

600 Third Avenue, Second Floor, New York, NY 10016

800-305-6019

www.libertyenviro.com

July 23, 2024

Laurwal Holding Corp. Attn: Gary Silversmith, Esq. 1701 Pennsylvania Avenue, N.W., 2nd Floor Washington, DC 20006

Re: Groundwater Plume Stability Evaluation
Wallkill Wellfield Site
City of Middletown, Orange County, New York
Liberty Project No. 240331

Dear Mr. Silversmith:

Liberty Environmental (Liberty) is pleased to provide this report summarizing the results of the groundwater plume stability evaluation completed for the above-referenced property located in Middletown, Orange County, New York. A Site Diagram is provided in Figure 1. The stability evaluation presented below supports the plumes being stable and therefore, the installation of a groundwater pump-and-treat system is not necessary to gain hydraulic control of the plumes.

SITE BACKGROUND

The property was historically used by General Switch Corporation for the manufacturing of electrical components. During 1983, residential wells located along Highland Avenue were identified to be contaminated with chlorinated volatile organic compounds (CVOCs). A water main was later installed along Highland Avenue and the affected properties were connected to public water.

Soil and groundwater investigations were conducted at the site. The soil investigations identified two areas of soil impacts (northern and southern "hot spots") in the vicinity of the former General Switch building. These "hot spots" were subsequently excavated. Excavation of these areas was detailed in the September 1999 Summary Report of Soil Remediation Activities prepared by Ecosystems Strategies, Inc. (ESI). The locations of these former "hot spots" are depicted in Figure 1 for reference. A supplemental soil investigation was conducted during 2006-2007 and included the advancement of 18 soil borings through the slab of the former General Switch building. One boring (SB-8) indicated PCE above the site-specific action level. The supplemental soil investigation was detailed in the May 2007 Summary Report of Subsurface Investigation prepared by ESI. The location of SB-8 is depicted in Figure 1 for reference.

A total of 18 overburden monitoring wells and 10 bedrock monitoring wells have been installed to investigate groundwater at the site. The locations of these monitoring wells are depicted in Figure 1. MW-1 through MW-17 and MW-19 are considered overburden wells. MW-202 through MW-204, MW-206, MW-207, MW-209, MW-211, W-30 (former supply well for 320)

Highland Avenue), MW-219, and MW-220 are considered bedrock wells. The overburden at the site is composed of sand, silt, and glacial till and the overburden aquifer is associated with flow along the overburden-bedrock interface. The bedrock underlying the site is an interbedded silty shale and silty-fine sandy siltstone and the bedrock aquifer is associated with flow within the fractures of this bedrock formation.

Gauging of the monitoring well network indicates groundwater flow in the overburden and bedrock aquifers is generally south-southeast from the former General Switch building. Dissolved tetrachloroethylene (PCE), trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and vinyl chloride (VC), to a lesser extent, historically have been found in several of the 28 monitoring wells.

It should also be noted that six interior monitoring wells are currently installed through the slab of the former General Switch building. Only three rounds of samples have been collected from these interior wells to date and therefore, trend evaluations could not be performed on these wells due to the limited data set. Nevertheless, the data set from the 28 exterior wells is robust and sufficient to complete a thorough stability evaluation of the plumes.

PLUME STABILITY EVALUATION

Liberty used historical information from various reports prepared for the site and the available groundwater data from the exterior wells summarized in Table 1 to evaluate the stability of the CVOC plumes. Multiple lines of evidence were used to evaluate stability including:

- The historical information reviewed by Liberty indicates the following two key factors in support of plume stability:
 - (1) A significant amount of time has passed since the release at the site occurred and while the exact date is unknown, the release was first discovered during 1983 (40+ years ago).
 - (2) While the exact volume of the release is unknown, source areas were investigated and source removal (i.e. excavation of the northern and southern "hot spots") was completed at the site prior to 2000 (20+ years ago). The residual source that was later identified at the SB-8 soil sample location appears to be limited in extent and is currently capped beneath the former General Switch building.
- Graphical linear trendline evaluations of the concentration trends in individual wells.
- Statistical evaluations of the concentration trends in individual wells using the Mann-Kendall (MK) test.
- Statistical evaluation of the plume-wide mass and distribution over time of the CVOC plumes using GSI's Monitoring and Remediation Optimization System (MAROS).

The following three analyses provide additional discussion of the linear trendline, MK, and MAROS evaluations and results.

Graphical Linear Regression Evaluation - Analysis 1

A series of trend analysis graphs were prepared for select site monitoring wells for the data included in Table 1. Graphs were only prepared for wells and compounds with at least two exceedances of the New York State Ambient Water Quality Standards (AWQS). When a compound was not detected, the laboratory detection limit (when available) was used as the compound concentration in the evaluation. The graphs provide a visual presentation of the contaminant concentration over time for these monitoring wells. Linear trendlines, along with the equation of the trendline and associated R² values are also depicted on the graphs for reference. A summary of the results is included in Table 2 and 3. The graphs can be found in Attachment 1 of this document. Trends were evaluated as follows:

If the equation of the trendline is represented by y=mx+b and m is the slope of the line, then where m is negative (-), the concentration trend is decreasing and where m is positive (+), the concentration trend is increasing.

The following provides a summary of the results:

PCE (Overburden Wells)	PCE (Bedrock Wells)
MW-2 – Decreasing MW-3 – Decreasing MW-4 – Decreasing MW-5 – Decreasing MW-6 – Increasing MW-7 – Decreasing MW-9 – Decreasing MW-11 – Increasing MW-12 – Decreasing MW-13 – Decreasing MW-14 – Increasing MW-14 – Increasing MW-16 – Decreasing	MW-202 – Decreasing MW-203 – Decreasing MW-204 – Decreasing MW-206 – Decreasing MW-207 – Decreasing MW-209 – Decreasing MW-211 – Decreasing W-30 – Decreasing MW-219 – Decreasing MW-220 – Decreasing
TCE (Overburden Wells)	TCE (Bedrock Wells)
TCE (Overburden Wells) MW-3 – Decreasing MW-4 – Decreasing MW-5 – Increasing MW-6 – Decreasing MW-9 – Increasing MW-11 – Decreasing MW-13 – Decreasing MW-16 – Decreasing MW-16 – Decreasing	TCE (Bedrock Wells) MW-202 – Increasing MW-203 – Decreasing MW-204 – Decreasing MW-206 – Increasing MW-209 – Increasing MW-211 – Decreasing W-30 – Decreasing MW-219 – Decreasing MW-220 – Decreasing
MW-3 – Decreasing MW-4 – Decreasing MW-5 – Increasing MW-6 – Decreasing MW-9 – Increasing MW-11 – Decreasing MW-13 – Decreasing MW-16 – Decreasing	MW-202 – Increasing MW-203 – Decreasing MW-204 – Decreasing MW-206 – Increasing MW-209 – Increasing MW-211 – Decreasing W-30 – Decreasing MW-219 – Decreasing

MW-5 – Decreasing	MW-204 – Decreasing
MW-6 – Decreasing	MW-206 – Increasing
MW-9 – Increasing	MW-209 – Decreasing
MW-11 – Increasing	MW-211 – Decreasing
MW-13 – Decreasing	W-30 – Decreasing
MW-16 – Decreasing	MW-219 – Decreasing
MW-19 – Decreasing	MW-220 – Decreasing
	/ 4 4 44 5

VC (Bedrock Wells)

MW-209 – Increasing W-30 – Decreasing

For the overburden aquifer, all of the increasing slopes (+m) with the exception of PCE in MW-14 are relatively small, indicating a weakly increasing or potentially stable trend. While the slope (m) for PCE in MW-14 is large, the 22,000 micrograms/liter (ug/l) detection during the 2000 sampling event appears anomalous as this detection is several orders of magnitude higher than any other PCE concentration reported for this well (see Table 1).

Likewise for the bedrock aquifer, all of the increasing slopes (+m) with the exception of TCE and DCE in MW-202 are relatively small, indicating a weakly increasing or potentially stable trend. While the slopes (m) for TCE and DCE in MW-202 are large, this well was not sampled post-2008, and therefore a full evaluation of the trends for this well is not possible without more recent data.

Overall, the results of the linear regression evaluation support that concentration trends are either stable or decreasing; however, it should be noted that this linear regression evaluation is viewed more as a preliminary screening tool. The MK trend and MAROS evaluations detailed below are more heavily weighted in determining plume stability.

Mann-Kendall Trend Evaluation – Analysis 2

To evaluate contaminant trends in groundwater at the site, MK statistical evaluations of the data were performed using the GSI Mann Kendall Toolkit. The MK analysis is a non-parametric evaluation that is applied to determine concentration trends over time. Possible outcomes to the GSI Toolkit analysis include no trend, stable, probably decreasing, decreasing, increasing and probably increasing. The no trend and stable outcomes both indicate that no increasing or decreasing trend can be determined with sufficient statistical confidence, but the stable result indicates less variability in concentrations from one sampling event to the next.

Liberty used this statistical toolkit to evaluate CVOC concentrations for the data included in Table 1. A summary of the results is included in Tables 2 and 3. Evaluations were only performed for wells and compounds with at least two exceedances of the AWQS. When a compound was not detected, the laboratory limit (when available) was used as the compound concentration in the evaluation. The results of the evaluation are discussed below and copies of the GSI MK Toolkit spreadsheets are provided in Attachment 2.

MW-2 - Stable MW-202 - No Trend (-S)
MW-3 - Decreasing MW-203 - Decreasing
MW-4 - Decreasing MW-204 - Stable
MW-5 - Stable MW-206 - Stable

 $\begin{array}{lll} \text{MW-6}-\text{No Trend (+S)} & \text{MW-207}-\text{Prob. Decreasing} \\ \text{MW-7}-\text{No Trend (+S)} & \text{MW-209}-\text{No Trend (-S)} \\ \text{MW-9}-\text{Prob. Decreasing} & \text{MW-211}-\text{No Trend (-S)} \\ \text{MW-11}-\text{Stable} & \text{W-30}-\text{No Trend (-S)} \\ \text{MW-12}-\text{Decreasing} & \text{MW-219}-\text{Stable} \\ \end{array}$

MW-13 – Decreasing MW-220 – No Trend (-S) MW-14 – No Trend (-S)

MW-19 – Prob. Decreasing

MW-16 – Decreasing

TCE (Overburden Wells) TCE (Bedrock Wells)

 MW-3 - Decreasing
 MW-202 - No Trend (+S)

 MW-4 - Decreasing
 MW-203 - Decreasing

 MW-5 - No Trend (+S)
 MW-204 - Stable

 MW-6 - Stable
 MW-206 - No Trend (S=0)

 MW-9 - No Trend (+S)
 MW-209 - No Trend (+S)

 MW-11 - No Trend (+S)
 MW-211 - Stable

 MW-12 - Stable
 W 30 - No Trend (S)

MW-11 – No Trend (+S)

MW-13 – Stable

W-30 – No Trend (-S)

MW-16 – Decreasing

MW-219 – No Trend (-S)

MW-19 – Stable

MW-220 – Decreasing

DCE (Overburden Wells) DCE (Bedrock Wells)

MW-3 – Prob. Decreasing
MW-4 – Decreasing
MW-5 – Stable
MW-6 – No Trend (-S)
MW-202 – Increasing
MW-203 – Decreasing
MW-204 – Prob. Decreasing
MW-204 – Prob. Decreasing
MW-206 – No Trend (-S)
MW-206 – No Trend (-S)

MW-9 – No Trend (+S)

MW-11 – No Trend (+S)

MW-13 – No Trend (+S)

MW-16 – Decreasing

MW-19 – Stable

MW-209 – Stable

MW-211 – Decreasing

W-30 – No Trend (-S)

MW-219 – Prob. Decreasing

MW-220 – Prob. Decreasing

VC (Bedrock Wells)

MW-209 – No Trend (+S) W-30 – No Trend (-S)

DCE in MW-202 is the only MK evaluation to indicate an increasing trend result; however, as stated above, this well was not sampled post-2008, and therefore a full evaluation of the trends for this well is not possible without more recent data.

Several compounds in multiple wells indicate a No Trend result with a positive MK Statistic (+S), which is indicative of a weakly increasing or potentially stable concentration trend. The greater the value of S, the greater the strength of the trend. Further review of the No Trend (+S) results indicates the MK Statistics are relatively small (i.e. <5), with the exception of PCE in MW-6 (+S=7), TCE in MW-9 (+S=6), and DCE in MW-13 (+S=6).

Overall, the results of the MK trend evaluations support that concentration trends are either stable or decreasing; however, due to the increasing and no trend (+S>5) results noted above, trends were further evaluated using MAROS software.

MAROS Plume Stability Evaluation – Analysis 3

To further evaluate the stability of the CVOC plumes in the overburden and bedrock aquifers, the MAROS software was utilized to perform spatial trend analyses of the plume. These analyses use the MK method to determine a statistical trend for the total dissolved contaminant mass in the plume, the location of the center of mass, and spread of the plume over time. These three evaluations are performed using the Zeroth Moment Analysis, First Moment Analysis, and Second Moment Analysis, respectively. The MAROS summary reports are provided in Attachment 3.

Due to the inconsistent frequency of which the wells were sampled or some wells not being installed until a later date, only select wells were utilized for the MAROS evaluation and only the groundwater data collected 2005-2023 were utilized. A summary of the wells and data used in the MAROS evaluation is also provided in Attachment 3. Further, due to the limited detections of VC during this period, VC was not included in the MAROS evaluation. Summary figures depicting the Zeroth Moment Analysis and First Moment Analysis for PCE, TCE, and DCE are included in Figures 2 through 7.

Zeroth Moment Analysis

The Zeroth Moment Analysis in MAROS' Spatial Moment Analysis estimates the total dissolved mass for each compound in each sampling event and then evaluates the data to determine a trend over time. The following provides a summary of the results:

Overburden AquiferBedrock AquiferPCE – StablePCE – StableTCE – StableTCE – StableDCE – StableDCE – No Trend (-S)

All of the Zeroth Moment Analyses returned a stable trend result with the exception of DCE in the bedrock aquifer; however, the MK Statistic was negative (-S=-6), indicating a weakly decreasing or potentially stable concentration trend. The results of the Zeroth Moment Analyses indicate that the total dissolved mass of the plumes is stable over time.

First Moment Analysis

The First Moment Analysis determines a trend over time for the center of mass as it relates to the distance from the original source. A decreasing trend for the First Moment Analysis signifies that the center of mass is retreating toward the source (decreasing in distance from the source). An

increasing trend for the First Moment Analysis signifies that the center of mass is moving away from the source (increasing in distance from the source). For this evaluation, MW-17 was used as the source coordinates as this well is closest to the northern "hot spot" and SB-18. The following provides a summary of the results:

Overburden Aquifer Bedrock Aquifer

 $\begin{array}{ccc} PCE-Stable & PCE-Stable \\ TCE-Stable & TCE-Stable \end{array}$

DCE – Stable DCE – No Trend (+S)

All of the First Moment Analyses returned a stable trend result with the exception of DCE in the bedrock aquifer. DCE in the bedrock aquifer indicates a No Trend result with a relatively small (i.e. <5) positive MK Statistic (+S), which is indicative of a weakly increasing or potentially stable concentration trend.

The locations of the center of mass for DCE in the bedrock aquifer are depicted in Figure 7 for reference. The depicted centers of mass appear to be more controlled by the detected concentrations in W-30, which is located side-gradient to groundwater flow, than actually depicting movement in the downgradient direction away from the source. W-30 reported a result of 130,000 ug/l for DCE during the 2005 sampling event. The 130,000 ug/l detection appears anomalous as this detection is several orders of magnitude higher than any other DCE concentration reported for any well (see Table 1). This anomaly would have shifted the center of mass for Sampling Event 1 towards W-30 and therefore further back closer to the source, skewing the results of the First Moment Analysis.

Second Moment Analysis

The Second Moment Analysis determines a trend over time for the spread of the plume in the longitudinal (X) and transverse (Y) directions from the center of mass. A decreasing trend for the Second Moment Analysis signifies that the plume footprint is shrinking in the specified direction (X or Y), while an increasing trend signifies that the plume footprint is expanding. The results of this analysis indicate the following:

Overburden Aquifer Longitudinal (X)

Bedrock Aquifer Longitudinal (X)

PCE – No Trend (+S)
TCE – Decreasing
PCE – Stable
TCE – Stable

DCE - No Trend (+S) DCE - No Trend (+S)

Overburden Aquifer Transverse (Y)

Bedrock Aquifer Transverse (Y)

PCE – Stable PCE – No Trend (+S)

TCE – Stable
DCE – Stable
DCE – Stable
DCE – Stable

All of the Second Moment Analyses returned either a stable trend or no trend with a relatively small (i.e. <5) positive MK Statistic (+S), which is indicative of a weakly increasing or potentially stable concentration trend.

CONCLUSIONS AND RECOMMENDATIONS

Based on the groundwater plume stability evaluation summarized above, the following conclusions and recommendations are presented.

- Based on multiple lines of evidence, the CVOC groundwater plumes at the subject site are stable or decreasing.
- Since the CVOC groundwater plumes are overall stable or decreasing and therefore, would not be expected to migrate beyond their current extent, the installation of a groundwater pump-and-treat system is not necessary to gain hydraulic control of the plumes.
- Alternative remedial approaches should be evaluated to address contaminated groundwater at the site.

We appreciate the opportunity to serve you on this project. If you have any questions concerning the information presented above or the site in general, please do not hesitate to contact our office. We may be reached at (800)305-6019.

Sincerely,

Liberty Environmental

James P. Cinelli, P.E., P.G.

