

October 2011 Sampling Report

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Prepared for:

Kolmar Laboratories, Inc. Jonathan A. Murphy, Esq.

Wickhen Products, Inc. Robert J. Glasser, Esq.

Prepared by:

Cardinal Resources LLC 1505 East Carson Street Pittsburgh, Pennsylvania 15203

Project No. 104-0012-0300

January 2012

Table of Contents

1.0	Intro	duction	1
	1.1	Site Setting	1
	1.2	Land and Resource Use	
	1.3	History of Waste Disposal and Contamination	2
	1.4	Overview of Remedies	2
		1.4.1 OU-1 Remedy	2
		1.4.2 OU-2 Remedy	
	1.5	Overview of 2006 Groundwater Monitoring Program	3
	1.6	Resumption of Annual Monitoring Program	3
	1.7	Modified Sampling Frequency	3
2.0	Grou	ndwater Sample Collection	5
	2.1	Groundwater Elevations	
	2.2	Wells and Equipment	
	2.3	Well Purging and Sampling	
3.0	Colle	ection of Surface Water and Sediment Samples	7
5.0	3.1	Surface Water Sampling	
	3.2	Sediment Sampling	
	_		
4.0		ndwater Results	_
	4.1	Groundwater Elevations	
	4.2	Summary of Groundwater Quality Results	
	4.3 4.4	Trends for Chlorinated VOCs	
	4.4 4.5	Achievement of MCLs and SGVs	
	4.5 4.6	Monitored Natural Attenuation Trends	
5.0		Creek Sampling Results	
	5.1	Surface Water Results	
	5.2	Sediment Results	
	5.3	Discussion	12
6.0	Data	Quality Review	13
	6.1	Introduction	13
	6.2	Results of Data Review	14
		6.2.1 Field QC Samples	14
		6.2.2 Data Quality and Usability	
7.0	Sumi	mary and Conclusions	15
0.0		•	16

List of Tables

Table 1	Groundwater Field Stabilization Parameters - October 2011
Table 2	Groundwater and Surface Water Elevation Data - October 2011
Table 3	Summary of Detected TCL Volatile Organic Compounds in Groundwater - October 2011
Table 4	Natural Attenuation Parameters - October 2011
Table 5	MCL and SGV Exceedances, 1999, 2004, and 2006 through 2011
Table 6	Weighting and Scoring of Natural Attenuation Parameters - October 2011
Table 7	Detected Volatile Organic Compounds - Surface Water and Sediment Sampling Locations in Gold Creek - October 2011
Table B-1	Historical Summary of Detected TCL Volatile Organic Compounds in Groundwater
Table B-2	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water
Table B-3	Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment

List of Figures

Figure 1	Site Location Map
Figure 2	Groundwater Contour Map - October 2011
Figure 3	Volatile Organic Compound Exceedances in Groundwater - October 2011
Figure 4	Chlorinated VOC Trends in OW-5 and OW-13/OW-13R, Pre-Excavation to October 2011
Figure 5	Chlorinated VOC Trends in OW-2, OW-5, and OW-6, 2006 - 2011
Figure 6	Benzene Concentration Trends in Selected Monitoring Wells, Pre-Excavation to October 2011
Figure 7	Benzene Concentration Trends Based on Distance from Source
Figure 8	Benzene Trends in OW-10R, OW-13R, and OW-22, 2006 - 2011
Figure 9	Benzene Concentrations in Groundwater - October 2011

List of Appendices

Appendix A	Laboratory Reports with Marked Form Is from Data Review
Appendix B	Historic Groundwater, Surface Water, and Sediment Results
Appendix C	Data Quality Review - Checklists

1.0 Introduction

This report summarizes the methods and results of a field sampling program performed in October 2011 at the Carroll and Dubies Superfund Site (Site), Town of Deerpark, Orange County, New York. The field work followed the August 2005 Supplemental Sampling Work Plan (Cardinal Resources LLC [Cardinal Resources], 2005) approved by the United States Environmental Protection Agency (U.S. EPA), and incorporated the recommendations of the *November 2006 Sampling Report* (Cardinal Resources, 2007). The October 2011 sampling and analysis event included 14 wells comprising the revised monitoring well network: MW-1, MW-4, OW-2, OW-5, OW-6, OW-8, OW-10R, OW-13R, OW-18, OW-19, OW-21, OW-22, OW-25, and OW-24, which was re-instituted according to recommendations from the U.S. EPA's second five-year review. The purpose of this sampling program is to document volatile organic compound (VOC) concentrations in the outwash aquifer at the site.

1.1 Site Setting

The three-acre Site is located in the Town of Deerpark in Orange County, New York, which is approximately 3,000 feet northeast of the City of Port Jervis, New York (Figure 1). The Site is situated on the northwestern flank of the Neversink Valley. Gold Creek lies approximately 1,500 feet to the east, and the Neversink River is located approximately 2,000 feet beyond Gold Creek.

The Site is underlain by sand and gravel deposits of glacial and glaciofluvial origin. Groundwater monitoring wells on the Site have been completed in the outwash unit, found above a low-permeability till zone that functions as an aquitard. The outwash unit consists of fine to coarse sand with fine to coarse gravel. The direction of groundwater flow is generally toward the southeast.

1.2 Land and Resource Use

The immediate surrounding area includes undeveloped woodlands to the north; undeveloped woodlands and a sand and gravel quarry pit to the northeast; the closed City of Port Jervis landfill, the Orange County Transfer Station, and a concrete products company to the south; and a sparsely vegetated, shale bedrock hillside to the west. In 2004, the City of Port Jervis began a small sand and gravel operation on land it owns, immediately to the southeast of the former lagoons, in the vicinity of OW-5 and OW-6.

1.3 History of Waste Disposal and Contamination

In 1971, the three-acre Carroll and Dubies Site began operating as a disposal facility consisting of a series of lagoons. The majority of wastes disposed in the lagoons were septic waste, municipal sewage sludge, and solid waste. The Site also received liquid industrial wastes from approximately 1971 to 1979.

Over time, waste constituents in the lagoons leached into groundwater and affected the outwash aquifer. VOCs were of particular concern because of their dispersion in the aquifer and relative risk. Benzene, vinyl chloride, and other VOCs were found through a series of investigations to exceed Applicable or Relevant and Appropriate Requirements (ARARs) in Site wells.

1.4 Overview of Remedies

The remedies selected for the Site were defined by two operable units (OU), the waste lagoons themselves, and the impacted groundwater. Remedies were selected and executed to remove wastes from the lagoons, restore the Site to a safe and stable condition, and promote and track improvements in groundwater quality.

1.4.1 **OU-1** Remedy

The goals of the OU-1 remedy conducted in 1999 were to prevent further leaching of contaminants into groundwater, and to reduce the risks to potential future workers at the Site who could come in contact with lagoon wastes. The steps in this process were:

- Excavation of all wastes from Lagoons 1, 2, 3, 4, 6, 7, and 8, along with surrounding soils that exceeded specified levels for indicator chemicals.
- Appropriate management of all excavated wastes and soils.
- Placement of imported clean fill in the excavations, followed by grading for drainage control and vegetation.

1.4.2 **OU-2** Remedy

The goals of the ongoing OU-2 remedy, which was initiated in 1999, have been to use natural attenuation to reduce or eliminate the risks associated with the ingestion of Site groundwater for future Site workers and to protect Gold Creek from Site-related impacts. The steps in the program are:

- Execution of a groundwater monitoring program in accordance with Work Plans and other documents prepared for the project and approved by the U.S. EPA.
- With each sampling round, a report is prepared for U.S. EPA that documents the progress made in achieving the remedial goals.

1.5 Overview of 2006 Groundwater Monitoring Program

A supplemental sampling program was initiated in February 2006 in response to the five-year review. Part of the program was to install two new monitoring wells, OW-24 and OW-25, east and south of OW-2, OW-5, and OW-6 (Figure 2), to determine the extent of the chlorinated VOC plume in the vicinity of OW-2, OW-5, and OW-6. Two existing monitoring wells that were not part of the ongoing groundwater monitoring network, OW-17 and OW-23, downgradient and to the west of OW-2, OW-5, and OW-6, were also redeveloped and sampled.

Groundwater was sampled three more times in 2006: in May, August, and November. The purpose of quarterly sampling of the wells in the vicinity of the chlorinated VOC plume was to evaluate trends through an entire hydrologic cycle. In all four sampling rounds, the results for the chlorinated VOC plume have been consistent. Tetrachloroethene (PCE) and trichloroethene (TCE) and their degradation products (chloroethane, 1,2-dichloroethene, and vinyl chloride) were nondetectable in OW-24 and OW-25. In OW-17 and OW-23, chlorinated VOCs were occasionally detected at low, estimated concentrations below the reporting limit, and below state and federal groundwater criteria. Chlorinated VOC impacts at OW-2, OW-5, and OW-6 remain localized. For additional information on the February, May, August, and November 2006 sampling events, refer to the respective quarterly reports (Cardinal Resources, April 2006; July 2006; November 2006; and January 2007).

1.6 Resumption of Annual Monitoring Program

In June 2007, the annual groundwater monitoring program resumed, and continued in 2008, 2009, and 2010.

1.7 Modified Sampling Frequency

In 2011, a program was initiated to cover the entire hydrologic cycle over the next fiveyear period through sampling every five quarters (every 15 months). This enhancement

sampling program was described in a letter to the U.S. EPA dated November 2, Based on this rotation, the next sampling round will be in January 2013.	

2.0 Groundwater Sample Collection

This section describes methods used to collect groundwater samples for analysis. The results of the groundwater sampling and analysis program are provided in Section 4.0.

2.1 Groundwater Elevations

Before sampling began, groundwater elevations for all site wells were determined from measured depths to water from the reference point elevations. The depth to groundwater was measured using an electronic water-level meter and recorded in a monitoring well sampling form.

2.2 Wells and Equipment

Dedicated low-flow bladder pumps were used to purge and sample the entire 2011 monitoring well network, with the exception of wells OW-13R, OW-22, OW-24, and OW-25. These wells were sampled using a downhole bladder pump that was decontaminated initially and after sampling each well by:

- Washing with low phosphate detergent and tap water
- Rinsing with tap water
- Rinsing with deionized water
- Air drying

Clean disposable tubing and a clean disposable bladder were used for each well sampled with the reusable bladder pump.

2.3 Well Purging and Sampling

All wells were purged using low-flow techniques (between 100 and 200 milliliters per minute [mL/min]). During purging of each monitoring well, temperature, dissolved oxygen (DO), reduction/oxidation (redox) potential, specific conductance (conductivity), pH, and turbidity were monitored and recorded on field forms in average intervals of 5 minutes.

The groundwater field parameters were measured with a YSI Model 556 MPS-10 multiparameter unit equipped with a flow-through cell, and a Hanna Turbidity Meter Model HI98703. All equipment was calibrated prior to sampling activities. The goal was to obtain three consecutive readings of the field parameters within the following ranges:

- ±1.0 degree centigrade (°C) for temperature
- ±10 percent (%) or ±0.3 milligrams per liter (mg/L) for DO (whichever is greater)
- ±10 millivolts (mV) for redox potential
- ±3% for conductivity
- ±0.1 for pH
- ±10% or ±2 nephelometric turbidity units (NTUs) for turbidity (whichever is greater)

The final stabilized readings prior to sample collection for each of the monitoring wells are provided in Table 1. Groundwater purged from the monitoring wells was generally clear and contained little suspended sediment. Purged water from OW-8, OW-13R, and OW-22, had reddish-brown particles, possibly iron oxide. When purging was complete, groundwater samples were collected directly from the pump tubing. Samples were placed immediately on ice for overnight shipment to TestAmerica Laboratories, North Canton, Ohio.

3.0 Collection of Surface Water and Sediment Samples

As part of the ongoing evaluation of conditions in Gold Creek, surface water and sediment samples were collected from two locations along Gold Creek, SED-1/SW-1 (downstream) and SED-2/SW-2 (upstream) (Figure 2). The results from the Gold Creek sampling program are provided in Section 5.0.

3.1 Surface Water Sampling

Surface water samples from SW-1 and SW-2 were collected from Gold Creek at the established locations that have been sampled throughout the OU-2 monitoring period. The survey stakes at SW-2 and SW-3 were missing, so the surface water elevation could only be measured at SW-1. Because there is adequate history of the relationship between groundwater and surface water evaluations from more than 10 years of monitoring, reinstallation and surveying of the surface water gauging points at these locations is not planned.

Samples were collected for VOCs at each location directly into the VOC sample vials. The sample bottles were labeled appropriately, placed in a cooler with ice, and sent to the laboratory for analysis.

3.2 Sediment Sampling

Two sediment samples were collected from the established locations coinciding with SW-1 and SW-2 (Figure 2), and were designated SED-1 and SED-2. The samples were collected using a stainless-steel trowel from approximately the upper six inches of sediment at the edge of the creek. The stainless-steel trowel was decontaminated between sediment sampling locations.

4.0 Groundwater Results

This section describes the results of the October 2011 sampling event and presents a discussion of site-wide groundwater conditions.

4.1 Groundwater Elevations

The groundwater elevations for this sampling round are presented in Table 2. Associated groundwater elevation contours are shown in Figure 2.

The groundwater elevations in the wells were on the average about 3.05 feet higher than observed in July 2010; the direction of groundwater flow and gradient were about the same. Groundwater on site flows toward the southeast and Gold Creek. The groundwater gradient across the former lagoon site was approximately 0.11. This gradient transitions to a lower gradient, at about the location of the towpath. From the towpath to Gold Creek, the gradient is very shallow, approximately 0.002. The steeper gradient on the western side of the site is due to the depth to bedrock along the valley wall. As the depth to bedrock increases towards the valley floor, the thickness of the alluvial fill increases and the groundwater gradient flattens.

4.2 Summary of Groundwater Quality Results

VOCs detected in groundwater analysis in the October 2011 sampling event are presented in Table 3. Laboratory analytical reports, including marked Form Is from the data validation process, are included in Appendix A in hard copy. An electronic copy of the entire data package is also provided. Historical data of detected organic compounds have been combined with the most recent data and are presented in Table B-1 in Appendix B. In tables and discussion, the qualifier "J" with a reported concentration means an estimated result, with the analyses positively identified but the numerical value an approximate concentration. The qualifier "U" means that the analysis was not detected above the reported quantitation limit.

A variety of monitored natural attenuation (MNA) field and laboratory parameters were analyzed in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, March 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume.

Nine VOCs were detected in various wells during this sampling event, six of which exceeded regulatory limits. Regulatory exceedances of VOCs in groundwater are reported in Table 5 and plotted in Figure 3.

VOC concentrations in monitoring wells in the October 2011 sampling generally followed similar trends as compared to the 2010 results, and within ranges previously observed. In the remainder of this section, specific groundwater trends and conditions are discussed in greater detail, including:

- Concentration trends for chlorinated VOCs
- Concentration trends for benzene
- Achievement of regulatory limits in monitoring wells
- MNA trends

4.3 Trends for Chlorinated VOCs

Chlorinated VOCs, mainly 1,2-dichloroethene, trichloroethene, and tetrachloroethene, are the predominant constituents on the eastern side of the site, particularly in OW-2, OW-5, and OW-6 (Figure 3), but are detectable in other locations mostly in estimated concentrations less than reporting limits.

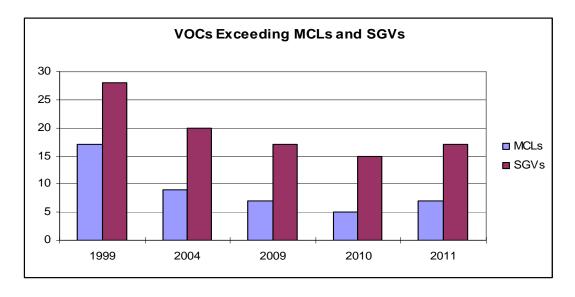
Compared to OW-2 and OW-6, groundwater on the western side (OW-18, OW-19, OW-21, OW-22) is generally higher in methane or total organic carbon (TOC), has lower redox (is more reduced), and is more amenable to reductive dechlorination. In these wells, chlorinated VOCs in general showed a downward trend over time once OU-1 actions were complete. For example, while the concentration of chlorinated VOCs was higher in OW-13/OW-13R in 1999-2000 compared to OW-5 (Figure 4), favorable geochemical conditions resulted in a rapid and smooth decline. Chlorinated VOCs have not exceeded criteria at this location since 2004, and were not detected in 2011. In OW-5, conditions for degradation have been somewhat less favorable and the decline has been slower and more variable (Figure 4). However, in 2007 and 2008, only 1,2-dichloroethene exceeded criteria, and in 2009, 2010, and 2011, no chlorinated VOCs exceeded criteria in this well.

In OW-2, OW-5, and OW-6, the decline in chlorinated VOC concentrations has been retarded by unfavorable geochemical conditions. Concentrations appeared to peak in the years following OU-1 actions, but since then began to decline gradually (Figure 5).

There are variations in concentrations from year to year, but the overall trends are downward.

4.4 Benzene Concentration Trends

As was described in detail in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), different VOCs have predominated in different areas downgradient of the former lagoons. Benzene has predominated in several monitoring wells in the southwestern areas of the Site, with historically the highest concentrations observed in MW-4, OW-10R, and OW-13R. In 2011, maximum concentration was measured in groundwater at OW-22, at 5.3 micrograms per liter (ug/L), compared to the federal Maximum Contaminant Level (MCL) of 5 ug/L. Benzene was below the MCL of 5 ug/L in October 2011 in MW-4, OW-10R, OW-13R, OW-18, OW-19, and OW-21, although not below the New York State Standard or Guidance Value (SGV) of 1 ug/L.


Benzene has exhibited an overall downward trend in individual wells with historically high concentrations, OW-10R, OW-13R, and OW-22, illustrated in Figure 6. There has also been a flattening and mass decline of the benzene plume along the groundwater flow path, illustrated in Figure 7. This depiction shows how the benzene concentration has declined 2 to 3 orders of magnitude since 2000 in OW-10R and OW-13/OW-13R, closest to the source area. The decline in the benzene concentration in the former source area around OW-13R reflects both degradation and dispersion of benzene within the plume to the south and west toward OW-22.

Not only do historic trends show declining benzene concentrations, but in the period from 2006 to 2011, even with variable concentrations, overall benzene concentration trends continue to be downward (Figure 8). Figure 9 depicts benzene concentrations in groundwater in October 2011.

4.5 Achievement of MCLs and SGVs

Since completion of OU-1 remediation in 1999, some, but not all, of the MCLs and state groundwater SGVs had been met in groundwater wells downgradient of the former lagoons. Table 5 summarizes these findings through the current sampling round. Wells consistently monitored from 1999 through 2011 are shown in this table for comparison purposes so that the same wells are compared each time. In 2011, 7 MCLs were exceeded within the monitoring network, and 17 SGVs were exceeded.

The overall trend since 1999 indicates that there has been substantial improvement in groundwater quality relative to MCLs and SGVs:

4.6 Monitored Natural Attenuation Trends

A variety of MNA field and laboratory parameters have been analyzed over time in groundwater (Table 4). These parameters are general indicators of geochemical conditions conducive to degradation of chlorinated and other VOCs. Patterns of MNA indicators by area were discussed in the *Supporting Documentation for Five-Year Review* (Cardinal Resources, 2005), along with an evaluation of how those patterns may relate to contaminant distribution within the groundwater plume. The patterns seen in October 2011 are consistent with the observations presented previously, with the areas predicted to be most amenable to degradation in monitoring wells to the south and west (OW-10R, OW-18, OW-19, OW-21, OW-22). In these wells,

- Methane concentrations of 50 ug/L or greater were observed:
- Relatively high TOC, 2 mg/L or greater, was found; and
- Low DO or redox potential indicating reduced conditions were found.

Table 6 illustrates the variability of conditions conducive to, or indicative of, natural attenuation of chlorinated VOCs across the site. This weighting and scoring table is adapted from the U.S. EPA's technical protocol for natural attenuation of chlorinated aliphatic hydrocarbons (U.S. EPA, 1997). It shows higher scores for OW-10R and OW-13R, located close to the former lagoons on the western side of the Site, and low scores for OW-2 and OW-25, on the eastern side of the site.

5.0 Gold Creek Sampling Results

Refer to Section 3.0 for a description of the methods for surface water and sediment sample collection along the creek. Table 7 provides the results for VOCs detected in surface water and sediment samples collected from two locations along Gold Creek (Figure 2).

The results are arranged in the table from the sampling location furthest downstream (SED-1/SW-1) to the furthest upstream (SED-2/SW-2). These are the established sampling locations that have been used throughout the OU-2 monitoring program.

5.1 Surface Water Results

VOCs were not detected in surface water samples (Table 7). Historic SW-1 and SW-2 sample results are provided in Appendix B, Table B-2.

5.2 Sediment Results

Methylene chloride was reported in the downgradient sediment samples SED-2, at and estimated concentration (13 J micrograms per kilogram [ug/kg]) close to the reporting limit (12 ug/kg) during this sampling round (Table 7). This concentration is well below the guidance value for freshwater sediments (National Oceanic and Atmospheric Administration, 2008; NYSDEC Division of Water, 2004).

5.3 Discussion

The results for the two sampling locations along Gold Creek are consistent with past observations for SED-1/SW-1 and SED-2/SW-2. VOCs were not detected in surface water. Based on the low detection of acetone in upstream sample SED-2 that does not exceed the sediment guidance value (Table 7), there is no evidence that ecological conditions in Gold Creek are being adversely affected by the Site.

6.0 Data Quality Review

Data quality review was performed on the analytical data packages to assure that quality and usability requirements were met.

6.1 Introduction

A Tier II data quality review of the sample data package was completed using U.S. EPA guidelines. The Tier II data evaluation consisted of a review of data package completeness and a quality control (QC) review, as summarized in the QC forms provided by the laboratory, covering:

- Signed transmittal page
- Data package narrative
- Sample transmittal documentation
- Standard VOC QC forms for:
 - System monitoring compound (surrogate recovery)
 - Matrix spike/matrix spike duplicate (MS/MSD) recovery
 - Laboratory check samples
 - Method blank summary
 - Instrument performance check
 - Internal standard summary and retention time (RT) summary
 - Initial calibration data
 - Continuing calibration data
- Form Is and raw data for field samples, blanks, laboratory control samples, MS/MSDs
- Copies of logbook pages documenting sample preparation, extract transfer, instruments, and sample tracking
- Holding times
- Form Is and raw data for field and QC samples
- Field duplicates and field, trip, and decontamination blanks.

Checklists documenting the review of three laboratory sample delivery groups (SDGs) are provided in Appendix C.

6.2 Results of Data Review

The hand-marked, qualified Form Is are provided in Appendix A with the laboratory reports. Results in Tables 3, 7, B-1, B-2, and B-3 reflect the qualified data. The data qualifiers used as a result of the data review are:

- U The analyses were analyzed for, but were not detected above the reported sample quantitation limit.
- J The analyses were positively identified; the associated numerical value is the approximate concentration of the analyses in the sample.
- UJ The analyses were not detected above the reported quantitation limit, but the reported quantitation limit is approximate.

The data packages were complete and appropriately organized, and all relevant supporting information was provided.

6.2.1 Field QC Samples

The field QC samples for VOC analyses were one surface water duplicate (SW-1); one sediment duplicate (SED-1); one groundwater duplicate (OW-13R); three MS/MSD pairs (SW-2 MS/MSD, SED-2 MS/MSD, OW-5 MS/MSD); one decontamination blank for the pump (pump rinsate); three field blanks; and three trip blanks. A field blank was collected for each of the three sampling days, and a trip blank was included with each sample cooler.

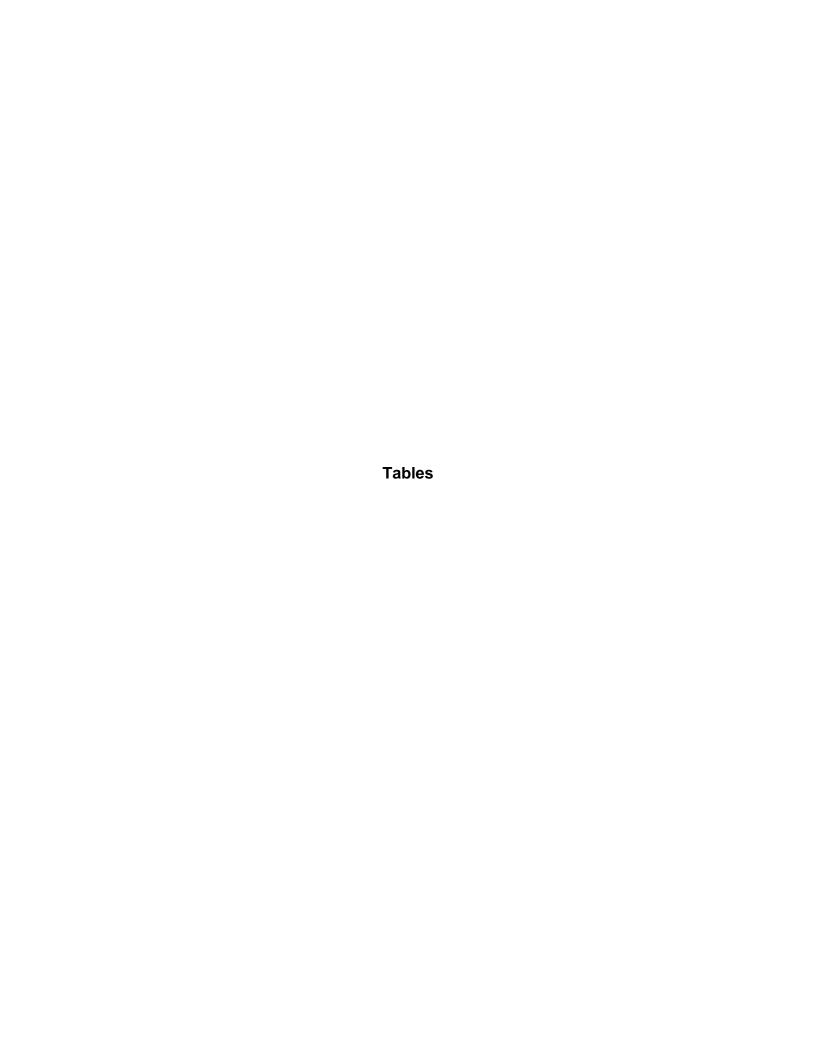
6.2.2 Data Quality and Usability

Although there were some qualifications as estimated or nondetectable values that resulted from the data quality review process, the analytical results are usable and of acceptable quality; no results have been rejected.

7.0 Summary and Conclusions

The results of the 2011 sampling program for the Carroll and Dubies Site show:

- Groundwater elevations were higher on average by more than 3 feet, compared to the July 2010 groundwater elevations.
- Some of the monitoring wells continue to exceed MCLs and SGVs. The number
 of exceedances has been about the same over the past five years. Even so, it is
 evident that attenuation is occurring at a reasonable rate by looking at concentrations in monitoring wells that exceed MCLs and SGVs. For example, in 2009 the
 average benzene concentration in wells that exceeded was 6.2 ug/L; in 2010, it
 was 5.0 ug/L; and in 2011, it was 2.7 ug/L.
- VOCs continued to be nondetectable at the eastern boundary of the site at OW-8 and OW-25.
- The highest detection of benzene was 5.3 ug/L at OW-22, compared to 17 ug/L at OW-13R in 2010.
- Chlorinated VOCs in OW-2, OW-5, and OW-6 are similar to 2010, slightly lower in OW-5 and slightly higher in OW-2 and OW-6.
- Surface water and sediment samples from Gold Creek were nondetectable except for one estimated detection of methylene chloride in sediment, possibly a laboratory artifact.


These results confirm the validity of the U.S. EPA's conclusions in the Protectiveness Statement contained in its 2010 Five-Year Review Report:

"The implemented remedial actions at all OUs at the Carroll and Dubies Sewage Disposal Site are protective of human health and the environment. There are no exposure pathways that could result in unacceptable risks and none are expected as long as the institutional controls, which are in place, and the natural attenuation remedy selected in the decision documents for the Site continue to be properly monitored and maintained."

The next sampling program is planned for January 2013.

8.0 References

- Cardinal Resources LLC, July 2007, *June 2007, July 2010 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York,* Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources LLC, January 2007, November 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, November 2006, August 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, July 2006, May 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources LLC, April 2006, February 2006 Sampling Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York.
- Cardinal Resources, Inc., August 2005, Supplemental Sampling Work Plan, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- Cardinal Resources, Inc., March 2005, Supporting Documentation for Five-Year Review, Carroll and Dubies Superfund Site, Prepared for Kolmar Laboratories, Inc. and Wickhen Products, Inc.
- New York State Department of Environmental Conservation (NYSDEC), Division of Water, November 2004, *Technical & Operational Guidance Series (TOGS) 5.1.9, In-Water and Riparian Management of Sediment and Dredge Material, Bureau of Water Assessment and Management, Albany, New York.*
- National Oceanic and Atmospheric Administration (NOAA), November 2008, *Screening Quick Reference Tables (SQuiRTs)*, Assessment and Restoration Division (ARD), Office of Response and Restoration.
- United States Environmental Protection Agency, 2005, Five-Year Review Report, Carroll and Dubies Superfund Site, Town of Deerpark, Orange County, New York, Prepared by U.S. EPA Region 2, New York, New York.
- United States Environmental Protection Agency, 1997, Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Groundwater, EPA/540/R-97/504, Office of Research and Development, Washington, DC.

Table 1 Groundwater Field Stabilization Parameters October 2011

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Temperature (°C)	Dissolved Oxygen (mg/L)	Redox (mV)	Specific Conductance (uS/cm)	pH (standard units)	Turbidity (NTUs)
MW-1	10/05/11	13.48	1.00	117.00	232	6.29	0.45
MW-4	10/04/11	12.17	0.63	-62.3	525	6.46	0.61
OW-2	10/04/11	12.92	6.60	117.5	142	5.93	2.63
OW-5	10/05/11	16.04	3.34	117.8	306	6.38	0.21
OW-6	10/05/11	13.63	7.40	141.2	236	5.90	0.76
OW-8	10/05/11	11.27	0.69	18.8	135	6.33	9.12
OW-10R	10/04/11	13.12	0.43	-18.7	389	6.29	0.85
OW-13R	10/05/11	15.89	0.23	154.7	475	5.63	4.72
OW-18	10/06/11	14.35	0.30	-44.5	598	6.29	1.04
OW-19	10/06/11	14.79	1.80	-54.9	851	6.32	2.53
OW-21	10/04/11	13.67	4.31	3.3	476	6.32	0.32
OW-22	10/04/11	12.21	0.58	-62	691	6.23	0.52
OW-24	10/06/11	13.05	5.46	126.0	271	7.04	0.78
OW-25	10/06/11	12.73	8.85	191.6	100	5.85	30.70

Notes:

mg/L = milligrams per liter

mV = milliVolts

uS/cm = microSiemens per centimeter

NTU = nephelometric turbidity units

Table 2 Groundwater and Surface Water Elevation Data⁽¹⁾ October 2011

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well No.	Top of Casing Elevation or Staff Gauge ⁽²⁾	Screened Interval	Depth to Groundwater or Surface Water	Groundwater or Surface Water Elevation
MW-1	469.39	28.5 - 43.5	30.00	439.39
MW-4	470.13	35.3 - 50.3	36.05	434.08
OW-2	472.33	30.0 - 47.0	38.27	434.06
OW-3	472.70	30.0 - 46.5	39.08	433.62
OW-4	473.33	26.5 - 27.5	33.97	439.36
OW-5	459.85	25.5 - 45.5	26.11	433.74
OW-6	464.40	31.4 - 51.4	30.65	433.75
OW-8	464.63	34.6 - 54.6	30.69	433.94
OW-9	472.91	25.3 - 35.3	26.88	446.03
OW-10R	469.27	29.0 - 39.0	26.14	443.13
OW-13R	457.69	25.0 - 35.0	23.97	433.72
OW-15	472.05	22.0 - 32.0	10.90	461.15
OW-16	453.90	18.0 - 28.0	20.59	433.31
OW-17	447.18	11.0 - 21.0	14.53	432.65
OW-18	444.57	11.0 - 21.0	11.82	432.75
OW-19	438.69	5.0 - 15.0	6.24	432.45
OW-21	467.46	37.1 - 47.1	33.90	433.56
OW-22	467.10	38.0 - 48.0	33.45	433.65
OW-23	444.73	29.0 - 39.0	12.09	432.64
OW-24	446.77	14.4 - 24.4	14.55	432.22
OW-25	452.47	20.0 - 30.0	19.61	432.86
SW-1 ⁽³⁾	432.01	-	0.36	428.10
SW-2	432.01	-	N/A	NA
SW-3	437.44	-	N/A	NA

Notes:

NA = not applicable

SW-2 and SW-3 surface water elevations were not measured because staff gauges were missing.

⁽¹⁾Data reported in feet; elevations relative - mean sea level; 1988 National Geodetic Vertical Datum.

⁽²⁾Top of casing and gauge staff elevations surveyed by Maser Consulting P.A.

 $^{^{(3)}}$ Water elevation measured from top of surveyed staff gauge.

Table 3 Summary of Detected TCL Volatile Organic Compounds in Groundwater (ug/L) October 2011

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Compound	NYSDEC	U.S. EPA	MW-1	MW-4	OW-2	OW-5	OW-6	OW-8	OW-10R	OW-13R	OW-13R DUP
Compound	SGV	MCL	10/13/11	10/13/11	10/13/11	10/13/11	10/13/11	10/13/11	10/13/11	10/13/11	10/13/11
Benzene	1 (S)	5	1.0 U	1.1	2.5 U	1.0 U	1.7 U	1.0 U	2.4	1.0 UJ	1.3 J
Chlorobenzene	5 (S)*	100	1.0 U	1.0 U	2.5 U	1.0 U	1.7 U	1.0 U	5.1	1.0 U	1.0 U
Chloroethane	5 (S)*	NE	1.0 U	1.0 U	2.5 U	1.0 U	1.7 U	1.0 U	1.0 U	1.0 U	1.0 U
Cis 1,2-Dichloroethene	5 (S)*	70	1.0 U	1.0 U	98	1.0 U	40	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5 (S)*	1,000	1.0 U	1.0 U	2.5 U	1.0 U	1.7 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3 (S)	75	1.0 U	1.0 U	2.5 U	1.0 U	1.7 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5 (S)*	5	1.0 U	1.0 U	110	1.4	52	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5 (S)*	5	1.0 U	1.0 U	15	1.0 U	11	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2 (S)	2	1.0 U	1.0 U	2.5 U	1.0 U	1.7 U	1.0 U	1.0 U	1.0 U	1.0 U

Compound	NYSDEC	U.S. EPA	OW-18	OW-19	OW-21	OW-22	OW-24	OW-25
Compound	SGV	MCL	07/22/10	07/22/10	07/20/10	07/20/10	07/22/10	07/22/10
Benzene	1 (S)	5	3.7	3.0	2.2	5.3	1.0 U	1.0 U
Chlorobenzene	5 (S)*	100	8.7	8.4	1.0 U	18	1.0 U	1.0 U
Chloroethane	5 (S)*	NE	1.0 U	1.4	1.0 U	1.0 U	1.0 U	1.0 U
Cis 1,2-Dichloroethene	5 (S)*	70	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5 (S)*	1,000	1.0 U	1.2	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3 (S)	75	1.6	1.0 U	1.0 U	1.6	1.0 U	1.0 U
Tetrachloroethene	5 (S)*	5	1.0 U					
Trichloroethene	5 (S)*	5	1.0 U					
Vinyl Chloride	2 (S)	2	1.5	3.3	1.0 U	1.0 U	1.0 U	1.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values (V) for groundwater.

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater.

U = The analyte was analyzed for, but was not detected above the reported quantitation limit.

UJ = Nondetectable at the reporting limit, but the reporting limit is approximate.

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

NE = Not established; no criteria specified

Red = Concentrations detected at or above regulatory limit

Table 4 Natural Attenuation Parameters October 2011

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well ID	Date	Alkalinity (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Ferrous Iron (mg/L)*	Methane (ug/L)	Nitrate as N (mg/L)	Redox (mV)	Sulfate (mg/L)	Sulfide (mg/L)	TOC (mg/L)
MW-1	10/13/11	97	3.2	1.00	ND	ND	0.0	6.8	0.15	117.00	14.0	ND	1.3
MW-4	10/13/11	191	61.0	0.63	ND	ND	1.0	97	0.19	-62.3	39.0	ND	1.5
OW-2	10/13/11	50	2.0	6.60	ND	ND	0.0	ND	0.98	117.5	15.0	ND	ND
OW-5	10/13/11	120	3.3	3.34	ND	ND	0.2	ND	0.88	117.8	22.0	2.8 J	ND
OW-6	10/13/11	54	4.0	7.40	ND	ND	0.5	ND	0.42	141.2	28.0	ND	2.2
OW-8	10/13/11	43	2.1	0.69	ND	ND	3.2	0.7	ND	18.8	17.0	ND	ND
OW-10R	10/13/11	190	1.6	0.43	ND	ND	3.4	2,200	ND	-18.7	34.0	ND	2.7
OW-13R	10/13/11	250	1.3	0.23	ND	ND	0.4	ND	0.95	154.7	33.0	ND	4.4
OW-13R Dup	10/13/11	230	1.4	0.23	ND	ND	0.4	0.5 J	0.86 J-	154.7	34.0	ND	3.8
OW-18	10/13/11	280	24.0	0.30	ND	ND	NA	1,000	ND	-44.5	8.6	ND	10.0
OW-19	10/13/11	290	110.0	1.80	ND	ND	3.4	1,800	ND	-54.9	13.0	ND	12.0
OW-21	10/13/11	250	5.1	4.31	ND	ND	5.6	1400	ND	3.3	25.0	ND	4.5
OW-22	10/13/11	390	22.0	0.58	ND	ND	4.6	3,600	ND	-62	ND	ND	14.0
OW-24	10/13/11	120	3.5	5.46	ND	ND	0.2	ND	0.33	126	16	ND	ND
OW-25	10/13/11	31	1.5	8.85	ND	ND	0.4	ND	1.20	191.6	9.3	10.0	ND

Notes:

mg/L = milligrams per liter

ug/L = micrograms per liter

*Ferrous iron was measured in the field (Hach kit).

mV = milliVolts

TOC = total organic carbon

ND = not detected

J = Estimated, based on data quality review.

UJ = Qualified as nondetectable at the reporting limit but the reporting limit is estimated, based on data quality review.

J- = Qualified as estimated low, for analysis outside of holding time.

NA = not analyzed

Table 5 MCL and SGV Exceedances - 1999, 2004, and 2006 through 2011 Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Well	Compound	MCL ug/L	SGV ug/L		999 edance		004 edance		2006 edance		j 2006 edance		2007 edance		2008 edance		2009 edance		2010 edance		2011 edance
		5	3	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV
	Benzene	5	1	Χ	Х		Х		Х	Х	Χ	Х	Х		Х		Х		Х		Х
MW-4	1,2-Dichloroethene (1,2-DCE)	70	5		Х																
	Benzene	5	1				Х														
	Tetrachloroethene (PCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
OW-2	Trichloroethene (TCE)	5	5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5	Х	Х	Χ	Х	Х	Х	Х	Х		Х		Х		Х		Х	Х	Х
	Tetrachloroethene (PCE)	5	5	Х	Х	Χ	Х			Х	Х										
OW-5	Trichloroethene (TCE)	5	5	Х	Х																
	1,2-Dichloroethene (1,2-DCE)	70	5		Х		Х		Х		Х		Х		Х						
	Tetrachloroethene (PCE)	5	5	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
OW-6	Trichloroethene (TCE)	5	5			Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1,2-Dichloroethene (1,2-DCE)	70	5		Х		Х		Х		Х		Х		Х		Х		Х		Х
	Benzene	5	1	Х	Х	Х	Χ		Χ	Х	Х		Х	Х	Х		Χ		Х		Х
OW-10R ⁽¹⁾	Chlorobenzene	100	5		Χ																Х
SVV-TOIX	Methylene chloride	5	5	Χ	Χ																
	Toluene	1,000	5		Χ																

Table 5
MCL and SGV Exceedances - 1999, 2004, and 2006 through 2011
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Well	Compound	MCL	MCL SGV ug/L ug/L		999 edance		004 edance		2006 edance		2006 edance		2007 edance		2008 edance		2009 edance		2010 edance		2011 dance
		ug/L	ug, L	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV	MCL	SGV
	Benzene	5	1	Χ	Х	Х	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Х	Χ	Х	Χ	Χ		
OW-13 /	1,2-Dichloroethene (1,2-DCE)	70	5		Х																
OW-13R ^(2,3)	Methylene chloride	5	5	Χ	Χ																
	Toluene	1,000	5		Χ																
	Vinyl chloride	2	2	Χ	Х	Х	Х														
	Benzene	5	1		Х		Х	Х	Χ		Χ		Χ		Х		Х		Χ		Х
OW-18	Chlorobenzene	100	5				Х		Χ		Х		Х		Х		Х		Х		Х
	Xylenes (total)	10,000	5						Х												
	Benzene	5	1	Χ	Χ		Х		Χ		Χ		Х		Х		Х		Χ		Χ
OW-19	Chlorobenzene	100	5		Χ		Х		Χ		Χ		Х		Х		Х		Χ		Х
000-19	Chloroethane	NA	5		Χ																
	Vinyl chloride	2	2	Χ	Х			Х	Χ	Х	Х					Х	Х			Χ	Χ
OW-21	Benzene	5	1	Χ	Χ		Χ		Χ		Χ		Х		Х		Х		Χ		Χ
	Benzene	5	1	Χ	Χ		Х	Χ	Χ		Χ		Х		Х	Χ	Х		Χ	Χ	Χ
OW-22	Chlorobenzene	100	5		Χ		Х		Χ		Χ						Х				Х
	Vinyl chloride	2	2	Х	Х																
	Total			17	28	9	20	9	19	10	19	6	16	6	16	7	17	5	15	7	17

Notes:

 $^{^{(1)}}$ OW-10 was replaced with OW-10R in 2000. OW-10 was abandoned because it was within the OU1 construction area.

⁽²⁾OW-13R was installed in February 2006 to replace OW-13.

⁽³⁾ Results for OW-13R/OW-13R Dup were (1.0 UJ ug/L/1.3J ug/L), therefore average is 0.7 ug/L, less than SQV.

Table 6 Weighting and Scoring of Natural Attenuation Parameters October 2011

Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Analyte	Concentration Indicating Conditions for Reductive Dechlorination	Ranking Value	OW-2	OW-10R	OW-13R	OW-25
Dissolved Oxygen	<0.5 mg/L	3	-	3	3	-
Dissolved Oxygen	>1 mg/L	-3	-3	-	-	-3
Nitrate	<1 mg/L	2	2	2	2	-
Iron (II)	>1 mg/L	3	-	3	-	-
Sulfate	<20 mg/L	2	2	-	-	2
Oxidation Reduction Potential (ORP)	<50 mV	1	-	1	-	-
	<-100 mV	2	-	-	-	-
Temperature	>20°C	1	-	-	-	-
Total Organic Carbon	>20 mg/L	1	-	-	-	-
Alkalinity	>2x background (MW-1)	1	-	-	1	-
Chloride	>2x background (MW-1)	2	-	-	-	-
BTEX	>0.1 mg/L	2	-	2	-	-
1,2-Dichloroethene	Detected	2	2	-	-	-
Vinyl Chloride	Detected	2	-	-	-	-
Chloroethane	Detected	2	-	-	-	-
1,1-Dichloroethene	Detected	2	-	-	-	-
1,1-Dichloroethane	Detected	2	-	-	-	-
Methane	Detected	2	-	2	-	-
Ethane	Detected	2	-	-	-	-
Ethene	Detected	2	-	-	-	-
		3	13	6	-1	

Source: U.S. EPA, 1997.

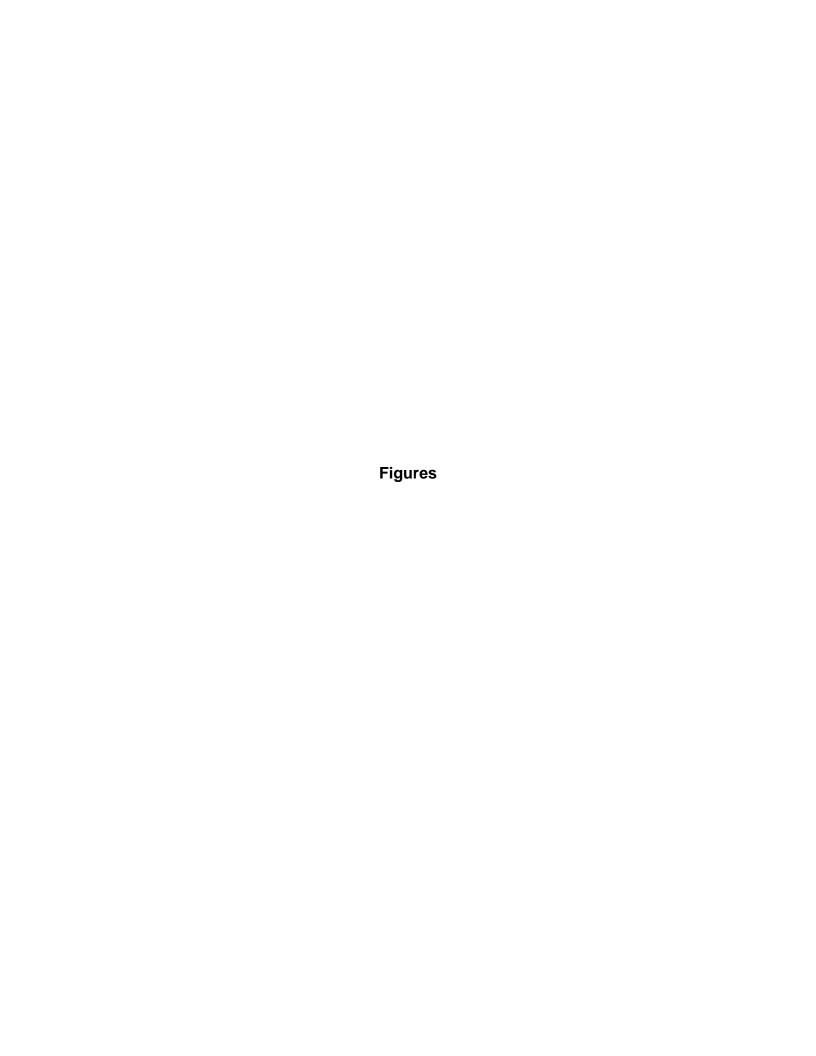
Table 7

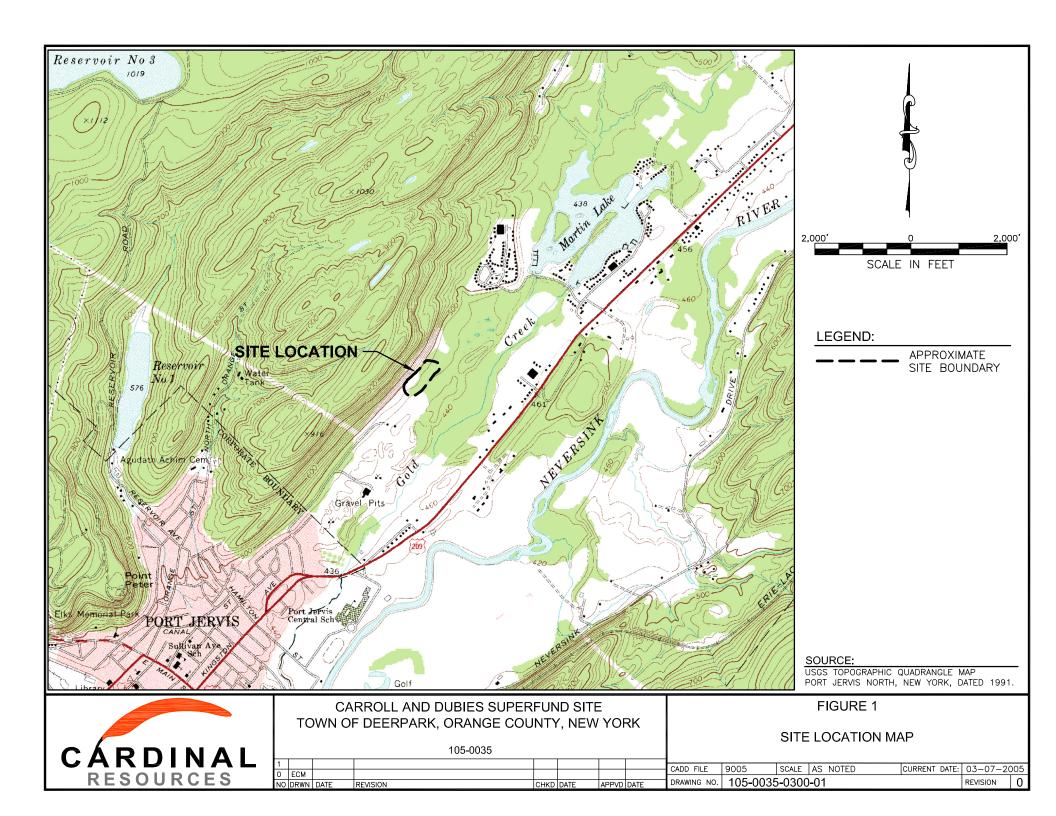
Detected Volatile Organic Compounds Surface Water and Sediment Sampling Locations in Gold Creek October 2011

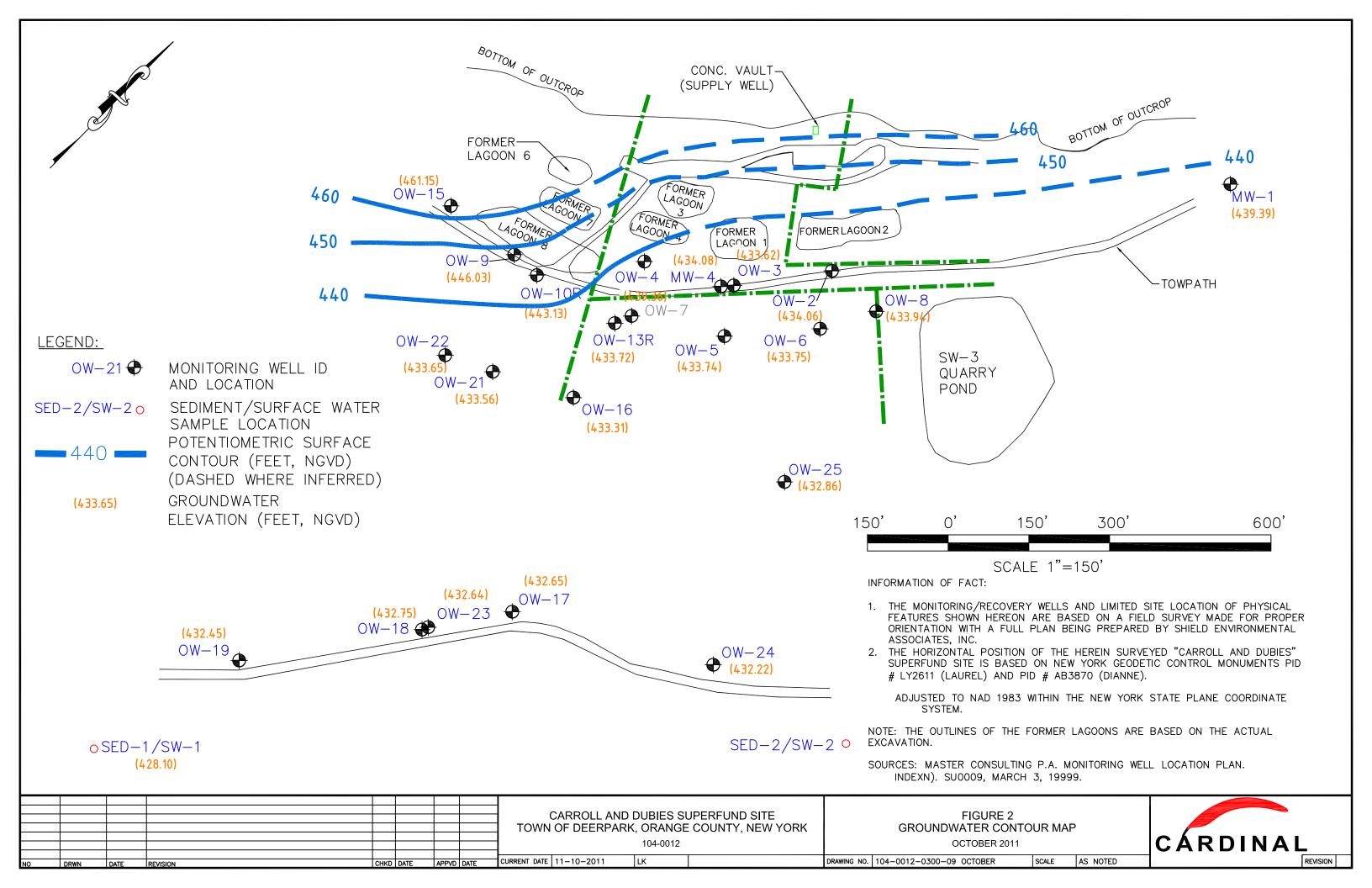
Carroll and Dubies Superfund Site Town of Deerpark, Orange County, New York

Location	Surface Water Value	Sediment Guidance Value	SED-1 / SW-1 (Downstream)			SED-2 / SW-2 (Upstream)		
Sample			SED-1	SED-1 DUP	SW-1	SW-1 DUP	SED-2	SW-2
Constituent	ug/L	ug/kg	ug/kg	ug/kg	ug/L	ug/L	ug/kg	ug/L
Methylene Chloride	5 ⁽¹⁾	3,900 ⁽²⁾	8.6 U	8.1 U	1.0 U	1.0 U	13 J	1.0 U

Notes:


Blue = Detected constituents


⁽¹⁾6 NYCRR Part 703 - Water Source Health Standard


⁽²⁾National Oceanic and Atmospheric Administration, 2008, Screening Quick Reference Tables, Dutch Intervention Guidance Values.

J = Estimated result; less than the reporting limit.

U = The analyte was analyzed for but not detected above the quantitation limit.

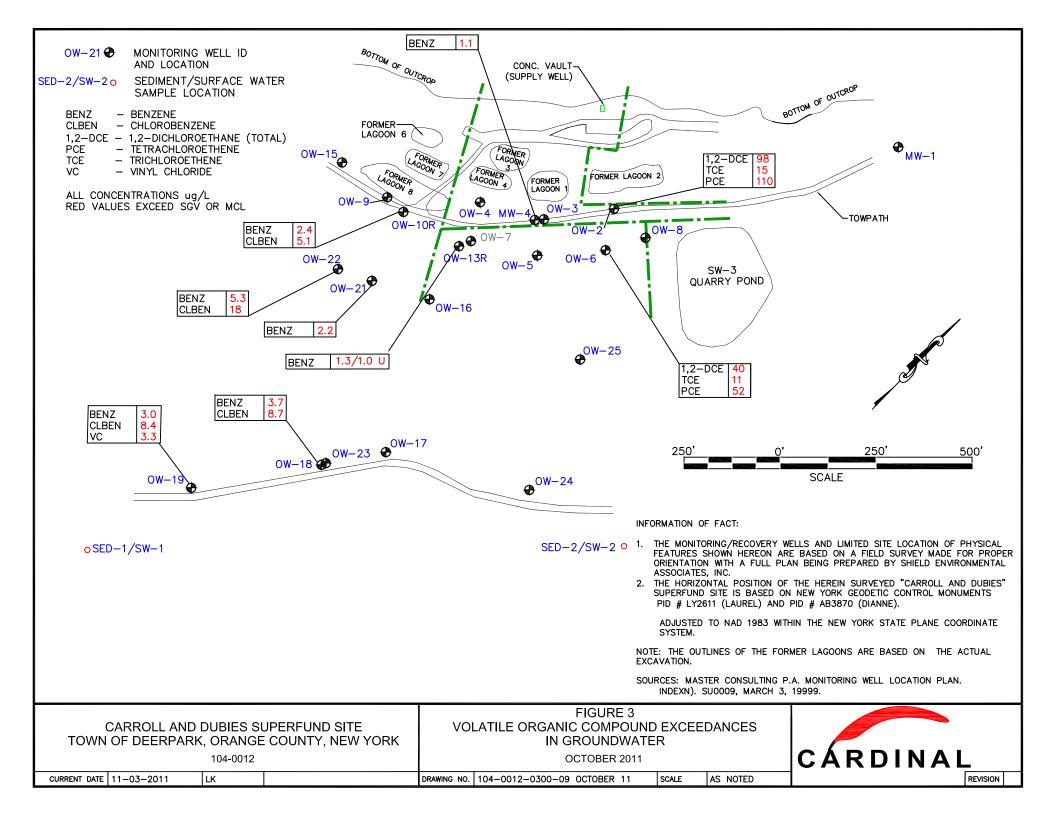
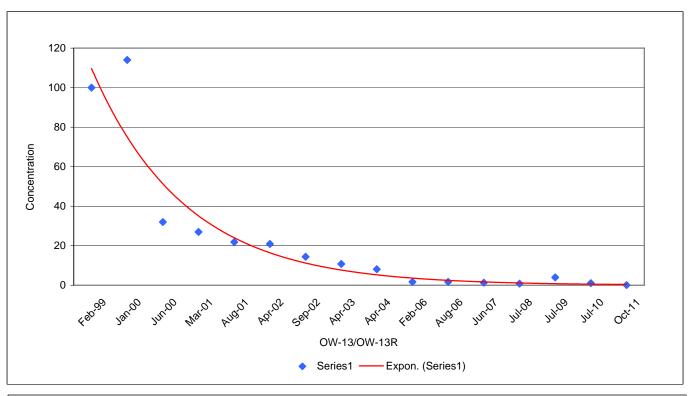
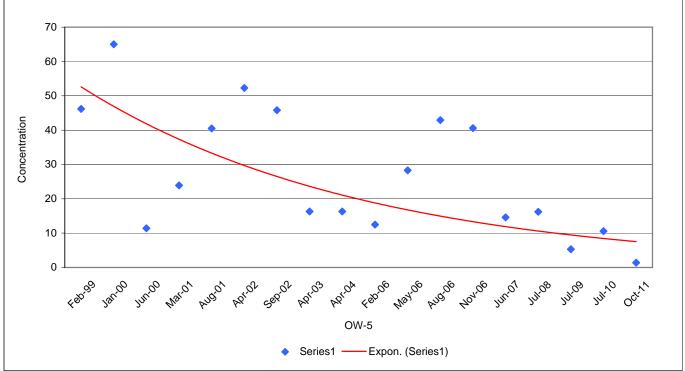
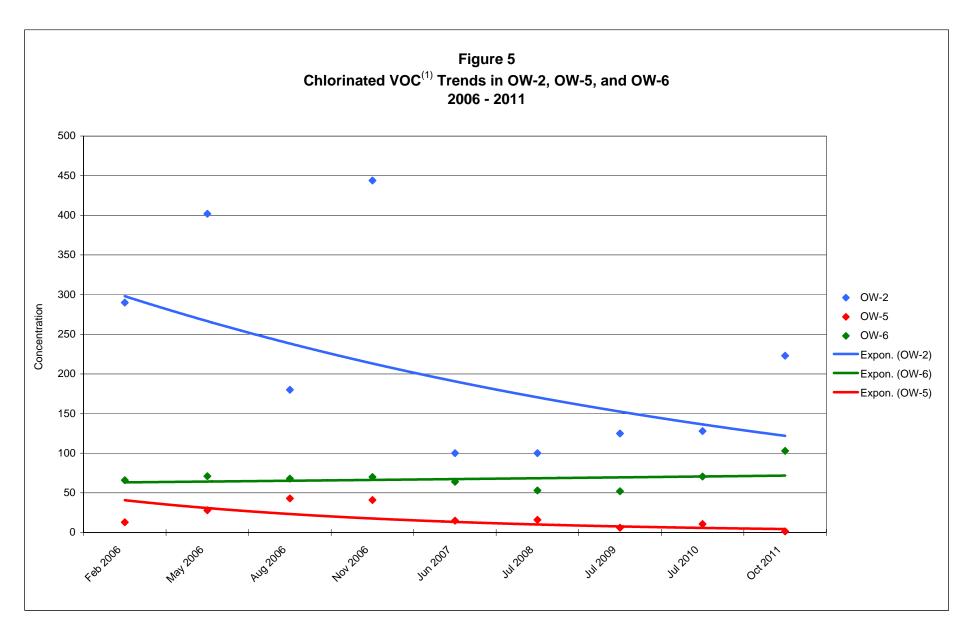
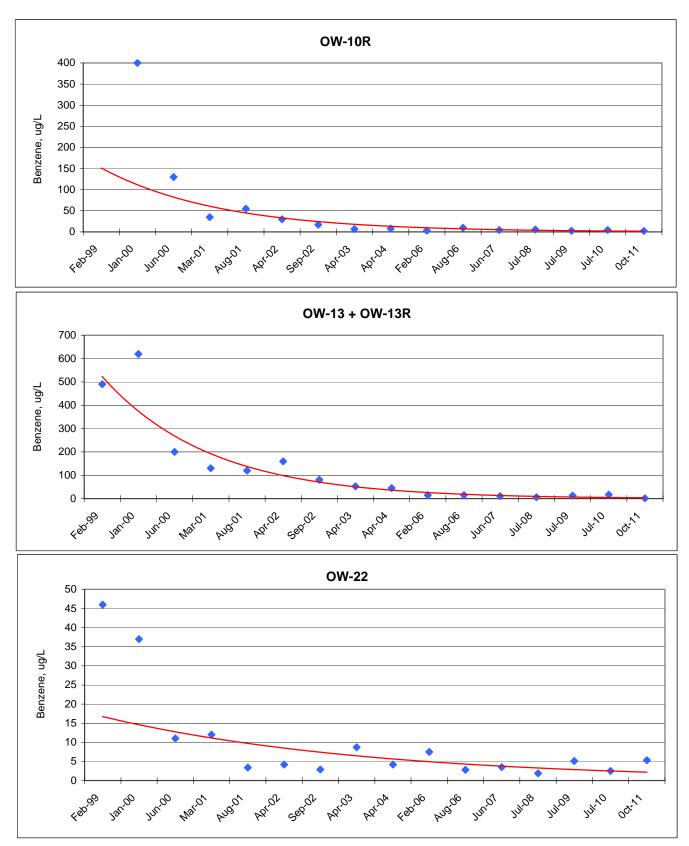
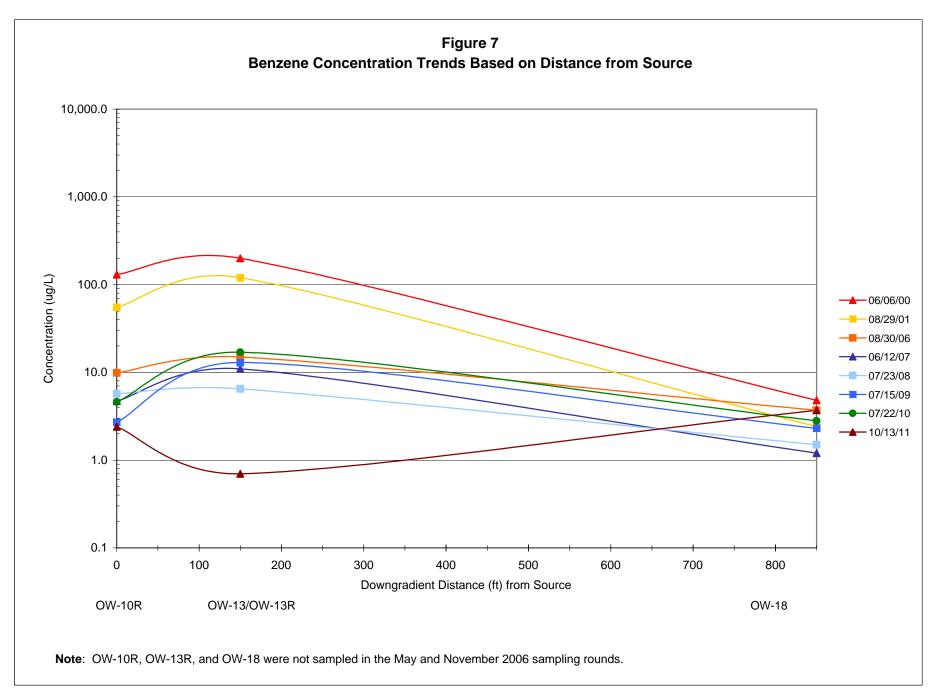
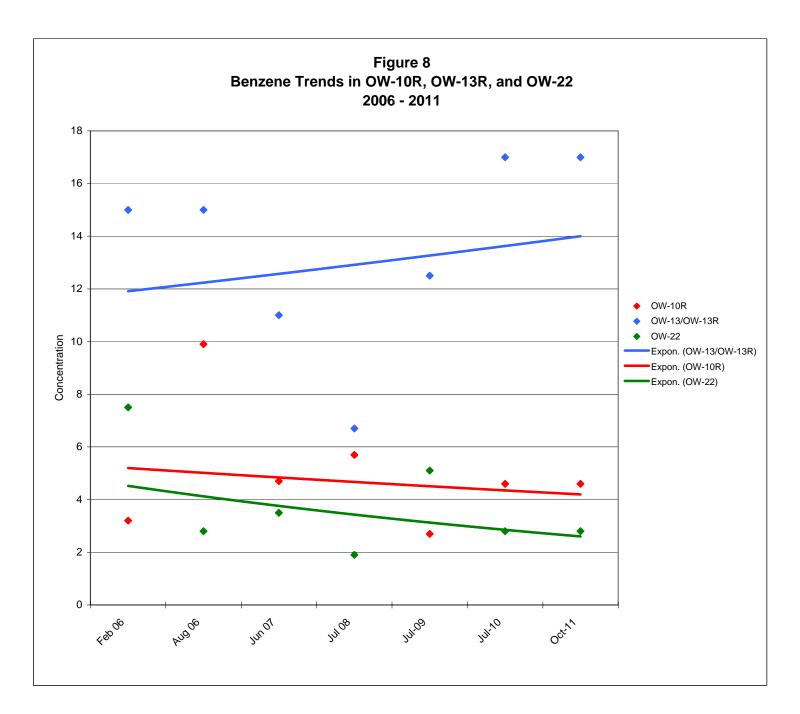





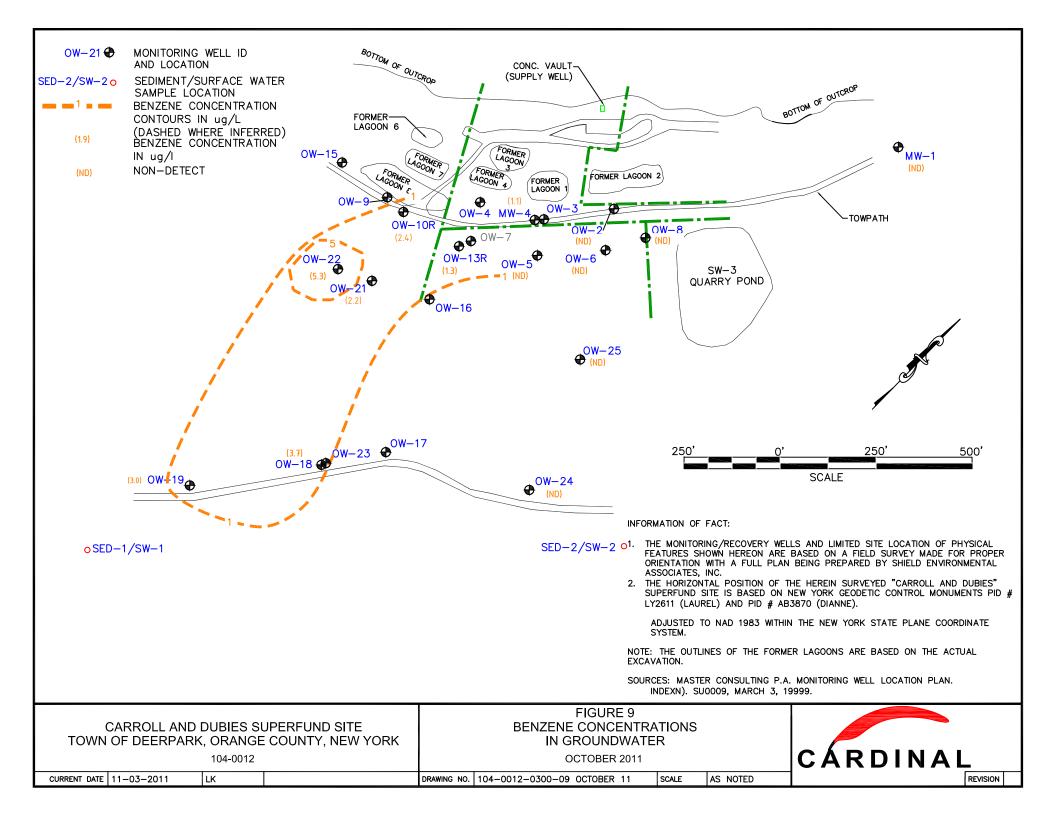
Figure 4
Chlorinated VOC⁽¹⁾ Trends in OW-5 and OW-13/13R
Pre-Excavation to October 2011



⁽¹⁾Sum of 1,2-dichloroethene, trichloroethene, and tetrachloroethene.




