

PERIODIC REVIEW REPORT JANUARY 2020 – JANUARY 2025

MAYER LANDFILL SITE TOWN OF BLOOMING GROVE, NEW YORK 10914

NYSDEC Site No. 336027 Work Assignment No. D009812-25

Prepared for:

Division of Environmental Remediation625 Broadway, 12th Floor
Albany, New York 12233

Prepared by:

TRC Engineers, Inc. 3 Corporate Drive, Suite 202 Clifton Park, New York 12065

TABLE OF CONTENTS

SECTION		PAGE
Execut	tive Summary	ES-1
1.0	Introduction	1
1.1	Site Location, Ownership, and Description	1
1.2	Investigation/Remedial History	2
1.3	Remaining Contamination	3
1.4	Regulatory Requirements/Cleanup Goals	3
2.0	Institutional and Engineering Control Plan Compliance	4
2.1	Institutional Controls	4
2.2	Engineering Controls	5
3.0	Monitoring and Sampling Plan Compliance	6
3.1	Site-Wide Inspection	6
3.2	Groundwater Monitoring Summary	9
3.	.2.1 Groundwater Gauging	9
3.	.2.2 Groundwater Sampling	9
3.	.2.3 Groundwater Analytical Results	11
3.3	Non-Routine Potable Water Sampling Summary	12
3.	.3.1 Non-Routine Potable Water Sampling	12
3.	.3.2 Laboratory Analysis Results for Non-Routine Potable Water Samples	12
4.0	Cost Summary	13
5.0	Conclusions and Recommendations	14
5.1	Conclusions	14
5.2	Recommendations	16
6.0	Green and Sustainable Remediation Metrics	17
7.0	Certification of Engineering and Institutional Controls	18
8.0	Future Site Activities	20

TABLE OF CONTENTS (CONT.) LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Map
- Figure 3 Overburden Groundwater Surface Elevations and Flow Map July 2022
- Figure 4 Bedrock Groundwater Surface Elevations and Flow Map July 2022
- Figure 5 Summary of Detected Compounds Exceeding NYSDEC Groundwater Quality Standards/Guidance July 2022

LIST OF TABLES

- Table 1 Summary of Groundwater Monitoring Well Construction Details
- Table 2 Summary of Depth to Water Measurements and Groundwater Elevations
- Table 3 Summary of Analytical Results of Groundwater for VOCs 2022
- Table 4 Summary of Analytical Results of Groundwater for SVOCs –2022
- Table 5 Summary of Analytical Results of Groundwater for Pesticides –2022
- Table 6 Summary of Analytical Results of Groundwater for PCBs –2022
- Table 7 Summary of Analytical Results of Groundwater for Metals –2022
- Table 8 Summary of Analytical Results of Groundwater for PFAS –2022
- Table 9 Summary of Analytical Results of Potable Water for PFAS and 1,4-Dioxane –(2020 and 2023)

LIST OF APPENDICES

- Appendix A Green and Sustainable Remediation Metrics
- Appendix B Site History and Custodial Record
- Appendix C Institutional Controls/Engineering Controls Form
- Appendix D Site Inspection Forms and Photographic Logs
- Appendix E Groundwater Sampling Logs
- Appendix F Data Usability Summary Reports
- Appendix G Concentration Trend Line Graphs

Mayer Landfill Site, Blooming Grove, New York 10914

LIST OF ACRONYMS AND ABBREVIATIONS

Class GA NYSDEC Division of Water Technical and Operational Guidance Series (TOGS)

Values 1.1.1 Class GA Standards and Guidance Values

COCs Contaminants of Concern

DER Department of Environmental Remediation

DUSRs Data Usability Summary Reports

ECs Engineering Controls
EE Environmental Easement

FS Feasibility Study ICs Institutional Controls

IHWDS Inactive Hazardous Waste Disposal Site

LNAPL Light Non-Aqueous Phase Liquid

MCL Max Contaminant Level mg/L Milligrams per liter

NAPL Non-Aqueous Phase Liquid

ND Not detected ng/L Nanograms per liter NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PCBs Poly-chlorinated Biphenyls

PFAS Per- and Polyfluoroalkyl Substances

PFOA Perfluorooctanoic acid

PFOS Perfluorooctanesulfonic acid PRR Periodic Review Report

QA/QC Quality Assurance/Quality Control

RI Remedial Investigation

RI/FS Remedial Investigation / Feasibility Study

ROD Record of Decision SCO Soil Cleanup Objective

SCGs Standards, Criteria, and Guidance

SMP Site Management Plan SMR Site Management Report

SVOCs Semi-Volatile Organic Compounds

TAL Target Analyte List
TCL Target Compound List

TOGS NYSDEC Division of Water Technical and Operational Guidance Series

TRC Engineers, Inc.

USEPA United States Environmental Protection Agency
UMCR USEPA Unregulated Contaminant Monitoring Rule

VOCs Volatile Organic Compounds

μg/L Micrograms per liter

Executive Summary

Category	Summary/Results			
Engineering Controls (ECs)	Groundwater Monitoring Well Network			
Institutional Controls (ICs)	 Record of Decision (ROD) (2005) Environmental Easement (EE) (2012) Site Management Plan (SMP) (2010, revised 2010 and 2015) 			
Site Classification	Class 4 Inactive Hazardous Waste Disposal Site (IHWDS)			
Site Management Plan (SMP)	SMP – April 2015			
Certification/Reporting Period	The Certification Period of this Periodic Review Report (PRR) is from January 1, 2020, to January 1, 2025.			
Inspection	Frequency			
Site-wide Inspection	Annually and additional inspections, as necessary, following severe weather events.			
Monitoring	Frequency			
Groundwater	Every three years.			
Prior PRR/SMR Recommendations Site Management	 The prior PRR prepared for the April 2015 to January 2020 reporting period included the following recommendations: Three-year groundwater sampling frequency with completion of a Site Management Report (SMR) at the end of the year following the sampling event. Five-year PRR Certification Period. At the discretion of the New York State Department of Environmental Conservation (NYSDEC), a SMR would not be required when a PRR is due the same year. Annual site inspection (concurrent with groundwater sampling events, when possible), including water level measurements and additional inspections, as necessary, following severe weather events. Monitoring well MW-4R should continue to be monitored for Light Non-Aqueous Phase Liquid (LNAPL). Per- and Polyfluoroalkyl Substances (PFAS) should be included as an analyte for all site monitoring wells for at least one more sampling event. Contaminant trends should be evaluated once sufficient data is available. Semi-volatile organic compounds (SVOCs) and pesticides should be considered for removal from the sampling program following another complete round of sampling. Note the recommendations listed above have not been included in the SMP. 			
Site Management Activities	 Site management activities performed during this reporting period (January 1, 2020, through January 1, 2025) included two routine site-wide inspections, one routine groundwater sampling event, two non-routine residential potable water sampling events, and one combined severe weather inspection/routine site-wide inspection. July 20-21, 2020: TRC Engineers, Inc. (TRC) performed a non-routine residential potable water sampling event at the request of the NYSDEC. June 4, 2021: TRC performed a routine site-wide inspection. July 26-28, 2022: TRC performed a routine site-wide inspection and groundwater sampling event at the Site. February 9, 2023: TRC performed a non-routine residential potable water sampling event. 			

Mayer Landfill Site, Blooming Grove, New York 10914

Category	Summary/Results
	 July 20, 2023: TRC performed a severe weather inspection, combined with a routine site-wide inspection. 2024 – A routine site-wide inspection and groundwater sampling were not performed. The NYSDEC was made aware that the work was not performed.
Significant Findings or Concerns	Significant findings or concerns identified during this reporting period are summarized as follows:
	 During the routine groundwater sampling event performed in July 2022, a viscous, tar-like Non-Aqueous Phase Liquid (NAPL) was observed in monitoring well MW-4R. The presence of this NAPL prevented groundwater sampling at this well. In July 2023, TRC attempted to recover the NAPL with hand bailers but was unsuccessful. Groundwater concentrations of several volatile organic compounds (VOCs) exceeded NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) Number 1.1.1 (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values Class GA Groundwater Values (Class GA Values) at one location (MW-8). Groundwater concentrations of two SVOC compounds exceeded Class GA Values at one or more locations. Groundwater concentrations of total PCBs exceeded Class GA Values at three locations (MW-6, MW-4DR, and MW-8). Groundwater concentrations of the metals iron, manganese, and sodium exceeded Class GA Values at one or more locations during this monitoring period. However, these metals are naturally present in groundwater and not indicative of site contaminant migration. Groundwater concentrations of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) exceeded the Class GA Values at four locations (MW-7, MW-7D, MW-8, and MW-13). Groundwater concentrations of 1,4-dioxane exceeded New York State public drinking water Maximum Contaminant Levels (MCLs) in two of 13 residential potable water samples.
Recommendations	TRC recommends the following actions, based on the information associated with this reporting period:
	 Update the SMP to: Reflect a three-year groundwater sampling and site-wide inspection frequency. Reflect a five-year PRR Certification Period. Incorporate changes/modifications needed resulting from the recommendations presented below, if such changes/modifications are acceptable to the NYSDEC. Continue annual site inspection (concurrent with groundwater sampling events, when possible) in accordance with the SMP, including water level measurements and additional inspections, as necessary, following severe weather events. Decommission and replace groundwater monitoring well MW-4R prior to the next groundwater sampling event. Complete a drum inventory and drum sampling event prior to coordinating drum disposal activities. Based on the results of the groundwater sampling documented in Section 3.2, TRC also recommend the following: Include PFAS as an analyte for all site monitoring wells during the next groundwater sampling event.

Mayer Landfill Site, Blooming Grove, New York 10914

Category	Summary/Results
Cost Evaluation	The total cost of site management activities incurred during this reporting period was \$66,350. This cost includes engineering (e.g., labor, equipment, and expense) and subcontractor costs (e.g., data validation service). It should be noted that this total does not include any direct costs incurred by the NYSDEC.
Green and Sustainable Remediation Metrics	Minimal amounts (less than 50 pounds) of solid waste (generally consisting of spent personal protective equipment and groundwater sampling materials) were generated on-site during site management activities this reporting period. Approximately 3,600 miles were driven during this reporting period for site management activities. Less than 25 gallons of public potable water were used during this reporting period for site management activities. No land was disturbed on-site during this reporting period. Additional details concerning green and sustainable remediation metrics are presented in Appendix A .

1.0 Introduction

This Periodic Review Report (PRR) has been prepared for the Mayer Landfill Site (Site) and covers the period between January 1, 2020, and January 1, 2025. This PRR was prepared in accordance with New York State Department of Environmental Conservation (NYSDEC) Work Assignment (WA) No. D009812-25, Notice to Proceed, dated November 19, 2021, NYSDEC-approved Scope of Work, dated April 1, 2022 (and subsequent amendments), NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (DER-10) and NYSDEC DER-31, Green Remediation (DER-31). Historical site information is summarized herein as reported in the documents listed in the Custodial Record (refer to **Appendix B**). A Site summary and applicable remedial program information are presented below.

Site Information						
Site Name:	Mayer Landfill Site	NYSDEC Site No:	336027			
Site Location:	Prospect and Peddler Hill Roads, Blooming Grove, Orange County New York	Remedial Program:	State Superfund Program			
Site Type:	Landfill	Classification:	Class 4 Inactive Hazardous Waste Disposal Site (IHDWS)			
Parcel Identification(s):	Section Block Lot #44-1-63.92, Orange County Tax Mapping	Parcel Acreage / EE Acreage:	103 / 15			
Selected Remedy:	Excavation, Cover System, Long- Term Monitoring	Site Contaminants of Concern (COCs):	VOCsSVOCsMetalsPCBsPesticides			
Current Remedial Program Phase:	Site Management	Institutional Controls:	 Record of Decision (ROD) (2005) Site Management Plan (SMP) (September 2010, Revised October 2010, and Revised April 2015) Environmental Easement (EE) (2012) 			
Post-Remediation Monitoring and Sampling Frequency:	Groundwater monitoring – Every three years Site Inspections - Annually.	Engineering Controls:	 Cover System Groundwater Monitoring Well Network Restricted Site Access 			
Monitoring Locations:	Overburden monitoring wells (eight) Bedrock monitoring wells (six)	Required Reporting:	PRR – Every Five Years			

1.1 Site Location, Ownership, and Description

The Site is located in the Town of Blooming Grove, Orange County, New York and is identified as Section 44 Block 1 Lot 63.92 on the Orange County Tax Map and is presently owned by William R. Mayer and Johanna Mayer. The tax parcel measures approximately 103 acres in size, is bounded to the north by Prospect Road, to the south by private

PERIODIC REVIEW REPORT, JANUARY 2020 – JANUARY 2025 Mayer Landfill Site, Blooming Grove, New York 10915

properties, to the east by Peddler Hill Road, and to the west by a utility right-of-way. Site Location and Site Layout Maps are provided on **Figure 1** and **Figure 2**, respectively. The Site was operated as a landfill beginning in the late 1940s. Residential, commercial, industrial, demolition, and agricultural wastes were reportedly disposed of at the landfill. The limits of the landfill pursuant to the December 2012 Environmental Easement (EE), measure approximately 15 acres in size, and presented on **Figure 2**.

1.2 Investigation/Remedial History

Mayer Landfill began operation in the late 1940s as an open-face dump, with periodic burning of waste. Mixed waste, including residential, commercial, industrial, demolition, and agricultural wastes, were reportedly disposed of at the landfill. In 1965, after being ordered to stop burning, the operator began compacting and covering the mixed waste. The landfill ceased operations in April 1975, due to failure to comply with state and county regulations. In 1975, the Orange County Department of Health conducted an initial investigation of surface water at the landfill and discovered elevated levels of zinc in a wet area to the south of the landfill. The Site was listed in the Registry of IHWDS as a Class 2A site in 1985.

From 1985 to 2002 numerous investigations were conducted by the NYSDEC and New York State Department of Health (NYSDOH), including Phase I and Phase II environmental site assessments, a drinking well sampling event of surrounding private supply wells, and a Remedial Investigation/Feasibility Study (RI/FS) to determine the nature and extent of contamination on-site, and to evaluate remedial alternatives. Based on the RI/FS results, the NYSDEC issued a ROD in 2005, which outlined a clean-up plan. The ROD called for a limited removal action of light non-aqueous phase liquid (LNAPL) impacted soil, discovered buried in the northeastern portion of the landfill. In 2007, further subsurface soil and groundwater investigations were performed as part of design activities associated with remedy implementation. This additional work indicated that the volume of LNAPL-contaminated soil was significantly greater than had been estimated in the ROD. As a result, in 2008 the NYSDEC issued an Explanation of Significant Differences that amended the remedy and called for the removal of a greater volume of contaminated soils.

In 2009, approximately 7,688 tons of LNAPL-impacted soil were excavated and transported off- site for disposal. While a significant quantity of the LNAPL-impacted material was excavated, a limited quantity of LNAPL-impacted material was discovered to extend beyond the limits of the removal activities. The additional area had an estimated volume of approximately 900 cubic yards and was not excavated because the remedial program did not rely on numerical criteria (e.g., Soil Cleanup Objectives (SCOs)) as guidance for the removal action. The additional LNAPL-impacted soil currently remains buried at the Site.

Following the removal of LNAPL-contaminated soil, the excavation area was backfilled with granular backfill from an off-site source and common fill from on-site and off-site sources. Topsoil was imported, installed, and seeded to create a vegetated cover system. Lastly, four sentinel monitoring wells were installed to establish a monitoring well network for continued site monitoring. Following Remedial Action completion, an EE was established for the Site, and a Site Management Plan (SMP) was developed and implemented to manage the Institutional Controls (ICs)/Engineering Controls (ECs), including long-term groundwater monitoring, existing cover maintenance, future soil/excavation management, exclusion against future residential or restricted-residential uses, and a prohibition of groundwater use for portable or industrial/commercial process operations without treatment.

In 2011, the NYSDEC reclassified the Site from a Class 2A IHWDS to a Class 4 site. In 2012, a revised EE was established for the Site to include only 15 of the 103 tax parcel acres, which include 13 acres of landfill and two acres

PERIODIC REVIEW REPORT, JANUARY 2020 – JANUARY 2025 Mayer Landfill Site, Blooming Grove, New York 10915

of buffer, as delineated by the EE survey. In April 2015, the SMP was revised (Rev. 2) to include the same ICs/ECs included in the October 2010 SMP.

Between April 2015 and January 2020, regular site inspections were performed along with a groundwater sampling event (frequency dictated by NYSDEC). A Periodic Review Report (PRR), dated February 2020, was prepared by TRC Engineers, Inc. (TRC) to summarize site work completed between April 2015 and January 2020.

A detailed site history, including the dates and descriptions of significant events is included in **Appendix B**, along with a Custodial Record detailing known and available site reports are.

1.3 Remaining Contamination

While the remedial action completed in 2009 removed a significant quantity of LNAPL-impacted soil, an estimated volume of 900 cubic yards of LNAPL-impacted soil remains in place. Furthermore, all the mixed waste that was historically disposed at the Site remains buried. The landfill area still contains a considerable amount of waste that covers approximately 13 acres. The waste thickness exceeds a depth of 18 feet over most of the landfill. The ROD states that the remaining solid waste is comprised of household garbage including tires, glass, paper, plastic, wood and white goods. Based on observations noted during the 2009 remedial action activities, the solid waste present at the Site also includes domestic waste, construction debris (e.g., shingles and electrical conduit), and some crushed drums or parts of drums.

Other than the LNAPL-impacted soil and mixed waste remaining at the Site, VOCs, PCBs, and PFAS are found onsite in groundwater, as well as low-level concentrations of metals (primarily iron, manganese and sodium).

1.4 Regulatory Requirements/Cleanup Goals

The overall remedial goals for the Site, as per the ROD, is to meet all Standards, Criteria, and Guidance (SCG values, such that the remedial program is protective of human health and the environment. At a minimum, the selected remedy must eliminate or mitigate all significant threats to public health and/or the environment presented by the hazardous waste disposed at the Site. The goals selected for the Site as presented in the ROD are to eliminate or reduce to the extent practicable:

- Exposure to waste in the landfill.
- Exposure to LNAPL-contaminated soil in the landfill.
- The migration of LNAPL from the small, impacted area of the landfill and the release of LNAPL contaminants into groundwater.
- Exposure to on-site groundwater.

2.0 Institutional and Engineering Control Plan Compliance

Since contamination remains at the Site following the implementation of the selected remedy, ICs are required to protect human health and the environment. The IC Plan documented in the SMP describes the procedures for the implementation and management of all ICs at the Site. Appendix C presents the annual certification form required for confirming that all ICs are unchanged from the previous certification and that they comply with the SMP.

2.1 Institutional Controls

ICs required for the Site by the ROD are intended to prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination and limit the use and development of the Site to commercial and industrial uses. Adherence to these ICs is required by the EE and the SMP serves to ensure that the ICs continue to be effectively implemented. The ICs identified in the EE may not be discontinued without an amendment to, or extinguishment of, the EE by the NYSDEC.

The ICs for the Site are as follows:

- The Site may be used for commercial or industrial uses as defined in Section 6 of the New York Codes, Rules and Regulations, Part 375-1.8(g)(2)(iii) and Part 375-1.8(g)(2)(iv), respectively, provided that the long-term ICs included in the SMP are employed.
- All ECs must be operated and maintained, as specified in the SMP.
- All ECs must be inspected at a frequency, and in a manner, defined in the SMP.
- The use of groundwater underlying the Site is prohibited without necessary water quality treatment, as determined by the NYSDOH or the County Department of Health, to render it safe for use as drinking water or for industrial/commercial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Data and information pertinent to site management must be reported at the frequency, and in a manner, as defined in the SMP.
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP and the associated Excavation Work Plan.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed at the frequency, and in a manner, as defined in the SMP.
- Access to the Site must be provided to agents, employees, or other representatives of the State of New York, with reasonable prior notice to the Site's owner, to assure compliance with the restrictions identified by the associated deed restrictions.
 - The Site may not be used for Residential or Restricted Residential purposes. Vegetable gardens and farming on the Site, including cattle and dairy farming, are prohibited.

PERIODIC REVIEW REPORT, JANUARY 2020 – JANUARY 2025

Mayer Landfill Site, Blooming Grove, New York 10915

2.2 Engineering Controls

The ROD does not specify any site-related ECs for protecting the public health and the environment. However, the IC/EC Certification form includes sentinel wells for long-term monitoring of site groundwater as an EC for the Site. The SMP recommends that the vegetated cover of the Site be maintained to reduce potential erosion of the surface soils. Also, vehicular access should be limited to reduce the potential for erosion. These actions are not required to protect elements of the remedy but are suggested primarily for aesthetic reasons.

3.0 Monitoring and Sampling Plan Compliance

The SMP serves to manage contamination remaining on the Site and ensure that the remedy remains effective by restricting site use, site development, and soil management. The SMP specifies the following site monitoring and sampling activities:

Summary of SMP Site Monitoring and Sampling Plan ¹							
Site Management Activity	Frequency ²	Location	Laboratory Analysis	Completion Date(s):			
Site-Wide Inspection	Annually, and additional inspections, as necessary, following severe weather events	Site Property - Prospect and Peddler Hill Roads, Blooming Grove, NY (Section Block Lot # 44-1-63.92, Orange County Tax Map)	Not Applicable	6/4/2021, 7/26/2023, and 7/20/2023 ³			
Groundwater Sampling	Every Three Years	 MW-2 MW-8 MW-4R MW-11 MW-4DR MW-13 MW-5 BR-3 MW-6 BR-5 MW-7 BR-6 MW-7D BR-7 	 TCL VOCs by EPA Method 8260 TCL SVOCs by EPA Method 8270 TAL Metals by USEPA Method 6010 Pesticides by EPA Method 8081 PCBs by EPA Method 8082 	7/26/2022 – 7/28/2022			
PRR	Every Five Years	Not Applicable	Not Applicable	January 2020			

Notes:

- 1- Non-routine residential potable water sampling events were performed by TRC on 7/20/2020-7/21/2020 and 2/9/2023, at the request of the NYSDEC.
- 2 The frequency of site management activities was changed in the 2020 PRR and approved by the NYSDEC.
- 3 A post-storm site inspection was performed by TRC, combined with a routine site-wide inspection.

3.1 Site-Wide Inspection

TRC performed routine site-wide inspections on June 4, 2021, and July 26, 2022, and a combined site-wide inspection and severe weather inspection on July 20, 2023, during this reporting period. Each of the site-wide inspections included visual inspection of the cover system and all monitoring wells, as well as an assessment of the compliance of site conditions with all ICs (including site usage).

A summary of the Site inspections is presented below, and the associated site inspection forms can be found in Appendix D.

Summary of Site Activities, Site Monitoring, and Sampling January 2020 through January 2025							
Site Management Activity	Summary of Results	Maintenance/Corrective Measure					
Site-Wide Inspection	June 4, 2021: TRC completed a routine site-wide inspection and observed the vegetated cover system to be in good condition. The access road gate, utilized to restrict site access, was observed to be in-place and secured with a coded lock. Several tree-stands and trails were noted throughout the Site during the inspection. All site monitoring wells, except for monitoring well BR-5 could be located. Each of the 13 wells located were observed to be in good condition and secured with padlocks.	TRC recommends that the removal of the shipping container from site access road be confirmed prior to the next Site inspection.					
	July 26, 2022-July 28, 2022: TRC completed a routine site-wide inspection and observed the monitoring well network to be in good condition. Several tree-stands and trails were noted, consistent with the June 4, 2021 inspection. Debris (scrap metal, tires, and drums) was observed at various locations throughout the site. All monitoring wells were located and observed to be in good condition. A thick, tar-like Non-Aqueous Phase Liquid (NAPL) was encountered within the well riser of monitoring well MW-4R; therefore, this well could not be sampled or gauged. Overgrown vegetation was encountered surrounding monitoring wells MW-7D, MW-7, MW-11, and BR-7.						
	July 20, 2023: TRC performed a severe weather inspection and routine site-wide inspection. The vegetated cover system was observed to be in good condition. The access road gate, utilized to restrict site access, was observed to be in-place and secured. However, the lock previously installed by TRC had been removed and replaced by the site owner. A shipping container was staged on the access road, restricting vehicular access to the Site. Several tree-stands were noted, consistent with the June 4, 2021, and July 26, 2022-July 28, 2022, inspections. Debris (scrap metal, tires, and drums) was observed at various locations throughout the Site. All monitoring wells were located and observed to be in good condition. TRC attempted to remove thick, tar-like NAPL from the well riser of monitoring well MW-4R via hand bailer but was unsuccessful.						
Groundwater Gauging and Monitoring	July 26, 2022-July 28, 2022: TRC performed a routine groundwater monitoring event. The scope of the groundwater monitoring event was to inspect, gauge, and collect groundwater samples from all onsite monitoring wells. All site monitoring wells, except for monitoring well MW-4R were able to be gauged and sampled. TRC was unable to collect samples from monitoring well MW-4R	TRC recommends that prior to the next groundwater sampling event the vegetation surrounding monitoring wells MW-7D, MW-7, MW-11, and BR-7 be cleared.					