President

Zachary Weaver Project Manager

Attachments:

Figure 1: Site Diagram

Figure 2: PCE MAROS Moment Analysis – Overburden Aquifer

Figure 3: TCE MAROS Moment Analysis – Overburden Aquifer

Figure 4: DCE MAROS Moment Analysis – Overburden Aquifer

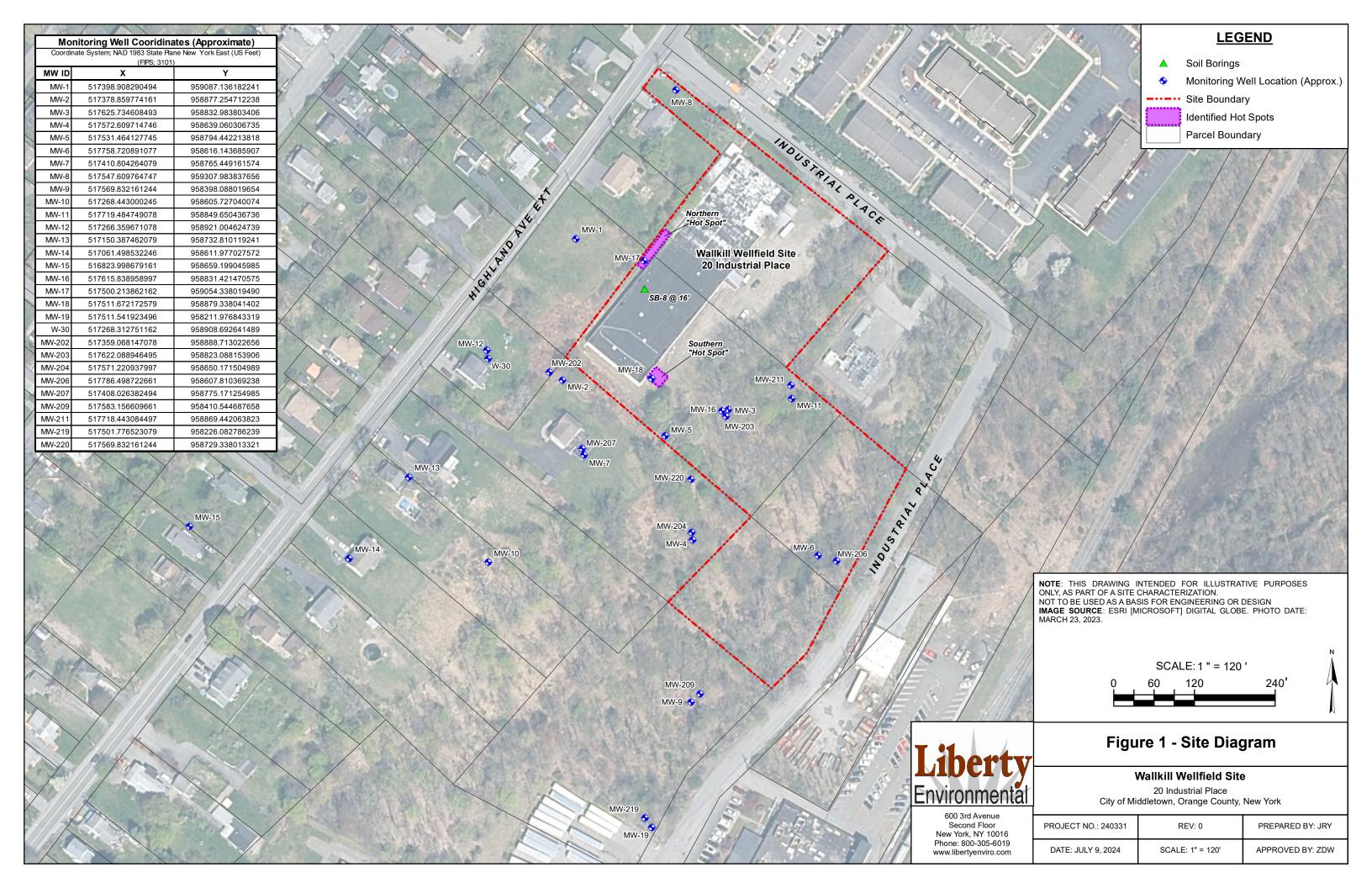
Figure 5: PCE MAROS Moment Analysis – Bedrock Aquifer

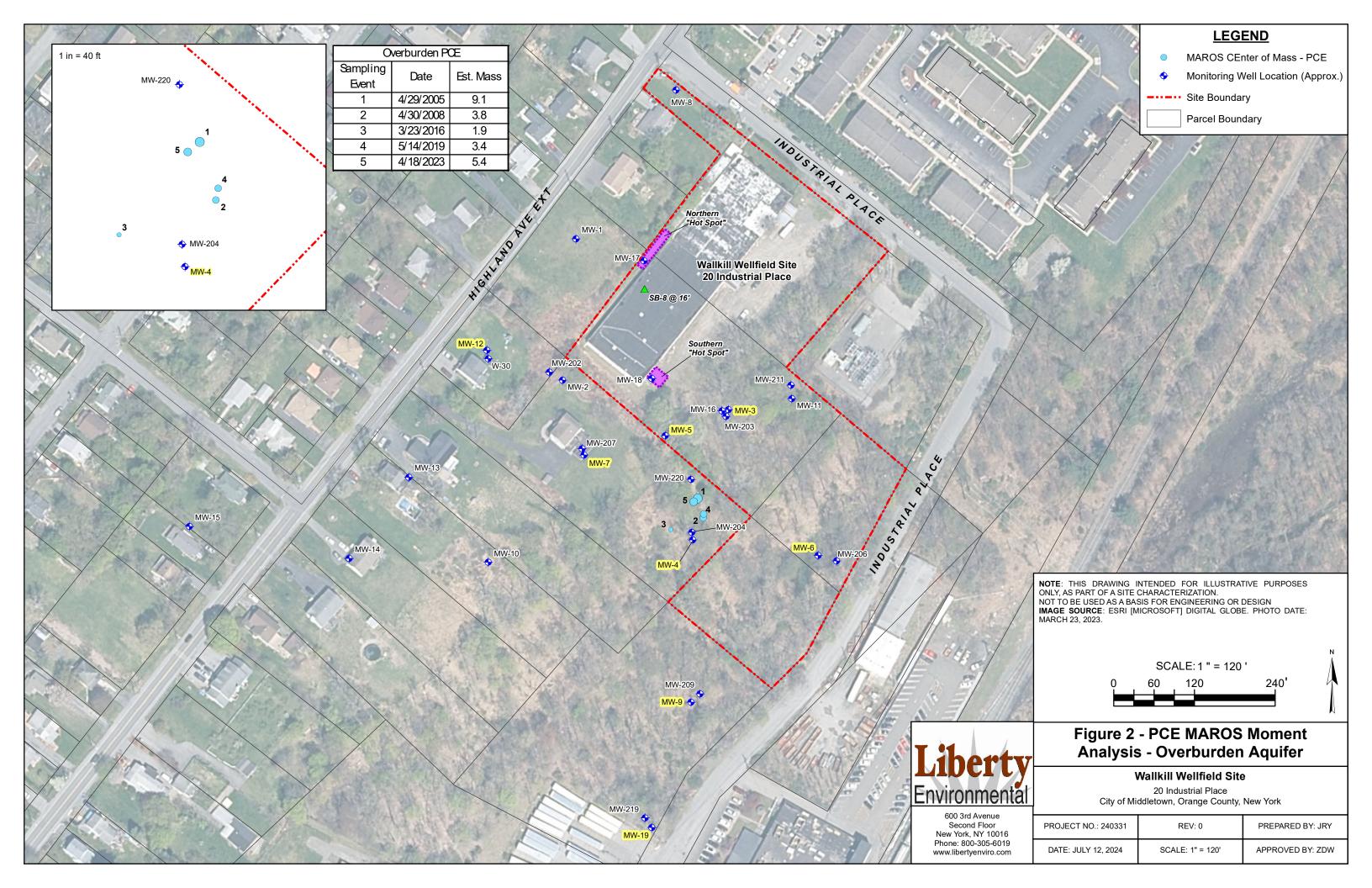
Figure 6: TCE MAROS Moment Analysis – Bedrock Aquifer

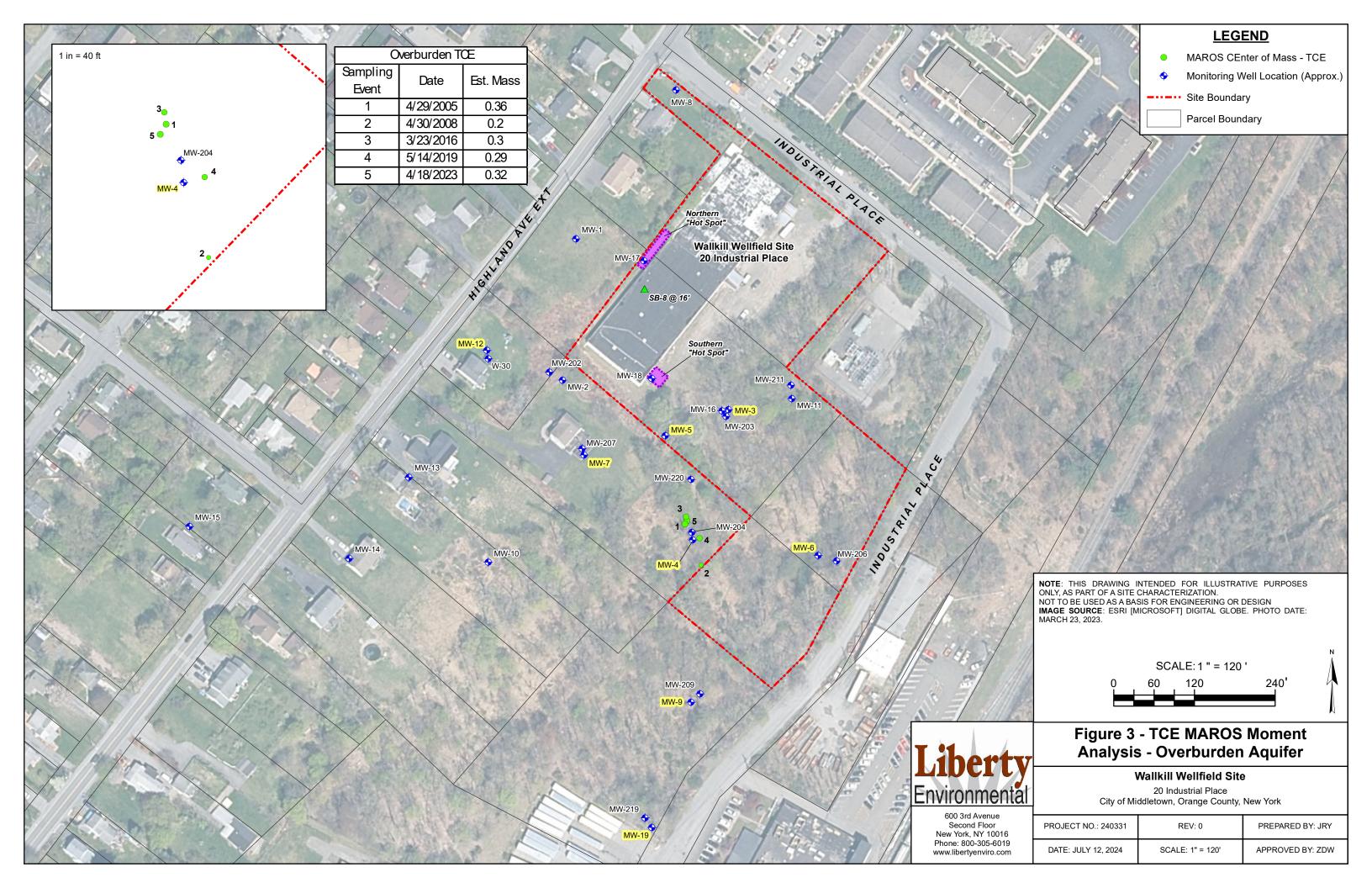
Figure 7: DCE MAROS Moment Analysis – Bedrock Aquifer

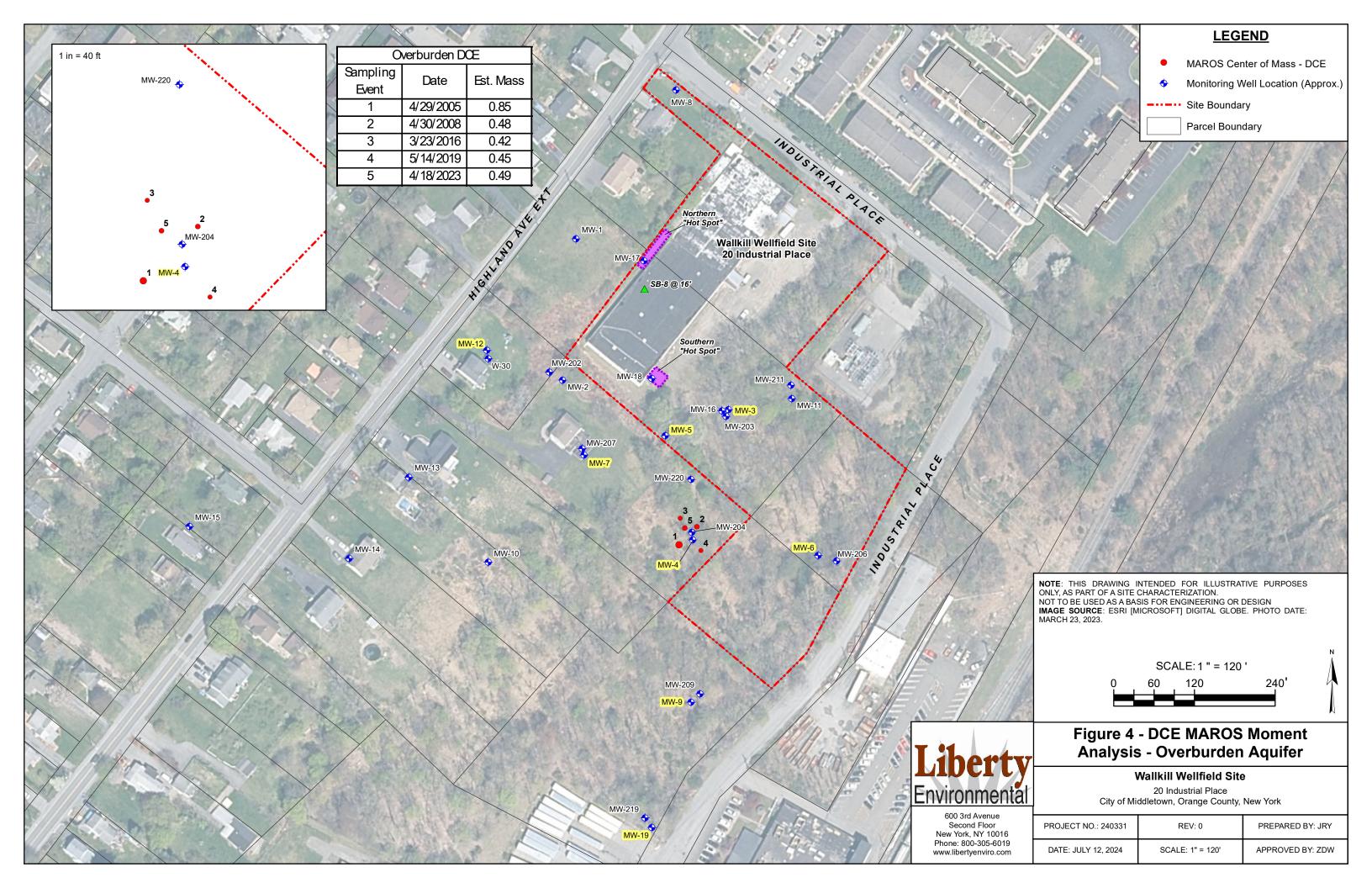
Table 1: Historical Groundwater Data Summary – PCE & Daughter Compounds

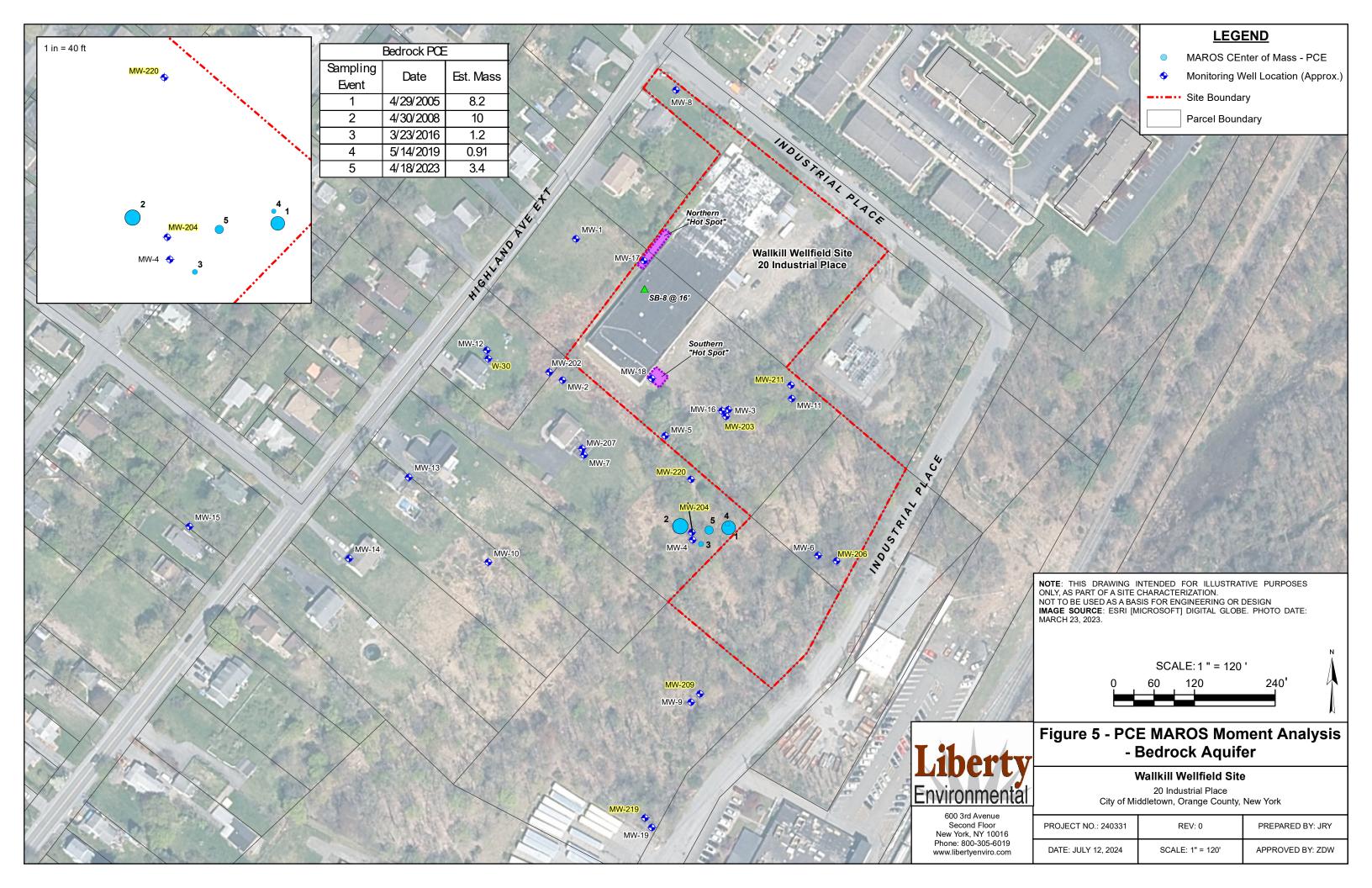
Table 2: Summary Groundwater Trends – Overburden Wells (PCE & Daughter Compounds)