⁽¹⁾Sum of 1,2-dichloroethene, trichloroethene, and tetrachloroethene.


Figure 6
Benzene Concentration Trends in Selected Monitoring Wells
Pre-Excavation to October 2011

Note: OW-10R, OW-13R, and OW-22 were not sampled during the May and November 2006 sampling rounds.

Appendix A

Laboratory Reports with Marked Form Is from Data Review

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica North Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-4528-1

Client Project/Site: C & D GW Sampling

For

Cardinal Resources 1505 E Carson Street Suite #200 Pittsburgh, Pennsylvania 15203

Attn: Barbara Jones

ALRE

Authorized for release by: 11/01/2011 11:54:03 AM

Nathan Pietras
Project Manager II
nathan.pietras@testamericainc.com

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	8
Detection Summary	9
Client Sample Results	11
Surrogate Summary	22
QC Sample Results	23
QC Association Summary	32
Lab Chronicle	34
Certification Summary	36
Chain of Custody	37
Receipt Checklists	40

Definitions/Glossary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Qualifiers

GC/MS VOA

Qualifier Description

Qualifier В

Compound was found in the blank and sample.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

\$

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R CNF Percent Recovery Contains no Free Liquid

DL, RA, RE, IN

Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL

Estimated Detection Limit

EPA

United States Environmental Protection Agency

MDL

Method Detection Limit

ML

Minimum Level (Dioxin)

ND

Not detected at the reporting limit (or MDL or EDL if shown)

PQL

Practical Quantitation Limit

RL

Reporting Limit

RPD

Relative Percent Difference, a measure of the relative difference between two points

TEF

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

TEQ

TestAmerica North Canton 11/01/2011

Page 3 of 40

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Job ID: 240-4528-1

Laboratory: TestAmerica North Canton

Narrative

CASE NARRATIVE

Client: Cardinal Resources

Project: C & D GW Sampling

Report Number: 240-4528-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 10/05/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 1.6 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples OW22 (240-4528-1), OW21 (240-4528-2), FB1 (240-4528-3), OW2 (240-4528-4), OW10R (240-4528-5), MW4 (240-4528-6) and TB1 (240-4528-7) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/12/2011, 10/13/2011 and 10/14/2011.

Methylene Chloride was detected in method blank MB 240-18911/5 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged. Refer to the QC report for details.

Sample OW2 (240-4528-4)[2.5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the VOCs analyses.

All other quality control parameters were within the acceptance limits.

DISSOLVED GASES

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Job ID: 240-4528-1 (Continued)

Laboratory: TestAmerica North Canton (Continued)

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for dissolved gases in accordance with RSK 175. The samples were analyzed on 10/13/2011 and 10/14/2011.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

Samples OW22 (240-4528-1)[10X] and OW10R (240-4528-5)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the dissolved gases analyses.

All other quality control parameters were within the acceptance limits.

ANIONS

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for anions in accordance with EPA Method 300.0. The samples were analyzed on 10/05/2011.

No difficulties were encountered during the anions analyses.

All quality control parameters were within the acceptance limits.

ALKALINITY

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 10/10/2011.

No difficulties were encountered during the alkalinity analyses.

All quality control parameters were within the acceptance limits.

CHLORIDE

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for chloride in accordance with EPA Method 325.2. The samples were analyzed on 10/11/2011.

Sample MW4 (240-4528-6)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analyses.

All quality control parameters were within the acceptance limits.

SULFATE

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for sulfate in accordance with EPA method 375.4. The samples were analyzed on 10/06/2011.

Samples OW21 (240-4528-2)[2X], OW10R (240-4528-5)[5X] and MW4 (240-4528-6)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the sulfate analyses.

All other quality control parameters were within the acceptance limits.

SULFIDE

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for sulfide in accordance with EPA Method 376.1. The samples were analyzed on 10/11/2011.

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Job ID: 240-4528-1 (Continued)

Laboratory: TestAmerica North Canton (Continued)

Sulfide failed the recovery criteria high for the MS/MSD of sample 240-4593-4 in batch 240-18638.

Refer to the QC report for details.

No other difficulties were encountered during the sulfide analyses.

All other quality control parameters were within the acceptance limits.

TOTAL ORGANIC CARBON

Samples OW22 (240-4528-1), OW21 (240-4528-2), OW2 (240-4528-4), OW10R (240-4528-5) and MW4 (240-4528-6) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 10/12/2011.

No difficulties were encountered during the TOC analyses.

All quality control parameters were within the acceptance limits.

Method Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NC
RSK-175	Dissolved Gases (GC)	RSK	TAL NC
300.0	Anions, Ion Chromatography	MCAWW	TAL NC
310.1	Alkalinity	MCAWW	TAL NC
325.2	Chloride	MCAWW	TAL NC
375.4	Sulfate	MCAWW	TAL NC
376.1	Sulfide	MCAWW	TAL NC
415.1	TOC	MCAWW	TAL NC

၁

(g)

9)

1 5

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-4528-1	OW22	Water	10/04/11 10:45	10/05/11 09:30
240-4528-2	OW21	Water	10/04/11 11:45	10/05/11 09:30
240-4528-3	FB1	Water	10/04/11 11:30	10/05/11 09:30
240-4528-4	OW2	Water	10/04/11 12:45	10/05/11 09:30
240-4528-5	OW10R	Water	10/04/11 09:25	10/05/11 09:30
240-4528-6	MVV4	Water	10/04/11 14:10	10/05/11 09:30
240-4528-7	TB1	Water	10/04/11 00:00	10/05/11 09:30

¥.

0

6

7

8

9)

1

12

		Dete	ection Sum	mary				
Client: Cardinal Resources Project/Site: C & D GW Sampling						1	estAmerica .	Job ID: 240-4528-1
Client Sample ID: OW22						L	ab Sample	ID: 240-4528-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	5.3		1.0		ug/L	1	8260B	Total/NA
Chlorobenzene	18		1.0		ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	1.6		1.0		ug/L	1	8260B	Total/NA
Methane	3600		5.0		ug/L	10	RSK-175	Total/NA
Alkalinity	390		5.0		mg/L	1	310.1	Total/NA
Chloride	22		1.0		mg/L	1	325.2	Total/NA
Total Organic Carbon	14		1.0		mg/L	1	415.1	Total/NA
Client Sample ID: OW21						L	ab Sample	ID: 240-4528-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	2.2		1.0		ug/L	1	8260B	Total/NA
Methane	1400		0.50		ug/L	1	RSK-175	Total/NA
Alkalinity	250		5.0		mg/L	1	310.1	Total/NA
Chloride	5.1		1.0		mg/L	1	325.2	Total/NA
Sulfate	25		10		mg/L	2	375.4	Total/NA
Total Organic Carbon	4.5		1.0		mg/L	1	415.1	Total/NA
Client Sample ID: FB1						L	ab Sample	ID: 240-4528-3
No Detections								
Client Sample ID: OW2						L	ab Sample	ID: 240-4528-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Tetrachloroethene	110		2.5		ug/L	2.5	8260B	Total/NA
Trichloroethene	15		2.5		ug/L	2.5	8260B	Total/NA
cis-1,2-Dichloroethene	98		2.5		ug/L	2.5	8260B	Total/NA
Nitrate as N	0.98		0.10		mg/L	1	300.0	Total/NA
Alkalinity	50		5.0		mg/L	1	310.1	Total/NA
Chloride	2.0		1.0		mg/L	1	325.2	Total/NA
Sulfate	15		5.0		mg/L	1	375.4	Total/NA

		Lab Sample ID: 240-4					
Result Qua	alifier RL	MDL Unit	Dil Fac	D I	Method	Prep Type	
2.4	1.0	ug/L	1	8	3260B	Total/NA	
5.1	1.0	ug/L	1	8	3260B	Total/NA	
2200	2.5	ug/L	5	F	RSK-175	Total/NA	
190	5.0	mg/L	1	3	310.1	Total/NA	
1.6	1.0	mg/L	1	3	325.2	Total/NA	
34	25	mg/L	5	3	375.4	Total/NA	
2.7	1.0	mg/L	1	4	115.1	Total/NA	
	2.4 5.1 2200 190 1.6 34	2.4 1.0 5.1 1.0 2200 2.5 190 5.0 1.6 1.0 34 25	2.4 1.0 ug/L 5.1 1.0 ug/L 2200 2.5 ug/L 190 5.0 mg/L 1.6 1.0 mg/L 34 25 mg/L	Result Qualifier RL MDL Unit Dil Fac 2.4 1.0 ug/L 1 5.1 1.0 ug/L 1 2200 2.5 ug/L 5 190 5.0 mg/L 1 1.6 1.0 mg/L 1 34 25 mg/L 5	Result Qualifier RL MDL Unit Dil Fac D I 2.4 1.0 ug/L 1 8 5.1 1.0 ug/L 1 8 2200 2.5 ug/L 5 6 190 5.0 mg/L 1 3 1.6 1.0 mg/L 1 3 34 25 mg/L 5 3	Result Qualifier RL MDL Unit Dil Fac	

Client Sample ID: MW4				Lab Sample ID: 240-4			240-4528-6		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1.1		1.0		ug/L	1		8260B	Total/NA
Methane	97		0.50		ug/L	1		RSK-175	Total/NA
Nitrate as N	0.19		0.10		mg/L	1		300.0	Total/NA
Alkalinity	190		5.0		mg/L	1		310.1	Total/NA
Chloride	61		5.0		mg/L	5		325.2	Total/NA
Sulfate	39		10		mg/L	2		375.4	Total/NA
Total Organic Carbon	1.5		1.0		mg/L	1		415.1	Total/NA

Detection Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-7

2

Client Sample ID: TB1

Analyte

Methylene Chloride

Res

Result Qualifier

RL 1.0 MDL Unit

Dil Fac D Method 1 8260B Prep Type Total/NA

5

6

7

RL

MDL Unit

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

....

Client Sample ID: OW22 Date Collected: 10/04/11 10:45 Date Received: 10/05/11 09:30

Analyte

Vinyl chloride

Xylenes, Total

Cyclohexane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethylene Dibromide

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Methyl tert-butyl ether

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

Methylcyclohexane

1,1,2-Trichloro-1,2,2-trifluoroethane

Isopropylbenzene

Methyl acetate

1,2-Dibromo-3-Chloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

1.6

ND

ND

ND

Lab Sample ID: 240-4528-1

Analyzed

Prepared

Matrix: Water

Dil Fac

Acetone	ND	10	ug/L	10/12/11 23:09	1
Benzene	5.3	1.0	ug/L	10/12/11 23:09	1
Dichlorobromomethane	ND	1.0	ug/L	10/12/11 23:09	1
Bromoform	ND	1.0	ug/L	10/12/11 23:09	1,
Bromomethane	ND	1.0	ug/L	10/12/11 23:09	1
2-Butanone (MEK)	ND	10	ug/L	10/12/11 23:09	1 1
Carbon disulfide	ND	1.0	ug/L	10/12/11 23:09	1
Carbon tetrachloride	ND	1.0	ug/L	10/12/11 23:09	1
Chlorobenzene	18	1.0	ug/L	10/12/11 23:09	1
Chloroethane	ND	1.0	ug/L	10/12/11 23:09	1
Chloroform	ND	1.0	ug/L	10/12/11 23:09	1
Chloromethane	ND	1.0	ug/L	10/12/11 23:09	1
1,1-Dichloroethane	ND	1.0	ug/L	10/12/11 23:09	1
1,2-Dichloroethane	ND	1.0	ug/L	10/12/11 23:09	1
1,1-Dichloroethene	ND	1.0	ug/L	10/12/11 23:09	1
1,2-Dichloropropane	ND	1.0	ug/L	10/12/11 23:09	1
cis-1,3-Dichloropropene	ND	1.0	ug/L	10/12/11 23:09	1
trans-1,3-Dichloropropene	ND	1.0	ug/L	10/12/11 23:09	1
Ethylbenzene	ND	1.0	ug/L	10/12/11 23:09	1
2-Hexanone	ND	10	ug/L	10/12/11 23:09	1
Methylene Chloride	ND	1.0	ug/L	10/12/11 23:09	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	10/12/11 23:09	1
Styrene	ND	1.0	ug/L	10/12/11 23:09	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	10/12/11 23:09	1
Tetrachloroethene	ND	1.0	ug/L	10/12/11 23:09	1
Toluene	ND	1.0	ug/L	10/12/11 23:09	1
Trichloroethene	ND	1.0	ug/L	10/12/11 23:09	1

1.0

2.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

10

5.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

ug/L

10/12/11 23:09 1 10/12/11 23:09 1 10/12/11 23:09 1

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

10/12/11 23:09

1

1

1

1

1

1

1

1

1

1

1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: OW22

Lab Sample ID: 240-4528-1

Date Collected: 10/04/11 10:45 Date Received: 10/05/11 09:30

Matrix: Water

Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	ļ	
1,2-Dichloroethane-d4 (Surr)	95		63 - 129					10/12/11 23:09	1		
4-Bromofluorobenzene (Surr)	85		66 - 117					10/12/11 23:09	1		
Toluene-d8 (Surr)	93		74 - 115					10/12/11 23:09	1		
Dibromofluoromethane (Surr)	86		75 - 121					10/12/11 23:09	1		
Method: RSK-175 - Dissolved Gases (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Methane	3600		5.0		ug/L			10/13/11 12:31	10		
Ethane	ND		5.0		ug/L			10/13/11 12:31	10		
Ethylene	ND		5.0		ug/L			10/13/11 12:31	10		
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
1,1,1-Trifluoroethane	99		10 - 168					10/13/11 12:31	10		
General Chemistry											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Nitrate as N	ND		0.10		mg/L			10/05/11 19:49	1		
Alkalinity	390		5.0		mg/L			10/10/11 11:26	1		
Chloride	22		1.0		mg/L			10/11/11 10:54	1		
Sulfate	ND		5.0		mg/L			10/06/11 13:32	1		
Sulfide	ND		1.0		mg/L			10/11/11 09:19	1		

1.0

mg/L

14

Lab Sample ID: 240-4528-2 Matrix: Water

10/12/11 12:42

Date Collected: 10/04/11 11:45 Date Received: 10/05/11 09:30

Client Sample ID: OW21

Total Organic Carbon

Method: 8260B - Volatile Organic Compo	unds	(GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Pre	pared	Analyzed	Dil Fac
Acetone	ND		10		ug/L				10/12/11 23:33	1
Benzene	2.2		1.0		ug/L				10/12/11 23:33	1
Dichlorobromomethane	ND		1.0		ug/L				10/12/11 23:33	1
Bromoform	ND		1.0		ug/L				10/12/11 23:33	1
Bromomethane	ND		1.0		ug/L				10/12/11 23:33	1
2-Butanone (MEK)	ND		10		ug/L				10/12/11 23:33	1
Carbon disulfide	ND		1.0		ug/L				10/12/11 23:33	1
Carbon tetrachloride	ND		1.0		ug/L				10/12/11 23:33	1
Chlorobenzene	ND		1.0		ug/L				10/12/11 23:33	1
Chloroethane	ND		1.0		ug/L				10/12/11 23:33	1
Chloroform	ND		1.0		ug/L				10/12/11 23:33	1
Chloromethane	ND		1.0		ug/L				10/12/11 23:33	1
1,1-Dichloroethane	ND		1.0		ug/L				10/12/11 23:33	1
1,2-Dichloroethane	ND		1.0		ug/L				10/12/11 23:33	1
1,1-Dichloroethene	ND		1.0		ug/L				10/12/11 23:33	1
1,2-Dichloropropane	ND		1.0		ug/L				10/12/11 23:33	1
cis-1,3-Dichloropropene	ND		1.0		ug/L				10/12/11 23:33	1
trans-1,3-Dichloropropene	ND		1.0		ug/L				10/12/11 23:33	1
Ethylbenzene	ND		1.0		ug/L				10/12/11 23:33	1
2-Hexanone	ND		10		ug/L				10/12/11 23:33	1
Methylene Chloride	ND		1.0		ug/L				10/12/11 23:33	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L				10/12/11 23:33	1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: OW21

Lab Sample ID: 240-4528-2

Date Collected: 10/04/11 11:45 Date Received: 10/05/11 09:30 Matrix: Water

Method: 8260B - Volatile Organi	c Compounds	(GC/MS) (Continued)						
Analyte		Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0		g/L			10/12/11 23:33	1
1,1,2,2-Tetrachloroethane	ND		1.0	u	g/L			10/12/11 23:33	1
Tetrachloroethene	ND		1.0		g/L			10/12/11 23:33	1
Toluene	ND		1.0		g/L			10/12/11 23:33	1
Trichloroethene	ND		1.0		g/L			10/12/11 23:33	1
Vinyl chloride	ND		1.0		g/L			10/12/11 23:33	1
Xylenes, Total	ND		2.0		g/L			10/12/11 23:33	1
1,1,1-Trichloroethane	ND		1.0		g/L			10/12/11 23:33	1
1,1,2-Trichloroethane	ND		1.0		g/L			10/12/11 23:33	1
Cyclohexane	ND		1.0		g/L			10/12/11 23:33	1
1,2-Dibromo-3-Chloropropane	ND		2.0		g/L			10/12/11 23:33	1
Ethylene Dibromide	ND		1.0		g/L			10/12/11 23:33	1
Dichlorodifluoromethane	ND		1.0		g/L g/L			10/12/11 23:33	1
cis-1,2-Dichloroethene	ND		1.0		g/L g/L			10/12/11 23:33	1
trans-1,2-Dichloroethene	ND		1.0		(5)()				
Isopropylbenzene	ND		1.0		g/L			10/12/11 23:33	1
Methyl acetate	ND		1.0		g/L			10/12/11 23:33	1
0.00 000 000 000 000 000 000 000	ND ND				g/L			10/12/11 23:33	1
Methyl tert-butyl ether	ND ND		5.0		g/L			10/12/11 23:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane			1.0		g/L			10/12/11 23:33	1
1,2,4-Trichlorobenzene	ND		1.0		g/L			10/12/11 23:33	1
1,2-Dichlorobenzene	ND		1.0		g/L			10/12/11 23:33	1
1,3-Dichlorobenzene	ND		1.0		g/L			10/12/11 23:33	1
1,4-Dichlorobenzene	ND		1.0		g/L			10/12/11 23:33	1
Trichlorofluoromethane	ND		1.0		g/L			10/12/11 23:33	1
Chlorodibromomethane	ND		1.0		g/L			10/12/11 23:33	1
Methylcyclohexane	ND		1.0	uç	g/L			10/12/11 23:33	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		63 - 129					10/12/11 23:33	1
4-Bromofluorobenzene (Surr)	85		66 - 117					10/12/11 23:33	1
Toluene-d8 (Suπ)	92		74 - 115					10/12/11 23:33	1
Dibromofluoromethane (Surr)	86		75 - 121					10/12/11 23:33	1
Method: RSK-175 - Dissolved Ga	nene (GC)								
Analyte		Qualifier	RL	MDL U	-14	D	Dd	A	DUE
Methane	1400	Qualifier	0.50		g/L	D	Prepared	Analyzed 10/13/11 20:56	Dil Fac
Ethane	ND.		0.50		g/L g/L			10/13/11 20:56	1
Ethylene	ND		0.50		g/L g/L			10/13/11 20:56	1
			0.00	O.	8,2			10/10/11 20:00	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	82		10 - 168					10/13/11 20:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND	-Audillel	0.10		ıg/L	D	riepaicu	10/05/11 20:21	Dii Fac
Alkalinity	250		5.0		ig/L			10/10/11 11:36	1
Chloride	5.1		1.0		ıg/L			10/11/11 10:54	1
Sulfate	25		10		ig/L ig/L			10/06/11 14:31	2
Sulfide	ND.		1.0		ig/L ig/L			10/11/11 09:19	1
Total Organic Carbon	4.5		1.0		ig/L ig/L			10/11/11 03:15	1
. Ctar Organio Carbon	4.0		1.0	""	a,r			10/12/11 10.10	- 1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-3

Matrix: Water

Client Sample ID: FB1

Methylcyclohexane

Date Collected: 10/04/11 11:30 Date Received: 10/05/11 09:30

Method: 8260B - Volatile Orga	anic Compounds	CC/MS)						
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	Qualifor	10	ug/L		richaica	10/14/11 03:02	1
Benzene	ND		1.0	ug/L			10/14/11 03:02	1
Dichlorobromomethane	ND		1.0	ug/L			10/14/11 03:02	1
Bromoform	ND		1.0	ug/L			10/14/11 03:02	1
Bromomethane	ND		1.0	ug/L			10/14/11 03:02	1
2-Butanone (MEK)	ND		10	ug/L			10/14/11 03:02	1
Carbon disulfide	ND		1.0	ug/L			10/14/11 03:02	1
Carbon tetrachloride	ND		1.0	ug/L			10/14/11 03:02	1
Chlorobenzene	ND		1.0	ug/L			10/14/11 03:02	1
Chloroethane	ND		1.0	ug/L			10/14/11 03:02	1
Chloroform	ND		1.0	ug/L			10/14/11 03:02	1
Chloromethane	ND		1.0	ug/L			10/14/11 03:02	1
1,1-Dichloroethane	ND		1.0	ug/L			10/14/11 03:02	1
1,2-Dichloroethane	ND		1.0				10/14/11 03:02	1
1,1-Dichloroethene	ND		1.0	ug/L ug/L			10/14/11 03:02	
1,2-Dichloropropane	ND		1.0	300			10/14/11 03:02	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			10/14/11 03:02	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/14/11 03:02	1
Ethylbenzene	ND		1.0	ug/L				
2-Hexanone	ND		10	ug/L			10/14/11 03:02 10/14/11 03:02	1
Methylene Chloride	ND		1.0	ug/L				1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L			10/14/11 03:02 10/14/11 03:02	1
Styrene	ND		1.0	ug/L				1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			10/14/11 03:02	1
Tetrachloroethene	ND			ug/L			10/14/11 03:02	1
Toluene	ND		1.0 1.0	ug/L			10/14/11 03:02	1
Trichloroethene	ND ND		1.0	ug/L			10/14/11 03:02	1
Vinyl chloride	ND		1.0	ug/L			10/14/11 03:02	1
Xylenes, Total	ND		2.0	ug/L			10/14/11 03:02	1
1,1,1-Trichloroethane	ND		1.0	ug/L			10/14/11 03:02	1
1,1,2-Trichloroethane	ND ND			ug/L			10/14/11 03:02	1
Cyclohexane	ND		1.0	ug/L			10/14/11 03:02	1
1,2-Dibromo-3-Chloropropane			1.0	ug/L			10/14/11 03:02	1
Ethylene Dibromide	ND ND		2.0 1.0	ug/L			10/14/11 03:02	1
Dichlorodifluoromethane				ug/L			10/14/11 03:02	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			10/14/11 03:02	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/14/11 03:02	1
Isopropylbenzene	ND ND		1.0	ug/L			10/14/11 03:02	1
93X R.5X			1.0	ug/L			10/14/11 03:02	1
Methyl acetate	ND		10	ug/L			10/14/11 03:02	1
Methyl tert-butyl ether	ND		5.0	ug/L			10/14/11 03:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/14/11 03:02	1
0.40.0400	ND		1.0	ug/L			10/14/11 03:02	1
1,2-Dichlorobenzene	ND		1.0	ug/L			10/14/11 03:02	1
1,3-Dichlorobenzene	ND		1.0	ug/L			10/14/11 03:02	1
1,4-Dichlorobenzene	ND		1.0	ug/L			10/14/11 03:02	1
Trichlorofluoromethane	ND		1.0	ug/L			10/14/11 03:02	1
Chlorodibromomethane	ND		1.0	ug/L			10/14/11 03:02	1

10/14/11 03:02

1.0

ug/L

ND

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-3

Matrix: Water

Client Sample ID: FB1

Date Collected: 10/04/11 11:30 Date Received: 10/05/11 09:30

Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	% Recovery 95 89	63 - 129 66 - 117	Prepared	Analyzed 10/14/11 03:02 10/14/11 03:02	Dil Fac 1 1
Toluene-d8 (Surr)	100	74 - 115		10/14/11 03:02	1
Dibromofluoromethane (Surr)	105	75 - 121		10/14/11 03:02	1

Client Sample ID: OW2 Lab Sample ID: 240-4528-4

Date Collected: 10/04/11 12:45 Matrix: Water

Date Received: 10/05/11 09:30

Method: 8260B - Volatile Org	anic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepa	red Analyzed	Dil Fac
Acetone	ND	25	ug/L		10/14/11 03:27	2.5
Benzene	ND	2.5	ug/L		10/14/11 03:27	2.5
Dichlorobromomethane	ND	2.5	ug/L		10/14/11 03:27	2.5
Bromoform	ND	2.5	ug/L		10/14/11 03:27	2.5
Bromomethane	ND	2.5	ug/L		10/14/11 03:27	2.5
2-Butanone (MEK)	ND	25	ug/L		10/14/11 03:27	2.5
Carbon disulfide	ND	2.5	ug/L		10/14/11 03:27	2.5
Carbon tetrachloride	ND	2.5	ug/L		10/14/11 03:27	2.5
Chlorobenzene	ND	2.5	ug/L		10/14/11 03:27	2.5
Chloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
Chloroform	ND	2.5	ug/L		10/14/11 03:27	2.5
Chloromethane	ND	2.5	ug/L		10/14/11 03:27	2.5
1,1-Dichloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
1,2-Dichloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
1,1-Dichloroethene	ND	2.5	ug/L		10/14/11 03:27	2.5
1,2-Dichloropropane	ND	2.5	ug/L		10/14/11 03:27	2.5
cis-1,3-Dichloropropene	ND	2.5	ug/L		10/14/11 03:27	2.5
trans-1,3-Dichloropropene	ND	2.5	ug/L		10/14/11 03:27	2.5
Ethylbenzene	ND	2.5	ug/L		10/14/11 03:27	2.5
2-Hexanone	ND	25	ug/L		10/14/11 03:27	2.5
Methylene Chloride	ND	2.5	ug/L		10/14/11 03:27	2.5
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/14/11 03:27	2.5
Styrene	ND	2.5	ug/L		10/14/11 03:27	2.5
1,1,2,2-Tetrachloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
Tetrachloroethene	110	2.5	ug/L		10/14/11 03:27	2.5
Toluene	ND	2.5	ug/L		10/14/11 03:27	2.5
Trichloroethene	15	2.5	ug/L		10/14/11 03:27	2.5
Vinyl chloride	ND	2.5	ug/L		10/14/11 03:27	2.5
Xylenes, Total	ND	5.0	ug/L		10/14/11 03:27	2.5
1,1,1-Trichloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
1,1,2-Trichloroethane	ND	2.5	ug/L		10/14/11 03:27	2.5
Cyclohexane	ND	2.5	ug/L		10/14/11 03:27	2.5
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/14/11 03:27	2.5
Ethylene Dibromide	ND	2.5	ug/L		10/14/11 03:27	2.5
Dichlorodifluoromethane	ND	2.5	ug/L		10/14/11 03:27	2.5
cis-1,2-Dichloroethene	98	2.5	ug/L		10/14/11 03:27	2.5
trans-1,2-Dichloroethene	ND	2.5	ug/L		10/14/11 03:27	2.5
Isopropylbenzene	ND	2.5	ug/L		10/14/11 03:27	2.5
Methyl acetate	ND	25	ug/L		10/14/11 03:27	2.5

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: OW2

Lab Sample ID: 240-4528-4

Date Collected: 10/04/11 12:45 Date Received: 10/05/11 09:30 Matrix: Water

Method: 8260B - Volatile Organi	ic Compounds	(GC/MS) (C	ontinued)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		13	ug/L		-	10/14/11 03:27	2.5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.5	ug/L			10/14/11 03:27	2.5
1,2,4-Trichlorobenzene	ND		2.5	ug/L			10/14/11 03:27	2.5
1,2-Dichlorobenzene	ND		2.5	ug/L			10/14/11 03:27	2.5
1,3-Dichlorobenzene	ND		2.5	ug/L			10/14/11 03:27	2.5
1,4-Dichlorobenzene	ND		2.5	ug/L			10/14/11 03:27	2.5
Trichlorofluoromethane	ND		2.5	ug/L			10/14/11 03:27	2.5
Chlorodibromomethane	ND		2.5	ug/L			10/14/11 03:27	2.5
Methylcyclohexane	ND		2.5	ug/L			10/14/11 03:27	2.5
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		63 - 129			53	10/14/11 03:27	2.5
4-Bromofluorobenzene (Surr)	89		66 - 117				10/14/11 03:27	2.5
Toluene-d8 (Surr)	98		74 - 115				10/14/11 03:27	2.5
Dibromofluoromethane (Surr)	100		75 - 121				10/14/11 03:27	2.5
Method: RSK-175 - Dissolved G	ases (GC)							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.50	ug/L			10/13/11 21:37	1
Ethane	ND		0.50	ug/L			10/13/11 21:37	1
Ethylene	ND		0.50	ug/L	0		10/13/11 21:37	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	87		10 - 168				10/13/11 21:37	1
General Chemistry								

Client Sample ID: OW10R

Date Collected: 10/04/11 09:25

Lab Sample ID: 240-4528-5

Matrix: Water

RL

0.10

5.0

1.0

5.0

1.0

1.0

Result Qualifier

0.98

50

2.0

15

ND

ND

MDL Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Prepared

Analyzed

10/05/11 20:38

10/10/11 12:20

10/11/11 10:54

10/06/11 13:05

10/11/11 09:19

10/12/11 13:25

Dil Fac

1

1

1

Date Received: 10/05/11 09:30

Analyte

Nitrate as N

Total Organic Carbon

Alkalinity

Chloride

Sulfate

Sulfide

Method: 8260B - Volatile Organic Comp	oounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	ug/L			10/13/11 00:46	1
Benzene	2.4		1.0	ug/L			10/13/11 00:46	1
Dichlorobromomethane	ND		1.0	ug/L			10/13/11 00:46	1
Bromoform	ND		1.0	ug/L			10/13/11 00:46	1
Bromomethane	ND		1.0	ug/L			10/13/11 00:46	1
2-Butanone (MEK)	ND		10	ug/L			10/13/11 00:46	1
Carbon disulfide	ND		1.0	ug/L			10/13/11 00:46	1
Carbon tetrachloride	ND		1.0	ug/L			10/13/11 00:46	1
Chlorobenzene	5.1		1.0	ug/L			10/13/11 00:46	1
Chloroethane	ND		1.0	ug/L			10/13/11 00:46	1

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: OW10R

Date Collected: 10/04/11 09:25 Date Received: 10/05/11 09:30

Ethylene

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-5

Matrix: Water

method, oroto - volatile Organic	Compounds	(COMMO) (C	Jiidiideaj						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0		ug/L			10/13/11 00:46	1
Chloromethane	ND		1.0		ug/L			10/13/11 00:46	1
1,1-Dichloroethane	ND		1.0		ug/L			10/13/11 00:46	1
1,2-Dichloroethane	ND		1.0		ug/L			10/13/11 00:46	1
1,1-Dichloroethene	ND		1.0		ug/L			10/13/11 00:46	1
1,2-Dichloropropane	ND		1.0		ug/L			10/13/11 00:46	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/11 00:46	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/13/11 00:46	1
Ethylbenzene	ND		1.0		ug/L			10/13/11 00:46	1
2-Hexanone	ND		10		ug/L			10/13/11 00:46	1
Methylene Chloride	ND		1.0		ug/L			10/13/11 00:46	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			10/13/11 00:46	1
Styrene	ND		1.0		ug/L			10/13/11 00:46	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			10/13/11 00:46	1
Tetrachloroethene	ND		1.0		ug/L			10/13/11 00:46	1
Toluene	ND		1.0		ug/L			10/13/11 00:46	1
Trichloroethene	ND		1.0		ug/L			10/13/11 00:46	1
Vinyl chloride	ND		1.0		ug/L			10/13/11 00:46	1
Xylenes, Total	ND		2.0		ug/L			10/13/11 00:46	1
1,1,1-Trichloroethane	ND		1.0		ug/L			10/13/11 00:46	1
1,1,2-Trichloroethane	ND		1.0		ug/L			10/13/11 00:46	1
Cyclohexane	ND		1.0		ug/L			10/13/11 00:46	1
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			10/13/11 00:46	1
Ethylene Dibromide	ND		1.0		ug/L			10/13/11 00:46	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/11 00:46	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/11 00:46	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/11 00:46	1
Isopropylbenzene	ND		1.0		ug/L			10/13/11 00:46	1
Methyl acetate	ND		10		ug/L			10/13/11 00:46	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/13/11 00:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			10/13/11 00:46	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/11 00:46	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/11 00:46	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/11 00:46	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/11 00:46	1
Trichlorofluoromethane	ND		1.0		ug/L			10/13/11 00:46	1
Chlorodibromomethane	ND		1.0		ug/L			10/13/11 00:46	1
Methylcyclohexane	ND		1.0		ug/L			10/13/11 00:46	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		63 - 129				210E713E	10/13/11 00:46	1
4-Bromofluorobenzene (Surr)	85		66 - 117					10/13/11 00:46	1
Toluene-d8 (Surr)	93		74 - 115					10/13/11 00:46	1
Dibromofluoromethane (Surr)	87		75 - 121					10/13/11 00:46	1
Method: RSK-175 - Dissolved Gas	es (GC)								
Analyte	1.0 Star 1.00	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	2200		2.5		ug/L	1 Mary Mary	The second secon	10/14/11 18:21	5
Ethane	ND		0.50		ug/L			10/13/11 22:10	1
Filedone	ND		0.50		40.000			10110111 00:10	2

10/13/11 22:10

0.50

ug/L

ND

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: OW10R

Date Collected: 10/04/11 09:25 Date Received: 10/05/11 09:30 TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-5

Matrix: Water

Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	82		10 - 168				10/13/11 22:10	1
1,1,1-Trifluoroethane	68		10 - 168				10/14/11 18:21	5
General Chemistry								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.10	mg/L			10/05/11 21:11	1
Alkalinity	190		5.0	mg/L			10/10/11 13:46	1
Chloride	1.6		1.0	mg/L			10/11/11 10:55	1
Sulfate	34		25	mg/L			10/06/11 13:29	5
Sulfide	ND		1.0	mg/L			10/11/11 09:19	1
Total Organic Carbon	2.7		1.0	mg/L			10/12/11 13:36	1

Client Sample ID: MW4 Lab Sample ID: 240-4528-6

Date Collected: 10/04/11 14:10 Matrix: Water

Date Received: 10/05/11 09:30

Analyte	Result Qualifier	RL	MDL Unit	D F	Prepared Analyzed	Dil Fac
Acetone	ND	10	ug/L		10/13/11 01:10	1
Benzene	1.1	1.0	ug/L		10/13/11 01:10	1
Dichlorobromomethane	ND	1.0	ug/L		10/13/11 01:10	1
Bromoform	ND	1.0	ug/L		10/13/11 01:10	1
Bromomethane	ND	1.0	ug/L		10/13/11 01:10	1
2-Butanone (MEK)	ND	10	ug/L		10/13/11 01:10	1
Carbon disulfide	ND	1.0	ug/L		10/13/11 01:10	1
Carbon tetrachloride	ND	1.0	ug/L		10/13/11 01:10	1
Chlorobenzene	ND	1.0	ug/L		10/13/11 01:10	1
Chloroethane	ND	1.0	ug/L		10/13/11 01:10	1
Chloroform	ND	1.0	ug/L		10/13/11 01:10	1
Chloromethane	ND	1.0	ug/L		10/13/11 01:10	1
1,1-Dichloroethane	ND	1.0	ug/L		10/13/11 01:10	1
1,2-Dichloroethane	ND	1.0	ug/L		10/13/11 01:10	1
1,1-Dichloroethene	ND	1.0	ug/L		10/13/11 01:10	1
1,2-Dichloropropane	ND	1.0	ug/L		10/13/11 01:10	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/13/11 01:10	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		10/13/11 01:10	1
Ethylbenzene	ND	1.0	ug/L		10/13/11 01:10	1
2-Hexanone	ND	10	ug/L		10/13/11 01:10	1
Methylene Chloride	ND	1.0	ug/L		10/13/11 01:10	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		10/13/11 01:10	1
Styrene	ND	1.0	ug/L		10/13/11 01:10	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		10/13/11 01:10	1
Tetrachloroethene	ND	1.0	ug/L		10/13/11 01:10	1
Toluene	ND	1.0	ug/L		10/13/11 01:10	1
Trichloroethene	ND	1.0	ug/L		10/13/11 01:10	1
Vinyl chloride	ND	1.0	ug/L		10/13/11 01:10	1
Xylenes, Total	ND	2.0	ug/L		10/13/11 01:10	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/13/11 01:10	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/13/11 01:10	1
Cyclohexane	ND	1.0	ug/L		10/13/11 01:10	1
8			₹//			

Client: Cardinal Resources

TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-6 Matrix: Water

Project/Site: C & D GW Sampling

Client Sample ID: MW4 Date Collected: 10/04/11 14:10 Date Received: 10/05/11 09:30

Method: 8260B - Volatile Organ	ic Compounds (GC/MS) (C	ontinued)						
Analyte	The second secon	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			10/13/11 01:10	1
Ethylene Dibromide	ND		1.0		ug/L			10/13/11 01:10	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/11 01:10	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/11 01:10	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/11 01:10	1
Isopropylbenzene	ND		1.0		ug/L			10/13/11 01:10	1
Methyl acetate	ND		10		ug/L			10/13/11 01:10	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/13/11 01:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			10/13/11 01:10	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/11 01:10	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/11 01:10	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/11 01:10	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/11 01:10	1
Trichlorofluoromethane	ND		1.0		ug/L			10/13/11 01:10	1
Chlorodibromomethane	ND		1.0		ug/L			10/13/11 01:10	1
Methylcyclohexane	ND		1.0		ug/L			10/13/11 01:10	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		63 - 129					10/13/11 01:10	1
4-Bromofluorobenzene (Surr)	83		66 - 117					10/13/11 01:10	1
Toluene-d8 (Surr)	92		74 - 115					10/13/11 01:10	1
Dibromofluoromethane (Surr)	89		75 - 121					10/13/11 01:10	1
Method: RSK-175 - Dissolved G	Casas (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	97	Qualifier	0.50	11100	ug/L		richaica	10/14/11 18:53	1
Ethane	ND		0.50		ug/L			10/14/11 18:53	1
Ethylene	ND		0.50		ug/L			10/14/11 18:53	1
Luliono			0.00		-g/-			10.11.11.10.00	18
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	87		10 - 168					10/14/11 18:53	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.19		0.10		mg/L			10/05/11 21:43	1
Alkalinity	190		5.0		mg/L			10/10/11 12:28	1
Chloride	61		5.0		mg/L			10/11/11 11:08	5
Sulfate	39		10		mg/L			10/06/11 14:31	2

Client Sample ID: TB1

Total Organic Carbon

Date Collected: 10/04/11 00:00 Date Received: 10/05/11 09:30

Lab Sample ID: 240-4528-7

10/11/11 09:19

10/12/11 13:47

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Acetone	ND	10	ug/L			10/13/11 01:34	1		
Benzene	ND	1.0	ug/L			10/13/11 01:34	1		
Dichlorobromomethane	ND	1.0	ug/L			10/13/11 01:34	1		

1.0

1.0

mg/L

mg/L

ND

1.5

Client: Cardinal Resources Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4528-1

Client Sample ID: TB1

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

Date Collected: 10/04/11 00:00

Lab Sample ID: 240-4528-7

Matrix: Water

Date Collected, 10/04/	11 00.00
Date Received: 10/05/1	11 09:30

Method: 8260B - Volatile Organic	Compounde	IGCIMS) (Continue	ad)					
Analyte		Qualifier	RL.	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	ND	Qualifier	1.0	ug/L		riepareu	10/13/11 01:34	1
Bromomethane	ND		1.0	ug/L			10/13/11 01:34	1
2-Butanone (MEK)	ND		10	ug/L			10/13/11 01:34	1
Carbon disulfide	ND		1.0	ug/L			10/13/11 01:34	1
Carbon tetrachloride	ND		1.0	ug/L			10/13/11 01:34	1
Chlorobenzene	ND		1.0	ug/L			10/13/11 01:34	1
Chloroethane	ND		1.0	ug/L			10/13/11 01:34	1
Chloroform	ND		1.0	ug/L			10/13/11 01:34	1
Chloromethane	ND		1.0	ug/L			10/13/11 01:34	1
1,1-Dichloroethane	ND		1.0	ug/L			10/13/11 01:34	1
1,2-Dichloroethane	ND		1.0	ug/L			10/13/11 01:34	1
1,1-Dichloroethene	ND		1.0	ug/L			10/13/11 01:34	1
1,2-Dichloropropane	ND		1.0	ug/L			10/13/11 01:34	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			10/13/11 01:34	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/13/11 01:34	1
Ethylbenzene	ND		1.0	ug/L			10/13/11 01:34	1
2-Hexanone	ND		10	ug/L			10/13/11 01:34	1
Methylene Chloride	1.9	B 1.94	1.0	ug/L			10/13/11 01:34	1
4-Methyl-2-pentanone (MIBK)	ND	110	10	ug/L			10/13/11 01:34	1
Styrene	ND	244	170	ug/L			10/13/11 01:34	1
1,1,2,2-Tetrachloroethane	ND	0, 10	1.0	ug/L			10/13/11 01:34	1
Tetrachloroethene	ND	(12)	1.0	ug/L			10/13/11 01:34	1
Toluene	ND		1.0	ug/L			10/13/11 01:34	1
Trichloroethene	ND	a o d	1.0	ug/L			10/13/11 01:34	1
Vinyl chloride	ND	Bur.	1.0	5				
Xylenes, Total	ND	an Ha	2.0	ug/L			10/13/11 01:34	1
1,1,1-Trichloroethane	ND	sec	1.0	ug/L			10/13/11 01:34	1
1,1,2-Trichloroethane	ND	De.	1.0	ug/L			10/13/11 01:34	1
Cyclohexane	ND	, D.	1.0	ug/L			10/13/11 01:34	1
1,2-Dibromo-3-Chloropropane	ND	W	2.0	ug/L			10/13/11 01:34	1
Ethylene Dibromide	ND	1	1.0	ug/L			10/13/11 01:34	1
Dichlorodifluoromethane	ND			ug/L			10/13/11 01:34	1
cis-1,2-Dichloroethene	ND ND		1.0	ug/L			10/13/11 01:34	1
trans-1,2-Dichloroethene			1.0	ug/L			10/13/11 01:34	1
Isopropylbenzene	ND		1.0	ug/L			10/13/11 01:34	1
0.000 0.000	ND		1.0	ug/L			10/13/11 01:34	1
Methyl acetate	ND		10	ug/L			10/13/11 01:34	1
Methyl tert-butyl ether	ND		5.0	ug/L			10/13/11 01:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/L 			10/13/11 01:34	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/13/11 01:34	1
1,2-Dichlorobenzene	ND		1.0	ug/L			10/13/11 01:34	1
1,3-Dichlorobenzene	ND		1.0	ug/L			10/13/11 01:34	1
1,4-Dichlorobenzene	ND		1.0	ug/L			10/13/11 01:34	1
Trichlorofluoromethane	ND		1.0	ug/L			10/13/11 01:34	1
Chlorodibromomethane	ND		1.0	ug/L			10/13/11 01:34	1
Methylcyclohexane	ND		1.0	ug/L			10/13/11 01:34	1
Surrogate	% Recovery	Qualifier Lim	its			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	63 -				, repared	10/13/11 01:34	1
1.0								

10/13/11 01:34

10/13/11 01:34

1

66 - 117

74 - 115

Client: Cardinal Resources

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4528-1

Client Sample ID: TB1

Dibromofluoromethane (Surr)

Date Collected: 10/04/11 00:00 Date Received: 10/05/11 09:30 Lab Sample ID: 240-4528-7

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

urrogate

% Recovery Qualifier 91 Limits 75 - 121 Prepared

Analyzed

Dil Fac

10/13/11 01:34

.

8

8

19.14

Surrogate Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

TestAmerica Job ID: 240-4528-1

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)	
240-4528-1	OW22	95	85	93	86	
240-4528-2	OW21	95	85	92	86	
240-4528-3	FB1	95	89	100	105	
240-4528-4	OW2	92	89	98	100	
240-4528-5	OW10R	91	85	93	87	
240-4528-6	MW4	93	83	92	89	
240-4528-7	TB1	95	83	92	91	
LCS 240-18911/6	Lab Control Sample	95	88	93	86	
LCS 240-19076/6	Lab Control Sample	91	97	104	100	
MB 240-18911/5	Method Blank	94	86	95	87	
MB 240-19076/5	Method Blank	90	89	104	103	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: RSK-175 - Dissolved Gases (GC)

Matrix: Water

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Trifluoroetl Lab Sample ID Client Sample ID (10-168)240-4528-1 OW22 99 240-4528-2 OW21 82 240-4528-4 OW2 87 240-4528-5 OW10R 82 240-4528-5 OW10R 68 240-4528-6 87 LCS 240-18710/27 Lab Control Sample 84 LCS 240-19036/3 Lab Control Sample 93 MB 240-18710/28 Method Blank 83 MB 240-19036/4 Method Blank 92

Surrogate Legend

1,1,1-Trifluoroethane = 1,1,1-Trifluoroethane

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: Method Blank

Prep Type: Total/NA

1

5

(\$)

8

9

15

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-18911/5

Matrix: Water

Analysis Batch: 18911

Analysis Baton: 10011							
Analyte	MB		UDI 11-2				5.11 M
Acetone	Result ND	Qualifier RL 10	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0	ug/L			10/12/11 19:59	1
Dichlorobromomethane	ND		ug/L			10/12/11 19:59	1
Bromoform	ND	1.0	ug/L			10/12/11 19:59	1
Bromomethane	ND	1.0	ug/L			10/12/11 19:59	1
2-Butanone (MEK)	ND	1.0	ug/L			10/12/11 19:59	1
Carbon disulfide	ND	1.0	ug/L			10/12/11 19:59	1
Carbon disulide Carbon tetrachloride	ND		ug/L			10/12/11 19:59	1
Chlorobenzene	ND	1.0	ug/L			10/12/11 19:59 10/12/11 19:59	1
Chloroethane	ND	1.0	ug/L				
Chloroform	ND	1.0	ug/L			10/12/11 19:59	1
Chloromethane	ND	1.0	ug/L			10/12/11 19:59	
1,1-Dichloroethane	ND	1.0	ug/L			10/12/11 19:59 10/12/11 19:59	1
1,2-Dichloroethane	ND	1.0	ug/L			10/12/11 19:59	1
1,1-Dichloroethene	ND	1.0	ug/L			10/12/11 19:59	1
1,2-Dichloropropane	ND	1.0	ug/L				1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/12/11 19:59	
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/12/11 19:59	1
Ethylbenzene	ND	1.0	ug/L ug/L			10/12/11 19:59	1
2-Hexanone	ND	1.0	975)			10/12/11 19:59 10/12/11 19:59	1
Methylene Chloride	1.62	1.0	ug/L				
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L ug/L			10/12/11 19:59 10/12/11 19:59	1
Styrene	ND	1.0	ug/L			10/12/11 19:59	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/12/11 19:59	1
Tetrachloroethene	ND	1.0	ug/L			10/12/11 19:59	1
Toluene	ND	1.0	ug/L			10/12/11 19:59	1
Trichloroethene	ND	1.0	ug/L			10/12/11 19:59	1
Vinyl chloride	ND	1.0	ug/L			10/12/11 19:59	1
Xylenes, Total	ND	2.0	ug/L			10/12/11 19:59	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/12/11 19:59	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/12/11 19:59	1
Cyclohexane	ND	1.0	ug/L			10/12/11 19:59	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/12/11 19:59	1
Ethylene Dibromide	ND	1.0	ug/L			10/12/11 19:59	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/12/11 19:59	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/12/11 19:59	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/12/11 19:59	1
Isopropylbenzene	ND	1.0	ug/L			10/12/11 19:59	1
Methyl acetate	ND	10	ug/L			10/12/11 19:59	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/12/11 19:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/12/11 19:59	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/12/11 19:59	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/12/11 19:59	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/12/11 19:59	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/12/11 19:59	1
Trichlorofluoromethane	ND	1.0	ug/L			10/12/11 19:59	1
Chlorodibromomethane	ND	1.0	ug/L			10/12/11 19:59	1
Methylcyclohexane	ND	1.0	ug/L			10/12/11 19:59	1
		5.5.5	0				0.59

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-18911/5

Matrix: Water

Analysis Batch: 18911

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		63 - 129		10/12/11 19:59	1
4-Bromofluorobenzene (Surr)	86		66 - 117		10/12/11 19:59	1
Toluene-d8 (Surr)	95		74 - 115		10/12/11 19:59	1
Dibromofluoromethane (Surr)	87		75 - 121		10/12/11 19:59	1

Lab Sample ID: LCS 240-18911/6

Matrix: Water

Analysis Batch: 18911

Client Sample ID:	Lab Control Sample	
	Prep Type: Total/NA	

Analysis Batch: 16911					
	Spike	LCS	LCS		% Rec.
Analyte	Added		Qualifier Unit	D % Re	c Limits
Acetone	40.0	39.0	ug/L	9	8 43 - 136
Benzene	20.0	19.1	ug/L	9	6 83 - 112
Dichlorobromomethane	20.0	19.0	ug/L	9	5 72 - 121
Bromoform	20.0	13.3	ug/L	6	7 40 - 131
Bromomethane	20.0	18.3	ug/L	9	2 11 - 185
2-Butanone (MEK)	40.0	33.9	ug/L	8	5 60 - 126
Carbon disulfide	20.0	22.5	ug/L	11	3 62 - 142
Carbon tetrachloride	20.0	18.0	ug/L	9	0 66 - 128
Chlorobenzene	20.0	19.8	ug/L	9	9 85 - 110
Chloroethane	20.0	19.1	ug/L	9	6 25 - 153
Chloroform	20.0	20.5	ug/L	10	3 79 - 117
Chloromethane	20.0	18.2	ug/L	9	1 44 - 126
1,1-Dichloroethane	20.0	20.0	ug/L	10	0 82 - 115
1,2-Dichloroethane	20.0	19.7	ug/L	9	9 71 - 127
1,1-Dichloroethene	20.0	22.8	ug/L	11	4 78 - 131
1,2-Dichloropropane	20.0	18.3	ug/L	9	2 81 - 115
cis-1,3-Dichloropropene	20.0	17.6	ug/L	8	8 61 - 115
trans-1,3-Dichloropropene	20.0	19.1	ug/L	9	6 58 - 117
Ethylbenzene	20.0	19.5	ug/L	9	8 83 - 112
2-Hexanone	40.0	31.3	ug/L	7	8 55 - 133
Methylene Chloride	20.0	22.2	ug/L	11	1 66 - 131
4-Methyl-2-pentanone (MIBK)	40.0	31.2	ug/L	7	8 63 - 128
Styrene	20.0	19.8	ug/L	9	9 79 - 114
1,1,2,2-Tetrachloroethane	20.0	23.0	ug/L	11	5 68 - 118
Tetrachloroethene	20.0	18.4	ug/L	9	2 79 - 114
Toluene	20.0	19.2	ug/L	9	6 84 - 111
Trichloroethene	20.0	19.4	ug/L	9	7 76 - 117
Vinyl chloride	20.0	22.1	ug/L	11	1 53 - 127
Xylenes, Total	60.0	57.7	ug/L	9	83 - 112
1,1,1-Trichloroethane	20.0	20.0	ug/L	10	74 - 118
1,1,2-Trichloroethane	20.0	20.4	ug/L	10	2 80 - 112
Cyclohexane	20.0	17.4	ug/L	8	7 54 - 121
1,2-Dibromo-3-Chloropropane	20.0	18.5	ug/L	9	3 42 - 136
Ethylene Dibromide	20.0	18.7	ug/L	9	4 79 - 113
Dichlorodifluoromethane	20.0	24.9	ug/L	12	5 19 - 129
cis-1,2-Dichloroethene	20.0	20.1	ug/L	10	1 80 - 113
trans-1,2-Dichloroethene	20.0	21.4	ug/L	10	7 83 - 117
Isopropylbenzene	20.0	19.2	ug/L	9	5 75 - 114
Methyl acetate	20.0	15.3	ug/L	7	
			3070		

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-18911/6

Matrix: Water

Analysis Batch: 18911

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS		% Rec.
Analyte	Added	Result	Qualifier Unit	D % Rec	Limits
Methyl tert-butyl ether	20.0	20.6	ug/L	103	52 - 144
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	25.8	ug/L	129	74 - 151
ne					
1,2,4-Trichlorobenzene	20.0	18.6	ug/L	93	48 - 135
1,2-Dichlorobenzene	20.0	19.8	ug/L	99	81 - 110
1,3-Dichlorobenzene	20.0	20.3	ug/L	102	80 - 110
1,4-Dichlorobenzene	20.0	20.2	ug/L	101	82 - 110
Trichlorofluoromethane	20.0	25.5	ug/L	128	49 - 157
Chlorodibromomethane	20.0	19.1	ug/L	96	64 - 119
Methylcyclohexane	20.0	17.7	ug/L	89	56 - 127
m-Xylene & p-Xylene	40.0	38.1	ug/L	95	83 - 113
o-Xylene	20.0	19.6	ug/L	98	83 - 113

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		63 - 129
4-Bromofluorobenzene (Surr)	88		66 - 117
Toluene-d8 (Surr)	93		74 - 115
Dibromofluoromethane (Surr)	86		75 - 121

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analysis Batch: 19076

Matrix: Water

Lab Sample ID: MB 240-19076/5

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Acetone ND 10 ug/L 10/13/11 20:01 Benzene ND 10 ug/L 10/13/11 20:01 1 ND 10/13/11 20:01 Dichlorobromomethane 1.0 ug/L 1 Bromoform ND 1.0 ug/L 10/13/11 20:01 Bromomethane ND 1.0 ug/L 10/13/11 20:01 ND 10/13/11 20:01 2-Butanone (MEK) 10 ug/L 1 Carbon disulfide ND 1.0 ug/L 10/13/11 20:01 1 ND ug/L 10/13/11 20:01 Carbon tetrachloride 1.0 ND 10/13/11 20:01 1 Chlorobenzene 1.0 ug/L ND 10/13/11 20:01 Chloroethane 1.0 ug/L 1 Chloroform ND 1.0 ug/L 10/13/11 20:01 10/13/11 20:01 Chloromethane ND 1.0 ug/L 10/13/11 20:01 1,1-Dichloroethane ND 1 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 10/13/11 20:01 1 1,1-Dichloroethene ND ug/L 10/13/11 20:01 1.0 1,2-Dichloropropane ND ug/L 10/13/11 20:01 1.0 cis-1,3-Dichloropropene ND 1.0 ug/L 10/13/11 20:01 trans-1,3-Dichloropropene ND 1.0 ug/L 10/13/11 20:01 ND 10/13/11 20:01 Ethylbenzene 1.0 ug/L 2-Hexanone ND 10 ug/L 10/13/11 20:01 ND Methylene Chloride 1.0 ug/L 10/13/11 20:01 4-Methyl-2-pentanone (MIBK) ND 10 ug/L 10/13/11 20:01 ND 1.0 ug/L 10/13/11 20:01 Styrene ND 1,1,2,2-Tetrachloroethane 10/13/11 20:01 1.0 ug/L 1 Tetrachloroethene ND 1.0 ug/L 10/13/11 20:01 1 ND 10/13/11 20:01 Toluene 1.0 ug/L

TestAmerica North Canton 11/01/2011

Page 25 of 40

RL

1.0

1.0

2.0

1.0

1.0

1.0

2.0

10

1.0

1.0

1.0

1.0

10

5.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Limits

63 - 129

66 - 117

74 - 115

75 - 121

Spike

MDL Unit

ug/L

LCS LCS

D

Prepared

Prepared

Client: Cardinal Resources Project/Site: C & D GW Sampling

Lab Sample ID: MB 240-19076/5

Matrix: Water

Trichloroethene

Vinyl chloride

Xylenes, Total

Cyclohexane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethylene Dibromide

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Isopropylbenzene

Methyl tert-butyl ether

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 19076

Dichlorobromomethane

1.2-Dichloroethane

1,1-Dichloroethene

Lab Sample ID: LCS 240-19076/6

Methylcyclohexane

Toluene-d8 (Surr)

Matrix: Water

Analyte Acetone Benzene

Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 1,1-Dichloroethane

Surrogate

1,1,2-Trichloro-1,2,2-trifluoroethane

Methyl acetate

1,2-Dibromo-3-Chloropropane

Analyte

Analysis Batch: 19076

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

90

89

104

103

% Recovery

MB MB

Qualifier

Result Qualifier

TestAmerica Job ID: 240-4528-1

Client Sample ID: Method Blank

Analyzed

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

Analyzed

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

10/13/11 20:01

Prep Type: Total/NA

Dil Fac

1

Dil Fac

1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

% Rec.

