

July 2009 Sampling Report

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Prepared for:

Kolmar Laboratories, Inc. Jonathan A. Murphy, Esq.

Wickhen Products, Inc. Robert J. Glasser, Esq.

Prepared by:

Cardinal Resources LLC 1505 East Carson Street Pittsburgh, Pennsylvania 15203

Project No. 104-0012-0300

September 2009

Table of Contents

1.0	Intro	duction	1
	1.1	Site Setting	1
	1.2	Land and Resource Use	
	1.3	History of Waste Disposal and Contamination	2
	1.4	Overview of Remedies	2
		1.4.1 OU-1 Remedy	
		1.4.2 OU-2 Remedy	
	1.5	Overview of 2006 Groundwater Monitoring Program	
	1.6	Resumption of Annual Monitoring Program	3
2.0	Grou	ındwater Sample Collection	4
	2.1	Groundwater Elevations	
	2.2	Equipment	
	2.3	Well Purging and Sampling	4
3.0	Colle	ection of Surface Water and Sediment Samples	6
	3.1	Surface Water Sampling	
	3.2	Sediment Sampling	
4.0	Grou	undwater Results	7
7.0	4.1	Groundwater Elevations	
	4.2	Summary of Groundwater Quality Results	
	4.3	Trends for Chlorinated VOCs	
	4.4	Benzene Concentration Trends	9
	4.5	Achievement of MCLs and SGVs	9
	4.6	Monitored Natural Attenuation Trends	10
5.0	Gold	l Creek Sampling Results	12
0.0	5.1	Surface Water Results	
	5.2	Sediment Results	
	5.3	Discussion	12
6.0	Data	Quality Review	13
0.0	6.1	Introduction	
	6.2	Results of Data Review	
		6.2.1 Field QC Samples	
		6.2.2 Data Quality and Usability	
7.0	Sum	mary and Conclusions	15
8.0		rences	16
O.U	REIE	1 ETILES	I N

List of Tables

Table 1	Groundwater Field Stabilization Parameters - July 2009
Table 2	Groundwater and Surface Water Elevation Data - July 14, 2009
Table 3	Summary of Detected TCL Volatile Organic Compounds in Groundwater - July 2009
Table 4	Natural Attenuation Parameters - July 2009
Table 5	MCL and SGV Exceedances, 1999, 2004, and 2006 through 2009
Table 6	Weighting and Scoring of Natural Attenuation Parameters - July 2009
Table 7	Detected Volatile Organic Compounds - Surface Water and Sediment Sampling Locations in Gold Creek - July 2009
Table B-1	Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater
Table B-2	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water
Table B-3	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment

List of Figures

Figure 1	Site Location Map
Figure 2	Groundwater Contour Map - July 2009
Figure 3	Volatile Organic Compound Exceedances in Groundwater - July 2009
Figure 4	Chlorinated VOC Trends in OW-5 and OW-13/OW-13R, Pre-Excavation to July 2009
Figure 5	Chlorinated VOC Trends in OW-2, OW-5, and OW-6, 2006-2009
Figure 6	Benzene Concentration Trends in Selected Monitoring Wells, Pre-Excavation to July 2009
Figure 7	Benzene Concentration Trends Based on Distance from Source
Figure 8	Benzene Trends in OW-10R, OW-13R, and OW-22, 2006-2009
Figure 9	Benzene Concentrations in Groundwater - July 2009

List of Appendices

Appendix A	Laboratory Reports with Marked Form Is from Data Review
Appendix B	Historic Groundwater, Surface Water, and Sediment Results
Appendix C	Data Quality Review - Checklists

1.0 Introduction

This report summarizes the methods and results of a field sampling program performed in July 2009 at the Carroll and Dubies Superfund Site (Site), Town of Deerpark, Orange County, New York. The field work followed the August 2005 Supplemental Sampling Work Plan (Cardinal Resources LLC [Cardinal Resources], 2005) approved by the United States Environmental Protection Agency (U.S. EPA), and incorporated the recommendations of the *November 2006 Sampling Report* (Cardinal Resources, 2007). The July 2009 sampling and analysis event included 13 wells comprising the revised monitoring well network: MW-1, MW-4, OW-2, OW-5, OW-6, OW-8, OW-10R, OW-13R, OW-18, OW-19, OW-21, OW-22, and OW-25. The purpose of this sampling program is to document volatile organic compound (VOC) concentrations in the outwash aquifer at the site, and in surface water and sediment in Gold Creek.

1.1 Site Setting

The three-acre Site is located in the Town of Deerpark in Orange County, New York, which is approximately 3,000 feet northeast of the City of Port Jervis, New York (Figure 1). The Site is situated on the northwestern flank of the Neversink Valley. Gold Creek lies approximately 1,500 feet to the east, and the Neversink River is located approximately 2,000 feet beyond Gold Creek.

The Site is underlain by sand and gravel deposits of glacial and glaciofluvial origin. Groundwater monitoring wells on the Site have been completed in the outwash unit, found above a low-permeability till zone that functions as an aquitard. The outwash unit consists of fine to coarse sand with fine to coarse gravel. The direction of groundwater flow is generally toward the southeast.

1.2 Land and Resource Use

The immediate surrounding area includes undeveloped woodlands to the north; undeveloped woodlands and a sand and gravel quarry pit to the northeast; the closed City of Port Jervis landfill, the Orange County Transfer Station, and a concrete products fabrication company to the south; and a sparsely vegetated, shale bedrock hillside to the west. In 2004, the City of Port Jervis began a small sand and gravel operation on land it owns, immediately to the southeast of the former lagoons, in the vicinity of OW-5 and OW-6.

1.3 History of Waste Disposal and Contamination

In 1971, the three-acre Carroll and Dubies Site began operating as a disposal facility consisting of a series of lagoons. The majority of wastes disposed in the lagoons were septic waste, municipal sewage sludge, and solid waste. The Site also received liquid industrial wastes from approximately 1971 to 1979.

Over time, waste constituents in the lagoons leached into groundwater and affected the outwash aquifer. VOCs were of particular concern because of their dispersion in the aquifer and relative risk. Benzene, vinyl chloride, and other VOCs were found through a series of investigations to exceed Applicable or Relevant and Appropriate Requirements (ARARs) in Site wells.

1.4 Overview of Remedies

The remedies selected for the Site were defined by two operable units (OU), the waste lagoons themselves, and the impacted groundwater. Remedies were selected and executed to remove wastes from the lagoons, restore the Site to a safe and stable condition, and promote and track improvements in groundwater quality.

1.4.1 **OU-1** Remedy

The goals of the OU-1 remedy conducted in 1999 were to prevent further leaching of contaminants into groundwater, and to reduce the risks to potential future workers at the Site who could come in contact with lagoon wastes. The steps in this process were:

- Excavation of all wastes from Lagoons 1, 2, 3, 4, 6, 7, and 8, along with surrounding soils that exceeded specified levels for indicator chemicals.
- Appropriate management of all excavated wastes and soils.
- Placement of imported clean fill in the excavations, followed by grading for drainage control and vegetation.

1.4.2 **OU-2** Remedy

The goals of the ongoing OU-2 remedy, which was initiated in 1999, have been to use natural attenuation to reduce or eliminate the risks associated with the ingestion of Site groundwater for future Site workers and to protect Gold Creek from Site-related impacts. The steps in the program are:

- Execution of a groundwater monitoring program in accordance with Work Plans and other documents prepared for the project and approved by the U.S. EPA.
- With each sampling round, a report is prepared for U.S. EPA that documents the progress made in achieving the remedial goals.

1.5 Overview of 2006 Groundwater Monitoring Program

A supplemental sampling program was initiated in February 2006 in response to the five-year review. Part of the program was to install two new monitoring wells, OW-24 and OW-25, east and south of OW-2, OW-5, and OW-6 (Figure 2), to determine the extent of the chlorinated VOC plume in the vicinity of OW-2, OW-5, and OW-6. Two existing monitoring wells that were not part of the ongoing groundwater monitoring network, OW-17 and OW-23, downgradient and to the west of OW-2, OW-5, and OW-6, were also redeveloped and sampled.

Groundwater was sampled three more times in 2006: in May, August, and November. In May and November 2006, 7 B Series wells (OW-2, OW-5, OW-6, OW-17, OW-23, OW-24, and OW-25) in the vicinity of the chlorinated VOC plume were sampled. In August 2006, the sampling program included the 19 wells evaluated in February. In each round, samples were analyzed for VOCs and selected monitored natural attenuation (MNA) parameters, including the dissolved gases ethane, ethene, and methane.

The purpose of quarterly sampling of the wells in the vicinity of the chlorinated VOC plume was to evaluate trends through an entire hydrologic cycle. In all four sampling rounds, the results for the chlorinated VOC plume have been consistent. Tetrachloroethene (PCE) and trichloroethene (TCE) and their degradation products (chloroethane, 1,2-dichloroethene, and vinyl chloride) were nondetectable in OW-24 and OW-25. In OW-17 and OW-23, chlorinated VOCs were occasionally detected at low, estimated concentrations below the reporting limit, and below state and federal groundwater criteria. Chlorinated VOC impacts at OW-2, OW-5, and OW-6 remain localized. For additional information on the February, May, August, and November 2006 sampling events, refer to the respective quarterly reports (Cardinal Resources, April 2006, July 2006, November 2006, and January 2007).

1.6 Resumption of Annual Monitoring Program

In June 2007, the annual groundwater monitoring program resumed, and continued in 2008 and 2009.

2.0 Groundwater Sample Collection

This section describes methods used to collect groundwater samples for analysis. The results of the groundwater sampling and analysis program are provided in Section 4.0.

2.1 Groundwater Elevations

Before sampling began, groundwater elevations for all site wells were determined from measured depths to water from the reference point elevations. The depth to groundwater was measured using an electronic water-level meter and recorded in a monitoring well sampling form.

2.2 Equipment

Dedicated low-flow bladder pumps were used to purge and sample the entire 2009 monitoring well network, with the exception of wells OW-13R and OW-25. These wells were sampled using a downhole bladder pump that was decontaminated initially and after sampling each well by:

- · Washing with low phosphate detergent and tap water
- Rinsing with tap water
- Rinsing with deionized water
- Air drying

Clean disposable tubing and a clean disposable bladder were used for each well sampled with the reusable bladder pump.

2.3 Well Purging and Sampling

All wells were purged using low-flow (100 to 200 milliliters per minute [mL/min]) techniques. During purging of each monitoring well, temperature, dissolved oxygen (DO), reduction/oxidation (redox) potential, specific conductance (conductivity), pH, and turbidity were monitored and recorded on field forms in average intervals of 5 minutes. Groundwater field parameters were measured with a YSI Model 556 MPS-10 multi-parameter unit equipped with a flow-through cell and a Hanna Turbidity Meter Model HI98703, which were calibrated prior to sampling activities. The goal was to obtain three consecutive readings of the field parameters within the following ranges:

- ±1.0 degree centigrade (°C) for temperature
- ±10 percent (%) or ±0.3 milligrams per liter (mg/L) for DO (whichever is greater)
- ±10 millivolts (mV) for redox potential
- ±3% for conductivity
- ±0.1 for pH
- ±10% or ±2 nephelometric turbidity units (NTUs) for turbidity (whichever is greater)

The final stabilized readings prior to sample collection for each of the monitoring wells are provided in Table 1. Groundwater purged from the monitoring wells was generally clear and contained little suspended sediment. When purging was complete, groundwater samples were collected at a flow rate of between 100 and 200 mL/min directly from the pump tubing. Samples were placed immediately on ice for overnight shipment to TestAmerica Laboratories, North Canton, Ohio.

3.0 Collection of Surface Water and Sediment Samples

As part of the ongoing evaluation of conditions in Gold Creek, surface water and sediment samples were collected from two locations along Gold Creek, SED-1/SW-1 (downstream) and SED-2/SW-2 (upstream) (Figure 2). The results from the Gold Creek sampling program are provided in Section 5.0.

3.1 Surface Water Sampling

Two surface water samples were collected from Gold Creek at the established locations that have been sampled throughout the OU-2 monitoring period at SW-1, the downstream sample, and SW-2, the upstream sample (Figure 2).

Samples were collected for VOCs at each location directly into the VOC sample vials. The sample bottles were labeled appropriately, placed in a cooler with ice, and sent to the laboratory for analysis.

Surface water elevations were determined at the two locations sampled, and also at the quarry pond, which was not sampled.

3.2 Sediment Sampling

Two sediment samples were collected from the established locations coinciding with SW-1 and SW-2 (Figure 2), and were designated SED-1 and SED-2.

The samples were collected using a stainless-steel trowel from approximately the upper six inches of sediment at the edge of the creek. The stainless-steel trowel was decontaminated between sediment sampling locations.

4.0 Groundwater Results

This section describes the results of the July 2009 sampling event and presents a discussion of site-wide groundwater conditions.

4.1 Groundwater Elevations

The groundwater elevations for this sampling round are presented in Table 2. Associated groundwater elevation contours are shown in Figure 2.

The groundwater elevations in the wells were on the average about 0.95 foot higher than observed in July 2008; the direction of groundwater flow and gradient were about the same. Groundwater on site flows toward the southeast and Gold Creek. The groundwater gradient across the former lagoon site is approximately 0.090. This gradient transitions to a lower gradient, at about the location of the towpath. From the towpath to Gold Creek, the gradient is very shallow, approximately 0.001. The steeper gradient on the western side of the site is due to the depth to bedrock along the valley wall. As the depth to bedrock increases towards the valley floor, the thickness of the alluvial fill increases and the groundwater gradient flattens.

4.2 Summary of Groundwater Quality Results

VOCs detected in groundwater analysis in the July 2009 sampling event are presented in Table 3. Laboratory analytical reports, including marked Form Is from the data validation process, are included in Appendix A in hard copy. An electronic copy of the entire data package is also provided. Historical data of detected organic compounds have been combined with the most recent data and are presented in Table B-1 in Appendix B. In tables and discussion, the qualifier "J" with a reported concentration means an estimated result, with the analyses positively identified but the numerical value an approximate concentration. The qualifier "U" means that the analysis was not detected above the reported quantitation limit.

A variety of MNA (monitored natural attenuation) field and laboratory parameters were analyzed in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in detail in the Supporting Documentation for Five-Year Review (Cardinal Resources, March 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume.

Eight VOCs were detected in various wells during this sampling event, six of which exceeded regulatory limits. Regulatory exceedances of VOCs in groundwater are reported in Table 5 and plotted in Figure 3.

VOC concentrations in monitoring wells in the July 2009 sampling are within the ranges seen in 2008. In the remainder of this section, specific groundwater trends and conditions are discussed in greater detail, including:

- Concentration trends for chlorinated VOCs
- Concentration trends for benzene
- Achievement of regulatory limits in monitoring wells
- MNA trends

4.3 Trends for Chlorinated VOCs

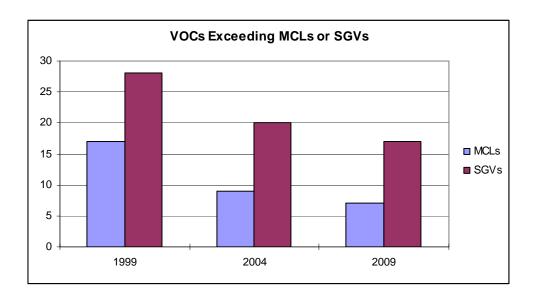
Chlorinated VOCs are the predominant constituents on the eastern side of the site, particularly in OW-2, OW-5, and OW-6 (Figure 3), but are detectable in other locations, including OW-13/OW-13R.

Compared to OW-2 and OW-6, groundwater at OW-5 and OW-13/ OW-13R is generally higher in methane or total organic carbon (TOC), has lower redox (is more reduced), and is more amenable to reductive dechlorination. In these wells, chlorinated VOCs in general showed a downward trend over time once OU-1 actions were complete (Figure 4). While the initial concentration of chlorinated VOCs was higher in OW-13/ OW-13R compared to OW-5, favorable geochemical conditions resulted in a rapid and smooth decline. Chlorinated VOCs have not exceeded criteria at this location since 2004. In OW-5, conditions for degradation have been somewhat less favorable and the decline has been slower and more variable (Figure 4). However, in 2007 and 2008, only 1,2-dichloroethene exceeded criteria, and in 2009, no chlorinated VOCs exceeded criteria in this well.

In OW-2 and OW-6, the decline in chlorinated VOC concentrations has been retarded by unfavorable geochemical conditions and other factors. Concentrations appeared to peak in the years following OU-1 actions, but since then began to decline. In the period from 2006 through 2009, chlorinated VOC concentrations have declined in OW-2 in particular and OW-6, along with OW-5 (Figure 5). The reductions in total chlorinated VOC concentrations in 2009 compared to 2006 average values are 62% for OW-2; 78% for OW-5; and 25% for OW-6.

4.4 Benzene Concentration Trends

As was described in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), different VOCs have predominated in different areas downgradient of the former lagoons. Benzene has predominated in several monitoring wells in the southwestern areas of the Site, with the highest concentrations observed in MW-4, OW-10R, and OW-13R. Benzene was below the federal Maximum Contaminant Level (MCL) of 5 ug/L in July 2009 in MW-4, OW-10R, OW-18, OW-19, and OW-21, although not below the New York State Standard or Guidance Value (SGV) of 1 ug/L. Benzene exceeded the MCL of 5 ug/L in only two monitoring wells in July 2009, OW-13R (13 ug/L) and OW-22 (5.1 ug/L).


Benzene has exhibited an overall downward trend in individual wells with historically high concentrations, OW-10R, OW-13R, and OW-22, illustrated in Figure 6. There has also been a flattening and mass decline of the benzene plume along the groundwater flow path, illustrated in Figure 7. This depiction shows how the benzene concentration has declined 2 to 3 orders of magnitude since 1999 in OW-10R and OW-13/OW-13R, closest to the source area. The benzene concentration in OW-18, which is located approximately 850 feet downgradient of the former lagoons, has also shown a decline since 1999, from 4.7 ug/L in February 1999 to 2.3 ug/L in July 2009.

Not only do historic trends show declining benzene concentrations, but benzene concentrations have continued to decline in recent years. Figure 8 shows that even though the rate of decline is slowing as concentrations drop, from 2006 to 2009 benzene concentration trends were downward in OW-10R, OW-13R, and OW-22. The reductions in benzene concentrations in 2009 compared to 2006 are 59% for OW-10R; 17% for OW-13R; and 2% for OW-22. The estimated extent of benzene in groundwater in July 2009 is depicted in Figure 9.

4.5 Achievement of MCLs and SGVs

The Supporting Documentation for Five-Year Review (Cardinal Resources, 2005) described how in the five years between completion of OU-1 remediation in 1999 and 2004, some, but not all, of the MCLs and state groundwater SGVs had been met in groundwater wells downgradient of the former lagoons. Table 5 summarizes these findings through the current sampling round. Only wells consistently monitored from 1999 through 2009 are shown in this table for comparison purposes so that the same wells are compared each time. In July 2009, there were 17 SGV exceedances and 7 MCL

exceedances. The overall trend since 1999 indicates that there has been improvement in groundwater quality relative to MCLs and SGVs:

The decline in the number of wells exceeding MCLs was 22% in 2009 compared to 2006; the decline in the number of wells exceeding SGVs was 15%.

4.6 Monitored Natural Attenuation Trends

A variety of MNA field and laboratory parameters have been analyzed over time in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume. The patterns seen in July 2009 are consistent with the observations presented previously, with the areas predicted to be most amenable to degradation in monitoring wells to the south and west (OW-10R, MW-4, OW-13R, OW-19). In these wells,

- Methane concentrations of 50 ug/L or greater were observed;
- Relatively high TOC, 2 mg/L or greater, was found; and
- Low DO and redox potential indicating reduced conditions were found.

Table 6 illustrates the variability of conditions conducive to, or indicative of, natural attenuation of chlorinated VOCs across the site. This weighting and scoring table is adapted from the U.S. EPA's technical protocol for natural attenuation of chlorinated

aliphatic hydrocarbons (U.S. EPA, 1997). It shows high scores for OW-10R and OW-13, located close to the former lagoons on the western side of the Site, and a low scores for OW-2 and OW-25, on the eastern side of the site.

5.0 Gold Creek Sampling Results

Refer to Section 3.0 for a description of the methods for surface water and sediment sample collection along the creek. Table 7 provides the results for VOCs detected in surface water and sediment samples collected from two locations along Gold Creek (Figure 2).

The results are arranged in the table from the sampling location furthest downstream (SED-1/SW-1) to the furthest upstream (SED-2/SW-2). These are the established sampling locations that have been used throughout the OU-2 monitoring program.

5.1 Surface Water Results

Surface water samples here were nondetectable for VOCs (Table 7). Historic SW-1 and SW-2 samples occasionally had low, estimated concentrations of VOCs below New York State Surface Water Standards (Appendix B, Table B-2).

5.2 Sediment Results

More VOCs than usual were detected in both upgradient and downgradient sediment samples during this sampling round (Table 7). Some of the detected VOCs (acetone, 2-butanone, carbon disulfide, methylene chloride) are common laboratory artifacts. Others, including benzene, 1,2-dichloroethene, and vinyl chloride, have been occasionally detected in sediment in low concentrations. The concentrations of detected VOCs in all cases are below reported guidance values for freshwater sediments (National Oceanic and Atmospheric Administration, 2008; NYSDEC Division of Water, 2004).

5.3 Discussion

The results for the two sampling locations along Gold Creek are consistent with past observations for SED-1/SW-1 and SED-2/SW-2. No VOCs were detected this round in surface water, although there were detections in sediment. The detected concentrations were well below available guidance criteria.

Based on the nondetectable to low detections of VOCs in upstream and downstream samples that do not exceed conservative ecological criteria, there is no evidence that ecological conditions in Gold Creek are being adversely affected by the Site.

6.0 Data Quality Review

Data quality review was performed on the analytical data packages to assure that quality and usability requirements were met.

6.1 Introduction

A Tier II data quality review of the sample data package was completed using U.S. EPA guidelines. The Tier II data evaluation consisted of a review of data package completeness and a quality control (QC) review, as summarized in the QC forms provided by the laboratory, covering:

- Signed transmittal page
- Data package narrative
- Sample transmittal documentation
- Standard VOC QC forms for:
 - Surrogate recovery
 - Matrix spike/matrix spike duplicate (MS/MSD) recovery
 - Laboratory check samples
 - Method blank summary
 - Instrument performance check
 - Internal standard summary and retention time (RT) summary
 - Initial calibration data
 - Continuing calibration data
- Form Is and raw data for field samples, blanks, laboratory control samples, MS/MSDs
- Copies of logbook pages documenting sample preparation, extract transfer, instruments, and sample tracking
- Holding times
- Form Is and raw data for field and QC samples
- Field duplicates and field, trip, and decontamination blanks.

Checklists documenting the review of two laboratory sample delivery groups (SDGs) are provided in Appendix C.

6.2 Results of Data Review

The hand-marked, qualified Form Is are provided in Appendix A with the laboratory reports. Results in Tables 3, 7, B-1, B-2, and B-3 reflect the qualified data. The data qualifiers used as a result of the data review are:

- U The analyses were analyzed for, but were not detected above the reported sample quantitation limit.
- J The analyses were positively identified; the associated numerical value is the approximate concentration of the analyses in the sample.
- UJ The analyses were not detected above the reported quantitation limit, but the reported quantitation limit is approximate.

The data packages were complete and appropriately organized, and all relevant supporting information was provided.

6.2.1 Field QC Samples

The field QC samples for VOC analyses were one surface water duplicate (SW-1); one sediment duplicate (SED-1); one groundwater duplicate (OW-13R); one MS/MSD pair (OW-13R); one decontamination blank for the pump (pump rinsate); three field blanks; and three trip blanks. A field blank was collected for each of the three sampling days, and a trip blank was included with each sample cooler.

6.2.2 Data Quality and Usability

Although there were some qualifications as estimated or nondetectable values that resulted from the data quality review process, the analytical results are usable and of acceptable quality; no results have been rejected.

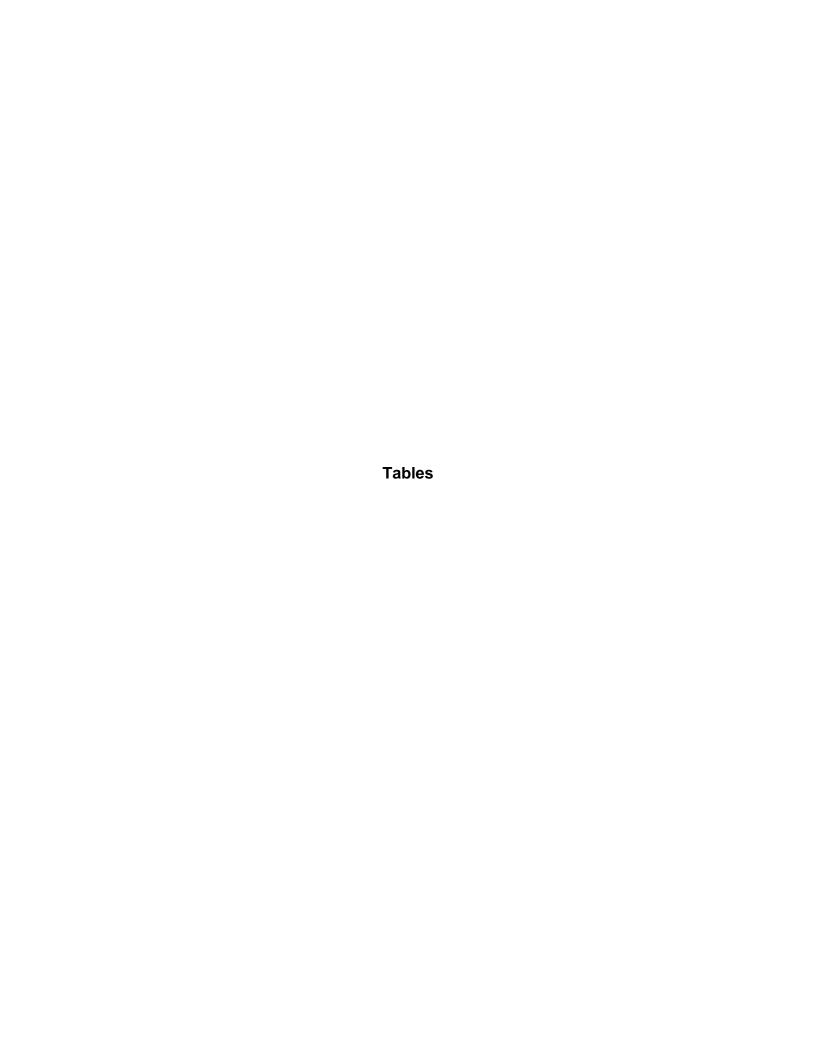
7.0 Summary and Conclusions

The results of the 2009 sampling program for the Carroll and Dubies Site show continued progress from 2006 through 2009:

- Chlorinated VOC concentrations in OW-2, OW-5, and OW-6 declined 62%, 78%, and 25%, respectively.
- Benzene concentrations in OW-10R, OW-13R, and OW-22 declined 59%, 17%, and 2%, respectively.
- VOCs continued to be nondetectable at the eastern boundary of the site at OW-8 and OW-25.
- The number of wells exceeding MCLs declined by 22%, and the number of wells exceeding SGVs declined by 15%.
- VOC concentrations in Gold Creek surface water and sediment samples continued to be low to nondetectable, and well below ecological guidance criteria, when detected.

These results continue to confirm the validity of the U.S. EPA's conclusions in the Protectiveness Statement contained in its 2005 Five-Year Review Report:

"Because the implemented remedial actions at OUs at the Carroll and Dubies Sewage Disposal Site are protective, the Site is protective of human health and the environment. There are no exposure pathways that would result in unacceptable risks and none are expected as long as the institutional controls, which are in place, and the natural attenuation remedy selected in the decision documents for the Site continue to be properly monitored and maintained."


These positive environmental trends since the 2005 five-year review continue to demonstrate that:

- The OU-1 and OU-2 remedies are functioning as intended
- The basic assumptions made about the Site during remedy selection are unchanged
- No new information has been found that affects the protectiveness of the remedies

The successes of the OU-1 and OU-2 remedies over the ten-year period suggest that future consideration should be given to a reduced scope in future sampling programs.

8.0 References

- Cardinal Resources LLC, July 2007, *June 2007 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York,* Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources LLC, January 2007, November 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, November 2006, August 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, July 2006, May 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, April 2006, February 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources, Inc., August 2005, Supplemental Sampling Work Plan, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources, Inc., March 2005, Supporting Documentation for Five-Year Review, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- New York State Department of Environmental Conservation (NYSDEC), Division of Water, November 2004, *Technical & Operational Guidance Series (TOGS) 5.1.9, In-Water and Riparian Management of Sediment and Dredge Material,* Bureau of Water Assessment and Management, Albany, New York.
- National Oceanic and Atmospheric Administration (NOAA), November 2008, *Screening Quick Reference Tables (SQuiRTs)*, Assessment and Restoration Division (ARD), Office of Response and Restoration.
- United States Environmental Protection Agency, 2005, Five-Year Review Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York, Prepared by U.S. EPA Region 2, New York, New York.
- United States Environmental Protection Agency, 1997, Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Groundwater, EPA/540/R-97/504, Office of Research and Development, Washington, DC.

Table 1 **Groundwater Field Stabilization Parameters July 2009**

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Temperature (°C)	Dissolved Oxygen (mg/L)	Redox (mV)	Specific Conductance (uS/cm)	pH (standard units)	Turbidity (NTUs)
MW-1	07/14/09	9.30	0.39	0.39 168.8 152		6.17	0.99
MW-4	07/16/09	10.89	0.70	5.2	298	6.24	1.97
OW-2	07/16/09	11.19	4.05	210.6	86	5.61	0.81
OW-5	07/14/09	12.35	1.92	166.4	216	6.05	0.21
OW-6	07/14/09	10.60	4.88	166.2	60	5.78	0.58
OW-8	07/14/09	11.00	0.32	32.3	93	6.38	4.3
OW-10R	07/15/09	11.49	0.45	18.8	332	6.35	1.17
OW-13R	07/14/09	13.50	0.21	52.1	382	6.36	25.9 ⁽¹⁾
OW-18	07/16/09	11.63	0.84	-17.4	505	6.31	20.8 ⁽¹⁾
OW-19	07/15/09	12.79	0.35	12.4	388	6.30	1.70
OW-21	07/15/09	14.12	2.36	16.1	389	6.33	0.79
OW-22	07/15/09	12.55	1.17	-17.9	463	6.17	0.42
OW-25	07/16/09	11.94	10.11	171.0	71	6.23	48.4 ⁽¹⁾

Notes:

(1) Purge water remained slightly greyish and cloudy, resulting in elevated turbidity reading. mg/L = milligrams per liter

mV = milliVolts

uS/cm = microsiemens per centimeter

NTU = nephelometric turbidity units

Table 2
Groundwater and Surface Water Elevation Data⁽¹⁾
July 14, 2009
Carroll and Dubies Superfund Site

Town of Deerpark, Orange County, New York

Well No.	Top of Casing Elevation or Staff Gauge ⁽²⁾	Screened Interval	Depth to Groundwater or Surface Water	Groundwater or Surface Water Elevation
MW-1	469.39	28.5 - 43.5	33.12	436.27
MW-4	470.13	35.3 - 50.3	38.72	431.41
OW-2	472.33	30.0 - 47.0	41.07	431.26
OW-3	472.70	30.0 - 46.5	41.73	430.97
OW-4	473.33	26.5 - 27.5	35.49	437.84
OW-5	459.85	25.5 - 45.5	28.65	431.20
OW-6	464.40	31.4 - 51.4	33.19	431.21
OW-8	464.63	34.6 - 54.6	33.32	431.31
OW-9	472.91	25.3 - 35.3	29.64	443.27
OW-10R	469.27	29.0 - 39.0	28.90	440.37
OW-13R	457.69	25.0 - 35.0	26.65	431.04
OW-15	472.05	22.0 - 32.0	11.88	460.17
OW-16	453.90	18.0 - 28.0	23.02	430.88
OW-17	447.18	11.0 - 21.0	16.40	430.78
OW-18	444.57	11.0 - 21.0	13.89	430.68
OW-19	438.69	5.0 - 15.0	8.30	430.39
OW-21	467.46	37.1 - 47.1	36.65	430.81
OW-22	467.10	38.0 - 48.0	36.28	430.82
OW-23	444.73	29.0 - 39.0	14.10	430.63
OW-24	446.77	14.4 - 24.4	16.21	430.56
OW-25	452.47	20.0 - 30.0	21.60	430.87
SW-1 ⁽³⁾	432.01	-	4.00	428.01
SW-2 ⁽³⁾	432.01	-	1.60	430.41
SW-3 ⁽³⁾	437.44	-	5.80	431.64

Notes:

⁽¹⁾Data reported in feet; elevations relative - mean sea level; 1988 National Geodetic Vertical Datum.

⁽²⁾Top of casing and gauge staff elevations surveyed by Maser Consulting P.A.

⁽³⁾Water elevation measured from top of surveyed staff gauge.

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Compound	NYSDEC	U.S. EPA	MW-1	MW-4	OW-2	OW-5	OW-6	OW-8	OW-10R	OW-13R	OW-13R DUP
Compound	SGV	MCL	07/14/09	07/16/09	07/16/09	07/14/09	07/14/09	07/14/09	07/15/09	07/14/09	07/14/09
Benzene	1 (S)	5	1.0 U	1.2	2.5 U	1.0 U	1.0 U	1.0 U	2.7	13	12
Chlorobenzene	5 (S)*	100	1.0 U	1.0 U	2.5 U	1.0 U	1.0 U	1.0 U	2.3	1.0 U	1.0 U
Chloroethane	5 (S)*	NE	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	2.0 U	0.62 J	2.0 U	2.0 U
1,2-Dichloroethene (total)	5 (S)*	70	1.0 U	1.0 U	53	1.0 U	16	1.0 U	1.0 U	2.4	2.3
Tetrachloroethene	5 (S)*	5	1.0 U	0.34 J	62	3.7	30	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5 (S)*	1,000	1.0 U	1.0 U	2.5 U	1.0 U					
Trichloroethene	5 (S)*	5	1.0 U	1.0 U	9.7	1.5	5.5	1.0 U	1.0 U	0.64 J	0.63 J
Vinyl Chloride	2 (S)	2	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	2.0 U	0.33 J	1.6 J	1.6 J

Compound	NYSDEC	U.S. EPA	OW-18	OW-19	OW-21	OW-22	OW-25
Compound	SGV	MCL	07/16/09	07/15/09	07/15/09	07/15/09	07/16/09
Benzene	1 (S)	5	2.3	1.9	2.1	5.1	1.0 U
Chlorobenzene	5 (S)*	100	9.6	7.9	1.0 U	7.8	1.0 U
Chloroethane	5 (S)*	NE	2.0 U	1.0 J	2.0 U	0.34 J	2.0 U
1,2-Dichloroethene (total)	5 (S)*	70	0.34 J	0.94 J	1.0 U	0.53 J	1.0 U
Tetrachloroethene	5 (S)*	5	1.0 U				
Toluene	5 (S)*	1,000	1.0 U	1.0 U	1.0 U	0.19 J	1.0 U
Trichloroethene	5 (S)*	5	1.0 U				
Vinyl Chloride	2 (S)	2	2.0 U	2.1	0.80 J	0.35 J	2.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values for groundwater

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater

NE = Not established; no criteria specified

U = The analyte was analyzed for, but was not detected above the reported quantitation limit.

J = Estimated result; result is less than reporting limit.

Red = Concentrations detected at or above regulatory limit

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified.