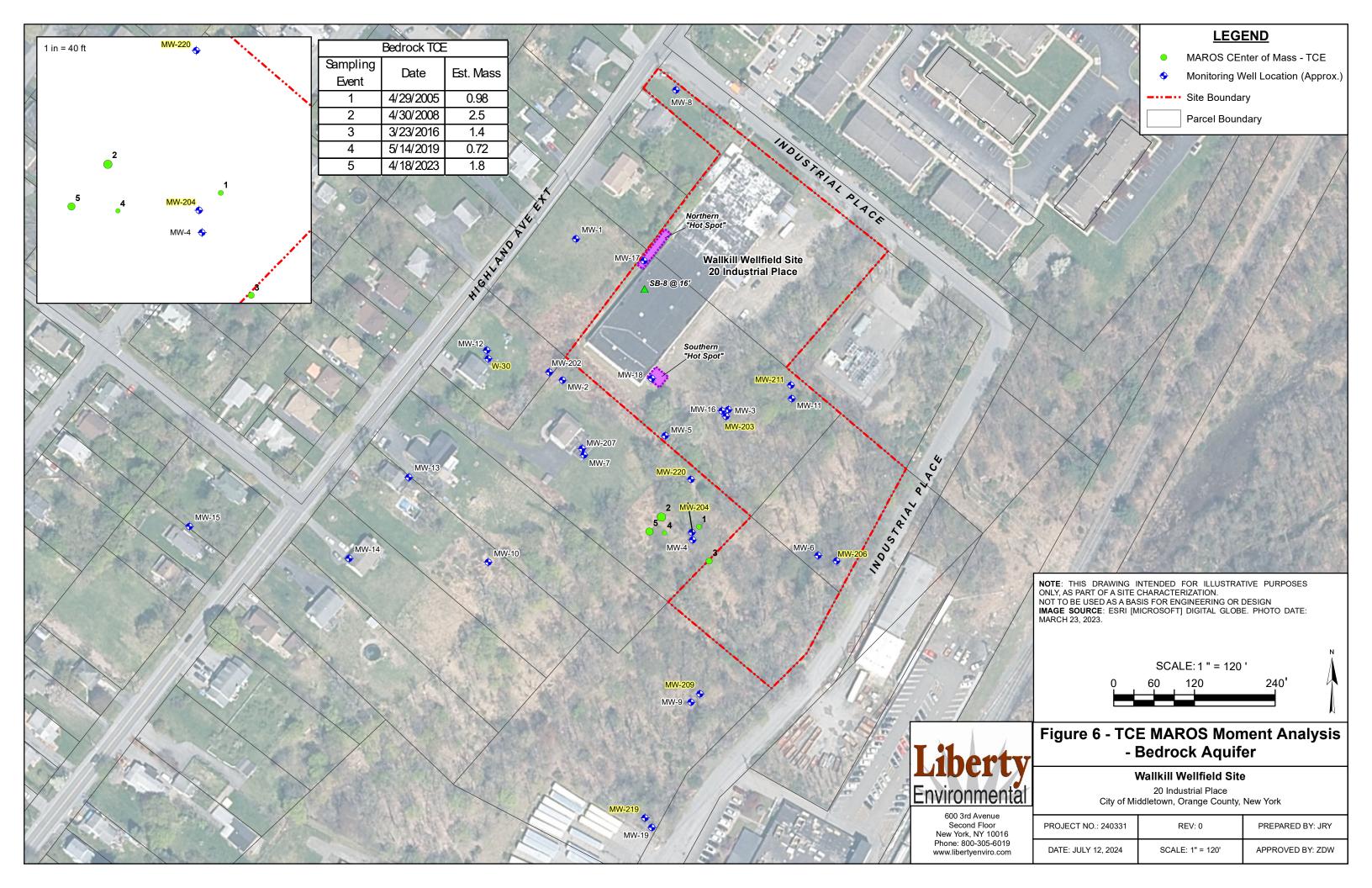

Table 3: Summary Groundwater Trends – Bedrock Wells (PCE & Daughter Compounds)

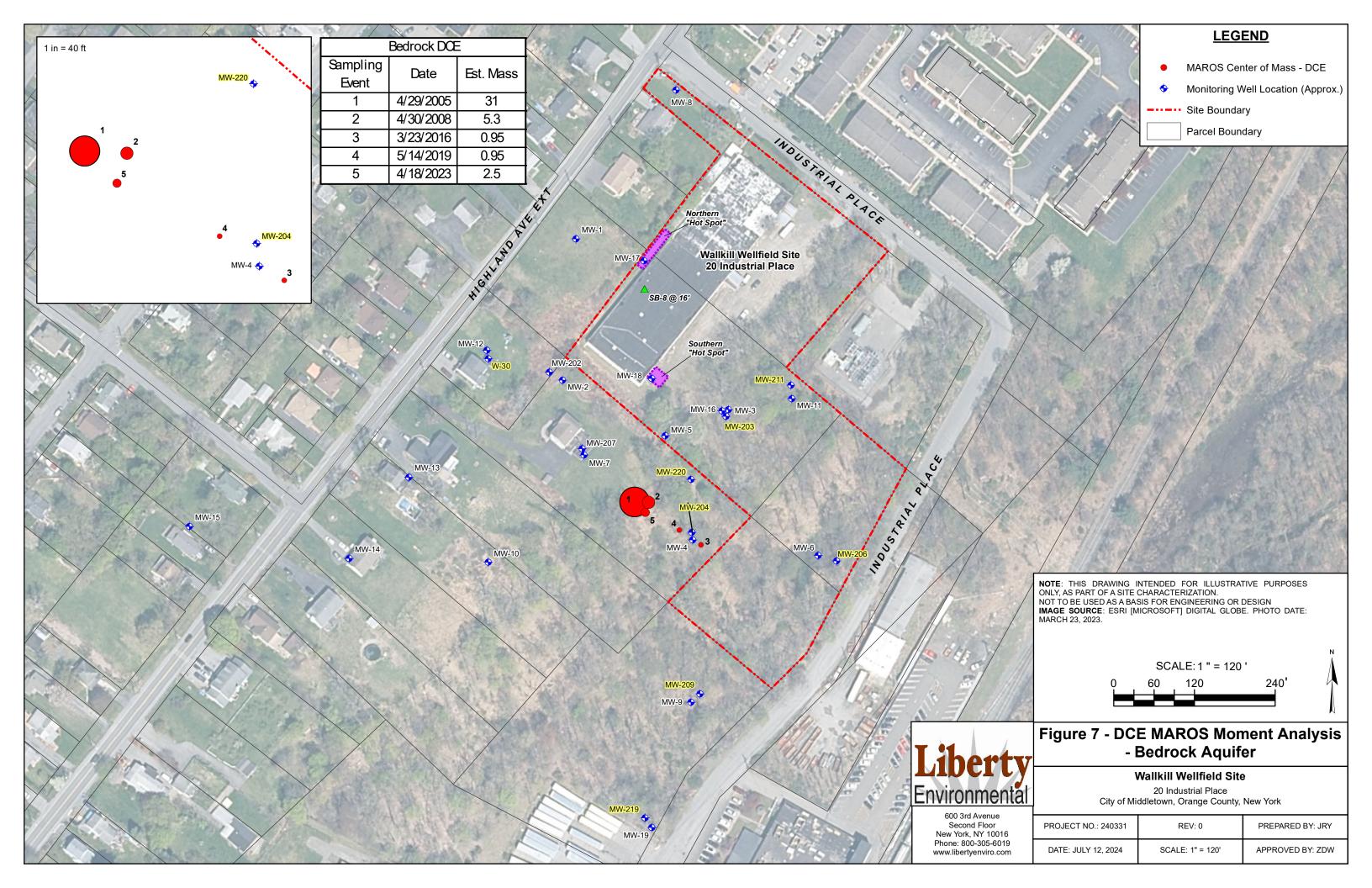

Attachment 1: Linear Regression Trend Graphs


Attachment 2: GSI Mann-Kendall Toolkit Spreadsheets


Attachment 3: MAROS Spatial Moment Analysis Summary


FIGURES





TABLES

TABLE 1

Historical Groundwater Data Summary - PCE & Daughter Compounds Wallkill Wellfield Site, 20 Industrial Place, City of Middletown, Orange County, NY Liberty Project No. 240331

\$4 14	.,	All concentrations in micrograms per liter (μg/L)					
Monitoring Well	Year	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,2-DCE (Total)	vc
AW	**	5	5	5	5	5	2
	1992 1992	2.2	0.5 <0.5	NR NR	NR NR	<0.5 <0.5	<0.5 <0.5
	2000	<1	<1	<1	<1	<1	<1
MW-1	2002 2005	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <1
	2006 2008	ND ND	N/A ND	N/A NR	N/A NR	N/A ND	N/A ND
	2023	<0.5	<0.5	<0.5	<0.75	<0.75	<0.2
	1992	8 J	5 J	NR	NR	<10	<10
	1992 2000	11 <10	5 <10	NR <10	NR <10	<2.5 <10	<2.5 <10
MW-2	2001	<1	<1	<1	<1	<1	<1
	2002 2005	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <1
	2008	ND	ND	NR	NR	ND	ND
	1992	240	16	NR	NR	<10	<10
	1992 2000	9,600 490	300 1,800	NR 280	NR 32	<250 312	<250 <1
	2001	730	2,500	440	29	469	<10
MW-202	2002 2003	720 450	1,800 1,000	440 230	48 <25	488 230	<10 <250
	2005 2008	670 110	1,600 1,300	460 NR	57 NR	517 830	<10 ND
	1992 1992	8,700 2,500	1,000 1,000	NR NR	NR NR	880 J 840	<1,000 <10
	2000	7,300	820	12	14	26	2
	2001 2002	2,900 4,300	550 160	420 310	2 <50	422 310	1 <500
MW-3	2005 2008	2,700 430	190 270	240 NR	<50 NR	240 353	<50 ND
	2016	1,200	140	160	3.4	163.4	<0.2
ŀ	2019 2023	462 1,300	90 130	144 360	1.73 2	145.73 362	<0.2 <0.2
		13,000					
ŀ	1992 1992	1,100	1,200 <500	NR NR	NR NR	1,000 <500	<1,000 <500
	2000 2001	6,000 3,100	500 580	450 510	<10 3	450 513	<10 1
	2002	2,100	120	280	<100	280	<1,000
MW-203	2005 2008	4,200 1,500	270 130	370 NR	<50 NR	370 270	<50 ND
	2016 2019	120 555	11 134	21	<0.2 1.55	21 132.55	<0.2 0.23 J
	2023	1,100	160	131 290	1.7	291.7	0.23 J
	1992	20,000	210 J	NR	NR	420 J	<1,000
	1992	15,000	330	NR	NR	550	<25
	2000 2001	15,000 10,000	320 120	560 150	<50 <1	560 150	<50 <1
MW-4	2002 2005	1,600 7,300	<1 110	140 190	<1 <50	140 190	<10 <50
10100	2008	3,200	51	NR	NR	130	ND
	2016 2019	5,100 4,860	110 108	140 145	7.06	142 152.06	<0.2 <0.2
	2023	3,800	60	86	<15	86	<4
	1992	204.4	20.0	NR	NR	11.6	<0.5
	1992 2000	100 2,400	230 160	NR 200	NR <10	230 200	<0.5 <10
	2001 2002	1,600 610	150	180	<1	180 98	1
MW-204	2005	900	64 89	98 96	<25 <10	96	<250 <10
	2008 2016	680 430	120 61	NR 52	NR 3.2	137 55.2	ND 1
	2019	176	54.1	33.3	1.04	34.34	<0.2
	2023	340	77	53	3	56	2.3
	1992 2000	41,000 13,000	210 J 220	NR 350	NR <10	820 J 350	<1,000 <10
	2001	28,000	300	1,100	<1	1,100	<1
MW-5	2003 2005	9,800 26,000	160 230	350 820	<50 <200	350 820	<500 <200
MINA-7	2008 2016	17,000 26,000	ND 280	NR 660	NR 12	410 672	ND 1.4
	2019	5,960	113	174	4.39	178.39	0.28 J
	2023	16,000	280	410	4.1 J	414.1	<2
	1992 1992	27 34	10 9.4	NR NR	NR NR	39 8.9	<10 <2.5
	2000 2001	18	N/A	N/A	N/A	N/A	N/A
ŀ	2003	16 25	3 5	<1 NR	<1 NR	<1 <1	<1 <10
MW-6	2005 2008	69 45	6	4 NR	<1 NR	4 5	<1 ND
	2016	5.7	1.5	0.59	<0.2	0.59	<0.2
ŀ	2019 2023	52.6 39	8.64 5.6	10.2 3.7	<0.2 <0.75	10.2 3.7	<0.2 <0.2
	2005	150	4	12	<1	12	<1
	2008	130	15	NR	NR	11	ND
MW-206	2016 2019	26 61.4	76 3.05	56 4.78	2.5 <0.2	58.5 4.78	1.3 <0.2
	2023	120	4.6	6.3	<0.75	6.3	0.23
	1992 1992	10 120	<10	NR NP	NR NR	<10	<10
ŀ	2000	<1	<10 <1	NR <1	NR <1	<10 <1	<10 <1
	2002 2005	<1 4	<1 <1	<1 11	<1 <1	<1 11	<10 <1
MW-7	2008	ND	ND	NR	NR	ND	ND
	2016 2019	8.6 1.28	1 0.31	2.1 0.67	<0.2 <0.2	2.1 0.67	<0.2 <0.2
	2023	12	2.1	4.7	<0.75	4.7	<0.2
	1992	2,100	<50	NR	NR	<50	<50
	1992 2000	390 J 2	<500 2	NR <1	NR <1	<500 <1	<500 <1
MW 207	2002 2005	1	<1	<1	<1	<1	<10
MW-207	2008	<1 ND	<1 ND	<1 NR	<1 NR	<1 ND	<1 ND
F	2016	0.34 J	<0.2	<0.2	<0.2	<0.2	<0.2

Historical Groundwater Data Summary - PCE & Daughter Compounds Wallkill Wellfield Site, 20 Industrial Place, City of Middletown, Orange County, NY Liberty Project No. 240331

		Liberty Project No. 240331 All concentrations in micrograms per liter (μg/L)						
Monitoring Well	Year	An concentrations in micrograms per liter (µg/L)						
-		PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,2-DCE (Total)	vc	
AWG	QS	5	5	5	5	5	2	
	2000 2002	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <10	
MW-8	2005	<1	<1	<1	<1	<1	<1	
	2008	ND	ND	NR	NR	ND	ND	
	2000	1,000	85	120	<10	120	<10	
	2001	470	100	320	2	322	<1	
-	2003 2005	770 500	73 76	85 400	<10 4	85 404	<100 <1	
MW-9	2008	820	89	NR	NR	240	ND	
-	2016 2019	320 237	140 73.5	330 243	2.8 2.78	332.8 245.78	<0.2 <0.2	
	2023	470	110	230	1.7 J	231.7	<0.5	
	2005	300	25	56	<1	56	<1	
	2008	190	32	NR	NR	40	ND	
MW-209	2016 2019	11 2.85	110 15.2	24 86.4	0.22 J <1	24.22 86.4	2.4 <1	
	2023	47	46	26	0.27 J	26.27	2.5	
	1992	57	<0.5	NR	NR	<0.5	<0.5	
	1992	5 J	<10	NR NR	NR	<10	<10.5	
	2000	<1	<1	<1	<1	<1	<1	
MW-10	2002 2005	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <1	
	2008	ND	ND	NR	NR	ND ND	ND	
	1992	PR	PR	PR	PR	PR	PR	
ŀ	2000	PR	PR PR	PR PR	PR PR	PR PR	PR PR	
Ţ	2003	740	56	NR	NR	40	<100	
MW-11	2005 2008	1,600 DRY	150 DRY	170 DRY	<10 DRY	170 DRY	<10 DRY	
	2016	DRY	DRY	DRY	DRY	DRY	DRY	
<u> </u>	2019 2023	681 1,400	88.4 100	109 210	0.89 <7.5	108.89 210	<0.2 <2	
	2005 2008	73 23	170 61	98 NR	<1 NR	98 77	<1 ND	
MW-211	2016	11	110	21	<0.2	21	2.3	
	2019	2.78	5.37	38	0.3 J	38.3	<0.2	
-	2023	13	6.4	3.6	<0.75	3.6	<0.2	
	1992	140	<10	NR	NR	<10	<10	
MW-12	1992 2000	280 <1	3	NR <1	NR <1	<0.5 <1	<0.5 <1	
	2002	7	5 2	<1	<1	<1	<1	
	2005	2	4	<1	<1	<1	<1	
-	2008 2016	ND <0.2	8 1.1	NR <0.2	NR <0.2	ND <0.2	ND <0.2	
	2019	<0.2	1.86	<0.2	<0.2	<0.2	<0.2	
-	2023	0.7	2.1	<0.5	<0.75	<0.75	<0.2	
	1992	21	76	NR	NR	8 J	<10	
	2005 2008	<1,000 62	<1,000	130,000	<1,000	130,000	<1,000	
W-30	2016	1.4	100 1.4	NR 2	NR 1.4	790 3.4	10 <0.2	
	2019	0.29 J	7.09	1.72	1.72	3.44	<0.2	
-	2023	3.9	82	360	8.8	368.8	2.4	
	1992	130	<2.5	NR	NR	<2.5	<2.5	
-	1992 2000	2,900 180	<1,000 960	NR 22	NR <1	<1,000 22	<1,000 <1	
MW-13	2001	140	610	24	1	25	<1	
10100-13	2002 2005	87 25	190 200	780 190	<10	780 193	<100	
	2008	4	59	NR	3 NR	193	<1 ND	
		10	.10					
-	1992 1992	12 140	<10 <10	NR NR	NR NR	<10 <10	<10 <10	
	2000	22,000	260	800	<10	800	<10	
MW-14	2001 2002	6 <1	2 <1	<1 <1	<1 <1	<1 <1	<1 <10	
F	2002	<1	1	2	<	2	<1	
	1000	4.1	-10	ND	ND	<10	-10	
MW-15	1992 1992	4 J 18	<10 <10	NR NR	NR NR	<10 <10	<10 <10	
-	1992 2000	2,400 7,000	960 810	NR 580	NR <10	870 580	7 J <10	
į.	2001	6,200	410	360	<25	360	<25	
MW-16	2002 2005	2,300 2,100	160 130	210 150	<25 <50	210 150	<250 <50	
ŀ	2005	450	260	NR	NR	350	ND	
	4000	4.200	400	ND	ND	24.1	-50	
MW-17	1992 1992	1,200 1,100	130 110	NR NR	NR NR	21 J 12	<50 <10	
		,						
		1,300	93 42	110 NR	<10 NR	110 52	<10 ND	
	2005 2008	520		13	<0.2	13	<0.2	
	2008 2016	520 140	10					
MW-19	2008 2016 2019	520 140 365	10 45.9	59.4	0.34 J	59.74	<0.2	
	2008 2016	520 140	10			59.74 22	<0.2 <0.2	
	2008 2016 2019 2023 2005	520 140 365 140	10 45.9 13	59.4 22 49	0.34 J <0.75	49	<0.2	
MW-19	2008 2016 2019 2023	520 140 365 140	10 45.9 13 260 22	59.4 22 49 NR	0.34 J <0.75 <1 NR	22 49 22	<0.2 <1 ND	
	2008 2016 2019 2023 2005 2008 2016 2019	520 140 365 140 160 220 120 78.7	10 45.9 13 260 22 16 29.7	59.4 22 49 NR 11 11.6	0.34 J <0.75 <1 NR <0.2 <0.2	49 22 11 11.6	<0.2 <1 ND <0.2 <0.2	
MW-19	2008 2016 2019 2023 2005 2008 2016	520 140 365 140 160 220 120	10 45.9 13 260 22 16	59.4 22 49 NR 11	0.34 J <0.75 <1 NR <0.2	49 22 11	<0.2 <1 ND <0.2	
MW-19	2008 2016 2019 2023 2005 2008 2016 2019	520 140 365 140 160 220 120 78.7	10 45.9 13 260 22 16 29.7	59.4 22 49 NR 11 11.6	0.34 J <0.75 <1 NR <0.2 <0.2	49 22 11 11.6	<0.2 <1 ND <0.2 <0.2	
MW-19	2008 2016 2019 2023 2005 2008 2016 2019 2023 2005 2008	520 140 365 140 160 220 120 78.7 100	10 45.9 13 260 22 16 29.7 14	59.4 22 49 NR 11 11.6 11	0.34 J <0.75 <1 NR <0.2 <0.2 <0.75 <2.0	49 22 11 11.6 11 64 38	<0.2 <1 ND <0.2 <0.2 <0.14 J <2.0 ND	
MW-19	2008 2016 2019 2023 2005 2008 2016 2019 2023	520 140 365 140 160 220 120 78.7 100	10 45.9 13 260 22 16 29.7 14	59.4 22 49 NR 11 11.6 11	0.34 J <0.75 <1 NR <0.2 <0.2 <0.75 <2.0	49 22 11 11.6 11	<0.2 <1 ND <0.2 <0.2 <0.2 0.14 J <2.0	

Notes:

Results are reported in ug/L

AWQS = Ambient Water Quality Standard

N/A = Not Applicable or Not Available

NA = Not Analyzed

ND = Non-Detect

NR = Not Reported

PR = Poor Recovery

PCE = Tetrachloroethylene

TCE = Trichloroethylene

1,2-DCE = 1,2-Dichloroethylene

VC = Vinyl Chloride

"J" values indicate a concentration above the laboratory method detection limit. Values in bold were detected above the laboratory method detection limit.