Summary of Site Activities, Site Monitoring, and Sampling January 2020 through January 2025

January 2020 through January 2025						
Site Management Activity	Summary of Results	Maintenance/Corrective Measure				
	due to the presence of thick tar-like NAPL found to be present the riser of this well.					
	Sampling was performed using the United States Environmental Protection Agency (USEPA) low-flow sampling methods.					
	Samples collected from monitoring wells MW-4DR, MW-13, MW-8, MW-6, BR-3, BR-5, BR-6, MW-7D, MW-7, MW-11, BR-7, MW-2, and MW-5, along with associated Quality Assurance/Quality Control (QA/QC) samples, were submitted for routine laboratory analysis of Target Compound List (TCL) volatile organic compounds (VOCs) by USEPA Method 8260C, TCL semi-volatile organic compounds (SVOCs) by USEPA Method 8270, TCL pesticides by USEPA Method 8081B, TCL polychlorinated biphenyls (PCBs) by USEPA Method 8082A, and Target Analyte List (TAL) metals by USEPA Method 6010D, as well as non-routine analysis of PFAS by Con-Test SOP-454.					
	Monitoring well MW-5 was pumped dry during sampling and presented a poor groundwater recharge rate; thus, a sufficient volume of sample could not be collected to facilitate all targeted laboratory analyses. Groundwater collected from monitoring well MW-5 was submitted for the same laboratory analyses as the other 13 wells noted above, except for TCL SVOCs and TCL PCBs.					
Non-Routine Residential Potable Water Sampling for Emerging Contaminants (ECs)	July 20, 2022-July 21, 2020: At the request of NYSDEC, TRC performed a non-routine potable water sampling event. Samples were collected from 12 residences adjacent to the Site. Water was collected from unfiltered sources (i.e., outdoor taps). Samples from each of the 12 residences were submitted for laboratory analysis of 1,4-dioxane by USEPA Method SW-846 8270D with Selective Ion Monitoring and PFAS (21 target analytes) by USEPA Method 537.1 (modified) using Test America SOP BR-LC-009, revision 4.0. February 9, 2023: At the request of NYSDEC, TRC performed a non-routine potable water sampling event. Samples were collected from one residence adjacent to the Site. Water was collected from an unfiltered source (i.e., outdoor tap). This sample was submitted for laboratory analysis of PFAS by USEPA Method 537.1 for the 6 Unregulated Contaminant Monitoring Rule (UMCR) PFAS Compounds.	TRC recommends that the result of the analysis of potable water samples ML-WP-RES-1 and ML-WP-RES-2 be provided to the residences and be evaluated for the potential need for treatment, to protect the health of the affected residences.				

3.2 Groundwater Monitoring Summary

3.2.1 Groundwater Gauging

On July <u>26,</u> 2022, prior to commencing groundwater sample collection, TRC gauged 13 groundwater monitoring wells for depth to groundwater to evaluate potential groundwater flow direction. Monitoring well MW-4R could not be gauged due to a thick, tar-like NAPL within the well riser. Of the 13 wells gauged, eight wells (MW-2, MW-4R, MW-5, MW-6, MW-7, MW-8, MW-11, and MW-13) are screened in the overburden hydrogeologic unit. The remaining six wells (BR-3, BR-5, BR-6, BR-7, MW-4DR, and MW-7D) are screened in the bedrock hydrogeologic unit. The groundwater monitoring well construction details are further summarized in **Table 1**. Groundwater surface elevations, inferred groundwater surface elevation contours, and the inferred groundwater flow directions for the overburden and bedrock monitoring wells are presented on **Figures 3** and **Figure 4**, respectively. Monitoring well MW-2 is screened such to bridge the overburden/bedrock interface. The groundwater surface elevation data for this well has been incorporated into the tables and figures associated with overburden monitoring wells. The groundwater gauging and elevation measurements for the July 2022 gauging event are presented in **Table 2**, while a summary of site hydrogeologic information for this event is presented below:

Site Hydrogeologic Summary January 2020 through January 2025							
D. C.C.	Number of	Overburden Groundwa	nter Elevation Range	Inferred On-Site			
Date of Gauging Event	Groundwater Monitoring Wells Gauged	Lowest (feet Above Mean Sea Level)	Highest (feet Above Mean Sea Level)	Groundwater Flow Direction (Overburden)			
July 26, 2022- July 28, 2022	7 of 8* 585.27 (MW-5		629.91 (MW-6)	Radial			
D	Number of	Bedrock Groundwate	er Elevation Range	Inferred On-Site			
Date of Gauging Event	Groundwater Monitoring Wells Gauged	Lowest (feet Above Mean Sea Level)	Highest (feet Above Mean Sea Level)	Groundwater Flow Direction (Bedrock)			
July 26, 2022- July 28, 2022	6 of 6	569.38 (BR-5)	598.17 (MW-4DR)	North			

Notes:

3.2.2 Groundwater Sampling

One groundwater sampling event was performed during this reporting period. This event was performed in July 2022 by TRC. Samples were collected using standard USEPA low-flow sampling techniques. The associated groundwater sampling logs can be found in **Appendix E.**

Samples were collected from monitoring wells MW-4DR, MW-13, MW-8, MW-6, BR-3, BR-5, BR-6, MW-7D, MW-7, MW-11, BR-7, MW-2, and MW-5 and were submitted along with associated QA/QC) samples for routine laboratory analysis of TCL VOCs by USEPA Method 8260C, TCL SVOCs by USEPA Method 8270, TCL pesticides by USEPA Method 8081B, TCL PCBs by USEPA Method 8082A, and TAL metals by USEPA Method 6010D, as well as non-routine analysis of PFAS by Con-Test SOP-454.

^{* -} Monitoring well MW-4R was not able to be gauged or sampled due to the presence of a thick, tar-like NAPL within the well riser.

During sampling activities, monitoring well MW-5 was pumped dry and failed to recover sufficiently to allow for complete sampling. Groundwater collected from monitoring well MW-5 was submitted for the same laboratory analyses as the other twelve wells noted above, except for TCL SVOCs and TCL PCBs (insufficient volume of sample due to it purging dry)A summary of the groundwater sampling information and pertinent well details for each well is presented as follows:

Summary of Groundwater Monitoring Activities January 2020 to January 2025						
	Monitoring W	/ell Details	July 202	22 Groundwater Samplin	g Event	
Well Identification	Screen Zone (feet below ground surface)	Geological Unit Screened	Depth to Water (feet below top of casing)	SMP Analytes	Notes	
BR-3	43.50 - 63.50	Bedrock	14.46	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
BR-5	72.50 - 92.50	Bedrock	54.54	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
BR-6	79.00 - 99.00	Bedrock	48.65	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
BR-7	23.50 - 43.50	Bedrock	14.14	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-4DR	56.00 - 76.00	Bedrock	28.91	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-7D	14.50 - 29.50	Bedrock	7.54	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-2	55.40 - 65.40	Overburden/ Bedrock Interface	4.60	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-4R ¹	8.00 - 20.00	Overburden	NG ¹	VOCs, SVOCs, PCBs, Pesticides, Metals	Not sampled ¹	
MW-5 ²	4.95 - 12.95	Overburden	10.52	VOCs, SVOCs, PCBs, Pesticides, Metals ²	PFAS also analyzed See Note 2	
MW-6	7.00 - 17.00	Overburden	11.66	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-7	4.50 - 14.50	Overburden	2.92	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-8	11.50 - 21.50	Overburden	12.83	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-11	9.50 - 19.50	Overburden	10.15	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	
MW-13	6.00 - 16.00	Overburden	11.7	VOCs, SVOCs, PCBs, Pesticides, Metals	PFAS also analyzed	

Notes:

- 1 Sampling and gauging was not performed at MW-4R due to a thick, tar-like NAPL layer found to be blocking the well riser.
- 2 Sample collected from MW-5 was not analyzed for all SMP analytes due to poor recharge. MW-5 was sampled for routine SMP analytes VOCs and Metals, as well as non-routine analyte PFAS. SMP analytes SVOCs, PCBs and Pesticides were not sampled at MW-5.

Additional groundwater monitoring well construction details are presented in Table 1.

Mayer Landfill Site, Blooming Grove, New York 10915

3.2.3 Groundwater Analytical Results

Groundwater analytical data for the groundwater sampling events discussed above in **Section 3.2.2** are presented in **Tables 3 through 8**. Detected compounds exceeding their corresponding Class GA Value for each monitoring well are identified on **Figure 5**. The Data Usability Summary Reports (DUSRs) for the sampling event can be found in **Appendix F**. Concentration trend line graphs for monitoring wells containing COCs at concentrations consistently exceeding Class GA Values are provided in **Appendix G**.

A summary of the compounds that exceeded Class GA Values is provided below:

Summary of Groundwater Analytical Results – VOCs, SVOCs, Pesticides, PCBs, Metals, PFAS						
Constituent	Class GA Value	Concentration Range	Location with Highest Concentration	Frequency Exceeding Class GA Values		
		July 2022				
		VOCs (µg/L)				
1,4-Dichlorobenzene	3	ND – 5.4	MW-8	1 of 13		
Benzene	1	ND - 8.2	MW-8	1 of 13		
Chlorobenzene	5	ND – 65	MW-8	1 of 13		
Naphthalene	10	ND – 19	MW-8	1 of 13		
		SVOCs (µg/L)				
Diethyl Phthalate	50	ND – 110	MW-6	1 of 12		
Phenol	1	ND - 2.4 JD	BR-6	1 of 12		
		Pesticides (µg/L)				
		No Exceedances				
		PCBs (µg/L)				
Total PCBs ⁺	0.09	ND – 0.55	MW-8	3 of 12		
		Metals (mg/L)		_		
Antimony	0.003	ND – 0.018 J	MW-8	3 of 13		
Cadmium	0.005	ND - 0.0076	MW-11	1 of 13		
Chromium	0.05	ND - 0.067	MW-11	1 of 13		
Iron	0.3	0.075 - 51	MW-8	4 of 13		
Manganese	0.3	0.016 - 3.2	MW-7D	4 of 13		
Sodium	20	3.5 - 40	BR-5	6 of 13		
		PFAS (ng/L)				
Perfluorooctanesulfonic acid (PFOS)	2.7	ND – 55	MW-8	4 of 13		
Perfluorooctanoic acid (PFOA)	6.7	ND – 140	MW-8	4 of 13		

Notes:

ND - Not detected

J - Estimated value

D - Dilution required

 $\mu g/L-Micrograms\ per\ liter$

 $ng/L-Nanograms\ per\ liter$

mg/L - Milligrams per liter

- + Total PCBs standards apply to the sum of all nine PCB aroclors.
- 1 Sampling and gauging was not performed at MW-4R due to a thick, tar-like NAPL found to be blocking the well riser.
- Sample collected from MW-5 was not analyzed for all SMP analytes due to poor recharge. MW-5 was sampled for routine SMP analytes VOCs and Metals, as well as non-routine analyte PFAS. SMP analytes SVOCs, PCBs and Pesticides were not sampled at MW-5.
- 3 No pesticides were detected above Class GA Values.

3.3 Non-Routine Potable Water Sampling Summary

3.3.1 Non-Routine Potable Water Sampling

Two non-routine potable water sampling events were performed at off-site residences (adjacent to the Site) during this reporting period, at the request of NYSDEC. These events were performed in July 2020 and February 2023 by TRC. Sampling was performed at residences by collecting well water from unfiltered sources (i.e., outdoor taps) in order to assess water quality prior to treatment by any purification or softening systems that exist at the residence. NYSDEC PFAS sampling guidelines were followed during these sampling events.

In early 2020, properties located adjacent to the Site were identified and property owner information was gathered. TRC contacted property owners via phone in May and June 2020. In late June 2020, NYSDEC distributed a total of 36letters to property owners offering to sample their water supply wells. In late July 2020, the first sampling event was performed by TRC at 12 residences. In July 2020, samples were collected from 12 residences adjacent to the Site. These samples were identified as samples WP-RES-1 through WP-RES-12 and submitted for laboratory analysis for 1,4-dioxane by USEPA Method SW-846 8270D with Selective Ion Monitoring and PFAS (21 target analytes), based on USEPA Method 537.1 (modified), using Test America SOP BR-LC-009, revision 4.0.

An additional property owner, who had recently purchased their property, contacted NYSDEC in early 2022 and requested potable water sampling be performed at their property. Sampling was performed at this property by TRC in February 2023. This sample was identified as sample WP-RES-14 and submitted for laboratory analysis for PFAS by USEPA method 537.1 for six UMCR PFAS Compounds.

3.3.2 Laboratory Analysis Results for Non-Routine Potable Water Samples

Laboratory analytical results for the potable water sampling events discussed above in **Section 3.3.1** are presented in **Tables 9**. These results were compared to the 2020 New York State public drinking water Maximum Contaminant Levels (NYS MCLs). Note that the NYS MCLs are not criteria for private drinking water supplies, as New York State does not regulate PFAS or 1,4-Dioxane in private wells, but the NYS MCLs serve as screening criteria for evaluating potential exposure. The Data Usability Summary Reports (DUSRs) for each sampling event can be found in **Appendix F**.

A summary of the compounds that exceeded NYS MCLs is provided below:

Summary of Potable Water Analytical Results – PFAS, 1,4-Dioxane (July 2020)							
Constituent	Constituent 2020 NYS MCL Value (results in μg /L) Concentration Range (results in μg /L) Concentration Frequency Exceeding SCG						
1,4-Dioxane	1,4-Dioxane 1 ND – 3.7 WP-RES-2 2 of 12						

Notes:

1 PFAS was not detected above NYS MCLs in any sample collected in July 2020 or February 2023.

2 February 2023 sample (WP-RES-14) was analyzed for PFAS only, and PFAS was not detected above NYS MCLs.

4.0 Cost Summary

The total estimated cost of SMP activities for the Site during this reporting period is approximately \$66,350. These activities included the following:

- Project management/administration tasks.
- Three annual site-wide inspections, with one being one combined with a severe weather inspection.
- Two non-routine potable water sampling events (for laboratory analysis of PFAS and/or 1,4-dioxane).
- One groundwater monitoring event (for laboratory analysis of VOCs, SVOCs, pesticides, PCBs, metals, and PFAS).
- Preparation of this PRR.

The total cost includes all costs associated labor and expenses associated with the project. A summary of these costs is presented below:

A summary of the site management costs is presented below:

Summary of Site Management Costs - January 2020 through January 2025									
Cost Item	Amount Expended	Percent of Total Cost (Approximate)							
Engineering Support Labor Costs									
TRC	\$60,877	91							
Expenses									
TRC	\$5,113	8							
Subcontractors Costs	\$360	1							
Total Cost	\$ 66,350	100							

Each cost item is further described below:

- Engineering support includes labor costs associated with project management (e.g., monthly invoicing, project scheduling, and coordination, etc.); site inspections; potable water sampling; severe weather inspection; groundwater sampling; and reporting (i.e., site inspection reports, DUSRs, and PRR).
- Subcontractor costs include data validation service costs associated with the July 2022 groundwater sampling event and the February 2023 potable water sampling event.
- Expense costs include travel, equipment, and supplies in support of the site inspection, severe weather inspection, potable water sampling events, and groundwater sampling event.

5.0 Conclusions and Recommendations

5.1 Conclusions

- Site land use and groundwater use were identified to both consistent with the restrictions set forth in the SMP.
- The ICs established for the Site operated as intended during this reporting period.
- The remedy continued to be protective of human health and the environment during this reporting period.
- Based on the groundwater elevations measured during the July 2022 sampling event, the on-site groundwater
 in the bedrock hydrogeologic unit appears to flow to the north, and the on-site groundwater in the overburden
 hydrogeologic unit appears to flow outwards radially from the high point in the landscape and generally
 mirrors the topography. These groundwater flow observations are generally consistent with historical
 observation.
- Historical site COCs in groundwater include VOCs (chlorobenzene, benzene, 1,4-dichlorobenzene, and total xylenes), SVOCs, pesticides, PCBs, and metals. Based on the available analytical data (**Tables 3** through **7**) collected during this reporting period and information presented in **Appendix G**, conclusions made regarding the detected concentrations of these groundwater contaminants are presented below:
 - O VOCs were detected on-site in groundwater but only in association with overburden monitoring well MW-8, which is located within the solid waste remaining within the limits of the landfill. Groundwater concentrations of 1,4-dichlorobenzene, benzene, chlorobenzene, and naphthalene detected at this well exceeded their corresponding Class GA Values. This is consistent with the groundwater results of the previous reporting period. (Note: Overburden monitoring well MW-4R is also present within the limits of the landfill; however, this well has not been able to be sampled during this reporting period or the previous reporting period due to a thick tar-like NAPL found to be present within the well riser.)
 - Groundwater concentrations of total xylenes (a historical COC) did not exceed Class GA Values during this reporting period. This is consistent with groundwater results of the previous reporting period.
 - Groundwater concentrations of the SVOCs diethyl phthalate and phenol each exceeded their corresponding Class GA Values at one location during this reporting period (diethyl phthalate exceeded at monitoring well MW-6 and phenol exceeded at monitoring well BR-6). SVOCs were not detected in groundwater above Class GA Values during the previous reporting period.
 - No Pesticide compounds were detected in groundwater during this reporting period. Although, two Pesticide compounds were detected above Class GA Values during the previous reporting period.
 - Oroundwater samples exhibited the presence of total PCBs at concentrations greater than its corresponding Class GA Value of 0.09 at three locations during this monitoring period. Only one groundwater sample collected during the previous reporting period exhibited the presence of total PCBs above Class GA Value.

- O Groundwater samples exhibited the presence of the metals antimony, cadmium, chromium, iron, manganese, and sodium at concentrations greater than their corresponding Class GA Values at one or more locations during this reporting period. While these metals are likely not indicative of site contaminant migration and are typically regulated for aesthetic purposes such as odor, taste, and clarity in drinking water, they may be indicative of the overall geochemical quality of the groundwater at the Site. In general, natural organics associated with shale bedrock naturally create reducing conditions in bedrock groundwater. These reducing conditions enhance the dissolution of metals, such as manganese, iron, sodium and other trace metals from the native bedrock.
- Groundwater samples exhibited the presence of PFOS and PFOA at concentrations greater than their corresponding Class GA Values at four locations (monitoring wells MW-7, MW-7D, MW-8, and MW-13) during this monitoring period.
- PFAS compounds were not detected above corresponding NYS MCLs in any of the 13 residential potable water samples collected during this reporting period, but 1,4-dioxane was detected in two residential potable water samples (samples ML-WP-RES-1 and ML-WP-RES-2) above NYS MCLs during this reporting period. It is important to note that the NYS MCLs are not criteria for private drinking water supplies, as New York State does not regulate PFAS or 1,4-Dioxane in private wells, but the NYS MCLs serve as screening criteria for evaluating potential exposure. Based on this information, the remediation goal to *eliminate*, to the extent practical ingestion of ground water impacted by the Site that does not attain NYSDOH drinking water standards appears to have been achieved. It is also important to note that 1,4-dioxane is known to be present in various consumer goods. As such, it cannot be concluded the presence of 1.4-dioxane in these samples is connected to contamination found at the Site.
- The remediation goal to *eliminate*, to the extent practicable, further off-site migration of groundwater that does not attain Class GA Values has been achieved.
- The remediation goal to eliminate, to the extent practicable, exposure to waste in the landfill appears to have been achieved through access restrictions and the vegetated cover system installed during remedial action.
- The remediation goal to *eliminate, to the extent practicable, exposure to LNAPL-contaminated soil in the landfill* appears to have been achieved through access restrictions and the vegetated cover system installed during remedial action.
- The remediation goal to *eliminate*, to the extent practicable, the migration of LNAPL from the small-impacted area of the landfill and the release of LNAPL contaminants into groundwater appears to have been achieved.

PERIODIC REVIEW REPORT, JANUARY 2020 – JANUARY 2025 Mayer Landfill Site, Blooming Grove, New York 10915

5.2 Recommendations

- Update the SMP to:
 - o Reflect a three-year groundwater sampling and site-wide inspection frequency.
 - o Reflect a five-year PRR Certification Period.
 - o Incorporate changes/modifications needed resulting from the recommendations presented below, if such changes/modifications are acceptable to the NYSDEC.
- Continue annual site inspection (concurrent with groundwater sampling events, when possible) in accordance
 with the SMP, including water level measurements and additional inspections, as necessary, following severe
 weather events.
- Decommission and replace groundwater monitoring well MW-4R prior to the next groundwater sampling event.
- Upon replacement of groundwater monitoring well MW-4R, a New York State licensed Land Surveyor should collect the locations and elevations of all groundwater monitoring wells.
- Complete a drum inventory and drum sampling event prior to coordinating drum disposal activities.
- Based on the results of the groundwater sampling documented in **Section 3.2**, TRC also recommend the following:
 - o Include PFAS as an analyte for all site monitoring wells during the next groundwater sampling event.

6.0 Green and Sustainable Remediation Metrics

Green and sustainable remediation metrics implemented during this reporting period included utilizing local staff for site visits and sampling events and visiting multiple sites under a single mobilization, to limit travel (reducing gas consumption). Generally, staff located between approximately 50 and 150 miles from the Site were utilized. Approximately 3,600 miles were travelled during this reporting period by Standby Engineers. Minimal amounts (less than 50 pounds) of solid waste (generally consisting of spent personal protective equipment and groundwater sampling materials) were generated on-site during site management activities this reporting period. Less than 25 gallons of public potable water were used during this reporting period for site management activities. No land was disturbed on-site during this reporting period. A summary of the green and sustainable remediation metrics is included in **Appendix A**.

7.0 Certification of Engineering and Institutional Controls

For each institutional or engineering control identified for the Site, I certify that all the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction.
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place; or last approved by the NYSDEC.
- Nothing has occurred that would impair the ability of the control to protect the public health and environment.
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to
 evaluate the continued maintenance of this control.
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document.
- Use of the Site is compliant with the deed restriction.
- The engineering control systems are performing as designed and are effective.
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program [and generally accepted engineering practices].
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Allen Zgaljardic, of TRC Engineers, Inc., am certifying as NYSDEC's Designated Site Representative for the Site. I have been authorized and designated by all site owners/remedial parties to sign this certification for the Site.

PERIODIC REVIEW REPORT, JANUARY 2020 - JANUARY 2025

I Allen Zgaljardic, certify that I am currently a NYS registered professional engineer and that this Periodic Review Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and DER Green Remediation (DER-31) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

TRC Engineers, Inc.

Brock Greene

Mh Zpyda

Prepared By:

Brock Greene

Project Manager

Reviewed By:

Allen Zgaljardic, P.E.

Environmental Engineer

JUNE 2025

8.0 Future Site Activities

Based on the recommendations discussed in **Section 5.0**, the following site management activities will be completed during the next PRR reporting period (February 2025 to March 2030):

- Site-wide inspections Every three years (next scheduled: third quarter of 2025)
- Groundwater sampling Every three years (next scheduled: third quarter of 2025)
- PRR Every five years (next scheduled: February 2030)

Mayer Landfill Site, Blooming Grove, New York 10915

FIGURES

TRC ENGINEERS, INC.

JUNE 2025

TAX PARCEL BOUNDARY

BEDROCK MONITORING WELL

OVERBURDEN MONITORING WELL

BOLDED AND HIGHLIGHTED RESULTS EXCEED CLASS GA VALUE					
	NYSDEC				
	Guidance				
Analyte	Value				
VOC	ug/L				
1,4-Dichlorobenzene	3				
Benzene	1				
Chlorobenzene	5				
Naphthalene	10				
SVOC	ug/L				
Diethyl phthalate	50				
Phenol	1				
PCBs	ug/L				
Total PCBs**	0.09				
Metals	mg/L				
Antimony	0.003				
Cadmium	0.005				
Chromium	0.05				
Iron	0.3				
Manganese	0.3				
Sodium	20				
PFAS	ng/L				
Perfluorooctane sulfonic acid (PFOS)	2.7				
Perfluorooctanoic acid (PFOA)	6.7				

1. LOCATIONS AND DIVENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.

2 GROUNDWATER MONITORING WELL MW-4R WAS NOT GAUGED OR SAMPLED DUE TO A THICK, TAR-LIKE SUBSTANCE PRESENT WITHIN THE

3. GROUNDWATER SAMPLING CONDUCTED ON JULY 26 THROUGH 28, 2022.

ng/L - NANOGRAMS PER LITER

PCBs - POLYCHLORINATED BIPHENYLS

PFAS - PER- AND POLYFLUOROALKYL SUBSTANCES

NYSDEC GUIDANCE VALUES - NYSDEC AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES FOR CLASS GA WATER, JUNE 1998

** - APPLIES TO THE SUMOF ALL PCB AROCLORS DETECTED

BASE MAP: GOOGLE EARTH SERVICE LAYER DATED SEPTEMBER, 2019

320 FEET

TITLE: SUMMARY OF DETECTED COMPOUNDS EXCEEDING NYSDEC GROUNDWATER QUALITY STANDARDS/GUIDANCE - JULY 2022

DRAWN BY:	L. LILL	PROJ. NO.:	470744 TASK 4
CHECKED BY:	E. STOBBE		
APPROVED BY:	B. GREENE	FI	GURE 5
DATE:	FEBRUARY 2025		

3 CORPORATE DRIVE SUITE 202 CLIFTON PARK, NY 12065 PHONE: 518.348.1190

PRR 2025.aprx

TABLES

TRC ENGINEERS, INC.