^{* =} The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

Table 4 Natural Attenuation Parameters July 2009

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Alkalinity (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Ferrous Iron (mg/L)*	Methane (ug/L)	Laboratory Nitrate (mg/L)	Redox (mV)	Sulfate (mg/L)	Sulfide (mg/L)	TOC (mg/L)
MW-1	07/14/09	100	3.2	0.39	ND	ND	0.0	0.47 J	2.40	168.8	11.7	8.9	1
MW-4	07/16/09	110	30.4	0.70	ND	ND	4.0	59	ND	5.2	79.7	ND	2
OW-2	07/16/09	29	1.8	4.05	ND	ND	0.0	ND	2.4	210.6	24.0	ND	1
OW-5	07/14/09	91	4.3	1.92	ND	ND	0.2	4.4	1.20	166.4	56.1	ND	2
OW-6	07/14/09	24	ND	4.88	ND	ND	0.0	ND	0.30	166.2	16.9	ND	1
OW-8	07/14/09	52	1.9	0.32	ND	ND	4.0	1.4	ND	32.3	11.7	ND	ND
OW-10R	07/15/09	210	ND	0.45	ND	ND	4.5	1,400	ND	18.8	44.5	ND	2
OW-13R	07/14/09	290 / 280	1.7 / 1.6	0.21	ND / ND	ND / ND	4.0	220 / 210	ND / ND	52.1	22.1 / 22.5	20 J / 12 J	2 J/3 J
OW-18	07/16/09	360	9.8	0.84	ND	ND	4.0	1,200	0.10	-17.4	7.2	ND	10
OW-19	07/15/09	230	9.2	0.35	ND	ND	4.8	530	ND	12.4	13.7	1.1	7
OW-21	07/15/09	250	4.2	2.36	ND	ND	4.5	110	ND	16.1	29.3	13	3
OW-22	07/15/09	300	11.1	1.17	ND	ND	4.5	1,100	ND	-17.9	9.1	ND	9
OW-25	07/16/09	40	1.1	10.11	ND	ND	0.0	ND	0.30	171.0	11.0	ND	1

Notes:

mg/L = milligrams per liter

ug/L = micrograms per liter

*Ferrous iron was measured in the field (Hach kit).

mV = milliVolts

TOC = total organic carbon

ND = Not detected

U = Analyte not detected at method reporting limit.

J = Estimated result; result is less than the reporting limit.

Table 5 MCL and SGV Exceedances, 1999, 2004, and 2006 through 2009 Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

	_	MCL	SGV	1999 Exceedance			004		2006	_	2006		2007		2008		2009
Well	Compound	ug/L		MCL	SGV	MCL	dance SGV	MCL	dance SGV	MCL	dance SGV	MCL	SGV	MCL	edance SGV	MCL	dance
	Benzene	5	1	X	X	WICL	X	WICL	X	X	X	X	X	WICL	X	WICL	X
MW-4	1,2-Dichloroethene (1,2-DCE)	70	5	^	X		^		^	^	^	^	^		^		^
	Benzene	5	1				Х										
	Tetrachloroethene																
014/ 0	(PCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
OW-2	Trichloroethene (TCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х
	Tetrachloroethene (PCE)	5	5	Х	Х	Х	Х			Х	Х						
OW-5	Trichloroethene (TCE)	5	5	Х	Х												
	1,2-Dichloroethene (1,2-DCE)	70	5		Х		Х		Х		Х		Х		Х		
	Tetrachloroethene (PCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
OW-6	Trichloroethene (TCE)	5	5			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5		Х		Х		Х		Х		Х		Х		Х
	Benzene	5	1	Χ	Χ	Χ	Х		Х	Χ	Х		Χ	Χ	Х		Χ
OW-10(R)*	Chlorobenzene	100	5		Х												
OVV-10(1t)	Methylene chloride	5	5	Χ	Χ												
	Toluene	1,000	5		Χ												
	Benzene	5	1	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ
OW-13 -	1,2-Dichloroethene (1,2-DCE)	70	5		Х												
OW-13R**	Methylene chloride	5	5	Χ	Χ												
	Toluene	1,000	5		Χ												
	Vinyl chloride	2	2	Χ	Χ	Χ	Χ										
	Benzene	5	1		Х		Х	Χ	Х		Х		Χ		Х		Χ
OW-18	Chlorobenzene	100	5				Χ		Χ		Х		Χ		Х		Χ
	Xylenes (total)	10,000	5						Х								
	Benzene	5	1	Χ	Χ		Χ		Χ		Х		Χ		Х		Χ
OW-19	Chlorobenzene	100	5		Х		Х		Х		Х		Х		Х		Х
OVV-18	Chloroethane	NA	5		Х												
	Vinyl chloride	2	2	Χ	Х			Х	Х	Χ	Х					Х	Х
OW-21	Benzene	5	1	Χ	Χ		Х		Χ		Χ		Χ		Χ		Χ
	Benzene	5	1	Χ	Х		Х	Χ	Х		Χ		Χ		Χ	Χ	Χ
OW-22	Chlorobenzene	100	5		Х		Х		Х		Х						Х
	Vinyl chloride	2	2	Х	Х												
	Total			17	28	9	20	9	19	10	19	6	16	6	16	7	17

Notes:

^{*}OW-10 was replaced with OW-10R in 2000. OW-10 was abandoned because it was within the OU1 construction area.

^{**}OW-13R was installed in February 2006 to replace OW-13.

Table 6 Weighting and Scoring of Natural Attenuation Parameters July 2009

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Analyte	Concentration Indicating Conditions for Reductive Dechlorination	Ranking Value	OW-2	OW-10R	OW-13R	OW-25
Dissolved Oxygen	<0.5 mg/L	3	-	3	3	-
Dissolved Oxygen	>1 mg/L	-3	-3	-	-	-3
Nitrate	<1 mg/L	2	-	2	2	2
Iron (II)	>1 mg/L	3	-	3	3	-
Sulfate	<20 mg/L	2	-	-	-	2
Oxidation Reduction	<50 mV	1	-	1	-	-
Potential (ORP)	<-100 mV	2	-	-	3 3 1 1 -	-
Temperature	>20°C	1	-	-	-	-
Total Organic Carbon	>20 mg/L	1	-	-	_	-
Alkalinity	>2x background	1	-	1	1	-
Chloride	>2x background	2	-	-	-	-
BTEX	>0.1 mg/L	2	-	-	-	-
1,2-Dichloroethene	Detected	2	2	-	2	-
Vinyl Chloride	Detected	2	-	2	2	-
Chloroethane	Detected	2	-	2	-	-
1,1-Dichloroethene	Detected	2	-	-	-	-
1,1-Dichloroethane	Detected	2	-	-	-	-
Methane	Detected	2	-	2	2	-
Ethane	Detected	2	-	-	-	-
Ethene	Detected	2	-	-	-	-
Total Score			-1	16	15	1

Source: U.S. EPA, 1997.

Table 7 Detected Volatile Organic Compounds July 2009

Surface Water and Sediment Sampling Locations in Gold Creek Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

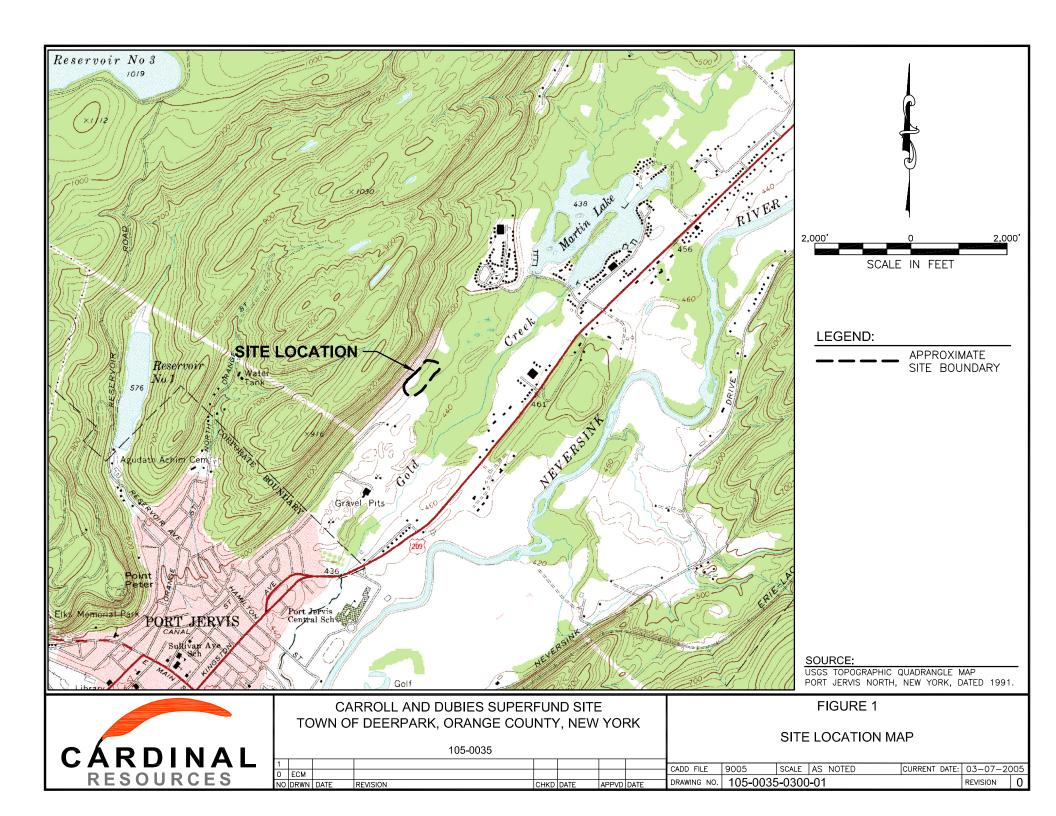
Location	Sediment Guidance		SED-1	SED-2 / SW-2 (Upstream)				
Sample	Values	SED-1	SED-1 DUP	SW-1	SW-1 DUP	SED-2	SW-2	
Constituent	ug/kg	ug/kg	ug/kg	ug/L	ug/L	ug/kg	ug/L	
Acetone	-	940 J	300 J	10 U	10 U	110 UJ	10 U	
Benzene	1,000 ⁽¹⁾ ; 590 ⁽²⁾	13 J	5.6 J	1.0 U	1.0 U	28 UJ	1.0 U	
2-Butanone	35,000 ⁽¹⁾	230 J	96 J	10 U	10 U	110 UJ	10 U	
Carbon disulfide	-	17 J	8.2 J	1.0 U	1.0 U	28 UJ	1.0 U	
Chlorobenzene	30,000 ⁽¹⁾	5.9 J	3.2 J	1.0 U	1.0 U	28 UJ	1.0 U	
Chloroform	10,000 ⁽¹⁾	25 U	21 U	1.0 U	1.0 U	1.6 J	1.0 U	
1,2-Dichloroethene (total)	4,000 ⁽¹⁾	12 J	5.9 J	1.0 U	1.0 U	28 UJ	1.0 U	
1,2-Dichloroethane	1,000 ⁽¹⁾	1.7 J	21 U	1.0 U	1.0 U	28 UJ	1.0 U	
Methylene chloride	3,900 ⁽¹⁾	9.7 J	21 U	1.0 U	1.0 U	8.6 J	1.0 U	
Toluene	47,000 ⁽¹⁾	3.1 J	1.3 J	1.0 U	1.0 U	34 J	1.0 U	
Vinyl chloride	100 ⁽¹⁾	8.7 J	4.5 J	2.0 U	2.0 U	56 UJ	2.0 U	

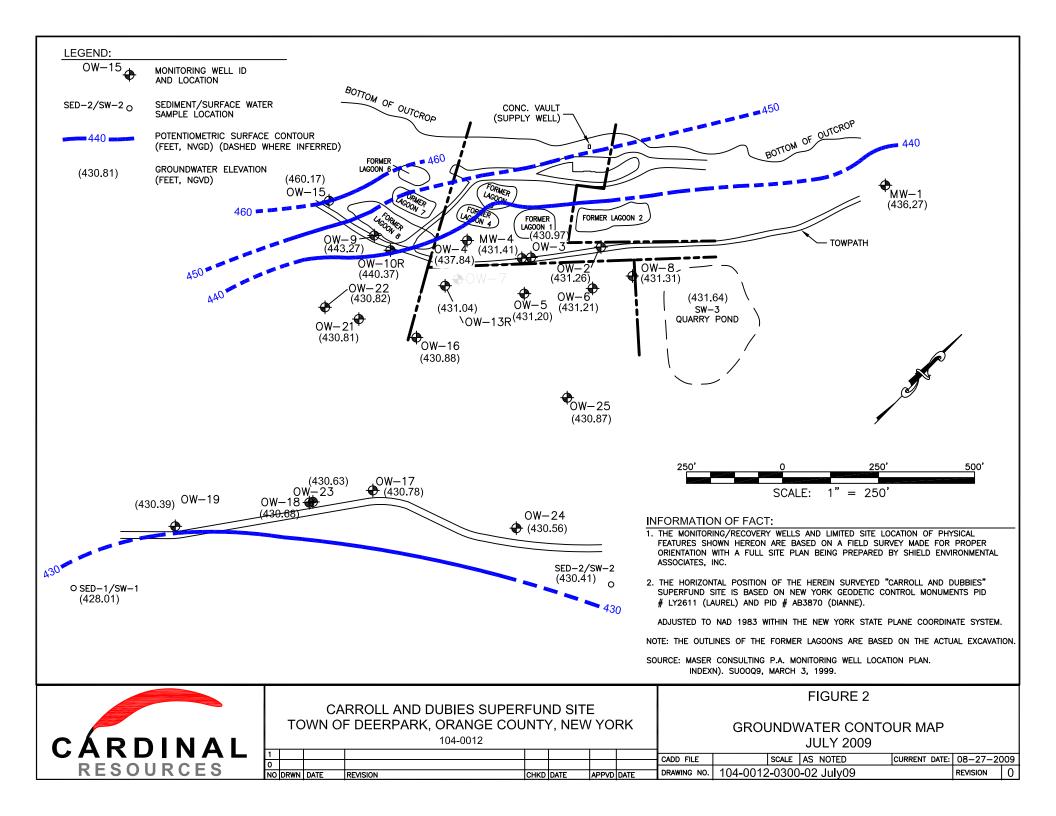
Notes:

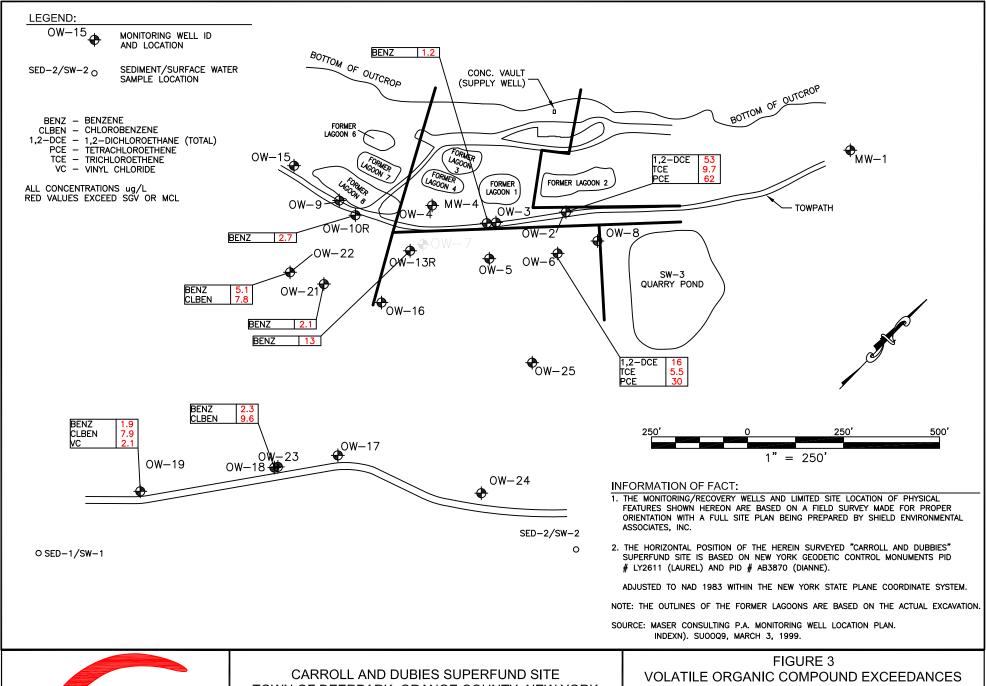
Blue = Detected constituents

Acetone was reported in surface water samples; however, the results were qualified during the data validation process as not detected (U) at or above the reported levels due to the presence of acetone in the associated trip blank.

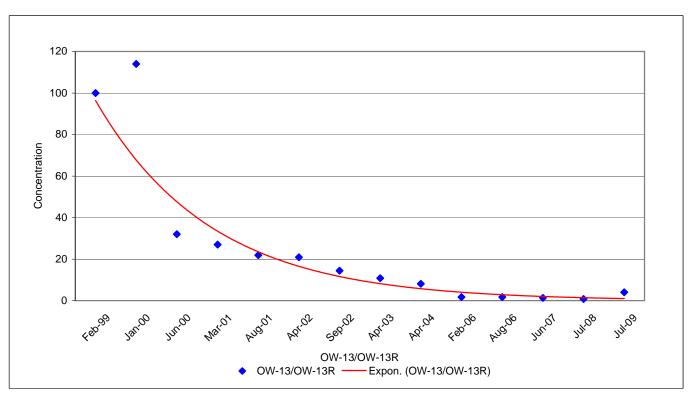
⁽¹⁾ National Oceanic and Atmospheric Administration, 2008, Screening Quick Reference Tables, Dutch Intervention Guidance Values.

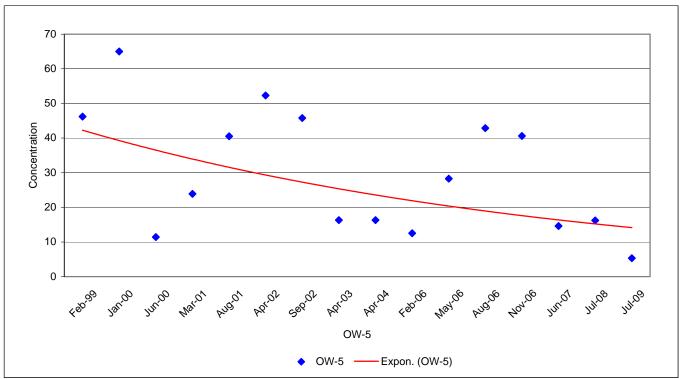

⁽²⁾ NYSDEC Division of Water, 2004, TOGS 5.1.9, In-Water and Riparian Management of Sediment and Dredged Material, Class A Threshold Value (no appreciable contamination).


J = Estimated result; less than the reporting limit.


U = The analyte was analyzed for but not detected above the quantitation limit.

UJ = The analyte was not detected above the reporting limit; however, the reporting limit is approximate.





CARDINAL	TOWN OF DEERPARK, ORANGE COUNTY, NEW YORK 104-0012							IN GROUNDWATER JULY 2009						
CARDINAL	1							CADD FILE		SCALE	1"=250'	CURRENT DATE:	08-27-2	009
RESOURCES	NO DRWN	DATE	REVISION	CHKD	DATE	APPVD	DATE	DRAWING NO.	104-0012	2-0300	-03 July09		REVISION	0

Figure 4
Chlorinated VOC⁽¹⁾ Trends in OW-5 and OW-13/13R
Pre-Excavation to July 2009

 $^{^{(1)}}$ Sum of 1,2-dichloroethene, trichloroethene, and tetrachloroethene.

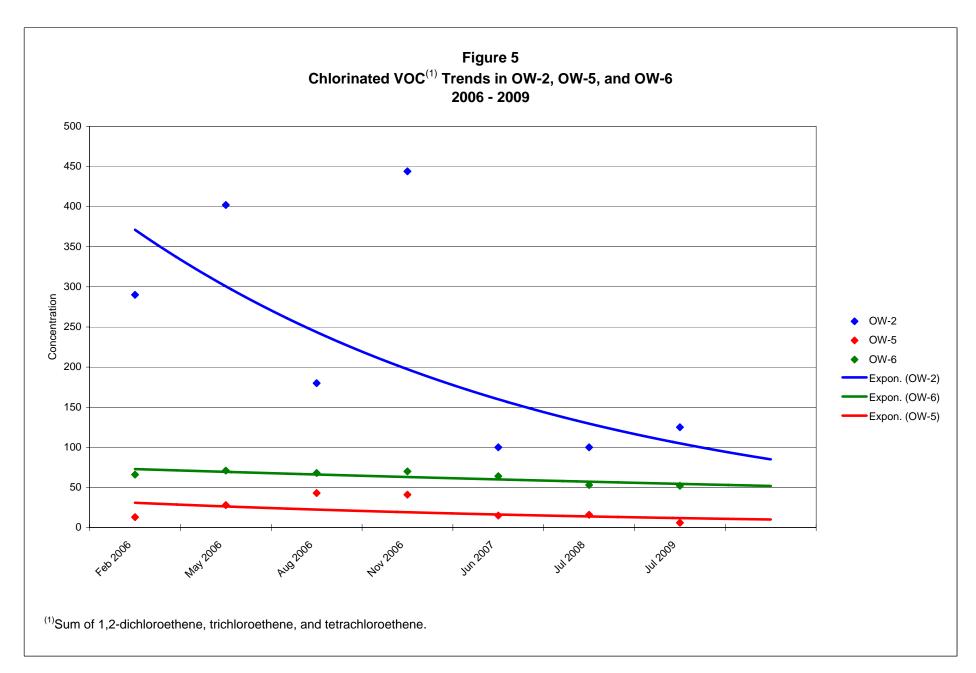
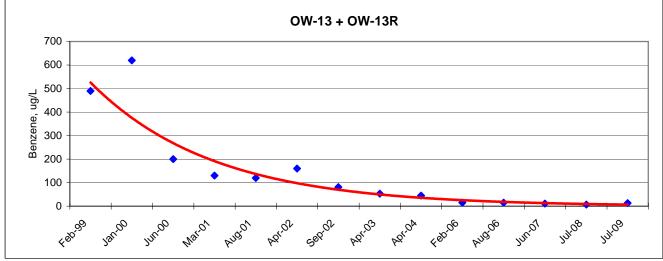
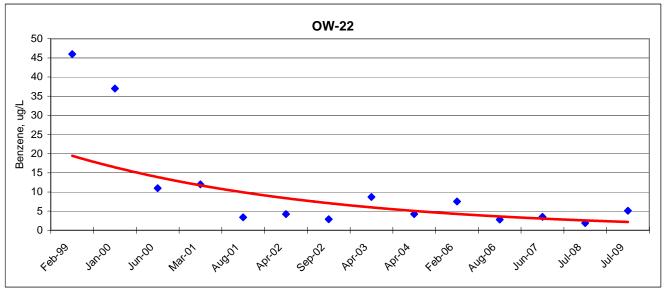
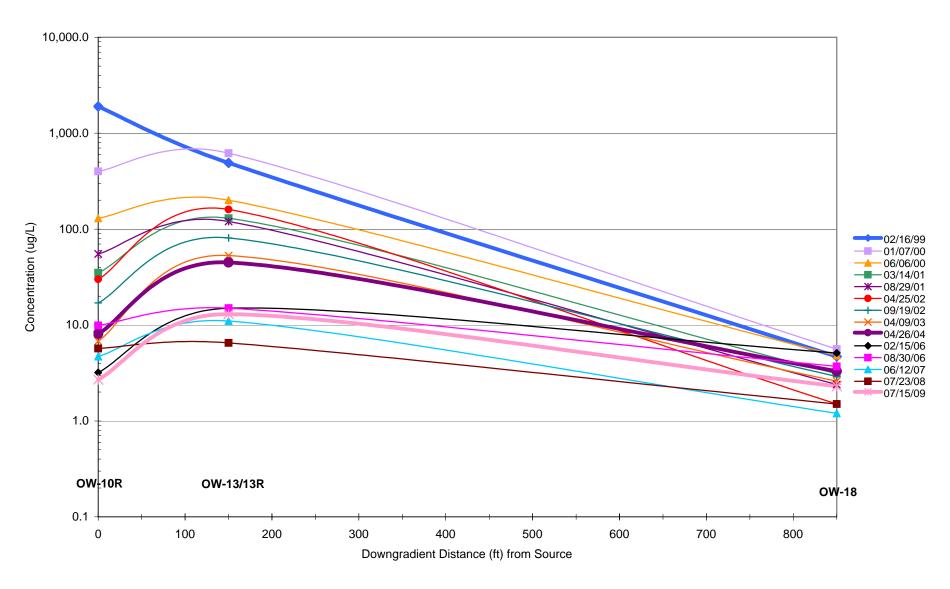
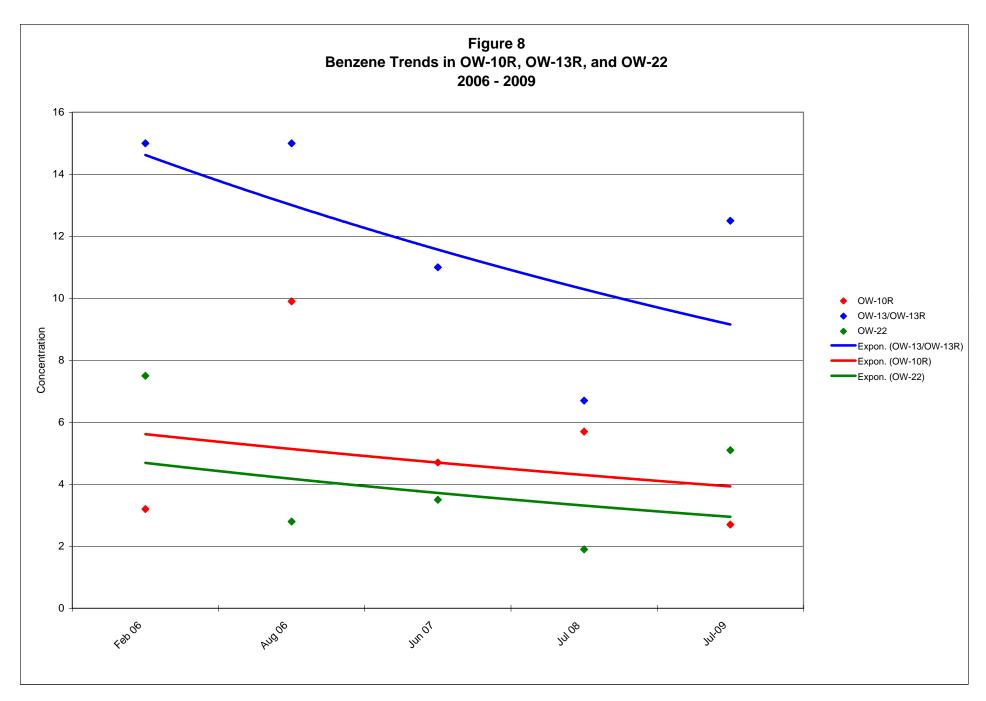




Figure 6
Benzene Concentration Trends in Selected Monitoring Wells
Pre-Excavation to July 2009





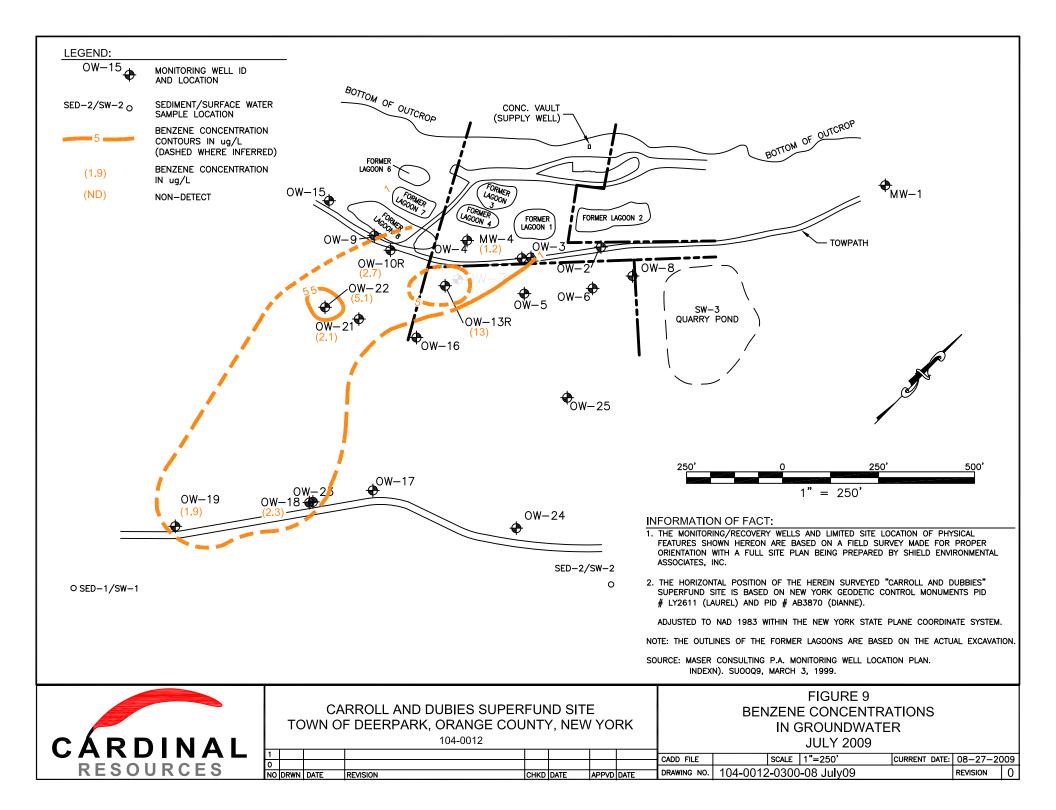
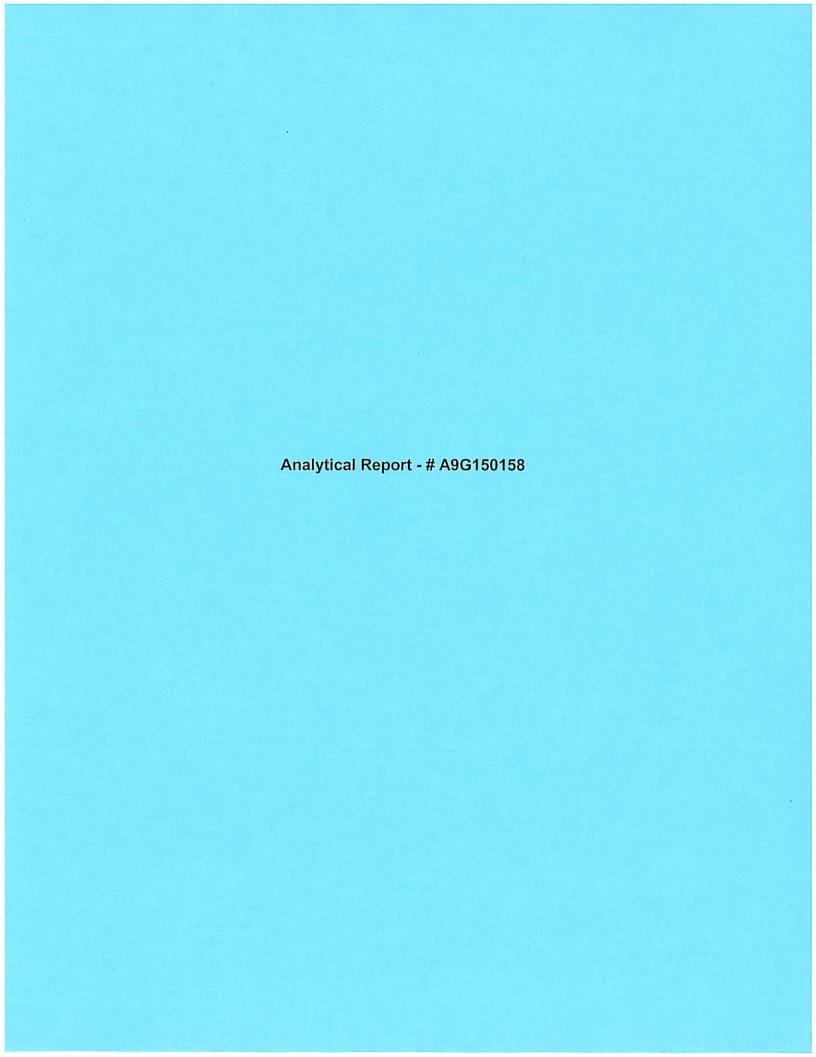

Note: OW-10R, OW-13R, and OW-22 were not sampled during the May and November 2006 sampling rounds.

Figure 7
Benzene Concentration Trends Based on Distance from Source


Note: OW-10R, OW-13R, and OW-18 were not sampled in the May and November 2006 sampling rounds.

Appendix A

Laboratory Reports with Marked Form Is from Data Review

Table of Contents

Analytical Report Cover Page A9G150158 SUM	1
Case Narrative	
Executive Summary	8
Analytical Method Šummary	14
Sample Summary	16
Shipping and Receiving Documents	19
GC/MS Volatile Data	27
GC Volatile Data	89
General Chemistry Data	105
Total # of Pages in this Document	135

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 104-0012-0200

CAROLL & DUBIES (C&D) SDG #: 9G15158

Barbara Jones

Cardinal Resources

TESTAMERICA LABORATORIES, INC.

Project Manager

August 5, 2009

CASE NARRATIVE

CASE NARRATIVE

9G15158

The following report contains the analytical results for three solid samples, fifteen water samples and two quality control samples submitted to TestAmerica North Canton by Cardinal Resources from the Caroll & Dubies (C&D) Site, project number 104-0012-0200. The samples were received July 15, 2009 and July 16, 2009, according to documented sample acceptance procedures.

This SDG consists of (2) laboratory ID's: A9G150158 and A9G160126.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Barbara Jones and Steve Bodnar on July 29, 2009. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 3.2 and 3.7°C.

See TestAmerica's Cooler Receipt Form for additional information.

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for SED 2 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The internal standard areas were outside acceptance limits for sample(s) SED 2, SED 2MS and SED 2MSD due to matrix effects. (Refer to IS report following this case narrative for additional detail.)

DISSOLVED GASES/RSK

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for OW21 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

CASE NARRATIVE (continued)

DISSOLVED GASES/RSK (continued)

For batch(es) 9208134, due to an inconsistent regulator, the gas standards used for generating the primary source and secondary source are not compatible. The second source ICV passes nominally, but the primary source is being used for continuing calibration, batch QC spikes and matrix spikes until the problem is resolved.