Added	Result	Qualifier	Unit	D	% Rec	Limits
40.0	47.2		ug/L		118	43 - 136
20.0	19.8		ug/L		99	83 - 112
20.0	19.9		ug/L		100	72 - 121
20.0	17.2		ug/L		86	40 - 131
20.0	23.4		ug/L		117	11 - 185
40.0	39.5		ug/L		99	60 - 126
20.0	24.1		ug/L		121	62 - 142
20.0	22.9		ug/L		115	66 - 128
20.0	19.8		ug/L		99	85 - 110
20.0	22.3		ug/L		112	25 - 153
20.0	20.2		ug/L		101	79 - 117
20.0	17.2		ug/L		86	44 - 126
20.0	20.1		ug/L		101	82 - 115

ug/L

ug/L

Page	26	of	40	
5 -				

20.0

20.0

TestAmerica North

71 - 127

78 - 131

99

124

19.8

24.7

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

102

83 - 113

ug/L

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-19076/6

Matrix: Water

o-Xylene

Analysis Batch: 19076

Allalysis Datell. 19070							
	Spike	LCS	LCS			% Rec.	
Analyte	Added	Result	Qualifier Unit	D	% Rec	Limits	
1,2-Dichloropropane	20.0	18.7	ug/L		94	81 - 115	
cis-1,3-Dichloropropene	20.0	19.3	ug/L		97	61 - 115	
trans-1,3-Dichloropropene	20.0	19.4	ug/L		97	58 - 117	
Ethylbenzene	20.0	20.5	ug/L		103	83 - 112	
2-Hexanone	40.0	36.9	ug/L		92	55 - 133	
Methylene Chloride	20.0	19.6	ug/L		98	66 - 131	
4-Methyl-2-pentanone (MIBK)	40.0	36.8	ug/L		92	63 - 128	
Styrene	20.0	21.0	ug/L		105	79 - 114	
1,1,2,2-Tetrachloroethane	20.0	19.7	ug/L		99	68 - 118	
Tetrachloroethene	20.0	21.8	ug/L		109	79 - 114	
Toluene	20.0	19.8	ug/L		99	84 - 111	
Trichloroethene	20.0	19.9	ug/L		100	76 - 117	
Vinyl chloride	20.0	23.1	ug/L		116	53 - 127	
Xylenes, Total	60.0	61.5	ug/L		103	83 - 112	
1,1,1-Trichloroethane	20.0	21.5	ug/L		108	74 - 118	
1,1,2-Trichloroethane	20.0	21.1	ug/L		106	80 - 112	
Cyclohexane	20.0	16.3	ug/L		82	54 - 121	
1,2-Dibromo-3-Chloropropane	20.0	20.3	ug/L		102	42 - 136	
Ethylene Dibromide	20.0	21.0	ug/L		105	79 - 113	
Dichlorodifluoromethane	20.0	16.5	ug/L		83	19 - 129	
cis-1,2-Dichloroethene	20.0	18.8	ug/L		94	80 - 113	
trans-1,2-Dichloroethene	20.0	19.8	ug/L		99	83 - 117	
Isopropylbenzene	20.0	19.7	ug/L		99	75 - 114	
Methyl acetate	20.0	17.8	ug/L		89	58 - 131	
Methyl tert-butyl ether	20.0	19.8	ug/L		99	52 - 144	
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	24.5	ug/L		123	74 - 151	
ne	96.6	(2721.2)			12/2	1921 6002	
1,2,4-Trichlorobenzene	20.0	19.6	ug/L		98	48 - 135	
1,2-Dichlorobenzene	20.0	20.0	ug/L		100	81 - 110	
1,3-Dichlorobenzene	20.0	19.8	ug/L		99	80 - 110	
1,4-Dichlorobenzene	20.0	19.4	ug/L		97	82 - 110	
Trichlorofluoromethane	20.0	29.1	ug/L		146	49 - 157	
Chlorodibromomethane	20.0	20.4	ug/L		102	64 - 119	
Methylcyclohexane	20.0	18.0	ug/L		90	56 - 127	
m-Xylene & p-Xylene	40.0	41.2	ug/L		103	83 - 113	

20.0

20.3

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		63 - 129
4-Bromofluorobenzene (Surr)	97		66 - 117
Toluene-d8 (Surr)	104		74 - 115
Dibromofluoromethane (Surr)	100		75 - 121

RL

0.50

0.50

0.50

Limits

Spike

Added

116

218

203

Limits 10 - 168

10-168

MDL Unit

LCS LCS

103

201

162

Result Qualifier

MDL Unit

ug/L

ug/L

ug/L

Unit

ug/L

ug/L

ug/L

D

Prepared

Prepared

ug/L

ug/L

ug/L

D

Prepared

Prepared

% Rec

92

80

мв мв

ND

ND

ND

83

% Recovery

LCS LCS

мв мв

Qualifier

Qualifier

Result

ND

ND

ND

92

% Recovery

MB MB

% Recovery Qualifier

84

мв мв

Qualifier

Result Qualifier

Client: Cardinal Resources Project/Site: C & D GW Sampling

Lab Sample ID: MB 240-18710/28

Lab Sample ID: LCS 240-18710/27

Lab Sample ID: MB 240-19036/4

Lab Sample ID: LCS 240-19036/3

Matrix: Water

Analyte

Methane

Ethane

Ethylene

Surrogate

Analyte

Methane

Ethylene

Surrogate

Analyte

Methane

Ethylene

Surrogate

Analyte

Methane

Ethane

Ethylene

Surrogate

1,1,1-Trifluoroethane

1,1,1-Trifluoroethane

Matrix: Water

Analysis Batch: 19036

Ethane

1,1,1-Trifluoroethane

Matrix: Water

Analysis Batch: 19036

Ethane

1,1,1-Trifluoroethane

Matrix: Water

Analysis Batch: 18710

Analysis Batch: 18710

Method: RSK-175 - Dissolved Gases (GC)

TestAmerica Job ID: 240-4528-1

Client Sample ID: Method Blank

Analyzed

10/12/11 09:54

10/12/11 09:54

10/12/11 09:54

Analyzed

10/12/11 09:54

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

% Rec.

Limits

75 - 114

71 - 123

72 - 126

Client Sample ID: Method Blank

Analyzed

10/13/11 15:34

10/13/11 15:34

10/13/11 15:34

Analyzed

10/13/11 15:34

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec. Limits

% Rec 93 75 - 114 71 - 123

97

72 - 126

88

RL

0.50

0.50

0.50

Limits

10 - 168

179

LCS LCS

108

211

Result Qualifier

ug/L

ug/L

Unit

ug/L

LCS LCS

Qualifier % Recovery 93

Limits 10 - 168

Spike

Added

116

218

203

TestAmerica Nor

RL

0.10

Spike

Added

2.50

Spike

Added

Spike

Added

Spike

Added

500

102

2.50

RL

5.0

MDL Unit

LCS LCS

MS MS

3.63

Result Qualifier

MDL Unit

LCS LCS

MS MS

679

Result Qualifier

106

Result Qualifier

mg/L

2.44

Result Qualifier

mg/L

D

Unit

mg/L

Unit

mg/L

Prepared

% Rec

% Rec

Prepared

D

D

% Rec

% Rec

104

106

98

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Client Sample ID: Method Blank

Analyzed

10/05/11 15:59

Client Sample ID: Lab Control Sample

% Rec.

Limits

90 - 110

% Rec.

Limits

80 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: OW2

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 240-18128/5

Matrix: Water

Nitrate as N

Analysis Batch: 18128

MB MB

ND

Sample Sample

0.98

Result Qualifier

мв мв

ND

Sample Sample

250

Result Qualifier

Result Qualifier

Analyte Result Qualifier

Lab Sample ID: LCS 240-18128/6

Matrix: Water

Analysis Batch: 18128

Analyte

Nitrate as N

Lab Sample ID: 240-4528-4 MS

Matrix: Water

Analysis Batch: 18128

Analyte

Nitrate as N

Method: 310.1 - Alkalinity

Lab Sample ID: MB 240-18658/3

Matrix: Water

Analysis Batch: 18658

Analyte

Alkalinity

Lab Sample ID: LCS 240-18658/2

Matrix: Water

Analysis Batch: 18658

Analyte

Alkalinity

Lab Sample ID: 240-4528-2 MS

Matrix: Water

Analysis Batch: 18658

Analyte

Alkalinity

Lab Sample ID: 240-4528-2 MSD

Matrix: Water

Analysis Batch: 18658

Analyte

Alkalinity

Spike Sample Sample Result Qualifier 250

Added 500

MSD MSD Result Qualifier 697

Unit mg/L

Unit

mg/L

Unit

mg/L

% Rec 89

% Rec. Limits 10 - 160

RPD 3

Dil Fac

Analyzed

10/10/11 10:25

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Limits

% Rec.

Limits

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

% Rec.

90 - 127

Client Sample ID: OW21

Prep Type: Total/NA

86 10 - 160

Client Sample ID: OW21

Prep Type: Total/NA

RPD Limit

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Method: 310.1 - Alkalinity (Continued)

Lab Sample ID: 240-4528-6 DU

Matrix: Water

Analyte

Alkalinity

Analysis Batch: 18658

Sample Sample

190

Result Qualifier

DU DU

191

Result Qualifier

Unit

mg/L

RPD RPD 20

Client Sample ID: MW4

Prep Type: Total/NA

Prep Type: Total/NA

Limit

Method: 325.2 - Chloride

Lab Sample ID: MB 240-18694/3

Matrix: Water

Analysis Batch: 18694

мв мв

Analyte

Result Qualifier

ND

RL MDL Unit 1.0 mg/L Prepared

Analyzed 10/11/11 10:54

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 240-18694/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

44.7

29.5

Matrix: Water

Analysis Batch: 18694

Analyte Chloride

Chloride

LCS LCS Spike Added

Result Qualifier

43.8

Unit mg/L % Rec Limits

98

% Rec.

Method: 375.4 - Sulfate

Lab Sample ID: MB 240-18246/20

Matrix: Water

Analysis Batch: 18246

MB MB

Analyte Sulfate

Lab Sample ID: LCS 240-18246/31

Matrix: Water

Analysis Batch: 18246

Analyte Sulfate

Result Qualifier ND

RL 5.0 MDL Unit mg/L

26.5

Prepared

Analyzed 10/06/11 13:06

Client Sample ID: Method Blank

Prep Type: Total/NA

88 - 114

Dil Fac

Client Sample ID: Lab Control Sample

80 - 112

Client Sample ID: Method Blank

Analyzed

10/11/11 09:19

Prep Type: Total/NA

LCS LCS Spike % Rec. Added Result Qualifier Unit Limits % Rec

mg/L

Method: 376.1 - Sulfide

Lab Sample ID: MB 240-18638/1

Matrix: Water

Analyte

Sulfide

Sulfide

Analysis Batch: 18638

мв мв

Result Qualifier ND

Lab Sample ID: LCS 240-18638/2 Matrix: Water

Analysis Batch: 18638

Analyte

Spike

Added

16.5

LCS LCS

16.4

MDL Unit

mg/L

Result Qualifier Unit mg/L % Rec

99

Prepared

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

% Rec.

Client Sample ID: Lab Control Sample

Limits 79 - 110

RL

1.0

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Method: 415.1 - TOC

Lab Sample ID: MB 240-18917/3

Lab Sample ID: LCS 240-18917/4

Matrix: Water

Matrix: Water

Total Organic Carbon

Analyte

Analysis Batch: 18917

Analysis Batch: 18917

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

RL MDL Unit Result Qualifier D Prepared Dil Fac Analyzed Total Organic Carbon ND 1.0 10/12/11 11:05 mg/L

Spike

Added

29.9

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

LCS LCS Result Qualifier Unit D % Rec Limits 88 - 115 30.3 mg/L 101

QC Association Summary							
	Client: Cardinal Resources TestAmerica Job ID: 240-4528-1 Project/Site: C & D GW Sampling						
GC/MS VOA							
Analysis Batch: 18911							
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
240-4528-1	OW22	Total/NA	Water	8260B			
240-4528-2	OW21	Total/NA	Water	8260B			
240-4528-5	OW10R	Total/NA	Water	8260B			
240-4528-6	MW4	Total/NA	Water	8260B			
240-4528-7	TB1	Total/NA	Water	8260B			
LCS 240-18911/6	Lab Control Sample	Total/NA	Water	8260B			
MB 240-18911/5	Method Blank	Total/NA	Water	8260B			
Analysis Batch: 19076							
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
240-4528-3	FB1	Total/NA	Water	8260B			
240-4528-4	OW2	Total/NA	Water	8260B			
LCS 240-19076/6	Lab Control Sample	Total/NA	Water	8260B	1		
MB 240-19076/5	Method Blank	Total/NA	Water	8260B			
GC VOA							
Analysis Batch: 18710							
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
240-4528-1	OW22	Total/NA	Water	RSK-175	•		
LCS 240-18710/27	Lab Control Sample	Total/NA	Water	RSK-175			
MB 240-18710/28	Method Blank	Total/NA	Water	RSK-175			
Analysis Batch: 19036							
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
240-4528-2	OW21	Total/NA	Water	RSK-175	. rop Buton		
240-4528-4	OW2	Total/NA	Water	RSK-175			
240-4528-5	OW10R	Total/NA	Water	RSK-175			
240-4528-5	OW10R	Total/NA	Water	RSK-175			
240-4528-6	MW4	Total/NA	Water	RSK-175			
LCS 240-19036/3	Lab Control Sample	Total/NA	Water	RSK-175			
MB 240-19036/4	Method Blank	Total/NA	Water	RSK-175			
Conoral Chamister							
General Chemistry							
Analysis Batch: 18128	Analysis Batch: 18128						

Client Sample ID

OW22

OW2

OW10R

Lab Sample ID

240-4528-1

240-4528-4

240-4528-5

	240-4528-2	OW21	Total/NA	Water	300.0				
	240-4528-4	OW2	Total/NA	Water	300.0				
	240-4528-4 MS	OW2	Total/NA	Water	300.0				
	240-4528-5	OW10R	Total/NA	Water	300.0				
	240-4528-6	MW4	Total/NA	Water	300.0				
	LCS 240-18128/6	Lab Control Sample	Total/NA	Water	300.0				
	MB 240-18128/5	Method Blank	Total/NA	Water	300.0				
Þ	Analysis Batch: 18246								
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch			
	240-4528-1	OW22	Total/NA	Water	375.4				
	240-4528-2	OW21	Total/NA	Water	375.4				

Prep Type

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Method

300.0

375.4

375.4

Prep Batch

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sa	S	uon Summar	y	TestAmerica Joh	DID: 240-4528-1
General Chemistry (C	Continued)				
Analysis Batch: 18246 (C	ontinued)				
Lab Sample ID 240-4528-6 LCS 240-18246/31 MB 240-18246/20	Client Sample ID MW4 Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA	Matrix Water Water Water	Method 375.4 375.4 375.4	Prep Batch
Analysis Batch: 18638	moded Statik	rotamin	VVIIIO	070.4	
Lab Sample ID 240-4528-1 240-4528-2 240-4528-4 240-4528-5 240-4528-6 LCS 240-18638/2 MB 240-18638/1	Client Sample ID OW22 OW21 OW2 OW10R MW4 Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water Water	Method 376.1 376.1 376.1 376.1 376.1 376.1	Prep Batch
Analysis Batch: 18658					
Lab Sample ID 240-4528-1 240-4528-2 240-4528-2 MS 240-4528-2 MSD 240-4528-4 240-4528-5 240-4528-6 240-4528-6 DU LCS 240-18658/2 MB 240-18658/3	Client Sample ID OW22 OW21 OW21 OW21 OW2 OW10 OW2 OW10R MW4 MW4 Lab Control Sample Method Blank	Prep Type Total/NA	Matrix Water	Method 310.1 310.1 310.1 310.1 310.1 310.1 310.1 310.1 310.1	Prep Batch
Analysis Batch: 18694 Lab Sample ID 240-4528-1 240-4528-2 240-4528-4 240-4528-5 240-4528-6 LCS 240-18694/4 MB 240-18694/3 Analysis Batch: 18917	Client Sample ID OW22 OW21 OW2 OW10R MW4 Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water Water	Method 325.2 325.2 325.2 325.2 325.2 325.2 325.2	Prep Batch

Prep Batch

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Method

415.1

415.1

415.1

415.1

415.1

415.1

415.1

Lab Sample ID

240-4528-1

240-4528-2

240-4528-4

240-4528-5

240-4528-6

LCS 240-18917/4

MB 240-18917/3

Client Sample ID

Lab Control Sample

Method Blank

OW22

OW21

OW2

MW4

OW10R

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-1

Matrix: Water

Client Sample ID: OW22 Date Collected: 10/04/11 10:45 Date Received: 10/05/11 09:30

Client Sample ID: OW21 Lab Sample ID: 240-4528-2

Date Collected: 10/04/11 11:45 Matrix: Water

Date Received: 10/05/11 09:30

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dilution Factor	Batch Number 18911	Prepared Or Analyzed 10/12/11 23:33	Analyst TL	Lab TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/12/11 23:55	DH	TAL NO
Total/NA	Analysis	300.0		1	18128	10/05/11 20:21	LG	TAL NC
Total/NA	Analysis	375.4		2	18246	10/06/11 14:31	BR	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 11:36	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 10:54	BR	TAL NC
Total/NA	Analysis	415.1		1	18917	10/12/11 13:15	TH	TAL NC

Client Sample ID: FB1

Date Collected: 10/04/11 11:30

Matrix: Water

Date Received: 10/05/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19076	10/14/11 03:02	TL	TAL NC

Client Sample ID: OW2

Date Collected: 10/04/11 12:45

Lab Sample ID: 240-4528-4

Matrix: Water

Date Received: 10/05/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2.5	19076	10/14/11 03:27	TL	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 21:37	DH	TAL NC
Total/NA	Analysis	300.0		1	18128	10/05/11 20:38	LG	TAL NC
Total/NA	Analysis	375.4		1	18246	10/06/11 13:05	BR	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 12:20	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 10:54	BR	TAL NC

Lab Chronicle

Client: Cardinal Resources
Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4528-1

Lab Sample ID: 240-4528-4

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: OW2

Date Collected: 10/04/11 12:45 Date Received: 10/05/11 09:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number Or Analyzed Analyst Lab Total/NA Analysis 415.1 18917 10/12/11 13:25 TAL NC TH

Client Sample ID: OW10R Lab Sample ID: 240-4528-5

Date Collected: 10/04/11 09:25

Date Received: 10/05/11 09:30

1	Prep Type Total/NA Total/NA	Batch Type Analysis Analysis Analysis	Batch Method 8260B RSK-175 RSK-175	Run	Dilution Factor 1 1 5	Batch Number 18911 19036 19036	Prepared Or Analyzed 10/13/11 00:46 10/13/11 22:10 10/14/11 18:21	Analyst TL DH DH	Lab TAL NC TAL NC TAL NC
	NEW YORK TO A MARKET			Run	Factor	alamenta ele	and the second s	5355550 X-03*** - X-040	
- 1	Otal/NA	Analysis	820UB		1	18911	10/13/11 00:46	IL	TAL NC
I	otal/NA	Analysis	RSK-175		1	19036	10/13/11 22:10	DH	TAL NC
1	otal/NA	Analysis	RSK-175		5	19036	10/14/11 18:21	DH	TAL NC
T	otal/NA	Analysis	300.0		1	18128	10/05/11 21:11	LG	TAL NC
1	otal/NA	Analysis	375.4		5	18246	10/06/11 13:29	BR	TAL NC
T	otal/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
T	otal/NA	Analysis	310.1		1	18658	10/10/11 13:46	JB	TAL NC
T	otal/NA	Analysis	325.2		1	18694	10/11/11 10:55	BR	TAL NC
Т	otal/NA	Analysis	415.1		1	18917	10/12/11 13:36	TH	TAL NC

Client Sample ID: MW4 Lab Sample ID: 240-4528-6

Date Collected: 10/04/11 14:10 Date Received: 10/05/11 09:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Analyst Lab Number Or Analyzed Total/NA Analysis 8260B 18911 10/13/11 01:10 TAL NC 1 TL Total/NA Analysis RSK-175 19036 10/14/11 18:53 DH TAL NC 1 Total/NA 300.0 Analysis 1 18128 10/05/11 21:43 LG TAL NC Total/NA Analysis 375.4 2 18246 10/06/11 14:31 BR TAL NC Total/NA Analysis 376.1 18638 10/11/11 09:19 BW TAL NC 1 Total/NA Analysis 310.1 1 18658 10/10/11 12:28 TAL NC JΒ Total/NA Analysis 325.2 5 18694 10/11/11 11:08 BR TAL NC Total/NA Analysis 415.1 1 18917 10/12/11 13:47 TAL NC TH

Client Sample ID: TB1 Lab Sample ID: 240-4528-7

Date Collected: 10/04/11 00:00 Date Received: 10/05/11 09:30

Batch Batch Dilution Batch Prepared Prep Type Method Run Lab Type Analyst Factor Number Or Analyzed Total/NA Analysis 8260B 18911 10/13/11 01:34 TAL NC TL 1

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4528-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica North Canton	ACLASS	DoD ELAP		ADE-1437
TestAmerica North Canton	California	NELAC	9	01144CA
TestAmerica North Canton	Connecticut	State Program	1	PH-0590
TestAmerica North Canton	Florida	NELAC	4	E87225
TestAmerica North Canton	Georgia	Georgia EPD	4	N/A
TestAmerica North Canton	Illinois	NELAC	5	200004
TestAmerica North Canton	Kansas	NELAC	7	E-10336
TestAmerica North Canton	Kentucky	State Program	4	58
TestAmerica North Canton	Minnesota	NELAC	5	039-999-348
TestAmerica North Canton	Nevada	State Program	9	OH-000482008A
TestAmerica North Canton	New Jersey	NELAC	2	OH001
TestAmerica North Canton	New York	NELAC	2	10975
TestAmerica North Canton	Ohio	OVAP	5	CL0024
TestAmerica North Canton	Pennsylvania	NELAC	3	68-00340
TestAmerica North Canton	USDA	USDA		P330-11-00328
TestAmerica North Canton	Virginia	NELAC Secondary AB	3	460175
TestAmerica North Canton	West Virginia	West Virginia DEP	3	210
TestAmerica North Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

5

0

8

1

E

13

Chain of Custody Record

THE LEAGER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.	Pietras		For how conjy	Walker curint:	Bui	1.01. 2.1.2 2.1.2 2.0.3 3.0.3	100 100 100 100 100 100 100 100 100 100	Sample Specific Notes / Special Instructions:	> > > > > > > > > > > > > > > > > > >		< >X	××××××××××××××××××××××××××××××××××××××	× × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	×××× ×××× ×××××
Other	a france		\$150 A	ब्री				Merred S Compositi Meth S S Su Su Su	XXXXX		× × × ×	× ×	× × × ×	X	X	X	× ×× × × × × × × × × × × × × × × × × ×	× ×× × × × × × × × × × × × × × × × × ×
00.000	Sir Contact:	Tetephone:	Annlysis Turnaround Time (in BUS days)	TAT if different from below	2 weeks	2 days	Containers & Preservatives	Orbers NaOH NaOH HCI HCI	XXXXXXX	×		×	××	×××	×××	*****	××××	××××
Ma []	Solles	नि लियुवन गर	BJONES (B) Cardina) PES. COM		rrig:	05 808	Marin	Sample Time Adveces . Sodiners Solid Others	1045 X X X	X X 51		30 X	- 10	- 10 10	210 60	2 14 15		
TestAmerica Laboratory location: Regulatory program:	Client Project Manager:	Telephone 374	(5203 BJones @)			Shipping/Tracking No:		Sample Date Sample	10-4-11 10	10-4-11 1145		10-4-N 11/30	10-4-1/ 12t	10-4-N 175	10-4-11 1345 10-4-11 1245 10-4-11 1410			
Client Contact	Cardinal Resources, LLC	1505 E. Carren St	Aural - PA	b '_	//	104-0019 -0200	PO#	Sample Identification .	0W13	0w21	ŀ	(Martin F/B)	(0	(00	1007	1007-	1001-	(00)

	9	٩		ø
g	٠,	1	В	٧.
	ı	ı	r	

Client Cardine Project Cardill Project Proje
Client Cooler Received on 10.5-11
Client
Cooler Received on
FedEx UPS DHL FAS Stetson Client Drop Off TestAmerica Courier Other TestAmerica Cooler # Multiple Coolers Foam Box Client Cooler Other 1. Were custody seals on the outside of the cooler(s)? Yes No Intact? Yes No NA Were custody seals on the outside of cooler(s) signed and dated? Were custody seals on the bottle(s)? If YES, are there any exceptions? 2. Shippers' packing slip attached to the cooler(s)? Yes No Relinquished by client? Yes No Were the custody papers accompany the sample(s)? Yes No Relinquished by client? Yes No Seaking material used: Bubble Wrap Foam None Other 6. Cooler temperature upon receipt Other Coolents/temps Blue Ice Dry Ice Water None
TestAmerica Cooler # Multiple Coolers
1. Were custody seals on the outside of the cooler(s)? Yes No NA NA NA NETHOD: Name
If YES, Quantity Quantity Unsalvageable Were custody seals on the outside of cooler(s) signed and dated? Yes No NA Were custody seals on the bottle(s)? Yes No Yes No No Yes No No Yes No Yes No No Yes No Yes No
Were custody seals on the outside of cooler(s) signed and dated? Were custody seals on the bottle(s)? If YES, are there any exceptions? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Yes No Relinquished by client? Yes No Were the custody papers signed in the appropriate place? Packing material used: Bubble Wrap Foam None Other Cooler temperature upon receipt © See back of form for multiple coolers/temps METHOD: IR Other COOLANT: Wet Ice Blue Ice Dry Ice Water None
Were custody seals on the bottle(s)? If YES, are there any exceptions? 2. Shippers' packing slip attached to the cooler(s)? 3. Did custody papers accompany the sample(s)? Yes \(\) No \(\) Relinquished by client? Yes \(\) No \(\) 4. Were the custody papers signed in the appropriate place? 5. Packing material used: Bubble Wrap \(\) Foam \(\) None \(\) Other \(\) 6. Cooler temperature upon receipt \(\) \(\) \(\) \(\) C See back of form for multiple coolers/temps \(\) METHOD: \(\) IR \(\) Other \(\) \(\) Other \(\) \(\) COOLANT: Wet Ice \(\) Blue Ice \(\) Dry Ice \(\) Water \(\) None \(\)
If YES, are there any exceptions? 2. Shippers' packing slip attached to the cooler(s)? 3. Did custody papers accompany the sample(s)? Yes \(\text{No} \) Relinquished by client? Yes \(\text{No} \) Were the custody papers signed in the appropriate place? 5. Packing material used: Bubble Wrap \(\text{Foam} \) Foam \(\text{None} \) None \(\text{Other} \) 6. Cooler temperature upon receipt \(\text{L} \) \(\text{C} \) Other \(\text{COOLANT:} \) Wet Ice \(\text{D} \) Blue Ice \(\text{D} \) Dry Ice \(\text{D} \) Water \(\text{None} \)
2. Shippers' packing slip attached to the cooler(s)? 3. Did custody papers accompany the sample(s)? Yes No Relinquished by client? Yes No 4. Were the custody papers signed in the appropriate place? 5. Packing material used: Bubble Wrap Foam None Other 6. Cooler temperature upon receipt Cooler temperature upon receipt WETHOD: IR Other Cooler None Blue Ice Dry Ice Water None
3. Did custody papers accompany the sample(s)? Yes ☑ No ☐ Relinquished by client? Yes ☑ No 4. Were the custody papers signed in the appropriate place? Yes ☑ No ☐ 5. Packing material used: Bubble Wrap ☑ Foam ☐ None ☐ Other 6. Cooler temperature upon receipt ☐ ☑ °C See back of form for multiple coolers/temps ☐ METHOD: IR ☑ Other ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
4. Were the custody papers signed in the appropriate place? 5. Packing material used: Bubble Wrap ☐ Foam ☐ None ☐ Other 6. Cooler temperature upon receipt ☐ ☐ ○ ○ ○ ○ See back of form for multiple coolers/temps ☐ METHOD: ☐ ☐ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
5. Packing material used: Bubble Wrap
6. Cooler temperature upon receipt
METHOD: IR ☐ Other ☐ COOLANT: Wet Ice ☐ Blue Ice ☐ Dry Ice ☐ Water ☐ None ☐
COOLANT: Wet Ice ☐ Blue Ice ☐ Dry Ice ☐ Water ☐ None ☐
7. Did all bottles arrive in good condition (Unbroken)?
8. Could all bottle labels be reconciled with the COC? Yes No Yes
9. Were sample(s) at the correct pH upon receipt? Yes ☑ No ☑ NA ☑
10. Were correct bottle(s) used for the test(s) indicated?
11. Were air bubbles >6 mm in any VOA vials?
12. Sufficient quantity received to perform indicated analyses?
13. Was a trip blank present in the cooler(s)? Yes No Were VOAs on the COC? Yes No L
Contacted PM Date by via Verbal Voice Mail Other
Concerning
14 CHAIN OF CUSTODY
The following discrepancies occurred:
TENSIA MPLEICONDITION
15 SAMPLE CONDITION Sample(s) were received after the recommended holding time had expire
Sample(s) were received after the recommended holding time had expire
Sample(s) were received after the recommended holding time had expire sample(s) were received in a broken contain.
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain Sample(s) were received with bubble >6 mm in diameter. (Notify P
Sample(s) were received after the recommended holding time had expire sample(s) were received in a broken contain Sample(s) were received with bubble >6 mm in diameter. (Notify Parameters of the SAMPLE PRESERVATION.
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain Sample(s) were received with bubble >6 mm in diameter. (Notify Parameter) Sample(s) were further preserved in Sample
Sample(s) were received after the recommended holding time had expire sample(s) were received in a broken contain sample(s) were received with bubble >6 mm in diameter. (Notify Parallel Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium.
Sample(s) were received after the recommended holding time had expire were received in a broken contain were received with bubble >6 mm in diameter. (Notify Particle SAMPLE PRESERVATION were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108-
Sample(s) were received after the recommended holding time had expire sample(s) were received in a broken contain were received with bubble >6 mm in diameter. (Notify Parallel Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?
Sample(s) Sample(s) Sample(s) Were received after the recommended holding time had expire were received in a broken contain were received with bubble >6 mm in diameter. (Notify Parallel Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID Date Initia
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain Sample(s) were received with bubble >6 mm in diameter. (Notify Particle SAMPLE PRESERVATION were further preserved in Sample Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH Date Initia
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain Sample(s) were received with bubble >6 mm in diameter. (Notify Pinter Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH Date Initia 22 79 IO 57 II AS
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain were received with bubble >6 mm in diameter. (Notify Pinds SAMPLE PRESERVATION were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID Date Initia Date Initia Date Company Date Date
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain were received with bubble >6 mm in diameter. (Notify Pinds SAMPLE PRESERVATION were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID Date Initia Date Initia Date
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Were received in a broken contain Were received with bubble >6 mm in diameter. (Notify P ### ### ### ### ### ### ### ### ###
Sample(s) were received after the recommended holding time had expire Sample(s) were received in a broken contain were received with bubble >6 mm in diameter. (Notify Pinds SAMPLE PRESERVATION were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 110410-H2SO4; Sodium. Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH Date Initia Date Initia Date CH Date Date
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Were received in a broken contain Were received with bubble >6 mm in diameter. (Notify P ### ### ### ### ### ### ### ### ###

Login Sample Receipt Checklist

Client: Cardinal Resources

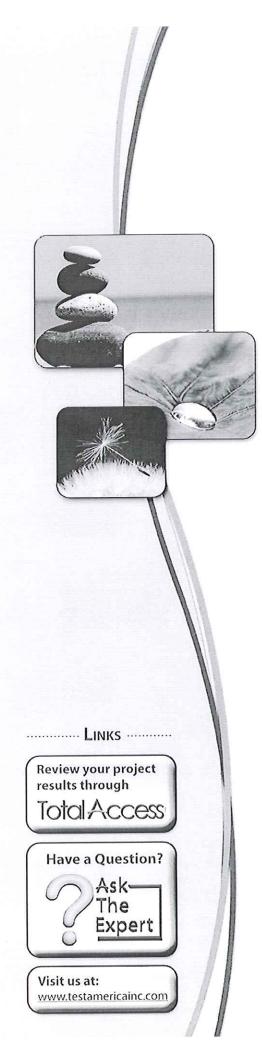
Job Number: 240-4528-1

Login Number: 4528

List Source: TestAmerica North Canton

List Number: 1 Creator: Sutek, Nick

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	1.6
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	



TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica North Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-4593-1

Client Project/Site: C & D GW Sampling

For:

Cardinal Resources 1505 E Carson Street Suite #200 Pittsburgh, Pennsylvania 15203

Attn: Barbara Jones

MERE

Authorized for release by: 11/03/2011 02:10:41 PM

Nathan Pietras
Project Manager II
nathan.pietras@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Cardinal Resources Project/Site: C & D GW Sampling

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	
Detection Summary	
	11
Surrogate Summary	23
QC Sample Results	24
QC Association Summary	40
Lab Chronicle	43
Certification Summary	46
Chain of Custody	47
Receipt Checklists	50

Œ

13

Definitions/Glossary

TestAmerica Job ID: 240-4593-1

Client: Cardinal Resources Project/Site: C & D GW Sampling

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Sample was prepped or analyzed beyond the specified holding time Н

X Surrogate is outside control limits

RPD of the MS and MSD exceeds the control limits F

General Chemistry

Qualifier **Qualifier Description**

MS or MSD exceeds the control limits F

Sample was prepped or analyzed beyond the specified holding time Н

Glossary

These commonly used abbreviations may or may not be present in this report. Abbreviation

Listed under the "D" column to designate that the result is reported on a dry weight basis *

%R Percent Recovery Contains no Free Liquid CNF

Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

Estimated Detection Limit EDL

United States Environmental Protection Agency FPA

MDL Method Detection Limit ML Minimum Level (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown) ND

Practical Quantitation Limit PQL

Reporting Limit RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Job ID: 240-4593-1

Laboratory: TestAmerica North Canton

Narrative

CASE NARRATIVE

Client: Cardinal Resources

Project: C & D GW Sampling

Report Number: 240-4593-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 10/06/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt were 3.5 and 4.2 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples OW8 (240-4593-1), MW1 (240-4593-2), FB2 (240-4593-3), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6), DUP1 (240-4593-7) and TB2 (240-4593-8) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/16/2011, 10/17/2011 and 11/01/2011.

4-Bromofluorobenzene (Surr) failed the surrogate recovery criteria high for OW5MSD (240-4593-4MSD). Refer to the QC report for details.

Trichlorofluoromethane exceeded the rpd limit for the MSD of sample OW5MSD (240-4593-4) in batch 240-19305.

Refer to the QC report for details.

Sample OW6 (240-4593-5)[1.67X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Method(s) 8260B: The following sample(s) was analyzed outside of analytical holding time due to lab error: FB2 (240-4593-3).

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Job ID: 240-4593-1 (Continued)

Laboratory: TestAmerica North Canton (Continued)

No other difficulties were encountered during the VOCs analyses.

All other quality control parameters were within the acceptance limits.

DISSOLVED GASES

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for dissolved gases in accordance with RSK_175. The samples were analyzed on 10/13/2011.

No difficulties were encountered during the dissolved gases analyses.

All quality control parameters were within the acceptance limits.

ANIONS

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for anions in accordance with EPA Method 300.0. The samples were analyzed on 10/07/2011.

Method(s) 300.0: The following sample analyzed for nitrate by IC was received with greater than 50% of holding time expired: DUP1 (240-4593-7). The sample was prepped and loaded onto the instrument prior to expiring, but the laboratory had insufficient time remaining to perform the analysis within holding time.

No other difficulties were encountered during the anions analyses.

All quality control parameters were within the acceptance limits.

ALKALINITY

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 10/10/2011.

No difficulties were encountered during the alkalinity analyses.

All quality control parameters were within the acceptance limits.

CHLORIDE

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for chloride in accordance with EPA Method 325.2. The samples were analyzed on 10/11/2011.

No difficulties were encountered during the chloride analyses.

All quality control parameters were within the acceptance limits.

SULFATE

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for sulfate in accordance with EPA method 375.4. The samples were analyzed on 10/18/2011.

Samples OW13R (240-4593-6)[2X] and DUP1 (240-4593-7)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the sulfate analyses.

All quality control parameters were within the acceptance limits.

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for sulfide in accordance with EPA Method 376.1. The samples were analyzed on 10/11/2011.

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Job ID: 240-4593-1 (Continued)

Sulfide failed the recovery criteria high for the MS/MSD of sample OW5MS/MSD (240-4593-4) in batch 240-18638.

Refer to the QC report for details.

No other difficulties were encountered during the sulfide analyses.

Laboratory: TestAmerica North Canton (Continued)

All other quality control parameters were within the acceptance limits.

TOTAL ORGANIC CARBON

Samples OW8 (240-4593-1), MW1 (240-4593-2), OW5 (240-4593-4), OW6 (240-4593-5), OW13R (240-4593-6) and DUP1 (240-4593-7) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 10/13/2011 and 10/14/2011.

No difficulties were encountered during the TOC analyses.

All quality control parameters were within the acceptance limits.

Method Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4593-1

Method **Method Description** Protocol Laboratory 8260B Volatile Organic Compounds (GC/MS) SW846 TAL NC RSK-175 Dissolved Gases (GC) **RSK** TAL NC 300.0 Anions, Ion Chromatography **MCAWW** TAL NC 310.1 Alkalinity **MCAWW** TAL NC 325.2 Chloride MCAWW TAL NC 375.4 Sulfate MCAWW TAL NC 376.1 Sulfide **MCAWW** TAL NC 415.1 TOC MCAWW TAL NC

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-4593-1	OM8	Water	10/05/11 09:35	10/06/11 09:00
240-4593-2	MW1	Water	10/05/11 10:25	10/06/11 09:00
240-4593-3	FB2	Water	10/05/11 10:05	10/06/11 09:00
240-4593-4	OW5	Water	10/05/11 11:20	10/06/11 09:00
240-4593-5	OW6	Water	10/05/11 12:20	10/06/11 09:00
240-4593-6	OW13R	Water	10/05/11 14:15	10/06/11 09:00
240-4593-7	DUP1	Water	10/05/11 00:00	10/06/11 09:00
240-4593-8	TB2	Water	10/05/11 00:00	10/06/11 09:00

3

B

(0)

6

7.8

8

9

13

Detection Summary

Client: Cardinal Resources
Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4593-1

Client Sample ID: OW8

Client Sample ID: MW1

Client Sample ID: FB2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methane	0.70	0.50	ug/L	1	RSK-175	Total/NA
Alkalinity	43	5.0	mg/L	1	310.1	Total/NA
Chloride	2.1	1.0	mg/L	1	325.2	Total/NA
Sulfate	17	5.0	mg/L	1	375.4	Total/NA

Lab Sample ID: 240-4593-1

Lab Sample ID: 240-4593-2

5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methane	6.8	0.50	ug/L	1	RSK-175	Total/NA
Nitrate as N	0.15	0.10	mg/L	1	300.0	Total/NA
Alkalinity	97	5.0	mg/L	1	310.1	Total/NA
Chloride	3.2	1.0	mg/L	1	325.2	Total/NA
Sulfate	14	5.0	mg/L	1	375.4	Total/NA
Total Organic Carbon	1.3	1.0	mg/L	1	415.1	Total/NA

Lab Sample ID: 240-4593-3

No Detections

Client Sample ID: OW5 Lab Sample ID: 240-4593-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	1.4	1.0	ug/L	1	8260B	Total/NA
Nitrate as N	0.88	0.10	mg/L	1	300.0	Total/NA
Alkalinity	120	5.0	mg/L	1	310.1	Total/NA
Chloride	3.3	1.0	mg/L	1	325.2	Total/NA
Sulfate	22	5.0	mg/L	1	375.4	Total/NA
Sulfide	2.8	1.0	mg/L	1	376.1	Total/NA

Client Sample ID: OW6 Lab Sample ID: 240-4593-5

Total/NA
Total/NA

Client Sample ID: OW13R Lab Sample ID: 240-4593-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Nitrate as N	0.95	0.10	mg/L	1	300.0	Total/NA
Alkalinity	250	5.0	mg/L	1	310.1	Total/NA
Chloride	1.3	1.0	mg/L	1	325.2	Total/NA
Sulfate	33	10	mg/L	2	375.4	Total/NA
Total Organic Carbon	4.4	1.0	mg/L	4	415.1	Total/NA

Client Sample ID: DUP1 Lab Sample ID: 240-4593-7

Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type
Benzene 1.3 1.0 ug/L 1 8260B Total/NA

Detection Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: TB2

TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-7

Client Sample ID: DUP1 (Continued)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	Method	Prep Type
Methane	0.50	0.50	ug/L	1	RSK-175	Total/NA
Nitrate as N	0.45 0.86 H / 0.45	0.10	mg/L	1	300.0	Total/NA
Alkalinity	230 /250	5.0	mg/L	1	310.1	Total/NA
Chloride	1,451.4 /1.3	1.0	mg/L	1	325.2	Total/NA
Sulfate	34 /33	10	mg/L	2	375.4	Total/NA
Total Organic Carbon	3.8 / 4.4	1.0	mg/L	1	415.1	Total/NA

Lab Sample ID: 240-4593-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	2.1	1.0	ug/L	1 8260B	Total/NA

1A-131 - (A+B) X100

> TestAmerica North Canton 11/03/2011

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: OW8

Date Collected: 10/05/11 09:35 Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-1

Matrix: Water

Method:	8260B	 Volatile 	Organic	Compounds	(GC/MS)
				D	0

Method: 8260B - Volatile Organic				990990 040		W1000000000000000000000000000000000000	
Analyte	Result Qualifier	RL	MDL Unit	D F	repared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/16/11 16:09	1
Benzene	ND	1.0	ug/L			10/16/11 16:09	1
Dichlorobromomethane	ND	1.0	ug/L			10/16/11 16:09	1
Bromoform	ND	1.0	ug/L			10/16/11 16:09	1
Bromomethane	ND	1.0	ug/L			10/16/11 16:09	1
2-Butanone (MEK)	ND	10	ug/L			10/16/11 16:09	1
Carbon disulfide	ND	1.0	ug/L			10/16/11 16:09	1
Carbon tetrachloride	ND	1.0	ug/L			10/16/11 16:09	1
Chlorobenzene	ND	1.0	ug/L			10/16/11 16:09	1
Chloroethane	ND	1.0	ug/L			10/16/11 16:09	1
Chloroform	ND	1.0	ug/L			10/16/11 16:09	1
Chloromethane	ND	1.0	ug/L			10/16/11 16:09	1
1,1-Dichloroethane	ND	1.0	ug/L			10/16/11 16:09	1
1,2-Dichloroethane	ND	1.0	ug/L			10/16/11 16:09	1
1,1-Dichloroethene	ND	1.0	ug/L			10/16/11 16:09	1
1,2-Dichloropropane	ND	1.0	ug/L			10/16/11 16:09	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/16/11 16:09	1
trans-1,3-Dichloropropene	ND	1.0	ug/L °			10/16/11 16:09	1
Ethylbenzene	ND	1.0	ug/L			10/16/11 16:09	1
2-Hexanone	ND	10	ug/L			10/16/11 16:09	1
Methylene Chloride	ND	1.0	⁴ ug/L.			10/16/11 16:09	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/16/11 16:09	1
Styrene	ND	1.0	ug/L			10/16/11 16:09	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/16/11 16:09	1
Tetrachloroethene	ND	1.0	ug/L			10/16/11 16:09	1
Toluene	ND	1.0	ug/L			10/16/11 16:09	1
Trichloroethene	ND	1.0	ug/L			10/16/11 16:09	1
Vinyl chloride	ND	1.0	ug/L			10/16/11 16:09	1
Xylenes, Total	ND	2.0	ug/L			10/16/11 16:09	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/16/11 16:09	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/16/11 16:09	1
Cyclohexane	ND	1.0	ug/L			10/16/11 16:09	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/16/11 16:09	1
Ethylene Dibromide	ND	1.0	ug/L			10/16/11 16:09	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/16/11 16:09	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 16:09	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 16:09	1
Isopropylbenzene	ND	1.0	ug/L			10/16/11 16:09	1
Methyl acetate	ND	10	ug/L			10/16/11 16:09	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/16/11 16:09	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/16/11 16:09	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/16/11 16:09	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/16/11 16:09	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/16/11 16:09	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/16/11 16:09	1
Trichlorofluoromethane	ND	1.0	ug/L			10/16/11 16:09	1
Chlorodibromomethane	ND	1.0	ug/L			10/16/11 16:09	1
Methylcyclohexane	ND	1.0	ug/L			10/16/11 16:09	1

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: OW8

Date Collected: 10/05/11 09:35 Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-1

TestAmerica Job ID: 240-4593-1

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	104		63 - 129					10/16/11 16:09	1	
4-Bromofluorobenzene (Surr)	99		66 - 117					10/16/11 16:09	1	
Toluene-d8 (Surr)	103		74 - 115					10/16/11 16:09	1	
Dibromofluoromethane (Surr)	104		75 - 121					10/16/11 16:09	1	
										1
Method: RSK-175 - Dissolved Ga	ises (GC)									(
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methane	0.70		0.50		ug/L			10/13/11 16:34	1	
30			0.50 0.50		ug/L ug/L			10/13/11 16:34 10/13/11 16:34	1 1	
Methane	0.70				2000				1 1 1	
Methane Ethane	0.70 ND		0.50		ug/L			10/13/11 16:34	1 1 1	
Methane Ethane	0.70 ND	Qualifier	0.50		ug/L		Prepared	10/13/11 16:34	1 1 1 Dil Fac	
Methane Ethane Ethylene	0.70 ND ND	Qualifier	0.50 0.50		ug/L		Prepared	10/13/11 16:34 10/13/11 16:34	1 1 1 Dil Fac 1	

RL

0.10

5.0

1.0

5.0

1.0

MDL Unit

mg/L

mg/L

mg/L

mg/L

mg/L

Prepared

10/14/11 17:06 **Total Organic Carbon** ND 1.0 mg/L Lab Sample ID: 240-4593-2 Client Sample ID: MW1

Result Qualifier

ND

43

2.1

17

ND

Date Collected: 10/05/11 10:25 Date Received: 10/06/11 09:00

General Chemistry

Analyte

Nitrate as N

Alkalinity

Chloride

Sulfate

Sulfide

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	1	ug/L			10/16/11 16:31	1
Benzene	ND	1.0	â	ug/L			10/16/11 16:31	1
Dichlorobromomethane	ND	1.0	9	ug/L			10/16/11 16:31	1
Bromoform	ND	1.0	9	ug/L			10/16/11 16:31	1
Bromomethane	ND	1.0	9	ug/L			10/16/11 16:31	1
2-Butanone (MEK)	ND	10	9	ug/L			10/16/11 16:31	1
Carbon disulfide	ND	1.0	9	ug/L			10/16/11 16:31	1
Carbon tetrachloride	ND	1.0	9	ug/L			10/16/11 16:31	1
Chlorobenzene	ND	1.0	3	ug/L			10/16/11 16:31	1
Chloroethane	ND	1.0	9	ug/L			10/16/11 16:31	1
Chloroform	ND	1.0		ug/L			10/16/11 16:31	1
Chloromethane	ND	1.0		ug/L			10/16/11 16:31	1
1,1-Dichloroethane	ND	1.0	1	ug/L			10/16/11 16:31	1
1,2-Dichloroethane	ND	1.0	1	ug/L			10/16/11 16:31	1
1,1-Dichloroethene	ND	1.0	ä	ug/L			10/16/11 16:31	1
1,2-Dichloropropane	ND	1.0	3	ug/L			10/16/11 16:31	1
cis-1,3-Dichloropropene	ND	1.0	0	ug/L			10/16/11 16:31	1
trans-1,3-Dichloropropene	ND	1.0	8	ug/L			10/16/11 16:31	1
Ethylbenzene	ND	1.0	9	ug/L			10/16/11 16:31	1
2-Hexanone	ND	10	9	ug/L			10/16/11 16:31	1
Methylene Chloride	ND	1.0	0	ug/L			10/16/11 16:31	1
4-Methyl-2-pentanone (MIBK)	ND	10	9	ug/L			10/16/11 16:31	1

Page 12 of 50

Dil Fac

Analyzed

10/07/11 07:48

10/10/11 16:00

10/11/11 11:44

10/18/11 10:27

10/11/11 09:19

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-2

Matrix: Water

Client Sample ID: MW1

Date Collected: 10/05/11 10:25 Date Received: 10/06/11 09:00

Mable Mabl	Method: 8260B - Volatile Organic	Compounds (GC/MS) (C	Continued)					
Syren	The second secon				MDL Uni	t D	Prepared	Analyzed	Dil Fac
1,12,2-Febrachtocoelhane ND 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	PARK .			1.0	ug/	L		10/16/11 16:31	1
Telephone-bene ND 1.0 ug/L 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 10/6/11/6-31 1 1 10/6/11/6-31 1 1 1 1 1 1 1 1 1	Section Control Contro	ND		1.0				10/16/11 16:31	1
Trichioroethine		ND		1.0				10/16/11 16:31	1
Trichtorocheme		ND		1.0				10/16/11 16:31	1
Vyly chloride ND 1.0 ug/L 1.016/FH 18:31 1 Xylenes, Total ND 2.0 ug/L 1.016/FH 16:31 1 Xylenes, Total ND 1.0 ug/L 1016/FH 16:31 1 1,1,2-Tichloroethane ND 1.0 ug/L 1016/FH 16:31 1 1,2-Dichorad-Chloropepane ND 1.0 ug/L 1016/FH 16:31 1 1,2-Dichorad-Chloropepane ND 1.0 ug/L 1016/FH 16:31 1 Dichloradifluoromethane ND 1.0 ug/L 1016/FH 16:31 1 Dichloradifluoromethane ND 1.0 ug/L 1016/FH 16:31 1 Liphorophemene ND 1.0 ug/L 1016/FH 16:31 1 Liphorophemene ND 1.0 ug/L 1016/FH 16:31 1 Lopropybenzene ND 1.0 ug/L 1016/FH 16:31 1 Lopropybenzene ND 1.0 ug/L 1016/FH 16:31 1 Lopropyb	200000000				500			10/16/11 16:31	1
Nome				1.0				10/16/11 16:31	1
1,1,1-Trickhoroethane	V 1 78			2.0	5.			10/16/11 16:31	1
1,1,2-Trichtoroethane	25/0, 12/			1.0				10/16/11 16:31	1
Cyclohaxane	5 5							10/16/11 16:31	1
1,2-Dibromo-3-Chloropropane ND 2.0 ug/L 10/16/11 16:31 1 1 Ethylene Dibromide ND 1.0 ug/L 10/16/11 16:31 1 1 Ethylene Dibromide ND 1.0 ug/L 10/16/11 16:31 1 1 Gis-1,2-Dichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1 Urans-1,2-Dichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1 Urans-1,2-Trichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,1,2-Trichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,2,2-Trichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,2,2-Trichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,2,2-Trichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,3,2-Dichloroethene ND 1.0 ug/L 10/16/11 16:31 1 1,3-Dichloroethenene ND 1.0 ug/L 10/16/11 16:31								10/16/11 16:31	1
Ethylene Dibromide ND	198 premi in protesti							10/16/11 16:31	1
Dehicrodifluoromethane	989 G 7/200 AA							10/16/11 16:31	1
Cis-1,2-Dichloroethene ND 1.0 ug/L 1016/11 16:31 1 trans-1,2-Dichloroethene ND 1.0 ug/L 1016/11 16:31 1 trans-1,2-Dichloroethene ND 1.0 ug/L 1016/11 16:31 1 trans-1,2-Dichloroethene ND 1.0 ug/L 1016/11 16:31 1 Methyl actate ND 10 ug/L 1016/11 16:31 1 Methyl actate ND 1.0 ug/L 1016/11 16:31 1 1 1 1 1 1 1 1 1								10/16/11 16:31	1
trans-1,2-Dichloroethene ND 1.0 ug/L 10/16/11 16:31 1 laporpyblenzene ND 1.0 ug/L 10/16/11 16:31 1 Methyl terbuly ether ND 5.0 ug/L 10/16/11 16:31 1 Methyl terbuly ether ND 5.0 ug/L 10/16/11 16:31 1 1,1,2-Trichloro-1,2-trifluoroethane ND 1.0 ug/L 10/16/11 16:31 1 1,2-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,2-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,3-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,4-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,4-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,4-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 Methy ND 1.0 ug/L 10/16/11 16:31 1					0.70			10/16/11 16:31	1
Isopropybenzene ND 1.0 ug/L 1016/11 16.31 1 Methyl acetate ND 10 ug/L 1016/11 16.31 1 Methyl acetate ND 5.0 ug/L 1016/11 16.31 1 1 1,2-Trichloro-1,2-2-trifluoroethane ND 1.0 ug/L 1016/11 16.31 1 1,2-Trichlorobenzene ND 1.0 ug/L 1016/11 16.31 1 1,2-Trichlorobenzene ND 1.0 ug/L 1016/11 16.31 1 1,2-Dichlorobenzene ND 1.0 ug/L 1016/11 16.31 1 1,3-Dichlorobenzene ND 1.0 ug/L 1016/11 16.31 1 1,4-Dichlorobenzene ND 1.0 ug/L 1016/11 16.31 1 1016/11 16.31 1 1,4-Dichlorobenzene ND 112 63 - 129								10/16/11 16:31	1
Methyl acetate					25.0			10/16/11 16:31	1
Methyl terbulyl ether ND	THE REPORT OF THE PROPERTY OF							10/16/11 16:31	1
1,2-Trichloro-1,2,2-trifluoroethane								10/16/11 16:31	1
1,2-Dichlorobenzene ND 1.0 Ug/L 10/16/11 16:31 1 1,2-Dichlorobenzene ND 1.0 Ug/L 10/16/11 16:31 1 1,3-Dichlorobenzene ND 1.0 Ug/L 10/16/11 16:31 1 1,3-Dichlorobenzene ND 1.0 Ug/L 10/16/11 16:31 1 1,4-Dichlorobenzene ND 1.0 Ug/L 10/16/11 16:31 1 1,5-Dichlorobenzene Surrogate %Recovery Qualitier Limits Prepared Analyzed Dil Face 1,2-Dichlorobenzene Surrogate 1,2-Dichlorobenzene Surrogate 10/16/11 16:31 1 1,5-Dichlorobenzene Surrogate 1,2-Dichlorobenzene Surrogate 1,2-Dichlorobenzene Surrogate 1,2-Dichlorobenzene Surrogate 1,2-Dichlorobenzene 1,2-Dichlorobenzene Surrogate 1,2-Dichlorobenzene 1,	MANAGEMENT CONTRACTOR							10/16/11 16:31	1
1,2-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,3-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/10 11/16/11 16:31 1 11/16/11 16:31								10/16/11 16:31	1
1,3-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1,4-Dichlorobenzene ND 1.0 ug/L 10/16/11 16:31 1 1 1 1 1 1 1 1 1					70			10/16/11 16:31	1
1,4-Dichlorobenzene ND					100			10/16/11 16:31	1
Trichlorofluoromethane								10/16/11 16:31	1
Chlorodibromomethane ND 1.0 ug/L 10/16/11 16:31 1 Methylcyclohexane ND 1.0 ug/L 10/16/11 16:31 1 1 1 1 1 1 1 1 1	59570 1007 960 600 600							10/16/11 16:31	1
ND 1.0 Ug/L 10/16/11 16:31 1				1.0				10/16/11 16:31	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Face								10/16/11 16:31	1
1,2-Dichloroethane-d4 (Surr) 112 63.129 4-Bromofluorobenzene (Surr) 91 66-117 Toluene-d8 (Surr) 104 74.115 Dibromofluoromethane (Surr) 105 75-121 Method: RSK-175 - Dissolved Gases (GC) Analyte Result Qualifier ND 0.50 0.50 0.97L Surrogate 1,1,1-Trifluoroethane 103 10-168 Result Qualifier 103 10-168 Result Qualifier Limits 10/13/11 17:07 1 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Surrogate 10/13/11 17:07 1 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Ceneral Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Ceneral Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Ceneral Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Ceneral Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Ceneral Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 1 Chloride 3.2 1.0 mg/L 10/10/11 16:07 1 Sulfate 10/10/11 16:07 1 Sulfate ND 10/11/11 11:44 1 Sulfate ND 10/11/11 10:23 1					.e.,			2 36	10.00
### ### ##############################	Surrogate	10-14-00 MA 1/4-01	Qualifier				Prepared		
Toluene-d8 (Surr)	1,2-Dichloroethane-d4 (Surr)								
Dibromofluoromethane (Surr) 105 75 - 121 10/16/11 16:31 1	4-Bromofluorobenzene (Surr)								
Method: RSK-175 - Dissolved Gases (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10/13/11 17:07 Dil Fac 11 17:07	Toluene-d8 (Surr)	104							
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Methane 6.8 0.50 ug/L 10/13/11 17:07 1 Ethane ND 0.50 ug/L 10/13/11 17:07 1 Ethylene ND 0.50 ug/L 10/13/11 17:07 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,1,1-Trifluoroethane 103 10 - 168 Prepared Analyzed Dil Fac Nalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 10:23 1 Sulfate 10 1.0 mg/L 10/18/11 10:23 1 Sulfide ND <td< td=""><td>Dibromofluoromethane (Surr)</td><td>105</td><td></td><td>75 - 121</td><td></td><td></td><td></td><td>10/16/11 16:31</td><td>1</td></td<>	Dibromofluoromethane (Surr)	105		75 - 121				10/16/11 16:31	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Methane 6.8 0.50 ug/L 10/13/11 17:07 1 Ethane ND 0.50 ug/L 10/13/11 17:07 1 Ethylene ND 0.50 ug/L 10/13/11 17:07 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,1,1-Trifluoroethane 103 10 - 168 Prepared Analyzed Dil Fac Nalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 10:23 1 Sulfate 10 1.0 mg/L 10/18/11 10:23 1 Sulfide ND <td< td=""><td>Method: RSK-175 - Dissolved Ga</td><td>ses (GC)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Method: RSK-175 - Dissolved Ga	ses (GC)							
Methane 6.8 0.50 ug/L 10/13/11 17:07 1 Ethane ND 0.50 ug/L 10/13/11 17:07 1 Ethylene ND 0.50 ug/L 10/13/11 17:07 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,1,1-Trifluoroethane 103 10 - 168 Prepared Analyzed Dil Fac Nalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 10:23 1 Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 10:21 1			Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Ethane		6.8		0.50	ug/	L		10/13/11 17:07	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,1,1-Trifluoroethane 103 10 - 168 10/13/11 17:07 1		ND		0.50	ug/	L		10/13/11 17:07	1
1,1,1-Trifluoroethane 103 10 - 168 10/13/11 17:07 1 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 5.0 mg/L 10/11/11 11:44 1 Sulfate ND 1.0 mg/L 10/11/11 10:23 1 Sulfide	Ethylene	ND		0.50	ug/	L		10/13/11 17:07	1
1,1,1-Trifluoroethane 103 10 - 168 10/13/11 17:07 1 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 5.0 mg/L 10/11/11 11:44 1 Sulfate ND 1.0 mg/L 10/11/11 10:23 1 Sulfide	Surrogato	% Paggyans	Qualifier	Limite			Prenared	Analyzed	Dil Fac
General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac			Quaillei				richated	versional de ser ester	
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 11:44 1 Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 09:19 1	1,1,1-1 muoroemane	103		10 - 100				10/10/11 17:01	
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.15 0.10 mg/L 10/07/11 08:05 1 Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 11:44 1 Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 109:19 1	General Chemistry								
Alkalinity 97 5.0 mg/L 10/10/11 16:07 1 Chloride 3.2 1.0 mg/L 10/11/11 11:44 1 Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 09:19 1		Result	Qualifier	RL	MDL Un	it D	Prepared	Landa de la companya	Dil Fac
Chloride 3.2 1.0 mg/L 10/11/11 11:44 1 Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 09:19 1	Nitrate as N	0.15		0.10	mg	/L			
Sulfate 14 5.0 mg/L 10/18/11 10:23 1 Sulfide ND 1.0 mg/L 10/11/11 09:19 1	Alkalinity	97		5.0	mg	/L			
Sulfide ND 1.0 mg/L 10/11/11 09:19 1	Chloride	3.2							
	Sulfate								
Total Organic Carbon 1.3 1.0 mg/L 10/14/11 17:17 1	Sulfide	ND							
	Total Organic Carbon	1.3		1.0	mg	/L		10/14/11 17:17	1

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: FB2 Date Collected: 10/05/11 10:05 Date Received: 10/06/11 09:00

TestAmerica Job ID: 240-4593-1

All Jab Sample ID: 240-4593-3

Matrix: Water

CAL V	200			
σγ	or couris			5
nit	D Prepared	Analyzed	Dil Fac	
/L	morsial	11/01/11 16:14	1	
ı/L	antis.	11/01/11 16:14	1	
ı/L	0	11/01/11 16:14	1	
/L	din	11/01/11 16:14	1	19.40
. //	12/0	11/01/11 16:14	1	0