JUNE 2025

Table 1 New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027 Blooming Grove, New York

Summary of Groundwater Monitoring Well Construction Details

Well		Screen		Total			Screen		Elevation (feet AMSL)			Location		
Identificat	Installation	Diameter	Screen	Depth		Top (feet	Bottom	Length	Casing	Ground	Scr	een	Northing	
ion	Date	(inches)	Material	(feet bgs)	Screened Formation	bgs)	(feet bgs)	(feet)	Top	Surface	Top	Bottom	(feet)	Easting (feet)
BR-3	6/2/2009	3	Open	63.5	Bedrock	43.50	63.50	20	609.13	607.10	563.60	543.60	924783.35	574589.26
BR-5	6/5/2009	3	Open	92.5	Bedrock	72.50	92.50	20	623.92	622.38	549.88	529.88	924873.92	574261.84
BR-6	6/11/2009	3	Open	99.0	Bedrock	79.00	99.00	20	621.03	619.54	540.54	520.54	924984.44	573961.91
BR-7	6/16/2009	3	Open	43.5	Bedrock	23.50	43.50	20	606.01	604.66	581.16	561.16	924577.18	573252.55
MW-4DR	5/29/2009	3	Open	76.0	Bedrock	56.00	76.00	20	627.08	625.96	569.96	549.96	924578.06	574460.15
MW-7D	2/29/2000	6	Open	29.5	Bedrock	14.50	29.50	15	593.21	591.01	576.51	561.51	924858.82	573476.25
MW-2	1/11/1990	2	PVC	65.4	Overburden/Bedrock Interface	55.40	65.40	10	601.23	598.50	543.10	533.10	924146.56	573356.27
MW-4R	4/28/2009	2	PVC	20.0	Overburden	8.00	20.00	12	630.18	628.32	620.32	608.32	924517.53	574451.28
MW-5	1/12/1990	2	PVC	13.0	Overburden	4.95	12.95	8	595.79	593.25	588.30	580.30	925199.82	574409.07
MW-6	2/11/2000	2	PVC	17.0	Overburden	7.00	17.00	10	641.57	639.52	632.52	622.52	924644.22	573917.33
MW-7	2/29/2000	2	PVC	14.5	Overburden	4.50	14.50	10	593.24	591.21	586.71	576.71	924857.86	573483.64
MW-8	2/17/2000	2	PVC	21.5	Overburden	11.50	21.50	10	626.35	624.07	612.57	602.57	924226.04	574440.18
MW-11	3/2/2000	2	PVC	19.5	Overburden	9.50	19.50	10	604.81	602.89	593.39	583.39	924603.52	573292.26
MW-13	3/2/2000	2	PVC	16.0	Overburden	6.00	16.00	10	639.79	637.55	631.55	621.55	924615.08	574199.46

Notes

AMSL : above mean sea level feet bgs : feet below ground surface PVC : polyvinyl chloride

1) The following monitoring wells were Decommisioned during 2007 Remedial Action and not included in this table: MW-1A, MW-3A, MW-4D, MW-9D, MW-10, MW-12, and MW-14D.

Table 2

New York State Department of Environmental Conservation Mayer Landfill Site - NYSDECSite No. 336027 Blooming Grove, New York

Summary of Depth to Water Measurements and Groundwater Elevations

Well	G IF (TOC Elevation	C D	(feet below	Depth to Bottom (feet below	Groundwater Elevation		
Identification	Screened Formation	(feet AMSL)	Gauge Date	TOC)	TOC)	(feet AMSL)		
BR-3	Bedrock	609.13	7/27/2022	14.46	62.06	594.67		
BR-5	Bedrock	623.92	7/28/2022	54.54	92.28	569.38		
BR-6	Bedrock	621.03	7/28/2022	48.65	86.54	572.38		
BR-7	Bedrock	606.01	7/27/2022	14.14	43.25	591.87		
MW-4DR	Bedrock	627.08	7/26/2022	28.91	75.41	598.17		
MW-7D	Bedrock	593.21	7/27/2022	7.54	24.50	585.67		
MW-2	Overburden / Bedrock Interface	601.23	7/27/2025	4.60	68.95	596.63		
MW-4R	Overburden	630.18		Not Gauged ¹				
MW-5	Overburden	595.79	7/28/2022	10.52	13.30	585.27		
MW-6	Overburden	641.57	7/26/2022	11.66	19.41	629.91		
MW-7	Overburden	593.24	7/27/2022	2.92	16.71	590.32		
MW-8	Overburden	626.35	7/26/2022	12.83	20.91	613.52		
MW-11	Overburden	604.81	7/27/2022	10.15	21.71	594.66		
MW-13	Overburden	639.79	7/27/2022	11.70	18.25	628.09		

Notes

AMSL : Above Mean Sea Level TOC : Top of Casing

1) Monitoring well MW-4R was not able to be gauged or sampled due to tar-like non-aqueous phase liquid (NAPL) product present within the well riser.

WA No. D009812-25.2 2025 Periodic Review Report

New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027 Blooming Grove, New York

Summary of Analytical Results of Groundwater for VOCs - 2022

Second Column Second Colum						1			Results of Groundwar								
Lab Sample In 261716-07 261716-17				BR-3	BR-5	BR-6	BR-7	MW-2		ī	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
Sample Deptile Depti			-	-	_		_	_	_	_	_	-	_	_	_	_	
Case			-														
Analyte Values Values Control Peach Peac			e Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/28/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
Control Cont																	
1422Presidentement NC	•	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1,1-11/2016/2016/2016 3	VOCs																
1,12,7 Fest Accordance 1	, , ,		<u> </u>														
1.27Februssehane	, ,																
Continuation Cont			<u>. </u>														
Informationneme	, ,		<u> </u>														
Continuation NC unit	,		<u> </u>														
22-Fircheroperane	,		<u>J.</u>														
22-Printimocorane	·																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<u> </u>														
2-Primery/bersense 5	1,2,3-Trichloropropane		<u>J.</u>														
20th constraint	1,2,4-Trichlorobenzene		<u> </u>														
2-Dichimopheme 0.0005 ugh colit coli	1,2,4-Trimethylbenzene		<u> </u>														
2-Definionberseme 3	1,2-Dibromo-3-chloropropane																
2-Delinopropheme	1,2-Dibromoethane																
2.20chiropropage	,		<u>J.</u>														
3.5Frinthylbrance	·	0.6	ug/L														
3.5-Frimetyherenee																	
3-Dictriorpospage 3	, ,																
ADMINISTRATION ADMI																	
AbChinotopherene 3	,																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · ·																
2-Dichforpropage	,	J	<u> </u>														
Butanone 50	,																
Chlorobluene NC ug/L < 0.11 U <																	
-Hexanone 50 ug/L < 1.1 U < 1.	2-Butanone																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u>J.</u>														
September S	2-Hexanone		<u>J.</u>														
Methyl-pentanone NC ug/L																	
cetone 50 ug/L < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2	4-Isopropyltoluene																
Carylonitrile NC Ug/L < 0.55 U <	, .																
remzene 1 ug/L < 0.2 U	Acetone																
Fromobenzene 5 ug/L < 0.15 U < 0.1	· · · · · · · · · · · · · · · · · · ·																
romochloromethane 5 ug/L < 0.31 U < 0.3	Benzene																
romodichloromethane 50 ug/L < 0.18 U <																	
romoform 50 ug/L < 0.38 U < 0.																	
Fromomethane 5 ug/L < 1.5 U <																	
Aarbon disulfide 60 ug/L < 1.4 U < 1.4																	
Carbon tetrachloride 5 ug/L < 0.16 U <	Bromomethane																
Chlorobenzene 5 ug/L < 0.11 U	Carbon disulfide																
Chloroethane 5 ug/L < 0.32																	
chloroform 7 ug/L < 0.17 U	Chlorobenzene																
Chloromethane 5 ug/L < 0.52	Chloroethane																
is-1,2-Dichloroethene 5 ug/L < 0.15 U <	Chloroform																
	Chloromethane																< 0.52 U
is-1,3-Dichloropropene 0.4 ug/L < 0.16 U < 0.16	cis-1,2-Dichloroethene																< 0.15 U
	cis-1,3-Dichloropropene	0.4	ug/L	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U

Notes

NC - No criteria

ug/L - micrograms per lite

J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value

Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

VOCs - Volatile organic compounds

New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027 Blooming Grove, New York

Summary of Analytical Results of Groundwater for VOCs - 2022

	Loc	ation	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4[OR .	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Samı	le ID BR-	R-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2_20220727	MW-4DR_20220726 D	UP-01_20220726	MW-5_20220728	MW-6_20220726	MW-7_20220727	MW-7D_20220727	MW-8_20220726	MW-11_20220727	MW-13_20220727
	Lab Sam		22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-09	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
	Sample		7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/28/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA			·									·		·	
Analyte	Values U	nits	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Dibromochloromethane	50 u	g/L	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U
Dibromomethane	NC u	g/L	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U
Dichlorodifluoromethane (Freon 12)	5 u	g/L	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Diethyl ether (Ethyl ether)	NC u	g/L	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	2.4	< 0.18 U	< 0.18 U
Di-isopropyl ether	NC u	g/L	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U
Ethyl tert-butyl ether	NC u	g/L	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U
Ethylbenzene	5 u	g/L	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U
Hexachlorobutadiene	0.5 u	g/L	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U
Isopropylbenzene (Cumene)	5 u	g/L	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	3.6	< 0.11 U	< 0.11 U
m,p-Xylene	5 u	g/L	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	1.7 J	< 0.46 U	< 0.46 U
Methyl acetate	NC u	g/L	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U
Methyl tert-butyl ether (MTBE)	10 u	g/L	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U
Methylcyclohexane	NC u	g/L	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	0.35 J	< 0.24 U	< 0.24 U
Methylene chloride	5 u	g/L	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U
Naphthalene	10 u	g/L	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	0.53 J	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	< 0.24 U	19	< 0.24 U	< 0.24 U
n-Butylbenzene	5 u	g/L	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	< 0.15 U	0.65 J	< 0.15 U	< 0.15 U
n-Propylbenzene	5 u	g/L	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	< 0.086 U	3.7	< 0.086 U	< 0.086 U
o-Xylene	5 u	g/L	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	0.32 J	< 0.23 U	< 0.23 U
sec-Butylbenzene	5 u	g/L	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	0.56 J	< 0.11 U	< 0.11 U
Styrene	5 u	g/L	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U
tert-Amyl methyl ether	NC u	g/L	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U
tert-Butanol	NC u	g/L	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U	< 4.7 U
tert-Butylbenzene	5 u	g/L	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U
Tetrachloroethene	5 u	g/L	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Tetrahydrofuran	NC u	g/L	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	3.8 J	< 0.49 U	< 0.49 U
Toluene	5 u	g/L	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	0.28 J	< 0.22 U	< 0.22 U
trans-1,2-Dichloroethene	5 u	g/L	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U
trans-1,3-Dichloropropene	0.4 u	g/L	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U	< 0.17 U
trans-1,4-Dichloro-2-butene		g/L	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Trichloroethene	5 u	g/L	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Trichlorofluoromethane (Freon 11)	5 u	g/L	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U	< 0.18 U
Trichlorotrifluoroethane (Freon 113)	5 u	g/L	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U
Vinyl chloride	2 u	g/L	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U	< 0.21 U

Notes

NC - No criteria

ug/L - micrograms per liter

J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value
Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

VOCs - Volatile organic compounds

New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York

Summary of Analytical Results of Groundwater for SVOCs - 2022

	L	ocation	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4	4DR	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Saı	mple ID	BR-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2_20220727	MW-4DR_20220726	DUP-01_20220726	MW-6_20220726	MW-7_20220727	MW-7D_20220727	MW-8_20220726	MW-11_20220727	MW-13_20220727
	Lab Saı	mple ID	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
	Samp	ole Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA		, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q				
SVOCs															
1,2,4,5-Tetrachlorobenzene	5	ug/L	< 0.67 U	< 1.4 U	< 1.3 U	< 0.72 U	< 0.67 U	< 0.68 U	< 0.68 U	< 0.66 U	< 0.66 U	< 0.65 U	< 0.67 U	< 0.64 U	< 0.66 U
1,2,4-Trichlorobenzene	5	ug/L	< 0.68 U	< 1.4 U	< 1.4 U	< 0.73 U	< 0.69 U	< 0.7 U	< 0.7 U	< 0.68 U	< 0.68 U	< 0.67 U	< 0.69 U	< 0.66 U	< 0.68 U
1,2-Dichlorobenzene	3	ug/L	< 0.68 U	< 1.4 U	< 1.4 U	< 0.73 U	< 0.69 U	< 0.69 U	< 0.69 U	< 0.67 U	< 0.67 U	< 0.67 U	0.80 J	< 0.65 U	< 0.67 U
1,2-Diphenylhydrazine	NC	ug/L	< 0.59 U	< 1.2 U	< 1.2 U	< 0.63 U	< 0.59 U	< 0.6 U	< 0.6 U	< 0.58 U	< 0.58 U	< 0.57 U	< 0.59 U	< 0.56 U	< 0.58 U
1,3-Dichlorobenzene	3	ug/L	< 0.69 U	< 1.4 U	< 1.4 U	< 0.74 U	< 0.69 U	< 0.7 U	< 0.7 U	< 0.68 U	< 0.68 U	< 0.67 U	< 0.69 U	< 0.66 U	< 0.68 U
1,4-Dichlorobenzene	3	ug/L	< 0.68 U	< 1.4 U	< 1.4 U	< 0.73 U	< 0.69 U	< 0.69 U	< 0.69 U	< 0.67 U	< 0.67 U	< 0.67 U	2.9 J	< 0.65 U	< 0.67 U
1-Methylnaphthalene	NC	ug/L	< 0.61 U	< 1.3 U	< 1.2 U	< 0.66 U	< 0.62 U	< 0.63 U	< 0.63 U	< 0.61 U	< 0.61 U	< 0.6 U	0.99 J	< 0.59 U	< 0.61 U
2,2'-Oxybis(1-chloropropane)	5	ug/L	< 0.7 U	< 1.5 U	< 1.4 U	< 0.76 U	< 0.71 U	< 0.72 U	< 0.72 U	< 0.7 U	< 0.7 U	< 0.69 U	< 0.71 U	< 0.67 U	< 0.7 U
2,4,5-Trichlorophenol	NC	ug/L	< 0.52 U	< 1.1 U	< 1.1 U	< 0.57 U	< 0.53 U	< 0.54 U	< 0.54 U	< 0.52 U	< 0.52 U	< 0.51 U	< 0.53 U	< 0.5 U	< 0.52 U
2,4,6-Trichlorophenol	NC	ug/L	< 0.46 U	< 0.97 U	< 0.93 U	< 0.49 U	< 0.46 U	< 0.47 U	< 0.47 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.46 U	< 0.44 U	< 0.45 U
2,4-Dichlorophenol	5	ug/L	< 0.49 U	< 1 U	< 0.99 U	< 0.53 U	< 0.49 U	< 0.5 U	< 0.5 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.49 U	< 0.47 U	< 0.48 U
2,4-Dimethylphenol	50	ug/L	< 0.72 U	< 1.5 U	< 1.4 U	< 0.77 U	< 0.72 U	< 0.73 U	< 0.73 U	< 0.71 U	< 0.71 U	< 0.7 U	< 0.72 U	< 0.69 U	< 0.71 U
2,4-Dinitrophenol	10	ug/L	< 8.2 U	< 17 U	< 17 U	< 8.9 U	< 8.3 U	< 8.4 U	< 8.4 U	< 8.1 U	< 8.1 U	< 8.1 U	< 8.3 U	< 7.9 U	< 8.1 U
2,4-Dinitrotoluene	5	ug/L	< 0.63 U	< 1.3 U	< 1.3 U	< 0.67 U	< 0.63 U	< 0.64 U	< 0.64 U	< 0.62 U	< 0.62 U	< 0.61 U	< 0.63 U	< 0.6 U	< 0.62 U
2,6-Dinitrotoluene	5	ug/L	< 0.53 U	< 1.1 U	< 1.1 U	< 0.57 U	< 0.53 U	< 0.54 U	< 0.54 U	< 0.52 U	< 0.52 U	< 0.52 U	< 0.53 U	< 0.51 U	< 0.52 U
2-Chloronaphthalene	10	ug/L	< 0.5 U	< 1 U	< 1 U	< 0.54 U	< 0.5 U	< 0.51 U	< 0.51 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.5 U	< 0.48 U	< 0.49 U
2-Chlorophenol	NC	ug/L	< 0.48 U	< 1 U	< 0.98 U	< 0.52 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.48 U	< 0.48 U	< 0.47 U	1.7 J	< 0.46 U	< 0.48 U
2-Methylnaphthalene	NC	ug/L	< 0.71 U	< 1.5 U	< 1.4 U	< 0.76 U	< 0.71 U	< 0.72 U	< 0.72 U	< 0.7 U	< 0.7 U	< 0.69 U	1.5 J	< 0.68 U	< 0.7 U
2-Methylphenol	NC	ug/L	< 0.48 U	< 1 U	3.8 JD	< 0.52 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.48 U	< 0.48 U	< 0.47 U	< 0.49 U	< 0.47 U	< 0.48 U
2-Nitroaniline	5	ug/L	< 0.71 U	< 1.5 U	< 1.4 U	< 0.76 U	< 0.71 U	< 0.72 U	< 0.72 U	< 0.7 U	< 0.7 U	< 0.69 U	< 0.71 U	< 0.68 U	< 0.7 U
2-Nitrophenol	NC	ug/L	< 0.52 U	< 1.1 U	< 1.1 U	< 0.56 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.52 U	< 0.52 U	< 0.51 U	< 0.53 U	< 0.5 U	< 0.52 U
3- & 4-Methylphenol (m,p-Cresol)	NC	ug/L	< 0.47 U	< 0.98 U	14 JD	< 0.5 U	< 0.47 U	< 0.48 U	< 0.48 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.47 U	< 0.45 U	< 0.46 U
3,3'-Dichlorobenzidine	5	ug/L	< 0.73 U	< 1.5 U	< 1.5 U	< 0.78 U	< 0.73 U	< 0.74 U	< 0.74 U	< 0.72 U	< 0.72 U	< 0.71 U	< 0.73 U	< 0.7 U	< 0.72 U
3-Nitroaniline	5	ug/L	< 0.6 U	< 1.3 U	< 1.2 U	< 0.65 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.61 U	< 0.58 U	< 0.59 U
4,6-Dinitro-2-methylphenol	NC	ug/L	< 7.2 U	< 15 U	< 15 U	< 7.7 U	< 7.3 U	< 7.3 U	< 7.3 U	< 7.1 U	< 7.1 U	< 7 U	< 7.3 U	< 6.9 U	< 7.1 U
4-Bromophenyl phenyl ether	NC	ug/L	< 0.48 U	< 1 U	< 0.97 U	< 0.52 U	< 0.48 U	< 0.49 U	< 0.49 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.48 U	< 0.46 U	< 0.47 U
4-Chloro-3-methylphenol	NC	ug/L	< 0.57 U			< 0.61 U	< 0.57 U		< 0.58 U		< 0.56 U				< 0.56 U
4-Chloroaniline	5	ug/L	< 0.59 U	< 1.2 U	< 1.2 U	< 0.63 U	< 0.59 U	< 0.6 U	< 0.6 U	< 0.58 U	< 0.58 U	< 0.58 U	< 0.59 U		< 0.58 U
4-Chlorophenyl phenyl ether	NC	ug/L	< 0.49 U	< 1 U	< 0.99 U	< 0.53 U	< 0.49 U	< 0.5 U	< 0.5 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.49 U		< 0.48 U
4-Nitroaniline	5	ug/L	< 0.61 U	< 1.3 U	< 1.2 U	< 0.66 U	< 0.62 U	< 0.62 U	< 0.62 U	< 0.6 U	< 0.6 U		< 0.62 U		< 0.6 U
4-Nitrophenol	NC	ug/L	< 2.1 U	< 4.5 U	< 4.3 U	< 2.3 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.1 U	< 2.1 U		< 2.2 U		< 2.1 U
Acenaphthene	20	ug/L	< 0.53 U	< 1.1 U	< 1.1 U	< 0.57 U	< 0.53 U	< 0.54 U	< 0.54 U	< 0.52 U	< 0.52 U	< 0.52 U	< 0.53 U		< 0.52 U
Acenaphthylene	NC	ug/L	< 0.49 U	< 1 U	< 1 U	< 0.53 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.49 U	< 0.49 U	< 0.48 U	< 0.5 U		< 0.49 U
Acetophenone	NC	ug/L	< 0.54 U	< 1.1 U	< 1.1 U	< 0.58 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.54 U	< 0.54 U	< 0.53 U	< 0.55 U	< 0.52 U	< 0.54 U
Aniline	5	ug/L	< 0.71 U	< 1.5 U	< 1.4 U	< 0.77 U	< 0.72 U	< 0.73 U	< 0.73 U	< 0.7 U	< 0.7 U	< 0.7 U	< 0.72 U	< 0.68 U	< 0.7 U
Anthracene	50	ug/L	< 0.47 U	1.2 JD		< 0.51 U	< 0.47 U	< 0.48 U	< 0.48 U	< 0.46 U	< 0.46 U	< 0.46 U	0.56 J		< 0.46 U
Benzidine	5	ug/L	< 11 U	< 22 U	< 21 U	< 11 U	< 11 U	< 11 U	< 11 U	< 10 U	< 10 U				< 10 U
Benzo(a)anthracene	0.002	ug/L	< 0.42 U	< 0.88 U	< 0.84 U	< 0.45 U	< 0.42 U	< 0.42 U	< 0.42 U	< 0.41 U	< 0.41 U	< 0.41 U		_	< 0.41 U
Benzo(a)pyrene	0.302	ug/L	< 0.58 U	< 1.2 U	< 1.2 U	< 0.62 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.57 U	< 0.57 U	< 0.57 U			< 0.57 U
Benzo(b)fluoranthene	0.002	ug/L ug/L	< 0.48 U	< 1 U	< 0.97 U	< 0.52 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.48 U	< 0.48 U	< 0.47 U	< 0.49 U		< 0.48 U
Benzo(g,h,i)perylene	NC	ug/L ug/L	< 0.62 U	< 1.3 U	< 1.3 U	< 0.67 U	< 0.63 U	< 0.64 U	< 0.64 U	< 0.62 U	< 0.62 U	< 0.61 U	< 0.63 U		< 0.62 U
Benzo(k)fluoranthene	0.002	ug/L ug/L	< 0.5 U	< 1.1 U	< 1 U	< 0.54 U	< 0.5 U	< 0.51 U	< 0.51 U	< 0.49 U	< 0.49 U				< 0.49 U
Benzoic acid	NC	ug/L ug/L	< 8.6 U	< 18 U	22 D	< 9.3 U	< 8.7 U	< 8.8 U	< 8.8 U	< 8.5 U	< 8.5 U	< 8.4 U			< 8.5 U
שכו וצטוכ מכונו	INC	uy/L	\ 0.0 U	< 10 U	22 0	\ 9.3 U	∇ 0./ U	< 0.0 U	< 0.0 U	\ 0.5 U		L \ 0.4 U	L < 0.7 U	\ 0.3 U	< 0.5 U

Notes

NC - No criteria

ug/L - micrograms per liter

- J Detected but below the Reporting Limit (lowest calibration standard); result is estimated.
- B Analyte is found in the associated laboratory blank as well as in the sample.
- D Dilution
- U Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value

Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

SVOCs - Semi-volatile organic compounds

New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York

Summary of Analytical Results of Groundwater for SVOCs - 2022

		Location	BR-3	BR-5	BR-6	BR-7	MW-2	MW-4		MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
		mple ID	BR-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727		MW-4DR_20220726	-	_		MW-7D_20220727			MW-13_20220727
		mple ID	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
		ple Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA														
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Bis(2-chloroethoxy)methane	5	ug/L	< 0.47 U	< 0.98 U	< 0.94 U	< 0.5 U	< 0.47 U	< 0.48 U	< 0.48 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.47 U	< 0.45 U	< 0.46 U
Bis(2-chloroethyl) ether	1	ug/L	< 0.58 U	< 1.2 U	< 1.2 U	< 0.63 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.58 U	< 0.58 U	< 0.57 U		< 0.56 U	< 0.58 U
Bis(2-ethylhexyl)phthalate	5	ug/L	< 0.86 U	< 1.8 U	< 1.7 U	< 0.92 U	< 0.87 U	< 0.88 U	< 0.88 U	< 0.85 U	< 0.85 U	< 0.84 U		< 0.82 U	< 0.85 U
Butylbenzylphthalate	50	ug/L	< 0.69 U	< 1.5 U	< 1.4 U	< 0.74 U	< 0.7 U	< 0.7 U	< 0.7 U	< 0.68 U	< 0.68 U	< 0.67 U		< 0.66 U	< 0.68 U
Carbazole	NC	ug/L	< 0.43 U	< 0.91 U	< 0.88 U	< 0.47 U	< 0.44 U	< 0.44 U	< 0.44 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.44 U	< 0.42 U	< 0.43 U
Chrysene	0.002	ug/L	< 0.4 U	< 0.85 U	< 0.82 U	< 0.44 U	< 0.41 U	< 0.41 U	< 0.41 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.41 U	< 0.39 U	< 0.4 U
Dibenz(a,h)anthracene	NC	ug/L	< 0.7 U	< 1.5 U	< 1.4 U	< 0.76 U	< 0.71 U	< 0.72 U	< 0.72 U	< 0.7 U	< 0.7 U	< 0.69 U	< 0.71 U	< 0.68 U	< 0.7 U
Dibenzofuran	NC	ug/L	< 0.5 U	< 1 U	< 1 U	< 0.54 U	< 0.5 U	< 0.51 U	< 0.51 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.5 U	< 0.48 U	< 0.49 U
Diethyl phthalate	50	ug/L	< 0.43 U	< 0.9 U	< 0.86 U	< 0.46 U	< 0.43 U	0.69 J	2.4 J	110	< 0.42 U	0.56 J	1.0 J	< 0.41 U	< 0.42 U
Dimethylphthalate	50	ug/L	< 0.38 U	< 0.81 U	< 0.78 U	< 0.41 U	< 0.39 U	< 0.39 U	< 0.39 U	< 0.38 U	< 0.38 U	< 0.38 U	< 0.39 U	< 0.37 U	< 0.38 U
Di-n-butylphthalate	50	ug/L	< 0.47 U	< 0.99 U	< 0.95 U	< 0.51 U	< 0.47 U	< 0.48 U	< 0.48 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.47 U	< 0.45 U	< 0.46 U
Di-n-octylphthalate	NC	ug/L	< 4 U	< 8.5 U	< 8.1 U	< 4.3 U	< 4.1 U	< 4.1 U	< 4.1 U	< 4 U	< 4 U	< 3.9 U	< 4.1 U	< 3.9 U	< 4 U
Fluoranthene	50	ug/L	< 0.44 U	1.2 JD	< 0.89 U	< 0.47 U	< 0.44 U	< 0.45 U	< 0.45 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.44 U	< 0.42 U	< 0.43 U
Fluorene	50	ug/L	< 0.53 U	< 1.1 U	< 1.1 U	< 0.57 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.53 U	< 0.53 U	< 0.52 U	< 0.54 U	< 0.51 U	< 0.53 U
Hexachlorobenzene	0.04	ug/L	< 0.52 U	< 1.1 U	< 1 U	< 0.56 U	< 0.52 U	< 0.53 U	< 0.53 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.52 U	< 0.5 U	< 0.51 U
Hexachlorobutadiene	0.5	ug/L	< 0.79 U	< 1.7 U	< 1.6 U	< 0.85 U	< 0.8 U	< 0.81 U	< 0.81 U	< 0.78 U	< 0.78 U	< 0.77 U	< 0.8 U	< 0.76 U	< 0.78 U
Hexachlorocyclopentadiene	5	ug/L	< 3.8 U	< 7.9 U	< 7.6 U	< 4 U	< 3.8 U	< 3.8 U	< 3.8 U	< 3.7 U	< 3.7 U	< 3.7 U	< 3.8 U	< 3.6 U	< 3.7 U
Hexachloroethane	5	ug/L	< 0.75 U	< 1.6 U	< 1.5 U	< 0.81 U	< 0.76 U	< 0.77 U	< 0.77 U	< 0.75 U	< 0.75 U	< 0.74 U	< 0.76 U	< 0.73 U	< 0.75 U
Indeno(1,2,3-cd)pyrene	0.002	ug/L	< 0.76 U	< 1.6 U	< 1.5 U	< 0.82 U	< 0.77 U	< 0.77 U	< 0.77 U	< 0.75 U	< 0.75 U	< 0.74 U	< 0.77 U	< 0.73 U	< 0.75 U
Isophorone	50	ug/L	< 0.56 U	< 1.2 U	< 1.1 U	< 0.61 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.56 U	< 0.56 U	< 0.55 U	< 0.57 U	< 0.54 U	< 0.56 U
Naphthalene	10	ug/L	< 0.63 U	< 1.3 U	< 1.3 U	< 0.68 U	< 0.63 U	< 0.64 U	< 0.64 U	< 0.62 U	< 0.62 U	< 0.61 U	7.2	< 0.6 U	< 0.62 U
Nitrobenzene	0.4	ug/L	< 0.64 U	< 1.3 U	< 1.3 U	< 0.69 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.65 U	< 0.61 U	< 0.63 U
n-Nitrosodimethylamine	NC	ug/L	< 0.8 U	< 1.7 U	< 1.6 U	< 0.86 U	< 0.81 U	< 0.82 U	< 0.82 U	< 0.79 U	< 0.79 U	< 0.78 U	< 0.81 U	< 0.77 U	< 0.79 U
n-Nitroso-di-n-propylamine	NC	ug/L	< 0.63 U	< 1.3 U	< 1.3 U	< 0.67 U	< 0.63 U	< 0.64 U	< 0.64 U	< 0.62 U	< 0.62 U	< 0.61 U	< 0.63 U	< 0.6 U	< 0.62 U
N-Nitrosodiphenylamine	50	ug/L	< 0.39 U	1.2 JD	< 0.79 U	< 0.42 U	< 0.39 U	< 0.4 U	< 0.4 U	< 0.39 U	< 0.39 U	< 0.38 U	1.4 J	< 0.37 U	< 0.39 U
Pentachloronitrobenzene	NC	ug/L	< 0.64 U	< 1.3 U	< 1.3 U	< 0.68 U	< 0.64 U	< 0.65 U	< 0.65 U	< 0.63 U	< 0.63 U	< 0.62 U	< 0.64 U	< 0.61 U	< 0.63 U
Pentachlorophenol	1	ug/L	< 3.6 U	< 7.6 U	< 7.2 U	< 3.9 U	< 3.6 U	< 3.7 U	< 3.7 U	< 3.5 U	< 3.5 U	< 3.5 U	< 3.6 U	< 3.4 U	< 3.5 U
Phenanthrene	50	ug/L	< 0.49 U	2.6 JD	2.1 JD	< 0.53 U	< 0.49 U	< 0.5 U	< 0.5 U	< 0.48 U	< 0.48 U	< 0.48 U	1.2 J	< 0.47 U	< 0.48 U
Phenol	1	ug/L	< 0.23 U	< 0.49 U	2.4 JD	< 0.25 U	< 0.23 U	< 0.24 U	< 0.24 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U
Pyrene	50	ug/L	< 0.62 U	< 1.3 U	< 1.3 U	< 0.67 U	< 0.63 U	< 0.64 U	< 0.64 U	< 0.62 U	< 0.62 U	< 0.61 U	< 0.63 U	< 0.6 U	< 0.62 U
Pyridine	NC	ug/L	3.6 J	< 5.3 U	5.2 JD	4.3 JB	4.2 J	4.8 J	4.2 J	4.1 J	3.7 J	4.9 JB	5.0 J	3.1 J	3.8 J

Notes

NC - No criteria

ug/L - micrograms per liter

- J Detected but below the Reporting Limit (lowest calibration standard); result is estimated.
- B Analyte is found in the associated laboratory blank as well as in the sample.
- D Dilution
- U Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value
Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

SVOCs - Semi-volatile organic compounds

New York State Department of Environmental Conservation

Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York

Summary of Analytical Results of Groundwater for Pesticides - 2022

	Lo	cation	BR-3	BR-5	BR-6	BR-7	MW-2	MW-	4DR	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Sam	ple ID	BR-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2_20220727	MW-4DR_20220726	DUP-01_20220726	MW-6_20220726	MW-7_20220727	MW-7D_20220727	MW-8_20220726	MW-11_20220727	MW-13_20220727
	Lab Sam	ple ID	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
	Sample	e Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA														
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q					
Pesticides															
4,4'-DDD	0.3	ug/L	< 0.0043 U	< 0.0047 U	< 0.0045 U	< 0.0048 U	< 0.0045 U	< 0.0047 U	< 0.0048 U	< 0.0047 U	< 0.0045 U	< 0.0046 U	< 0.0044 U	< 0.0045 U	< 0.0045 U
4,4'-DDE	0.2	ug/L	< 0.0041 U	< 0.0045 U	< 0.0043 U	< 0.0046 U	< 0.0043 U	< 0.0045 U	< 0.0046 U	< 0.0045 U	< 0.0043 U	< 0.0044 U	< 0.0042 U	< 0.0043 U	< 0.0043 U
4,4'-DDT	0.2	ug/L	< 0.0037 U	< 0.0041 U	< 0.004 U	< 0.0042 U	< 0.004 U	< 0.0041 U	< 0.0042 U	< 0.0041 U	< 0.0039 U	< 0.004 U	< 0.0039 U	< 0.0039 U	< 0.0039 U
Alachlor	NC	ug/L	< 0.028 U	< 0.031 U	< 0.03 U	< 0.031 U	< 0.03 U	< 0.031 U	< 0.031 U	< 0.031 U	< 0.03 U	< 0.03 U	< 0.029 U	< 0.03 U	< 0.03 U
Aldrin	0*	ug/L	< 0.0033 U	< 0.0036 U	< 0.0035 U	< 0.0037 U	< 0.0035 U	< 0.0036 U	< 0.0037 U	< 0.0036 U	< 0.0035 U	< 0.0036 U	< 0.0035 U	< 0.0035 U	< 0.0035 U
alpha-BHC	0.01	ug/L	< 0.025 U	< 0.027 U	< 0.026 U	< 0.027 U	< 0.026 U	< 0.027 U	< 0.027 U	< 0.027 U	< 0.026 U	< 0.027 U	< 0.026 U	< 0.026 U	< 0.026 U
beta-BHC	0.04	ug/L	< 0.02 U	< 0.022 U	< 0.022 U	< 0.023 U	< 0.022 U	< 0.022 U	< 0.023 U	< 0.022 U	< 0.021 U	< 0.022 U	< 0.021 U	< 0.021 U	< 0.021 U
Chlordane	0.05	ug/L	< 0.065 U	< 0.071 U	< 0.069 U	< 0.073 U	< 0.069 U	< 0.071 U	< 0.073 U	< 0.071 U	< 0.068 U	< 0.07 U	< 0.068 U	< 0.068 U	< 0.068 U
delta-BHC	0.04	ug/L	< 0.028 U	< 0.03 U	< 0.029 U	< 0.031 U	< 0.029 U	< 0.03 U	< 0.031 U	< 0.03 U	< 0.029 U	< 0.03 U	< 0.029 U	< 0.029 U	< 0.029 U
Dieldrin	0.004	ug/L	< 0.00074 U	< 0.00081 U	< 0.00079 U	< 0.00083 U	< 0.00079 U	< 0.00081 U	< 0.00083 U	< 0.00081 U	< 0.00078 U	< 0.0008 U	< 0.00077 U	< 0.00078 U	< 0.00078 U
Endosulfan I	NC	ug/L	< 0.024 U	< 0.026 U	< 0.025 U	< 0.026 U	< 0.025 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.025 U	< 0.025 U	< 0.024 U	< 0.025 U	< 0.025 U
Endosulfan II	NC	ug/L	< 0.014 U	< 0.016 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.016 U	< 0.016 U	< 0.016 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.015 U	< 0.015 U
Endosulfan sulfate	NC	ug/L	< 0.014 U	< 0.015 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.015 U	< 0.015 U	< 0.015 U	< 0.015 U	< 0.015 U
Endrin	0*	ug/L	< 0.015 U	< 0.016 U	< 0.016 U	< 0.017 U	< 0.016 U	< 0.016 U	< 0.017 U	< 0.016 U	< 0.016 U	< 0.016 U	< 0.015 U	< 0.016 U	< 0.016 U
Endrin aldehyde	5	ug/L	< 0.016 U	< 0.018 U	< 0.017 U	< 0.018 U	< 0.017 U	< 0.018 U	< 0.018 U	< 0.018 U	< 0.017 U	< 0.018 U	< 0.017 U	< 0.017 U	< 0.017 U
Endrin ketone	5	ug/L	< 0.014 U	< 0.015 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.015 U	< 0.016 U	< 0.015 U	< 0.015 U	< 0.015 U	< 0.014 U	< 0.015 U	< 0.015 U
gamma-BHC (Lindan	0.05	ug/L	< 0.0041 U	< 0.0045 U	< 0.0044 U	< 0.0046 U	< 0.0044 U	< 0.0045 U	< 0.0046 U	< 0.0045 U	< 0.0043 U	< 0.0044 U	< 0.0043 U	< 0.0043 U	< 0.0043 U
Heptachlor	0.04	ug/L	< 0.0043 U	< 0.0047 U	< 0.0045 U	< 0.0048 U	< 0.0045 U	< 0.0047 U	< 0.0048 U	< 0.0047 U	< 0.0045 U	< 0.0046 U	< 0.0044 U	< 0.0045 U	< 0.0045 U
Heptachlor epoxide I	0.03	ug/L	< 0.0031 U	< 0.0034 U	< 0.0033 U	< 0.0035 U	< 0.0033 U	< 0.0034 U	< 0.0035 U	< 0.0034 U	< 0.0033 U	< 0.0034 U	< 0.0032 U	< 0.0033 U	< 0.0033 U
Hexachlorobenzene	0.04	ug/L	< 0.024 U	< 0.026 U	< 0.026 U	< 0.027 U	< 0.026 U	< 0.026 U	< 0.027 U	< 0.026 U	< 0.025 U	< 0.026 U	< 0.025 U	< 0.025 U	< 0.025 U
Methoxychlor	35	ug/L	< 0.05 U	< 0.055 U	< 0.053 U	< 0.056 U	< 0.053 U	< 0.055 U	< 0.056 U	< 0.055 U	< 0.053 U	< 0.054 U	< 0.052 U	< 0.053 U	< 0.053 U
Toxaphene	0.06	ug/L	< 0.3 U	< 0.33 U	< 0.32 U	< 0.34 U	< 0.32 U	< 0.33 U	< 0.34 U	< 0.33 U	< 0.32 U	< 0.32 U	< 0.31 U	< 0.32 U	< 0.32 U

Notes

NC - No criteria

ug/L - micrograms per liter

U - Analyte was not detected at specified quantitation limit.

0* - A non-detectable concentration by the approved analytical method specified in section 700.3 of the NYCRR Water Quality Regulations.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value

Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

New York State Department of Environmental Conservation

Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York

Summary of Analytical Results of Groundwater for PCBs - 2022

		Location	BR-3	BR-5	BR-6	BR-7	MW-2	MW-	4DR	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Sa	mple ID	BR-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2_20220727	MW-4DR_20220726	DUP-01_20220726	MW-6_20220726	MW-7_20220727	MW-7D_20220727	MW-8_20220726	MW-11_20220727	MW-13_20220727
	Lab Sa	mple ID	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
	Sam	ple Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA														
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q					
PCBs															
Aroclor-1016	NC	ug/L	< 0.05 U	< 0.055 U	< 0.053 U	< 0.056 U	< 0.053 U	< 0.055 U	< 0.056 U	< 0.055 U	< 0.053 U	< 0.054 U	< 0.052 U	< 0.053 U	< 0.053 U
Aroclor-1221	NC	ug/L	< 0.075 U	< 0.082 U	< 0.08 U	< 0.084 U	< 0.08 U	< 0.082 U	< 0.084 U	< 0.082 U	< 0.079 U	< 0.081 U	0.55	< 0.079 U	< 0.079 U
Aroclor-1232	NC	ug/L	< 0.069 U	< 0.076 U	< 0.073 U	< 0.077 U	< 0.073 U	< 0.076 U	< 0.077 U	< 0.076 U	< 0.073 U	< 0.075 U	< 0.072 U	< 0.073 U	< 0.073 U
Aroclor-1242	NC	ug/L	< 0.073 U	< 0.079 U	< 0.077 U	< 0.081 U	< 0.077 U	< 0.079 U	< 0.081 U	< 0.079 U	< 0.076 U	< 0.079 U	< 0.075 U	< 0.076 U	< 0.076 U
Aroclor-1248	NC	ug/L	< 0.084 U	< 0.092 U	< 0.089 U	< 0.094 U	< 0.089 U	< 0.092 U	< 0.094 U	< 0.092 U	< 0.088 U	< 0.091 U	< 0.088 U	< 0.088 U	< 0.088 U
Aroclor-1254	NC	ug/L	< 0.074 U	< 0.092 U	0.13 J	< 0.083 U	< 0.079 U	0.10 J	< 0.083 U	< 0.081 U	< 0.078 U	< 0.08 U	< 0.077 U	< 0.078 U	< 0.078 U
Aroclor-1260	NC	ug/L	< 0.059 U	< 0.065 U	< 0.063 U	< 0.066 U	< 0.063 U	< 0.065 U	< 0.066 U	< 0.065 U	< 0.062 U	< 0.064 U	< 0.061 U	< 0.062 U	< 0.062 U
Aroclor-1262	NC	ug/L	< 0.061 U	< 0.066 U	< 0.064 U	< 0.068 U	< 0.064 U	< 0.066 U	< 0.068 U	< 0.066 U	< 0.064 U	< 0.066 U	< 0.063 U	< 0.064 U	< 0.064 U
Aroclor-1268	NC	ug/L	< 0.074 U	< 0.081 U	< 0.078 U	< 0.082 U	< 0.078 U	< 0.081 U	< 0.082 U	< 0.081 U	< 0.077 U	< 0.08 U	< 0.077 U	< 0.077 U	< 0.077 U
Total PCB Aroclors	0.09	ug/L			0.13 J			0.10 J					0.55		

Notes

NC - No criteria

ug/L - micrograms per liter

J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value

PCBs - Polychlorinated Biphenyls

New York State Department of Environmental Conservation

Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York

Summary of Analytical Results of Groundwater for Metals - 2022

	Loc	cation	BR-3	BR-5	BR-6	BR-7	MW-2	MW-	4DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
	Samı	ple ID	BR-3_20220727	BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2_20220727	MW-4DR_20220726	DUP-01_20220726	MW-5_20220728	MW-6_20220726	MW-7_20220727	MW-7D_20220727	MW-8_20220726	MW-11_20220727	MW-13_20220727
	Lab Samı	ple ID	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-09	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
	Sample	Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/28/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA															
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q					
Metals																
Aluminum	NC	mg/L	< 0.015 U	0.11	1.9	0.39	0.058	0.045 J	0.056	0.35	0.032 J	< 0.015 U	< 0.015 U	0.017 J	0.10	0.086
Antimony	0.003	mg/L	< 0.0089 U	< 0.0089 U	< 0.0089 U	0.013 J	< 0.0089 U	< 0.0089 U	0.018 J	< 0.0089 U	0.013 J					
Arsenic	0.025	mg/L	0.0057 J	< 0.0047 U	0.018	< 0.0047 U	0.0049 J	< 0.0047 U	< 0.0047 U	< 0.0047 U	< 0.0047 U	0.0068 J	< 0.0047 U	< 0.0047 U	< 0.0047 U	< 0.0047 U
Barium	1	mg/L	0.0090 J	0.011 J	0.26	< 0.0056 U	< 0.0056 U	0.019 J	0.019 J	0.012 J	0.017 J	0.017 J	0.0076 J	0.21	0.040 J	0.011 J
Beryllium	0.003	mg/L	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U					
Cadmium	0.005	mg/L	< 0.0008 U	< 0.0008 U	0.00096 J	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	< 0.0008 U	0.0076	< 0.0008 U
Calcium	NC	mg/L	54	33	220	25	44	28	27	58	82	79	93	120	10	85
Chromium	0.05	mg/L	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	0.067	< 0.0025 U					
Cobalt	NC	mg/L	< 0.0014 U	< 0.0014 U	0.0051 J	< 0.0014 U	< 0.0014 U	< 0.0014 U	< 0.0014 U	< 0.0014 U	< 0.0014 U	< 0.0014 U	< 0.0014 U	0.0055 J	< 0.0014 U	0.0023 J
Copper	0.2	mg/L	< 0.0036 U	< 0.0036 U	0.0046 J	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	0.024	< 0.0036 U
Iron	0.3	mg/L	0.075	0.14	24	0.27	0.14	0.15	0.14	0.50	0.021 J	0.44	0.078	51	0.36	0.11
Lead	0.025	mg/L	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	0.0039 J	0.0039 J	0.0036 J	0.0039 J	< 0.003 U	< 0.003 U	0.0036 J	0.011	< 0.003 U	< 0.003 U
Magnesium	35	mg/L	24	15	2.6	6.5	11	12	12	7.5	6.6	14	15	23 D	2.2	7.2
Manganese	0.3	mg/L	0.069	0.14	1.4	0.027	0.27	0.039	0.037	0.069	0.027	1.4	3.2	0.62	0.016	0.069
Mercury	0.0007	mg/L	0.000084 J	< 0.00004 U	0.000054 J	0.000053 J	0.000081 J	0.000057 J	0.000064 J	0.000088 J	0.000060 J	0.000072 J	0.000049 J	0.000065 J	0.000065 J	0.000062 J
Nickel	0.1	mg/L	< 0.0088 U	< 0.0088 U	0.012	< 0.0088 U	< 0.0088 U	< 0.0088 U	< 0.0088 U	< 0.0088 U	< 0.0088 U	< 0.0088 U	< 0.0088 U	0.021	0.010	< 0.0088 U
Potassium	NC	mg/L	1.3 J	3.7	4.9	0.63 J	0.97 J	4.0	3.8	1.7 J	0.79 J	0.74 J	0.88 J	28	2.6	0.59 J
Selenium	0.01	mg/L	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U	< 0.011 U					
Silver	0.05	mg/L	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U	< 0.0032 U					
Sodium	20	mg/L	27	40	29	9.8	16	29	28	4.7	4.9	9.8	12	25	20	3.5
Thallium	0.0005	mg/L	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U					
Vanadium	NC	mg/L	0.0092 J	0.0076 J	0.0059 J	0.0039 J	0.0062 J	0.0066 J	0.0068 J	0.0043 J	0.0036 J	0.0071 J	0.0078 J	0.0071 J	< 0.0031 U	0.0039 J
Zinc	2	mg/L	0.0061 J	0.0050 J	0.040	0.0054 J	0.0086 J	0.0081 J	0.0070 J	0.0093 J	0.0044 J	0.0089 J	0.0055 J	0.016	0.020	0.0053 J

Zinc **Notes**

NC - No criteria

mg/L - milligrams per liter

J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

D - Dilution

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value

Gray shading indicates a Non-Detection with a reporting limit higher than the GA Value

Table 8 New York State Department of Environmental Conservation Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York Summary of Analytical Results of Groundwater for PFAS - 2022

