

PERIODIC REVIEW REPORT APRIL 2015 – JANUARY 2020

MAYER LANDFILL SITE TOWN OF BLOOMING GROVE, NEW YORK 10914

NYSDEC Site No. 336027 Work Assignment No. D007620-45

Prepared for:

NEW YORK STATE OF OPPORTUNITY. Lenvironmental Conservation

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Prepared by:

TRC Engineers, Inc. 10 Maxwell Drive Clifton Park, New York 12065

APRIL 2020

TRC Project No. 320919

TABLE OF CONTENTS

Executive Summary 1.0 Introduction	iv 1 1
1.0 Introduction	1 1
	1 1
1.1 Site Location, Ownership, and Description	1
1.2 Investigation/Remedial History	
1.3 Remaining Contamination	2
1.4 Regulatory Requirements/Cleanup Goals	3
2.0 Institutional and Engineering Control Plan Compliance	4
2.1 Institutional Controls	4
2.2 Engineering Controls	4
3.0 Monitoring and Sampling Plan Compliance	5
3.1 Site Inspection	5
3.2 Groundwater Monitoring Summary	7
3.2.1 Groundwater Gauging	7
3.2.2 Groundwater Sampling	7
3.2.3 Groundwater Analytical Results	
4.0 Cost Summary	10
5.0 Conclusions and Recommendations	11
5.1 Conclusions	11
5.2 Recommendations	12
6.0 Certification of Engineering and Institutional Controls	13
7.0 Future Site Activities	14

TABLE OF CONTENTS (CONT.)

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Layout Map

Figure 3 - Overburden Groundwater Surface Elevations and Flow Map - May 14, 2019

Figure 4 - Bedrock Groundwater Surface Elevations and Flow Map - May 14, 2019

Figure 5 – Summary of Detected Compounds Exceeding NYSDEC Groundwater Quality Standards/Guidance – May 15-17, 2019

LIST OF TABLES

Table 1 – Summary of Depth to Water Measurements and Groundwater Elevations

Table 2 - Summary of VOC Results in Groundwater Samples - May 2019

Table 3 - Summary of SVOC Results in Groundwater Samples - May 2019

Table 4 - Summary of Pesticide Results in Groundwater Samples - May 2019

Table 5 - Summary of PCB Results in Groundwater Samples - May 2019

Table 6 – Summary of Metals Results in Groundwater Samples - May 2019

Table 7 - Summary of Emerging Contaminant Results in Groundwater Samples - May 2019

LIST OF APPENDICES

Appendix A - Site History and Custodial Record

Appendix B – Site Inspection Form and Photographic Log – May 2019

Appendix C – Groundwater Sampling Logs – May 2019

Appendix D - Data Usability Summary Reports - Groundwater, May 2019

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	above mean sea level
COCs	Contaminants of Concern
cu vds	cubic vards
DER	Department of Environmental Remediation
DTW	Depth to Water
DUSRs	Data Usability Summary Reports
ECs	Engineering Controls
EDD	Electronic Data Deliverable
EE	Environmental Easement
EPA	Environmental Protection Agency
ESD	Explanation of Significant Differences
FS	Feasibility Study
ft. bgs	feet below ground surface
ICs	Institutional Controls
IHWDS	Inactive Hazardous Waste Disposal Site
LNAPL	Light Non-Aqueous Phase Liquid
ND	Not detected
ng/L	nanograms per liter
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OCDOH	Orange County Department of Health
PCBs	Polychlorinated Biphenyls
PFAS	Per- and Polyfluoroalkyl Substances
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PRR	Periodic Review Report
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RA	Remedial Action
RI	Remedial Investigation
ROD	Record of Decision
SCG	Standard, Criteria, and Guidance
SCOs	Soil Cleanup Objectives
SIM	Selective Ion Monitoring
SMP	Site Management Plan
SMR	Site Management Report
SVOCs	Semi-volatile Organic Compounds
TAL	Target Analyte List
TCL	Target Compound List
TOGS	NYSDEC Division of Water Technical and Operational Guidance Series
TRC	TRC Engineers, Inc.
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds
WA	Work Assignment
μg/L	micrograms per liter

NEW YORK STATE OF OPPORTUNITY. Environmental Conservation

Executive Summary

Category	Summary/Results		
Engineering Controls	 Cover System Site access restriction via gated access roads Monitoring Wells 		
Institutional Controls	 EE Groundwater Use Restriction Soil Management Plan Land-Use Restriction 	 Limited soil cover Site-Use and Site-Development Restriction SMP Excavation Control Plan 	
Site Classification	Class 4 IHWDS		
Site Management Plan	SMP Rev. No. 1 – October 2010 SMP Rev. No. 2 – April 2015		
Certification/Reporting Period	The April 2015 SMP states that the property owners will periodically certify that Site use is compliant with the ICs at the discretion of NYSDEC. A Certification Period is not specified. The most recent PRR was completed for the period January 2012 to April 2015. The report was certified by the property owners in May 2015. SMRs are not required. The SMP requires certified reporting following a groundwater sampling event.		
Inspection	Frequency		
Site Inspection	As determined by NYSDEC.		
Monitoring	Frequency		
Monitoring Groundwater	FrequencyAs determined by NYSDEC.		
Monitoring Groundwater Prior PRR/SMR Recommendations	Frequency As determined by NYSDEC. There are no prior PRR/SMR recommendation	ons for the Site.	
Monitoring Groundwater Prior PRR/SMR Recommendations Site Management Activities	Frequency As determined by NYSDEC. There are no prior PRR/SMR recommendation One site inspection, one round of groundwist sampling event was conducted during this recommendation • 05/14/2019: Groundwater level med • 05/17/2019: Site inspection and dr • 05/15/2019 - 05/17/2019: Groundwidter level med • 05/15/2019 -	ons for the Site. vater level measurements, and one groundwater eporting period (2015 - 2019). easurements. um survey. dwater samples were collected from 13 of 14 ng well network. Samples were submitted for PCs, metals, pesticides, and PCBs. Additionally, rzed for emerging contaminants.	

Category	Summary/Results
Recommendations	 Three-year groundwater sampling frequency with completion of a SMR at the end of the year following the sampling event. Five-year PRR Certification Period. At the discretion of the NYSDEC, a SMR would not be required when a PRR is due the same year. Annual site inspection (concurrent with groundwater sampling events, when possible), including water level measurements and additional inspections, as necessary, following severe weather events. Monitoring well MW-4R should continue to be monitored for LNAPL. PFAS should be included as an analyte for all Site monitoring wells. Contaminant trends should be evaluated once sufficient data is available. SVOCs and pesticides should be considered for removal from the sampling program following another complete round of sampling. If acceptable to the NYSDEC, the April 2015 SMP should be updated to reflect the above sampling/inspection/reporting frequency and PRR Certification Period.
Cost Evaluation	The total cost of site management activities this reporting period was \$44,225.00. This cost includes engineering (e.g., labor and expense) and subcontractor costs (e.g., laboratory, equipment, rentals, etc.). It should be noted that this total does not include any direct costs incurred by the NYSDEC.

1.0 Introduction

This PRR has been prepared for the Mayer Landfill Site (referred to as "the Site") and covers the period, April 2015 through January 2020. This PRR was prepared in accordance with NYSDEC WA No. D007620-45 Notice to Proceed dated October 11, 2018, the NYSDEC-approved Scope of Work dated February 19, 2019 and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation. A Site summary and applicable remedial program information are presented below.

Site Information					
Site Name:	Mayer Landfill Site	NYSDEC Site No:	336027		
Site Location:	Prospect and Peddler Hill Roads, Blooming Grove, Orange County, New York	Remedial Program:	State Superfund Program		
Site Type:	Landfill	Classification:	04		
Parcel Identification(s):	44-1-63.92, Orange County Tax Mapping	Parcel Acreage / EE Acreage:	103 / 15		
Selected Remedy:	Excavation, Cover System, Long- term Monitoring	Site COC(s):	 VOCs SVOCs PCBs Metals 		
Current Remedial Program Phase:	Site Management	Institutional Controls:	 ROD (2005) SMP (2010, Rev. 2 2015) EE (2012) 		
Post-Remediation Monitoring and Sampling Frequency:	Groundwater monitoring and site inspection as determined by NYSDEC	Engineering Controls:	Cover System, Restricted Site Access (e.g., locked access road gate), and Monitoring Wells		
Monitoring Locations:	Overburden monitoring wells (8) Bedrock monitoring wells (6)	Required Reporting:	At a frequency determined by NYSDEC		

1.1 Site Location, Ownership, and Description

The Site is in the Town of Blooming Grove, Orange County, New York and is identified as Section 44 Block 1 Lot 63.92 on the Orange County Tax Map and is presently owned by William R. Mayer and Johanna Mayer. The Site parcel has an overall property area of approximately 103 acres, is bounded to the north by Prospect Road, to the south by private properties, to the east by Peddler Hill Road, and to the west by a utility right-of-way. Site location and layout maps are provided on **Figure 1** and **Figure 2**, respectively. The Site was operated as a landfill beginning in 1940. Residential, commercial, industrial, demolition, and agricultural waste were reportedly disposed of at the landfill. The Limits of the Landfill Pursuant to the December 2012 EE are presented on **Figure 2**.

1.2 Investigation/Remedial History

Mayer Landfill began operation in the late 1940s as an open-face dump, with periodic burning of refuse. Mixed waste, including residential, commercial, industrial, demolition, and agricultural waste, were reportedly disposed of at the landfill. In 1965, after being ordered to stop burning, the operator began compacting and covering refuse. The landfill ceased operations in April 1975 due to failure to comply with state and county regulations. In 1975,

the OCDOH conducted an initial investigation of surface water at the landfill and discovered elevated levels of zinc in a wet area to the south of the landfill. The Site was listed in the Registry of IHWDS as a Class 2A site in 1985.

From 1985 to 2002 numerous investigations were conducted by the NYSDEC and NYSDOH, including a Phase I, Phase II, a drinking well sampling event of surrounding private supply wells, and a RI/FS to determine the nature and extent of Site contamination, and to evaluate remedial alternatives. Based on the RI/FS results, the NYSDEC issued a ROD in 2005 which outlined a clean-up plan. The ROD called for a limited removal action of LNAPL impacted soil, discovered buried on the northeastern portion of the landfill. In 2007, further subsurface and groundwater investigations were performed as part of the design activities associated with the remedy implementation. This additional work indicated that the volume of LNAPL contaminated soil was significantly greater than had been estimated in the ROD. As a result, in 2008 the NYSDEC issued an ESD that amended the remedy and called for the removal of a greater volume of contaminated soils.

In 2009, 7,688 tons of LNAPL impacted soil was removed from the Site. While a significant quantity of the LNAPL impacted material was excavated, a limited quantity of LNAPL impacted material was discovered to extend beyond the limits of removal activities. The additional area had an estimated volume of approximately 900 cu yds and was not excavated because the remedial program did not rely on numerical criteria (e.g., SCOs) as guidance for the removal action. The additional LNAPL impacted soil currently remains buried at the Site.

Following excavation of LNAPL contaminated soil, clean soil was used as fill, a cover system was installed, and a monitoring well network was established for continued Site monitoring. Following RA completion, an EE was placed on the Site, and an SMP was developed and implemented to manage the ICs/ECs including long-term groundwater monitoring, existing cover maintenance, future excavation management, exclusion against future residential or restricted-residential uses, and a prohibition of groundwater for portable or process use without treatment.

In 2011, the NYSDEC reclassified the Site from a Class 2A IHWDS to a Class 4 site. In 2012, a revised EE was placed on the Site to include only 15 of the 103 tax parcel acres, which include 13 acres of landfill and 2 acres of buffer, as delineated by the EE survey. In April 2015, the SMP was revised (Rev. 2) to include the same ICs/ECs included in the October 2010 SMP.

A detailed Site history, including the dates and descriptions of significant events, and a Custodial Record detailing known and available Site reports, are included in **Appendix A**.

1.3 Remaining Contamination

While the remedial action completed in 2009 removed a significant quantity of LNAPL impacted soil, an estimated volume of 900 cu yds of LNAPL impacted soil remains in place. Furthermore, all the refuse that was historically disposed at the Site remains buried. The landfill still contains a considerable amount of waste that covers approximately 13 acres. The waste thickness exceeds 18 feet over most of the landfill. Based on observations during the 2009 remedial action, remaining waste mainly includes domestic waste, construction debris such as shingles and electrical conduit, and some crushed drums or parts of drums.

Other than the LNAPL impacted soil and refuse remaining at the Site, low level metals concentrations (primarily iron, manganese and sodium), VOCs, pesticides, PCBs, and PFAS are found in Site groundwater.

1.4 Regulatory Requirements/Cleanup Goals

The overall remedial requirements for the Site include the following:

- Eliminate, to the extent practicable, ingestion of groundwater impacted by the Site that does not attain NYSDOH drinking water standards.
- Eliminate, to the extent practicable, further off-Site migration of groundwater that does not attain NYSDEC Division of Water TOGS 1.1.1 Class GA Standards and Guidance Values (Class GA Values).

Additionally, the objectives of the Site use restrictions and excavation controls include the following goals:

- Eliminate, to the extent practicable, exposure to waste in the landfill.
- Eliminate, to the extent practicable, exposure to LNAPL-contaminated soil in the landfill.
- Eliminate, to the extent practicable, the migration of LNAPL from the small impacted area of the landfill and the release of LNAPL contaminants into groundwater.
- Eliminate, to the extent practicable, exposure to on-site groundwater.

2.0 Institutional and Engineering Control Plan Compliance

2.1 Institutional Controls

The Mayer Landfill Site is managed under the New York State Superfund Program. The Site's inclusion on the Registry of IHWDS, ROD, EE, and SMP act as the ICs for the Site.

The 2012 EE defines the following for the Site:

- Requires compliance with the approved SMP;
- Imposes soil management restrictions;
- Limits the property use and development to commercial or industrial activities;
- Restricts the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH; and,
- Requires the property owners to complete and submit periodic certification to the NYSDEC.

2.2 Engineering Controls

The Site ECs include a site-wide vegetative cover, a soil and vegetation cover placed on the LNAPL excavation area, access restrictions via gated access roads, and monitoring wells for periodic groundwater monitoring.

3.0 Monitoring and Sampling Plan Compliance

The revised April 2015 SMP was prepared to manage contamination remaining on the Site and ensure that the remedy remains effective by restricting site use, site development, and soil management. The April 2015 SMP specifies the following Site monitoring and sampling activities:

Summary of SMP Site Monitoring and Sampling Plan April 2015					
Site Management Activity	Frequency	Location	Laboratory Analysis		
Site Inspection	With each groundwater sampling event at the discretion of NYSDEC	Site property	Not Applicable		
Groundwater Sampling	At the discretion of NYSDEC	 MW-2 MW-4R MW-4R MW-4DR MW-13 MW-5 BR-3 MW-6 BR-5 MW-7 BR-6 MW-7D BR-7 	 TCL VOCs by EPA Method 8260 TCL SVOCs by EPA Method 8270 TAL Metals Methods 6010 and 7470 Pesticides by EPA Method 8081 PCBs by EPA Method 8082 		
SMR	Not required	Not Applicable	Not Applicable		
Site Inspection Report	Following each inspection event	Not Applicable	Not Applicable		
PRR	Following site inspection and sampling event at the discretion of NYSDEC	Not Applicable	Not Applicable		

Additionally, four monitoring wells were selected for a one-time sampling event for emerging contaminants. MW-4DR, MW-5, MW-8, and MW-13 were selected for the sampling and analysis of PFAS by EPA Method 537 (modified) and 1,4-dioxane by EPA Method 8270 SIM.

3.1 Site Inspection

In May 2019, TRC performed a Site visit to conduct groundwater monitoring and inspection activities in accordance with the April 2015 SMP. The site inspection includes an evaluation of the current site use, condition of the limited soil cover, vegetation condition, and condition of other ECs including monitoring wells, access gates, roads, etc.

A summary of the Site visit is as follows:

Summary of Site Inspection							
	May 2019						
Site Management Activity	Summary of Results	Maintenance/Corrective Measure					
Landfill Cap Inspection	The soil cover on the northeast portion of the landfill which covers of the RA excavation was in good condition.	No routine maintenance or corrective measures needed at this time.					
Vegetation/Cover System	Vegetation was well established with grass and other primary growth on the upper, flat portion of the landfill. Dense tree stands and shrubs on the lower, sloping portions of the landfill obscured most wells.	Monitoring wells and paths to wells were flagged with orange survey tape.					
Monitoring Well Network	All well casings and covers were in good condition. Some J-plugs were broken or missing. All well locks were inoperable. Monitoring well MW-4R was gauged but could not be sampled due to a tar-like LNAPL.	J-plugs were replaced where needed. Well locks were cut from the casings and replaced with new Master Locks [®] key code 2537.					
Groundwater gauging and sampling	All 14 wells were gauged. Groundwater samples were collected from 13 of the 14 wells utilizing standard low-flow sampling techniques. Monitoring well MW-4R was not sampled due to the viscous LNAPL that prevented the tubing from reaching the screened section of the well.	No routine maintenance or corrective measures needed at this time. MW- 4R may need to be replaced due to tar- like LNAPL.					
Site Access Roads and Gates	Site access gates were operable and locked. The entrance gate was locked by the property owner with a non-NYSDEC lock.	The gate lock was cut and replaced with new a Master Lock [®] key code 2537. The Site owner subsequently replaced the lock with another lock of unknown make and model.					
Drum Survey	Seven drums were located on-site. Six drums were rusted and degraded and appeared to be empty. One drum located near MW-4DR appeared to contain material, most likely soil cuttings associated with the installation of MW-4DR.	No routine maintenance or corrective measures needed at this time.					

A field activity report and photographic log from the May 2019 inspection activities can be found in **Appendix B**.

3.2 Groundwater Monitoring Summary

3.2.1 Groundwater Gauging

On May 14, 2019, prior to groundwater sample collection, all wells were gauged for depth to groundwater to evaluate potential groundwater flow direction. Groundwater elevations for the overburden and bedrock monitoring wells and the groundwater surface elevation contours with an interpretation of groundwater flow direction are presented on Figure 3 and Figure 4, respectively. The groundwater gauging and elevation measurements can be found on Table 1. A summary of the Site hydrogeologic information is presented below:

Site Hydrogeologic Summary May 2019					
Number of Wells Gauged	Hydrogeologic Units	Hydrogeologic Strata	Monitoring Wells per Unit		
14	14 2 Overburden Bedrock		8 6		
Overburden Ground	water Elevation Range	Bedrock Groundwa	ter Elevation Range		
Lowest groundwater elevation: 592.74 feet AMSL (MW-5) Highest groundwater elevation: 635.21 feet AMSL (MW-13)		Lowest groundwater elevation: 5 Highest groundwater elevation:	574.24 feet AMSL (BR-5) 502.18 feet AMSL (MW-4DR)		
Inferred Overburden Groundwater Flow Direction		Inferred Bedrock Grou	ndwater Flow Direction		
Radial		No	orth		

3.2.2 Groundwater Sampling

TRC collected groundwater samples from 13 of the 14 monitoring wells in the monitoring well network utilizing standard low-flow sampling techniques from May 15 through May 17, 2019. A groundwater sample was not collected from MW-4R due to the presence of the LNAPL. Groundwater sampling logs can be found in **Appendix C**. All 13 groundwater samples, in addition to standard QA/QC samples collected at the frequencies specified in TRC's April 2011 Generic QAPP, were submitted to Eurofins/TestAmerica Laboratories for analysis.

Additionally, the four wells (MW-4DR, MW-5, MW-8, and MW-13) selected for analysis of emerging contaminants were sampled in general accordance with the NYSDEC's August 2018 Collection of Groundwater Samples for PFAS from Monitoring Wells Sample Protocol (Rev 1.2). As described previously, the groundwater samples collected from these wells were submitted to Eurofins/TestAmerica Laboratories for analyses of PFAS and 1,4-dioxane.

A summary of the groundwater sampling information and pertinent well details for each well is presented below:

Summary of Groundwater Monitoring Well Details and Sampling Activities May 2019							
Monitoring Well Details 2019 Groundwater Sampling Event						oling Event	
Well ID	Northing	Easting	Screen Zone (ft. bgs)	Material Screened	DTW (ft. bgs)	SMP Analytes	Notes
BR-3	924783.35	574589.26	43.50 - 63.50	Phyllite bedrock	11.05	VOCs, SVOCs, PCBs, Pesticides, Metals	
BR-5	924873.92	574261.84	72.50 - 92.50	Phyllite bedrock	49.68	VOCs, SVOCs, PCBs, Pesticides, Metals	
BR-6	924984.44	573961.91	79.00 - 99.00	Phyllite bedrock	41.36	VOCs, SVOCs, PCBs, Pesticides, Metals	
BR-7	924577.18	573252.55	23.50 - 43.50	Phyllite bedrock	8.38	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW- 4DR	924578.06	574460.15	56.00 - 76.00	Phyllite bedrock	24.90	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS, 1,4-Dioxane collected
MW-7D	924858.82	573476.25	14.50 - 29.50	Phyllite bedrock	0.98	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW-2	924146.56	573356.27	55.40 - 65.40	Glacial till and bedrock	1.25	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW-4R	924517.53	574451.28	8.00 - 20.00	Waste/fill and till interface	6.72	Not Sampled	NAPL at approx. 8 ft. bgs
MW-5	925199.82	574409.07	4.95 - 12.95	Glacial till	3.05	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS, 1,4-Dioxane collected
MW-6	924644.22	573917.33	7.00 - 17.00	Glacial till	7.26	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW-7	924857.86	573483.64	4.50 - 14.50	Clay with silty sand and gravel	0.00	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW-8	924226.04	574440.18	11.50 - 21.50	Waste and fill	9.92	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS, 1,4-Dioxane collected
MW-11	924603.52	573292.26	9.50 - 19.50	Silty sand and gravel with clay	1.85	VOCs, SVOCs, PCBs, Pesticides, Metals	
MW-13	924615.08	574199.46	6.00 - 16.00	Clay with silty sand and gravel	4.58	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS, 1,4-Dioxane collected

Additional construction details are in included on Table 1.

3.2.3 Groundwater Analytical Results

Groundwater analytical data for VOCs, SVOCs, pesticides, PCBs, TAL metals, and emerging contaminants can be found in **Table 2** through **Table 7**, respectively. The DUSRs can be found in **Appendix D**. Detected compounds exceeding their respective NYSDEC Class GA Values for each well are illustrated on **Figure 5**. A summary of the May 2019 groundwater analytical results is provided below:

Summary of Groundwater Analytical Results - TCL Organics and TAL Inorganics					
May 2019					
Constituent	SCG	Concentration Range (µg/L)	Location with Highest Concentration	Frequency Exceeding SCG	
		VOCs			
1,4-Dichlorobenzene	3	ND - 6.2	MW-8	1/13	
Benzene	1	ND - 7.8	MW-8	1/13	
Chlorobenzene	5	ND - 85	MW-8	1/13	
	SVOCs				
	No l	Results above NYSDEC Clas	ss GA Values		
		Pesticides			
beta-BHC	0.04	ND - 0.88	BR-6	2/13	
PCBs Aroclors					
Aroclor-1232	NC	ND - 0.76	MW-8	NA	
PCBs, Total	0.09	ND - 0.76	MW-8	1/13	
Metals					
Iron	300	ND-47,100	MW-8	10/13	
Sodium	20,000	2,100 - 39,700	BR-5	5/13	
Manganese	300	2.7 - 3,100	MW-7D	6/13	

Additionally, a summary of the results for the groundwater samples from monitoring wells MW-4DR, MW-5, MW-8, and MW-13 that were analyzed for emerging contaminants are presented below:

Summary of Groundwater Analytical Results - Emerging Contaminants					
May 2019					
Constituent SCG* Concentration Range (ng/L) Location with Highest Detection Frequency Exceeding SCG					
PFAS					
Perfluorooctanoic acid (PFOA)	10	ND - 120	MW-8	2/4	
Perfluorooctanesulfonic acid (PFOS)	10	ND - 44	MW-8	2/4	
Total PFAS	500	ND - 315	MW-8	0/4	
1,4-Dioxane					
Constituent SCG** Concentration Range (µg/L) Location with Highest Detection Frequency Exceeding SCG					
1,4-Dioxane	1	ND - 6.2	MW-8	1/4	

Notes:

NC - No NYSDEC standards exist for this analyte.

* - Recommended Guidance Values from the Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2020.

** - New York State Drinking Water Quality Council recommended maximum contaminant levels to the New York State Health Commissioner, December 2018.

Groundwater contaminant concentration trend graphs were not prepared for the Site since a sufficient number of post-remedial action groundwater sampling events has not been completed.

4.0 Cost Summary

The total estimated cost of the site management activities for 2019 (January 1, 2019 through December 31, 2019) is approximately \$44,225. Site management activities included project management/administration, site inspection, drum survey, sampling of 13 of 14 monitoring wells, analysis of 13 samples for TCL VOCs, TCL SVOCs, PCBs, pesticides, TAL metals and mercury, analysis of 4 samples for 1,4-dioxane and PFAS, and preparation of a PRR. The total includes engineering and subcontractor costs, as well as expenses associated with the project. It should be noted that the total does not include direct costs incurred by NYSDEC in support of the project. A summary of the 2019 site management costs is presented below:

Summary of Site Management Costs January 1, 2019 through December 31, 2019				
Cost Item	Amount Expended (January 1, 2019 through December 31, 2019)	Percent of Total Cost		
Engineering Support				
TRC	\$30,350	69%		
Subcontractors				
Eurofins/TestAmerica	\$10,925	25%		
Expenses				
TRC	\$2,950	6%		
Total Cost	\$44,225			

The following provides a review of each cost item:

- Engineering support includes labor costs associated with project management (e.g., WA Package preparation, monthly invoicing, project scheduling and coordination, etc.), site inspections, groundwater sampling, and reporting (i.e., site inspection report, DUSR, and PRR).
- Subcontractors include analytical laboratory costs associated with the groundwater sampling event.
- Expense costs include travel, equipment, and supplies in support of the site inspection, groundwater sampling event, and routine site maintenance activities.
- Reporting costs include data validation, DUSRs, EDD preparation, and PRR preparation.

5.0 Conclusions and Recommendations

5.1 Conclusions

- Based on the groundwater elevations measured during the May 2019 site visit, groundwater flow in the overburden appears to be mounded at the center of the Site near the RA excavation area, with radial flow from the center to the perimeter monitoring wells. This observation is consistent with historical reporting. Groundwater flow in the bedrock appears to be to the north of the Site. This observation is also consistent with historical reporting.
- The metals iron, manganese and sodium were detected at concentrations above their respective Class GA Values in several monitoring wells. While these metals are likely not indicative of Site contaminant migration and are typically regulated for aesthetic purposes such as odor, taste, and clarity in drinking water, they may be indicative of the overall geochemical quality of the groundwater at the Site. In general, natural organics associated with shale bedrock naturally create reducing conditions in bedrock groundwater. These reducing conditions enhance the dissolution of metals, such as manganese, iron, sodium and other trace metals from the native bedrock. The bedrock groundwater at the Site is likely higher in these metals because of these reducing conditions. The NAPL mass and organic waste in the landfill also likely created reducing conditions in the Site overburden groundwater geochemistry likely remains under reducing conditions leading to the ongoing dissolution of minerals from overburden soils and higher dissolved concentrations of these metals in overburden groundwater.
- Site COCs, including VOCs, pesticides, PCBs were detected at concentrations exceeding their respective Class GA Values in groundwater samples collected from the Site. These exceedances are primarily located in monitoring well MW-8, which is located within the waste mass. With the exception of one exceedance of beta-BHC detected slightly above criteria in BR-6, Site COCs were not detected in any of the monitoring wells that are hydraulically downgradient of the landfill. This indicates that Site-related groundwater contamination is likely not significantly migrating.
- PFAS compounds and 1,4-dioxane were detected at concentrations exceeding their respective recommended guidance values in two monitoring wells. PFAS exceedances were detected in MW-5 and MW-8. The 1,4-dioxane exceedances was detected in MW-8. The detection of PFAS compounds and 1,4-dioxane in overburden monitoring well MW-8 indicates that PFAS compounds and 1,4-dioxane may be present in the waste at the Site. The low levels of PFAS detected in overburden monitoring well MW-5 indicate that off-site overburden groundwater may also be impacted by PFAS contamination. However, since no other Site-related COCs were detected in ground water at monitoring well MW-5, it is unclear if the PFAS detected in this well are related to the Site.
- Site and groundwater use were consistent with the restrictions set forth in the ROD, the revised April 2015 SMP and EE. Groundwater monitoring activities were completed in May 2019 for the 2015-2020 certification period. A site inspection and an inspection report were also completed. The ICs operated as intended during this reporting period.
- The remedy continued to be protective of human health and the environment during this reporting period.

5.2 Recommendations

- A routine Site inspection and groundwater sampling event frequency should be established for the Site. A three-year frequency is recommended (next proposed sampling event Q2 2022). A SMR should also be completed at the end of the year following a sampling event (next proposed SMR Q4 2022).
- A routine Certification Period should be established for the Site. A five-year Certification Period is recommended. The Certification Period should be calendar year beginning January 1st to calendar year ending December 31st, with the next PRR covering the reporting period beginning January 1, 2020 and ending December 31, 2025. At the discretion of NYSDEC, a SMR would not be required when a PRR is due the same year.
- Water level measurements should continue to be collected at the 13 site monitoring wells during inspection and groundwater monitoring events.
- It is recommended that site inspections be completed annually (concurrent with sampling events when possible) and following severe weather events to certify the ICs/ECs are functioning as intended.
- Monitoring well MW-4R should continue to be monitored during the site inspections for the presence or absence of NAPL through the reporting period. An evaluation and recommendation for the future monitoring and sampling of MW-4R should be made in the PRR at the conclusion of the 2025 reporting period.
- Based on the emerging contaminant groundwater sampling results, PFAS should be included as an analyte for all monitoring wells for at least one future round of groundwater sampling events to evaluate PFAS impacts to groundwater at the Site.
- Contaminant trends for Site-related COCs should be established for the Site once sufficient data has been generated. Site COCs, such as SVOCs and pesticides should be considered for removal from the routine sampling list following another complete round of sampling.
- The April 2015 SMP should be revised to reflect the above changes/modifications, if the changes are acceptable to the NYSDEC.

6.0 Certification of Engineering and Institutional Controls

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The institutional and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by DER;
- Nothing has occurred that would impair the ability of such control to protect public health and the environment; and,
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.

TRC Engineers, Inc.

Prepared By:

Nathan T. Kranes, P.G Project Manager

John P Reviewed By:

James J. Magda, P.G. Program Manager

7.0 Future Site Activities

Currently groundwater monitoring and site inspection activities are planned at the discretion of NYSDEC per the SMP. Based on the recommendations in **Section 5.0**, the next sampling event should be conducted in Q2 2022 and the next site inspection should be conducted in Q2 2020.

TABLES

Table 1 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of Depth to Water Measurements and Groundwater Elevations

Monitoring Well Identification	Screened Formation	Top of Riser Elevation (feet AMSL)	Gauge Date	Depth to Water (feet below top of riser)	Depth to Bottom (feet below top of riser)	Groundwater Elevation (feet AMSL)
BR-3	Bedrock	609.13	5/14/2019	11.05	62.00	598.08
BR-5	Bedrock	623.92	5/14/2019	49.68	91.95	574.24
BR-6	Bedrock	621.03	5/14/2019	41.36	85.92	579.67
BR-7	Bedrock	606.01	5/14/2019	8.38	44.40	597.63
MW-4DR	Bedrock	627.08	5/14/2019	24.90	75.90	602.18
MW-7D	Bedrock	593.21	5/14/2019	0.98	31.80	592.23
MW-2	Overburden / Bedrock Interface	601.23	5/15/2019	1.25	65.40	599.98
MW-4R	Overburden	630.18	5/14/2019	6.72	11.70	623.46
MW-5	Overburden	595.79	5/14/2019	3.05	13.20	592.74
MW-6	Overburden	641.57	5/14/2019	7.26	19.31	634.31
MW-7	Overburden	593.24	5/14/2019	0.00	16.60	593.24
MW-8	Overburden	626.35	5/14/2019	9.92	23.45	616.43
MW-11	Overburden	604.81	5/14/2019	1.85	21.44	602.96
MW-13	Overburden	639.79	5/14/2019	4.58	18.10	635.21

Notes:

AMSL - above mean sea level

Table 2 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of VOC Results in Groundwater Samples - May 2019

							i Sumpres Triuj	2017					·	I	
	Sar	nple Location:	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
		Sample Name:	ML-BR-3	ML-BR-5	ML-BR-6	ML-BR-7	ML-MW-2	ML-MW-4DR	ML-MW-5	ML-MW-6	ML-MW-7	ML-MW-7D	ML-MW-8	ML-MW-11	ML-MW-13
	Laboratory Sample	Identification:	480-153772-4	480-153772-5	480-153772-6	480-153772-2	480-153772-14	480-153772-3	480-153772-12	480-153772-9	480-153772-10	480-153772-11	480-153772-8	480-153772-1	480-153772-7
		Sample Date:	05/16/2019	05/16/2019	05/17/2019	05/15/2019	05/15/2019	05/16/2019	05/16/2019	05/15/2019	05/15/2019	05/15/2019	05/16/2019	05/15/2019	05/15/2019
	** *	Class GA													
Volatile Organic Compounds (VOCs)	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,1,2,2-Tetrachloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,1,2-Trichloroethane	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 U	4.0 UJ	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,1-Dichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,2,4-Trichlorobenzene	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 U	4.0 UJ	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	0.04	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,2-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,2-Dichloroethane	ug/L	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,2-Dichloropropane	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,3-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,4-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.2	1.0 U	1.0 U				
2-Butanone (MEK)	ug/L	50	10 U	10 U	10 U	10 U	10 U	10 U	40 U	10 U	10 U				
2-Hexanone	ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	5.0 U	5.0 U				
4-Methyl-2-pentanone	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	5.0 U	5.0 U				
Acetone	ug/L	50	10 U	3.1 J	13	10 U	10 U	10 U	10 U	10 U	10 U	10 U	12 J	10 U	10 U
Benzene	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	7.8	1.0 U	1.0 U				
Bromodichloromethane	ug/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Bromoform	ug/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Bromomethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
Carbon disulfide	ug/L	60	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Carbon tetrachloride	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Chlorobenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	85	1.0 U	1.0 U				
Dibromochloromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Chloroethane	ug/L	7	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
Chloroform	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Chloromethane	ug/L	NC	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
1,4-Dioxane	ug/L	5	R	R	R	R	R	R	R	R	R	R	R	R	R
cis-1,2-Dichloroethene	ug/L	0.4(a)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
cis-1,3-Dichloropropene	ug/L	NC	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Cyclohexane	ug/L	50	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 U	4.0 UJ	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
Ethylbenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
1,2-Dibromoethane (Ethylene dibromide)	ug/L	0.0006	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Isopropylbenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.5 J	1.0 U	1.0 U				
Methyl acetate	ug/L	NC	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	10 U	2.5 U	2.5 U				
Methyl tert-butyl ether	ug/L	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Methylcyclohexane	ug/L	NC	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 U	0.77 J	1.0 U	1.0 U
Methylene chloride	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Styrene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Tetrachloroethene	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 U	4.0 UJ	1.0 U	1.0 U
Toluene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
trans-1,2-Dichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
trans-1,3-Dichloropropene	ug/L	0.4(a)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Trichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U				
Trichlorofluoromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
Vinyl chloride	ug/L	2	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	4.0 U	1.0 UJ	1.0 UJ
Xylenes, total	ug/L	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	8.0 U	2.0 U	2.0 U				
Total VOC TICs	ug/L	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	54 JN	ND	ND

Notes:

Notes.
ug/L - micrograms per liter.
J - Estimated value.
N - Presumptive evidence of material.
ND - Total and individual TICs not detected.
NC - No NYSDEC standards exist for this analyte.

R - Rejected data point.

U - Analyte was not detected at specified quantitation limit.
UJ - Estimated non-detect.
Values shown in **bold** type indicate a detected analyte.
Shading indicates result above the listed Class GA Value.
TICs- Tentatively Identified Compounds.
* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

Table 3 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of SVOC Results in Groundwater Samples - May 2019

	0	1 7	DD 2	DD 7	DD (DD 7			N/137 / 7		NIN 7	101/70		N/XV 11	MNV 12
	Sa	imple Location:	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-II	MW-13
		Sample Name:	ML-BR-3	ML-BR-5	ML-BR-6	ML-BR-7	ML-MW-2	ML-MW-4DR	ML-MW-5	ML-MW-6	ML-MW-7	ML-MW-7D	ML-MW-8	ML-MW-11	ML-MW-13
	Laboratory Sampl	e Identification:	480-153772-4	480-153772-5	480-153772-6	480-153772-2	480-153772-14	480-153772-3	480-153772-12	480-153772-9	480-153772-10	480-153772-11	480-153772-8	480-153772-1	480-153772-7
		Sample Date:	05/16/2019	05/16/2019	05/17/2019	05/15/2019	05/15/2019	05/16/2019	05/16/2019	05/15/2019	05/15/2019	05/15/2019	05/16/2019	05/15/2019	05/15/2019
		Class GA													
Semivolatile Organic Compounds (SVOCs)	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
2,4,5-Trichlorophenol	ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-1 richlorophenol	ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Diemorophenol	ug/L ug/I	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2 4-Dinitrophenol	ug/L	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	ug/L	10	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorophenol	ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.89 J	5.0 U	5.0 U
2-Methylnaphthalene	ug/L	NC 1(1)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Methylphenol	ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Nitrophenol	ug/L ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
3,3'-Dichlorobenzidine	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	ug/L	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	ug/L	1(b)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Bromophenyl-phenylether	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloro-3-methylphenol	ug/L	1(b)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloronhenyl-nhenyl ether	ug/L ug/I	5 NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methylphenol	ug/L	NC	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline	ug/L	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	ug/L	1(b)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acenaphthene	ug/L	20	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthylene	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetophenone	ug/L	<u>NC</u>	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.90 J	5.0 U	5.0 U
Annifacene Atrazine	ug/L ug/I	7.5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	ug/L	0.002	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzaldehyde	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	ug/L	ND	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	ug/L	0.002	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(g,h,1)perylene	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(k)IIuoraninene	ug/L	0.002	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2.2'-Oxybis(1-chloropropane)	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bis(2-chloroethoxy)methane	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bis(2-chloroethyl) ether	ug/L	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bis(2-ethylhexyl)phthalate	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.6 J	5.0 U	5.0 U
Butylbenzylphthalate	ug/L	50 NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbazola	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chrysene	ug/L ug/L	0.002	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Di-n-butylphthalate	ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.40 J	5.0 U	5.0 U
Di-n-octylphthalate	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibenz(a,h)anthracene	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibenzofuran	ug/L	NC 50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Directly i primatate	ug/L	50	5.0 U	0.41 J	5.0 U	5.0 U	5.0 U	0./3 J	5.0 U	5.0 U	5.0 U	5.0 U	0.46 J	5.0 U	5.0 U
Fluoranthene	ug/L	50	5.0 U	5.0 U	5.0 U	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluorene	ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Hexachlorobenzene	ug/L	0.04	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Hexachlorobutadiene	ug/L	0.5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Hexachlorocyclopentadiene	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Hexachloroethane	ug/L	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.002	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
n-Nitroso-di-n-propylamine	ug/L no/L	NC	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	5.0 U	50 11	50 11	50 U	50 U
N-Nitrosodiphenylamine	ug/L ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.8 J	5.0 U	5.0 U
Naphthalene	ug/L	10	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Nitrobenzene	ug/L	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Pentachlorophenol	ug/L	1(b)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Phenanthrene Dhomal	ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Total SVOC TICs	ug/L	1(b) NC	5.0 U 3.00 T	5.0 U	5.0 U	3.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.40 J	5.0 U	5.0 U
	ug/L	NC	J.70 J	11J J	17/ J	34.4 J	7.70 J	ND	1./0 5	2.00 J	nD	13.0 J	203 J	4./U J	0.40 J

Notes:

ug/L - micrograms per liter. J - Estimated value. NC - No NYSDEC standards exist for this analyte. ND - A non-detectable concentration. U - Analyte was not detected at specified quantitation limit. Values shown in **bold** type indicate a detected analyte

Shading indicates result above the listed Class GA Value.

TICs- Tentatively Identified Compounds.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

(b) - criteria applicable to total phenolics.