Values in bold were detected above the laboratory method detection limit.

Values in bold and yellow shading exceed the applicable AWQS.

TABLE 2 Summary of Groundwater Trends - Overburden Wells (PCE & Daughter Compounds)

Wallkill Wellfield Site, 20 Industrial Place, City of Middletown, Orange County, NY

Liberty Project No. 240331

W-II ID	Parameters Exceeding	# of Sampling Events with	Linear Re	gression	GSI MK Toolkit		
Well ID	AWQS	Data	Concentration Trend	R ²	Concentration Trend	Coefficient of Variation	MK Statistic
MW-2	PCE	7	Decreasing	0.594	Stable	0.91	-8
	PCE		Decreasing	0.475	Decreasing	0.89	-25
MW-3	TCE	10	Decreasing	0.7058	Decreasing	0.86	-36
	1,2-DCE		Decreasing	0.3772	Prob. Decreasing	0.75	-17
	PCE		Decreasing	0.5506	Decreasing	0.72	-28
MW-4	TCE	10	Decreasing	0.3473	Decreasing	0.78	-24
	1,2-DCE		Decreasing	0.5252	Decreasing	0.73	-23
	PCE		Decreasing	0.284	Stable	0.54	-13
MW-5	TCE	9	Increasing	0.0004	No Trend	0.29	3
	1,2-DCE		Decreasing	0.2254	Stable	0.53	-8
	PCE	10	Increasing	0.0352	No Trend	0.57	7
MW-6	TCE	9	Decreasing	0.149	Stable	0.5	-8
	1,2-DCE	9	Decreasing	0.2286	No Trend	1.48	-7
MW-7	PCE	9	Decreasing	0.2054	No Trend	2.06	1
	PCE		Decreasing	0.4376	Prob. Decreasing	0.46	-13
MW-9	TCE	8	Increasing	0.1674	No Trend	0.25	6
	1,2-DCE		Increasing	0.0369	No Trend	0.43	2
	PCE		Increasing	0.00005	Stable	0.42	0
MW-11	TCE	4	Decreasing	0.0008	No Trend	0.4	2
	1,2-DCE		Increasing	0.3202	No Trend	0.56	4
MW-12	PCE	9	Decreasing	0.4723	Decreasing	1.92	-17
	PCE		Decreasing	0.3759	Decreasing	2.15	-15
MW-13	TCE	7	Decreasing	0.1302	Stable	0.98	-7
	1,2-DCE		Decreasing	0.0706	No Trend	1.28	6
MW-14	PCE	6	Increasing	0.0136	No Trend	2.43	-8
	PCE		Decreasing	0.0945	Decreasing	0.76	-11
MW-16	TCE	6	Decreasing	0.6832	Decreasing	0.77	-11
	1,2-DCE		Decreasing	0.6887	Decreasing	0.63	-11
	PCE		Decreasing	0.686	Prob. Decreasing	0.97	-7
MW-19	TCE	5	Decreasing	0.5742	Stable	0.82	-4
	1,2-DCE		Decreasing	0.5207	Stable	0.74	-4

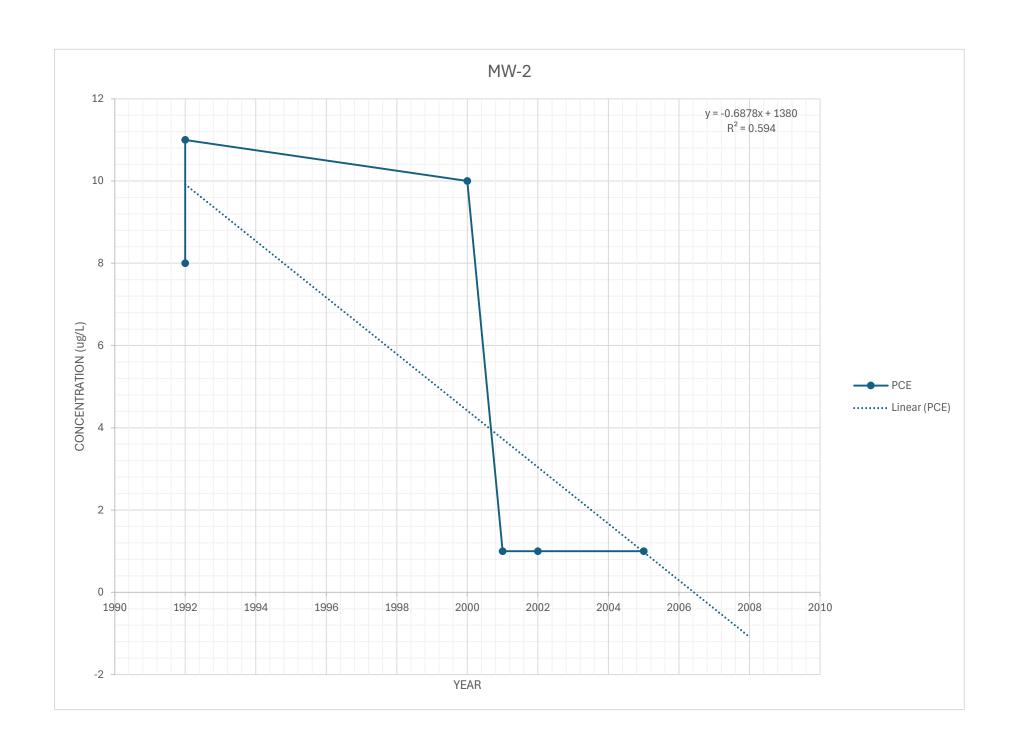
Notes: AWQS = Ambient Water Quality Standard

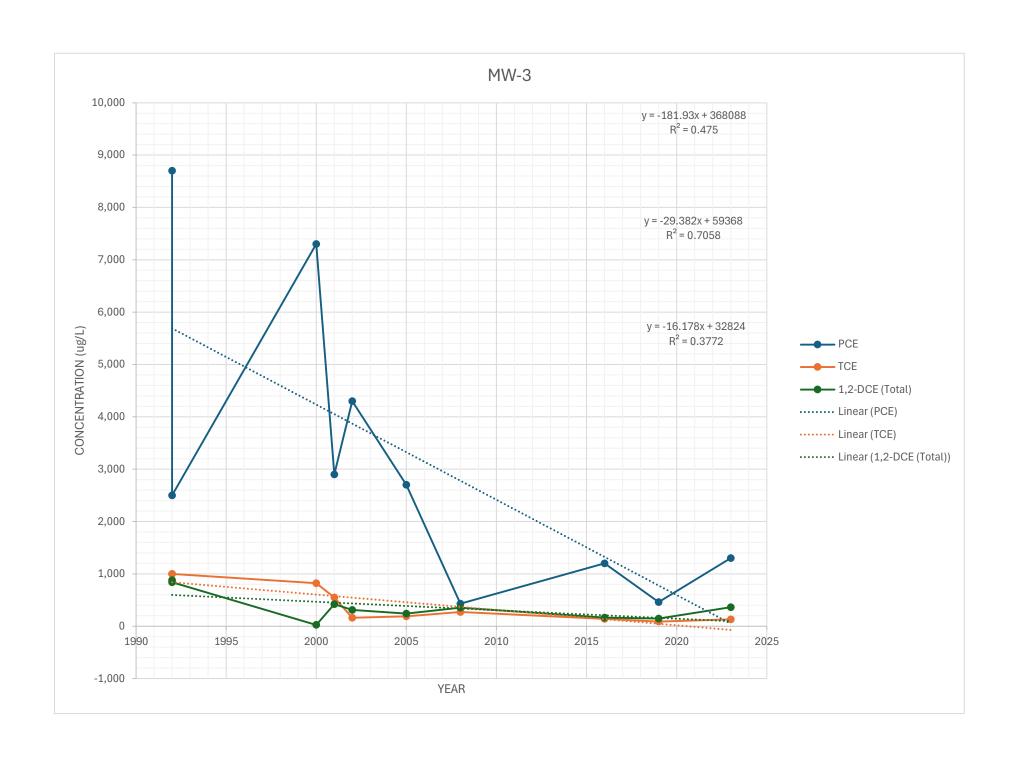
MK = Mann Kendall PCE = Tetrachloroethylene TCE = Trichloroethylene 1,2-DCE = 1,2-Dichloroethylene

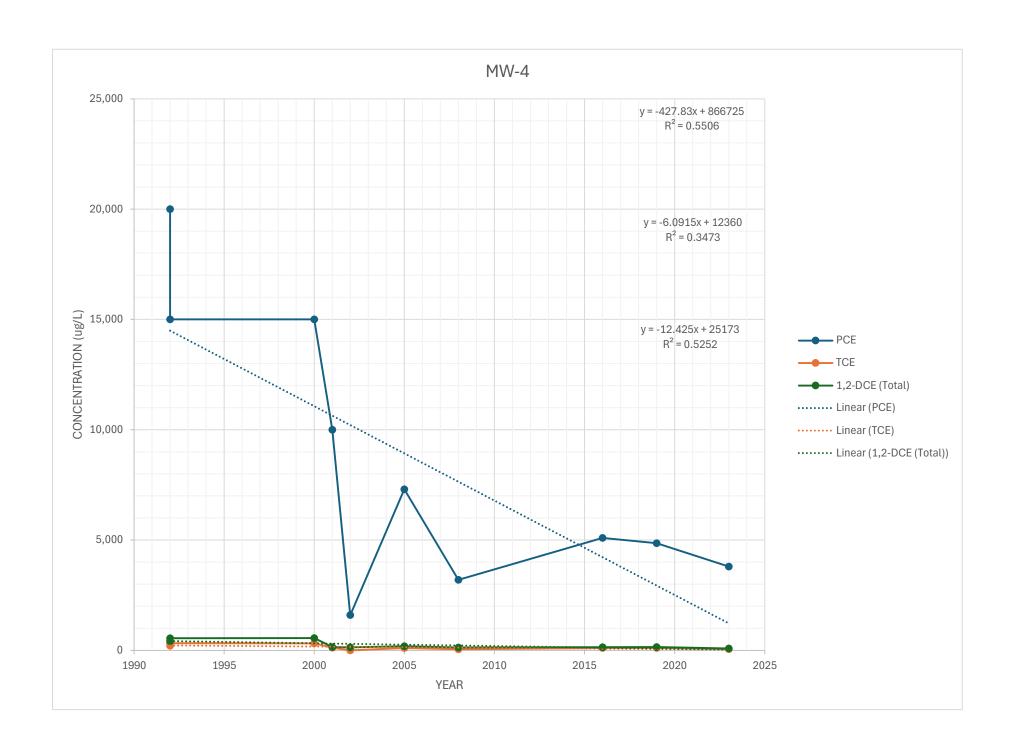
VC = Vinyl Chloride

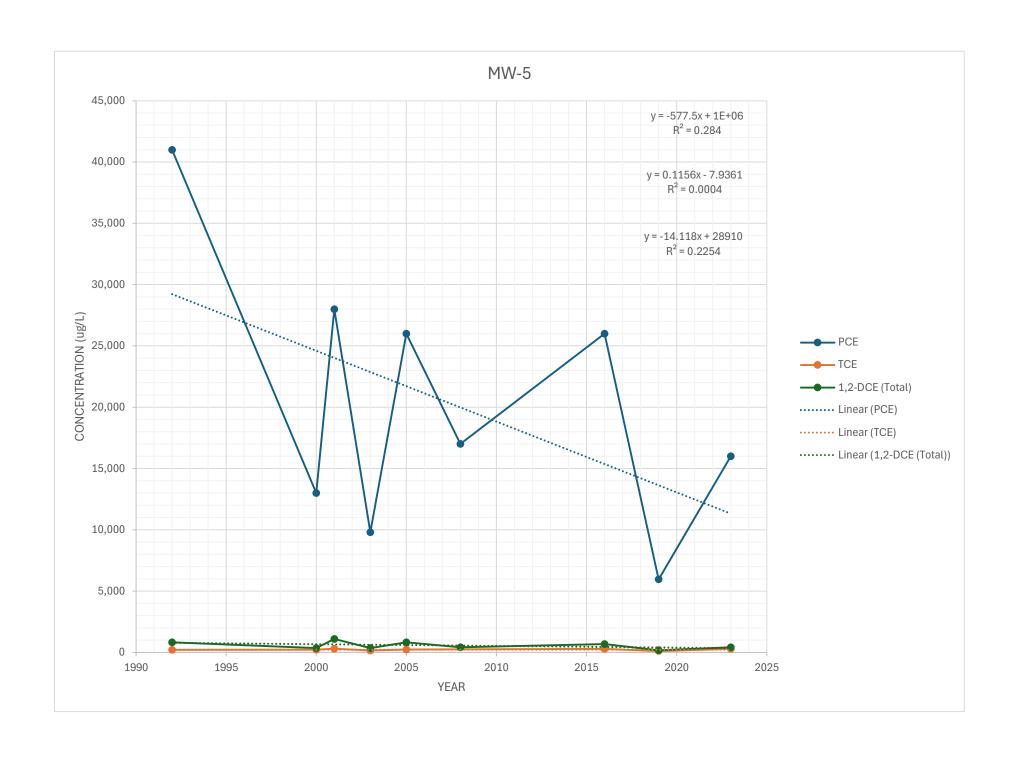
TABLE 3 Summary of Groundwater Trends - Bedrock Wells (PCE & Daughter Compounds) Wallkill Wellfield Site, 20 Industrial Place, City of Middletown, Orange County, NY Liberty Project No. 240331

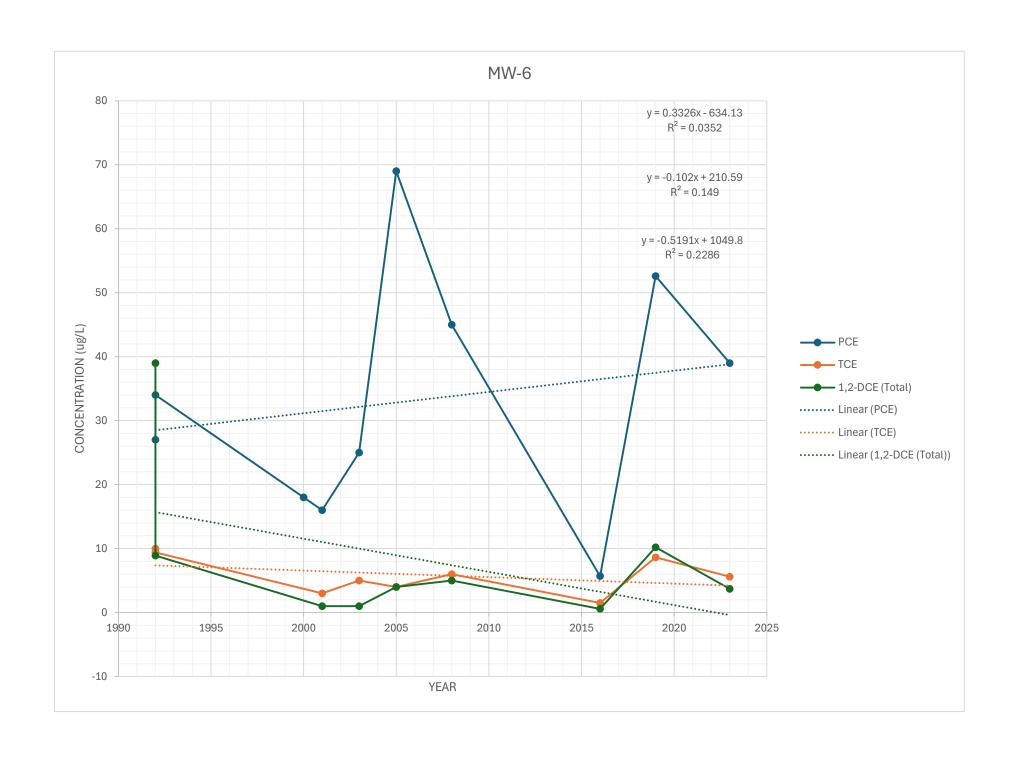
Well ID	Parameters Exceeding	# of Sampling Events with	Linear Re	gression	GSI MK Toolkit			
Well ID	Well ID AWQS Da		Concentration Trend	R ²	Concentration Trend	Coefficient of Variation	MK Statistic	
	PCE		Decreasing	0.3428	No Trend	1.99	-8	
MW-202	TCE	8	Increasing	0.4064	No Trend	0.64	5	
	1,2-DCE		Increasing	0.6801	Increasing	0.63	20	
	PCE		Decreasing	0.365	Decreasing	1.18	-24	
MW-203	TCE	10	Decreasing	0.5343	Decreasing	0.98	-22	
	1,2-DCE		Decreasing	0.578	Decreasing	0.7	-29	
	PCE		Decreasing	0.044	Stable	0.98	-9	
MW-204	TCE	10	Decreasing	0.1699	Stable	0.61	-15	
	1,2-DCE		Decreasing	0.2421	Prob. Decreasing	0.68	-19	
	PCE		Decreasing	0.2554	Stable	0.53	-4	
MW-206	TCE	5	Increasing	0.0043	No Trend	1.53	0	
	1,2-DCE		Increasing	0.00006	No Trend	1.22	-4	
MW-207	PCE	8	Decreasing	0.3411	Prob. Decreasing	2.19	-12	
	PCE	5	Decreasing	0.7931	No Trend	1.18	-6	
MM/ 000	TCE		Increasing	0.0475	No Trend	0.83	2	
MW-209	1,2-DCE		Decreasing	0.0091	Stable	0.55	-2	
	VC		Increasing	0.3345	No Trend	0.49	3	
	PCE	5	Decreasing	0.6239	No Trend	1.14	-6	
MW-211	TCE		Decreasing	0.6121	Stable	1	-6	
	1,2-DCE		Decreasing	0.9108	Decreasing	0.82	-8	
PCE		PCE		Decreasing	0.0697	No Trend	2.21	-7
144.00	TCE	_	Decreasing	0.0764	No Trend	1.84	-3	
W-30	1,2-DCE	6	Decreasing	0.0567	No Trend	2.42	-3	
	VC	1	Decreasing	0.0612	No Trend	2.38	-7	
	PCE		Decreasing	0.6563	Stable	0.41	-6	
MW-219	TCE	5	Decreasing	0.4776	No Trend	1.57	-6	
	1,2-DCE	-	Decreasing	0.7072	Prob. Decreasing	0.78	-7	
	PCE		Decreasing	0.8386	No Trend	1.17	-6	
MW-220	TCE	5	Decreasing	0.8887	Decreasing	0.53	-8	
	1.2-DCE	1	Decreasing	0.8317	Prob. Decreasing	0.82	-7	