	14	ocation	BR-3	BR-5	BR-6	BR-7	MW-2	MW-	1DR	MW-5	MW-6	MW-7	MW-7D	MW-8	MW-11	MW-13
		nple ID		BR-5_20220728	BR-6_20220728	BR-7_20220727	MW-2 20220727	MW-4DR 20220726		MW-5 20220728	MW-6 20220726		MW-7D 20220727	MW-8_20220726	MW-11_20220727	
	Lab San	•	22G1718-05	22G1718-11	22G1718-10	22G1718-12	22G1718-08	22G1718-16	22G1718-17	22G1718-09	22G1718-03	22G1718-06	22G1718-13	22G1718-15	22G1718-07	22G1718-04
		le Date	7/27/2022	7/28/2022	7/28/2022	7/27/2022	7/27/2022	7/26/2022	7/26/2022	7/28/2022	7/26/2022	7/27/2022	7/27/2022	7/26/2022	7/27/2022	7/27/2022
	Class GA		7/27/2022	7/20/2022	7/20/2022	7/27/2022	7/2//2022	7/20/2022	7/20/2022	7/20/2022	7/20/2022	7/2//2022	7/2//2022	7/20/2022	7/2//2022	7/2//2022
Analyte	Values	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
PFAS																
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	ng/L	< 0.6 U	< 0.58 U	< 0.65 U	< 0.6 U	< 0.58 U	< 0.59 U	< 0.6 U	< 0.63 U	< 0.62 U	< 0.62 U	< 0.58 U	< 0.6 U	< 0.62 U	< 0.62 U
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	NC	ng/L	< 0.32 U	< 0.32 U	< 0.35 U	< 0.32 U	< 0.32 U	< 0.32 U	< 0.33 U	< 0.34 U	< 0.34 U	< 0.34 U	< 0.31 U	< 0.32 U	< 0.34 U	< 0.34 U
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	NC	ng/L	< 0.26 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.26 U	< 0.26 U	< 0.26 U	< 0.28 U	< 0.27 U	< 0.27 U	< 0.25 U	< 0.26 U	< 0.27 U	< 0.27 U
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NC	ng/L	110	51	87	5.0	4.4	120	130	5.1	1.1 J	2.2	6.3	6.8	19	1.0 J
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NC	ng/L	< 0.57 U	0.93 J	< 0.61 U	< 0.57 U	< 0.55 U	< 0.56 U	< 0.57 U	< 0.6 U	< 0.59 U	< 0.59 U	< 0.55 U	< 0.57 U	< 0.59 U	< 0.59 U
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	NC	ng/L	< 0.36 U	< 0.36 U	< 0.39 U	< 0.36 U	< 0.35 U	< 0.36 U	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 0.35 U	< 0.36 U	< 0.38 U	< 0.38 U
N-Methyl perfluorooctane sulfonamido acetic acid (NMeFOSAA)	NC	ng/L	< 0.71 U	< 0.69 U	< 0.77 U	< 0.71 U	< 0.69 U	< 0.7 U	< 0.71 U	< 0.74 U	< 0.73 U	< 0.74 U	< 0.68 U	6.8	< 0.73 U	< 0.73 U
N-Ethyl perfluorooctane sulfonamido acetic acid (NEtFOSAA)	NC	ng/L	< 0.59 U	0.76 J	< 0.63 U	< 0.59 U	< 0.57 U	< 0.58 U	< 0.59 U	< 0.62 U	< 0.61 U	< 0.61 U	< 0.57 U	83	< 0.61 U	< 0.61 U
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NC	ng/L	< 0.22 U	< 0.21 U	< 0.23 U	< 0.22 U	< 0.21 U	< 0.21 U	< 0.22 U	< 0.23 U	< 0.22 U	< 0.22 U	< 0.21 U	< 0.22 U	< 0.22 U	< 0.22 U
Perfluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)	NC	ng/L	< 0.22 U	< 0.22 U	< 0.24 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U	< 0.22 U	< 0.22 U	< 0.23 U	< 0.23 U
Perfluoro-3,6-dioxaheptanoic acid (PFPE-3)	NC	ng/L	< 0.26 U	< 0.25 U	< 0.28 U	< 0.26 U	< 0.25 U	< 0.25 U	< 0.26 U	< 0.27 U	< 0.27 U	< 0.27 U	< 0.25 U	< 0.26 U	< 0.27 U	< 0.27 U
Perfluoro-3-methoxypropanoic acid (PFMPA)	NC	ng/L	< 0.39 U	< 0.38 U	< 0.42 U	< 0.39 U	< 0.38 U	< 0.38 U	< 0.39 U	< 0.41 U	< 0.4 U	< 0.4 U	< 0.37 U	< 0.39 U	< 0.4 U	< 0.4 U
Perfluoro-4-methoxybutanoic acid (PFMBA)	NC	ng/L	< 0.32 U	< 0.31 U	< 0.34 U	< 0.32 U	< 0.31 U	< 0.32 U	< 0.32 U	< 0.33 U	< 0.33 U	< 0.33 U	< 0.31 U	< 0.32 U	< 0.33 U	< 0.33 U
Perfluorobutane sulfonic acid (PFBS)	NC	ng/L	< 0.26 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.26 U	< 0.26 U	< 0.26 U	0.28 J	< 0.27 U	14	14	6.7	< 0.27 U	
Perfluorobutanoic acid (PFBA)	NC	ng/L	< 0.69 U	1.4 J	< 0.75 U	< 0.69 U	< 0.68 U	< 0.69 U	< 0.7 U	0.77 J	0.98 J	9.9	18	< 0.69 U	< 0.72 U	8.0
Perfluorobutylsulfonamide (FBSA)	NC	ng/L	< 0.18 U	< 0.17 U	< 0.19 U	< 0.18 U	< 0.17 U	< 0.18 U	< 0.18 U	< 0.19 U	< 0.18 U	6.9	5.3	0.65 J	< 0.18 U	< 0.18 U
Perfluorodecane sulfonic acid (PFDS)	NC	ng/L	< 0.3 U	< 0.3 U	< 0.33 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.31 U	< 0.32 U	< 0.31 U	< 0.32 U	< 0.29 U	< 0.3 U	< 0.31 U	
Perfluorodecanoic acid (PFDA)	NC	ng/L	< 0.46 U	0.47 J	0.83 J	< 0.46 U	< 0.45 U	< 0.45 U	< 0.46 U	< 0.48 U	< 0.47 U	< 0.48 U	< 0.44 U	0.98 J	< 0.47 U	
Perfluorododecanoic acid (PFDoA)	NC	ng/L	< 0.41 U	< 0.4 U	< 0.44 U	< 0.41 U	< 0.4 U	< 0.41 U	< 0.41 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.4 U	< 0.41 U	< 0.43 U	< 0.43 U
Perfluoroheptane sulfonic acid (PFHpS)	NC	ng/L	< 0.87 U	< 0.86 U	< 0.95 U	< 0.87 U	< 0.86 U	< 0.87 U	< 0.88 U	< 0.92 U	< 0.91 U	< 0.91 U	< 0.84 U	< 0.87 U	< 0.91 U	
Perfluoroheptanoic acid (PFHpA)	NC	ng/L	1.4 J	2.6	1.0 J	< 0.32 U	< 0.31 U	24	23	0.68 J	0.37 J	7.3	2.6	20	< 0.33 U	
Perfluorohexane sulfonic acid (PFHxS)	NC	ng/L	< 0.32 U	3.2	0.57 J	< 0.31 U	< 0.31 U	< 0.31 U	< 0.32 U	< 0.33 U	< 0.33 U	9.0	6.7	12	< 0.33 U	
Perfluorohexanesulfonamide (FHxSA)	NC	ng/L	< 0.29 U	< 0.28 U	< 0.31 U	< 0.29 U	< 0.28 U	< 0.29 U	< 0.29 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.28 U	0.55 J	< 0.3 U	
Perfluorohexanoic acid (PFHxA)	NC	ng/L	6.5	2.5	3.0	< 0.36 U	< 0.35 U	1.5 J	1.4 J	0.52 J	< 0.37 U	26	15	32	< 0.37 U	
Perfluorononane sulfonic acid (PFNS)	NC	ng/L	< 0.16 U	< 0.15 U	< 0.17 U	< 0.16 U	< 0.15 U	< 0.15 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.15 U	< 0.16 U	< 0.16 U	
Perfluorononanoic acid (PFNA)	NC	ng/L	< 0.32 U	0.32 J	1.4 J	< 0.32 U	< 0.31 U	< 0.32 U	< 0.32 U	0.74 J	< 0.33 U	< 0.34 U	< 0.31 U	5.7	< 0.33 U	
Perfluorooctane sulfonamide (PFOSA)		ng/L		< 0.38 U	< 0.42 U		< 0.38 U		< 0.39 U		< 0.41 U				< 0.41 U	
Perfluorooctane sulfonic acid (PFOS)	2.7	ng/L	< 0.56 U	1.9	1.8 J	< 0.56 U	< 0.55 U	< 0.55 U	< 0.56 U	1.5 J	0.59 J	6.8	4.3	55	< 0.58 U	
Perfluorooctanoic acid (PFOA)	6.7	ng/L	0.65 J	3.9	4.5	< 0.63 U	< 0.62 U	0.68 J	< 0.64 U	4.8	2.4	17	11	140	< 0.66 U	
Perfluoropentane sulfonic acid (PFPeS)	NC	ng/L	< 0.24 U	< 0.24 U	< 0.26 U	< 0.24 U	< 0.23 U	< 0.24 U	< 0.24 U	< 0.25 U	< 0.25 U	4.1	3.8	4.0	< 0.25 U	
Perfluoropentanoic acid (PFPeA)	NC	ng/L	0.73 J	2.2	1.4 J	< 0.37 U	< 0.36 U	1.3 J	1.2 J	0.60 J	< 0.38 U	8.2	7.7	12	< 0.38 U	
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 0.34 U	< 0.33 U	< 0.37 U		< 0.33 U	< 0.34 U	< 0.34 U	< 0.36 U	< 0.35 U	< 0.36 U	< 0.33 U	< 0.34 U		
Perfluorotridecanoic acid (PFTrDA)	NC	ng/L	< 0.26 U	< 0.25 U	< 0.28 U		< 0.25 U		< 0.26 U	< 0.27 U	< 0.27 U	< 0.27 U	< 0.25 U	< 0.26 U		
Perfluoroundecanoic acid (PFUnA)	NC	ng/L	< 0.34 U	< 0.34 U	< 0.37 U	< 0.34 U	< 0.34 U	< 0.34 U	< 0.35 U	< 0.36 U	< 0.36 U	< 0.36 U	< 0.33 U	2.1	< 0.36 U	< 0.36 U

Notes

NC - No criteria

ng/L - nanograms per liter

J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the NYSDEC GA Value PFAS - Per- and polyfluoroalkyl substances

Table 9 New York State Department of Environmental Conservation

Mayer Landfill Site - NYSDEC Site No. 336027

Blooming Grove, New York
Summary of Analytical Results of Potable Water for PFAS and 1,4-Dioxane - (2020 and 2023)

		cation:	WP-RES-1	WP-RES-2	WP-RES-3	WP-RES-4	WP-RES-5	WP-RES-6	WP-RES-7	WP-RES-8	WP-RES-9	WP-RES-10	WP-RES-11	WP-RES-12	WP-RES-14
	Sam	ıple ID:	ML-WP-RES-1	ML-WP-RES-2	ML-WP-RES-3	ML-WP-RES-4	ML-WP-RES-5	ML-WP-RES-6	ML-WP-RES-7	ML-WP-RES-8	ML-WP-RES-9	ML-WP-RES-10	ML-WP-RES-11	ML-WP-RES-12	WP-RES-14
	Lab Sam	ıple ID:	480-172890-1	480-172890-2	480-172890-3	480-172890-4	480-172890-5	480-172890-6	480-172890-7	480-172890-8	480-172890-9	480-172890-10	480-172890-11	480-172890-12	23B1178-01
	Sampl	e Date:	7/20/2020	7/20/2020	7/20/2020	7/20/2020	7/20/2020	7/20/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	2/9/2023
	MCL														
Analyte	Values	Unit	Result Q	Result Q	Result Q	Result Q									
PFAS															
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NC	ng/L	< 18 U	< 17 U	< 17 U	< 17 U	< 16 U	< 18 U	< 17 U	< 17 U	< 18 U	< 17 U	< 18 U	< 17 U	NA
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NC	ng/L	< 18 U	< 17 U	< 17 U	< 17 U	< 16 U	< 18 U	< 17 U	< 17 U	< 18 U	< 17 U	< 18 U	< 17 U	NA
N-Ethyl perfluorooctane sulfonamido acetic acid (NEtFOSAA)	NC	ng/L	< 18 U	< 17 U	< 17 U	< 17 U	< 16 U	< 18 U	< 17 U	< 17 U	< 18 U	< 17 U	< 18 U	< 17 U	NA
N-Methyl perfluorooctane sulfonamido acetic acid (NMeFOSAA)	NC	ng/L	< 18 U	< 17 U	< 17 U	< 17 U	< 16 U	< 18 U	< 17 U	< 17 U	< 18 U	< 17 U	< 18 U	< 17 U	NA
Perfluorobutane sulfonic acid (PFBS)	NC	ng/L	1.4 J	0.81 J	1.0 J	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	2.8	< 1.8 U	5.8	< 1.9 U
Perfluorobutanoic acid (PFBA)	NC	ng/L	2.2	6.6	2.9	< 1.7 U	1.4 J	2.1	< 1.7 U	< 1.7 U	< 1.8 U	2.7	1.3 J	2.8	NA
Perfluorodecane sulfonic acid (PFDS)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluorodecanoic acid (PFDA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluorododecanoic acid (PFDoA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluoroheptane sulfonic acid (PFHpS)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluoroheptanoic acid (PFHpA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	1.9	< 1.8 U	1.8	< 1.9 U
Perfluorohexane sulfonic acid (PFHxS)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	1.3 J	< 1.8 U	1.0 J	< 1.9 U
Perfluorohexanoic acid (PFHxA)	NC	ng/L	1.8	1.7	0.99 J	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	3.4	< 1.8 U	4.0	
Perfluorononanoic acid (PFNA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.9 U
Perfluorooctane sulfonamide (PFOSA)	NC	ng/L	< 9.1 U	< 8.7 U	< 8.3 U	< 8.4 U	< 8.1 U	< 9.0 U	< 8.3 U	< 8.6 U	< 8.9 U	< 8.6 U	< 9.2 U	< 8.3 U	NA
Perfluorooctane sulfonic acid (PFOS)	10	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	4.3	< 1.8 U	4.7	< 1.9 U
Perfluorooctanoic acid (PFOA)	10	ng/L	1.2 J	0.77 J	0.68 J	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	7.0	< 1.8 U	6.2	< 1.9 U
Perfluoropentanoic acid (PFPeA)	NC	ng/L	< 1.8 U	2.1 J+	1.8 J+	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	3.2 J+	< 1.8 U	3.7 J+	NA
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluorotridecanoic acid (PFTrDA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
Perfluoroundecanoic acid (PFUnA)	NC	ng/L	< 1.8 U	< 1.7 U	< 1.7 U	< 1.7 U	< 1.6 U	< 1.8 U	< 1.7 U	< 1.7 U	< 1.8 U	< 1.7 U	< 1.8 U	< 1.7 U	NA
SVOCs	•							•							
1.4-Dioxane	1	ug/L	1.1	3.7	0.38	< 0.19 U	0.32	0.64	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	0.25	< 0.19 U	NA

Notes

MCLs - Maximum Contaminant Levels

NC - No criteria

NA - Not analyized

ug/L - micrograms per liter

ng/L - nanograms per liter J - Detected but below the Reporting Limit (lowest calibration standard); result is estimated.

J+ - Result is estimated, with a potential high bias.

U - Analyte was not detected at specified quantitation limit.

Bold indicates a detection

Black shading indicates the result exceeds the 2020 NYS Public Drinking Water MCLs PFAS - Per- and polyfluoroalkyl substances WP-RES-14 was sampled in February 2023 for only six PFAS compounds.

APPENDIX A

TRC ENGINEERS, INC.

JUNE 2025

Summary of Green and Sustainable Remediation Metrics for Site Management

Site Name: _	Mayer Landfi	II Site		_Site Code: _	336027
Address:	Prospect and I	eddler Hill Ro	ads	City:	Blooming Grove
State: NY		Zip Code:	10918	County:	Orange
_	ort Period (Star April 2015	t Date of perio	od cover	ed by the Init	ial Report submittal)
Current Re	porting Period				
Reporting Pe	eriod From:	January 1, 20)20	To: Janua	ary 1, 2025
C ontact Inf e	ormation lame: <u>Ezra S</u>	Stobbe		_ Phone No.:	332-237-9961
Preparer's A	ffiliation:	TRC Engine	ers, Inc.		

I. Energy Usage: Quantify the amount of energy used directly on-Site and the portion of that derived from renewable energy sources.

	Current	Total to Date
	Reporting Period	(approximate)
	(approximate)	
Fuel Type 1 (e.g. natural gas (cubic feet))	Not Applicable	
Fuel Type 2 (e.g. fuel oil, propane (gallons))	Not Applicable	
Electricity (kilowatt-hours)	0	Unknown
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar, wind)	Not Applicable	
Other energy sources (e.g. geothermal, solar	Not Applicable	
thermal (British Thermal Units))		

Provide a description of all energy usage reduction programs for the Site in the space provided on Page 3.

II. Solid Waste Generation: Quantify the management of solid waste generated on-Site.

	Current Reporting Period (tons -	Total to Date (tons -
	approximate)	approximate)
Total waste generated on-site	less than 1	8,814
OM&M generated waste	less than 1	Unknown
Of that total amount, provide quantity:		
Transported off-site to landfills	0	7,687.87
Transported off-site to other disposal facilities	0	0
Transported off-site for recycling/reuse	0	0
Reused on-site	0	1,158 (cubic yards)

Provide a description of any implemented waste reduction programs for the Site in the space provided on Page 3.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies and lab-supplied bottles, shipping of laboratory samples, and the removal of waste.

	Current Reporting	Total to Date
	Period (miles-	(miles)
	approximate)	
Standby Engineer/Contractor	3500	Unknown
Laboratory Courier/Delivery Service	96	Unknown
(bottle and sample delivery)		
Waste Removal/Hauling	0	Unknown

Provide a description of all mileage reduction programs for the Site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the Site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on- site (not including treated water)	less than 50	Unknown
Of that total amount, provide quantity:		
Public potable water supply usage	less than 50	Unknown
Surface water usage	0	Unknown
On-site groundwater usage	0	Unknown
Collected or diverted storm water usage	0	Unknown

Provide a description of any implemented water consumption reduction programs for the Site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to Date (acres – approximate)
Land disturbed	0	2.1
Land restored	0	2.1

Provide a description of any implemented land restoration/green infrastructure programs for the Site in the space provided on Page 3.

Description of green remediation programs reported above (Attach additional sheets if needed)

Energy Usage:

There is minimal energy consumption related to the site, as no remedial systems are active at the site. Energy usage during the reporting period is related only to operation of handheld groundwater sampling equipment. Energy consumption for remedial activities is unknown and not included.

Waste Generation:

Waste generated during this reporting period includes personal protective equipment (e.g., disposable gloves), polyethylene and silicone tubing, and packing material associated with groundwater sampling events. Purge water was disposed of by discharging to the ground surface in unpaved areas. Paper and office supplies were also consumed associated with sampling activities and report preparation. As a part of Remedial Action (RA) at the Site, in accordance with the May 2008 Remedial Design, 7,688 tons of non-hazardous waste was removed from the Site in 2009 and disposed off-site at the Ontario County Landfill. Reportedly, 1,158 cubic yards of non-impacted fill was reused on-site as backfill during RA. Quantities of waste generated during the Site remedial history are approximate and may not include all waste generated.

Transportation/Shipping:

Current reporting period transportation is associated with conducting Site visits to perform Site management activities, including Site inspections and groundwater and non-routine residential potable water sampling. Transportation includes consultant travel activities for TRC Engineers, Inc. (TRC) from TRC's Clifton Park NY office, located approximately 125 miles from the Site. Samples were transported by car to the Pace Analytical laboratory location in Newburgh NY, located approximately 10 miles from the Site.

Water usage:

Minimal amounts of water are used during groundwater sampling activities to decontaminate sampling equipment.

Land Use and Ecosystems:

The current site activities do not disturb land and/or ecosystems. Remedial action activities conducted in 2008 and 2009 disturbed and restored approximately 2.1 acres, according to the Site Plan survey included in the November 2009 Final Engineering Report, which marked out limits of disturbance.

Recommendations/Other:							
None.							
CONTRACTOR CERTIFICATION							
I,	(Name)	do	hereby	certify	that	I	am
(Title) of			(Coi	ntractor	Name),	whi	ich is
responsible for the work documented or				•	_		
of the information provided in this form		e and t	he site mai	nagement	t progran	n cor	nplies
with the DER-10, DER-31, and CP-49 I	poncies.						
Date		С	ontractor				

Mayer Landfill Site, Blooming Grove, New York 10915

APPENDIX B

TRC ENGINEERS, INC.

JUNE 2025

SITE HISTORY

MAYER LANDFILL SITE (NYSDEC SITE NO. 336027)

<u>Date</u>	<u>Description</u>
1949	The Mayer Landfill began operating the Site as an open-face dump, with periodic refuse burning.
1953	Approximately three acres of land were used as a dump, accepting approximately 180 cubic yards of refuse per week.
1956	Part of the landfill was designed as a public dump.
1961	The landfill occupied approximately eight acres and was receiving approximately 386 cubic yards of refuse per week.
1965	The Mayer Landfill was ordered to stop burning, and the operator began compacting/covering waste.
1968	The landfill was reported to occupy 13 acres and accept 1,000 cubic yards of waste per week.
Early 1970s	The Orange County Department of Health (OCDOH) cited the Site for mismanagement. Violations included inadequate compacting and covering of wastes, waste piled too high and steep, and poor use of space.
January 1975	An OCDOH survey approximated the waste volume received by the Mayer Landfill to be 5,045 cubic yards per week.
April 1975	The Mayer Landfill ceased operations due to failure to comply with State and County regulations.
1975	The OCDOH conducted an initial Site investigation of surface water. The associated analytical results indicated elevated zinc concentrations in a wet area located south of the Site.
1985	The New York State Department of Environmental Conservation (NYSDEC) listed the Mayer Landfill on the NYS Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site.
June 1987	The NYSDEC completed a Phase I investigation which concluded that a Phase II investigation was required.
April 1987	The New York State Department of Health (NYSDOH) completed a Human Exposure Potential Ranking Hazardous Waste Site Inspection Form for the Mayer Landfill. Additionally, State and County officials sampled five private drinking wells in the vicinity of the Site; no contamination was found.
1989 - 1991	To resolve the Class 2a status, a Phase II Investigation was conducted and found several organic compounds exceeding groundwater standards in one monitoring well.
1991	The NYSDEC listed the Site as a Class 2 site in the Registry.
2000 - 2002	A remedial investigation/feasibility study (RI/FS) was conducted at the Site to determine the nature and extent of contamination and evaluate remedial alternatives.

January 2005 The NYSDEC issued a Record of Decision (ROD) which identified limited soil excavation of light non-aqueous liquid (LNAPL) and groundwater monitoring as the selected remedy. July 2007 Further subsurface and groundwater investigations were performed to further delineate impacted waste. This additional work showed that the LNAPL contaminated soil volume was significantly greater than estimated in the ROD. A Basis of Design report was prepared and revealed that volatile organic compounds January 2008 (VOC) and metals were the main contaminants of concern (COCs). October 2008 -Remedial activities were completed, in accordance with the NYSDEC approved May June 2009 2008 Remedial Design (RD). Activities included the removal of 7,688 tons of impacted waste, installation of a cover system, decommissioning/installation of monitoring wells, establishment of an Environmental Easement, development/implementation of a Site Management Plan (SMP). October 2010 The NYSDEC approved the SMP, which includes long-term groundwater monitoring, existing cover maintenance, future excavation management, exclusion against future residential or restricted-residential uses, and a prohibition of groundwater for portable or process use without treatment. June 2011 An Environmental Notice for the entire parcel was filed with the Orange County Clerk's Office. October 2011 The NYSDEC listed the Site as a Class 4 site in the Registry. December 2012 An Environmental Easement was placed on the Site and recorded by Orange County in March 2013. While the tax parcel containing the Site is approximately 103 acres, the easement only applies to 15 acres (13 acres of landfill and 2 acres of buffer as delineated by the Environmental Easement survey). April 2015 The SMP was revised to include plans for long term groundwater monitoring. February 2020 A Periodic Review Report was prepared for the reporting period of April 2015-January 2020 by TRC Engineers, Inc..

CUSTODIAL RECORD/PERTINENT SITE DOCUMENTS MAYER LANDFILL SITE (NYSDEC SITE NO. 336027)

EA Science and Technology (EA), Phase I Investigation, Mayer Landfill Site, June 1987

Lawler, Matusky & Skelly Engineers, Phase II Investigation, Mayer Landfill Site, June 1991

Environmental Resources Management (ERM), Work Plan for the Remedial Investigation/Feasibility Study, Mayer Landfill Site, August 1999

ERM, Remedial Investigation Report, Mayer Landfill Site, March 2001

ERM, Supplemental Remedial Investigation Work Plan, Mayer Landfill Site, June 2001

ERM, Supplemental Remedial Investigation Report, Mayer Landfill Site, April 2002

ERM, Final Feasibility Study Report, Mayer Landfill Site, July 2002

New York State Department of Environmental Conservation (NYSDEC), *Proposed Remedial Action Plan*, Mayer Landfill Site, November 2004

NYSDEC, Record of Decision, Mayer Landfill Site, January 2005

EA, Remedial Design/Remedial Action Work Plan, Mayer Landfill Site, June 2007

EA, Basis of Design Report, Mayer Landfill Site, January 2008

NYSDEC, Explanation of Significant Differences, September 2008

EA, Final Engineering Report, Mayer Landfill Site, November 2009

EA, Site Management Plan, Mayer Landfill Site, September 2010

EA, Site Management Plan (Rev. 1), Mayer Landfill Site, October 2010

NYSDEC, Site Classification Report, Mayer Landfill Site, October 2011

NYSDEC, Environmental Easement, Site No. 336027, December 2012

EA, Site Management Plan (Rev. 2), Mayer Landfill Site, April 2015

NYSDEC, Periodic Review Report for January 1, 2012, through April 15, 2015, Mayer Landfill Site, October 2015

TRC Engineers, Inc., *Periodic Review Report April* 2015 – *January* 2020, Mayer Landfill Site, February 2020

Mayer Landfill Site, Blooming Grove, New York 10915

APPENDIX C

TRC ENGINEERS, INC.

JUNE 2025

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

C:4	Site Details		Box 1					
Sit	te No. 336027							
Sit	te Name Mayer Landfill							
Cit Co	te Address: Prospect and Peddler Hill Roads Zip Code: 10914 ty/Town: Blooming Grove bunty: Orange te Acreage: 15.2							
Re	eporting Period: January 01, 2020 to January 01, 2025							
		YES	NO					
1.	Is the information above correct?	×						
	If NO, include handwritten above or on a separate sheet.							
2.	To your knowledge has some or all of the site property been sold, subdivide merged, or undergone a tax map amendment during this Reporting Period?		X					
3.	To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X					
4.	To your knowledge have any federal, state, and/or local permits (e.g., buildidischarge) been issued for or at the property during this Reporting Period?	ng,	X					
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.								
5.	To your knowledge is the site currently undergoing development?		X					
			Box 2					
		YES	NO					
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X						
7.	Are all ICs/ECs in place and functioning as designed?	X						
	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an EC PM regarding the development of a Corrective Measures Work Plan to ac		ues.					
Sig	gnature of Standby Consultant/Contractor Date	· · · · · · · · · · · · · · · · · · ·						

SITE NO. 336027 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

44-1-63.9 William Mayer

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

Soil Management Plan

An updated Site Management Plan (SMP) was approved in April 2015 to manage remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36. An Environmental Easement (File No.20138016785, book ar page 13585/8481) along with a Notice of EN Recission(File No.20130016786,book and page 13585/8499)were recorded with Orange County on 2/13/13.03/27/2013: Affidavit of Service, dated Ma 19, 2013 was recorded on March 27, 2013, in the Orange County Clerk's Office in 2013 as Instrument No.: 20130033295, Book 13533,Page 1071.

The Environmental Easement requires compliance with these ICs, to ensure that:

- All ECs must be operated and maintained as specified in the SMP;and
- Groundwater and other environmental or public health monitoring must be performed as defined in t SMP; and
- Data and information pertinent to Site Management for the Controlled Property must be reported as defined in the SMP; and
- On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.

The Environmental Easement places the following restrictions on the "Controlled Property":

- Vegetable gardens and farming on the property are prohibited;
- Use of groundwater underlying the property is prohibited without treatment rendering it safe for the intended use;
- All future activities on the property that would disturb remaining contaminated material must be conducted in accordance with the Excavation Plan included in the SMP;
- The property may be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls described in the SMP remain in use.

The above controls are designed to:

- Prevent ingestion/direct contact with contaminated soil
- Prevent exposure to onsite groundwater

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

44-1-63.9

Monitoring Wells

The Controlled Property has the following Engineering Controls:

Sentinel wells for long-term monitoring of site groundwater.

Box	5
	J

	Periodic Review Report (PRR) Certification Statements						
1.	I certify by checking "YES" below that:						
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any; 						
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO						
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:						
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;						
	(c) nothing has occurred that would constitute a failure to comply with the Site Management Plan, or equivalent if no Site Management Plan exists.						
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues.						
	Signature of Standby Consultant/Contractor Date						

IC/EC CERTIFICATIONS

Professional Engineer Signature

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I Allen Zgaljardic	at TRC Engineers, Inc.	
print name		
	1090 Union Road, Suite 280	
	West Seneca, NY 14224	,
	(print business address)	

am certifying as a Professional Engineer.

Signature of Professional Engineer

Date 6/25/2025

APPENDIX D

TRC ENGINEERS, INC.