6:14	1 -	
6:14	1	
6:14	1	
6.14	1	

	2 72 97			de of	as all. 5		
Method: 8260B - Volatile Organ			51		1060051	A a E a al	Dil Can
Analyte		Qualifier	RL	MDL Unit	Thebareo	Analyzed 11/01/11 16:14	Dil Fac
Acetone	DN CAN		10	ug/L	W. 13100		1
Benzene	ND		1.0	ug/L	Or.C	11/01/11 16:14	1
Dichlorobromomethane	ND		1.0	ug/L	01,00	11/01/11 16:14	151
Bromoform	ND		1.0	ug/L	1.10(1)	11/01/11 16:14	1
Bromomethane	ND		1.0	ug/L	ho.	11/01/11 16:14	1
2-Butanone (MEK)	ND		10	ug/L	to me	11/01/11 16:14	1
Carbon disulfide	ND		1.0	ug/L		11/01/11 16:14	1
Carbon tetrachloride	ND		1.0	ug/L		11/01/11 16:14	1
Chlorobenzene	ND		1.0	ug/L		11/01/11 16:14	1
Chloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
Chloroform	ND	Н	1.0	ug/L		11/01/11 16:14	1
Chloromethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,1-Dichloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,2-Dichloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,1-Dichloroethene	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,2-Dichloropropane	ND	Н	1.0	ug/L		11/01/11 16:14	1
cis-1,3-Dichloropropene	ND	Н	1.0	ug/L		11/01/11 16:14	1
trans-1,3-Dichloropropene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Ethylbenzene	ND	Н	1.0	ug/L		11/01/11 16:14	1
2-Hexanone	ND	Н	10	ug/L		11/01/11 16:14	1
Methylene Chloride	ND	Н	1.0	ug/L		11/01/11 16:14	1
4-Methyl-2-pentanone (MIBK)	ND	Н	10	ug/L		11/01/11 16:14	1
Styrene	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,1,2,2-Tetrachloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
Tetrachloroethene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Toluene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Trichloroethene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Vinyl chloride	ND	Н	1.0	ug/L		11/01/11 16:14	1
Xylenes, Total	ND	Н	2.0	ug/L		11/01/11 16:14	1
1,1,1-Trichloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,1,2-Trichloroethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
Cyclohexane	ND	Н	1.0	ug/L		11/01/11 16:14	1
1,2-Dibromo-3-Chloropropane	ND	Н	2.0	ug/L		11/01/11 16:14	1
Ethylene Dibromide	ND	Н	1.0	ug/L		11/01/11 16:14	1
Dichlorodifluoromethane	ND	Н	1.0	ug/L		11/01/11 16:14	1
cis-1,2-Dichloroethene	ND	Н	1.0	ug/L		11/01/11 16:14	1
trans-1,2-Dichloroethene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Isopropylbenzene	ND	Н	1.0	ug/L		11/01/11 16:14	1
Methyl acetate	ND	Н	10	ug/L		11/01/11 16:14	1
Methyl tert-butyl ether	ND	Н	5.0	ug/L		11/01/11 16:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	H	1.0	ug/L		11/01/11 16:14	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/01/11 16:14	1
1,2-Dichlorobenzene		Н	1.0	ug/L		11/01/11 16:14	1
1,3-Dichlorobenzene	1806-1807	Н	1.0	ug/L		11/01/11 16:14	1
1,4-Dichlorobenzene	10000000	H	1.0	ug/L		11/01/11 16:14	1
Trichlorofluoromethane	CONTRACTOR OF	Н	1.0	ug/L		11/01/11 16:14	1
Chlorodibromomethane		Н	1.0	ug/L		11/01/11 16:14	1
Methylcyclohexane	1 1 1	H	1.0	ug/L		11/01/11 16:14	1
on artistas santaurum		±00.0	(175).532				

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-3

Matrix: Water

Client Sample ID: FB2

Date Collected: 10/05/11 10:05 Date Received: 10/06/11 09:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		63 - 129		11/01/11 16:14	1
4-Bromofluorobenzene (Surr)	99		66 - 117		11/01/11 16:14	1
Toluene-d8 (Surr)	105		74 - 115		11/01/11 16:14	1
Dibromofluoromethane (Surr)	95		75 - 121		11/01/11 16:14	1

Client Sample ID: OW5 Lab Sample ID: 240-4593-4

Date Collected: 10/05/11 11:20 Matrix: Water

Date Received: 10/06/11 09:00

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/16/11 16:54	1
Benzene	ND	1.0	ug/L			10/16/11 16:54	1
Dichlorobromomethane	ND	1.0	ug/L			10/16/11 16:54	1
Bromoform	ND	1.0	ug/L			10/16/11 16:54	1
Bromomethane	ND	1.0	ug/L			10/16/11 16:54	1
2-Butanone (MEK)	ND	10	ug/L			10/16/11 16:54	1
Carbon disulfide	ND	1.0	ug/L			10/16/11 16:54	1
Carbon tetrachloride	ND	1.0	ug/L			10/16/11 16:54	1
Chlorobenzene	ND	1.0	ug/L			10/16/11 16:54	1
Chloroethane	ND	1.0	ug/L			10/16/11 16:54	1
Chloroform	ND	1.0	ug/L			10/16/11 16:54	1
Chloromethane	ND	1.0	ug/L			10/16/11 16:54	1
1,1-Dichloroethane	ND	1.0	ug/L			10/16/11 16:54	1
1,2-Dichloroethane	ND	1.0	ug/L			10/16/11 16:54	1
1,1-Dichloroethene	ND	1.0	ug/L			10/16/11 16:54	1
1,2-Dichloropropane	ND	1.0	ug/L			10/16/11 16:54	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/16/11 16:54	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/16/11 16:54	1
Ethylbenzene	ND	1.0	ug/L			10/16/11 16:54	1
2-Hexanone	ND	10	ug/L			10/16/11 16:54	1
Methylene Chloride	ND	1.0	ug/L			10/16/11 16:54	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/16/11 16:54	1
Styrene	ND	1.0	ug/L			10/16/11 16:54	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/16/11 16:54	1
Tetrachloroethene	1.4	1.0	ug/L			10/16/11 16:54	1
Toluene	ND	1.0	ug/L			10/16/11 16:54	1
Trichloroethene	ND	1.0	ug/L			10/16/11 16:54	1
Vinyl chloride	ND	1.0	ug/L			10/16/11 16:54	1
Xylenes, Total	ND	2.0	ug/L			10/16/11 16:54	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/16/11 16:54	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/16/11 16:54	1
Cyclohexane	ND	1.0	ug/L			10/16/11 16:54	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/16/11 16:54	1
Ethylene Dibromide	ND	1.0	ug/L			10/16/11 16:54	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/16/11 16:54	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 16:54	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 16:54	1
Isopropylbenzene	ND	1.0	ug/L			10/16/11 16:54	1
Methyl acetate	ND	10	ug/L			10/16/11 16:54	1

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: OW5 Date Collected: 10/05/11 11:20

Date Received: 10/06/11 09:00

TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-4

Matrix: Water

Method: 8260B - Volatile	e Organic Compounds	(GC/MS) (Cd	ontinued)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0		ug/L			10/16/11 16:54	1
1,1,2-Trichloro-1,2,2-trifluoroetl	nane ND		1.0		ug/L			10/16/11 16:54	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/16/11 16:54	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/16/11 16:54	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/16/11 16:54	1
1,4-Dichlorobenzene	ND ND		1.0		ug/L			10/16/11 16:54	1
Trichlorofluoromethane	UJ ND		1.0		ug/L			10/16/11 16:54	1
Chlorodibromomethane	located ND	0110	1.0		ug/L			10/16/11 16:54	1
Methylcyclohexane	on MS/ ND	BWY	2012 1.0		ug/L			10/16/11 16:54	1
	based ND on MS/ ND MSD results	11 0.							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		63 - 129					10/16/11 16:54	1
4-Bromofluorobenzene (Surr)	99		66 - 117					10/16/11 16:54	1
Toluene-d8 (Surr)	104		74 - 115					10/16/11 16:54	1
Dibromofluoromethane (Surr)	110		75 - 121					10/16/11 16:54	1
Method: RSK-175 - Diss	olved Gases (GC)								
Analyte	Parties of sales for the selection of the control o	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.50		ug/L			10/13/11 17:40	1
Ethane	ND		0.50		ug/L			10/13/11 17:40	1
Ethylene	ND		0.50		ug/L			10/13/11 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	98		10 - 168					10/13/11 17:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.88		0.10		mg/L			10/07/11 10:24	1
Alkalinity	120		5.0		mg/L			10/10/11 16:25	1
Chloride	3.3		1.0		mg/L			10/11/11 11:44	1
Sulfate	22		5.0		mg/L			10/18/11 10:23	1
Sulfide	2.8	1	1.0		mg/L			10/11/11 09:19	1
Total Organic Carbon	ND	aus	1.0		mg/L			10/13/11 08:33	1
		N	1						

Method: 8260B	 Volatile 	Organic	Compounds	(GC/MS)
---------------	------------------------------	---------	-----------	---------

Client Sample ID: OW6

Date Collected: 10/05/11 12:20

Date Received: 10/06/11 09:00

memour once relative erganie									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		17	1	ug/L			10/17/11 11:30	1.67
Benzene	ND		1.7	j.	ug/L			10/17/11 11:30	1.67
Dichlorobromomethane	ND		1.7)	ug/L			10/17/11 11:30	1.67
Bromoform	ND		1.7	1	ug/L			10/17/11 11:30	1.67
Bromomethane	ND		1.7	1	ug/L			10/17/11 11:30	1.67
2-Butanone (MEK)	ND		17	1	ug/L			10/17/11 11:30	1.67
Carbon disulfide	ND		1.7	9	ug/L			10/17/11 11:30	1.67
Carbon tetrachloride	ND		1.7	3	ug/L			10/17/11 11:30	1.67
Chlorobenzene	ND		1.7	9	ug/L			10/17/11 11:30	1.67
Chloroethane	ND		1.7	9	ug/L			10/17/11 11:30	1.67

Lab Sample ID: 240-4593-5

Matrix: Water

MDL Unit

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: OW6

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: RSK-175 - Dissolved Gases (GC)

Toluene-d8 (Surr)

Analyte

Methane

Ethylene

Ethane

Lab Sample ID: 240-4593-5

Analyzed

Prepared

Date Collected: 10/05/11 12:20 Date Received: 10/06/11 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

104

103

106

104

ND

ND

ND

Result Qualifier

Matrix: Water

Dil Fac

Allalyto	itesuit .	Qualifier IV	- MOL OIII	D Frepared	Allalyzeu	Dillac	
Chloroform	ND	1.3	7 ug/L		10/17/11 11:30	1.67	
Chloromethane	ND	1.3	7 ug/L		10/17/11 11:30	1.67	
1,1-Dichloroethane	ND	1.7	7 ug/L		10/17/11 11:30	1.67	
1,2-Dichloroethane	ND	1.7	7 ug/L		10/17/11 11:30	1.67	
1,1-Dichloroethene	ND	1.5	7 ug/L		10/17/11 11:30	1.67	1
1,2-Dichloropropane	ND	1.5	7 ug/L		10/17/11 11:30	1.67	
cis-1,3-Dichloropropene	ND	1.3	7 ug/L		10/17/11 11:30	1.67	
trans-1,3-Dichloropropene	ND	1.5	7 ug/L		10/17/11 11:30	1.67	
Ethylbenzene	ND	1.5	7 ug/L		10/17/11 11:30	1.67	
2-Hexanone	ND	17	7 ug/L		10/17/11 11:30	1.67	
Methylene Chloride	ND	1.7	ug/L		10/17/11 11:30	1.67	
4-Methyl-2-pentanone (MIBK)	ND	17	7 ug/L		10/17/11 11:30	1.67	
Styrene	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,1,2,2-Tetrachloroethane	ND	1.5	ug/L		10/17/11 11:30	1.67	
Tetrachloroethene	52	1.7	7 ug/L		10/17/11 11:30	1.67	
Toluene	ND	1.7	ug/L		10/17/11 11:30	1.67	
Trichloroethene	11	1.7	ug/L		10/17/11 11:30	1.67	
Vinyl chloride	ND	1.7	ug/L		10/17/11 11:30	1.67	
Xylenes, Total	ND	3.3	ug/L		10/17/11 11:30	1.67	
1,1,1-Trichloroethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,1,2-Trichloroethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
Cyclohexane	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,2-Dibromo-3-Chloropropane	ND	3.3	ug/L		10/17/11 11:30	1.67	
Ethylene Dibromide	ND	1.7	ug/L		10/17/11 11:30	1.67	
Dichlorodifluoromethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
cis-1,2-Dichloroethene	40	1.7	ug/L		10/17/11 11:30	1.67	
trans-1,2-Dichloroethene	ND	1.7	ug/L		10/17/11 11:30	1.67	
Isopropylbenzene	ND	1.7	ug/L		10/17/11 11:30	1.67	
Methyl acetate	ND	17	ug/L		10/17/11 11:30	1.67	
Methyl tert-butyl ether	ND	8.4	ug/L		10/17/11 11:30	1.67	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,2,4-Trichlorobenzene	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,2-Dichlorobenzene	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,3-Dichlorobenzene	ND	1.7	ug/L		10/17/11 11:30	1.67	
1,4-Dichlorobenzene	ND	1.7	ug/L		10/17/11 11:30	1.67	
Trichlorofluoromethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
Chlorodibromomethane	ND	1.7	ug/L		10/17/11 11:30	1.67	
Methylcyclohexane	ND	₂ 1.7	ug/L		10/17/11 11:30	1.67	
Surrogate	%Recovery	Qualifier Limits		Prepared	Analyzed	Dil Fac	
6 1 220 F 1	1,000				1005		

TestAmerica North Canton 11/03/2011

10/17/11 11:30

10/17/11 11:30

10/17/11 11:30

10/17/11 11:30

Analyzed

10/13/11 19:18

10/13/11 19:18

10/13/11 19:18

Prepared

1.67

1.67

1.67

1.67

Dil Fac

1

1

1

63 - 129

66 - 117

74 - 115

75 - 121

RL

0.50

0.50

0.50

MDL Unit

ug/L

ug/L

ug/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: OW6

Date Collected: 10/05/11 12:20 Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-5

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,1,1-Trifluoroethane	90		10 - 168					10/13/11 19:18	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate as N	0.42		0.10		mg/L			10/07/11 08:57	1	i
Alkalinity	54		5.0		mg/L			10/10/11 16:14	1	١
Chloride	4.0		1.0		mg/L			10/11/11 11:45	1	
Sulfate	28		5.0		mg/L			10/18/11 10:20	1	
Sulfide	ND		1.0		mg/L			10/11/11 09:19	1	
Total Organic Carbon	2.2		1.0		mg/L			10/13/11 09:38	1	
Client Sample ID: OW13R				• /	Se		Lab Sa	mple ID: 240-	4593-6	
Date Collected: 10/05/11 14:15			0	14.00) ·	0	112	/ Matrix	: Water	
Date Received: 10/06/11 09:00			Detected	mg (Di	Lin,	412013			
Method: 8260B - Volatile Organic		GC/MS)	DE TO	MDI	I I all	5. 1	Proposed	Angluzod	Dil Eac	

Method: 8260B - Volatile Organic	c Compounds (GC/MS)		V	11		
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L		10/16/11 18:25	1
Benzene	(ND) W)	1.0	ug/L		10/16/11 18:25	1
Dichlorobromomethane	ND	1.0	ug/L		10/16/11 18:25	1
Bromoform	ND	1.0	ug/L		10/16/11 18:25	1
Bromomethane	ND	1.0	ug/L		10/16/11 18:25	1
2-Butanone (MEK)	ND	10	ug/L		10/16/11 18:25	1
Carbon disulfide	ND	1.0	ug/L		10/16/11 18:25	1
Carbon tetrachloride	ND	1.0	ug/L		10/16/11 18:25	1
Chlorobenzene	ND	1.0	ug/L		10/16/11 18:25	1
Chloroethane	ND	1.0	ug/L		10/16/11 18:25	1
Chloroform	ND	1.0	ug/L		10/16/11 18:25	1
Chloromethane	ND	1.0	ug/L		10/16/11 18:25	1
1,1-Dichloroethane	ND	1.0	ug/L		10/16/11 18:25	1
1,2-Dichloroethane	ND	1.0	ug/L		10/16/11 18:25	1
1,1-Dichloroethene	ND	1.0	ug/L		10/16/11 18:25	1
1,2-Dichloropropane	ND	1.0	ug/L		10/16/11 18:25	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/16/11 18:25	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		10/16/11 18:25	1
Ethylbenzene	ND	1.0	ug/L		10/16/11 18:25	1
2-Hexanone	ND	10	ug/L		10/16/11 18:25	1
Methylene Chloride	ND	1.0	ug/L		10/16/11 18:25	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		10/16/11 18:25	1
Styrene	ND	1.0	ug/L		10/16/11 18:25	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		10/16/11 18:25	1
Tetrachloroethene	ND	1.0	ug/L		10/16/11 18:25	1
Toluene	ND	1.0	ug/L		10/16/11 18:25	1
Trichloroethene	ND	1.0	ug/L		10/16/11 18:25	1
Vinyl chloride	ND	1.0	ug/L		10/16/11 18:25	1
Xylenes, Total	ND	2.0	ug/L		10/16/11 18:25	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/16/11 18:25	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/16/11 18:25	1
Cyclohexane	ND	1.0	ug/L		10/16/11 18:25	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/16/11 18:25	1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-6

Matrix: Water

Client Sample ID: OW13R

Date Collected: 10/05/11 14:15 Date Received: 10/06/11 09:00

Method: 8260B - Volatile Organic	Compounds	(GC/MS) (Con	tinued)						
Analyte	The second of th	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND		1.0		ug/L			10/16/11 18:25	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/16/11 18:25	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/16/11 18:25	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/16/11 18:25	1
Isopropylbenzene	ND		1.0		ug/L			10/16/11 18:25	1
Methyl acetate	ND		10		ug/L			10/16/11 18:25	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/16/11 18:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			10/16/11 18:25	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/16/11 18:25	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/16/11 18:25	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/16/11 18:25	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/16/11 18:25	1
Trichlorofluoromethane	ND		1.0		ug/L			10/16/11 18:25	1
Chlorodibromomethane	ND		1.0		ug/L			10/16/11 18:25	1
Methylcyclohexane	ND		1.0		ug/L			10/16/11 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		63 - 129					10/16/11 18:25	1
4-Bromofluorobenzene (Surr)	95		66 - 117					10/16/11 18:25	1
Toluene-d8 (Surr)	103		74 - 115					10/16/11 18:25	1
Dibromofluoromethane (Surr)	99		75 - 121					10/16/11 18:25	1
Method: RSK-175 - Dissolved Gas	es (GC)								
Analyte	MANAGEMENT AND SAFETY OF THE PARTY OF THE PA	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND	Jus us	0.50		ug/L			10/13/11 19:51	1
Ethane	ND	Gecas	0.50		ug/L			10/13/11 19:51	1
Ethylene	ND	Antest	0.50		ug/L			10/13/11 19:51	1
minus Principals		Ora Le IN	field de	up io					
Surrogate	%Recovery	Qualifier	Limits	BHA			Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	77		10 - 168	A 7				10/13/11 19:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.95	Qualifor	0.10	IIIDL	mg/L		Troparou	10/07/11 11:16	1
Alkalinity	250		5.0		mg/L			10/10/11 17:07	1
Chloride	1.3		1.0		mg/L			10/11/11 11:45	1
Sulfate	33		1.0		mg/L			10/18/11 11:25	2
Sulfide	ND		1.0		mg/L			10/11/11 09:19	1
			1.0					10/13/11 09:49	1
Total Organic Carbon	4.4		1.0		mg/L			10/13/11 09.49	į,

Client Sample ID: DUP1 Date Collected: 10/05/11 00:00

Bromoform

Date Received: 10/06/11 09:00

Method: 8260B - Volatile Organic Compounds (G					
Analyte	Result Qualifier				
Acetone	ND				
Benzene	(1.3)				
Diebleschesmansthans	ND				

ND

MDL Unit 10 ug/L 1.0 ug/L

ug/L

ug/L

Prepared

Dil Fac Analyzed 10/16/11 18:47 10/16/11 18:47 10/16/11 18:47 10/16/11 18:47

1

1

1

Lab Sample ID: 240-4593-7

TestAmerica North Canton 11/03/2011

Page 19 of 50

1.0

1.0

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-7

Matrix: Water

Client Sample ID: DUP1

Dibromofluoromethane (Surr)

Date Collected: 10/05/11 00:00 Date Received: 10/06/11 09:00

Method: 8260B - Volatile Organic	Compounds (GC	:/MS) (Continued)					
Analyte	Result Qu		MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND	1.0	ug/L		S 23.00 0 00	10/16/11 18:47	1
2-Butanone (MEK)	ND	10	ug/L			10/16/11 18:47	1
Carbon disulfide	ND	1.0	ug/L			10/16/11 18:47	1
Carbon tetrachloride	ND	1.0	ug/L			10/16/11 18:47	1
Chlorobenzene	ND	1.0	ug/L			10/16/11 18:47	1
Chloroethane	ND	1.0	ug/L			10/16/11 18:47	1
Chloroform	ND	1.0	ug/L			10/16/11 18:47	1
Chloromethane	ND	1.0	ug/L			10/16/11 18:47	1
1,1-Dichloroethane	ND	1.0	ug/L			10/16/11 18:47	1
1,2-Dichloroethane	ND	1.0	ug/L			10/16/11 18:47	1
1,1-Dichloroethene	ND	1.0	ug/L			10/16/11 18:47	1
1,2-Dichloropropane	ND	1.0	ug/L			10/16/11 18:47	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/16/11 18:47	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/16/11 18:47	1
Ethylbenzene	ND	1.0	ug/L			10/16/11 18:47	1
2-Hexanone	ND	10	ug/L			10/16/11 18:47	1
Methylene Chloride	ND	1.0	ug/L			10/16/11 18:47	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/16/11 18:47	1
Styrene	ND	1.0	ug/L			10/16/11 18:47	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/16/11 18:47	1
Tetrachloroethene	ND	1.0	ug/L			10/16/11 18:47	1
Toluene	ND	1.0	ug/L			10/16/11 18:47	1
Trichloroethene	ND	1.0	ug/L			10/16/11 18:47	1
Vinyl chloride	ND	1.0	ug/L			10/16/11 18:47	1
Xylenes, Total	ND	2.0	ug/L			10/16/11 18:47	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/16/11 18:47	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/16/11 18:47	1
Cyclohexane	ND	1.0	ug/L			10/16/11 18:47	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/16/11 18:47	1
Ethylene Dibromide	ND	1.0	ug/L			10/16/11 18:47	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/16/11 18:47	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 18:47	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/16/11 18:47	1
Isopropylbenzene	ND	1.0	ug/L			10/16/11 18:47	1
Methyl acetate	ND	10	ug/L			10/16/11 18:47	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/16/11 18:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/16/11 18:47	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/16/11 18:47	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/16/11 18:47	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/16/11 18:47	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/16/11 18:47	1
Trichlorofluoromethane	ND	1.0	ug/L	*		10/16/11 18:47	1
Chlorodibromomethane	ND	1.0	ug/L			10/16/11 18:47	1
Methylcyclohexane	ND	1.0	ug/L			10/16/11 18:47	1
Surrogate	%Recovery Qu				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	63 - 129				10/16/11 18:47	1
4-Bromofluorobenzene (Surr)	97	66 - 117				10/16/11 18:47	1
Toluene-d8 (Surr)	104	74 - 115				10/16/11 18:47	1

10/16/11 18:47

75 - 121

106

Lab Sample ID: 240-4593-7

Matrix: Water

Method:	RSK-175.	haylossin.	Gases	(GC)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Ethylene	ND		0.50		ug/L			10/13/11 20:24	1	
Ethane	ND		0.50		ug/L			10/13/11 20:24	1	
Methane	0.50	3/	0.50		ug/L			10/13/11 20:24	1	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	11									

10 - 168

75

Dil Fac	Analyzed
1	10/13/11 20:24

General Chemistry

1,1,1-Trifluoroethane

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: DUP1

Date Collected: 10/05/11 00:00

Date Received: 10/06/11 09:00

General Chemistry							
Analyte	Result Qu	alifier / / RL	MDL Unit	D Prepared	Analyzed	Dil Fac	
Nitrate as N	0.86 H	0.10	mg/L		10/07/11 11:51	1	
Alkalinity	230	5.0	mg/L		10/10/11 17:16	1	
Chloride	1.4	1.0	mg/L		10/11/11 11:45	1	
Sulfate	34	0 1 2 1 50	mg/L		10/18/11 11:25	2	
Sulfide	ND	1 0.1 1/1/06/	mg/L	1/	10/11/11 09:19	1	
Total Organic Carbon	3.8	(1.0 l 1.0 d)	mg/L 0		10/13/11 10:22	1	
		C. I AIL					

Client Sample ID: TB2 Date Collected: 10/05/11 00:00 Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-8

Matrix: Water

Method: 8260B -	 Volatile 	Organic	Compounds	(GC/MS)	
			(A.2.6)	Access of the second	

Method: 8260B - Volatile Organic Compo	ounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10		ug/L			10/16/11 19:10	1
Benzene	ND		1.0		ug/L			10/16/11 19:10	1
Dichlorobromomethane	ND		1.0		ug/L			10/16/11 19:10	1
Bromoform	ND		1.0		ug/L			10/16/11 19:10	1
Bromomethane	ND		1.0		ug/L			10/16/11 19:10	1
2-Butanone (MEK)	ND		10		ug/L			10/16/11 19:10	1
Carbon disulfide	ND		1.0		ug/L			10/16/11 19:10	1
Carbon tetrachloride	ND		1.0		ug/L			10/16/11 19:10	1
Chlorobenzene	ND		1.0		ug/L			10/16/11 19:10	1
Chloroethane	ND		1.0		ug/L			10/16/11 19:10	1
Chloroform	ND		1.0		ug/L			10/16/11 19:10	1
Chloromethane	ND		1.0		ug/L			10/16/11 19:10	1
1,1-Dichloroethane	ND		1.0		ug/L			10/16/11 19:10	1
1,2-Dichloroethane	ND		1.0		ug/L			10/16/11 19:10	1
1,1-Dichloroethene	ND		1.0		ug/L			10/16/11 19:10	1
1,2-Dichloropropane	ND		1.0		ug/L			10/16/11 19:10	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/16/11 19:10	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/16/11 19:10	1
Ethylbenzene	ND		1.0		ug/L			10/16/11 19:10	1
2-Hexanone	ND		10		ug/L			10/16/11 19:10	1
Methylene Chloride	2.1		1.0		ug/L			10/16/11 19:10	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			10/16/11 19:10	1
Styrene	ND		1.0		ug/L			10/16/11 19:10	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			10/16/11 19:10	1
Tetrachloroethene	ND		1.0		ug/L			10/16/11 19:10	1
Toluene	ND		1.0		ug/L			10/16/11 19:10	1
Trichloroethene	ND		1.0		ug/L			10/16/11 19:10	1
Vinyl chloride	ND		1.0		ug/L			10/16/11 19:10	1

Client: Cardinal Resources

TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-8

Matrix: Water

Project/Site: C & D GW Sampling

Client Sample ID: TB2 Date Collected: 10/05/11 00:00 Date Received: 10/06/11 09:00

Method: 8260B - Volatile Organic	Compounds (GC/MS) (Continued)				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Xylenes, Total	ND	2.0	ug/L		10/16/11 19:10	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/16/11 19:10	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/16/11 19:10	1
Cyclohexane	ND	1.0	ug/L		10/16/11 19:10	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/16/11 19:10	1
Ethylene Dibromide	ND	1.0	ug/L		10/16/11 19:10	1
Dichlorodifluoromethane	ND	1.0	ug/L		10/16/11 19:10	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/16/11 19:10	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		10/16/11 19:10	1
Isopropylbenzene	ND	1.0	ug/L		10/16/11 19:10	1
Methyl acetate	ND	10	ug/L		10/16/11 19:10	1
Methyl tert-butyl ether	ND	5.0	ug/L		10/16/11 19:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		10/16/11 19:10	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/16/11 19:10	1
1,2-Dichlorobenzene	ND	1.0	ug/L		10/16/11 19:10	1
1,3-Dichlorobenzene	ND	1.0	ug/L		10/16/11 19:10	1
1,4-Dichlorobenzene	ND	1.0	ug/L		10/16/11 19:10	1
Trichlorofluoromethane	ND	1.0	ug/L		10/16/11 19:10	1
Chlorodibromomethane	ND	1.0	ug/L		10/16/11 19:10	1
Methylcyclohexane	ND	1.0	ug/L		10/16/11 19:10	1
	A/B 0 115				140	D# 5
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111	63 - 129			10/16/11 19:10	1
4-Bromofluorobenzene (Surr)	102	66 - 117			10/16/11 19:10	1
Toluene-d8 (Surr)	105	74 - 115			10/16/11 19:10	1
Dibromofluoromethane (Surr)	108	75 - 121			10/16/11 19:10	1

Surrogate Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

				Percent Sur	rrogate Recove	ery (Acceptance Limits
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)	
240-4593-1	OW8	104	99	103	104	
240-4593-2	MW1	112	91	104	105	
240-4593-3	FB2	104	99	105	95	
240-4593-4	OW5	110	99	104	110	
240-4593-4 MS	OW5	111	105	107	104	
240-4593-4 MSD	OW5	109	125 X	106	102	
240-4593-5	OW6	104	103	106	104	
240-4593-6	OW13R	102	95	103	99	
240-4593-7	DUP1	107	97	104	106	
240-4593-8	TB2	111	102	105	108	
LCS 240-19305/4	Lab Control Sample	103	116	105	105	
LCS 240-19349/4	Lab Control Sample	104	114	106	102	
LCS 240-21450/10	Lab Control Sample	102	108	106	106	
MB 240-19305/5	Method Blank	103	102	102	101	
MB 240-19349/5	Method Blank	106	102	102	106	
MB 240-21450/11	Method Blank	103	100	102	96	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: RSK-175 - Dissolved Gases (GC)

Matrix: Water

Percent Surrogate Recovery (Acceptance Limits)

		Trifluoroetl
Lab Sample ID	Client Sample ID	(10-168)
240-4593-1	OW8	105
240-4593-2	MW1	103
240-4593-4	OW5	98
240-4593-4 MS	OW5	93
240-4593-4 MSD	OW5	92
240-4593-5	OW6	90
240-4593-6	OW13R	77
240-4593-7	DUP1	75
LCS 240-19036/3	Lab Control Sample	93
MB 240-19036/4	Method Blank	92

Surrogate Legend

1,1,1-Trifluoroethane = 1,1,1-Trifluoroethane

Client: Cardinal Resources Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-19305/5

Matrix: Water

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analysis Batch: 19305								
Amaryoto Batom 10000	МВ	МВ						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	ug/L		16 5 43	10/16/11 13:07	1
Benzene	ND		1.0	ug/L			10/16/11 13:07	1
Dichlorobromomethane	ND		1.0	ug/L			10/16/11 13:07	1
Bromoform	ND		1.0	ug/L			10/16/11 13:07	1
Bromomethane	ND		1.0	ug/L			10/16/11 13:07	1
2-Butanone (MEK)	ND		10	ug/L			10/16/11 13:07	1
Carbon disulfide	ND		1.0	ug/L			10/16/11 13:07	1
Carbon tetrachloride	ND		1.0	ug/L			10/16/11 13:07	1
Chlorobenzene	ND		1.0	ug/L			10/16/11 13:07	1
Chloroethane	ND		1.0	ug/L			10/16/11 13:07	1
Chloroform	ND		1.0	ug/L			10/16/11 13:07	1
Chloromethane	ND		1.0	ug/L			10/16/11 13:07	1
1,1-Dichloroethane	ND		1.0	ug/L			10/16/11 13:07	1
1,2-Dichloroethane	ND		1.0	ug/L			10/16/11 13:07	1
1,1-Dichloroethene	ND		1.0	ug/L			10/16/11 13:07	1
1,2-Dichloropropane	ND		1.0	ug/L			10/16/11 13:07	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			10/16/11 13:07	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/16/11 13:07	1
Ethylbenzene	ND		1.0	ug/L			10/16/11 13:07	1
2-Hexanone	ND		10	ug/L			10/16/11 13:07	1
Methylene Chloride	ND		1.0	ug/L			10/16/11 13:07	1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L			10/16/11 13:07	1
Styrene	ND		1.0	ug/L			10/16/11 13:07	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			10/16/11 13:07	1
Tetrachloroethene	ND		1.0	ug/L			10/16/11 13:07	1
Toluene	ND		1.0	ug/L			10/16/11 13:07	1
Trichloroethene	ND		1.0	ug/L			10/16/11 13:07	1
Vinyl chloride	ND		1.0	ug/L			10/16/11 13:07	1
Xylenes, Total	ND		2.0	ug/L			10/16/11 13:07	1
1,1,1-Trichloroethane	ND		1.0	ug/L			10/16/11 13:07	1
1,1,2-Trichloroethane	ND		1.0	ug/L			10/16/11 13:07	1
Cyclohexane	ND		1.0	ug/L			10/16/11 13:07	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			10/16/11 13:07	1
Ethylene Dibromide	ND		1.0	ug/L			10/16/11 13:07	1
Dichlorodifluoromethane	ND		1.0	ug/L			10/16/11 13:07	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			10/16/11 13:07	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/16/11 13:07	1
Isopropylbenzene	ND		1.0	ug/L			10/16/11 13:07	1
Methyl acetate	ND		10	ug/L			10/16/11 13:07	1
Methyl tert-butyl ether	ND		5.0	ug/L			10/16/11 13:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/L			10/16/11 13:07	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/16/11 13:07	1
1,2-Dichlorobenzene	ND		1.0	ug/L			10/16/11 13:07	1
1,3-Dichlorobenzene	ND		1.0	ug/L			10/16/11 13:07	1
1,4-Dichlorobenzene	ND		1.0	ug/L			10/16/11 13:07	1
Trichlorofluoromethane	ND		1.0	ug/L			10/16/11 13:07	1
Chlorodibromomethane	ND		1.0	ug/L			10/16/11 13:07	1
Methylcyclohexane	ND		1.0	ug/L			10/16/11 13:07	1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-19305/5

Lab Sample ID: LCS 240-19305/4

Matrix: Water

Matrix: Water

Analysis Batch: 19305

Client	Sample	ID:	Method	Blank	
	Dr	an T	Tyne: To	tal/NA	

	МВ	MB				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		63 - 129		10/16/11 13:07	1
4-Bromofluorobenzene (Surr)	102		66 - 117		10/16/11 13:07	1
Toluene-d8 (Surr)	102		74 - 115		10/16/11 13:07	1
Dibromofluoromethane (Surr)	101		75 - 121		10/16/11 13:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 19305						
	Spike	LCS	LCS			% Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Acetone	20.0	16.8	ug/L		84	43 - 136
Benzene	10.0	9.28	ug/L		93	83 - 112
Dichlorobromomethane	10.0	9.01	ug/L		90	72 - 121
Bromoform	10.0	10.1	ug/L		101	40 - 131
Bromomethane	10.0	7.85	ug/L		79	11 - 185
2-Butanone (MEK)	20.0	19.4	ug/L		97	60 - 126
Carbon disulfide	10.0	9.20	ug/L		92	62 - 142
Carbon tetrachloride	10.0	9.74	ug/L		97	66 - 128
Chlorobenzene	10.0	9.23	ug/L		92	85 - 110
Chloroethane	10.0	9.04	ug/L		90	25 - 153
Chloroform	10.0	9.73	ug/L		97	79 - 117
Chloromethane	10.0	8.47	ug/L		85	44 - 126
1.1 Diableroothens	10.0	9.75	ua/l		98	82 115

Acetone	20.0	16.8	ug/L	84	43 - 136
Benzene	10.0	9.28	ug/L	93	83 - 112
Dichlorobromomethane	10.0	9.01	ug/L	90	72 - 121
Bromoform	10.0	10.1	ug/L	101	40 - 131
Bromomethane	10.0	7.85	ug/L	79	11 - 185
2-Butanone (MEK)	20.0	19.4	ug/L	97	60 - 126
Carbon disulfide	10.0	9.20	ug/L	92	62 - 142
Carbon tetrachloride	10.0	9.74	ug/L	97	66 - 128
Chlorobenzene	10.0	9.23	ug/L	92	85 - 110
Chloroethane	10.0	9.04	ug/L	90	25 - 153
Chloroform	10.0	9.73	ug/L	97	79 - 117
Chloromethane	10.0	8.47	ug/L	85	44 - 126
1,1-Dichloroethane	10.0	9.75	ug/L	98	82 - 115
1,2-Dichloroethane	10.0	9.49	ug/L	95	71 - 127
1,1-Dichloroethene	10.0	10.5	ug/L	105	78 - 131
1,2-Dichloropropane	10.0	9.29	ug/L	93	81 - 115
cis-1,3-Dichloropropene	10.0	9.26	ug/L	93	61 - 115
trans-1,3-Dichloropropene	10.0	9.82	ug/L	98	58 - 117
Ethylbenzene	10.0	9.27	ug/L	93	83 - 112
2-Hexanone	20.0	20.7	ug/L	104	55 - 133
Methylene Chloride	10.0	8.87	ug/L	89	66 - 131
4-Methyl-2-pentanone (MIBK)	20.0	20.1	ug/L	101	63 - 128
Styrene	10.0	9.47	ug/L	95	79 - 114
1,1,2,2-Tetrachloroethane	10.0	8.98	ug/L	90	68 - 118
Tetrachloroethene	10.0	9.61	ug/L	96	79 - 114
Toluene	10.0	9.34	ug/L	93	84 - 111
Trichloroethene	10.0	9.00	ug/L	90	76 - 117
Vinyl chloride	10.0	8.81	ug/L	88	53 - 127
Xylenes, Total	30.0	28.4	ug/L	95	83 - 112
1,1,1-Trichloroethane	10.0	9.46	ug/L	95	74 - 118
1,1,2-Trichloroethane	10.0	9.31	ug/L	93	80 - 112
Cyclohexane	10.0	10.5	ug/L	105	54 - 121
1,2-Dibromo-3-Chloropropane	10.0	8.77	ug/L	88	42 - 136
Ethylene Dibromide	10.0	9.27	ug/L	93	79 - 113
Dichlorodifluoromethane	10.0	7.65	ug/L	77	19 - 129
cis-1,2-Dichloroethene	10.0	9.35	ug/L	94	80 - 113
trans-1,2-Dichloroethene	10.0	9.51	ug/L	95	83 - 117
Isopropylbenzene	10.0	9.46	ug/L	95	75 - 114
Methyl acetate	10.0	ND	ug/L	95	58 - 131

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

1.0

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-19305/4

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 19305

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	10.0	9.52		ug/L		95	52 - 144
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	11.6		ug/L		116	74 - 151
ne							
1,2,4-Trichlorobenzene	10.0	8.29		ug/L		83	48 - 135
1,2-Dichlorobenzene	10.0	9.15		ug/L		92	81 - 110
1,3-Dichlorobenzene	10.0	9.14		ug/L		91	80 - 110
1,4-Dichlorobenzene	10.0	9.17		ug/L		92	82 - 110
Trichlorofluoromethane	10.0	9.85		ug/L		99	49 - 157
Chlorodibromomethane	10.0	9.56		ug/L		96	64 - 119
Methylcyclohexane	10.0	10.7		ug/L		107	56 - 127
m-Xylene & p-Xylene	20.0	18.6		ug/L		93	83 - 113
o-Xylene	10.0	9.76		ug/L		98	83 - 113

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		63 - 129
4-Bromofluorobenzene (Surr)	116		66 - 117
Toluene-d8 (Surr)	105		74 - 115
Dibromofluoromethane (Surr)	105		75 - 121

Lab Sample ID: 240-4593-4 MS

Matrix: Water

matrixi stator						32 75 75 75 75 1
Analysis Batch: 19305						
	Sample Sa	ample Spike	MS			% Rec.
Analyte	Result Q	ualifier Added	Result	Qualifier Unit	D %Rec	Limits
Acetone	ND	20.0	18.1	ug/L	91	33 - 145
Benzene	ND	10.0	9.28	ug/L	93	72 - 121
Dichlorobromomethane	ND	10.0	8.60	ug/L	86	67 - 120
Bromoform	ND	10.0	10.3	ug/L	103	32 - 128
Bromomethane	ND	10.0	7.32	ug/L	73	10 - 186
2-Butanone (MEK)	ND	20.0	18.7	ug/L	94	54 - 129
Carbon disulfide	ND	10.0	8.85	ug/L	89	57 - 147
Carbon tetrachloride	ND	10.0	9.79	ug/L	98	59 - 129
Chlorobenzene	ND	10.0	8.65	ug/L	87	80 - 110
Chloroethane	ND	10.0	8.20	ug/L	82	21 - 165
Chloroform	ND	10.0	9.22	ug/L	92	76 - 118
Chloromethane	ND	10.0	8.81	ug/L	88	33 - 132
1,1-Dichloroethane	ND	10.0	9.54	ug/L	95	79 - 116
1,2-Dichloroethane	ND	10.0	9.80	ug/L	98	68 - 129
1,1-Dichloroethene	ND	10.0	10.2	ug/L	102	74 - 135
1,2-Dichloropropane	ND	10.0	9.54	ug/L	95	78 - 115
cis-1,3-Dichloropropene	ND	10.0	7.98	ug/L	80	51 - 110
trans-1,3-Dichloropropene	ND	10.0	8.93	ug/L	89	46 - 116
Ethylbenzene	ND	10.0	8.73	ug/L	87	75 - 116
2-Hexanone	ND	20.0	21.3	ug/L	107	47 - 139
Methylene Chloride	ND	10.0	7.40	ug/L	74	63 - 128
4-Methyl-2-pentanone (MIBK)	ND	20.0	20.2	ug/L	101	56 - 131
Styrene	ND	10.0	8.94	ug/L	89	71 - 117
1,1,2,2-Tetrachloroethane	ND	10.0	8.38	ug/L	84	63 - 122
Tetrachloroethene	1.4	10.0	10.1	ug/L	87	70 - 117
Toluene	ND	10.0	8.86	ug/L	89	78 - 114

Client Sample ID: OW5

Prep Type: Total/NA

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: OW5 Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-4593-4 MS

Matrix: Water

Analysis Batch: 19305

Allalysis Datelli, 19303									
	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichloroethene	ND		10.0	8.81		ug/L		84	66 - 120
Vinyl chloride	ND		10.0	8.70		ug/L		87	49 - 130
Xylenes, Total	ND		30.0	26.4		ug/L		88	76 - 116
1,1,1-Trichloroethane	ND		10.0	9.74		ug/L		97	68 - 121
1,1,2-Trichloroethane	ND		10.0	8.83		ug/L		88	75 - 115
Cyclohexane	ND		10.0	10.6		ug/L		106	49 - 123
1,2-Dibromo-3-Chloropropane	ND		10.0	7.76		ug/L		78	32 - 139
Ethylene Dibromide	ND		10.0	8.92		ug/L		89	74 - 113
Dichlorodifluoromethane	ND		10.0	7.15		ug/L		72	17 - 128
cis-1,2-Dichloroethene	ND		10.0	9.56		ug/L		90	70 - 120
trans-1,2-Dichloroethene	ND		10.0	9.54		ug/L		95	80 - 119
Isopropylbenzene	ND		10.0	8.92		ug/L		89	68 - 116
Methyl acetate	ND		10.0	ND		ug/L		89	47 - 130
Methyl tert-butyl ether	ND		10.0	8.71		ug/L		87	46 - 144
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		10.0	12.3		ug/L		123	70 - 152
ne	74722		and the	0200202		157-174		192523.1	
1,2,4-Trichlorobenzene	ND		10.0	6.51		ug/L		65	38 - 138
1,2-Dichlorobenzene	ND		10.0	8.92		ug/L		89	75 - 111
1,3-Dichlorobenzene	ND		10.0	8.43		ug/L		84	73 - 110
1,4-Dichlorobenzene	ND		10.0	8.85		ug/L		89	75 - 110
Trichlorofluoromethane	ND		10.0	9.02		ug/L		90	46 - 157
Chlorodibromomethane	ND		10.0	9.02		ug/L		90	56 - 118
Methylcyclohexane	ND		10.0	10.5		ug/L		105	49 - 127
m-Xylene & p-Xylene	ND		20.0	17.7		ug/L		89	75 - 117
o-Xylene	ND		10.0	8.74		ug/L		87	76 - 116

MS MS

and the	
% Recovery Qualifier	Limits
111	63 - 129
105	66 - 117
107	74 - 115
104	75 - 121
	111 105 107

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 19305											
15	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		20.0	17.3		ug/L		87	33 - 145	5	30
Benzene	ND		10.0	9.48		ug/L		95	72 - 121	2	30
Dichlorobromomethane	ND		10.0	9.44		ug/L		94	67 - 120	9	30
Bromoform	ND		10.0	9.91		ug/L		99	32 - 128	4	30
Bromomethane	ND		10.0	8.15		ug/L		82	10 - 186	11	30
2-Butanone (MEK)	ND		20.0	19.2		ug/L		96	54 - 129	3	30
Carbon disulfide	ND		10.0	9.10		ug/L		91	57 - 147	3	30
Carbon tetrachloride	ND		10.0	9.37		ug/L		94	59 - 129	4	30
Chlorobenzene	ND		10.0	9.51		ug/L		95	80 - 110	9	30
Chloroethane	ND		10.0	8.02		ug/L		80	21 - 165	2	30
Chloroform	ND		10.0	10.1		ug/L		101	76 - 118	9	30
Chloromethane	ND		10.0	8.70		ug/L		87	33 - 132	1	30
1,1-Dichloroethane	ND		10.0	10.0		ug/L		100	79 - 116	5	30

Client Sample ID: OW5

Prep Type: Total/NA

Client: Cardinal Resources Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 19305

Client Sample ID: OW5 Prep Type: Total/NA

U	(-o)	
-11		
-		

Allalysis Datell. 19303	Sample S	ample Spike	MSD	MSD		% Rec.		RPD
Analyte	Result Q	8.0		Qualifier Unit	D %Rec		RPD	Limit
1,2-Dichloroethane	ND	danner Added	9.70	ug/L	97	68 ₋ 129	1	30
1,1-Dichloroethene	ND	10.0	10.2	ug/L	102		0	30
1,2-Dichloropropane	ND	10.0	9.70	ug/L	97		2	30
AN ANDERSON STATE OF AN AND STATE AND	ND	10.0	9.08	ug/L ug/L	91	51 - 110	13	30
cis-1,3-Dichloropropene	ND	10.0	9.07		91	46 - 116	2	30
trans-1,3-Dichloropropene		10.0	9.74	ug/L	97	75 - 116	11	30
Ethylbenzene	ND ND	20.0	21.5	ug/L	108		1	30
2-Hexanone				ug/L	89		18	30
Methylene Chloride	ND	10.0	8.85	ug/L	100		1	30
4-Methyl-2-pentanone (MIBK)	ND	20.0	19.9	ug/L			9	30
Styrene	ND	10.0	9.74	ug/L	97			30
1,1,2,2-Tetrachloroethane	ND	10.0	8.68	ug/L	87		4	
Tetrachloroethene	1.4	10.0	10.3	ug/L	89		2	30
Toluene	ND	10.0	9.26	ug/L	93		4	30
Trichloroethene	ND	10.0	9.70	ug/L	93		10	30
Vinyl chloride	ND	10.0	9.07	ug/L	91		4	30
Xylenes, Total	ND	30.0	29.0	ug/L	97		9	30
1,1,1-Trichloroethane	ND	10.0	9.78	ug/L	98		0	30
1,1,2-Trichloroethane	ND	10.0	9.78	ug/L	98		10	30
Cyclohexane	ND	10.0	8.64	ug/L	86		20	30
1,2-Dibromo-3-Chloropropane	ND	10.0	7.85	ug/L	79		1	30
Ethylene Dibromide	ND	10.0	9.46	ug/L	95		6	30
Dichlorodifluoromethane	ND	10.0	6.61	ug/L	66		8	30
cis-1,2-Dichloroethene	ND	10.0	10.1	ug/L	95	70 - 120	5	30
trans-1,2-Dichloroethene	ND	10.0	9.54	ug/L	95	80 - 119	0	30
Isopropylbenzene	ND	10.0	9.58	ug/L	96	68 - 116	7	30
Methyl acetate	ND	10.0	ND	ug/L	86	47 - 130	3	30
Methyl tert-butyl ether	ND	10.0	9.38	ug/L	94	46 - 144	7	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	10.0	10.1	ug/L	101	70 - 152	20	30
ne		12 min		72500 00				
1,2,4-Trichlorobenzene	ND	10.0	7.70	ug/L	77		17	30
1,2-Dichlorobenzene	ND	10.0	9.14	ug/L	91		2	30
1,3-Dichlorobenzene	ND	10.0	8.66	ug/L	87		3	30
1,4-Dichlorobenzene	ND	10.0	8.62	ug/L	86		3	30
Trichlorofluoromethane	ND	10.0	5.75		58		44	30
Chlorodibromomethane	ND	10.0	9.57	ug/L	96		6	30
Methylcyclohexane	ND	10.0	8.31	ug/L	83		23	30
m-Xylene & p-Xylene	ND	20.0	19.0	ug/L	95		7	30
o-Xylene	ND	10.0	10.0	ug/L	100	76 - 116	13	30

MSD MSD

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		63 - 129
4-Bromofluorobenzene (Surr)	125	X	66 - 117
Toluene-d8 (Surr)	106		74 - 115
Dibromofluoromethane (Surr)	102		75 - 121

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-19349/5

Matrix: Water

Analysis Batch: 19349

Chlorodibromomethane

Methylcyclohexane

Client Sample ID: Method Bla	nk
Pren Tyne: Total/N	JΔ

Analysis Daton: 10040						
Access to	MB		NDI II-ia	D. Deswared	Auglined	Dil Fac
Analyte	ND	Qualifier RL 10	MDL Unit ug/L		Analyzed 10/17/11 11:08	DII FAC 1
Acetone Benzene	ND	1.0	ug/L		10/17/11 11:08	1
Dichlorobromomethane	ND	1.0	ug/L		10/17/11 11:08	1
Bromoform	ND	1.0	ug/L		10/17/11 11:08	1
Bromomethane	ND	1.0	ug/L		10/17/11 11:08	1
2-Butanone (MEK)	ND	10	ug/L		10/17/11 11:08	1
Carbon disulfide	ND	1.0	ug/L		10/17/11 11:08	1
Carbon tetrachloride	ND	1.0			10/17/11 11:08	1
Chlorobenzene	ND	1.0	ug/L		10/17/11 11:08	1
Chloroethane	ND	1.0	670		10/17/11 11:08	1
Chloroform	ND	1.0	17.5		10/17/11 11:08	1
Chloromethane	ND	1.0			10/17/11 11:08	1
1,1-Dichloroethane	ND	1.0			10/17/11 11:08	1
1,2-Dichloroethane	ND	1.0			10/17/11 11:08	1
1,1-Dichloroethene	ND	1.0			10/17/11 11:08	1
1,2-Dichloropropane	ND	1.0	ug/L		10/17/11 11:08	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/17/11 11:08	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		10/17/11 11:08	1
Ethylbenzene	ND	1.0	ug/L		10/17/11 11:08	1
2-Hexanone	ND	10	ug/L		10/17/11 11:08	1
Methylene Chloride	ND	1.0	ug/L		10/17/11 11:08	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		10/17/11 11:08	1
Styrene	ND	1.0	ug/L		10/17/11 11:08	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		10/17/11 11:08	1
Tetrachloroethene	ND	1.0	ug/L		10/17/11 11:08	1
Toluene	ND	1.0	ug/L		10/17/11 11:08	1
Trichloroethene	ND	1.0	ug/L		10/17/11 11:08	1
Vinyl chloride	ND	1.0	ug/L		10/17/11 11:08	1
Xylenes, Total	ND	2.0	ug/L		10/17/11 11:08	1
1,1,1-Trichloroethane	ND	1.0	1 510 7 000		10/17/11 11:08	1
1,1,2-Trichloroethane	ND	1.0	250		10/17/11 11:08	1
Cyclohexane	ND	1.0	379		10/17/11 11:08	1
1,2-Dibromo-3-Chloropropane	ND	2.0			10/17/11 11:08	1
Ethylene Dibromide	ND	1.0	10 7 51		10/17/11 11:08	1
Dichlorodifluoromethane	ND	1.0	187		10/17/11 11:08	1
cis-1,2-Dichloroethene	ND	1.0			10/17/11 11:08	1
trans-1,2-Dichloroethene	ND	1.0			10/17/11 11:08	1
Isopropylbenzene	ND	1.0			10/17/11 11:08	
Methyl acetate	ND	10			10/17/11 11:08	1
Methyl tert-butyl ether	ND ND	5.0			10/17/11 11:08 10/17/11 11:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	2000		10/17/11 11:08	1
1,2,4-Trichlorobenzene	ND ND	1.0 1.0			10/17/11 11:08	1
1,2-Dichlorobenzene	ND ND	1.0			10/17/11 11:08	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	1.0			10/17/11 11:08	1
Trichlorofluoromethane	ND	1.0			10/17/11 11:08	1
The horomorphic marks	IAD	1.0	ug/L		10/1//11 11:00	:

10/17/11 11:08

10/17/11 11:08

1.0

1.0

ug/L

ug/L

ND

ND

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Dil Fac

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-19349/5

Matrix: Water

Analysis Batch: 19349

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB			
Surrogate	% Recovery	Qualifier Limit	Prepared	Analyzed	
1,2-Dichloroethane-d4 (Surr)	106	63 - 1	29	10/17/11 11:08	
4-Bromofluorobenzene (Surr)	102	66 - 1	17	10/17/11 11:08	
Toluene-d8 (Surr)	102	74 - 1	15	10/17/11 11:08	
Dibromofluoromethane (Surr)	106	75 - 1	21	10/17/11 11:08	

Lab Sample ID: LCS 240-19349/4

Matrix: Water

Analysis Batch: 19349						
	Spike	LCS	LCS			% Rec.
Analyte	Added	Result	Qualifier Unit	D %	%Rec	Limits
Acetone	20.0	18.3	ug/L		92	43 - 136
Benzene	10.0	9.71	ug/L		97	83 - 112
Dichlorobromomethane	10.0	9.75	ug/L		98	72 - 121
Bromoform	10.0	11.7	ug/L		117	40 - 131
Bromomethane	10.0	7.67	ug/L		77	11 - 185
2-Butanone (MEK)	20.0	19.2	ug/L		96	60 - 126
Carbon disulfide	10.0	9.14	ug/L		91	62 - 142
Carbon tetrachloride	10.0	9.86	ug/L		99	66 - 128
Chlorobenzene	10.0	9.70	ug/L		97	85 - 110
Chloroethane	10.0	8.30	ug/L		83	25 - 153
Chloroform	10.0	9.86	ug/L		99	79 _ 117
Chloromethane	10.0	8.22	ug/L		82	44 - 126
1,1-Dichloroethane	10.0	10.2	ug/L		102	82 - 115
1,2-Dichloroethane	10.0	9.49	ug/L		95	71 - 127
1,1-Dichloroethene	10.0	9.37	ug/L		94	78 - 131
1,2-Dichloropropane	10.0	10.3	ug/L		103	81 - 115
cis-1,3-Dichloropropene	10.0	9.63	ug/L		96	61 - 115
trans-1,3-Dichloropropene	10.0	10.2	ug/L		102	58 - 117
Ethylbenzene	10.0	9.27	ug/L		93	83 - 112
2-Hexanone	20.0	21.9	ug/L		110	55 - 133
Methylene Chloride	10.0	9.06	ug/L		91	66 - 131
4-Methyl-2-pentanone (MIBK)	20.0	21.1	ug/L		106	63 - 128
Styrene	10.0	9.98	ug/L		100	79 - 114
1,1,2,2-Tetrachloroethane	10.0	9.47	ug/L		95	68 - 118
Tetrachloroethene	10.0	9.29	ug/L		93	79 - 114
Toluene	10.0	9.53	ug/L		95	84 - 111
Trichloroethene	10.0	9.01	ug/L		90	76 - 117
Vinyl chloride	10.0	8.10	ug/L		81	53 - 127
Xylenes, Total	30.0	28.7	ug/L		96	83 - 112
1,1,1-Trichloroethane	10.0	9.68	ug/L		97	74 - 118
1,1,2-Trichloroethane	10.0	10.1	ug/L		101	80 - 112
Cyclohexane	10.0	8.71	ug/L		87	54 - 121
1,2-Dibromo-3-Chloropropane	10.0	9.03	ug/L		90	42 - 136
Ethylene Dibromide	10.0	9.14	ug/L		91	79 - 113
Dichlorodifluoromethane	10.0	6.65	ug/L		67	19 - 129
cis-1,2-Dichloroethene	10.0	9.75	ug/L		98	80 - 113
trans-1,2-Dichloroethene	10.0	9.28	ug/L		93	83 - 117
Isopropylbenzene	10.0	9.77	ug/L		98	75 - 114
Methyl acetate	10.0	ND	ug/L		97	58 - 131

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

98

83 - 113

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-19349/4

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Matrix: Water Analysis Batch: 19349

o-Xylene

LCS LCS % Rec. Spike Result Qualifier Unit %Rec Limits Analyte Added 9.97 100 52 - 144 10.0 ug/L Methyl tert-butyl ether 74 - 151 97 10.0 9.69 ug/L 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,2,4-Trichlorobenzene 8.75 88 48 - 135 10.0 ug/L 101 81 - 110 10.1 10.0 ug/L 1,2-Dichlorobenzene 80 - 110 1,3-Dichlorobenzene 10.0 9.44 ug/L 94 9.78 98 82 - 110 1,4-Dichlorobenzene 10.0 ug/L 49 - 157 84 10.0 8.40 ug/L Trichlorofluoromethane 102 64 - 119 Chlorodibromomethane 10.0 10.2 ug/L Methylcyclohexane 10.0 8.66 ug/L 87 56 - 127 18.9 95 83 - 113 20.0 ug/L m-Xylene & p-Xylene

10.0

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 129
4-Bromofluorobenzene (Surr)	114		66 - 117
Toluene-d8 (Surr)	106		74 - 115
Dibromofluoromethane (Surr)	102		75 - 121

Lab Sample ID: MB 240-21450/11 Client Sample ID: Method Blank

9.82

ug/L

Matrix: Water Prep Type: Total/NA
Analysis Batch: 21450

		МВ			
Analyte	Result	Qualifier RL	MDL Unit	# :	Dil Fac
Acetone	ND	10	ug/L	11/01/11 15:51	
Benzene	ND	1.0	ug/L	11/01/11 15:51	
Dichlorobromome	thane ND	1.0	ug/L	11/01/11 15:51	
Bromoform	ND	1.0	ug/L	11/01/11 15:51	
Bromomethane	ND	1.0	ug/L	11/01/11 15:5	1 1
2-Butanone (MEK	nd ND	10	ug/L	11/01/11 15:5	1 1
Carbon disulfide	ND	1.0	ug/L	11/01/11 15:5	1 1
Carbon tetrachlori	ide ND	1.0	ug/L	11/01/11 15:5	1 1
Chlorobenzene	ND	1.0	ug/L	11/01/11 15:5	1 1
Chloroethane	ND	1.0	ug/L	11/01/11 15:5	1 1
Chloroform	ND	1.0	ug/L	11/01/11 15:5 ⁻	1 1
Chloromethane	ND	1.0	ug/L	11/01/11 15:5	1 1
1,1-Dichloroethan	e ND	1.0	ug/L	11/01/11 15:5	1 1
1,2-Dichloroethan	e ND	1.0	ug/L	11/01/11 15:5	1 1
1,1-Dichloroethen	ie ND	1.0	ug/L	11/01/11 15:5	1 1
1,2-Dichloropropa	ne ND	1.0	ug/L	11/01/11 15:5	1 1
cis-1,3-Dichloropr	opene ND	1.0	ug/L	11/01/11 15:5	1 1
trans-1,3-Dichloro	propene ND	1.0	ug/L	11/01/11 15:5	1 1
Ethylbenzene	ND	1.0	ug/L	11/01/11 15:5	1 1
2-Hexanone	ND	10	ug/L	11/01/11 15:5	1 1
Methylene Chloric	de ND	1.0	ug/L	11/01/11 15:5	1 1
4-Methyl-2-pentar	none (MIBK) ND	10	ug/L	11/01/11 15:5	1 1
Styrene	ND	1.0	ug/L	11/01/11 15:5	1 1
1,1,2,2-Tetrachlor	roethane ND	1.0	ug/L	11/01/11 15:5	1 1
Tetrachloroethene	e ND	1.0	ug/L	11/01/11 15:5	1 1
Toluene	ND	1.0	ug/L	11/01/11 15:5	1 1

RL

1.0

1.0

2.0

1.0

1.0

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв Result Qualifier

ND

ND

ND

ND

ND

100

102

96

Lab Sample ID: MB 240-21450/11

Matrix: Water

Analyte Trichloroethene

Vinyl chloride

Xylenes, Total

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Analysis Batch: 21450

Client Sample ID: Method Blank

Prepared

Prep Type: Total/NA

Analyzed	Dil Fac
11/01/11 15:51	1
11/01/11 15:51	1
11/01/11 15:51	1
11/01/11 15:51	1
11/01/11 15:51	1

1

Cyclohexane	ND		1.0	ug/L		11/01/11 15:51	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		11/01/11 15:51	1
Ethylene Dibromide	ND		1.0	ug/L		11/01/11 15:51	1
Dichlorodifluoromethane	ND		1.0	ug/L		11/01/11 15:51	1
cis-1,2-Dichloroethene	ND		1.0	ug/L		11/01/11 15:51	1
trans-1,2-Dichloroethene	ND		1.0	ug/L		11/01/11 15:51	1
Isopropylbenzene	ND		1.0	ug/L		11/01/11 15:51	1
Methyl acetate	ND		10	ug/L		11/01/11 15:51	1
Methyl tert-butyl ether	ND		5.0	ug/L		11/01/11 15:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/L		11/01/11 15:51	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/01/11 15:51	1
1,2-Dichlorobenzene	ND		1.0	ug/L		11/01/11 15:51	1
1,3-Dichlorobenzene	ND		1.0	ug/L		11/01/11 15:51	1
1,4-Dichlorobenzene	ND		1.0	ug/L		11/01/11 15:51	1
Trichlorofluoromethane	ND		1.0	ug/L		11/01/11 15:51	1
Chlorodibromomethane	ND		1.0	ug/L		11/01/11 15:51	1
Methylcyclohexane	ND		1.0	ug/L		11/01/11 15:51	1
	МО	МВ					
Anna and and and and and and and and and					: _ //00 **********	W#T-PARTED TO COMM	D" E
Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		63 - 129			11/01/11 15:51	1