Table 4 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of Pesticides Results in Groundwater Samples - May 2019

	Samp	le Location:	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Sa	mple Name:	ML-BR-3	ML-BR-5	ML-BR-6	ML-BR-7	ML-MW-2	ML-MW-4DR	ML-MW-5	ML-MW-6	ML-MW-7	ML-MW-7D	ML-MW-8	ML-MW-11	ML-MW-13
	Laboratory Sample Id	lentification:	480-153772-4	480-153772-5	480-153772-6	480-153772-2	480-153772-14	4 480-153772-3	480-153772-12	480-153772-9	480-153772-10	480-153772-11	480-153772-8	480-153772-1	480-153772-7
	S	ample Date:	05/16/2019	05/16/2019	05/17/2019	05/15/2019	05/15/2019	05/16/2019	05/16/2019	05/15/2019	05/15/2019	05/15/2019	05/16/2019	05/15/2019	05/15/2019
		Class GA													
Pesticides	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
4,4'-DDD	ug/L	0.3	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
4,4'-DDE	ug/L	0.2	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
4,4'-DDT	ug/L	0.2	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.016 J	0.050 U	0.015 J	0.10 U	0.015 J	0.050 U
Aldrin	ug/L	ND	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
alpha-BHC	ug/L	0.01	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
alpha-Chlordane	ug/L	0.05(c)	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
beta-BHC	ug/L	0.04	0.050 U	0.050 U	0.088 J	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.069 J	0.050 U	0.050 U
delta-BHC	ug/L	0.04	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Dieldrin	ug/L	0.004	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endosulfan I	ug/L	NC	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endosulfan II	ug/L	NC	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endosulfan sulfate	ug/L	NC	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endrin	ug/L	ND	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endrin aldehyde	ug/L	5	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Endrin ketone	ug/L	5	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
gamma-BHC (Lindane)	ug/L	0.05	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
trans-Chlordane	ug/L	0.05(c)	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Heptachlor	ug/L	0.04	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Heptachlor epoxide	ug/L	0.03	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Methoxychlor	ug/L	35	0.050 U	0.050 U	0.17 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.10 U	0.050 U	0.050 U
Toxaphene	ug/L	0.06	0.50 U	0.50 U	1.7 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U

Notes:

ug/L - micrograms per liter.

J - Estimated value.

NC - No NYSDEC standards exist for this analyte.

ND - A non-detectable concentration.

U - Analyte was not detected at specified quantitation limit.

Values shown in **bold** type indicate a detected analyte.

Shading indicates result above the listed Class GA Value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

(c) - Used standard for Chlordane.

Table 5 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of PCB Results in Groundwater Samples - May 2019

	Sa	mple Location:	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
		Sample Name:	ML-BR-3	ML-BR-5	ML-BR-6	ML-BR-7	ML-MW-2	ML-MW-4DR	ML-MW-5	ML-MW-6	ML-MW-7	ML-MW-7D	ML-MW-8	ML-MW-11	ML-MW-13
La	boratory Sample	e Identification:	480-153772-4	480-153772-5	480-153772-6	480-153772-2	480-153772-14	4480-153772-3	480-153772-12	2 480-153772-9	480-153772-10	480-153772-11	1 480-153772-8	480-153772-1	480-153772-7
		Sample Date:	05/16/2019	05/16/2019	05/17/2019	05/15/2019	05/15/2019	05/16/2019	05/16/2019	05/15/2019	05/15/2019	05/15/2019	05/16/2019	05/15/2019	05/15/2019
		Class GA													
Polychlorinated Bipenyls (PCBs)	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aroclor-1016	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
Aroclor-1221	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
Aroclor-1232	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.76	0.50 U	0.50 UJ
Aroclor-1242	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
Aroclor-1248	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
Aroclor-1254	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
Aroclor-1260	ug/L	NC	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 UJ
PCBs, Total	ug/L	0.09	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.76	0.50 U	0.50 UJ

Notes:

ug/L - micrograms per liter.

NC - No NYSDEC standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values shown in **bold** type indicate a detected analyte.

Shading indicates result above the listed Class GA Value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

Table 6 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of Metals Results in Groundwater Samples - May 2019

	Sar	nple Location:	BR-3	BR-5	BR-6	BR- 7	MW-2	MW-4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
		Sample Name:	ML-BR-3	ML-BR-5	ML-BR-6	ML-BR-7	ML-MW-2	ML-MW-4DR	ML-MW-5	ML-MW-6	ML-MW-7	ML-MW-7D	ML-MW-8	ML-MW-11	ML-MW-13
Laborat	ory Sample	Identification:	480-153772-4	480-153772-5	480-153772-6	480-153772-2	480-153772-14	4 480-153772-3	480-153772-12	480-153772-9	480-153772-10	480-153772-11	480-153772-8	480-153772-1	480-153772-7
		Sample Date:	05/16/2019	05/16/2019	05/17/2019	05/15/2019	05/15/2019	05/16/2019	05/16/2019	05/15/2019	05/15/2019	05/15/2019	05/16/2019	05/15/2019	05/15/2019
		Class GA													
Metals, total	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aluminum	ug/L	NC	2,000	1,100	1,200	580	310	3,200	480	200 U	200 U	200 U	200 U	200 U	640
Antimony	ug/L	3	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U				
Arsenic	ug/L	25	15 U	15 U	9.8 J	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
Barium	ug/L	1,000	17	20	71	5.1	2.9	19	9.0	6.2	16	6.9	190	5.3	6.1
Beryllium	ug/L	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Cadmium	ug/L	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Calcium	ug/L	NC	57,000	24,500	124,000	21,300	39,400	51,700	34,700	7,700	69,400	83,100	121,000	3,600	5,200
Chromium	ug/L	50	4.0	1.9 J	4.0 U	4.0 U	1.1 J	6.8	1.1 J	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	1.2 J
Cobalt	ug/L	NC	1.1 J	4.0 U	4.0 U	4.0 U	4.0 U	1.1 J	4.0 U	4.0 U	4.0 U	4.0 U	4.0	4.0 U	4.0 U
Copper	ug/L	200	3.2 J	10 U	10 U	10 U	10 U	3.6 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Iron	ug/L	300	1,700	1,000	1,200	390	320	2,900	330	42 J	330	61	47,100	50 U	510
Lead	ug/L	25	4.7 J	10 U	10 U	10 U	10 U	3.2 J	10 U	10 U	10 U	10 U	8.4 J	10 U	10 U
Magnesium	ug/L	NC	21,700	13,500	5,400	5,500	10,400	18,100	5,200	1,200	12,800	13,900	19,600	1,200	980
Manganese	ug/L	300	790	100	140	75	460	790	26	2.7 J	1,500	3,100	600	3.3	12
Mercury	ug/L	0.7	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U				
Nickel	ug/L	100	2.4 J	3.1 J	7.1 J	10 U	10 U	3.3 J	10 U	10 U	10 U	10 U	23	10 U	10 U
Potassium	ug/L	NC	2,000 J+	5,300	4,400	750	1,000 J+	2,800 J+	1,500 J+	500 U	610 J+	850 J+	27,500	520 J+	500 U
Selenium	ug/L	10	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U				
Silver	ug/L	50	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U				
Sodium	ug/L	20,000	25,000	39,700	27,400	8,600	14,300	22,200	4,200	3,300	8,200	10,800	26,300	2,100	2,400
Thallium	ug/L	0.5	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U				
Vanadium	ug/L	NC	3.5 J	1.8 J	5.0 U	5.0 U	5.0 U	5.6	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	ug/L	2,000	7.2 J	4.4 J	2.3 J	3.4 J	2.0 J	8.9 J	2.8 J	2.0 J	10 U	10 U	3.4 J	10 U	2.6 J

Notes:

ug/L - micrograms per liter.

J - Estimated value.

J+ - Estimated value; biased high.

NC - No NYSDEC standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values shown in **bold** type indicate a detected analyte.

Shading indicates result above the listed Class GA Value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

Table 7 New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Summary of Emerging Contaminant Results in Groundwater Samples - May 2019

	San	ple Location:	MW-4I	DR	MW-	5	MW-8	3	MW-1	3
	S	Sample Name:	ML-MW-	4DR	ML-MW	/-5	ML-MW	-8	ML-MW	-13
Laboratory S	ample	Identification:	480-1537	72-3	480-15377	2-12	480-15377	72-8	480-1537	72-7
		Sample Date:	05/16/20)19	05/16/20)19	05/16/20	19	05/15/20)19
		Guidance								
Per- and Polyfluoroalkyl Substances (PFAS)		Value*	Result	s	Result	s	Results	5	Result	s
Perfluorobutanoic acid (PFBA)	ng/L	100	1.7	UJ	8.4	U	32	UJ	1.7	U
Perfluoropentanoic acid (PFPeA)	ng/L	100	1.7	U	2.5		11	J+	1.7	UJ
Perfluorohexanoic acid (PFHxA)	ng/L	100	1.7	U	2.4		27		1.7	U
Perfluoroheptanoic acid (PFHpA)	ng/L	100	1.7	U	1.8		26		1.7	U
Perfluorooctanoic acid (PFOA)	ng/L	10	1.7	U	10		120		2.9	
Perfluorononanoic acid (PFNA)	ng/L	100	1.7	U	1.1	J	8.4	U	1.7	U
Perfluorodecanoic acid (PFDA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluoroundecanoic acid (PFUnA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorododecanoic acid (PFDoA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorotridecanoic acid (PFTriA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorotetradecanoic acid (PFTeA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorobutanesulfonic acid (PFBS)	ng/L	100	1.7	U	0.72	J	6	J	0.65	J
Perfluorohexanesulfonic acid (PFHxS)	ng/L	100	1.7	U	1.7	U	15	J	0.78	J
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	1.7	U	2.1		44	J	3.4	
Perfluorodecanesulfonic acid (PFDS)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
Perfluorooctane Sulfonamide (PFOSA)	ng/L	100	1.7	U	1.7	U	8.4	U	1.7	U
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N-MeFOSAA)	ng/L	100	17	U	17	U	84	U	17	U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (N-EtFOSAA)	ng/L	100	17	U	17	U	66	J	17	U
6:2 Perfluorooctane Sulfonate (6:2 FTS)	ng/L	100	17	UJ	4.1	J	84	UJ	17	U
8:2 Perfluorodecane Sulfonate (8:2 FTS)	ng/L	100	17	U	17	U	84	U	17	U
Total PFAS	ng/L	500	ND		24.72		315	J	7.73	
		Guidance								
Semivolatile Organic Compounds (SVOCs)	Unit	Value**								
1,4-Dioxane	ug/L	1	0.29		0.19	U	6.2		0.19	U

Notes:

ng/L - Nanograms per liter.

ug/L - micrograms per liter.

J - Estimated value.

J+ - Estimated value; biased high.

NA - Not analyzed.

NC - No NYSDEC standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values shown in **bold** type indicate a detected analyte.

Values shown in bold and shaded type exceed the listed Guidance Value. For PFAS values

at or above the Guidance Value are an exceedance.

* - Recommended Guidance Values from the Guidelines for Sampling and Analysis of PFAS

Under NYSDEC's Part 375 Remedial Programs, January 2020.

** - New York State Drinking Water Quality Council recommended maximum contaminant

levels to the New York State Health Commissioner, December 2018.

FIGURES

S:\1-PROJECTS\NYSDEC\320919_MayerLandfill\Fig01_SiteLoc.mxd -- Saved By: SMAJOR on 11/22/2019, 13:35:47 PM

S:\1-PROJECTS\NYSDEC\320919_MayerLandfill\Fig02_SiteLayout.mxd -- Saved By: SMAJOR on 11/22/2019, 13:39:11 PM

S:\1-PROJECTS\NYSDEC\320919_MayerLandfill\Fig03_OverburdenGW.mxd -- Saved By: MOPEL on 12/19/2019, 09:26:54 AM

S:\1-PROJECTS\NYSDEC\320919_MayerLandfill\Fig04_BedrockGW.mxd -- Saved By: SMAJOR on 11/22/2019, 14:31:03 PM

Tax Parcel Boundary

Gravel Road

 \bullet

Limits of Landfill Pursuant to the December 2012 Environmental Easement Bedrock Monitoring Well Location

Overburden Monitoring Well Location

CONSTITUENT	Class GA Value
VOCs	μg/L
1,4-Dichlorobenzene	3
Benzene	1
Pesticides	μg/L
beta-BHC	0.04
PCBs	μg/L
PCBs, Total	0.09
Metals	μg/L
Iron	300
Manganese	300
Sodium	20,000
PFAS	ng/L
PFOA	10*
PFOS	10*
Total PFAS	500*
SVOCs	ng/L
1,4-Dioxane	1**

LIST OF ACRONYMS

µg/L - micro grams per liter ng/L - nano grams per liter

J - Estimated value

VOCs - Volatile organic compounds

PCBs -Polychlorinated biphenyls

PFAS - Per- and polyfluoroalkyl substances

PFOA - Perfluorooctanoic acid

PFOS - Perfluoro o ctanesulfo nic acid

Values in **bold** indicate the compound was detected. **Shading indicates result above Class GA Value.**

NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

* - Recommended Guidance Values from the Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2020.

** - New York State Drinking Water Quality Council recommended maximum contaminant levels to the New York State Health Commissioner, December 2018.

NOTES

1 All samples were submitted for TCL VOCs, TCL SVOCs, TCL Pesticides, TAL m etals and mercury, and PCBs.

2. Only M W-4DR, M W-5, M W-8, and M W-13 were selected for 14-dio xane and PFAS analysis.

3. Only detected compounds which exceed the NYSDEC Class GA Values are shown.

4. All locations and boundaries are approximate.

00	400
	Feet
= 300 '	
3,600	

PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION MAYER LANDFILL SITE - SITE NO. 336027 TOWN OF BLOOMING GROVE, NEW YORK

TITLE:

SUMMARY OF DETECTED COMPOUNDS EXCEEDING NYSDEC GROUNDWATER QUALITY STANDARDS/GUIDANCE - MAY 15-17, 2019

DRAWN BY:	M. OPEL	PROJ NO.:	320919.0000
CHECKED BY:	J. KING		
APPROVED BY:	N. KRANES	FIGURE	5
DATE:	APRIL 2020		

10 MAXWELL DRIVE, SUITE 200 CLIFTON PARK, NY 12065 PHONE: 518.348.1190 WWW.TRCCOMPANIES.COM Fig05_SumExceed.mxd

APPENDIX A

SITE HISTORY

MAYER LANDFILL SITE (NYSDEC SITE NO. 336027)

Date	Description
1949	The Mayer Landfill begins operations as an open-face dump with periodic refuse burning.
1953	Approximately 3 acres of land was used as a dump, accepting approximately 180 cubic yards a week of refuse.
1956	Part of the landfill is designed as a public dump.
1961	The landfill occupied approximately 8 acres and was receiving approximately 386 cubic yards a week of refuse.
1965	The Mayer Landfill is ordered to stop burning and the operator begins compacting/covering waste.
1968	The landfill was reported to occupy 13 acres and accept 1,000 cubic yards of waste per week.
Early 1970s	The Orange County Department of Health (OCDOH) cited the Site for mismanagement. Violations included inadequate compacting and covering of wastes, waste piled too high and steep, and poor use of space.
January 1975	An OCDOH survey approximated the waste volume received by the Mayer Landfill to be 5,045 cubic yards per week.
April 1975	The Mayer Landfill ceased operations due to failure to comply with State and County regulations.
1975	The OCDOH conducted an initial Site investigation of surface water. Analytical results indicated elevated zinc concentrations in a wet area located south of the Site.
1985	The New York State Department of Environmental Conservation (NYSDEC) listed the Mayer Landfill on the NYS Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site.
June 1987	The NYSDEC completed a Phase I investigation which concluded that a Phase II investigation was required.
April 1987	The New York State Department of Health (NYSDOH) completed a Human Exposure Potential Ranking Hazardous Waste Site Inspection Form for the Mayer Landfill. Additionally, State and County officials sampled five private drinking wells in the Site's vicinity, no contamination was found.
1989 - 1991	To resolve the Class 2a status, a Phase II Investigation was conducted and found several organic compounds exceeding groundwater standards in one monitoring well.
1991	The NYSDEC listed the Site as a Class 2 site in the Registry.
2000 - 2002	A remedial investigation/feasibility study (RI/FS) was conducted at the Site to determine the nature and extent of contamination and evaluate remedial alternatives.

January 2005	The NYSDEC issues a Record of Decision (ROD) which identified limited soil excavation of light non-aqueous liquid (LNAPL) and groundwater monitoring as the selected remedy.
July 2007	Further subsurface and groundwater investigations were performed to further delineate impacted waste. This additional work showed that the LNAPL contaminated soil volume was significantly greater than estimated in the ROD.
January 2008	A Basis of Design report was prepared and revealed that volatile organic compounds (VOC) and metals were the main contaminants of concern (COCs).
October 2008 – June 2009	Remedial activities, in accordance with the NYSDEC approved May 2008 Remedial Design (RD) were completed. Activities included the removal of 7,688 tons of impacted waste, cover system installation, monitoring well decommissioning/installations, execution of an Environmental Easement, and development/implementation of a Site Management Plan (SMP).
October 2010	The NYSDEC approves the SMP which includes long-term groundwater monitoring, existing cover maintenance, future excavation management, exclusion against future residential or restricted-residential uses, and a prohibition of groundwater for portable or process use without treatment.
June 2011	An Environmental Notice for the entire parcel was filed with the Orange County Clerk's Office.
October 2011	The NYSDEC listed the Site as a Class 4 site in the Registry.
December 2012	An Environmental Easement was placed on the property and recorded by Orange County in March 2013. While the tax parcel containing the Site is approximately 103 acres, the easement only applies to 15 acres (13 acres of landfill and 2 acres of buffer as delineated by the Environmental Easement survey.
April 2015	The SMP was revised to include plans for long term groundwater monitoring.
June 2019	An annual site inspection and groundwater monitoring program, in accordance with the April 2015 SMP was completed.

TRC

CUSTODIAL RECORD/PERTINENT SITE DOCUMENTS MAYER LANDFILL SITE (NYSDEC SITE NO. 336027)

EA Science and Technology (EA), Phase I Investigation, Mayer Landfill Site, June 1987 Lawler, Matusky & Skelly Engineers (LMS), Phase II Investigation, Mayer Landfill Site, June 1991 Environmental Resources Management (ERM), Work Plan for the Remedial Investigation/Feasibility Study, Mayer Landfill Site, August 1999 ERM, Remedial Investigation (RI) Report, Mayer Landfill Site, March 2001 ERM, Supplemental RI Work Plan, Mayer Landfill Site, June 2001 ERM, Supplemental RI Report, Mayer Landfill Site, April 2002 ERM, Final Feasibility Study (FS) Report, Mayer Landfill Site, July 2002 NYSDEC, Proposed Remedial Action Plan, Mayer Landfill Site, November 2004 NYSDEC, Record of Decision (ROD), Mayer Landfill Site, January 2005 EA, Remedial Design/Remedial Action Work Plan, Mayer Landfill Site, June 2007 EA, Basis of Design Report, Mayer Landfill Site, January 2008 NYSDEC, Explanation of Significant Differences, September 2008 EA, Final Engineering Report (FER), Mayer Landfill Site, November 2009 EA, Site Management Plan (SMP), Mayer Landfill Site, September 2010 EA, SMP (Rev. 1), Mayer Landfill Site, October 2010 NYSDEC, Site Classification Report, Mayer Landfill Site, October 2011 NYSDEC, Environmental Easement, Site No. 336027, December 2012 EA, SMP (Rev. 2), Mayer Landfill Site, April 2015 NYSDEC, Periodic Review Report (PRR) for January 1, 2012 through April 15, 2015, Mayer Landfill Site, October 2015

New York State Department of Environmental Conservation Mayer Landfill Site - Site No. 336027 Town of Blooming Grove, New York Monitoring Well Construction Summary

				Total			Screen			Elevation (f	feet AMSL)		Location	
	Installation	Well Dia.	Well	Depth		Top (feet	Bottom	Length	Casing	Ground	Scr	een	Northing	
Well ID	Date	(inches)	Material	(feet bgs)	Screened Formation	bgs)	(feet bgs)	(feet)	Тор	Surface	Тор	Bottom	(feet)	Easting (feet)
BR-3	6/2/2009	3	Open	63.5	Bedrock	43.50	63.50	20	609.13	607.10	563.60	543.60	924783.35	574589.26
BR-5	6/5/2009	3	Open	92.5	Bedrock	72.50	92.50	20	623.92	622.38	549.88	529.88	924873.92	574261.84
BR-6	6/11/2009	3	Open	99.0	Bedrock	79.00	99.00	20	621.03	619.54	540.54	520.54	924984.44	573961.91
BR-7	6/16/2009	3	Open	43.5	Bedrock	23.50	43.50	20	606.01	604.66	581.16	561.16	924577.18	573252.55
MW-4DR	5/29/2009	3	PVC	76.0	Bedrock	56.00	76.00	20	627.08	625.96	569.96	549.96	924578.06	574460.15
MW-7D	2/29/2000	6	Open	29.5	Bedrock	14.50	29.50	15	593.21	591.01	576.51	561.51	924858.82	573476.25
MW-2	1/11/1990	2	PVC	65.4	Overburden/Bedrock Interface	55.40	65.40	10	601.23	598.50	543.10	533.10	924146.56	573356.27
MW-4R	4/28/2009	2	PVC	20.0	Overburden	8.00	20.00	12	630.18	628.32	620.32	608.32	924517.53	574451.28
MW-5	1/12/1990	2	PVC	13.0	Overburden	4.95	12.95	8	595.79	593.25	588.30	580.30	925199.82	574409.07
MW-6	2/11/2000	2	PVC	17.0	Overburden	7.00	17.00	10	641.57	639.52	632.52	622.52	924644.22	573917.33
MW-7	2/29/2000	2	PVC	14.5	Overburden	4.50	14.50	10	593.24	591.21	586.71	576.71	924857.86	573483.64
MW-8	2/17/2000	2	PVC	21.5	Overburden	11.50	21.50	10	626.35	624.07	612.57	602.57	924226.04	574440.18
MW-11	3/2/2000	2	PVC	19.5	Overburden	9.50	19.50	10	604.81	602.89	593.39	583.39	924603.52	573292.26
MW-13	3/2/2000	2	PVC	16.0	Overburden	6.00	16.00	10	639.79	637.55	631.55	621.55	924615.08	574199.46

Notes

AMSL

feet bgs : feet below ground surface

: above mean sea level

PVC : polyvinyl chloride

APPENDIX B

DATE: Wednesday, May 15, 2019

REPORT NO. 20190515

PAGE NO. 1 OF 2

PROJECT NO. 320919.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

PROJECT	Mayer Land	fill		WEATHER	TIME	TEMP.	PRECIP.	WIND (MPH)	WIND (DIR)
LOCATION	Blooming Gr	rove, New	York	Clear	0900	60°F	None	0-5	ENE
ATTACHMENTS	Photo Log, I	Drum loca	tion figure	Partly Cloudy	1400	70°F	None	0-5	ENE
SITE CONDITION	S: Wet					·	•	•	
WORK GOAL FOI	R DAY: Site in	spection a	and groundwa	ter sampling					
			PERSO	NNEL ON SIT	'E:				
N	AME			AFFILIATION		ARRI	VAL TIME	DEPAR	RT TIME
Steve Johansson			TRC Engineer	s, Inc.		07:30		19:00	
Nate Peterson			TRC Engineer	s, Inc.		07:30		19:00	
Nate Kranes			TRC Engineer	s, Inc.		10:00		18:00	
Robert Strang			NYSDEC			10:00		14:00	
			EQUIP	MENT ON SIT	'E:				
ТҮРЕ			MODEL		TYPE	C		MODEI	1
PID		MiniRAE	3000						
Peristaltic Pump		Geotech							
Oil/Water Interface Prob	e	Heron							
YSI X 2		YSI Pro D	SS						
Bladder Pump		QED Samj	ple Pro						
			HEAL	TH & SAFETY	:				
PPE REQUIRED:		EVEL D	LEVEL	C LEVE	EL B	LEVEL A		HASP? YE	ES
SITE SAFETY OFFI	CER: Ryan Jor	rey							
H & S NOTES: Site v	vork performed	in Level D	PPE						

DATE: Wednesday, May 15, 2019 REPORT NO. 20190515 PAGE NO. 2 OF 2 PROJECT NO. 320919.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) met with the New York State Department of Environmental Conservation (NYSDEC) to conduct an annual site inspection and groundwater sampling event of the Mayer Landfill Site (Site) located off Prospect Road, in the Town of Blooming Grove, NY on May 15, 2019. The objective of the site inspection was to document the general site conditions, evaluate the condition of the groundwater monitoring wells and conduct a drum survey to document the location of drums found on-site.

During the site inspection and groundwater monitoring well gauging and sampling event, TRC was able to locate all fourteen monitoring wells (MW-11, BR-7, MW-4R, MW-4DR, BR-3, BR-5, BR-6, MW-13, MW-8, MW-6, MW-7, MW-7D, MW-2 and MW-5). Monitoring wells MW-11, BR-7, BR-5, BR-6, MW-13, MW-6, MW-7D, MW-2 and MW-5 were difficult to locate because they were either set far back into the dense woods or surrounded by overgrowth and heavy vegetation. All wells (and paths to the wells) were flagged with orange survey tape. The wells appear to be generally in good shape. Some wells had broken, or missing wells plugs that were replaced while on-site. TRC determined that MW-4R was not able to be sampled due to a large amount of NAPL discovered in the well (see photo log). All the locks on the protective casings were rusted shut and were cut from the casings and replaced with new Master Lock[®] with key code 2537.

The soil cover on the northeast portion of the landfill which covers the area excavated during the remedial action was in good condition. Vegetation was well established with grasses and other primary growth. The remaining portion of the landfill was also well vegetated with mostly grassy area on the upper, flat portion of the landfill, and dense tree stands and shrubs on the lower, sloping portions of the landfill. One seep was noted during the inspection on the lower portion of the eastern berm, adjacent to the stream and in proximity to MW-2 (see photo log).

A drum survey was also conducted while completing the site inspection. Seven (7) drums were located on-site. Please see attached PDF for locations of drums found on-site. The condition of most of the drums found on-site were rusted and very degraded. The drums appear to be empty and were colocated in areas where there are also piles of scrap metal. One drum located near MW-4DR did appear to contain material, which is most likely soil cuttings associated with the installation of MW-4DR, although the drum could not be opened to determine the contents.

TRC conducted a groundwater gauging event of all fourteen wells. Following the gauging event, TRC collected groundwater samples from thirteen of the fourteen wells utilizing USEPA low-flow sampling methods. Monitoring well MW-4R was not sampled due to the viscous NAPL that prevented the tubing from reaching the screened section of the well and also plugged the end of the sample tubing.

After completing the groundwater sampling on May 17, 2019, TRC demobilized from the site and submitted the samples to Test America Laboratories. Thirteen groundwater samples were submitted for analysis using EPA method 8260 for Target Compound List (TCL) volatile organic compounds (VOCs) plus 10 Tentatively Identified Compounds (TICs), EPA method 8270 for TCL semivolatile organic compounds (SVOCs) plus 20 TICs, EPA method 8081 for TCL pesticides, EPA method 8082 for TCL polychlorinated biphenyl (PCBs), EPA method 6010 for Target Analyte List (TAL) metals and EPA method 7470 for mercury. Four groundwater samples were submitted for analysis using EPA method 8270 SIM for 1, 4-dioxane and EPA method 537 modified for full TAL PFAS.

PRINT NAME: Steve Johansson	PRINT NAME: Nate Kranes

NYSDEC Mayer Landfill Photograph Log Date: May 15, 2019

Photo 1: Looking southeast. View of the site entry gate.

Photo 2: Looking east. View of MW-08.

Photo 3: Looking southeast. View of drums and other debris found onsite.

Photo 4: Looking south. View of product found on tubing placed into MW-4R.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Steve Johansson	1 of 2	NYSDEC	Mayer Landfill Blooming Grove, NY	

NYSDEC Mayer Landfill Photograph Log Date: May 15, 2019

Photo 5: Looking east at well BR-3. Locks on all wells were rusted closed and needed to be cut and replaced. New locks are Master Lock[®] with key code 2537.

Photo 6: View of well MW-7. Artesian conditions noted in well and staining on casing due to artesian flow out of monitoring well.

Photo 7: Looking east. View of seep on eastern berm of site draining into creek.

Photo 7: Full drum near MW-4BR. Contents most likely soil cuttings from nearby monitoring well.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Steve Johansson	2 of 2	NYSDEC	Mayer Landfill Blooming Grove, NY	STRC