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals
contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be
twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants
listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride, Acetone, 2-Butanone	Phthalate Esters	Copper, Iron, Zinc, Lead, Calcium, Magnesium, Potassium, Sodium, Barium,	Copper, Iron, Zinc, Lead
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

<u>The laboratory is certified for the analytes listed on the documents below. These are available upon request.</u> California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA _CWA 032609.doc

EXECUTIVE SUMMARY

9G15158 : A9G150158

рарамишир		REPORTIN		ANALYTICAL
PARAMETER	RESULT_	LIMIT	UNITS	METHOD
OW5 07/14/09 08:50 001				
0.5 07/14/05 00:50 001				
Methane	4.4	0.50	ug/L	RSK SOP-175
Trichloroethene	1.5	1.0	ug/L	SW846 8260B
Tetrachloroethene	3.7	1.0	ug/L	SW846 8260B
Chloride	4.3	1.0	mg/L	MCAWW 300.0A
Sulfate	56.1	1.0	mg/L	MCAWW 300.0A
Nitrate as N	1.2	0.10	mg/L	MCAWW 300.0A
Total Organic	2	1	mg/L	MCAWW 415.1
Carbon	-		9/ 1	110.11
Total Alkalinity	91	5.0	mg/L	MCAWW 310.1
OW6 07/14/09 09:50 002				
0.0 07714705 05.50 002				
1,2-Dichloroethene	16	1.0	ug/L	SW846 8260B
(total)	FF 157			
Trichloroethene	5.5	1.0	ug/L	SW846 8260B
Tetrachloroethene	30	1.0	ug/L	SW846 8260B
Sulfate	16.9	1.0	mg/L	MCAWW 300.0A
Nitrate as N	0.30	0.10	mg/L	MCAWW 300.0A
Total Organic	1	1	mg/L	MCAWW 415.1
Carbon				
Total Alkalinity	24	5.0	mg/L	MCAWW 310.1
OW13R 07/14/09 11:30 003				
Methane	220	0.50	ug/L	RSK SOP-175
Vinyl chloride	1.6 J	2.0	ug/L ug/L	SW846 8260B
1,2-Dichloroethene	2.4	1.0	ug/L ug/L	SW846 8260B
(total)	2.4	1.0	ug/ L	5W040 0200B
Trichloroethene	0.64 J	1.0	ug/L	SW846 8260B
Benzene	13	1.0	ug/L	SW846 8260B
Total Sulfide	20	1.0	mg/L	MCAWW 376.1
Chloride	1.7	1.0	mg/L	MCAWW 300.0A
Sulfate	22.1	1.0	mg/L	MCAWW 300.0A
Total Organic	2	1	mg/L	MCAWW 415.1
Carbon			9, =	
Total Alkalinity	290	5.0	mg/L	MCAWW 310.1
OW8 07/14/09 14:00 004				
30,72,32,22,00				
Methane	1.4	0.50	ug/L	RSK SOP-175
Chloride	1.9	1.0	mg/L	MCAWW 300.0A
Sulfate	11.7	1.0	mg/L	MCAWW 300.0A
Total Alkalinity	52	5.0	mg/L	MCAWW 310.1

9G15158 : A9G150158

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
DUP1 07/14/09 005				
Methane	210	0.50	ug/L	RSK SOP-175
Vinyl chloride 1,2-Dichloroethene	1.6 J 2.3	2.0	ug/L ug/L	SW846 8260B SW846 8260B
(total) Trichloroethene Benzene	0.63 J	1.0	ug/L	SW846 8260B
Total Sulfide Chloride	12 12	1.0	ug/L mg/L	SW846 8260B MCAWW 376.1
Sulfate	1.6 22.5	1.0	mg/L mg/L	MCAWW 300.0A MCAWW 300.0A
Total Organic Carbon	3	1	mg/L	MCAWW 415.1
Total Alkalinity MW1 07/14/09 15:05 007	280	5.0	mg/L	MCAWW 310.1
Methane	0.47 J	0.50	ug/L	RSK SOP-175
Total Sulfide	8.9	1.0	mg/L	MCAWW 376.1
Chloride	3.2	1.0	mg/L	MCAWW 300.0A
Sulfate	11.7	1.0	mg/L	MCAWW 300.0A
Nitrate as N	2.4	0.10	mg/L	MCAWW 300.0A
Total Organic Carbon	1	1	mg/L	MCAWW 415.1
Total Alkalinity	100	5.0	mg/L	MCAWW 310.1
TB1 07/14/09 008				
Acetone	2.2 J	10	ug/L	SW846 8260B

9G15158 : A9G160126

		REPORTIN	1G	ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
OW22 07/15/09 09:05 001				
Methane	1100	2.5	ug/L	RSK SOP-175
Vinyl chloride	0.35 J	2.0	ug/L	SW846 8260B
Chloroethane	0.34 J	2.0	ug/L	SW846 8260B
<pre>1,2-Dichloroethene (total)</pre>	0.53 J	1.0	ug/L	SW846 8260B
Benzene	5.1	1.0	ug/L	SW846 8260B
Toluene	0.19 J	1.0	ug/L	SW846 8260B
Chlorobenzene	7.8	1.0	ug/L	SW846 8260B
Chloride	11.1	1.0	mg/L	MCAWW 300.0A
Sulfate	9.1	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	9	1	mg/L	MCAWW 415.1
Total Alkalinity	300	5.0	mg/L	MCAWW 310.1
OW21 07/15/09 10:20 002				
Methane	110	0.50	ug/L	RSK SOP-175
Vinyl chloride	0.80 J	2.0	ug/L	SW846 8260B
Benzene	2.1	1.0	ug/L	SW846 8260B
Total Sulfide	13	1.0	mg/L	MCAWW 376.1
Chloride	4.2	1.0	mg/L	MCAWW 300.0A
Sulfate	29.3	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	3	1	mg/L	MCAWW 415.1
Total Alkalinity	250	5.0	mg/L	MCAWW 310.1
OW10R 07/15/09 11:40 004				
Methane	1400	2.5	ug/L	RSK SOP-175
Vinyl chloride	0.33 J	2.0	ug/L	SW846 8260B
Chloroethane	0.62 J	2.0	ug/L	SW846 8260B
Benzene	2.7	1.0	ug/L	SW846 8260B
Chlorobenzene	2.3	1.0	ug/L	SW846 8260B
Sulfate	44.5	1.0	mg/L	MCAWW 300.0A
Total Organic	2	1	mg/L	MCAWW 415.1
Carbon				
Total Alkalinity	210	5.0	mg/L	MCAWW 310.1
SW1 07/15/09 13:20 005				
Acetone	1.4 J	10	ug/L	SW846 8260B
h =-				

9G15158 : A9G160126

		REPORTIN	150E(5)	ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
SW DUP 07/15/09 006				
Acetone	2.1 J	10	ug/L	SW846 8260B
SED 1 07/15/09 13:30 007				
Vinyl chloride	8.7 J	51	ug/kg	SW846 8260B
Methylene chloride	9.7 J	25	ug/kg	SW846 8260B
Acetone	940	100	ug/kg	SW846 8260B
Carbon disulfide	17 J	25	ug/kg	SW846 8260B
1,2-Dichloroethene	12 J	25	ug/kg	SW846 8260B
(total)				
1,2-Dichloroethane	1.7 J	25	ug/kg	SW846 8260B
2-Butanone	230	100	ug/kg	SW846 8260B
Benzene	13 J	25	ug/kg	SW846 8260B
Toluene	3.1 J	25	ug/kg	SW846 8260B
Chlorobenzene	5.9 J	25	ug/kg	SW846 8260B
Percent Solids	19.7	10.0	010	MCAWW 160.3 MOD
SED DUP 07/15/09 008				
Vinyl chloride	4.5 J	42	ug/kg	SW846 8260B
Methylene chloride	3.7 J,B	21	ug/kg	SW846 8260B
Acetone	300 B	84	ug/kg	SW846 8260B
Carbon disulfide	8.2 J	21	ug/kg	SW846 8260B
1,2-Dichloroethene	5.9 J	21	ug/kg	SW846 8260B
(total)			-	
2-Butanone	96	84	ug/kg	SW846 8260B
Benzene	5.6 J	21	ug/kg	SW846 8260B
Toluene	1.3 J	21	ug/kg	SW846 8260B
Chlorobenzene	3.2 J	21	ug/kg	SW846 8260B
Percent Solids	23.9	10.0	n o	MCAWW 160.3 MOD
SED 2 07/15/09 14:10 010				
Methylene chloride	8.6 J	28	ug/kg	SW846 8260B
Chloroform	1.6 J	28	ug/kg	SW846 8260B
Toluene	34	28	ug/kg	SW846 8260B
Percent Solids	17.9	10.0	00	MCAWW 160.3 MOD
OW19 07/15/09 14:55 011				
Methane	530	1.0	ug/L	RSK SOP-175
Vinyl chloride	2.1	2.0	ug/L	SW846 8260B
Chloroethane	1.0 J	2.0	ug/L	SW846 8260B
	- 55		- 3' -	

9G15158 : A9G160126

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
OW19 07/15/09 14:55 011				
<pre>1,2-Dichloroethene (total)</pre>	0.94 J	1.0	ug/L	SW846 8260B
Benzene	1.9	1.0	ug/L	SW846 8260B
Chlorobenzene	7.9	1.0	ug/L	SW846 8260B
Total Sulfide	1.1	1.0	mg/L	MCAWW 376.1
Chloride	9.2	1.0	mg/L	MCAWW 300.0A
Sulfate	13.7	1.0	mg/L	MCAWW 300.0A
Total Organic Carbon	7	1	mg/L	MCAWW 415.1
Total Alkalinity	230	5.0	mg/L	MCAWW 310.1
TB2 07/15/09 012				
Acetone	2.5 J	10	ug/L	SW846 8260B

METHOD SUMMARY

ANALYTICAL METHODS SUMMARY

9G15158

PARAMETI	FD	ANALYTICAL METHOD
FARAPILI	ER	METHOD
Alkalin	ity	MCAWW 310.1
Chloride	e	MCAWW 300.0A
Dissolve	ed Gases in Water	RSK SOP-175
Nitrate	as N	MCAWW 300.0A
Sulfate		MCAWW 300.0A
Sulfide		MCAWW 376.1
Total O	rganic Carbon	MCAWW 415.1
Total Re	esidue as Percent Solids	MCAWW 160.3 MOD
Volatile	e Organics by GC/MS	SW846 8260B
Referenc	ces:	
MCAWW	"Methods for Chemical Analysis of W EPA-600/4-79-020, March 1983 and su	

RSK

Sample Prep and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique, RSKSOP-175, REV. 0, 8/11/94, USEPA Research Lab

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

SAMPLE SUMMARY

9G15158 : A9G150158

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LGHM7	001	OW5	07/14/09	08:50
LGHPH	002	OW6	07/14/09	09:50
LGHPK	003	OW13R	07/14/09	11:30
LGHPL	004	OW8	07/14/09	14:00
LGHPM	005	DUP1	07/14/09	
LGHPQ	006	FIELD BLANK 1	07/14/09	14:10
LGHPW	007	MW1	07/14/09	15:05
LGHP0	008	TB1	07/14/09	
NOTE (z) -			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SAMPLE SUMMARY

9G15158 : A9G160126

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LGKPV	001	OW22	07/15/09	09:05
LGKP4	002	OW21	07/15/09	Contract and Edition
LGKP6	003	FIELD BLANK 2	07/15/09	10:30
LGKP8	004	OW10R	07/15/09	11:40
LGKP9	005	SW1	07/15/09	13:20
LGKQA	006	SW DUP	07/15/09	
LGKQE	007	SED 1	07/15/09	13:30
LGKQH	800	SED DUP	07/15/09	
LGKQL	009	SW2	07/15/09	14:00
LGKQX	010	SED 2	07/15/09	14:10
LGKQ1	011	OW19	07/15/09	14:55
LGKQ3	012	TB2	07/15/09	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SHIPPING AND RECEIVING DOCUMENTS

C2008, TestAmenca Letzretories, Inc., All rights reserved. Relinquished Relinquishe elinquished by 1505 E. Carson St. ompany Name Cardinal Kesources Instructions/QC Requirements & Comments: Ticos 0W 3 W C 30 30 04-00/2-0200 + Dukes (C+D PN 15203 0880 TestAmerica Laboratory location: Regulatory program: Skin Irritant Company: Shipping/Ira company 7-14-04 0850 Sample Date BJONES @ Godinal 175.0 0950 Sarb Lones Sample Time 三 5 6 7 1136 1400 Poison B Air Date/Time X DW Solid Unknown Chain of Custody Record ☐ NPDES 4 Contagni H2504 > Return to Client I'AT if different from below _ Heel Ad Received by: RCRA Received by: 350 JAS Jangdine 3 weeks 2 days 1 week ZnAc/ NaOH 2 weeks ~ Unpres 2 assessed if samples are retained i Other: Other T Filtered Sample (Y/M) × × × Archive For _____ Company N N PLEY BS 4 THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** TestAmerica Laboratories, Inc. アジア Date/Time: COC No: or lab use out Vallety chen ab)hckup Sample Specific Notes / Special Instructions: of | TAL-0018 (1008) COCs OOL

l'estamerica Coole	er Receipt Form/Narrative Lot Number: 196,150	0159
North Canton Facili		17
Client CARDINA		-11-
Cooler Received on 13	/ (Oighturo)	
FedEx UPS DHL		
TestAmerica Cooler #	A 19 Multiple Coolers Foam Box Client Cooler Other	
	on the outside of the cooler(s)? Yes 🗌 No 💢 Intact? Yes 🗎 No 🗍 NA	
If YES, Quantity	Quantity Unsalvageable	. ,
	on the outside of cooler(s) signed and dated? Yes \(\square\) No \(\square\). NA	Æ
Were custody seals of	The state of the s	
If YES, are there any		
	p attached to the cooler(s)? Yes ☒ No ☐	12
	accompany the sample(s)? Yes No Relinquished by client? Yes	s 🗷 No 🗌 📗
	pers signed in the appropriate place?	-
	d: Bubble Wrap X Foam None Other PASTIC BAC)
6. Cooler temperature u		
	R Q Other D	1
	ce 🛛 Blue Ice 🗌 Dry Ice 🗎 Water 🗌 None 🗎	İ
	in good condition (Unbroken)?	
A DESCRIPTION OF THE PROPERTY	s be reconciled with the COC? Yes No	
The state of the s	e correct pH upon receipt? Yes No NA	
) used for the test(s) indicated? Yes No No	
11. Were air bubbles >6 r	ランス (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	ceived to perform indicated analyses? Yes No No No No No No No No	_ [
Contacted PM	sent in the cooler(s)? Yes No Were VOAs on the COC? Yes No	
Concerning	Date by via Verbal 🖾 Voice Mail 🗌	Other 🔲
14. CHAIN OF CUSTOD		
		1 1 1 1 1
	the state of the s	
The following discrepanci	ies occurred:	
	ies occurred:	109
The following discrepance TRIP RU TRIP	ies occurred:	119
The following discrepance	ies occurred: NOT ON COC-WILL	109_
The following discrepance TRIP RU TRIP	ies occurred: NOT ON COC-WILL	log_
The following discrepance TRIP RU TRIP	ies occurred: NOT ON COC-WILL	109 J
The following discrepance TRIP RU TRIP	ies occurred: NOT ON COC-WILL	10g
The following discrepance TRIPERSON	ies occurred: MY (1x 40 m) REC/O NOT ON COC-WILL Trip as TBI per NAP.	lag_
The following discrepanci TRIPER TO RUM TBIPER TO AFT TO SAMPLE CONDITION	ies occurred: MY (1x 4Vm1) REZ'O NOT ON COC-Will Trip as TBI per NAP.	<i>J</i>
The following discrepanci TRIPER SAFE 15. SAMPLE CONDITION Sample(s)	ies occurred: MY (1x 40 m) REC'O NOT ON COC-will Trip as TBI per NAP. Were received after the recommended holding time had	d expired.
The following discrepanci TRIPER SAMPLE CONDITION Sample(s) Sample(s)	were received after the recommended holding time have	d expired.
The following discrepanci TRIPER SAPE 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s)	were received after the recommended holding time has were received with bubble >6 mm in diameter. (A)	d expired.
The following discrepanci TRIPLE CAP T A TISSET 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA	were received after the recommended holding time had were received in a broken of were received with bubble >6 mm in diameter. (Nation)	d expired.
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) Sample(s)	were received with bubble >6 mm in diameter. (National Sample Attional Countries) Were further preserved in Sample were further preserved.	d expired.
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) Receiving to meet recommendation	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Nation were further preserved in Sample mended pH level(s). Nitric Acid Lot# 031909-HNO3: Sulfuric Acid Lot# 100108-H2SO4: So	d expired. container. Notify PM)
The following discrepanci The following discrep	were received after the recommended holding time has were received after the recommended holding time has were received in a broken of were received with bubble >6 mm in diameter. (N ATION were further preserved in Sample mended pH level(s). Nitric Acid Lot# 031909-HNO3; Sulfuric Acid Lot# 100108-H2SO4; So OH; Hydrochloric Acid Lot# 092006-HCI: Sodium Hydroxide and Zinc Acetate Lot# 050205-	d expired. container. Notify PM)
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommodified to the orange of the	were received after the recommended holding time had were received in a broken of were received with bubble >6 mm in diameter. (Nation) were further preserved in Sample amended pH level(s). Nitric Acid Lot# 031909-HNO ₃ ; Sulfuric Acid Lot# 100108-H ₂ SO ₄ ; So OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot# 050205-at time was preservative added to sample(s)?	d expired. container. Notify PM)
The following discrepanci The following discrep	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommon Hydroxide Lot# 073007 -Nac (CH ₃ COO) ₂ ZN/NaOH. What	were received after the recommended holding time had were received in a broken of were received with bubble >6 mm in diameter. (Nation) were further preserved in Sample amended pH level(s). Nitric Acid Lot# 031909-HNO ₃ ; Sulfuric Acid Lot# 100108-H ₂ SO ₄ ; So OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot# 050205-at time was preservative added to sample(s)?	d expired. container. Notify PM)
The following discrepanci The following discrep	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)
The following discrepanci TO POPULATION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommand to meet recommand to meet recommand to the transport of the transport	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)
The following discrepanci TRIPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommand the provide Lot# 073007 -Nac (CH ₃ COO) ₂ ZN/NaOH. What Client ID OUICE were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)	
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommend the provide Lot# 073007 -Nac (CH ₃ COO) ₂ ZN/NaOH. What Client ID OUTS OUTS OUTS OUTS	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)
The following discrepanci TRIPLE CONDITION 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVA Sample(s) Receiving to meet recommend to meet recommend to the organism of the commendation of the comme	were received after the recommended holding time has were received with bubble >6 mm in diameter. (Note: Action of the control of the contro	d expired. container. Notify PM)

th Canton Facility Client ID	<u>pH</u>	<u>Date</u>	Initials
	<u> </u>		
	·		
1.00			
			-
			-
		<u> </u>	
(9)			
			ļ
Cooler#	Temp. °C	Method	Coolant
			1
12	N - 20		
Fig. Co. 10 (AFRICA A)			

Chain of Custody Record

□ DW □ NPDES □ RCRA Other TestAmerica 2

Relinquished by:	Relinquished by: Volume Valley	Special Instructions/QC Requirements & Comments:	ו לו ב	Sed 1	5	OWIOR	Field Blank 2	OWAL MSD	OWAI MS	OW2)	CWAA	Sample Identification	PO#	0000 - Cloo - 100	Care 1+ Duxies (C+D)	412 374 0989	THE WAST PR	1505 E. GATAN ST.	(ording) Resources, LLC	Client Contact
Company:	Company:	,	Skin Intrans Poison B	1330	173%	1140	1030	0000	1020	०६०।	7-15-09 0905	Sample Date Sample Time Z		Shipping/Tracking No:	Method of Shipment/Carrier:		15203 BJONES CANDIN	respuence:	ect Mahager:	reguarory program.
Date/Time:	Date/Time: 5-09 /600			× ×		× ×	×	×		×	XXX	Aqurous Sediment Solid Other: H2SO4 HNO3 HC1	Majris Count			TAT if differ	dimines, diministra		Johes Sinconnect	L PW L NFDES
Received in Laboratory by:	Received by:	*	Sample Disposal (A fee may be by exsent if sample	× /		× ×		×	× ×	× ×	×	NaOH ZnAc/ NaOH Unpres Other:		0. / NO		if different from below	n Throdround Time to Bilk dop)	374 0989	2 Pageding	RCRA Under
Соправу:	Company:	au Armive for	d if samples are retained longer than I month)	X X / YOC > @	-VOCS	× (\$ > 6.V	* * * * *			XXXXXX	TO MESON ALCA		YO E OF IN			Analyses	Telephone:	Lab Controct:	
Date/Time:	Date/Time: 7-116-09 Date/Time:	Nionths	N774	2.C.	@ N L Y	X	7 Y	*			XX	Sample Specific Notes Special Instructions:	T	かり	e (N Yak inclini	For abuse this	- 1 of -	COC No.	TestAmerica Lab
	9:20								58			ific Notes / ructions:][]		cocs		oratories Inc.

TAL-0018 (1008)

©2005, TestAmenca Leboratories, Inc. All rights reserved. TestAmenca & Design ^{to} are quotemarks of TestAmenca Leboratories. Inc.

Chain of Custody Record

Special Instructions/QC Requirements & Comments: Project Number Project Name: City/State/ ossible Hazard Identification
Non-Hazard RWS 5 Sample Identification Ø ☐ Flammable Skin Irritant TestAmerica Laboratory location: Company Shipping/Tracking No: Method of Shipment/Carrier: アシア Sample Date Telephone: Regulatory program: 1400 Sample Time 0(17 Polson B Air Date/Time: × X × Aqueom × X × Unknown Solid DW Other: ☐ NPDES H2504 Sample Disposal (A fee may be HNO3 × \times × \sim × HCI Received in Laboratory by: RCRA NaOH 2 weeks ZnAc/ NaOH 3 weeks l day I week × 2 days $\times \times \times$ Unpres ssessed if samples are retained longer than 1 month
Disposal By Lab Archive For Other: Other × X 2 X **500** Company: Company ロマア × Months Date/Time: Date/Time: TestAmerica Laboratories, Inc. COC No: Sample Specific Notes / Special Instructions: 9:20

lestAmerica

TestAmerica Coo	ler Receipt Form	/Narrative	Lot Number	er: <i>A96</i> 11	100121
North Canton Fac	cility				w 0 1-2Cg
Client Cardina		_ ProjectCarefi+	Dubies By:	Ch 1	
Cooler Received on _	7-16-09	Opened on 7-/	12-05	(Signatur	E
FedEx LUPS LIDI	HL 🖵 FAS 🗌 Stetso	on Client Drop Off T	estAmerica Couri	er Other	-,
restamenca Cooler#		ple Coolers Foam Rox	Client Coole	or Other	
Were custody seal	s on the outside of the	e cooler(s)? Yes 🗌 No 🔀	L Intact? Yes	□ No □ N	A 🔯
If YES, Quantity		Quantity Unsalvageable			7
vvere custody seal	s on the outside of coo	oler(s) signed and dated?	Yes	□ No □ N	IA [X]
Were custody seal			Yes	□ No 🂢	
If YES, are there a				26	*
	slip attached to the co			Ĭ No □	
 Did custody papers Were the custody r 	s accompany the samp	DIE(S)? YES [X] NO [Relinquis	hed by client? Y	'es 💢 No 🔲 📗
5. Packing material u	papers signed in the apsend Bubble Wrap	ppropriate place?		No □	
6. Cooler temperature	seu. Bubble vviap	Foam None	Other		
METHOD:	IR 🗵 Other	1	m for multiple co	olers/temps 🔲	j
	tice M Blue ice				Ì
	e in good condition (U		☐ None ☐		
8. Could all bottle lab				No 🗆	
9. Were sample(s) at			Yes, Yes	Z =	,
10. Were correct bottle				No No No	4 🗆 📗
11. Were air bubbles >			Yes		,
12. Sufficient quantity r			Yes		~ ⊔
13. Was a trip blank pro			VOAs on the CO		, n
Contacted PM NA			via Verba	Voice Mail	
Concerning		14	VIA VCIDA	NET ADICE MINI I	
14. CHAIN OF CUSTO	DDY		•		
The following discrepar	the second secon				
		11 -6 5			
	102, 4311 102	dt of prev. saw.			
				2	
			200	* .	
		3		*	
				W. C. W. C.	
/C 04140/ 0 004/0					
15. SAMPLE CONDIT	ON				
Sample(s)	mana and a second	were received after			
Sample(s)				ived in a broker	
Sample(s)	11.74 P(D) 17	were received	with bubble >6 m	nm in diameter.	(Notify PM)
16. SAMPLE PRESER	VATION				
Sample(s)			_were further pre	eserved in Samp	ole
Hydroxide I off 073007 A	mmenaea pH level(s).	Nitric Acid Lot# 031909-HNO	; Sulfuric Acid Lot#	100108-H ₂ SO ₄ ;	Sodium
(CH3COO)27N/NAOH \N	haon, nyurocnione Acid Ihat time was presente	Lot# 092006-HCl; Sodium Hydative added to sample(s)?	iroxide and Zinc Ac	etate Lot# 050205)-
Client ID	nacumo was preserva			Data	Initials
ow 22	7/2	На		Date	Initials
OW 21	712712712			7-16-09	CSL
OWIOR	5/2				 -
0419	1512			1 -1	
				 	
				*	
					•

	ecelpt Form/Narrative	Date	Initials
	THE RESERVE THE PARTY OF THE PA		
			
			-
	4		
			
Cooler#	<u>Temp. °C</u>	Method	Coolar
	The second secon		
			
			
			ļ
V		r e e e e e e e e e e e e e e e e e e e	1

GCMS VOLATILE DATA

Client Sample ID: OW5

GC/MS Volatiles

Lot-Sample #...: A9G150158-001 Work Order #...: LGHM71AJ Matrix...... WG

Date Sampled...: 07/14/09 08:50 Date Received..: 07/15/09
Prep Date.....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

PARAMETER RESULT LIMIT UNITS
PARAMETER RESULT LIMIT UNITS
Chloromethane ND 2.0 ug/L
Bromomethane ND 2.0 ug/L
Vinyl chloride ND 2.0 ug/L
Chloroethane ND 2.0 ug/L
Methylene chloride ND 1.0 ug/L
Acetone ND 10 ug/L
Carbon disulfide ND 1.0 ug/L
1,1-Dichloroethene ND 1.0 ug/L
1,1-Dichloroethane ND 1.0 ug/L
1,2-Dichloroethene ND 1.0 ug/L (total)
Chloroform ND 1.0 ug/L
1,2-Dichloroethane ND 1.0 ug/L
2-Butanone ND 10 ug/L
1,1,1-Trichloroethane ND 1.0 ug/L
Carbon tetrachloride ND 1.0 ug/L
Bromodichloromethane ND 1.0 ug/L
1,2-Dichloropropane ND 1.0 ug/L
cis-1,3-Dichloropropene ND 1.0 ug/L
Trichloroethene 1.5 1.0 ug/L
Dibromochloromethane ND 1.0 ug/L
1,1,2-Trichloroethane ND 1.0 ug/L
Benzene ND 1.0 ug/L
trans-1,3-Dichloropropene ND 1.0 ug/L
Bromoform ND 1.0 ug/L
4-Methyl-2-pentanone ND 5.0 ug/L
2-Hexanone ND 10 ug/L
Tetrachloroethene 3.7 1.0 ug/L
1,1,2,2-Tetrachloroethane ND 1.0 ug/L
Toluene ND 1.0 ug/L
Chlorobenzene ND 1.0 ug/L
Ethylbenzene ND 1.0 ug/L
Styrene ND 1.0 ug/L
Xylenes (total) ND 1.0 ug/L
PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
Dibromofluoromethane 94 (73 - 122)
1,2-Dichloroethane-d4 99 (61 - 128)
Toluene-d8 105 (76 - 110)
4-Bromofluorobenzene 98 (74 - 116)

Client Sample ID: OW6

GC/MS Volatiles

Lot-Sample #...: A9G150158-002 Work Order #...: LGHPH1AJ Matrix...... WG

Date Sampled...: 07/14/09 09:50 Date Received..: 07/15/09
Prep Date....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Method..... SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	16	1.0	ug/L
(total)			-
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
l,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	5.5	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
rans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	30	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Coluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
(ylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	(73 - 122))
1,2-Dichloroethane-d4	97	(61 - 128	
Foluene-d8	101	(76 - 110	
4-Bromofluorobenzene	97	(74 - 116)	

Client Sample ID: OW13R

GC/MS Volatiles

Lot-Sample #...: A9G150158-003 Work Order #...: LGHPK1AJ Matrix..... WG

Date Sampled...: 07/14/09 11:30 Date Received..: 07/15/09

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN	IG.
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	1.6 J	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	2.4	1.0	ug/L
(total)	10Th. 5T. 1		29/1
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	0.64 J	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	13	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
roluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
(20041)	140	1.0	ug/ n
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	$\frac{1}{(73 - 12)}$	2)
1,2-Dichloroethane-d4	99	(61 - 12	
Toluene-d8	103	(76 - 11	2012 P. C.
4-Bromofluorobenzene	97	(74 - 11)	9290 ·

Client Sample ID: OW13R

GC/MS Volatiles

Lot-Sample #...: A9G150158-003 Work Order #...: LGHPK1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW8

GC/MS Volatiles

Lot-Sample #...: A9G150158-004 Work Order #...: LGHPL1AJ Matrix...... WG

Date Sampled...: 07/14/09 14:00 Date Received..: 07/15/09 Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene (total)	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	98	(73 - 12	
1,2-Dichloroethane-d4	101	(61 - 12	
Toluene-d8	104	(76 - 11	
4-Bromofluorobenzene	101	(74 - 11	6)

OW-13R

Cardinal Resources

Client Sample ID: DUP1

GC/MS Volatiles

Lot-Sample #...: A9G150158-005

Date Sampled...: 07/14/09

Prep Date....: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1

Work Order #...: LGHPM1AJ

Date Received..: 07/15/09

Analysis Date..: 07/20/09

Initial Wgt/Vol: 5 mL

Method.....: SW846 8260B

REPORTING

Matrix..... WG

Final Wgt/Vol..: 5 mL

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	-
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	1.6 J	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ИD	1.0	ug/L	
Acetone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L /	0.4-2.3 X/00=
1,1-Dichloroethene	ND	1.0	ug/L /	7.
1,1-Dichloroethane	ND /	1.0	ug/L /	124 22 2
1,2-Dichloroethene (total)	2.3	1.0	ug/L	J (2.4+2.3) -
Chloroform	ND	1.0	ug/L	1100
1,2-Dichloroethane	ND	1.0	ug/L	4 (0
2-Butanone	ND	10	ug/L	1-
1,1,1-Trichloroethane	ND	1.0	ug/L	OF
Carbon tetrachloride	ND	1.0	ug/L	/
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	DP0=9%
cis-1,3-Dichloropropene	ND /	1.0	ug/L	MID CIO
Trichloroethene	0.63 J	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	13-12
Benzene	12	1.0	ug/L	17 12 1100
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	1 (10.00)
4-Methyl-2-pentanone	ND	5.0	ug/L	= (13+12)
2-Hexanone	ND	1.0	ug/L	2
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	96	(73 - 122))	
1,2-Dichloroethane-d4	98	(61 - 128))	
Toluene-d8	102	(76 - 110)		
1 5 51	D-027 (-030)		550	

(Continued on next page)

(74 - 116)

96

4-Bromofluorobenzene

Client Sample ID: DUP1

GC/MS Volatiles

Lot-Sample #...: A9G150158-005 Work Order #...: LGHPM1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: A9G150158-006 Work Order #...: LGHPQ1AA Matrix...... WQ

Date Sampled...: 07/14/09 14:10 Date Received..: 07/15/09 Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	94	(73 - 12	2)
1,2-Dichloroethane-d4	97	(61 - 12	8)
Toluene-d8	104	(76 - 11	0)
4-Bromofluorobenzene	96	(74 - 11)	6)

Client Sample ID: MW1

GC/MS Volatiles

Lot-Sample #...: A9G150158-007 Work Order #...: LGHPW1AJ Matrix..... WG

Date Sampled...: 07/14/09 15:05 Date Received..: 07/15/09
Prep Date.....: 07/20/09
Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Acetone	ND	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethene	ND	1.0	ug/L	
(total)			3.5	
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	92	(73 - 122)		
1,2-Dichloroethane-d4	96	(61 - 128)		
Foluene-d8	100	(76 - 110)		
4-Bromofluorobenzene	92	(74 - 116)		

Client Sample ID: TB1

GC/MS Volatiles

Lot-Sample #...: A9G150158-008

Work Order #...: LGHP01AA

Matrix..... WQ

Date Sampled...: 07/14/09

Date Received..: 07/15/09

Prep Date....: 07/20/09

Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Initial Wgt/Vol: 5 mL

Final Wgt/Vol..: 5 mL

Dilution Factor: 1

Method....: SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS Chloromethane ND 2.0 uq/L Bromomethane ND 2.0 ug/L Vinvl chloride ND 2.0 ug/L Chloroethane ND 2.0 uq/L Methylene chloride ND 1.0 ug/L Acetone 2.2 J 10 ug/L Carbon disulfide ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L (total) Chloroform ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 2-Butanone 10 ND ug/L 1,1,1-Trichloroethane ND 1.0 uq/L Carbon tetrachloride ND 1.0 ug/L Bromodichloromethane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L Trichloroethene 1.0 ND ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene 1.0 ND ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 5.0 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 uq/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	(73 - 122)	
1,2-Dichloroethane-d4	97	(61 - 128)	
Toluene-d8	103	(76 - 110)	
4-Bromofluorobenzene	99	(74 - 116)	

Client Sample ID: TB1

GC/MS Volatiles

Lot-Sample #...: A9G150158-008 Work Order #...: LGHP01AA Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW22

GC/MS Volatiles

Lot-Sample #...: A9G160126-001 Work Order #...: LGKPV1AJ Matrix..... WG

Date Sampled...: 07/15/09 09:05 Date Received..: 07/16/09 Prep Date.....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.35 J	2.0	ug/L
Chloroethane	0.34 J	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	0.53 J	1.0	ug/L
(total)			State of the state
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	5.1	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	0.19 J	1.0	ug/L
Chlorobenzene	7.8	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	96	(73 - 122)	-
1,2-Dichloroethane-d4	91	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	96	(74 - 116)	

Client Sample ID: OW22

GC/MS Volatiles

Lot-Sample #...: A9G160126-001 Work Order #...: LGKPV1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW21

GC/MS Volatiles

Lot-Sample #...: A9G160126-002 Work Order #...: LGKP41A1 Matrix..... WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09 Prep Date.....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.80 J	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			500 30 Section 1
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	2.1	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
<u> </u>		1.0	497.5
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	$\frac{211113}{(73 - 122)}$	•
1,2-Dichloroethane-d4	91	(61 - 128)	
Toluene-d8	102	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	
	2.5	(14 110)	

Client Sample ID: OW21

GC/MS Volatiles

Lot-Sample #...: A9G160126-002 Work Order #...: LGKP41A1 Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 2

GC/MS Volatiles

Lot-Sample #...: A9G160126-003 Work Order #...: LGKP61AA Matrix...... WQ

Date Sampled...: 07/15/09 10:30 Date Received..: 07/16/09 Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Method..... SW846 8260B

	REPORTING		IG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene (total)	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L ug/L
Toluene	ND	1.0	ug/L ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L ug/L
Styrene	ND	1.0	
Xylenes (total)	ND	1.0	ug/L
NYTENES (COCAI)			ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	94	(73 - 12	
1,2-Dichloroethane-d4	103	(61 - 12	8)
Toluene-d8	102	(76 - 11	0)
4-Bromofluorobenzene	92	(74 - 11)	6)

Client Sample ID: OW10R

GC/MS Volatiles

Lot-Sample #...: A9G160126-004 Work Order #...: LGKP81AJ Matrix..... WG

Date Sampled...: 07/15/09 11:40 Date Received..: 07/16/09 Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method....: SW846 8260B

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	0.33 J	2.0	ug/L
Chloroethane	0.62 J	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			2
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	2.7	1.0	ug/L
rans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
1-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Coluene	ND	1.0	
Chlorobenzene	2.3	1.0	ug/L ug/L
Ethylbenzene	ND	1.0	10 -2
Styrene	ND	1.0	ug/L
Xylenes (total)	ND ND		ug/L
Tyrenes (cocar)	מאו	1.0	ug/L
	DEDCENT	DECOURDY	
SURROGATE	PERCENT	RECOVERY	
Dibromofluoromethane	RECOVERY	LIMITS	2)
	95	(73 - 12	
1,2-Dichloroethane-d4	102	(61 - 12	
Poluene-d8 4-Bromofluorobenzene	100	(76 - 11	5450A
4~promorlioropenzene	93	174 - 11	61