JUNE 2025

DATE:	Friday.	June	4.	2021
-------	---------	------	----	------

REPORT NO. 20210604

PAGE NO. 1 OF 2

PROJECT NO. 320919.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

PRO LECT) f T 10°	11		WE A THER	THE SECOND		PDECIP	WIND	WIND
PROJECT	Mayer Landfi			WEATHER	TIME	TEMP.	PRECIP.	(MPH)	(DIR)
LOCATION	Blooming Gro	ve, New	York	Partly Cloudy	0900	66°F	None	0-5	ENE
ATTACHMENTS	Photo Log			Partly Cloudy	1300	76°F	None	0-5	ENE
SITE CONDITION	S: Dry								
WORK GOAL FOR	R DAY: Site ins	spection							
			PERSO!	NNEL ON SIT	E:				
	AME			AFFILIATION			VAL TIME		T TIME
Steve Johansson			TRC Engineers	, Inc.		08:30		11:30	
Caitlin Serowik			TRC Engineers	, Inc.		08:30		11:30	
			EQUIPN	MENT ON SIT	E:	<u> </u>			
ТҮРЕ			MODEL		TYPE	2		MODEL	ı
			HEALT	TH & SAFETY	•				
PPE REQUIRED	: 🛮 🖾 LE	VEL D	LEVEL	C 🗆 LEVE	ELB [□LEVEL A		HASP? YE	S
SITE SAFETY OFFIC									
H & S NOTES: Site w	ork performed in	Level D	PPE						

DATE: Friday, June 4, 2021

REPORT NO. 20210604

PAGE NO. 2 OF 2

PROJECT NO. 320919.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a site inspection at the Mayer Landfill Site (Site), located off Prospect Street, in the village of Blooming Grove, NY, on June 4, 2021. The objective of the site inspection was to document the general site conditions and evaluate the condition of the groundwater monitoring wells located throughout the site.

During the event, the team was able to locate thirteen of the fourteen monitoring wells (ML-MW-11, ML-BR-7, ML-MW-4R, ML-MW-4DR, ML-BR-3, ML-BR-6, ML-MW-13, ML-MW-8, ML-MW-6, ML-MW-7, ML-MW-7D, ML-MW-2 and ML-MW-5). The team was unable to locate ML-BR-5, as it appeared that the site had been cleared of some vegetation and the survey tape left on the trees to mark the location of the well had been removed as well. The team utilized the Collector app to drop a pin at the location of the wells that may be difficult to find as seasonal vegetation continues. The wells and outer casings appeared to be generally in good shape. All monitoring wells were noted to be locked with a Master Lock® with code #2537. Multiple tree-stands and bike trails were noted throughout the inspection and it appeared that the site is used regularly for hunting and other sporting activities.

The soil cover and vegetation throughout the landfill cover appear to be stable and in good shape, with no areas of noticeable erosion. No animal burrows, voids, or seeps were noted throughout the inspection. The entrance gate is currently locked with a coded-lock that was placed on the gate by the current site owner.

PREPARED BY (OBSERVER):	REVIEWED BY:	
PRINT NAME: Caitlin Serowik	PRINT NAME: Harry Fuller	

Photograph Log Date: June 4, 2021

Photo 1: Looking southeast. View of the site entry gate.

Photo 2: Looking northeast at one of the tree-stands located throughout the site.

Photo 3: Looking northwest. View of drums and other debris found onsite.

Photo 4: Looking northwest at monitoring well MW-7.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Caitlin Serowik	1 of 2	NYSDEC	Mayer Landfill Blooming Grove, NY

NYSDEC Mayer Landfill Photograph Log Date: June 4, 2021

Photo 5: Looking northwest at monitoring well MW-11.

Photo 6: Looking to the northwest at an overview of the landfill area.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Caitlin Serowik	2 of 2	NYSDEC	Mayer Landfill Blooming Grove, NY

I)			

Tuesday, July 26, 2022 – Thursday, July 28, 2022

REPORT NO. 20220726

PAGE NO. 1 OF 2

PROJECT NO. 470744.0000.0000

LOGBOOK NO. 550F PAGES 27 to 29

DAILY FIELD ACTIVITY REPORT

PROJECT	Mayer Landfill		WEATHER	TIME	ТЕМР.	PRECIP.	WIND (MPH)	WIND (DIR)
LOCATION	Blooming Grove, New York		Clear, Sunny	0700	75°F	None	0-5	ENE
ATTACHMENTS	Photo Log, Low Flow Logs,	Site Map	Clear, Sunny	1400	90°F	None	0-5	ENE
SITE CONDITION	S: Clear, Dry	•						
WORK GOAL FOR	R DAY: Site inspection a	and groundwate	er sampling					
		PERSON	NNEL ON SIT	E:				
N	AME	I	AFFILIATION		ARRI	VAL TIME	DEPAR	T TIME
Rich DePolo		TRC Engineers,	, Inc.		07:00		19:00	
Taylor Shanley		TRC Engineers,	, Inc.		07:00		19:00	
		EQUIPM	MENT ON SIT	E:				
ТҮРЕ		MODEL		TYPE	Ε		MODEL	1
PID	MiniRAE	3000	Not Applica	ble		Not Appl	icable	
Peristaltic Pump	Geotech							
Oil/Water Interface Prob	e Heron							
Water Quality Meter	Horiba U-:	52						
Bladder Pump	QED Samj	ole Pro MP-50						
		HEALT	TH & SAFETY	:				
PPE REQUIRED	: LEVEL D	LEVEL C	LEVE	ELB	LEVEL A	I	HASP? YE	S
SITE SAFETY OFFIC								
H & S NOTES: Site w	vork performed in Level D	PPE						

DATE: Tuesday, July 26, 2022 – Thursday, July 28, 2022

REPORT NO. 20220726

PAGE NO. 2 OF 2

PROJECT NO. 470744.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) was at the Mayer Landfill (Site) from June 26, 2022, to June 28, 2022 to conduct a site inspection and perform groundwater sampling of the Site, located off of Prospect Street, in the village of Blooming Grove, NY. The objective of the site inspection was to document the general site conditions, to evaluate the condition of the groundwater monitoring wells, and to sample all of the monitoring wells by low flow techniques.

On June 26, 2022, TRC personnel mobilized to the Site to begin the well gauging and sampling event. TRC was able to locate all fourteen monitoring wells (MW-11, BR-7, MW-4R, MW-4DR, BR-3, BR-5, BR-6, MW-13, MW-8, MW-6, MW-7, MW-7D, MW-2 and MW-5). TRC determined that MW-4R was not able to be sampled due to a large amount of product (LNAPL) discovered in the well, consistent with the prior sampling event in May 2019. TRC personnel noted that of the wells, MW-2, MW-5, BR-5 and BR-6 were difficult to find due to the overgrown conditions of the Site, and the poorly maintained paths to the BR-5 and BR-6 wells. All of the inspected wells were noted to be in good condition, all containing J-plugs, protective collars and locks keyed to #2537. TRC personnel also used orange surveying tape to flag paths to the wells, installed 6-foot-high fiberglass markers on each of the wells, and sprayed the wells with high-viz orange paint for visibility. It is recommended that the flags/markers be inspected and replaced every inspection and sampling event if necessary.

Additionally, during site inspection activities, multiple hunting tree stands were encountered, as well as trails that did not lead to any of the wells, presumed to be hunting trails. TRC noted the presence of several drums on the northeastern portion of the Site (near MW-11, BR-7, and the front gate area along the access road), most either empty, or unable to be opened. TRC also encountered the presence of several debris piles of scrap metal and old tires throughout the Site. These were not mentioned in prior reports, as only a drum survey was conducted in the past inspection events. The well conditions, landfill conditions, and drums/debris piles were photographed when encountered. Following site inspection and gauging activities, monitoring wells MW-4DR, MW-13, and MW-8 (including MS/MSD) were sampled using USEPA low-flow sampling methods.

On June 27, 2022, TRC personnel returned to the Site to resume sampling activities. TRC sampled MW-6, BR-3, MW-7D, MW-7, MW-11, BR-7, and MW-2 using USEPA low-flow sampling methods. MW-7D, MW-7, MW-11 and BR-7 were all located in overgrown, heavily forested areas and hand tools were used to cut the vegetation around each of the wells prior to sampling. An existing trail leading to MW-11 and BR-7was used to bring equipment over via a gardening cart. MW-2 is located in a heavily forested area with many fallen trees and heavy vegetation, making it difficult to access the well.

On June 28, 2022, TRC personnel returned to the Site to sample the remaining monitoring wells. TRC sampled MW-5, BR-5, and BR-6 using USEPA low-flow methods. However, BR-5 and BR-6 needed to be sampled using an MP-50 bladder pump due to the depths of the groundwater (around 50 ftbtoc). During sampling activities, MW-5 was pumped dry, and the recovery was poor. This is likely due to the dry season, and the well only had around 2 feet of water column as confirmed during gauging activities. TRC was only able to collect PFAS, Target Analyte List (TAL) Metals, and volatile organic compounds (VOCs) as a result of the poor recovery.

After completing the groundwater sampling on June 28, 2022, TRC demobilized from the site. The collected samples were stored on ice and submitted to Pace Analytical Laboratories in Newburgh, New York following standard chain of custody protocols. Thirteen groundwater samples were submitted for analysis using EPA method 8260C for Target Compound List (TCL) volatile organic compounds (VOCs), EPA method 8270 for TCL Semi-volatile Organic Compounds (SVOCs) plus 20 TICs, EPA method 8081 for TCL Pesticides, EPA method 8082 for TCL Polychlorinated biphenyl (PCBs), EPA method 6010 for Target Analyte List (TAL) Metals, and EPA Method 537 modified for full TAL PFAS. One sample (MW-5) was sampled for EPA method 8260C for Target Compound List (TCL) volatile organic compounds (VOCs), EPA method 6010 for Target Analyte List (TAL) Metals, and EPA Method 537 modified for full TAL PFAS due to the lack of groundwater volume. Additionally, TRC collected another full suite of sampling parameters for a Field Blank (FB-01), and an equipment blank (EB-01) was sampled for EPA Method 537 modified for full TAL PFAS.

PREPARED BY (OBSERVER):	REVIEWED BY:
PRINT NAME: Rich DePolo	PRINT NAME: Matt Hoskins

Dates: July 26 - 28, 2022

Photo 1: Photograph of MW-4DR after TRC installed a flag and cleared vegetation, facing south.

Photo 2: View of scrap metal pile near MW-6, facing northeast.

Photo 3: View of MW-7D and MW-7 after installation of a flag and clearing of vegetation, facing northwest.

Photo 4: View of drum and debris pile near the access road where the front gate is located, facing north.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Rich DePolo	1 of 5	NYSDEC	Mayer Landfill Blooming Grove, NY

Dates: July 26 - 28, 2022

Photo 5: View of large debris pile (remnant of vehicle) on the northwestern side of the property, facing west.

Photo 6: View of MW-2 after the installation of a flag marker, facing northeast.

Photo 7: View of former EPA excavation area, filled in the with gravel/item 4. Facing north.

Photo 8: View of sampling activities at MW-4DR using low-flow methodology. Facing south.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Rich DePolo	2 of 5	NYSDEC	Mayer Landfill Blooming Grove, NY

Dates: July 26 - 28, 2022

Photo 9: View of sampling activities at MW-8, facing southeast.

Photo 10: View of sampling activities at BR-3, facing north.

Photo 11: View of sampling activities at MW-11, facing west.

Photo 12: Photograph of drums near the front gate of the Site, facing north.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Rich DePolo	3 of 5	NYSDEC	Mayer Landfill Blooming Grove, NY

NYSDEC Mayer Landfill

Photograph Log Dates: July 26 - 28, 2022

Photo 13: Photograph of a drum located on the northeastern portion of the property, facing east.

Photo 14: Photograph of metal debris and a lumber pile near MW-4DR, facing north.

Photo 15: View of sampling activities at MW-5, facing northeast.

Photo 16: Photograph of the landfill area on the eastern-central portion of the Site. No evidence of stressed variation, or cap disruptions (i.e holes, depressions). Facing east.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
320919.0000 .0000	Rich DePolo	4 of 5	NYSDEC	Mayer Landfill Blooming Grove, NY

NYSDEC Mayer Landfill Photograph Log Dates: July 26 - 28, 2022

Photo 17: View of sampling activities at BR-6, facing northeast.

Photo 18: Photograph of a trail from the access road, leading to MW-11 and BR-7. Observed to be one of the better-maintained trails on the property, facing southeast.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Rich DePolo	5 of 5	NYSDEC	Mayer Landfill Blooming Grove, NY	*> T

			LOV	V FLOW GRO	JUNDW	ATER SAMP	LING RECO	JKD		
	PROJECT NAME	11	CB		I	OCATION ID	DA DA	5/11	122	
	PROJECT NUME	DIGY (L/		s	TART TIME	EN	DTIME	120	
	B	12-C/949	-dulled de	10	14	17:00		17:	40	
	SAMPLE ID	MW-	3	HOLE TIME 17;35	5	3360	35 PA	GE OI		
WELL DIA	METER (INCHES)		6 0		٦. ٢	Toruen			1	WELL INTEGRITY
			X1/4 \Bar{1}3/8			OTHER			CAP	YES NO N/A
TUBING ID	MENT POINT (MP)		F RISER (TOR)	TOP OF CASIN		OTHER			CASING LOCKED	\$ /===
INITIAL	, ,	10101		TOP OF CASING	-	OTHER			COLLAR	- -
(BMP)	1/2	,33 FT	(BMP)	13.27		ROT. CASING FICKUP (AGS)	2,0	FT	TOC/TOR DIFFERENCE	FT
WELL DI (BMP)	20	191 FT	SCREEN LENGTH	10.		MBIENT AIR	0.1	PPM	REFILL TIMES SETTING	SEC
WATER COLUMN	1,	08 FT	DRAWDOWN VOLUME		GAL A	ID WELL IOUTH	0,5	PPM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL. GAL/VOL		33 GAL	TOTAL VOL.	TW X well diam. square	D	RAWDOWN/			PRESSURE	
(column X	well diameter square	d X 0.041)	(mL per minute X tota	al minutes X 0.00026 ga	l/mL)	OTAL PURGED			TO PUMP	PSI
FIELD PAR	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE		DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOY (-	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 uni		(f/- 10% <10 ntu)	(+/- 10 mv)		COMMENTS
	BEGIN PUR		1							pi)
17:00	13,01	200	25,27	0.001	6.60	17.42	118	119	30	
17:10	13.10	200	25,17	0.001	6,4	17,52	9,2	51	36	
17:15	13.18	200	24.98	0.001	6.42	7,21	4,9	48	1-1-1	a e fi
17:20	13.22	200	24,96	0,001	6,5	77.39	0.0	45		process and the second
17:25	13.25	200	24,97	0,002	615	17,31	6.7	47	No. No.	
Misa	M.							-		
17:30	13,27	200	29,99	0.003	6.5	7.30	1.2	40	1//	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	70	V	
									1	
					 	1			-	
					-	1			-	
	FI	NAI STARII IZ	ED EIEI D DADA	METERS (to appr	opriata via	nificant figures SE	L		TEMP: nearest degree	
		- STABILIZ						1.1	pH: nearest teath (ex. 5 DO: nearest teath (ex. 5	3.51 = 3.5)
FOLIPMENT	DOCUMENTATIO	N.	27.09	0,003	6.5	1 1,30	1.2	40	ORP: 2 SF (44.1 = 44,	est tenth (6.19 = 6.2, 101 = 101) 191 = 190)
/ I	TYPE OF PUMP	>\0	ECON FLUIDS USED			PUMP/BLADDER MAT				DUIPMENT USED
SUBM	TALTIC ERSIBLE	Z'	IQUINOX DEIONIZED WATER	SILICON T TEFLON T	UBING	PVCP	EL PUMP MATERIAL UMP MATERIAL	•	WL METE	
BLADO			OTABLE WATER ITRIC ACID	HDPE TUB		TEFLO	NOBE SCREEN IN BLADDER		WQ METE TURB. ME	
OTHER	R		IEXANE AETHANOL	OTHER	ING	OTHER	}		PUMP OTHER	
ANALYTIC	AL PARAMETER	AND DESCRIPTION OF THE PARTY OF	THER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAME	TER	METHOD NUMBER	FIELD				MPLE LECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
X .	See Chain of Custod	у			-					
H.										
Н.		-								
H .					-					
PURGE OB:	SERVATIONS		***************************************		- T	SKETCH/NOTES				
PURGE WAT		NO	NUMBER OF GALLO GENERATED	ONS		A C		1. //	10	+ 6
NO-PURGE			If yes, purged approximat	tely I standing volume prior		7 20	mx B	NOV	CNG	04/ 01
UTILIZED	1/	2/		_mL for this sample locati		FIRST	+ ph/	ge.		
Sampler Sign	pature:		Print Name	or Refull		1	Morr	MS	DALL	out of
Checked By:	***************************************		Date.	127/12			·	1-0	1100	

LOW FLOW GROUNDWATER SAMPLING RECORD
PROJECT NAME PROJECT NUMBER
WELL DIAMETER (INCHES) 1 2 4 6 8 OTHER YES NO N/A
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 OTHER CASING LOCKED LOCKED
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR
INITIAL DTW 19, 14 FT FINAL DTW 1800 FT PROT. CASING 1,5 FT DIFFERENCE FT
WELL DEPTH 43, 25 FT SCREEN 20 FT AMBIENT AIR O. PPM SETTING SEC
WATER COLUMN PID WELL O DISCHARGE SEC
(final DTW - initial DTW X well diam. squared X 0.041) CALCULATED GAL GALVOL GALVOL DTAL VOL. DF GAL (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP) THE DTW (FT) PURCE PATE THE SECONDUCTANCE 100
TIME 0.0-0.33 ft PURGE RATE TEMP. (°C) (mS/cm) (mL/min) (+/-3 degrees) (+/-3%) (+/-0.1 units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) (+/-10 mv) REDOX (mv) (+/-10 mv) TOMMENTS COMMENTS COMMENT
BEGIN PURGING 43'
1475 14.15 200 24.47 0.147 7.96 1.30 10,7 159 28
14:30 14,25 200 13.50 0.185 7.76 1.68 14,3 166
14:35 17.31 200 12.18 0,193 7.64 1.66 9.5 10
14:40 12.61 156 11,92 0,189 7,44 1,53 5,2 186
14:45 17.93 100 11.82 0.188 7.39 1.49 3.7 192
4:50 12.01 100 12.03 0:1797.29 1.47 2.5 202
14:55 18:05 (00 12:07 0: (77 7.28), 47 1, 1 209
15:00 18.67 100 17.09 0.177 7.22 1.46 0.8 211
15.00 10.00 17.70 0.00 2.77
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) TEMP. nearest degree (ec. 10.1 = 10) COND-3 SF may (ex. 3333 = 3330, 0.696 = 0.696)
pff connect tentific 5, 53 = 5.5
[7,09] 0,177 7,22 1,46 6,8 211 TURB 3.55 mer, marcot tenth (6.19 = 62,101 = 101) TURB 3.55 mer, marcot tenth (6.19 = 62,101 = 101) ORP 2.55 (41.1 = 44, 01 = 190)
TYPE OF PUMP PERISTALTIC LIQUINOX SUBMERSIBLE DEIONIZED WATER BLADDER MITRIC ACID WATERA WATERA WATERA WETHANOL OTHER OTHER OTHER OTHER OTHER OTHER DECON FLUIDS USED TUBING-PUMP BLADDER MATERIAL SILICON TUBING S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PVC PUMP MATERIAL PID GEOPROBE SCREEN TURE METER PUMP OTHER
ANALYTICAL PARAMETERS
PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBERS X See Chain of Custody
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED SEPERATED SKETCH/NOTES - Clicky Rights (1917)
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED In to sampling or unit. for this sample focation.
PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sample focation. Sampler Signature. Print Name Rid Della
7 127 12 Door (PODUES)

LOW FLOW GROUNDWATER SAMPLING RECORD									
PROJECT NAME PROJECT NAME PROJECT NUMBER YOU GATE 127 22 STARTIME STARTIME SITE NAME NUMBER WAS MINIMALE TIME SITE NAME NUMBER 336035 OF									
WELL DIAMETER (INCHES) 1 4 6 8 OTHER YES NO N/A									
TUBING ID (INCHES) 1/8 3/8 1/2 5/8 OTHER CAP CASING CASING CAP CASING CASING CAP CASING CAP CASING CASING CAP CASING C									
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR									
INITIAL DTW 7.54 FT FINAL DTW PROT. CASING STICKUP (AGS) 2.0 FT TOC/TOR DIFFERENCE FT									
WELL DEPTH 24, 50 FT SCREEN 15 FT AMBIENT AIR 010 PPM SETTING SEC									
WATER COLUMN GAL PID WELL OI O PPM DISCHARGE SEC									
CALCULATED GAL GAL/VOL GAL (column X well diameter squared X 0 041) (column X well diameter squared X 0 041) (mL per minute X total minutes X 0.00026 gal/mL) Final DTW - initial DTW X well diam, squared X 0 041) DRAWDOWN/ PRESSURE TO PUMP PSI									
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)									
TIME 3-5 Minutes Drawdown Draw									
BEGIN PURGING									
11:00 90,7.53 200 20,73 1,3957,13 0.56 0,0 177 20									
11:05 7,54 200 20.08 0.3937,12 0,41 0,0 178									
11:10 7,60 200 18.70 0,399 6,99 0,25 0,0 199									
11:15 7.61 200 18.030, 402 6.890, 20 0,0 100									
11:20 7, 65 200 18.940. 402 6.91 0, 18 010 187									
11:25 2.62 200 19.01 0, 208 6,98 0, 17 0,0 18/									
11:30 7-70 300 19.10 0.377 7.11 0.18 000 128									
11:30 1:10 00 11:10 0, 5 1 1 1/01 0118 040 120									
TEMP: nearest degree (cv. 10.1 = 10)									
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) COND. 3 SF max (ex. 3333 = 3330, 0.666 = 0.696) pH nearest tenth (ex. 5.53 = 5.5)									
19, 10 0137 1101 0119 010 178 TURB: 3 SF max, masterit (6.19 = 6.2, 101 = 101) ORP 2 SF (41.1 = 44, 191 = 190)									
TUBING PUMP, BLADDER MATERIALS PERSTALTIC SUBMERSIBLE BLADDER VATTERA OTHER OTHER OTHER OTHER DECON FLUIDS USED LIQUINOX SILICON TUBING SILICON TUBING SILICON TUBING SILICON TUBING PVC PUMP MATERIAL PID WW MATERIAL PID WW METER TEFLON LINED TUBING TEFLON RED TUBING TOTHER OTHER OTHER OTHER OTHER OTHER OTHER DECON FLUIDS USED TUBING OF PVC PUMP MATERIAL PID WW METER TUBING OTHER									
ANALYTICAL PARAMETERS PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE, QC SAMPLE BOTTLE ID NUMBER FILTERED METHOD REQUIRED COLLECTED NUMBERS									
NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBERS X See Chain of Custody									
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO NUMBER OF GALLONS GENERATED SKETCH/NOTES									
NC-PURGE METHOD YES NO tfyes, purged approximately 1 standing volume prior UTILIZED									
Sampler Signature: Print Name RIL DIPUD									
Checked By: Date: 7 [7/]									

LOW FLOW GROUNDWATER SAMPLING RECORD	
PROJECT NAME Nayer LF LOCATION ID ML-MW-4DR DATE 7/26/22	
PROJECT NUMBER START TIME START TIME END TIME	
SAMPLE ID SAMPLE TIME SITE NAME/NUMBER PAGE	
MAN MW-4DK 15:25 336 (35) OF 1	
WELL DIAMETER (INCHES) 1 2 4 6 8 OTHER WELL INTEGRITY VES NO N/A	
TUBING 10 (INCHES) 1/8 1/4 3/8 1/2 5/8 OTHER CASING CAP CASING C	
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER LOCKED COLLAR	
INITIAL DTW 21.91 FT (BMP) 29.16 FT PROT. CASING 1.5 FT TOC/TOR DIFFERENCE FT	
WELL DEPTH (BMP) SCREEN 20 FT AMBIENT AIR O, PM SETTING SEC	
WATER COLUMN GAL PID WELL DAS PPM TIMER SETTING SEC	
CALCULATED 762 CITIZEN TOTAL VOL. 725 DRAWDOWN/ PRESSURE	
GAL/VOL GAL PURGED GAL TOTAL PURGED TO PUMP PSI (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONQUETANCE PH (units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) PUMP	
3-5 Minutes Drawdown (mL/min) (+/- 3 degrees) (mS/cm) (+/- 0.1 uruts) (+/- 10%) (+/- 10% <10 ntu) (+/- 10 mv) INTAKE COMMENTS (+/- 3%) (+/- 10%)	
BEGIN PURGING	
14.50 21.62 200 21175 0.309 8.19 8.71 0.0 62 901	
(4:55 27.71 200 16.26 0.317 7.16 9.21 0.0 124)	
15:00 29.01 200 14.29 0.3157.95 9.01 0.0 115	
15:05 29,10 200 14.07 0.313 1.96 8.95 0.0 121	
15.10 29,12 200 14,03 0,310 7.88 8.91 0,0 120	
15:15:29:14 200 14:01 0.3/1 7.86 8.3/ 0.0 119	
15:20 29, 16 200 13, 91 0, 305 7.75 7, 80 0,0 117 4	* 10
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) TEMP: incircut degree (ec. 10.1 = 10) (COND: 3.8F max (ex. 3333 = 3330, 0.696 = 0.696)	7
pH nearest teath (ex. 5.53 = 5.5) DO nearest teath (ex. 3.51 = 3.5)	
13.91 6.305 7.15 8.70 0.0 117 TURB: 3.57 mmx, marrest tenth (6.19 = 6.2, 101 = 101) ORP 25C (41.1 = 44, 191 = 190)	_
TYPE OF PUMP DECON FLUIDS USED TUBING PUMP BLADDER MATERIALS EQUIPMENT USED PERISTALTIC LIQUINOX SILICON TUBING S. STEEL PUMP MATERIAL WL METER	
SUBMERSIBLE DEIONIZED WATER TEFLON TUBING PVC PUMP MATERIAL PID BLADDER POTABLE WATER TEFLON LINED TUBING GEOPROBE SCREEN WO METER	-
WATTERA NITRIC ACID HDPE TUBING TEFLON BLADDER TURB. METER WATTERA LDPE TUBING OTHER PUMP	-
OTHER METHANOL OTHER	-
ANALYTICAL PARAMETERS PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID	-
NUMBER FILTERED METHOD REQUIRED COLLECTED NUMBERS X See Chain of Custody	
	-
	-
	-
	-
	-
PURGE OBSERVATIONS SKETCH/NOTES PURGE WATER YES NO NUMBER OF GALLONS () () () () () () () () () (
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior	
UTH LIZED to sampling or in L. for this sample location.	
Sampler Signature: Print Name Rich PSPOX Checked By: Date: 7/26/22	
Checked By: Date: 7/26/22	
	-