APPENDIX C

_			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	ent Portfolio	LO	CATION ID	D	DATE		
	PROJECT NUMB	BER	220010 0000 0000 Pl		ST	ART TIME	E	5/16/2 END TIME	019	
	SAMPLE ID		320919.0000.0000, Ph	ase 4 PLE TIME	SU	14:00 TE NAME/NUMBER	2 P	14:5 PAGE	5	
		ML-BF	-3	14:55	N	layer Landill Site (Site	e No. 336027)	1 OF	1	
WELL DIAN	METER (INCHES)		2 4	6	8 X	OTHER 3" Dia.: H	Bedrock - Open he	ole		WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING	
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			LOCKED COLLAR	= $=$ $=$
INITIAL D	DTW 10).53	FINAL DTW	12.63	PR	OT. CASING		TOC/TOR		
(BMP)		FT	(BMP)		FT ST	ICKUP (AGS)		FI DIFFERENCI		FT
(BMP)	PTH 62	2.00 FT	LENGTH	20	FT AN	FT AMBIENT AIR		PPM	SETTING	10 SEC
WATER COLUMN	51	1.47 FT	DRAWDOWN VOLUME	0.77	GAL M) WELL	0	PPM	DISCHARGE	5 SEC
CALCULA	TED		(final DTW - initial D TOTAL VOL.	TW X well diam. so	uared X 0.041)	AWDOWN/		1111	PRESSURE	
GAL/VOL (column X	18.9 well diameter square	9 GAL d X 0.041)	PURGED (mL per minute X tota	2.93 al minutes X 0.0002	GAL TO 6 gal/mL)	TAL PURGED	2.10		TO PUMP	40 PSI
FIELD PAR	AMETERS WITH	PROGRAM STAL	BILIZATION CRITER	AND CONDUCTAN	N THE QAPP)	1	T		DIIMD	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (n (+/- 10% <10 n	tu) REDOX (mv) tu) (+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
1400	BEGIN PURC	GING							()	
1410	11.69	250	10.3	0.537	8.17	1.76	87.5	80.7		
1420	12.08	250	10.2	0.537	8.07	1.26	108.5	76.3		
1430	12.33	250	10.3	0.538	8.03	0.98	87.3	59.7		
1435	12.45	250	10.3	0.537	8.02	0.88	72.1	52		
1440	12.51	250	10.5	0.538	8.01	0.82	63.6	45.6		
1445	12.56	250	10.4	0.538	8	0.85	62.3	41.2		
1450	12.6	250	10.4	0.538	8	0.81	63.6	38.9		
1455	12.63	250	10.4	0.539	7.99	0.78	61.9	36.7		
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sigr	ificant figures[SI	7D		TEMP.: nearest deg COND.: 3 SF max (pH: nearest tenth (et	ree (ex. 10.1 = 10) ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5)
			10.4	0.539	7.99	0.78	61.9	36.7	DO: nearest tenth (e TURB: 3 SF max, n ORP: 2 SF (44.1 =	x. 3.51 = 3.5) earest tenth (6.19 = 6.2, 101 = 101) 44, 101 = 190)
EQUIPMENT	DOCUMENTATIO	N	ECON ELUIDS USED		TURING	UMP/BLADDER MAT	EDIALS			FOURMENT USED
PERIST	FALTIC ERSIBLE		IQUINOX EIONIZED WATER	SILICON	N TUBING N TUBING	S. STEE PVC PU	EL PUMP MATERI MP MATERIAL	AL	WL MET PID	ER
BLADI	DER	I I	OTABLE WATER	TEFLON HDPE T	I LINED TUBING UBING	GEOPR TEFLO	OBE SCREEN N BLADDER		WQ MET TURB. M	ER
WATTI OTHER	ERA R	H N	IEXANE IETHANOL	LDPE T OTHER	UBING	OTHER			PUMP OTHER	
OTHEF	AL PARAMETERS	[0	OTHER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAME	ETER	METHOD NUMBER	FIELI FILTER	D PRESE ED ME	RVATION VO THOD RE	DLUME QUIRED C	SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	TCL PCBs		8082A	No	None		<u> </u>	Yes	No	
x x	TCL Pesticides	FICs	8270D	No	None			Yes	No	
x	TAL Metals		6010C, 7470A	No	HNO3			Yes	No	
Х	TCL VOCs + 10 TI	ICs	8260C	No N-	HCl			Yes	No	
	1,4-dioxane	mpounds)	8270D SIM	No	None			No	No	
PURGE OB	PURGE OBSERVATIONS SKETCH/NOTES									
PURGE WAT	RIZED	s NO X	NUMBER OF GALLO GENERATED	JNS 2.	93					
NO-PURGE	METHOD YE	S NO	If yes, purged approximate to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Sampler Sign	ature:		Print Name:							
Checked By:			Date:							
	TR							LOW FI	OW GROUN	DWATER SAMPLING RECORD
	11/1								10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	FER SAMPI	LING REC	CORD		
	PROJECT NAME	NVSDEC	WA45 Site Manageme	nt Doutfulin	LO	CATION ID	D	ATE		
	BRO IFCT NUME	NISDEC	wA45 - Site Manageme	nit Fortiono	CT.	BR-5	F	5/16/2	019	
	FROJECT NUME)LK	320919.0000.0000, Ph	ase 4	517	15:55	E	16:5	5	
	SAMPLE ID	ML-BR	-5 SAM	PLE TIME	SIT	E NAME/NUMBER	P	AGE	,	
				16:55	M	ayer Landill Site (Site	e No. 336027)	1 OF	1	WELL INTECDITY
WELL DIAN	METER (INCHES)	1	2 4	6	8 X	OTHER 3" Dia.: H	Bedrock - Open ho	ble	<i></i>	YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING	<u>x</u>
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			LOCKED COLLAR	
INITIAL D	DTW .		FINAL DTW		PRO	DT. CASING			TOC/TOR	
(BMP)	48	8.08 FT	(BMP)	56.91	FT STI	CKUP (AGS)	1.54	FT	DIFFERENCE	1 FT
WELL DE (BMP)	РТН 91	1.95 FT	SCREEN LENGTH	20	PID FT AM	BIENT AIR		PPM	REFILL TIME SETTING	ER 10 SEC
WATER COLUMN	43	3.87 FT	DRAWDOWN VOLUME	3.26	GAL MO	WELL UTH	0	PPM	DISCHARGE TIMER SETT	ING 5 SEC
CALCULA	TED 16.1	9	(final DTW - initial D TOTAL VOL.	TW X well diam. sq	uared X 0.041) DR	AWDOWN/	8 83		PRESSURE	65
GAL/VOL (column X)	well diameter square	GAL d X 0.041)	PURGED (mL per minute X tota	1 minutes X 0.0002	GAL TO 6 gal/mL)	FAL PURGED	0.05		TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STAF	BILIZATION CRITER	IA (AS LISTED IN	THE QAPP)			1		
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft	PURGE RATE	TEMP. (°C)	SP. CONDUCTAN (mS/cm)	CE pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (n $(\pm/2)$ 10% ≤ 10 pt	tu) REDOX (mv) ($\pm/-10$ mv)	PUMP INTAKE	COMMENTS
1555	Drawdown BECIN BUDA	CINC	(1/- 5 degrees)	(+/- 3%)	(17- 0.1 units)	(1/- 10/0)	(17-10/0 410 1	(17-10 mV)	DEPTH (ft)	
1000	DEGIN PURC									[
1605	50.35	250	11.2	0.509	9.2	1.27	39.7	58.3		
1615	52.15	250	11.1	0.425	9.75	1.91	21.9	50.2		
1625	54.08	250	11	0.388	10.16	2.65	22.2	61.3		
1630	54.82	250	11	0.382	10.25	2.87	24.1	64.6		
1635	55.46	250	10.9	0.377	10.3	3.06	21.6	67.2		
1640	56.14	250	10.9	0.376	10 33	3.26	23.3	70		
1010	50.11	250	10.0	0.375	10.05	3.20	20.0	70.0		
1645	56.62	250	10.9	0.375	10.35	3.42	24.9	70.9		
1650	56.81	250	10.9	0.376	10.35	3.48	25.3	71.3		
1655	56.91	250	10.8	0.377	10.31	3.44	24.7	70.6		
					_					
	F	INAL STABILI	ZED FIELD PARA	METERS (to a)	nnronriate sign	ificant figures[SI	т. Ф	I	TEMP.: nearest deg COND.: 3 SF max (rec (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
									pH: nearest tenth (er DO: nearest tenth (er	s. 5.53 = 5.5) (x. 3.51 = 3.5)
FOURMENT	DOCUMENTATI	ON .	10.8	0.377	10.31	3.44	24.7	70.6	TURB: 3 SF max, n ORP: 2 SF (44.1 = 4	.earest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
EQUIPMENT	TYPE OF PUMP	UN <u>I</u>	ECON FLUIDS USED		TUBING/P	UMP/BLADDER MAT	ERIALS			EQUIPMENT USED
PERIST SUBMI	FALTIC ERSIBLE		IQUINOX EIONIZED WATER	SILICON TEFLON	I TUBING I TUBING	S. STEE PVC PU	EL PUMP MATERL MP MATERIAL	AL	WL MET PID	ER
BLADI	DER	P	OTABLE WATER	TEFLON HDPF T	I LINED TUBING UBING	GEOPR TEFL O	OBE SCREEN N BLADDER		WQ MET TURB M	TER
WATTI	ERA	H	EXANE	LDPE TU	JBING	OTHER	BLADDER		PUMP	
OTHER	R		THER	OTHER		OTHER			FILTERS	NO. TYPE
ANALYTIC.	AL PARAMETERS	S	METHOD	FIELD	PRESER	VATION VO	DLUME	SAMPLE	QC	SAMPLE BOTTLE ID
	TCI PCP	LIER	NUMBER	FILTER	ED MET	THOD RE	QUIRED C	OLLECTED	COLLECTED	NUMBERS
X	TCL PCBs		8081B	No	None		<u> </u>	/es	No	
x	TCL SVOCs + 20	ГICs	8270D	No	None		<u> </u>	les	No	
x	TAL Metals		6010C, 7470A	No	HNO3		<u> </u>	(es	No	·
х	TCL VOCs + 10 T	ICs	8260C	No	HC1		1	í es	No	·
IЦ	PFAS (list of 21 co	mpounds)	537 Modified	No	None		1	No	No	
	1,4-dioxane		8270D SIM	No	None		1	No	No	<u> </u>
PURGE OBS	PURGE WATER VES NO NUMBER OF GALLONS SKETCH/NOTES									
CONTAINER	RIZED	X	GENERATED	- 3.2	25					
NO-PURGE I UTILIZED	METHOD YE	S NO	If yes, purged approximate to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Sampler Sign	nature:		Print Name:							
Chu tu 1 D			D :							
Checked By:		_	Date:							
< >]	TR(LOW FL	OW GROUN	DWATER SAMPLING RECORD
									10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	CORD		
	PROJECT NAME	NVSDEC	WAAS Site Management	nt Dantfalia	LO	CATION ID	I	DATE		
	PROJECT NUMP	NI SDEC	wA45 - She Manageme	nit Fortiono	CT	BR-6	T	5/16/2	019	
	FROJECT NUMB	ER	320919.0000.0000, Ph	ase 4	51	18:05	r	19:0	0	
	SAMPLE ID	ML-BR	-6 SAM	PLE TIME	SIT	TE NAME/NUMBER	R F	PAGE	,	
				19:00	N	layer Landili Site (Site	e No. 336027)	1 OF	1	WELL INTEGRITY
WELL DIAN	METER (INCHES)	1	2 4	6	8 X	OTHER 3" Dia.: E	Bedrock - Open h	ole	CAR	YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP	<u>X</u>
MEASUREN	MENT POINT (MP)	TOP O	FRISER (TOR)	TOP OF CAS	ING (TOC)	OTHER			LOCKED COLLAR	
INITIAL D	otw 20	. (9	FINAL DTW	48.0	PROT. CASING		1.40		TOC/TOR	
(BMP)	35	9.08 FT	(BMP)	48.9	FT ST	ICKUP (AGS)	1.49	FT	DIFFERENCE	FT
WELL DE (BMP)	PTH 85	5.92 FT	SCREEN LENGTH	20	FT AN) IBIENT AIR		PPM	REFILL TIME SETTING	ER 10 SEC
WATER COLUMN	46	5.24 FT	DRAWDOWN VOLUME	3.40	GAL MO	D WELL DUTH	0	PPM	DISCHARGE TIMER SETT	ING 5 SEC
CALCULA	TED 17.0	6	(final DTW - initial D TOTAL VOL.	TW X well diam. so	uared X 0.041) DR	AWDOWN/	0.22		PRESSURE	65
GAL/VOL (column X)	well diameter square	GAL d X 0.041)	PURGED (mL per minute X tota	al minutes X 0.0002	GAL TO 6 gal/mL)	TAL PURGED	9.22		TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STAE	ILIZATION CRITER	ATA (AS LISTED IN SP. CONDUCTAN	N THE QAPP)	1	1		PUMP	
TIME 3-5 Minutes	0.0-0.33 ft	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm)	pH (units) (+/- 0.1 units	DISS. O ₂ (mg/L)) (+/- 10%)	TURBIDITY (n (+/- 10% <10 n	tu) REDOX (mv) (+/- 10 mv)	INTAKE	COMMENTS
1805	BEGIN PURC	GING		(+/- 376)					DEFTH (II)	<u> </u>
1815	42.14	250	10.7	1 778	12.93	3 73	6.8	22.3		
1015	44.00	250	10.7	1.001	12.55	5.15	0.0	22.5		
1825	44.33	250	10.6	1.801	13.1	3.65	6.6	8.8		
1835	46.35	250	10.6	1.752	13.16	3.51	8.2	7.8		
1840	47.45	250	10.5	1.737	13.18	3.46	8.3	9.1		
1845	48	250	10.5	1.674	13.17	3.38	10.3	10.5		
1850	48.7	250	10.5	1.622	13.17	3.26	13	12.4		
1855	48.8	250	10.6	1.616	13.17	3.25	14.1	13.7		
1900	48.9	250	10.6	1.61	13.17	3.25	14.2	13.0		
1900	46.9	230	10.0	1.01	13.17	5.25	14.2	15.9		
								_		
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sigr	ificant figures[SF	FD		TEMP.: nearest deg COND.: 3 SF max (pH: nearest tenth (m	rec (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			10.6	1.61	13.17	3.25	14.2	13.9	DO: nearest tenth (e TURB: 3 SF max, n	x. 3.51 = 3.5) hearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	ON							ORP: 2 SF (44.1 =	44, 191 = 190)
DEDICT	TYPE OF PUMP		ECON FLUIDS USED	SILICON	TUBING/F	UMP/BLADDER MAT	ERIALS	IAT.	WI MET	EQUIPMENT USED
SUBMI	ERSIBLE		EIONIZED WATER	TEFLON	TUBING	PVC PU	MP MATERIAL	ine.	PID WO MET	
BLADI	JER	P N	ITRIC ACID	HDPE T	UBING	TEFLO	N BLADDER		TURB. M	IETER
OTHER	ERA R	H	EXANE IETHANOL	OTHER	UBING	OTHER			PUMP OTHER	
OTHER	AL PARAMETERS		THER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAMI	ETER	METHOD NUMBER	FIELI FILTER	D PRESE	RVATION VO	OLUME OUIRED (SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	TCL PCBs		8082A	No	None			Yes	No	
х	TCL Pesticides		8081B	No	None			Yes	No	·
х	TCL SVOCs + 20 T	TICs	8270D	No	None			Yes	No	
X	TAL Metals		6010C, 7470A	No	HNO3			Yes	No	
X	PEAS (list of 21	mounde)	8260C	No	HCl			r es	No	
	1,4-dioxane	poundo)	8270D SIM		None			No	No	·
PURGE OBS	SERVATIONS				s	KETCH/NOTES		<u> </u>		· · · · · · · · · · · · · · · · · · ·
PURGE WAT	TER YE	s NO	NUMBER OF GALL	DNS 2.9	93					
NO-PURGE I	METHOD YES	s NO	If yes, purged approximation	tely 1 standing volum	e prior					
UTILIZED			to sampling or	mL for this sample	location.					
			n							
Sampler Sign	ature:		Print Name:							
Checked By:			Date:							
	TD							I OW FI	OW CROUN	NDWATER SAMPLING DECORD
	111							10 11	10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	ATER SAMPI	LING REC	ORD		
	PROJECT NAME	WODEC	WA 45 C'A M	D (C)	L	OCATION ID	D	ATE		
	PRO JECT NUMP	FD	wA45 - She Manageme	nt Portiolio	6 7	BR-7	F	5/15/2	019	
	FROJECT NUMB	LK	320919.0000.0000, Ph	ase 4	5.	12:30	Ŀ	14:0	00	
	SAMPLE ID	ML-BR	-7 SAM	PLE TIME	SI	TE NAME/NUMBER	R P.	AGE	,	
				14:00	Ľ	wayer Landin Site (Sit	e No. 550027)	1 OF	1	WELL INTEGRITY
WELL DIAN	METER (INCHES)	1	2 4	6	8 X	OTHER 3" Dia.: I	Bedrock - Open ho	ble	CAD	YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP	<u>X</u>
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			LOCKED COLLAR	
INITIAL D	otw o	26	FINAL DTW	21.41	PI	ROT. CASING	1.25		TOC/TOR	
(BMP)	0	50 FT	(BMP)	21.41	FT ST	FICKUP (AGS)	1.55	FT	DIFFERENCE	FT
WELL DEI (BMP)	PTH 4	4.4 FT	SCREEN LENGTH	20	FT A	ID MRIENT AIR		PPM	REFILL TIMI	2R 10 SEC
WATED			DRAWDOWN			ID WELL			DISCUARCE	510
COLUMN	36	.04 FT	VOLUME	4.82	GAL M	IOUTH	0.0	PPM	TIMER SETT	ING 5 SEC
CALCULA	13.3 ISAN 13.3	0	TOTAL VOL.	7.8	D	RAWDOWN/	13.05		PRESSURE	35
GAL/VOL (column X v	well diameter squared	GAL 1 X 0.041)	PURGED (mL per minute X tota	1 minutes X 0.0002	GAL TO 6 gal/mL)	OTAL PURGED			TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STAE	ILIZATION CRITER	IA (AS LISTED I	N THE QAPP)				DUMD	
TIME 3-5 Minutes	0.0-0.33 ft	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm)	pH (units) (+/- 0.1 unit	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt (+/- 10% <10 nt	tu) REDOX (mv) tu) (+/- 10 mv)	INTAKE	COMMENTS
1230	BEGIN PURC	SING		(+/- 3%)				· · · ·	DEPTH (#)	
1240	12 30	250	10.1	0.228	97	2.07	4.2	81.2		
1240	12.59	250	10.1	0.228	8./	2.9/	4.5	01.2		
1250	13.55	200	10	0.215	8.42	3.32	4.8	105.4		
1300	15.1	200	9.9	0.21	8.19	3.43	5.3	128.7		
1305	15.64	200	9.9	0.21	8.13	3.42	6.2	135.6		
1310	16.21	200	9.9	0.209	8.08	3.42	6.9	142.3		
1315	16.86	200	10	0.208	8.02	3.4	7.7	148.6	ł	
1320	17.28	200	10	0.208	7 99	3.4	86	154.5		
1326	17.00	200	10	0.200	7.05	2.27	0.0	101.0		
1325	17.96	200	10	0.207	7.95	3.37	9	162.2		
1330	18.45	200	10.1	0.205	7.9	3.37	9.4	166.6		
1335	18.76	200	10.1	0.204	7.88	3.37	9.3	169.2		
1340	19.04	200	10.2	0.203	7.85	3.37	9.9	174.4		
1345	19.43	200	10.1	0.202	7.83	3.36	10.1	176.3		
1350	19.77	200	10.2	0.201	7.8	3.34	10.6	181.3		
1355	21.18	200	10.2	0.2	7 77	3 31	11.2	186.2		
1355	21.10	200	1012	0.100		2.21		100.2		
1400	21.41	200	102	0.199	7.75	3.31	11.4	190.3		
						_		_		
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sig	nificant figures[SI	F])		COND.: 3 SF max (pH: nearest tenth (c)	ree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5)
			102	0.199	7.75	3.31	11.4	190.3	DO: nearest tenth (e TURB: 3 SF max, n	x. 3.51 = 3.5) searest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	DN							ORP: 2 SF (44.1 =	44, 191 = 190)
PERIST	TYPE OF PUMP		ECON FLUIDS USED	SILICO	<u>TUBING</u>	PUMP/BLADDER MAT	<u>ERIALS</u> EL PUMP MATERIA	Δĭ	WI MET	EQUIPMENT USED
SUBME	ERSIBLE	D	EIONIZED WATER	TEFLO	N TUBING	PVC PL	JMP MATERIAL	-	PID WO MET	TED
WATT	ED A		ITRIC ACID	HDPE T	UBING	TEFLO	N BLADDER		TURB. N	IETER
OTHER	EKA R	H N	IEXANE IETHANOL	OTHER	UBING	OTHER			OTHER	
ANALYTIC	AL PARAMETERS	0	THER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAME	TER	METHOD NUMBER	FIELI FILTER	D PRESI ED M	ERVATION V ETHOD RE	OLUME QUIRED C	SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	TCL PCBs		8082A	No	None		Y	/es	No	
х	TCL Pesticides		8081B	No	None		Y	/es	No	
x	TCL SVOCs + 20 T	ïCs	8270D	No	None		Y	/es	No	
X	TAL Metals	C.	6010C, 7470A	No	HNO3		<u> </u>	(es	No	
	PFAS (list of 21 cor	npounds)	537 Modified	No	None		¥	No	No	·
	1,4-dioxane	/	8270D SIM	No	None		1	No	No	
PURGE OBS	PURGE OBSERVATIONS SKETCH/NOTES									
PURGE WAT	TER YES	NO X	NUMBER OF GALLO	ONS 7	.8					
NO-PURGE	METHOD YES	S NO	If yes, purged approxima	tely 1 standing volum	e prior					
UTILIZED			to sampling or	mL for this sample	location.					
Sec. 1. Cl			Deine M.							
Sampler Sign	iature:		rint Name:							
Checked By:			Date:							
	T)							LOW FI	OW GROUN	NDWATER SAMPLING RECORD
								20071	10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	ATER SAMPI	LING REO	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	nt Portfolio	L	OCATION ID	1	DATE		
	PROJECT NUMB	ER	220010 0000 0000 Pl		S	TART TIME	1	5/15/2 END TIME	019	
	SAMPLE ID		320919.0000.0000, Ph	ase 4 PLE TIME	s	15:05 TE NAME/NUMBER	2 1	15:4 PAGE	15	
		ML-MV	V-2	15:45	1	Mayer Landill Site (Site	e No. 336027)	1 OF	1	
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING	
MEASUREM	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER				
INITIAL D	DTW 1.	25	FINAL DTW	2.4	Р	ROT. CASING	2.73		TOC/TOR	
(BMP)		FI	(BMP)		FT S	FICKUP (AGS)		FT	DIFFERENCE	FT
(BMP)	6	5.4 FT	LENGTH	10	FT A	ID MBIENT AIR		PPM	SETTING	10 SEC
WATER COLUMN	64	.15 FT	DRAWDOWN VOLUME	2.20	GAL M	ID WELL IOUTH		PPM	DISCHARGE TIMER SETT	ING 5 SEC
CALCULA	ATED 10.5		(final DTW - initial D TOTAL VOL.	TW X well diam. so	uared X 0.041)	RAWDOWN/	116		PRESSURE	25
GAL/VOL (column X	well diameter squared	GAL X 0.041)	PURGED (mL per minute X tota	1.95 al minutes X 0.0002	GAL T 6 gal/mL)	OTAL PURGED	1.15		то римр	35 PSI
FIELD PAR	AMETERS WITH I	ROGRAM STAL	BILIZATION CRITER	IA (AS LISTED I	THE QAPP)		ſ		DUMD	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 unit	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (1 (+/- 10% <10 r	ntu) REDOX (mv ntu) (+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
1505	BEGIN PURC	SING		(1.615)						
1515	2.09	250	10.5	0.335	8.05	1.23	14.9	19.5		
1525	2.26	250	10.4	0.336	8.04	1.32	13.2	14.9		
1535	2.31	250	10.3	0.336	8.05	1.41	12.9	24.6		
1540	2.36	250	10.3	0.336	8.06	1.43	14	29		
1545	2.4	250	10.3	0.336	8.06	1.45	13.8	32.6		
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sig	nificant figures[SI	FD		TEMP.: nearest deg COND.: 3 SF max (pH: nearest tenth (es	ree (ex. 10.1 = 10) ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5)
			10.3	0.336	8.06	1.45	13.8	32.6	DO: nearest tenth (c TURB: 3 SF max, n ORP: 2 SF (44.1 =	x. 3.51 = 3.5) earest tenth (6.19 = 6.2, 101 = 101) 44, 101 = 190)
EQUIPMENT	DOCUMENTATIC)N	ECON ELUIDS USED		TURING	PUMP/BLADDER MAT	EDIALS	•		FOURMENT USED
PERIST	FALTIC ERSIBLE		IQUINOX DEIONIZED WATER	SILICON	TUBING	S. STEE PVC PU	EL PUMP MATER MP MATERIAL	IAL	WL MET PID	ER
BLADI	DER	P N	OTABLE WATER	TEFLON HDPE T	I LINED TUBING UBING	GEOPR TEFLO	OBE SCREEN N BLADDER		WQ MET TURB. M	ER
WATTI OTHER	ERA R	H N	IEXANE IETHANOL	LDPE T OTHER	UBING	OTHER			PUMP OTHER	
OTHEF	R		OTHER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAME	TER	METHOD NUMBER	FIELI FILTER	D PRESI ED M	ERVATION VO ETHOD RE	OLUME QUIRED (SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	TCL PCBs		8082A	No	None		·	Yes	No	
x x	TCL Pesticides	ICs	8270D	No	None		<u> </u>	Yes	No	
x	TAL Metals		6010C, 7470A	No	HNO3			Yes	No	
Х	TCL VOCs + 10 TI	Cs	8260C	No N-	HCl			Yes	No	
	1,4-dioxane	apounds)	8270D SIM	No	None			No	No	· · · · · · · · · · · · · · · · · · ·
PURGE OB	PURGE OBSERVATIONS SKETCH/NOTES									
PURGE WAT	RIZED	NO X	NUMBER OF GALLO GENERATED	JNS 1.	95					
NO-PURGE	METHOD YES	NO	If yes, purged approximate to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Sampler Sign	nature:		Print Name:							
Checked By:			Date:							
	TR							LOW FI	OW GROUN	DWATER SAMPLING RECORD
	11/								10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	ORD		
	PROJECT NAME	NVSDEC	WA45 - Site Manageme	ent Portfolio	LO	CATION ID	D	ATE		
	PROJECT NUMB	FR	WH45 - She Manageni		ST	MW-4DR	E	5/16/2 ND TIME	019	
	I ROJECT NUME	EK	320919.0000.0000, Ph	ase 4	31	11:30	151	12:2	15	
	SAMPLE ID	ML-MW-	4DR	PLE TIME	SIT	FE NAME/NUMBEF	R P/	AGE	1	
				12:20		aliyer Landin Dite (Dit	110.00027)	1 01		WELL INTEGRITY
WELL DIAN	METER (INCHES)	1	2 4	6	8 X	OTHER 3" Dia.			CAP	YES NO N/A X
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER	X			
MEASUREN	MENT POINT (MP)	TOP OF	FRISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER		COLLAR		
INITIAL D	24 DTW	1.65 pt	FINAL DTW	25.93	PR	OT. CASING			TOC/TOR	
(BMF)		FI				ICKUP (AGS)				
(BMP)	PTH 75	5.90 FT	SCREEN LENGTH	20	FT AN) 1BIENT AIR		PPM	SETTING	10 SEC
WATER	51	.25	DRAWDOWN	0.47	PII	O WELL	0		DISCHARGE	5
COLUMN		FT	VOLUME (final DTW - initial D	TW X well diam. so	GAL MO uared X 0.041)	DUTH		PPM	TIMER SETT	ING SEC
CALCULA GAL/VOL	18.9	1 GAL	TOTAL VOL. PURGED	2.93	GAL TO	AWDOWN/ TAL PURGED	1.28		PRESSURE TO PUMP	42 PSI
(column X v	well diameter square	d X 0.041)	(mL per minute X tota	al minutes X 0.0002	6 gal/mL)					
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTAN	CE pH (units)	DISS. O2 (mg/L)	TURBIDITY (nt	u) REDOX (mv)	PUMP	CONDUCTO
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units) (+/- 10%)	(+/- 10% <10 nt	u) (+/- 10 mv)	DEPTH (ft)	COMMENTS
1130	BEGIN PURC	GING	1						1	
1140	25.84	250	11.3	0.449	8.13	0.59	515	-20.9		
1150	25.9	250	11.3	0.449	8.07	0.49	188	-24.2		
1200	25.91	250	11.2	0.45	8.05	0.41	125	-18.8		
1205	25.91	250	11.3	0.452	8.04	0.39	99	-14.4		
1210	25.92	250	11.3	0.452	8.03	0.38	83.9	-12.6		
1215	25.92	250	11.4	0.453	8.03	0.37	78.8	-11.3		
1220	25.02	250		0.454	0.03	0.27	70.0	10.6		
1220	25.92	250	11.5	0.454	8.03	0.36	19.2	-10.6		
1225	25.93	250	11.3	0.454	8.03	0.36	81.1	-9.8		
				METERS (4					TEMP.: nearest deg	ree (ex. 10.1 = 10)
	FI	NAL STABILL	ZED FIELD PARA	METERS (to a)	ppropriate sigr	inficant figures[SI	(I)	-	pH: nearest tenth (e DO: nearest tenth (e	ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5) x. 3.51 = 3.5)
			11.3	0.454	8.03	0.36	81.1	-9.8	TURB: 3 SF max, n ORP: 2 SF (44.1 =	cearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
EQUIPMENT	TYPE OF PUMP	DN D	ECON FLUIDS USED		TUBING/F	UMP/BLADDER MAT	ERIALS			EQUIPMENT USED
PERIST SUBME	FALTIC ERSIBLE		IQUINOX EIONIZED WATER	SILICON TEFLON	TUBING TUBING	S. STEE PVC PU	EL PUMP MATERIA MP MATERIAL	AL.	WL MET PID	ER
BLADE	DER	P N	OTABLE WATER ITRIC ACID	TEFLON HDPE T	I LINED TUBING UBING	GEOPR	OBE SCREEN N BLADDER		WQ MET TURB. M	ER IETER
WATTE	ERA R	H	EXANE IETHANOL	LDPE TU OTHER	JBING	OTHER			PUMP OTHER	
OTHER	R	o	THER	OTHER		OTHER			FILTERS	NO. TYPE
ANALYTIC	AL PARAMETERS PARAME	TER	METHOD	FIELD	PRESE	RVATION VO	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
x	TCL PCBs		8082A	No	None ME	HIOD RE	QUIKED CO	es	No	NUMBERS
х	TCL Pesticides		8081B	No	None		Y	es	No	
x	TCL SVOCs + 20 T	TICs	8270D	No	None		Y	es	No	_
x	TAL Metals	Cs	6010C, 7470A	No	HNO3	<u> </u>	Y	es	No	
x	PFAS (list of 21 con	mpounds)	537 Modified	No	None		<u> </u>	es	No	
х	1,4-dioxane	<u> </u>	8270D SIM	No	None		Y	es	No	
PURGE OBS	SERVATIONS				s	KETCH/NOTES				
PURGE WAT CONTAINER	IER YE	s NO X	NUMBER OF GALLO GENERATED	DNS 2.9	93					
NO-PURGE N UTILIZED	METHOD YE	S NO	If yes, purged approxima to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Sampler Sign	nature:		Print Name:							
Checked Du-			Data							
			Date.		I					
	IRC							LOW FI	LOW GROUN	MOWATER SAMPLING RECORD
									10 MaAW	,00, Chiton Faik, 141 12005

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REO	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	ent Portfolio	LO	DCATION ID MW-5	I	DATE 5/16/2	019	
	PROJECT NUMB	BER	320919.0000.0000, Ph	ase 4	ST	ART TIME	I	END TIME		
	SAMPLE ID	ML MV	SAM	PLE TIME	SI	14:00 TE NAME/NUMBER	t I	PAGE	50	
		WIL-WIV	-5	15:30	Ν	Mayer Landill Site (Site	e No. 336027)	1 OF	1	WELL INTECDITY
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER		<u> </u>	CAP	YES NO N/A X
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>x</u>
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER	<u> </u>		COLLAR	
INITIAL D (BMP)	2 2	.95 FT	FINAL DTW (BMP)	7.36	FT ST	ROT. CASING TCKUP (AGS)	2.54	FT	TOC/TOR DIFFERENCE	E FT
WELL DE (BMP)	РТН 1	3.2 FT	SCREEN LENGTH	8	FT AN	D MBIENT AIR		PPM	REFILL TIMI SETTING	ER
WATER COLUMN	10	0.25 FT	DRAWDOWN VOLUME	1.63	GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	3.78 3.78	3	(final DTW - initial D TOTAL VOL.	TW X well diam. so 4.16	puared X 0.041) DI	RAWDOWN/	4.41		PRESSURE	
GAL/VOL (column X)	well diameter square	GAL d X 0.041)	PURGED (mL per minute X tota	al minutes X 0.0002	GAL TO 6 gal/mL)	OTAL PURGED			TO PUMP	PSI
FIELD PAR. TIME	AMETERS WITH DTW (FT)	PROGRAM STAL	TEMP (°C)	SP. CONDUCTAN	N THE QAPP)	DISS. O2 (mg/L)	TURBIDITY (r	ntu) REDOX (my	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 unit	s) (+/- 10%)	(+/- 10% <10 m	ntu) (+/- 10 mv)	DEPTH (ft)	COMMENTS
1400	BEGIN PURC	GING	1			1	1			Γ
1410	5.25	200	10.4	0.259	7.57	0.57	9.9	41.5	12	Clear, no odor
1415	6.39	200	10.1	0.254	7.49	0.52	12.9	48.4	12	SAA
1420	6.79	200	10.5	0.25	7.48	0.87	9.4	53.3	12	SAA
1425	7.08	200	10.0	0.247	7.52	1.75	٥.1 ٥.2	58.0	12	SAA SAA
1430	7.25	200	10.9	0.247	7.52	2.03	10.3	65.8	12	SAA
1440	7.36	200	11.6	0.247	7.51	1.9	12.3	68.3	12	SAA
1445	7.36	200	11.7	0.248	7.51	1.89	12.2	71.3	12	SAA
1530	7.36	200	11.8	0.248	7.51	1.86	10.9	75.4	12	SAA
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sig	nificant figures[SF	7D		COND.: 3 SF max (pH: nearest tenth (e:	rec (ex. $10.1 = 10$) (ex. $3333 = 3330, 0.696 = 0.696$) x. $5.53 = 5.5$)
			11.8	0.248	7.51	1.86	10.9	75.4	DO: nearest tenth (e TURB: 3 SF max, n ORP: 2 SF (44.1 =	x. 3.51 = 3.5) searest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
EQUIPMENT	DOCUMENTATIO	ON I	ECON FLUIDS USED		TUBING/	PUMP/BLADDER MAT	ERIALS			EQUIPMENT USED
PERIST SUBMI	FALTIC ERSIBLE		IQUINOX EIONIZED WATER	SILICON TEFLON	N TUBING N TUBING	S. STEE PVC PU	L PUMP MATER	IAL	WL MET PID	ER
BLADI	JER EP A	P	UTABLE WATER ITRIC ACID	HDPE T	UBING	TEFLON	OBE SCREEN N BLADDER		TURB. M	IETER
OTHER	<u> </u>		IETHANOL OTHER	OTHER	OBING	OTHER			OTHER	NO. TYPE
ANALYTIC	AL PARAMETERS	S STEP	METHOD	FIELI	D PRESE	RVATION VO	DLUME	SAMPLE	QC	SAMPLE BOTTLE ID
x	PARAMI TCL PCBs	SIEK	NUMBER 8082A	FILTER No	ED MI None	ETHOD RE	QUIRED (COLLECTED Yes	COLLECTED No	NUMBERS
X	TCL Pesticides		8081B	No	None			Yes	No	·
X	TCL SVOCs + 20 T	FICs	8270D	No	None HNO2		·	Yes	No	
x	TCL VOCs + 10 TI	lCs	8260C	No	HCl		,	Yes	No	
X	PFAS (list of 21 con	mpounds)	537 Modified	No	None			Yes	No	·
X PURGE OBS	1,4-dioxane		8270D SIM	No	None	SKETCH/NOTES		Yes	No	
PURGE WAT	TER YE:	s no	NUMBER OF GALLO GENERATED	ONS 4.	16					
NO-PURGE I UTILIZED	METHOD YE:	s NO	If yes, purged approxima to sampling or	itely 1 standing volum mL for this sample	e prior location.					
	L	<u> </u>	1							
Sampler Sign	ature:		Print Name:							
Checked By:			Date:							
<u>.</u>	TD							LOW FI	LOW GROUN	VDWATER SAMPLING RECORD
	11/1								10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDW	ATER SAMPI	LING REO	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	ent Portfolio	L	OCATION ID	ľ	DATE	010	
	PROJECT NUMB	BER	320919 0000 0000 Pb	ase 4	s	TART TIME	J	END TIME	.019	
	SAMPLE ID		SAM	PLE TIME	s	14:35 ITE NAME/NUMBER	t 1	15:2 PAGE	20	
		ML-MV	V-6	15:20		Mayer Landill Site (Site	e No. 336027)	1 OF	1	
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER			CAR	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING LOCKED	$\frac{X}{X}$
MEASUREM	MENT POINT (MP)	TOP C	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			COLLAR	\equiv \equiv \equiv
INITIAL D (BMP)	7 7	.51 FT	FINAL DTW (BMP)	8.23	FT S	ROT. CASING FICKUP (AGS)	2.03	FT	TOC/TOR DIFFERENCE	FT
WELL DE (BMP)	РТН	17 FT	SCREEN LENGTH	10	P FT A	ID MBIENT AIR		PPM	REFILL TIMI SETTING	ER
WATER COLUMN	9	9.49 FT	DRAWDOWN VOLUME	0.12	GAL N	ID WELL IOUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	ATED 1.50	6	(final DTW - initial D TOTAL VOL.	TW X well diam. so	uared X 0.041) D	RAWDOWN/	0.72		PRESSURE	
GAL/VOL (column X	well diameter square	GAL d X 0.041)	PURGED (mL per minute X tota	al minutes X 0.0002	GAL T 6 gal/mL)	OTAL PURGED	0.72		TO PUMP	PSI
FIELD PAR	DTW (FT)	PROGRAM STA	BILIZATION CRITER	IA (AS LISTED I SP. CONDUCTAN	N THE QAPP)	DISS O (mg/I)		ntu) REDOX (mu	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 uni	ts) (+/- 10%)	(+/- 10% <10 r	ntu) (+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
1435	BEGIN PURC	GING					•			ſ
1450	8.23	250	10.5	0.089	5.94	7.2	2.3	164.6		Clear, no odor
1455	8.23	250	10.4	0.076	5.78	7.2	2.2	183.3		SAA
1500	8.23	250	10.3	0.069	5.71	7.26	2.4	191.3		SAA
1505	8.23	250	10.1	0.076	5.79	7.28	2.3	198.7		SAA
1510	8.23	250	10.2	0.075	5.78	7.17	2.1	204.3		SAA
1515	8.23	250	9.9	0.073	5.73	7.21	2.1	208.3		SAA
1520	8.23	250	9.9	0.075	5.73	7.24	2.1	212.6		SAA
					_					
	FI	INAL STABILI	ZED FIELD PARA	METERS (to a	nnronriata sic	mificant figures[SI			TEMP.: nearest deg	rec (ex. 10.1 = 10) (ex. 3333 = 3330 0.696 = 0.696)
	FI	INAL STABIL	2ED FIELD I AKA	0.075	ppropriate sig		21	212 (pH: nearest tenth (ep DO: nearest tenth (ep	x. 5.53 = 5.5) x. 3.51 = 3.5)
EQUIPMENT	DOCUMENTATIO	ON	9.9	0.075	5.75	7.24	2.1	212.0	ORP: 2 SF (44.1 = 4	44, 191 = 190)
PERIST	TYPE OF PUMP FALTIC		DECON FLUIDS USED IQUINOX	SILICON	<u>TUBING</u> N TUBING	PUMP/BLADDER MAT S. STEE	<u>ERIALS</u> EL PUMP MATER	IAL	WL MET	EQUIPMENT USED ER
SUBMI BLADI	ERSIBLE DER		DEIONIZED WATER OTABLE WATER	TEFLON	I TUBING I LINED TUBING	PVC PU GEOPR	MP MATERIAL OBE SCREEN		PID WQ MET	ER
WATTI	ERA		JITRIC ACID IEXANE	HDPE T LDPE T	UBING UBING	TEFLO	N BLADDER		TURB. M PUMP	ÆTER
OTHER	R		METHANOL OTHER	OTHER OTHER		OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC	AL PARAMETERS PARAME	ETER	METHOD	FIELI	D PRES	ERVATION VO	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
х	TCL PCBs		NUMBER 8082A	FILTER No	ED M None	ETHOD RE	QUIRED	COLLECTED Yes	COLLECTED No	NUMBERS
х	TCL Pesticides		8081B	No	None			Yes	No	
x	TCL SVOCs + 20 T	TICs	8270D	No	None		<u> </u>	Yes	No	
x x	I AL Metals TCL VOCs + 10 TI	ICs	6010C, 7470A 8260C	No	HNO3 HCl		<u> </u>	Yes	No	
	PFAS (list of 21 con	mpounds)	537 Modified	No	None		<u> </u>	No	No	
	1,4-dioxane		8270D SIM	No	None	<u> </u>		No	No	
PURGE OB	SERVATIONS TER YE:	<u>s</u> NO	NUMBER OF GALL	DNS		SKETCH/NOTES				
CONTAINED	RIZED	X NO	GENERATED	2.	95 e prior					
UTILIZED			to sampling or	mL for this sample	location.					
Sampler Sign	nature:		Print Name:							
Checked Bv:			Date:							
									ON 07	
								LOW FI	LOW GROUN 10 Maxwe	(DWATER SAMPLING RECORD ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	nt Portfolio	L	DCATION ID	I	DATE		
	PROJECT NUMB	ER			ST	MW-7 TART TIME	F	5/15/2 END TIME	019	
			320919.0000.0000, Ph	ase 4		10:55		11:2	15	
	SAMPLE ID	ML-MV	V-7	PLE TIME 11:25	SI 1	TE NAME/NUMBER Mayer Landill Site (Site	e No. 336027)	PAGE 1 OF	1	
			 							WELL INTEGRITY
WELL DIAN	METER (INCHES)			6	8	OTHER			CAP	YES NO N/A X
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>X</u>
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			COLLAR	
INITIAL D (BMP)	ЭТW	0 FT	FINAL DTW (BMP)	0	FT ST	ROT. CASING TICKUP (AGS)	2.03	FT	TOC/TOR DIFFERENCE	FT
WELL DE (BMP)	ртн 1	6.6 FT	SCREEN LENGTH	8	FT A	D MBIENT AIR		PPM	REFILL TIME SETTING	ER
WATER COLUMN	1	6.6 FT	DRAWDOWN VOLUME	0.00	GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA			(final DTW - initial D	TW X well diam. so	uared X 0.041)	RAWDOWN/			PRESSURE	
GAL/VOL (column X)	2.72 well diameter square	GAL	PURGED	2.34	GAL TO	DTAL PURGED	0		TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STAI	BILIZATION CRITER	IA (AS LISTED I	N THE QAPP)	-				
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTAN (mS/cm) (+/- 3%)	PH (units) (+/- 0.1 unit	DISS. O ₂ (mg/L) s) (+/- 10%)	TURBIDITY (n (+/- 10% <10 n	tu) REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
1055	BEGIN PURC	GING								
1110	0	300	8.9	0.503	6.98	0.27	1.6	45.6	16	
1115	0	300	9.2	0.503	6.96	0.01	2.8	43.2	16	
1120	0	300	9.4	0.502	6.96	-0.04	1.2	40.7	16	
1125	0	300	9.3	0.502	6.96	-0.06	2.2	38.6	16	
					_			_		
	F	NAL STADILI	ZED FIELD BADA	METEDS (4			20		TEMP.: nearest deg	ree (ex. 10.1 = 10)
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sig	nificant figures[SF	(I)		pH: nearest tenth (e) DO: nearest tenth (e)	ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5) x. 3.51 = 3.5)
			9.3	0.502	6.96	-0.06	2.2	38.6	TURB: 3 SF max, n ORP: 2 SF (44.1 =	earest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
EQUIPMENT	DOCUMENTATIC)N	ECON FLUIDS USED		TUBING/	PUMP/BLADDER MAT	ERIALS			EQUIPMENT USED
PERIST SUBMI	FALTIC ERSIBLE		IQUINOX DEIONIZED WATER	SILICON TEFLON	I TUBING I TUBING	S. STEE PVC PU	L PUMP MATERI MP MATERIAL	IAL	WL MET PID	ER
BLADE	DER	P N	OTABLE WATER	TEFLON HDPE T	I LINED TUBING UBING	GEOPR	OBE SCREEN N BLADDER		WQ MET TURB. M	ER
WATTH OTHER	ERA R	H N	IEXANE IETHANOL	LDPE T OTHER	UBING	OTHER			PUMP OTHER	
OTHER	AL PADAMETERS		THER	OTHER		OTHER			FILTERS	NO. TYPE
ABALTHC	PARAME	TER	METHOD	FIELI FII TED	D PRESE	RVATION VO	OLUME OUIRED	SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
x	TCL PCBs		8082A	No	None	KEV		Yes	No	
х	TCL Pesticides		8081B	No	None			Yes	No	·
x	TCL SVOCs + 20 T	ICs	8270D	No	None			Yes	No	·
X X	TCL VOCs + 10 TI	Cs	8260C	No	HCl			Yes	No	
	PFAS (list of 21 cor	npounds)	537 Modified	No	None			No	No	
	1,4-dioxane		8270D SIM	No	None	<u> </u>		No	No	
PURGE OBS	SERVATIONS	NO	NUMBER OF CALL	ONS		SKETCH/NOTES				
CONTAINER	RIZED	X	GENERATED	2.3	34					
NO-PURGE I UTILIZED	METHOD YES	S NO	If yes, purged approximate to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Samula O'			Print Ne							
Cheeked Dr	aulte:		Deter							
Checked By:			Date:		I					
								LOW FI	OW GROUN 10 Maxwe	NDWATER SAMPLING RECORD ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	nt Portfolio	LO	CATION ID	E	DATE 5/15/2	010	
	PROJECT NUMB	ER	320919.0000.0000, Ph	asc 4	ST.	ART TIME	E	IND TIME		
	SAMPLE ID		SAM	PLE TIME	SIT	12:28 TE NAME/NUMBER	t P	15:3 PAGE	30	
		ML-MW	-/D	13:35	М	layer Landill Site (Site	e No. 336027)	1 OF	1	
WELL DIAN	METER (INCHES)	1	2 4	X 6	8	OTHER Bedrock	open hole		CAP	YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING	<u>X</u>
MEASUREM	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER		<u> </u>	COLLAR	
INITIAL D (BMP)	0 TW 0	.67 FT	FINAL DTW (BMP)	3.3	FT ST	OT. CASING ICKUP (AGS)	2.2	FT	TOC/TOR DIFFERENCE	FT
WELL DE (BMP)	ртн 3	1.6 FT	SCREEN LENGTH	15	FT AN) 1BIENT AIR		PPM	REFILL TIME SETTING	ER SEC
WATER COLUMN	30	.93 FT	DRAWDOWN VOLUME	3.88	GAL MO	O WELL DUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	45.6	5	(final DTW - initial D TOTAL VOL.	TW X well diam. so 3.48	uared X 0.041) DR	AWDOWN/	2.63		PRESSURE	
GAL/VOL (column X)	well diameter squared	GAL 1 X 0.041)	PURGED (mL per minute X tota	l minutes X 0.0002	GAL TO 6 gal/mL)	TAL PURGED			TO PUMP	PSI
FIELD PAR	AMETERS WITH 1 DTW (FT)	PROGRAM STAL	TEMP (°C)	IA (AS LISTED IN SP. CONDUCTAN	ICE pH (units)	DISS, O ₂ (mg/L)	TURBIDITY (n	tu) REDOX (my	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units) (+/- 10%)	(+/- 10% <10 n	tu) (+/- 10 mv)	DEPTH (ft)	COMMENTS
1228	BEGIN PURC	GING			- [1	1	1	
1240	3	200	11.3	0.57	7.13	0.23	52	109.4	30	
1245	3.25	200	11.3	0.57	7.13	0.12	32	113.1	30	
1250	3.25	200	11	0.568	7.13	0.1	31.9	114.5	30	
1255	3.3	200	10.8	0.569	7.13	0.09	22.6	116.5	30	
1300	3.37	200	10.7	0.565	7.13	0.07	23.2	118.8	30	
1305	3.37	200	10.8	0.565	7.13	0.08	14.6	119.1	30	
1310	3.25	200	10.6	0.564	7.13	0.1	19.6	119.9	30	
1315	3.25	200	10.6	0.559	7.18	0.2	10.2	124.4	30	
1320	3.25	200	10.3	0.559	7.14	0.16	10.1	124.0	30	
1325	3.3	200	10.4	0.551	7.14	0.09	10.5	124.4	30	
1335	3.3	200	10.07	0.55	7.15	0.1	9.4	124.1	30	
								-		
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sign	ificant figures[SF	Ð		TEMP.: nearest deg COND.: 3 SF max (ree (ex. 10.1 = 10) ex. 3333 = 3330, 0.696 = 0.696)
			10.07	0.55	7.15	0.1	9.4	124.8	pH: nearest tenth (ep DO: nearest tenth (ep TURB: 3 SF max, n	.: 5.53 = 5.5) x. 3.51 = 3.5) searest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	DN							ORP: 2 SF (44.1 =	14, 191 = 190)
PERIST	TYPE OF PUMP FALTIC		JECON FLUIDS USED	SILICON	TUBING/P	S. STEE	<u>ERIALS</u> IL PUMP MATERI	AL	WL MET	EQUIPMENT USED ER
BLADE	DER		POTABLE WATER	TEFLON HDPE T	LINED TUBING	GEOPRO	OBE SCREEN N BLADDER		WQ MET TURB, M	ER
WATTH	ERA		IEXANE METHANOL	LDPE T OTHER	UBING	OTHER			PUMP OTHER	
OTHER	AL PARAMETERS		OTHER	OTHER		OTHER			FILTERS	NO. TYPE
ANALI IIC.	PARAME	TER	METHOD NUMBER	FIELI FILTER	D PRESE	RVATION VO THOD RE	OLUME QUIRED C	SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	TCL PCBs	<u>.</u>	8082A	No	None			Yes	No	
х	TCL Pesticides	ICs	8081B	No N-	None			Yes	No	
x	TAL Metals	ICs	6010C, 7470A	No	HNO3			Yes	No	
X	TCL VOCs + 10 TI	Cs	8260C	No	HCl			Yes	No	
	PFAS (list of 21 cor	npounds)	537 Modified	No	None			No	No	
DUBCE OF	1,4-dioxane		8270D SIM	No	None	VETODAIOTTO		No	No	
PURGE WAT	TER YES	S NO	NUMBER OF GALL	ONS 3	48	NETCH/NUTES				
CONTAINER NO-PURGE	RIZED METHOD YES	X NO	GENERATED	tely 1 standing volum	e prior					
UTILIZED			to sampling or	mL for this sample	location.					
Sampler Sign	ature:		Print Name:							
Checked Bv:			Date:							
					I					
								LOW FI	LOW GROUN 10 Maxwo	DWAIEK SAMPLING RECORD 21 Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	OUNDWA	ATER SAMPI	LING REG	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	nt Portfolio	L	OCATION ID MW-8]	DATE 5/16/2	2019	
	PROJECT NUMB	BER	320919.0000.0000. Ph	ase 4	ST	FART TIME]	END TIME		
	SAMPLE ID	20.20	SAM	PLE TIME	SI	10:50 TE NAME/NUMBEF	L	13: PAGE	15	
		ML-MV	v-8	11:35	1	Mayer Landill Site (Site	e No. 336027)	1 OF	1	WELL INTEGRITY
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER			CAP	YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING	<u>X</u> <u>X</u>
MEASUREM	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			COLLAR	
INITIAL D (BMP)	DTW 10	0.02 FT	FINAL DTW (BMP)	10.63	FT ST	ROT. CASING FICKUP (AGS)	2.28	FT	TOC/TOR DIFFERENCE	FT
WELL DE (BMP)	РТН 23	3.45 FT	SCREEN LENGTH	10	FT A	ID MBIENT AIR		PPM	REFILL TIMI SETTING	ER
WATER COLUMN	13	3.43 FT	DRAWDOWN VOLUME	0.10	GAL M	D WELL OUTH	0.8	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	.TED 2.20)	(final DTW - initial D TOTAL VOL.	TW X well diam. so	uared X 0.041) D	RAWDOWN/	0.61		PRESSURE	
GAL/VOL (column X v	well diameter square	GAL d X 0.041)	PURGED (mL per minute X tota	al minutes X 0.0002	GAL TO 6 gal/mL)	OTAL PURGED	0.01		TO PUMP	PSI
FIELD PAR	DTW (FT)	PROGRAM STAL	BILIZATION CRITER	IA (AS LISTED I SP. CONDUCTAN	N THE QAPP)	DISS O. (mg/L)		ntu) PEDOX (my	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 unit	s) (+/- 10%)	(+/- 10% <10 i	ntu) (+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
1050	BEGIN PURC	GING					1		1	ſ
1100	10.59	200	12.0	1.537	6.31	0.14	7.5	-22.4	22	Clear, no odor
1105	10.67	200	11.7	1.542	6.32	0.08	5.7	-23.9	22	SAA
1110	10.63	200	11.7	1.541	6.33	0.06	5.2	-25.8	22	SAA
1115	10.63	200	11.8	1.545	6.32	0.03	7.9	-26.8	22	Clear, some odor
1120	10.63	200	11.7	1.544	6.32	0.02	6.6	-27.5	22	SAA
1125	10.63	200	11.6	1.546	6.33	0.00	8.3	-29.6	22	SAA
1130	10.63	200	11.8	1.547	6.32	0.00	6.4	-30.4	22	SAA
1135	10.63	200	11.2	1.547	6.32	0.00	7.2	-31.2	22	SAA
									-	
	F	NAL STABILI	ZED FIELD PARA	METERS (to a	npropriate sig	nificant figures[SI	т. Ф		TEMP.: nearest deg COND.: 3 SF max (ree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			11.2	1 547	6 32		72	-31.2	pH: nearest tenth (e DO: nearest tenth (e TURB: 3 SE max m	(.5.53 = 5.5) x. $3.51 = 3.5)$ we are set tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	ON	11.2	1.547	0.52	0	1.2	-51.2	ORP: 2 SF (44.1 =	44, 191 = 190)
PERIST	TYPE OF PUMP FALTIC		DECON FLUIDS USED IQUINOX	SILICO	<u>TUBING/</u> N TUBING	PUMP/BLADDER MAT S. STEE	<u>ERIALS</u> EL PUMP MATER	IAL	WL MET	EQUIPMENT USED ER
SUBMI BLADI	ERSIBLE DER		DEIONIZED WATER	TEFLON	N TUBING N LINED TUBING	PVC PU GEOPR	MP MATERIAL OBE SCREEN		PID WQ MET	ER
WATT	ERA		NTRIC ACID IEXANE	HDPE T LDPE T	UBING UBING	TEFLO	N BLADDER		TURB. M PUMP	IETER
OTHER	κ		METHANOL DTHER	OTHER		OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC.	AL PARAMETERS PARAME	S ETER	METHOD	FIELI	D PRESE	ERVATION VO	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
х	TCL PCBs		NUMBER 8082A	FILTER No	ED MI None	ETHOD RE	QUIKED	Yes	COLLECTED MS/MSD	NUMBERS
х	TCL Pesticides		8081B	No	None			Yes	MS/MSD	·
х	TCL SVOCs + 20 T	FICs	8270D	No	None		<u> </u>	Yes	MS/MSD	·
x x	TCL VOCs + 10 TI	ICs	8260C	No	HNO3 HCl			Yes	MS/MSD MS/MSD	
х	PFAS (list of 21 con	mpounds)	537 Modified	No	None			Yes	MS/MSD	
Х	1,4-dioxane		8270D SIM	No	None			Yes	MS/MSD	
PURGE OBS	SERVATIONS	s no	NUMBER OF GALL	ONS		SKETCH/NOTES				
CONTAINER	RIZED		GENERATED	2.:	54					
UTILIZED	VICTIOD YE		It yes, purged approximate to sampling or	meight of the standing method is the standing method in the standing method is a standing to the standing method is a standing to the standing	e prior location.					
Sampler Sign	ature:		Print Name:							
Checked Dr.			Data							
Checked By:	T 7/		Date:		I					
								LOW FI	LOW GROUN 10 Maxwe	IDWATER SAMPLING RECORD ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GF	OUNDW	ATER SAMP	LING RE	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	nt Portfolio		LOCATION ID		DATE		
	PROJECT NUMB	ER	inter interingente			MW-11 START TIME		5/15/2 END TIME	2019	
			320919.0000.0000, Ph	ase 4		9:20		10:	10	
	SAMPLE ID	ML-MW	-11 SAM	10:10		SITE NAME/NUMBEI Mayer Landill Site (Sit	R te No. 336027)	PAGE 1 OF	1	
										WELL INTEGRITY
WELL DIAN	METER (INCHES)			6		OTHER		<u> </u>	CAP	YES NO N/A X
TUBING ID	(INCHES)	1/8	1/4 <u>X</u> 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>X</u>
MEASUREN	IENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			COLLAR	_ <u> </u>
INITIAL D (BMP)	1 DTW	.90 FT	FINAL DTW (BMP)	2.11	FT	PROT. CASING STICKUP (AGS)	1.92	FT	TOC/TOR DIFFERENCE	E FT
WELL DE (BMP)	ртн 1	9.5 FT	SCREEN LENGTH	10	FT	PID AMBIENT AIR		PPM	REFILL TIMI SETTING	ER SEC
WATER COLUMN	17	7.60 FT	DRAWDOWN VOLUME	0.03	GAL	PID WELL MOUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	TED	<u>,</u>	(final DTW - initial D TOTAL VOL.	TW X well diam. s	quared X 0.041)	DRAWDOWN/	0.21		PRESSURE	
GAL/VOL (column X v	2.85 well diameter squared	GAL d X 0.041)	PURGED (mL per minute X tota	2.93 al minutes X 0.0002	GAL 6 gal/mL)	FOTAL PURGED	0.21		TO PUMP	PSI
FIELD PAR	AMETERS WITH	PROGRAM STAI	BILIZATION CRITER	IA (AS LISTED I	N THE QAPP)	1	1	I	DUMD	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (unit (+/- 0.1 ur	s) DISS. O ₂ (mg/L) hits) (+/- 10%)	TURBIDITY (+/- 10% <10	(ntu) REDOX (mv ntu) (+/- 10 mv)) INTAKE DEPTH (ft)	COMMENTS
925	BEGIN PURC	GING	· · · · · · ·							Γ
935	2.12	250	8.6	0.049	5.48	3.23	2.3	185.7	20	Clear, no odor
940	2.11	250	9.1	0.050	5.47	3.15	3.7	193.9	20	SAA
945	2.11	250	9.3	0.050	5.46	3.08	5.5	200.00	20	SAA
950	2.11	250	9.3	0.050	5.45	3.04	8.3	203.9	20	SAA
955	2.11	250	9.3	0.049	5.45	3.00	12.2	207.5	20	SAA
1000	2.11	250	9.2	0.049	5.45	2.98	5.4	211.5	20	SAA
1005	2.11	250	9.3	0.049	5.44	3.14	7.1	214.1	20	SAA
1010	2.11	250	9.3	0.049	5.44	3.13	9.1	215.3	20	SAA
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate s	gnificant figures[S	F])		TEMP.: nearest deg COND.: 3 SF max (nH: nearest tenth (c:	(ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696) x 5 53 = 5 5)
			9.3	0.049	5.44	3.13	9.1	215.3	DO: nearest tenth (e TURB: 3 SF max, n	ex. 3.51 = 3.5) hearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	DN							ORP: 2 SF (44.1 =	44, 191 = 190)
PERIST	TYPE OF PUMP TALTIC		ECON FLUIDS USED IQUINOX	SILICO	<u>TUBIN</u> N TUBING	G/PUMP/BLADDER MAT S. STEI	<u>TERIALS</u> EL PUMP MATEI	RIAL	WL MET	EQUIPMENT USED ER
SUBME BLADE	ERSIBLE DER	P	DEIONIZED WATER OTABLE WATER	TEFLOI	N TUBING N LINED TUBINO	GEOPR	JMP MATERIAL ROBE SCREEN		PID WQ MET	TER
WATTE	ERA	N	ITRIC ACID IEXANE	HDPE T LDPE T	UBING UBING	TEFLO OTHER	N BLADDER		TURB. N PUMP	1ETER
OTHER OTHER	1		IETHANOL OTHER	OTHER OTHER		OTHER	2 2		OTHER FILTERS	NO. TYPE
ANALYTIC	AL PARAMETERS	TER	METHOD	FIEL	D PRE	SERVATION V	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
	TCL PCBs	JI DK	NUMBER 8082A	FILTER	ED None	METHOD RE	QUIRED	COLLECTED Yes	COLLECTED	NUMBERS
x	TCL Pesticides		8081B	No	None		<u> </u>	Yes	No	
x	TCL SVOCs + 20 T	FICs	8270D	No	None			Yes	No	
х	TAL Metals		6010C, 7470A	No	HNO	3		Yes	No	
X	TCL VOCs + 10 TI	Cs	8260C	No	HCl	·		Yes	No	<u> </u>
	1,4-dioxane	mpounds)	8270D SIM	No	None			No	No	
PURGE OBS	SERVATIONS				<u> </u>	SKETCH/NOTES				- <u> </u>
PURGE WAT CONTAINER	TER YES	S NO X	NUMBER OF GALLO GENERATED	DNS 2.	93					
NO-PURGE N UTILIZED	METHOD YES	s NO	If yes, purged approxima to sampling or	tely 1 standing volun mL for this sample	e prior location.					
	L	<u> </u>	1							
Sampler Sign	ature:		Print Name:							
Checked Du-			Data							
Checked By:			Date:							
	IRC							LOW FI	LOW GROUN	NDWATER SAMPLING RECORD
<u> </u>	and the second s								10 MaAW	,, chinon 1 ark, 141 12005