93 4-Bromofluorobenzene (74 - 116)

Client Sample ID: OW10R

GC/MS Volatiles

Lot-Sample #...: A9G160126-004 Work Order #...: LGKP81AJ Matrix...... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: SW1

GC/MS Volatiles

Lot-Sample #...: A9G160126-005 Work Order #...: LGKP91AA Matrix...... WG

Date Sampled...: 07/15/09 13:20 Date Received..: 07/16/09 Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

PARAMETER	RESULT	REPORTING LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	TO 1.
Bromomethane	ND	2.0	ug/L	TB action level for acetone!
Vinyl chloride	ND	2.0	ug/L	1-060
Chloroethane	ND	2.0	ug/L	level sor
Methylene chloride	ND X 1011	1.0	ug/L	ace tone
Acetone	ND bused on ND actions	10	ug/L	VICE 00 -
Carbon disulfide	ND 1	1.0	ug/L	2.5 x/0 =
1,1-Dichloroethene	ND based on	1.0	ug/L	
1,1-Dichloroethane	ND actone	1.0	ug/L	25
1,2-Dichloroethene	ND in T.B	1.0	ug/L	
(total)				
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	-n	
Dibromofluoromethane	93	(73 - 122)	0.00	
1,2-Dichloroethane-d4	102	(61 - 128)		
Toluene-d8	101	(76 - 110)		
4-Bromofluorobenzene	93	(74 - 116)		

Client Sample ID: SW1

GC/MS Volatiles

Lot-Sample #...: A9G160126-005 Work Order #...: LGKP91AA Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Dup 08 5W-1

Cardinal Resources

Client Sample ID: SW DUP

GC/MS Volatiles

Lot-Sample #...: A9G160126-006

Date Sampled...: 07/15/09

Prep Date....: 07/21/09 Prep Batch #...: 9202405

Dilution Factor: 1

Work Order #...: LGKQA1AA

Date Received..: 07/16/09

Analysis Date..: 07/21/09

Initial Wgt/Vol: 5 mL

Method.....: SW846 8260B

REPORTING

Final Wgt/Vol..: 5 ml

Matrix.... WG

PARAMETER	RESULT	LIMIT	UNITS	() " 1
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	1.B.
Vinyl chloride	ND (IC)	2.0	ug/L	1B:
Chloroethane	ND ()OG	2.0	ug/L	actore action level = 2.5 x 10 = 25
Methylene chloride	ND J J ND ND ND ND ND ND ND ND ND	1.0	ug/L	,
Acetone	2.1 J	0.6 10	ug/L	1evel = 7.5 X
Carbon disulfide	ND C	1.0	ug/L	1) = 7.5
1,1-Dichloroethene	ND OD	1.0	ug/L	10 - 25
1,1-Dichloroethane	ND Y	1.0	ug/L	
1,2-Dichloroethene	ND OO	X 1 1.0	ug/L	
(total)	at the live	10		
Chloroform	ND Y	M 1.0	ug/L	
1,2-Dichloroethane	ND 20 14	1.0	ug/L	
2-Butanone	ND)	10	ug/L	
1,1,1-Trichloroethane	ND N	1.0	ug/L	
Carbon tetrachloride	ND PROPOSITION OF THE PROPOSITIO	1.0	ug/L	
Bromodichloromethane	ND /);	ie 1.0	ug/L	
1,2-Dichloropropane	ND W	1.0	ug/L	
cis-1,3-Dichloropropene	ND (A)	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	<u> </u>	
Dibromofluoromethane	91	(73 - 122)		
1,2-Dichloroethane-d4	101	(61 - 128))	
Toluene-d8	101	(76 - 110)		
4-Bromofluorobenzene	92	(74 - 116)) (

Client Sample ID: SW DUP

GC/MS Volatiles

Lot-Sample #...: A9G160126-006 Work Order #...: LGKQA1AA Matrix..... WG

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: SED 1

GC/MS Volatiles

Lot-Sample #: A9G160126-007	Work Order #:		Matrix: SO
Date Sampled: 07/15/09 13:30			
Prep Date: 07/20/09	Analysis Date:	07/21/09	
Prep Batch #: 9202420		<u> 2</u> 9	
Dilution Factor: 1	Initial Wgt/Vol:		Final Wgt/Vol: 5 mL
% Moisture: 80	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	51	ug/kg
Bromomethane	ND	51	ug/kg
Vinyl chloride	8.7 J	51	ug/kg
Chloroethane	ND	51	ug/kg
Methylene chloride	9.7 J	25	ug/kg
Acetone	940	100	ug/kg
Carbon disulfide	17 J	25	ug/kg Acotone.
1,1-Dichloroethene	ND Y	25	ug/kg ug/kg ug/kg Action level =
1,1-Dichloroethane	ND ON	25	ug/kg Action level
1,2-Dichloroethene	12 J	25	ug/kg
(total)	res		
Chloroform	ND *	25	ug/kg
1,2-Dichloroethane	1.7 J high	25	ug/kg
2-Butanone	1.7 J Shigh	100	ug/kg
1,1,1-Trichloroethane	ND ND	25	ug/kg
Carbon tetrachloride	ND M	25	ug/kg
Bromodichloromethane	ND	25	ug/kg
1,2-Dichloropropane	ND	25	ug/kg
cis-1,3-Dichloropropene	ND	25	ug/kg
Trichloroethene	ND	25	ug/kg
Dibromochloromethane	ND	25	ug/kg
1,1,2-Trichloroethane	ND	25	ug/kg
Benzene	13 J	25	ug/kg
trans-1,3-Dichloropropene	ND	25	ug/kg
Bromoform	ND	25	ug/kg
4-Methyl-2-pentanone	ND	100	ug/kg
2-Hexanone	ND	100	ug/kg
Tetrachloroethene	ND	25	ug/kg
1,1,2,2-Tetrachloroethane	ND	25	ug/kg
Toluene	3.1 J	25	ug/kg
Chlorobenzene	5.9 J	25	ug/kg
Ethylbenzene	ND	25	ug/kg
Styrene	ND	25	ug/kg
Xylenes (total)	ND	25	ug/kg
GUDDOG TO	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	91	(59 - 138)	
1,2-Dichloroethane-d4	77	(61 - 130)	
Toluene-d8	95	(60 - 143)	
4-Bromofluorobenzene	74	(47 - 158)	

Client Sample ID: SED 1

GC/MS Volatiles

Lot-Sample #...: A9G160126-007 Work Order #...: LGKQE1AC Matrix...... SO

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: SED DUP

GC/MS Volatiles

Lot-Sample #: A9G160126-008 Date Sampled: 07/15/09 Prep Date: 07/22/09 Prep Batch #: 9204193 Dilution Factor: 1 % Moisture: 76	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol: Method:	07/16/09 07/22/09 5 g	Matrix: SO Final Wgt/Vol.: 5 mL		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	Acotone: action Level: 10 K 6.9=	
Chloromethane	ND	42	ug/kg	1000 = 10x60=	
Bromomethane	ND	42	ug/kg	·	
Vinyl chloride	4.5 J	42	ug/kg	69	
Chloroethane	ND	42	ug/kg	meth. ch lorde action level = 0.74×10;	
Methylene chloride	3.7 J,B (214)	21	ug/kg	moth chilonal acom	
Acetone	300 B J	84	ug/kg	1 - 0 111 × 10 -	
Carbon disulfide	8.2 J	21	ug/kg	fevel - 0.17/10 ;	
1,1-Dichloroethene	ND	21	ug/kg	7.4	
1,1-Dichloroethane	ND	21	ug/kg		
1,2-Dichloroethene	5.9 J	21	ug/kg		
(total)					
Chloroform	ND	21	ug/kg		
1,2-Dichloroethane	ND T	21	ug/kg	hased on	
2-Butanone	96 J	84	ug/kg	Dures.	
1,1,1-Trichloroethane	ND	21	ug/kg	high moisters	
Carbon tetrachloride	ND	21	ug/kg	based on high moisture	
Bromodichloromethane	ND	21	ug/kg		
1,2-Dichloropropane	ND	21	ug/kg		
cis-1,3-Dichloropropene	ND	21	ug/kg		
Trichloroethene	ND	21	ug/kg		
Dibromochloromethane	ND	21	ug/kg		
1,1,2-Trichloroethane	ND	21	ug/kg		
Benzene	5.6 J	21	ug/kg		
trans-1,3-Dichloropropene	ND	21	ug/kg		
Bromoform	ND	21	ug/kg		
4-Methyl-2-pentanone	ND	84	ug/kg		
2-Hexanone	ND	84	ug/kg		
Tetrachloroethene	ND	21	ug/kg		
1,1,2,2-Tetrachloroethane	ND	21	ug/kg		
Toluene	1.3 J	21	ug/kg		
Chlorobenzene	3.2 J	21	ug/kg		
Ethylbenzene	ND	21	ug/kg		
Styrene	ND	21	ug/kg		
Xylenes (total)	ND	21	ug/kg		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	104	(59 - 138)			
1,2-Dichloroethane-d4	125	(61 - 130)			
Toluene-d8	111	(60 - 143)			
4 Duama filmanahaanaa	104	/47 150			

(Continued on next page)

(47 - 158)

124

4-Bromofluorobenzene

Client Sample ID: SED DUP

GC/MS Volatiles

Lot-Sample #...: A9G160126-008 Work Order #...: LGKQH1AC Matrix...... SO

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- J Estimated result. Result is less than RL.
- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: SW2

GC/MS Volatiles

Lot-Sample #...: A9G160126-009 Work Order #...: LGKQL1AA Matrix..... WG

Date Sampled...: 07/15/09 14:00 Date Received..: 07/16/09 Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene (total)	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
rans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
1-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Coluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
(ylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	96	(73 - 122))
,2-Dichloroethane-d4	104	(61 - 128))
Coluene-d8	101	(76 - 110))
l-Bromofluorobenzene	92	(74 - 116))

Client Sample ID: SED 2

GC/MS Volatiles

Lot-Sample #...: A9G160126-010 Work Order #...: LGKQX1AC Matrix...... SO

Date Sampled...: 07/15/09 14:10 Date Received..: 07/16/09 Prep Date....: 07/20/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202420

Dilution Factor: Initial Wgt/Vol: 5 g Final Wgt/Vol.: 5 mL

% Moisture....: 82 / Method.....: SW846 8260B

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	56	ug/kg	
Bromomethane	ND	56	ug/kg	
Vinyl chloride	ND	56	ug/kg	
Chloroethane	ND	56	ug/kg	
Methylene chloride	8.6 J	28	ug/kg)
Acetone	ND	110	ug/kg	
Carbon disulfide	ND	28	ug/kg	1 aci in penal
1,1-Dichloroethene	ND	28	ug/kg	1 Low money
1,1-Dichloroethane	ND	28	ug/kg	tel performance
1,2-Dichloroethene	ND	28	ug/kg	Low in kind
(total)				11 115
Chloroform	1.6 J	28	ug/kg	all ND qualified os US
1,2-Dichloroethane	ND	28	ug/kg	1:6:0
2-Butanone	ND	110	ug/kg	1 qualitied
1,1,1-Trichloroethane	ND	28	ug/kg	
Carbon tetrachloride	ND	28	ug/kg	as les
Bromodichloromethane	ND	28	ug/kg	
1,2-Dichloropropane	ND	28	ug/kg	- SClaux. 30
cis-1,3-Dichloropropene	ND	28	ug/kg	
Trichloroethene	ND	28	ug/kg	
Dibromochloromethane	ND	28	ug/kg	
1,1,2-Trichloroethane	ND	28	ug/kg	1
Benzene	ND	28	ug/kg	
trans-1,3-Dichloropropene	ND	28	ug/kg	1
Bromoform	ND	28	ug/kg	
4-Methyl-2-pentanone	ND	110	ug/kg	
2-Hexanone	ND	110	ug/kg	
Tetrachloroethene	ND	28	ug/kg	
1,1,2,2-Tetrachloroethane	ND	28	ug/kg	
Toluene	34	28	ug/kg	
Chlorobenzene	ND	28	ug/kg	
Ethylbenzene	ND	28	ug/kg	lagged on
Styrene	ND	28	ug/kg	Dane
Xylenes (total)	ND	28	ug/kg	1.5 1
				nigh
	PERCENT	RECOVERY		based on high moisture
SURROGATE	RECOVERY	LIMITS		moister
Dibromofluoromethane	100	(59 - 138)	
1,2-Dichloroethane-d4	80	(61 - 130		
Toluene-d8	74	(60 - 143		
4 B 63 1			į.	

(Continued on next page)

(47 - 158)

49

4-Bromofluorobenzene

Client Sample ID: SED 2

GC/MS Volatiles

Lot-Sample #...: A9G160126-010 Work Order #...: LGKQX1AC Matrix......... S0

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: OW19

GC/MS Volatiles

Lot-Sample #...: A9G160126-011 Work Order #...: LGKQ11AJ Matrix..... WG

Date Sampled...: 07/15/09 14:55 Date Received..: 07/16/09 Prep Date.....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	2.1	2.0	ug/L
Chloroethane	1.0 J	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
,1-Dichloroethene	ND	1.0	ug/L
,1-Dichloroethane	ND	1.0	ug/L
,2-Dichloroethene	0.94 J	1.0	ug/L
(total)			3
hloroform	ND	1.0	ug/L
,2-Dichloroethane	ND	1.0	ug/L
?-Butanone	ND	10	ug/L
,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
,2-Dichloropropane	ND	1.0	ug/L
is-1,3-Dichloropropene	ND	1.0	ug/L
richloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.9	1.0	ug/L
rans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
?-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Coluene	ND	1.0	ug/L
Chlorobenzene	7.9	1.0	ug/L
Sthylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
(ylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	94	(73 - 12)	2)
,2-Dichloroethane-d4	99	(61 - 12)	
oluene-d8	104	(76 - 110	
l-Bromofluorobenzene	94	(74 - 11)	6)

Client Sample ID: OW19

GC/MS Volatiles

Lot-Sample #...: A9G160126-011 Work Order #...: LGKQ11AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: TB2

GC/MS Volatiles

Lot-Sample #...: A9G160126-012 Work Order #...: LGKQ31AA Matrix..... WQ

Prep Batch #...: 9202405

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Chloromethane	ND	2.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Vinyl chloride	ND	2.0	ug/L	
Chloroethane	ND	2.0	ug/L	
Methylene chloride	ND	1.0	ug/L	
Acetone	2.5 J	10	ug/L	
Carbon disulfide	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethene	ND	1.0	ug/L	
(total)			-	
Chloroform	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
2-Butanone	ND	10	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Bromodichloromethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
Benzene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Bromoform	ND	1.0	ug/L	
4-Methyl-2-pentanone	ND	5.0	ug/L	
2-Hexanone	ND	10	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Styrene	ND	1.0	ug/L	
Xylenes (total)	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	98	(73 - 122)		
1,2-Dichloroethane-d4	101	(61 - 128)		
Toluene-d8	104	(76 - 110)		
4-Bromofluorobenzene	92	(74 - 116))	

Client Sample ID: TB2

GC/MS Volatiles

Lot-Sample #...: A9G160126-012 Work Order #...: LGKQ31AA Matrix....: WQ

NOTE (S):

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGR661AA

Matrix....: WATER

MB Lot-Sample #: A9G210000-338

Prep Date....: 07/17/09

Final Wgt/Vol..: 5 mL

Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 1

Initial Wgt/Vol: 5 mL

REPORTING

		KEFOKIING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Chloromethane	ND	2.0	ug/L	SW846 8260B	
Bromomethane	ND	2.0	ug/L	SW846 8260B	
Vinyl chloride	ND	2.0	ug/L	SW846 8260B	
Chloroethane	ND	2.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
Acetone	ND	10	ug/L	SW846 8260B	
Carbon disulfide	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
<pre>1,2-Dichloroethene (total)</pre>	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
2-Hexanone	ND	10	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND	1.0	ug/L	SW846 8260B	
	PERCENT	RECOVERY	ď		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	93	(73 - 12)			
1,2-Dichloroethane-d4	98	(61 - 128)			
Toluene-d8	106	(76 - 110)			
4-Bromofluorobenzene	94	(74 - 116)			

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGR661AA Matrix..... WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTLM1AA Ma

Matrix..... WATER

Final Wgt/Vol..: 5 mL

MB Lot-Sample #: A9G210000-386

Analysis Date..: 07/20/09

Dilution Factor: 1

Prep Date....: 07/20/09

Prep Batch #...: 9202386

Initial Wgt/Vol: 5 mL

REPORTING
LITT OLIT TILO

		NET ON TING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Chloromethane	ND	2.0	ug/L	SW846 8260B	
Bromomethane	ND	2.0	ug/L	SW846 8260B	
Vinyl chloride	ND	2.0	ug/L	SW846 8260B	
Chloroethane	ND	2.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
Acetone	ND	10	ug/L	SW846 8260B	
Carbon disulfide	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
<pre>1,2-Dichloroethene (total)</pre>	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
2-Hexanone	ND	10	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND	1.0	ug/L	SW846 8260B	
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	93	(73 - 122)			
1,2-Dichloroethane-d4	98	(61 - 128)			
Toluene-d8	97	(76 - 110)			
4-Bromofluorobenzene	92	(74 - 116)			

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGTLM1AA Matrix....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTP91AA Matrix....: WATER

MB Lot-Sample #: A9G210000-405

Prep Date....: 07/21/09 Final Wgt/Vol..: 5 mL

Analysis Date..: 07/21/09 Prep Batch #...: 9202405 Initial Wgt/Vol: 5 mL

Dilution Factor: 1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	2.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
Acetone	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
(total)				
Chloroform	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	10	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
-			-	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	96	(73 - 12	2)	
1,2-Dichloroethane-d4	102	(61 - 12		
Toluene-d8	98	(76 - 11	0)	

(Continued on next page)

(74 - 116)

96

4-Bromofluorobenzene

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGTP91AA Matrix....: WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGTQ41AA

Matrix....: SOLID

MB Lot-Sample #: A9G210000-420

Prep Date....: 07/20/09

Final Wgt/Vol..: 5 mL

Analysis Date..: 07/20/09 Dilution Factor: 1

Prep Batch #...: 9202420

Initial Wgt/Vol: 5 g

REPORTING

		KEFORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Chloromethane	ND	10	ug/kg	SW846 8260B	
Bromomethane	ND	10	ug/kg	SW846 8260B	
Vinyl chloride	ND	10	ug/kg	SW846 8260B	
Chloroethane	ND	10	ug/kg	SW846 8260B	
Methylene chloride	ND	5.0	ug/kg	SW846 8260B	
Acetone	ND	20	ug/kg	SW846 8260B	
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
(total)					
Chloroform	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B	
2-Butanone	ИD	20	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B	
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B	
Trichloroethene	ND	5.0	ug/kg	SW846 8260B	
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B	
Benzene	ND	5.0	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B	
Bromoform	ND	5.0	ug/kg	SW846 8260B	
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B	
2-Hexanone	0.87 J	20	ug/kg	SW846 8260B	
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B	
Toluene	ND	5.0	ug/kg	SW846 8260B	
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B	
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B	
Styrene	ND	5.0	ug/kg	SW846 8260B	
Xylenes (total)	ND	5.0	ug/kg	SW846 8260B	
	PERCENT	RECOVERY	,		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	92	(59 - 138)
1,2-Dichloroethane-d4	95	(61 - 130)
Toluene-d8	92	(60 - 143)
4-Bromofluorobenzene	88	(47 - 158)

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGTQ41AA Matrix....: SOLID

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGXKR1AA Matrix....: SOLID

MB Lot-Sample #: A9G230000-193

Prep Date....: 07/22/09 Final Wgt/Vol..: 5 mL

Analysis Date..: 07/22/09 Prep Batch #...: 9204193

Dilution Factor: 1 Initial Wgt/Vol: 5 g

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	10	ug/kg	SW846 8260B
Bromomethane	ND	10	ug/kg	SW846 8260B
Vinyl chloride	ND	10	ug/kg	SW846 8260B
Chloroethane	ND	10	ug/kg	SW846 8260B
Methylene chloride	0.74 J	5.0	ug/kg	SW846 8260B
Acetone	6.9 J	20	ug/kg	SW846 8260B
Carbon disulfide	ND	5.0	uq/kq	SW846 8260B
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
(total)			J J	
Chloroform	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
2-Butanone	ND	20	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Trichloroethene	ND	5.0	ug/kg	SW846 8260B
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Benzene	ND	5.0	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Bromoform	ND	5.0	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B
2-Hexanone	ND	20	ug/kg	SW846 8260B
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ИD	5.0	ug/kg	SW846 8260B
Styrene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	5.0	ug/kg	SW846 8260B
	PERCENT	RECOVERY	ď	
SURROGATE	RECOVERY	LIMITS_		
Dibromofluoromethane	106	(59 - 13	38)	
1,2-Dichloroethane-d4	120	(61 - 13	30)	
Toluene-d8	109	(60 - 14	13)	
A-Bromofluorobonsono	111	(47 10	- 0 \	

(Continued on next page)

(47 - 158)

111

4-Bromofluorobenzene

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 9G15158

Work Order #...: LGXKR1AA Matrix....: SOLID

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

North Canton 70

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGR661AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G210000-338 LGR661AD-LCSD

Prep Date....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	89	(63 - 130)			SW846 8260B
	87	(63 - 130)	2.3	(0-20)	SW846 8260B
Trichloroethene	93	(75 - 122)			SW846 8260B
	88	(75 - 122)	5.8	(0-20)	SW846 8260B
Benzene	93	(80 - 116)			SW846 8260B
	87	(80 - 116)	6.4	(0-20)	SW846 8260B
Toluene	101	(74 - 119)			SW846 8260B
	97	(74 - 119)	3.7	(0-20)	SW846 8260B
Chlorobenzene	96	(76 - 117)			SW846 8260B
	92	(76 - 117)	4.0	(0-20)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	<u>s</u>	
Dibromofluoromethane		95	(73 -	122)	
		95	(73 -	122)	
1,2-Dichloroethane-d4		99	(61 -	128)	
		98	(61 -	128)	
Toluene-d8		101	(76 -	110)	
		102	(76 -	110)	
4-Bromofluorobenzene		91	(74 -	116)	
		95	(74 -	116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGR661AC-LCS Matrix.... WATER

LCS Lot-Sample#: A9G210000-338 LGR661AD-LCSD

Prep Date....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURE)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,1-Dichloroethene	10	8.9	ug/L	89		SW846 8260B
	10	8.7	ug/L	87	2.3	SW846 8260B
Trichloroethene	10	9.3	ug/L	93		SW846 8260B
	10	8.8	ug/L	88	5.8	SW846 8260B
Benzene	10	9.3	ug/L	93		SW846 8260B
	10	8.7	ug/L	87	6.4	SW846 8260B
Toluene	10	10	ug/L	101		SW846 8260B
	10	9.7	ug/L	97	3.7	SW846 8260B
Chlorobenzene	10	9.6	ug/L	96		SW846 8260B
	10	9.2	ug/L	92	4.0	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE	**		RECOVERY	LIMITS		
Dibromofluoromethane			95	(73 - 122))	
			95	(73 - 122)	
1,2-Dichloroethane-d4			99	(61 - 128)	
			98	(61 - 128)	
Toluene-d8			101	(76 - 110)	
			102	(76 - 110)	
4-Bromofluorobenzene			91	(74 - 116)	
			95	(74 - 116)	
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTLM1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G210000-386 LGTLM1AD-LCSD

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	85	(63 - 130)			SW846 8260B
	87	(63 - 130)	2.4	(0-20)	SW846 8260B
Trichloroethene	86	(75 - 122)			SW846 8260B
	87	(75 - 122)	1.8	(0-20)	SW846 8260B
Benzene	86	(80 - 116)			SW846 8260B
	88	(80 - 116)	1.9	(0-20)	SW846 8260B
Toluene	93	(74 - 119)			SW846 8260B
	90	(74 - 119)	2.5	(0-20)	SW846 8260B
Chlorobenzene	92	(76 - 117)			SW846 8260B
	91	(76 - 117)	0.61	(0-20)	SW846 8260B
		PERCENT	RECOVE	RY	
SURROGATE		RECOVERY	LIMITS	; }	
Dibromofluoromethane		95	(73 -	122)	
		96	(73 -	122)	
1,2-Dichloroethane-d4		99	(61 -	128)	
		101	(61 -	128)	
Toluene-d8		100	(76 -	110)	
		96	(76 -	110)	
4-Bromofluorobenzene		99	(74 -	116)	
		97	(74 -	116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Matrix....: WATER Work Order #...: LGTLM1AC-LCS

LCS Lot-Sample#: A9G210000-386 LGTLM1AD-LCSD

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURE)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,1-Dichloroethene	10	8.5	ug/L	85		SW846 8260B
	10	8.7	ug/L	87	2.4	SW846 8260B
Trichloroethene	10	8.6	ug/L	86		SW846 8260B
	10	8.7	ug/L	87	1.8	SW846 8260B
Benzene	10	8.6	ug/L	86		SW846 8260B
	10	8.8	ug/L	88	1.9	SW846 8260B
Toluene	10	9.3	ug/L	93		SW846 8260B
	10	9.0	ug/L	90	2.5	SW846 8260B
Chlorobenzene	10	9.2	ug/L	92		SW846 8260B
	10	9.1	ug/L	91	0.61	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS	_	
Dibromofluoromethane			95	(73 - 122)	
			96	(73 - 122)	
1,2-Dichloroethane-d4			99	(61 - 128)	
			101	(61 - 128)	
Toluene-d8			100	(76 - 110)	
			96	(76 - 110)	
4-Bromofluorobenzene			99	(74 - 116)	
			97	(74 - 116)	
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

North Canton 74

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTP91AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G210000-405 LGTP91AD-LCSD

Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	85	(63 - 130)			SW846 8260B
	85	(63 - 130)	0.10	(0-20)	SW846 8260B
Trichloroethene	87	(75 - 122)			SW846 8260B
	89	(75 - 122)	1.5	(0-20)	SW846 8260B
Benzene	91	(80 - 116)			SW846 8260B
	91	(80 - 116)	0.19	(0-20)	SW846 8260B
Toluene	97	(74 - 119)			SW846 8260B
	97	(74 - 119)	0.040	(0-20)	SW846 8260B
Chlorobenzene	95	(76 - 117)			SW846 8260B
	94	(76 - 117)	0.83	(0-20)	SW846 8260B
		PERCENT	RECOVE	ERY	
SURROGATE		RECOVERY	LIMITS	5	
Dibromofluoromethane		94	(73 -	122)	
		97	(73 -	122)	
1,2-Dichloroethane-d4		100	(61 -	128)	
		100	(61 -	128)	
Toluene-d8		97	(76 -	110)	
		99	(76 -	110)	
4-Bromofluorobenzene		96	(74 –	116)	
		98	(74 -	116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTP91AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G210000-405 LGTP91AD-LCSD

Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURED)	PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO)
1,1-Dichloroethene	10	8.5	ug/L	85	***************************************	SW846	8260B
	10	8.5	ug/L	85	0.10	SW846	8260B
Trichloroethene	10	8.7	ug/L	87		SW846	8260B
	10	8.9	ug/L	89	1.5	SW846	8260B
Benzene	10	9.1	ug/L	91		SW846	8260B
	10	9.1	ug/L	91	0.19	SW846	8260B
Toluene	10	9.7	ug/L	97		SW846	8260B
	10	9.7	ug/L	97	0.040	SW846	8260B
Chlorobenzene	10	9.5	ug/L	95		SW846	8260B
	10	9.4	ug/L	94	0.83	SW846	8260B
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
Dibromofluoromethane			94	(73 - 122)		
			97	(73 - 122)		
1,2-Dichloroethane-d4			100	(61 - 128)		
			100	(61 - 128)		
Toluene-d8			97	(76 - 110)		
			99	(76 - 110)		
4-Bromofluorobenzene			96	(74 - 116)		
			98	(74 - 116)		
NOTE(S):							

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTQ41AC-LCS Matrix....: SOLID

LCS Lot-Sample#: A9G210000-420 LGTQ41AD-LCSD

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202420

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIM	ITS METHOD
1,1-Dichloroethene	76	(55 - 142)		SW846 8260B
	85	(55 - 142)	11 (0-	27) SW846 8260B
Trichloroethene	79	(70 - 131)		SW846 8260B
	104 p	(70 - 131)	27 (0	23) SW846 8260B
Benzene	81	(75 - 129)		SW846 8260B
	89	(75 - 129)	8.7 (0-	20) SW846 8260B
Toluene	81	(71 - 130)		SW846 8260B
	88	(71 - 130)	9.1 (0-	24) SW846 8260B
Chlorobenzene	82	(75 - 127)		SW846 8260B
	89	(75 - 127)	8.2 (0-	22) SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		93	(59 - 138))
		92	(59 - 138))
1,2-Dichloroethane-d4		88	(61 - 130))
		92	(61 - 130))
Toluene-d8		92	(60 - 143))
		97	(60 - 143))
4-Bromofluorobenzene		89	(47 - 158))
		89	(47 - 158))

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

p Relative percent difference (RPD) is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGTQ41AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A9G210000-420 LGTQ41AD-LCSD

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202420

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	SPIKE	MEASURE)	PERCENT		
PARAMETER	AMOUNT	TRUOMA	UNITS	RECOVERY	RPD	METHOD
1,1-Dichloroethene	50	38	ug/kg	76		SW846 8260B
	50	42	ug/kg	85	11	SW846 8260B
Trichloroethene	50	40	ug/kg	79		SW846 8260B
	50	52 p	ug/kg	104	27	SW846 8260B
Benzene	50	41	ug/kg	81		SW846 8260B
	50	44	ug/kg	89	8.7	SW846 8260B
Toluene	50	40	ug/kg	81		SW846 8260B
	50	44	ug/kg	88	9.1	SW846 8260B
Chlorobenzene	50	41	ug/kg	82		SW846 8260B
	50	44	ug/kg	89	8.2	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE	_		RECOVERY	LIMITS		
Dibromofluoromethane			93	(59 - 138)	
			92	(59 - 138)	
1,2-Dichloroethane-d4			88	(61 - 130)	
			92	(61 - 130)	
Toluene-d8			92	(60 - 143)	
			97	(60 - 143)	
4-Bromofluorobenzene			89	(47 - 158)	}	
			89	(47 - 158)	
NOTE(S):						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

p Relative percent difference (RPD) is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGXKR1AC-LCS Matrix.....: SOLID

LCS Lot-Sample#: A9G230000-193 LGXKR1AD-LCSD

Prep Date....: 07/22/09 Analysis Date..: 07/22/09

Prep Batch #...: 9204193

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	102	(55 - 142)			SW846 8260B
	104	(55 - 142)	2.4	(0-27)	SW846 8260B
Trichloroethene	88	(70 - 131)			SW846 8260B
	92	(70 - 131)	4.2	(0-23)	SW846 8260B
Benzene	103	(75 - 129)			SW846 8260B
	104	(75 - 129)	1.2	(0-20)	SW846 8260B
Toluene	102	(71 - 130)			SW846 8260B
	103	(71 - 130)	1.1	(0-24)	SW846 8260B
Chlorobenzene	94	(75 - 127)			SW846 8260B
	96	(75 - 127)	1.4	(0-22)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Dibromofluoromethane		104	(59 -	138)	
		105	(59 -	138)	
1,2-Dichloroethane-d4		111	(61 -	130)	
		118	(61 -	130)	
Toluene-d8		112	(60 -	143)	
		111	(60 -	143)	
4-Bromofluorobenzene		108	(47 -	158)	
		108	(47 -	158)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGXKR1AC-LCS Matrix....: SOLID

LCS Lot-Sample#: A9G230000-193 LGXKR1AD-LCSD

Prep Date....: 07/22/09 Analysis Date..: 07/22/09

Prep Batch #...: 9204193

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 g

	SPIKE	MEASURED)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,1-Dichloroethene	50	51	ug/kg	102	***************************************	SW846 8260B
	50	52	ug/kg	104	2.4	SW846 8260B
Trichloroethene	50	44	ug/kg	88		SW846 8260B
	50	46	ug/kg	92	4.2	SW846 8260B
Benzene	50	51	ug/kg	103		SW846 8260B
	50	52	ug/kg	104	1.2	SW846 8260B
Toluene	5 0	51	ug/kg	102		SW846 8260B
	50	51	ug/kg	103	1.1	SW846 8260B
Chlorobenzene	50	47	ug/kg	94		SW846 8260B
	50	48	ug/kg	96	1.4	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE	_		RECOVERY	LIMITS		
Dibromofluoromethane			104	(59 - 138)	
			105	(59 - 138)	
1,2-Dichloroethane-d4			111	(61 - 130)	
			118	(61 - 130)	
Toluene-d8			112	(60 - 143)	
			111	(60 - 143)	
4-Bromofluorobenzene			108	(47 - 158)	
			108	(47 - 158)	
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKRJ1AC-MS Matrix.....: WATER

MS Lot-Sample #: A9G160134-001 LGKRJ1AD-MSD

Date Sampled...: 07/15/09 09:30 Date Received..: 07/16/09

Prep Date....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 3.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)
1,1-Dichloroethene	89	(62 - 130)			SW846	8260B
	91	(62 - 130)	2.2	(0-20)	SW846	8260B
Trichloroethene	90	(62 - 130)			SW846	8260B
	91	(62 - 130)	0.57	(0-20)	SW846	8260B
Benzene	99	(78 - 118)			SW846	8260B
	97	(78 - 118)	1.3	(0-20)	SW846	8260B
Toluene	101	(70 - 119)			SW846	8260B
	103	(70 - 119)	2.0	(0-20)	SW846	8260B
Chlorobenzene	98	(76 - 117)			SW846	8260B
	99	(76 - 117)	0.81	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		93		(73 - 122)	
		91		(73 - 122)	
1,2-Dichloroethane-d4		93		(61 - 128))	
		90		(61 - 128))	
Toluene-d8		101		(76 - 110))	
		101		(76 - 110))	
4-Bromofluorobenzene		96		(74 - 116))	
		94		(74 - 116))	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKRJ1AC-MS Matrix..... WATER

MS Lot-Sample #: A9G160134-001 LGKRJ1AD-MSD

Date Sampled...: 07/15/09 09:30 Date Received..: 07/16/09 Prep Date....: 07/17/09 Analysis Date..: 07/17/09

Prep Batch #...: 9202338

Dilution Factor: 3.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	33	30	ug/L	89		SW846 8260B
	ND	33	30	ug/L	91	2.2	SW846 8260B
Trichloroethene	ND	33	30	ug/L	90		SW846 8260B
	ND	33	30	ug/L	91	0.57	SW846 8260B
Benzene	11	33	44	ug/L	99		SW846 8260B
	11	33	44	ug/L	97	1.3	SW846 8260B
Toluene	ND	33	33	ug/L	101		SW846 8260B
	ND	33	34	ug/L	103	2.0	SW846 8260B
Chlorobenzene	7.0	33	40	ug/L	98		SW846 8260B
	7.0	33	40	ug/L	99	0.81	SW846 8260B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	93	(73 - 122)
	91	(73 - 122)
1,2-Dichloroethane-d4	93	(61 - 128)
	90	(61 - 128)
Toluene-d8	101	(76 - 110)
	101	(76 - 110)
4-Bromofluorobenzene	96	(74 - 116)
	94	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKP41A2-MS Matrix..... WG