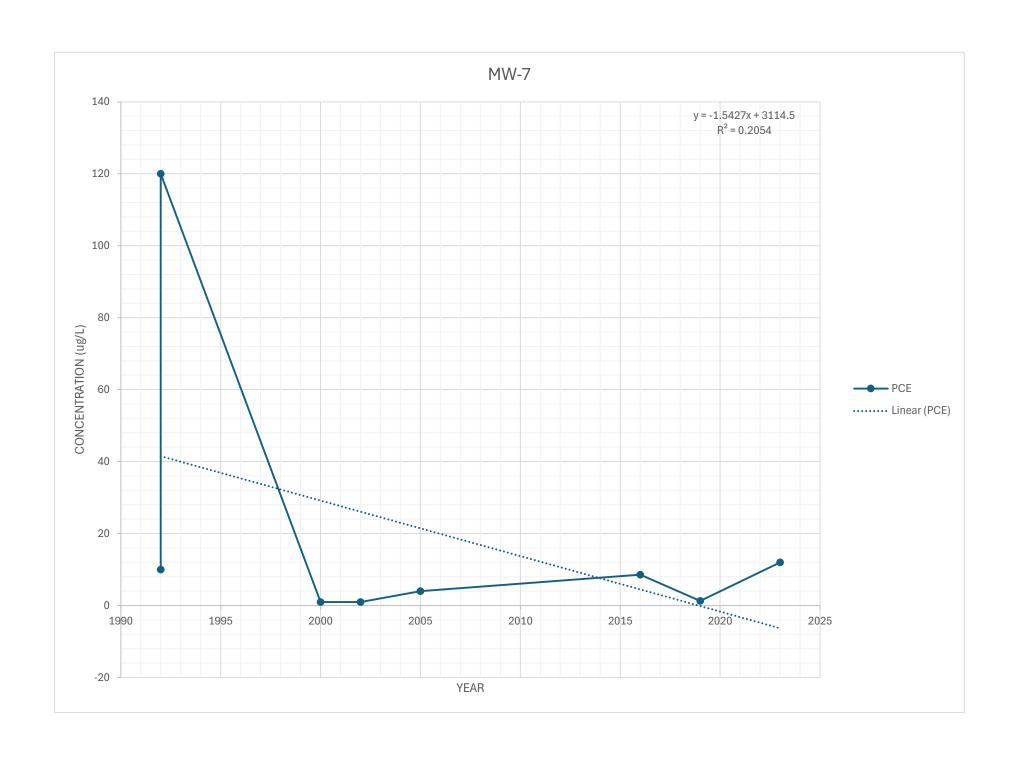

Notes: AWQS = Ambient Water Quality Standard

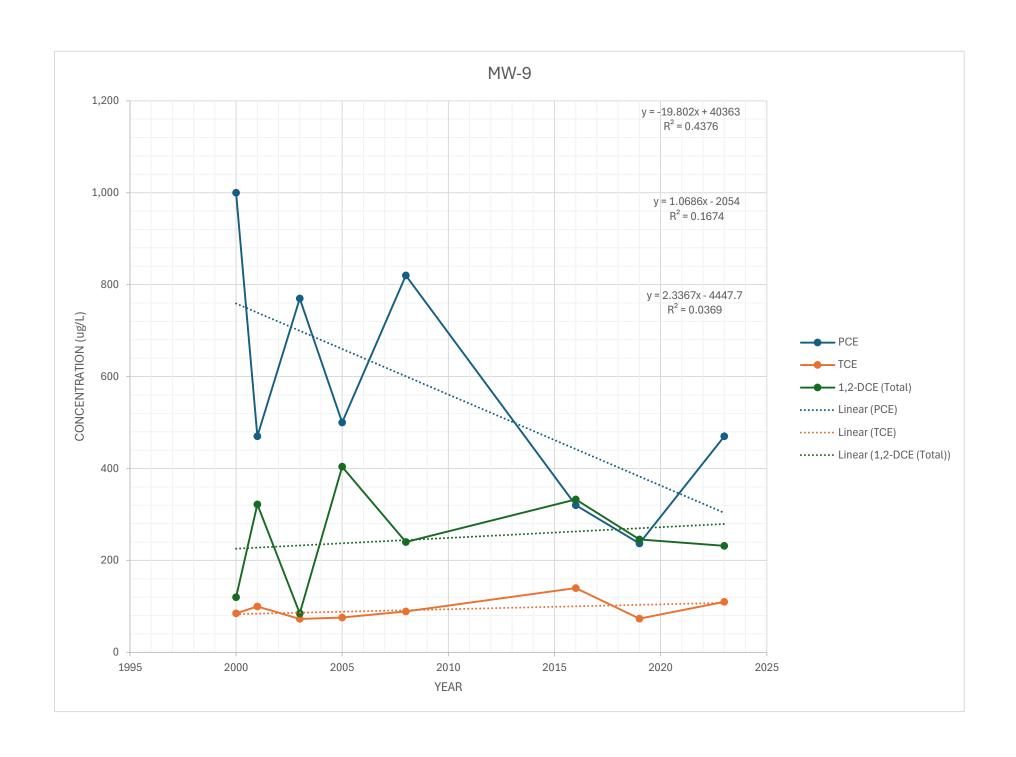

MK = Mann Kendall PCE = Tetrachloroethylene

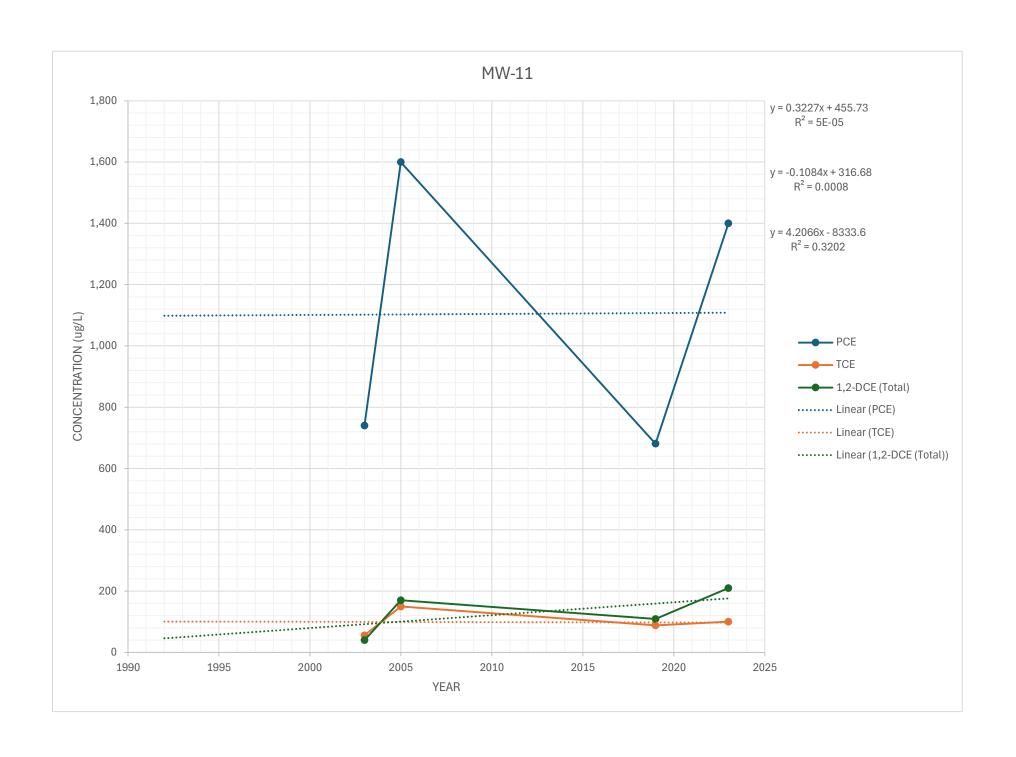

TCE = Trichloroethylene 1,2-DCE = 1,2-Dichloroethylene

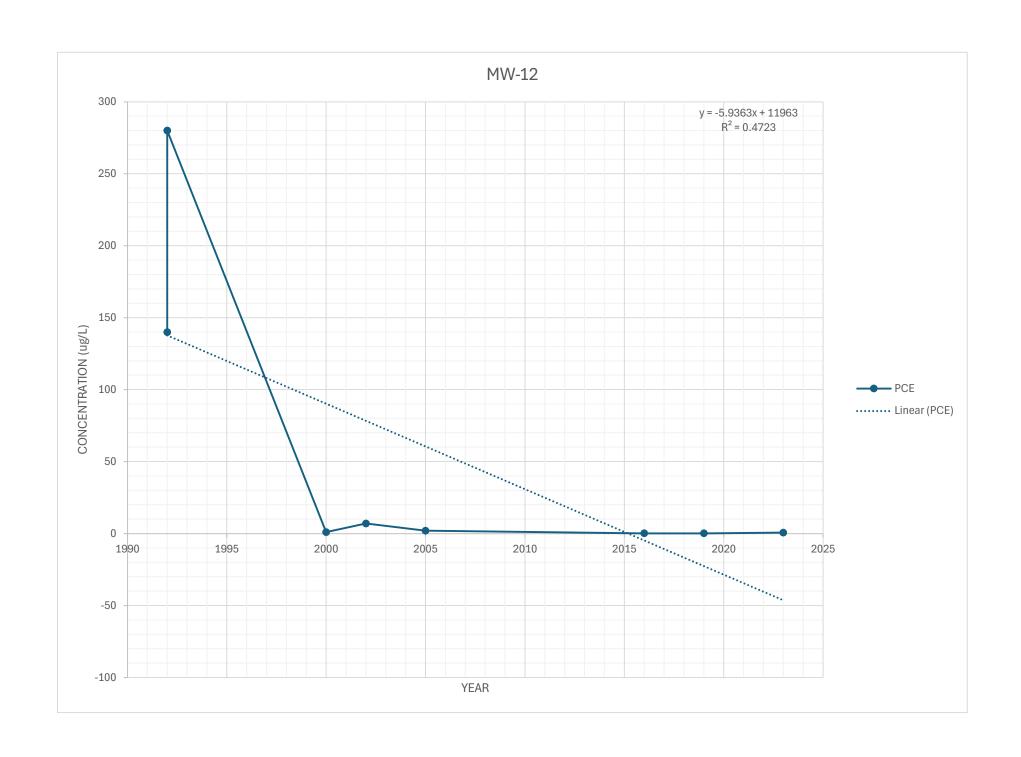

VC = Vinyl Chloride

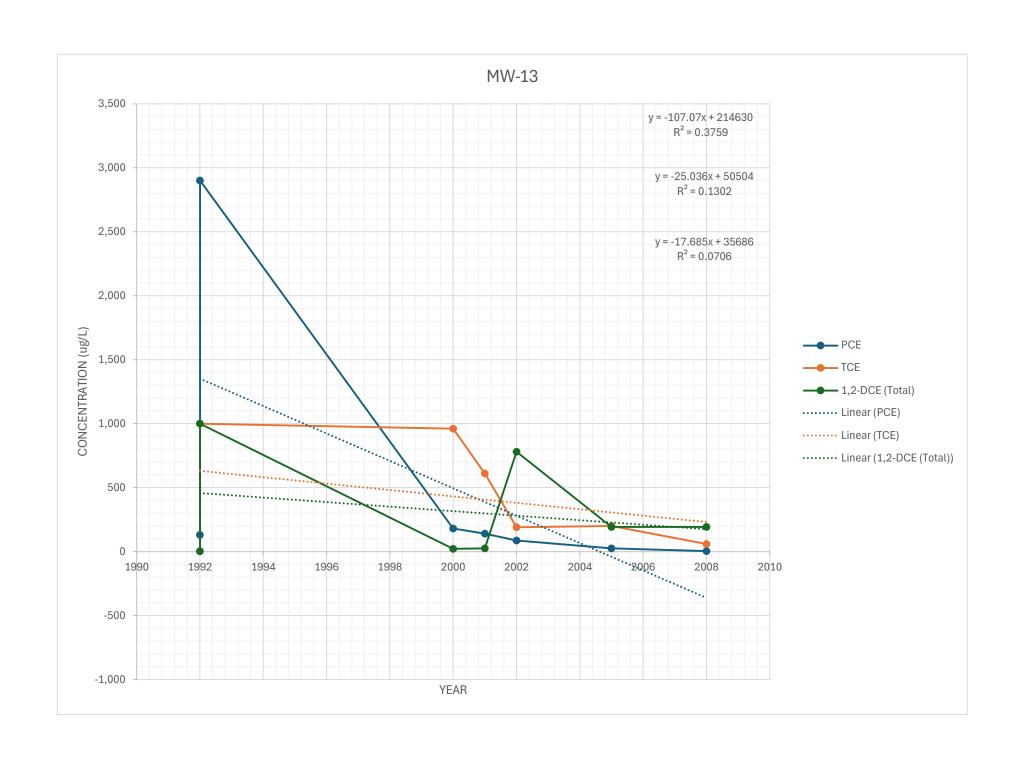

ATTACHMENT 1 LINEAR REGRESSION TREND GRAPHS

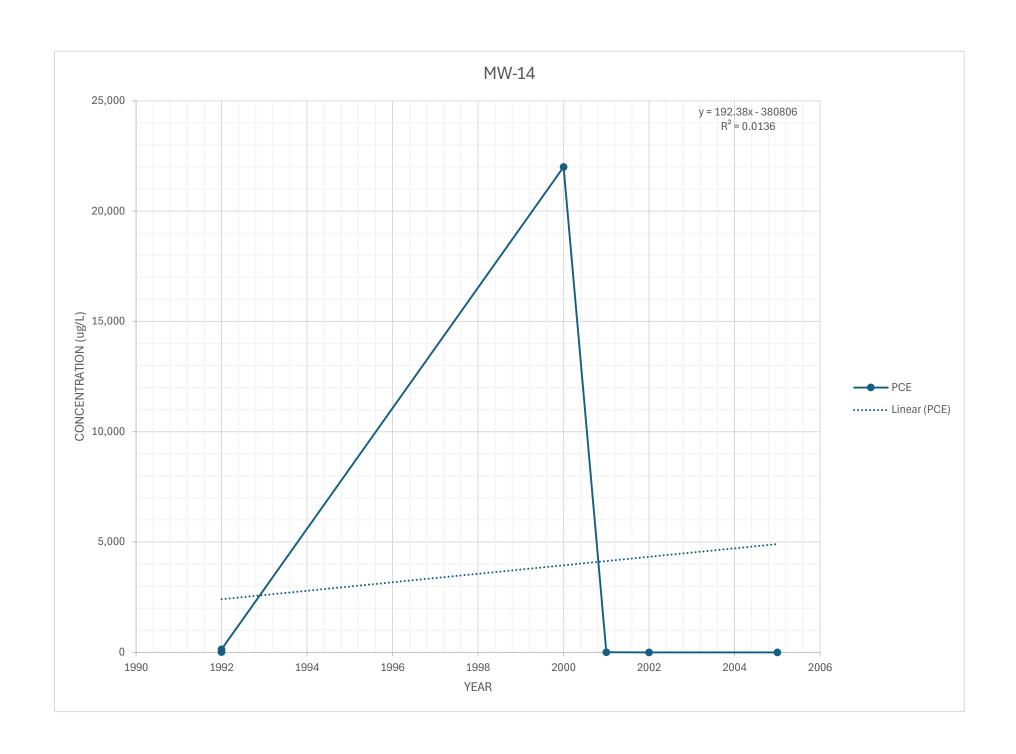


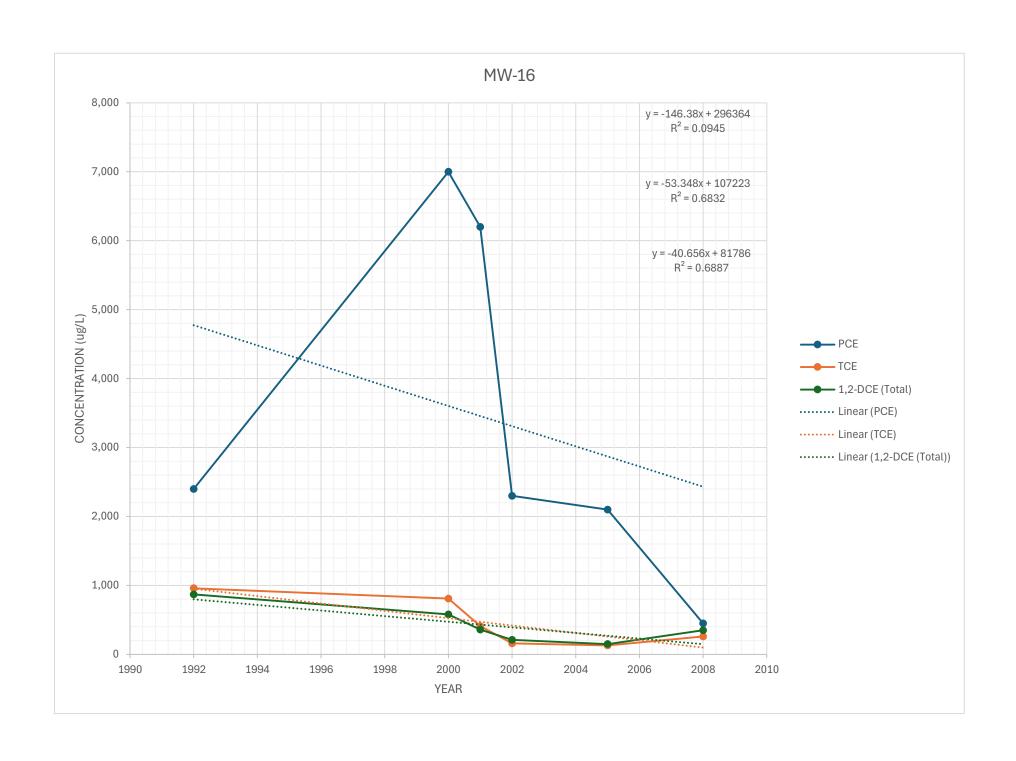


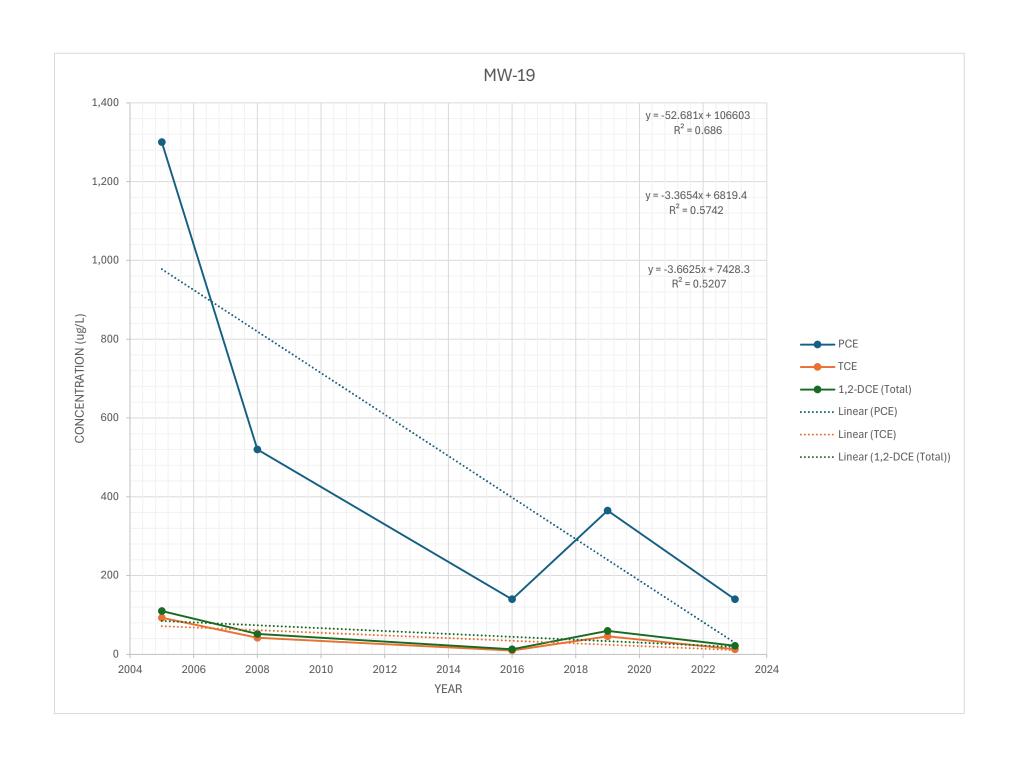


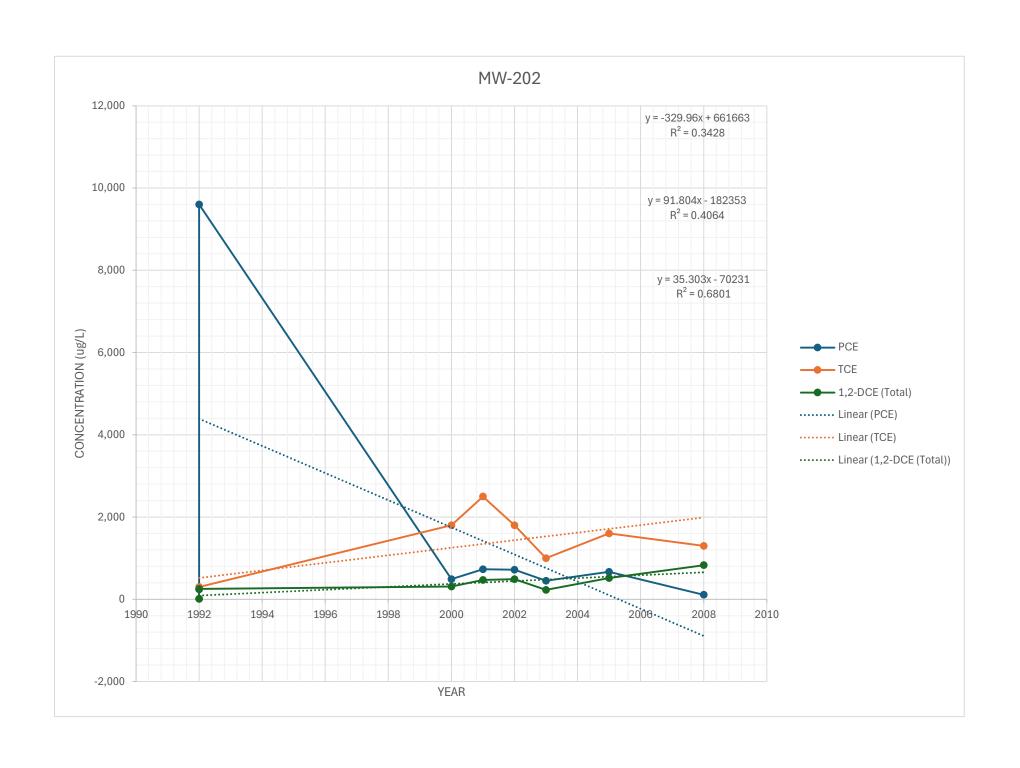


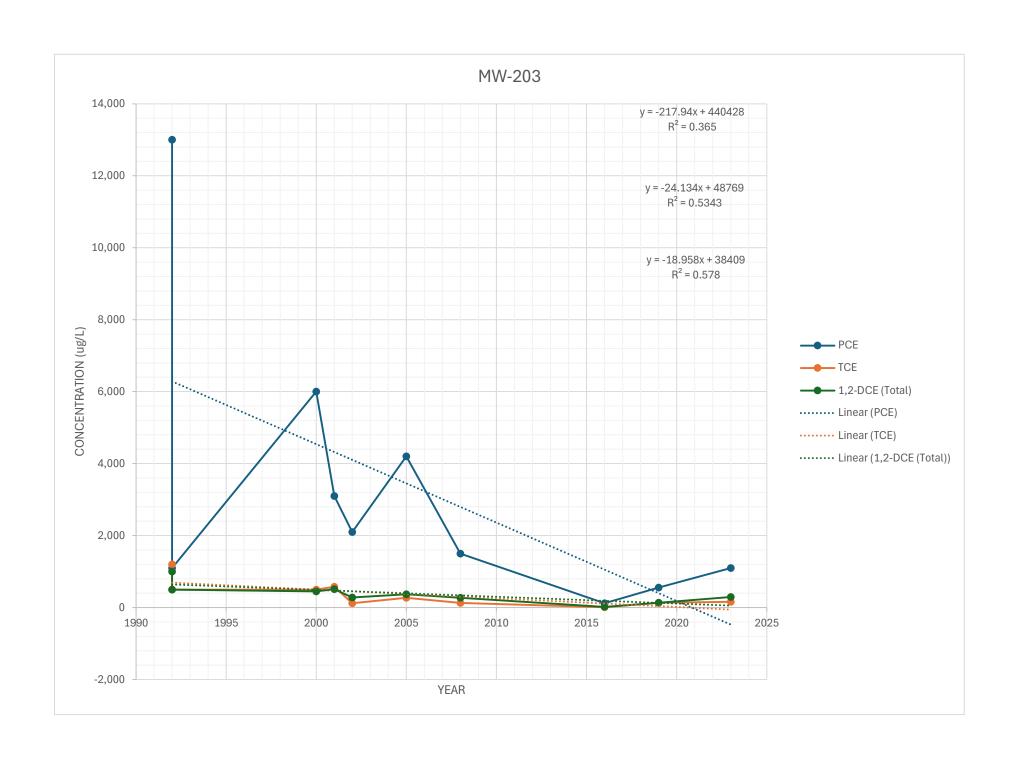


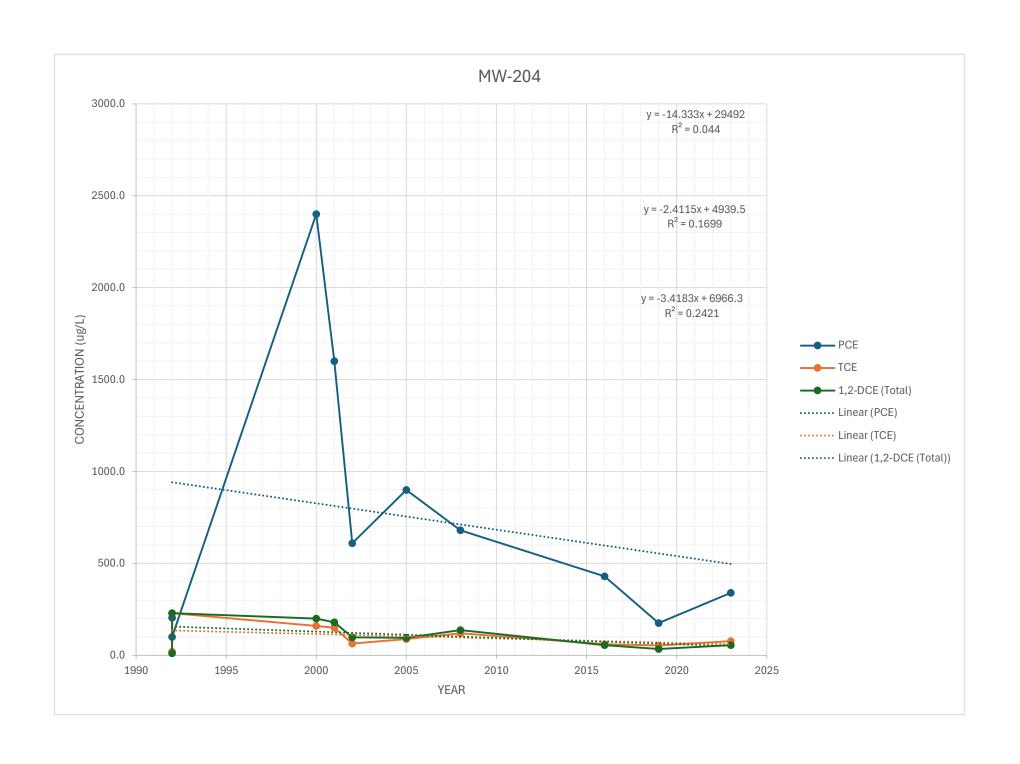


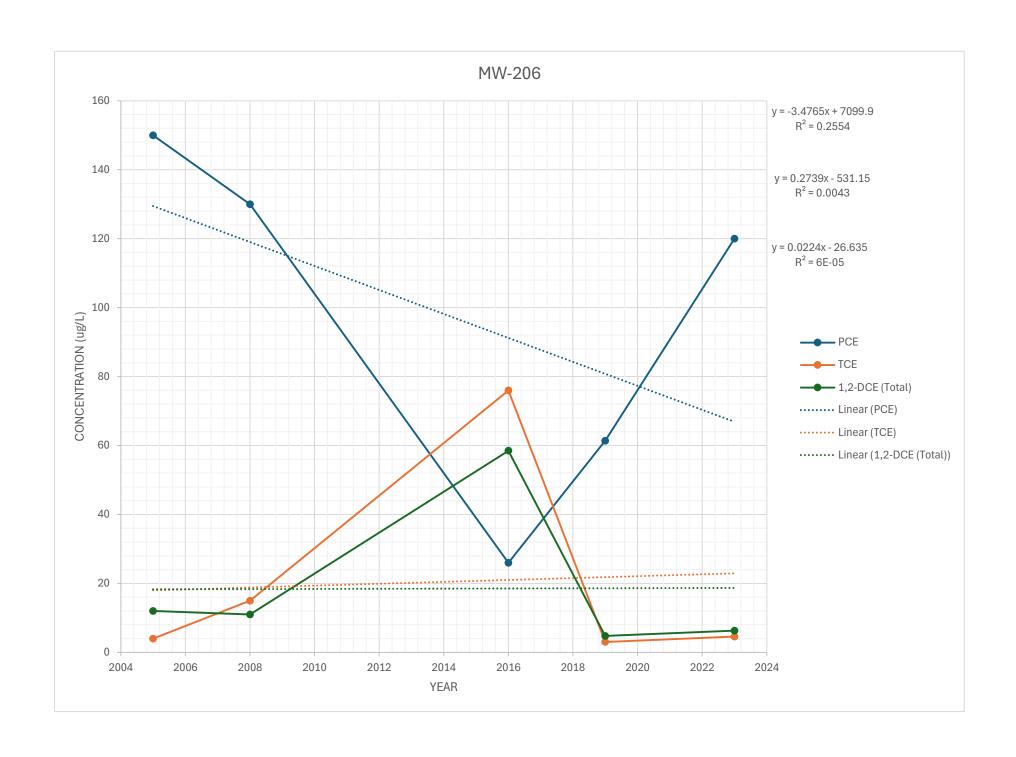


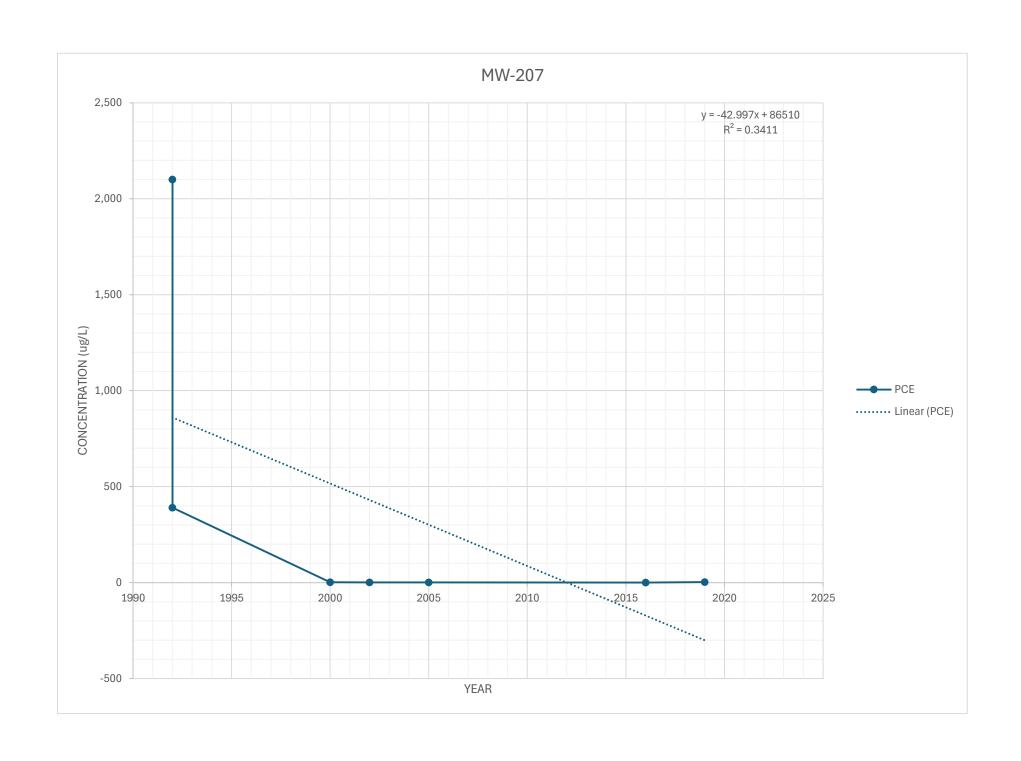


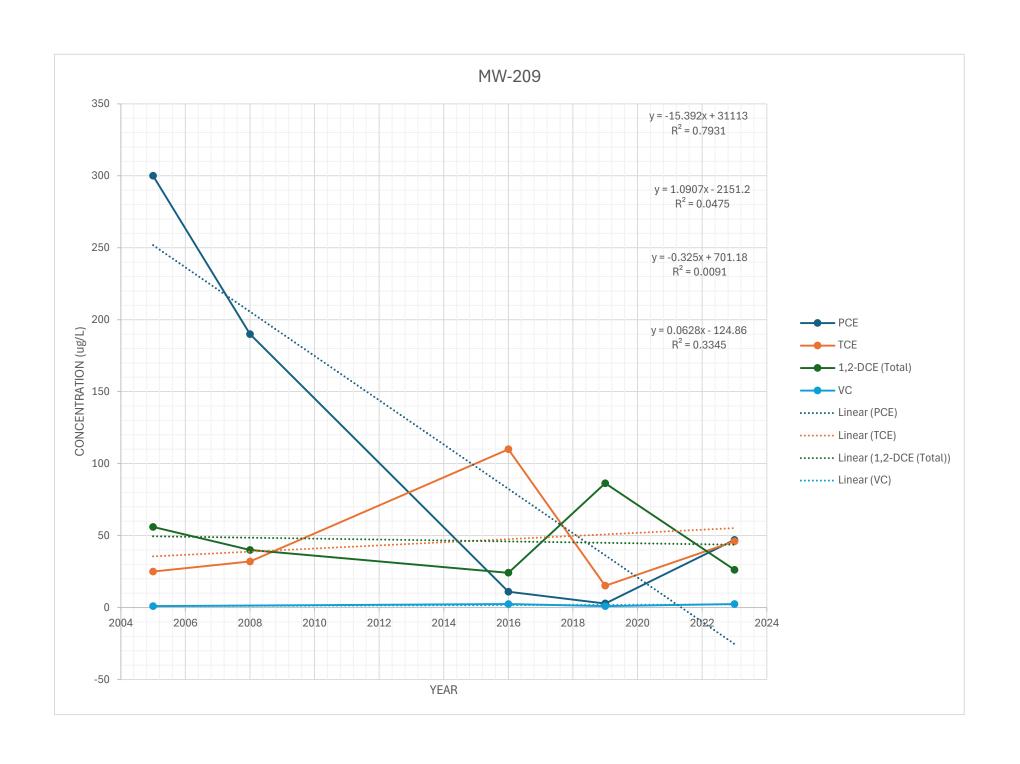


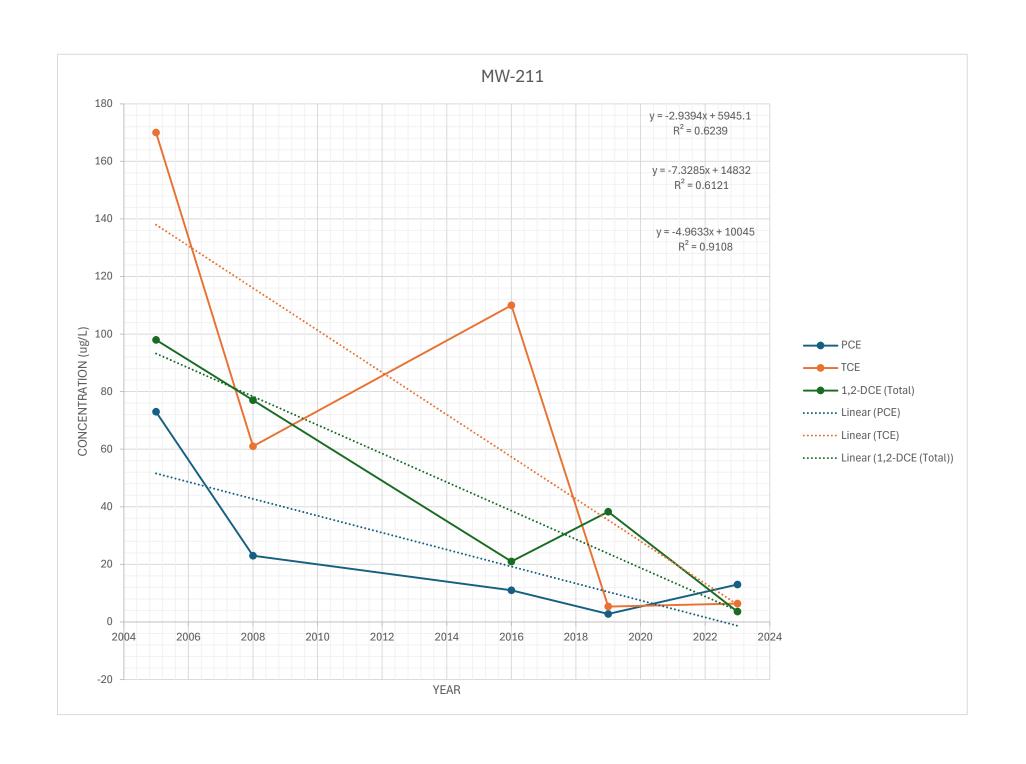


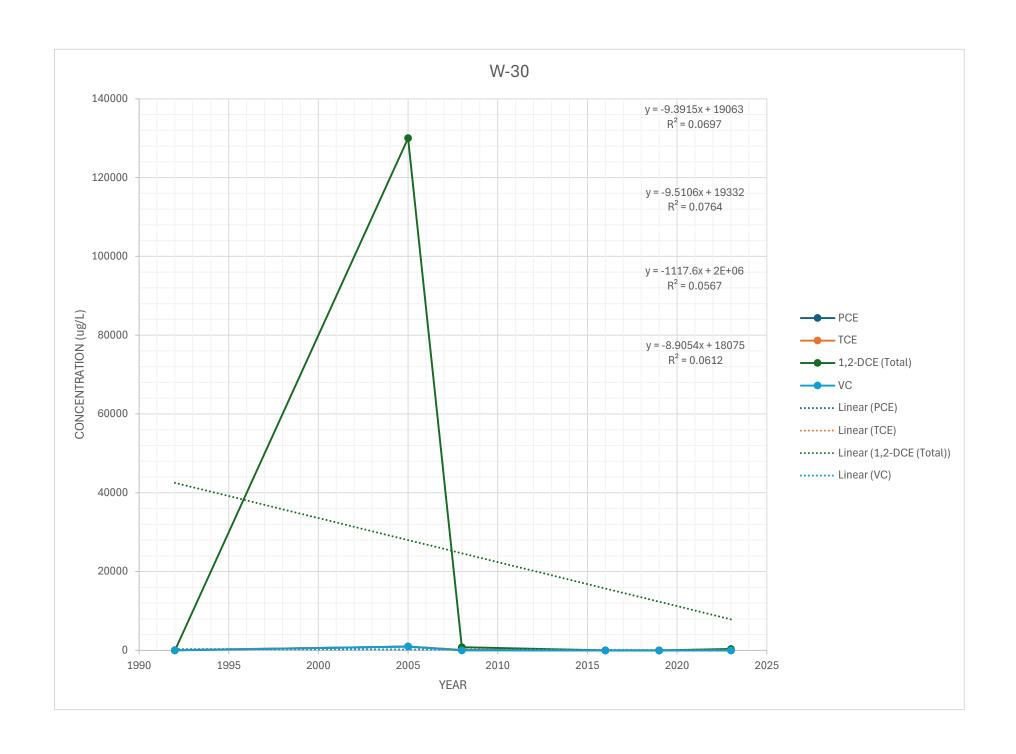


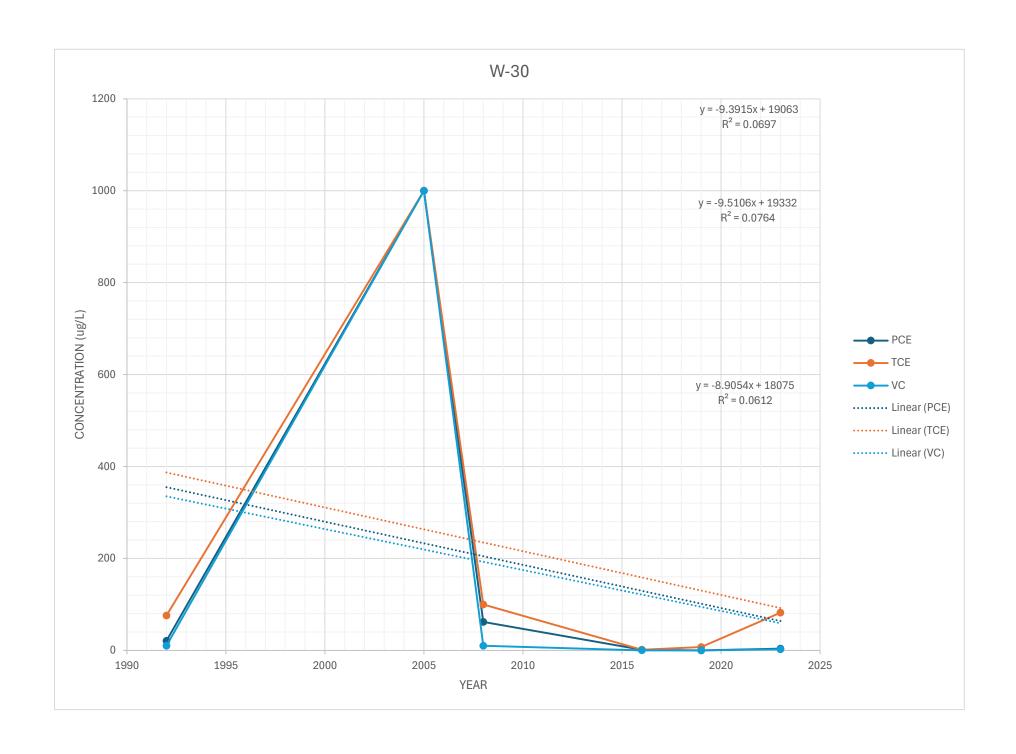


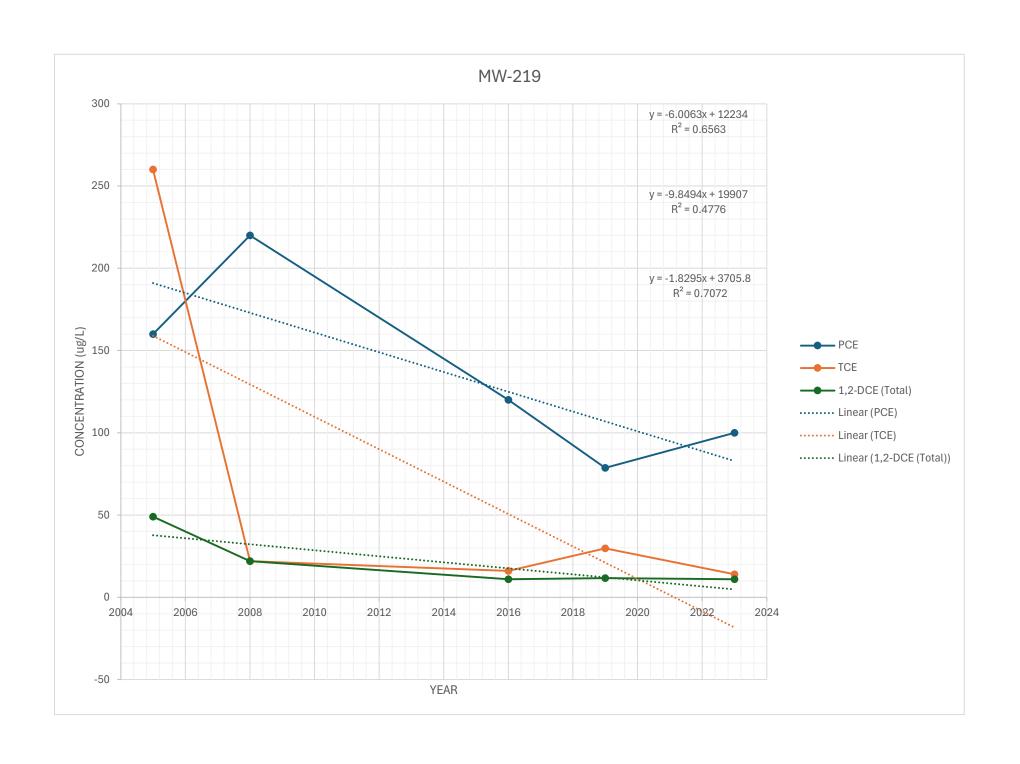


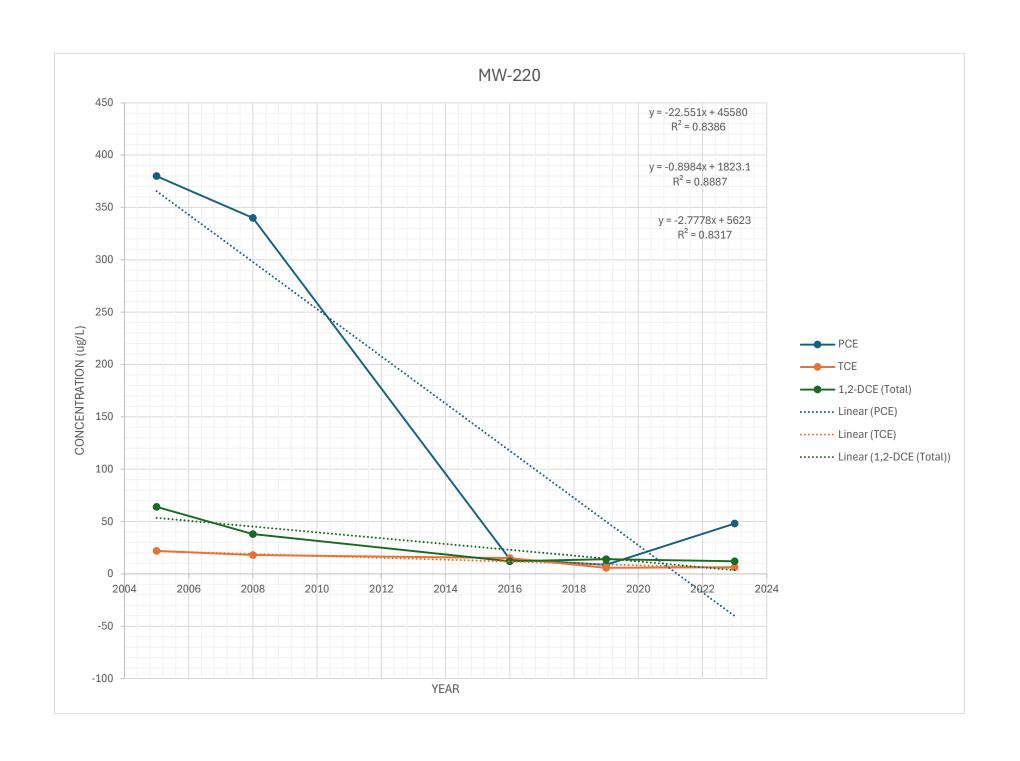












ATTACHMENT 2 GSI MANN-KENDALL TOOLKIT SPREADSHEETS

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 240331 valuation Date: 3-Jul-24 Facility Name: Wallkill Wellfield Constituent: MW-2 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** MW-2 CONCENTRATION (ug/l) 1992 8 2 1992 11 3 2000 10 2001 4 5 2002 1 6 2005 2008 ND 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.91 /lann-Kendall Statistic (S): 89.8% **Confidence Factor: Concentration Trend:** Stable 100 PCE Concentration (ug/I) PCE 10 06/05 06/05 06/05 06/05 07/05 **Sampling Date** Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 240331 valuation Date: 3-Jul-24 Facility Name: Wallkill Wellfield Constituent: MW-3 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-3 CONCENTRATION (ug/l) 1992 8700 1000 880 1992 2 2500 1000 840 3 2000 7300 820 26 422 2001 2900 4 5 2002 4300 310 160 6 2005 190 240 2700 270 353 7 2008 430 8 2016 140 163.4 2019 462 90 145.73 9 10 2023 1300 130 362 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.89 0.86 0.75 /lann-Kendall Statistic (S): -25 -36 -17 98.6% >99.9% 92.2% **Confidence Factor: Concentration Trend:** Decreasing Decreasing rob. Decreasing 10000 PCE Concentration (ug/l) TCE 1.2-DCE 07/05 06/05 06/05 06/05 06/05 07/05 07/05 07/05 **Sampling Date**

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Notes:

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-4 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-4 CONCENTRATION (ug/l) 1992 20000 210 420 1992 330 2 15000 550 3 2000 15000 320 560 2001 10000 120 150 4 5 2002 140 1600 6 2005 110 190 7300 130 7 2008 3200 51 8 2016 110 142 2019 4860 108 152.06 9 10 2023 3800 60 86 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.78 0.73 /lann-Kendall Statistic (S): -28 99.4% -24 -23 98.2% **Confidence Factor: Concentration Trend:** Decreasing Decreasing Decreasing 100000 PCE ∰6n) Concentration (1 TCE 1.2-DCE 07/05 06/05 06/05 06/05 06/05 07/05 07/05 07/05 **Sampling Date**

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Notes:

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

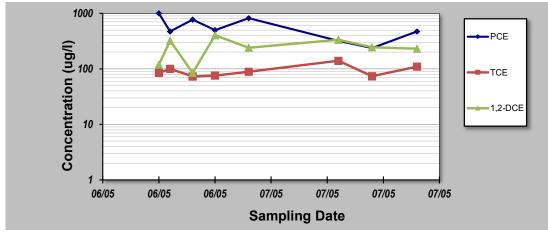
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-5 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-5 CONCENTRATION (ug/l) 1992 41000 210 820 2000 2 13000 220 350 3 2001 28000 300 1100 2003 9800 160 350 4 5 26000 2005 230 820 6 2008 17000 ND 410 672 7 280 2016 26000 8 2019 178.39 2023 16000 280 414.1 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.54 0.29 0.53 /lann-Kendall Statistic (S): -13 89.0% **Confidence Factor:** 59.4% 76.2% **Concentration Trend:** Stable No Trend Stable 100000 PCE ₩6n) TCE 1.2-DCE 06/05 06/05 06/05 06/05 07/05 07/05 07/05 07/05

Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Sampling Date

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.


GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-6 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-6 CONCENTRATION (ug/l) 1992 27 10 1992 2 34 9.4 8.9 3 2000 18 N/A N/A 2001 16 4 5 2003 5 25 1 6 2005 4 4 69 6 5 7 2008 45 8 2016 2019 52.6 8.64 10.2 9 10 2023 39 5.6 3.7 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.50 1.48 /lann-Kendall Statistic (S): 70.0% **Confidence Factor:** 76.2% 72.8% **Concentration Trend:** No Trend Stable No Trend 100 PCE Concentration (ug/I) 10 TCE 1.2-DCE 07/05 06/05 06/05 06/05 06/05 07/05 07/05 07/05 **Sampling Date**

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-7 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** MW-7 CONCENTRATION (ug/l) 1992 10 2 1992 120 3 2000 1 2002 4 5 2005 4 6 2008 ND 2016 8.6 8 2019 2023 12 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 2.06 /lann-Kendall Statistic (S): 50.0% **Confidence Factor: Concentration Trend:** No Trend 1000 PCE Concentration (ug/l) PCE 06/05 06/05 06/05 06/05 07/05 07/05 07/05 07/05 **Sampling Date**