66 - 117

74 - 115

75 - 121

Lab Sample ID: LCS 240-21450/10

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 21450

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/01/11 15:51

11/01/11 15:51

11/01/11 15:51

Allalysis Batch: 21450						
	Spike	LCS	LCS			% Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Acetone	20.0	18.3	ug/L		92	43 - 136
Benzene	10.0	9.59	ug/L		96	83 - 112
Dichlorobromomethane	10.0	9.35	ug/L		94	72 - 121
Bromoform	10.0	9.04	ug/L		90	40 - 131
Bromomethane	10.0	9.13	ug/L		91	11 - 185
2-Butanone (MEK)	20.0	17.7	ug/L		89	60 - 126
Carbon disulfide	10.0	10.0	ug/L		100	62 - 142
Carbon tetrachloride	10.0	8.53	ug/L		85	66 - 128
Chlorobenzene	10.0	9.38	ug/L		94	85 - 110
Chloroethane	10.0	9.24	ug/L		92	25 - 153
Chloroform	10.0	10.0	ug/L		100	79 - 117
Chloromethane	10.0	9.15	ug/L		92	44 - 126
1,1-Dichloroethane	10.0	10.0	ug/L		100	82 - 115
1,2-Dichloroethane	10.0	9.38	ug/L		94	71 - 127
1,1-Dichloroethene	10.0	10.9	ug/L		109	78 - 131

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-21450/10

Matrix: Water

Analysis Batch: 21450

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS			% Rec.	
Added	Result	Qualifier Unit	D	%Rec	Limits	
10.0	9.80	ug/L		98	81 - 115	
10.0	7.73	ug/L		77	61 - 115	
10.0	7.84	ug/L		78	58 - 117	
10.0	9.41	ug/L		94	83 - 112	
20.0	19.2	ug/L		96	55 - 133	
10.0	9.62	ug/L		96	66 - 131	
20.0	19.6	ug/L		98	63 - 128	
10.0	9.52	ug/L		95	79 - 114	
10.0	9.49	ug/L		95	68 - 118	
10.0	9.40	ug/L		94	79 - 114	
10.0	9.23	ug/L		92	84 - 111	
10.0	9.36	ug/L		94	76 - 117	
10.0	8.67	ug/L		87	53 - 127	
30.0	28.6	ug/L		95	83 - 112	
10.0	9.88	ug/L		99	74 - 118	
10.0	9.69	ug/L		97	80 - 112	
10.0	10.1	ug/L		101	54 - 121	
10.0	10.1	ug/L		101	42 - 136	
10.0	9.70	ug/L		97	79 - 113	
10.0	6.79	ug/L		68	19 - 129	
10.0	9.71	ug/L		97	80 - 113	
10.0	9.85	ug/L		99	83 - 117	
10.0	9.65	ug/L		97	75 - 114	
10.0	ND	ug/L		94	58 - 131	
10.0	9.88	ug/L		99	52 - 144	
10.0	11.7	ug/L		117	74 - 151	
12.1	2/22			. 22		
		7.00m)				
		200 G				
		100-may 2007				
		SV#115				
		1970				
10.0	9.57	ug/L		96	83 - 113	
	Added 10.0 10.0 10.0 10.0 20.0 10.0 20.0 10.0 1	Added Result 10.0 9.80 10.0 7.73 10.0 7.84 10.0 9.41 20.0 19.2 10.0 9.62 20.0 19.6 10.0 9.49 10.0 9.40 10.0 9.36 10.0 9.36 10.0 9.38 10.0 9.88 10.0 9.69 10.0 10.1 10.0 10.1 10.0 9.70 10.0 9.71 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.85 10.0 9.87 10.0 9.88 10.0 9.88 10.0 9.89 10.0 11.7	Added Result 10.0 Qualifier ug/L Unit ug/L 10.0 7.73 ug/L 10.0 7.84 ug/L 10.0 9.41 ug/L 20.0 19.2 ug/L 10.0 9.62 ug/L 20.0 19.6 ug/L 10.0 9.52 ug/L 10.0 9.49 ug/L 10.0 9.49 ug/L 10.0 9.40 ug/L 10.0 9.36 ug/L 10.0 9.36 ug/L 10.0 9.36 ug/L 10.0 9.88 ug/L 10.0 9.88 ug/L 10.0 9.69 ug/L 10.0 9.70 ug/L 10.0 9.71 ug/L 10.0 9.71 ug/L 10.0 9.85 ug/L 10.0 9.65 ug/L 10.0 9.66 ug/L 10.0 9	Added Result Qualifier Unit D 10.0 9.80 ug/L 10.0 7.73 ug/L 10.0 7.84 ug/L 10.0 9.41 ug/L 20.0 19.2 ug/L 10.0 9.62 ug/L 20.0 19.6 ug/L 10.0 9.49 ug/L 10.0 9.49 ug/L 10.0 9.36 ug/L 10.0 9.36 ug/L 10.0 9.88 ug/L 10.0 9.69 ug/L 10.0 10.1 ug/L 10.0 9.70 ug/L 10.0 9.71 ug/L 10.0 9.85 ug/L 10.0 9.85 ug/L 10.0 9.85 ug/L 10.0 9.88 ug/L 10.0 9.88 ug/L 10.0 9.71 ug/L 10.0 9.85 ug/L 10.0 9.88 ug/L 10.0 9.89 ug/L 10.0 9.71 ug/L 10.0 9.85 ug/L 10.0 9.66 ug/L 10.0 9.88 ug/L 10.0 9.89 ug/L 10.0 9.89 ug/L 10.0 9.90 ug/L 10.0 9.71 ug/L 10.0 9.85 ug/L 10.0 9.85 ug/L 10.0 9.87 ug/L 10.0 9.88 ug/L 10.0 9.89 ug/L 10.0 10.4 ug/L 10.0 9.32 ug/L 10.0 10.4 ug/L 10.0 7.93 ug/L 10.0 7.93 ug/L	Added Result Qualifier Unit D %Rec 10.0 9.80 ug/L 98 10.0 7.73 ug/L 77 10.0 7.84 ug/L 78 10.0 9.41 ug/L 94 20.0 19.2 ug/L 96 10.0 9.62 ug/L 96 20.0 19.6 ug/L 95 10.0 9.49 ug/L 95 10.0 9.49 ug/L 94 10.0 9.36 ug/L 97 10.0 9.88 ug/L 99 10.0 9.88 ug/L 99 10.0 9.88 ug/L 97 10.0 9.69 ug/L 97 10.0 9.70 ug/L 97 10.0 9.85 ug/L 99 10.0 9.88 ug/L 99 10.0 9.88 ug/L 99 10.0 9.88 ug/L 99 10.0 9.89 ug/L 97 10.0 9.89 ug/L 97 10.0 9.89 ug/L 97 10.0 9.89 ug/L 99 10.0 9.37 ug/L 94 10.0 9.32 ug/L 93 10.0 10.4 ug/L 94 10.0 9.32 ug/L 93 10.0 10.4 ug/L 104 100 7.93 ug/L 94 10.0 9.32 ug/L 93 10.0 10.4 ug/L 104 100 7.93 ug/L 94 10.0 9.32 ug/L 93 10.0 10.4 ug/L 104 10.0 7.93 ug/L 99 10.0 10.2 ug/L 93 10.0 10.2 ug/L 95	Added Result Qualifier Unit D %Rec Limits 10.0 9.80 ug/L 98 81 - 115 10.0 7.73 ug/L 77 61 - 115 10.0 7.84 ug/L 78 58 - 117 10.0 9.41 ug/L 94 83 - 112 20.0 19.2 ug/L 96 65 - 131 20.0 19.6 ug/L 98 63 - 128 10.0 9.62 ug/L 98 63 - 128 10.0 9.52 ug/L 98 63 - 128 10.0 9.49 ug/L 95 79 - 114 10.0 9.49 ug/L 95 68 - 118 10.0 9.40 ug/L 94 79 - 114 10.0 9.40 ug/L 94 79 - 114 10.0 9.36 ug/L 94 76 - 117 10.0 9.36 ug/L 94 76 - 117 10.0

LCS	LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		63 - 129
4-Bromofluorobenzene (Surr)	108		66 - 117
Toluene-d8 (Surr)	106		74 - 115
Dibromofluoromethane (Surr)	106		75 - 121

8

9

1(0)

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 240-19036/4

Matrix: Water

Analysis Batch: 19036

Client Sample	e ID:	Metho	od Blank
P	ren T	Tyne:	Total/NA

	WB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.50		ug/L			10/13/11 15:34	1
Ethane	ND		0.50		ug/L			10/13/11 15:34	1
Ethylene	ND		0.50		ug/L			10/13/11 15:34	1

MB MB

Dil Fac % Recovery Qualifier Limits Prepared Analyzed Surrogate 1,1,1-Trifluoroethane 92 10 - 168 10/13/11 15:34

Lab Sample ID: LCS 240-19036/3 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 19036

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methane	116	108		ug/L		93	75 - 114
Ethane	218	211		ug/L		97	71 - 123
Ethylene	203	179		ug/L		88	72 - 126

LCS LCS

% Recovery Qualifier Limits Surrogate 10 - 168 1,1,1-Trifluoroethane 93

> Client Sample ID: OW5 Prep Type: Total/NA

Matrix: Water

Lab Sample ID: 240-4593-4 MS

Analysis Batch: 19036

	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methane	ND		116	101		ug/L		88	75 - 114
Ethane	ND		218	200		ug/L		92	71 - 123
Ethylene	ND		203	175		ug/L		86	72 - 126

MS MS

Limits % Recovery Qualifier Surrogate 10 - 168 1,1,1-Trifluoroethane 93

Analysis Batch: 19036

Lab Sample ID: 240-4593-4 MSD	Client Sample ID: OW5
Matrix: Water	Prep Type: Total/NA

MSD MSD RPD Sample Sample Spike % Rec. Result Qualifier %Rec RPD Unit Analyte Result Qualifier Added Limits Limit 75 - 114 30 Methane ND 116 102 ug/L 88 1 Ethane ND 218 200 ug/L 92 71 - 123 0 30 72 - 126 30 Ethylene ND 203 172 ug/L 85

MSD MSD

Surrogate % Recovery Qualifier Limits 10-168 1,1,1-Trifluoroethane 92

RL

0.10

RL

0.10

Spike

Added

2.50

Spike

Added

2.50

Spike

Added

2.50

Spike

Added

2.50

Spike

MDL Unit

MDL Unit

LCS LCS

LCS LCS

MS MS

MS MS

3.48

Result Qualifier

2.71

Result Qualifier

242

Result Qualifier

2.41

Result Qualifier

mg/L

Unit

mg/L

Unit

mg/L

Unit

mq/L

Unit

mg/L

mg/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 240-18265/29

Matrix: Water

Analysis Batch: 18265

мв мв

Result Qualifier

ND

Sample Sample

Sample Sample

Sample Sample

0.88

Result Qualifier

0.15

Result Qualifier

Analyte Result Qualifier ND Nitrate as N

Lab Sample ID: MB 240-18265/53

Matrix: Water

Analysis Batch: 18265

мв мв

Analyte

Nitrate as N

Lab Sample ID: LCS 240-18265/30

Matrix: Water

Analysis Batch: 18265

Analyte Nitrate as N

Lab Sample ID: LCS 240-18265/54

Matrix: Water

Analysis Batch: 18265

Analyte

Nitrate as N

Lab Sample ID: 240-4593-2 MS Matrix: Water

Analysis Batch: 18265

Analyte

Nitrate as N

Lab Sample ID: 240-4593-4 MS

Matrix: Water

Analysis Batch: 18265

Analyte Nitrate as N

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 18265

Analyte Result Qualifier Nitrate as N 0.88

2.50

Added

Result Qualifier 3.47

MSD MSD

Unit mg/L

%Rec 104

Limits 80 - 120

% Rec.

Client Sample ID: Method Blank Prep Type: Total/NA

> Dil Fac Analyzed

> 10/07/11 02:52

Client Sample ID: Method Blank

Prep Type: Total/NA

Prepared Analyzed Dil Fac 10/07/11 09:49

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

%Rec Limits 96 90 - 110

%Rec

%Rec

%Rec

104

102

97

Prepared

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

Limits

90 - 110

Client Sample ID: MW1

Prep Type: Total/NA

% Rec. Limits

80 - 120

% Rec.

Limits

80 - 120

Client Sample ID: OW5

Prep Type: Total/NA

Client Sample ID: OW5

Prep Type: Total/NA

RPD Limit 20

RPD

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: OW5

Client Sample ID: OW5

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: OW5

Prep Type: Total/NA

Prep Type: Total/NA

Method: 310.1 - Alkalinity

Lab Sample ID: MB 240-18658/28

Matrix: Water

Analysis Batch: 18658

Prep Type: Total/NA

MB MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Alkalinity
 ND
 5.0
 mg/L
 10/10/11 14:56
 1

Lab Sample ID: LCS 240-18658/27

Matrix: Water

Analysis Batch: 18658

LCS LCS % Rec. Spike Unit %Rec Analyte Result Qualifier D Added Limits 90 - 127 Alkalinity 102 99.0 mg/L 97

Lab Sample ID: 240-4593-4 MS

Matrix: Water

Analysis Batch: 18658

MS MS % Rec. Sample Sample Spike Result Qualifier Unit D %Rec Analyte Result Qualifier Added Limits Alkalinity 120 500 525 mg/L 82 10 - 160

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 18658

MSD MSD % Rec. RPD Sample Sample Spike Analyte Result Qualifier Unit %Rec RPD Limit Limits Result Qualifier Added 83 10 - 160 24 Alkalinity 120 500 532 mg/L

Method: 325.2 - Chloride

Lab Sample ID: MB 240-18694/49

Matrix: Water

Analysis Batch: 18694

 MB MB

 Analyte
 Result Qualifier
 RL MDL Unit
 D Prepared
 Analyzed
 Dil Fac

 Chloride
 ND
 1.0
 mg/L
 10/11/11 11:44
 1

Lab Sample ID: LCS 240-18694/50

Matrix: Water

Analysis Batch: 18694

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit D %Rec Limits 88 - 114 Chloride 44.7 42.9 mg/L 96

Lab Sample ID: 240-4593-4 MS

Matrix: Water

Analysis Batch: 18694

MS MS Sample Sample Spike % Rec. Result Qualifier Unit %Rec Analyte Result Qualifier Added Limits 52 - 143 Chloride 3.3 25.0 27.8 mg/L

TestAmerica North Canton

Page 36 of 50

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: OW5

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: OW5

Client Sample ID: OW5

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: 325.2 - Chloride (Continued)

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 18694

MSD MSD Sample Sample Spike % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 25.0 33.6 mg/L 121 52 - 143 19 20

Method: 375.4 - Sulfate

Lab Sample ID: MB 240-19585/13

Matrix: Water

Analysis Batch: 19585

мв мв

Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed Sulfate ND 5.0 mg/L 10/18/11 10:00

Lab Sample ID: LCS 240-19585/34

Matrix: Water

Analysis Batch: 19585

LCS LCS Spike % Rec. Unit %Rec Analyte Result Qualifier Added D Limits Sulfate 29.5 28.4 mg/L 96 80 - 112

Lab Sample ID: 240-4593-4 MS

Matrix: Water

Analysis Batch: 19585

MS MS Sample Sample Spike % Rec. Result Qualifier %Rec Analyte Result Qualifier Added Unit Limits Sulfate 22 25.0 50.8 mg/L 114 22 - 151

Lab Sample ID: 240-4593-4 MSD

Matrix: Water

Analysis Batch: 19585

Sample Sample MSD MSD RPD Spike % Rec. Analyte Result Qualifier Unit %Rec RPD Result Qualifier Added Limits Limit Sulfate 25.0 51.0 22 - 151 0 22 mg/L 114 20

Method: 376.1 - Sulfide

Lab Sample ID: MB 240-18638/1

Matrix: Water

Prep Type: Total/NA Analysis Batch: 18638 мв мв

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Sulfide ND 1.0 mg/L 10/11/11 09:19 1

Lab Sample ID: LCS 240-18638/2

Matrix: Water

Analysis Batch: 18638

LCS LCS Spike % Rec. Analyte Result Qualifier Unit %Rec Added Limits Sulfide 16.5 16.4 99 79 - 110 mq/L

TestAmerica North Car 11/03/201

Prep Type: Total/NA

Page 37 of 50

Client: Cardinal Resources Project/Site: C & D GW Sampling

Method: 415.1 - TOC

Analysis Batch: 19004

TestAmerica Job ID: 240-4593-1

Method: 376.1 - Sulfide (Continued)

Client Sample ID: OW5 Lab Sample ID: 240-4593-4 MS

Matrix: Water Prep Type: Total/NA Analysis Batch: 18638

MS MS Sample Sample Spike % Rec. %Rec Result Qualifier Added Result Qualifier Unit D Limits Analyte

Sulfide 16.5 23.6 F mg/L 126 75 - 110

Client Sample ID: OW5 Lab Sample ID: 240-4593-4 MSD

Prep Type: Total/NA Matrix: Water Analysis Batch: 18638

MSD MSD RPD Sample Sample Spike % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Limit 20

23.4 F 125 75 - 110 1 Sulfide 2.8 16.5 mg/L

Client Sample ID: Method Blank Lab Sample ID: MB 240-19004/3

Prep Type: Total/NA Matrix: Water Analysis Batch: 19004

мв мв Dil Fac RI MDL Unit D Analyzed Result Qualifier Prepared Analyte 10/13/11 08:11 Total Organic Carbon ND 1.0 mg/L

Lab Sample ID: LCS 240-19004/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

LCS LCS Spike % Rec. Result Qualifier %Rec Unit Analyte Added Limits 88 - 115 29.6 99 **Total Organic Carbon** 29.9 mg/L

Client Sample ID: OW5 Lab Sample ID: 240-4593-4 MS Prep Type: Total/NA Matrix: Water

Analysis Batch: 19004 MS MS % Rec. Spike Sample Sample

Result Qualifier Unit %Rec Limits Added Analyte Result Qualifier 72 - 136 25.0 26.2 mg/L 101 Total Organic Carbon ND

Client Sample ID: OW5 Lab Sample ID: 240-4593-4 MSD

Prep Type: Total/NA Matrix: Water Analysis Batch: 19004

MSD MSD RPD Spike % Rec. Sample Sample Result Qualifier Unit %Rec **RPD** Limits Limit Result Qualifier Added Analyte mg/L 103 72 - 136 ND 25.0 26.7 **Total Organic Carbon**

Lab Sample ID: MB 240-19276/3 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 19276

MB MB Dil Fac Result Qualifier RL MDL Unit Prepared Analyzed Analyte 10/14/11 14:44 **Total Organic Carbon** ND 1.0 mg/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

3d 000 1D. 210 1000 1

Prep Type: Total/NA

Method: 415.1 - TOC (Continued)

Lab Sample ID: LCS 240-19276/4

Matrix: Water

Total Organic Carbon

Analysis Batch: 19276

Spike Added

29.9

LCS LCS Result Qualifier

29.6

r Unit

D %Rec 99 % Rec. Limits 88 - 115

Client Sample ID: Lab Control Sample

111

0

(3)

10

I

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

GC/MS VOA

Analysis	Batch	1: 1	9305
----------	-------	------	------

Lab Sample ID	Client Sample ID	Prep Type	
240-4593-1	OW8	Total/NA	
240-4593-2	MW1	Total/NA	
240-4593-4	OW5	Total/NA	
240-4593-4 MS	OW5	Total/NA	
240-4593-4 MSD	OW5	Total/NA	
240-4593-6	OW13R	Total/NA	
240-4593-7	DUP1	Total/NA	
240-4593-8	TB2	Total/NA	
LCS 240-19305/4	Lab Control Sample	Total/NA	
MB 240-19305/5	Method Blank	Total/NA	

Prep Type	Matrix	Method	Prep Batch
Total/NA	Water	8260B	

Analysis Batch: 19349)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-5	OW6	Total/NA	Water	8260B	
LCS 240-19349/4	Lab Control Sample	Total/NA	Water	8260B	
MB 240-19349/5	Method Blank	Total/NA	Water	8260B	

MB 240-19349/3	Metrod Blank	Total/NA	yvatei	0200B	
Analysis Batch: 21450)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-3	FB2	Total/NA	Water	8260B	
LCS 240-21450/10	Lab Control Sample	Total/NA	Water	8260B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-3	FB2	Total/NA	Water	8260B	
LCS 240-21450/10	Lab Control Sample	Total/NA	Water	8260B	
MB 240-21450/11	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 19036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4593-1	OW8	Total/NA	Water	RSK-175
240-4593-2	MW1	Total/NA	Water	RSK-175
240-4593-4	OW5	Total/NA	Water	RSK-175
240-4593-4 MS	OW5	Total/NA	Water	RSK-175
240-4593-4 MSD	OW5	Total/NA	Water	RSK-175
240-4593-5	OW6	Total/NA	Water	RSK-175
240-4593-6	OW13R	Total/NA	Water	RSK-175
240-4593-7	DUP1	Total/NA	Water	RSK-175
LCS 240-19036/3	Lab Control Sample	Total/NA	Water	RSK-175
MB 240-19036/4	Method Blank	Total/NA	Water	RSK-175

General Chemistry

Analysis Batch: 18265

-	maryone Datem 10200				
	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
	240-4593-1	OW8	Total/NA	Water	300.0
	240-4593-2	MW1	Total/NA	Water	300.0
	240-4593-2 MS	MW1	Total/NA	Water	300.0
	240-4593-4	OW5	Total/NA	Water	300.0
	240-4593-4 MS	OW5	Total/NA	Water	300.0
	240-4593-4 MSD	OW5	Total/NA	Water	300.0
	240-4593-5	OW6	Total/NA	Water	300.0
	240-4593-6	OW13R	Total/NA	Water	300.0
	240-4593-7	DUP1	Total/NA	Water	300.0
	LCS 240-18265/30	Lab Control Sample	Total/NA	Water	300.0

Prep Batch

Prep Batch

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Prep Batch

Prep Batch

General Chemistry (Continued)

Analysis Batch: 18265 (Continued	Analysis	Batch:	18265	(Continued
----------------------------------	----------	--------	-------	------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 240-18265/54	Lab Control Sample	Total/NA	Water	300.0	
MB 240-18265/29	Method Blank	Total/NA	Water	300.0	
MB 240-18265/53	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 18638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-1	OW8	Total/NA	Water	376.1	
240-4593-2	MW1	Total/NA	Water	376.1	
240-4593-4	OW5	Total/NA	Water	376.1	
240-4593-4 MS	OW5	Total/NA	Water	376.1	
240-4593-4 MSD	OW5	Total/NA	Water	376.1	
240-4593-5	OW6	Total/NA	Water	376.1	
240-4593-6	OW13R	Total/NA	Water	376.1	
240-4593-7	DUP1	Total/NA	Water	376.1	
LCS 240-18638/2	Lab Control Sample	Total/NA	Water	376.1	
MB 240-18638/1	Method Blank	Total/NA	Water	376.1	

Analysis Batch: 18658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
240-4593-1	OW8	Total/NA	Water	310.1	
240-4593-2	MW1	Total/NA	Water	310.1	
240-4593-4	OW5	Total/NA	Water	310.1	
240-4593-4 MS	OW5	Total/NA	Water	310.1	
240-4593-4 MSD	OW5	Total/NA	Water	310.1	
240-4593-5	OW6	Total/NA	Water	310.1	
240-4593-6	OW13R	Total/NA	Water	310.1	
240-4593-7	DUP1	Total/NA	Water	310.1	
LCS 240-18658/27	Lab Control Sample	Total/NA	Water	310.1	
MB 240-18658/28	Method Blank	Total/NA	Water	310.1	

Analysis Batch: 18694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4593-1	6WO	Total/NA	Water	325.2
240-4593-2	MW1	Total/NA	Water	325.2
240-4593-4	OW5	Total/NA	Water	325.2
240-4593-4 MS	OW5	Total/NA	Water	325.2
240-4593-4 MSD	OW5	Total/NA	Water	325.2
240-4593-5	OW6	Total/NA	Water	325.2
240-4593-6	OW13R	Total/NA	Water	325.2
240-4593-7	DUP1	Total/NA	Water	325.2
LCS 240-18694/50	Lab Control Sample	Total/NA	Water	325.2
MB 240-18694/49	Method Blank	Total/NA	Water	325.2

Analysis Batch: 19004

THE MARKET STATE OF THE STATE O					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-4	OW5	Total/NA	Water	415.1	
240-4593-4 MS	OW5	Total/NA	Water	415.1	
240-4593-4 MSD	OW5	Total/NA	Water	415.1	
240-4593-5	OW6	Total/NA	Water	415.1	
240-4593-6	OW13R	Total/NA	Water	415.1	
240-4593-7	DUP1	Total/NA	Water	415.1	
LCS 240-19004/4	Lab Control Sample	Total/NA	Water	415.1	

QC Association Summary

Client: Cardinal Resources

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4593-1

.

General Chemistry (Continued)

Analysis Batch: 19004 (Continued)

240-4593-7

LCS 240-19585/34

MB 240-19585/13

DUP1

Lab Control Sample

Method Blank

Lab Sample ID MB 240-19004/3	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method 415.1	Prep Batch
Analysis Batch: 19276					
Lab Sample ID 240-4593-1	Client Sample ID OW8	Prep Type Total/NA	Matrix Water	Method 415.1	Prep Batch
240-4593-2 LCS 240-19276/4	MW1 Lab Control Sample	Total/NA Total/NA	Water Water	415.1 415.1	
MB 240-19276/3	Method Blank	Total/NA	Water	415.1	
Analysis Batch: 19585					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-4593-1	6WO	Total/NA	Water	375.4	
240-4593-2	MW1	Total/NA	Water	375.4	1
240-4593-4	OW5	Total/NA	Water	375.4	
240-4593-4 MS	OW5	Total/NA	Water	375.4	
240-4593-4 MSD	OW5	Total/NA	Water	375.4	
240-4593-5	OW6	Total/NA	Water	375.4	
240-4593-6	OW13R	Total/NA	Water	375.4	

Total/NA

Total/NA

Total/NA

Water

Water

Water

375.4

375.4

375.4

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Client Sample ID: OW8
Date Collected: 10/05/11 09:35
Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-1

Matrix: Water

4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		i	19305	10/16/11 16:09	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 16:34	DH	TAL NC
Total/NA	Analysis	300.0		1	18265	10/07/11 07:48	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 16:00	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:44	BR	TAL NC
Total/NA	Analysis	415.1		1	19276	10/14/11 17:06	TH	TAL NC
Total/NA	Analysis	375.4		1	19585	10/18/11 10:27	JK	TAL NC

9)

Client Sample ID: MW1
Date Collected: 10/05/11 10:25
Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-2 Matrix: Water

11/2

13

Batch Batch Dilution Batch Prepared Number or Analyzed Analyst Lab Prep Type Туре Method Run Factor TAL NC Total/NA 8260B 19305 10/16/11 16:31 LE Analysis 1 10/13/11 17:07 TAL NC RSK-175 1 19036 DH Total/NA Analysis Total/NA Analysis 300.0 18265 10/07/11 08:05 LG TAL NC 10/11/11 09:19 TAL NC 18638 BW Total/NA Analysis 376.1 1 TAL NC 10/10/11 16:07 18658 JB Total/NA **Analysis** 310.1 1 Total/NA Analysis 325.2 18694 10/11/11 11:44 BR TAL NC TAL NC Total/NA Analysis 415.1 1 19276 10/14/11 17:17 TH 19585 10/18/11 10:23 JK TAL NC Total/NA Analysis 375.4

Lab Sample ID: 240-4593-3

Matrix: Water

Client Sample ID: FB2
Date Collected: 10/05/11 10:05
Date Received: 10/06/11 09:00

Batch Batch Dilution Batch Prepared Lab Method Run Factor Number or Analyzed Analyst **Prep Type** Type 11/01/11 16:14 TAL NC Total/NA Analysis 8260B 21450 LE

Client Sample ID: OW5
Date Collected: 10/05/11 11:20
Date Received: 10/06/11 09:00

Lab Sample ID: 240-4593-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19305	10/16/11 16:54	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 17:40	DH	TAL NC
Total/NA	Analysis	300.0		1	18265	10/07/11 10:24	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 16:25	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:44	BR	TAL NC
Total/NA	Analysis	415.1		1	19004	10/13/11 08:33	TH	TAL NC

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: OW5

Date Collected: 10/05/11 11:20

Date Received: 10/06/11 09:00

TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	375.4		1	19585	10/18/11 10:23	JK	TAL NC

Client Sample ID: OW6 Lab Sample ID: 240-4593-5

Date Collected: 10/05/11 12:20 Matrix: Water

Date Received: 10/06/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1.67	19349	10/17/11 11:30	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 19:18	DH	TAL NC
Total/NA	Analysis	300.0		1	18265	10/07/11 08:57	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 16:14	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:45	BR	TAL NC
Total/NA	Analysis	415.1		1	19004	10/13/11 09:38	TH	TAL NC
Total/NA	Analysis	375.4		1	19585	10/18/11 10:20	JK	TAL NC

Client Sample ID: OW13R Lab Sample ID: 240-4593-6

Date Collected: 10/05/11 14:15 Matrix: Water Date Received: 10/06/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19305	10/16/11 18:25	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 19:51	DH	TAL NC
Total/NA	Analysis	300.0		1	18265	10/07/11 11:16	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 17:07	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:45	BR	TAL NC
Total/NA	Analysis	415.1		1	19004	10/13/11 09:49	TH	TAL NC
Total/NA	Analysis	375.4		2	19585	10/18/11 11:25	JK	TAL NC

Lab Sample ID: 240-4593-7 Client Sample ID: DUP1

Date Collected: 10/05/11 00:00 Matrix: Water

Date Received: 10/06/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19305	10/16/11 18:47	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19036	10/13/11 20:24	DH	TAL NC
Total/NA	Analysis	300.0		1	18265	10/07/11 11:51	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	310.1		1	18658	10/10/11 17:16	JB	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:45	BR	TAL NC
Total/NA	Analysis	415.1		1	19004	10/13/11 10:22	TH	TAL NC

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Lab Sample ID: 240-4593-7

Matrix: Water

Client Sample ID: DUP1 Date Collected: 10/05/11 00:00 Date Received: 10/06/11 09:00

Prep Type Total/NA

Batch Type Analysis

Batch Method 375.4

Run

Dilution Factor

Batch Number 19585

Prepared or Analyzed 10/18/11 11:25

Analyst JK

Lab TAL NC

Lab Sample ID: 240-4593-8

Matrix: Water

Client Sample ID: TB2 Date Collected: 10/05/11 00:00 Date Received: 10/06/11 09:00

Prep Type Total/NA

Batch Type Analysis

Batch Method 8260B

Run

Dilution Factor 1

Batch Number 19305

Prepared or Analyzed 10/16/11 19:10

Analyst LE

Lab TAL NC

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4593-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica North Canton	ACLASS	DoD ELAP		ADE-1437
TestAmerica North Canton	California	NELAC	9	01144CA
TestAmerica North Canton	Connecticut	State Program	1	PH-0590
TestAmerica North Canton	Florida	NELAC	4	E87225
TestAmerica North Canton	Georgia	Georgia EPD	4	N/A
TestAmerica North Canton	Illinois	NELAC	5	200004
TestAmerica North Canton	Kansas	NELAC	7	E-10336
TestAmerica North Canton	Kentucky	State Program	4	58
TestAmerica North Canton	Minnesota	NELAC	5	039-999-348
TestAmerica North Canton	Nevada	State Program	9	OH-000482008A
TestAmerica North Canton	New Jersey	NELAC	2	OH001
TestAmerica North Canton	New York	NELAC	2	10975
TestAmerica North Canton	Ohio	OVAP	5	CL0024
TestAmerica North Canton	Pennsylvania	NELAC	3	68-00340
TestAmerica North Canton	USDA	USDA		P330-11-00328
TestAmerica North Canton	Virginia	NELAC Secondary AB	3	460175
TestAmerica North Canton	West Virginia	West Virginia DEP	3	210
TestAmerica North Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

5

6

8

9)

40

13

TESTAMENTALTESTING	TestAmerica Laboratories, Inc.	For tak was only	Walkeid eljene	Surjeines de.]	- Lobradicano.	Sample Specific Notes / Special Instructions:			· · ·	`							Months	Ϋ́	Date/Time:	Date/Time:	Date/Time: 9-6-11 0900	TAI 0018-1 (04/10)
	ing Preyms		Analyses	14.00 J 3	14:00 Kalia	NIN NIN	XXXXX	XXXXX		XXXXX	1 1 1 1 4				イナゲイム		nger than 1 month) . Archive For		Company:	Company:	Company:	
	Other	1 cicphone:	Maj		ο-ίπους 20γ Α3γ	Composities Compo	XXX	XXX	×	XXX	1 2					×	Sample Disposal (A fee may be persessed if samples are retained longer than Return to Client Disposal By Lab	٠	 S.		۾ ان ان ا	
	1. 8	oc Amalysis Turnaround Time	TAT if different from below	- Sweek	2 days	10 N N N N N N N N N N N N N N N N N N N	XXX	XXXX	×	×××	XX	× × ×	XXX	XX	×××	×	Disposal (A fee may be passessee Return to Client		(Received by:	Received by:	Received in Laboratory by:	
Chai		74-0489 Marie	TATIE		<u>دور ،</u>	toziii	X	×		×	×	×	×	×	×	ے م	Sample Sample		Drie The: 5.2011	ime:	Date/Time:	(g [*]
ٳ	Spirot Manager:	112 -3	100 000 000 000 000 000 000 000 000 000	Method of ShipmenUCarrier:	8730 0405 17 8	۷۱۲		1035	3001	1130	1120	1130	1330	1415	-	Lab Prepared	Poison B		Responden			
TestAmerica	Client	75	7	Metho	-0200 877						20	· G		St.	(F)		iable Skin Irritant	omments:	G Company:	Сопр	Company:	er) esp
(2) Coolers	Olient Contact Ompany Name: Ordinal Respublics	505 E. Carron P	112 514 -00 8m	Project Name: C + D	104-00/2 -	Sample Identification	8m0	IMW	FB A	OW 5	SW 5 MO	OWS MSD	9.MQ	0W13 R	1000	下, 182	Persible Hazard Identification Non-Hazard	structions/QC Requirements & C	Arra County	O O Ka page	Relinquished by:	C2000, TestAmence Laboratories, Inc., All rights reserved. TestAmence & Design. To not preference of YestAmence Proposition

TostΔmerica Cooler	Receipt Form/Narrative	Lot Number:
L Conton Facilit	V :	Pur Fil
Mont Cordinal	Resources Project	
Cooler Received On	10-6-11 Opened on	merica Courier Other
EDDEN LIPS DHL	- FAO - Stetaon - Stetaon - Pay	Client Cooler - Other
TestAmerica Cooler#	Multiple Coolers Foam Box	Intact? Yes \(\text{No } \(\text{NA } \\ \text{V}
Were custody seals or	the outside of the cooler(s)? Yes \(\text{No } \(\text{In } \)	Intacti 100 E 110 E
If YES, Quantity	Quantity Unsalvageable the outside of cooler(s) signed and dated?	Yes □ No □ · NA □
Were custody seals of	the outside of cooler(s) signed and dated?	Yes No D
More custody seals of	the bottle(s)?	100 🗆 110 🖻
witten and thorn any	evcentions	Yes No 🗆
- i I - I - manare of	company the Sallible(3): 100 (2)	Yes No 🗆
A Mere the custody par	ers signed in the appropriate place.	hor
Backing material used	ers signed in the appropriate place? Bubble Wrap Foam None O	for multiple coolers/temps
cooler temperature u	oon receipt °C See back of form to	Of Walithie cooleravemba (5)
METHOD:	Bubble Wrap Foam None One Connection on receipt Connection Connecticut Connection Connecticut Con	None D
AAAI AAIT! WATI		Yes No 🗆
- Did - II hothlor arrive II	I HOUR COMMINICATION	Yes No D
a could all bottle labels	be reconciled with the coo!	Yes No NA NA
a var manla(e) at the	correct pH upon receipt:	Yes No D
40 More correct hottle(s	used for the test(s) indicated:	Yes No NA NA
	mm in any vi in vidia!	Yes No No
11. Were all bubbles	elived to perform indicated analyses?	Tes I No I
12. Sufficient quantity res	erived to perform indicated analyses? ent in the cooler(s)? Yes No Were VC	As on the COCY Tes NO
Centested PM	ent in the cooler(s)? Yes No Were vo	Via Verbai 🗌 Voice Maii 🗀 Othor 🗀
Concerning		wall with the second of the se
CONCERNING CUSTOL	DYE 歌句所能说《名表表是是一个中国的是一种主义》	All the same and t
The following discrepand	ies occurred:	
The following areas t	, "	
.———		
		· · · · · · · · · · · · · · · · · · ·
7.5.7	0.8	
		TALL THE BUILT WELL WITH BUILTY
15. SAMPLE CONDITI	ON after	the recommended holding time had expired.
Sample(s)	(Kale to take	were received in a proken container.
Sample(s)	· · · · · · · · · · · · · · · · · · ·	with bubble >6 mm in diameter. (Notify PM)
	were received	With bubble
16 SAMPLE PRESER	VATION	ware further presented in Sample
Sample(s)		Sulfurio Acid I of# 110410-H2SO4: Sodium.
Receiving to meet reco	mmended pH level(s). Nitric Acid Lot# 110410-HNO. NaOH; Hydrochloric Acid Lot# 041911-HCl; Sodium Hy	udroxide and Zinc Acetate Lot# 100108-
Hydroxide Lot# 121809-	NaOH; Hydrochloric Acid Lot# U41911-FICI, 30didili 11)	
(CH3COO)2ZN/NaOH. W	hat time was preservative address	<u>Date</u> <u>Initials</u>
Client ID		10.6-11 19
8	42 79	1 , (
	1279	
5	121212 70,7479	
6	12 79	
1314 .	(2 79	
Dur	12 79	

SOP: NC-SC-0005, Sample Receipt TestAmerica COOLER TestAmerica Rev 80 100 15 1/10/1/2011

Page 49 of 50

Login Sample Receipt Checklist

Client: Cardinal Resources

Job Number: 240-4593-1

Login Number: 4593

List Source: TestAmerica North Canton

List Number: 1 Creator: Sutek, Nick

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.2/3.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

E

8

9

12

91/5

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica North Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-4639-1

Client Project/Site: C & D GW Sampling

For:

Cardinal Resources 1505 E Carson Street Suite #200 Pittsburgh, Pennsylvania 15203

Attn: Barbara Jones

AL PL

Authorized for release by: 10/31/2011 10:06:33 AM

Nathan Pietras
Project Manager II
nathan.pietras@testamericainc.com

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Cardinal Resources Project/Site: C & D GW Sampling

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	8
	9
Client Sample Results	11
Surrogate Summary	28
QC Sample Results	30
QC Association Summary	44
Lab Chronicle	47
	50
Chain of Custody	51
Receipt Checklists	55

6

3

5

7/

3 a

10

12

Definitions/Glossary

Client: Cardinal Resources

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4639-1

Qualifiers

GC/MS VOA

Qualifier

Qualifier Description

RPD of the MS and MSD exceeds the control limits

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

ø

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R

Percent Recovery

CNF

Contains no Free Liquid

DL, RA, RE, IN

Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL

Estimated Detection Limit

EPA

United States Environmental Protection Agency

MDL

Method Detection Limit

ML

Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown)

ND

PQL

Practical Quantitation Limit

RL

Reporting Limit

RPD

Relative Percent Difference, a measure of the relative difference between two points

TEF

Toxicity Equivalent Factor (Dioxin)

TEQ

Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Job ID: 240-4639-1

Laboratory: TestAmerica North Canton

Narrative

CASE NARRATIVE

Client: Cardinal Resources

Project: C & D GW Sampling

Report Number: 240-4639-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 10/07/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 0.7 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples SED 1 (240-4639-4), SED DUP (240-4639-5) and SED 2 (240-4639-7) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/14/2011.

Method(s) 8260A, 8260B: Internal standard responses were outside of acceptance limits for the following samples: SED 2 (240-4639-7), SED 2 (240-4639-7 MSD), SED 2 (240-4639-7 MSD). The samples show evidence of matrix interference.

No other difficulties were encountered during the VOCs analyses.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples FB3 (240-4639-1), SW1 (240-4639-2), SW DUP (240-4639-3), SW2 (240-4639-6), OW25 (240-4639-8), PUMP RINSE (240-4639-9), OW24 (240-4639-10), OW18 (240-4639-11), OW19 (240-4639-12) and TB3 (240-4639-13) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 10/18/2011.

TestAmerica North Canton 10/31/2011

15

4

K i

2

9

18

Case Narrative

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Job ID: 240-4639-1 (Continued)

Laboratory: TestAmerica North Canton (Continued)

No difficulties were encountered during the VOCs analyses.

All quality control parameters were within the acceptance limits.

DISSOLVED GASES

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for dissolved gases in accordance with RSK_175. The samples were analyzed on 10/19/2011 and 10/20/2011.

Samples OW18 (240-4639-11)[2X] and OW19 (240-4639-12)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the dissolved gases analyses.

All other quality control parameters were within the acceptance limits.

ANIONS

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for anions in accordance with EPA Method 300.0. The samples were analyzed on 10/07/2011.

No difficulties were encountered during the anions analyses.

All quality control parameters were within the acceptance limits.

ALKALINITY

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 10/11/2011.

No difficulties were encountered during the alkalinity analyses.

All quality control parameters were within the acceptance limits.

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for chloride in accordance with EPA Method 325.2. The samples were analyzed on 10/11/2011.

Sample OW19 (240-4639-12)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analyses.

All quality control parameters were within the acceptance limits.

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for sulfate in accordance with EPA method 375.4. The samples were analyzed on 10/18/2011.

No difficulties were encountered during the sulfate analyses.

All quality control parameters were within the acceptance limits.

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for sulfide in accordance with EPA Method 376.1. The samples were analyzed on 10/11/2011.

No other difficulties were encountered during the sulfide analyses.

Case Narrative

Client: Cardinal Resources

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4639-1

Job ID: 240-4639-1 (Continued)

Laboratory: TestAmerica North Canton (Continued)

All other quality control parameters were within the acceptance limits.

TOTAL ORGANIC CARBON

Samples OW25 (240-4639-8), OW24 (240-4639-10), OW18 (240-4639-11) and OW19 (240-4639-12) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 10/14/2011.

No difficulties were encountered during the TOC analyses.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS

Samples SED 1 (240-4639-4), SED DUP (240-4639-5) and SED 2 (240-4639-7) were analyzed for percent solids in accordance with EPA Method 160.3 MOD. The samples were analyzed on 10/10/2011.

No difficulties were encountered during the % solids analyses.

All quality control parameters were within the acceptance limits.

Method Summary

Client: Cardinal Resources

Method

8260B

300.0 310.1

325.2

375.4

376.1

415.1

Moisture

RSK-175

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4639-1

TAL NC

TAL NC

Protocol	Laboratory
SW846	TAL NC
RSK	TAL NC
MCAWW	TAL NC

MCAWW

EPA

Protocol References:

EPA = US Environmental Protection Agency

Percent Moisture

Method Description

Dissolved Gases (GC)

Alkalinity

Chloride Sulfate

Sulfide

TOC

Anions, Ion Chromatography

Volatile Organic Compounds (GC/MS)

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175,

Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

5

8

9

Ţ.

13

Sample Summary

Client: Cardinal Resources

Project/Site: C & D GW Sampling

TestAmerica Job ID: 240-4639-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-4639-1	FB3	Water	10/06/11 09:00	10/07/11 09:00
240-4639-2	SW1	Water	10/06/11 09:45	10/07/11 09:00
240-4639-3	SWDUP	Water	10/06/11 00:00	10/07/11 09:00
240-4639-4	SED 1	Solid	10/06/11 09:55	10/07/11 09:00
240-4639-5	SED DUP	Solid	10/06/11 00:00	10/07/11 09:00
240-4639-6	SW2	Water	10/06/11 10:40	10/07/11 09:00
240-4639-7	SED 2	Solid	10/06/11 10:50	10/07/11 09:00
240-4639-8	OW25	Water	10/06/11 10:45	10/07/11 09:00
240-4639-9	PUMP RINSE	Water	10/06/11 11:15	10/07/11 09:00
240-4639-10	OW24	Water	10/06/11 12:15	10/07/11 09:00
240-4639-11	OW18	Water	10/06/11 13:25	10/07/11 09:00
240-4639-12	OW19	Water	10/06/11 15:00	10/07/11 09:00
240-4639-13	ТВ3	Water	10/06/11 00:00	10/07/11 09:00

Ü

5

0

8

9

13

Client: Cardinal Resources Project/Site: C & D GW Sampling Client Sample ID: FB3 No Detections

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-1

Lab Sample ID: 240-4639-2

Client Sample ID: SW DUP Lab Sample ID: 240-4639-3

No Detections

Client Sample ID: SW1

Client Sample ID: SED 1 Lab Sample ID: 240-4639-4

No Detections

No Detections

Client Sample ID: SED DUP Lab Sample ID: 240-4639-5

No Detections

Client Sample ID: SW2 Lab Sample ID: 240-4639-6

No Detections

Client Sample ID: SED 2 Lab Sample ID: 240-4639-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	13	12	ug/Kg	1 [©] 8260B	Total/NA

Client Sample ID: OW25 Lab Sample ID: 240-4639-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Nitrate as N	1.2	0.10	mg/L	1	300.0	Total/NA
Alkalinity	31	5.0	mg/L	1	310.1	Total/NA
Chloride	1.5	1.0	mg/L	1	325.2	Total/NA
Sulfate	9.3	5.0	mg/L	1	375.4	Total/NA
Sulfide	10	1.0	mg/L	1	376.1	Total/NA

Client Sample ID: PUMP RINSE Lab Sample ID: 240-4639-9

No Detections

Client Sample ID: OW24 Lab Sample ID: 240-4639-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Nitrate as N	0.33	0.10	mg/L	1	300.0	Total/NA
Alkalinity	120	5.0	mg/L	1	310.1	Total/NA
Chloride	3.5	1.0	mg/L	1	325.2	Total/NA
Sulfate	16	5.0	mg/L	1	375.4	Total/NA

Client Sample ID: OW18 Lab Sample ID: 240-4639-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	3.7	1.0	ug/L	1	8260B	Total/NA
Chlorobenzene	8.7	1.0	ug/L	1	8260B	Total/NA
Vinyl chloride	1.5	1.0	ug/L	1 ×	8260B	Total/NA
1,4-Dichlorobenzene	1.6	1.0	ug/L	1	8260B	Total/NA
Methane	1000	1.0	ug/L	2	RSK-175	Total/NA

Detection Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: OW19

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-11

Client Sample ID: OW18 (Continued)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Alkalinity	280	5.0	mg/L	1	310.1	Total/NA
Chloride	24	1.0	mg/L	1	325.2	Total/NA
Sulfate	8.6	5.0	mg/L	1	375.4	Total/NA
Total Organic Carbon	10	1.0	mg/L	1	415.1	Total/NA

Lab Sample ID: 240-4639-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	3.0	1.0	ug/L	1	8260B	Total/NA
Chlorobenzene	8.4	1.0	ug/L	1	8260B	Total/NA
Chloroethane	1.4	1.0	ug/L	1	8260B	Total/NA
Vinyl chloride	3.3	1.0	ug/L	1	8260B	Total/NA
Dichlorodifluoromethane	1.2	1.0	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	1.6	1.0	ug/L	1	8260B	Total/NA
Methane	1800	2.5	ug/L	5	RSK-175	Total/NA
Alkalinity	290	5.0	mg/L	1	310.1	Total/NA
Chloride	110	5.0	mg/L	5	325.2	Total/NA
Sulfate	13	5.0	mg/L	1	375.4	Total/NA
Total Organic Carbon	12	1.0	mg/L	1	415.1	Total/NA

Client Sample ID: TB3 Lab Sample ID: 240-4639-13

No Detections

Client Sample Results

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: FB3

1,1-Dichloroethene

1,2-Dichloropropane

cis-1,3-Dichloropropene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethylene Dibromide

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Methyl tert-butyl ether

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

Methylcyclohexane

1,1,2-Trichloro-1,2,2-trifluoroethane

Isopropylbenzene

Methyl acetate

1,2-Dibromo-3-Chloropropane

Cyclohexane

trans-1,3-Dichloropropene

Date Collected: 10/06/11 09:00 Date Received: 10/07/11 09:00

Lab Sample ID: 240-4639-1

Matrix: Water

	/1	
	Ü	

Method: 8260B - Volatile Organ	nic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/18/11 01:50	1
Benzene	ND	1.0	ug/L			10/18/11 01:50	1
Dichlorobromomethane	ND	1.0	ug/L			10/18/11 01:50	1

10/18/11 01:50 ND 1.0 ug/L Bromoform 10/18/11 01:50 ND 1.0 ug/L Bromomethane 10/18/11 01:50 10 ug/L 2-Butanone (MEK) ND 10/18/11 01:50 ug/L Carbon disulfide ND 1.0 10/18/11 01:50 1.0 ug/L Carbon tetrachloride ND ND 1.0 ug/L 10/18/11 01:50 Chlorobenzene 10/18/11 01:50 ug/L ND 1.0 Chloroethane 10/18/11 01:50 ND 1.0 ug/L Chloroform 10/18/11 01:50 ND 1.0 ug/L Chloromethane 1.0 ug/L 10/18/11 01:50 1,1-Dichloroethane ND 10/18/11 01:50 ug/L ND 1.0 1,2-Dichloroethane

1.0

1.0

1.0

1.0

1.0

10

1.0

10

1.0

1.0

ND

ug/L

1

1

1

1

1

1

1

1

1

ND Ethylbenzene 2-Hexanone ND ND Methylene Chloride 4-Methyl-2-pentanone (MIBK) ND ND 1,1,2,2-Tetrachloroethane ND Tetrachloroethene ND ND Toluene Trichloroethene ND ND Vinyl chloride ND Xylenes, Total

ug/L 1.0 ug/L ug/L 1.0 ug/L 1.0 ug/L 1.0 2.0 ug/L 1.0 ug/L ug/L 1.0 1.0 ug/L ug/L 2.0 ug/L 1.0 ug/L 1.0 1.0 ug/L 1.0 ug/L ug/L 1.0 10 ug/L 5.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

10/18/11 01:50

1.0

1.0

1.0

1.0

Client Sample Results

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: FB3

Date Collected: 10/06/11 09:00 Date Received: 10/07/11 09:00

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-1

Matrix: Water

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	ecovery Qualifier 120 97 107	Limits 63 - 129 66 - 117 74 - 115	Prepared	Analyzed 10/18/11 01:50 10/18/11 01:50 10/18/11 01:50	DII Fac 1 1 1	
Toluene-d8 (Surr) Dibromofluoromethane (Surr)	107 121	74 - 115 75 - 121		10/18/11 01:50	1	

Lab Sample ID: 240-4639-2 Client Sample ID: SW1

Matrix: Water Date Collected: 10/06/11 09:45

Date Received: 10/07/11 09:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/18/11 02:12	1
Benzene	ND	1.0	ug/L			10/18/11 02:12	1
Dichlorobromomethane	ND	1.0	ug/L			10/18/11 02:12	1
Bromoform	ND	1.0	ug/L			10/18/11 02:12	1
Bromomethane	ND	1.0	ug/L			10/18/11 02:12	1
2-Butanone (MEK)	ND	10	ug/L			10/18/11 02:12	1
Carbon disulfide	ND	1.0	ug/L			10/18/11 02:12	1
Carbon tetrachloride	ND	1.0	ug/L			10/18/11 02:12	1
Chlorobenzene	ND	1.0	ug/L			10/18/11 02:12	1
Chloroethane	ND	1.0	ug/L			10/18/11 02:12	1
Chloroform	ND	1.0	ug/L			10/18/11 02:12	1
Chloromethane	ND	1.0	ug/L			10/18/11 02:12	1
1,1-Dichloroethane	ND	1.0	ug/L			10/18/11 02:12	1
1,2-Dichloroethane	ND	1.0	ug/L			10/18/11 02:12	1
1,1-Dichloroethene	ND	1.0	ug/L			10/18/11 02:12	1
1,2-Dichloropropane	ND	1.0	ug/L			10/18/11 02:12	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:12	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:12	1
Ethylbenzene	ND	1.0	ug/L			10/18/11 02:12	1
2-Hexanone	ND	10	ug/L			10/18/11 02:12	1
Methylene Chloride	ND	1.0	ug/L			10/18/11 02:12	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/18/11 02:12	1

Client Sample Results

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

39-2

Client Sample ID: SW1

Lab Sample ID: 240-4639-2

Matrix: Water

Date Collected: 10/06/11 09:45 Date Received: 10/07/11 09:00

Client Sample ID: SW DUP

Date Collected: 10/06/11 00:00 Date Received: 10/07/11 09:00

Method: 8260B - Volatile Organic	Compounds (GC/MS) (Co	ntinued)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	5.0	ug/L			10/18/11 02:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/18/11 02:12	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/18/11 02:12	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:12	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:12	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:12	1
Trichlorofluoromethane	ND	1.0	ug/L			10/18/11 02:12	1
Chlorodibromomethane	ND	1.0	ug/L			10/18/11 02:12	1
Methylcyclohexane	ND	1.0	ug/L			10/18/11 02:12	1

Surrogate 1,2-Dichloroethane-d4 (Surr)	% Recovery Qualifier 112	Limits 63 - 129	Prepared Analyzed 10/18/11 02:12	Dil Fac
4-Bromofluorobenzene (Surr)	91	66 - 117	10/18/11 02:12	1
Toluene-d8 (Surr)	101	74 - 115	10/18/11 02:12	1
Dibromofluoromethane (Surr)	116	75 - 121	10/18/11 02:12	1

Lab Sample ID: 240-4639-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/18/11 02:35	1
Benzene	ND	1.0	ug/L			10/18/11 02:35	1
Dichlorobromomethane	ND	1.0	ug/L			10/18/11 02:35	1
Bromoform	ND	1.0	ug/L			10/18/11 02:35	1
Bromomethane	ND	1.0	ug/L			10/18/11 02:35	1
2-Butanone (MEK)	ND	10	ug/L			10/18/11 02:35	1
Carbon disulfide	ND	1.0	ug/L			10/18/11 02:35	1
Carbon tetrachloride	ND	1.0	ug/L			10/18/11 02:35	1
Chlorobenzene	ND	1.0	ug/L			10/18/11 02:35	1
Chloroethane	ND	1.0	ug/L			10/18/11 02:35	1
Chloroform	ND	1.0	ug/L			10/18/11 02:35	1
Chloromethane	ND	1.0	ug/L			10/18/11 02:35	1
1,1-Dichloroethane	ND	1.0	ug/L			10/18/11 02:35	1
1,2-Dichloroethane	ND	1.0	ug/L			10/18/11 02:35	1
1,1-Dichloroethene	ND	1.0	ug/L			10/18/11 02:35	1
1,2-Dichloropropane	ND	1.0	ug/L			10/18/11 02:35	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:35	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:35	1
Ethylbenzene	ND	1.0	ug/L			10/18/11 02:35	1
2-Hexanone	ND	10	ug/L			10/18/11 02:35	1
Methylene Chloride	ND	1.0	ug/L			10/18/11 02:35	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/18/11 02:35	1
Styrene	ND	1.0	ug/L			10/18/11 02:35	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/18/11 02:35	1
Tetrachloroethene	ND	1.0	ug/L			10/18/11 02:35	1
Toluene	ND	1.0	ug/L			10/18/11 02:35	1
Trichloroethene	ND	1.0	ug/L			10/18/11 02:35	1
Vinyl chloride	ND	1.0	ug/L			10/18/11 02:35	- 1

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: SW DUP

Date Collected: 10/06/11 00:00 Date Received: 10/07/11 09:00

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-3

Matrix: Water

Method: 8260B - Volatile Organic	Compounds (G	GC/MS) (Continued)					
Analyte	Result (MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND	2.0	ug/L			10/18/11 02:35	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/18/11 02:35	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/18/11 02:35	1
Cyclohexane	ND	1.0	ug/L			10/18/11 02:35	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/18/11 02:35	1
Ethylene Dibromide	ND	1.0	ug/L			10/18/11 02:35	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/18/11 02:35	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 02:35	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 02:35	1
Isopropylbenzene	ND	1.0	ug/L			10/18/11 02:35	1
Methyl acetate	ND	10	ug/L			10/18/11 02:35	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/18/11 02:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/18/11 02:35	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/18/11 02:35	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:35	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:35	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:35	1
Trichlorofluoromethane	ND	1.0	ug/L			10/18/11 02:35	1
Chlorodibromomethane	ND	1.0	ug/L			10/18/11 02:35	1
Methylcyclohexane	ND	1.0	ug/L			10/18/11 02:35	1
						V =0.000 ±0.000 ±	
Surrogate	% Recovery				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	63 - 129				10/18/11 02:35	1
4-Bromofluorobenzene (Surr)	96	66 - 117				10/18/11 02:35	1
Toluene-d8 (Surr)	108	74 - 115				10/18/11 02:35	1

75 - 121

Client Sample ID: SED 1 Date Collected: 10/06/11 09:55

121

Date Received: 10/07/11 09:00

Dibromofluoromethane (Surr)

Lab Sample ID: 240-4639-4

10/18/11 02:35

Matrix: Solid

Percent Solids: 58.3

nalyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
cetone	ND	34	ug/Kg	Ø		10/14/11 23:00	1
Benzene	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Dichlorobromomethane	ND	8.6	ug/Kg	p		10/14/11 23:00	1
Bromoform	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Bromomethane	ND	8.6	ug/Kg	Ð		10/14/11 23:00	1
-Butanone (MEK)	ND	34	ug/Kg	Ω		10/14/11 23:00	1
Carbon disulfide	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Carbon tetrachloride	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Chlorobenzene	ND	8.6	ug/Kg	Ω		10/14/11 23:00	1
Chloroethane	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Chloroform	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
Chloromethane	ND	8.6	ug/Kg	\$ 3		10/14/11 23:00	1
,1-Dichloroethane	ND	8.6	ug/Kg	£		10/14/11 23:00	1
,2-Dichloroethane	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
,1-Dichloroethene	ND	8.6	ug/Kg	Ø		10/14/11 23:00	1
,2-Dichloropropane	ND	8.6	ug/Kg	n		10/14/11 23:00	1
is-1,3-Dichloropropene	ND	8.6	ug/Kg	Ω		10/14/11 23:00	1

8.6

8.6

34

8.6

34

8.6

8.6

8.6

8.6

8.6

8.6

17

8.6

8.6

17

17

8.6

8.6

8.6

8.6

8.6

17

34

8.6

8.6

8.6

8.6

8.6

8.6

8.6

17

Limits

58 - 123

52 - 136

67 - 125

37 - 132

MDL Unit

ug/Kg

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: SED 1 Date Collected: 10/06/11 09:55 Date Received: 10/07/11 09:00

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

1,1,2,2-Tetrachloroethane

Analyte

Ethylbenzene

2-Hexanone

Styrene

Toluene

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Cyclohexane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethylene Dibromide

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Methyl tert-butyl ether

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: SED DUP

Date Collected: 10/06/11 00:00

Date Received: 10/07/11 09:00

Methylcyclohexane

Toluene-d8 (Surr)

Surrogate

1,1,2-Trichloro-1,2,2-trifluoroethane

Isopropylbenzene

Methyl acetate

1,2-Dibromo-3-Chloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

76

77

85

77

Qualifier

% Recovery

TestAmerica Job ID: 240-4639-1

Prepared

D

Ø

ø

ø

O

o

Ø

Ö

ø

Ø

n

Ö

Ø

n

X.

Ø

D

D

Ö

Ž.