MS Lot-Sample #: A9G160126-002 LGKP41A3-MSD

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD)
1,1-Dichloroethene	92	(62 - 130)			SW846	8260B
	91	(62 - 130)	1.6	(0-20)	SW846	8260B
Trichloroethene	86	(62 - 130)			SW846	8260B
	86	(62 - 130)	0.09	(0-20)	SW846	8260B
Benzene	90	(78 - 118)			SW846	8260B
	89	(78 - 118)	1.0	(0-20)	SW846	8260B
Toluene	98	(70 - 119)			SW846	8260B
	96	(70 - 119)	2.0	(0-20)	SW846	8260B
Chlorobenzene	94	(76 - 117)			SW846	8260B
	91	(76 - 117)	2.2	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		96		(73 - 122))	
		95		(73 - 122)	
1,2-Dichloroethane-d4		91		(61 - 128)	
		92		(61 - 128)	
Toluene-d8		101		(76 - 110)	
		100		(76 - 110)	
4-Bromofluorobenzene		96		(74 - 116)	
		97		(74 - 116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKP41A2-MS Matrix..... WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

Prep Date....: 07/20/09 Analysis Date..: 07/20/09

Prep Batch #...: 9202386

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10	9.2	ug/L	92		SW846 8260B
	ND	10	9.1	ug/L	91	1.6	SW846 8260B
Trichloroethene	ND	10	8.6	ug/L	86		SW846 8260B
	ND	10	8.6	ug/L	86	0.09	SW846 8260B
Benzene	2.1	10	11	ug/L	90		SW846 8260B
	2.1	10	11	ug/L	89	1.0	SW846 8260B
Toluene	ND	10	9.8	ug/L	98		SW846 8260B
	ND	10	9.6	ug/L	96	2.0	SW846 8260B
Chlorobenzene	ND	10	9.4	ug/L	94		SW846 8260B
	ND	10	9.1	ug/L	91	2.2	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	96	$\overline{(73 - 122)}$
	95	(73 - 122)
1,2-Dichloroethane-d4	91	(61 - 128)
	92	(61 - 128)
Toluene-d8	101	(76 - 110)
	100	(76 - 110)
4-Bromofluorobenzene	96	(74 - 116)
	97	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKX21AC-MS Matrix....: WATER

MS Lot-Sample #: A9G160159-002 LGKX21AD-MSD

Date Sampled...: 07/14/09 11:40 Date Received..: 07/16/09

Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1.43 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOI	1
1,1-Dichloroethene	89	(62 - 130)	1(1 1)	BIHLID		8260B
	86	(62 - 130)	2.9	(0-20)		8260B
Trichloroethene	92	(62 - 130)		,		8260B
	91	(62 - 130)	0.58	(0-20)		8260B
Benzene	91	(78 - 118)			SW846	8260B
	88	(78 - 118)	3.0	(0-20)	SW846	8260B
Toluene	100	(70 - 119)			SW846	8260B
	95	(70 - 119)	6.0	(0-20)	SW846	8260B
Chlorobenzene	95	(76 - 117)			SW846	8260B
	89	(76 - 117)	6.6	(0-20)	SW846	8260B
		PERCENT		DECOVEDA		
SURROGATE		RECOVERY		RECOVERY LIMITS		
Dibromofluoromethane	··	92		$\frac{110113}{(73 - 122)}$	<u> </u>	
		94		(73 - 122)	•	
1,2-Dichloroethane-d4		89		(61 - 128	•	
		98		(61 - 128	•	
Toluene-d8		101		(76 - 110		
		100		(76 - 110	•	
4-Bromofluorobenzene		92		(74 - 116		
		96		(74 - 116		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKX21AC-MS Matrix....: WATER

MS Lot-Sample #: A9G160159-002 LGKX21AD-MSD

Date Sampled...: 07/14/09 11:40 Date Received..: 07/16/09

Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1.43 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD
1,1-Dichloroethene	0.37	14	13	ug/L	89	1011	SW846 8260B
	0.37	1.4	13	ug/L	86	2.9	SW846 8260B
Trichloroethene	13	14	26	ug/L	92		SW846 8260B
	13	14	26	ug/L	91	0.58	SW846 8260B
Benzene	ND	14	13	ug/L	91		SW846 8260B
	ND	14	13	ug/L	88	3.0	SW846 8260B
Toluene	ND	14	14	ug/L	100		SW846 8260B
	ND	14	14	ug/L	95	6.0	SW846 8260B
Chlorobenzene	ND	14	14	ug/L	95		SW846 8260B
	ND	14	1.3	uq/L	89	6.6	SW846 8260B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	92	$\frac{1}{(73 - 122)}$
	94	(73 - 122)
1,2-Dichloroethane-d4	89	(61 - 128)
	98	(61 - 128)
Toluene-d8	101	(76 - 110)
	100	(76 - 110)
4-Bromofluorobenzene	92	(74 - 116)
	96	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKQL1AC-MS Matrix.....: WG

MS Lot-Sample #: A9G160126-009 LGKQL1AD-MSD

Date Sampled...: 07/15/09 14:00 Date Received..: 07/16/09

Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO	
1,1-Dichloroethene	82	(62 - 130)			SW846	8260B
	84	(62 - 130)	2.4	(0-20)	SW846	8260B
Trichloroethene	85	(62 - 130)			SW846	8260B
	86	(62 - 130)	1.5	(0-20)	SW846	8260B
Benzene	88	(78 - 118)			SW846	8260B
	87	(78 - 118)	0.90	(0-20)	SW846	8260B
Toluene	97	(70 - 119)			SW846	8260B
	95	(70 - 119)	1.9	(0-20)	SW846	8260B
Chlorobenzene	93	(76 - 117)			SW846	8260B
	90	(76 - 117)	3.2	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	_	RECOVERY		LIMITS		
Dibromofluoromethane		94		(73 - 122)	
		94		(73 - 122)	
1,2-Dichloroethane-d4		101		(61 - 128)	
		101		(61 - 128)	
Toluene-d8		100		(76 - 110)	
		98		(76 - 110))	
4-Bromofluorobenzene		96		(74 - 116)		
		95		(74 - 116)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKQL1AC-MS Matrix....: WG

MS Lot-Sample #: A9G160126-009 LGKQL1AD-MSD

Date Sampled...: 07/15/09 14:00 Date Received..: 07/16/09 Prep Date....: 07/21/09 Analysis Date..: 07/21/09

Prep Batch #...: 9202405

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10	8.2	ug/L	82		SW846 8260B
	ND	10	8.4	ug/L	84	2.4	SW846 8260B
Trichloroethene	ND	10	8.5	ug/L	85		SW846 8260B
	ND	10	8.6	ug/L	86	1.5	SW846 8260B
Benzene	ND	10	8.8	ug/L	88		SW846 8260B
	ND	10	8.7	ug/L	87	0.90	SW846 8260B
Toluene	ND	10	9.7	ug/L	97		SW846 8260B
	ND	10	9.5	ug/L	95	1.9	SW846 8260B
Chlorobenzene	ND	10	9.3	ug/L	93		SW846 8260B
	ND	10	9.0	ug/L	90	3.2	SW846 8260B

ava	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	94	$\overline{(73 - 122)}$
	94	(73 - 122)
1,2-Dichloroethane-d4	101	(61 - 128)
	101	(61 - 128)
Toluene-d8	100	(76 - 110)
	98	(76 - 110)
4-Bromofluorobenzene	96	(74 - 116)
	95	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC VOLATILE DATA

North Canton 89

Client Sample ID: OW5

GC Volatiles

Lot-Sample #...: A9G150158-001 Work Order #...: LGHM71AH Matrix..... WG

Date Sampled...: 07/14/09 08:50 Date Received..: 07/15/09 Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method.....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 4.4 0.50 ug/L

Client Sample ID: OW6

GC Volatiles

Lot-Sample #...: A9G150158-002 Work Order #...: LGHPH1AH Matrix..... WG

Date Sampled...: 07/14/09 09:50 Date Received..: 07/15/09

Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method..... RSK SOP-175

REPORTING

PARAMETER RESULT UNITS LIMIT Ethane ND 0.50 ug/L Ethene ND 0.50 uq/L Methane ND 0.50 ug/L

Client Sample ID: OW13R

GC Volatiles

Lot-Sample #...: A9G150158-003 Work Order #...: LGHPK1AH Matrix..... WG

Date Sampled...: 07/14/09 11:30 Date Received..: 07/15/09 Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method.....: RSK SOP-175

REPORTING

		TIME OLITHIA	•		
PARAMETER	RESULT	LIMIT	UNITS		
Ethane	ND	0.50	ug/L		
Ethene	ND	0.50	ug/L		
Methane	220	0.50	ug/L		

Client Sample ID: OW8

GC Volatiles

Lot-Sample #...: A9G150158-004 Work Order #...: LGHPL1AH Matrix....: WG

Date Sampled...: 07/14/09 14:00 Date Received..: 07/15/09

Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method....: RSK SOP-175

REPORTING

PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 1.4 0.50 ug/L

Client Sample ID: DUP1

GC Volatiles

Lot-Sample #...: A9G150158-005

Work Order #...: LGHPM1AH

Matrix..... WG

Date Sampled...: 07/14/09 Prep Date....: 07/24/09

Date Received..: 07/15/09

Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Initial Wqt/Vol: 1 mL

Final Wqt/Vol..: 1 mL

Dilution Factor: 1

Method..... RSK SOP-175

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Ethane	ND	0.50	ug/L
Ethene	ND	0.50	ug/L
Methane	210	0.50	ug/L

220-210 N/00= 1(220+216) 1(220+216) 0K 0W-13R 0W-13R

Client Sample ID: MW1

GC Volatiles

	07/14/09 15:05 07/24/09	Work Order #: Date Received: Analysis Date:	07/15/09	Matrix: WG
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1 mL	Final Wgt/Vol: 1 mL
		Method:	RSK SOP-17	5
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Ethane		ND	0.50	ug/L
Ethene		ND	0.50	ug/L
Methane		0.47 J	0.50	ug/L
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: OW22

GC Volatiles

Lot-Sample #...: A9G160126-001 Work Order #...: LGKPV1AH Matrix....: WG Date Sampled...: 07/15/09 09:05 Date Received..: 07/16/09 Analysis Date..: 07/24/09

Prep Date....: 07/24/09 Prep Batch #...: 9208134

Dilution Factor: 5 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method..... RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 2.5 ug/L Ethene ND 2.5 ug/L Methane 1100 2.5 ug/L

Client Sample ID: OW21

GC Volatiles

Lot-Sample #...: A9G160126-002 Work Order #...: LGKP41AW Matrix..... WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09 Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 110 0.50 ug/L

Client Sample ID: OW10R

GC Volatiles

Lot-Sample #...: A9G160126-004 Work Order #...: LGKP81AH Matrix.....: WG
Date Sampled...: 07/15/09 11:40 Date Received..: 07/16/09
Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 5 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

Method..... RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 2.5 ug/L Ethene ND 2.5 ug/L Methane 1400 2.5 ug/L

Client Sample ID: OW19

GC Volatiles

Lot-Sample #...: A9G160126-011 Work Order #...: LGKQ11AH Matrix..... WG
Date Sampled...: 07/15/09 14:55 Date Received..: 07/16/09
Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 2 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

Method.....: RSK SOP-175

REPORTING PARAMETER RESULT LIMIT UNITS Ethane ND 1.0 ug/L Ethene ND 1.0 uq/L Methane 530 1.0 ug/L

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: 9G15158

Work Order #...: LG4KJ1AA

Matrix..... WATER

MB Lot-Sample #: A9G270000-134

Prep Date....: 07/24/09

Final Wgt/Vol..: 1 mL

Analysis Date..: 07/24/09

Dilution Factor: 1

Prep Batch #...: 9208134

Initial Wgt/Vol: 1 mL

REPORTING

		VELOKII	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Methane	ND	0.50	ug/L	RSK SOP-175		
Ethane	ND	0.50	ug/L	RSK SOP-175		
Ethene	ИD	0.50	ug/L	RSK SOP-175		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 9G15158 Work Order #...: LG4KJ1AC Matrix.....: WATER

LCS Lot-Sample#: A9G270000-134

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208134

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	RECOVERY	LIMITS	METHOD
Methane	79	(75 - 127)	RSK SOP-175
thane	83	(74 - 138)	RSK SOP-175
Ethene	79	(73 - 140)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 9G15158 Work Order #...: LG4KJ1AC Matrix...... WATER

LCS Lot-Sample#: A9G270000-134

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208134

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Methane	73	58	ug/L	79	RSK SOP-175
Ethane	140	110	ug/L	83	RSK SOP-175
Ethene	130	100	ug/L	79	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKP41AX-MS Matrix..... WG

MS Lot-Sample #: A9G160126-002 LGKP41A0-MSD

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09 Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
Methane	110	(75 - 127)			RSK SOP-175
	133 a	(75 - 127)	8.6	(0-30)	RSK SOP-175
Ethane	86	(74 - 138)			RSK SOP-175
	87	(74 - 138)	1.2	(0-30)	RSK SOP-175
Ethene	90	(73 - 140)			RSK SOP-175
	90	(73 - 140)	0.08	(0-30)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: 9G15158 Work Order #...: LGKP41AX-MS Matrix..... WG

MS Lot-Sample #: A9G160126-002 LGKP41A0-MSD

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09 Prep Date....: 07/24/09 Analysis Date..: 07/24/09

Prep Batch #...: 9208134

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.: 1 mL

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD
Methane	110	73	190	ug/L	110		RSK SOP-175
	110	73	210	ug/L	133 a	8.6	RSK SOP-175
Ethane	ND	140	120	ug/L	86		RSK SOP-175
	ND	140	120	ug/L	87	1.2	RSK SOP-175
Ethene	ND	130	110	ug/L	90		RSK SOP-175
	ND	130	110	ug/L	90	0.08	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

GENERAL CHEMISTRY DATA

North Canton 105

Client Sample ID: OW5

General Chemistry

Lot-Sample #...: A9G150158-001

Work Order #...: LGHM7

Matrix....: WG

Date Sampled...: 07/14/09 08:50 Date Received..: 07/15/09

						PREPARATION-	PREP	
PARAMETER	RESULT	RL	UNITS	METHO)	ANALYSIS DATE	BATCH #	
Chloride	4.3	1.0	mg/L	MCAWW	300.0A	07/15/09	9197355	
	Di	lution Fact	or: 1					
Nitrate as N	1.2	0.10	mg/L	MCAWW	300.0A	07/15/09	9197354	
	Dilution Factor: 1							
Sulfate	56.1	1.0 lution Facto	mg/L or: l	MCAWW	300.0A	07/15/09	9197352	
Total Alkalinity	91	5.0 lution Facto	mg/L or: 1	MCAWW	310.1	07/16/09	9198042	
Total Organic Carbon	2	1	mg/L	MCAWW	415.1	07/16/09	9197053	
	Di.	lution Facts	or: 1					
Total Sulfide	ND Di	1.0 lution Facto	mg/L or: 1	MCAWW	376.1	07/17/09	9198246	

Client Sample ID: OW6

General Chemistry

Lot-Sample #...: A9G150158-002

Work Order #...: LGHPH

Matrix....: WG

Date Sampled...: 07/14/09 09:50 Date Received..: 07/15/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #		
Chloride	ND Dilu	1.0 Ition Facto	mg/L or: 1	MCAWW 300.0A	07/15/09	9197355		
Nitrate as N	0.30	0.10	mg/L or: 1	MCAWW 300.0A	07/15/09	9197354		
Sulfate	16.9	1.0	mg/L or: 1	MCAWW 300.0A	07/15/09	9197352		
Total Alkalinity	24 Dile	5.0	mg/L or: 1	MCAWW 310.1	07/16/09	9198042		
Total Organic Carbon	1	1	mg/L	MCAWW 415.1	07/16/09	9197053		
	Dilution Factor: 1							
Total Sulfide	ND Dilu	1.0 tion Facto	mg/L or: 1	MCAWW 376.1	07/17/09	9198246		

Client Sample ID: OW13R

General Chemistry

Lot-Sample #...: A9G150158-003 Work Order #...: LGHPK Matrix....: WG

Date Sampled...: 07/14/09 11:30 Date Received..: 07/15/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.7	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/15/09	9197355
Nitrate as N	ND Dil	0.10 ution Fact	mg/L or: 1	MCAWW 300.0A	07/15/09	9197354
Sulfate	22.1 Dil	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/15/09	9197352
Total Alkalinity	290 Dil	5.0 ution Fact	mg/L or: 1	MCAWW 310.1	07/16/09	9198042
Total Organic Carbon	2 (5)	1	mg/L	MCAWW 415.1	07/16/09	9197053
Total Sulfide	20(5)	ution Fact 1.0 ution Fact $_{ m c}$	mg/L	MCAWW 376.1	07/17/09	9198246

Qualified based on field deep. analysis >30%

Client Sample ID: OW8

General Chemistry

Lot-Sample #...: A9G150158-004 Wo

Work Order #...: LGHPL

Matrix..... WG

	-						
Date	Sampled:	07/14/09	14:00	Date	Received:	07/15/09	

PARAMETER	RESULT	RL	UNITS	METHOD		RATION- SIS DATE	PREP BATCH #
Chloride	1.9	1.0 lution Fact	mg/L	MCAWW 300.	0A 07/15/	09	9197355
Nitrate as N	ND Di	0.10 lution Fact	mg/L cor: 1	MCAWW 300.	0A 07/16/	09	9198212
Sulfate	11.7	1.0 Lution Fact	mg/L .or: 1	MCAWW 300.	0A 07/15/	09	9197352
Total Alkalinity	52	5.0 Lution Fact	mg/L or: 1	MCAWW 310.	1 07/16/	09	9198042
Total Organic Carbon	ND	1	mg/L	MCAWW 415.	1 07/16/	09	9197053
	Di	lution Fact	or: 1				
Total Sulfide	ND Di:	1.0 Lution Fact	mg/L or: 1	MCAWW 376.	1 07/17/	09	9198246

Client Sample ID: DUP1

General Chemistry

Lot-Sample #...: A9G150158-005

Work Order #...: LGHPM

Matrix.... WG

Date Sampled...: 07/14/09

Date Received..: 07/15/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.6 / Dil	1.0 ution Fact	mg/L or: 1	MCAWW 300.0A	07/15/09	9197355
Nitrate as N	ND Dil	0.10 ution Fact	mg/L or: 1	MCAWW 300.0A	07/16/09	9198212
Sulfate	22.5 / Dil	1.0	mg/L or: 1	MCAWW 300.0A	07/15/09	9197352
Total Alkalinity	280 V	5.0	mg/L or: 1	MCAWW 310.1	07/16/09	9198042
Total Organic Carbon	3 (5)	1	mg/L	MCAWW 415.1	07/16/09	9197053
Total Sulfide	12(5)	1.0 ution Facto	mg/L	MCAWW 376.1	07/17/09	9198246

 $TOC: \frac{3-2}{\frac{1}{2}(3t^2)} \times 100 = 40\%$

54/5de: 20-12 x/00=50% \frac{1}{2(20+12)}

Qualified based on field dup. analysis
RPD>30%

Client Sample ID: MW1

General Chemistry

Matrix....: WG

Lot-Sample #...: A9G150158-007 Work Order #...: LGHPW Date Sampled...: 07/14/09 15:05 Date Received..: 07/15/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #		
Chloride	3.2 Dil	1.0	mg/L or: 1	MCAWW 300.0A	07/15/09	9197355		
Nitrate as N	2.4 Dil	0.10	mg/L pr: 1	MCAWW 300.0A	07/16/09	9198212		
Sulfate	11.7	1.0 ution Facto	mg/L or: 1	MCAWW 300.0A	07/15/09	9197352		
Total Alkalinity	100	5.0 ution Facto	mg/L or: 1	MCAWW 310.1	07/16/09	9198042		
Total Organic Carbon	1	1	mg/L	MCAWW 415.1	07/16/09	9197053		
	Dilution Factor: 1							
Total Sulfide	8.9	1.0 ution Facto	mg/L or: 1	MCAWW 376.1	07/17/09	9198246		

North Canton

Client Sample ID: OW22

General Chemistry

Lot-Sample #...: A9G160126-001

Work Order #...: LGKPV

Matrix..... WG

Date Sampled...: 07/15/09 09:05 Date Received..: 07/16/09

DA DA MOMODO					_	PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Chloride	11.1	1.0	mg/L	MCAWW	300.0A	07/16/09	9198213
	D	ilution Facto	or: 1				
Nitrate as N	ND	0.10	mg/L	MCAWW	300.0A	07/16/09	9198212
	D	ilution Facto	or: 1				
Sulfate	9.1	1.0 ilution Facto	mg/L or: 1	MCAWW	300.0A	07/16/09	9198211
Total Alkalinity	300	5.0 ilution Facto	mg/L or: 1	MCAWW	310.1	07/17/09	9198042
Total Organic Carbon	9	1	mg/L	MCAWW	415.1	07/20/09	9201305
	D:	ilution Facto	or: 1				
Total Sulfide	ND D:	1.0	mg/L or: 1	MCAWW	376.1	07/17/09	9198246

Client Sample ID: OW21

General Chemistry

Lot-Sample #...: A9G160126-002

Work Order #...: LGKP4

Matrix..... WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	4.2 Dil	1.0 ution Fact	mg/L or: 1	MCAWW	300.0A	07/16/09	9198210
Nitrate as N	ND	0.10 ution Fact	mg/L or: 1	MCAWW	300.0A	07/16/09	9198212
Sulfate	29.3 Dil	1.0 ution Fact	mg/L or: 1	MCAWW	300.0A	07/16/09	9198211
Total Alkalinity	250 Dil	5.0 ution Fact	mg/L or: 1	MCAWW	310.1	07/17/09	9198042
Total Organic Carbon	3	1	mg/L	MCAWW	415.1	07/20/09	9201305
	Dil	ution Fact	or: 1				
Total Sulfide	13	1.0 ution Fact	mg/L or: 1	MCAWW	376.1	07/17/09	9198246

Client Sample ID: OW10R

General Chemistry

Lot-Sample #...: A9G160126-004

Work Order #...: LGKP8

Matrix..... WG

Date Sampled...: 07/15/09 11:40 Date Received..: 07/16/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	ND Dilu	1.0 ution Facto	mg/L or: 1	MCAWW 300.0A	07/16/09	9198210
Nitrate as N	ND Dile	0.10	mg/L or: 1	MCAWW 300.0A	07/16/09	9198212
Sulfate	44.5	1.0 ition Facto	mg/L or: 1	MCAWW 300.0A	07/16/09	9198211
Total Alkalinity	210	5.0	mg/L or: 1	MCAWW 310.1	07/17/09	9198042
Total Organic Carbon	2	1	mg/L	MCAWW 415.1	07/20/09	9201305
	Dilu	tion Facto	or: 1			
Total Sulfide	ND Dilu	1.0 tion Facto	mg/L or: 1	MCAWW 376.1	07/17/09	9198246

Client Sample ID: SED 1

General Chemistry

Lot-Sample #...: A9G160126-007

Work Order #...: LGKQE

Matrix....: SO

Date Sampled...: 07/15/09 13:30 Date Received..: 07/16/09

% Moisture....: 80

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	19.7	10.0	o o	MCAWW 160.3 MOD	07/17-07/20/09	9198143

Dilution Factor: 1

Client Sample ID: SED DUP

General Chemistry

Lot-Sample #...: A9G160126-008 Work Order #...: LGKQH

Matrix..... SO

% Moisture....: 76

Date Sampled...: 07/15/09 Date Received..: 07/16/09

PREPARATION-PREP RESULT RL UNITS METHOD 8 MCAWW 160.3 MOD PARAMETER METHOD ANALYSIS DATE BATCH # 07/17-07/20/09 9198143 Percent Solids

Dilution Factor: 1

23.9-19.7 \(\frac{1}{5}(23.9+19.7) \) \(\text{RPD within limits} \)

Client Sample ID: SED 2

General Chemistry

Matrix....: SO

Lot-Sample #...: A9G160126-010 Work Order #...: LGKQX

Date Sampled...: 07/15/09 14:10 Date Received..: 07/16/09

% Moisture....: 82

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 17.9
 10.0
 %
 MCAWW 160.3 MOD
 07/17-07/20/09
 9198143

Dilution Factor: 1

Client Sample ID: OW19

General Chemistry

Lot-Sample #...: A9G160126-011

Work Order #...: LGKQ1

Matrix....: WG

Date Sampled...: 07/15/09 14:55 Date Received..: 07/16/09

PARAMETER	RESULT	RL	UNITS	метно	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	9.2	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9198210
Nitrate as N	ND Dil	0.10 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9198212
Sulfate	13.7 Dil	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9198211
Total Alkalinity	230	5.0 ution Facto	mg/L or: 1	MCAWW	310.1	07/17/09	9198042
Total Organic Carbon	7	1	mg/L	MCAWW	415.1	07/20/09	9201305
	Dilu	ition Facto	or: 1				
Total Sulfide	1.1	1.0	mg/L er: 1	MCAWW	376.1	07/17/09	9198246

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix..... WATER

		REPORTING				PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	BATCH #
Chloride		Work Order	#: LGLEM1AA	MB Lot-Sample	#:	A9G160000-355	3111 (1
	ND	1.0					9197355
		Dilution Facto	r: 1				
Chloride		Work Order #	#: LGMTD1AA	MB Lot-Sample	#:	A9G170000-213	
	ND	1.0	mg/L	MCAWW 300.0A			9198213
		Dilution Facto	r: 1				
Chloride				MB Lot-Sample			
	ND	1.0	_	MCAWW 300.0A		07/17/09	9198210
		Dilution Facto	r: 1				
Nitrate as N				MB Lot-Sample			
	ND			MCAWW 300.0A		07/15/09	9197354
		Dilution Factor	r: 1				
Nitrate as N				MB Lot-Sample			
	ND			MCAWW 300.0A		07/16/09	9198212
		Dilution Factor	r: 1				
Sulfate		Work Order #	: LGLEC1AA	MB Lot-Sample	#:	A9G160000-352	
	ND			MCAWW 300.0A		07/15/09	9197352
		Dilution Factor	r: 1				
Sulfate				MB Lot-Sample			
	ND			MCAWW 300.0A		07/16/09	9198211
		Dilution Factor	r: 1				
Total Alkalinity				MB Lot-Sample			
	ND			MCAWW 310.1		07/17/09	9198042
		Dilution Factor	r: 1				
Total Organic Carbon		Work Order #	: LGMAG1AA	MB Lot-Sample	#:	A9G160000-053	
Calbon	ND	1	ma /T.	MCAWW 415.1		07/16/00	0107052
	2	Dilution Factor		HCHWW 415.1		07/16/09	9197053
m-+-3 0 · ·							
Total Organic Carbon		Work Order #	: LGQ381AA	MB Lot-Sample	#:	A9G200000-305	
	ND	1	mq/L	MCAWW 415.1		07/20/09	9201305
		Dilution Factor	_			, ,	
Total Sulfide		Work Order #	: LGMX01AA	MB Lot-Sample	#;	A9G170000-246	
	ND			MCAWW 376.1		07/17/09	9198246
		Dilution Factor	-				
NOTE (S):							

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix..... SOLID

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	ND	Work Order 10.0	#: LGMGX1AA	MB Lot-Sample #: MCAWW 160.3 MOD	A9G170000-143	
		Dilution Fact	cor: 1			

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #: 9G1515	8	Matrix:	WATER

PARAMETER Chloride	PERCENT RECOVERY 103 102	RECOVERY RPD PREPARATION – ANALYSIS DATE PREPARATION – BATCH # BATCH
Chloride	106 105	WO#:LGMR61AF-LCS/LGMR61AG-LCSD LCS Lot-Sample#: A9G170000-210 (90 - 110)
Chloride	107 107	WO#:LGMTD1AC-LCS/LGMTD1AD-LCSD LCS Lot-Sample#: A9G170000-213 (90 - 110)
Nitrate as N	92 92	WO#:LGLEJ1AC-LCS/LGLEJ1AD-LCSD LCS Lot-Sample#: A9G160000-354 (90 - 110)
Nitrate as N		WO#:LGMR91AC-LCS/LGMR91AD-LCSD LCS Lot-Sample#: A9G170000-212 (90 - 110)
Sulfate	94 94	WO#:LGLEC1AC-LCS/LGLEC1AD-LCSD LCS Lot-Sample#: A9G160000-352 (90 - 110)
Sulfate	100 100	WO#:LGMR81AC-LCS/LGMR81AD-LCSD LCS Lot-Sample#: A9G170000-211 (90 - 110)

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #: 9G15158	Matrix: WATER
-----------------------	---------------

	SPIKE	MEASURED		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY				ANALYSIS DATE	BATCH #
Chloride					LEM1A			mple#: A9G16000	
	50.0	51.3	mg/L	103			300.0A	07/16/09	9197355
	50.0	51.2	mg/L	102	0.19	MCAWW	300.0A	07/16/09	9197355
		D	ilution Fact	cor: 1					
Chloride		WO#	:LGMR61AF	-LCS/LG	MR61A	G-LCSD	LCS Lot-Sa	mple#: A9G17000	0-210
	50.0	52.8	mg/L	106			300.0A	07/17/09	9198210
	50.0	52.6	mg/L	105	0.38	MCAWW	300.0A	07/17/09	9198210
		D	ilution Fact	or: 1					
Chloride		WO#	:LGMTD1AC	-LCS/LGN	ATD1A	D-LCSD	LCS Lot-Sa	mple#: A9G17000	0-213
	50.0	53.7	mg/L	107			300.0A	07/16/09	9198213
	50.0	53.5	mg/L	107	0.37	MCAWW	300.0A	07/16/09	9198213
		D.	ilution Fact	or: 1					
Nitrate as N		WO#	:LGLEJ1AC	-LCS/LGI	LEJ1A	D-LCSD	LCS Lot-Sa	mple#: A9G16000	0-354
	2.5	2.3	mg/L	92			300.0A	07/15/09	9197354
	2.5	2.3	mg/L	92	0.0	MCAWW	300.0A	07/15/09	9197354
		D:	llution Fact	or: 1					
Nitrate as N		WO#	:LGMR91AC-	-LCS/LGN	IR91AI	D-LCSD	LCS Lot-Sar	mple#: A9G17000	0-212
	2.5	2.5	mg/L	100			300.0A	07/16/09	9198212
	2.5	2.5	mg/L	100	0.0	MCAWW	300.0A	07/16/09	9198212
		D	llution Fact	or: 1					
Sulfate		WO#	:LGLEC1AC-	-LCS/LGI	EC1AI	D-LCSD	LCS Lot-Sar	nple#: A9G16000	0-352
	50.0	46.9	mq/L	94			300.0A	07/15/09	9197352
	50.0	47.1	mg/L	94	0.42		300.0A	07/15/09	9197352
		Di	lution Fact				-	. ,,	
Sulfate		WO#:	:LGMR81AC-	-LCS/LGM	IR81AI	D-LCSD	LCS Lot-Sar	nple#: A9G17000)211
	50.0	50.0	mg/L	100			300.0A	07/16/09	9198211
	50.0	50.1	mg/L		0.20		300.0A	07/16/09	9198211
			lution Fact					D 1 / 1 0 / 0 J	7 4 7 C E 1 1

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

PARAMETER PERCENT RECOVERY METHOD ANALYSIS DATE BATO Total Alkalinity Work Order #: LGL861AC LCS Lot-Sample#: A9G170000-042 101 (90 - 127) MCAWW 310.1 07/17/09 9198	CH #
Difficion Lucrol: 1	
Total Organic Carbon 99 (88 - 115) MCAWW 415.1 07/16/09 9197	7053
Total Organic	1305
Total Sulfide Work Order #: LGMX01AC LCS Lot-Sample#: A9G170000-246	8246

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 9G15158

Client Lot #	: 9G1	5158		1			Matrix:		WATER	
PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT	UNITS		METHO		ANA	PARATION- LYSIS DATE		
Total Alkalin	nity 71	71		101				A9G170000-0		
Total Organio	C		Work Order #:	LGMAG:	lac Lo	CS Lot-Sample	e#:	A9G160000-05	53	
	35	34	mg/L Dilution Factor:		MCAWW	415.1		07/16/09	9197053	
Total Organic	C		Work Order #:	LGQ381	lac lo	CS Lot-Sample	e#:	A9G200000-30)5	
	35	38	mg/L Dilution Factor:		MCAWW	415.1		07/20/09	9201305	
Total Sulfide	e 19	19	Work Order #: mg/L Dilution Factor:	100		S Lot-Sample 376.1			16 9198246	

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 9G15158 Matrix....: WATER

Date Sampled...: 07/14/09 11:12 Date Received..: 07/15/09

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LI		METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Organia Carbon	3	WO#:	LGH1F1A	AO-MS/LO	GH1F1A1-MSD	MS Lot-Sample #: AS	9G150219-001
	112 109	(72 - 136) (72 - 136)	2.7 (0	=	MCAWW 415.1 MCAWW 415.1	07/16/09 07/16/09	9197053 9197053
		Dilut	ion Factor	r: 1			

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix..... WATER

Date Sampled...: 07/14/09 11:12 Date Received..: 07/15/09

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	<u>RPD</u>	METHOI)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Organ	nic		WO#:	LGH1F1A0-MS,	/LGH1F1	A1-MSI	D MS I	lot-Sampl	le #: A9G150219-	-001
Carbon										
1	ND	25	29	mg/L	112		MCAWW	415.1	07/16/09	9197053
1	ND	25	28	mg/L	109	2.7	MCAWW	415.1	07/16/09	9197053
			Diluti	on Factor: 1						

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 9G15158 Matrix...... WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

PARAMETER Chloride	PERCENT RECOVERY 108 108	WO#: (80 - 120) (80 - 120)	RPD PREPARATION- PREP RPD LIMITS METHOD ANALYSIS DATE BATCH # LGKP41AU-MS/LGKP41AV-MSD MS Lot-Sample #: A9G160126- MCAWW 300.0A 07/16/09 9198210 0.0 (0-20) MCAWW 300.0A 07/16/09 9198210 on Factor: 1	002
Nitrate as N	96 100	(80 - 120) (80 - 120)	LGKP41AM-MS/LGKP41AN-MSD MS Lot-Sample #: A9G160126- MCAWW 300.0A 07/16/09 9198212 4.1 (0-20) MCAWW 300.0A 07/16/09 9198212 on Factor: 1	:
Sulfate	108 107	(80 - 120) (80 - 120)	LGKP41AQ~MS/LGKP41AR-MSD MS Lot-Sample #: A9G160126- MCAWW 300.0A 07/16/09 9198211 0.48 (0-20) MCAWW 300.0A 07/16/09 9198211 on Factor: 1	
Total Alkalin	nity 74 74	(10 - 160) (10 - 160)	LGKP41AC-MS/LGKP41AD-MSD MS Lot-Sample #: A9G160126- MCAWW 310.1 07/17/09 9198042 0.12 (0-24) MCAWW 310.1 07/17/09 9198042 on Factor: 1	
Total Organic	2	WO#:	LGKP41AF-MS/LGKP41AG-MSD MS Lot-Sample #: A9G160126-	002
	104 105	(72 - 136)	MCAWW 415.1 07/20/09 9201305 0.42 (0-20) MCAWW 415.1 07/20/09 9201305 on Factor: 1	
Total Sulfide		(75 - 107) (75 - 107)	LGKP41AJ-MS/LGKP41AK-MSD MS Lot-Sample #: A9G160126-0 MCAWW 376.1 07/17/09 9198246 0.68 (0-20) MCAWW 376.1 07/17/09 9198246 on Factor: 1	