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 240331 valuation Date: 3-Jul-24 Facility Name: Wallkill Wellfield Constituent: MW-9 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-9 CONCENTRATION (ug/l) 2000 1000 85 120 2001 2 470 100 322 3 2003 770 73 85 404 2005 500 76 4 5 2008 89 240 820 6 2016 140 332.8 320 245.78 231.7 7 73.5 2019 237 8 110 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.46 0.25 0.43 /lann-Kendall Statistic (S): -13 92.9% 54.8% **Confidence Factor:** 72.6% Concentration Trend: rob. Decreasir No Trend No Trend 1000 PCE

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-11 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-11 CONCENTRATION (ug/l) 1992 PR PR 2000 PR PR 2 PR 3 2003 740 56 40 150 170 2005 1600 4 5 2008 DRY DRY DRY 6 2016 DRY DRY DRY 108.89 88.4 7 2019 681 8 1400 100 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.42 0.40 0.56 /lann-Kendall Statistic (S): 62.5% 37.5% 83.3% **Confidence Factor: Concentration Trend:** Stable No Trend No Trend 10000 PCE Concentration (ug/l) TCE 1.2-DCE 07/05 06/05 06/05 06/05 06/05 07/05 07/05 07/05 **Sampling Date**

- Notes:
- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-12 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** MW-12 CONCENTRATION (ug/l) 1992 140 2 1992 280 3 2000 1 2002 4 5 2005 2 6 2008 ND 2016 0.2 8 2019 2023 0.7 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 1.92 /lann-Kendall Statistic (S): -17 **Confidence Factor: Concentration Trend: Decreasing** 1000 PCE Concentration (ug/I) PCE 10 06/05 06/05 06/05 06/05 07/05 07/05 07/05 07/05 **Sampling Date** Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

 Valuation Date:
 3-Jul-24
 Job ID:
 240331

 Facility Name:
 Wallkill Wellfield
 Constituent:
 MW-13

 Conducted By:
 ZDW
 Concentration Units:
 ug/I

Samplii	ng Point ID:	PCE	TCE	1,2-DCE			
Sampling Event	Sampling Date			MW-13 C	ONCENTRAT	ION (ug/l)	
1	1992	130	2.5	2.5			
2	1992	2900	1000	1000			
3	2000	180	960	22			
4	2001	140	610	25			
5	2002	87	190	780			
6	2005	25	200	193			
7	2008	4	59	193			
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
Coefficient of			0.98	1.28			
/lann-Kendall S			-7	6			
Confide	nce Factor:	98.5%	80.9%	76.4%			
Concentra	tion Trend:	Decreasing	Stable	No Trend			