Ø

Ø

O

Ø

Ø

r

Ö

O

O

Prepared

Lab Sample ID: 240-4639-4

Analyzed

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

10/14/11 23:00

Analyzed

10/14/11 23:00

Matrix: Solid

Dil Fac

Percent Solids: 58.3

	7		

讍	

1

1

1

1

1

1

Dil Fac

			10/	14/11	23:00	1
			10/	14/11	23:00	1
			10/	14/11	23:00	1
1121	IT49	220				 -

Lab Sample ID: 240-4639-5 Matrix: Solid

Percent Solids: 61.5

Mothod: 9260B - Volatile Organic Compounds (GC/MS)

Method. 0200D - Volatile Organic Col	iipouitus	(Comic)							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Acetone	ND		33	ug/Kg	n		10/14/11 23:21	1	
Benzene	ND		8.1	ug/Kg	Ω		10/14/11 23:21	1	
Dichlorobromomethane	ND		8.1	ug/Kg	Ø		10/14/11 23:21	1	
Bromoform	ND		8.1	ug/Kg	30		10/14/11 23:21	1	
Bromomethane	ND		8.1	ug/Kg	ø		10/14/11 23:21	1	
2-Butanone (MEK)	ND		33	ug/Kg	O		10/14/11 23:21	1	

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-5

Matrix: Solid

Percent Solids: 61.5

Client Sample ID: SED DUP
Date Collected: 10/06/11 00:00
Date Received: 10/07/11 09:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: 8260B - Volatile Organic	Compounds (GC/MS	(Continued)					
Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Carbon tetrachloride	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
Chlorobenzene	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
Chloroethane	ND	8.1	ug/Kg	Ö		10/14/11 23:21	1
Chloroform	ND	8.1	ug/Kg	Ω		10/14/11 23:21	1
Chloromethane	ND	8.1	ug/Kg	Ω		10/14/11 23:21	1
1,1-Dichloroethane	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
1,2-Dichloroethane	ND	8.1	ug/Kg	Ü		10/14/11 23:21	1
1,1-Dichloroethene	ND	8.1	ug/Kg	Ω		10/14/11 23:21	1
1,2-Dichloropropane	ND	8.1	ug/Kg	n		10/14/11 23:21	1
cis-1,3-Dichloropropene	ND	8.1	ug/Kg	ά		10/14/11 23:21	1
trans-1,3-Dichloropropene	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Ethylbenzene	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
2-Hexanone	ND	33	ug/Kg	ø		10/14/11 23:21	1
Methylene Chloride	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
4-Methyl-2-pentanone (MIBK)	ND	33	ug/Kg	ø		10/14/11 23:21	1
Styrene	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
1,1,2,2-Tetrachloroethane	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Tetrachloroethene	ND	8.1	ug/Kg	O		10/14/11 23:21	1
Toluene	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Trichloroethene	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
Vinyl chloride	ND	8.1	ug/Kg	Ω		10/14/11 23:21	1
Xylenes, Total	ND	16	ug/Kg	Ω		10/14/11 23:21	1
1,1,1-Trichloroethane	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
1,1,2-Trichloroethane	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Cyclohexane	ND	16	ug/Kg	α		10/14/11 23:21	1
1,2-Dibromo-3-Chloropropane	ND	16	ug/Kg	ø		10/14/11 23:21	1
Ethylene Dibromide	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Dichlorodifluoromethane	ND	8.1	ug/Kg	p		10/14/11 23:21	1
cis-1,2-Dichloroethene	ND	8.1	ug/Kg	Ω		10/14/11 23:21	1
trans-1,2-Dichloroethene	ND	8.1	ug/Kg	Ď		10/14/11 23:21	1
Isopropylbenzene	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
Methyl acetate	ND	16	ug/Kg	ø		10/14/11 23:21	1
Methyl tert-butyl ether	ND	33	ug/Kg	Ø		10/14/11 23:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	8.1	ug/Kg	Ø		10/14/11 23:21	1
1,2,4-Trichlorobenzene	ND	8.1	ug/Kg	p		10/14/11 23:21	1
1,2-Dichlorobenzene	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
1,3-Dichlorobenzene	ND	8.1	ug/Kg	Ð		10/14/11 23:21	1
1,4-Dichlorobenzene	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
Trichlorofluoromethane	ND	8.1	ug/Kg	α		10/14/11 23:21	1
Chlorodibromomethane	ND	8.1	ug/Kg	ø		10/14/11 23:21	1
Methylcyclohexane	ND	16	ug/Kg	o		10/14/11 23:21	1
essectio							
Surrogate	% Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77	58 - 123				10/14/11 23:21	1
		100000 700000				10414140001	

10/14/11 23:21

10/14/11 23:21

10/14/11 23:21

1

52 - 136 67 - 125

37 - 132

80

86

76

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-6

Matrix: Water

Client Sample ID: SW2

Date Collected: 10/06/11 10:40 Date Received: 10/07/11 09:00

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/18/11 02:58	1
Benzene	ND	1.0	ug/L			10/18/11 02:58	1
Dichlorobromomethane	ND	1.0	ug/L			10/18/11 02:58	1
Bromoform	ND	1.0	ug/L			10/18/11 02:58	1
Bromomethane	ND	1.0	ug/L			10/18/11 02:58	1
2-Butanone (MEK)	ND	10	ug/L			10/18/11 02:58	1
Carbon disulfide	ND	1.0	ug/L			10/18/11 02:58	1
Carbon tetrachloride	ND	1.0	ug/L			10/18/11 02:58	1
Chlorobenzene	ND	1.0	ug/L			10/18/11 02:58	1
Chloroethane	ND	1.0	ug/L			10/18/11 02:58	1
Chloroform	ND	1.0	ug/L			10/18/11 02:58	1
Chloromethane	ND	1.0	ug/L			10/18/11 02:58	1
1,1-Dichloroethane	ND	1.0	ug/L			10/18/11 02:58	1
1,2-Dichloroethane	ND	1.0	ug/L			10/18/11 02:58	1
1,1-Dichloroethene	ND	1.0	ug/L			10/18/11 02:58	1
1,2-Dichloropropane	ND	1.0	ug/L			10/18/11 02:58	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:58	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 02:58	1
Ethylbenzene	ND	1.0	ug/L			10/18/11 02:58	1
2-Hexanone	ND	10	ug/L			10/18/11 02:58	1
Methylene Chloride	ND	1.0	ug/L			10/18/11 02:58	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/18/11 02:58	1
Styrene	ND	1.0	ug/L			10/18/11 02:58	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/18/11 02:58	1
Tetrachloroethene	ND	1.0	ug/L			10/18/11 02:58	1
Toluene	ND	1.0	ug/L			10/18/11 02:58	1
Trichloroethene	ND	1.0	ug/L			10/18/11 02:58	1
Vinyl chloride	ND	1.0	ug/L			10/18/11 02:58	1
Xylenes, Total	ND	2.0	ug/L			10/18/11 02:58	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/18/11 02:58	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/18/11 02:58	1
Cyclohexane	ND	1.0	ug/L			10/18/11 02:58	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/18/11 02:58	1
Ethylene Dibromide	ND	1.0	ug/L			10/18/11 02:58	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/18/11 02:58	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 02:58	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 02:58	1
Isopropylbenzene	ND	1.0	ug/L			10/18/11 02:58	1
Methyl acetate	ND	10	ug/L			10/18/11 02:58	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/18/11 02:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/18/11 02:58	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/18/11 02:58	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:58	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:58	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/18/11 02:58	1
Trichlorofluoromethane	ND	1.0	ug/L			10/18/11 02:58	1
Chlorodibromomethane	ND	1.0	ug/L			10/18/11 02:58	1
Methylcyclohexane	ND	1.0	ug/L			10/18/11 02:58	1

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: SW2 Date Collected: 10/06/11 10:40 Date Received: 10/07/11 09:00

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		63 - 129
4-Bromofluorobenzene (Surr)	98		66 - 117
Toluene-d8 (Surr)	105		74 - 115
Dibromofluoromethane (Surr)	107		75 - 121

Client Sample ID: SED 2 Date Collected: 10/06/11 10:50 Date Received: 10/07/11 09:00

Styrene

1,2-Dibromo-3-Chloropropane

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-6

Matrix: Water

Analyzed 10/18/11 02:58 10/18/11 02:58 10/18/11 02:58 10/18/11 02:58

Lab Sample ID: 240-4639-7

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

10/14/11 23:43

1

1

1

1

1

1

1

1

1

Matrix: Solid Percent Solids: 42.9

Q

ug/Kg

Method: 8260B - Volat	ile Organic	Compounds (GC/MS)						
Analyte		Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	IIT	(ND) (V)	47	ug/Kg	Ø		10/14/11 23:43	1
Benzene	CCS	ND	12	ug/Kg	ø		10/14/11 23:43	1
Dichlorobromomethane		ND	12	ug/Kg	Ø		10/14/11 23:43	1
Bromoform		ND	12	ug/Kg	Ω		10/14/11 23:43	1
Bromomethane		C N D	12	ug/Kg	Ω		10/14/11 23:43	1
2-Butanone (MEK)		ND	47	ug/Kg	Ø		10/14/11 23:43	1
Carbon disulfide		ND	12	ug/Kg	n		10/14/11 23:43	1
Carbon tetrachloride		ND	12	ug/Kg	O		10/14/11 23:43	1
Chlorobenzene		ND	12	ug/Kg	ø		10/14/11 23:43	1
Chloroethane		ND	12	ug/Kg	Ø		10/14/11 23:43	1
Chloroform		ND	12	ug/Kg	n		10/14/11 23:43	1
Chloromethane		ND	12	ug/Kg	O		10/14/11 23:43	1
1,1-Dichloroethane		ND	12	ug/Kg	Ø		10/14/11 23:43	1
1,2-Dichloroethane	"	ND	12	ug/Kg	n		10/14/11 23:43	1
1,1-Dichloroethene		ND	12	ug/Kg	33		10/14/11 23:43	1

13 ND 12 ug/Kg 1,1-Dichloroethene Ø ug/Kg ND 12 1,2-Dichloropropane ø 12 ND ug/Kg cis-1,3-Dichloropropene Þ trans-1,3-Dichloropropene ND 12 ug/Kg O ND 12 Ethylbenzene ug/Kg Ü ND 47 ug/Kg 2-Hexanone ø 12 Methylene Chloride 13 ug/Kg ø ND 47 ug/Kg 4-Methyl-2-pentanone (MIBK) 12 Ċ ND ug/Kg

ND

Ø 10/14/11 23:43 12 1,1,2,2-Tetrachloroethane ND ug/Kg ø 10/14/11 23:43 Tetrachloroethene ND 12 ug/Kg Ø Toluene ND 12 ug/Kg 10/14/11 23:43 XX. 10/14/11 23:43 ND 12 ug/Kg Trichloroethene n 12 10/14/11 23:43 Vinyl chloride ND ug/Kg O ND 23 ug/Kg 10/14/11 23:43 Xylenes, Total Ü 10/14/11 23:43 ND 12 ug/Kg 1,1,1-Trichloroethane n 10/14/11 23:43 12 1,1,2-Trichloroethane ND ug/Kg ø 10/14/11 23:43 Cyclohexane ND 23 ug/Kg

ø 12 10/14/11 23:43 Ethylene Dibromide ND ug/Kg ņ 10/14/11 23:43 Dichlorodifluoromethane ND 12 ug/Kg ø cis-1,2-Dichloroethene ND 12 ug/Kg 10/14/11 23:43 n 10/14/11 23:43 trans-1,2-Dichloroethene ND 12 ug/Kg Ø 10/14/11 23:43 12 Isopropylbenzene ND ug/Kg n Methyl acetate ND 23 ug/Kg 10/14/11 23:43

23

TestAmerica North Canton 10/31/2011

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: SED 2

Date Collected: 10/06/11 10:50 Date Received: 10/07/11 09:00

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-7

Matrix: Solid

Percent Solids: 42.9

Method: 8260B - Volatile Organic Compound	s (GC/MS) (Continued))
---	-----------------------	---

Analyte	107	Result	Qualifier /	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	۲۶	(ND)	-u)	47	ug/Kg	Ø		10/14/11 23:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane		ND	.00	, 12	ug/Kg	Ω		10/14/11 23:43	1
1,2,4-Trichlorobenzene		ND	DKY	01012	ug/Kg	Ø		10/14/11 23:43	1
1,2-Dichlorobenzene		ND	2:10	12	ug/Kg	n		10/14/11 23:43	1
1,3-Dichlorobenzene	- 1	ND	101	12	ug/Kg	Ω		10/14/11 23:43	1
1,4-Dichlorobenzene		ND	"	12	ug/Kg	Ø		10/14/11 23:43	1
Trichlorofluoromethane		ND		12	ug/Kg	425		10/14/11 23:43	1
Chlorodibromomethane		ND		12	ug/Kg	ø		10/14/11 23:43	1
Methylcyclohexane	V	ND		23	ug/Kg	Ω	5)	10/14/11 23:43	1

Surrogate	% Recovery Q		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	75 52	58 - 123 52 - 136		10/14/11 23:43 10/14/11 23:43	1
Toluene-d8 (Surr)	102	67 - 125		10/14/11 23:43	1
Dibromofluoromethane (Surr)	79	37 - 132		10/14/11 23:43	1

Lab Sample ID: 240-4639-8 Client Sample ID: OW25

Date Collected: 10/06/11 10:45

Date Received: 10/07/11 09:00

Matrix: Water

Method: 8260B - Volatile	Organic Compounds	(GC/MS)

Method: 02000 - Volatile Organic Compo	Junus (GUNIO							
Analyte	Result	Qualifier	RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	ι	ıg/L			10/18/11 04:06	1
Benzene	ND		1.0	ι	ıg/L			10/18/11 04:06	1
Dichlorobromomethane	ND		1.0	ι	ıg/L			10/18/11 04:06	1
Bromoform	ND		1.0	ι	ıg/L			10/18/11 04:06	1
Bromomethane	ND		1.0	Į.	ıg/L			10/18/11 04:06	1
2-Butanone (MEK)	ND		10	ι	ıg/L			10/18/11 04:06	1
Carbon disulfide	ND		1.0	ι	Jg/L			10/18/11 04:06	1
Carbon tetrachloride	ND		1.0	ι	ug/L			10/18/11 04:06	1
Chlorobenzene	ND		1.0	ι	ug/L			10/18/11 04:06	1
Chloroethane	ND		1.0	ι	ug/L			10/18/11 04:06	1
Chloroform	ND		1.0	ι	ıg/L			10/18/11 04:06	1
Chloromethane	ND		1.0	ι	ug/L			10/18/11 04:06	1
1,1-Dichloroethane	ND		1.0	ι	ıg/L			10/18/11 04:06	1
1,2-Dichloroethane	ND		1.0	ι	ug/L			10/18/11 04:06	1
1,1-Dichloroethene	ND		1.0	ι	ug/L			10/18/11 04:06	1
1,2-Dichloropropane	ND		1.0	ι	ug/L			10/18/11 04:06	1
cis-1,3-Dichloropropene	ND		1.0	ι	ug/L			10/18/11 04:06	1
trans-1,3-Dichloropropene	ND		1.0	ι	ug/L			10/18/11 04:06	1
Ethylbenzene	ND		1.0	(ug/L			10/18/11 04:06	1
2-Hexanone	ND		10	ι	ug/L			10/18/11 04:06	1
Methylene Chloride	ND		1.0	ι	ug/L			10/18/11 04:06	1
4-Methyl-2-pentanone (MIBK)	ND		10	ι	ug/L			10/18/11 04:06	1
Styrene	ND		1.0	ι	ug/L			10/18/11 04:06	1
1,1,2,2-Tetrachloroethane	ND		1.0	ı	ug/L			10/18/11 04:06	1
Tetrachloroethene	ND		1.0	ι	ug/L			10/18/11 04:06	1
Toluene	ND		1.0	ι	ug/L			10/18/11 04:06	1
Trichloroethene	ND		1.0	t	ug/L			10/18/11 04:06	1
Vinyl chloride	ND		1.0	ι	ug/L			10/18/11 04:06	1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: OW25 Date Collected: 10/06/11 10:45

Date Received: 10/07/11 09:00

Total Organic Carbon

Lab Sample ID: 240-4639-8

Matrix: Water

vvaler	
	1000

Method: 8260B - Volatile Organ	nic Compounds (G	GC/MS) (Continued)					
Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND	2.0	ug/L			10/18/11 04:06	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/18/11 04:06	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/18/11 04:06	1
Cyclohexane	ND	1.0	ug/L			10/18/11 04:06	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/18/11 04:06	1
Ethylene Dibromide	ND	1.0	ug/L			10/18/11 04:06	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/18/11 04:06	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 04:06	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/18/11 04:06	1
Isopropylbenzene	ND	1.0	ug/L			10/18/11 04:06	1
Methyl acetate	ND	10	ug/L			10/18/11 04:06	1
Methyl tert-butyl ether	ND	5.0	ug/L			10/18/11 04:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			10/18/11 04:06	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/18/11 04:06	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/18/11 04:06	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/18/11 04:06	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/18/11 04:06	1
Trichlorofluoromethane	ND	1.0	ug/L			10/18/11 04:06	1
Chlorodibromomethane	ND	1.0	ug/L			10/18/11 04:06	1
Methylcyclohexane	ND	1.0	ug/L			10/18/11 04:06	1
Currents	<i>"</i> " " " " " " " " " " " " " " " " " "	2 UF 11 '4			Deserved	Auglimad	Dil Ess
Surrogate	% Recovery G				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	63 - 129			Prepared	10/18/11 04:06	1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	108 96	63 ₋ 129 66 ₋ 117			Prepared	10/18/11 04:06 10/18/11 04:06	1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	108 96 103	63 - 129 66 - 117 74 - 115			Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06	1 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	108 96	63 ₋ 129 66 ₋ 117			Prepared	10/18/11 04:06 10/18/11 04:06	1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr)	108 96 103 102	63 - 129 66 - 117 74 - 115			Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06	1 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr)	108 96 103 102	63 - 129 66 - 117 74 - 115 75 - 121	MDL Unit	D	Prepared Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06	1 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (108 96 103 102 Gases (GC)	63 - 129 66 - 117 74 - 115 75 - 121	MDL Unit ug/L	D		10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06	1 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte	108 96 103 102 Gases (GC) Result C	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL		D		10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed	1 1 1 1 Dil Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane	108 96 103 102 Gases (GC) Result C	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50	ug/L	D		10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22	1 1 1 1 Dil Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene	108 96 103 102 Gases (GC) Result C ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50	ug/L ug/L	D	Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Malyzed 10/19/11 18:22 10/19/11 18:22	1 1 1 1 Dil Fac 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate	108 96 103 102 Gases (GC) Result C ND ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50	ug/L ug/L	D		10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 10/19/11 18:22	1 1 1 1 Dill Fac 1 1 1 Dill Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene	108 96 103 102 Gases (GC) Result C ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50	ug/L ug/L	D	Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Malyzed 10/19/11 18:22 10/19/11 18:22	1 1 1 1 Dil Fac 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate	108 96 103 102 Gases (GC) Result C ND ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50	ug/L ug/L ug/L	D	Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 10/19/11 18:22	1 1 1 1 Dill Fac 1 1 1 Dill Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate 1,1,1-Trifluoroethane	108 96 103 102 Gases (GC) Result C ND ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50 0.50	ug/L ug/L	D	Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Malyzed 10/19/11 18:22 10/19/11 18:22 Analyzed 10/19/11 18:22	Dil Fac Dil Fac Dil Fac
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate 1,1,1-Trifluoroethane General Chemistry	108 96 103 102 Gases (GC) Result G ND ND ND ND ND	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50 0.50 Qualifier Limits 10 - 168	ug/L ug/L ug/L		Prepared Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 Analyzed 10/19/11 18:22 Analyzed 10/19/11 17:37	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate 1,1,1-Trifluoroethane General Chemistry Analyte	108 96 103 102 Gases (GC) Result G ND ND ND ND ND 105	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50 0.50 Qualifier Limits 10 - 168	ug/L ug/L ug/L		Prepared Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 Analyzed 10/19/11 18:22 Analyzed 10/19/11 18:23	1 1 1 1 Dil Fac 1 Dil Fac 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate 1,1,1-Trifluoroethane General Chemistry Analyte Nitrate as N	108 96 103 102 Gases (GC) Result G ND ND ND ND ND 105 Recovery G 105	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50 0.50 Qualifier Limits 10 - 168	ug/L ug/L ug/L MDL Unit mg/L		Prepared Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 Analyzed 10/19/11 18:22 Analyzed 10/19/11 17:37	1 1 1 1 Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Dibromofluoromethane (Surr) Method: RSK-175 - Dissolved (Analyte Methane Ethane Ethylene Surrogate 1,1,1-Trifluoroethane General Chemistry Analyte Nitrate as N Alkalinity	108 96 103 102 Gases (GC) Result C ND ND ND ND ND ND ND Recovery C 105 Result C 1.2	63 - 129 66 - 117 74 - 115 75 - 121 Qualifier RL 0.50 0.50 0.50 0.50 Qualifier Limits 10 - 168	ug/L ug/L ug/L MDL Unit mg/L mg/L		Prepared Prepared	10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 10/18/11 04:06 Analyzed 10/19/11 18:22 10/19/11 18:22 Analyzed 10/19/11 18:22 Analyzed 10/19/11 18:23	1 1 1 1 Dil Fac 1 Dil Fac 1 1

10/14/11 20:32

mg/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-9

Matrix: Water

Client Sample ID: PUMP RINSE

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 10/06/11 11:15 Date Received: 10/07/11 09:00

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

Methylcyclohexane

Wellion, 62000 - Volatile Organi	c Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L		10/18/11 04:28	1
Benzene	ND	1.0	ug/L		10/18/11 04:28	1
Dichlorobromomethane	ND	1.0	ug/L		10/18/11 04:28	1
Bromoform	ND	1.0	ug/L		10/18/11 04:28	1
Bromomethane	ND	1.0	ug/L		10/18/11 04:28	1
2-Butanone (MEK)	ND	10	ug/L		10/18/11 04:28	1
Carbon disulfide	ND	1.0	ug/L		10/18/11 04:28	1
Carbon tetrachloride	ND	1.0	ug/L		10/18/11 04:28	1
Chlorobenzene	ND	1.0	ug/L		10/18/11 04:28	1
Chloroethane	ND	1.0	ug/L		10/18/11 04:28	1
Chloroform	ND	1.0	ug/L		10/18/11 04:28	1
Chloromethane	ND	1.0	ug/L		10/18/11 04:28	1
1,1-Dichloroethane	ND	1.0	ug/L		10/18/11 04:28	1
1,2-Dichloroethane	ND	1.0	ug/L		10/18/11 04:28	1
1,1-Dichloroethene	ND	1.0	ug/L		10/18/11 04:28	1
1,2-Dichloropropane	ND	1.0	ug/L		10/18/11 04:28	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/18/11 04:28	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		10/18/11 04:28	1
Ethylbenzene	ND	1.0	ug/L		10/18/11 04:28	1
2-Hexanone	ND	10	ug/L		10/18/11 04:28	1
Methylene Chloride	ND	1.0	ug/L		10/18/11 04:28	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		10/18/11 04:28	1
Styrene	ND	1.0	ug/L		10/18/11 04:28	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		10/18/11 04:28	1
Tetrachloroethene	ND	1.0	ug/L		10/18/11 04:28	1
Toluene	ND	1.0	ug/L		10/18/11 04:28	1
Trichloroethene	ND	1.0	ug/L		10/18/11 04:28	1
Vinyl chloride	ND	1.0	ug/L		10/18/11 04:28	1
Xylenes, Total	ND	2.0	ug/L		10/18/11 04:28	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/18/11 04:28	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/18/11 04:28	1
Cyclohexane	ND	1.0	ug/L		10/18/11 04:28	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/18/11 04:28	1
Ethylene Dibromide	ND	1.0	ug/L		10/18/11 04:28	1
Dichlorodifluoromethane	ND	1.0	ug/L		10/18/11 04:28	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/18/11 04:28	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		10/18/11 04:28	1
Isopropylbenzene	ND	1.0	ug/L		10/18/11 04:28	1
Methyl acetate	ND	10	ug/L		10/18/11 04:28	1
Methyl tert-butyl ether	ND	5.0	ug/L		10/18/11 04:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		10/18/11 04:28	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/18/11 04:28	1
V4 1340 (#4. #-44.0E)-ch-0.4039(00000.53)# A00	N. Inc.	4.0			40/40/44 04:00	4

10/18/11 04:28 10/18/11 04:28

10/18/11 04:28

10/18/11 04:28

10/18/11 04:28

10/18/11 04:28

1

1

1

1

1

1.0

1.0

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-9

Matrix: Water

Client Sample ID: PUMP RINSE

Date Collected: 10/06/11 11:15 Date Received: 10/07/11 09:00

Client Sample ID: OW24 Date Collected: 10/06/11 12:15 Date Received: 10/07/11 09:00

Prepared	Analyzed	Dil Fac	

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	108	63 - 129		10/18/11 04:28	1	
4-Bromofluorobenzene (Surr)	100	66 - 117		10/18/11 04:28	1	
Toluene-d8 (Surr)	104	74 - 115		10/18/11 04:28	1	
Dibromofluoromethane (Surr)	105	75 - 121		10/18/11 04:28	1	

Lab Sample ID: 240-4639-10

Method: 8260B - Volatile Organic	Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L		10/18/11 04:51	1
Benzene	ND	1.0	ug/L		10/18/11 04:51	1
Dichlorobromomethane	ND	1.0	ug/L		10/18/11 04:51	1
Bromoform	ND	1.0	ug/L		10/18/11 04:51	1
Bromomethane	ND	1.0	ug/L		10/18/11 04:51	1
2-Butanone (MEK)	ND	10	ug/L		10/18/11 04:51	1
Carbon disulfide	ND	1.0	ug/L		10/18/11 04:51	1
Carbon tetrachloride	ND	1.0	ug/L		10/18/11 04:51	1
Chlorobenzene	ND	1.0	ug/L		10/18/11 04:51	1
Chloroethane	ND	1.0	ug/L		10/18/11 04:51	1
Chloroform	ND	1.0	ug/L		10/18/11 04:51	1
Chloromethane	ND	1.0	ug/L		10/18/11 04:51	1
1,1-Dichloroethane	ND	1.0	ug/L		10/18/11 04:51	1
1,2-Dichloroethane	ND	1.0	ug/L		10/18/11 04:51	1
O The Control of the	NB	4.0			10/10/11 04:51	4

Bromoform	ND	1.0	ug/L	10/18/11 04:51	1
Bromomethane	ND	1.0	ug/L	10/18/11 04:51	1
2-Butanone (MEK)	ND	10	ug/L	10/18/11 04:51	1
Carbon disulfide	ND	1.0	ug/L	10/18/11 04:51	1
Carbon tetrachloride	ND	1.0	ug/L	10/18/11 04:51	1
Chlorobenzene	ND	1.0	ug/L	10/18/11 04:51	1
Chloroethane	ND	1.0	ug/L	10/18/11 04:51	1
Chloroform	ND	1.0	ug/L	10/18/11 04:51	1
Chloromethane	ND	1.0	ug/L	10/18/11 04:51	1
1,1-Dichloroethane	ND	1.0	ug/L	10/18/11 04:51	1
1,2-Dichloroethane	ND	1.0	ug/L	10/18/11 04:51	1
1,1-Dichloroethene	ND	1.0	ug/L	10/18/11 04:51	1
1,2-Dichloropropane	ND	1.0	ug/L	10/18/11 04:51	1
cis-1,3-Dichloropropene	ND	1.0	ug/L	10/18/11 04:51	1
trans-1,3-Dichloropropene	ND	1.0	ug/L	10/18/11 04:51	1
Ethylbenzene	ND	1.0	ug/L	10/18/11 04:51	1
2-Hexanone	ND	10	ug/L	10/18/11 04:51	1
Methylene Chloride	ND	1.0	ug/L	10/18/11 04:51	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	10/18/11 04:51	1
Styrene	ND	1.0	ug/L	10/18/11 04:51	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	10/18/11 04:51	1
Tetrachloroethene	ND	1.0	ug/L	10/18/11 04:51	1
Toluene	ND	1.0	ug/L	10/18/11 04:51	1
Trichloroethene	ND	1.0	ug/L	10/18/11 04:51	1
Vinyl chloride	ND	1.0	ug/L	10/18/11 04:51	1
Xylenes, Total	ND	2.0	ug/L	10/18/11 04:51	1
1,1,1-Trichloroethane	ND	1.0	ug/L	10/18/11 04:51	1
1,1,2-Trichloroethane	ND	1.0	ug/L	10/18/11 04:51	1
Cyclohexane	ND	1.0	ug/L	10/18/11 04:51	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L	10/18/11 04:51	1
Ethylene Dibromide	ND	1.0	ug/L	10/18/11 04:51	1
Dichlorodifluoromethane	ND	1.0	ug/L	10/18/11 04:51	1
cis-1,2-Dichloroethene	ND	1.0	ug/L	10/18/11 04:51	1
trans-1,2-Dichloroethene	ND	1.0	ug/L	10/18/11 04:51	1
Isopropylbenzene	ND	1.0	ug/L	10/18/11 04:51	1
Methyl acetate	ND	10	ug/L	10/18/11 04:51	1

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: OW24

Lab Sample ID: 240-4639-10

Matrix: Water

Date Collected: 10/06/11 12:15 Date Received: 10/07/11 09:00

Method: 8260B - Volatile Organ	nic Compounds	(GC/MS) (C	Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0		ug/L			10/18/11 04:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			10/18/11 04:51	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/18/11 04:51	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/18/11 04:51	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/18/11 04:51	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/18/11 04:51	1
Trichlorofluoromethane	ND		1.0		ug/L			10/18/11 04:51	1
Chlorodibromomethane	ND		1.0		ug/L			10/18/11 04:51	1
Methylcyclohexane	ND		1.0		ug/L			10/18/11 04:51	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		63 - 129					10/18/11 04:51	1
4-Bromofluorobenzene (Surr)	99		66 - 117					10/18/11 04:51	1
Toluene-d8 (Surr)	106		74 - 115					10/18/11 04:51	1
Dibromofluoromethane (Surr)	109		75 - 121					10/18/11 04:51	1
Method: RSK-175 - Dissolved (Gases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.50		ug/L		-	10/19/11 18:55	1
Ethane	ND		0.50		ug/L			10/19/11 18:55	1
Ethylene	ND		0.50		ug/L			10/19/11 18:55	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,1,1-Trifluoroethane	101		10 - 168					10/19/11 18:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.33		0.10		mg/L			10/07/11 18:09	1
Alkalinity	120		5.0		mg/L			10/11/11 16:53	1
Chloride	3.5		1.0		mg/L			10/11/11 11:45	1
Sulfate	16		5.0		mg/L			10/18/11 10:28	1
Sulfide	ND		1.0		mg/L			10/11/11 09:19	1
Total Organic Carbon	ND		1.0		mg/L			10/14/11 21:05	1

Client Sample ID: OW18 Lab Sample ID: 240-4639-11

Date Collected: 10/06/11 13:25 Matrix: Water

Date Received: 10/07/11 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS)								
Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
ND	10	ug/L			10/18/11 05:14	1		
3.7	1.0	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
ND	10	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
8.7	1.0	ug/L			10/18/11 05:14	1		
ND	1.0	ug/L			10/18/11 05:14	1		
	Result Qualifier ND 3.7 ND	Result Qualifier RL ND 10 3.7 1.0 ND 1.0 ND 1.0 ND 10 ND 1.0 ND 1.0 ND 1.0 ND 1.0 8.7 1.0	Result Qualifier RL MDL Unit ug/L ND 10 ug/L 3.7 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 10 ug/L ND 1.0 ug/L 8.7 1.0 ug/L	Result ND Qualifier RL MDL Unit ug/L D 3.7 1.0 ug/L ug/L	Result ND Qualifier RL MDL Unit D Prepared ND 10 ug/L ND 1.0 ug/L 8.7 1.0 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed ND 10 ug/L 10/18/11 05:14 3.7 1.0 ug/L 10/18/11 05:14 ND 1.0 ug/L 10/18/11 05:14		

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: OW18

Date Collected: 10/06/11 13:25 Date Received: 10/07/11 09:00

Method: RSK-175 - Dissolved Gases (GC)

Analyte

Methane

Ethylene

Ethane

Lab Sample ID: 240-4639-11

Matrix: Water

Analyte	Result C	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND	1.	0	ug/L			10/18/11 05:14	1
Chloromethane	ND	1.	0	ug/L			10/18/11 05:14	1
1,1-Dichloroethane	ND	1.	0	ug/L			10/18/11 05:14	1
1,2-Dichloroethane	ND	1.	0	ug/L			10/18/11 05:14	1
1,1-Dichloroethene	ND	1.	0	ug/L			10/18/11 05:14	1
1,2-Dichloropropane	ND	1.	0	ug/L			10/18/11 05:14	1
cis-1,3-Dichloropropene	ND	1.	0	ug/L			10/18/11 05:14	1
trans-1,3-Dichloropropene	ND	1.	0	ug/L			10/18/11 05:14	1
Ethylbenzene	ND	1.	0	ug/L			10/18/11 05:14	1
2-Hexanone	ND	1	0	ug/L			10/18/11 05:14	1
Methylene Chloride	ND	1.	0	ug/L			10/18/11 05:14	1
4-Methyl-2-pentanone (MIBK)	ND	1	0	ug/L			10/18/11 05:14	1
Styrene	ND	1.	0	ug/L			10/18/11 05:14	1
1,1,2,2-Tetrachloroethane	ND	1.	0	ug/L			10/18/11 05:14	1
Tetrachloroethene	ND	1.)	ug/L			10/18/11 05:14	1
Toluene	ND	1.)	ug/L			10/18/11 05:14	1
Trichloroethene	ND	1.)	ug/L			10/18/11 05:14	1
Vinyl chloride	1.5	1.)	ug/L			10/18/11 05:14	1
Kylenes, Total	ND	2.)	ug/L			10/18/11 05:14	1
1,1,1-Trichloroethane	ND	1.)	ug/L			10/18/11 05:14	1
1,1,2-Trichloroethane	ND	1.)	ug/L			10/18/11 05:14	1
Cyclohexane	ND	1.)	ug/L			10/18/11 05:14	1
1,2-Dibromo-3-Chloropropane	ND	2.)	ug/L			10/18/11 05:14	1
Ethylene Dibromide	ND	1.)	ug/L			10/18/11 05:14	1
Dichlorodifluoromethane	ND	1.)	ug/L			10/18/11 05:14	1
cis-1,2-Dichloroethene	ND	1.)	ug/L			10/18/11 05:14	1
trans-1,2-Dichloroethene	ND	1.)	ug/L			10/18/11 05:14	1
sopropylbenzene	ND	1.)	ug/L			10/18/11 05:14	1
Methyl acetate	ND	1	0	ug/L			10/18/11 05:14	1
Methyl tert-butyl ether	ND	5.	ס	ug/L			10/18/11 05:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.)	ug/L			10/18/11 05:14	1
1,2,4-Trichlorobenzene	ND	1.)	ug/L			10/18/11 05:14	1
1,2-Dichlorobenzene	ND	1.)	ug/L			10/18/11 05:14	1
1,3-Dichlorobenzene	ND	1.)	ug/L			10/18/11 05:14	1
1,4-Dichlorobenzene	1.6	1.)	ug/L			10/18/11 05:14	1
Trichlorofluoromethane	ND	1.)	ug/L			10/18/11 05:14	1
Chlorodibromomethane	ND	1.)	ug/L			10/18/11 05:14	1
Methylcyclohexane	ND	1.)	ug/L			10/18/11 05:14	1
Surrogate	% Recovery Q	Qualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	63 - 129					10/18/11 05:14	1
4-Bromofluorobenzene (Surr)	104	66 - 117					10/18/11 05:14	1
Toluene-d8 (Surr)	101	74 - 115					10/18/11 05:14	1
Dibromofluoromethane (Surr)	108	75 - 121					10/18/11 05:14	1

Analyzed 10/20/11 12:23

10/20/11 12:23

10/20/11 12:23

Prepared

DII Fac

2

2

RL

1.0

1.0

1.0

Result Qualifier

1000

ND

ND

MDL Unit

ug/L

ug/L

ug/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: OW18 Date Collected: 10/06/11 13:25 Date Received: 10/07/11 09:00

Client Sample ID: OW19 Date Collected: 10/06/11 15:00

Date Received: 10/07/11 09:00

1,2-Dibromo-3-Chloropropane

Lab Sample ID: 240-4639-11

Matrix: Water

	,		

Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,1,1-Trifluoroethane	106		10 - 168					10/20/11 12:23	2	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate as N	ND		0.10		mg/L			10/07/11 18:26	1	п
Alkalinity	280		5.0		mg/L			10/11/11 17:04	1	
Chloride	24		1.0		mg/L			10/11/11 11:45	1	I
Sulfate	8.6		5.0		mg/L			10/18/11 10:28	1	
Sulfide	ND		1.0		mg/L			10/11/11 09:19	1	
Total Organic Carbon	10		1.0		mg/L			10/14/11 21:15	1	

Lab Sample ID: 240-4639-12

Matrix: Water

Analyte	Result Qualifi	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	ug/L			10/18/11 05:36	1
Benzene	3.0	1.0	ug/L			10/18/11 05:36	-1
Dichlorobromomethane	ND	1.0	ug/L			10/18/11 05:36	1
Bromoform	ND	1.0	ug/L			10/18/11 05:36	1
Bromomethane	ND	1.0	ug/L			10/18/11 05:36	1
2-Butanone (MEK)	ND	10	ug/L			10/18/11 05:36	1
Carbon disulfide	ND	1.0	ug/L			10/18/11 05:36	1
Carbon tetrachloride	ND	1.0	ug/L			10/18/11 05:36	1
Chlorobenzene	8.4	1.0	ug/L			10/18/11 05:36	1
Chloroethane	1.4	1.0	ug/L			10/18/11 05:36	1
Chloroform	ND	1.0	ug/L			10/18/11 05:36	1
Chloromethane	ND	1.0	ug/L			10/18/11 05:36	1
1,1-Dichloroethane	ND	1.0	ug/L			10/18/11 05:36	1
1,2-Dichloroethane	ND	1.0	ug/L			10/18/11 05:36	1
1,1-Dichloroethene	ND	1.0	ug/L			10/18/11 05:36	1
1,2-Dichloropropane	ND	1.0	ug/L			10/18/11 05:36	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 05:36	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/18/11 05:36	1
Ethylbenzene	ND	1.0	ug/L			10/18/11 05:36	1
2-Hexanone	ND	10	ug/L			10/18/11 05:36	1
Methylene Chloride	ND	1.0	ug/L			10/18/11 05:36	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			10/18/11 05:36	1
Styrene	ND	1.0	ug/L			10/18/11 05:36	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			10/18/11 05:36	1
Tetrachloroethene	ND	1.0	ug/L			10/18/11 05:36	1
Toluene	ND	1.0	ug/L			10/18/11 05:36	1
Trichloroethene	ND	1.0	ug/L			10/18/11 05:36	1
Vinyl chloride	3.3	1.0	ug/L			10/18/11 05:36	1
Xylenes, Total	ND	2.0	ug/L			10/18/11 05:36	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/18/11 05:36	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/18/11 05:36	1
Cyclohexane	ND	1.0	ug/L			10/18/11 05:36	1

10/18/11 05:36

2.0

ug/L

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Client Sample ID: OW19

Date Collected: 10/06/11 15:00 Date Received: 10/07/11 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

112

13

ND

12

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac	
Ethylene Dibromide	ND		1.0	ug/l	L		10/18/11 05:36	1	
Dichlorodifluoromethane	1.2		1.0	ug/l	L		10/18/11 05:36	1	
cis-1,2-Dichloroethene	1.6		1.0	ug/l	L		10/18/11 05:36	1	
trans-1,2-Dichloroethene	ND		1.0	ug/l	L		10/18/11 05:36	1	
Isopropylbenzene	ND		1.0	ug/l	L		10/18/11 05:36	1	I
Methyl acetate	ND		10	ug/l	L		10/18/11 05:36	1	I
Methyl tert-butyl ether	ND		5.0	ug/l	L		10/18/11 05:36	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/l	L		10/18/11 05:36	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/l			10/18/11 05:36	1	
1,2-Dichlorobenzene	ND		1.0	ug/l	-		10/18/11 05:36	1	
1,3-Dichlorobenzene	ND		1.0	ug/l	<u> </u>		10/18/11 05:36	1	
1,4-Dichlorobenzene	ND		1.0	ug/l	•		10/18/11 05:36	1	
Trichlorofluoromethane	ND		1.0	ug/l	_		10/18/11 05:36	1	
Chlorodibromomethane	ND		1.0	ug/l	<u>L</u> e		10/18/11 05:36	1	
Methylcyclohexane	ND		1.0	ug/L	<u>La</u>		10/18/11 05:36	1	
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	-
1,2-Dichloroethane-d4 (Surr)	109		63 - 129				10/18/11 05:36	1	
4-Bromofluorobenzene (Surr)	104		66 - 117				10/18/11 05:36	1	
Toluene-d8 (Surr)	100		74 - 115				10/18/11 05:36	1	

Method: RSK-175 - Dissolved Gases (GC) Analyte

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MUL	Unit	D	Prepared	Analyzed	Dil Fac	
Methane	1800		2.5		ug/L			10/20/11 12:56	5	
Ethane	ND		2.5		ug/L			10/20/11 12:56	5	
Ethylene	ND		2.5		ug/L			10/20/11 12:56	5	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,1,1-Trifluoroethane	108		10 - 168					10/20/11 12:56	5	
General Chemistry										
지는 사람들이 가장 있는 사람들이 되었다. 이 전에 가장 사람들이 가장 되었다. 사람들이 가장 하는 것이 되었다.		0	RL	HDI	*****			**********	Dil F	
Analyte	Result	Qualifier	KL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Nitrate as N	ND		0.10		mg/L			10/07/11 18:42	1	
Alkalinity	290		5.0		mg/L			10/11/11 17:15	1	
Chloride	110		5.0		mg/L			10/11/11 11:59	5	

5.0

1.0

1.0

mg/L

mg/L

mg/L

75 - 121

Client Sample ID: TB3

Total Organic Carbon

Sulfate

Sulfide

Date Collected: 10/06/11 00:00

Date Received: 10/07/11 09:00

Lab Sample ID: 240-4639-13

10/18/11 10:30

10/11/11 09:19

10/14/11 21:26

10/18/11 05:36

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

method: 0200B - Volatile Organic Compounds (Como)									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10		ug/L			10/18/11 05:59	1
Benzene	ND		1.0		ug/L			10/18/11 05:59	1
Dichlorobromomethane	ND		1.0		ug/L			10/18/11 05:59	1
Bromoform	ND		1.0		ug/L			10/18/11 05:59	1
	Acetone Benzene Dichlorobromomethane	Acetone ND Benzene ND Dichlorobromomethane ND	Acetone ND Benzene ND Dichlorobromomethane ND	Acetone ND 10 Benzene ND 1.0 Dichlorobromomethane ND 1.0	Acetone ND 10 Benzene ND 1.0 Dichlorobromomethane ND 1.0	Acetone ND 10 ug/L Benzene ND 1.0 ug/L Dichlorobromomethane ND 1.0 ug/L	Acetone ND 10 ug/L Benzene ND 1.0 ug/L Dichlorobromomethane ND 1.0 ug/L	Acetone ND 10 ug/L Benzene ND 1.0 ug/L Dichlorobromomethane ND 1.0 ug/L	Acetone ND 10 ug/L 10/18/11 05:59 Benzene ND 1.0 ug/L 10/18/11 05:59 Dichlorobromomethane ND 1.0 ug/L 10/18/11 05:59

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-13

Client Sample ID: TB3
Date Collected: 10/06/11 00:00
Date Received: 10/07/11 09:00

Dibromofluoromethane (Surr)

Matrix: Water

Method: 8260B - Volatile Organic Co	ompounds	(GC/MS) (Conti	nued)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0		ug/L			10/18/11 05:59	1
2-Butanone (MEK)	ND		10		ug/L			10/18/11 05:59	1
Carbon disulfide	ND		1.0		ug/L			10/18/11 05:59	1
Carbon tetrachloride	ND		1.0		ug/L			10/18/11 05:59	1
Chlorobenzene	ND		1.0		ug/L			10/18/11 05:59	1
Chloroethane	ND		1.0		ug/L			10/18/11 05:59	1
Chloroform	ND		1.0		ug/L			10/18/11 05:59	1
Chloromethane	ND		1.0		ug/L			10/18/11 05:59	1
1,1-Dichloroethane	ND		1.0		ug/L			10/18/11 05:59	1
1,2-Dichloroethane	ND		1.0		ug/L			10/18/11 05:59	1
1,1-Dichloroethene	ND		1.0		ug/L			10/18/11 05:59	1
1,2-Dichloropropane	ND		1.0		ug/L			10/18/11 05:59	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/18/11 05:59	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/18/11 05:59	1
Ethylbenzene	ND		1.0		ug/L			10/18/11 05:59	1
2-Hexanone	ND		10		ug/L			10/18/11 05:59	1
Methylene Chloride	ND		1.0		ug/L			10/18/11 05:59	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			10/18/11 05:59	1
Styrene	ND		1.0		ug/L			10/18/11 05:59	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			10/18/11 05:59	1
Tetrachloroethene	ND		1.0		ug/L			10/18/11 05:59	1
Toluene	ND		1.0		ug/L			10/18/11 05:59	1
Trichloroethene	ND		1.0		ug/L			10/18/11 05:59	1
Vinyl chloride	ND		1.0		ug/L			10/18/11 05:59	1
Xylenes, Total	ND		2.0		ug/L			10/18/11 05:59	1
1,1,1-Trichloroethane	ND		1.0		ug/L			10/18/11 05:59	1
1,1,2-Trichloroethane	ND		1.0		ug/L			10/18/11 05:59	1
Cyclohexane	ND		1.0		ug/L			10/18/11 05:59	1
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			10/18/11 05:59	1
Ethylene Dibromide	ND		1.0		ug/L			10/18/11 05:59	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/18/11 05:59	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/18/11 05:59	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/18/11 05:59	1
Isopropylbenzene	ND		1.0		ug/L			10/18/11 05:59	1
Methyl acetate	ND		10		ug/L			10/18/11 05:59	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/18/11 05:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			10/18/11 05:59	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/18/11 05:59	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/18/11 05:59	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/18/11 05:59	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/18/11 05:59	1
Trichlorofluoromethane	ND		1.0		ug/L			10/18/11 05:59	1
Chlorodibromomethane	ND		1.0		ug/L			10/18/11 05:59	1
Methylcyclohexane	ND		1.0		ug/L			10/18/11 05:59	1
Surrogate	% Recovery	1710-000000	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		63 - 129					10/18/11 05:59	1
4-Bromofluorobenzene (Surr)	98		66 - 117					10/18/11 05:59	1
Toluene-d8 (Surr)	101	7	74 - 115					10/18/11 05:59	1
D.11	72/14/14/14	7.2	75 40:					104041 0000	100

10/18/11 05:59

75 - 121

111

Surrogate Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(58-123)	(52-136)	(67-125)	(37-132)	
240-4639-4	SED 1	76	77	85	77	
240-4639-5	SED DUP	77	80	86	76	
240-4639-7	SED 2	75	52	102	79	
240-4639-7 MS	SED 2	68	60	103	76	
240-4639-7 MSD	SED 2	82	72	96	86	
LCS 240-19255/5	Lab Control Sample	75	83	88	80	
MB 240-19255/6	Method Blank	75	84	87	78	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA Matrix: Water

		Percent Surrogate Recovery (Acceptance			
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)
240-4639-1	FB3	120	97	107	121
240-4639-2	SW1	112	91	101	116
240-4639-3	SWDUP	113	96	108	121
240-4639-6	SW2	104	98	105	107
240-4639-6 MS	SW2	110	110	105	113
240-4639-6 MSD	SW2	108	114	102	106
240-4639-8	OW25	108	96	103	102
240-4639-9	PUMP RINSE	108	100	104	105
240-4639-10	OW24	115	99	106	109
240-4639-11	OW18	105	104	101	108
240-4639-12	OW19	109	104	100	112
240-4639-13	ТВ3	115	98	101	111
LCS 240-19459/4	Lab Control Sample	116	113	107	105
MB 240-19459/5	Method Blank	102	100	104	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: RSK-175 - Dissolved Gases (GC)

Matrix: Water Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

		Trifluoroeth
Lab Sample ID	Client Sample ID	(10-168)
240-4639-8	OW25	105
240-4639-10	OW24	101
240-4639-11	OW18	106
240-4639-12	OW19	108

Surrogate Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Percent Surrogate Recovery (Acceptance Limits)

Prep Type: Total/NA

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Matrix: Water

Trifluoroetl (10-168)Lab Sample ID Client Sample ID LCS 240-19746/27 Lab Control Sample 85 95 LCS 240-19746/3 Lab Control Sample MB 240-19746/28 Method Blank 90 MB 240-19746/4 Method Blank 101

Surrogate Legend

1,1,1-Trifluoroethane = 1,1,1-Trifluoroethane

TestAmerica Job ID: 240-4639-1

Client: Cardinal Resources Project/Site: C & D GW Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS)

мв мв

Lab Sample ID: MB 240-19255/6

Matrix: Solid

Analysis Batch: 19255

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

Methylcyclohexane

trans-1,3-Dichloropropene

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20		ug/Kg			10/14/11 21:53	1
Benzene	ND		5.0		ug/Kg			10/14/11 21:53	1
Dichlorobromomethane	ND		5.0		ug/Kg			10/14/11 21:53	1
Bromoform	ND		5.0		ug/Kg			10/14/11 21:53	1
Bromomethane	ND		5.0		ug/Kg			10/14/11 21:53	1
2-Butanone (MEK)	ND		20		ug/Kg			10/14/11 21:53	1
Carbon disulfide	ND		5.0		ug/Kg			10/14/11 21:53	1
Carbon tetrachloride	ND		5.0		ug/Kg			10/14/11 21:53	1
Chlorobenzene	ND		5.0		ug/Kg			10/14/11 21:53	1
Chloroethane	ND		5.0		ug/Kg			10/14/11 21:53	1
Chloroform	ND		5.0		ug/Kg			10/14/11 21:53	1
Chloromethane	ND		5.0		ug/Kg			10/14/11 21:53	1
1,1-Dichloroethane	ND		5.0		ug/Kg			10/14/11 21:53	1
1,2-Dichloroethane	ND		5.0		ug/Kg			10/14/11 21:53	1
1,1-Dichloroethene	ND		5.0		ug/Kg			10/14/11 21:53	1
1,2-Dichloropropane	ND		5.0		ug/Kg			10/14/11 21:53	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			10/14/11 21:53	1

5.0

ug/Kg

ug/Kg ug/Kg ug/Kg

ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

1

1

1

Ethylbenzene	ND	5.0
2-Hexanone	ND	20
Methylene Chloride	ND	5.0
4-Methyl-2-pentanone (MIBK)	ND	20
Styrene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Vinyl chloride	ND	5.0
Xylenes, Total	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
Cyclohexane	ND	10
1,2-Dibromo-3-Chloropropane	ND	10
Ethylene Dibromide	ND	5.0
Dichlorodifluoromethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Isopropylbenzene	ND	5.0
Methyl acetate	ND	10
Methyl tert-butyl ether	ND	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0

ND

ND

ND

ND

ND

ND

ND

ND

10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
10/14/11 21:53
TootAmerica North Can

5.0

5.0

5.0

5.0

5.0

5.0

10

Limits

58 - 123

52 - 136

67 - 125

37 - 132

Client: Cardinal Resources Project/Site: C & D GW Sampling

Lab Sample ID: MB 240-19255/6

Matrix: Solid

Toluene-d8 (Surr)

Matrix: Solid

Surrogate

Analysis Batch: 19255

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 19255

Lab Sample ID: LCS 240-19255/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

% Recovery Qualifier

75

84

87

78

TestAmerica Job ID: 240-4639-1

Client Sample ID: Method Blank

Analyzed 10/14/11 21:53

10/14/11 21:53

10/14/11 21:53

10/14/11 21:53

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

% Rec. D % Rec Limits 41 - 137 87

LCS LCS Spike Analyte Added Result Qualifier Unit Acetone 100 87.1 ug/Kg 50.0 47.2 ug/Kg 94 79 - 112 Benzene 84 - 122 50.0 44.5 ug/Kg 89 Dichlorobromomethane 87 62 - 133 Bromoform 50.0 43.5 ug/Kg 42 - 136 Bromomethane 50.0 37.8 ug/Kg 76 104 52 - 131 2-Butanone (MEK) 100 104 ug/Kg 39.8 80 62 - 146 Carbon disulfide 50.0 ug/Kg Carbon tetrachloride 50.0 41.1 ug/Kg 82 71 - 129Chlorobenzene 50.0 47.1 ug/Kg 94 78 - 110 58 - 117 Chloroethane 50.0 35.8 ug/Kg 72 77 - 114 Chloroform 50.0 46.0 ug/Kg 92 50 - 110 Chloromethane 50.0 36.6 ug/Kg 73 91 76 - 115 1,1-Dichloroethane 50.0 45.6 ug/Kg 92 72 - 120 1.2-Dichloroethane 50.0 46.0 ug/Kg 93 75 - 135 1,1-Dichloroethene 50.0 46.6 ug/Kg 1,2-Dichloropropane 50.0 48.1 ug/Kg 96 87 - 113 74 - 128 cis-1,3-Dichloropropene 50.0 43.0 ug/Kg 86 88 73 - 131 50.0 44.0 ug/Kg trans-1,3-Dichloropropene 92 79 - 117 Ethylbenzene 50.0 45.9 ug/Kg 2-Hexanone 100 97.9 ug/Kg 98 64 - 136 50.0 41.7 ug/Kg 83 75 - 118 Methylene Chloride 96.1 96 67 - 135 4-Methyl-2-pentanone (MIBK) 100 ug/Kg 50.0 45.9 ug/Kg 92 87 - 117 Styrene 50.0 48.9 ug/Kg 98 77 - 123 1,1,2,2-Tetrachloroethane 50.0 ug/Kg 100 79 - 114 Tetrachloroethene 50.1 75 - 111 Toluene 50.0 46.0 ug/Kg 92 100 79 - 113 Trichloroethene 50.0 49.8 ug/Kg Vinyl chloride 50.0 39.7 ug/Kg 79 57 - 114 92 80 - 118 Xylenes, Total 150 138 ug/Kg 50.0 39.8 ug/Kg 80 77 - 126 1,1,1-Trichloroethane 50.0 49.4 ug/Kg 99 83 - 112 1,1,2-Trichloroethane 42.6 85 66 - 110 50.0 Cyclohexane ug/Kg 61 - 132 1,2-Dibromo-3-Chloropropane 50.0 41.8 ug/Kg 84 96 83 - 117 Ethylene Dibromide 50.0 48.2 ug/Kg 58 26 - 113 50.0 29.1 Dichlorodifluoromethane ug/Kg 76 - 113 94 cis-1,2-Dichloroethene 50.0 47.0 ug/Kg 50.0 89 78 - 117 trans-1,2-Dichloroethene 44.6 ug/Kg 50.0 45.0 90 76 - 122 ug/Kg Isopropylbenzene 93 57 - 130 50.0 Methyl acetate 46.3 ug/Kg

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: SED 2

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

La

Ma

Ana

ab Sample ID: LCS 240-19255/5	Client Sample ID: Lab Control Sample
latrix: Solid	Prep Type: Total/NA
nalysis Batch: 19255	

Spike	LCS	LCS		% Rec.
Added	Result	Qualifier Unit	D % Rec	Limits
50.0	40.9	ug/Kg	82	49 - 165
50.0	49.0	ug/Kg	98	82 - 138
50.0	43.6	ug/Kg	87	64 - 124
50.0	47.9	ug/Kg	96	76 - 110
50.0	47.4	ug/Kg	95	78 - 111
50.0	46,5	ug/Kg	93	75 - 110
50.0	42.8	ug/Kg	86	57 - 146
50.0	45.4	ug/Kg	91	72 - 127
50.0	45.7	ug/Kg	91	70 - 126
100	92.7	ug/Kg	93	80 - 117
50.0	45.6	ug/Kg	91	80 - 120
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	Added Result 50.0 40.9 50.0 49.0 50.0 43.6 50.0 47.9 50.0 47.4 50.0 46.5 50.0 42.8 50.0 45.4 50.0 45.7 100 92.7	Added Result Qualifier Unit Ug/Kg 50.0 40.9 ug/Kg 50.0 49.0 ug/Kg 50.0 43.6 ug/Kg 50.0 47.9 ug/Kg 50.0 47.4 ug/Kg 50.0 46.5 ug/Kg 50.0 42.8 ug/Kg 50.0 45.4 ug/Kg 50.0 45.7 ug/Kg 100 92.7 ug/Kg	Added Result 40.9 Qualifier ug/Kg Unit 82 D % Rec 82 50.0 40.9 ug/Kg 82 50.0 49.0 ug/Kg 98 50.0 43.6 ug/Kg 87 50.0 47.9 ug/Kg 96 50.0 47.4 ug/Kg 95 50.0 46.5 ug/Kg 93 50.0 42.8 ug/Kg 86 50.0 45.4 ug/Kg 91 50.0 45.7 ug/Kg 91 100 92.7 ug/Kg 93

LCS	LCS
-----	-----

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	75		58 - 123
4-Bromofluorobenzene (Surr)	83		52 - 136
Toluene-d8 (Surr)	88		67 - 125
Dibromofluoromethane (Surr)	80		37 - 132

Lab Sample ID: 240-4639-7 MS

Matrix: Solid

Matrix. John									
Analysis Batch: 19255									
	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	% Rec	Limits
Acetone	ND		233	151		ug/Kg	Ω	65	24 - 140
Benzene	ND		116	108		ug/Kg	Ω	93	53 - 118
Dichlorobromomethane	ND		116	93.9		ug/Kg	Q	81	35 - 132
Bromoform	ND		116	81.7		ug/Kg	Œ	70	18 - 129
Bromomethane	ND		116	73.6		ug/Kg	Ω	63	33 - 130
2-Butanone (MEK)	ND		233	185		ug/Kg	α	79	30 - 143
Carbon disulfide	ND		116	89.2		ug/Kg	ø	77	20 - 151
Carbon tetrachloride	ND		116	93.6		ug/Kg	ü	80	32 - 137
Chlorobenzene	ND		116	117		ug/Kg	Ω	100	37 - 116
Chloroethane	ND		116	86.9		ug/Kg	Ω	75	45 - 118
Chloroform	ND		116	106		ug/Kg	Ø	91	53 - 119
Chloromethane	ND		116	86.6		ug/Kg	¤	74	34 - 117
1,1-Dichloroethane	ND		116	107		ug/Kg	O	92	54 - 122
1,2-Dichloroethane	ND		116	102		ug/Kg	Ω	88	49 - 123
1,1-Dichloroethene	ND		116	113		ug/Kg	α	97	49 - 157
1,2-Dichloropropane	ND		116	110		ug/Kg	Ø	95	61 - 117
cis-1,3-Dichloropropene	ND		116	70.1		ug/Kg	Ct.	60	27 - 133
trans-1,3-Dichloropropene	ND		116	97.4		ug/Kg	Ø	84	28 - 137
Ethylbenzene	ND		116	122		ug/Kg	Ω	105	30 - 131
2-Hexanone	ND		233	167		ug/Kg	Ø	72	37 - 147
Methylene Chloride	13		116	110		ug/Kg	Ø	83	54 - 115
4-Methyl-2-pentanone (MIBK)	ND		233	177		ug/Kg	α	76	43 - 147
Styrene	ND		116	95.7		ug/Kg	Q	82	27 - 127
1,1,2,2-Tetrachloroethane	ND		116	175		ug/Kg	Œ	150	16 - 179
Tetrachloroethene	ND		116	139		ug/Kg	n	119	31 - 135
Toluene	ND		116	132		ug/Kg	Ø	113	39 - 129

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: SED 2

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-4639-7 MS

Matrix: Solid

Analysis Batch: 19255

	Sample	Sample	Spike	MS	MS			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D	% Rec	Limits
Trichloroethene	ND		116	109	ug/Kg	Œ	94	10 - 177
Vinyl chloride	ND		116	96.2	ug/Kg	Ø	83	42 - 117
Xylenes, Total	ND		349	348	ug/Kg	Œ	100	30 - 131
1,1,1-Trichloroethane	ND		116	92.7	ug/Kg	Ø	80	51 - 128
1,1,2-Trichloroethane	ND		116	132	ug/Kg	Ø	113	10 - 166
Cyclohexane	ND		116	93.9	ug/Kg	Q	81	28 - 118
1,2-Dibromo-3-Chloropropane	ND		116	98.7	ug/Kg	Q	85	10 - 153
Ethylene Dibromide	ND		116	118	ug/Kg	Ø	101	45 - 127
Dichlorodifluoromethane	ND		116	68.9	ug/Kg	α	59	17 - 115
cis-1,2-Dichloroethene	ND		116	107	ug/Kg	Ø	92	50 - 119
trans-1,2-Dichloroethene	ND		116	106	ug/Kg	ø	91	50 - 123
Isopropylbenzene	ND		116	108	ug/Kg	Ø	93	21 - 134
Methyl acetate	ND		116	47.3	ug/Kg	Ω	41	33 - 165
Methyl tert-butyl ether	ND		116	91.3	ug/Kg	Q	78	51 - 157
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		116	112	ug/Kg	Ω	96	50 - 147
ne								
1,2,4-Trichlorobenzene	ND		116	56.4	ug/Kg	Ø	48	10 - 111
1,2-Dichlorobenzene	ND		116	117	ug/Kg	Ω	100	17 - 122
1,3-Dichlorobenzene	ND		116	133	ug/Kg	Ω	114	16 - 126
1,4-Dichlorobenzene	ND		116	127	ug/Kg	Ċ	109	15 - 121
Trichlorofluoromethane	ND		116	101	ug/Kg	x	87	36 - 142
Chlorodibromomethane	ND		116	112	ug/Kg	Ω	96	29 - 135
Methylcyclohexane	ND		116	87.3	ug/Kg	Ω	75	20 - 132
m-Xylene & p-Xylene	ND		233	236	ug/Kg	α	101	29 - 131
o-Xylene	ND		116	112	ug/Kg	n	96	29 - 134

MS MS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	68		58 - 123
4-Bromofluorobenzene (Surr)	60		52 - 136
Toluene-d8 (Surr)	103		67 - 125
Dibromofluoromethane (Surr)	76		37 - 132

Lab Sample ID: 240-4639-7 MSD

Matrix: Solid

Analysis Batch: 19255											
	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acetone	ND		233	231	F	ug/Kg	Q	99	24 - 140	41	30
Benzene	ND		116	123		ug/Kg	α	105	53 - 118	13	30
Dichlorobromomethane	ND		116	102		ug/Kg	Ø	88	35 - 132	9	30
Bromoform	ND		116	83.1		ug/Kg	O	71	18 - 129	2	30
Bromomethane	ND		116	89.0		ug/Kg	ø	76	33 - 130	19	30
2-Butanone (MEK)	ND		233	260	F	ug/Kg	Ø	112	30 - 143	34	30
Carbon disulfide	ND		116	107		ug/Kg	ø	92	20 - 151	18	30
Carbon tetrachloride	ND		116	109		ug/Kg	Ω	93	32 - 137	15	30
Chlorobenzene	ND		116	116		ug/Kg	·Q	100	37 - 116	0	30
Chloroethane	ND		116	106		ug/Kg	Q	91	45 - 118	20	30
Chloroform	ND		116	120		ug/Kg	Œ	103	53 - 119	13	30
Chloromethane	ND	ϵ	116	103		ug/Kg	α	88	34 - 117	17	30
1,1-Dichloroethane	ND		116	125		ug/Kg	α	107	54 - 122	15	30

Client Sample ID: SED 2 Prep Type: Total/NA

Spike

Added

116

116

116

116

116

116

233

116

233

116

116

116

116

116

116

349

116

116

116

116

116

116

116

116

116

116

116

116

116

116

116

116

116

116

116

233

116

MSD

119

133

121

79.2

98.0

123

202

129

227

98.5

141

145

129

123

118

355

107

134

112

92.5

123

88.0

122

124

116

82.4

109

137

56.1

98.3

111

108

124

107

111

242

113

Result Qualifier

Unit

ug/Kg

D

Q

a

Q

¢

O

a

ø

Ç.

a

O

Ø

Ü

C.