			LOW	FLOW GR	OUNDWA	TER SAMPI	LING REC	CORD		
	PROJECT NAME	NYSDEC	WA45 - Site Manageme	ent Portfolio	LO	DCATION ID MW-13	E	DATE 5/15/2	019]
	PROJECT NUMB	ER	320919.0000.0000, Ph	ase 4	ST	ART TIME	E	END TIME	20	
	SAMPLE ID	ML-MW	5AM	PLE TIME	SI	TE NAME/NUMBER	r P	PAGE	20	
				17:20	N	Aayer Landill Site (Site	e No. 336027)	1 OF	1	WELL INTEGRITY
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER			CAP	YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>x</u>
MEASUREM	MENT POINT (MP)	TOP O	F RISER (TOR)	X TOP OF CAS	ING (TOC)	OTHER			COLLAR	
(BMP)	6 G	.09 FT	(BMP)	6.23	FT ST	ICKUP (AGS)	2.24	FT	DIFFERENCE	E FT
WELL DE (BMP)	PTH	8.1 FT	SCREEN LENGTH	10	FT A	D MBIENT AIR		PPM	REFILL TIMI SETTING	ER
WATER COLUMN	12	2.01 FT	DRAWDOWN VOLUME	0.02	GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA	1.97		(final DTW - initial D TOTAL VOL.	TW X well diam. so 3.90	uared X 0.041)	RAWDOWN/	0.14		PRESSURE	
(column X)	well diameter squared	GAL 1 X 0.041)	(mL per minute X tota	al minutes X 0.0002	6 gal/mL)	DTAL PURGED			ТО РИМР	PSI
FIELD PAR. TIME	DTW (FT)	PROGRAM STAL	TEMP. (°C)	IA (AS LISTED IN SP. CONDUCTAN	N THE QAPP)	DISS. O2 (mg/L)	TURBIDITY (n	tu) REDOX (mv	PUMP	601 0 (7) (7)
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 unit	5) (+/- 10%)	(+/- 10% <10 n	tu) (+/- 10 mv)	DEPTH (ft)	COMMENTS
1620	BEGIN PURC	GING				[I			
1630	6.09	250	10.6	0.076	5.95	1.64	19.4	194.3	17	Clear, no odor
1640	6.22	250	10.5	0.054	5.74	1.01	10.1	201.9	17	SAA SAA
1645	6.23	2.50	10.0	0.054	5.63	1.62	13.5	209.8	17	SAA
1650	6.23	250	10.2	0.054	5.67	1.65	14.8	220.8	17	SAA
1655	6.23	250	10.3	0.051	5.62	1.78	13.2	225.1	17	SAA
1700	6.23	250	10.6	0.050	5.60	1.84	12.4	228.4	17	SAA
1705	6.23	250	10.4	0.051	5.60	1.82	11.7	232.8	17	SAA
1710	6.23	250	10.2	0.051	5.60	1.72	12.8	235.3	17	SAA
1715	6.23	250	10.2	0.050	5.59	1.66	11.8	236.8	17	SAA
1720	6.23	250	10.1	0.050	5.59	1.60	12.6	241.0	17	SAA
								_		
									TEMP.: nearest deg	gree (ex. 10.1 = 10)
	FI	NAL STABILI	ZED FIELD PARA	METERS (to a	ppropriate sig	nificant figures[SF	FD		COND.: 3 SF max (pH: nearest tenth (e: DO: nearest tenth (e:	(ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5) x. 3.51 = 3.5)
FOLIPMENT	DOCUMENTATIO)N	10.1	0.050	5.59	1.60	12.6	241.0	TURB: 3 SF max, n ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
PERIST	TYPE OF PUMP		DECON FLUIDS USED	SILICON	TUBING	PUMP/BLADDER MAT	ERIALS I. PUMP MATERI	AI.	WI MET	EQUIPMENT USED
SUBMI BLADI	ERSIBLE DER	I	DEIONIZED WATER POTABLE WATER	TEFLON TEFLON	N TUBING N LINED TUBING	PVC PU GEOPR	MP MATERIAL OBE SCREEN		PID WQ MET	TER
WATTI	ERA	1	NTRIC ACID IEXANE	HDPE T LDPE T	UBING UBING	TEFLOM	N BLADDER		TURB. M PUMP	IETER
OTHER	R		METHANOL DTHER	OTHER		OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC.	AL PARAMETERS PARAME	TER	METHOD NI IMBEP	FIELI FII TED	D PRESE	RVATION VO	OLUME	SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID
х	TCL PCBs		8082A	No	None	KEY	20mmb (Yes	No	NUMBERS
X	TCL Pesticides	TICs	8081B 8270D	No	None		<u> </u>	Yes	No No	
X	TAL Metals		6010C, 7470A	No	HNO3			Yes	No	
X	TCL VOCs + 10 TI	Cs	8260C	No	HCl			Yes	No	
X	1,4-dioxane	npounds)	8270D SIM	No	None			i es Yes	No	
PURGE OBS	SERVATIONS		NUR (DED OF THE			SKETCH/NOTES				- 100 <u></u> 100
CONTAINER	RIZED		GENERATED	3.9	90					
NO-PURGE I UTILIZED	VIETHOD YES	NU	If yes, purged approxima to sampling or	tely 1 standing volum mL for this sample	e prior location.					
Sampler Sign	nature:		Print Name:							
Checked By:			Date:							
•	TDC							LOW FI	LOW GROUN	NDWATER SAMPLING RECORD
								20071	10 Maxwe	ell Drive, Suite 200, Clifton Park, NY 12065

APPENDIX D

Data Usability Summary Report

Is
c

Samples Reviewed and Evaluation Summary

13 Groundwater Samples:	ML-BR-3, ML-BR-5, ML-BR-6, ML-BR-7, ML-MW-2,
	ML-MW-4DR, ML-MW-5, ML-MW-6, ML-MW-7, ML-MW-7D,
	MI-MW-8 MI-MW-11 MI-MW-13

The above-listed groundwater samples were collected on May 15-17, 2019 and were analyzed for the following parameters:

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- Organochlorine pesticides by SW-846 Method 8081B
- PCB Aroclors by SW-846 Method 8082A

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-017-002), January 2017, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - GC/Electron Capture Detector (GC/ECD) Instrument Performance Checks
 - Initial and Continuing Calibrations
 - Blanks
 - Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
- Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
 - Target Compound Identification
 - Tentatively Identified Compounds (TICs)
- All criteria were met.
- NA A field duplicate pair was not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives with the exception of 1,4-dioxane in all samples due to low calibration response factors. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

- The nondetect results for 1,4-dioxane were rejected (R) in all samples due to low relative response factors (RRFs) in initial and/or continuing calibrations. These results cannot be used for project objectives which has a major impact on the data usability.
- Potential uncertainty exists for select VOC, SVOC, and pesticide results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect result for all Aroclors in several samples and the positive and/or nondetect
 results for select VOCs in all samples were qualified as estimated (J/UJ) due to continuing
 calibration nonconformances. These results can be used for project objectives as estimated
 values and as nondetects with estimated QLs, which may have a minor impact on the data
 usability.
- The nondetect results for dichlorodifluoromethane in select samples were qualified as estimated (UJ) due to low recovery in the LCS analysis. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive result for diethyl phthalate in sample ML-MW-8 was qualified as estimated (J) due to variability in the MS/MSD analyses. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive results for several SVOC TICs were removed from all samples due to method blank contamination. This should have no adverse impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package with one exception. The laboratory did not report LCS and MS/MSD percent recoveries (%Rs), relative percent differences (RPDs), or laboratory acceptance criteria for total xylenes on the summary forms. The %Rs and RPDs were calculated and the laboratory acceptance limits were provided by the laboratory during validation; no validation actions were taken on this basis.

Further, sample ML-MW-2 was not listed on the chain-of-custody (COC) but it was analyzed and reported by the laboratory as requested after the COC was submitted. No validation actions were taken on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met for the VOC, SVOC, pesticide, and PCB analyses.

GC/MS Tunes

All method acceptance criteria were met in the VOC and SVOC analyses.

GC/ECD Instrument Performance Checks

All criteria were met for the DDT/endrin breakdown checks associated with the pesticide analyses.

Initial and Continuing Calibrations

VOCs

All correlation coefficients and percent relative standard deviations (%RSDs) were within the method acceptance criteria in the initial calibrations (ICs) associated with the samples in this data set.

The following table summarizes the RRFs that did not meet the acceptance criteria in the ICs associated with the samples in this data set, the associated samples, and the validation actions.

IC	Compound	RRF	Validation Actions							
5/20/19 HP5973C1,4-Dioxane0.0091The nondetect results for 1,4-dioxane were rejected (R) in the associated samples.										
Associated samples: ML-MW-4DR, ML-BR-3, ML-BR-5, ML-BR-6, ML-MW-8, ML-MW-5, ML-MW-2										
5/14/19 HP5975T1,4-Dioxane0.0055The nondetect results for 1,4-dioxane were rejected (R) in the associated samples.										
Associated sam	ples: ML-MW-11, ML-	BR-7, ML-M	W-13, ML-MW-6, ML-MW-7, ML-MW-7D							

The following table summarizes the percent differences or percent drifts (%Ds) and RRFs that did not meet the acceptance criteria in the continuing calibration (CC) standards associated with the samples in this data set, the associated samples, and the validation actions.

CC	Compound	%D	RRF	Validation Actions		
	1,1,2-Trichloro-1,2,2-trifluoroethane	28.9	-	The positive and nondetect results for		
05/24/2019	Cyclohexane		-	these VOCs were qualified as estimated		
	Methylcyclohexane	29.6	-	(J/UJ) in the associated samples. However, the nondetect results for 1.4-		
HP5973C	1,4-Dioxane	31.8	-	dioxane were also rejected (R) due to		
	Tetrachloroethene	26.5	-	low RRFs in the IC. Thus, no further qualification was required for 1.4-		
	1,2,4-Trichlorobenzene	20.5	-	dioxane.		
Associated san	ples: ML-MW-4DR, ML-BR-3, ML-BR-	5, ML-E	BR-6, ML	-MW-8, ML-MW-5, ML-MW-2		
	Dichlorodifluoromethane	-47.0	-			
	Chloromethane	-31.0	-			
	Vinyl chloride	-27.3		The nondetect results for these VOCs		
05/23/2019	Bromomethane	-25.7	-	associated samples		
@ 20:20 HP5975T	Chloroethane	-25.4				
11 00/01	Trichlorofluoromethane	-22.8	-			
	1,4-Dioxane	-	0.0045	The nondetect results for 1,4-dioxane were rejected (R) in the associated samples.		
Associated sam	ples: ML-MW-11, ML-BR-7, ML-MW-1	3, ML-N	/W-6, MI	MW-7, ML-MW-7D		
- : Met criteria						

SVOCs

All correlation coefficients, %RSDs, and RRFs were within the method acceptance criteria in the IC associated with the samples in this data set.

All %Ds and RRFs were within the acceptance criteria in the CC standard associated with the samples in this data set.

Pesticides

All correlation coefficients were within the method acceptance criteria in the ICs associated with the samples in this data set.

All %Ds met the acceptance criteria in the CC standards associated with the samples in this data set.

PCBs

All %RSDs and correlation coefficients were within the method acceptance criteria in the ICs associated with the samples in this data set.

The following table summarizes the %Ds that did not meet the acceptance criteria in the CC standards associated with the samples in this data set, the associated samples, and the validation actions.

сс	Compound	Column 1 %D	Column 2 %D	Associated Samples*	Validation Action		
5/23/19 @1201	Aroclor 1221 Peak 1	26.8	Qualification was not required since the %Ds on column 2 were <20%				
HP6890-7	Aroclor 1221 Peak 3	-28.6	- Second		and Aroclor 1221 was not detected in the associated samples.		
Transfer D	Aroclor 1232 Peak 2	25.4	20.6				
5/23/19	Aroclor 1232 Peak 3	20.8	-1.XC-				
WP6890-7	Aroclor 1232 Peak 4	÷	20.5	All samples in	and the second second second		
	Aroclor 1232 Peak 5	20.3		this data set	Qualification was not required since		
5/23/19 @1226 HP6890-7	Aroclor 1242 Peak 3	24.1			the average %Ds on columns 1 and 2 were <20%.		
5/23/19 @1238 HP6890-7	Aroclor 1248 Peak 5	23.2	23.7				
	Aroclor 1016 Peak 1	in the family	25.1				
	Aroclor 1016 Peak 2	25.5	22.6	ML-BR-3			
	Aroclor 1016 Peak 3	30.8	26.0	ML-BR-5,	fundare a la seconda da la seconda		
	Aroclor 1016 Peak 4	29.8	25.9	ML-BR-6,	The nondetect results for all Aroclors		
5/23/19	Aroclor 1016 Peak 5	28.5	1. 1. C. 1	ML-MW-13,	were qualified as nondetect (UJ) in the associated samples since the		
HP6890-7	Aroclor 1260 Peak 1	28.6	21.7	ML-MW-7,	average %Ds on columns 1 and 2		
	Aroclor 1260 Peak 2	20.2	22.1	ML-MW-7D,	were >20%.		
	Aroclor 1260 Peak 3	31.2	25.2	ML-MW-5,			
	Aroclor 1260 Peak 4	39.3	-				
4	Aroclor 1260 Peak 5	23.5	28.0				

сс	Compound	Column 1 %D	Column 2 %D	Associated Samples*	Validation Action	
-: Met criter	ia	12. 10.0VV	1.1.1.1.1	A RECEIPTION OF COMMENT	official and a second state of a second	
*Bracketing	CCVs were not used	to qualify the s	samples sinc	e an internal standar	d was used for quantitation: thus	

bracketing CCVs are not required.

Blanks

Target analytes were not detected in the laboratory method blanks for SVOC, pesticide, and PCB analyses.

The following table summarizes the contaminant found in one of the VOC method blanks, the associated samples, and the validation action.

Blank ID	Compound	Blank Concentration (µg/L)	Validation Action		
MB 480- 474552/7	Carbon disulfide	0.251 J	Qualification was not required since carbon disulfide was not detected in the associated samples.		
Associated samples: ML-MW-4DR, ML-BR-3, ML-BR-5, ML-BR-6, ML-MW-8, ML-MW-5, ML-MW-2					

Surrogate Recoveries

The surrogate %Rs met the laboratory acceptance criteria in the VOC and SVOC analyses.

Pesticides

The following table lists the surrogate outliers in the pesticide analyses, the associated sample, and any resulting validation action.

Sample ID	Surrogate	Column 1 %R	Column 2 %R	%R QC Limits	Validation Action
ML-BR-5	тсмх	-	124	44-120	Qualification was not required since pesticides were not detected in this sample.
TCMX: Tetrachlor -: Met criteria	o-m-xylene				

PCBs

The following table lists the surrogate outliers in the PCB analyses, the associated samples, and any resulting validation action.

Sample ID	Surrogate	Column 1 %R	Column 2 %R	%R QC Limits	Validation Action		
ML-MW-11		129	1111 <u>-</u> 1511	39-121			
ML-BR-7	1	135	120 10				
ML-BR-3	TCMX	128			Qualification was not required since PCBs we		
ML-BR-5	7	134	-		not detected in these samples.		
ML-MW-13		138	-				
TCMX: Tetrachl	oro-m-xylene				het s		

MS/MSD Results

MS/MSD analyses were performed on sample ML-MW-8 for VOCs, SVOCs, PCBs, and pesticides.

The %Rs and RPDs met the laboratory acceptance criteria in the VOC, PCB, and pesticide MS/MSD analyses. The following table summarizes the SVOC MS/MSD RPDs that did not meet the laboratory acceptance criteria in the MS/MSD analyses performed on sample ML-MW-8. All %Rs were within the laboratory acceptance criteria.

MS/MSD Parent Sample ID	Compound	MS/MSD RPD (%)	MS/MSD RPD QC Limits	Validation Action
	2,4-Dinitrotoluene	21	20	No second and the first second
	2,6-Dinitrotoluene	17	15	Qualification was not required since
	2-Nitroaniline	18	15	these SVOCs were not detected in
ML-MW-8	4-Chloroaniline	24	22	Sample ME-WW-0.
	Diethyl phthalate	19	15	The positive result for diethyl phthalate in sample ML-MW-8 was qualified as estimated (J).

Note that the laboratory did not report MS/MSD %Rs and RPDs for total xylenes. The %Rs and RPDs were calculated during validation and were within the laboratory's acceptance criteria.

Internal Standards

All internal standards met the method acceptance criteria in the VOC, SVOC, pesticide, and PCB analyses.

LCS Results

An LCS was analyzed with each daily VOC batch and each SVOC, pesticide, and PCB preparation batch. All criteria were met in the SVOC, pesticide, and PCB LCSs.

The following table summarizes the VOC LCS %Rs that did not meet the laboratory acceptance criteria, the associated samples, and the validation actions.

LCS ID	Compound	LCS %R	LCS QC Limits	Validation Action
LCS 480- 474456/5	Dichlorodifluoromethane	52	59-135	The nondetect results for dichlorodifluoromethane were qualified as estimated (UJ) in the associated samples.
Associated s	samples: ML-MW-11, ML-E	BR-7, ML	-MW-13, ML	-MW-6, ML-MW-7, ML-MW-7D

Note that the laboratory did not report LCS %Rs for total xylenes. The %Rs were calculated during validation and were within the laboratory's acceptance criteria.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported QLs

Sample calculations were spot-checked; there were no dilutions performed on any samples in this data set for PCBs or SVOCs.

The following table summarizes the dilutions performed for the VOC and pesticide analyses; QLs were elevated accordingly by the laboratory.

Parameter	Sample ID	Dilution	Reason for Dilution
Pesticides _	ML-BR-6	75 mL extracted rather than 250 mL	A reduced extract volume was used due to sample loss.
	ML-MW-8	2-fold	A 2-fold dilution was required due to the nature of the sample matrix.
VOCs	ML-MW-8	4-fold	A 4-fold dilution was performed due to the concentration of chlorobenzene which would have exceeded the calibration range if analyzed undiluted.

Select VOC, SVOC, and pesticide results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

Target Compound Identification

All criteria were met for the VOC, SVOC, pesticide, and PCB analyses.

PCBs

The dual column RPDs, where applicable, were within the acceptance limits (<40%) in the PCB analyses. The laboratory reported the lower PCB result from the dual column analysis in every instance.

Pesticides

The dual column RPDs, where applicable, were within the acceptance limits (<40%) in the pesticide analyses. The laboratory reported the lower pesticide result from the dual column analysis with one exception. During validation, the result for beta-BHC in sample ML-MW-8 was changed on the Form 1 to reflect the lower result from the dual column analysis.

Tentatively Identified Compounds

There were no issues noted regarding VOC and SVOC TIC identifications.

There were no TICs in the VOC method blanks. The following table summarizes the SVOC TICs that were considered to be not detected in samples due to the presence of the same TIC in the associated SVOC method blank. The remaining TICs found in the samples were not affected because these TICs were not present in the associated method blank.

>TRC

Blank ID	Affected Samples	TIC: Sample Concentration (Retention Time)			
	ML-MW-11	Unknown: 2.8 TJ µg/L (2.90 minutes) Cyclohexane: 19 TJN µg/L(3.09 minutes) Unknown: 60 TJ µg/L (3.33 minutes) Column Bleed: 7.2 TJ µg/L (4.88 minutes) Unknown: 37 TJ µg/L (5.15 minutes) Column Bleed: 7.8 TJ µg/L (7.17 minutes) Column Bleed: 3.7 TJ µg/L (8.05 minutes) Unknown: 2.7 TJ µg/L (8.82 minutes) Unknown: 1.8 TJ µg/L (9.50 minutes)			
	ML-BR-7	Unknown: 64 TJ µg/L (3.34 minutes) Cyclohexane: 2.1 TJN µg/L (3.20 minutes) Unknown: 45 TJ µg/L (5.16 minutes) Column Bleed: 10 TJ µg/L (7.17 minutes) Column Bleed: 5.7 TJ µg/L (8.05 minutes) Unknown: 3.6 TJ µg/L (8.82 minutes) Unknown: 2.3 TJ µg/L (9.50 minutes)			
SVOC MB	ML-MW-4DR	Unknown: 2.3 TJ µg/L (2.89 minutes) Cyclohexane: 2.7 TJN µg/L (3.19 minutes) Unknown: 62 TJ µg/L (3.33 minutes) Column Bleed: 6.8 TJ µg/L (4.88 minutes) Unknown: 35 TJ µg/L (5.15 minutes) Column Bleed: 8.4 TJ µg/L (7.17 minutes) Column Bleed: 3.7 TJ µg/L (8.05 minutes) Unknown: 2.5 TJ µg/L (8.82 minutes) Unknown: 1.6 TJ µg/L (9.50 minutes)			
480-473977/1-A	A ML-BR-3	Unknown: 2.4 TJ µg/L (2.90 minutes) Cyclohexane: 21 TJN µg/L (3.10 minutes) Unknown: 64 TJ µg/L (3.34 minutes) Column Bleed: 4.1 TJ µg/L (4.88 minutes) Unknown: 38 TJ µg/L (5.15 minutes) Column Bleed: 8.7 TJ µg/L (7.17 minutes) Column Bleed: 3.6 TJ µg/L (8.05 minutes) Unknown: 2.7 TJ µg/L (8.82 minutes) Unknown: 1.7 TJ µg/L (9.50 minutes)			
	ML-BR-5	Unknown: 3.5 TJ µg/L (2.90 minutes) Cyclohexane: 24 TJN µg/L (3.08 minutes) Unknown: 62 TJ µg/L (3.34 minutes) Column Bleed: 7.9 TJ µg/L (4.89 minutes) Unknown: 46 TJ µg/L (5.16 minutes) Column Bleed: 9.0 TJ µg/L (7.17 minutes) Column Bleed: 4.1 TJ µg/L (8.05 minutes) Unknown: 3.1 TJ µg/L (8.82 minutes) Unknown: 2.2 TJ µg/L (9.50 minutes)			
	ML-BR-6	Cyclohexane: 23 TJN µg/L (3.08 minutes) Unknown: 62 TJ µg/L (3.33 minutes) Column Bleed: 6.6 TJ µg/L (4.88 minutes) Unknown: 43 TJ µg/L (5.15 minutes) Column Bleed: 14 TJ µg/L (7.17 minutes) Column Bleed: 6.1 TJ µg/L (8.05 minutes) Unknown: 4.0 TJ µg/L (8.82 minutes)			

Blank ID	Affected Samples	TIC: Sample Concentration (Retention Time)			
	ML-MW-13	Unknown: 2.9 TJ µg/L (2.90 minutes) Cyclohexane: 2.8 TJN µg/L (3.19 minutes) Unknown: 64 TJ µg/L (3.33 minutes) Column Bleed: 8.3 TJ µg/L (4.88 minutes) Unknown: 39 TJ µg/L (5.15 minutes) Column Bleed: 9.9 TJ µg/L (7.17 minutes) Column Bleed: 4.1 TJ µg/L (8.05 minutes) Unknown: 2.8 TJ µg/L (8.82 minutes) Unknown: 1.9 TJ µg/L (9.50 minutes)			
	ML-MW-8	Unknown: 34 TJ µg/L (3.31 minutes) Unknown: 21 TJ µg/L (5.15 minutes) Column Bleed: 12 TJ µg/L (7.17 minutes) Column Bleed: 5.0 TJ µg/L (8.05 minutes)			
4	ML-MW-6	Cyclohexane: 22 TJN µg/L (3.08 minutes) Unknown: 60 TJ µg/L (3.33 minutes) Column Bleed: 3.5 TJ µg/L (4.88 minutes) Unknown: 33 TJ µg/L (5.15 minutes) Column Bleed: 8.3 TJ µg/L (7.17 minutes) Column Bleed: 3.7 TJ µg/L (8.05 minutes) Unknown: 2.9 TJ µg/L (8.82 minutes) Unknown: 1.8 TJ µg/L (9.50 minutes)			
SVOC MB 480-473977/1-A	ML-MW-7	Unknown: 1.9 TJ µg/L (2.89 minutes) Cyclohexane: 3.0 TJN µg/L (3.18 minutes) Unknown: 61 TJ µg/L (3.33 minutes) Column Bleed: 4.7 TJ µg/L (4.88 minutes) Unknown: 34 TJ µg/L (5.15 minutes) Column Bleed: 5.5 TJ µg/L (7.17 minutes) Column Bleed: 3.5 TJ µg/L (8.05 minutes) Unknown: 2.9 TJ µg/L (8.82 minutes) Unknown: 1.9 TJ µg/L (9.50 minutes)			
	ML-MW-7D	Unknown: 2.0 TJ µg/L (2.89 minutes) Cyclohexane: 18 TJN µg/L (3.08 minutes) Unknown: 66 TJ µg/L (3.32 minutes) Column Bleed: 4.8 TJ µg/L (4.88 minutes) Unknown: 46 TJ µg/L (5.15 minutes) Column Bleed: 6.8 TJ µg/L (7.17 minutes) Unknown: 3.1 TJ µg/L (8.82 minutes) Unknown: 2.1 TJ µg/L (9.50 minutes)			
	ML-MW-5	Unknown: 1.6 TJ µg/L (2.89 minutes) Cyclohexane: 3.1 TJN µg/L (3.18 minutes) Unknown: 61 TJ µg/L (3.32 minutes) Column Bleed: 4.1 TJ µg/L (4.88 minutes) Unknown: 39 TJ µg/L (5.15 minutes) Column Bleed: 9.4 TJ µg/L (7.17 minutes) Column Bleed: 5.0 TJ µg/L (8.05 minutes) Unknown: 3.5 TJ µg/L (8.82 minutes) Unknown: 2.2 TJ µg/L (9.50 minutes)			
	ML-MW-2	Cyclohexane: 3.1 TJN µg/L (3.08 minutes) Unknown: 59 TJ µg/L (3.32 minutes) Column Bleed: 3.6 TJ µg/L (4.88 minutes) Unknown: 37 TJ µg/L (5.15 minutes) Column Bleed: 7.7 TJ µg/L (7.17 minutes) Column Bleed: 4.0 TJ µg/L (8.05 minutes) Unknown: 3.1 TJ µg/L (8.82 minutes) Unknown: 2.0 TJ µg/L (9.50 minutes)			

QUALIFIED FORM 1s

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1			
Matrix: Water	Lab File ID: T1246.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 10:10			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 01:32			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			

CAS NO.	CAS NO. COMPOUND NAME		Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND	1	1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND	1	1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND	1	1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
.08-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
57-64-1	Acetone	ND		10	3.0
1-43-2	Benzene	ND		1.0	0.41
5-27-4	Bromodichloromethane	ND		1.0	0.39
5-25-2	Bromoform	ND		1.0	0.26
4-83-9	Bromomethane	ND	UTV	1.0	0.69
5-15-0	Carbon disulfide	ND	v. J v	1.0	0.19
6-23-5	Carbon tetrachloride	ND		1.0	0.27
.08-90-7	Chlorobenzene	ND		1.0	0.75
5-00-3	Chloroethane	NB	45.1	1.0	0.32
57-66-3	Chloroform	ND	VI S V	1.0	0.34
4-87-3	Chloromethane	HO	115 1	1.0	0.35
56-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
0061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
10-82-7	Cyclohexane	ND		1.0	0.18
24-48-1	Dibromochloromethane	ND		1.0	0.32
5-71-8	Dichlorodifluoromethane	NE	1115 1	1.0	0.68
00-41-4	Ethylbenzene	ND	/	1.0	0.00

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1				
Matrix: Water	Lab File ID: T1246.D				
Analysis Method: 8260C	Date Collected: 05/15/2019 10:10				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 01:32 Dilution Factor: 1 GC Column: ZB-624 (20) ID: 0.18(mm) Level: (low/med) Low				
Soil Aliquot Vol:					
Soil Extract Vol.:					
% Moisture:					
Analysis Batch No.: 474456	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	17 /	1.0	0.88
75-01-4	Vinyl chloride	NÐ	171	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	SREC	Q	LIMITS
17060-07-0 1,2-Dichloroethane-d4 (Surr)		98		77-120
460-00-4	4-Bromofluorobenzene (Surr)	90		73-120
1868-53-7	Dibromofluoromethane (Surr)	99	99	
2037-26-5	Toluene-d8 (Surr)	94		80-120
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
---	-------------------------------------			
SDG No.:				
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1			
Matrix: Water	Lab File ID: T1246.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 10:10			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 01:32			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			
Number TICs Found: 0	TIC Result Total: 0			

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2
Matrix: Water	Lab File ID: T1247.D
Analysis Method: 8260C	Date Collected: 05/15/2019 14:00
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 01:56
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
<pre>% Moisture: Level: (low/med) Low</pre>	
Analysis Batch No.: 474456	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND ·		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	APT 11	JV	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	NP II	TV	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	-ND U	51	1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	- MTJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

1

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2			
Matrix: Water	Lab File ID: T1247.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 14:00 Date Analyzed: 05/24/2019 01:56			
Sample wt/vol: 5(mL)				
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND 1	IJJ	1.0	0.88
75-01-4	Vinyl chloride	No	15.1	1.0	0.90
1330-20-7	Xylenes, Total	ND	V-V	2.0	0.66

CAS NO.	SURROGATE	REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
1868-53-7	Dibromofluoromethane (Surr)	102		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2
Matrix: Water	Lab File ID: T1247.D
Analysis Method: 8260C	Date Collected: 05/15/2019 14:00
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 01:56
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 474456	Units: ug/L
Number TICs Found: 0	TIC Result Total: 0

CAS NO.	COMPOUND NAME	RT	RESULT	Q	QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3			
Matrix: Water	Lab File ID: C7870.D			
Analysis Method: 8260C	Date Collected: 05/16/2019 12:25			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 12:39			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	NP	w	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	NO	115	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	2 ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3 .	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	M	UT J	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3				
Matrix: Water	Lab File ID: C7870.D				
Analysis Method: 8260C	Date Collected: 05/16/2019 12:25 Date Analyzed: 05/24/2019 12:39				
Sample wt/vol: 5(mL)					
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND	50.05	1.0	0.16
108-87-2	Methylcyclohexane	NO	US J	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	NB	41.1	1.0	0.36
108-88-3	Toluene	ND	-10 -	1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	SREC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		77-120
460-00-4	4-Bromofluorobenzene (Surr)	104		73-120
1868-53-7	Dibromofluoromethane (Surr)	91		75-123
2037-26-5	Toluene-d8 (Surr)	105		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3				
Matrix: Water	Lab File ID: C7870.D				
Analysis Method: 8260C	Date Collected: 05/16/2019 12:25				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 12:39				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				
Number TICs Found: 0	TIC Result Total: 0				

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4			
Matrix: Water	Lab File ID: C7871.D			
Analysis Method: 8260C	Date Collected: 05/16/2019 14:55			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:05			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	NO	NJ 1	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	NĐ	UT /	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R -NB		40-	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methy1-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	NO	UJJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	1	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

1

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4			
Matrix: Water	Lab File ID: C7871.D			
Analysis Method: 8260C	Date Collected: 05/16/2019 14:55			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:05			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552 Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND-1	15.0	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	NDI	IT /	1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	SREC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	105		73-120
1868-53-7	Dibromofluoromethane (Surr)	94		75-123
2037-26-5	Toluene-d8 (Surr)	105		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4				
Matrix: Water	Lab File ID: C7871.D				
Analysis Method: 8260C	Date Collected: 05/16/2019 14:55				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:05				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				
Number TICs Found: 0	TIC Result Total: 0				

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

X

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5				
Matrix: Water	Lab File ID: C7872.D				
Analysis Method: 8260C	Date Collected: 05/16/2019 16:55				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:32				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	NB	UT 1	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	NB	UT	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R -ND	-	40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	3.1	J	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
57-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
56-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	NO	UJ /	1.0	0.18
24-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
00-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5				
Matrix: Water	Lab File ID: C7872.D				
Analysis Method: 8260C	Date Collected: 05/16/2019 16:55				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:32				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	NPU	5 1	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	NEL	151	1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		77-120
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
1868-53-7	Dibromofluoromethane (Surr)	95		75-123
2037-26-5	Toluene-d8 (Surr)	106		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5
Matrix: Water	Lab File ID: C7872.D
Analysis Method: 8260C	Date Collected: 05/16/2019 16:55
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:32
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
8 Moisture:	Level: (low/med) Low
Analysis Batch No.: 474552	Units: ug/L
Number TICs Found: 0	TIC Result Total: 0

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
Ter	tatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6
Matrix: Water	Lab File ID: C7873.D
Analysis Method: 8260C	Date Collected: 05/17/2019 09:55
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:59
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 474552	Units: ug/L