			LOW	FLOW GRO	UNDWA	TER SAMP	LING REC	ORD		
1	PROJECT NAME	Mayer	1 . 10.		LOC	CATION ID) P	ATE 1-7	7-72	
i	PROJECT NUMB	ER	<u>Landfi</u> 0744.04	11	STA	RT TIME 1		NO TIME	810	7 - St. 4
1	SAMPLE ID	Mw-2		PLETIMES	SIT	E NAME/NUMBE		AGE OF		
WELL DIAM	ETER (INCHES)		2 4]8	OTHER	V 17 10	7 12		WELL INTEGRITY YES NO N/A
TUBING ID (] 5/8	OTHER			CAP CASING	¾ − −
	ENT POINT (MP)	TOP OF		TOP OF CASING		OTHER			LOCKED COLLAR	<u> </u>
INITIAL D (BMP)	U.	, O _{FT}	FINAL DTW (BMP)			T. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
WELL DE (BMP)	ртн 68	.95 FT	SCREEN LENGTH		FT AMI	BIENT AIR	0.0	PPM	REFILL TIME SETTING	SEC
WATER COLUMN	64	.35 FT	DRAWDOWN VOLUME		GAL MOI	WELL UTH	0.4	PPM	DISCHARGE TIMER SETT	
CALCULA GAL/VOL	جلاا	GAL	TOTAL VOL. PURGED		GAL TOT	WDOWN/ 'AL PURGED			PRESSURE TO PUMP	PSI
	well diameter square			minutes X 0.00026 gal RIA (AS LISTED IN						79.5
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt. (+/- 10% <10 nt.		PUMP INTAKE DEPTH (ft)	COMMENTS
12710	BEGIN PUR	GING		(17-370)	- 1	1		3 1	1 142	
1720	5.66	256	18.45	() 253	8,15	12.49	0,0	176	40	
1725	5 73	250	14.88	0 259	8.18	13.62	0,0	178	40	
1730	577	350	14,79	0.359	8,11	13.39	0.0	185	40	
1735	5.80	250	14.40	N 258	8.12	13.27	0.0	187	40	
1740	5,80	250	19 12	0759	8,08	13.28	m n	186	40	
, , ,	3, 80	200	11.60	0, 201	0,00	15,00	0,0	1100		
								1		
	F	NAL COLUMN	LED FIELD DAD	METERS		Garat Garranic E	1)	L	TEMP : nearest degr	rec (ex. 10 1 = 10) ex. 3333 = 3330, 0.696 = 0.696)
	FI	NAL STABILIZ		METERS (to appr				1001	pH nearest tenth (ex DO nearest tenth (ex	c 5.53 = 5.5) c 3.51 = 3.5)
FOLUMENT	DOGUMENTA TIO		15	0.259	8.1	13.3	0.0	190	ORP 2 SF (44 1 = 4	arest tenth (6.19 = 6.2, 101 = 101) 4, 191 = 190)
1	DOCUMENTATION YPE OF PUMP	<u>D</u>	ECON FLUIDS USED			MP/BLADDER MATE		-		QUIPMENT USED
SUBM	TALTIC ERSIBLE		LIQUINOX DEIONIZED WATER	SILICON T TEFLON T	JBING	PVC PU	EL PUMP MATERIA JMP MATERIAL	ν ι .	WL MET PID	
BLADI		_ 🗆 :	OTABLE WATER	HDPE TUB			OBE SCREEN N BLADDER		WQ MET TURB. M PUMP	
WATT	R	□ ,	HEXANE METHANOL OTHER	OTHER OTHER	NG	OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC	AL PARAMETER									
	PARAME	ETER	METHOD NUMBER	FIFLD FOLTERED	PRESERV METI			SAMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
<u>x</u> .	See Chain of Custod	ly								
l H :										
	27)									
Ы.		<u> </u>								
- -	-									
PURGE OBS	SERVATIONS				SI	KETCH/NOTES				
PURGE WAT		NO NO	NUMBER OF GALLO GENERATED	ONS						
NO-PURGE	000	NO	If yes, purged approximat to sampling or	ely I standing volume prior _mL for this sample locat	on.					-6
UILLED										
Sampler Signa	ature:		Print Name TA	ylar Shar	1167					
Checked By:			Date:		1					
_										

*>TRC

LOW FLOW GROUNDWATER SAMPLING RECORD 10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

	LOV	V FLOW GRO	UNDWA	TER SAMP	LING RECO	ORD		
PROJECT NAME	Landfi)		LO	CATION ID		TEコーフ	277	
	170744.0		STA	ART TIME O		D TIME	3-22	-
SAMPLE ID		APLE TIME	SIT	E NAME/NUMBEI	790	GE 1	0830	
MW	5	0800	Ľ.	ENAMEMONIBE	r A	0	P	7 7 7
WELL DIAMETER (INCHES) 1	∑ 12 □ 4	□ 6 □]8 _	OTHER			-	WELL INTEGRITY YES NO N/A
	1/4	1/2] 5/8	OTHER			CAP CASING	蒸 二 一
	OF RISER (TOR)	TOP OF CASING	(100)	OTHER			LOCKED	
(BMP) 10.52 FT	FINAL DTW (BMP)		FT PRO	OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
(BMP) 330 FT	SCREEN LENGTH		FT AM	BIENT AIR	0.0	РРМ	REFILL TIM	ER SEC
WATER COLUMN 2. 78 FT	DRAWDOWN VOLUME			WELL OUTH	0.0	PPM	DISCHARGE TIMER SETT	
CALCULATED DUG		TW X well diam. square	1 X 0.041)	AWDOWN/	0,0	<u></u>	PRESSURE	TING SEC
(column X well diameter squared X 0.041)		al minutes X 0.00026 gal	GAL TO	TAL PURGED			TO PUMP	PSI
TIME DTW (FT) DUDGE DAY		ERIA (AS LISTED IN T					PUMP	
3-5 Minutes 0.0-0.33 ft (mL/min)	E TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)		INTAKE	COMMENTS
0740 BEGIN PURGING								
0750 11.72 200	18.56	0.320	7.27	14.24	82.5	107	10	Pump as low as
0759 12.45 200	16.23	0.330	7.27	3.82	84.1	109	10	we can get it.
0800 12,79 175	15.72	0.330	7.26	2.92	83.1	110	10	well dry-Sample
				,				
						1		
FINAL STARI	IZED FIELD BAD	AMETERS (to appr		f f18F			TEMP. nearest deg	
PHALSTADI						11.2	pH nearest tenth (e) DO nearest tenth (e)	x 351 = 3.5)
EQUIPMENT DOCUMENTATION	16	0.330	7,3	3.0	83.1	110	ORP 2 SF (44.1 = 4	earest tenth (6 19 = 6.2, 101 = 101) 44, 191 = 190)
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX	SILICON T		JMP/BLADDER MATE	<u>RIALS</u> EL PUMP MATERIAL		WL MET	EQUIPMENT USED TER
SUBMERSIBLE BLADDER	DEIONIZED WATER POTABLE WATER		NED TUBING	GEOPR	JMP MATERIAL OBE SCREEN		PID WQ ME	TER
WATTERA OTHER	NITRIC ACID HEXANE METHANOL	LDPE TUBI OTHER		OTHER			TURB. N	
OTHER ANALYTICAL PARAMETERS	OTHER	OTHER		OTHER			OTHER FILTERS	
PARAMETER PARAMETER	METHOD NUMBER		PRESER MET			MPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X See Chain of Custody								
	-							
PURGE OBSERVATIONS	MIMBER OF CO.	ONE	S	KETCHNOTES	_		-	
PURGE WATER YES NO CONTAINERIZED	NUMBER OF GALL GENERATED			0	nly ev	wyh	water	4 811
NO-PURGE METHOD YES NO UTILIZED	If yes, purged approximate to sampling or	ately I standing volume prior mL for this sample locati		YUA	vials, P	FAS,	and me	tals
Sampler Signature:	Print Name	.Shanley		Ь	offlewar	٠		to RII
Checked By:	Date:							

◆
TRC

LOW FLOW GROU	JNDW	ATER SAMPI	ING RECO	ORD		
PROJECT NAME SMPA Mayer LF	[I	OCATION ID	DA	7-26	-22	
PROJECT NUMBER	S	TART TIME	EN	- man 45°	The second of the second of	
SAMPLE ID SAMPLE TIME		U) ITE NAME/NUMBER	:00 PA		0:50	
MW-6 16:10	ľ	TE NAME TO ME		OF		WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2 4 6	8	OTHER			CAP	YES NO N/A
TUBING ID (INCHES) 1/8 🔎 1/4 1/4 1/2 1/2	5/8	OTHER			CASING LOCKED	菱 三 三
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING	(тос)	OTHER			COLLAR	- -
INITIAL DTW (BMP) FT (BMP)		ROT, CASING TICKUP (AGS)		FT	TOC/TOR DIFFERENCE	
WELL DEPTH (BMP) SCREEN LENGTH		ID MBIENT AIR	0.0	РРМ	REFILL TIME SETTING	SEC
	BAL N	ID WELL IOUTH	0.1	PPM	DISCHARGE TIMER SETT	
	DAL T	RAWDOWN/ OTAL PURGED	100		PRESSURE TO PUMP	PSI
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal in FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN T		50 E4674			PUMP	
TIME DTW (FT) PURGE RATE TEMP. (*C) SP. CONDUCTANCE (mS/cm)	pH (units (+/- 0.1 uni	DISS. O ₂ (mg/L)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv (+/- 10 mv)	INTAKE	COMMENTS
Drawdown (mL min) (7/- 3 degrees) (+/- 3%) SEGIN PURGING						
15-10-12						,
15:00 Begin promy						
15:15 12.59 250 30.96 0.350	7.90	2.80	54.3	50	18	
15 20 12.96 250 27.57 0.336	7.37	1.95	198	82	18	
15:25 Pump bartery died						
1000	batte		-			
1545 13.34 250 18.68 0.371	6,73		56.8	108	18	
15:50 13.42 250 20.08 0.356	6.7		61.3	107	18	
15:55 13.66 250 19.77 0.362	6.69	1,71	63.0	107	18	
16:00 13.30 250 19.54 ().365	6.7	5 1.68	62.7	106	18	
16:05 13.72 250 19.67 0.365	6.70) 1. +1	56.4	105	TEMP nearest dep	gee (ex 10 1 = 10) ex 3333 = 3330, 0.696 = 0.696)
FINAL STABILIZED FIELD PARAMETERS (to appro	priate sig	P 25000 1000 1	56.4	Ι	pH nearest tenth (ex DO nearest tenth (ex	x 5.53 = 5.5) x 3.51 = 3.5)
I 9, 7 0.365	6.4	1.7	56.9	110	ORP 2 SF (44 1 = 4	carest tenth (6 19 = 6.2, 101 = 101) 44, 191 = 190)
TYPE OF PUMP DECON FLUIDS USED		PUMP/BLADDER MATE	<u>ERIALS</u> EL PUMP MATERIAI		WL MET	EQUIPMENT USED TER
PERISTALTIC SUBMERSIBLE BLADDER BLADDE	BING	PVC PU	JMP MATERIAL OBE SCREEN		M PID W WQ ME	TER
WATTERA NITRIC ACID HEXANE LDPE TUBR		OTHER			TURB. N	METER
OTHER METHANOL OTHER OTHER OTHER OTHER		OTHER OTHER			OTHER FILTERS	S NO TYPE
ANALYTICAL PARAMETERS METHOD FIELD PARAMETER NUMBER ENTERPRIS				AMPLE	QC	SAMPLE BOTTLE ID
X See Chain of Custody	М	ETHOD REC	QUIRED COL	LECTED	COLLECTED	NUMBERS
						-
PURGE OBSERVATIONS		SKETCH/NOTES				
PURGE WATER YES NO NUMBER OF GALLONS						
NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior						
UTILIZED to sampling orml. for this sample locate						
Sampler Signature: Print Name T. 5 han ley						
Checked By: Date:						
A TOC						

TRC

LOW FLOW GROUNDWATER SAMPLING RECORD									
PROJECT NAME	1 1011	LOCATION ID DATE 1-77-7.7							
PROJECT NUMBER	Landf11 470744-04	START TIME 1050 END TIME 1205							
SAMPLE ID	SAMPLE TIME	SITE NAME/NUMBER PAGE							
MW-7	1135	OF WELL INTEGRITY							
WELL DIAMETER (INCHES)		8 OTHER CAP YES NO N/A							
TUBING ID (INCHES) 1/8	□ 1/4 □ 3/8 □ 1/2 □	S8 OTHER CASING LOCKED COLLAR							
MEASUREMENT POINT (MP)	P OF RISER (TOR) TOP OF CASIN	TOCKER							
INITIAL DTW (BMP) 2.92 FT	FINAL DTW (BMP)	FT STICKUP (AGS) FT DIFFERENCE FT							
(BMP) (BMP) FT	SCREEN LENGTH	FT AMBIENT AIR O O PPM SETTING SEC							
WATER COLUMN 13.79 FT	DRAWDOWN VOLUME (final DTW - initial DTW X well diam. squar	GAL MOUTH O. O PPM TIMER SETTING SEC							
CALCULATED 2.25 GAL (column X well diameter squared X 0.041)		GAL TOTAL PURGED TO PUMP PSI							
FIELD PARAMETERS WITH PROGRAM	STABILIZATION CRITERIA (AS LISTED IN	N THE QAPP)							
TIME 0.0-0.33 ft 0		PH (units)							
1050 BEGIN PURGING									
1100 3.26 250	23,25 0,433	7.16 1.82 41.0 111 15							
1105 326 250	19.69 0.431	7.00 1.14 59.9 118 15							
1110 3.30 250	18.34 0,440	0 6.92 1.09 78.3 113 15							
1115 3.32 250	17.72 0.447	16,01 0.40 10.8 100 13							
1120 3.51 25	0 17.55 0.499	9 6.75 0.92 93.1 1.05 15							
1125 3,32 25	0 16.42 0.455								
1130 3,32 25	0 16,4 7 0,459	6.66 0.87 90.4 101 15							
	 								
FINAL STAB	LIZED FIELD PARAMETERS (to app	TEMP nearest degree (ex. 10 1 = 10)							
	17 0.459	DO nearest tenth (ex. 3.5) = 3.5)							
EQUIPMENT DOCUMENTATION		W I I I I I I I I I I I I I I I I I I I							
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX DEIONIZED WATER DECON FLUIDS USED SILICON TEFLON								
SUBMERSIBLE BLADDER		LINED TUBING GEOPROBE SCREEN WQ METER							
WATTERA OTHER	HEXANE LDPE TUE METHANOL OTHER	OTHER OTHER							
OTHER ANALYTICAL PARAMETERS	OTHER OTHER	OTHER FILTERS NO. TYPE							
PARAMETER	METHOD FIELD NUMBER FILTERED	PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID METHOD REQUIRED COLLECTED COLLECTED NUMBERS							
X See Chain of Custody									
PURGE OBSERVATIONS PURGE WATER YES NO	NUMBER OF GALLONS	SKETCHNOTES							
CONTAINERIZED	GENERATED If yes, purged approximately 1 standing volume pro-								
UTILIZED	to sampling ormL for this sample loca								
Sampler Signature:	Print Name T. Shanley								
Checked By:	Date:								

CONTRACTOR OF THE PROPERTY OF

♦ TRC

LOW FLOW GROUNDWATER SAMPLING RECORD									
PROJECT NAME	in 1 ('1)	LOCATION ID	DATE						
PROJECT NUMBER 1270		START TIME	FND TIME	.22					
SAMPLE ID	SAMPLE TIME		146 17	26					
MW-1	1455	SITE NAME/NUMBER	7 PAGE \ OF						
WELL DIAMETER (INCHES) 1 2	4 6	8 OTHER		WELL INTEGRITY YES NO N/A CAP					
TUBING ID (INCHES) 1/8 1/4	3/8 1/2	5/8 OTHER		CASING F = =					
MEASUREMENT POINT (MP) TOP OF RISER	R (TOR) TOP OF CASING ((TOC) OTHER		COLLAR 💆 🚃					
(BMP) (BMP) (BMP)	L DTW	PROT. CASING STICKUP (AGS)		TOC/TOR DIFFERENCE FT					
(BMP) 21.72 FT LENG		PID FT AMBIENT AIR		REFILL TIMER SETTING SEC					
COLUMN [1.56 FT] VOLU	WDOWN UME G DTW - initial DTW X well diam. squared	PID WELL MOUTH		DISCHARGE TIMER SETTING SEC					
GALVOL 1.46 GAL PURG	L VOL. 2 CA	GAL DRAWDOWN/ TOTAL PURGED		PRESSURE TO PUMP PSI					
FIELD PARAMETERS WITH PROGRAM STABILIZ	ATION CRITERIA (AS LISTED IN T	ГНЕ QAPP)		DIAM.					
TIME DTW (FT) PURGE RATE T	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) DISS. O ₂ (mg/L) (+/- 0.1 units) (+/- 10%)	TURBIDITY (ntu) (+/- 10% < 10 ntu) REDOX (mv) (+/- 10 mv)	PUMP INTAKE COMMENTS DEPTH (ft)					
1415 BEGIN PURGING									
1425 11.12 250 2	3.61 0.049	6.74 2.51	35,7 152	20					
	0.96 0.052	6.01 2.31	45.9 161	20					
	9.46 0.052	5.76 2.49	69.7 170	20					
1440 11.58 250 19	9.58 0.048	5.63 2.27	77.8 176	20					
1110 11.00	9.80 0.047	5.57 2.29	77.0 183	20					
H50 11.72 250 1	8.66 0.048	5.51 2.42	75.2 186	20					
÷,									
FINAL STABILIZED I	FIELD PARAMETERS (to appro	ropriate significant figures[Sl	FJ)	TEMP : nearest degree (ex. 10 1 = 10) COND : 3 SF max (ex. 3333 = 3330, 0.696 = 0.696) pH nearest tenth (ex. 5.53 = 5.5)					
	19 0.048	5.5 2.4	25 2 191	DO: nearest tenth (ex. 3.51 = 3.5) TURB 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101) ORP 2 SF (44.1 = 44, 191 = 190)					
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON	FLUIDS USED	TUBING/PUMP/BLADDER MAT							
PERISTALTIC PERISTALTIC PERISTALTIC		TUBING S. STE	EL PUMP MATERIAL PUMP MATERIAL	WI METER Storing W Aich					
	LE WATER TEFLON LI	INED TUBING GEOP	ROBE SCREEN ON BLADDER	WQ METER TURB. METER					
WATTERA HEXAN OTHER METHA	ANOL OTHER		R	PUMP OTHER					
ANALYTICAL PARAMETERS OTHER	OTHER	ОТНЕ	R	FILTERS NO TYPE					
PARAMETER	METHOD FIELD NUMBER FILTERED		OLUME SAMPLE QUIRED COLLECTED	QC SAMPLE BOTTLE ID COLLECTED NUMBERS					
X See Chain of Custody									
-									
-									
PURGE OBSERVATIONS		SKETCH/NOTES							
	IBER OF GALLONS ERATED								
NO-PURGE METHOD YES NO If yes,	purged approximately 1 standing volume prior								
Sampler Signature: P	Print Name T. Shan Jey								
Checked By:	Date:								
A TOC									

TRC

LOW FLOW GROUNDWATER SAMPLING RECORD

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

	LOW	FLOW GROUND	VATER SAMPI	ING RECOR	RD		
PROJECT NAME			LOCATION ID	-13 DATE	-27-	-77	
PROJECT NUMBER	Wer Landfill 470744.	14	START TIME	5 END 1		900	
SAMPLE ID		ELETIME 870	SITE NAME/NUMBER			1	
WELL DIAMETER (INCHES)							WELL INTEGRITY YES NO N/A
TUBING ID (INCHES)	□□□ 4 8 □□ 1/4 □ 3/8	6 58	OTHER	y the section		CAP	YES NO N/A
	78 24 1/4 3/8 TOP OF RISER (TOR)	TOP OF CASING (TOC)	OTHER		Total Sa	LOCKED	* = =
INITIAL DTW (BMP)	FINAL DTW	FT	PROT. CASING STICKUP (AGS)	- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18		TOC/TOR DIFFERENCE	FT
WELL DEPTH 18.25	ECDEPN	FT	PID AMBIENT AIR	- 0	_	REFILL TIME SETTING	
WATER COLUMN 6.55	DRAWDOWN	GAL	PID WELL MOUTH	0.1	_	DISCHARGE TIMER SETTI	
CALCULATED 161	(final DTW - initial D TOTAL VOL.	TW X well diam. squared X 0.041	DRAWDOWN/		<u> </u>	PRESSURE	
GAL/YOL (column X well diameter squared X 0.0-		l minutes X 0.00026 gal/mL)	TOTAL PURGED			TO PUMP	PSI
3-5 Minutes 0.0-0.33 ft	GE RATE TEMP. (°C)	SP. CONDUCTANCE pH (u	nits) DISS. O ₂ (mg/L)	TURBIDITY (ntu) F		PUMP INTAKE	COMMENTS
OPIS BEGIN PURGING	nL/min) (+/- 3 degrees)	(+/- 3%)	(47- 1076)	(10 / To ma)	, ,,	DEPTH (ft)	
200	50 12.17	0.192 7.3	18 5.58	61,2	108	17	
00 20 10 110 0	50 11.87	0.154 6.9	_	52.8	127	17	
3000	50 11.87		37 2.44	46.3	123	17	
	150 11,90	0.1	34 1.92	44.6	115	17	
27.6	50 11.86		32 1.68	44 1	106	12	7
0750 13.72 29	2 -	0.248 6.3	30 1.51	44.3	97	17	
0755 13.84 2	50 11.61	01.	2 1.60	44.7	97	17	
0800 14.00 2	150 11.64		36 1.30	44.2	89	17	
0805 14.14 2	50 11.66	- 1	36 1.21	44.8	83	17	
	50 11.59		1.13	45.9	76	17	
10116	G () () ()		39 1.09	45.8	73	17	
	Y O 11. G O STABILIZED FIELD PAR				1 5	TEMP . nearest degre	ee (ex. 10 1 = 10) x. 3333 = 3330, 0.696 = 0.696)
	113	62101	ul i i	116 8	77	oll nearest tenth (ex. OO nearest tenth (ex. ILRR 3 SF max, near	5 53 = 5 5) 3 51 = 3 5) arest tenth (6 19 = 6 2, 101 = 101)
EQUIPMENT DOCUMENTATION	14	0.511 4	11 1.1	43.0	イン	ORP 2 SF (44 1 = 44	1, 191 = 190)
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX	TUB SILICON TUBING	NG/PUMP/BLADDER MAT	ERIALS EL PUMP MATERIAL	Б	WL METI	QUIPMENT USED ER
SUBMERSIBLE BLADDER	DEIONIZED WATER POTABLE WATER	TEFLON TUBING TEFLON LINED TU		UMP MATERIAL ROBE SCREEN	<u> </u>	PID WQ MET	
WATTERA	NITRIC ACID HEXANE	HDPE TUBING LDPE TUBING	OTHE			TURB. M PUMP	ETER
OTHER OTHER	METHANOL OTHER	OTHER OTHER	OTHE			OTHER FILTERS	NO TYPE
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER				IPLE ECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X See Chain of Custody							
H							
PURGE OBSERVATIONS PURGE WATER YES N	O NUMBER OF GAL	ons 2 ()	SKETCE/NOTES				
CONTAINERIZED CONTAINERIZED	GENERATED	100-00 March 100					
		ately I standing volume prior mL for this sample location.	-				
Sampler Signature:	Print Name	Shanley					
Checked By:	Date:						
·> TRC					LOW FLO		DWATER SAMPLING RECORI