Q

a

O

a

ø

Q

n

Q

Q.

a

O

Q.

Ø

Œ

ø

a

Ø.

Ċ

Ø

O

ø

O

a

O

% Rec

102

115

104

68

84

106

87

100

97

85

121

125

111

105

102

102

92

115

96

79

105

76

104

107

100

71

94

118

48

84

95

93

106

92

96

104

97

Client: Cardinal Resources Project/Site: C & D GW Sampling

Lab Sample ID: 240-4639-7 MSD

Matrix: Solid

1,2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Cyclohexane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Ethylene Dibromide

Isopropylbenzene

Methyl acetate

ne

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Methyl tert-butyl ether

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Trichlorofluoromethane

Chlorodibromomethane

Methylcyclohexane

o-Xylene

m-Xylene & p-Xylene

1,1,2-Trichloro-1,2,2-trifluoroetha

1,2-Dibromo-3-Chloropropane

Ethylbenzene

2-Hexanone

Styrene

Toluene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

1,1,2,2-Tetrachloroethane

Analyte

Analysis Batch: 19255

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

ND

ND

ND

ND

ND

ND

ND

13

ND

Result Qualifier

TestAmerica Job ID: 240-4639-1

% Rec.

Limits

49 - 123

49 - 157

61 - 117

27 - 133

28 - 137

30 - 131

37 - 147

54 - 115

43 - 147

27 - 127

16 - 179

31 - 135

39 - 129

10 - 177

42 - 117

30 - 131

51 - 128

10 - 166

28 - 118

10 - 153

45 - 127

17 - 115

50 - 119

50 - 123

21 - 134

33 - 165

51 - 157

50 - 147

10 - 111

17 - 122

16 - 126

15 - 121

36 - 142

29 - 135

20 - 132

29 - 131

29 - 134

RPD

Limit

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

Client Sample ID: SED 2 Prep Type: Total/NA

RPD

15

17

9

12

1

1

19

16

24

3

22

5

2

12

21

2

14

2

17

7

4

24

13

16

7

54

18

20

0

17

18

16

20

24

2

1

ND	
ND	
MSD	MSD

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	82		58 - 123
4-Bromofluorobenzene (Surr)	72		52 - 136
Toluene-d8 (Surr)	96		67 - 125
Dibromofluoromethane (Surr)	86		37 - 132

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Prep Type: Total/NA

Client Sample ID: Method Bla	ank

Lab Sample ID: MB 240-19459/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 19459

Analysis Batch: 19459						
		MB	MDI II II	ь ь	Ausbursel	Dil Ess
Analyte		Qualifier RL		Vest History Management (See Co.	Analyzed 10/17/11 23:57	Dil Fac
Acetone	ND	10	1.30		10/17/11 23:57	1
Benzene	ND	1.0 1.0	107		10/17/11 23:57	1
Dichlorobromomethane	ND ND	1.0	1/3		10/17/11 23:57	1
Bromoform	ND ND	1.0	1975 J		10/17/11 23:57	1
Bromomethane	ND	1.0	P _{res}		10/17/11 23:57	1
2-Butanone (MEK)	ND	1.0	5		10/17/11 23:57	1
Carbon disulfide	ND	1.0			10/17/11 23:57	1
Carbon tetrachloride	ND	1.0			10/17/11 23:57	1
Chlorobenzene Chloroethane	ND	1.0	925		10/17/11 23:57	1
2	ND	1.0	2011		10/17/11 23:57	1
Chloroform Chloromethane	ND	1.0			10/17/11 23:57	1
	ND	1.0			10/17/11 23:57	1
1,1-Dichloroethane	ND ND	1.0	100 To 10		10/17/11 23:57	1
1,2-Dichloroethane	ND	1.0	G-06 (I)		10/17/11 23:57	1
1,1-Dichloroethene	ND	1.0	0.5		10/17/11 23:57	1
1,2-Dichloropropane	ND	1.0	0.20		10/17/11 23:57	1
cis-1,3-Dichloropropene	ND	1.0	(15)		10/17/11 23:57	1
trans-1,3-Dichloropropene	ND	1.0	5		10/17/11 23:57	1
Ethylbenzene	ND ND	1.0			10/17/11 23:57	1
2-Hexanone	ND	1.0	Sec.		10/17/11 23:57	1
Methylene Chloride	ND	1.0	7		10/17/11 23:57	1
4-Methyl-2-pentanone (MIBK)	ND	1.0	55-0		10/17/11 23:57	1
Styrene	ND ND	1.0			10/17/11 23:57	1
1,1,2,2-Tetrachloroethane	ND ND	1.0			10/17/11 23:57	1
Tetrachloroethene	ND	1.0			10/17/11 23:57	1
Toluene	ND	1.0			10/17/11 23:57	1
Trichloroethene	ND	1.0			10/17/11 23:57	1
Vinyl chloride	ND ND	2.0			10/17/11 23:57	1
Xylenes, Total	ND	1.0	50 A		10/17/11 23:57	1
1,1,1-Trichloroethane	ND	1.0	5.		10/17/11 23:57	1
1,1,2-Trichloroethane	ND	1.0	3		10/17/11 23:57	1
Cyclohexane	ND	2.0	Said.		10/17/11 23:57	1
1,2-Dibromo-3-Chloropropane	ND	1.0	Take to the second seco		10/17/11 23:57	1
Ethylene Dibromide	ND	1.0			10/17/11 23:57	1
Dichlorodifluoromethane	ND	1.0	000		10/17/11 23:57	1
cis-1,2-Dichloroethene	ND	1.0	1000		10/17/11 23:57	1
trans-1,2-Dichloroethene Isopropylbenzene	ND	1.0	Con 1		10/17/11 23:57	1
	ND	10			10/17/11 23:57	1
Methyl acetate Methyl tert-butyl ether	ND	5.0			10/17/11 23:57	1
a te d'acon un Partir de men	ND	1.0			10/17/11 23:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trichlorobenzene	ND	1.0			10/17/11 23:57	1
1,2,4-Theniorobenzene	ND	1.0			10/17/11 23:57	1
1,3-Dichlorobenzene	ND	1.0			10/17/11 23:57	1
1,4-Dichlorobenzene	ND	1.0			10/17/11 23:57	1
Trichlorofluoromethane	ND	1.0	5/4		10/17/11 23:57	1
Chlorodibromomethane	ND	1.0			10/17/11 23:57	1
	ND	1.0			10/17/11 23:57	1
Methylcyclohexane	ND	1.0	ug/L			224

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: Method Blank

Analyzed 10/17/11 23:57 10/17/11 23:57 10/17/11 23:57 10/17/11 23:57

Prep Type: Total/NA

Dil Fac

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-19459/5

Lab Sample ID: LCS 240-19459/4

Matrix: Water

Analysis Batch: 19459

Isopropylbenzene

Methyl acetate

trans-1,2-Dichloroethene

мв мв

Surrogate	% Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	102		63 - 129	
4-Bromofluorobenzene (Surr)	100		66 - 117	
Toluene-d8 (Surr)	104		74 - 115	
Dibromofluoromethane (Surr)	101		75 - 121	

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Lab dample ib. Loo 240-13435/4				Giloni Gui		
Matrix: Water						Prep Typ
Analysis Batch: 19459						
	Spike	LCS	LCS			% Rec.
Analyte	Added	Result	Qualifier Unit	D %	Rec	Limits
Acetone	20.0	18.3	ug/L		92	43 - 136
Benzene	10.0	9.15	ug/L		92	83 - 112
Dichlorobromomethane	10.0	9.27	ug/L		93	72 - 121
Bromoform	10.0	10.1	ug/L		101	40 - 131
Bromomethane	10.0	7.47	ug/L		75	11 - 185
2-Butanone (MEK)	20.0	20.6	ug/L		103	60 - 126
Carbon disulfide	10.0	8.13	ug/L		81	62 - 142
Carbon tetrachloride	10.0	8.76	ug/L		88	66 - 128
Chlorobenzene	10.0	8.53	ug/L		85	85 - 110
Chloroethane	10.0	7.92	ug/L		79	25 _ 153
Chloroform	10.0	9.59	ug/L		96	79 - 117
Chloromethane	10.0	7.67	ug/L		77	44 - 126
1,1-Dichloroethane	10.0	9.53	ug/L		95	82 - 115
1,2-Dichloroethane	10.0	9.72	ug/L		97	71 - 127
1,1-Dichloroethene	10.0	10.2	ug/L		102	78 - 131
1,2-Dichloropropane	10.0	9.61	ug/L		96	81 - 115
cis-1,3-Dichloropropene	10.0	8.27	ug/L		83	61 - 115
trans-1,3-Dichloropropene	10.0	8.35	ug/L		84	58 - 117
Ethylbenzene	10.0	8.41	ug/L		84	83 - 112
2-Hexanone	20.0	21.5	ug/L		108	55 - 133
Methylene Chloride	10.0	8.30	ug/L		83	66 - 131
4-Methyl-2-pentanone (MIBK)	20.0	20.6	ug/L		103	63 - 128
Styrene	10.0	9.36	ug/L		94	79 - 114
1,1,2,2-Tetrachloroethane	10.0	8.37	ug/L		84	68 - 118
Tetrachloroethene	10.0	8.60	ug/L		86	79 - 114
Toluene	10.0	8.89	ug/L		89	84 - 111
Trichloroethene	10.0	9.48	ug/L		95	76 - 117
Vinyl chloride	10.0	8.03	ug/L		80	53 - 127
Xylenes, Total	30.0	26.0	ug/L		87	83 - 112
1,1,1-Trichloroethane	10.0	8.92	ug/L		89	74 - 118
1,1,2-Trichloroethane	10.0	9.19	ug/L		92	80 - 112
Cyclohexane	10.0	8.47	ug/L		85	54 - 121
1,2-Dibromo-3-Chloropropane	10.0	9.36	ug/L		94	42 - 136
Ethylene Dibromide	10.0	8.80	ug/L		88	79 - 113
Dichlorodifluoromethane	10.0	6.11	ug/L		61	19 - 129
cis-1,2-Dichloroethene	10.0	9.29	ug/L		93	80 - 113
			_			

90

98

83 - 117

75 - 114

58 - 131

8.95

8.31

ND

ug/L

ug/L

ug/L

10.0

10.0

10.0

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

3

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-19459/4 Client Sample ID: Lab Control Sample
Matrix: Water Prep Type: Total/NA

Analysis Batch: 19459

	Spike	LCS	LCS		% Rec.
Analyte	Added	Result	Qualifier Unit	D % Rec	Limits
Methyl tert-butyl ether	10.0	9.50	ug/L	95	52 - 144
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	9.52	ug/L	95	74 - 151
ne					
1,2,4-Trichlorobenzene	10.0	7.72	ug/L	77	48 - 135
1,2-Dichlorobenzene	10.0	9.14	ug/L	91	81 - 110
1,3-Dichlorobenzene	10.0	8.08	ug/L	81	80 - 110
1,4-Dichlorobenzene	10.0	8.63	ug/L	86	82 - 110
Trichlorofluoromethane	10.0	8.76	ug/L	88	49 - 157
Chlorodibromomethane	10.0	9.28	ug/L	93	64 - 119
Methylcyclohexane	10.0	8.64	ug/L	86	56 - 127
m-Xylene & p-Xylene	20.0	16.8	ug/L	84	83 - 113
o-Xylene	10.0	9.21	ug/L	92	83 - 113

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	116		63 - 129
4-Bromofluorobenzene (Surr)	113		66 - 117
Toluene-d8 (Surr)	107		74 - 115
Dibromofluoromethane (Surr)	105		75 - 121

Lab Sample ID: 240-4639-6 MS

Matrix: Water

Client Sample ID: SW2

Prep Type: Total/NA

Analysis Batch: 19459

Analysis Batch: 19459									
	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acetone	ND		20.0	17.9		ug/L		90	33 - 145
Benzene	ND		10.0	9.85		ug/L		99	72 - 121
Dichlorobromomethane	ND		10.0	9.67		ug/L		97	67 - 120
Bromoform	ND		10.0	9.38		ug/L		94	32 - 128
Bromomethane	ND		10.0	6.12		ug/L		61	10 - 186
2-Butanone (MEK)	ND		20.0	18.8		ug/L		94	54 - 129
Carbon disulfide	ND		10.0	9.07		ug/L		91	57 - 147
Carbon tetrachloride	ND		10.0	9.87		ug/L		99	59 - 129
Chlorobenzene	ND		10.0	9.24		ug/L		92	80 - 110
Chloroethane	ND		10.0	9.30		ug/L		93	21 - 165
Chloroform	ND		10.0	10.3		ug/L		103	76 - 118
Chloromethane	ND		10.0	8.37		ug/L		84	33 - 132
1,1-Dichloroethane	ND		10.0	10.0		ug/L		100	79 - 116
1,2-Dichloroethane	ND		10.0	10.1		ug/L		101	68 - 129
1,1-Dichloroethene	ND		10.0	9.93		ug/L		99	74 - 135
1,2-Dichloropropane	ND		10.0	10.1		ug/L		101	78 - 115
cis-1,3-Dichloropropene	ND		10.0	7.94		ug/L		79	51 - 110
trans-1,3-Dichloropropene	ND		10.0	8.63		ug/L		86	46 - 116
Ethylbenzene	ND		10.0	9.34		ug/L		93	75 - 116
2-Hexanone	ND		20.0	19.9		ug/L		100	47 - 139
Methylene Chloride	ND		10.0	8.21		ug/L		82	63 - 128
4-Methyl-2-pentanone (MIBK)	ND		20.0	20.3		ug/L		102	56 - 131
Styrene	ND		10.0	9.65		ug/L		97	71 - 117
1,1,2,2-Tetrachloroethane	ND		10.0	8.27		ug/L		83	63 - 122
Tetrachloroethene	ND		10.0	9.98		ug/L		100	70 - 117
Toluene	ND		10.0	9.40		ug/L		92	78 - 114

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: SW2 Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-4639-6 MS

Matrix: Water

Analysis Batch: 19459

TO STOCK AND TO STOCK AND THE	Sample	Sample	Spike	MS	MS		% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D % Rec	Limits
Trichloroethene	ND		10.0	9.74	ug/L	. 97	66 - 120
Vinyl chloride	ND		10.0	8.58	ug/L	86	49 - 130
Xylenes, Total	ND		30.0	28.4	ug/L	95	76 - 116
1,1,1-Trichloroethane	ND		10.0	10.1	ug/L	. 101	68 - 121
1,1,2-Trichloroethane	ND		10.0	9.33	ug/L	. 93	75 - 115
Cyclohexane	ND		10.0	8.68	ug/L	. 87	49 - 123
1,2-Dibromo-3-Chloropropane	ND		10.0	9.14	ug/L	. 91	32 - 139
Ethylene Dibromide	ND		10.0	9.08	ug/L	91	74 - 113
Dichlorodifluoromethane	ND		10.0	5.44	ug/L	54	17 - 128
cis-1,2-Dichloroethene	ND		10.0	9.25	ug/L	. 93	70 - 120
trans-1,2-Dichloroethene	ND		10.0	9.48	ug/L	95	80 - 119
Isopropylbenzene	ND		10.0	9.38	ug/L	. 94	68 - 116
Methyl acetate	ND		10.0	ND	ug/L	. 75	47 - 130
Methyl tert-butyl ether	ND		10.0	8.91	ug/L	. 89	46 - 144
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		10.0	8.61	ug/L	. 86	70 - 152
ne							
1,2,4-Trichlorobenzene	ND		10.0	7.57	ug/L		38 - 138
1,2-Dichlorobenzene	ND		10.0	10.1	ug/L		75 - 111
1,3-Dichlorobenzene	ND		10.0	8.96	ug/L		73 - 110
1,4-Dichlorobenzene	ND		10.0	8.99	ug/L		75 - 110
Trichlorofluoromethane	ND		10.0	8.28	ug/L		46 - 157
Chlorodibromomethane	ND		10.0	9.42	ug/L		56 - 118
Methylcyclohexane	ND		10.0	7.31	ug/L		49 - 127
m-Xylene & p-Xylene	ND		20.0	18.7	ug/L		75 - 117
o-Xylene	ND		10.0	9.69	ug/L	97	76 - 116

1S	MS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		63 - 129
4-Bromofluorobenzene (Surr)	110		66 - 117
Toluene-d8 (Surr)	105		74 - 115
Dibromofluoromethane (Surr)	113		75 - 121

Lab Sample ID: 240-4639-6 MSD

Matrix: Water

Analysis Batch: 19459

Allalysis Datoli, 19400											
	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acetone	ND		20.0	16.9		ug/L		85	33 - 145	6	30
Benzene	ND		10.0	9.34		ug/L		93	72 - 121	5	30
Dichlorobromomethane	ND		10.0	9.48		ug/L		95	67 - 120	2	30
Bromoform	ND		10.0	9.83		ug/L		98	32 - 128	5	30
Bromomethane	ND		10.0	6.57		ug/L		66	10 - 186	7	30
2-Butanone (MEK)	ND		20.0	18.2		ug/L		91	54 - 129	3	30
Carbon disulfide	ND		10.0	8.72		ug/L		87	57 - 147	4	30
Carbon tetrachloride	ND		10.0	9.10		ug/L		91	59 - 129	8	30
Chlorobenzene	ND		10.0	9.28		ug/L		93	80 - 110	0	30
Chloroethane	ND		10.0	8.32		ug/L		83	21 - 165	11	30
Chloroform	ND		10.0	9.73		ug/L		97	76 - 118	6	30
Chloromethane	ND		10.0	8.50		ug/L		85	33 - 132	2	30
1,1-Dichloroethane	ND		10.0	9.67		ug/L		97	79 - 116	3	30

Client Sample ID: SW2

Prep Type: Total/NA

Client: Cardinal Resources

Project/Site: C & D GW Sampling

Lab Sample ID: 240-4639-6 MSD

Matrix: Water

Analysis Batch: 19459

Chlorodibromomethane

Methylcyclohexane

o-Xylene

m-Xylene & p-Xylene

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

TestAmerica Job ID: 240-4639-1

Client Sample ID: SW2

Prep Type: Total/NA

30

30

30

30

3

2

Allalysis Datoll. 19400								
	Sample	Sample Spik	e MSD	MSD		% Rec.		RPD
Analyte	Result	Qualifier Adde	d Result	Qualifier Unit	D % Rec	Limits	RPD	Limit
1,2-Dichloroethane	ND	10.	0 9.79	ug/L	98	68 - 129	3	30
1,1-Dichloroethene	ND	10.	0 9.52	ug/L	95	74 - 135	4	30
1,2-Dichloropropane	ND	10.	0 9.53	ug/L	95	78 - 115	6	30
cis-1,3-Dichloropropene	ND	10.	0 8.11	ug/L	81	51 - 110	2	30
trans-1,3-Dichloropropene	ND	10.	0 8.87	ug/L	89	46 - 116	3	30
Ethylbenzene	ND	10.	0 9.16	ug/L	92	75 - 116	2	30
2-Hexanone	ND	20.	0 18.7	ug/L	94	47 - 139	6	30
Methylene Chloride	ND	10.	0 8.47	ug/L	85	63 - 128	3	30
4-Methyl-2-pentanone (MIBK)	ND	20.	0 19.9	ug/L	100	56 - 131	2	30
Styrene	ND	10.	0 9.52	ug/L	95	71 - 117	1	30
1,1,2,2-Tetrachloroethane	ND	10.	0 8.83	ug/L	88	63 - 122	7	30
Tetrachloroethene	ND	10.	0 9.13	ug/L	91	70 - 117	9	30
Toluene	ND	10.	0 9.48	ug/L	93	78 - 114	1	30
Trichloroethene	ND	10.	0 9.37	ug/L	94	66 - 120	4	30
Vinyl chloride	ND	10.	0 8.35	ug/L	84	49 - 130	3	30
Xylenes, Total	ND	30.	0 28.4	ug/L	95	76 - 116	0	30
1,1,1-Trichloroethane	ND	10.	0 9.68	ug/L	97	68 - 121	4	30
1,1,2-Trichloroethane	ND	10.	0 9.01	ug/L	90	75 - 115	3	30
Cyclohexane	ND	10.	0 8.29	ug/L	83	49 - 123	5	30
1,2-Dibromo-3-Chloropropane	ND	10.	0 9.26	ug/L	93	32 - 139	1	30
Ethylene Dibromide	ND	10.	0 8.93	ug/L	89	74 - 113	2	30
Dichlorodifluoromethane	ND	10.	0 5.64	ug/L	56	17 - 128	4	30
cis-1,2-Dichloroethene	ND	10.	0 9.33	ug/L	93	70 - 120	1	30
trans-1,2-Dichloroethene	ND	10.	0 9.16	ug/L	92	80 - 119	3	30
Isopropylbenzene	ND	10.	0 8.98	ug/L	90	68 - 116	4	30
Methyl acetate	ND	10.	0 ND	ug/L	65	47 - 130	14	30
Methyl tert-butyl ether	ND	10.	0 9.03	ug/L	90	46 - 144	1	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	10.	0 8.48	ug/L	85	70 - 152	2	30
ne				COORDINATE OF THE PROPERTY OF	Ya.a			
1,2,4-Trichlorobenzene	ND	10.		ug/L			6	30
1,2-Dichlorobenzene	ND	10.		ug/L			2	30
1,3-Dichlorobenzene	ND	10.		ug/L			2	30
1,4-Dichlorobenzene	ND	10.		ug/L	88		2	30
Trichlorofluoromethane	ND	10.	0 8.55	ug/L	86	46 - 157	3	30

MSD MSD

ND

ND

ND

ND

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		63 - 129
4-Bromofluorobenzene (Surr)	114		66 - 117
Toluene-d8 (Surr)	102		74 - 115
Dibromofluoromethane (Surr)	106		75 - 121

56 - 118

49 - 127

75 - 117

76 - 116

71

92

101

10.0

10.0

20.0

10.0

9.58

7.07

18.3

10.1

ug/L

ug/L

ug/L

ug/L

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Method: RSK-175 - Dissolved Gases (GC)

Client Sample ID: Method Blank Lab Sample ID: MB 240-19746/28 Matrix: Water

Prep Type: Total/NA

Analysis Batch: 19746 HD HD

	MD	MD						
Analy	e Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Metha	ne ND	0.50	ug/L			10/20/11 04:44	1	
Ethan	ND ND	0.50	ug/L			10/20/11 04:44	1	
Ethyle	ne ND	0.50	ug/L			10/20/11 04:44	1	
	and the second s							

MB MB

Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac 10 - 168 10/20/11 04:44 1,1,1-Trifluoroethane 90

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 240-19746/4 Prep Type: Total/NA Matrix: Water

Analysis Batch: 19746

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Methane ND 0.50 ug/L 10/19/11 15:39 ND ug/L 10/19/11 15:39 Ethane 0.50 10/19/11 15:39 Ethylene ND 0.50 ug/L

MB MB

Dil Fac Surrogate % Recovery Qualifier Limits Prepared Analyzed 10/19/11 15:39 1,1,1-Trifluoroethane 101 10-168

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 240-19746/27

Matrix: Water

Analysis Batch: 19746

LCS LCS % Rec. Spike % Rec Limits Analyte Added Result Qualifier Unit 75 - 114 90 Methane 116 104 ug/L 218 201 ug/L 93 71 - 123 Ethane 72 - 126 203 164 ug/L Ethylene

LCS LCS

% Recovery Qualifier Limits Surrogate 1,1,1-Trifluoroethane 85 10 - 168

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 240-19746/3 Prep Type: Total/NA Matrix: Water

Analysis Batch: 19746

LCS LCS % Rec. Spike Analyte Result Qualifier Unit % Rec Limits Added 75 - 114 108 93 Methane 116 ug/L 97 71 - 123 218 211 ug/L Ethane 88 72 - 126 Ethylene 203 179 ug/L

LCS LCS

Surrogate % Recovery Qualifier Limits 1,1,1-Trifluoroethane 95 10 - 168 RL

0.10

Spike

Added

Project/Site: C & D GW Sampling

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 240-18455/5

Matrix: Water

Nitrate as N

Analyte

Analysis Batch: 18455

MB MB

ND

Sample Sample

мв мв

Analyte Result Qualifier

Lab Sample ID: LCS 240-18455/6

Matrix: Water

Analysis Batch: 18455

Nitrate as N Lab Sample ID: 240-4639-8 MS

Matrix: Water

Analysis Batch: 18455

Analyte

Nitrate as N

Method: 310.1 - Alkalinity

Lab Sample ID: MB 240-18818/28

Matrix: Water

Analysis Batch: 18818

Analyte Alkalinity

Matrix: Water

Analysis Batch: 18818

Analysis Batch: 18818

Analyte

Alkalinity

Lab Sample ID: LCS 240-18818/27

Matrix: Water

Analysis Batch: 18818

Analyte Alkalinity

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac Analyzed

10/07/11 17:04

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

LCS LCS % Rec. Result Qualifier Unit % Rec Limits

2.50 2.56 mg/L 102 90 - 110

Client Sample ID: OW25

Prep Type: Total/NA

MS MS % Rec. Spike

Result Qualifier Added Result Qualifier Unit % Rec Limits

1.2 2.50 3.86 106 80 - 120

mg/L

MDL Unit

mg/L

Client Sample ID: Method Blank

Prep Type: Total/NA

90 - 127

100

MDL Unit RL Dil Fac Result Qualifier D Prepared Analyzed 10/11/11 16:39 ND 5.0 mg/L

Client Sample ID: Method Blank Lab Sample ID: MB 240-18818/3

Prep Type: Total/NA

мв мв

102

RL MDL Unit Dil Fac Analyte Analyzed Result Qualifier Prepared 10/11/11 11:03 5.0 Alkalinity ND mg/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 240-18818/2

Matrix: Water Prep Type: Total/NA

> LCS LCS % Rec. Spike Limits Added Result Qualifier Unit % Rec

> > mg/L

Client Sample ID: Lab Control Sample

102

Prep Type: Total/NA

Spike LCS LCS % Rec.

Limits Added Result Qualifier Unit % Rec 102 100 mg/L 98 90 - 127

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Method: 310.1 - Alkalinity (Continued)

Lab Sample ID: 240-4639-12 DU

Matrix: Water

Alkalinity

Analyte

Chloride

Analysis Batch: 18818

DU DU Sample Sample

Unit

D

RPD RPD Limit

Client Sample ID: OW19

Prep Type: Total/NA

20

Method: 325.2 - Chloride

Lab Sample ID: MB 240-18694/3

Matrix: Water

Analysis Batch: 18694

MB MB

Result Qualifier

290

ND

Result Qualifier ND

RL 1.0 mg/L

MDL Unit

LCS LCS

LCS LCS

42.9

Result Qualifier

MDL Unit

LCS LCS

28.4

Result Qualifier

mg/L

43.8

Result Qualifier

mg/L

RL

1.0

Spike

Added

44.7

Spike

Added

44.7

Spike

Added

29.5

MDL Unit

D Prepared

Prepared

D

Unit

mg/L

Unit

mg/L

Unit

mg/L

Analyzed 10/11/11 10:54

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: MB 240-18694/49

Matrix: Water

Analysis Batch: 18694

MB MB

Analyte Chloride

Lab Sample ID: LCS 240-18694/4

Result Qualifier ND

Matrix: Water

Analysis Batch: 18694

Analyte

Chloride

Lab Sample ID: LCS 240-18694/50

Matrix: Water

Analysis Batch: 18694

Analyte

Chloride

Method: 375.4 - Sulfate

Lab Sample ID: MB 240-19585/13

Matrix: Water

Sulfate

Analysis Batch: 19585

MB MB Analyte Result Qualifier

Lab Sample ID: LCS 240-19585/34 Matrix: Water

Analysis Batch: 19585

Analyte Sulfate

282

Result Qualifier

mg/L

1

Prep Type: Total/NA

Client Sample ID: Method Blank

Analyzed

10/11/11 11:44

Prep Type: Total/NA

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

% Rec Limits D 88 - 114 98

% Rec

Prepared

D

96

D

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

Limits 88 - 114

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed 10/18/11 10:00

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

% Rec.

% Rec Limits 80 - 112 96

RL

5.0

Client: Cardinal Resources Project/Site: C & D GW Sampling

Lab Sample ID: MB 240-18638/1

TestAmerica Job ID: 240-4639-1

Method: 376.1 - Sulfide

Analysis Batch: 18638

Matrix: Water

Sulfide

Analyte

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Analyzed ND 1.0 mg/L 10/11/11 09:19

Dil Fac

Lab Sample ID: LCS 240-18638/2 Client Sample ID: Lab Control Sample Matrix: Water

Prep Type: Total/NA

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Sulfide 16.5 16.4 mg/L 99 79 - 110

Method: 415.1 - TOC

Analysis Batch: 18638

Client Sample ID: Method Blank Lab Sample ID: MB 240-19276/33 Matrix: Water

RL

1.0

mg/L

Prep Type: Total/NA

Prep Type: Total/NA

10/14/11 20:10

Client Sample ID: Lab Control Sample

Analysis Batch: 19276 мв мв

MDL Unit Dil Fac Prepared Analyzed

Lab Sample ID: LCS 240-19276/34

Matrix: Water

Lab Sample ID: 240-4639-8 MS

Lab Sample ID: 240-4639-8 MSD

Analysis Batch: 19276

Total Organic Carbon

LCS LCS % Rec. Spike Analyte Added Result Qualifier Unit % Rec Limits 88 - 115 Total Organic Carbon 29.9 28.9 mg/L 97

Client Sample ID: OW25

Prep Type: Total/NA

Matrix: Water Analysis Batch: 19276

MS MS Spike Sample Sample Analyte D

Result Qualifier

ND

% Rec. % Rec Limits Result Qualifier Added Result Qualifier Unit 72 - 136 Total Organic Carbon ND 25.0 26.8 mg/L 104

Client Sample ID: OW25

Prep Type: Total/NA

Analysis Batch: 19276

Matrix: Water

RPD MSD MSD % Rec. Sample Sample Spike Limits RPD Limit Analyte Result Qualifier Added Result Qualifier Unit D % Rec 20 72 - 136 **Total Organic Carbon** ND 25.0 26.7 mg/L 103

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

2.3

GC/MS VOA

Analysis Batch: 19255

Lab Sample ID	Client Sample ID
240-4639-4	SED 1
240-4639-5	SED DUP
240-4639-7	SED 2
240-4639-7 MS	SED 2
240-4639-7 MSD	SED 2
LCS 240-19255/5	Lab Control Sample
MB 240-19255/6	Method Blank

Prep Type	Matrix	Method
Total/NA	Solid	8260B

30	15			
10	15			
A reli	15			
	1110-0 11		r	

Prep Batch

Prep Batch

7

Ţ,	
ũ	

Analysis Batch: 19459

Analysis Batch: 1945	59			
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-1	FB3	Total/NA	Water	8260B
240-4639-2	SW1	Total/NA	Water	8260B
240-4639-3	SWDUP	Total/NA	Water	8260B
240-4639-6	SW2	Total/NA	Water	8260B
240-4639-6 MS	SW2	Total/NA	Water	8260B
240-4639-6 MSD	SW2	Total/NA	Water	8260B
240-4639-8	OW25	Total/NA	Water	8260B
240-4639-9	PUMP RINSE	Total/NA	Water	8260B
240-4639-10	OW24	Total/NA	Water	8260B
240-4639-11	OW18	Total/NA	Water	8260B
240-4639-12	OW19	Total/NA	Water	8260B
240-4639-13	TB3	Total/NA	Water	8260B
LCS 240-19459/4	Lab Control Sample	Total/NA	Water	8260B
MB 240-19459/5	Method Blank	Total/NA	Water	8260B

	10

		Э.	

GC VOA

Analysis Batch: 19746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	RSK-175
240-4639-10	OW24	Total/NA	Water	RSK-175
240-4639-11	OW18	Total/NA	Water	RSK-175
240-4639-12	OW19	Total/NA	Water	RSK-175
LCS 240-19746/27	Lab Control Sample	Total/NA	Water	RSK-175
LCS 240-19746/3	Lab Control Sample	Total/NA	Water	RSK-175
MB 240-19746/28	Method Blank	Total/NA	Water	RSK-175
MB 240-19746/4	Method Blank	Total/NA	Water	RSK-175

Prep	Batch

General Chemistry

Analysis Batch: 18455

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	300.0
240-4639-8 MS	OW25	Total/NA	Water	300.0
240-4639-10	OW24	Total/NA	Water	300.0
240-4639-11	OW18	Total/NA	Water	300.0
240-4639-12	OW19	Total/NA	Water	300.0
LCS 240-18455/6	Lab Control Sample	Total/NA	Water	300.0
MB 240-18455/5	Method Blank	Total/NA	Water	300.0

Prep Batch

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

General Chemistry (Continued)

Analysis	Batch	18487
----------	-------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-4	SED 1	Total/NA	Solid	Moisture
240-4639-5	SED DUP	Total/NA	Solid	Moisture
240-4639-7	SED 2	Total/NA	Solid	Moisture
240-4639-7 DU	SED 2	Total/NA	Solid	Moisture
		(*)		

Prep Batch

Prep Batch

Prep Batch

Analysis Batch: 18638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	376.1
240-4639-10	OW24	Total/NA	Water	376.1
240-4639-11	OW18	Total/NA	Water	376.1
240-4639-12	OW19	Total/NA	Water	376.1
LCS 240-18638/2	Lab Control Sample	Total/NA	Water	376.1
MB 240-18638/1	Method Blank	Total/NA	Water	376.1

Analysis Batch: 18694

, maryone material rece				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	325.2
240-4639-10	OW24	Total/NA	Water	325.2
240-4639-11	OW18	Total/NA	Water	325.2
240-4639-12	OW19	Total/NA	Water	325.2
LCS 240-18694/4	Lab Control Sample	Total/NA	Water	325.2
LCS 240-18694/50	Lab Control Sample	Total/NA	Water	325.2
MB 240-18694/3	Method Blank	Total/NA	Water	325.2
MB 240-18694/49	Method Blank	Total/NA	Water	325.2

Analysis Batch: 18818

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	310.1
240-4639-10	OW24	Total/NA	Water	310.1
240-4639-11	OW18	Total/NA	Water	310.1
240-4639-12	OW19	Total/NA	Water	310.1
240-4639-12 DU	OW19	Total/NA	Water	310.1
LCS 240-18818/2	Lab Control Sample	Total/NA	Water	310.1
LCS 240-18818/27	Lab Control Sample	Total/NA	Water	310.1
MB 240-18818/28	Method Blank	Total/NA	Water	310.1
MB 240-18818/3	Method Blank	Total/NA	Water	310.1

Prep Batch

Analysis	Batch:	19276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	415.1
240-4639-8 MS	OW25	Total/NA	Water	415.1
240-4639-8 MSD	OW25	Total/NA	Water	415.1
240-4639-10	OW24	Total/NA	Water	415.1
240-4639-11	OW18	Total/NA	Water	415.1
240-4639-12	OW19	Total/NA	Water	415.1
LCS 240-19276/34	Lab Control Sample	Total/NA	Water	415.1
MB 240-19276/33	Method Blank	Total/NA	Water	415.1

Prep Batch

Analysis Batch: 19585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
240-4639-8	OW25	Total/NA	Water	375.4
240-4639-10	OW24	Total/NA	Water	375.4

QC Association Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Prep Batch

Analysis Batch: 19585 (Continued)

Lab Sample ID	Client Sample ID
240-4639-11	OW18
240-4639-12	OW19
LCS 240-19585/34	Lab Control Sample
MR 240-19585/13	Method Blank

Prep Type	Matrix	Method
Total/NA	Water	375.4

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling

Date Received: 10/07/11 09:00

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-1 Client Sample ID: FB3 Date Collected: 10/06/11 09:00

Matrix: Water

Batch Batch Dilution Batch Prepared Analyst Lab Prep Type Type Method Run Factor Number Or Analyzed TAL NC 8260B 19459 10/18/11 01:50 LE Total/NA Analysis

Lab Sample ID: 240-4639-2

Matrix: Water

Date Collected: 10/06/11 09:45 Date Received: 10/07/11 09:00

Client Sample ID: SW1

Batch Batch Dilution Batch Prepared Analyst Lab Method Run Factor Number Or Analyzed **Prep Type** Type TAL NC Total/NA 19459 10/18/11 02:12 LE Analysis 8260B

Lab Sample ID: 240-4639-3

Client Sample ID: SW DUP Matrix: Water Date Collected: 10/06/11 00:00

Date Received: 10/07/11 09:00

Total/NA

Analysis

Batch Prepared Batch Batch Dilution Analyst Lab Number Or Analyzed Prep Type Method Run Factor Type 10/18/11 02:35 TAL NC 19459 Total/NA Analysis 8260B 1

Lab Sample ID: 240-4639-4 Client Sample ID: SED 1

Matrix: Solid Date Collected: 10/06/11 09:55 Percent Solids: 58.3 Date Received: 10/07/11 09:00

Prepared Dilution Batch Batch Batch Or Analyzed Analyst Run Number

Lab Factor Prep Type Type Method TAL NC 19255 10/14/11 23:00 TL Total/NA Analysis 8260B 1 10/10/11 09:57 CN TAL NC Total/NA Analysis Moisture 18487

Lab Sample ID: 240-4639-5 Client Sample ID: SED DUP

Matrix: Solid Date Collected: 10/06/11 00:00

Percent Solids: 61.5 Date Received: 10/07/11 09:00

Prepared Batch Batch Dilution Batch Lab Analyst Run Number Or Analyzed Prep Type Method Factor Type TAL NC 19255 10/14/11 23:21 TL Total/NA 8260B Analysis

1

Lab Sample ID: 240-4639-6 Client Sample ID: SW2

Matrix: Water Date Collected: 10/06/11 10:40

18487

10/10/11 09:57

CN

Date Received: 10/07/11 09:00

Moisture

Batch Prepared Dilution Batch Batch Analyst Lab Or Analyzed Run **Prep Type** Method Factor Number Type TAL NC 10/18/11 02:58 LE 19459 Total/NA Analysis 8260B

TAL NC

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling

Client Sample ID: SED 2

Date Collected: 10/06/11 10:50

Date Received: 10/07/11 09:00

Client Sample ID: OW25

Date Collected: 10/06/11 10:45 Date Received: 10/07/11 09:00

TestAmerica Job ID: 240-4639-1

Lab Sample ID: 240-4639-7

Matrix: Solid

Percent Solids: 42.9

7.7			
7			
		А	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19255	10/14/11 23:43	TL	TAL NC
Total/NA	Analysis	Moisture		1	18487	10/10/11 10:07	CN	TAL NC

Lab Sample ID: 240-4639-8

Matrix: Water

Lab Sample ID: 240-4639-9 Client Sample ID: PUMP RINSE Matrix: Water

Date Collected: 10/06/11 11:15

Date Received: 10/07/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19459	10/18/11 04:28	LE	TAL NC

Lab Sample ID: 240-4639-10 Client Sample ID: OW24

Matrix: Water Date Collected: 10/06/11 12:15

Date Received: 10/07/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19459	10/18/11 04:51	LE	TAL NC
Total/NA	Analysis	RSK-175		1	19746	10/19/11 18:55	DH	TAL NC
Total/NA	Analysis	300.0		1	18455	10/07/11 18:09	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:45	BR	TAL NC
Total/NA	Analysis	310.1		1	18818	10/11/11 16:53	JB	TAL NC
Total/NA	Analysis	415.1		1	19276	10/14/11 21:05	TH	TAL NC
Total/NA	Analysis	375.4		1	19585	10/18/11 10:28	JK	TAL NC

Lab Chronicle

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Client Sample ID: OW18

Lab Sample ID: 240-4639-11

Matrix: Water

Date Collected: 10/06/11 13:25 Date Received: 10/07/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19459	10/18/11 05:14	LE	TAL NC
Total/NA	Analysis	RSK-175		2	19746	10/20/11 12:23	DH	TAL NC
Total/NA	Analysis	300.0		1	18455	10/07/11 18:26	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	325.2		1	18694	10/11/11 11:45	BR	TAL NC
Total/NA	Analysis	310.1		1	18818	10/11/11 17:04	JB	TAL NC
Total/NA	Analysis	415.1		1	19276	10/14/11 21:15	TH	TAL NC
Total/NA	Analysis	375.4		1	19585	10/18/11 10:28	JK	TAL NC

Lab Sample ID: 240-4639-12

Matrix: Water

Client Sample ID: OW19 Date Collected: 10/06/11 15:00 Date Received: 10/07/11 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	19459	10/18/11 05:36	LE	TAL NC
Total/NA	Analysis	RSK-175		5	19746	10/20/11 12:56	DH	TAL NC
Total/NA	Analysis	300.0		1	18455	10/07/11 18:42	LG	TAL NC
Total/NA	Analysis	376.1		1	18638	10/11/11 09:19	BW	TAL NC
Total/NA	Analysis	325.2		5	18694	10/11/11 11:59	BR	TAL NC
Total/NA	Analysis	310.1		4	18818	10/11/11 17:15	JB	TAL NC
Total/NA	Analysis	415.1		1	19276	10/14/11 21:26	TH	TAL NC
Total/NA	Analysis	375.4		1	19585	10/18/11 10:30	JK	TAL NC

Lab Sample ID: 240-4639-13 Client Sample ID: TB3

Date Collected: 10/06/11 00:00 Date Received: 10/07/11 09:00

Matrix: Water

Dilution Batch Prepared Batch Batch Lab Analyst Prep Type Type Method Run Factor Number Or Analyzed TAL NC 10/18/11 05:59 LE Total/NA Analysis 8260B 19459

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Cardinal Resources Project/Site: C & D GW Sampling TestAmerica Job ID: 240-4639-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica North Canton	ACLASS	DoD ELAP		ADE-1437
TestAmerica North Canton	California	NELAC	9	01144CA
TestAmerica North Canton	Connecticut	State Program	1	PH-0590
TestAmerica North Canton	Florida	NELAC	4	E87225
TestAmerica North Canton	Georgia	Georgia EPD	4	N/A
TestAmerica North Canton	Illinois	NELAC	5	200004
TestAmerica North Canton	Kansas	NELAC	7	E-10336
TestAmerica North Canton	Kentucky	State Program	4	58
TestAmerica North Canton	Minnesota	NELAC	5	039-999-348
TestAmerica North Canton	Nevada	State Program	9	OH-000482008A
TestAmerica North Canton	New Jersey	NELAC	2	OH001
TestAmerica North Canton	New York	NELAC	2	10975
TestAmerica North Canton	Ohio	OVAP	5	CL0024
TestAmerica North Canton	Pennsylvania	NELAC	3	68-00340
TestAmerica North Canton	USDA	USDA		P330-11-00328
TestAmerica North Canton	Virginia	NELAC Secondary AB	3	460175
TestAmerica North Canton	West Virginia	West Virginia DEP	3	210
TestAmerica North Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Company Name: Control Resources, LLC Clephone: 1506 E. Control St. Lophone: LASSUCATION ST. LA	rojectaManager:	Site Contact:		Controt		I CALMINET ICH LADOI ATOLICA, LIIC.
5. Carson St. 2014-0989	という しのにつ	Barb Jones		Mathan	Prefrons	°6°34332
-PA 15203 4-0989	Telephone: 712-574-09489	Telephone:		Telephone:		2 of 2 cocs
4-0989	BJORDS CANDING 175, Cho	Analysis: Turnaround Time	1.Time	wh	Analyses	For lab use only
C		TATirdir	s s	व्य	(u)	Walk-in closific
	of Shipmen Carrier.	2 weeks		16	14. A.	Lab sampling
F-0012-0200 shipping/Trac	RC43 7515 OG11	2 days	(K / K) old	100 200 120 120 	1001 1001 1001	Jobspa No.
Sample Identification . Samp	Sample Date Sample Time Advectors Advectors Advectors Advectors Advectors Advectors Advectors	Confidence & Processarios Confidence & Proce	Compositient Compositient Composition Comp	177 SertisM VR VR	AH CAN IM	Sample Specific Notes / Special Instructions:
	1050			×		
0 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1045 x	× ×	*	× × ×	×××××	
UMD RINGR	1115 X	×		×		
12	1215 K	×	*	× × ×	× × ×	
0 W 18	1325 X	×	2	XXXX	X	•
51 MO	isoo K	×	×	XXXX	XXXX	
	Lab Prepared X	X		×	,	
	•					
	100					
			•	P		
schlie Hazard Identification Non-Hazard	t Poison B Unknown		Sample Disposal (A fee may be pressed if samples are retained longer than 1 month) Return to Client [] Disposal By Lab Archive For	ure retained longer than		Months
Special Instructions/QC Requirements & Comments:			\ \			8
Relinquished Der Bosedine Carleing	na) Pregumes Date Ting	.2011 / Me30	þý:		Company:	Date/Time:
00	3	ħ.	by:		Company:	Date/Time:
Relinquished by: Company:	Date/Time:	Received	Received in Laboratory by:	j e ∜	Company:	Date/Time: 107-00

Other

NPDES CRA

<u>a</u>

TestAmerica Laboratory location: Regulatory program:

21	

There	8			THE PARTY OF THE P
	38			
		•	visiones, Inc.	

Client Contact				TestAmerica Laboratories, Inc.
35, 440	Client Project Manager 7 01/25	Site Control Confes	Lab Contact: A Than Piet	Mals 034331
1505 E. Caren St. 1 12003	Relephorer	:lephone:	Telephone:	of 2 cocs
STAG- JENDS	Bank Banks & Gading 1788, 16	Analysis Turnaround Time	Analyses	For lab use only
d gray		TATird	n)	Walk-in-client
	Method of Shipment/Carrier:		SAMA SAMA SAMA SAMA SAMA SAMA SAMA SAMA	Lab emapling
7-0200	Shipping/Tracking No: 8671		701	og spocks
	Martix			
Sample Identification	Sample Date Scaling Air Scaling Solid Others	HCD NACOH NA	27T 443M 25 24 10	Sample Specific Notes / Special Instructions:
FB3	10-6-11 0900 X)	· ·	
138	1 0945 x	×	×	-
dog ms	×	540	×	
Sed 1	X 5560	×.	×	
Sed Dup	× 1	×	×	
৪৯৯	X oho!	*	×	
SW CMS	1040 X	×	. ×	
SWD MSD	X 0401	*	*	
Seds	X 0501	*	×	
Sed 2 MS	x 050! x	×	54	
Possible Hazard Identification Non-Hazard	Skin Irritant Poison B Unknown	Sample Disposal (A fee may bequeesed if samples are retained longer than 1 month) own Return to Client Disposal By Lab Archive For	les are retained longer than I month)	Months
nts & Comments:		< .	,	•
Lyth Violeschin	Cardinal Resources Bucting	,2011/16 Beceived by:	Company:	Date/Time:
Relinquished by:		Received by:	Сотрапу:	Date/Time:
Relinquished by:	Company: Date/Time:	Received in Laboratory by:	Company:	. Date/Time: 10-7-€(0?00
CODOR, TestAverice Laborations, Inc. 'As rights enserved. TestAverica & Debto: "— see Implementats of TestAverica Expositions, Inc. TestAverica & Debto: "— see Implements of TestAverica Expositions, Inc.	X8	×		TAL 0018-1 (04/10)

Taetamarica Conier Receib	t Form/Narrative	Lot Number:	
TestAmerica Cooler Receip North Canton Facility		en de a a de se de 1880 e	9 44 22
	Project CED	By: Kus	2.7
Oneill Control on (D:7-II	Opened on 10-7-4	(Signature)	•
Cooler Received on FAST	☐ Stetson ☐ Client Drop Off ☐ Test	America Courier Other	
FedEX UPS DAL DAL DAS L	Multiple Coolers Foam Box	Client Cooler Other	
TestAmerica Cooler #	ide of the cooler(s)? Yes \(\text{No } \text{D} \)	Intact? Yes \ No \ NA \	
	Quantity Unsalvageable		*
If YES, Quantity	ide of cooler(s) signed and dated?	Yes No NA	r .
Were custody seals on the outsi	ide of cooler(s) signed and dated?	Yes No 🖸	
Were custody seals on the bottle	9(S) /	100 L No L .	10
If YES, are there any exceptions	1 - thlor(a)0	Yes No 🗆	
2. Shippers' packing slip attached	to the cooler(s)?	Relinquished by client? Yes	No 🗆
3. Did custody papers accompany	the sample(s)? Yes ☐ No ☐	Yes No	140 🗀
4. Were the custody papers signed	in the appropriate place?		0 *
Packing material used: Bubble	Wrap Foam None C	orner	x .
6. Cooler temperature upon receip	t 0.7 °C See back of form	for multiple coolers/temps	
METHOD: IR	Other I I		y vin
COOLANT: Wet Ice 🗵 BI	ue Ice Dry Ice Water	None U	
7. Did all bottles arrive in good con	dition (Unbroken)?	Yes 🔄 No 🗀	9
8. Could all bottle labels be recond	iled with the COC?	Yes No 🗆	
9. Were sample(s) at the correct p	H upon receipt?	Yes ☑ No ☐ NA ☐	
10. Were correct bottle(s) used for t	he test(s) indicated?	Yes No D	
11 Were air bubbles >6 mm in any	VOA vials?	Yes ☐ No ☐ NA ☐	
40 Cufficient quantity received to no	erform indicated analyses?	Yes No 🗆	
13 Was a trip blank present in the c	cooler(s)? Yes VI No I Were VC	As on the COC? Yes No L	
Contacted PMDa	ate by	via Verbal 🗌 Voice Mail 🗌 O	ther 🔲
Concerning			
14. CHAIN OF CUSTODY	60.4.44亿,现代中央部的市场的发展。		- i
The following discrepancies occurre	ed:		
1110 10110111119			
	_		
,		2.4.10mm	
	were received after t	he recommended holding time had e	expired.
15 SAMPLE CONDITION Sample(s)	were received after to	ne recommended holding time had e were received in a broken cor	ntainer.
15 SAMPLE CONDITION Sample(s) Sample(s)	were received after to	ne recommended holding time had e were received in a broken cor	ntainer.
	were received after to	he recommended holding time had e	ntainer.
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s)	were received after to	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not	ntainer.
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s)	were received after to were received vere r	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodia	ntainer. ify PM)
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) Sample(s)	were received after to were received vere r	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodia	ntainer. ify PM)
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl	were received after to were received vere re	were received in a broken conwith bubble >6 mm in diameter. (Note were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodial troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM)
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was	were received after to were received vere r	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH ₃ COO) ₂ ZN/NaOH. What time was	were received after to were received were r	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM)
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH ₃ COO) ₂ ZN/NaOH. What time was Client ID OWZS 12	were received after to were received with the received were received with the received were receive	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was Client ID OUZS 12 AU 12	were received after to were received with the received were received with the received were received were received with the received were received	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) **T6 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was Client ID OUZS 12 24	were received after to were received with the received were received were received were received with the received were received were received with the received were received were received with the received were received with the received were received were received with the received were received were received with the received were received were received were received with the received were received were received with the received were received with the received were received were received with the received were	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was Client ID OUZS 12 AU 12	were received after to were received with the received were received with the received were received were received with the received were received	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) **T6 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was Client ID OUZS 12 24	were received after to were received with the received were received were received were received with the received were received were received with the received were received were received with the received were received with the received were received were received with the received were received were received with the received were received were received were received with the received were received were received with the received were received with the received were received were received with the received were	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials
Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) **T6 SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pl Hydroxide Lot# 121809 -NaOH; Hydro (CH3COO)2ZN/NaOH. What time was Client ID OUZS 12 24	were received after to were received with the received were received were received were received with the received were received were received with the received were received were received with the received were received with the received were received were received with the received were received were received with the received were received were received were received with the received were received were received with the received were received with the received were received were received with the received were	ne recommended holding time had e were received in a broken con with bubble >6 mm in diameter. (Not were further preserved in Sample Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodic troxide and Zinc Acetate Lot# 100108-	ntainer. ify PM) im. nitials

nth Canton Facilit	Receipt Form/Narrative	Date	1/16/2006 Initials
Client ID	pH	۲	
entra est de la companya de la compa	5 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10		110 100 100 100 1
		:	
			
			· · · · · · · · · · · · · · · · · · ·
- 1			. 1"
	7.0		
1	The second secon	7	· ·
	W	10	
26		,	
;			1 12
·	1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.N. 1 7 7 7 8	
	1.00 mg - 1.00 m	1.A	
<u>.</u>		1. m. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	rago jaina na j
A 0. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	any the control of th	stops for the same	·
April 1995 April 1995		and the second	د د د د د
2 y - 12	, i	Method	Coolant
Cooler#	Temp. %	Like State 1 .	in the second
. 1			11 1 1 1 1 1 1
.,			
	The state of the s	* (2.5. Y. ******	enterior
	。	· w www.sevil	i dan sanaran
- 1 m . mil	The state of the state of the state of the state of	1. 1. 195	
n n 1 n		<u> </u>	
			:
			:
			•
:		可能可能性的	
screpancies Contid			• .
··			2
	·		
		•	

Login Sample Receipt Checklist

Client: Cardinal Resources

Job Number: 240-4639-1

List Source: TestAmerica North Canton

Login Number: 4639

List Number: 1

Creator: Sutek, Nick

190	50	

Comment Answer Question N/A Radioactivity either was not measured or, if measured, is at or below background True The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or True tampered with. True Samples were received on ice. True Cooler Temperature is acceptable. True 0.7 Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and True the COC. True Samples are received within Holding Time. True Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. True Multiphasic samples are not present. True Samples do not require splitting or compositing. N/A Residual Chlorine Checked.