N1-55-6 1,1,1-Trichloroethane ND 1.0 0.82 19-34-5 1,1,2,2-Tertachloroethane ND 1.0 0.21 76-13-1 1,1,2-Trichloroethane ND 1.0 0.31 99-00-5 1,1,2-Trichloroethane ND 1.0 0.31 99-00-5 1,1,2-Trichloroethane ND 1.0 0.23 75-34-3 1,1-Dichloroethane ND 1.0 0.29 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.33 06-93-4 1,2-Dichloroethane ND 1.0 0.73 07-06-2 1,2-Dichloroethane ND 1.0 0.73 07-06-2 1,2-Dichloroethane ND 1.0 0.72 8-87-5 1,2-Dichloroethane ND 1.0 0.72 8-87-5 1,2-Dichloroethane ND 1.0 0.72 8-93-3 2-Butanone (MEK) ND 1.0 0.84 23-91-1 1,4-Dixame ND 1.0 0.41 91-78-6 2-Betanone ND 1.0 0.41 91-78-6	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
19-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.21 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethan ND 1.0 0.31 99-00-5 1,1,2-Trichloroethane ND 1.0 0.32 99-00-5 1,1,2-Trichloroethane ND 1.0 0.32 95-34-3 1,1-Dichloroethane ND 1.0 0.32 55-35-4 1,2-Dichloroethane ND 1.0 0.43 96-12-8 1,2-Dibromo-3-Chloropropane ND 1.0 0.44 96-12-8 1,2-Dichloroethane ND 1.0 0.73 95-50-1 1,2-Dichloropopane ND 1.0 0.73 07-06-2 1,2-Dichloropopane ND 1.0 0.74 41-73-1 1,3-Dichloropopane ND 1.0 0.74 41-73-1 1,3-Dichloropopane ND 1.0 0.74 23-91-1 1,4-Dichloropopane ND 1.0 0.74 91-78-6 2-Hexanone ND 1.0 1.0 0.74 91-78-6 2-Hexanoe ND 1.0 0.40 <	71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethan NP 1.0 0.31 99-00-5 1,1,2-Trichloroethane ND 1.0 0.23 75-34-3 1,1-Dichloroethane ND 1.0 0.32 75-34-3 1,1-Dichloroethane ND 1.0 0.32 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.39 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.39 20-82-1 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 06-93-4 1,2-Dichlorobenzene ND 1.0 0.73 95-50-1 1,2-Dichloropropane ND 1.0 0.73 07-06-2 1,2-Dichloropropane ND 1.0 0.73 98-87-5 1,3-Dichlorobenzene ND 1.0 0.74 98-93-3 2-Butanone (MEX) ND 1.0 0.74 91-78-6 2-Hexanone ND 1.0 0.72 91-78-6 2-Hexanone ND 1.0 0.4 92-72-4 Bromodichloromethane ND 1.0 0.4	79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
99-00-5 1,1,2-Trichloroethane ND 1.0 0.23 15-34-3 1,1-Dichloroethane ND 1.0 0.33 25-35-4 1,1-Dichloroethene ND 1.0 0.39 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.39 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.39 06-93-4 1,2-Dibromo-3-Chloropropane ND 1.0 0.79 0.6-93-4 1,2-Dichlorobenzene ND 1.0 0.79 0.7-06-2 1,2-Dichlorobenzene ND 1.0 0.79 0.7-06-2 1,2-Dichlorobenzene ND 1.0 0.79 0.7-06-1 1,4-Dichlorobenzene ND 1.0 0.79 0.6-46-7 1,4-Dichlorobenzene ND 1.0 0.79 91-78-6 2-Bexanone ND 1.0 0.84 23-91-1 1,4-Dichlorobenzene ND 1.0 0.30 91-78-6 2-Bexanone ND 1.0 0.31 08-10-	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	NÐ	V TN	1.0	0.31
75-34-3 1,1-Dichloroethane ND 1.0 0.38 75-35-4 1,1-Dichloroethane ND 1.0 0.29 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.41 06-12-8 1,2-Dibromo-3-Chloropropane ND 1.0 0.73 06-93-4 1,2-Dibromo-3-Chloropropane ND 1.0 0.73 07-06-2 1,2-Dichlorobenzene ND 1.0 0.79 07-06-2 1,2-Dichloroptopane ND 1.0 0.72 8-87-5 1,2-Dichloroptopane ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.78 23-91-1 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dichlorobenzene ND 1.0 0.39 91-78-6 2-Hexanone ND 1.0 1.2 08-10-1 -Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-4-8eto	79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
55-35-4 1,1-Dichloroethene ND 1.0 0.29 20-82-1 1,2,4-Trichlorobenzene ND 1.0 0.41 6-12-8 1,2-Dibromo-3-Chloropropane ND 1.0 0.41 06-93-4 1,2-Dibromo-3-Chloropropane ND 1.0 0.739 06-93-4 1,2-Dibromo-3-Chloropropane ND 1.0 0.739 07-06-2 1,2-Dichlorobenzene ND 1.0 0.712 07-06-2 1,2-Dichloropropane ND 1.0 0.72 41-73-1 1,3-Dichlorobenzene ND 1.0 0.74 23-91-1 1,4-Dicklorobenzene ND 1.0 0.78 91-78-6 2-Hexanone ND 10 1.3 91-78-6 2-Hexanone ND 1.0 0.39 91-78-6 2-Hexanone ND 1.0 0.39 91-78-6 2-Hexanone ND 1.0 0.30 91-78-6 2-Hexanone ND 1.0 0.39 91-78-6 2-Hexanone ND 1.0 0.39 9 Bromodichlorom	75-34-3	1,1-Dichloroethane	ND		1.0	0.38
20-82-1 1,2,4-Trichlorobenzene NC 1.0 0.41 86-12-8 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 06-93-4 1,2-Dibromoethane ND 1.0 0.73 05-50-1 1,2-Dichlorobenzene ND 1.0 0.79 0.07-06-2 1,2-Dichlorobenzene ND 1.0 0.72 1,3-Dichlorobenzene ND 1.0 0.72 41-73-1 1,3-Dichlorobenzene ND 1.0 0.74 8-87-5 1,2-Dichlorobenzene ND 1.0 0.72 41-73-1 1,3-Dichlorobenzene ND 1.0 0.78 8-93-3 2-Butanone (MER) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 7-64-1 Acetone ND 1.0 0.49 5-25-2 Bromoform ND 1.0 0.39 5-25-2 Bromomethane ND 1.	75-35-4	1,1-Dichloroethene	ND		1.0	0.29
M6-12-8 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 0.6-93-4 1,2-Dibromoethane ND 1.0 0.73 95-50-1 1,2-Dichlorobenzene ND 1.0 0.73 07-06-2 1,2-Dichlorobenzene ND 1.0 0.72 8-87-5 1,2-Dichloroptopane ND 1.0 0.72 8-87-5 1,2-Dichlorobenzene ND 1.0 0.72 8-87-5 1,2-Dichlorobenzene ND 1.0 0.72 841-73-1 1,3-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.78 23-91-1 1,4-Dichlorobenzene ND 1.0 0.78 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 2.1 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 1-43-2 Benzene ND 1.0 0.44 5-25-2	120-82-1	1,2,4-Trichlorobenzene	ND	15 1	1.0	0.41
06-93-4 1,2-Dibromoethane ND 1.0 0.73 55-50-1 1,2-Dichlorobenzene ND 1.0 0.79 07-06-2 1,2-Dichloroptopane ND 1.0 0.21 48-87-5 1,2-Dichloroptopane ND 1.0 0.21 41-73-1 1,3-Dichloroptopane ND 1.0 0.73 06-46-7 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dickane ND 10 0.33 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64 2-Hexanone ND 1.0 0.30 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.26 6-23-5 Carbon disulfide ND 1.0 0.26 6-23-5 Carbon tetrachloride	96-12-8	1,2-Dibromo-3-Chloropropane	ND	0.0	1.0	0.39
b5-50-1 1,2-Dichlorobenzene ND 1.0 0.79 07-06-2 1,2-Dichlorobenzene ND 1.0 0.21 8-87-5 1,2-Dichloropropane ND 1.0 0.72 41-73-1 1,3-Dichlorobenzene ND 1.0 0.72 41-73-1 1,3-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.88 2-91-1 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dicklorobenzene ND 10 1.3 91-78-6 2-Hexanone ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.1 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.26 4-83-9 Bromodethane <td< td=""><td>106-93-4</td><td>1,2-Dibromoethane</td><td>ND</td><td></td><td>1.0</td><td>0.73</td></td<>	106-93-4	1,2-Dibromoethane	ND		1.0	0.73
07-06-2 1,2-Dichloroethane ND 1.0 0.21 8-87-5 1,2-Dichloropropane ND 1.0 0.72 441-73-1 1,3-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dichlorobenzene ND 10 1.3 91-78-6 2-Hexanone ND 10 1.3 91-78-6 2-Hexanone ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.39 5-27-4 Bromodichloromethane ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.27 6-23-5 Carbon tetrachloride ND 1.0 0.32 6-23-5 Carbon tetrachloride ND	95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
8-87-5 1,2-Dichloropropane ND 1.0 0.72 441-73-1 1,3-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dicoxane ND 1.0 0.84 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.32 5-60-3 Chloroform ND 1.0 <td>107-06-2</td> <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.21</td>	107-06-2	1,2-Dichloroethane	ND		1.0	0.21
441-73-1 1,3-Dichlorobenzene ND 1.0 0.78 06-46-7 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dickane ND 40 9.3 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.29 5-15-0 Carbon disulfide ND 1.0 0.69 5-15-0 Carbon tetrachloride ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.32 7-66-3 Chlorobenzene ND 1.0 0.32 7-66-3 Chlorobenzene ND 1.0 0.34 6-59-2 cis-1, 2-Dichloroethene ND 1	78-87-5	1,2-Dichloropropane	ND		1.0	0.72
06-46-7 1,4-Dichlorobenzene ND 1.0 0.84 23-91-1 1,4-Dioxane ND 40 9.3 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromosethane ND 1.0 0.26 4-83-9 Bromosethane ND 1.0 0.27 6-23-5 Carbon disulfide ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.39 5-60-3 Chlorobenzene ND 1.0 0.32 7-66-3 Chlorobenzene ND 1.0 0.34 061-01-5 cis-1, 3-Dichloropropene ND 1.0 <td>541-73-1</td> <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.78</td>	541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
23-91-1 1, 4-Dioxane A ND 40 9.3 8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.26 5-15-0 Carbon disulfide ND 1.0 0.26 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.27 5-00-3 Chloroform ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.35 56-59-2 cis-1, 2-Dichloroethene ND <	106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
8-93-3 2-Butanone (MEK) ND 10 1.3 91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.26 5-15-0 Carbon disulfide ND 1.0 0.27 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.35 56-59-2 cis-1, 2-Dichloroethene ND 1.0 0.36 0061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD <t< td=""><td>123-91-1</td><td>1,4-Dioxane</td><td>R -ND</td><td></td><td>40</td><td>9.3</td></t<>	123-91-1	1,4-Dioxane	R -ND		40	9.3
91-78-6 2-Hexanone ND 5.0 1.2 08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.32 5-00-3 Chloroform ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1, 2-Dichloropropene ND 1.0 0.36 0061-01-5 cis-1, 3-Dichloropropene ND	78-93-3	2-Butanone (MEK)	ND		10	1.3
08-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromodichloromethane ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.26 5-15-0 Carbon disulfide ND 1.0 0.69 5-15-0 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.36 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD	591-78-6	2-Hexanone	ND		5.0	1.2
7-64-1 Acetone 13 10 3.0 1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.39 5-25-2 Bromomethane ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.32 5-00-3 Chloroethane ND 1.0 0.34 4-87-3 Chloroform ND 1.0 0.35 56-59-2 cis-1, 2-Dichloroethene ND 1.0 0.36 0061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.32 10-82-7 Cyclohexane ND 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0<	108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
1-43-2 Benzene ND 1.0 0.41 5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.26 5-15-0 Carbon disulfide ND 1.0 0.69 6-23-5 Carbon tetrachloride ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chlorothane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1, 2-Dichloroethene ND 1.0 0.36 0061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.32 10-82-7 Cyclohexane MD 1.0 0.32 5-71-8 Dichlorodifluoromethane ND	67-64-1	Acetone	13		10	3.0
5-27-4 Bromodichloromethane ND 1.0 0.39 5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloromethane ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.688 00-41-4 Ethylbenzene	71-43-2	Benzene	ND		1.0	0.41
5-25-2 Bromoform ND 1.0 0.26 4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.32 0-71-4 Ethylbenzene ND 1.0 0.32	75-27-4	Bromodichloromethane	ND		1.0	0.39
4-83-9 Bromomethane ND 1.0 0.69 5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.36 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.32 0-71-4 Ethylbenzene ND 1.0 0.32	75-25-2	Bromoform	ND		1.0	0.26
5-15-0 Carbon disulfide ND 1.0 0.19 6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane ND 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.32 00-41-4 Ethylbenzene ND 1.0 0.68	74-83-9	Bromomethane	ND		1.0	0.69
6-23-5 Carbon tetrachloride ND 1.0 0.27 08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.32 00-41-4 Ethylbenzene ND 1.0 0.68	75-15-0	Carbon disulfide	ND		1.0	0.19
08-90-7 Chlorobenzene ND 1.0 0.75 5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.32 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	56-23-5	Carbon tetrachloride	ND		1.0	0.27
5-00-3 Chloroethane ND 1.0 0.32 7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	108-90-7	Chlorobenzene	ND		1.0	0.75
7-66-3 Chloroform ND 1.0 0.34 4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.35 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane ND 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.688 00-41-4 Ethylbenzene ND 1.0 0.74	75-00-3	Chloroethane	ND		1.0	0.32
4-87-3 Chloromethane ND 1.0 0.35 56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane ND 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	67-66-3	Chloroform	ND		1.0	0.34
56-59-2 cis-1,2-Dichloroethene ND 1.0 0.81 0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane ND 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	74-87-3	Chloromethane	ND		1.0	0.35
0061-01-5 cis-1,3-Dichloropropene ND 1.0 0.36 10-82-7 Cyclohexane MD 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10-82-7 Cyclohexane MD 1.0 0.18 24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	0061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
24-48-1 Dibromochloromethane ND 1.0 0.32 5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	110-82-7	Cyclohexane	MD	151	1.0	0.18
5-71-8 Dichlorodifluoromethane ND 1.0 0.68 00-41-4 Ethylbenzene ND 1.0 0.74	124-48-1	Dibromochloromethane	ND	~J ~	1.0	0.32
00-41-4 Ethylbenzene ND 1.0 0.74	75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
	00-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6				
Matrix: Water	Lab File ID: C7873.D Date Collected: 05/17/2019 09:55 Date Analyzed: 05/24/2019 13:59				
Analysis Method: 8260C					
Sample wt/vol: 5(mL)					
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474552	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND- U	51	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	NF U	151	1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	89		75-123
2037-26-5	Toluene-d8 (Surr)	106		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6			
Matrix: Water	Lab File ID: C7873.D			
Analysis Method: 8260C	Date Collected: 05/17/2019 09:55			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 13:59			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			
Number TICs Found: 0	TIC Result Total: 0			

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

b Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1				
SDG No.:				
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7			
Matrix: Water	Lab File ID: T1248.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 17:20			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:20			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
23-91-1	1,4-Dioxane	R ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
57-64-1	Acetone	ND		10	3.0
1-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
4-83-9	Bromomethane	NO	JJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
.08-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND.	UJ J	1.0	0.32
57-66-3	Chloroform	ND		1.0	0.34
4-87-3	Chloromethane	ND-	151	1.0	0.35
56-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
0061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
10-82-7	Cyclohexane	ND		1.0	0.18
.24-48-1	Dibromochloromethane	ND		1.0	0.32
5-71-8	Dichlorodifluoromethane	ND	-UJ J	1.0	0.68
.00-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7			
Matrix: Water	Lab File ID: T1248.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 17:20			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:20			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	NĐ 1	TV	1.0	0.88
75-01-4	Vinyl chloride	NO	IT /	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
1868-53-7	Dibromofluoromethane (Surr)	97		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7			
Matrix: Water	Lab File ID: T1248.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 17:20			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:20			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			
Number TICs Found: 0	TIC Result Total: 0			

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8			
Matrix: Water	Lab File ID: C7874.D			
Analysis Method: 8260C	Date Collected: 05/16/2019 11:35			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:25			
Soil Aliquot Vol:	Dilution Factor: 4			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND	1	4.0	3.3
79-34-5	1,1,2,2-Tetrachloroethane	ND		4.0	0.84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	NĐ	45 /	4.0	1.2
79-00-5	1,1,2-Trichloroethane	ND		4.0	0.92
75-34-3	1,1-Dichloroethane	ND		4.0	1.5
75-35-4	1,1-Dichloroethene	ND		4.0	1.2
120-82-1	1,2,4-Trichlorobenzene	NB	UT /	4.0	1.6
96-12-8	1,2-Dibromo-3-Chloropropane	ND		4.0	1.6
106-93-4	1,2-Dibromoethane	ND		4.0	2.9
95-50-1	1,2-Dichlorobenzene	ND		4.0	3.2
107-06-2	1,2-Dichloroethane	ND		4.0	0.84
78-87-5	1,2-Dichloropropane	ND		4.0	2.9
541-73-1	1,3-Dichlorobenzene	ND		4.0	3.1
106-46-7	1,4-Dichlorobenzene	6.2	-	4.0	3.4
123-91-1	1,4-Dioxane	R -ND-		160	37
78-93-3	2-Butanone (MEK)	ND		40	5.3
591-78-6	2-Hexanone	ND		20	5.0
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	8.4
67-64-1	Acetone	12	J	40	12
71-43-2	Benzene	7.8		4.0	1.6
75-27-4	Bromodichloromethane	ND		4.0	1.6
75-25-2	Bromoform	ND		4.0	1.0
74-83-9	Bromomethane	ND		4.0	2.8
75-15-0	Carbon disulfide	ND		4.0	0.76
56-23-5	Carbon tetrachloride	ND		4.0	1.1
L08-90-7	Chlorobenzene	85		4.0	3.0
75-00-3	Chloroethane	ND		4.0	1.3
57-66-3	Chloroform	ND		4.0	1.4
4-87-3	Chloromethane	ND		4.0	1.4
56-59-2	cis-1,2-Dichloroethene	ND		4.0	3.2
.0061-01-5	cis-1,3-Dichloropropene	ND		4.0	1.4
110-82-7	Cyclohexane	ND	47 /	4.0	0.72
124-48-1	Dibromochloromethane	ND		4.0	1.3
75-71-8	Dichlorodifluoromethane	ND		4.0	2.7
00-41-4	Ethylbenzene	ND		4.0	3.0

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8			
Matrix: Water	Lab File ID: C7874.D			
Analysis Method: 8260C Date Collected: 05/16/2019 11:3				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:25			
Soil Aliquot Vol:	Dilution Factor: 4			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	3.5	J	4.0	3.2
79-20-9	Methyl acetate	ND		10	5.2
1634-04-4	Methyl tert-butyl ether	ND		4.0	0.64
108-87-2	Methylcyclohexane	0.77	J	4.0	0.64
75-09-2	Methylene Chloride	ND		4.0	1.8
100-42-5	Styrene	ND		4.0	2.9
127-18-4	Tetrachloroethene	NB	UTJ	4.0	1.4
108-88-3	Toluene	ND		4.0	2.0
156-60-5	trans-1,2-Dichloroethene	ND		4.0	3.6
10061-02-6	trans-1,3-Dichloropropene	ND		4.0	1.5
79-01-6	Trichloroethene	ND		4.0	1.8
75-69-4	Trichlorofluoromethane	ND		4.0	3.5
75-01-4	Vinyl chloride	ND		4.0	3.6
1330-20-7	Xylenes, Total	ND		8.0	2.6

CAS NO.	SURROGATE	REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100	_	77-120
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
1868-53-7	Dibromofluoromethane (Surr)	96		75-123
2037-26-5	Toluene-d8 (Surr)	107		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8		
Matrix: Water	Lab File ID: C7874.D		
Analysis Method: 8260C Date Collected: 05/16/2019 11			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:25		
Soil Aliquot Vol:	Dilution Factor: 4		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 474552	Units: ug/L		
Number TICs Found: 3	TIC Result Total: 54		

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
496-11-7	Indane	9.34	12	TJN	93%
767-58-8	Indan, 1-methyl-	10.43	12	TJN	93%
91-20-3	Naphthalene	10.99	30	TJN	948

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9				
Matrix: Water	Lab File ID: T1249.D				
Analysis Method: 8260C	Date Collected: 05/15/2019 14:35				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:44				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474456	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND (JJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	-NB ()	JJ	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	N= L	JJ	1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	-451	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9
Matrix: Water	Lab File ID: T1249.D
Analysis Method: 8260C	Date Collected: 05/15/2019 14:35
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:44
Soil Aliquot Vol;	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 474456	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	NU	T,	1.0	0.88
75-01-4	Vinyl chloride	ND	17.1	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9				
Matrix: Water	Lab File ID: T1249.D				
Analysis Method: 8260C Date Collected: 05/15/2019 14:3					
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 02:44				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474456	Units: ug/L				
Number TICs Found: 0	TIC Result Total: 0				

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10		
Matrix: Water	Lab File ID: T1250.D		
Analysis Method: 8260C Date Collected: 05/15/2019 11:25			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:08		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 474456	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	NO	NT V	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	NOU	JV	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ME L	171	1.0	0.35
156-59-2	cis-1,2-Dichloroethene	. ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	- 451	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1			
SDG No.:			
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10		
Matrix: Water Lab File ID: T1250.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 11:25		
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:08		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 474456	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND	ND 1.0		0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	TV	1.0	0.88
75-01-4	Vinyl chloride	ND	JI	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		77-120
460-00-4 4-Bromofluorobenzene (Surr)		89		73-120
1868-53-7	Dibromofluoromethane (Surr)	97		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1					
SDG No.:					
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10				
Matrix: Water	Lab File ID: T1250.D				
Analysis Method: 8260C	Date Collected: 05/15/2019 11:25				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:08				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474456	Units: ug/L				
Number TICs Found: 0	TIC Result Total: 0				

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11			
Matrix: Water	Lab File ID: T1251.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 13:35			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:33			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND	-	1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.43
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R _ND_		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	NP	17.1	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND	1.1	1.0	0.75
75-00-3	Chloroethane	NELA	TI	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND	1J V	1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND	· ·	1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	-UJJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1				
SDG No.:					
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11				
Matrix: Water	Lab File ID: T1251.D				
Analysis Method: 8260C	Date Collected: 05/15/2019 13:35				
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:33				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 474456	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane.	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND 1.0		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND	-	1.0	0.46
75-69-4	Trichlorofluoromethane	ND 1	1/	1.0	0.88
75-01-4	Vinyl chloride	ND	171	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	SREC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		77-120
460-00-4	4-Bromofluorobenzene (Surr)	90		73-120
1868-53-7	Dibromofluoromethane (Surr)	96		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11			
Matrix: Water	Lab File ID: T1251.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 13:35			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 03:33			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474456	Units: ug/L			
Number TICs Found: 0	TIC Result Total: 0			

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

.

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12	
Matrix: Water	Lab File ID: C7875.D	
Analysis Method: 8260C	Date Collected: 05/16/2019 15:50	
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:52	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 474552	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	NO	45	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	NB	UT.1	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	R ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND	10.00	1.0	0.81
L0061-01-5	cis-1,3-Dichloropropene	ND		1.0	. 0.36
110-82-7	Cyclohexane	NĐ	UTJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12	
Matrix: Water	Lab File ID: C7875.D	
Analysis Method: 8260C	Date Collected: 05/16/2019 15:50	
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:52	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 474552	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	HD (11 11	1.0	0.16
75-09-2	Methylene Chloride	ND	~ ~	1.0	0.44
100-42-5	Styrene	ND	-	1.0	0.73
127-18-4	Tetrachloroethene	NB (ITV	1.0	0.36
108-88-3	Toluene	ND	v	1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
1868-53-7	Dibromofluoromethane (Surr)	90		75-123
2037-26-5	Toluene-d8 (Surr)	106		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12		
Matrix: Water	Lab File ID: C7875.D		
Analysis Method: 8260C	Date Collected: 05/16/2019 15:50		
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 14:52		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 474552	Units: ug/L		
Number TICs Found: 0	TIC Result Total: 0		

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14
Matrix: Water	Lab File ID: C7876.D
Analysis Method: 8260C	Date Collected: 05/15/2019 15:45
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 15:18
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 474552	Units: ug/L

				ирд
71-55-6 1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5 1,1,2,2-Tetrachloroethane	ND		1.0	0.02
76-13-1 1,1,2-Trichloro-1,2,2-trifluoro	ethan MD	VJ V	1.0	0.21
79-00-5 1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3 1,1-Dichloroethane	ND		1.0	0.38
75-35-4 1,1-Dichloroethene	ND		1.0	0.29
120-82-1 1,2,4-Trichlorobenzene	ND	VI.	1.0	0.41
96-12-8 1,2-Dibromo-3-Chloropropane	ND		1.0	0.41
106-93-4 1,2-Dibromoethane	ND		1.0	0.55
95-50-1 1,2-Dichlorobenzene	ND		1.0	0.73
107-06-2 1,2-Dichloroethane	ND		1.0	0.79
78-87-5 1,2-Dichloropropane	ND		1.0	0.21
541-73-1 1,3-Dichlorobenzene	ND		1.0	0.72
106-46-7 1,4-Dichlorobenzene	ND		1.0	0.78
123-91-1 1,4-Dioxane	0 -ND-		1.0	0.84
78-93-3 2-Butanone (MEK)	ND		10	1.3
591-78-6 2-Hexanone	ND		5.0	1.3
108-10-1 4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1 Acetone	ND		10	3.0
71-43-2 Benzene	ND		1.0	0.11
75-27-4 Bromodichloromethane	ND		1.0	0.41
75-25-2 Bromoform	ND		1.0	0.39
74-83-9 Bromomethane	ND		1.0	0.20
75-15-0 Carbon disulfide	ND		1.0	0.09
56-23-5 Carbon tetrachloride	ND		1.0	0.13
108-90-7 Chlorobenzene	ND		1.0	0.27
75-00-3 Chloroethane	ND		1.0	0.75
57-66-3 Chloroform	ND		1.0	0.34
74-87-3 Chloromethane	ND		1.0	0.34
156-59-2 cis-1,2-Dichloroethene	ND		1.0	0.55
.0061-01-5 cis-1,3-Dichloropropene	ND		1.0	0.02
10-82-7 Cyclohexane	NP	UT /	1.0	0.30
.24-48-1 Dibromochloromethane	ND		1.0	0.10
75-71-8 Dichlorodifluoromethane	ND		1.0	0.52
.00-41-4 Ethylbenzene	ND		1.0	0.08

/

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14
Matrix: Water	Lab File ID: C7876.D
Analysis Method: 8260C	Date Collected: 05/15/2019 15:45
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 15:18
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 474552	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	NO	45 1	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	No	KI	1.0	0.36
108-88-3	Toluene	ND	1.1	1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	SREC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4 .	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	89		75-123
2037-26-5	Toluene-d8 (Surr)	104		80-120
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
---	-------------------------------------			
SDG No.:				
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14			
Matrix: Water	Lab File ID: C7876.D			
Analysis Method: 8260C	Date Collected: 05/15/2019 15:45			
Sample wt/vol: 5(mL)	Date Analyzed: 05/24/2019 15:18			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 474552	Units: ug/L			
Number TICs Found: 0	TIC Result Total: 0			

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Tentatively Identified Compound		None		

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1
Matrix: Water	Lab File ID: W0536.D
Analysis Method: 8270D	Date Collected: 05/15/2019 10:10
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 10:19
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND	_	5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	. ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1
Matrix: Water	Lab File ID: W0536.D
Analysis Method: 8270D	Date Collected: 05/15/2019 10:10
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 10:19
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1
Matrix: Water	Lab File ID: W0536.D
Analysis Method: 8270D	Date Collected: 05/15/2019 10:10
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL) Date Analyzed: 05/29/2019 10:19	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 10	TIC Result Total: 144.7

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
DONOT EP	Unknown	2,90	2.8	ТЈ	
110-82-7	Cyclohexane	3.09	19	TJN	87%
	Unknown	3.19	2.7	ΤJ	
O NOT YEDONT	Unknown	3.33	60.	тЈ	
	column bleed	4.88	7.2	TJ	
	Unknown	5.15	37	ТJ	-
	c olumn bleed	7.17	7.8	TJ	
	column bleed	8.05	3.7	T J	
	Unknown	8.82	2.7	T J.	
*	Unknown	9.50	1.8	TJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2
Matrix: Water	Lab File ID: W0537.D
Analysis Method: 8270D	Date Collected: 05/15/2019 14:00
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 10:47
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2
Matrix: Water	Lab File ID: W0537.D
Analysis Method: 8270D	Date Collected: 05/15/2019 14:00
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 10:47
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2		
Matrix: Water	Lab File ID: W0537.D		
Analysis Method: 8270D	Date Collected: 05/15/2019 14:00		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 10:47		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		
Number TICs Found: 11	TIC Result Total: 164.9		

CAS NO. N	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
110-82-7	Cyclohexane	3.20	2.1	TJN	87%
DO NOT YOU	N Unknown	3.34	64	TJ	
J	Unknown	5.16	45	TJ	
1	olumn bleed	6.22	20	ΤJ	
DOMPTIC	Column bloed	7.17	10	T J	
	_column bleed	8.05	5.7	T J	
1	Unknown	8.82	3.6	TJ	
	Unknown	8.90	6.3	ΤJ	
	Unknown	9.20	4.2	ΤJ	
DO NOTYERON	Unknown	9.50	2.3	TJ	
	Unknown	10.08	1.7	ΤJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3	
Matrix: Water	Lab File ID: W0538.D	
Analysis Method: 8270D	Date Collected: 05/16/2019 12:25	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:17	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3			
Matrix: Water	Lab File ID: W0538.D			
Analysis Method: 8270D	Date Collected: 05/16/2019 12:25			
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03			
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:17			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: 2(uL)	Level: (low/med) Low			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a, h) anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	0.73	J	5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3		
Matrix: Water	Lab File ID: W0538.D		
Analysis Method: 8270D	Date Collected: 05/16/2019 12:25		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:17		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture: GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963 Units: ug/L			
Number TICs Found: 9	TIC Result Total: 125		

CAS NO.	+ ILPONT COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
00 /	- Unknown	2.89	2.3	TJ	-
110-82-7	Cyclohexane	3,19	2.7	TJN	908
	Unknown	3,33	62	TJ	
	_ column bleed	4.88	6.8	ΤJ	_
	Unknown	5.15	35	T J	
	-column bleed	7.17	8.4	TJ	
	column bleed	8.05	3.7	TJ	
V	Unknown	8.82	2.5	ТJ	
V	Unknown	9.50	1.6	ΤJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4
Matrix: Water	Lab File ID: W0539.D
Analysis Method: 8270D	Date Collected: 05/16/2019 14:55
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:46
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND	_	5.0	0.51
105-67-9	2,4-Dimethylphenol	ND	_	5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4
Matrix: Water	Lab File ID: W0539.D
Analysis Method: 8270D	Date Collected: 05/16/2019 14:55
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:46
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene .	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND ·		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	· 0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND	-	5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4		
Matrix: Water	Lab File ID: W0539.D		
Analysis Method: 8270D	Date Collected: 05/16/2019 14:55		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 11:46		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture: GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963	Units: ug/L		
Number TICs Found: 11	TIC Result Total: 150.1		

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
Dona	Unknown	2.90	2.4	TJ	
110-82-7	Cyclohexane	3,10	21	TJN	91%
	Unknown	3.20	2.2	ΤJ	
DO NOT 12 PONT	Unknown	3.34	64	TJ	
	Unknown	3.39	1.7	ΤJ	
DO NOTIERN	column bleed	4.88	4.1	T J	
1	Unknown	5.15	38	TJ	
	column bleed	7.17	8.7	TJ	
	column bleed	8.05	3.6	ΤJ	
	Unknown	8.82	2.7	TI	
1	Unknown	9,50	1.7	TJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5		
Matrix: Water	Lab File ID: W0540.D		
Analysis Method: 8270D	Date Collected: 05/16/2019 16:55		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:15		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5		
Matrix: Water	Lab File ID: W0540.D		
Analysis Method: 8270D	Date Collected: 05/16/2019 16:55		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:15		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963 Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a, h) anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	0.41	J	5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772-5			
Matrix: Water	Lab File ID: W0540.D			
Analysis Method: 8270D	Date Collected: 05/16/2019 16:55			
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03			
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:15			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: 2(uL)	Level: (low/med) Low			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963 Units: ug/L				
Number TICs Found: 20	TIC Result Total: 278.9			

d CAS NO.	COMPOUND NAME	COMPOUND NAME RT RESULT		Q	MATCH QUALITY
	Unknown	2,91	3.5	TJ	
110-82-7	Cyclohexane	3.08	24	TJN	95%
	Unknown	3.20	2.0	ΤJ	
D NOT report	Unknown	3.34	62	T J	
	Unknown	4.89	7.9	TJ	
*	Unknown	5,16	46	ΤJ	
3173-53-3	Cyclohexane, isocyanato-	6.48	2.8	TJN	96%
Do not ve par	l eolumn bleed	7.17	9.0	ТЈ	
95-16-9	Benzothiazole	7.90	3.3	TJN	94%
DO NOT HEN	column bleed	8.05	4.1	TJ	
	Unknown	8.39	6.7	ΤJ	
00 notreo N	Unknown	8.82	3.1	TJ	
	Unknown	8.90	2.8	ΤJ	
	Unknown	8.94	9.6	TJ	1
	Unknown	8.98	10	ΤJ	
	Unknown	9.20	2.9	ΤJ	
notrepor	Unknown	9,50	2.2	TJ	
934-34-9	2(3H)-Benzothiazolone	9.90	66	TJN	96%
2387-23-7	1,3-Dicyclohexylurea	11.26	8.9	TJN	94%
	Unknown	16.03	2.1	ΤJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6			
Matrix: Water	Lab File ID: W0541.D			
Analysis Method: 8270D	Date Collected: 05/17/2019 09:55			
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03			
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:44			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: 2(uL)	Level: (low/med) Low			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6
Matrix: Water	Lab File ID: W0541.D
Analysis Method: 8270D	Date Collected: 05/17/2019 09:55
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:44
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
<pre>% Moisture:</pre>	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	lo Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6	
Matrix: Water	Lab File ID: W0541.D	
Analysis Method: 8270D	Date Collected: 05/17/2019 09:55	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 12:44	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	
Number TICs Found: 20	TIC Result Total: 364.2	

N 8ASTREPO	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
110-82-7	Cyclohexane	3.08	23	TJN	948
	Unknown	3.19	2.9	ΤJ	
o not upp	1 Unknown	3.33	62	TJ	
	column bleed	4.88	6.6	TJ	
	Unknown	5.15	43	TJ	
	column bleed	7.17	14	TJ	
124-07-2	Octanoic Acid	7.39	5.9	TJN	95%
	Unknown	7.89	3.1	ТЈ	
70 NOT 10	Kolumn bleed	8.05	6.1	TJ	
	Unknown	8.18	4.8	ΤJ	
334-48-5	n-Decanoic acid	8.38	9.7	TJN	91%
to notrepa	N Unknown	8.82	4.0	ТJ	-
143-07-7	Dodecanoic acid	9.29	150	TJN	98%
	Unknown	9.95	3.4	ΤJ	5
	Unknown	10.04	2.9	ΤJ	
	Unknown	10.08	6.6	ΤJ	
	Unknown	10.11	3.5	ΤJ	
57-10-3	n-Hexadecanoic acid	10.76	5.0	TJN	98%
	Unknown	11.76	3.3	ΤJ	
	Unknown	14.38	4.4	ΤJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7
Matrix: Water	Lab File ID: W0542.D
Analysis Method: 8270D	Date Collected: 05/15/2019 17:20
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:13
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7
Matrix: Water	Lab File ID: W0542.D
Analysis Method: 8270D	Date Collected: 05/15/2019 17:20
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:13
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	, 0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND	-	10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7	
Matrix: Water Lab File ID: W0542.D		
Analysis Method: 8270D	Date Collected: 05/15/2019 17:20	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:13	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	
Number TICs Found: 11	TIC Result Total: 141.9	

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
DO NO 131	Unknown	2.90	2.9	TJ	
110-82-7	Cyclohexane	3.19	2.8	TJN	90%
	Unknown	3.33	64	ТJ	
	eolumn bleed	4.88	8.3	ТJ	-
	Unknown	5.15	39	T.J.	
	column_bleed	. 7.17	9.9	ΤJ	
	eolumn bleed	8.05	4.1	TJ	
	Unknown	8.82	2.8	T J	
V	Unknown	9.50	1.9	ΤJ	-
57-10-3	n-Hexadecanoic acid	10.76	4.1	TJN	98%
57-11-4	Octadecanoic acid	11.45	2.1	TJN	98%

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8
Matrix: Water	Lab File ID: W0534.D
Analysis Method: 8270D	Date Collected: 05/16/2019 11:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 09:22
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND	PZ	5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND	22	5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	0.89	J	5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND	F2	10	0.42
88-75-5	2-Nitrophenol	ND	-	5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND	EZ	5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	0.90	J	5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND	1	5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1	
SDG No.:	
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8
Matrix: Water	Lab File ID: W0534.D
Analysis Method: 8270D	Date Collected: 05/16/2019 11:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 09:22
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	2.6	J	5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	0.46	J P2	5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	0.40	J	5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	1.8	J	5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	0.40	J	5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8
Matrix: Water	Lab File ID: W0534.D
Analysis Method: 8270D	Date Collected: 05/16/2019 11:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 09:22
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 20	TIC Result Total: 317.2

PO MOT Unknown 3.31 121-44-8 Triethylamine 3.41 10 NOT 1000000000000000000000000000000000000	34 5.9 <u>21</u> 21	T J T J N T J	91%
121-44-8 Triethylamine 3.41 10 NOT (100 - Unknown 5.15) 5.15	5.9 21 21	T J N T J	91%
D NOT Y LOW Unknown 5.15	21 21	TJ	210
	21		
108-90-7 Benzene, chloro- 5.26	Not the	TJN	95%
934-80-5 Benzene, 4-ethyl-1,2-dimethyl- 7.02	4.9	TJN	95%
Do not (10 of + column bleed 7.17	12	ТJ	
Unknown 7.25	13	ΤJ	
Unknown 7.37	12	ΤJ	
Unknown 7.60	5.7	ΤJ	
Unknown 7.90	6.5	ΤJ	
Do notrep & column bleed 8.05	5.0	TJ	
585-34-2 Phenol, m-tert-butyl- 8.12	16	TJN	93%
6331-04-0 Acetic acid, (2,4-xylyl)- 8.80	7.9	TJN	90%
140-66-9 Phenol, 4-(1,1,3,3-tetramethylbutyl)- 9.55	9.3	TJN	91%
126-73-8 Tributyl phosphate 9.61	10	TJN	91%
Unknown 9.79	19	ΤJ	
934-34-9 2(3H)-Benzothiazolone 9.91	74	TJN	96%
80-39-7 Benzenesulfonamide, N-ethyl-4-methyl- 10.03	12	ΤJΝ	97%
Unknown 11.41	16	ΤJ	
80-05-7 Phenol, 4,4'-(1-methylethylidene)bis- 11.67	12	TJN	94%

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9			
Matrix: Water	Lab File ID: W0543.D			
Analysis Method: 8270D	Date Collected: 05/15/2019 14:35			
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03			
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:41			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: 2(uL)	Level: (low/med) Low			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 474963	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9
Matrix: Water	Lab File ID: W0543.D
Analysis Method: 8270D	Date Collected: 05/15/2019 14:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:41
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	· ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a, h) anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND	-	5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9
Matrix: Water	Lab File ID: W0543.D
Analysis Method: 8270D	Date Collected: 05/15/2019 14:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 13:41
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 9	TIC Result Total: 138

CAS NO.	not ICDAT COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
110-82-7	Cyclohexane	3.08	22	TJN	91%
	Unknown	3.18	2.8	ТЈ	
10 nox 1 1901	Unknown	.3.33	60	T J	
DO NOT !!!	Noolumn bleed	4.88	3.5	TJ	
	Unknown	5.15	33	ΤJ	
	column bleed	7.17	8.3	TJ	
	column bleed	8.05	3.7	ΤJ	
	Unknown	8.82	2.9	TJ	_
	Unknown	9,50	1.8	TJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10		
Matrix: Water	Lab File ID: W0544.D		
Analysis Method: 8270D	Date Collected: 05/15/2019 11:25		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 14:10		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

b Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1	
SDG No.:	
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10
Matrix: Water	Lab File ID: W0544.D
Analysis Method: 8270D	Date Collected: 05/15/2019 11:25
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 14:10
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10	
Matrix: Water	Lab File ID: W0544.D	
Analysis Method: 8270D	Date Collected: 05/15/2019 11:25	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 14:10	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	
Number TICs Found: 9	TIC Result Total: 118.4	

CAS NO.	port compound name	RT	RESULT	Q	MATCH QUALITY
DONO	Unknown	2.89	1.9	TJ	
110-82 7	Cyclohexane	3.18	3.0	TJN	90%
	Unknown	3.33	61	TJ	
	Unknown	4.88	4.7	TJ	
	Unknown	5.15	34	TJ	
	column bleed	7.17	5.5	тЈ	•
	column bleed	8.05	3.5	TJ	
	Unknown	8.82	2.9	ΤJ	
-	runknown	9.50	1.9	T J	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11	
Matrix: Water	Lab File ID: W0545.D	
Analysis Method: 8270D	Date Collected: 05/15/2019 13:35	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 14:39	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND	1	5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11	
Matrix: Water	Lab File ID: W0545.D	
Analysis Method: 8270D	Date Collected: 05/15/2019 13:35	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 14:39	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	- ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	ND		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11
Matrix: Water	Lab File ID: W0545.D
Analysis Method: 8270D	Date Collected: 05/15/2019 13:35
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL) Date Analyzed: 05/29/2019 14:39	
Con. Extract Vol.: 1(mL) Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 11	TIC Result Total: 161.8