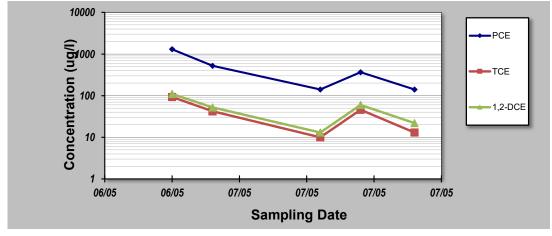
Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-14 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** MW-14 CONCENTRATION (ug/l) 1992 12 2 1992 140 3 2000 22000 2001 4 6 5 2002 6 2005 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 2.43 /lann-Kendall Statistic (S): 89.8% **Confidence Factor: Concentration Trend:** No Trend 100000 PCE (mag/m) Concentration (1 PCE 06/05 06/05 06/05 06/05 06/05 06/05 06/05 06/05 06/05 **Sampling Date** Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-16 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-16 CONCENTRATION (ug/l) 1992 2400 960 870 2 2000 7000 810 580 3 2001 6200 410 360 2002 2300 160 210 4 5 2005 2100 150 130 6 2008 450 350 260 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.77 0.63 /lann-Kendall Statistic (S): -11 <u>-11</u> -11 97.2% 97.2% **Confidence Factor:** 97.2% **Concentration Trend: Decreasing** Decreasing Decreasing 10000 PCE Concentration (ug/l) TCE 1.2-DCE 06/05 06/05 06/05 06/05 07/05 **Sampling Date**

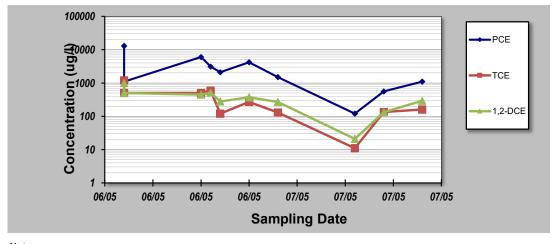

- Notes:

 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-19 Conducted By: ZDW Concentration Units: ug/I

Samplin	g Point ID:	PCE	TCE	1,2-DCE			
Sampling Event	Sampling Date			MW-19 (CONCENTRAT	ION (ug/l)	
1	2005	1300	93	110			
2	2008	520	42	52			
3	2016	140	10	13			
4	2019	365	45.9	59.74			
5	2023	140	13	22			
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
Coefficient of			0.82	0.74			
/lann-Kendall S			-4	-4			
Confider	nce Factor:	92.1%	75.8%	75.8%			
Concentrat	ion Trend:	rob. Decreasir	Stable	Stable			


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-202 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-202 CONCENTRATION (ug/l) 1992 240 16 2 1992 9600 300 250 3 2000 490 1800 312 2001 730 2500 469 4 5 2002 488 720 1800 6 2003 450 1000 230 1600 7 670 517 2005 8 110 1300 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.64 0.63 /lann-Kendall Statistic (S): 20 99.3% 80.1% 68.3% **Confidence Factor: Concentration Trend:** No Trend No Trend Increasing 10000 PCE Concentration (ug/l) TCE 1.2-DCE 06/05 06/05 06/05 06/05 07/05 **Sampling Date** Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-203 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-203 CONCENTRATION (ug/l) 132.55 291.7 Coefficient of Variation: 0.98 0.70

GSI MANN-KENDALL TOOLKIT

-29 99.5%

Decreasing

97.1%

Decreasing

Notes:

/lann-Kendall Statistic (S):

Confidence Factor: Concentration Trend: -24 98.2%

Decreasing

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

 Valuation Date:
 3-Jul-24
 Job ID:
 240331

 Facility Name:
 Wallkill Wellfield
 Constituent:
 MW-204

 Conducted By:
 ZDW
 Concentration Units:
 ug/I

	Sampling	g Point ID:	PCE	TCE	1,2-DCE			
	Sampling Event	Sampling Date			MW-204 C	ONCENTRAT	ION (ug/l)	
l	1	1992	204.4	20	11.6			
l	2	1992	100	230	230			
l	3	2000	2400	160	200			
l	4	2001	1600	150	180			
l	5	2002	610	64	98			
l	6	2005	900	89	96			
l	7	2008	680	120	137			
l	8	2016	430	61	55.2			
l	9	2019	176	54.1	34.34			
l	10	2023	340	77	56			
l	11							
l	12							
l	13							
l	14							
l	15							
l	16							
l	17							
l	18							
l	19							
l	20							
	Coefficient of		0.98	0.61	0.68			
Иa	nn-Kendall St			-15	-19			
	Confiden	ce Factor:	75.8%	89.2%	94.6%			
	Concentrat	ion Trend:	Stable	Stable	rob. Decreasir			

Concentration Trend: Stable Stable rob. Decreasir

Notes

06/05

06/05

06/05

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

07/05

Sampling Date

07/05

07/05

07/05

06/05

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-206 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-206 CONCENTRATION (ug/l) 2005 150 2 2008 130 15 11 3 2016 26 76 58.5 3.05 4.78 2019 61.4 4 5 120 4.6 6.3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.53 1.53 1.22 /lann-Kendall Statistic (S): 75.8% 40.8% 75.8% **Confidence Factor: Concentration Trend:** Stable No Trend No Trend 1000 PCE Concentration (ug/l) TCE 1.2-DCE 07/05 07/05 06/05 06/05 07/05 07/05

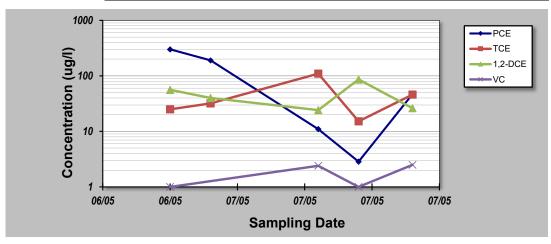
Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Sampling Date

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

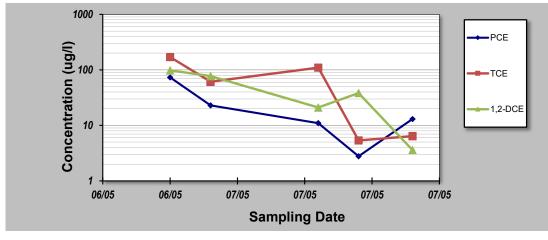
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-207 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** MW-207 CONCENTRATION (ug/l) 1992 2100 2 1992 390 3 2000 2 2002 4 5 2005 1 6 2008 ND 2016 0.34 8 2019 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 2.19 /lann-Kendall Statistic (S): -12 94.9% **Confidence Factor:** Concentration Trend: rob. Decreasir 10000 PCE Concentration (ug/l) PCE 07/05 06/05 06/05 06/05 06/05 07/05 07/05 07/05 **Sampling Date** Notes:


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

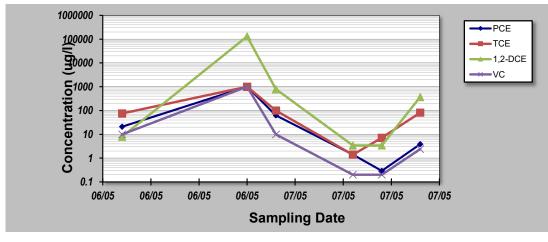
valuation	Date: 3-Jul-24	Job ID:	240331
Facility N	lame: Wallkill Wellfield	Constituent:	MW-209
Conducte	d By: ZDW	Concentration Units:	ug/l


Samplin	g Point ID:	PCE	TCE	1,2-DCE	VC					
Sampling Event	Sampling Date		MW-209 CONCENTRATION (ug/l)							
1	2005	300	25	56	1					
2	2008	190	32	40	ND					
3	2016	11	110	24.22	2.4					
4	2019	2.85	15.2	86.4	1					
5	2023	47	46	26.27	2.5					
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficient of	Variation:	1.18	0.83	0.55	0.49					
/lann-Kendall St	tatistic (S):	-6	2	-2	3					
Confiden	ce Factor:	88.3%	59.2%	59.2%	72.9%					
Concentrat	ion Trend:	No Trend	No Trend	Stable	No Trend					

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-211 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-211 CONCENTRATION (ug/l) 2005 73 170 2 2008 77 23 61 3 2016 11 110 21 38.3 2019 2.78 5.37 4 5 6.4 3.6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 1.14 1.00 0.82 /lann-Kendall Statistic (S): -6 88.3% 88.3% 95.8% **Confidence Factor: Concentration Trend:** No Trend Stable Decreasing



- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Facility Name: Wallkill Wellfield Constituent: W-30
Conducted By: ZDW Concentration Units: ug/l

Sampl	ing Point ID:	PCE	ICE	1,2-DCE	VC		
Sampling Event	g Sampling Date			W-30 C	ONCENTRATIO	ON (ug/l)	
1	1992	21	76	8	10		
2	2005	1000	1000	130000	1000		
3	2008	62	100	790	10		
4	2016	1.4	1.4	3.4	0.2		
5	2019	0.29	7.09	3.44	0.2		
6	2023	3.9	82	368.8	2.4		
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
	of Variation:	2.21	1.84	2.42	2.38		
/lann-Kendall			-3	-3	-7		
Confid	ence Factor:	86.4%	64.0%	64.0%	86.4%		
Concenti	ration Trend:	No Trend	No Trend	No Trend	No Trend		

Notes

Sampling Point ID:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-219 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-219 CONCENTRATION (ug/l) 2005 160 260 2 2008 22 220 22 3 2016 120 16 11 2019 29.7 11.6 4 78.7 5 100 14 11 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.41 1.57 0.78 /lann-Kendall Statistic (S): -6 88.3% 92.1% **Confidence Factor:** 88.3% **Concentration Trend:** Stable No Trend rob. Decreasir 1000 PCE Concentration (ug/l) TCE 1.2-DCE

Notes

06/05

06/05

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

07/05

Sampling Date

07/05

07/05

07/05

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis valuation Date: 3-Jul-24 Job ID: 240331 Facility Name: Wallkill Wellfield Constituent: MW-220 Concentration Units: ug/l Conducted By: ZDW Sampling Point ID: **PCE** TCE 1,2-DCE MW-220 CONCENTRATION (ug/l) 2005 380 22 2 2008 38 340 18 3 2016 14 15 12 2019 8.73 5.79 14 4 5 12 48 6.3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.53 0.82 /lann-Kendall Statistic (S): 88.3% 95.8% **Confidence Factor:** 92.1% **Concentration Trend:** No Trend Decreasing rob. Decreasing 1000 PCE Concentration (ug/l) TCE 1.2-DCE 07/05 07/05 06/05 06/05 07/05 07/05 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Incr ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90%</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. N *Ground Water*, 41(3):355-367, 2003.

ATTACHMENT 3 MAROS SPATIAL MOMENT ANALYSIS SUMMARY

Overburden Aquifer

Well ID	1992	1992	2000	2001	2002/2003	2005	2006	2008	2016	2019	2023
MW-1	Х	Х	Х	_	X	Х	Х	X			Х
MW-2	X	Χ	X	Х	X	X		X			
MW-3	X	X	X	X	Х	X		X	X	X	X
MW-4	X	X	X	X	Х	X		X	Χ	X	X
MW-5	X		X	X	Х	X		X	Χ	X	X
MW-6	X	X	X	X	Х	X		X	Χ	X	X
MW-7	X	X	X		Х	X		X	Χ	X	X
MW-8			X		X	X		X			
MW-9			X	X	Х	X		X	X	X	X
MW-10	X	X	X		X	X		X			
MW-11					X	X				X	X
MW-12	X	X	X		X	X		X	Χ	X	X
MW-13	X	X	X	X	X	X		X			
MW-14	X	X	X	X	X	X					
MW-15	X	X									
MW-16	X		X	X	X	X		X			
MW-17	X	X									
MW-19						X		X	X	X	X

X = groundwater data available

= MAROS analysis performed

MAROS Spatial Moment Analysis Summary

Project: Wallkill User Name: ZDW

Location: Middletown State: New York

	0th Moment	1st Mom	1st Moment (Center of		2nd Mom		
Effective Date	Estimated Mass (Kg)	Xc (ft)	Yc (ft)	Source Distance	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells
TETRACHLOROETHYLEI	NE(PCE)						
4/29/2005	9.1E+00	517,580	958,701	362	2,783	9,796	8
4/30/2008	3.8E+00	517,588	958,672	392	2,562	12,845	8
3/23/2016	1.9E+00	517,540	958,655	401	3,337	11,068	8
5/14/2019	3.4E+00	517,589	958,678	387	2,806	10,916	8
4/18/2023	5.4E+00	517,574	958,696	366	2,998	9,294	8
TOTAL 1,2-DICHLOROE	THENE						
4/29/2005	8.5E-01	517,552	958,632	425	4,140	16,142	8
4/30/2008	4.8E-01	517,579	958,659	403	3,841	15,298	8
3/23/2016	4.2E-01	517,554	958,672	386	3,611	13,791	8
5/14/2019	4.5E-01	517,585	958,624	439	4,025	15,238	8
4/18/2023	4.9E-01	517,561	958,657	402	4,299	15,070	8
TRICHLOROETHYLENE ((TCE)						
4/29/2005	3.6E-01	517,564	958,668	391	5,230	16,990	8
4/30/2008	2.0E-01	517,585	958,602	461	6,108	13,678	8
3/23/2016	3.0E-01	517,563	958,674	385	4,307	14,002	8
5/14/2019	2.9E-01	517,583	958,642	421	4,691	15,933	8
4/18/2023	3.2E-01	517,561	958,663	396	5,182	15,806	8

MAROS Version 3.0 Friday, July 12, 2024
Release 352, September 2012 Page 1 of 2

MAROS Spatial Moment Analysis Summary

Project: Wallkill User Name: ZDW

Location: Middletown State: New York

Spatial Moment Analysis Summary:

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
0th Moment	TETRACHLOROETHYLENE(PC	0.58	-2	59.2%	S
0th Moment	TOTAL 1,2-DICHLOROETHEN	0.32	-2	59.2%	S
0th Moment	TRICHLOROETHYLENE (TCE)	0.20	0	40.8%	S
First Moment	TETRACHLOROETHYLENE(PC	0.04	0	40.8%	S
First Moment	TOTAL 1,2-DICHLOROETHEN	0.05	-2	59.2%	S
First Moment	TRICHLOROETHYLENE (TCE)	0.08	0	40.8%	S
Second Moment X	TETRACHLOROETHYLENE(PC	0.10	4	75.8%	NT
Second Moment X	TOTAL 1,2-DICHLOROETHEN	0.07	2	59.2%	NT
Second Moment X	TRICHLOROETHYLENE (TCE)	0.13	-2	59.2%	S
Second Moment Y	TETRACHLOROETHYLENE(PC	0.13	-4	75.8%	S
Second Moment Y	TOTAL 1,2-DICHLOROETHEN	0.06	-6	88.3%	S
Second Moment Y	TRICHLOROETHYLENE (TCE)	0.09	0	40.8%	S

Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.25 Saturated Thickness: Uniform: 10 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); (ND) Non Detect.

Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

MAROS Version 3.0 Friday, July 12, 2024 Page 2 of 2 Release 352, September 2012

Bedrock Aquifer

Well ID	1992	1992	2000	2001	2002/2003	2005	2008	2016	2019	2023
MW-202	Х	Х	Х	Х	X	Х	Х			
MW-203	X	Χ	X	Х	X	X	Χ	X	X	X
MW-204	X	Χ	X	Х	X	X	X	X	X	X
MW-206						X	X	X	X	X
MW-207	X	Χ	Χ		X	Χ	Χ	Χ	X	
MW-209						X	X	X	X	X
MW-211						X	Χ	Χ	X	X
W-30	X					X	Χ	Χ	X	X
MW-219						X	X	X	X	X
MW-220						Х	X	X	X	Χ

X = groundwater data available =MAROS analysis performed

MAROS Spatial Moment Analysis Summary

Project: Wallkill User Name: ZDW

Location: Middletown State: New York

	0th Moment	1st Mom	1st Moment (Center of Mass)		2nd Mom		
Effective Date	Estimated Mass (Kg)	Xc (ft)	Yc (ft)	Source Distance	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells
TETRACHLOROETHYLEI	NE(PCE)						
4/29/2005	8.2E+00	517,626	958,657	417	5,614	12,391	8
4/30/2008	1.0E+01	517,554	958,660	398	8,533	14,528	8
3/23/2016	1.2E+00	517,585	958,633	430	8,444	13,491	8
5/14/2019	9.1E-01	517,624	958,663	411	6,180	13,103	8
4/18/2023	3.4E+00	517,597	958,654	412	8,062	14,005	8
TOTAL 1,2-DICHLOROE	THENE						
4/29/2005	3.1E+01	517,486	958,696	359	1,741	18,080	8
4/30/2008	5.3E+00	517,507	958,695	359	4,826	16,119	8
3/23/2016	9.5E-01	517,585	958,632	431	8,554	13,513	8
5/14/2019	9.5E-01	517,553	958,654	403	9,062	16,109	8
4/18/2023	2.5E+00	517,502	958,680	374	4,575	15,729	8
TRICHLOROETHYLENE	(TCE)						
4/29/2005	9.8E-01	517,582	958,659	403	9,935	18,332	8
4/30/2008	2.5E+00	517,526	958,673	382	7,241	15,847	8
3/23/2016	1.4E+00	517,597	958,608	457	7,873	12,792	8
5/14/2019	7.2E-01	517,531	958,650	405	7,897	16,170	8
4/18/2023	1.8E+00	517,508	958,652	402	5,666	14,637	8

MAROS Version 3.0 Friday, July 12, 2024
Release 352, September 2012 Page 1 of 2

MAROS Spatial Moment Analysis Summary

Project: Wallkill User Name: ZDW

Location: Middletown State: New York

Spatial Moment Analysis Summary:

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
0th Moment	TETRACHLOROETHYLENE(PC	0.89	-4	75.8%	S
0th Moment	TOTAL 1,2-DICHLOROETHEN	1.59	-6	88.3%	NT
0th Moment	TRICHLOROETHYLENE (TCE)	0.47	0	40.8%	S
First Moment	TETRACHLOROETHYLENE(PC	0.03	0	40.8%	S
First Moment	TOTAL 1,2-DICHLOROETHEN	0.08	4	75.8%	NT
First Moment	TRICHLOROETHYLENE (TCE)	0.07	0	40.8%	S
Second Moment X	TETRACHLOROETHYLENE(PC	0.19	0	40.8%	S
Second Moment X	TOTAL 1,2-DICHLOROETHEN	0.53	4	75.8%	NT
Second Moment X	TRICHLOROETHYLENE (TCE)	0.20	-4	75.8%	S
Second Moment Y	TETRACHLOROETHYLENE(PC	0.06	2	59.2%	NT
Second Moment Y	TOTAL 1,2-DICHLOROETHEN	0.10	-6	88.3%	S
Second Moment Y	TRICHLOROETHYLENE (TCE)	0.13	-4	75.8%	S

Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.10 Saturated Thickness: Uniform: 86 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); (ND) Non Detect.

Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

MAROS Version 3.0 Friday, July 12, 2024 Page 2 of 2