Appendix B
Historic Groundwater, Surface Water, and Sediment Results

Anal	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	C SGV	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date																						
	03/22/93	NR	0.9 J	NR	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.1 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10		<10	<10	<10	<10
	04/20/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	:-	<10	<10	<10	<10
	02/18/99	<10	0.66 J	<1.0	<1.0	0.40 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	01/05/00	<10	0.65 J,B	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0	0.14 J	<10	0.35 J,B	<1.0	<1.0	2	0.097 J	<1.0	<2.0	<1.0
	06/06/00	<10	0.57 J	<1.0	<1.0	0.30 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/15/01	10 UJ	0.40 J	<1.0	<1.0	0.38 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	08/29/01	<10	<1.0	<1.0	<1.0	0.32 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	:=:	<1.0	<1.0	<2.0	<1.0
	04/25/02	10 U	<1.0	<1.0	<1.0	0.17 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
MW-1	09/18/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	=	<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	0.24 J	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	1.0
	02/15/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/13/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/24/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/21/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 UJ	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/13/11	10U	1.0U	1.0U	1.0U	1.0U	2.0U	1.0U	2.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0 U	2.0U
	03/24/93	NR	18 J	NR	<0.5	0.4 J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.3 J	<0.5	NR	<4.1 B,J	<0.5	<0.5	S=3	0.1 J	<0.5	<0.5	<0.5
	09/26/94	<10	11	<10	<1.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/24/95	<10	15	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/18/99	<10	5.7	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	<1.0	<0.1	<1.0	9.8	<1.0	<10	<1.0	<1.0	0.16 J		0.16 J	0.20 J	<2.0	<1.0
	01/05/00	<10	6.9 B	<1.0	<1.0	0.26 J	<2.0	<1.0	<2.0	0.13 J	<1.0	0.45 J	3.3	<1.0	<10	0.11 J,B	<1.0	<1.0	-	0.090 J	0.15 J	0.30 J	<1.0
	06/06/00	<10	4.8	<1.0	<1.0	0.20 J	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	3.8	<1.0	<10	<1.0	<1.0	0.30 J	-	<1.0	<1.0	0.18 J	<1.0
	03/14/01	<10	3.6	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	3.2	<1.0	<10	<1.0	<1.0	0.66 J	-	<1.0	0.42 J	<2.0	<1.0
	08/29/01	<10	12	<1.0	<1.0	0.21 J	<2.0	<1.0	0.26 J	<1.0	<1.0	<1.0	1.5	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
A DAT	04/25/02	<10	10	<1.0	<1.0	0.21 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.2	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
MW-4	09/18/02	<10	7.8	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	2.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.84 J	<1.0	<10	<1.0	<1.0	<1.0	3=1	<1.0	<1.0	<2.0	<1.0
	04/26/04	10 U	2.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.50 J	<1.0	<10	<1.0	<1.0	0.72 J	-	<1.0	<1.0	<2.0	<1.0
	02/15/06	10 U	3.8	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.53 J	1.0 U	10 U	1.0 U	1.0 U	0.33 J	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/29/06	10 U	9.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/13/07	10 U	7.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/24/08	10 U	4.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28 J	2.0 U	1.0 U
	07/16/09	10 U	1.2	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	0.34 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
ě	07/20/10	10 U	2.0	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/13/11	10 U	1.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0U

Ana	ilyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP		NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date	ND	.0.5	l ND	-0.5	-0.5	.0.5	0.5	.0.5	.0.5	.0.5	-0.5		-0.5	MD		.0.5			0.5	00		
	03/23/93	NR	<0.5	NR <10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	55	<0.5	NR	<1.3 B	<0.5	50		<0.5	22	<0.5	<0.5
	04/23/95	<10 <10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	130 85	<10 <10	NR <10	<10 <10	<10	100 76	3=	<10 <10	24	<10	<10 <10
	04/23/93	<50	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	130	<5.0	<10 <50	3.6 J,B	<10 <5.0	86	-	<5.0	22	<10 <10	<5.0
	01/05/00	<10	0.46 J	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0	80	-	<5.0	21	0.72 J	<5.0
	06/06/00	<33	<3.3	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	99	<3.3	<33	<3.3	<3.3	80	-	<3.3	19	<6.7	<3.3
	03/15/01	<100	<10	<10	<10	<10	<20	<10	<20	<10	<10	<10	310	<10	<100	4.6 J	<10	160	-	<10	32	<20	<10
	08/29/01	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	69	<2.5	<25	<2.5	<2.5	61		<2.5	15	<5.0	<2.5
	04/25/02	<25	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	81	<2.5	<25	1.2 U	<2.5	60	-	<2.5	18	0.95 J	<2.5
	09/18/02	<29	<2.9	<2.9	<2.9	<2.9	<5.7	<2.9	<5.7	<2.9	<2.9	<2.9	85	<2.9	<29	<2.9	<2.9	68	-	<2.9	18	<5.7	<2.9
OW-2	04/09/03	<120	<12	<12	<12	<12	<25	<12	<25	<12	<12	<12	290	<12	<120	<12	<12	160	-	<12	29	<25	<12
	04/26/04	10 U	1.5 J	<6.7	<6.7	<6.7	<13	<6.7	<13	<6.7	<6.7	<6.7	170	<6.7	<67	<6.7	<6.7	110	-	1.3 J	22	<13	<6.7
	02/15/06	40 U	4.0 U	4.0 U	4.0 U	4.0 U	8.0 U	4.0 U	8.0 U	4.0 U	4.0 U	4.0 U	150	4.0 U	40 U	4.0 U	4.0 U	120	12	4.0 U	20	8.0 U	4.0 U
	05/23/06	80 U	8.0 U	8.0 U	8.0 U	8.0 U	16 U	8.0 U	16 U	8.0 U	8.0 U	8.0 U	250	8.0 U	80 U	8.0 U	8.0 U	130	8.0 U	8.0 U	22	16 U	8.0 U
	08/30/06	25 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	74	2.5 U	25 U	2.5 U	2.5 U	90	2.5 U	2.5 U	16	5.0 U	2.5 U
	11/29/06	120 U	12 U	12 U	12 U	12 U	25 U	12 U	25 U	12 U	12 U	12 U	280	12 U	120 U	12 U	12 U	140	12 U	12 U	24	25 U	12 U
	06/13/07	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	36	2.0 U	20 U	2.0 UJ	2.0 U	52	2.0 U	2.0 U	12	4.0 U	2.0 U
	07/24/08	20 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	30	0.96 J	20 U	2.0 U	2.0 U	59	2.0 U	2.0 U	11	4.0 U	1.1 J
	07/16/09	25 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	53	2.5 U	25 U	2.5 U	2.5 U	62	2.5 U	2.5 U	9.7	5.0 U	2.5 U
	07/21/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 UJ	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	39	1.0 U	10 U	1.0 U	1.0 U	77	1.0 U	1.0 U	12	2.0 U	1.0 U
	10/13/11	25 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	98	2.5 U	2.5 U	2.5 U	2.5 U	110	2.5 U	2.5 U	15	2.5 U	5.0 U
	03/23/93	NR	<3.0 J	NR	<0.5	0.1 J	<0.5	<0.5	<1.3	<0.5	<0.6	<0.5	8.0 R	<0.5	NR	<3.8	<0.6	1.0		<0.5	<1.3	1.8	<0.6
	09/29/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/25/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7 J	<10	<10	<10	<10	<10		<10	<10	<10	<10
	02/18/99	<17	0.67 J	<1.7	<1.7	0.20 J	<3.3	<1.7	<3.3	<1.7	<1.0	<1.7	33	<1.7	<17	1.3 J,B	<1.0	7.8	•	<1.7	5.4	<3.3	<1.7
	01/06/00	1.3 J	0.66 J	<1.0	<1.0	0.29 J	<2.0	<1.0	<2.0	<1.0	<1.0	0.20 J	38	<1.0	<10	0.25 J,B	<1.0	18		0.041 J	9.0	0.26 J	<1.0
	06/07/00 03/14/01	<10 <10	0.91 J 0.46 J	<1.0 <1.0	<1.0 <1.0	0.19 J <1.0	<2.0 <2.0	<1.0	<2.0 <2.0	<1.0 <1.0	<1.0	<1.0 <1.0	7.3	<1.0 <1.0	<10	<1.0 <1.0	<1.0	2.4	1.00	<1.0	1.7 3.7	<2.0	<1.0
	08/29/01	<12	<1.2	<1.0	<1.2	0.21 J	<2.5	<1.0	<2.5	<1.0	<1.0 <1.2	<1.0	29	<1.0	<10 <12	<1.0	<1.0 <1.2	7.0		<1.0 <1.2	4.5	<2.0 <2.5	<1.0 <1.2
	04/24/02	14 U	0.35 J	<1.4	<1.4	0.20 J	<2.9	<1.4	<2.9	<1.4	<1.4	<1.4	37	<1.4	<14	1.4 U	<1.4	10		<1.4	5.3	<2.9	<1.4
	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	31	<1.0	<10	<1.0	<1.0	9.5	-	<1.0	5.3	<2.0	<1.0
OW-5	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	5.5		<1.0	3	<2.0	<1.0
	04/25/04	<10	0.38 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	8.6	<1.0	<10	<1.0	<1.0	5.2	_	<1.0	2.5	<2.0	<1.0
	02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	6.2	1.0 U	10 U	1.0 U	1.0 U	4.3	-	1.0 U	2.0	2.0 U	1.0 U
	05/23/06	10 U	0.69 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	20	1.0 U	10 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	2.6	0.27 J	1.0 U
	08/29/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	34	1.4 U	14 U	1.4 U	1.4 U	6.1	1.4 U	1.4 U	2.8 J	0.82 J	1.4 U
	11/29/06	10 U	0.26 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	30	1.0 U	10 U	1.0 U	1.0 U	7.1	1.0 U	1.0 U	3.5	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	8.7	1.0 U	10 U	1.0 UJ	1.0 U	4.0	1.0 U	1.0 U	1.9	2.0 U	1.0 U
	07/23/08	1.0 U	0.53 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	10	1.0 U	1.0 U	1.0 U	1.0 U	4.4	1.0 U	1.0 U	1.8	0.28 J	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	3.7	1.0 U	1.0 U	1.5	2.0 U	1.0 U
	07/21/10	10 U	0.37 J	1.0 U	1.0 U	1.0 U	2.0 UJ	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	4.8	1.0 U	10 U	1.0 U	1.0 U	4.2	1.0 U	1.0 U	1.6	2.0 U	1.0 U
	10/13/11	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.4	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U

Ana	ilyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (lotal)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EF	-	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date				ļ												¥======						
	03/23/93	NR	<1.3 J	NR	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.1 J	<1.3 J	<0.5	NR	<0.7 J,B	<0.5	13	-	<0.5	<2.9	1.1	<0.5
1	09/27/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	4 J	<10	NR	<10	<10	17		<10	6.0 J	<10	<10
	04/23/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	7=	<10	5.0 J	<10	<10
	02/18/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	3.7 B	<1.0	20	-	<1.0	4.6	<2.0	<1.0
	01/06/00	1.4 J	0.19 J,B	0.58 J	<1.0	<1.0	<2.0	<1.0	0.17 J	<1.0	<1.0	0.28 J	5.1	<1.0	<10	0.26 J,B	<1.0	21	-	<1.0	4.6	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	2.2	<1.0	<10	<1.0	<1.0	14		<1.0	2.6	<2.0	<1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.9	<1.0	<10	<1.0	<1.0	19	: **	<1.0	3.9	<2.0	<1.0
1	08/29/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	6.7	<1.0	<10	<1.0	<1.0	12	-	<1.0	2.3	<2.0	<1.0
	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	4.7	<1.0	<10	1.1 U	<1.0	12	-	<1.0	2.9	<2.0	<1.0
0)4/ 0	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	7.8	<1.0	<10	<1.0	<1.0	15		<1.0	3.9	<2.0	<1.0
OW-6	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	0.34 J	<1.0	28	:=	<1.0	6.8	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	21	<1.0	<10	<1.0	<1.0	32		<1.0	6.3	<2.0	<1.0
	02/16/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	19	1.7 U	17 U	1.7 U	1.7 U	39	-	1.7 U	7.9	3.3 U	1.7 U
	05/23/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	24	1.7 U	17 U	1.7 U	1.7 U	39	1.7 U	1.7 U	7.8	3.3 U	1.7 U
	08/31/06	14 U	1.4 U	1.4 U	1.4 U	1.4 U	2.9 U	1.4 U	2.9 U	1.4 U	1.4 U	1.4 U	20	1.4 U	14 U	1.4 U	1.4 U	40	1.4 U	1.4 U	7.7	2.9 U	1.4 U
1	11/29/06	17 U	1.7 U	1.7 U	1.7 U	1.7 U	3.3 U	1.7 U	3.3 U	1.7 U	1.7 U	1.7 U	20	1.7 U	17 U	0.75 J	1.7 U	41	1.7 U	1.7 U	8.6	3.3 U	1.7 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	19	1.0 U	10 U	1.0 UJ	1.0 U	36	1.0 U	1.0 U	9.0	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	10 U	1.0 U	1.0 U	31	1.0 U	1.0 U	6.3	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	16	1.0 U	10 U	1.0 U	1.0 U	30	1.0 U	1.0 U	5.5	2.0 U	1.0 U
1	07/21/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 UJ	1.0 U	0.31 J	1.0 U	1.0 U	1.0 U	20	1.0 U	10 U	1.0 U	1.0 U	42	1.0 U	1.0 U	8.6	2.0 U	1.0 U
	10/13/11	17 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	40	1.7 U	1.7 U	1.7 U	1.7 U	52	1.7 U	1.7 U	11	1.7 U	3.3 U
1	03/23/93	NR	<0.5	NR <10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NR	<0.8 B	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
1	09/26/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR 410	<10	<10	<10	-	<10	<10	<10	<10
1	04/20/95	<10 <10	<10 0.32 J	<10 0.17 J	<10 <1.0	<10 <1.0	<10 <2.0	<10 <1.0	<10 <2.0	<10 <1.0	<10 <1.0	<10 <1.0	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	01/06/00	<10	0.32 J 0.49 J	<1.0	<1.0	0.37 J	<2.0	0.083 J	<2.0	<1.0	<1.0	0.22 J	<1.0 <1.0	<10 0.14 J	<10 <10	0.32 J	<1.0 <1.0	0.17 J <1.0		<1.0 0.097 J	<1.0 <1.0	<2.0 <2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.35 J,B <1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0 <1.0
	03/15/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	(#)	<1.0	<1.0	<2.0	<1.0
	08/29/01	<10	0.20 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/24/02	10 U	0.20 J	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-8	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/09/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
	04/05/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	02/16/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/14/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/20/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/13/11	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U
	10/29/93	NR	37	NR	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NR	2.9 B	<1.0	<1.0	-	0.5 J	<1.0	<1.0	<1.0
011:	09/25/94	68	1,100	<10	<10	4 J	<10	<10	<10	<10	<10	<10	<10	9 J	NR	<10	<10	<10	-	8 J	<10	<10	53
OW-10	04/27/95	<50	2,600	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	-	<50	<50	<50	30 J
	02/16/99	<2,000	1,900	<200	<200	23 J	<400	<200	<400	<200	<200	<200	<200	<200	<2,000	100 J,B	<200	<200	:=:	25 J	<200	<400	<200
		-1353	11-77	- 3 3						Standard Ed		_~~	-50		-,000							1	

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	STATE OF THE STATE	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date					×											di-						
	01/07/00	610	400	<17	<17	3.6 J,B	<33	<17	<33	<17	<17	<17	<17	4.3 J	<170	<17	<17	<17	3.00	8.5 J	<17	10 J	6.2 J
	06/06/00	<50	130 J	<5.0	<5.0	3.0 J	<10	<5.0	<10	<5.0	<5.0	<5.0	<5.0	2.2 J	<50	<5.0	<5.0	<5.0	-	0.52 J	<5.0	2.2 J	<5.0
	03/14/01	<10	35	<1.0	<1.0	3.6	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	0.89 J	<10	<1.0	<1.0	<1.0	-	0.44 J	<1.0	2.4	<1.0
	08/29/01	<20	55	<2.0	<2.0	1.4 J	1.1 J	<2.0	<4.0	<2.0	<2.0	<1.0	3.5	<1.0	<20	<1.0	<2.0	<2.0	-	<1.0	<2.0	9.5	<2.0
	04/25/02	<10	30	<1.0	<1.0	4.0	2.8	<1.0	<2.0	<1.0	<1.0	<1.0	2.7	2.0 U	<10	1.2 U	<1.0	<1.0		1.0 U	<1.0	4.5	1.0 U
	09/19/02	<10	17	<1.0	<1.0	2.9	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.5	0.91 J	<10	<1.0	<1.0	<1.0	-	0.39 J	<1.0	6.3	<1.0
	04/09/03	<10	6.8	<1.0	<1.0	3.1	0.54 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.43 J	<1.0	<1.0	-	<1.0	<1.0	0.72 J	<1.0
OW-10R	04/26/04	<10	8.1	<1.0	<1.0	2.2	0.80 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.57 J	0.22 J	<10	1.0 U	<1.0	<1.0		0.27 J	<1.0	0.99 J	<1.0
1 1	02/15/06	10 U	3.2	1.0 U	1.0 U	1.4	0.52 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	=	1.0 U	1.0 U	0.47 J	1.3 U
1 1	08/29/06	10 U	9.9	1.0 U	1.0 U	1.4	0.92 J	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	0.59 J	0.25 J	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.7 J	1.0 U
1 1	06/13/07	10 U	4.7	1.0 U	1.0 U	1.4	0.94 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.47 J	1.0 U	10 U	1.0 UJ	1.0 U	0.89 J	1.0 U				
1	07/22/08	10 U	5.7	1.0 U	1.0 U	0.71 J	0.48 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.46 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.80 J	1.0 U
	07/15/09	10 U	2.7	1.0 U	1.0 U	2.3	0.62 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.33 J	1.0 U
1 1	07/20/10	10 U	4.6	1.0 U	1.0 U	0.88 J	0.87 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.39 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.66 J	1.0 U
	10/13/11	10 U	2.4	1.0 U	1.0 U	5.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U
	10/28/93	NR	230	NR	<1.0	<1.0	<1.0	<1.0	<1.0	0.4 J	<1.0	<1.0	12	0.2 J	NR	1.2 J,B	<1.0	<1.0	-	4.8	0.9 J	<1.0	0.8 J
1 1	09/29/94	<10	40	<10	<10	<10	<10	<10	<10	<10	<10	<10	6 J	<10	NR	<10	<10	<10		<10	<10	9 J	<10
1 1	04/25/95	<10	350	<10	<10	<10	<10	<10	<10	<10	<10	<10	20	<10	<10	<10	<10	<10	121	<10	<10	34	<10
1 1	02/16/99	<330	490	<33	<33	<33	<67	<33	<67	<33	<33	<33	52	<33	<330	18 J,B	<33	<33	-	7.6 J	<33	48 J	<33
1 1	01/06/00	<200	620	<20	<20	<20	<40	3.5 J,B	<40	<20	<20	<20	56	2.3 J	<200	<20	<20	<20	3.7	2.7 J,B	1.3 J	58	<20
OW-13	06/07/00	<83	200	<8.3	<8.3	0.84 J	<17	<8.3	<17	<8.3	<8.3	<8.3	15	5.5 J	<83	<8.3	<8.3	<8.3		<8.3	<8.3	17	<8.3
	03/14/01	<50	130	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<5.0	15	4.0 J	<50	3.0 J	<5.0	<5.0	-	<5.0	<5.0	12	<5.0
1 1	08/29/01	<62	120	<6.2	<6.2	<6.2	<12	<6.2	<12	<6.2	<6.2	<6.2	12	<6.2	<62	<6.2	<6.2	<6.2	3=0	<6.2	1.1 J	9.9 J	<6.2
1 1	04/24/02	<56	160	<5.6	<5.6	<5.6	<11	<5.6	<11	<5.6	<5.6	<5.6	11	<5.6	<56	<5.6	<5.6	<5.6	-	5.6 U	1.2 J	9.9 J	<5.6
1 1	09/19/02	<33	81	<3.3	<3.3	<3.3	<6.7	<3.3	<6.7	<3.3	<3.3	<3.3	8.5	1.8 J	24 J	<3.3	<3.3	<3.3		<3.3	<3.3	5.9 J	<3.3
1 1	04/10/03	<25	53	<2.5	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	5.9	1.6 J	<25	<2.5	<2.5	<2.5		<2.5	<2.5	4.9 J	<2.5
	04/25/04	<17	45	<1.7	<1.7	0.38 J	<3.3	<1.7	<3.3	<1.7	<1.7	<1.7	4.9	1.0 J	<17	<1.7	<1.7	<1.7	(=)	0.31 J	0.67 J	3.2 J	<1.7
	02/20/06	10 U	15	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.60 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.29 J	1.0 U	1.1 J	1.0 U
1 1	08/29/06	10 U	15	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.40 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3 J	1.0 U
1	06/12/07	10 U	11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U	10 U	1.0 UJ	1.0 U	0.86 J	1.0 U				
	07/22/08	10 U/10 U	6.5 J/6.8 J			1.0 U/1.0 U		1.0 U/1.0 U			1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U		10 U/10 U	1.0 U/1.0 U				1.0 U/1.0 U		0.70 J/0.70 J	
1 1	07/14/09	10 U/10 U	13/12	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	2.0 U/2.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	2.4/2.3	1.0 U/1.0 U	10 U/10 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	0.64 J/0.63 J	1.6 J/1.6 J	1.0 U/1.0 U
		10 UJ/10 UJ											0.70 J/0.78 J										
		10 U/10 U	1.0 U/1.3 J		7-17								1.0 U/1.0 U						7				The second secon
	09/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10		<10	<10	<10	<10
	04/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/16/99	<10	1.1	<1.0	<1.0	0.52 J	<2.0	<1.0	<2.0	0.25 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	•:	<1.0	<1.0	1.5 J	<1.0
	01/07/00	1.3 J	1.0 B	0.92 J	<1.0	0.64 J	<2.0	<1.0	<2.0	0.31 J	<1.0	0.57 J	<1.0	<1.0	<10	0.35 J,B	0.15 J,B	<1.0	-	0.074 J	<1.0	1.4 J	<1.0
	06/06/00	<10	0.91 J	<1.0	<1.0	0.60 J	<2.0	<1.0	<2.0	0.28 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	=	<1.0	<1.0	1.0 J	<1.0
	03/14/01	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.37 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.1 J	<1.0
	08/28/01	2.2 J,B	0.61 J	<1.0	<1.0	0.35 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	0.52 J	<1.0
	04/25/02	<10	0.99 J	<1.0	<1.0	0.47 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0	-0	<1.0	<1.0	0.91 J	<1.0
	09/18/02	<10	0.69 J	<1.0	<1.0	0.43 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/08/03	<10	1.2	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.33 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	2	<1.0	<1.0	<1.0 J	<1.0
	04/23/04 02/15/06	<10 10 U	1.2 0.88 J	<1.0	<1.0	0.67 J	<2.0	<1.0	<2.0	0.29 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	0.90 J	<1.0
	08/29/06			1.0 U	1.0 U	0.53 J	2.0 U	1.0 U	2.0 U	0.24 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	4011	1.0 U	1.0 U	0.73 J	1.3 U
L1	00129100	10 U	0.78 J	1.0 U	1.0 U	0.51 J	2.0 U	1.0 U	0.37 J	0.22 J	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.82 J	1.0 U

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date												10 = =										
	09/24/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	<10
	04/26/95	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
	02/17/99	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	01/06/00	1.4 J	0.082 J,B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.61 J	<1.0	<1.0	<10	0.30 J,B	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	06/07/00	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
	03/14/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-16	08/28/01	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	0.36 J	<1.0	<1.0	<10	0.80 J	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/24/02	10 U	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.9 U	<1.0	<1.0	2	<1.0	<1.0	<2.0	<1.0
	09/19/02	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
	04/10/03	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	<1.0
	04/25/04	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	02/17/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.35 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	5	1.0 U	1.0 U	2.0 U	1.0 U
OW-17	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
NAPSHED 25.70	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	0.20 J	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	09/23/94	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	=	<10	<10	<10	<10
	04/29/95	<10	12	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	29
	02/17/99	<17	4.7	<1.7	<1.7	3.4	1.0 J	<1.7	<3.3	<1.7	<1.7	<1.7	0.54 J	<1.7	<17	1.0 J,B	<1.7	<1.7	<u> </u>	<1.7	<1.7	<3.3	1.1 J
	01/07/00	2.7 J	5.6 B	1.0	<1.0	4.5	3.0	<1.0	<2.0	0.66 J	<1.0	0.29 J	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	0.22 J	0.14 J	0.29 J	1.8
	06/08/00	<10	4.8	<1.0	<1.0	4.6	1.3 J	<1.0	<2.0	0.24 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/16/01	10 UJ	3.1	<1.0	<1.0	3.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.4
	08/28/01	2.3 J,B	2.4 J	<1.0	<1.0	3.6 J	<2.0	<1.0	<2.0	0.18 J	<1.0	<1.0	0.38 J	<1.0	<10	<1.0	<1.0	<1.0	2	<1.0	<1.0	<2.0	1.3 J
	04/24/02	10 U	1.5	<1.0	<1.0	4.3	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.28 J	<1.0	<10	1.6 U	<1.0	<1.0		1.0 U	<1.0	<2.0	1.7
OW-18	09/17/02	<10	2.9	<1.0	<1.0	5.5	1.3 J	<1.0	<2.0	0.36 J	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	<2.0	2.0
	04/08/03	2.6 J	2.9	<1.0	<1.0	5.6	1.2 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
	04/23/04	10 U	3.3	<1.0	<1.0	7.3	0.74 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.2
	02/17/06	10 U	5.1	1.0 U	1.0 U	10	3.2	1.0 U	2.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	0.49 J	1.0 U	2.0 U	10
	08/30/06	10 U	3.7	1.0 U	1.0 U	7.8	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	06/14/07	10 U	1.2	1.0 U	1.0 U	6.5	0.46 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/22/08	10 U	1.5	1.0 U	1.0 U	6.9	0.40 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/16/09	10 U	2.3	1.0 U	1.0 U	9.6	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.34 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/22/10	1.6 J	2.8	1.0 U	1.0 U	11	0.41 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	0.63 J
	10/13/11	10 U	3.7	1.0 U	1.0 U	8.7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.5	2.0 U

Ana	alyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total)
NYSDE	CONTROL CONTRO	50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	_	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date						*								==				× =				
	09/27/94	<10	10 J	<10	<10	5 J	15	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	:=	<10	<10	<10	<10
	04/28/95	<10	8 J	<10	<10	6 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	24	<10	<10	<10	<10
	02/17/99	<10	5.8	<1.0	<1.0	7.1	6.1	<1.0	<2.0	0.27 J	<1.0	<1.0	3.3	<1.0	<10	0.16 J,B	<1.0	<1.0	-	0.16 J	0.14 J	10	<1.0
	01/05/00	0.94 J	3.7 B	<1.0	<1.0	10	2.7	<1.0	<2.0	0.16 J	0.27 J	<1.0	1.5	<1.0	<10	0.25 J,B	<1.0	<1.0		0.15 J	0.15 J	2.1	<1.0
	06/08/00	<10	2.3	<1.0	<1.0	5.2	1.9 J	<1.0	<2.0	<1.0	<1.0	<1.0	1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	03/16/01	10 UJ	1.7	<1.0	<1.0	3.8	1.4 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.96 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	1.3 J	<1.0
	08/28/01	2.7 J,B	1.9 J	<1.0	<1.0	7.2 J	0.92 J	<1.0	<2.0	<1.0	<1.0	0.35 J	0.46 J	<1.0	<10	<1.0	<1.0	<1.0	14	<1.0	<1.0	<2.0	<1.0
	04/23/02	10 U	1.3	<1.0	<1.0	6.5	0.71 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.43 J	<1.0	<10	1.0 U	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
OW-19	09/17/02	<10	0.64 J	<1.0	<1.0	4.9	0.73 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	<1.0
	04/08/03	2.5 J	3	<1.0	<1.0	4.9	1.7 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.81 J	<1.0	<10	<1.0	<1.0	<1.0		<1.0	<1.0	0.68 J	<1.0
	04/24/04	10 U	2.1	<1.0	<1.0	6	1.3 J	<1.0	<2.0	<1.0	<1.0	<1.0	0.58 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.56 J	<1.0
	02/17/06	10 U	3.4	1.0 U	1.0 U	5.6	1.9 J	1.0 U	<2.0	1.0 U	1.0 U	1.0 U	1.3	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1-1	1.0 U	1.0 U	2.9	1.0 U
	08/31/06	3.1 J	3.3	1.0 U	1.0 U	13	1.8 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.85 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.1	1.0 U
	06/14/07	10 U	2.1	1.0 U	1.0 U	8.8 J	1.3 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.73 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.87 J	1.0 U
	07/22/08	10 U	1.4	1.0 U	1.0 U	11	0.91 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.49 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.62 J	1.0 U
	07/15/09	10 U	1.9	1.0 U	1.0 U	7.9	1.0 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.94 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.1	1.0 U
	07/22/10	1.3 J	1.2	1.0 U	1.0 U	11	0.85 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.65 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.63 J	1.0 U
	10/13/11	10 U	3	1.0 U	1.0 U	8.4	1.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.3	2.0 U
	09/22/94	6 J	5 J	<10	<10	<10	<10	10 J	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10		<10	<10	<10	<10
	04/29/95	<10	8 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10
	02/16/99	<10	5.8	<1.0	<1.0	0.11 J	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.26 J	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.89 J	<1.0
	01/04/00	<10	3.8 B	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	0.11 J	<1.0	<1.0	<1.0	<1.0	<10	0.10 J,B	<1.0	<1.0	(4)	0.055 J	<1.0	0.46 J	<1.0
	06/07/00	<10	5.4	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.54 J	<1.0
	03/13/01	10 UJ	4.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.70 J	<1.0
	08/30/01	10 U	3.2	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.38 J	<1.0	<1.0	-	<1.0	<1.0	0.25 J	<1.0
	04/25/02	<10	2.4	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	1.0 U	<1.0	<1.0		<1.0	<1.0	0.33 J	<1.0
OW-21	09/18/02	<10	2.5	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	0.39 J	<1.0
O 1 1 - Z 1	04/09/03	<10	3.7	<1.0	<1.0	<1.0	<2.0	<1.0	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.51 J	<1.0	<1.0	(2)	<1.0	<1.0	0.88 J	<1.0
	04/24/04	<10	2.9	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	=	<1.0	<1.0	0.56 J	<1.0
	02/16/06	10 U	3.0	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	0.52 J	1.0 U
	08/29/06	10 U	2.4	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	0.27 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.83 J	1.0 U
	06/13/07	10 U	2.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.67 J	1.0 U
	07/23/08	10 U	1.8	1.0 U	1.0 U	1.0 U	<2.0	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.74 J	1.0 U
	07/15/09	10 U	2.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.80 J	1.0 U
	07/20/10	10 U	1.9	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.71 J	1.0 U
	10/13/11	10 U	2.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U

Ana	lyte	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloroethane	Chloroform	Chloromethane	1,1-DCA	1,2-DCA	1,1-DCE	1,2-DCE (total)	Ethylbenzene	2-Hexanone	Methylene Chloride	1,1,2,2-PCA	PCE	Styrene	Toluene	TCE	Vinyl Chloride	Xylenes (total
NYSDE		50 (G)	1 (S)	NA	5 (S)	5 (S)*	5 (S)*	7 (S)	1	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	50 (G)	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	5 (S)*	2 (S)	5 (S)*
U.S. EP	A MCL	NA	5	NA	5	100	NA	NA	5	NA	5	7	70	700	NA	5	NA	5	100	1,000	5	2	10,000
Well ID	Date											=======================================		Si									
	09/24/94	<10	100	<10	<10	9 J	<10	<10	<10	<10	<10	<10	<10	<10	NR	<10	<10	<10	-	<10	<10	<10	5 J
	04/28/95	<10	48	<10	<10	10 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1 J	<10	<10	<10
	02/17/99	<25	46	<2.5	<2.5	8.0	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	2.4 J	<2.5	<25	1.1 J,B	<2.5	<2.5	- 1	0.87 J	<2.5	4.2 J	3.5
	01/04/00	1.5 J	37 B	0.41 J	<1.2	5.8	<2.5	<1.2	<2.5	0.21 J	<1.2	<1.2	<1.2	0.098 J	<12	0.23 J,B	<1.2	<1.2	-	0.58 J	0.073 J	1.5 J	1.7
	06/07/00	<10	11	<1.0	<1.0	5.8	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	X =	<1.0	<1.0	<1.0	1.4
	03/13/01	10 UJ	12	<1.0	<1.0	8.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	0.70 J	<1.0	<10	<1.0	<1.0	<1.0	2-	0.56 J	<1.0	0.76 J	1.9
	08/30/01	10 U	3.4	<1.0	<1.0	4.6	<2.0	0.34 J	<2.0	<1.0	<1.0	<1.0	0.36 J	<1.0	<10	0.36 J	<1.0	<1.0	2	0.45 J	<1.0	<2.0	1.7
	04/25/02	<10	4.2	<1.0	<1.0	3.7	<2.0	<1.0	<2.0	<1.0	0.29 J	<1.0	<1.0	<1.0	<10	1.2 U	<1.0	<1.0	(6)	1.0 U	<1.0	0.39 J	2.7 U
OW-22	09/18/02	<10	2.9	<1.0	<1.0	4.2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	<1.0	<1.0	<2.0	1.8
	04/09/03	<10	8.7	<1.0	<1.0	8.5	0.66 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	0.40 J,B	<1.0	<1.0	-	<1.0	<1.0	0.56 J	1.6
	04/24/04	10 U	4.2	<1.0	<1.0	5.9	0.24 J	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	-	0.23 J	<1.0	0.32 J	1.1
	02/16/06	10 U	7.5	1.0 U	1.0 U	11	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.59 J	1.0 U	<10	0.59 J	1.0 U	1.0 U	12	0.26 J	1.0 U	0.29 J	1.0
	08/31/06	10 U	2.8	1.0 U	1.0 U	5.3	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.37 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.24 J	1.0 U	0.41 J	1.1
	06/14/07	10 U	3.5	1.0 U	1.0 U	4.8	0.26 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.50 J	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	0.21 J	1.0 U	0.37 J	0.76 J
	07/23/08	10 U	1.9	1.0 U	1.0 U	4.6	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.17 J	1.0 U	0.32 J	0.66 J
	07/15/09	10 U	5.1	1.0 U	1.0 U	7.8	0.34 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.53 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.19 J	1.0 U	0.35 J	1.0 U
	07/20/10	10 U	2.5	1.0 U	1.0 U	4.5	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	0.38 J	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.26 J	0.64 J
	10/13/11	10 U	5.3	1.0 U	1.0 U	18	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U
	02/17/06	10 U	0.38 J	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	0.66 J	1.0 U
OW-23	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.44 J	1.0 U	1.0 U	0.39 J	1.0 U
	08/30/06 11/30/06	10 U	1.0 U 0.23 J	1.0 U	1.0 U	1.0 U	2.0 U 0.27 J	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42 J	1.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	0.22 J	1.0 U	0.51 J	1.0 U
	05/24/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U 2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.45.1	0.22 J	1.0 U	2.0 U	<1.0
	08/30/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	0.45 J	1.0 U	1.0 U	2.0 U	1.0 U
OW-24	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U 3.6 U	1.0 U	1.0 U	1.0 U	1.0 U 0.18 J	1.0 U	2.0 U 2.0 U	1.0 U
	07/22/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	0.47 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	3.6 U	1.0 U	1.0 U	1.0 U	0.18 J	1.0 U	2.0 U	1.0 U
	10/13/11	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U
	02/20/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.00	0.17 J	1.0 U	1.0 U	1.0 U
	05/23/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	08/31/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	11/29/06	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
OW-25	06/12/07	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/23/08	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/16/09	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	07/22/10	10 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
	10/13/11	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U

Notes:

TCL = Target Compound List

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) Values for groundwater

U.S. EPA MCL= United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

< = Analyte not detected at reporting limit

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Red = Concentrations detected at or above regulatory limit

Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified

UJ = (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Pre-1999 data from RETEC 1995

Pre-1999 analysis performed by Method 8240

1999 and later analyses performed by Method 8260B

NA = Not applicable; no criteria specified

NR = Analyte not reported

R = Data rejected during validation

J = Estimated result; result is less than reporting limit.

Table B-2
Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Analyte	yte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate
NYSDEC SGV	c sgv	50 (G)	1 (S)	NE NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)
U.S. EPA MCL	A MCL	NE	2	NE	NE	5	70	5	1,000	2	NE
Sample ID	Date					VOCs					SVOCs
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	0.19 J,B	10 U	0.85 J	1.0 U	1.0 U	0.15 J,B	1.0 U	0.99 J	10 U
	00/80/90	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-1	03/15/01	10 U	1.0 U	10 U	U.97 J	0.61 کا	0.39 J	1.0 U	1.0 U	0.52 J	10 U
-uwoQ)	08/28/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
stream)	04/23/02	10 U	1.0 U	0.60 J	2.0 U	1.0 U	1.0 U	1.5 U	1.0 U	2.0 U	AN
	09/17/02	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	A N
	04/08/03	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	A N
	04/23/04	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	Ą
	02/18/06	10 U / 21 U	1.0 U / 1.0 U	10 U / 10 U	0.37 J / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	0.34 J / 0.29 J	NA / NA
	06/14/07	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
SW-1 /	07/24/08	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
Duplicate	02/15/09	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
	07/22/10	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA / NA
	10/13/11	10 U/10 U	1.0 U/1.0 U	10 U/10 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	NA/NA
	02/18/99	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	01/04/00	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
	00/80/90	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
8	03/15/01	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	10 U
SW-2 (Upstream)	02/18/06	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.53 J	Ą
	06/14/07	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	0.21 J	1.0 U	2.0 U	Ā
	07/24/08	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	AN
	02/15/09	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	AN
	07/22/10	10 U	1.0 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	NA

1/9/2012

Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Surface Water (ug/L) Carroll and Dubies Superfund Site Table B-2

Town of Deerpark, Orange County, New York

Analyte	rte	Acetone	Benzene	2-Butanone	Chloroethane	1,2-Dichloro- ethane	1,2-Dichloro- ethene (total)	Methylene Chloride	Toluene	Vinyl Chloride	Di-n-butyl phthalate
NYSDEC SGV	SGV	50 (G)	1 (S)	NE	5 (S)*	0.6 (S)	5 (S)*	5 (S)*	5 (S)*	2 (S)	50 (S)
U.S. EPA MCL	MCL	NE	22	NE	NE NE	5	70	5	1,000	2	NE
Sample ID	Date					VOCs					SVOCs
	08/28/01		10 U / 10 U / 1.0 U / 1.0 U / 10 U / 10 U	10 U / 10 U		1.0 U / 1.0 U	2.0 U/2.0 U 1.0 U/1.0 U 1.0 U/1.0 U 1.0 U /1.0 U 1.0 U/1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	10 U
•	04/23/02	10 U / 10 U	1.0 U / 1.0 U 10 U / 10	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U / 1.2 U / 1.0 U / 1.0 U	1.2 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	0.77 J / 10 U
SW-2 /	04/23/03	10 U / 10 U	1.0 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	AN
Duplicate	04/23/04		10 U / 10 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	NA V
	04/23/05		10 U / 10 U / 1.0 U	10 U / 10 U	2.0 U / 2.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U	1.0 U / 1.0 U / 1.0 U	1.0 U / 1.0 U	2.0 U / 2.0 U	A N
	10/13/11	10 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NA

Notoe.

TCL = Target Compound List

NE = Not established; no criteria specified.

NA = Not analyzed

NYSDEC SGV = New York State Department of Environmental Conservation Standards (S) and Guidance (G) values for groundwater.

* = The principal organic contaminant (POC) standard for groundwater of 5 ug/L applies to this substance.

U.S. EPA MCL = United States Environmental Protection Agency Maximum Contaminant Level for drinking/groundwater.

J = Estimated result; result is less than reporting limit.

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

U (DATA VALIDATION QUALIFIER) = The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Blue = Analyte detected at less than regulatory limit, or analyte detected but no regulatory criteria specified.

Red = Analyte detected at or above SGV or MCL.

Table B-3
Historical Summary of Detected TCL Volatile and Semivolatile Organic Compounds in Sediment (ug/kg)
Carroll and Dubies Superfund Site
Town of Deerpark, Orange County, New York

Analyt	е	Acetone	Benzene	2-Butanone	Carbon Disulfide	Chlorobenzene	Chloroform	1,2- Dichloroethane	1,2- Dichloroethene (total)	Methylene Chloride	Toluene	Trichloroethene	Vinyl Chloride	bis(2- Ethylhexyl)phthalate	Di-n-butylphthalate	4-Methylphenol
Sample ID	Date							VOCs							SVOCs	
· ·	09/27/94	58	ND	20 U	NA	ND	ND	ND	ND	ND	ND	ND	20 U	ND	190 J,B	ND
	02/18/99	28 U	6.9 U	28 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	14 U	450 U	77 J	450 U
	01/04/00	370	31 U	82 J	31 U	31 U	31 U	31 U	31 U	31 U	31 U	31 U	6.9 J	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	06/08/00	60 JB	13 U	17 J	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	27 U	590 J	880 U	880 U
SED 1	03/15/01	55 J	16 U	62 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	31 U	1,000 U	1,000 U	1,000 U
(Downstream)	08/28/01	27 J	2.1 J	9.4 J	12 U	12 U	12 U	12 U	4.6 J	12 U	1.3 J	12 U	24 U	790 U	790 U	790 U
	04/23/02	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	09/17/02	180 BJ	2.7 J	58 J	3.5 J	17 U	17 U	17 U	2.1 J	17 U	54 J	17 U	34 UJ	NA	NA	NA
	04/08/03	110 J	3.4 J	34 J	21 UJ	21 U	21 U	21 U	5.7 J	21 U	21 U	21 U	3.0 J	NA	NA	NA
	04/23/04	28 J,FB,TB	10 U	7.2 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	NA	NA	NA
	02/18/06	460 U / 180 U	11 U / 9.1 U	130 U / 54 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	11 U / 9.1 U	1.2 J / 0.95 J	1.9 J / 9.1 U	23 U / 18 U	NA	NA	NA
	06/14/07	60 J / 18 J	12 U / 12 U	18 J / 6.9 J	0.62 J / 0.76 J	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	12 U / 12 U	24 U / 24 U	NA / NA	NA / NA	NA / NA
SED-1 /	07/24/08	24 U / 26 U	6.1 U / 6.5 U	2.9 J / 5.9 J	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	6.1 U / 6.5 U	12 U / 13 U	NA / NA	NA / NA	NA / NA
Duplicate	07/15/09	940 J / 300 J	13 J / 5.6 J	230 J / 96 J	17 J / 8.2 J	5.9 J / 3.2 J	25 U / 21 U	1.7 J / 21 U	12 J / 5.9 J	9.7 J / 21 U	3.1 J1.3 J	25 U / 21 U	8.7 J / 4.5 J	NA / NA	NA / NA	NA / NA
	07/22/10	45 J/85 J	7.3 U / 15 U	29 U / 62 U	7.3 U / 15 U	7.3 U / 15 U	7.3 U / 15 U	7.3 U / 15 U	7.3 U / 15 U	7.9 J / 7.3 U	7.3 U / 15 U	7.3 U / 15 U	7.3 U / 15 U	NA / NA	NA / NA	NA / NA
	10/13/11	34 U / 33 U	8.6 U / 8.1 U	34 U / 33 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	8.6 U / 8.1 U	NA / NA	NA / NA	NA / NA
	09/27/97	76	ND	23 U	NA	ND	ND	ND	ND	ND	ND	ND	23 U	ND	220 J,B	ND
	02/18/99	140 JB	44 U	50 J	44 U	44 U	44 U	44 U	44 U	44 U	44 U	44 U	88 U	2,900 U	370 J	2,900 U
	02/18/06	110 U	16 U	65 U	1.8 J	16 U	16 U	16 U	16 U	16 U	2.1 J	16 U	32 U	NA	NA	NA
SED-2	06/14/07	76 J	15 U	18 J	1.2 J	15 U	15 U	15 U	15 U	15 U	5.5 J	15 U	30 U	NA	NA	NA
(Upstream)	07/24/08	78 UJ	10 U	19 J	10 U	10 U	10 U	10 U	10 U	10 U	0.90 J	10 U	20 U	NA	NA	NA
	07/15/09	110 UJ	28 UJ	110 UJ	28 UJ	28 UJ	1.6 J	28 UJ	28 UJ	8.6 J	34 J	28 UJ	56 UJ	NA	NA	NA
	07/22/10	89 J	16 U	65 U	16 UJ	16 U	16 U	16 U	16 U	18 J	16 UJ	16 U	16 U	NA	NA	NA
	10/13/11	47 UJ	12 UJ	47 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	13 J	12 UJ	12 UJ	12 UJ	NA	NA	NA
	01/04/00	180 J / 190 U	55 U / 47 U	220 U / 190 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	55 U / 47 U	110 U / 94 U	3,600 U / 3,100 U	3,600 U / 3,100 U	3,600 U / 3,100 U
	06/08/00	150 J / 160 U	46 U / 41 U	49 J / 160 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	46 U / 41 U	13 J / 41 U	46 U / 41 U	91 U / 81 U	2,900 J / 1,500 J	3,000 U / 2,700 U	480 J,# / 2,700 U
	03/15/01	36 UJ / 69 UJ	17 UJ / 17 UJ	70 UJ / 69 UJ	17 U / 17 U	17 U / 17 U	17 U / 17 U	17 U / 17 U	17 UJ / 17 UJ	17 UJ / 17 UJ	17 UJ / 17 UJ	17 U / 17 U	35 UJ / 35 UJ	1,200 U / 1,100 U	1,200 U / 1,100 U	1,200 U / 1,100 U
SED-2 /	08/28/01	44 J / 22 J	16 U / 13 U	14 J / 7.6 J	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	16 U / 13 U	32 U / 25 U	1,100 U / 830 U	1,100 U / 830 U	1,100 U / 830 U
Duplicate	04/23/02	63 J / 85 UJ	30 UJ / 21 UJ	21 J / 85 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	30 UJ / 21 UJ	59 UJ / 42 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ	2,000 UJ / 1,400 UJ
	09/17/02	40 B / 29 JB	9.6 U / 9.3 U	17 J / 9.3 J	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	9.6 U / 9.3 U	1.0 J / 0.91 J	9.6 U / 9.3 U	19 U / 19 U	NA	NA	NA
	04/08/03	79 J / 27 J	41 U / 44 U	21 J / 180 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	41 U / 44 U	83 U / 88 U	NA	NA	NA
	04/23/04	38 J,FB / 53 U	14 U / 13 U	12 J / 53 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	14 U / 13 U	28 U / 27 U	NA	NA	NA

Notes:

TCL = Target Compound List

ND = Not detected at reporting limit prior to 06/08/00.

< = Not detected at the method detection limit.

B = Method blank contamination. The associated method blank contains the analyte at a reportable level.

R (DATA VALIDATION QUALIFIER) = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.

= This value represents a probable combination of 3-methylphenol (m-cresol) and 6-methylphenol (p-cresol).

UJ (DATA VALIDATION QUALIFIER) = Analyte not detected above the reporting limit; however, the reporting limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Methylene chloride (2.6 ug/kg J, FB, TB) was detected in SED-1 during 4/04 sampling round.

NA = Not analyzed

J = Estimated result; result is less than method reporting limit

TB = Detected in trip blank

FB = Detected in field blank

Appendix C
Data Quality Review - Checklists

Tier II **VOA Organic Data Review Summary**

SDG No./Matrix:

240-4528-1 for Groundwater.

Samples are:

OW-22, OW-21, FB1, OW2,

OW-10R, MW-4, TB1.

Completion Date:

01/02/2012

Project No.:

Carroll & Dubies 104-0012

Reviewer:

Barbara Jones

Lab	oratory TestAmerica, North Canton,	, OH	
	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness	No	Complete searchable electronic package provided. Selected pages printed as necessary for data review.
2.	Preservation/holding time	No	All samples collected on 10/04 and analyzed on 10/12, 10/13, and 10/14. Cooler temperature okay at arrival at laboratory.
3.	GC/MS tuning	No	Form V provided and documented instrument tuning in accordance with protocols.
4.	Calibration:		
	4A - Initial	No	Form VIs reviewed. Some RRFs (ex. acetonitrile) were <0.05, but not for reported compounds. RSDs all okay.
	4B - Continuing	No	Form VIIs reviewed. Maximum %D slightly exceeded for two compounds (bromoform at 28%; trans 1,4-dichloro-2-butene at 25.5%), but not reported compounds. Some RRFs < 0.05 (ex. acrolein), but not for reported compounds.
5.	Blanks:		
	5A - Laboratory blanks	Yes	Form IV and raw QC data reviewed. Methylene chloride detected in one method blank MB 240-18911/5. The only affected sample was TB1 (trip blank), where detect was qualified as 1.9U.
	5B - Trip blanks	No	One methylene chloride detect in TB-1, but qualified as 1.9 B based on method blank results.
	5C - Equipment rinsates and field blanks	No	Pump rinsate was not collected with this SDG. A field blank designated as FB-1 was collected. No detections, no qualifications.
6.	Surrogate recovery	No	Form II reviewed. All surrogate recoveries within QC limits.
7.	Lab-fortified blank	No	Form III reviewed. Two lab control sample recoveries were evaluated. All recoveries were within QC limits.
8.	Matrix spike/matrix spike duplicates	NA	MS/MSD not performed with this SDG.
9.	Field duplicates	NA	Field duplicates were not part of this SDG.

Tier II VOA Organic Data Review Summary

SDG No./Matrix:

240-4528-1 for Groundwater.

Samples are:

OW-22, OW-21, FB1, OW2, OW-10R, MW-4, TB1.

Completion Date:

01/02/2012

Project No.:

Carroll & Dubies 104-0012

Reviewer:

Barbara Jones

Laboratory: TestAmerica, North Canton, OH

	Review Criteria	Data Qualified	Samples Qualified
10.	Internal standards performance	No	Form VIIIs were reviewed for two instruments. QC requirements were met.
11.	Compound quantitation and reporting	No	Results were spot-checked for quantitation of OW2 and OW10R. Reported results were the same as the work sheet results.
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II **Inorganic Data Review Summary**

SDG No./Matrix:

Groundwater, 240-4528-1;

Samples are:

OW-22, OW-21, OW2,

OW-10R, MW-4

Project No.:

104-0012, Carroll & Dubies

Completion Date:

01/03/2012

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

Analyses:

Sulfate, sulfide, alkalinity, chloride, nitrate, TOC

	Review Criteria	Data Qualified	Samples Qualified
	neview Criteria	Yes / No	•
1.	Data completeness	No	Complete electronic package was provided, with selected pages printed as needed for QC review. Sample data, QC data, method detection limit information, run logs, raw data, and general chemistry prep data were provided in the package.
2.	Preservation/holding time	No	All nitrate analyses performed within 48-hour holding time (on 10/5); all sulfide analyses performed within required 7-day holding time (by 10/11). All other holding times were met.
3.	Calibration	No	Calibration quality control CCV and CCB information for chloride, nitrate, sulfate, and TOC provided on p. 403-408 and demonstrate recoveries within limits. See Form 2-IN.
4.	Blanks:		
	4A - Laboratory	No	Method blank summaries provided for all six parameters; all method blanks were nondetectable. See Form 3-IN.
	4B - Equipment rinsates	NA	FB1 not analyzed for inorganic constituents.
5.	Interference check sample	NA	Not applicable for these parameters.
6.	Laboratory control sample	No	Lab control sample results provided for all six parameters. All LCS recoveries were within control limits. See Form 7A-IN.
7.	Laboratory duplicate sample	No	Duplicate analysis of alkalinity for MW-4 was performed; RPD was 1%, within 20% limit. See Form 6-IN.
8.	Field duplicate sample	NA	No field duplicates collected with this SDG.
9.	Matrix spike sample analysis	No	MS performed for nitrate and alkalinity; MSD performed for alkalinity. % recovery and RPD within QC limits. See Form 5- IN.
10.	ICP serial dilution	NA	Not applicable for these parameters.
11.	Sample quantitation and reporting	No	Raw data for chloride and nitrate spot checked against reports, and no discrepancies were found.

Tier II Inorganic Data Review Summary

Completion Date:

01/03/2012

SDG No./Matrix: Groundwater, 240-4528-1;

Samples are: OW-22, OW-21, OW2,

OW-10R, MW-4

Project No.: 104-0012, Carroll & Dubies Reviewer: Barbara Jones

Laboratory: TestAmerica, North Canton, OH

Analyses: Sulfate, sulfide, alkalinity, chloride, nitrate, TOC

Review Criteria Data Qualified Samples Qualified

Inorganic Parameter:	Holding Time:
- Chloride	28 days
- Nitrate	48 hours
- Sulfate	28 days
- Total Alkalinity	14 days
- Total Organic Carbon	28 days
- Total Sulfide	7 days

Tier II RSK Method Dissolved Gases Data Review Summary

SDG No./Matrix:

240-4528-1 for Groundwater.

Samples are:

OW-22, OW-21, OW2,

OW-10R, MW-4

Project No.:

104-0012, Carroll & Dubies

Completion Date:

01/02/2012

Reviewer:

Barbara Jones

Laboratory: TestAi

TestAmerica, North Canton, OH

	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness	No	Complete electronic report with initial and continuing calibration results, QC summary and raw data, sample raw data, and run logs.
2.	Preservation/holding time	No	All samples collected on 10/04, and analyzed on 10/13 or 10/14, so holding times were met. Cooler arrived at laboratory at acceptable chilled temperature.
3.	GC/MS tuning	NA	GC method.
4.	Calibration:		
	4A - Initial	No	Form VIs reviewed; 9-level calibration dated 08/24/11. Results within RT window at all levels. RSD <30%;
	4B - Continuing	No	Form VIIs reviewed. %Ds are less than 25%, and RTs are within the specified RT windows. Also see Form VIII for analytical sequence.
5.	Blanks:		
	5A - Laboratory blanks	No	Form IVs provided for two method blanks. Both blanks ND, no sample qualifications.
	5B - Trip blanks	NA	Trip blank was not analyzed for dissolved gases.
	5C - Equipment rinsates	NA	Equipment rinsate blank was not analyzed for dissolved gases.
6.	Surrogate recovery	No	Form II was reviewed. Surrogate recoveries for field samples and QC samples were all within QC limits.
7.	Lab-fortified blank	No	Two lab control samples analyzed and within QC limits (Form IIIs).
8.	Matrix spike/matrix spike duplicates	NA	MS/MSD not analyzed for this SDG.
9.	Field duplicates	NA	Field samples not analyzed for this SDG.
10.	Internal standards performance	NA	Not applicable to this method.
11.	Compound quantitation and reporting		OW-22 (10x dilution) and OW-21 (1x dilution) results were checked against work sheet and are okay.
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II VOA Organic Data Review Summary

SDG No./Matrix: SDG 240-4639-1 for Sediment,

Surface Water, and Groundwater

Samples are:

FB-3, SW-1, SW Dup, SED-1,

Completion Date:

01/06/2012

SED Dup, SW-2, SED-2, OW-25, Pump Rinse, OW-24,

OW-18, OW-19, TB-3.

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

Lab	Laboratory: TestAmerica, North Canton, OH			
	Review Criteria	Data Qualified Yes / No	Samples Qualified	
1.	Data completeness	No	Complete searchable electronic file provided. Selected pages printed as necessary for data review.	
2.	Preservation/holding time	No	All samples collected on 10/07 and analyzed on 10/14 (solid) or 10/18 (aqueous), so holding 14-day holding time was met. Cooler temperature was acceptable at <1 degree C.	
3.	GC/MS tuning	No	Form Vs for two instruments. Relative abundance criteria met and checks were applied to all relevant samples.	
4.	Calibration:			
	4A - Initial	No	Form VIs reviewed for two different instruments and two different cal dates. Some RRFs (ex. acetonitrile) were <0.05, but not for reported compounds. RSDs all within limits.	
	4B - Continuing	No	Form VIIs reviewed for two different instruments. Maximum %D exceeded some compounds, but not those on reported list. Some RRFs < 0.05 (ex. acrolein), but not for reported compounds.	
5.	Blanks:			
	5A - Laboratory blanks	No	Form IVs provided for aqueous and solid method blanks and raw QC data reviewed. Both MBs are ND, therefore no qualifications of field data.	
	5B - Trip blanks	No	No detections in TB-3, and no data qualifications.	
	5C - Equipment rinsates and field blanks	No	Pump rinsate was nondetectable, as was FB-3. No data qualifications.	
6.	Surrogate recovery	No	Form IIs provided for solid and aqueous samples. All surrogate recoveries within QC limits.	
7.	Lab-fortified blank	No	Two Form IIIs reviewed, one for aqueous and one for solid. All recoveries were within QC limits.	

Tier II VOA Organic Data Review Summary

SDG No./Matrix: SDG 240-4639-1 for Sediment,

Surface Water, and Groundwater

Samples are: FB-3, SW-1, SW Dup, SED-1,

SED Dup, SW-2, SED-2, OW-25, Pump Rinse, OW-24,

OW-18, OW-19, TB-3.

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Completion Date:

01/06/2012

Barbara Jones

Laboratory: TestAmerica, North Canton, OH

Lab	Laboratory: LestAmerica, North Canton, OH				
	Review Criteria Data Qualified Samples Qualified				
8.	Matrix spike/matrix spike duplicates	Yes	MS/MSD pairs analyzed for SW-2 (aqueous) and SED-2 (solid). For SW-2, all recoveries and RPDs were within QC limits. For the SED-2 pair, recoveries were within limits, but RPDs were out of limits for acetone, 2-butanone, and MTBE. None of these constituents were detected in the SED-2 sample, therefore the results are qualified as UJ.		
9.	Field duplicates	No	SED-Dup and SW-Dup were collected as duplicates to SED-1 and SW-1. All of the samples were nondetectable, therefore there are no qualifications.		
10.	Internal standards performance	Yes	Two Form VIIIs were for aqueous and solid samples. QC requirements were met for aqueous samples. For SED-2, SED-2MS, and SED-2MSD, area counts were outside of lower limits, attributed to matrix interference. Non-detectable results, qualified as UJ; one detect, methylene chloride, classified as J.		
11.	Compound quantitation and reporting	No	Results were spot-checked for quantitation of OW-19 and OW-18. Work sheet results compared to reports were accurate.		
12.	Tentatively identified compounds	NA	Not required for this program.		

Tier II Inorganic Data Review Summary

SDG No./Matrix:

SDG 240-4639-1 for

Groundwater

Samples are:

OW-25, OW-24, OW-18,

OW-19

Project No.:

104-0012, Carroll & Dubies

Completion Date:

01/07/2012

Reviewer:

Barbara Jones

Laboratory: TestAmerica North Canton, OH

	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness	No	Electronic file was provided, with selected pages printed for QC review. Sample data, QC data, method detection limit information, run logs, raw data, and general chemistry prep data were provided.
2.	Preservation/holding time	No	All samples were collected on 10/06. Nitrate analyzed on 10/07; sulfide analyzed on 10/11, indicating holding time compliance. All other holding times were met.
3.	Calibration	No	Form 2-INs with calibration quality control CCV and CCB information for chloride, nitrate, sulfate, and TOC. Spike amounts, recoveries, and recovery limits documented.
4.	Blanks:		
	4A - Laboratory	No	See Form 3-IN. Method blank summaries provided for all six parameters; all method blanks were nondetectable.
	4B - Equipment rinsates	NA	FB-3 and TB-3 analyzed for VOCs only, not inorganics.
5.	Interference check sample	NA	Not applicable for these parameters.
6.	Lab-fortified blank	No	See Form 7A-IN. Lab control sample (LCS) results provided for all six parameters. All LCS recoveries were within control limits.
7.	Laboratory duplicate sample	No	See Form 6-IN. Lab duplicate for alkalinity, OW-19: RPD was within control limits.
8.	Field duplicate sample	NA	No field duplicate for inorganics with this RPD.
9,	Matrix spike sample analysis	No	See Form 5-IN. Lab MS/MSD for TOC and nitrate. Recoveries and RPD within QC limits.
10.	ICP serial dilution	NA	Not applicable for these parameters.
11.	Sample quantitation and reporting	No	Sample reports for chloride and alkalinity were checked for OW-18, OW-24, and OW-25 between raw data and sample reports, and no discrepancies were found.

Tier II **Inorganic Data Review Summary**

SDG No./Matrix: SDG 240-4639-1 for

Groundwater

OW-25, OW-24, OW-18,

Completion Date:

01/07/2012

Samples are:

OW-19

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Barbara Jones

Laboratory: TestAmerica North Canton, OH

Review Criteria Data Qualified Samples Qualified

Inorganic Parameter:	Holding Time:
- Chloride	28 days
- Nitrate	48 hours
- Sulfate	28 days
- Total Alkalinity	14 days
- Total Organic Carbon	28 days
- Total Sulfide	7 days

Tier II RSK Method Dissolved Gases Data Review Summary

SDG No./Matrix:

SDG 240-4639-1 for

Groundwater

Samples are:

OW-25, OW-24, OW-18,

OW-19

Project No.:

104-0012, Carroll & Dubies

Completion Date:

01/06/2012

Reviewer:

Barbara H. Jones

Laboratory:

TestAmerica, North Canton, OH

	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness	No	Complete electronic file provided with initial and continuing calibration results, QC summary and raw data, sample raw data, and run logs.
2.	Preservation/holding time	No	All samples collected on 10/06, and analyzed on 10/19 or 10/20, therefore met holding time of 14 days. Cooler was adequately chilled to <1 degree C.
3.	GC/MS tuning	NA	GC method.
4.	Calibration:		
	4A - Initial	No	Form VIs reviewed; 9-level calibration dated 08/24/11. Results within RT window at all levels. RSD <30%;
	4B - Continuing	No	Form VIIs reviewed for 10/19 and 10/20. %Ds are less than 25%, and RTs are within the specified RT windows. Also see analytical sequence Form VIII.
5.	Blanks:		
	5A - Laboratory blanks	No	Form IVs provided for two method blanks, both of which were ND. No sample qualifications.
	5B - Trip blanks	NA	Trip blank was not analyzed for dissolved gases.
	5C - Equipment rinsate or field blank	NA	Equipment rinsate blank, FB not analyzed for dissolved gases.
6.	Surrogate recovery	No	Form II was reviewed. Surrogate recoveries for field samples, LCS and method blank samples were all within QC limits.
7.	Lab-fortified blank	No	Form IIIs provided; two lab control samples analyzed and were within QC limits.
8.	Matrix spike/matrix spike duplicates	NA	MS/MSD of field sample was not analyzed with this SDG.
9.	Field duplicates	No	No gw field duplicate provided with this SDG.
10.	Internal standards performance	NA	Not applicable to this method.
11.	Compound quantitation and reporting	No	OW-18 and OW-19 were checked against worksheets and are consistent (both samples were diluted, 2x and 5x respectively).
12.	Tentatively identified compounds	NA	Not required for this program.

Tier II **VOA Organic Data Review Summary**

SDG No./Matrix:

240-5493-1 for Groundwater

Samples are:

OW-8, MW-1, FB-2, OW-5,

OW-6, OW-13R, Dup-1, TB-2

Completion Date: 01/04/2012

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

Lab	Laboratory: TestAmerica, North Canton, OH		
	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness		
2.	Preservation/holding time	Yes	All samples collected on 10/05. All analyses performed by 10/16, except for FB-2, which was analyzed on 11/1, outside of holding time. No detections, but results qualified as UJ. Analysis of this sample outside of lab holding time was described in narrative as "lab error."
3.	GC/MS tuning	No	Form Vs provided for two instruments. Instrument tuning was performed and documented. Performance was in accordance with specified criteria.
4.	Calibration:		
	4A - Initial	No	Form VIs provided. Initial calibration 10/15, 6 levels. Percent RSDs within limits. Some RRFs < 0.05 (ex. acetonitrile), but not for reported compounds. No qualifications.
	4B - Continuing	No	Form VIIs provided. Some RRFs < 0.05 (ex. vinyl acetate), but not for reported compounds. %D okay except for a few instances of compounds that are not reported. No qualifications.
5.	Blanks:		
	5A - Laboratory blanks	No	Form IVs and raw MB Form Is reviewed. Three method blanks were analyzed; all were nondetectable.
	5B - Trip blanks		TB-2: One detection for methylene chloride at 2.1 ug/L. Methylene chloride was not detected in any of the associated samples; therefore there were no data qualifications.
	5C - Equipment rinsates or field blanks	No	FB-2: Lab-pure water transferred to sample container in the field to check for airborne VOCs; no detects.
6.	Surrogate recovery	No	Form II reviewed. All surrogate recoveries within limits except for OW-5 MSD, where the BFB recovery was outside of limits at 125% (limit is 117%). Results were not qualified because this is a QA/QC sample, not reported with field data.

Tier II VOA Organic Data Review Summary

SDG No./Matrix:

240-5493-1 for Groundwater

Samples are:

OW-8, MW-1, FB-2, OW-5,

OW-6, OW-13R, Dup-1, TB-2

Project No.:

104-0012, Carroll & Dubies

Completion Date:

01/04/2012

Reviewer: Barbara Jones

Laboratory: TestAmerica, North Canton, OH

Review Criter	ia	Data Qualified	Samples Qualified
7. Lab-fortified blank		No	Form IIIs reviewed. Three LCSs analyzed. All recoveries within QC limits.
8. Matrix spike/matrix spiko	e duplicates	Yes	OW-5 was used for MS/MSD. All recoveries and RSDs met criteria except for RPD for trichlorofluoromethane (both recoveries were within QC limits). Trichlorofluoromethane in sample was nondetectable; will be qualified as UJ.
9. Field duplicates		Yes	Dup-1 is duplicate of OW-13R. Benzene was detectable at 1.3 ug/L in Dup-1 (reporting limit of 1.0 ug/L), but was nondetectable in OW-13R. Flag positive result as J, nondetectable result as UJ.
10. Internal standards perfo	rmance	No	Form VIII reviewed. Internal standards met QC criteria.
11. Compound quantitation	and reporting	No	Checked Form I and worksheet for OW-5 and OW-6. Note OW-6 was 1.67x dilution. Form Is were consistent with worksheets.
12. Tentatively identified cor	npounds	NA	Not required for this analysis program.

Tier II Inorganic Data Review Summary

SDG No./Matrix:

240-5493-1 for Groundwater

Samples are:

OW-8, MW-1, OW-5, OW-6, OW-13R, Dup-1

3,

Completion Date: 01/04/2012

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

Laboratory: TestAmerica, North Canton, OH			
	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness		Complete electronic file was provided, with selected pages printed for QC review. Sample data, QC data, method detection limit information, run logs, raw data, and general chemistry prep data were provided in the package.
2.	Preservation/holding time	Yes	All samples were collected on 10/05. All holding times were met with the exception of nitrate for Dup-1. Qualified as J-, for estimated low.
3.	Calibration	No	Form 2-INs with calibration quality control CCV and CCB information for chloride, nitrate, sulfate, and TOC provided on p. 456-461 and demonstrate recoveries within limits.
4.	Blanks:		
	4A - Laboratory	No	See Form 3-IN. Method blank summaries provided for all six parameters; all method blanks were nondetectable.
	4B - Equipment rinsates or other blanks	NA	FB-2 and TB-2 analyzed for VOCs only, not inorganics.
5.	Interference check sample	NA	Not applicable for these parameters.
6.	Lab-fortified blank	No	See Form 7A-IN. Lab control sample (LCS and LCS duplicates) results provided for all six parameters. All LCS recoveries were within control limits.
7.	Laboratory duplicate sample	No	LCS duplicates were provided for nitrate and TOC.
8.	Field duplicate sample	No	RPDs calculated for all inorganics but sulfide, which was not detected. Results were all less than 50%, the acceptance limit for aqueous samples.
9.	Matrix spike sample analysis	Yes	MS/MSDs performed on OW-5 for all parameters. All within QC limits except for sulfide, where the percent recovery and RPD were slightly high. Sulfide on field sample qualified as J for estimated. See Form 5-IN.
10.	ICP serial dilution	NA	Not applicable for these parameters.
11.	Sample quantitation and reporting	No	Sample reports for chloride and alkalinity were spot-checked between raw data and sample reports, and no discrepancies were found.

Tier II **Inorganic Data Review Summary**

240-5493-1 for Groundwater SDG No./Matrix:

OW-8, MW-1, OW-5, OW-6, Samples are:

OW-13R, Dup-1

Completion Date: 01/04/2012

104-0012, Carroll & Dubies Reviewer: Project No.:

Barbara Jones

TestAmerica, North Canton, OH Laboratory:

> Review Criteria Data Qualified Samples Qualified

Inorganic Parameter:	Holding Time:
- Chloride	28 days
- Nitrate	48 hours
- Sulfate	28 days
- Total Alkalinity	14 days
- Total Organic Carbon	28 days
- Total Sulfide	7 days

Tier II **RSK Method Dissolved Gases Data Review Summary**

SDG No./Matrix:

240-5493-1 for Groundwater

Samples are:

OW-8, MW-1, OW-5, OW-6,

OW-13R, Dup-1

Completion Date: 01/04/2012

Project No.:

104-0012, Carroll & Dubies

Reviewer:

Barbara Jones

Laboratory:

TestAmerica, North Canton, OH

	Review Criteria	Data Qualified Yes / No	Samples Qualified
1.	Data completeness	No	Complete electronic file. Contains initial and continuing calibration results, QC summary and raw data, sample raw data, and run logs.
2.	Preservation/holding time	No	All samples collected on 10/05, and analyzed on 10/13, therefore met holding time of 14 days. Cooler was adequately chilled to <5 degrees C.
3.	GC/MS tuning	NA	GC method.
4.	Calibration:		
	4A - Initial	No	Form VIs reviewed; 9-level calibration dated 08/24/11. Results within RT window at all levels. RSD <30%;
	4B - Continuing	No	Form VIIs reviewed for 10/13 and 10/14. %Ds are less than 25%, and RTs are within the specified RT windows. Also see Form VIII for analytical sequence.
5.	Blanks:		
	5A - Laboratory blanks	No	Form IVs provided for one method blank, which was ND. No sample qualifications.
	5B - Trip blanks	NA	Trip blank was not analyzed for dissolved gases.
	5C - Equipment rinsates	NA	Equipment rinsate blank was not analyzed for dissolved gases.
6.	Surrogate recovery	No	Form II was reviewed. Surrogate recoveries for field samples and OW-5 MS/MSD samples were all within QC limits.
7.	Lab-fortified blank	No	Form III provided; one lab control sample analyzed and within QC limits.
8.	Matrix spike/matrix spike duplicates	No	OW-5 MS/MSD spiked and recoveries/ RPDs were within control limits (Form III).
9.	Field duplicates	Yes	OW-13R and Dup-1: ND except for methane, which was ND in OW-13R and at the limit of detection (0.50 ug/L) in Dup-1. Dup-1 result is qualified as J for estimated, non-detectable OW-13R as UJ.
10.	Internal standards performance	NA	Not applicable to this method.
11.	Compound quantitation and reporting	No	MW-1, OW-5, and Dup-1 were checked against work sheet and are consistent.
12.	Tentatively identified compounds	NA	Not required for this program.