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 9G15158 Matrix......: WG

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

PARAMETEI	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT	RPD	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride								le #: A9G160126	
	4.2	50.0	58.0	mg/L	108		MCAWW 300.0A		9198210
	4.2	50.0	58.0	mg/L	108	0.0	MCAWW 300.0A	07/16/09	9198210
			Diluti	on Factor: 1					
Nitrate a	as N		WO#:	LGKP41AM-MS	/LGKP41	AN-MSI	D MS Lot-Samp	le #: A9G160126	-002
	ND	2.5	2.4	mg/L	96		MCAWW 300.0A		9198212
	ND	2.5	2.5	mg/L	100	4.1	MCAWW 300.0A	07/16/09	9198212
			Diluti	on Factor: 1					
Sulfate			WO#:	LGKP41AQ-MS,	/LGKP41	AR-MSI	MS Lot-Samp	le #: A9G160126	-002
	29.3	50.0	83.3	mg/L	108		MCAWW 300.0A	07/16/09	9198211
	29.3	50.0	82.9	mg/L	107	0.48	MCAWW 300.0A	07/16/09	9198211
			Diluti	on Factor: 1					
Total All	-		WO#:	LGKP41AC-MS,	LGKP41	AD-MSI	MS Lot-Sampl	le #: A9G160126-	-002
	250	500	620	mg/L	74		MCAWW 310.1		9198042
	250	500	620	mg/L	74	0.12	MCAWW 310.1	07/17/09	9198042
			Diluti	on Factor: 1					
Total Org Carbon	panic		WO#:	LGKP41AF-MS/	LGKP417	\G-MSI	MS Lot-Sampl	le #: A9G160126-	-002
	3	25	29	mg/L	104		MCAWW 415.1	07/20/09	9201305
	3	25	29	mg/L	105	0.42	MCAWW 415.1	07/20/09	9201305
			Diluti	on Factor: 1					
Total Sul	fide		WO#:	LGKP41AJ-MS/	LGKP41	K-MSI	MS Lot-Sampl	le #: A9G160126-	-002
	13	38	47	mg/L	89		MCAWW 376.1	07/17/09	9198246
	13	38	47	mg/L	88	0.68	MCAWW 376.1	07/17/09	9198246
			Diluti	on Factor: 1					

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix....: WG

Date Sampled...: 07/14/09 14:00 Date Received..: 07/15/09

PERCENT

RECOVERY

PREPARATION-

PARAMETER

RECOVERY

PREP

LIMITS METHOD ANALYSIS DATE BATCH #

Sulfate

Work Order #...: LGHPL1AK

MS Lot-Sample #: A9G150158-004

97

(80 - 120) MCAWW 300.0A

07/15/09

9197352

Dilution Factor: 1

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix..... WG

Date Sampled...: 07/14/09 14:00 Date Received..: 07/15/09

SAMPLE SPIKE MEASURED PERCENT PREPARATION-PREP PARAMETER TMA TNUOMA UNITS RECOVERY METHOD AMOUNT ANALYSIS DATE BATCH # Sulfate Work Order #...: LGHPL1AK MS Lot-Sample #: A9G150158-004 11,7 50.0 60.0 mq/L 97 MCAWW 300.0A 07/15/09 9197352

Dilution Factor: 1

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 9G15158

Matrix....: WATER

PARAMETER Chloride	PERCENT RECOVERY	RECOVERY LIMITS METHOD Work Order #: LGG331C4 (80 - 120) MCAWW 300.0A Dilution Factor: 1	PREPARATION- PREP ANALYSIS DATE BATCH # MS Lot-Sample #: A9G150106-002 07/16/09 9198210
Nitrate as N	88	Work Order #: LGH1F1AW (80 - 120) MCAWW 300.0A Dilution Factor: 1	MS Lot-Sample #: A9G150219-001 07/15/09 9197354
Sulfate	93	Work Order #: LGH1F1AV (80 - 120) MCAWW 300.0A Dilution Factor: 1	MS Lot-Sample #: A9G150219-001 07/15/09 9197352

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: 9G15158 Matrix..... WATER

Date Sampled...: 07/14/09 Date Received..: 07/15/09

PARAMETER Chloride	SAMPLE AMOUNT 46.3		MEASURED AMOUNT UNITS Work Order #: 105 mg/L Dilution Factor: 1	METHOD	ANALYSIS DATE ample #: A9G150	PREP BATCH # 106-002 9198210
Nitrate as N		2.5	Work Order #: 2.2 mg/L Dilution Factor: 1	MS Lot-S MCAWW 300.0A	ample #: A9G150 07/15/09	219-001 9197354
Sulfate	ND	50.0	Work Order #: 46.4 mg/L Dilution Factor: 1		ample #: A9G150 07/15/09	219-001 9197352

NOTE(S):

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9G150158 Work Order #...: LGKQX-SMP Matrix.....: SO

LGKQX-DUP

Date Sampled...: 07/15/09 14:10 Date Received..: 07/16/09

% Moisture....: 82

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Percent Solids					SD Lot-Sample #:	A9G160126-010	
17.9	18.4	C ₁ O	3.0	(0-20)	MCAWW 160.3 MOD	07/17-07/20/09	9198143

Dilution Factor: 1

SAMPLE DUPLICATE EVALUATION REPORT

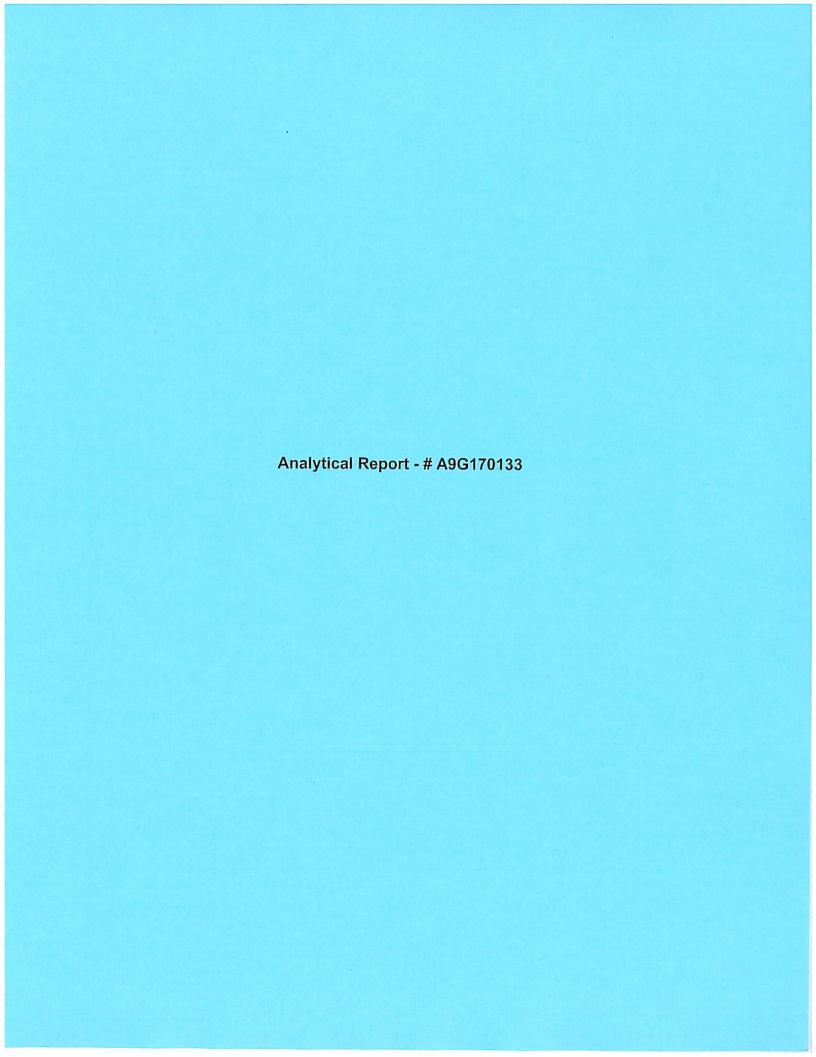
General Chemistry

Client Lot #...: A9G150158 Work Order #...: LGKR7-SMP Matrix.....: SOLID

LGKR7-DUP

Date Sampled...: 07/15/09 01:30 Date Received..: 07/16/09

% Moisture....: 16


	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Percent Solids					SD Lot-Sample #:	A9G160140-001	
84.3	84.9	elo elo	0.62	(0-20)	MCAWW 160.3 MOD	07/17-07/20/09	9198143

Dilution Factor: 1

END OF REPORT

North Canton

Table of Contents

Analytical Report Cover Page A9G170133 SUM	1
Case Narrative	2
Executive Summary	7
Analytical Method Šummary	10
Sample Summary	12
Shipping and Receiving Documents	14
GC/MS Volatile Data	18
GC Volatile Data	35
General Chemistry Data	45
Total # of Pages in this Document	61

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 104-0012-0200

CARROLL & DUBIES (C&D)

Lot #: A9G170133

Barbara Jones

Cardinal Resources

TESTAMERICA LABORATORIES, INC.

Project Manager

August 5, 2009

CASE NARRATIVE

North Canton

CASE NARRATIVE

A9G170133

The following report contains the analytical results for six water samples and one quality control sample submitted to TestAmerica North Canton by Cardinal Resources from the Carroll & Dubies (C&D) Site, project number 104-0012-0200. The samples were received July 17, 2009, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Barbara Jones and Steve Bodnar on July 29, 2009. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 2.5°C.

CASE NARRATIVE (continued)

SAMPLE RECEIVING

See TestAmerica's Cooler Receipt Form for additional information.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

DISSOLVED GASES/RSK

For batch(es) 9209059, due to an inconsistent regulator, the gas standards used for generating the primary source and secondary source are not compatible. The second source ICV passes nominally, but the primary source is being used for continuing calibration, batch QC spikes and matrix spikes until the problem is resolved.

GENERAL CHEMISTRY

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes for batch(es) 9201027 due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which will be flagged with "NC, MSB".

The matrix spike/matrix spike duplicate(s) for batch(es) 9201028 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals
contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be
twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants
listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride, Acetone, 2-Butanone	Phthalate Esters	Copper, Iron, Zinc, Lead, Calcium, Magnesium, Potassium,	Copper, Iron, Zinc, Lead
		Sodium, Barium, Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the OC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

<u>The laboratory is certified for the analytes listed on the documents below. These are available upon request.</u> California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY - Detection Highlights

A9G170133

		REPORTIN	JG	ANALYTICAL			
PARAMETER	RESULT	LIMIT	UNITS	METHOD			
MW4 07/16/09 08:40 001							
Methane	59	0.50	ug/L	RSK SOP-175			
Benzene	1.2	1.0	ug/L	SW846 8260B			
Tetrachloroethene	0.34 J	1.0	ug/L	SW846 8260B			
Chloride	30.4	1.0	mg/L	MCAWW 300.0A			
Sulfate	79.7	1.0	mg/L	MCAWW 300.0A			
Total Organic	2	1	mg/L	MCAWW 415.1			
Carbon							
Total Alkalinity	110	5.0	mg/L	MCAWW 310.1			
OW2 07/16/09 10:05 003							
1,2-Dichloroethene	53	2.5	ug/L	SW846 8260B			
(total)							
Trichloroethene	9.7	2.5	ug/L	SW846 8260B			
Tetrachloroethene	62	2.5	ug/L	SW846 8260B			
Chloride	1.8	1.0	mg/L	MCAWW 300.0A			
Sulfate	24.0	1.0	mg/L	MCAWW 300.0A			
Nitrate as N	2.4	0.10	mg/L	MCAWW 300.0A			
Total Organic	1	1	mg/L	MCAWW 415.1			
Carbon							
Total Alkalinity	29	5.0	mg/L	MCAWW 310.1			
OW18 07/16/09 11:20 004							
Methane	1200	0.50	ug/L	RSK SOP-175			
1,2-Dichloroethene	0.34 J	1.0	ug/L	SW846 8260B			
(total)			(
B <mark>enz</mark> ene	2.3	1.0	ug/L	SW846 8260B			
Chlorobenzene	9.6	1.0	ug/L	SW846 8260B			
Chloride	9.8	1.0	mg/L	MCAWW 300.0A			
Sulfate	7.2	1.0	mg/L	MCAWW 300.0A			
Nitrate as N	0.10	0.10	mg/L	MCAWW 300.0A			
Total Organic	10	1	mg/L	MCAWW 415.1			
Carbon							
Total Alkalinity	360	5.0	mg/L	MCAWW 310.1			
OW25 07/16/09 12:55 005							
Chloride	1.1	1.0	mg/L	MCAWW 300.0A			
Sulfate	11.0	1.0	mg/L	MCAWW 300.0A			
Nitrate as N	0.30	0.10	mg/L	MCAWW 300.0A			
Total Organic	1	1	mg/L	MCAWW 415.1			
Carbon							

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

A9G170133

PARAMETER OW25 07/16/09 12:55 005	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
Total Alkalinity	40	5.0	mg/L	MCAWW 310.1
TB3 07/16/09 007				
Acetone	2.6 J	10	ug/L	SW846 8260B

METHOD SUMMARY

ANALYTICAL METHODS SUMMARY

A9G170133

PARAMETER	₹	ANALYTICAL METHOD
Nitrate a Sulfate Sulfide Total Org	l Gases in Water	MCAWW 310.1 MCAWW 300.0A RSK SOP-175 MCAWW 300.0A MCAWW 300.0A MCAWW 376.1 MCAWW 415.1 SW846 8260B
Reference	es:	
MCAWW	"Methods for Chemical Analysis of Water EPA-600/4-79-020, March 1983 and subsequ	
RSK	Sample Prep and Calculations for Dissolv in Water Samples Using a GC Headspace Eq Technique, RSKSOP-175, REV. 0, 8/11/94,	uilibration
SW846	"Test Methods for Evaluating Solid Waste Methods", Third Edition, November 1986 a	

SAMPLE SUMMARY

SAMPLE SUMMARY

A9G170133

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LGMM0	001	MW4	07/16/09	08-40
LGMNE	002	FIELD BLANK 3	07/16/09	CE SE SE SESSE
LGMNK	003	OW2	07/16/09	
LGMNM	004	OW18	07/16/09	
LGMNQ	005	OW25	07/16/09	410000000000000000000000000000000000000
LGMNR	006	PUMP RINSE	07/16/09	NAME OF THE PARTY
LGMNW	007	TB3	07/16/09	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SHIPPING AND RECEIVING DOCUMENTS

Cham
10
Custody
Kecori

TestAmerica

Kelinquished by:	Relinquished by	Relinquished b	Special Instructions/QC Requirements & Comments:			TB3	Pu30 2000	owas.	0W)&	d So	Field Dlank 3	MWH	Sample Identification	P C # 1	104-00/2-0210	Caroll + Dubies (CTD	12 374 0989	City/State/Zin: +75brat PA	1505 E. CARSON ST.	Cardinal Resources LLS	Client Contact	Tes
Company: Date/Time:	Company: Date/Time:	Company: Dec Date/Fine:	Skin İrrihanı 🗀 Poison B 🔲 Ünknown		(Lab Preparte)	TO DEN	₩ 1315 X	1355 X	×	1005 X	0850 X	7-16-09 C840 X	Sample Date Sample Time Air Aqueous Sediment Solid Other:	Marite	Shipping/Irncking No. 7515 1060	Method of Shipment/Calcier:		BJones@ Cardina) 1850	412 374 0989	Client Manage U 07/95	DW	
Received in Laboratory by:	Received by:	Received by:	 Sample Disposal (A fee may bhassessed if samples are retain Disposal By Lab			X X-	X	X X X X XX	X X X X X X		×	X X X X X X X	HZSO4 HNO3 HCI NaOH ZnAc/ NaOH Unpres Other: Filtered: Corenail	ample			TAT if different from below 3 weeks	Chaelysis Thurpersonal Titure (In thus easy)	74 STORY Telepho	Site Contact: Lab Conta	NPDES RCRA Dither	
Company:		Company:	ed if samples are retained longer than I month) Disposal By Lab — Archive For Months			LOCS ONLY	VOCS ONLY	\(\chi_{\text{X}}\)	^ X X X X X X X X	^ X X X X X X	vocs c	X	A O S	SUN CONT	For Living	than te le ty e (e)	[Z]	Analyses	7C	Nothan Prefins	H	THELE
7-17-09 09:28 H	Date/Time:	Date/Time:								e.	3		Sample Specific Notes / Special Instructions:		Jourspic Mo	Lab squilling	Wale in chept	For set tree only	of CDCs	COC No:	estAmerica Laboratories, Inc.	THE LEADER IN ENVIRONMENTAL TESTING

TAL-0018 (1008)

TastAmorias Caslar	Receipt Form/Narrative Lo	t Number: 496170133
North Canton Facili		
Client CALDINA	H RESOURCES Project Coroll + Dubies	By: Let
Cooler Received on	7-17-09 Opened on 7:17-09	(Signature)
FedEx LUPS DHL	☐ FAS ☐ Stetson ☐ Client Drop Off ☐ TestAme	rica Courier Other
TestAmerica Cooler #	<u>L€37</u> Multiple Coolers ☐ Foam Box ☐ C	lient Cooler 🗌 Other
1 Were custody seals o	n the outside of the cooler(s)? Yes \(\square\) No \(\square\) Inta	act? Yes 🗌 No 🗍 NA 🗗
If YES, Quantity	Quantity Unsalvageable	and the second s
Were custody seals o	n the outside of cooler(s) signed and dated?	Yes No NA-L
Were custody seals o	in the bottle(s)?	Yes No No
If YES, are there any	exceptions?	
2. Shippers' packing slip	attached to the cooler(s)?	Yes No 🗆
Did custody papers at	ccompany the sample(s)? Yes 🗔 No 🗌	Relinquished by client? Yes No
Were the custody par	pers signed in the appropriate place?	Yes No 🗆
Packing material used	d: Bubble Wrap Foam None Other	
	pon receipt 2-5 °C See back of form for r	multiple coolers/temps [_]
	R Other D	200
		one ☐ Yes.☐ No ☐
	n good condition (Unbroken)? be reconciled with the COC?	Yes No 🗆
	e correct pH upon receipt?	Yes A No NA
) used for the test(s) indicated?	Yes A No
11. Were air bubbles >6 r		Yes No No NA
	beived to perform indicated analyses?	Yes No 🗆
	ent in the cooler(s)? Yes No D Were VOAs	THE COLUMN TWO IS NOT THE COLUMN TWO IS NOT
Contacted PM NAT 7/191	71 Date 71.7103 by	via Verbal ☐ Voice Mail ☐ Other [
Concerning		
14. CHAIN OF CUSTOD)Y	
The following discrepance	ies occurred:	
POC 783 W/ 00	at - will be diffren prev. sa	and.
15. SAMPLE CONDITIO		
Sample(s)	were received after the re	commended holding time had expire
Sample(s)		were received in a broken containe
Sample(s)		oubble >6 mm in diameter. (Notify PI
16. SAMPLE PRESERV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Sample(s)		e further preserved in Sample
	mended pH level(s). Nitric Acid Lot# 031909-HNO ₃ ; Sulfu	
	OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide at time was preservative added to sample(s)?	and ZINC Adelate Lot# 050205-
Client ID		Date Initial
Glient ID	79	7.17-09 LQ
1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2		1 1 1
2 is	75	
2 18 25		
i8	75 79	
i8	75 79	
i8	75 79	

	r Receipt Form/Narrative ity pH	Dete	Initia
		Date	Initia
 			
			
		 	
			1

		·}	ļ
		 	
		<u> </u>	
			
Cooler#	Temp. °C	Method	Coolar
AND A SERVICE AND ASSOCIATION OF THE PROPERTY		1	

GCMS VOLATILE DATA

Client Sample ID: MW4

GC/MS Volatiles

Lot-Sample #...: A9G170133-001 Work Order #...: LGMM01AJ Matrix..... WG

Date Sampled...: 07/16/09 08:40 Date Received..: 07/17/09 Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	1.2	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	0.34 J	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	101	(73 - 122)	
1,2-Dichloroethane-d4	104	(61 - 128)	
Toluene-d8	101	(76 - 110)	
4-Bromofluorobenzene	95	(74 - 116)	

(Continued on next page)

Client Sample ID: MW4

GC/MS Volatiles

Lot-Sample #...: A9G170133-001 Work Order #...: LGMM01AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 3

GC/MS Volatiles

Lot-Sample #...: A9G170133-002 Work Order #...: LGMNE1AA Matrix...... WQ

Date Sampled...: 07/16/09 08:50 Date Received..: 07/17/09
Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		DEDODMING	
PARAMETER	RESULT	REPORTING LIMIT	IINITEC
Chloromethane	ND	2.0	UNITS ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L ug/L
Chloroethane	ND	2.0	
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L ug/L
Carbon disulfide	ND	1.0	and the second section
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND		ug/L
(total)	שא	1.0	ug/L
Chloroform	ND	1 0	/ T
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	10	ug/L
Carbon tetrachloride		1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(73 - 122)	
1,2-Dichloroethane-d4	102	(61 - 128)	
Toluene-d8	101	(76 - 110)	
	27272	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

100

(74 - 116)

North Canton

4-Bromofluorobenzene

Client Sample ID: OW2

GC/MS Volatiles

Lot-Sample #...: A9G170133-003 Work Order #...: LGMNK1AJ Matrix..... WG

Date Sampled...: 07/16/09 10:05 Date Received..: 07/17/09 Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 2.5 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTING	:
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	5.0	ug/L
Bromomethane	ND	5.0	ug/L
Vinyl chloride	ND	5.0	ug/L
Chloroethane	ND	5.0	ug/L
Methylene chloride	ND	2.5	ug/L
Acetone	ND	25	ug/L
Carbon disulfide	ND	2.5	ug/L
1,1-Dichloroethene	ND	2.5	ug/L
1,1-Dichloroethane	ND	2.5	ug/L
1,2-Dichloroethene	53	2.5	ug/L
(total)			-3
Chloroform	ND	2.5	ug/L
1,2-Dichloroethane	ND	2.5	ug/L
2-Butanone	ND	25	ug/L
1,1,1-Trichloroethane	ND	2.5	ug/L
Carbon tetrachloride	ND	2.5	ug/L
Bromodichloromethane	ND	2.5	ug/L
1,2-Dichloropropane	ND	2.5	ug/L
cis-1,3-Dichloropropene	ND	2.5	ug/L
Trichloroethene	9.7	2.5	ug/L
Dibromochloromethane	ND	2.5	ug/L
1,1,2-Trichloroethane	ND	2.5	ug/L
Benzene	ND	2.5	ug/L
trans-1,3-Dichloropropene	ND	2.5	ug/L
Bromoform	ND	2.5	ug/L
4-Methyl-2-pentanone	ND	12	ug/L
2-Hexanone	ND	25	ug/L
Tetrachloroethene	62	2.5	ug/L
1,1,2,2-Tetrachloroethane	ND	2.5	ug/L
Toluene	ND	2.5	ug/L
Chlorobenzene	ND	2.5	ug/L
Ethylbenzene	ND	2.5	ug/L
Styrene	ND	2.5	ug/L
Xylenes (total)	ND	2.5	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	99	(73 - 122)	
1,2-Dichloroethane-d4	101	(61 - 128)	
Toluene-d8	98	(76 - 110)	
4-Bromofluorobenzene	98	(74 - 116)).

Client Sample ID: OW18

GC/MS Volatiles

Lot-Sample #:	A9G170133-004	Work Order #:	LGMNM1AJ	Matrix WG	3
Date Sampled:	07/16/09 11:20	Date Received:	07/17/09		
Prep Date:	07/23/09	Analysis Date:	07/23/09		
Prep Batch #:	9208327				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5	mL
		Method:	SW846 8260B		

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	0.34 J	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	2.3	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	9.6	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(73 - 122))
1,2-Dichloroethane-d4	103	(61 - 128)
Toluene-d8	101	(76 - 110	
4-Bromofluorobenzene	96	(74 - 116)

(Continued on next page)

Client Sample ID: OW18

GC/MS Volatiles

Lot-Sample #...: A9G170133-004 Work Order #...: LGMNM1AJ Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OW25

GC/MS Volatiles

Lot-Sample #...: A9G170133-005 Work Order #...: LGMNQ1AJ Matrix..... WG

Date Sampled...: 07/16/09 12:55 Date Received..: 07/17/09 Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Method....: SW846 8260B

REPORTING				
Chloromethane			REPORTING	
Bromomethane		RESULT		
Vinyl chloride				ug/L
Chloroethane				ug/L
Methylene chloride ND 1.0 ug/L Acetone ND 10 ug/L Carbon disulfide ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 2-Butanone ND 1.0 ug/L 2-Butanone ND 1.0 ug/L 1,1-Trichloroethane ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Bromodichloromethane ND 1.0 ug/L 1,1-Trichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND	A CONTROL OF THE CONT	ND		ug/L
Acetone		ND		ug/L
Carbon disulfide	170	ND	1.0	ug/L
1,1-Dichloroethane		ND	10	ug/L
1,1-Dichloroethane		ND	1.0	ug/L
1.2-Dichloroethene		ND	1.0	ug/L
Chloroform		ND	1.0	ug/L
Chloroform		ND	1.0	ug/L
1,2-Dichloroethane	(total)			
2-Butanone		ND	1.0	ug/L
1,1,1-Trichloroethane		ND	1.0	ug/L
Carbon tetrachloride ND 1.0 ug/L Bromodichloromethane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Xylenes (total)		ND	10	ug/L
Bromodichloromethane	1,1,1-Trichloroethane	ND	1.0	ug/L
1,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L Trichloroethene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 102 (61 - 128)	Carbon tetrachloride	ND	1.0	ug/L
cis-1,3-Dichloropropene ND 1.0 ug/L Trichloroethene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoroethane-d4 102 (61 - 128)	Bromodichloromethane	ND	1.0	ug/L
Trichloroethene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 1.0 ug/L 2-Hexanone ND 1.0 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	1,2-Dichloropropane	ND	1.0	ug/L
Dibromochloromethane ND 1.0 ug/L 1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 10 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	cis-1,3-Dichloropropene	ND	1.0	ug/L
1,1,2-Trichloroethane ND 1.0 ug/L Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 1.0 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)		ND	1.0	ug/L
Benzene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 10 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Dibromochloromethane	ND	1.0	ug/L
trans-1,3-Dichloropropene ND 1.0 ug/L Bromoform ND 1.0 ug/L 4-Methyl-2-pentanone ND 5.0 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L Vylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	1,1,2-Trichloroethane	ND	1.0	ug/L
Bromoform	Benzene	ND	1.0	ug/L
4-Methyl-2-pentanone ND 5.0 ug/L 2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	trans-1,3-Dichloropropene	ND	1.0	ug/L
2-Hexanone ND 10 ug/L Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L SURROGATE PERCENT RECOVERY Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Bromoform	ND	1.0	ug/L
Tetrachloroethene ND 1.0 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	4-Methyl-2-pentanone	ND	5.0	ug/L
1,1,2,2-Tetrachloroethane ND 1.0 ug/L Toluene ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	2-Hexanone	ND	10	ug/L
Toluene	Tetrachloroethene	ND	1.0	ug/L
Chlorobenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
ND 1.0 ug/L	Toluene	ND	1.0	ug/L
Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Chlorobenzene	ND	1.0	ug/L
Styrene ND 1.0 ug/L Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Ethylbenzene	ND	1.0	ug/L
Xylenes (total) ND 1.0 ug/L PERCENT RECOVERY RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Styrene	ND	1.0	
SURROGATE RECOVERY Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)	Xylenes (total)	ND	1.0	
SURROGATE RECOVERY LIMITS Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)				E001
Dibromofluoromethane 103 (73 - 122) 1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)		PERCENT	RECOVERY	
1,2-Dichloroethane-d4 102 (61 - 128) Toluene-d8 99 (76 - 110)		RECOVERY	LIMITS	
Toluene-d8 99 (76 - 110)		103	(73 - 122)	
	1,2-Dichloroethane-d4	102	(61 - 128)	
4-Bromofluorobenzene 97 (74 - 116)		99	(76 - 110)	
	4-Bromofluorobenzene	97	(74 - 116)	

Client Sample ID: PUMP RINSE

GC/MS Volatiles

Lot-Sample #...: A9G170133-006 Work Order #...: LGMNR1AA Matrix...... WQ

Date Sampled...: 07/16/09 13:15 Date Received..: 07/17/09 Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

DADAMETER		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	ND	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
error - y page rendstrationage to - regulation strategy - 40	Till Till Till Till Till Till Till Till	V	- 3/ -
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	97	$\frac{111115}{(73 - 122)}$	2)
1,2-Dichloroethane-d4	100	(61 - 128	
Toluene-d8	99	(76 - 110	
4-Bromofluorobenzene	99	(74 - 116)	
. DIOMOII GOLODENZENE	J.J.	(14 - 110	77

Client Sample ID: TB3

GC/MS Volatiles

Lot-Sample #...: A9G170133-007 Date Sampled...: 07/16/09

Work Order #...: LGMNW1AA

Matrix..... WQ

Prep Date....: 07/23/09

Date Received..: 07/17/09

Prep Batch #...: 9208327

Analysis Date..: 07/23/09

Final Wgt/Vol..: 5 mL

Dilution Factor: 1

Initial Wgt/Vol: 5 mL

Method....: SW846 8260B

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Chloromethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/L
Vinyl chloride	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Methylene chloride	ND	1.0	ug/L
Acetone	2.6 J	10	ug/L
Carbon disulfide	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethene	ND	1.0	ug/L
(total)			- J
Chloroform	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
2-Butanone	ND	10	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
2-Hexanone	ND	10	ug/L
Tetrachloroethene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
F : 1 11			

SURROGATE	PERCENT	RECOVERY		
SURRUGATE	RECOVERY	LIMITS		
Dibromofluoromethane	97	(73 - 122)		
1,2-Dichloroethane-d4	99	(61 - 128)		
Toluene-d8	96	(76 - 110)		
4-Bromofluorobenzene	95	(74 - 116)		

ND

ND

ND

(Continued on next page)

1.0

1.0

1.0

ug/L

ug/L

ug/L

Ethylbenzene

Xylenes (total)

Styrene

Client Sample ID: TB3

GC/MS Volatiles

Lot-Sample #...: A9G170133-007 Work Order #...: LGMNW1AA Matrix..... WQ

NOTE(S):

J Estimated result. Result is less than RL.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A9G170133

Work Order #...: LG42G1AA

Matrix..... WATER

MB Lot-Sample #: A9G270000-327

Prep Date....: 07/23/09

Final Wgt/Vol..: 5 mL

Analysis Date..: 07/23/09

Dilution Factor: 1

Prep Batch #...: 9208327

Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	2.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Methylene chloride	0.39 J	1.0	ug/L	SW846 8260B
Acetone	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
(total)			0.527	
Chloroform	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	10	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	ť	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	97	(73 - 12)	22)	
1 2-Dighloroothana da	100	161 16	201	

1,2-Dichloroethane-d4 102 (61 - 128)Toluene-d8 103 (76 - 110)4-Bromofluorobenzene (74 - 116)

(Continued on next page)

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A9G170133

Work Order #...: LG42G1AA

Matrix..... WATER

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A9G170133 Work Order #...: LG42G1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G270000-327 LG42G1AD-LCSD

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
1,1-Dichloroethene	89	(63 - 130)		SW846 8260B
	92	(63 - 130)	3.1 (0-20)	SW846 8260B
Trichloroethene	88	(75 - 122)		SW846 8260B
	93	(75 - 122)	4.6 (0-20)	SW846 8260B
Benzene	92	(80 - 116)		SW846 8260B
	96	(80 - 116)	4.1 (0-20)	SW846 8260B
Toluene	100	(74 - 119)		SW846 8260B
	101	(74 - 119)	1.2 (0-20)	SW846 8260B
Chlorobenzene	97	(76 - 117)		SW846 8260B
	96	(76 - 117)	0.68 (0-20)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		96	(73 - 122)	
		96	(73 - 122)	
1,2-Dichloroethane-d4		101	(61 - 128)	
		103	(61 - 128)	
Toluene-d8		103	(76 - 110)	
		100	(76 - 110)	
4-Bromofluorobenzene		95	(74 - 116)	
		97	(74 - 116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: A9G170133 Work Order #...: LG42G1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A9G270000-327 LG42G1AD-LCSD

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	SPIKE	MEASURED)	PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO)
1,1-Dichloroethene	10	8.9	ug/L	89		SW846	8260B
	10	9.2	ug/L	92	3.1	SW846	8260B
Trichloroethene	10	8.8	ug/L	88		SW846	8260B
	10	9.3	ug/L	93	4.6	SW846	8260B
Benzene	10	9.2	ug/L	92		SW846	8260B
	10	9.6	ug/L	96	4.1	SW846	8260B
Toluene	10	10	ug/L	100		SW846	8260B
	10	10	ug/L	101	1.2	SW846	8260B
Chlorobenzene	10	9.7	ug/L	97		SW846	8260B
	10	9.6	ug/L	96	0.68	SW846	8260B
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
Dibromofluoromethane			96	(73 - 122)		
			96	(73 - 122))		
1,2-Dichloroethane-d4			101	(61 - 128)		
			103	(61 - 128)		
Toluene-d8			103	(76 - 110)		
			100	(76 - 110))		
4-Bromofluorobenzene			95	(74 - 116))		
			97	(74 - 116)		
MOTE (C) -							

NOTE (S) -

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A9G170133 Work Order #...: LGM071AC-MS Matrix..... WATER

MS Lot-Sample #: A9G170181-007 LGM071AD-MSD

Date Sampled...: 07/15/09 15:25 Date Received..: 07/17/09

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 333.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)
1,1-Dichloroethene	89	(62 - 130)			SW846	8260B
	91	(62 - 130)	2.5	(0-20)	SW846	8260B
Trichloroethene	93	(62 - 130)			SW846	8260B
	90	(62 - 130)	0.97	(0-20)	SW846	8260B
Benzene	95	(78 - 118)			SW846	8260B
	94	(78 - 118)	1.1	(0-20)	SW846	8260B
Toluene	100	(70 - 119)			SW846	8260B
	100	(70 - 119)	0.10	(0-20)	SW846	8260B
Chlorobenzene	97	(76 - 117)			SW846	8260B
	97	(76 - 117)	0.61	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		95		(73 - 122))	
		97		(73 - 122))	
1,2-Dichloroethane-d4		101		(61 - 128)	
		99		(61 - 128)	
Toluene-d8		98		(76 - 110)	
		101		(76 - 110)	
4-Bromofluorobenzene		99		(74 - 116))	
		101		(74 - 116)	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: A9G170133 Work Order #...: LGM071AC-MS Matrix..... WATER

MS Lot-Sample #: A9G170181-007 LGM071AD-MSD

Date Sampled...: 07/15/09 15:25 Date Received..: 07/17/09

Prep Date....: 07/23/09 Analysis Date..: 07/23/09

Prep Batch #...: 9208327

Dilution Factor: 333.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO)
1,1-Dichloroethene	ND	3300	3000	ug/L	89		SW846	8260B
	ND	3300	3000	ug/L	91	2.5	SW846	8260B
Trichloroethene	6900	3300	10000	ug/L	93		SW846	8260B
	6900	3300	9900	ug/L	90	0.97	SW846	8260B
Benzene	ND	3300	3200	ug/L	95		SW846	8260B
	ND	3300	3100	ug/L	94	1.1	SW846	8260B
Toluene	ND	3300	3300	ug/L	100		SW846	8260B
	ND	3300	3300	ug/L	100	0.10	SW846	8260B
Chlorobenzene	ND	3300	3200	ug/L	97		SW846	8260B
	ND	3300	3200	ug/L	97	0.61	SW846	8260B

	PERCENT	RECOVERY LIMITS		
SURROGATE	RECOVERY			
Dibromofluoromethane	95	(73 - 122)		
	97	(73 - 122)		
1,2-Dichloroethane-d4	101	(61 - 128)		
	99	(61 - 128)		
Toluene-d8	98	(76 - 110)		
	101	(76 - 110)		
4-Bromofluorobenzene	99	(74 - 116)		
	101	(74 - 116)		