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
DONO	Unknown	2.89	2.0	TJ	
110-82-7	Cyclohexane	3.08	18	TJN	• 94%
	Unknown	3.18	3.3	ΤJ	
DO NOTYION	Unknown	3.32	66	TJ	•
	column bleed	4.88	4.8	TJ	
	Unknown	5.15	46	TJ	-
	column bleed	7.17	6.8	TJ	
	Unknown	8.82	3.1	TJ	
1	Unknown	9.50	2.1	TJ	-
57-11-4	Octadecanoic acid	11.46	7.8	TJN	983
	Unknown	11.53	1.9	ΤJ	

Lab Name: Eurofins TestAmerica, Buffalo	lo Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12	
Matrix: Water	Lab File ID: W0546.D	
Analysis Method: 8270D	Date Collected: 05/16/2019 15:50	
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03	
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:08	
Con. Extract Vol.: 1(mL)	Dilution Factor: 1	
Injection Volume: 2(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474963	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND		5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND		5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	3-Nitroaniline	ND		10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12		
Matrix: Water	Lab File ID: W0546.D		
Analysis Method: 8270D	Date Collected: 05/16/2019 15:50		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:08		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether	ND		5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	Dimethyl phthalate	L phthalate ND		5.0	0.36
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	itrosodiphenylamine ND 5		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12
Matrix: Water	Lab File ID: W0546.D
Analysis Method: 8270D	Date Collected: 05/16/2019 15:50
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:08
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 10	TIC Result Total: 130.6

1. 1000	At COM COND NAME	RT	RESULT	Q	QUALITY
D NOT YCH	Unknown	2.89	1.6	ΤJ	-
110-82-7	Cyclohexane	3.18	3.1	TJN	90%
	Unknown	3.32	61	ΤJ	
	Unknown	4,88	4.1	TJ	
	Unknown	5.15		TJ	
	column bleed	7.17	9.4	TJ	-
	column bleed	8.05	5.0	TJ	
	Unknown	8.82	3.5	TJ	
-	Unknown	9.50	2.2	TJ	
	Unknown	10.08	1.7	ΤJ	

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14		
Matrix: Water	Lab File ID: W0547.D		
Analysis Method: 8270D	Date Collected: 05/15/2019 15:45		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:37		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-95-4	2,4,5-Trichlorophenol	ND		5.0	0.48
88-06-2	2,4,6-Trichlorophenol	ND	_	5.0	0.61
120-83-2	2,4-Dichlorophenol	ND		5.0	0.51
105-67-9	2,4-Dimethylphenol	ND		5.0	0.50
51-28-5	2,4-Dinitrophenol	ND		10	2.2
121-14-2	2,4-Dinitrotoluene	ND		5.0	0.45
606-20-2	2,6-Dinitrotoluene	ND		5.0	0.40
91-58-7	2-Chloronaphthalene	ND		5.0	0.46
95-57-8	2-Chlorophenol	ND	-	5.0	0.53
91-57-6	2-Methylnaphthalene	ND		5.0	0.60
95-48-7	2-Methylphenol	ND		5.0	0.40
88-74-4	2-Nitroaniline	ND		10	0.42
88-75-5	2-Nitrophenol	ND		5.0	0.48
91-94-1	3,3'-Dichlorobenzidine	ND		5.0	0.40
99-09-2	2 3-Nitroaniline ND			10	0.48
534-52-1	4,6-Dinitro-2-methylphenol	ND		10	2.2
101-55-3	4-Bromophenyl phenyl ether	ND		5.0	0.45
59-50-7	4-Chloro-3-methylphenol	ND		5.0	0.45
106-47-8	4-Chloroaniline	ND		5.0	0.59
7005-72-3	4-Chlorophenyl phenyl ether	ND		5.0	0.35
106-44-5	4-Methylphenol	ND		10	0.36
100-01-6	4-Nitroaniline	ND		10	0.25
100-02-7	4-Nitrophenol	ND		10	1.5
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
98-86-2	Acetophenone	ND		5.0	0.54
120-12-7	Anthracene	ND		5.0	0.28
1912-24-9	Atrazine	ND		5.0	0.46
100-52-7	Benzaldehyde	ND		5.0	0.27
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1		
SDG No.:			
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14		
Matrix: Water	Lab File ID: W0547.D		
Analysis Method: 8270D	Date Collected: 05/15/2019 15:45		
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03		
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:37		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: 2(uL)	Level: (low/med) Low		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 474963	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
92-52-4	Biphenyl	ND		5.0	0.65
108-60-1	bis (2-chloroisopropyl) ether NE			5.0	0.52
111-91-1	Bis(2-chloroethoxy)methane	ND		5.0	0.35
111-44-4	Bis(2-chloroethyl)ether	ND		5.0	0.40
117-81-7	Bis(2-ethylhexyl) phthalate	ND		5.0	2.2
85-68-7	Butyl benzyl phthalate	ND		5.0	1.0
105-60-2	Caprolactam	ND		5.0	2.2
86-74-8	Carbazole	ND		5.0	0.30
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
132-64-9	Dibenzofuran	ND		10	0.51
84-66-2	Diethyl phthalate	ND		5.0	0.22
131-11-3	-3 Dimethyl phthalate ND		5.0	0.36	
84-74-2	Di-n-butyl phthalate	ND		5.0	0.31
117-84-0	Di-n-octyl phthalate	ND		5.0	0.47
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
118-74-1	Hexachlorobenzene	ND		5.0	0.51
87-68-3	Hexachlorobutadiene	ND		5.0	0.68
77-47-4	Hexachlorocyclopentadiene	ND		5.0	0.59
67-72-1	Hexachloroethane	ND		5.0	0.59
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
78-59-1	Isophorone	ND		5.0	0.43
91-20-3	Naphthalene	ND		5.0	0.76
98-95-3	Nitrobenzene	ND		5.0	0.29
621-64-7	N-Nitrosodi-n-propylamine	ND		5.0	0.54
86-30-6	N-Nitrosodiphenylamine	nenylamine ND 5		5.0	0.51
87-86-5	Pentachlorophenol	ND		10	2.2
85-01-8	Phenanthrene	ND		5.0	0.44
108-95-2	Phenol	ND		5.0	0.39
129-00-0	Pyrene	ND		5.0	0.34

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14
Matrix: Water	Lab File ID: W0547.D
Analysis Method: 8270D	Date Collected: 05/15/2019 15:45
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 15:37
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 10	TIC Result Total: 142.3

	CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
		Unknown	2.69	1.8	ΤJ	
eand ant	110-82-7	Cyclohexane	3.08	21	TJN	95%
110		Unknown	3.18	3.1	ΤJ	1
	DO NA NA	Unknown	3.32	59	T J,	
	1160	•column bleed	4.88	3.6	TJ	
		Usknown	5.15	37	TJ	
		column bleed	7.17	7.7	TJ	
		column bleed	8.05	4.0	TJ	
		Unknown	8.82	3.1	TJ	·i
	-	Unknown	9.50	2.0	TJ	

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772-1
Matrix: Water	Lab File ID: 25_20-391.D
Analysis Method: 8081B	Date Collected: 05/15/2019 10:10
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 17:25
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	0.015	J	0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	≷REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	45		20-120
877-09-8	Tetrachloro-m-xylenė	91		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2	
Matrix: Water	Lab File ID: 25_20-392.D	
Analysis Method: 8081B	Date Collected: 05/15/2019 14:00	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 17:45	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND	1	0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	. ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	53		20-120
877-09-8	Tetrachloro-m-xylene	80		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3
Matrix: Water	Lab File ID: 25_20-393.D
Analysis Method: 8081B	Date Collected: 05/16/2019 12:25
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 18:04
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	42		20-120
877-09-8	Tetrachloro-m-xylene	81		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-4
Matrix: Water	Lab File ID: 25_20-394.D
Analysis Method: 8081B	Date Collected: 05/16/2019 14:55
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 18:24
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	≷REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	47		20-120
877-09-8	Tetrachloro-m-xylene	88		44-120

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1		
SDG No.:		
Client Sample ID: ML-BR-5	Lab Sample ID: 480-153772	-5
Matrix: Water	Lab File ID: 25_20-395.D	
Analysis Method: 8081B	Date Collected: 05/16/2019 16:55	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	18:44
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	44		20-120
877-09-8	Tetrachloro-m-xylene	86		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772-6
Matrix: Water	Lab File ID: 25_20-396.D
Analysis Method: 8081B	Date Collected: 05/17/2019 09:55
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 75(mL) •	Date Analyzed: 05/23/2019 19:03
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.17 /	0.031
72-55-9	4,4'-DDE	ND		0.17	0.039
50-29-3	4,4'-DDT	ND		0.17	0.037
309-00-2	Aldrin	. ND		0.17	0.027
319-84-6	alpha-BHC	ND		0.17	0.026
5103-71-9	cis-Chlordane	ND		0.17	0.049
319-85-7	beta-BHC	0.088	J	0.17	0.083
319-86-8	delta-BHC	ND		0.17	0.033
60-57-1	Dieldrin	ND		0.17	0.033
959-98-8	Endosulfan I	ND		0.17	0.037
33213-65-9	Endosulfan II	ND		0.17	0.040
1031-07-8	Endosulfan sulfate	ND		0.17	0.052
72-20-8	Endrin	ND	-	0.17	0.046
7421-93-4	Endrin aldehyde	ND		0.17	0.054
53494-70-5	Endrin ketone	ND		0.17	0.040
58-89-9	gamma-BHC (Lindane)	ND		0.17	0.027
5103-74-2	trans-Chlordane	ND		0.17	0.037
76-44-8	Heptachlor	ND		0.17	0.028
1024-57-3	Heptachlor epoxide	ND		0.17	0.025
72-43-5	Methoxychlor	ND		0.17	0.047
8001-35-2	Toxaphene	ND		1.7	0.40

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	47		20-120
877-09-8	Tetrachloro-m-xylene	88		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7	
Matrix: Water	Lab File ID: 25_20-397.D	
Analysis Method: 8081B	Date Collected: 05/15/2019 17:20	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 19:23	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	43		20-120
877-09-8	Tetrachloro-m-xylene	89	_	44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8	
Matrix: Water	Lab File ID: 25_20-390.D	
Analysis Method: 8081B	Date Collected: 05/16/2019 11:35	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 17:05	
Con. Extract Vol.: 2(mL)	Dilution Factor: 2/	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.10	0.018
72-55-9	4,4'-DDE	ND		0.10	0.023
50-29-3	4,4'-DDT	ND		0.10	0.022
309-00-2	Aldrin	ND		0.10	0.016
319-84-6	alpha-BHC	ND		0.10	0.015
5103-71-9	cis-Chlordane	ND		0.10	0.030
319-85-7	beta-BHC	0.009 -0.097.	J	0.10	0.050
319-86-8	delta-BHC	ND		0.10	0.020
60-57-1	Dieldrin	ND		0.10	0.020
959-98-8	Endosulfan I	ND		0.10	0.022
33213-65-9	Endosulfan II	ND		0.10	0.024
1031-07-8	Endosulfan sulfate	ND		0.10	0.031
72-20-8	Endrin	ND		0.10	0.028
7421-93-4	Endrin aldehyde	ND		0.10	0.033
53494-70-5	Endrin ketone	ND		0.10	0.024
58-89-9	gamma-BHC (Lindane)	ND		0.10	0.016
5103-74-2	trans-Chlordane	ND		0.10	0.022
76-44-8	Heptachlor	ND		0.10	0.017
1024-57-3	Heptachlor epoxide	ND		0.10	0.015
72-43-5	Methoxychlor	ND		0.10	0.028
8001-35-2	Toxaphene	ND		1.0	0.24

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	40		20-120
877-09-8	Tetrachloro-m-xylene	93		44-120

ab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1	
SDG No.:	
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772-9
Matrix: Water	Lab File ID: 25_20-398.D
Analysis Method: 8081B	Date Collected: 05/15/2019 14:35
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 19:43
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	0.016	J	0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	8REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	45		20-120
877-09-8	Tetrachloro-m-xylene	88		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772-10	
Matrix: Water	Lab File ID: 25_20-399.D	
Analysis Method: 8081B	Date Collected: 05/15/2019 11:25	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 20:02	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND	_	0.050	0.012
50-29-3	4,4'-DDT	ND	-	0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	*REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	58		20-120
877-09-8	Tetrachloro-m-xylene	88		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-153772-11	
Matrix: Water	Lab File ID: 25_20-400.D	
Analysis Method: 8081B	Date Collected: 05/15/2019 13:35	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 20:22	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	0.015	J	0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	_gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	58		20-120
877-09-8	Tetrachloro-m-xylene	83		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12	
Matrix: Water	Lab File ID: 25_20-401.D	
Analysis Method: 8081B	Date Collected: 05/16/2019 15:50	
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 20:42	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474312 .	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND	-	0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	50		20-120
877-09-8	Tetrachloro-m-xylene	82		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-2	Lab Sample ID: 480-153772-14
Matrix: Water	Lab File ID: 25_20-402.D
Analysis Method: 8081B	Date Collected: 05/15/2019 15:45
Extraction Method: 3510C	Date Extracted: 05/21/2019 14:57
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 21:01
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-CLPI ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474312	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	ND		0.050	0.0092
72-55-9	4,4'-DDE	ND		0.050	0.012
50-29-3	4,4'-DDT	ND		0.050	0.011
309-00-2	Aldrin	ND		0.050	0.0081
319-84-6	alpha-BHC	ND		0.050	0.0077
5103-71-9	cis-Chlordane	ND		0.050	0.015
319-85-7	beta-BHC	ND		0.050	0.025
319-86-8	delta-BHC	ND		0.050	0.010
60-57-1	Dieldrin	ND		0.050	0.0098
959-98-8	Endosulfan I	ND		0.050	0.011
33213-65-9	Endosulfan II	ND		0.050	0.012
1031-07-8	Endosulfan sulfate	ND		0.050	0.016
72-20-8	Endrin	ND		0.050	0.014
7421-93-4	Endrin aldehyde	ND		0.050	0.016
53494-70-5	Endrin ketone	ND		0.050	0.012
58-89-9	gamma-BHC (Lindane)	ND		0.050	0.0080
5103-74-2	trans-Chlordane	ND		0.050	0.011
76-44-8	Heptachlor	ND		0.050	0.0085
1024-57-3	Heptachlor epoxide	ND		0.050	0.0074
72-43-5	Methoxychlor	ND		0.050	0.014
8001-35-2	Toxaphene	ND		0.50	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	52		20-120
877-09-8	Tetrachloro-m-xylene	82		44-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-11	Lab Sample ID: 480-153772	2-1
Matrix: Water	Lab File ID: 7 44-028.D	
Analysis Method: 8082A	Date Collected: 05/15/2019 10:10	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	9 17:38
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.50	0.18
11104-28-2	PCB-1221	ND		0.50	0.18
11141-16-5	PCB-1232	ND		0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND		0.50	0.18
11097-69-1	PCB-1254	ND		0.50	0.25
11096-82-5	PCB-1260	ND		0.50	0.25

CAS NO.	SURROGATE	SREC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	93		39-121
2051-24-3	DCB Decachlorobiphenyl	57		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-7	Lab Sample ID: 480-153772-2	
Matrix: Water	Lab File ID: 7_44-029.D	
Analysis Method: 8082A	Date Collected: 05/15/2019 14:00	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 17:50	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.50	0.18
11104-28-2	PCB-1221	ND		0.50	0.18
11141-16-5	PCB-1232	ND		0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND		0.50	0.18
11097-69-1	PCB-1254	ND		0.50	0.25
11096-82-5	PCB-1260	ND		0.50	0.25

CAS NO.	SURROGATE	SREC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	99		39-121
2051-24-3	DCB Decachlorobiphenyl	59		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772	-3
Matrix: Water	Lab File ID: 7_44-030.D	
Analysis Method: 8082A	Date Collected: 05/16/2019 12:25	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	18:02
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
<pre>% Moisture:</pre>	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.50	0.18
11104-28-2	PCB-1221	ND		0.50	0.18
11141-16-5	PCB-1232	ND		0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND		0.50	0.18
11097-69-1	PCB-1254	ND		0.50	0.25
11096-82-5	PCB-1260	ND		0.50	0.25

CAS NO.	SURROGATE	3REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	94		39-121
2051-24-3	DCB Decachlorobiphenyl	55		19-120

Lab Name: Eurofins TestAmerica, Buffalo	erica, Buffalo Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-3	Lab Sample ID: 480-153772-	- 4
Matrix: Water	Lab File ID: 7_44-033.D	
Analysis Method: 8082A	Date Collected: 05/16/2019 14:55	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	18:40
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL
12674-11-2	PCB-1016	NO US	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND	0.50	0.25

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	95		39-121
2051-24-3	DCB Decachlorobiphenyl	58		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-5	Lab Sample ID: 480-1537	72-5
Matrix: Water	x: Water Lab File ID: 7_44-034.D	
Analysis Method: 8082A	Date Collected: 05/16/2019 16:55	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 18:52	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
<pre>% Moisture:</pre>	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT (2 RL	MDL
12674-11-2	PCB-1016	NÞ MS	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND V	0.50	0.25

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	96		39-121
2051-24-3	DCB Decachlorobiphenyl	58		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-BR-6	Lab Sample ID: 480-153772	2-6
Matrix: Water	Lab File ID: 7_44-035.D	
Analysis Method: 8082A	Date Collected: 05/17/201	9 09:55
Extraction Method: 3510C	Date Extracted: 05/22/20	019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	19:04
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
<pre>% Moisture:</pre>	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL
12674-11-2	PCB-1016	ND US	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND V	0.50	0.25

CAS NO.	SURROGATE	REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	89		39-121
2051-24-3	DCB Decachlorobiphenyl	52		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772	2-7
Matrix: Water	Lab File ID: 7_44-036.D	
Analysis Method: 8082A	Date Collected: 05/15/20:	19 17:20
Extraction Method: 3510C	Date Extracted: 05/22/20	019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	9 19:17
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT (2 RL	MDL
12674-11-2	PCB-1016	ND US	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND ,	0.50	0.25
11096-82-5	PCB-1260	ND V	0.50	0.25

CAS NO.	SURROGATE	REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	104		39-121
2051-24-3	DCB Decachlorobiphenyl	47		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8	
Matrix: Water	Lab File ID: 7_44-022.D	
Analysis Method: 8082A	Date Collected: 05/16/2019 11:35	
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18	
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 16:23	
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL.	MDL
12674-11-2	PCB-1016	ND		0.50	0.18
11104-28-2	PCB-1221	ND		0.50	0.18
11141-16-5	PCB-1232	0.76		0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND		0.50	0.18
11097-69-1	PCB-1254	ND		0.50	0.25
11096-82-5	PCB-1260	ND		0.50	0.25

CAS NO.	SURROGATE	SREC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	92		39-121
2051-24-3	DCB Decachlorobiphenyl	43		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-6	Lab Sample ID: 480-153772	-9
Matrix: Water	Lab File ID: 7_44-037.D	
Analysis Method: 8082A	Date Collected: 05/15/201	9 14:35
Extraction Method: 3510C	Date Extracted: 05/22/20	19 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	19:29
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL
12674-11-2	PCB-1016	NO US V	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND V	0.50	0.25

CAS NO.	SURROGATE	REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	88		39-121
2051-24-3	DCB Decachlorobiphenyl	59		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7	Lab Sample ID: 480-153772	2-10
Matrix: Water	Lab File ID: 7_44-038.D	
Analysis Method: 8082A	Date Collected: 05/15/201	.9 11:25
Extraction Method: 3510C	Date Extracted: 05/22/20	019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019	9 19:42
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND U	51	0.50	0.18
11104-28-2	PCB-1221	ND		0.50	0.18
11141-16-5	PCB-1232	ND	-	0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND	-	0.50	0.18
11097-69-1	PCB-1254	ND	15	0.50	0.25
11096-82-5	PCB-1260	ND	V	0.50	0.25

CAS NO.	SURROGATE	REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	104		39-121
2051-24-3	DCB Decachlorobiphenyl	63		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-7D	Lab Sample ID: 480-15377	2-11
Matrix: Water	Lab File ID: 7_44-039.D	
Analysis Method: 8082A	Date Collected: 05/15/20	19 13:35
Extraction Method: 3510C	Date Extracted: 05/22/2	019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/201	9 19:54
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL
12674-11-2	PCB-1016	NOW	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ŊЮ	0.50	0.18
12672-29-6	PCB-1248	ND ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND	0.50	0.25

CAS NO.	SURROGATE	REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	100		39-121
2051-24-3	DCB Decachlorobiphenyl	72		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12
Matrix: Water	Lab File ID: 7_44-040.D
Analysis Method: 8082A	Date Collected: 05/16/2019 15:50
Extraction Method: 3510C	Date Extracted: 05/22/2019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/2019 20:06
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474391	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND	NV	0.50	0.18
11104-28-2	PCB-1221	ND	Ī	0.50	0.18
11141-16-5	PCB-1232	ND		0.50	0.18
53469-21-9	PCB-1242	ND		0.50	0.18
12672-29-6	PCB-1248	ND		0.50	0.18
11097-69-1	PCB-1254	ID		0.50	0.25
11096-82-5	PCB-1260	. ND	1	0.50	0.25
CAS NO.	SURBOGATE		SPEC	0	TTMTTC

CAS NO.	SURROGATE	SREC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	88		39-121
2051-24-3	DCB Decachlorobiphenyl	49		19-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-2	Lab Sample ID: 480-15377	2-14
Matrix: Water	Lab File ID: 7_44-041.D	
Analysis Method: 8082A	Date Collected: 05/15/20	19 15:45
Extraction Method: 3510C	Date Extracted: 05/22/2	019 08:18
Sample wt/vol: 250(mL)	Date Analyzed: 05/23/201	9 20:19
Con. Extract Vol.: 2(mL)	Dilution Factor: 1	
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474391	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL
12674-11-2	PCB-1016	ND US V	0.50	0.18
11104-28-2	PCB-1221	ND	0.50	0.18
11141-16-5	PCB-1232	ND	0.50	0.18
53469-21-9	PCB-1242	ND	0.50	0.18
12672-29-6	PCB-1248	ND	0.50	0.18
11097-69-1	PCB-1254	ND	0.50	0.25
11096-82-5	PCB-1260	ND	0.50	0.25

CAS NO.	SURROGATE	≷REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	91		39-121
2051-24-3	DCB Decachlorobiphenyl	. 83		19-120

QC NONCONFORMANCE DOCUMENTATION

Lab Name: Eurofins TestAmeri	ca, Buffal	0	Job N	0.: 480	0-15377	2-1			Analy	Batch	No 4	73759	
SDG No.:												2	
Instrument ID: HP5973C			GC Co	lumn: 2	2B-624	(20) IE	0: 0.1	8 (mm)	Heated	l Purge	: (Y/N	N (1	
Calibration Start Date: 05/2	0/2019 16	5:37	Calib	ration	End Da	te: 05/	/20/20	19 19:44	Calibr	cation	ID: 37	002	
ANALYTE			RRF			CURVE	U	OEFFICIENT	# MIN RR	F %RSD	# MAX	R^2	# MIN R
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	TYPE	в	M1 M2			%RSD	OR COD	OR CC
1,1-Dichloropropene	1.7691 1.8858	2.4303 2.0304	2.3302 2.2484	2.2442	2.2017	Ave		2.1425		10.6	20.0		_
Benzene	6.9562	6.4524 5.7335	6.4643 6.1303	6.2418	6.0971	Ave		6.1992	0.500	0 7.2	20.0		-
Isobutyl alcohol	0.0841 0.0774	0.0993	0.0880	0.0800	0.0788	Ave		0.0834		0.6	20.0		
1,2-Dichloroethane	2.8805	2.5748	2.7615	2.5235	2.6059	Ave		2.5582	0.100	0 7.6	20.0		
n-Heptane	1.7650	2.0318	2.0960	1.9228	1.9593	Ave		1.8641		9.7	20.0		
Trichloroethene	1.8768	1 5785	1.8315	1.7650	1.7106	Ave		1.7261	0.200	0 7.3	20.0		
Methylcyclohexane	1.9872	3.0579	3.0278	2.7481	2.7073	Ave		2.6849	0.100	0 13.7	20.0		
1,2-Dichloropropane	1.3161	1.3785	1.5346	1.4666	1.5256	Ave		1.4627	0.100	0 5.7	20.0		
Dibromomethane	1.1053	1.2336	1.1843	1.1565	1.1837	Ave		1.1584	0.100	0 4.0	20.0		
1,4-Dioxane	+++++	0.0087	6600.0	0.0091	0.0091	Ave	Ĩ	1.0091		5.1	20.0		
Bromodichloromethane	2.4530	2.3419	2.1820	2.1605	2.2263	Ave		2.2288	0.200	0 6.1	20.0		
2-Chloroethyl vinyl ether	0.9005	0.9837	0.9598	0.8732	0.9648	Ave		0.9052		6.8	20.0		
cis-1,3-Dichloropropene	2.1546 2.2425	2.5293	2.5169	2.3294	2.4324	Ave		2.3591	0.200	0 5.9	20.0		
4-Methyl-2-pentanone (MIBK)	0.8834	0.8820	0.9324	0.8653	0.8632	Ave	0	.8392	0.100	0 8.0	20.0		
Toluene	1.9228	1.7981	2.0511	1.8941	1.8396	Ave		1.8313	0.400	0 7.1	20.0		
trans-1,3-Dichloropropene	0.9937	1.0794	1.1129	1.0786	1.1095	Ave		1.0550	0.100	0 5.2	20.0		
Ethyl methacrylate	0.9847	0.9374	0.9850	0.9176	0.9623	Ave		.9185		6.4	20.0		
1,1,2-Trichloroethane	0.6400	0.5690	0.5795	0.5950	0.5673	Ave	0	0.5610	0.100	0 8.4	20.0		
Tetrachloroethene	0.7899	0.7510	0.8565	0.8238	0.7900	Ave	0	1.8058	0.2000	0 6.2	20.0		
1, 3-Dichloropropane	1.0041	1.1523	1.1977	1.1202	1.1236	Ave	1	0837		7.2	20.0		

FORM VI

Page 274 of 4229 Note: The Ml coefficient is the same as Ave RRF for an Ave curve type. FORM VI 8260C

06/19/2019

SDG No.:		0	1 000		1001-0	1-7				Analy	Batch	No.: 4	172790	
Instrument ID: HP5975T			GC Co	1umn:	ZB-624	(20) ID	: 0.1	8 (mm)		Heated	Purge	4/X) :	N (1	
Calibration Start Date: 05/1	4/2019 1	5:56	Calib	ration	End De	te: 05/	14/20	19 18:42		Calibr	ation	ID: 36	5986	
ANALYTE			RRF			CURVE	0	OEFFICIENT		# MIN RRF	%RSD	# MAX	R^2	# MTN F
	LVL 6 LVL 1	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	TYPE	В	IM	12			%RSD	OR COD	OR C
1,1-Dichloropropene	1.7551	1.9332	2.1075	1.7267	1.7787	Ave	_	1.8024			9.5	20.0		
Benzene	4.8823	5.2693	5.7325	5.4249	5.4493	Ave		5.3455		0.5000	5.1	20.0		
Isobutyl alcohol	0.0870	0.0853	0.0871	0.0906	0.0973	Ave		0.0933			7.3	20.0	0	
1,2-Dichloroethane	2.2239	2.3101	2.2741	2.2700	2.2717	Ave		2.3398		0.1000	11.2	20.0		
n-Heptane	2.0385	2.1841	2.2518	1.9941	2.1880	Ave		2.1106			5.6	20.0		
Trichloroethene	1.4885	1.3897	1.6312	1.4023	1.4074	Ave		1.4600		0.2000	6.0	20.0		
Methylcyclohexane	2.26395	2.4894	2.5502	2.1215	2.3494	Ave		2.3780		0.1000	6.6	20.0		
1,2-Dichloropropane	1.5419	1.5244	1.5901	1.6091	1.5077	Ave		1.5274		0.1000	4.7	20.0		
Dibromomethane	1.1174	1.0116	0.9309	1.0001	1.0256	Ave		1.0057		0.1000	5.8	20.0		
1,4-Dioxane	+++++	0.0040	0.0057	0.0061	0.0057	Ave		0.0055			13.0	20.0		
Bromodichloromethane	2.0281	1.7433	1.6831	1.6816	1.6574	Ave		1.7601		0.2000	6.8	20.0		
2-Chloroethyl vinyl ether	1.2409	0.9035	1.0658	1.1938	1.2214	Ave		1.1416			9.8	20.0		
cis-1,3-Dichloropropene	1.9715	2.2867 2.3953	2.2135	2.2700	2.2814	Ave		2.2378		0.2000	6.4	20.0		
4-Methyl-2-pentanone (MIBK)	0.4272 0.4749	0.4052	0.4447	0.4620	0.4757	Ave	0	.4490		0.1000	6.0	20.0		
Poluene	0.8420	0.9049	0.8063	0.8696	0.9064	Ave	0	0.8840		0.4000	5.9	20.0		
trans-1,3-Dichloropropene	0.5495	0.4446 0.5654	0.5302	0.5473	0.5488	Ave		.5297		0.1000	7.1	20.0		-
Sthyl methacrylate	0.5039	0.4314	0.4925	0.5044	0.5197	Ave		.4989			6.4	20.0		
l, l, 2-Trichloroethane	0.2477 0.2814	0.2816	0.2851	0.2806	0.2794	Ave	0	1.2763		0.1000	5.2	20.0		
Petrachloroethene	0.4205 0.3799	0.4153 0.4213	0.4481 0.3713	0.3822	0.4009	Ave	0	.4049		0.2000	6.4	20.0		
l, 3-Dichloropropane	0.6281	0.5201	0.5689	0.5707	0.5801	Ave	0	.5709			5.8	20.0		

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

FORM VI

Page 353 of 4229

FORM VI 8260C

Note: The MI coefficient is the same as Ave RRF for an Ave curve type.

06/19/2019
Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1 SDG No.: Lab Sample ID: CCVIS 480-474552/5 Calibration Date: 05/24/2019 10:11 Instrument ID: HP5973C Calib Start Date: 05/20/2019 16:37 GC Column: ZB-624 (20) ID: 0.18(mm) Calib End Date: 05/20/2019 19:44 Lab File ID: C7865.D Conc. Units: ug/L Heated Purge: (Y/N) N ANALYTE CURVE AVE RRF RRF MIN RRF CALC SPIKE 8D MAX TYPE AMOUNT AMOUNT SD Dichlorodifluoromethane Ave 2.069 2.369 0.1000 28.6 25.0 14.5 50.0 Chloromethane 1.980 Ave 2.206 0.1000 27.9 25.0 11.4 20.0 Vinyl chloride Ave 1.886 1.976 0.1000 26.2 25.0 4.8 20.0 Butadiene Ave 1.821 2.038 28.0 25.0 20.0 11.9 Bromomethane 1.292 1.428 25.0 Ave 0.1000 27.6 10.5 50.0 Chloroethane Ave 1,142 1.151 0.1000 25.2 25.0 0.8 50.0 Dichlorofluoromethane 2.859 Ave 3.062 26.8 25.0 7.1 20.0 Trichlorofluoromethane 2.766 AVA 3.134 0.1000 28.3 25.0 13.3 20.0 Ethyl ether Ave 1.365 1.336 24.5 25.0 -2.2 20.0 Acrolein Ave 0.2680 0.2600 121 125 -3.0 50.0 1,1,2-Trichloro-1,2,2-triflu 1.572 2.027 Ave 0.1000 32.2 25.0 28.9* 20.0 oroethane 1,1-Dichloroethene Ave 1.536 1.738 0.1000 28.3 25.0 13.1 20.0 Acetone Ave 0.6270 0.6655 0.1000 133 125 50.0 6.1 Iodomethane 3.163 3.745 AVA 29.6 25.0 18.4 20.0 Carbon disulfide 5.091 Ave 5.663 0.1000 27.8 25.0 11.2 20.0 Allyl chloride 2.710 2.912 7.5 Ave 26.9 25.0 20.0 Methyl acetate Ave 1.361 1,287 0.1000 47.3 50.0 -5.5 50.0 Methylene Chloride Linl 2.082 0.1000 28.0 25.0 12.0 20.0 2-Methyl-2-propanol Ave 0 2414 0.2549 264 250 5.6 50.0 Methyl tert-butyl ether Ave 4.877 5.351 0.1000 27.4 25.0 9.7 20.0 trans-1,2-Dichloroethene Ave 1.801 2.099 0.1000 29.1 25.0 16.5 20.0 Acrylonitrile 0.6671 0.7043 Ave 250 264 5.6 20.0 Hexane Ave 1.849 2.361 31.9 25.0 27.7* 20.0 1,1-Dichloroethane Ave 3.041 3.394 0.2000 27.9 25.0 11.6 20.0 Vinyl acetate 3.153 3.027 Ave 48.0 50.0 -4.0 20.0 2,2-Dichloropropane 2.022 Ave 2.415 29.9 25.0 19.5 20.0 cis-1,2-Dichloroethene 2.032 2.248 27.7 25.0 Ave 0.1000 10.6 20.0 2-Butanone (MEK) 0.7923 Ave 0.7984 0.1000 126 125 0.8 20.0 Chlorobromomethane Ave 1.107 1.268 25.0 28.6 14.5 20.0 Tetrahydrofuran 0.5528 Ave 0.5352 48.4 50.0 -3.2 20.0 Chloroform Ave 3.334 3.725 0.2000 27.9 25.0 11.7 20.0 1,1,1-Trichloroethane Ave 2.713 3.243 0.1000 29.9 25.0 19.5 20.0 Cyclohexane AVA 2.607 3.141 20.5* 0.1000 30.1 25.0 20.0 Carbon tetrachloride Ave 2.443 2.913 0.1000 29.8 25.0 19.2 20.0 1,1-Dichloropropene 2.143 2.537 Ave 29.6 25.0 18.4 20.0 Benzene 6.199 Ave 7.014 0.5000 28.3 25.0 13.1 20.0 Isobutyl alcohol 0.0834 Ave 0.0688 516 625 -17.5 50.0 1,2-Dichloroethane 2.558 2.694 26.3 25.0 Ave 0.1000 5.3 20.0 n-Heptane Ave 1.864 2.442 32.8 25.0 31.0* 120.0 Trichloroethene Ave 1.726 1.964 28.4 25.0 13.8 20.0

Job No.: 480-153772-1

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:										
Lab Sample ID: CCVIS 480)-474552/	5	Calibr	ation Date:	05/24/2	2019 10:	11			
Instrument ID: HP5973C			Calib	Start Date:	05/20/2	2019 16:	37			
GC Column: ZB-624 (20)	I	D: 0.18(mm)	Calib End Date: 05/20/2019 19:44							
Lab File ID: C7865.D		V 67 - 11 - 11 - 1	Conc.	Units: ug/I	E E	leated Pu	rge: (Y	/N) N		
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	₹D	MAX 용D		
Methylcyclohexane	Ave	2.685	3.481	0.1000	32.4	25.0	29.6*	20.0		
1,2-Dichloropropane	Ave	1.463	1.605	0.1000	27.4	25.0	9.7	20.0		
1,4-Dioxane	Ave	0.0091	0.0119		659	500	31.8	50.0		
Dibromomethane	Ave	1.158	1.287	0.1000	27.8	25.0	11.1	20.0		
Bromodichloromethane	Ave	2.229	2.305	0.2000	25.9	25.0	3.4	20.0		
2-Chloroethyl vinyl ether	Ave	0.9052	0.8595		23.7	25.0	-5.1	20.0		
cis-1,3-Dichloropropene	Ave	2.359	2.481	0.2000	26.3	25.0	5.2	20.0		
4-Methyl-2-pentanone (MIBK)	Ave	0.8392	0.8641	0.1000	129	125	3.0	20.0		
Toluene	Ave	1.831	2.105	0.4000	28.7	25.0	15.0	20.0		
trans-1,3-Dichloropropene	Ave	1.055	1.100	0.1000	26.1	25.0	4.3	20.0		
Ethyl methacrylate	Ave	0.9185	0.9496		25.8	25.0	3.4	20.0		
1,1,2-Trichloroethane	Ave	0.5610	0.5996	0.1000	26.7	25.0	6.9	20.0		
Tetrachloroethene	Ave	0.8058	1.019	0.2000	31.6	25.0	26.5*	20.0		
1,3-Dichloropropane	Ave	1.084	1.241		28.6	25.0	14.5	20.0		
2-Hexanone	Ave	0.5592	0.5670	0.1000	127	125	1.4	20.0		
Dibromochloromethane	Ave	0.7820	0.7790	0.1000	24.9	25.0	-0.4	20.0		
1,2-Dibromoethane	Ave	0.7176	0.8150		28.4	25.0	13.6	20.0		
Chlorobenzene	Ave	2.179	2.542	0.5000	29.2	25.0	16.7	20.0		
Ethylbenzene	Ave	3.579	4.103	0.1000	28.7	25.0	14.7	20.0		
1,1,1,2-Tetrachloroethane	Ave	0.8715	0.8959		25.7	25.0	2.8	20.0		
m,p-Xylene	Ave	1.389	1.600	0.1000	28.8	25.0	15.2	20.0		
o-Xylene	Ave	1.450	1.688	0.3000	29.1	25.0	16.5	20.0		
Styrene	Ave	2.335	2.702	0.3000	28.9	25.0	15.7	20.0		
Bromoform	Ave	0.4911	0.4589	0.1000	23.4	25.0	-6.6	50.0		
Isopropylbenzene	Ave	3.336	3.963	0.1000	29.7	25.0	18.8	20.0		
Bromobenzene	Ave	0.8607	0.9854		28.6	25.0	14.5	20.0		
1,1,2,2-Tetrachloroethane	Ave	0.9214	0.9608	0.3000	26.1	25.0	4.3	20.0		
N-Propylbenzene	Ave	3.844	4.484		29.2	25.0	16.6	20.0		
1,2,3-Trichloropropane	Ave	0.2969	0.3230		27.2	25.0	8.8	20.0		
trans-1,4-Dichloro-2-butene	Ave	0.2753	0.1792		16.3	25.0	-34.90	\$ 50.0		
2-Chlorotoluene	Ave	0.8618	1.015		29.4	25.0	17.8	20.0		
1,3,5-Trimethylbenzene	Ave	2.867	3.383		29.5	25.0	18.0	20.0		
4-Chlorotoluene	Ave	0.8804	1.002		28.5	25.0	13.8	20.0		
tert-Butylbenzene	Ave	0.6139	0.7473		30.4	25.0	21.70	A 20.0		
1,2,4-Trimethylbenzene	Ave	2.950	3.427		29.0	25.0	16.2	20.0		
sec-Butylbenzene	Ave	3.508	4.243		30.2	25.0	21.0*	20.0		
4-Isopropyltoluene	Ave	3.150	3.819		30.3	25.0	21.2*	A 20.0		
1,3-Dichlorobenzene	Ave	1.744	1.974	0.6000	28.3	25.0	13.2	20.0		

n-Butylbenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1.992

3.326

2.069

28.5

30.4

27.9

25.0

25.0

25.0

0.5000

0.4000

1.750

2.737

1.851

Ave

Ave

Ave

21.5* 1220.0

20.0

20.0

13.8

11.8

Lab Name: Eurofins TestA	Lab Name: Eurofins TestAmerica, Buffalo			Job No.: 480-153772-1						
SDG No.:							_			
Lab Sample ID: CCVIS 480	-474552/	5	Calibration Date: 05/24/2019 10:11							
Instrument ID: HP5973C			Calib Start Date: 05/20/2019 16:37							
GC Column: ZB-624 (20) ID: 0.18(mm)			Calib End Date: 05/20/2019 19:44							
Lab File ID: C7865.D			Conc.	Units: ug/I	и Н	leated Pu	rge: (Y,	/N) N		
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	3 D	MAX %D		
1,2-Dibromo-3-Chloropropane	Ave	0.1887	0.1794	0.0500	23.8	25.0	-4.9	50.0		
1,2,4-Trichlorobenzene	Ave	1.294	1.559	0.2000	30.1	25.0	20.5*	20.0		
Hexachlorobutadiene	Ave	0.4964	0.6597		33.2	25.0	32.9*	A 20.0		
Naphthalene	Ave	3.607	4.148		28.8	25.0	15.0	20.0		
1,2,3-Trichlorobenzene	Ave	1.236	1.508		30.5	25.0	22.0*	A 20.0		
Dibromofluoromethane (Surr)	Ave	1.722	1.791		26.0	25.0	4.0	20.0		
1,2-Dichloroethane-d4 (Surr) Ave 0.9415			0.9468		25.1	25.0	0.6	20.0		
Toluene-d8 (Surr)	Ave	2.550	2.718	-0	26.7	25.0	6.6	20.0		
4-Bromofluorobenzene (Surr)	Ave	0.8291	0.9091		27.4	25.0	9.7	20.0		

