA Organic Data Review Summary

SDG No./Matrix: Groundwater:

2 Sample Groups:

A 8G230112

Completion Date:

09/09/08

A 8G240111

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Laboratory:

Project No.:

TestAmerica, North Canton, OH

Review Criteria Data Qualified

Comments / Samples Qualified

SDG No./Matrix:

Groundwater and Sediment

Completion Date:

09/10/08

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Laboratory:

TestAmerica (North Canton, OH)

	Review Criteria	Data Qualified	Comments / Samples Qualified
9.	Field duplicates	No	OW-13R was field duplicate, and only benzene and vinyl chloride were detected. RPD was within QC limits for benzene; vinyl chloride results were identical.
10.	Internal standards performance	No	Per Form VIII, internal standard areas were within QC limits.
11.	Compound quantitation and reporting	No	OW-18 and OW-19 results were spot-checked and okay.
12.	Tentatively identified compounds	NA	TICs not applicable for this program.

SDG 8G23112 Tier II Inorganic Data Review Summary RSK Method Dissolved Gases

SDG No./Matrix:

Groundwater

2 Sample Groups:

A 8G230112 Completion Date:

09/09/08

A 8G240111

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

	Review Criteria	Data Qualified	Comments / Samples Qualified
		Yes / No	
1.	Data completeness	No	Data package has QC summary data, results, and raw supporting data and documentation.
2.	Preservation/holding time	No	Holding times (14 days) were met; all samples were analyzed within 48 hours.
3.	GC/MS tuning	NA	GC rather than GC/MS method.
4.	Calibration:		
	4A - Initial	No	7-level initial calibration from October 2006; RSDs 15% to 17%, within QC limits.
	4B - Continuing	No	Continuing calibration on 07/28/08. Single-level; drift within QC limits.
5.	Blanks:		
	5A - Laboratory blanks	No	1 laboratory method blank, results ND.
	5B - Trip blanks	NA	Trip blank not analyzed for dissolved gases.
	5C - Equipment rinsates	NA	Rinsate blank not analyzed for dissolved gases.
6.	Surrogate recovery	NA	Not applicable for this method.
7.	Lab-fortified blank	No	Check samples and duplicates (2); spike recoveries and RPDs within QC limits.
8.	Matrix spike sample analysis	No	Lab MS/MSD with methane spike recoveries slightly high, but not sufficient to warrant data qualification.
9.	Field duplicates	No	OW-13R field duplicate; RPD for methane within QC limits.
10.	Internal standards performance	NA	Not applicable for this method.
11.	Compound quantitation and reporting	No	Spot-checked for OW-18, OW-19, and OW-10R and okay.
12.	Tentatively identified compounds	NA	Not applicable for this program.

SDG 8G23112 Tier II **General Chemistry Data Review Summary**

SDG No./Matrix: Groundwater

2 Sample Groups:

A 8G240111

Completion Date: A 8G230112

09/09/08

Project No.:

Carroll & Dubies - 104-0012

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

	Daview Culterie	Data Qualified	0 1 10 1 0 1 1
	Review Criteria	Yes / No	Comments / Samples Qualified
1.	Data completeness	No	General chemistry (see holding times below for parameters) for groundwater. Package complete with blanks, LCS, raw data, and miscellaneous supporting data.
2.	Preservation/holding time	No	All holding times met for all samples.
3.	Calibration:	No	Verifiable calibration supporting data for all parameters.
4.	Blanks:		
	4A - Laboratory	No	2 blanks for each parameter; all blanks ND.
200	4B - Equipment rinsate	NA	No equipment rinsate for these parameters.
5.	Interference check sample	NA	No interference check sample for these parameters.
6.	Lab-fortified blank	No	LCS and duplicates for all parameters; recoveries and RPDs within QC limits.
7.	Laboratory duplicate sample	NA	Except for LCS/LCS dups, no separate laboratory duplicates.
8.	Field duplicate sample	NA	No field duplicates for these parameters.
9.	Matrix spike sample analysis	No	Lab MS/MSD; RPDs and recoveries within limits.
10.	ICP serial dilution	NA	Not applicable for these methods.
11.	Sample quantitation and reporting	No	Quantitation for sulfide in OW-22 verified by reviewing titration report.

Holding times:	
Chloride	28 days
Nitrate	48 hours
Sulfate	28 days
Total alkalinity	14 days
Total organic carbon	28 days
Total sulfide	7 days