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC VOLATILE DATA

Client Sample ID: MW4

GC Volatiles

Lot-Sample #...: A9G170133-001 Work Order #...: LGMM01AH Matrix..... WG

Date Sampled...: 07/16/09 08:40 Date Received..: 07/17/09

Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

Method....: RSK SOP-175

REPORTING PARAMETER RESULT UNITS LIMIT Ethane ND 0.50 ug/L Ethene ND 0.50 ug/L Methane 59 0.50 ug/L

Client Sample ID: OW2

GC Volatiles

Lot-Sample #...: A9G170133-003 Work Order #...: LGMNK1AH Matrix..... WG

Date Sampled...: 07/16/09 10:05 Date Received..: 07/17/09 Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol..: 1 mL

Method..... RSK SOP-175

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	
Ethane	ND	0.50	ug/L	
Ethene	ND	0.50	ug/L	
Methane	ND	0.50	ug/L	

Client Sample ID: OW18

GC Volatiles

Lot-Sample #:	A9G170133-004	Work Order #:	LGMNM1AH	Matrix WG
Date Sampled:	07/16/09 11:20	Date Received:	07/17/09	
Prep Date:	07/27/09	Analysis Date:	07/27/09	
Prep Batch #:	9209059			
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1 mL	Final Wgt/Vol: 1 mL
		Method:	RSK SOP-175	5
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Ethane		ND	0.50	ug/L
Ethene		ND	0.50	ug/L

0.50

ug/L

1200

Methane

Client Sample ID: OW25

GC Volatiles

Lot-Sample #...: A9G170133-005 Work Order #...: LGMNQ1AH Matrix..... WG

Date Sampled...: 07/16/09 12:55 Date Received..: 07/17/09 Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Methane

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

0.50

ug/L

Method....: RSK SOP-175

 PARAMETER
 RESULT
 LIMIT
 UNITS

 Ethane
 ND
 0.50
 ug/L

 Ethene
 ND
 0.50
 ug/L

ND

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: A9G170133

Work Order #...: LG5JP1AA

Matrix....: WATER

MB Lot-Sample #: A9G280000-059

Prep Date....: 07/27/09

Final Wgt/Vol..: 1 mL

Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Initial Wgt/Vol: 1 mL

REPORTING

	IVET OUT I	DV.		
RESULT	LIMIT	UNITS	METHOD	
ND	0.50	ug/L	RSK SOP-175	=8
ND	0.50	ug/L	RSK SOP-175	
ND	0.50	ug/L	RSK SOP-175	
	3.33	49/1	NON BOL 175	
	ND ND	RESULT LIMIT ND 0.50 ND 0.50	ND 0.50 ug/L ND 0.50 ug/L	RESULT LIMIT UNITS METHOD ND 0.50 ug/L RSK SOP-175 ND 0.50 ug/L RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: A9G170133 Work Order #...: LG5JP1AC Matrix..... WATER

LCS Lot-Sample#: A9G280000-059

Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Methane	100	(75 - 127)	RSK SOP-175
Ethane	100	(74 - 138)	RSK SOP-175
Ethene	104	(73 - 140)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: A9G170133 Work Order #...: LG5JP1AC Matrix..... WATER

LCS Lot-Sample#: A9G280000-059

Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1 mL

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Methane	73	73	ug/L	100	RSK SOP-175
Ethane	140	140	ug/L	100	RSK SOP-175
Ethene	130	130	ug/L	104	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: A9G170133 Work Order #...: LGL9K1AF-MS Matrix..... WATER

MS Lot-Sample #: A9G170101-005 LGL9K1AG-MSD

Date Sampled...: 07/16/09 12:45 Date Received..: 07/17/09

Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Methane	100	(75 - 127)		10	RSK SOP-175
	99	(75 - 127)	1.1	(0-30)	RSK SOP-175
Ethane	99	(74 - 138)			RSK SOP-175
	98	(74 - 138)	0.51	(0-30)	RSK SOP-175
Ethene	100	(73 - 140)			RSK SOP-175
	98	(73 - 140)	2.5	(0-30)	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: A9G170133 Work Order #...: LGL9K1AF-MS Matrix..... WATER

MS Lot-Sample #: A9G170101-005 LGL9K1AG-MSD

Date Sampled...: 07/16/09 12:45 Date Received..: 07/17/09 Prep Date....: 07/27/09 Analysis Date..: 07/27/09

Prep Batch #...: 9209059

Dilution Factor: 1 Initial Wgt/Vol: 1 mL Final Wgt/Vol.:: 1 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
Methane	ND	73	73	ug/L	100	-	RSK SOP-175
	ND	73	72	ug/L	99	1.1	RSK SOP-175
Ethane	ND	140	140	ug/L	99		RSK SOP-175
	ND	140	130	ug/L	98	0.51	RSK SOP-175
Ethene	ND	130	130	ug/L	100		RSK SOP-175
	ND	130	120	ug/L	98	2.5	RSK SOP-175

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GENERAL CHEMISTRY DATA

Client Sample ID: MW4

General Chemistry

Lot-Sample #...: A9G170133-001

Work Order #...: LGMM0

Matrix..... WG

Date Sampled...: 07/16/09 08:40 Date Received..: 07/17/09

PARAMETER	RESULT	RL	UNITS	METHOI		PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	30.4	1.0	mg/L	MCAWW	300.0A	07/17/09	9201027
		Dilution Fact	or: 1				
Nitrate as N	ND	0.10	mg/L	MCAWW	300.0A	07/17/09	9201029
		Dilution Fact	or: 1				
Sulfate	79.7	1.0	mg/L	MCAWW	300.0A	07/17/09	9201028
		Dilution Fact	F-1000 - 1000 - 110			3,,2,,33	2201020
Total Alkalinity	110	5.0	mg/L	MCAWW	310 1	07/17/09	9201061
		Dilution Fact	10.000	110111111	313.1	07/17/05	3201001
Total Organic	2	1	mg/L	MCAWW	415 1	07/20/09	9201305
Carbon	_	-	g/ II	псин	415.1	07/20/03	3201303
		Dilution Fact	or: 1				
Total Sulfide	ND	1.0	mg/L	MCAWW	376.1	07/21/09	9202253
		Dilution Fact	85.50			5., 22, 05	2202233

Client Sample ID: OW2

General Chemistry

Lot-Sample #...: A9G170133-003

Work Order #...: LGMNK

Matrix....: WG

Date Sampled...: 07/16/09 10:05 Date Received..: 07/17/09

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.8	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9201027
Nitrate as N	2.4 Dil	0.10	mg/L or: 1	MCAWW	300.0A	07/17/09	9201029
Sulfate	24.0	1.0 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9201028
Total Alkalinity	29 Dil	5.0 ution Facto	mg/L or: 1	MCAWW	310.1	07/17/09	9201061
Total Organic Carbon	1	1	mg/L	MCAWW	415.1	07/20/09	9201305
	Dil	ution Facto	or: 1				
Total Sulfide	ND Dil	1.0 ution Facto	mg/L or: 1	MCAWW	376.1	07/21/09	9202253

Client Sample ID: OW18

General Chemistry

Lot-Sample #...: A9G170133-004 Work

Work Order #...: LGMNM

Matrix..... WG

Date Sampled...: 07/16/09 11:20 Date Received..: 07/17/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	9.8	1.0 ution Fact	mg/L or: 1	MCAWW 300.	0A 07/17/09	9201030
Nitrate as N	0.10	0.10	mg/L or: 1	MCAWW 300.	0A 07/17/09	9201029
Sulfate	7.2	1.0 ution Facto	mg/L or: 1	MCAWW 300.	0A 07/17/09	9201028
Total Alkalinity	360	5.0	mg/L or: 1	MCAWW 310.	1 07/17/09	9201061
Total Organic Carbon	10	1	mg/L	MCAWW 415.	1 07/20/09	9201305
	Dil	ution Facto	or: 1			
Total Sulfide	ND Dil	1.0 ution Facto	mg/L or: 1	MCAWW 376.	1 07/21/09	9202253

Client Sample ID: OW25

General Chemistry

Lot-Sample #...: A9G170133-005

Work Order #...: LGMNQ

Matrix..... WG

49

Date Sampled...: 07/16/09 12:55 Date Received..: 07/17/09

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	1.1	1.0 ition Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9201030
Nitrate as N	0.30	0.10 ution Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9201029
Sulfate	11.0	1.0 ition Facto	mg/L or: 1	MCAWW	300.0A	07/17/09	9201028
Total Alkalinity	40	5.0 Ition Facto	mg/L or: 1	MCAWW	310.1	07/17/09	9201061
Total Organic Carbon	1	1	mg/L	MCAWW	415.1	07/20/09	9201305
	Dilu	tion Facto	or: 1				
Total Sulfide	ND Dilu	1.0 tion Facto	mg/L or: 1	MCAWW	376.1	07/21/09	9202253

METHOD BLANK REPORT

General Chemistry

Client Lot #...: A9G170133

Matrix..... WATER

PARAMETER Chloride	RESULT ND	REPORTING LIMIT UNITS METHOD ANALYSIS DATE Work Order #: LGPP61AA MB Lot-Sample #: A9G200000-027 1.0 mg/L MCAWW 300.0A 07/17/09 Dilution Factor: 1	BATCH #
Chloride	ND	Work Order #: LGPQA1AA MB Lot-Sample #: A9G200000-030 1.0 mg/L MCAWW 300.0A 07/17/09 Dilution Factor: 1	9201030
Nitrate as N	ND	Work Order #: LGPP91AA MB Lot-Sample #: A9G200000-029 0.10 mg/L MCAWW 300.0A 07/17/09 Dilution Factor: 1	
Sulfate	ND	Work Order #: LGPP81AA MB Lot-Sample #: A9G200000-028 1.0 mg/L MCAWW 300.0A 07/17/09 Dilution Factor: 1	
Total Alkalinity	ND	Work Order #: LGPRH1AA MB Lot-Sample #: A9G200000-061 5.0 mg/L MCAWW 310.1 07/17/09 Dilution Factor: 1	
Total Organic		Work Order #: LGQ381AA MB Lot-Sample #: A9G200000-305	
Carbon	ND	1 mg/L MCAWW 415.1 07/20/09 Dilution Factor: 1	9201305
Total Sulfide	ND	Work Order #: LGR5F1AA MB Lot-Sample #: A9G210000-253 1.0 mg/L MCAWW 376.1 07/21/09 Dilution Factor: 1	9202253
NOTE(S):			

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: A9G170133

106

106

108

108

PARAMETER

Chloride

Chloride

Nitrate as N

PERCENT

RECOVERY

RECOVERY RPD PREPARATION-PREP RPD LIMITS METHOD LIMITS ANALYSIS DATE BATCH # WO#:LGPP61AC-LCS/LGPP61AD-LCSD LCS Lot-Sample#: A9G200000-027 (90 - 110)MCAWW 300.0A 07/17/09 9201027 (90 - 110) 0.18 (0-20) MCAWW 300.0A 07/17/09 9201027 Dilution Factor: 1 WO#:LGPQA1AC-LCS/LGPQA1AD-LCSD LCS Lot-Sample#: A9G200000-030 (90 - 110)MCAWW 300.0A 07/17/09 9201030 (90 - 110) 0.37 (0-20) MCAWW 300.0A 07/17/09 9201030 Dilution Factor: 1

WO#:LGPP91AC-LCS/LGPP91AD-LCSD LCS Lot-Sample#: A9G200000-029

Matrix....: WATER

	100	(90 - 110)	MCAWW	300.0A	07/17/09	9201029
	100	(90 - 110) 0.0	(0-20) MCAWW	300.0A	07/17/09	9201029
		Dilution Fac	tor: 1			
Sulfate		WO# · I CDD81 AC	-ICS/LCPP81AD-I	CSD ICS IO	t-Sample#· AGC	200000-028

Surrace		WO#: LGPP81AC-LCS/LG	PP81AD-LCSD LCS	Lot-Sample#: A	9G200000-028
	99	(90 - 110)	MCAWW 300.0A	07/17/09	9201028
	99	(90 - 110) 0.80 (0-20)	MCAWW 300.0A	07/17/09	9201028
		Dilution Factor: 1			

Total Sulfide	WO#:LGR5F1AC-L	CS/LGR5F1AD-LCSD LCS	Lot-Sample#: A9G	210000-253
101	(79 - 104)	MCAWW 376.1	07/21/09	9202253
101	(79 - 104) 0.0 (0-20) MCAWW 376.1	07/21/09	9202253
	Dilution Factor	: 1		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix..... WATER

Lot-Sample #...: A9G170133

SPIKE MEASURED PERCNT PREPARATION-PREP AMOUNT PARAMETER TNUOMA UNITS RECVRY RPD METHOD ANALYSIS DATE BATCH # Chloride WO#:LGPP61AC-LCS/LGPP61AD-LCSD LCS Lot-Sample#: A9G200000-027 50.0 53.0 mg/L 106 MCAWW 300.0A 07/17/09 9201027 50.0 53.1 106 0.18 MCAWW 300.0A 07/17/09 mg/L 9201027 Dilution Factor: 1 Chloride WO#:LGPQA1AC-LCS/LGPQA1AD-LCSD LCS Lot-Sample#: A9G200000-030 50.0 54.0 mg/L 108 MCAWW 300.0A 07/17/09 9201030 07/17/09 50.0 53.8 108 0.37 MCAWW 300.0A mg/L 9201030 Dilution Factor: 1 Nitrate as N WO#:LGPP91AC-LCS/LGPP91AD-LCSD LCS Lot-Sample#: A9G200000-029 2.5 2.5 100 MCAWW 300.0A mg/L 07/17/09 9201029 2.5 2.5 mq/L 100 0.0 MCAWW 300.0A 07/17/09 9201029 Dilution Factor: 1 Sulfate WO#:LGPP81AC-LCS/LGPP81AD-LCSD LCS Lot-Sample#: A9G200000-028 50.0 49.3 mq/L 99 MCAWW 300.0A 07/17/09 9201028 49.7 50.0 99 0.80 MCAWW 300.0A 07/17/09 mg/L 9201028 Dilution Factor: 1 WO#:LGR5F1AC-LCS/LGR5F1AD-LCSD LCS Lot-Sample#: A9G210000-253 Total Sulfide 18 18 101 MCAWW 376.1 07/21/09 9202253 18 18 mg/L 101 0.0 MCAWW 376.1 07/21/09 9202253

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Dilution Factor: 1

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A9G170133

Matrix....: WATER

PARAMETER Total Alkalinit	PERCENT RECOVERY Y 99	RECOVERY LIMITS Work Order (90 - 127) Dilution Fact	MCAWW 310.1	A	REPARATION- NALYSIS DATE mple#: A9G200000 07/17/09	PREP <u>BATCH #</u> -061 9201061
Total Organic Carbon		Work Order	#: LGQ381AC	LCS Lot-Sa	mple#: A9G200000	-305
	109	(88 - 115) Dilution Fact	MCAWW 415.1		07/20/09	9201305

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix....: WATER

Client Lot #...: A9G170133

SPIKE MEASURED PERCNT PREPARATION-PREP RECVRY METHOD PARAMETER AMOUNT AMOUNT UNITS ANALYSIS DATE BATCH # Total Alkalinity Work Order #: LGPRH1AC LCS Lot-Sample#: A9G200000-061 71 70 mg/L 99 MCAWW 310.1 07/17/09 9201061 Dilution Factor: 1 Total Organic Work Order #: LGQ381AC LCS Lot-Sample#: A9G200000-305 Carbon 38 35 MCAWW 415.1 mg/L 109 07/20/09 9201305

Dilution Factor: 1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix..... WATER

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE	BATCH #
Chloride		WO#:	LGLLF1AW-MS/	LGLLF1AX-MSD	MS Lot-Sample #: A9	G160259-003
	NC, MSB	(80 - 120)		MCAWW 300.0A	07/17/09	9201027
	NC, MSB	(80 - 120)	(0-20)	MCAWW 300.0A	07/17/09	9201027
		Dilu	ion Factor: 5			
Sulfate		WO#:	LGLLF1A1-MS/	LGLLF1A2-MSD	MS Lot-Sample #: A9	G160259-003
	131 N	(80 - 120)		MCAWW 300.0A	07/17/09	
	124 N	(80 - 120)	2.6 (0-20)	MCAWW 300.0A	07/17/09	9201028
		Dilut	ion Factor: 5			
Total Organi Carbon	С	WO#:	LGKP41AF-MS/	LGKP41AG-MSD	MS Lot-Sample #: A9	G160126-002
	104	(72 - 136)		MCAWW 415.1	07/20/09	9201305
	105	(72 - 136)	0.42 (0-20)	MCAWW 415.1	07/20/09	9201305
		Dilut	ion Factor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD may be outside control limits because the sample amount was greater than 4X the spike amount.

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix..... WATER

Date Sampled...: 07/15/09 10:20 Date Received..: 07/16/09

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	BATCH #
Chloride			WO#:	LGLLF1AW-MS	/LGLLF1.	AX-MS	D MS	Lot-Samp	le #: A9G16025	9-003
	816	50.0	853	mg/L			MCAWW	300.0A	07/17/09	9201027
			Quali	fiers: NC,M	SB					
	816	50.0	832	mg/L			MCAWW	300.0A	07/17/09	9201027
			Quali	lfiers: NC,M	SB					
			Diluti	ion Factor: 5						
Sulfate			WO#:	LGLLF1A1-MS	/LGLLF1	A2-MSI	D MS	Lot-Samp	le #: A9G16025	9-003
	68.0	50.0	134 N	mg/L	131		MCAWW	300.0A	07/17/09	9201028
	68.0	50.0	130 N	mg/L	124	2.6	MCAWW	300.0A	07/17/09	9201028
			Diluti	ion Factor: 5						
Total Orga	nic		WO#:	LGKP41AF-MS	/LGKP41	AG-MSI	D MS	Lot-Samp	le #: A9G16012	6-002
Carbon										
	3	25	29	mg/L	104		MCAWW	415.1	07/20/09	9201305
	3	25	29	mg/L	105	0.42	MCAWW	415.1	07/20/09	9201305
			Diluti	ion Factor: 1						

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MSB The recovery and RPD may be outside control limits because the sample amount was greater than 4X the spike amount.

NC The recovery and/or RPD were not calculated.

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix..... WATER

Date Sampled...: 07/13/09 15:20 Date Received..: 07/16/09

PARAMETER Chloride	PERCENT RECOVERY 102	METHOD #: LGLMF1AK MCAWW 300.0A tor: 1	AN.	EPARATION- ALYSIS DATE Lot-Sample 07/18/09	PREP BATCH # #: A9G160259-022 9201027
Sulfate	96	#: LGLMF1AL MCAWW 300.0A tor: 1	MS	Lot-Sample 07/18/09	#: A9G160259-022 9201028

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix..... WATER

Date Sampled...: 07/13/09 15:20 Date Received..: 07/16/09

PARAMETER Chloride	SAMPLE AMOUNT		MEASURED AMOUNT Work Ord	UNITS er #:	PERCENT RECOVERY LGLMF1AK		PREPARATION- ANALYSIS DATE Sample #: A9G16	_
	ND	50.0	50.9 Dilution F		102	MCAWW 300.0A	07/18/09	9201027
Sulfate	ND	50.0	Work Ord 48.0 Dilution E	mg/L	LGLMF1AL 96	MS Lot-S MCAWW 300.0A	Sample #: A9G16 07/18/09	0259-022 9201028

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix.....: WG

Date Sampled...: 07/16/09 10:05 Date Received..: 07/17/09

	PERCENT	REC	IVC	ERY		RP	D				PREPARAT	ON-	- PREP
PARAMETER	RECOVERY	LIM	T	5	RPD	LI	MITS	METHOI)		ANALYSIS	DAT	TE BATCH #
Total Alkali	nity			WO#:	LGMN:	K1A	K-MS/	LGMNK1	AL-MSD	MS	Lot-Sample	#:	A9G170133-003
	93	(10	=	160)				MCAWW	310.1		07/17,	09	9201061
	93	(10	=	160)	0.28	(0	1-24)	MCAWW	310.1		07/17,	09	9201061
				Dilut	ion Fac	ctor	r: 1						

Dilucion Faccol:

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: A9G170133 Matrix...... WG

Date Sampled...: 07/16/09 10:05 Date Received..: 07/17/09

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO)	ANALYSIS DATE	BATCH #
Total Alka	linity		WO#:	LGMNK1AK-MS,	LGMNK1A	L-MSI	MS I	Lot-Sampl	e #: A9G170133-	-003
į	29	500	500	mg/L	93		MCAWW	310.1	07/17/09	9201061
	29	500	490	mg/L	93	0.28	MCAWW	310.1	07/17/09	9201061
			Diluti	on Factor: 1						

Dildelon raccol.

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

END OF REPORT

Appendix B
Historic Groundwater, Surface Water, and Sediment Results

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	llyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EF	PA MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/22/93	NR	0.9 J	NR	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.1 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/20/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	0.66 J	<1.0	<1.0	0.40 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	01/05/00	<10	0.65 J,B	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0	0.14 J	<10	0.35 J,B	<1.0	<1.0	-	0.097 J	<1.0	<2.0	<1.0
	06/06/00	<10	0.57 J	<1.0	<1.0	0.30 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/15/01	10 UJ	0.40 J	<1.0	<1.0	0.38 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	08/29/01	<10	<1.0	<1.0	<1.0	0.32 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
MW-1	04/25/02	10 U	<1.0	<1.0	<1.0	0.17 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/18/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	0.24 J	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.0
	02/15/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/13/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/24/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	03/24/93	NR	18 J	NR	<0.5	0.4 J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.3 J	<0.5	NR	<4.1 B,J	<0.5	<0.5	-	0.1 J	<0.5	<0.5	<0.5
	09/26/94	<10	11	<10	<1.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/24/95	<10	15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	5.7	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	<1.0	<0.1	<1.0	9.8	<1.0	<10	<1.0	<1.0	0.16 J	-	0.16 J	0.20 J	<2.0	<1.0
	01/05/00	<10	6.9 B	<1.0	<1.0	0.26 J	<2.0	<1.0	<2.0	0.13 J	<1.0	0.45 J	3.3	<1.0	<10	0.11 J,B	<1.0	<1.0	-	0.090 J	0.15 J	0.30 J	<1.0
	06/06/00	<10	4.8	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	3.8	<1.0	<10	<1.0	<1.0	0.30 J	-	<1.0	<1.0	0.18 J	<1.0
	03/14/01	<10	3.6	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	3.2	<1.0	<10	<1.0	<1.0	0.66 J	-	<1.0	0.42 J	<2.0	<1.0
	08/29/01	<10	12	<1.0	<1.0	0.21 J	<2.0	<1.0	0.26 J	<1.0	<1.0	<1.0	1.5	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
MW-4	04/25/02	<10	10	<1.0	<1.0	0.21 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.2	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/18/02	<10	7.8	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	2.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.84 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/26/04	10 U	2.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.50 J	<1.0	<10	<1.0	<1.0	0.72 J	-	<1.0	<1.0	<2.0	<1.0
	02/15/06	10 U	3.8	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.53 J	1.0 U	10 U	1.0 U	1.0 U	0.33 J	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/29/06	10 U	9.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/13/07	10 U	7.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/24/08	10 U	4.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28 J	2.0 U	1.0 U
	07/16/09	10 U	1.2	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	0.34 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	C SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/23/93	NR	<0.5	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	55	<0.5	NR	<1.3 B	<0.5	50	-	<0.5	22	<0.5	<0.5
	09/23/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	130	<10	NR	<10	<10	100	-	<10	24	<10	<10
	04/23/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	85	<10	<10	<10	<10	76	-	<10	22	<10	<10
	02/17/99	<50	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	130	<5.0	<50	3.6 J,B	<5.0	86	-	<5.0	22	<10	<5.0
	01/05/00	<10	0.46 J	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0	80	-	<5.0	21	0.72 J	<5.0
	06/06/00	<33	<3.3	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	99	<3.3	<33	<3.3	<3.3	80	-	<3.3	19	<6.7	<3.3
	03/15/01	<100	<10	<10	<10	<10	<20	<10	<20	<10	<10	<10	310	<10	<100	4.6 J	<10	160	-	<10	32	<20	<10
	08/29/01	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	69	<2.5	<25	<2.5	<2.5	61	-	<2.5	15	<5.0	<2.5
	04/25/02	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	81	<2.5	<25	1.2 U	<2.5	60	-	<2.5	18	0.95 J	<2.5
OW-2	09/18/02	<29	<2.9	<2.9	<2.9	<2.9	<5.7	<2.9	<5.7	<2.9	<2.9	<2.9	85	<2.9	<29	<2.9	<2.9	68	-	<2.9	18	<5.7	<2.9
	04/09/03	<120	<12	<12	<12	<12	<25	<12	<25	<12	<12	<12	290	<12	<120	<12	<12	160	-	<12	29	<25	<12
	04/26/04	10 U	1.5 J	<6.7	<6.7	<6.7	<13	<6.7	<13	<6.7	<6.7	<6.7	170	<6.7	<67	<6.7	<6.7	110	-	1.3 J	22	<13	<6.7
	02/15/06	40 U	4.0 U	4.0 U	4.0 U	4.0 U	8.0 U	4.0 U	8.0 U	4.0 U	4.0 U	4.0 U	150	4.0 U	40 U	4.0 U	4.0 U	120	-	4.0 U	20	8.0 U	4.0 U
	05/23/06	80 U	8.0 U	8.0 U	8.0 U	8.0 U	16 U	8.0 U	16 U	8.0 U	8.0 U	8.0 U	250	8.0 U	80 U	8.0 U	8.0 U	130	8.0 U	8.0 U	22	16 U	8.0 U
	08/30/06	25 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	74	2.5 U	25 U	2.5 U	2.5 U	90	2.5 U	2.5 U	16	5.0 U	2.5 U
	11/29/06	120 U	12 U	12 U	12 U	12 U	25 U	12 U	25 U	12 U	12 U	12 U	280	12 U	120 U	12 U	12 U	140	12 U	12 U	24	25 U	12 U
	06/13/07	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	36	2.0 U	20 U	2.0 UJ	2.0 U	52	2.0 U	2.0 U	12	4.0 U	2.0 U
	07/24/08	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	30	0.96 J	20 U	2.0 U	2.0 U	59	2.0 U	2.0 U	11	4.0 U	1.1 J
	07/16/09	25 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	53	2.5 U	25 U	2.5 U	2.5 U	62	2.5 U	2.5 U	9.7	5.0 U	2.5 U
	03/23/93	NR	<3.0 J	NR	<0.5	0.1 J	<0.5	<0.5	<1.3	<0.5	<0.6	<0.5	8.0 R	<0.5	NR	<3.8	<0.6	1.0	-	<0.5	<1.3	1.8	<0.6
	09/29/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/25/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7 J	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<17	0.67 J	<1.7	<1.7	0.20 J	<3.3	<1.7	<3.3	<1.7	<1.0	<1.7	33	<1.7	<17	1.3 J,B	<1.0	7.8	-	<1.7	5.4	<3.3	<1.7
	01/06/00	1.3 J	0.66 J	<1.0	<1.0	0.29 J	<2.0	<1.0	<2.0	<1.0	<1.0	0.20 J	38	<1.0	<10	0.25 J,B	<1.0	18	-	0.041 J	9.0	0.26 J	<1.0
	06/07/00	<10	0.91 J	<1.0	<1.0	0.19 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.3	<1.0	<10	<1.0	<1.0	2.4	-	<1.0	1.7	<2.0	<1.0
	03/14/01	<10	0.46 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	14	<1.0	<10	<1.0	<1.0	6.2	-	<1.0	3.7	<2.0	<1.0
	08/29/01	<12	<1.2	<1.2	<1.2	0.21 J	<2.5	<1.2	<2.5	<1.2	<1.2	<1.2	29	<1.2	<12	<1.2	<1.2	7.0	-	<1.2	4.5	<2.5	<1.2
	04/24/02	14 U	0.35 J	<1.4	<1.4	0.20 J	<2.9	<1.4	<2.9	<1.4	<1.4	<1.4	37	<1.4	<14	1.4 U	<1.4	10	-	<1.4	5.3	<2.9	<1.4
OW-5	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	31	<1.0	<10	<1.0	<1.0	9.5	-	<1.0	5.3	<2.0	<1.0
	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	5.5	-	<1.0	3	<2.0	<1.0
	04/25/04	<10	0.38 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	8.6	<1.0	<10	<1.0	<1.0	5.2	-	<1.0	2.5	<2.0	<1.0
	02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	6.2	1.0 U	10 U	1.0 U	1.0 U	4.3	-	1.0 U	2.0	2.0 U	1.0 U
	05/23/06	10 U	0.69 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	20	1.0 U	10 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	2.6	0.27 J	1.0 U
	08/29/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	34	1.4 U	14 U	1.4 U	1.4 U	6.1	1.4 U	1.4 U	2.8 J	0.82 J	1.4 U
	11/29/06	10 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	30	1.0 U	10 U	1.0 U	1.0 U	7.1	1.0 U	1.0 U	3.5	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	8.7	1.0 U	10 U	1.0 UJ	1.0 U	4.0	1.0 U	1.0 U	1.9	2.0 U	1.0 U
	07/23/08	1.0 U	0.53 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	10	1.0 U	1.0 U	1.0 U	1.0 U	4.4	1.0 U	1.0 U	1.8	0.28 J	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	3.7	1.0 U	1.0 U	1.5	2.0 U	1.0 U

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP		NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/23/93	NR	<1.3 J	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.1 J	<1.3 J	<0.5	NR	<0.7 J,B	<0.5	13	-	<0.5	<2.9	1.1	<0.5
	09/27/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	4 J	<10	NR	<10	<10	17	-	<10	6.0 J	<10	<10
	04/23/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	-	<10	5.0 J	<10	<10
	02/18/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	3.7 B	<1.0	20	-	<1.0	4.6	<2.0	<1.0
	01/06/00	1.4 J	0.19 J,B	0.58 J	<1.0	<1.0	<2.0	<1.0	0.17 J	<1.0	<1.0	0.28 J	5.1	<1.0	<10	0.26 J,B	<1.0	21	-	<1.0	4.6	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	2.2	<1.0	<10	<1.0	<1.0	14	-	<1.0	2.6	<2.0	<1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.9	<1.0	<10	<1.0	<1.0	19	-	<1.0	3.9	<2.0	<1.0
	08/29/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.7	<1.0	<10	<1.0	<1.0	12	-	<1.0	2.3	<2.0	<1.0
0144.0	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	4.7	<1.0	<10	1.1 U	<1.0	12	-	<1.0	2.9	<2.0	<1.0
OW-6	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	15	-	<1.0	3.9	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	0.34 J	<1.0	28	-	<1.0	6.8	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	<1.0	<1.0	32	-	<1.0	6.3	<2.0	<1.0
	02/16/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	19	1.7 U	17 U	1.7 U	1.7 U	39	-	1.7 U	7.9	3.3 U	1.7 U
	05/23/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	24	1.7 U	17 U	1.7 U	1.7 U	39	1.7 U	1.7 U	7.8	3.3 U	1.7 U
	08/31/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	20	1.4 U	14 U	1.4 U	1.4 U	40	1.4 U	1.4 U	7.7	2.9 U	1.4 U
	11/29/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	20	1.7 U	17 U	0.75 J	1.7 U	41	1.7 U	1.7 U	8.6	3.3 U	1.7 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	19	1.0 U	10 U	1.0 UJ	1.0 U	36	1.0 U	1.0 U	9.0	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	10 U	1.0 U	1.0 U	31	1.0 U	1.0 U	6.3	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	10 U	1.0 U	1.0 U	30	1.0 U	1.0 U	5.5	2.0 U	1.0 U
	03/23/93	NR	<0.5	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.8 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/20/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	0.32 J	0.17 J	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<10	<10	0.32 J	<1.0	0.17 J	-	<1.0	<1.0	<2.0	<1.0
	01/06/00	<10	0.49 J	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0	0.14 J	<10	0.35 J,B	<1.0	<1.0	-	0.097 J	<1.0	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-8	08/29/01 04/24/02	<10 10 U	0.20 J 0.20 J	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10	<1.0 1.0 U	<1.0 <1.0	<1.0 <1.0	-	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0
O VV = 0	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	_	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/29/93	NR	37	NR	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NR	2.9 B	<1.0	<1.0	-	0.5 J	<1.0	<1.0	<1.0
	09/25/94	68	1,100	<10	<10	4 J	<10	<10	<10	<10	<10	<10	<10	9 J	NR	<10	<10	<10	-	8 J	<10	<1.0	53
OW-10	04/27/95	<50	2,600	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	_	<50	<50	<50	30 J
	02/16/99	<2,000	1,900	<200	<200	23 J	<400	<200	<400	<200	<200	<200	<200	<200	<2,000	100 J,B	<200	<200	_	25 J	<200	<400	<200
	JZ/ 10/33	\ ∠ ,000	1,500	~200	_ UU	200	\ + 00	_UU	\+00	\ _ UU	\ _ UU	\ _ UU	\ <u></u>	\ _ UU	\ ∠ ,000	100 0,0	_ UU	_ UU		200	\200	\ 1 00	\ _ UU