Lab Name: Eurofins TestA	merica,	Buffalo	Job No	.: 480-1537	72-1					
SDG No.:			-							
Lab Sample ID: CCVIS 480	-474456/	3	Calibration Date: 05/23/2019 20:20							
Instrument ID: HP5975T			Calib Start Date: 05/14/2019 15:56							
GC Column: ZB-624 (20)	I	D: 0.18(mm)	Calib End Date: 05/14/2019 18:42							
Lab File ID: T1233.D			Conc. Units: ug/L Heated Purge: (Y/N) N							
ANALYTE	CURVE TYPE	AVE RRF	RRF .	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	8.D	MAX %D		
Dichlorodifluoromethane	Ave	1.687	0.8939	0.1000	13.2	25.0	-47.0	50.0		
Chloromethane	Ave	2.328	1.607	0.1000	17.3	25.0	-31.0*	20.0		
Butadiene	Ave	2.043	1.719		21.0	25.0	-15.9	20.0		
Vinyl chloride	Ave	2.176	1.582	0.1000	18.2	25.0	-27.3*	20.0		
Bromomethane	Ave	1.623	1.207	0.1000	18.6	25.0	-25.7	50.0		
Chloroethane	Ave	1.508	1.125	0.1000	18.7	25.0	-25.4	50.0		
Dichlorofluoromethane	Ave	3.419	2.676		19.6	25.0	-21.7*	11220.0		
Trichlorofluoromethane	Ave	2.849	2.199	0.1000	19.3	25.0	-22.8*	20.0		
Ethyl ether	Ave	1.628	1.582		24.3	25.0	-2.8	20.0		
Acrolein	Ave	0.3257	0.2615		100	125	-19.7	50.0		
1,1-Dichloroethene	Ave	1.381	1.241	0.1000	22.5	25.0	-10.2	20.0		
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.355	1.323	0.1000	24.4	25.0	-2.4	20.0		
Acetone	Ave	0.6097	0.6042	0.1000	124	125	-0.9	50.0		
Iodomethane	Ave	2.705	2.527		23.3	25.0	-6.6	20.0		
Carbon disulfide	Ave	4.520	4.002	0.1000	22.1	25.0	-11.5	20.0		
Allyl chloride	Ave	2.252	1.977		21.9	25.0	-12.2	20.0		
Methyl acetate	Ave	1.358	1.219	. 0.1000	44.9	50.0	-10.2	50.0		
Methylene Chloride	Ave	1.595	1.413	0.1000	22.1	25.0	-11.4	20.0		
2-Methyl-2-propanol	Ave	0.2716	0.2301		212	250	-15.3	50.0		
Methyl tert-butyl ether	Ave	4.181	3.904	0.1000	23.3	25.0	-6.6	20.0		
trans-1,2-Dichloroethene	Ave	1.474	1.404	0.1000	23.8	25.0	-4.8	20.0		
Acrylonitrile	Ave	0.7153	0.6797		238	250	-5.0	20.0		
Hexane	Ave	2.283	2.224		24.4	25.0	-2.6	20.0		
1,1-Dichloroethane	Ave	2.687	2.670	0.2000	24.8	25.0	-0.6	20.0		
Vinyl acetate	Ave	3.167	2.930		46.3	50.0	-7.5	20.0		
2,2-Dichloropropane	Ave	2.066	1.794		21.7	25.0	-13.2	20.0		
cis-1,2-Dichloroethene	Ave	1.644	1.525	0.1000	23.2	25.0	-7.3	20.0		
2-Butanone (MEK)	Ave	0.9151	0.8799	0.1000	120	125	-3.9	20.0		
Chlorobromomethane	Ave	0.9098	0.8448	3	23.2	25.0	-7.1	20.0		
Tetrahydrofuran	Ave	0.5796	0.5086		43.9	50.0	-12.3	20.0		
Chloroform	Ave	2.584	2.405	0.2000	23.3	25.0	-6.9	20.0		
1,1,1-Trichloroethane	Ave	2.162	2.134	0.1000	24 7	25.0	-1 3	20.0		

Trichloroethene

Cyclohexane

Benzene

n-Heptane

Carbon tetrachloride

1,1-Dichloropropene

Isobutyl alcohol

1,2-Dichloroethane

Ave

Ave

Ave

Ave

Ave

Ave

Ave

Ave

2.743

1.911

1.808

5.207

0.0816

2.200

2.072

1.395

0.1000

0.1000

0.1000

0.5000

0.1000

0.2000

24.7

26.2

27.1

25.1

24.4

23.5

24.5

23.9

547

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

625

-1.3

4.8

8.5

0.3

-2.6

-12.5

-6.0

-1.8

-4.4

20.0

20.0

20.0

20.0

20.0

50.0

20.0

20.0

20.0

2.617

1.761

1.802

5.345

2.340

2.111

1.460

0.0933

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-153772-1 SDG No.: Lab Sample ID: CCVIS 480-474456/3 Calibration Date: 05/23/2019 20:20 Calib Start Date: 05/14/2019 15:56 Instrument ID: HP5975T GC Column: ZB-624 (20) Calib End Date: 05/14/2019 18:42 ID: 0.18(mm) Lab File ID: T1233.D Conc. Units: ug/L Heated Purge: (Y/N) N ANALYTE CURVE AVE RRF RRF MIN RRF CALC SPIKE BD MAX TYPE AMOUNT AMOUNT 8D 20.0 Methylcyclohexane Ave 2.378 2.315 0.1000 24.3 25.0 -2.7 1,2-Dichloropropane 1.529 Ave 1.527 0.1000 25.0 25.0 0.0 20.0 Dibromomethane Ave 1.006 0.9640 0.1000 24.0 25.0 -4.2 20.0 1,4-Dioxane 0.0055 Ave 0.0045 413 500 -17.5 50.0 Bromodichloromethane 1.760 1.714 25.0 -2.6 Ave 0.2000 24.3 20.0 2-Chloroethyl vinyl ether Ave 1.142 1.095 24.0 25.0 -4.0 20.0 cis-1,3-Dichloropropene 2.238 2.107 Ave 0.2000 23.5 25.0 -5.8 20.0

		(TELOS (T. 19) F.					0.0	-0.0
4-Methyl-2-pentanone (MIBK)	Ave	0.4490	0.4434	0.1000	123	125	-1.3	20.0
Toluene	Ave	0.8840	0.8349	0.4000	23.6	25.0	-5.6	20.0
trans-1,3-Dichloropropene	Ave	0.5297	0.4895	0.1000	23.1	25.0	-7.6	20.0
Ethyl methacrylate	Ave	0.4989	0.4598		23.0	25.0	-7.8	20.0
1,1,2-Trichloroethane	Ave	0.2763	0.2579	0.1000	23.3	25.0	-6.7	20.0
Tetrachloroethene	Ave	0.4049	0.3858	0.2000	23.8	25.0	-4.7	20.0
1,3-Dichloropropane	Ave	0.5709	0.5300		23.2	25.0	-7.2	20.0
2-Hexanone	Ave	0.3224	0.3287	0.1000	127	125	2.0	20.0
Dibromochloromethane	Ave	0.3098	0.3272	0.1000	26.4	25.0	5.6	20.0
1,2-Dibromoethane	Ave	0.3574	0.3390		23.7	25.0	-5.2	20.0
Chlorobenzene	Ave	1.026	0.9907	0.5000	24.2	25.0	-3.4	20.0
Ethylbenzene	Ave	1.676	1.599	0.1000	23.9	25.0	-4.6	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3375	0.3465		25.7	25.0	2.7	20.0
m,p-Xylene	Ave	0.6621	0.6186	0.1000	23.4	25.0	-6.6	20.0
o-Xylene	Ave	0.6427	0.6161	0.3000	24.0	25.0	-4.1	20.0
Styrene	Ave	1.088	1.022	0.3000	23.5	25.0	-6.0	20.0
Bromoform	Ave	0.2119	0.2068	0.1000	24.4	25.0	-2.4	50.0
Isopropylbenzene	Ave	2.906	2.826	0.1000	24.3	25.0	-2.8	20.0
Bromobenzene	Ave	0.8314	0.7759		23.3	25.0	-6.7	20.0
1,1,2,2-Tetrachloroethane	Ave	0.8627	0.8132	0.3000	23.6	25.0	-5.7	20.0
N-Propylbenzene	Ave	3.567	3.378		23.7	25.0	-5.3	20.0
1,2,3-Trichloropropane	Ave	0.2854	0.2579		22.6	25.0	-9.6	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3158	0.1896		15.0	25.0	-39.9	50.0
2-Chlorotoluene	Ave	0.7350	0.6913		23.5	25.0	-6.0	20.0
1,3,5-Trimethylbenzene	Ave	2.519	2.378		23.6	25.0	-5.6	20.0
4-Chlorotoluene	Ave	2.461	2.298		23.3	25.0	-6.6	20.0
tert-Butylbenzene	Ave	0.5629	0.5609		24.9	25.0	-0.4	20.0
1,2,4-Trimethylbenzene	Ave	2.517	2.393		23.8	25.0	-4.9	20.0
sec-Butylbenzene	Ave	3.217	3.069		23.9	25.0	-4.6	20.0
4-Isopropyltoluene	Ave	2.756	2.685		24.4	25.0	-2.6	20.0
1,3-Dichlorobenzene	Ave	1.592	1.528	0.6000	24.0	25.0	-4.0	20.0
1,4-Dichlorobenzene	Ave	1.607	1.457	0.5000	22.7	25.0	-9.3	20.0
n-Butylbenzene	Ave	2.579	2.455		23.8	25.0	-4.8	20.0
1,2-Dichlorobenzene	Ave	1.570	1.489	0.4000	23.7	25.0	-5.2	20.0

Lab Name: Eurofins Test	ab Name: Eurofins TestAmerica, Buffalo			.: 480-153	772-1			
SDG No.:								
Lab Sample ID: CCV 480-4	174391/6	1	Calibr	ation Date	: 05/23/2	2019 12:	01	
Instrument ID: HP6890-7			Calib	Start Date	: 05/10/2	2019 21:	56	
GC Column: ZB-5	/ 1	D: 0.53(mm)	Calib	End Date: (05/10/201	9 22:28		
Lab File ID: 7_44-006.D			Conc.	Units: ng/u	ıL			
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	≩D	MAX 국D
PCB-1221 Peak 1	Linl		0.0069		0.634	0.500	26.8*	20.0.1
PCB-1221 Peak 2	Lin1		0.0134		0.583	0.500	16.6	20.00
PCB-1221 Peak 3	Linl		0.0049		0.357	0.500	-28.6*	20.0
PCB-1221 Peak 4	Ave	0.0394	0.0453		0.574	0.500	14.8	20.0
PCB-1254 Peak 1	Ave	0.0661	0.0685		0.513	0.500	3.7	20 1
PCB-1254 Peak 2	Ave	0.0749	0.0671		0.447	0.500	-10.5	20 0
PCB-1254 Peak 3	Ave	0.0451	0.0433		0.480	0.500	-4.0	20.0
PCB-1254 Peak 4	Ave	0.0917	0.0901		0.491	0.500	-1.7	20.0
PCB-1254 Peak 5	Ave	0.0849	0.0871		0.513	0.500	2.5	20.0

•

Lab Name: Eurofins TestAmerica, Buffalo			Job No.: 480-153772-1								
SDG No.:									-		
Lab Sample ID: CCV 480-4	74391/7		Calibration Date: 05/23/2019 12:14								
Instrument ID: HP6890-7	Instrument ID: HP6890-7			Calib Start Date: 05/12/2019 16:00							
GC Column: ZB-5 ID: 0.53(mm)			Calib	End Date:	05/12/201	9 16:32					
Lab File ID: 7_44-007.D			Conc.	Units: ng/u	ıL						
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	₹D	MAX %D			
PCB-1232 Peak 1	Ave	0.0253	0.0298		0.589	0.500	17.8	20.0	8		
PCB-1232 Peak 2	Ave	0.0169	0.0212		0.627	0.500	25.4*	20.0	1		
PCB-1232 Peak 3	Ave	0.0132	0.0160		0.604	0.500	20.8*	20.0.	N		
PCB-1232 Peak 4	Linl		0.0386		0.537	0.500	7.3	20.0	~~~		
PCB-1232 Peak 5	Ave	0.0127	0.0152		0.602	0.500	20.3*	20.0			
PCB-1262 Peak 1	Ave	0.0490	0.0505		0.516	0.500	3.1	20.0	COLUMN STR		
PCB-1262 Peak 2	Ave	0.0735	0.0735		0.500	0.500	0.0	20.0	e .		
PCB-1262 Peak 3	Ave	0.1365	0.1656		0.606	0.500	21.3*	20.0	14		
PCB-1262 Peak 4	Ave	0.0585	0.0606		0.519	0.500	3.7	20.0	wf.		
PCB-1262 Peak 5	Ave	0.0647	0.0744		0.575	0.500	15.1	20.0			

Lab Name: Eurofins Ter	stAmerica,	Buffalo	Job No.: 480-153772-1									
SDG No.:				400-15.	37:2-1							
Lab Sample ID: CCV 480	Sample ID: CCV 480-474391/7				Calibration Date: 05/23/2019 12-1							
Instrument ID: HP6890-	sument ID: HP6890-7			Colib Ct- 1								
GC Column: 2B-35 Lab File ID: 7_44-007.	D I	D: 0.53(mm)	Calib Calib Conc.	End Date: Units: ng/	uL	2019 16: 19 16:32	00					
ANALYTE .	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	∛D	MAX				
PCB-1232 Peak 1	Ave	0.0270	0.0313					₹D				
POR-1222 Peak 2	Linl		0.0270		0.580	0.500	16.0	20.0				
208-1232 Peak 4	Ave	0.0463	0.0481		0.520	0.500	20.6*	20.0				
PCB-1232 Peak 5	Linl		0.0196		0.603	0.500	3.9	20.0				
PCB-1262 Feak 1	Linl		0.0135		0.586	0.500	17.1	20.0				
PGB-1262 Peak 2	Linl		0.0510		0.611	0.500	22.3*	20.0				
PCB-1262 Peak 3	Linl		0.0734		0.621	0.500	24.1*	20.0				
PUB-1202 Peak 4	Lin1		0.0591		0.614	0.500	22.9*	20.0				
THE REAK D	Linl		0.0666		0.594	0.500	18.8	20.0				
						0.500	11.2	20.0				

Lab Name: Eurofins TestAmeric	Lab Name: Eurofins TestAmerica, Buffalo			772-1				
SDG No.:								
Lab Sample ID: CCV 480-474391	/8	Calibr	ation Date	: 05/23/2	2019 12:2	6		
Instrument ID: HP6890-7	Calib	Start Date	: 05/11/2	2019 00:0)3			
GC Column: ZB-5	C Column: ZB-5 ID: 0.53(mm)			05/11/201	9 00:35			-
Lab File ID: 7_44-008.D	Conc.	Units: ng/u	ıL					
ANALYTE CUR TYP	VE AVE RRF PE	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	≩D	MAX 3D	33
РСВ-1242 Peak 1 Але	0.0193	0.0218		0.567	0.500	13.4	20.0	.1
PCB-1242 Peak 2 Ave	0.0383	0.0402		0.525	0.500	5.0	20.0	MA.
PCB-1242 Peak 3 Ave	0.0654	0.0812		0.621	0.500	24.1*	20.0	110
PCB-1242 Peak 4 Ave	0.0387	0.0411		0.531	0.500	6.2	20.0	
PCB-1242 Peak 5 Ave	0.0306	0.0359		0.586	0.500	17.3	20.0	
PCB-1268 Peak 1 Ave	0.1820	0.1914		0.526	0.500	5.2	20.0	
PCB-1268 Peak 2 Ave	0.1788	0.2198	·····	0.615	0.500	22.9*	20.0	AL
PCB-1268 Peak 3 Ave	0.1485	0.1599		0.539	0.500	7.7	20.0	All.
PCB-1268 Peak 4 Ave	0.4680	0.5112		0.546	0.500	9.2	20.0	
PCB-1268 Peak 5 Lin1		0.1029		0.561	0.500	12.2	20.0	

.

FORM VII

Lab Name: Eurofins Test	ub Name: Eurofins TestAmerica, Buffalo			Job No.: 480-153772-1						
SDG No.:										
Lab Sample ID: <u>CCV 480-</u>	Calibration Date: 05/23/2019 12:38									
Instrument ID: HP6890+7	Calib Start Dat	06								
GC Column: ZB-5	Calib End Date: 05/11/2019 01:38									
Lab File ID: 7_44-009.2	Conc. Units: ng/uL									
ANALYTE	CURVE AVE RRF	RRF MIN RRF	CALC	SPIKE	₹D	MAX				
	TYPE		AMOUNT	AMOUNT		∛D				
PCB-1248 Peak 1	Linl	0.0313	0.529	0.500	5.7	20.0				
PCB-1248 Peak 2	Linl	0.0203	0.469	0.500	-6.2	20.0				
PCB-1248 Peak 3	Linl	0.0369	0.504	0.500	0.8	20.0				
PCB-1248 Peak 4	Linl	0.0509	0.579	0.500	15.8	20.0				
PCB-1248 Peak 5	Linl	0.0335	0.615	0.500	23.2*	20.0				

KNg= 10.3

Lab Name: Eurofins TestA	ab Name: Eurofins TestAmerica, Buffalo			Job No.: 480-153772-1							
SDG No.:											
Lab Sample ID: CCV 480-4	ab Sample ID: <u>CCV 480-474391/9</u>			Calibration Date: 05/23/2019 12:38							
Instrument ID: HP6890-7 GC Column: ZB-35 Lab File ID: 7_44-009.D			Calib Start Date: 05/11/2019 01:06 Calib End Date: 05/11/2019 01:38								
											Conc. Units: ng/uL
			ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	≩D ,	MAX ≩D
PCB-1248 Peak 1	Linl		0.0355		0.594	0.500	18.8	20.0			
PCB-1248 Peak 2	Linl		0.0435		0.582	0.500	16.4	20.0			
PCB-1248 Peak 3	Lin1		0.0598		0.592	0.500	18.4	20.0			
PCB-1248 Peak 4	Linl		0.0480		0.594	0.500	18.8	20.0			
PCB-1248 Peak 5	Linl		0.0297		0.619	0.500	23.7*	20.0			

Avg= 19.2

Lab Name: Eurofins Te	Lab Name: Eurofins TestAmerica, Buffalo			Job No.: 480-153772-1							
SDG No.:											
Lab Sample ID: CCV 48	Calibration Date: 05/23/2019 18:15 Calib Start Date: 05/10/2019 18:45										
Instrument ID: (HP6890-7) GC Column: ZB-5 ID: 0.53(mm) Lab File ID: 7_44-031.D											
			Calib	End Date:	05/10/201	9 20:21					
			Conc.	Units: ng/	uL						
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D			
PCB-1016 Peak 1	Ave	0.0462	0.0501		0.542	0.500	8.4	20.0			
PCB-1016 Peak 2	Ave	0.0339	0.0426		0.627	0.500	25.5*	20.0			
PCB-1016 Peak 3	Ave	0.0824	0.1078		0.654	0.500	30.8*)	20.0			
PCB-1016 Peak 4	Ave	0.0251	0.0325		0.649	0.500	29.8*	20.0			
PCB-1016 Peak 5	Ave	0.0381	0.0489		0.642	0.500	29 5 +1	20.0			

0.0796

0.0760

0.1144

0.1753

0.0790

1.702

1.470

0.0619

0.0632

0.0872

0.1258

0.0639

		-746
1014	Avg	561.1
10 1 44	Aata	228.6
100	1109	

0.642

0.643

0.601

0.656

0.696

0.618

0.0160

0.0167

0.500

0.500

0.500

0.500

0.500

0.500

0.0125

0.0125

28.5*

28.6*1

20.2*

31.2*)

39.3*

23.5*1

28.4* 20.0 33.9* 20.0

20.0

20.0

20.0

20.0

20.0

20.0

PCB-1260 Peak 1

PCB-1260 Peak 2

PCB-1260 Peak 3

PCB-1260 Peak 4

PCB-1260 Peak 5

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Ave

Ave

Ave

Ave

Ave

Linl

Linl

Date: 05/23/2019 18:15

Date: 05/10/2019 18:45

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Lab Sample ID: CCV 480-474391/31	Calibration Date: 05/23/2019 18:
Instrument ID: HP6890-7	Calib Start Date: 05/10/2019 18:
GC Column: ZB-35 ID: 0.53(mm)	Calib End Date: 05/10/2019 20:21
Lab File ID: 7_44-031.D	Conc. Units: ng/uL
[]	

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1016 Peak 1	Ave	0.0248	0.0310		0.626	0.500	25.1*	20.0
PCB-1016 Peak 2	Ave	0.1076	0.1319		0.613	0.500	22.6*)	20.0
PCB-1016 Peak 3	Ave	0.0420	0.0529		0.630	0.500	26.0*)	20.0
PCB-1016 Peak 4	Ave	0.0239	0.0300		0.629	0.500	25.9*	20.0
PCB-1016 Peak 5	Ave	0.0328	0.0384		0.586	0.500	17.2	20.0
PCB-1260 Peak 1	Ave	0.0631	0.0768		0.609	0.500	21.7*	20.0
PCB-1260 Peak 2	Ave	0.0719	0.0878		0.611	0.500	22.1*	20.0
PCB-1260 Peak 3	Ave	0.0630	0.0789		0.626	0.500	25.2*	20.0
PCB-1260 Peak 4	Ave	0.0564	0.0672		0.595	0.500	19.0	20.0
PCB-1260 Peak 5	Ave	0.1163	0.1490		0.640	0.500	28.0*)	20.0
Tetrachloro-m-xylene	Ave	1.520	1.758		0.0145	0.0125	15.7	20.0
DCB Decachlorobiphenyl	Ave	1.039	1.288		0.0155	0.0125	24.0*	20.0

1016 Avg= 23.4 1260 Avg= 23.2

Lab Name: Eu	arofins TestAmerica, Buffalo	Job No.: 480-1	53772-1		
SDG No.:					
Client Sampl	.e ID:	Lab Sample ID:	MB 480-	-474552/7	
Matrix: Wate	er]	Lab File ID: C	7868.D		
Analysis Met	.hod: 8260C	— Date Collected	•		
Sample wt/vc	.]. 5(mI)	Data Analuzad.	05/24/2	010 11.21	
Sampre wc/vc		Date Analyzed:	05/24/2	2019 11:31	
Soil Aliquot	Vol:	Dilution Factor	: 1		
Soil Extract	Vol.:	GC Column: ZB-	524 (20)	ID: 0.	18 (mm)
% Moisture:		Level: (low/med	i) Low		
Analysis Bat	ch No.: 474552 t	Jnits: ug/L			
CAS NO.	COMPOUND NAME	RESULT	0	RL	MDL
71 55 6	1 1 1 m / 1 1				
79-24-5	1,1,1-Trichloroethane	ND		1.0	0.82
75-13-1	1,1,2,2-Tetrachioroethane	ND		1.0	0.21
/0 15 1	e		1	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
123-91-1	1,4-Dioxane	ND		40	9.3
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	0.251	J	1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32

67-66-3

74-87-3

156-59-2

110-82-7

124-48-1

75-71-8

100-41-4

10061-01-5

Chloroform

Cyclohexane

Ethylbenzene

Chloromethane

cis-1,2-Dichloroethene

Dibromochloromethane

cis-1,3-Dichloropropene

Dichlorodifluoromethane

ND

ND

ND

ND

ND

ND

ND

ND

0.34

0.35

0.81

0.36

0.18

0.32

0.68

0.74

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

FORM II PCBS SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo				Job No.: 480-153772-1				
SDG No.:								
Matrix: Water					Level:	Low		
GC Column (1): Z	B-35 ID:	0.53(mm)		G <mark>C Colu</mark>	mn (2):	ZB-5	ID: 0.53(mm)
Client Sample ID	Lab Sample ID	TCX1 #	TCX2	#	DCBP1 #	DCBP2 #		
ML-MW-11	480-153772-1	93	129	X	57	64		
ML-BR-7	480-153772-2	99	135	X	59	66		
ML-MW-4DR 🖌	480-153772-3	94	112	-	55	61		
ML-BR-3	480-153772-4	95	128	X	58	66		
ML-BR-5	480-153772-5	96	134	X	58	64		
ML-BR-6	480-153772-6	89	119	-	52	57		
ML-MW-13 /	480-153772-7	104	138	X	47	52		
ML-MW-8	480-153772-8	92	109		43	45		
ML-MW-6	480-153772-9	88	103		59	65		
ML-MW-7	480-153772-10	104	120		63	71		
ML-MW-7D	480-153772-11	100	111		72	82		
ML-MW-5 🥜	480-153772-12	88	102		49	53		
ML-MW-2 🥒	480-153772-14	91	102		83	94		
	MB 480-474079/1-A	75	105		48	51		
	LCS 480-474079/2-A	83	113		46	48		
ML-MW-8 MS	480-153772-8 MS	82	103		38	38		
ML-MW-8 MSD	480-153772-8 MSD	79	98		31	29		

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

QC LIMITS 39-121 19-120

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

	2.5	STICIDES	S SURI	ROGATE RE	COVERY		
Lab Name: Eurofin	ns TestAmerica,	Buffalo		Job No	.: 480-1	53772-1	
SDG No.:							
Matrix: Water				Level:	Low		·//
GC Column (1): R	TX-CLPI ID:	0.53(mm	5	G <mark>C Colu</mark>	umn (2):	RTX-CLPII	ID: 0.53(mm)
Client Sample ID	Lab Sample ID	TCX1 #	TCX2	# DCBP1 #	DCBP2 #		
ML-MW-11	480-153772-1	91	69	45	48		
ML-BR-7	480-153772-2	80	74	53	56		
ML-MW-4DR	480-153772-3	81	71	42	42		
ML-BR-3	480-153772-4	88	67	47	49		
ML-BR-5	480-153772-5	86	124	X 44	41		
ML-BR-6	480-153772-6	88	68	47	50		
ML-MW-13	480-153772-7	89	69	43	43		
ML-MW-8	480-153772-8	93	53	40	41		
ML-MW-6	480-153772-9	88	73	45	47		
ML-MW-7	480-153772-10	88	72	58	59		
ML-MW-7D	480-153772-11	83	68	58	58		
ML-MW-5	480-153772-12	82	69	50	50		
ML-MW-2	480-153772-14	82	59	52	52		
	MB 480-473976/1-A	80	69	51	52		
	LCS 480-473976/2-A	90	71	50	51		
ML-MW-8 MS	480-153772-8 MS	91	75	61	46		
ML-MW-8 MSD	480-153772-8 MSD	93	55	34	34		

FORM II

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

QC LIMITS 44-120 20-120

Column to be used to flag recovery values

FORM II 8081B

.

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Nam	e: Eurofins TestAme	erica, Buffalo	Job No.: 480-153772-1	
SDG No.				
Matrix:	Water	Level: Low	Lab File ID: W0532.D	
Lab ID:	480-153772-8 MSD		Client ID: ML-MW-8 MSD	

	SPIKE ADDED	MSD CONCENTRATION	MSD	010	QC LI	MITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
2,4,5-Trichlorophenol	32.0	24.9	78	2	18	65-126	
2,4,6-Trichlorophenol	32.0	32.7	102	3	19	64-120	
2,4-Dichlorophenol	32.0	26.5	83	4	19	48-132	
2,4-Dimethylphenol	32.0	27.3	85	3	42	39-130	
2,4-Dinitrophenol	64.0	54.1	85	12	22	21-150	
2,4-Dinitrotoluene	32.0	31.1	97	21	20	54-138	F2
2,6-Dinitrotoluene	32.0	26.3	82	17	15	17-150	F2
2-Chloronaphthalene	32.0	25.1	79	6	21	52-124	
2-Chlorophenol	32.0	26.3	80	5	25	48-120	
2-Methylnaphthalene	32.0	25.2	79	5	21	34-140	
2-Methylphenol	32.0	24.6	77	4	27	46-120	
2-Nitroaniline	32.0	30.6	96	18	15	44-136	. F2
2-Nitrophenol	32.0	27.9	87	5	18	38-141	
3,3'-Dichlorobenzidine	64.0	18.4	29	18	25	10-150	
3-Nitroaniline	32.0	17.1	53	11	19	32-150	
4,6-Dinitro-2-methylphenol	64.0	66.6	104	4	15	38-150	
4-Bromophenyl phenyl ether	32.0	28.4	89	11	15	63-126	
4-Chloro-3-methylphenol	32.0	37.3	117	5	27	64-127	
4-Chloroaniline	32.0	13.7	43	24	22	16-124	F2
4-Chlorophenyl phenyl ether	32.0	24.7	77	11	16	61-120	
4-Methylphenol	32.0	24.1	75	4	24	36-120	
4-Nitroaniline	32.0	22.0	69	6	24	32-150	
4-Nitrophenol	64.0	39.8	62	4	48	23-132	
Acenaphthene	32.0	26.9	84	3	24	48-120	
Acenaphthylene	32.0	28.9	90	3	18	63-120	
Acetophenone	32.0	25.4	77	8	20	53-120	
Anthracene	32.0	29.7	93	3	15	65-122	
Atrazine	64.0	50.5	79	11	20	50-150	
Benzaldehyde	64.0	46.5	73	4	20	10-150	
Benzo[a]anthracene	32.0	27.6	86	4	15	43-124	
Benzo[a]pyrene	32.0	23.7	74	4	15	23-125	
Benzo[b]fluoranthene	32.0	25.8	81	5	15	27-127	
Benzo[g,h,i]perylene	32.0	26.0	81	2	15	16-147	
Benzo[k]fluoranthene	32.0	24.9	78	2	22	20-124	
Biphenyl	32.0	25.5	80	5	20	57-120	
bis (2-chloroisopropyl) ether	32.0	23.3	73	9	24	28-121	
Bis(2-chloroethoxy)methane	32.0	24.6	77	8	17	44-128	
Bis(2-chloroethyl)ether	32.0	26.1	82	7	21	45-120	
Bis(2-ethylhexyl) phthalate	32.0	28.6	81	3	15	16-150	
Butyl benzyl phthalate	32.0	28.0	88	9	16	51-140	
Caprolactam	64.0	19.2	30	3	20	10-120	
Carbazole	32.0	30.6	96	2	20	16-148	

Column to be used to flag recovery and RPD values

FORM III 8270D

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAm	erica, Buffalo	Job No.: 480-153772-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: W0532.D	
Lab ID:	b ID: 480-153772-8 MSD		Client ID: ML-MW-8 MSD	
Lab ID:	480-153772-8 MSD	Tever. TOM	Client ID: ML-MW-8 MSD	

	SPIKE	MSD	MSD	ġ.	QC LI	MITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	π
Chrysene	32.0	26.2	82	3	15	44-122	-
Dibenz(a,h)anthracene	32.0	25.4	79	2	15	16-139	
Dibenzofuran	32.0	27.6	86	1	15	60-120	
Diethyl phthalate	32.0	29.7	91	19	15	53-133	F2
Dimethyl phthalate	32.0	26.4	83	12	15	59-123	
Di-n-butyl phthalate	32.0	32.4	100	4	15	65-129	
Di-n-octyl phthalate	32.0	29.0	91	3	16	16-150	
Fluoranthene	32.0	32.0	100	13	15	63-129	
Fluorene	32.0	28.2	88	2	15	62-120	
Hexachlorobenzene	32.0	31.1	97	1	15	57-121	
Hexachlorobutadiene	32.0	19.8	62	10	44	37-120	
Hexachlorocyclopentadiene	32.0	17.7	55	18	49	21-120	
Hexachloroethane	32.0	22.5	70	12	46	16-130	
Indeno[1,2,3-cd]pyrene	32.0	25.6	80	1	15	16-140	
Isophorone	32.0	25.8	81	7	17	48-133	1
Naphthalene	32.0	23.7	74	7	29	45-120	-
Nitrobenzene	32.0	25.6	80	7	24	45-123	
N-Nitrosodi-n-propylamine	32.0	25.6	80	7	31	49-120	-
N-Nitrosodiphenylamine	32.0	30.4	90	13	15	39-138	-
Pentachlorophenol	64.0	70.7	111	7	37	23-149	
Phenanthrene	32.0	38.0	119	1	15	65-122	
Phenol	32.0	17.4	53	4	34	16-120	
Pyrene	32.0	27.2	85	5	19	58-128	

Column to be used to flag recovery and RPD values
FORM III 8270D

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

SPIKE LCS LCS QC ADDED CONCENTRATION olo # LIMITS COMPOUND REC (uq/L)(ug/L)REC 1,1,1-Trichloroethane 25.0 25.1 100 73-126 1,1,2,2-Tetrachloroethane 25.0 22.5 90 76-120 1,1,2-Trichloro-1,2,2-trifluor 25.0 23.4 94 61-148 oethane 1,1,2-Trichloroethane 25.0 23.2 93 76-122 1,1-Dichloroethane 25.0 97 77-120 24.3 1,1-Dichloroethene 25.0 21.7 87 66-127 1,2,4-Trichlorobenzene 25.0 22.9 91 79-122 1,2-Dibromo-3-Chloropropane 25.0 21.4 86 56-134 1,2-Dibromoethane 25.0 23.1 92 77-120 1,2-Dichlorobenzene 25.0 23.1 92 80-124 1,2-Dichloroethane 25.0 23.8 95 75-120 1,2-Dichloropropane 25.0 24.3 76-120 97 1,3-Dichlorobenzene 22.6 90 77-120 25.0 25.0 1,4-Dichlorobenzene 22.9 92 80-120 1,4-Dioxane 78 50-150 500 391 91 57-140 2-Butanone (MEK) 125 114 2-Hexanone 125 119 96 65-127 4-Methyl-2-pentanone (MIBK) 125 118 94 71-125 56-142 Acetone 125 121 97 Benzene 25.0 24.2 97 71-124 Bromodichloromethane 25.0 24.3 97 80-122 Bromoform 25.0 23.6 94 61-132 Bromomethane 25.0 18.8 75 55-144 Carbon disulfide 25.0 22.1 88 59-134 Carbon tetrachloride 25.0 109 72-134 27.2 Chlorobenzene 25.0 23.7 95 80-120 Chloroethane 25.0 19.0 76 69-136 73-127 Chloroform 23.4 25.0 94 Chloromethane 25.0 16.9 68-124 68 cis-1,2-Dichloroethene 25.0 23.1 92 74-124 cis-1,3-Dichloropropene 25.0 23.4 94 74-124 Cyclohexane 25.0 26.0 104 59-135 Dibromochloromethane 25.0 25.6 75-125 102 Dichlorodifluoromethane 52 25.0 13.1 59-135 Ethylbenzene 25.0 23.1 93 77-123 Isopropylbenzene 25.0 24.1 96 77-122 Methyl acetate 50.0 43.7 87 74-133 Methyl tert-butyl ether 25.0 22.8 91 77-120 25.0 68-134 Methylcyclohexane 24.4 98 Methylene Chloride 25.0 22.1 88 75-124 Styrene 25.0 91 80-120 22.7

Column to be used to flag recovery and RPD values

FORM III 8260C

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 480-473977/1-A
Matrix: Water	Lab File ID: W0527.D
Analysis Method: 8270D	Date Collected:
Extract. Method: 3510C	Date Extracted: 05/21/2019 15:03
Sample wt/vol: 250(mL)	Date Analyzed: 05/29/2019 06:02
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474963	Units: ug/L
Number TICs Found: 10	TIC Result Total: 156.603

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
	Unknown	2.91	3.32	TJ	1
110-82-7	Cyclohexane	3.08	8.41	TJN	95%
	Unknown	3.34	66.3	ΤJ	
110-86-1	Pyridine	4.14	0.873	J	90%
	column bleed	4.88	11.8	ΤJ	/
	Unknown	5.16	43.6	ΤJ	· · · ·
	column bleed	7.17	13.1	ΤJ	
	column bleed	8.05	4.59	ТJ	
	Unknown	8.82	2.84	ТJ	
	Unknown	9.50	1.77	ΤJ	

Data Usability Summary Report

Site:	Mayer Landfill
Laboratory:	Eurofins TestAmerica Buffalo – Amherst, NY and Burlington, VT
SDG No.:	480-153772-1
Parameters:	Per- and Poly-fluoroalkyl Substances, 1,4-Dioxane
Data Reviewer:	Lisa Krowitz/TRC
Peer Reviewer:	Elizabeth Denly/TRC
Date:	September 5, 2019

Samples Reviewed and Evaluation Summary

4 Groundwater Samples : ML-MW-4DR, ML-MW-5, ML-MW-8, ML-MW-13

1 Equipment Blank Sample: ML-EQUIPMENT BLANK

The above-listed groundwater and equipment blank samples were collected on May 15 and 16, 2019 and were analyzed for one or more of the following parameters:

- 1,4-Dioxane by SW-846 8270D with Selective Ion Monitoring (SIM)
- Per- and Poly-fluoroalkyl substances (PFAS) (21 target analytes) based on EPA Method 537.1 (modified) using Test America – Burlington, VT standard operating procedure (SOP) BR-LC-009, revision 4.0, effective date 04/12/19.

The samples were analyzed for 1,4-dioxane by TestAmerica – Buffalo, NY and for PFAS by TestAmerica – Burlington, VT. The data validation was performed in accordance with the following USEPA guidance, modified for the methodologies utilized:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-2017-002), January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA-542-B-16-001), April 2016

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- Holding Times and Sample Preservation
- GC/MS Tunes (1,4-Dioxane only)
 - Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries (1,4-Dioxane only)
 - Isotopically Labeled Surrogate Results (PFAS only)
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- * Internal Standards
- NA Field Duplicate Results

- Sample Results and Reported Quantitation Limits
- Target Compound Identification
- * All criteria were met.

NA - Field duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data because of sampling error. Qualifications applied to the data because of analytical error are discussed below.

- Potential uncertainty exists for select PFAS results that were below the lowest calibration standard and quantitation limit (QL). These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for PFBA and 6:2 FTS in samples ML-MW-4DR and ML-MW-8; and for PFPeA in sample ML-MW-13 were qualified as estimated (UJ) due to calibration nonconformances. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The nondetect result for PFBA in sample ML-MW-8 was qualified as estimated (UJ) due to low isotopically labeled surrogate recovery. This result can be used for project objectives as a nondetect with an estimated QL, which may have a minor impact on the data usability.
- The positive results for PFHxS and PFOS in sample ML-MW-8 were qualified as estimated (J) due to high MS %Rs and MS/MSD variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for PFPeA in sample ML-MW-8 was qualified as estimated with a potential high bias (J+) due to high MSD recovery. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive results for PFBS in samples ML-MW-5 and ML-MW-8; and for PFHxS in sample ML-MW-13 were qualified as estimated (J) due to the ratio between the two precursor/product ion transitions being outside the acceptance limits and detection below the QL. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met for the 1,4-dioxane and PFAS analyses.

GC/MS Tunes (1,4-Dioxane only)

All criteria were met in the 1,4-dioxane analyses.

Initial and Continuing Calibrations

1,4-Dioxane

The percent relative standard deviation (%RSD) was within the method acceptance criteria in the initial calibration (IC). The percent differences (%Ds) met the method acceptance criteria in the continuing calibration (CC) standard associated with the samples in this data set.

PFAS

The %RSDs in the ICs were within the method acceptance criteria. The following table summarizes the %Ds that did not meet the laboratory acceptance criteria in the CCs, the associated samples, and the validation actions.

Calibration ID Date/Time	Compound	%D	Validation Action
CC 200-143837/30 6/7/19 @ 16:16	PFPeA	45.4	The nondetect result for PFPeA in sample ML-MW-13 was qualified as estimated (UJ).
Associated sample:	ML-MW-13		
CC	PFBA	70.6	The nondetect results for PFBA and 6:2 FTS in samples
5/31/19 @ 05:27	6:2 FTS	56.8	estimated (UJ).
Associated samples:	ML-MW-4DR, MI	MW-8	

<u>Blanks</u>

There were no detections of target compounds in the associated method blanks and equipment blank.

Surrogate Recoveries (1,4-Dioxane only)

The surrogate percent recoveries (%Rs) met the laboratory acceptance criteria in the 1,4-dioxane analyses.

Isotopically Labeled Surrogate Results (PFAS only)

Eighteen isotopically labeled surrogates were spiked into the samples prior to extraction for isotope dilution quantitation. The following table summarizes the %Rs that did not meet the laboratory acceptance limits and the resulting validation actions.

Sample ID	Surrogate	%R	Validation Actions
ML-MW-8	13C4-PFBA	20	The nondetect result for PFBA in sample ML-MW-8 was qualified as estimated (UJ).

Sample ID	Surrogate	%R	Validation Actions
MI -MW/-8	M2-6:2 FTS	290	No qualification was required since 6:2 FTS and
IVIL-IVIVV-0	M2-8:2 FTS	369	8:2 FTS were nondetect in sample ML-MW-8.
ML-MW-5 (5-fold dilution)	13C4-PFBA	155	No qualification was required since PFBA was nondetect in sample ML-MW-5.

MS/MSD Results

1,4-Dioxane

MS/MSD analyses were performed on sample ML-MW-8 for 1,4-dioxane. The %Rs and relative percent differences (RPDs) met the laboratory acceptance criteria.

PFAS

MS/MSD analyses were performed on sample ML-MW-8 for PFAS. The following table summarizes the %Rs and RPDs that did not meet the laboratory acceptance criteria.

MS/MSD ID	Compound	MS %R	MSD %R	RPD	QC Limit %Rs	Validation Actions
	PFBA	324	243	-	40-160/20	No qualification was required since PFBA was nondetect in sample ML-MW-8.
ML-MW-8	PFPeA -		171	-	40-160/20	The positive result for PFPeA in sample ML-MW-8 was qualified as estimated with a potential high bias (J+).
	PFHxS	181	-	41	40-160/20	The positive results for PFHxS and PFOS in sample ML-MW-8
	PFOS	161	-	21	40-160/20	were qualified as estimated (J) due to high MS %R and MS/MSD variability.

LCS Results

The LCS %Rs were within the laboratory acceptance criteria for the 1,4-dioxane and PFAS analyses.

Internal Standards

1,4-Dioxane

The %Rs for internal standard 1,4-dichlorobenzene- d_4 which was added to each sample met the laboratory limits of 50-150% in the 1,4-dioxane analyses.

PFAS

The isotopically labeled internal standard 13C2-PFOA was added to each sample prior to injection to monitor for ion suppression/enhancement at the instrument level. The %Rs met the laboratory limits of 50-150% in the PFAS analyses.

Field Duplicate Results

There were no field duplicates associated with this data set.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. Select PFAS results were below the lowest calibration standard level and QL. These results were qualified as estimated (J) by the laboratory.

The following table summarizes the dilutions performed on samples in this data set; QLs were elevated accordingly.

Sample ID	Parameter	Dilution	Reason for Dilution
ML-MW-5	PFBA	5-fold	A 5-fold dilution was performed for PFBA as part of the laboratory's standard procedure (i.e., when CCVs associated with an undiluted analysis of PFBA are outside of the acceptance limits, the laboratory re-analyzes samples with positive results for PFBA at a dilution).
ML-MW-8	1,4-Dioxane	10-fold	A 10-fold dilution was performed since the concentration of 1,4-dioxane would have exceeded the calibration range if analyzed undiluted.
0	PFAS	5-fold	A 5-fold dilution was performed due to the presence of interfering non-target compounds.

Target Compound Identification

1,4-Dioxane

All criteria were met for 1,4-dioxane.

PFAS

Extracted ion chromatograms were reviewed to verify the target compound identifications. The laboratory manually integrated several peaks to ensure the inclusion of linear and branched isomers for PFOA, PFOS, NEtFOSAA, NMeFOSAA, and/or PFHxS; and/or to ensure proper integration.

Two precursor/product ion transitions were used for identification for all compounds except for PFBA, PFPeA, FOSA, NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS which only used one precursor/product ion transition for identification.

The following table summarizes the ratios between the two precursor/product ion transitions that did not meet the laboratory acceptance criteria and the validation actions.

Compound	Sample ID	Ratio	Ratio QC Limits	Validation Actions
DERS	ML-MW-5	0.59	0 92 2 51	The positive results for PFBS in samples
PFBS	ML-MW-8	3.39	0.63-2.51	estimated (J).
PFHxS	ML-MW-13	2.21	0.67-2.01	The positive result for PFHxS in sample ML-MW-13 was qualified as estimated (J).

QUALIFIED FORM 1s

S. . .

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3
Matrix: Water	Lab File ID: U33150606.D
Analysis Method: 8270D SIM ID	Date Collected: 05/16/2019 12:25
Extract. Method: 3510C	Date Extracted: 05/22/2019 07:58
Sample wt/vol: 1050(mL)	Date Analyzed: 05/25/2019 01:39
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474682	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.29		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	20		15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12
Matrix: Water	Lab File ID: U33150608.D
Analysis Method: 8270D SIM ID	Date Collected: 05/16/2019 15:50
Extract. Method: 3510C	Date Extracted: 05/22/2019 07:58
Sample wt/vol: 1040(mL)	Date Analyzed: 05/25/2019 02:26
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474682	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.096

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	19		15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1	
SDG No.:		
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8	
Matrix: Water	Lab File ID: U33150590.D	
Analysis Method: 8270D SIM ID	Date Collected: 05/16/2019 11:35	
Extract. Method: 3510C	Date Extracted: 05/22/2019 07:58	
Sample wt/vol: 1050(mL)	Date Analyzed: 05/24/2019 19:20	
Con. Extract Vol.: 1(mL)	Dilution Factor: 10	
Injection Volume: 1(uL)	Level: (low/med) Low	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 474682	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	6.2		1.9	0.95

CAS NO.	ISOTOPE DILUTION	%REC	Q LIMITS
17647-74-4	1,4-Dioxane-d8	22	15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7
Matrix: Water	Lab File ID: U33150607.D
Analysis Method: 8270D SIM ID	Date Collected: 05/15/2019 17:20
Extract. Method: 3510C	Date Extracted: 05/22/2019 07:58
Sample wt/vol: 1040(mL)	Date Analyzed: 05/25/2019 02:02
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 474682	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.096

CAS NO.	ISOTOPE DILUTION	REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	17		15-110

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-153772-1		
SDG No.:		
Client Sample ID: ML-MW-4DR	Lab Sample ID: 480-153772-3	
Matrix: Water	Lab File ID: PF053019B70.d	
Analysis Method: 537 (modified)	Date Collected: 05/16/2019 12:25	
Extraction Method: 3535	Date Extracted: 05/28/2019 12:09	
Sample wt/vol: 290.4(mL)	Date Analyzed: 05/31/2019 07:03	
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 1	
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)	
% Moisture:	GPC Cleanup:(Y/N) N	
Analysis Batch No.: 143596	Units: ng/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND	_	1.7 4	5 🗸 0.86
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.7	0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.65
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.78
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.7	0.54
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.66
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.46
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.51
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.52
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.79
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.42
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.69
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.82
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.77
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		1.7	0.55
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17 N 3	√ 4.0
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12
Matrix: Water	Lab File ID: PF053019B75.d
Analysis Method: 537 (modified)	Date Collected: 05/16/2019 15:50
Extraction Method: 3535	Date Extracted: 05/28/2019 12:09
Sample wt/vol: 298.3(mL)	Date Analyzed: 05/31/2019 08:23
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 1
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 143596	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.5		1.7	0.53
307-24-4	Perfluorohexanoic acid (PFHxA)	2.4		1.7	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.8		1.7	0.76
335-67-1	Perfluorooctanoic acid (PFOA)	10		1.7	0.53
375-95-1	Perfluorononanoic acid (PFNA)	1.1	J	1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.65
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.44
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.77
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.72	J	1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.67
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND.		1.7	0.80
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.1		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		1.7	0.54
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.1	J	17	3.9
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-153772-1
SDG No.:	
Client Sample ID: ML-MW-5	Lab Sample ID: 480-153772-12
Matrix: Water	Lab File ID: PF060619A19.d
Analysis Method: 537 (modified)	Date Collected: 05/16/2019 15:50
Extraction Method: 3535	Date Extracted: 05/28/2019 12:09
Sample wt/vol: 298.3(mL)	Date Analyzed: 06/06/2019 17:10
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 5
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 143813	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		8.4	4.2

CAS NO.		ISOTOPE DILUTION	%REC	Q	LIMITS
STL00992	13C4 PFBA		155	*	25-150

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-153772-1			
SDG No.:				
Client Sample ID: ML-MW-8	Lab Sample ID: 480-153772-8			
Matrix: Water	Lab File ID: PF053019B71.d			
Analysis Method: 537 (modified)	Date Collected: 05/16/2019 11:35			
Extraction Method: 3535	Date Extracted: 05/28/2019 12:09			
Sample wt/vol: 296.7(mL)	Date Analyzed: 05/31/2019 07:19			
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 5			
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 143596	Units: ng/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND	G F1	32	NJ / 32
2706-90-3	Perfluoropentanoic acid (PFPeA)	11	++ 5+	8.4	2.7
307-24-4	Perfluorohexanoic acid (PFHxA)	27		8.4	3.2
375-85-9	Perfluoroheptanoic acid (PFHpA)	26	-	8.4	3.8
335-67-1	Perfluorooctanoic acid (PFOA)	120		8.4	2.7
375-95-1	Perfluorononanoic acid (PFNA)	ND		8.4	1.1
335-76-2	Perfluorodecanoic acid (PFDA)	ND		8.4	3.2
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		8.4	2.2
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		8.4	2.5
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		8.4	2.5
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		8.4	3.9
375-73-5	Perfluorobutanesulfonic acid (PFBS)	6.0	J	8.4	2.1
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	15	F1 F2	T. 1 8.4	3.4
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	. ND		8.4	4.0
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	44	F1 F2	5 / 8.4	2.6
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		4 8.4	3.8
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.4	2.7
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		84	7.2
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	66	J	84	6.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND-		84	ИЈ 🖌 19
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		84	12
FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-153772-1					
SDG No.:						
Client Sample ID: ML-MW-13	Lab Sample ID: 480-153772-7					
Matrix: Water	Lab File ID: PF060719A24.d					
Analysis Method: 537 (modified)	Date Collected: 05/15/2019 17:20					
Extraction Method: 3535	Date Extracted: 05/28/2019 07:49					
Sample wt/vol: 293.7(mL)	Date Analyzed: 06/07/2019 14:41					
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)					
% Moisture:	GPC Cleanup:(Y/N) N					
Analysis Batch No.: 143837	Units: ng/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.85
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.7 (5 1 0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.65
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.77
335-67-1	Perfluorooctanoic acid (PFOA)	2.9	_	1.7	0.54
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.66
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.45
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.50
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	ND		0.51
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.78
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.65	J	1.7	0.42
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.78	J	1.7	0.68
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.81
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	3.4		1.7	0.52
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.77
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		1.7	0.54
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	3.9
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-153772-1					
SDG No.:						
Client Sample ID: ML-EQUIPMENT BLANK	Lab Sample ID: 480-153772-13					
Matrix: Water	Lab File ID: PF053019B76.d					
Analysis Method: 537 (modified)	Date Collected: 05/16/2019 16:10					
Extraction Method: 3535	Date Extracted: 05/28/2019 12:09					
Sample wt/vol: 298.6(mL)	Date Analyzed: 05/31/2019 08:38					
Con. Extract Vol.: 0.5(mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)					
% Moisture:	GPC Cleanup:(Y/N) N					
Analysis Batch No.: 143596	Units: ng/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.84
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.7	0.53
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.76
335-67-1	Perfluorooctanoic acid (PFOA)	ND	_	1.7	0.53
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.64
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.44
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.77
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.67
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.80
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		1.7	0.54
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	3.9
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

QC NONCONFORMANCE DOCUMENTATION

FORM VII LCMS CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmeri	.ca, Burlington	Job No.: 480-153772-1
SDG No.:		
Lab Sample ID: CCV 200-14383	37/30	Calibration Date: 06/07/2019 16:16
Instrument ID: LC410		Calib Start Date: 05/23/2019 12:19
GC Column: C-18	ID: 4.60(mm)	Calib End Date: 05/23/2019 14:26
Lab File ID: PF060719A30.d		Conc. Units: ng/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	∂e D	MAX 응D	
Perfluorobutanoic acid (PFBA)	AveID	1.570	2.003		6380	5000	27.6	40.0	1
Perfluoropentanoic acid (PFPeA)	AveID	2.995	4.355		7270	5000	45.4*	40.0	
Perfluorobutanesulfonic acid (PFBS)	AveID	2.513	3.204		5630	4420	27.5	40.0	
1H,1H,2H,2H-perfluorohexanes ulfonic acid (4:2)	AveID	1.325	2.374		8370	4670	79.2*	50.0	X
Perfluorohexanoic acid (PFHxA)	AveID	1.398	1.272		4550	5000	-9.0	40.0	
Perfluoropentanesulfonic acid	AveID	2.841	4.160		6870	4690	46.4	50.0	
HFPO-DA	AveID	1.078	1.341		6220	5000	24.4	40.0	1
Perfluoroheptanoic acid (PFHpA)	AveID	1.174	1.098		4680	5000	-6.4	40.0	
Perfluorohexanesulfonic acid (PFHxS)	AveID	2.116	2.414		5190	4550	14.1	40.0	
DONA	AveID	4.300	4.541		4970	4710	5.6	50.0	
1H,1H,2H,2H-perfluorooctanes ulfonic acid (6:2)	AveID	0.9451	0.7515		3770	4740	-20.5	40.0	
Perfluorooctanoic acid (PFOA)	AveID	1.012	1.093		5400	5000	8.0	40.0	
Perfluoroheptanesulfonic Acid (PFHpS)	AveID	0.8706	0.9704		5310	4760	11.5	50.0	
Perfluorooctanesulfonic acid (PFOS)	AveID	0.9657	0.9603		4610	4640	-0.6	40.0	
Perfluorononanoic acid (PFNA)	AveID	0.8830	0.9639		5460	5000	9.2	40.0	
9-Chlorohexadecafluoro-3-oxa nonane-1-sulfonic acid	AveID	4.397	5.387		5710	4660	22.5	50.0	
1H,1H,2H,2H-perfluorodecanes ulfonic acid (8:2)	AveID	0.7376	0.7647		4970	4790	3.7	40.0	
Perfluorodecanoic acid (PFDA)	AveID	0.9155	0.8210		4480	5000	-10.3	40.0	
Perfluorononanesulfonic acid	AveID	0.9697	1.103		5460	4800	13.8	50.0	P
N-methylperfluorooctanesulfo namidoacetic acid (NMeFOSAA)	AveID	0.8257	0.8004		4850	5000	-3.1	40.0	
Perfluorodecanesulfonic acid (PFDS)	AveID	1.038	1.118		5190	4820	7.7	50.0	
N-ethylperfluorooctanesulfon amidoacetic acid (NEtFOSAA)	AveID	0.8053	0.9766		6060	5000	21.3	40.0	
Perfluoroundecanoic acid (PFUnA)	AveID	0.8325	0.8669		5210	5000	4.1	40.0	
Perfluorooctanesulfonamide (PFOSA)	AveID	1.424	1.328		4660	5000	-6.7	40.0	
11-Chloroeicosafluoro-3-oxau ndecane-1-sulfonic acid	AveID	5.609	5.847		4910	4710	4.2	50.0	
Perfluorododecanoic acid (PFDoA)	AveID	0.9488	0.9185		4840	5000	-3.2	40.0	
Perfluorotridecanoic acid (PFTriA)	AveID	0.9373	0.9295		4960	5000	-0.8	50.0	
Perfluorotetradecanoic acid (PFTeA)	AveID	0.8487	0.8961		5280	5000	5.6	40.0	
13C4 PFBA	Ave	0.2445	0.1782		36400	50000	-27.1	50.0	
13C5 PFPeA	Ave	0.1855	0.1236		33300	50000	-33.4	50.0	

FORM VII LCMS CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestA	Job No	.: 480-153	772-1							
SDG No.:										
Lab Sample ID: CCV 200-1	43596/64		Calibr	ation Date	: 05/31/2	2019 05				
Instrument ID: LC410			Calib	Start Date	: 05/23/2	2019 12				
GC Column: C-18	I	D: 4.60(mm)	Calib	End Date:	05/23/201	9 14:2				
Lab File ID: PF053019B64	Lab File ID: PF053019B64.d				Conc. Units: ng/L					
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT				
Perfluorobutanoic acid (PFBA)	AveID	1.570	2.679		8530	5000				
Perfluoropentanoic acid (PFPeA)	AveID	2.995	3.197		5340	5000				
Perfluorobutanesulfonic acid (PFBS)	AveID	2.513	2.311		4060	4420				
1H, 1H, 2H, 2H-perfluorohexanes ulfonic acid (4:2)	AveID	1.325	1.386		4890	4670				
Perfluorohexanoic acid (PFHxA)	AveID	1.398	1.417		5070	5000				
Perfluoropentanesulfonic acid	AveID	2.841	2.660		4390	4690				
HFPO-DA	AveID	1.078	1.149		5330	5000				
Perfluoroheptanoic acid (PFHpA)	AveID	1.174	1.239		5280	5000				
Perfluorohexanesulfonic acid (PFHxS)	AveID	2.116	2.070		4450	4550				
DONA	AveID	4.300	5.162		5650	4710				
1H,1H,2H,2H-perfluorooctanes ulfonic acid (6:2)	AveID	0.9451	1.482		7430	4740				
Perfluorooctanoic acid (PFOA)	AveID	1.012	1.010		4990	5000				
Perfluoroheptanesulfonic Acid (PFHpS)	AveID	0.8706	1.012		5530	4760				

019 05:27 19 12:19 14:26

Perfluorobutanoic acid (PFBA)	AveID	1.570	2.679	8530	5000	70.6*	40.0
Perfluoropentanoic acid (PFPeA)	AveID	2.995	3.197	5340	5000	6.8	40.0
Perfluorobutanesulfonic acid (PFBS)	AveID	2.513	2.311	4060	4420	-8.0	40.0
1H, 1H, 2H, 2H-perfluorohexanes ulfonic acid (4:2)	AveID	1.325	1,386	4890	4670	4.6	50.0
Perfluorohexanoic acid (PFHxA)	AveID	1.398	1.417	5070	5000	1.4	40.0
Perfluoropentanesulfonic acid	AveID	2.841	2.660	4390	4690	-6.4	50.0
HFPO-DA	AveID	1.078	1.149	5330	5000	6.6	40.0
Perfluoroheptanoic acid (PFHpA)	AveID	1.174	1.239	5280	5000	5.6	40.0
Perfluorohexanesulfonic acid (PFHxS)	AveID	2.116	2.070	4450	4550	-2.2	40.0
DONA	AveID	4.300	5.162	5650	4710	20.1	50.0
1H,1H,2H,2H-perfluorooctanes ulfonic acid (6:2)	AveID	0.9451	1.482	7430	4740	56.8*	40.0
Perfluorooctanoic acid (PFOA)	AveID	1.012	1.010	4990	5000	-0.1	40.0
Perfluoroheptanesulfonic Acid (PFHpS)	AveID	0.8706	1.012	5530	4760	16.2	50.0
Perfluorononanoic acid (PFNA)	AveID	0.8830	0.9394	5320	5000	6.4	40.0
Perfluorooctanesulfonic acid (PFOS)	AveID	0.9657	0.9642	4630	4640	-0.2	40.0
9-Chlorohexadecafluoro-3-oxa nonane-1-sulfonic acid	AveID	4.397	4.969	5270	4660	13.0	50.0
1H,1H,2H,2H-perfluorodecanes ulfonic acid (8:2)	AveID	0.7376	0.7606	4940	4790	3.1	40.0
Perfluorononanesulfonic acid	AveID	0.9697	0.9664	4780	4800	-0.3	50.0
Perfluorodecanoic acid (PFDA)	AveID	0.9155	0.8985	4910	5000	-1.9	40.0
N-methylperfluorooctanesulfo namidoacetic acid (NMeFOSAA)	AveID	0.8257	0.9787	5930	5000	18.5	40.0
N-ethylperfluorooctanesulfon amidoacetic acid (NEtFOSAA)	AveID	0.8053	0.8178	5080	5000	1.6	40.0
Perfluorodecanesulfonic acid (PFDS)	AveID	1.038	0.9844	4570	4820	-5.2	50.0
Perfluoroundecanoic acid (PFUnA)	AveID	0.8325	0.8942	5370	5000	7.4	40.0
Perfluorooctanesulfonamide (PFOSA)	AveID	1.424	1.396	4900	5000	-2.0	40.0
11-Chloroeicosafluoro-3-oxau ndecane-1-sulfonic acid	AveID	5.609	5.944	4990	4710	6.0	50.0
Perfluorododecanoic acid (PFDoA)	AveID	0.9488	0.9149	4820	5000	-3.6	40.0
Perfluorotridecanoic acid (PFTriA)	AveID	0.9373	0.9366	5000	5000	-0.0	50.0
Perfluorotetradecanoic acid (PFTeA)	AveID	0.8487	0.8617	5080	5000	1.5	40.0
13C4 PFBA	Ave	0.2445	0.1370	28000	50000	-44.0	50.0
13C5 PFPeA	Ave	0.1855	0.1532	41300	50000	-17.4	50.0

8D

MAX

8D

FORM II LCMS SURROGATE RECOVERY

Lab Name: Eurofir	ns TestAmerica, Burlington	Job No.: 480-153772-1
SDG No.:		
Matrix: Water		Level: Low
GC Column (1): C-	-18 ID: 4.6 (mm)	
Client Sample ID	Lab Sample ID PFBA #	
ML-MW-5	480-153772-12	

1

PFBA = 13C4 PFBA

QC LIMITS 25-150

Column to be used to flag recovery values

FORM II 537 (modified)

FORM II LCMS SURROGATE RECOVERY

Lab Name: Eurofin	ns TestAmerica,	Burli	ng	ton	Jc	b No.	. :	480-1	53772-1						
SDG No.:															
Matrix: Water					Le	evel:	L	ow							
GC Column (1): <u>C</u> -	-18 ID:	4.6 (mm)											
Client Sample ID	Lab Sample ID	PFBA	#	PFPeA #	ŧ I	PFBS #	#	PFH×A #	PFHpA #	PFHxS	# 1	M262FT	s #	PFOA	#
ML-MW-4DR	480-153772-3	60		66	-	72	+	80	92	64	-	97	-	85	-
ML-MW-13	480-153772-7	47		61	1	90	1	72	81	100		113		88	
ML-MW-8	480-153772-8	20	*	48	1	51	1	61	84	59	<	290	*	89	-
ML-EQUIPMENT BLANK	480-153772-13	48		88	1	82	T	90	92	74		92	-	95	
	MB 200-143465/1-A	109		89		102	T	98	91	77		115		90	
	MB 200-143485/1-A	77		89	1	101		92	105	81		94		101	
	LCS 200-143465/2-A	109		98		122		98	102	109		134		96	
	LCS 200-143485/2-A	57		76		100		84	98	70		84		97	
ML-MW-8 MS	480-153772-8 MS	24	*	39		69		56	93	42	*	323	*	98	_
ML-MW-8 MSD	480-153772-8 MSD	38	1	35		72		68	73	76	-	335	*	93	_

QC LIMITS PFBA = 13C4 PFBA25-150 PFPeA = 13C5 PFPeA25-150 PFBS = 13C3 PFBS50-150 PFHxA = 13C2 PFHxA50-150 PFHpA = 13C4 PFHpA50-150 PFHxS = 1802 PFHxS 50-150 M262FTS = M2-6:2 FTS25-150 PFOA = 13C4 PFOA50-150 # Column to be used to flag recovery values

FORM II 537 (modified)

FORM II LCMS SURROGATE RECOVERY

Lab Name: Eurofin	ns TestAmerica,	Burling	ton	Job No.	: 480-	-153772-1	ki		
SDG No.:									
Matrix: Water				Level:	Low				
GC Column (1): <u>C</u>	-18 ID:	4.6 (mm)						
Client Sample ID	Lab Sample ID	PFNA #	PFOS	# M282FTS #	PFDA	# d3NMFOS #	d5NEFOS #	PFUnA #	PFOSA #
ML-MW-4DR	480-153772-3	78	65	93	85	67	71	86	52
ML-MW-13	480-153772-7	78	75	127	87	58	59	80	59
ML-MW-8	480-153772-8	96	81 (369 *	105	84	113	113	59
ML-EQUIPMENT BLANK	480-153772-13	80	72	95	88	68	71	85	42
	MB 200-143465/1-A	78	88	118	84	65	79	92	83
	MB 200-143485/1-A	90	85	122	96	85	94	103	48
	LCS 200-143465/2-A	86	97	141	90	73	79	93	86
	LCS 200-143485/2-A	86	79	128	96	78	76	90	42
ML-MW-8 MS	480-153772-8 MS	91	67	307 *	112	73	97	106	52
ML-MW-8 MSD	480-153772-8 MSD	97	75	322 *	104	76	115	110	63

	QC LIMITS
PFNA = 13C5 PFNA	50-150
PFOS = 13C4 PFOS	50-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	50-150
d3NMFOS = d3-NMeFOSAA	50-150
d5NEFOS = d5-NEtFOSAA	50-150
PFUnA = 13C2 PFUnA	50-150
PFOSA = 13C8 FOSA	25-150
# Column to be used to flag recovery values	

FORM II 537 (modified)

FORM III LCMS MATRIX SPIKE RECOVERY

Matrix: Water Level	Low	Lab File ID	: PF053019B7	2.0			
Lab ID: 480-153772-8 MS		Client ID: ML-MW-8 MS					
<u></u>							
	SPIKE	SAMPLE	MS	MS	QC		
	ADDED	CONCENTRATIONC	ONCENTRATION	010	LIMITS	#	
COMPOUND	(ng/L)	(ng/L)	(ng/L)	REC	REC		
Perfluorobutanoic acid (PFBA)	33.4	ND	108 (324	40-160	F1	
Perfluoropentanoic acid (PFPeA)	33.4	11	50.9	120	40-160		
Perfluorohexanoic acid (PFHxA)	33.4	27	77.1	150	40-160		
Perfluoroheptanoic acid (PFHpA)	33.4	26	47.8	66	40-160		
Perfluorooctanoic acid (PFOA)	33.4	120	139	50	40-160		
Perfluorononanoic acid (PFNA)	33.4	ND	32.7	98	40-160		
Perfluorodecanoic acid (PFDA)	33.4	ND	31.3	94	40-160		
Perfluoroundecanoic acid (PFUnA)	33.4	ND	35.0	105	40-160	_	
Perfluorododecanoic acid (PFDoA)	33.4	ND	31.9	96	40-160		
Perfluorotridecanoic acid (PFTriA)	33.4	ND	24.4	73	40-160		
Perfluorotetradecanoic acid (PFTeA)	33.4	ND	37.1	111	40-160		
Perfluorobutanesulfonic acid (PFBS)	29.5	6.0J	34.5	97	40-160		
Perfluorohexanesulfonic acid (PFHxS)	30.4	15	70.2	181	40-160	F1	
Perfluoroheptanesulfonic Acid (PFHpS)	31.8	ND	34.8	110	40-160		
Perfluorooctanesulfonic acid (PFOS)	31.0	44	93.4	161	40-160	F1	
Perfluorodecanesulfonic acid (PFDS)	32.2	ND	34.2	106	40-160		
Perfluorooctanesulfonamide (PFOSA)	33.4	ND	38.3	115	40-160		
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	33.4	ND	30.6 J	92	40-160		
N-ethylperfluorooctanesulfonam idoacetic acid (NEtFOSAA)	33.4	66 J	107	122	40-160		
1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	31.6	ND	37.0 J	117	40-160		
fonic acid (8:2)	32.0	ND	26.2 J	82	40-160		
1002 PFHXS	78.9	4 /	33.4	42	50-150	*	
13C4 PEHPA	83.4	/1	11.3	93	50-150		
1304 PEOA	83.4	75	82.0	98	50-150		
13C4 PFOS	79.7	65	53.5	67	50-150		
13C5 PENA	83.4	81	76.2	91	50-150		
13C4 PFBA	83.4	17	20.0	24	25-150	*	
13C2 PFHxA	83.4	51	47.0	56	50-150		
13C2 PFDA	83.4	88	93.1	112	50-150		

Column to be used to flag recovery and RPD values

FORM III 537 (modified)

13C2 PFUnA

96

88.1

83.4

106 50-150

FORM III LCMS MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica	a, Burlington	Job No.: 4	80-15	3772-1	
SDG No.:					
Matrix: Water Lev	vel: Low	Lab File I	D: PF	053019	B73.d
Lab ID: 480-153772-8 MSD		Client ID:	ML-M	W-8 MS	D
	SPIKE ADDED	MSD CONCENTRATION	MSD	DIO	QC
COMPOUND	(ng/L)	(ng/L)	REC	RPD	RPD
Perfluorobutanoic acid (PFBA)	33.5	81.2	243	28	30
Perfluoropentanoic acid (PFPeA)	33.5	68.1	171	29	30
Perfluorohexanoic acid (PFHxA	33.5	63.2	108	20	20
Perfluoroheptanoic acid	33.5	57.3	94	18	20

COMPOUND	(ng/L)	(ng/L)	REC	RPD	RPD	REC	
Perfluorobutanoic acid (PFBA)	33.5	81.2	243	28	30	40-160	F1
Perfluoropentanoic acid (PFPeA)	33.5	68.1	171	29	30	40-160	F1
Perfluorohexanoic acid (PFHxA)	33.5	63.2	108	20	20	40-160	
Perfluoroheptanoic acid (PFHpA)	33.5	57.3	94	18	20	40-160	
Perfluorooctanoic acid (PFOA)	33.5	148	79	7	20	40-160	
Perfluorononanoic acid (PFNA)	33.5	33.4	100	2	20	40-160	-
Perfluorodecanoic acid (PFDA)	33.5	35.5	106	13	20	40-160	
Perfluoroundecanoic acid (PFUnA)	33.5	35.4	106	1	20	40-160	
Perfluorododecanoic acid (PFDoA)	33.5	31.6	94	1	20	40-160	
Perfluorotridecanoic acid (PFTriA)	33.5	24.3	72	1	20	40-160	
Perfluorotetradecanoic acid (PFTeA)	33.5	34.8	104	6	20	40-160	
Perfluorobutanesulfonic acid (PFBS)	29.6	38.8	111	12	20	40-160	
Perfluorohexanesulfonic acid (PFHxS)	30.5	46.1	101	41	20	40-160	F2
Perfluoroheptanesulfonic Acid (PFHpS)	31.9	36.0	113	3	30	40-160	
Perfluorooctanesulfonic acid (PFOS)	31.1	75.5	103	21	20	40-160	F2
Perfluorodecanesulfonic acid (PFDS)	32.3	32.4	100	5	30	40-160	
Perfluorooctanesulfonamide (PFOSA)	33.5	32.3	96	17	30	40-160	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	33.5	35.1J	105	14	20	40-160	
N-ethylperfluorooctanesulfonam idoacetic acid (NEtFOSAA)	33.5	90.1	72	17	20	40-160	
1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	31.7	29.8 J	94	22	30	40-160	
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	32.1	34.8 J	108	28	30	40-160	
1802 PFHxS	79.2	60.1	76			50-150	
13C4 PFHpA	83.7	61.0	73			50-150	
13C4 PFOA	83.7	77.8	93			50-150	
13C4 PFOS	80.0	59.8	75			50-150	
13C5 PFNA	83.7	81.3	97			50-150	
13C4 PFBA	83.7	32.2	38			25-150	
13C2 PFHxA	83.7	56.9	68		1	50-150	
13C2 PFDA	83.7	86.9	104			50-150	
13C2 PFUnA	83.7	92.1	110			50-150	

Column to be used to flag recovery and RPD values

FORM III 537 (modified)

QC LIMITS

#

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File:	\\chromna\Burlington\ChromD	ata\LC410\20190530-36	138.b\PF053	3019B75.d	
Lims ID:	480-153772-M-12-A				
Client ID:	ML-MW-5				
Sample Type:	Client				
Inject. Date:	31-May-2019 08:23:04	ALS Bottle#:	0	Worklist Smp#:	75
Injection Vol:	20.0 ul	Dil. Factor:	1.0000		
Sample Info:	200-0036138-075 12				
Misc. Info .:	PFAS27 053019B				
Operator ID:	JWM	Instrument ID:	LC410		
Method:	\\chromna\Burlington\ChromD	ata\LC410\20190530-36	138.b\PFCIS	SO_10MRM_28.m	
Limit Group:	LC_PFC_ICAL				
Last Update:	05-Jun-2019 17:26:40	Calib Date:	23-May-2	2019 14:26:50	
Integrator:	Picker				
Quant Method:	Isotopic Dilution	Quant By:	Initial Ca	libration	
Last ICal File:	\\chromna\Burlington\ChromD	ata\LC410\20190523-36	057.b\PF052	2319B10.d	
Column 1 :	C-18 (4.60 mm)		Det: F1:M	IRM	
Process Host:	CTX0323				

First Level Reviewer: murrayjw

Date:

05-Jun-2019 10:49:37

Ratio Calibration: CCV Sample: \\chromna\Burlin	ton\ChromData\LC410\20190530-36138.b\PF053019B74.c
---	--

Signal	RT	EXP RT	DLT RT	REL RT	Response	Amount ng/ml	Ratio(Limits)	%Rec	S/N	Flags
D 1 13C4 PFB	A			50.0		-	100			М
216.9 > 171.5	2.370	2.391	-0.021	1.000	85583	18.6		37.2	33.4	М
2 Perfluorobu	itanoic ad	cid								М
212.9 > 168.9	2.370	2.391	-0.021	1.000	10592	3.94			14.5	М
D 4 13C5 PFP	eA									
267.7 > 222.6	2.830	2.830	0.0	1.000	95548	27.4		54.8	242	
3 Perfluorope	entanoic a	acid								М
262.9 > 218.8	2.830	2.866	-0.036	1.000	8584	1.50			3.5	М
D 5 13C3 PFB	S									
302.0 > 79.8	2.901	2.901	0.0	1.000	56343	37.1		79.9	235	
6 Perfluorobu	tanesulfo	onic acid								RM
298.9 > 80.0	2.866	2.937	-0.071	0.988	1306	0.4288	Target=1.67		7.7	RM
298.9 > 98.9	2.901	2.901	0.0	1.000	2203	(0.59(0.83-2.51)		5.9	
D 8 13C2 PFH	хA									
314.8 > 269.6	3.302	3.334	-0.032	1.000	414617	39.6		79.3	2627	
7 Perfluorohe	xanoic a	cid								М
312.9 > 268.9	3.334	3.334	0.0	1.010	16460	1.42	Target=14.34		17.8	
312.9 > 118.9	3.334	3.334	0.0	1.010	891		18.47(7.17-21.51)		15.8	М
9 Perfluorohe	ptanoic a	ncid								М
362.9 > 318.9	3.905	3.925	-0.020	1.000	17191	1.10	Target=2.84		7.8	
362.9 > 168.9	3.869	3.925	-0.056	0.991	5489		3.13(1.42-4.26)		25.2	М
D 10 13C4 PFH	łрА									
366.9 > 321.8	3.905	3.925	-0.020	1.000	665358	45.1		90.2	1306	
D 12 1802 PFH	IxS									
402.9 > 83.8	3.925	3.946	-0.021	1.000	64061	33.0		69.8	420	
D 14 M2-6:2 FT	S									
428.6 > 408.6	4.547	4.589	-0.042	1.000	58098	55.4		117	387	

Page 1870 of 4229

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File:	\\chromna\Burlington\ChromD	ata\LC410\20190530-36	138.b\PF053	8019B71.d	
Lims ID:	480-153772-N-8-A				
Client ID:	ML-MW-8				
Sample Type:	Client				
Inject. Date:	31-May-2019 07:19:24	ALS Bottle#:	0	Worklist Smp#:	71
Injection Vol:	20.0 ul	Dil. Factor:	5.0000	Courses and	
Sample Info:	200-0036138-071 8				
Misc. Info.:	PFAS27 053019B				
Operator ID:	JWM	Instrument ID:	LC410		
Method:	\\chromna\Burlington\ChromD	ata\LC410\20190530-36	138.b\PFCIS	O_10MRM_28.m	
Limit Group:	LC_PFC_ICAL				
Last Update:	05-Jun-2019 17:26:17	Calib Date:	23-May-2	2019 14:26:50	
Integrator:	Picker				
Quant Method:	Isotopic Dilution	Quant By:	Initial Cal	ibration	
Last ICal File:	\\chromna\Burlington\ChromD	ata\LC410\20190523-36	057.b\PF052	319B10.d	
Column 1 :	C-18 (4.60 mm)		Det: F1:M	1RM	
Process Host:	CTX0323				

First Level Reviewer: murrayjw

Date:

05-Jun-2019 10:47:00

Ratio Calibration: C	CV Sample:	\chromna\Burlington\ChromData\LC410\20190530-36138.b\PF053019B64.c
----------------------	------------	--

Signal	RT	EXP RT	DLT RT	REL RT	Response	Amount ng/ml	Ratio(Limits)	%Rec	S/N	Flags
D 1 13C4 PFB	A									М
216.9 > 171.5	2.349	2.391	-0.042	1.000	9522	2.04		20.4	27.4	м
2 Perfluorobu	itanoic ad	cid								м
212.9 > 168.9	2.349	2.391	-0.042	1.000	5567	3.72			1.5	М
0 4 13C5 PFP	eA									
267.7 > 222.6	2.830	2.830	0.0	1.000	16989	4.80		48.0	15.8	
3 Perfluorope	entanoic a	acid								М
262.9 > 218.8	2.795	2.866	-0.071	0.987	6498	1.28			1.1	M
5 13C3 PFB	S									
302.0 > 79.8	2.866	2.901	-0.035	1.000	7331	4.76		51.2	32.2	
6 Perfluorobu	tanesulfo	nic acid					-			RMa
298.9 > 80.0	2.901	2.937	-0.036	1.012	1409	0.7111	Target=1.67		1.2	Ra
298.9 > 98.9	2.830	2.901	-0.071	0.988	416		3.39(0.83-2.51)		0.7	
46 1H,1H,2H,2	2H-perflu	orohexa	nesulfon	i						
327.0 > 306.7	3.175	3.302	-0.127	1.108	609	0.5832			2.9	
0 8 13C2 PFH	хA									
314.8 > 269.6	3.270	3.334	-0.064	1.000	64750	6.10		61.0	230	
7 Perfluorohe	xanoic ad	cid								м
312.9 > 268.9	3.270	3.334	-0.064	1.000	28921	3.20	Target=14.34		10.1	M
312.9 > 118.9	3.302	3.334	-0.032	1.010	1472		19.65(7.17-21.51)		4.9	
44 Perfluoro(2	-propoxy	propano	ic) acid							
328.9 > 284.7	3.429	3.492	-0.063	1.000	1511	NR			1.4	
9 Perfluorohe	ptanoic a	cid								
362.9 > 318.9	3.833	3.925	-0.092	0.991	45256	3.07	Target=2.84		12.0	
362.9 > 168.9	3.833	3.925	-0.092	0.991	18418	1000	2.46(1.42-4.26)		48.5	
0 10 13C4 PFH	IDA						· · · · · · · · · · · · · · · · · · ·			
366.9 > 321.8	3.869	3.925	-0.056	1.000	125679	8.40		84.0	378	

Page 1844 of 4229

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File:	\\chromna\Burlington\ChromDa	ta\LC410\20190606-36	235.b\PF060)719A24.d	
Lims ID:	480-153772-M-7-A				
Client ID:	ML-MW-13				
Sample Type:	Client				
Inject. Date:	07-Jun-2019 14:41:35	ALS Bottle#:	0	Worklist Smp#:	24
Injection Vol:	20.0 ul	Dil. Factor:	1.0000		
Sample Info:	200-0036235-024 772-7				
Misc. Info .:	PFAS27 060719A				
Operator ID:	JWM	Instrument ID:	LC410		
Method:	\\chromna\Burlington\ChromDa	ta\LC410\20190606-36	235.b\PFCIS	O 10MRM 28.m	
Limit Group:	LC_PFC_ICAL				
Last Update:	12-Jun-2019 17:37:41	Calib Date:	23-May-2	2019 14:26:50	
Integrator:	Picker				
Quant Method:	Isotopic Dilution	Quant By:	Initial Cal	ibration	
Last ICal File:	\\chromna\Burlington\ChromDa	ta\LC410\20190523-36	057.b\PF052	319B10.d	
Column 1 :	C-18 (4.60 mm)		Det: F1:M	IRM	
Process Host:	CTX0337				

First Level Reviewer: murrayjw

the start of the

12-Jun-2019 15:34:33

Ratio Calibration: CCV Sample: \\chromna\Burlingtor	\ChromData\LC410\20190606-36235.b\PF060719A17.c
---	---

Date:

Signal	RT	EXP RT	DLT RT	REL RT	Response	Amount ng/ml	Ratio(Limits)	%Rec	S/N	Flags
2 Perfluorobuta	noic acio	1		1.1.1.1.	1.21					М
212.9 > 168.9	2.287	2.349	-0.062	0.987	1010	0.4189			3.8	М
D 1 13C4 PFBA										М
216.9 > 171.5	2.318	2.349	-0.031	1.000	76787	23.5		47.1	43.3	М
D 4 13C5 PFPeA	N									
267.7 > 222.6	2.795	2.830	-0.035	1.000	74949	30.3		60.6	254	
6 Perfluorobuta	nesulfon	ic acid								М
298.9 > 80.0	2.866	2.901	-0.035	1.000	925	0.3791	Target=1.67		3.1	М
298.9 > 98.9	2.937	2.901	0.036	1.025	982		0.94(0.83-2.51)		3.5	М
D 513C3 PFBS	10.770.00	212.24	Sec. and							
302.0 > 79.8	2.866	2.901	-0.035	1.000	45144	41.9		90.2	190	
D 8 13C2 PFHxA										
314.8 > 269.6	3.270	3.302	-0.032	1.000	268061	36.1		72.2	1209	
9 Perfluorohepta	anoic ac	id								RM
362.9 > 318.9	3.798	3.833	-0.035	0.991	1868	0.1871	Target=2.84	ak	1.2	RM
362.9 > 168.9	3.833	3.833	0.0	1.000	1838		1.02(1.42-4.26)	ND	8.9	М
D 10 13C4 PFHp/	4									
366.9 > 321.8	3.833	3.869	-0.036	1.000	425374	40.7		81.3	1638	
11 Perfluorohexa	anesulfo	nic acid				/				RM
398.9 > 80.0	3.869	3.869	0.0	1.000	1337	0.4600	Target=1.34		6.3	RM
398.9 > 98.9	3.833	3.869	-0.036	0.991	605	1	2.21(0.67-2.01)		3.3	М
D 12 1802 PFHx8	S									
402.9 > 83.8	3.869	3.925	-0.056	1.000	64963	47.2		99.8	244	
13 1H,1H,2H,2H	-perfluor	ooctan	esulfoni							М
426.6 > 406.6	4.414	4.475	-0.061	0.986	761	0.9622			6.9	М
D 14 M2-6:2 FTS										М
428.6 > 408.6	4.475	4.526	-0.051	1.000	39749	53.5		113	200	М

Page 1822 of 4229