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Anal	yte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	CSGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	01/07/00	610	400	<17	<17	3.6 J,B	<33	<17	<33	<17	<17	<17	<17	4.3 J	<170	<17	<17	<17	-	8.5 J	<17	10 J	6.2 J
	06/06/00	<50	130 J	<5.0	<5.0	3.0 J	<10	<5.0	<10	<5.0	<5.0	<5.0	<5.0	2.2 J	<50	<5.0	<5.0	<5.0	-	0.52 J	<5.0	2.2 J	<5.0
	03/14/01	<10	35	<1.0	<1.0	3.6	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	0.89 J	<10	<1.0	<1.0	<1.0	-	0.44 J	<1.0	2.4	<1.0
	08/29/01	<20	55	<2.0	<2.0	1.4 J	1.1 J	<2.0	<4.0	<2.0	<2.0	<1.0	3.5	<1.0	<20	<1.0	<2.0	<2.0	-	<1.0	<2.0	9.5	<2.0
l [04/25/02	<10	30	<1.0	<1.0	4.0	2.8	<1.0	<2.0	<1.0	<1.0	<1.0	2.7	2.0 U	<10	1.2 U	<1.0	<1.0	-	1.0 U	<1.0	4.5	1.0 U
l [09/19/02	<10	17	<1.0	<1.0	2.9	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.5	0.91 J	<10	<1.0	<1.0	<1.0	-	0.39 J	<1.0	6.3	<1.0
OW-10R	04/09/03	<10	6.8	<1.0	<1.0	3.1	0.54 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.43 J	<1.0	<1.0	-	<1.0	<1.0	0.72 J	<1.0
l [04/26/04	<10	8.1	<1.0	<1.0	2.2	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.57 J	0.22 J	<10	1.0 U	<1.0	<1.0	-	0.27 J	<1.0	0.99 J	<1.0
	02/15/06	10 U	3.2	1.0 U	1.0 U	1.4	0.52 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.47 J	1.3 U
	08/29/06	10 U	9.9	1.0 U	1.0 U	1.4	0.92 J	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	0.59 J	0.25 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.7 J	1.0 U
	06/13/07	10 U	4.7	1.0 U	1.0 U	1.4	0.94 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.47 J	1.0 U	10 U	1.0 UJ	1.0 U	0.89 J	1.0 U				
	07/22/08	10 U	5.7	1.0 U	1.0 U	0.71 J	0.48 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.46 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.80 J	1.0 U
	07/15/09	10 U	2.7	1.0 U	1.0 U	2.3	0.62 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.33 J	1.0 U
	10/28/93	NR	230	NR	<1.0	<1.0	<1.0	<1.0	<1.0	0.4 J	<1.0	<1.0	12	0.2 J	NR	1.2 J,B	<1.0	<1.0	-	4.8	0.9 J	<1.0	0.8 J
	09/29/94	<10	40	<10	<10	<10	<10	<10	<10	<10	<10	<10	6 J	<10	NR	<10	<10	<10	-	<10	<10	9 J	<10
	04/25/95	<10	350	<10	<10	<10	<10	<10	<10	<10	<10	<10	20	<10	<10	<10	<10	<10	-	<10	<10	34	<10
	02/16/99	<330	490	<33	<33	<33	<67	<33	<67	<33	<33	<33	52	<33	<330	18 J,B	<33	<33	-	7.6 J	<33	48 J	<33
	01/06/00	<200	620	<20	<20	<20	<40	3.5 J,B	<40	<20	<20	<20	56	2.3 J	<200	<20	<20	<20	-	2.7 J,B	1.3 J	58	<20
OW-13	06/07/00	<83	200	<8.3	<8.3	0.84 J	<17	<8.3	<17	<8.3	<8.3	<8.3	15	5.5 J	<83	<8.3	<8.3	<8.3	-	<8.3	<8.3	17	<8.3
	03/14/01	<50	130	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	15	4.0 J	<50	3.0 J	<5.0	<5.0	-	<5.0	<5.0	12	<5.0
	08/29/01	<62	120	<6.2	<6.2	<6.2	<12	<6.2	<12	<6.2	<6.2	<6.2	12	<6.2	<62	<6.2	<6.2	<6.2	-	<6.2	1.1 J	9.9 J	<6.2
	04/24/02	<56	160	<5.6	<5.6	<5.6	<11	<5.6	<11	<5.6	<5.6	<5.6	11	<5.6	<56	<5.6	<5.6	<5.6	-	5.6 U	1.2 J	9.9 J	<5.6
	09/19/02	<33	81	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	8.5	1.8 J	24 J	<3.3	<3.3	<3.3	-	<3.3	<3.3	5.9 J	<3.3
	04/10/03	<25	53	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	5.9	1.6 J	<25	<2.5	<2.5	<2.5	-	<2.5	<2.5	4.9 J	<2.5
	04/25/04	<17	45	<1.7	<1.7	0.38 J	<3.3	<1.7	<3.3	<1.7	<1.7	<1.7	4.9	1.0 J	<17	<1.7	<1.7	<1.7	-	0.31 J	0.67 J	3.2 J	<1.7
	02/20/06	10 U	15	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.60 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.29 J	1.0 U	1.1 J	1.0 U
	08/29/06	10 U	15	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.40 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3 J	1.0 U
OW-13R	06/12/07	10 U	11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U	10 U	1.0 UJ	1.0 U	0.86 J	1.0 U				
	07/22/08	10 U/10 U	6.5 J/6.8 J	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	10 U/10 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	0.70 J/0.70 J	1.0 U/1.0 U
	07/14/09	10 U	13/12	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	2.4/2.3	1.0 U/1.0 U	10 U/10 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	0.64 J/0.63 J	1.6 J/1.6 J	1.0 U/1.0 U
	09/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
] .	04/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/16/99	<10	1.1	<1.0	<1.0	0.52 J	<2.0	<1.0	<2.0	0.25 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.5 J	<1.0
	01/07/00	1.3 J	1.0 B	0.92 J	<1.0	0.64 J	<2.0	<1.0	<2.0	0.31 J	<1.0	0.57 J	<1.0	<1.0	<10	0.35 J,B	0.15 J,B	<1.0	-	0.074 J	<1.0	1.4 J	<1.0
	06/06/00	<10	0.91 J	<1.0	<1.0	0.60 J	<2.0	<1.0	<2.0	0.28 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.0 J	<1.0
	03/14/01	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.37 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.1 J	<1.0
	08/28/01	2.2 J,B	0.61 J	<1.0	<1.0	0.35 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.52 J	<1.0
	04/25/02	<10	0.99 J	<1.0	<1.0	0.47 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	0.91 J	<1.0
	09/18/02	<10	0.69 J	<1.0	<1.0	0.43 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/08/03	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.33 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0 J	<1.0
]]	04/23/04	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.29 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.90 J	<1.0
	02/15/06	10 U	0.88 J	1.0 U	1.0 U	0.53 J	2.0 U	1.0 U	2.0 U	0.24 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.73 J	1.3 U
	08/29/06	10 U	0.78 J	1.0 U	1.0 U	0.51 J	2.0 U	1.0 U	0.37 J	0.22 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.82 J	1.0 U

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	C SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/17/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	01/06/00	1.4 J	0.082 J,B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.61 J	<1.0	<1.0	<10	0.30 J,B	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/14/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-16	08/28/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.36 J	<1.0	<1.0	<10	0.80 J	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.9 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	02/17/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.35 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
OW-17	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	09/23/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/29/95	<10	12	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	29
	02/17/99	<17	4.7	<1.7	<1.7	3.4	1.0 J	<1.7	<3.3	<1.7	<1.7	<1.7	0.54 J	<1.7	<17	1.0 J,B	<1.7	<1.7	-	<1.7	<1.7	<3.3	1.1 J
	01/07/00	2.7 J	5.6 B	1.0	<1.0	4.5	3.0	<1.0	<2.0	0.66 J	<1.0	0.29 J	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	0.22 J	0.14 J	0.29 J	1.8
	06/08/00	<10	4.8	<1.0	<1.0	4.6	1.3 J	<1.0	<2.0	0.24 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/16/01	10 UJ	3.1	<1.0	<1.0	3.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.4
	08/28/01	2.3 J,B	2.4 J	<1.0	<1.0	3.6 J	<2.0	<1.0	<2.0	0.18 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.3 J
OW-18	04/24/02	10 U	1.5	<1.0	<1.0	4.3	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.28 J	<1.0	<10	1.6 U	<1.0	<1.0	-	1.0 U	<1.0	<2.0	1.7
	09/17/02	<10	2.9	<1.0	<1.0	5.5	1.3 J	<1.0	<2.0	0.36 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	2.0
	04/08/03	2.6 J	2.9	<1.0	<1.0	5.6	1.2 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
	04/23/04	10 U	3.3	<1.0	<1.0	7.3	0.74 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
	02/17/06	10 U	5.1	1.0 U	1.0 U	10	3.2	1.0 U	2.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.49 J	1.0 U	2.0 U	10
	08/30/06	10 U	3.7	1.0 U	1.0 U	7.8	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/14/07	10 U	1.2	1.0 U	1.0 U	6.5	0.46 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/22/08	10 U	1.5	1.0 U	1.0 U	6.9	0.40 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/16/09	10 U	2.3	1.0 U	1.0 U	9.6	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.34 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	ılyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	C SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	PA MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/27/94	<10	10 J	<10	<10	5 J	15	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/28/95	<10	8 J	<10	<10	6 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/17/99	<10	5.8	<1.0	<1.0	7.1	6.1	<1.0	<2.0	0.27 J	<1.0	<1.0	3.3	<1.0	<10	0.16 J,B	<1.0	<1.0	-	0.16 J	0.14 J	10	<1.0
	01/05/00	0.94 J	3.7 B	<1.0	<1.0	10	2.7	<1.0	<2.0	0.16 J	0.27 J	<1.0	1.5	<1.0	<10	0.25 J,B	<1.0	<1.0	-	0.15 J	0.15 J	2.1	<1.0
	06/08/00	<10	2.3	<1.0	<1.0	5.2	1.9 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/16/01	10 UJ	1.7	<1.0	<1.0	3.8	1.4 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.96 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.3 J	<1.0
	08/28/01	2.7 J,B	1.9 J	<1.0	<1.0	7.2 J	0.92 J	<1.0	<2.0	<1.0	<1.0	0.35 J	0.46 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-19	04/23/02	10 U	1.3	<1.0	<1.0	6.5	0.71 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.43 J	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	09/17/02	<10	0.64 J	<1.0	<1.0	4.9	0.73 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/08/03	2.5 J	3	<1.0	<1.0	4.9	1.7 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.81 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.68 J	<1.0
	04/24/04	10 U	2.1	<1.0	<1.0	6	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.58 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.56 J	<1.0
	02/17/06	10 U	3.4	1.0 U	1.0 U	5.6	1.9 J	1.0 U	<2.0	1.0 U	1.0 U	1.0 U	1.3	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.9	1.0 U
	08/31/06	3.1 J	3.3	1.0 U	1.0 U	13	1.8 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.85 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U
	06/14/07	10 U	2.1	1.0 U	1.0 U	8.8 J	1.3 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.73 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.87 J	1.0 U
	07/22/08	10 U	1.4	1.0 U	1.0 U	11	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.49 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.62 J	1.0 U
	07/15/09	10 U	1.9	1.0 U	1.0 U	7.9	1.0 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.94 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.1	1.0 U
	09/22/94	6 J	5 J	<10	<10	<10	<10	10 J	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/29/95	<10	8 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/16/99	<10	5.8	<1.0	<1.0	0.11 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.26 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.89 J	<1.0
	01/04/00	<10	3.8 B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	<1.0	<1.0	<10	0.10 J,B	<1.0	<1.0	-	0.055 J	<1.0	0.46 J	<1.0
	06/07/00	<10	5.4	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.54 J	<1.0
	03/13/01	10 UJ	4.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.70 J	<1.0
	08/30/01	10 U	3.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.38 J	<1.0	<1.0	<u>-</u>	<1.0	<1.0	0.25 J	<1.0 <1.0
OW-21	04/25/02	<10 <10	2.4	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10	1.0 U <1.0	<1.0 <1.0	<1.0 <1.0	<u>-</u>	<1.0 <1.0	<1.0 <1.0	0.33 J 0.39 J	<1.0
	04/09/03	<10	3.7	<1.0	<1.0	<1.0	<2.0	<1.0	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.51 J	<1.0	<1.0	-	<1.0	<1.0	0.39 J	<1.0
	04/09/03	<10	2.9	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.56 J	<1.0
	02/16/06	10 U	3.0	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	_	1.0 U	1.0 U	0.50 J	1.0 U
	08/29/06	10 U	2.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	0.27 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.83 J	1.0 U
	06/29/00	10 U	2.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.63 J	1.0 U
	07/23/08	10 U	1.8	1.0 U	1.0 U	1.0 U	<2.0	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.07 J	1.0 U
	07/25/00	10 U	2.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.74 J	1.0 U
	01/15/09	100	2.1	1.00	1.00	1.0 0	2.0 0	1.0 0	2.00	1.0 0	1.00	1.0 0	1.00	1.00	100	1.0 0	1.0 0	1.0 0	1.0 0	1.00	1.0 0	0.00 3	1.00

Table B-1
Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro-ethane	Chloroform	Chloro- methane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethyl-benzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	C SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	NA	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	NA	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	09/24/94	<10	100	<10	<10	9 J	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	5 J
	04/28/95	<10	48	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	<10
	02/17/99	<25	46	<2.5	<2.5	8.0	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	2.4 J	<2.5	<25	1.1 J,B	<2.5	<2.5	-	0.87 J	<2.5	4.2 J	3.5
	01/04/00	1.5 J	37 B	0.41 J	<1.2	5.8	<2.5	<1.2	<2.5	0.21 J	<1.2	<1.2	<1.2	0.098 J	<12	0.23 J,B	<1.2	<1.2	-	0.58 J	0.073 J	1.5 J	1.7
	06/07/00	<10	11	<1.0	<1.0	5.8	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	1.4
	03/13/01	10 UJ	12	<1.0	<1.0	8.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.70 J	<1.0	<10	<1.0	<1.0	<1.0	-	0.56 J	<1.0	0.76 J	1.9
	08/30/01	10 U	3.4	<1.0	<1.0	4.6	<2.0	0.34 J	<2.0	<1.0	<1.0	<1.0	0.36 J	<1.0	<10	0.36 J	<1.0	<1.0	-	0.45 J	<1.0	<2.0	1.7
OW-22	04/25/02	<10	4.2	<1.0	<1.0	3.7	<2.0	<1.0	<2.0	<1.0	0.29 J	<1.0	<1.0	<1.0	<10	1.2 U	<1.0	<1.0	-	1.0 U	<1.0	0.39 J	2.7 U
O 11 22	09/18/02	<10	2.9	<1.0	<1.0	4.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.8
	04/09/03	<10	8.7	<1.0	<1.0	8.5	0.66 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	<1.0	<1.0	0.56 J	1.6
	04/24/04	10 U	4.2	<1.0	<1.0	5.9	0.24 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	0.23 J	<1.0	0.32 J	1.1
	02/16/06	10 U	7.5	1.0 U	1.0 U	11	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.59 J	1.0 U	<10	0.59 J	1.0 U	1.0 U	-	0.26 J	1.0 U	0.29 J	1.0
	08/31/06	10 U	2.8	1.0 U	1.0 U	5.3	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.24 J	1.0 U	0.41 J	1.1
	06/14/07	10 U	3.5	1.0 U	1.0 U	4.8	0.26 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.50 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	0.21 J	1.0 U	0.37 J	0.76 J
	07/23/08	10 U	1.9	1.0 U	1.0 U	4.6	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.17 J	1.0 U	0.32 J	0.66 J
	07/15/09	10 U	5.1	1.0 U	1.0 U	7.8	0.34 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.53 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.19 J	1.0 U	0.35 J	1.0 U
	02/17/06	10 U	0.38 J	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.66 J	1.0 U
OW-23	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.44 J	1.0 U	1.0 U	0.39 J	1.0 U
011 20	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U
	11/30/06	10 U	0.23 J	1.0 U	1.0 U	1.0 U	0.27 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.22 J	1.0 U	0.51 J	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.22 J	1.0 U	2.0 U	<1.0
OW-24	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.45 J	1.0 U	1.0 U	2.0 U	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	3.6 U	1.0 U	1.0 U	1.0 U	0.18 J	1.0 U	2.0 U	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.17 J	1.0 U	1.0 U	1.0 U
	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
OW-25	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/16/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values for groundwater

U.S. EPA MCL= United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Red = Concentrations detected at or above regulatory limit

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified

UJ = (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Pre-1999 data from RETEC 1995

Pre-1999 analysis performed by Method 8240

1999 and later analyses performed by Method 8260B

NA = Not applicable; no criteria specified

NR = Analyte not reported

R = Data rejected during validation

J = Estimated result; result is less than reporting limit.

^{* =} The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

< = Analyte not detected at reporting limit

Table B-2
Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Anal	lyte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate
NYSDE	C SGV	50 (G)	1 (S)	NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)
U.S. EP.	A MCL	NE	5	NE	NE	5	70	5	1,000	2	NE
Sample ID	Date					VOCs					SVOCs
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	0.19 J,B	10 U	0.85 J	1.0 U	1.0 U	0.15 J,B	1.0 U	0.99 J	10 U
	06/08/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-1	03/15/01	10 U	1.0 U	10 U	0.97 J	0.61 J	0.39 J	1.0 U	1.0 U	0.52 J	10 U
(Down-	08/28/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
stream)	04/23/02	10 U	1.0 U	0.60 J	2.0 U	1.0 U	1.0 U	1.5 U	1.0 U	2.0 U	NA
	09/17/02	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	04/08/03	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	04/23/04	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	02/18/06	10 U / 21 U	1.0 U / 1.0 U	10 U / 10 U	0.37 J / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	0.34 J / 0.29 J	NA / NA
SW-1 /	06/14/07	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
Duplicate	07/24/08	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
	07/15/09	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	06/08/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-2	03/15/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
(Upstream)	02/18/06	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.53 J	NA
	06/14/07	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	0.21 J	1.0 U	2.0 U	NA
	07/24/08	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA
	07/15/09	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA

Table B-2 Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L) Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Anal	lyte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate
NYSDE	C SGV	50 (G)	1 (S)	NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)
U.S. EP	A MCL	NE	5	NE	NE	5	70	5	1,000	2	NE
Sample ID	Date					VOCs					SVOCs
	08/28/01	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	10 U
	04/23/02	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.2 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	0.77 J / 10 U
SW-2 / Duplicate	09/17/02	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA
,	04/08/03	1.3 J / 2.0 J	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA
	04/23/04	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA

Notes:

TCL = Target Compound List

NE = Not established; no criteria specified.

NA = Not analyzed

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) values for groundwater.

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater.

J = Estimated result; result is less than reporting limit.

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified.

Red = Analyte detected at or above SGV or MCL.

Table B-3 Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment (ug/kg) **Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York**

Analy	/te	Acetone	Benzene	2-Butanone	Carbon Disulfide	Chlorobenzene	Chloroform	1,2- Dichloroethane	1,2- Dichloroethene (total)	Methylene Chloride	Toluene	Trichloroethene	Vinyl Chloride	bis(2- Ethylhexyl)phthalate	Di-n-butylphthalate	4-Methylphenol
Sample ID	Date						V	OCs			•				SVOCs	
	09/27/94	58	ND	20 U	NA	ND	ND	ND	ND	ND	ND	ND	20 U	ND	190 J,B	ND
	02/18/99	28 U	6.9 U	28 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	14 U	450 U	77 J	450 U
	01/04/00	370	31 U	82 J	31 U	31 U	31 U	31 U	31 U	31 U	31 U	31 U	6.9 J	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	06/08/00	60 JB	13 U	17 J	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	27 U	590 J	880 U	880 U
SED 1	03/15/01	55 J	16 U	62 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	31 U	1,000 U	1,000 U	1,000 U
(Downstream)	08/28/01	27 J	2.1 J	9.4 J	12 U	12 U	12 U	12 U	4.6 J	12 U	1.3 J	12 U	24 U	790 U	790 U	790 U
	04/23/02	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	09/17/02	180 BJ	2.7 J	58 J	3.5 J	17 U	17 U	17 U	2.1 J	17 U	54 J	17 U	34 UJ	NA	NA	NA
	04/08/03	110 J	3.4 J	34 J	21 UJ	21 U	21 U	21 U	5.7 J	21 U	21 U	21 U	3.0 J	NA	NA	NA
	04/23/04	28 J,FB,TB	10 U	7.2 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	NA	NA	NA
	02/18/06	460 U / 180 U	11 U / 9.1 U	130 U / 54 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	1.2 J / 0.95 J	1.9 J / 9.1 U	23 U / 18 U	NA	NA	NA
SED-1 /	06/14/07	60 J / 18 J	12 U / 12 U	18 J / 6.9 J	0.62 J / 0.76 J	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	24 U / 24 U	NA / NA	NA / NA	NA / NA
Duplicate	07/24/08	24 U / 26 U	6.1 U / 6.5 U	2.9 J / 5.9 J	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	12 U / 13 U	NA / NA	NA / NA	NA / NA
	07/15/09	940 J / 300 J	13 J / 5.6 J	230 J / 96 J	17 J / 8.2 J	5.9 J / 3.2 J	25 U / 21 U	1.7 J / 21 U	12 J / 5.9 J	9.7 J / 21 U	3.1 J1.3 J	25 U / 21 U	8.7 J / 4.5 J	NA / NA	NA / NA	NA / NA
	09/27/97	76	ND	23 U	NA	ND	ND	ND	ND	ND	ND	ND	23 U	ND	220 J,B	ND
	02/18/99	140 JB	44 U	50 J	44 U	44 U	44 U	44 U	44 U	44 U	44 U	44 U	88 U	2,900 U	370 J	2,900 U
SED-2	02/18/06	110 U	16 U	65 U	1.8 J	16 U	16 U	16 U	16 U	16 U	2.1 J	16 U	32 U	NA	NA	NA
(Upstream)	06/14/07	76 J	15 U	18 J	1.2 J	15 U	15 U	15 U	15 U	15 U	5.5 J	15 U	30 U	NA	NA	NA
	07/24/08	78 UJ	10 U	19 J	10 U	10 U	10 U	10 U	10 U	10 U	0.90 J	10 U	20 U	NA	NA	NA
	07/15/09	110 UJ	28 UJ	110 UJ	28 UJ	28 UJ	1.6 J	28 UJ	28 UJ	8.6 J	34 J	28 UJ	56 UJ	NA	NA	NA
	01/04/00	180 J / 190 U	55 U / 47 U	220 U / 190 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	110 U / 94 U	3,600 U / 3,100 U	3,600 U / 3,100 U	3,600 U / 3,100 U
	06/08/00	150 J / 160 U	46 U / 41 U	49 J / 160 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	13 J / 41 U	46 U / 41 U	91 U / 81 U	2,900 J / 1,500 J	3,000 U / 2,700 U	480 J,# / 2,700 U
	03/15/01	36 UJ / 69 UJ	17 UJ / 17 UJ	70 UJ / 69 UJ	17 U / 17 U	17 U / 17 U	17 U / 17 U	17 U / 17 U	17 UJ / 17 UJ	17 UJ / 17 UJ	17 UJ / 17 UJ	17 U / 17 U	35 UJ / 35 UJ	1,200 U / 1,100 U	1,200 U / 1,100 U	1,200 U / 1,100 U
SED-2 /	08/28/01	44 J / 22 J	16 U / 13 U	14 J / 7.6 J	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	32 U / 25 U	1,100 U / 830 U	1,100 U / 830 U	1,100 U / 830 U
Duplicate	04/23/02	63 J / 85 UJ	30 UJ / 21 UJ	21 J / 85 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	59 UJ / 42 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	09/17/02	40 B / 29 JB	9.6 U / 9.3 U	17 J / 9.3 J	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	1.0 J / 0.91 J	9.6 U / 9.3 U	19 U / 19 U	NA	NA	NA
	04/08/03	79 J / 27 J	41 U / 44 U	21 J / 180 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	83 U / 88 U	NA	NA	NA
	04/23/04	38 J,FB / 53 U	14 U / 13 U	12 J / 53 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	28 U / 27 U	NA	NA	NA

Notes:

TCL = Target Compound List

ND = Not detected at reporting limit prior to 06/08/00.

< = Not detected at the method detection limit.

B = Method blank contamination. The associated method blank contains the analyte at a reportable level.

R (DATA VALIDATION QUALIFIER) = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.

= This value represents a probable combination of 3-methylphenol (m-cresol) and 6-methylphenol (p-cresol).

UJ (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Methylene chloride (2.6 ug/kg J, FB, TB) was detected in SED-1 during 4/04 sampling round.

NA = Not analyzed

TB = Detected in trip blank

FB = Detected in field blank

J = Estimated result; result is less than method reporting limit

Appendix C
Data Quality Review - Checklists

Tier II VOA Organic Data Review Summary

SDG No./Matrix: A9G170133 - Water (Low)

MW-4, FB-3, OW-2, OW-18,

OW-25

Completion Date: 08/14/09

Pump Rinse TB-3

Project No.: Carroll & Dubies - 104-0012 Reviewer: Barbara Jones

	Review Criteria	Data Qualified	Comments / Samples Qualified
	Review Criteria	Yes / No	Comments / Samples Qualified
1.	Data completeness	No	Complete data package provided electronically in searchable format. Package was reviewed on screen with selected pages printed for detailed review. Summary package was printed.
2.	Preservation/holding time	No	All samples were analyzed within the required holding times and were correctly preserved.
3.	GC/MS tuning	No	Form V shows that instrument tuning was correctly performed and documented.
4.	Calibration:		
	4A - Initial	No	Six-point initial calibration (UX16) for period 11/02/09 to 07/16/09 (low water). RSDs <30% and RRF <0.05, therefore no qualifications.
	4B - Continuing	No	Continuing calibration performed on 07/23/09. Two compounds exceeded %D limit of 25%, 1,2-dibromo-3-chloropropane and vinyl acetate, but these are not reported VOAs and therefore no qualifications.
5.	Blanks:		
	5A - Laboratory blanks	No	Method blank (Form IV): Methylene chloride detected at 0.39 ug/L J; no data qualified because no detections in other samples.
	5B - Trip blanks	NA	Trip blank: Acetone detected at 2.6 ug/L J. No results qualified because acetone not reported in any of the sample.
	5C - Equipment rinsates	NA	Pump rinse: No detections.
	5D - Field blank		No detections.
6.	Surrogate recovery	NA	Form II - All surrogate recoveries within QC limits.
7.	Lab-fortified blank		Form III - Check sample and duplicate; all recoveries and RPDs within limits.
8.	Matrix spike/matrix spike duplicates	No	Form III - Lab MS and MSD; recoveries and RPDs within limits.
9.	Field duplicates	NA	No field duplicates for this SDG.
10.	Internal standards performance	No	Form VIII - Internal standards met QC limits.
11.	Compound quantitation and reporting	No	MW-4 was spot-checked and okay.
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II RSK Method Dissolved Gases

SDG No./Matrix: A9G170133 - Groundwater

MW-4, OW-2, OW-18, OW-25 Completion Date: 08/14/09

Project No.: Carroll & Dubies - 104-0012 **Reviewer**: Barbara Jones

		Data	
	Review Criteria	Qualified	Comments / Samples Qualified
		Yes / No	Floring in a section of the land of the land
1.	Data completeness	No	Electronic package included sample data, standard data, raw QC data, and miscellaneous (sequence table, etc.). Summary data package printed.
2.	Preservation/holding time	No	All samples properly preserved and analyzed in less than 14 days.
3.	GC/MS tuning	NA	GC method.
4.	Calibration:		
	4A - Initial	No	7-Level initial calibration from 06/07/09. RSD <30%. The laboratory reported that due to a problem with the regulator on the gas cylinder for the gas standard for initial calibration verification, a second (verification) standard was not available. However, the primary source standard was available and was used. This is a deviation from standard methods but does not affect the quality of the data.
	4B - Continuing	No	Continuing calibration - July 09. RRF and %D within QC limits.
5.	Blanks:		
	5A - Laboratory blanks	No	Method blank (Form III) for all samples.
	5B - Trip blanks	NA	Trip blank not analyzed for dissolved gases.
	5C - Equipment rinsates	NA	Pump rinsate not analyzed for dissolved gases.
6.	Surrogate recovery	NA	Not applicable for this method.
7.	Lab-fortified blank	No	Form III - One check sample, with recoveries within QC limits.
8.	Matrix spike/matrix spike duplicates	No	Form III - One MS/MSD pair, with recoveries and RPDs within limits.
9.	Field duplicates	NA	No field duplicates for this SDG.
10.	Internal standards performance	NA	Not applicable for this method.
11.	Compound quantitation and reporting	No	Appears consistent with calculations for standards. Local compound variable referenced in formula.
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II Inorganic Data Review Summary

SDG No./Matrix: A9G170133 - Groundwater

MW-4, OW-2, OW-18, OW-25 Completion Date: 08/17/09

Project No.: Carroll & Dubies - 104-0012 **Reviewer**: Barbara Jones

	Review Criteria	Data Qualified Yes / No	Comments / Samples Qualified
1.	Data completeness	No	Electronic data package included sample data and supportive raw data. Summary package printed.
2.	Preservation/holding time	No	All samples analyzed within the required holding times shown below.
3.	Calibration	No	Initial and continuing calibration documentation provided for all parameters.
4.	Blanks:		
	4A - Laboratory	No	Method blank (1) for all parameters; all ND.
	4B - Equipment rinsates	NA	Pump rinsate was not analyzed for inorganics.
5.	Interference check sample	NA	No interference check samples for these parameters.
6.	Laboratory control sample	No	Duplicate lab control samples analyzed for all parameters, and all results were within QC limits.
7.	Laboratory duplicate sample	No	LCS/LCS duplicates met QC limits.
8.	Field duplicate sample	NA	No field duplicate analyzed for this SDG.
9.	Matrix spike sample analysis	No	For chloride MS/MSD, the sample amount was greater than 4x the spike amount, therefore the recoveries and RPDs were not calculated; results were flagged by the laboratory. Data was not qualified because LCS results and method blanks were within limits. For sulfate, recoveries were high (outside QC limits). Data was not qualified because LCS and method blank results were within QC limits.
10.	ICP serial dilution	NA	Not applicable for these parameters.
11.	Sample quantitation and reporting	No	Titration report for sulfide reviewed to confirm nondetection in all samples.

Inorganics Analyzed:	Holding Times:
- Chloride	28 days
- Nitrate	48 hours
- Sulfate	28 days
- Total Alkalinity	14 days
- Total Organic Carbon	28 days
- Total Sulfide	7 days

Tier II
VOA Organic Data Review Summary

Completion Date:

08/18/09

SDG No./Matrix: A9G150158

Groundwater, Surface Water,

Sediment

G150158: G160126:

Two Batches:

OW-5 OW-22 OW-6 OW-21 OW-13R FB-2 OW-8 OW-10R

MW-1 SW-1
OW-21 MS/MSD SW-Dup
SW-2 MS/MSD SED-1
SED-2 MS/MSD SED-Dup
Dup-1 SW-2
FB-1 SED-2
TB-1 OW-19

TB-2

Project No.: Carroll & Dubies - 104-0012 **Reviewer**: Barbara Jones

	Review Criteria	Data Qualified	Comments / Samples Qualified
		Yes / No	
1.	Data completeness	No	Complete package provided electronically. Summary package printed, then selected pages from full package as needed.
2.	Preservation/holding time	No	All samples analyzed within less than 14-day holding time.
	2A - Other		Detected VOCs in sediment samples not otherwise qualified are qualified as J for estimated because of moisture content greater than 50%.
3.	GC/MS tuning	No	Form V shows that instrument tuning was correctly performed and documented.
4.	Calibration:		
	4A - Initial	No	Initial calibration raw data provided for 2 instruments, UX8 and UX16. Initial calibration checklists for both instruments provided in data package document compliance with QC requirements. Some deviation of RRF and RSDs allow for problem compounds if evaluated. No qualification.
	4B - Continuing	No	Continuing calibration for UX8 on 7/20 and 7/22. Continuing calibration for UX16 on 7/17, 7/20 (2 times), and 7/21. Spot check of RRF and %D (17 July UX16) found some %D deviation for non-reported compounds, but no qualifications.

Tier II VOA Organic Data Review Summary (Continued)

	Review Criteria	Data Qualified	Comments / Samples Qualified
		Yes / No	
5.	Blanks: 5A - Laboratory blanks	Yes	Form IV - Five method blanks, 3 are ND. Hexanone (J) detected in one method blank but no data qualifications because hexanone is ND in the associated samples. In 5 th method blank, methylene chloride and acetone detected, and results for associated SED-Dup qualified as
	5B - Trip blanks	Yes	21U; 300, respectively. Acetone detected in TB-1 and TB-2. Acetone not detected in samples associated with TB-1. In SW-1 and SW-Dup associated with TB-2, acetone was detected, but was subsequently qualified as not detected above the reporting limit (I0U).
	5C - Field blanks	No	Field blanks FB-1 and FB-2 are ND.
6.	Surrogate recovery	No	Form IIs indicate that all surrogate recoveries were within the QC limits and no qualifications are required.
7.	Laboratory control sample	No	Form III for lab control samples - 5 pairs of lab control samples with duplicates were analyzed, and all were within QC limits.
8.	Matrix spike/matrix spike duplicates	No	Groundwater (OW-21), surface water (SW-2), and sediment (SED-2) MS/MSD analyses were performed (Form III). Surface water and groundwater spike recoveries and RPDs were within QC limits. Spike recovery was high for SED-2 (RPD okay). Results were already J-qualified because of high moisture, and no additional qualifier was added based on MS/MSD results.
9.	Field duplicates	No	Duplicate analyses were performed for OW-13R, SW-12, and SED-1. OW-13R/Dup okay, RPD <30%. SW-1 RPD exceeded 30%, but not qualified because 1 detection was already J-qualified by lab (less than reporting limit). SED-1/SED-1 Dup RPD exceeded 50%; however, results were already J-qualified so no additional qualification was required.
10.	Internal standards performance	Yes	Form VIII - 5 sets of IS analyses performed; 4 were within QC limits, but 1 was out for SED-2 (1 compound, low). All results for SED-2 qualified as J (if detected) and UJ (if not detected).
11.	Compound quantitation and reporting	No	Spot-checked for OW-6 and OW-13R; okay.
12.	Tentatively identified compounds	NA	TIC analysis not required for this program.
13.	Moisture content, solids	Yes	Sediment samples contained >50% moisture but less than 90% moisture. Positive results not otherwise qualified were qualified as J.

Tier II RSK Method Dissolved Gases

SDG No./Matrix: A9G150158 - Groundwater

OW-5, OW-6, OW-13R,

OW-8, Dup-1, MW-1, OW-22,

Completion Date: 08/18/09

OW-21, OW-10R, OW-19

Project No.: Carroll & Dubies - 104-0012 Reviewer: Barbara Jones

Review Criteria		Data Qualified	Comments / Samples Qualified
		Yes / No	
1.	Data completeness	No	Electronic package includes sample data, standard data, raw QC data, and miscellaneous. Summary data package printed.
2.	Preservation/holding time	No	All samples analyzed in less than 14 days.
3.	GC/MS tuning	NA	Not applicable to GC method.
4.	Calibration:		
	4A - Initial	No	7-Level initial calibration from 06/07/09. RSD <30%. The laboratory reported that due to a problem with the regulator on the gas cylinder for the gas standard for initial calibration verification, a second (verification) standard was not available. However, the primary source standard was available and was used. This is a deviation from standard methods but does not affect the quality of the data.
	4B - Continuing	No	July 23 continuing calibration. RRF and %D within QC limits.
5.	Blanks:		
	5A - Laboratory blanks	No	Method blank ND for dissolved gases.
	5B - Trip blanks	NA	Trip blanks not analyzed for dissolved gases.
	5C - Field blanks	NA	Field blanks not analyzed for dissolved gases.
6.	Surrogate recovery	NA	Not applicable for this method.
7.	Laboratory control sample	No	Lab control sample within QC limits.
8.	Matrix spike/matrix spike duplicates	No	MS/MSD recoveries and RPDs within limits except for methane in one sample slightly high. No qualifications because LCS and method blanks within limits.
9.	Field duplicates	No	OW-13R and Dup-1 - less than 5% RPD.
10.	Internal standards performance	NA	Not applicable for this method.
11.	Compound quantitation and reporting	No	Consistent with standards; local compound variable not determined.
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II Inorganic Data Review Summary

SDG No./Matrix: A9G150158 - Groundwater

and Sediment

OW-5, OW-6, OW-13R,

OW8-, Dup-1, MW-1, OW-22, **Completion Date**: 08/19/09

OW-21, OW-10R, OW-19; SED-1, SED-2, and SED-Dup

for % moisture only

Project No.: Carroll & Dubies - 104-0012 **Reviewer**: Barbara Jones

	Review Criteria	Data Qualified	Comments / Samples Qualified
Noview Smeria		Yes / No	Commonic / Campios Quantica
1.	Data completeness	No	Electronic data package included sample data and supportive raw data. Summary package printed.
2.	Preservation/holding time	No	All samples analyzed within the required holding times shown below.
3.	Calibration	No	Initial and continuing calibration documentation provided for all parameters.
4.	Blanks:		
	4A - Laboratory	No	Method blanks ND for all parameters.
	4B - Equipment rinsates	NA	No equipment rinsate blanks analyzed for these parameters.
5.	Interference check sample	NA	Not applicable for these parameters.
6.	Laboratory control sample	No	Duplicate lab control samples for all parameters met QC limits.
7.	Laboratory duplicate sample	No	LCS/LCS duplicates met QC limits.
8.	Field duplicate sample	Yes	SED-1 and SED-Dup %D for moisture okay; OW-13R and duplicate results for TOC and total sulfide qualified as J for estimated because RPDs exceeded QC limits.
9.	Matrix spike sample analysis	No	MS/MSDs met QC limits for all parameters.
10.	ICP serial dilution	NA	Not applicable for these parameters.
11.	Sample quantitation and reporting	No	Spot check confirmation - TOC for OW-13R okay.

Inorganics Analyzed:	Holding Times:
- Chloride	28 days
- Nitrate	48 hours
- Sulfate	28 days
- Total Alkalinity	14 days
- Total Organic Carbon	28 days
- Total Sulfide	7 days