		1	LOW	FLOW GROU	UNDWA	TER SAMP	ING REC	CORD		
PRO.	JECT NAME	44	1		LO	CATION ID 72	0 2 1	7-27	22	
PRO.	JECT NUMBI	Mayer	f toplor	1	ST	ART TIME	_	END TIME		
		470	744.04		-	U9	15	PAGE .	010	
SAM	PLE ID	3R-3	SAM (3945	SII	E NAME/NUMBER		\ of		
WELL BLANCE		٦. ٢	1		18	OTHER				WELL INTEGRITY YES NO N/A
WELL DIAMETER			<u> </u>] 5/8	OTHER			CAP CASING	$\frac{\lambda}{\lambda}$ - =
TUBING ID (INCE		- CO- CO- CO- CO- CO- CO- CO- CO- CO- CO	OF RISER (TOR)	TOP OF CASING		OTHER		9.5	LOCKED COLLAR	* = = = = = = = = = = = = = = = = = = =
MEASUREMENT	TOTAL (ME)	\(\frac{1}{2}\) ion	FINAL DTW			OT. CASING			TOC/TOR	
(BMP)	19.	46 FT	(BMP)		FT ST	ICKUP (AGS)		FT	DIFFERENCE REFILL TIME	a first the second second
(BMP)	62	.06 FT	SCREEN LENGTH		FT AM	BIENT AIR	0.0	PPM	SETTING	SEC
WATER COLUMN	4:	1.6 FT	DRAWDOWN VOLUME		GAL MC	O WELL OUTH	0.0	PPM	DISCHARGE TIMER SETT	
CALCULATED GAL/VOL	7.	8 GAL	TOTAL VOL.		GAL TO	AWDOWN/ TAL PURGED	1 1		PRESSURE TO PUMP	PSI
(column X well d			(mL per minute X total ABILIZATION CRITE	minutes X 0.00026 gal				1 2 2 2 2 2		
TIME C	OTW (FT) 0.0-0.33 ft	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)		ntu) REDOX (mv) ntu) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
2016	Prawdown EGIN PURO		((+/- 370)		P 200				
0925 1	5.82	300	10.72	0.428	7.69	3.35	0.0	177	35	
0930 1	5.78	275	10.85	0.426	7.65	2.92	0.0	181	35	
0935 1	5.87	275	11 02	0,426		2.70	0,0	187	35	
	5.96	275	10.92	0.425	7.60	2.65	0.0	191	35	
01101	2.10	¥ 1 J	10.1~	0.723	. 00	2.07				
									7	
				9						
	FI	NAL STABIL	IZED FIELD PARA	METERS (to appr	opriate sign	ificant figures[SF	 TD			ex 3333 = 3330, 0.696 = 0.696)
		TAL STADIL	T	0.425				100	pH nearest tenth (c) DO nearest tenth (c) TURB 1 SF max no	2. 5 53 = 5 5) 2. 3 51 = 3 5) earest tenth (6 19 = 6.2, 101 = 101)
EQUIPMENT DOC	UMENTATIO	ON .		0.725	7,0	1.7	0	1170	ORP 2 SF (44 1 = 4	4, 191 = 190)
	OF PUMP		DECON FLUIDS USED LIQUINOX	SILICON T		UMP/BLADDER MATI	ERIALS EL PUMP MATER	IAL	▼ WLMET	EQUIPMENT USED TER
SUBMERSII BLADDER		Ä	DEIONIZED WATER POTABLE WATER	TEFLON TO			UMP MATERIAL ROBE SCREEN		X PID X WQ ME	TER
WATTERA		- F	NITRIC ACID HEXANE	HDPE TUB		OTHER	N BLADDER R		TURB N PUMP	IETER
OTHER OTHER		$- \Box$	METHANOL OTHER	OTHER OTHER		OTHE			OTHER FILTERS	NO TYPE
ANALYTICAL I			метнор	FIELD	PRESE	EVATION VO	DLUME	SAMPLE	QC QC	SAMPLE BOTTLE ID
X See C	PARAME Chain of Custod		NUMBER	FILTERED	MET	THOD REG	QUIRED C	OLLECTED	COLLECTED	NUMBERS
H ==	Tanii or Custoo	<u> </u>		A STREET OF THE PARTY						
l H -			energy on the same							
			Company of the second							
			and the transfer of the second							
PURGE OBSERV	VATIONS YES	NO	NUMBER OF GALL	ONS		SKETCH/NOTES				_
CONTAINERIZEI	D 🗆	[2]	GENERATED							
NO-PURGE MET UTILIZED	HOD YES	NO	If yes, purged approxima to sampling or	ntely 1 standing volume prio mL for this sample locat				•		
				Shorte.						
Sampler Signature:			Print Name	. Shan try						
Checked By:			Date:							

↑
TRC

		LOW	FLOW GRO	UNDWAT	ERSAMPI	ING RECO	RD		
PROJECT NAME	May	er Land-	f:11	and the second	ATION ID a Q	5 DAT		5-22	
PROJECT NUMB		170744	<u>,,,,,</u>		RITIME		TIME,	1110	
SAMPLE ID	20.5		PLE TIME	SITE	NAME/NUMBER	040	GE 1	145	
			1112				OF		WELL INTEGRITY
WELL DIAMETER (INCHES)	The second second	9.0	_]s 🗀	OTHER			CAP	YES NO N/A
TUBING ID (INCHES)					OTHER			CASING LOCKED	
MEASUREMENT POINT (MP)	TOP OF	FINAL DTW	TOP OF CASING	(100)	OTHER			COLLAR	
(BMP) SY	54 11	(BMP)			T. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	
(BMP) 91	. 28 н	SCREEN LENGTH		FT AMI	MENT AIR	0.0	РРМ	REFILL TIME SETTING	, i.e.
WATER COLUMN 3). 7 FT	DRAWDOWN VOLUME	CM V	GAT MOI	WELL JTH	0.0	РРМ	DISCHARGE TIMER SETT	ING SEC
CALCULATED GALVOL	20 GAL	TOTAL VOL. PURGED	W X well diam, square	DRA	WDOWN/			PRESSURE TO PUMP	PSI
(column X well diameter squar	ed X 0.041)	(mL per minute X tota	d minutes X 0.00026 gal	/mL)	AL PURGED				
TIME DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
3-5 Minutes Drawdown () () BEGIN PUF	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (fi)	
1050	50	13.34	0.296	41.00	11.33	75.5	68	70	WL meter
10.55	50	-	0.293	10.93		76.6	40	70	caught a
10,00	1	US. X)	0.215	10. 5	_0,50	76.0	10	10	tubing.
1100		12.04	0.298	10.92	4.93	77.4	42	70	J
1105		11.96	0.298	10.88	4.29	76.6	46	70	
1110	T	12.01	0,296	10.69	4.02	86.4	40	70	
1115 51.20		,							
-	INAL STADILL	ZED EIEL D BAD	AMETERS (to app	rongiata signi	Scant Gaures SE	<u> </u>	L	TEMP nearest deg	ree (ex. 10 1 = 10) ex. 3333 = 3330, 0 696 = 0 696)
•	INAL STABILI	ZED FIELD FAR	CONTETERS (to appr	Topriate signi	ncant ngures(3)	,		pH nearest tenth (en DO nearest tenth (en	x 5 53 = 5 5)
EQUIPMENT DOCUMENTATI	ON						100	ORP 2 SF (44.1 = 4	14. 191 = 190)
TYPE OF PUMP PERISTALTIC	79	ECON FLUIDS USED LIQUINOX	SILICON	TUBING		EL PUMP MATERIAI	L	10 WL ME	TER
SUBMERSIBLE BLADDER		DEIONIZED WATER POTABLE WATER NITRIC ACID	TEFLON I	INED TUBING	GEOPI	UMP MATERIAL ROBE SCREEN ON BLADDER		PID WQ ME TURB.	TER
WATTERA OTHER		HEXANE METHANOL	LDPE TUE		OTHE	R		PUMP OTHER	
OTHER ANALYTICAL PARAMETER		OTHER	OTHER		ОТНЕ			FILTER	
PARAM	ETER	METHOD NUMBER	FIELD FILTERED	PRESER MET			AMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X See Chain of Custo	dy	-							
								_	-
					KETCHNOTES				
PURGE OBSERVATIONS PURGE WATER YE	S NO	NUMBER OF GALL	ONS	٥	SELECTED IES				
NO-PURGE METHOD YES	1 17 NO		stely 1 standing volume price	or					
UTILIZED	<u>. L. </u>	to sampling or	mL for this sample loca	aion.					
Sampler Signature:		Print Name	t-shanlay						
Checked By:		Date:							

◆ TRC

	LOW	FLOW GRO	UNDWAT	ER SAMPI	ING RECO	RD		
PROJECT NAME	.) 0		LOC	ATION ID BR	- (a DAT	5.29	8-22	
PROJECT NUMBER	THE RESERVE	11 011	STA	RTTIME		TIME		
SAMPLE ID	470744	1.09	SITI	O Y	20 PAG		030	+
BR-6		000				OF	,]
WELL DIAMETER (INCHES)	02 🔲 4	_ · _]s 🗀	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID (INCHES)		□12 □	5/8	OTHER			CAP CASING	$\ddot{x} = =$
MEASUREMENT POINT (MP) TOP OF		TOP OF CASING	(100)	OTHER			COLLAR	
INITIAL DTW 48.65 FT	FINAL DTW (BMP)	52.17		T. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENC	E FT
	SCREEN LENGTH		FT AMI	BIENT AIR	0.0	РРМ	REFILL TIM SETTING	SEC SEC
	DRAWDOWN VOLUME		GAL MOI	WELL JTH	0.0	PPM	DISCHARGE TIMER SETT	
	TOTAL VOL.	W X well diam, squared	DRA	WDOWN/			PRESSURE	PSI
GRETOL GRE	PURGED (mL per minute X tota	minutes X 0.00026 gal		AL PURGED			TO PUMP	131
FIELD PARAMETERS WITH PROGRAM STAI		SP. CONDUCTANCE (mS/cm)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)			COMMENTS
Drawdown Drawdown BEGIN PURGING		(+/- 3%)					DEI III (III)	
0930 51.0 40	13.49	1.44	11.95	2.22	53.0	155	65	
0935 40	14.71	1.39	11.93	1.72	48.6	168	65	WL meter caught
0940 40	15.23	1.42	11.96	1.82	49.9	172	65	on tubing.
0945 40	16.17	1.43	11.91	2.03	54.3	167	65	J
0950 40	16.91	1.42	11.86	2.18	54.9	164	65	
0955 52.17 40	17.61	1.42	11.85	2.38	53.0	161	65	
					-			
8								
								7.7
							TEMP nearest de	gree (ex. 10 1 = 10)
FINAL STABILIZ			opriate signi	ficant figures[SF	1)			(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5)
	18	1.42	11.9	2.3	53.0	160	TURB 3 SF max, r ORP 2 SF (44 1 =	nearest tenth (6 19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION TYPE OF PUMP D	ECON FLUIDS USED			MP/BLADDER MATE				EQUIPMENT USED
SUBMERSIBLE COPO I	LIQUINOX DEIONIZED WATER	SILICON T TEFLON T	UBING	PVC PI	EL PUMP MATERIAL UMP MATERIAL OBE SCREEN		WL ME PID WQ ME	
1.75 bladder = 1	POTABLE WATER NITRIC ACID HEXANE	HDPE TUB		_	N BLADDER			METER
OTHER 1	METHANOL OTHER	OTHER OTHER		OTHER	R		OTHER FILTER	
ANALYTICAL PARAMETERS	метнор	FIELD	PRESER			MPLE	QC	SAMPLE BOTTLE ID
PARAMETER X See Chain of Custody	NUMBER	FILTERED	METI	HOD REC	QUIRED COL	LECTED	COLLECTED	NUMBERS
								•
	-							
PURGE OBSERVATIONS			1 8	KETCENOTES				·
PURGE WATER YES NO	NUMBER OF GALL	ONS						
NO-PURGE METHOD YES NO	If yes, purged approxima	tely I standing volume prio mL for this sample locat						
UTILIZED	to sampling or	ail. for this sample local	IVII.					
Sampler Signature:	Print Name	. Shantay						
Checked By:	Date:							

₹
TRC

DATE: Thursday, February 9, 2023

REPORT NO. 20230209

PAGE NO. 1 OF 2

PROJECT NO. 470744.0000.0004

LOGBOOK NO. 550F PAGES 27 to 29

DAILY FIELD ACTIVITY REPORT

PROJECT Mayer Land	fill		WEATHER	TIME	TEMP.	PRECIP.	WIND (MPH)	WIND (DIR)		
LOCATION 94 Peddler I	Hill Road, I	Monroe, NY	Clouds, Rain	1030	38°F	None	0-5	ENE		
ATTACHMENTS Photo Log		_	Clouds, Rain	1115	38°F	None	0-5	ENE		
SITE CONDITIONS: Clouds, Ra	in									
WORK GOAL FOR DAY: Resid	lential pota	ble water sam	pling							
		PERSO	NNEL ON SIT	E:						
NAME			AFFILIATION		ARR	IVAL TIME	AL TIME DEPART TIME			
Rich DePolo		TRC Engineers	s, Inc.		10:30		11:15			
Taylor Shanley		TRC Engineers	s, Inc.		10:30		11:15			
		EQUIPA	MENT ON SIT	E:	·					
TYPE		MODEL	TYPE MODEL							
Water Quality Meter	Horiba U-	52	Not Applica	ıble		Not Appl	icable			
		HEAL	TH & SAFETY	·•						
PPE REQUIRED:	EVEL D	LEVEL	C LEVI	EL B	LEVEL A	. 1	HASP? YE	ES		
SITE SAFETY OFFICER: Rich De	Polo									
H & S NOTES: Site work performed	in Level D	PPE								

DATE: Thursday, February 9, 2023

REPORT NO. 20230209

PAGE NO. 2 OF 2

PROJECT NO. 470744.0000.0004

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) arrived at 94 Peddler Hill Road, Monroe, NY, adjacent to the Mayer Landfill Site (Site) to conduct a potable water sampling event on February 9, 2023. The water samples were collected at the request of the property owner.

Prior to sampling the potable well from the kitchen sink, the tap was run for at least 5 minutes, and water quality parameters were monitored using a Horiba U-52 monitor. The sample was then collected directly from the kitchen tap, along with all QA/QC sample requirements. The tap was considered an acceptable conduit to sample as the residence did not have any water treatment/filtration system present and therefore the sample was representative of potable well conditions.

After completing the residential potable water sampling on February 9, 2023, TRC demobilized from the site and submitted the samples to the Pace Analytical Laboratories Service Center in Rotterdam, New York on ice. The potable water sample was submitted for analysis using EPA Method 537 modified for full TAL PFAS.

PREPARED BY (OBSERVER):	REVIEWED BY:
PRINT NAME: Rich DePolo	PRINT NAME: Matt Hoskins

NYSDEC Mayer Landfill (94 Peddler Hill Road)

Photograph Log Date: February 9, 2023

Photo 1: Photograph of an old/not in use well located in the front yard of 94 Peddler Hill Road, casing was rusted and well was in poor condition. Facing southeast.

Photo 2: View of the current/in-use potable well in the front yard of 94 Peddler Hill Road, facing south.

Photo 3: Photograph of the sampling location (kitchen sink), during water quality parameter monitoring prior to sampling within the 94 Peddler Hill Road residence.

Photo 4: View of potable water sampling, directly from the kitchen tap.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:
470744.0000				Mayer Landfill (94 Peddler
.0004	Rich DePolo	1 of 1	NYSDEC	Hill Road)
.0004				Monroe, NY

DAILY INSPECTION REPORT - No. 20230720

0-5 mph N

(Mayer Landfill), Site No. 336027

NYSDEC Division of Environme	ental Remediation	کے	NEW YORK STATE OF OPPORTUNITY	Departmen Environmer Conservation	ntal	DEC Insp. – N/A
Site Location: Mayer Landfill, Blooming Grove, New York					DEC PM – Robert Strang Contractor Supt. – N/A	
	Weather Co	nditio	ns			•
General Description	Sunny, Clear	AM	N/A	F	M	Engineer PM – Matthew Hoskins
Temperature	80°F	AM	N/A	P	M	Engineer Insp Rich DePolo &

Page 1 of 8

Date: 07/20/2023

Taylor Shanley

Health	ጼ	Safety
Health	CX	Saletv

Wind

If any box below is checked "Yes".		"Illastite O Osfate.	O = 11
IT 3NV NOV NOIOW IS CHACKED "YES"	nrovide evhianation linder	"HOSITH X. SSTATIV	I Ammonte"
II ally box below is cliecked i es i	. Di Ovide exbialiationi undei	Health & Jaiety	COMMENTS.

Were there any changes to the Health & Safety Plan?	*Yes	No	NA X
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No	NA X
Were there any nuisance issues reported/observed on this date?	*Yes	No	NA X

Health & Safety Comments

Site work performed in Level D PPE.

Summary of Work Performed	Arrived at site:	10:30	Departed Site:	13:30
---------------------------	------------------	-------	----------------	-------

TRC Engineers, Inc. (TRC) performed a severe weather inspection and attempted product recovery from monitoring well MW-4R on July 20, 2023 at the Mayer Landfill site (Site) located on Prospect Road in Blooming Grove, New York. The objective of the Site inspection was to document conditions of the engineering controls (monitoring well network, gated access road, and cover system) after severe weather events and to attempt product recovery from monitoring well MW-4R. All Site work was performed in accordance with the Site Management Plan (SMP) dated April 2015.

The Site inspection included performing a visual inspection of the monitoring well network. All fourteen monitoring wells (MW-11, BR-7, MW-4R, MW-4DR, BR-3, BR-5, BR-6, MW-13, MW-8, MW-6, MW-7, MW-7D, MW-2 and MW-5) were located and observed in good condition, except for MW-4R which contained product as noted in prior inspection reports. Orange surveying tape to flag paths to the wells, high visibility fiberglass markers, and orange paint were observed at each well. It is recommended that the flags/markers be inspected and replaced every inspection and sampling event as appropriate.

As noted above, product has been observed in monitoring well MW-4R preventing sample collection. Product was observed on the top of the polyvinyl chloride (PVC) riser and on the walls of the riser, suggesting that vandalism may have occurred. While on-Site, TRC attempted product recovery using high-density polyethylene (HDPE) bailers. Due to recent heavy rains, a high water level was encountered in the well. TRC purged approximately seven gallons of water from the well before encountering product. A sheen was not observed on the surface of the purged water. At least six inches of viscous product was encountered in the bottom of the well (at approximately 19.5 feet below ground surface). TRC was unable to collect product with a bailer due to the viscosity. TRC recommends that the product be removed with a vactor truck. All purged water was containerized in a steel, 55-gallon drum and was staged on-Site beside the well. Used bailers, rags, and nitrile gloves were double bagged using heavy duty contractor bags and staged on-Site beside the drum. Transport and off-Site disposal will be arranged following complete product recovery.

The Site inspection also included performing a visual inspection of the gated access road and cover system. The access gate was observed in good condition and was locked upon arrival and departure. To access the Site, field staff contacted the property owner, William Mayer. The lock installed by TRC field staff in 2022 had been removed and replaced with a lock by the property owner (access code 7878). Field staff encountered a shipping container blocking the access road and informed the property owner that it must be promptly removed. During the Site walk, the cover system was observed in good condition with no signs of erosion, cracks, settlement, or seeps. Multiple hunting tree stands were encountered across the Site. Additionally, TRC noted that two drums previously observed in the northeastern portion of the Site (near MW-11, BR-7, and the access gate) had been removed. According to prior reports, the drums were empty.

Overall, the engineering controls were observed in good condition and were not compromised during recent severe weather events.

DAILY INSPECTION REPORT - No. 20230720

(Mayer Landfill), Site No. 336027

Vere there any vehicles which did not of Vere there any vehicles which were no Vere there any vehicles which were no Versonnel and Equipment Individual Rich DePolo Taylor Shanley	t tarped? t decontaminated prior to exiting the		* Yes * Yes	No	NA X
Personnel and Equipment Individual Rich DePolo	Company	ne work site?	* Yes		
Individual Rich DePolo			163	No	NA X
Rich DePolo					_
		Trac	le	То	tal Hours
Taylor Shanley	TRC Engineers, Inc.	Geolo			3
	TRC Engineers, Inc.	Engin	eer		3
	+				
	+				
Equipment Description	Contractor/Vendor	•	Quantity		Used
HDPE Bailers	Pine Environmental		4		2
					-

Page 2 of 8
Date: 07/20/2023

DAILY INSPECTION REPORT - No. 20230720 (Mayer Landfill), Site No. 336027

Material Description	Imported/ Delivered to Site	Exported off Site	Waste P		Source or Disposal Facility (If Applicable)	Daily Loads	Daily Weight (tons)*
	-						

*On-Site scale for off-site shipn			ial received				
Equipment/Material Track One drum with approximately s			from MW-4R ar	nd a contra	ctor had with used hailers rads	and nitrile	aloves is
currently staged on-Site near M	1W-4R for disp	osal.		ia a contra	otor bag war abou banoro, rage	, and man	giovoc io
Visitors to Site							
Name -		T	D	. ()	Fortage of Fred		77
Name			Represer	iting	Entered Excl	1	Z Zone
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
					Yes	No	
Site Representatives					I		
Name			Renr	esenting			
			Порі		·		

Page 3 of 8

Date: 07/20/2023

DAILY INSPECTION REPORT - No. 20230720

Page 4 of 8
Date: 07/20/2023 (Mayer Landfill), Site No. 336027

Project Schedule Comments
A contractor to remove product from MW-4R with a vactor truck will be scheduled upon NYSDEC-approval.
Laura Bandina
Issues Pending
Product recovery from MW-4R, and disposal of purge water and solids pending.
Interaction with Public, Property Owners, Media, etc.
William Mayer (property owner) arrived at the Site to unlock the entrance gate for field staff. The lock previously installed by TRC field staff was removed and replaced with the property owner's lock. The access code is 7878.

Include (insert) figures with markups showing location of work and job progress

Page 5 of 8
Date: 07/20/2023 (Mayer Landfill), Site No. 336027

Site Photographs (Descriptions Below)

Photo 1: View of the access gate and storage container, facing south

Photo 2: View of easement area in central portion of the Site, facing west.

Photo 3: View of monitoring well MW-6, facing northeast.

Photo 4: View of monitoring well MW-8, facing south.

Photo 5: View of monitoring well BR-3, facing northeast.

Photo 6: View of tree stand in eastern portion of the Site, facing north.

Photo 7: View of bailer after being remove from MW-4R.

Photo 8: View of MW-4R top of riser.

Photo 9: View of viscous product from the bottom of MW-4R on measuring tape.

Photo 10: View of staging area with labeled drum and contractor bag near MW-4R.

Comments

Site Inspector(s): Rich DePolo, Taylor Shanley

Date: 7/20/2023

REMEDIAL ACTIVITIES AT PROPERTIES

Page **7** of **8**

Date: 07/20/2023

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes ⊠	No □	N/A□
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No ⊠	N/A□
Containers are in good condition or properly overpacked?	Yes □	No □	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No ⊠	N/A□
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes ⊠	No □	N/A□
Piles are securely covered when not in use?	Yes □	No □	N/A⊠
Containers are closed when not in use?	Yes ⊠	No □	N/A□
Staging areas should be inspected periodically and any issues addressed immediately?	Yes ⊠	No □	N/A□
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes ⊠	No □	N/A□
If any issues noted, has Contractor been notified?	Yes □	No □	N/A⊠
<u>Comments:</u>			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No □	N/A⊠
Were there any odors detected on this date?	Yes □	No □	N/A⊠
Was noise outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Was turbidity checked at the outfall(s)?	AM □	PM □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠

DAILY INSPECTION REPORT - No. 20230720 (Mayer Landfill), Site No. 336027

If yes, has Contractor been notified?	Yes □	No □	N/A⊠
Comments:			

Page 8 of 8

Date: 07/20/2023

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind,	Yes □	No □	N/A⊠
geothermal, biomass and biogas)?			,
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-	Yes □	No □	N/A⊠
road trucks and non-road equipment?	103 🗆	110 🗅	14/71
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No □	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR	V 🗆	N- D	NI/A 🖂
Part 217-3?	Yes □	No □	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No □	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and	, ,		NI/A 🖂
is it complied with?	Yes □	No □	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set	, ,		NI/A 🖂
points, have programable thermostats been installed?	Yes □	No □	N/A⊠
Are products and materials used in performance of the work appropriately	V 🗆	N- C	NI/A 🖂
certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No □	N/A⊠
Are resiliency features included in the design, or completed remedy properly			
installed and/or maintained (flood control, storm water controls, erosion	Yes □	No □	N/A⊠
measures, etc.)?			
Are green remediation elements included in the design, or completed remedy			
properly installed and/or maintained (e.g., porous pavement, geothermal,	Yes □	No □	N/A⊠
variable speed drives, native plantings, natural stream bank restoration, etc.)?			
	Yes □	No □	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No □	N/A⊠
Comments:			

^{*} BART – Best Available Retrofit Technology

APPENDIX E

TRC ENGINEERS, INC.

JUNE 2025

			LOV	V FLOW GRO	JUNDW	ATER SAMP	LING RECO	JKD		
	PROJECT NAME	11	CB		I	OCATION ID	DA DA	5/11	122	
	PROJECT NUME	DIGY (L/		s	TART TIME	EN	DTIME	120	
	B	12-C/949	-dulled de	10	14	17:00		17:	40	
	SAMPLE ID	MW-	3	HOLE TIME 17;35	5	3360	35 PA	GE OI		
WELL DIA	METER (INCHES)		6 0		٦. ٢	Toruen			1	WELL INTEGRITY
			X1/4 \Bar{1}3/8			OTHER			CAP	YES NO N/A
TUBING ID	MENT POINT (MP)		F RISER (TOR)	TOP OF CASIN		OTHER			CASING LOCKED	\$ = =
INITIAL	, ,	10101		TOP OF CASING	-	OTHER			COLLAR	- -
(BMP)	1/2	,33 FT	(BMP)	13.27		ROT. CASING FICKUP (AGS)	2,0	FT	TOC/TOR DIFFERENCE	FT
WELL DI (BMP)	20	191 FT	SCREEN LENGTH	10.		MBIENT AIR	0.1	PPM	REFILL TIMES SETTING	SEC
WATER COLUMN	1,	08 FT	DRAWDOWN VOLUME		GAL A	ID WELL IOUTH	0,5	PPM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL. GAL/VOL		33 GAL	TOTAL VOL.	TW X well diam. square	D	RAWDOWN/			PRESSURE	
(column X	well diameter square	d X 0.041)	(mL per minute X tota	al minutes X 0.00026 ga	l/mL)	OTAL PURGED			TO PUMP	PSI
FIELD PAR	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE		DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOY (-	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 uni		(f/- 10% <10 ntu)	(+/- 10 mv)		COMMENTS
	BEGIN PUR		1							pi)
17:00	13,01	200	25,27	0.001	6.60	17.42	118	119	30	
17:10	13.10	200	25,17	0.001	6,4	17,52	9,2	51	36	
17:15	13.18	200	24.98	0.001	6.42	7,21	4,9	48	1-1-1	a e fi
17:20	13.22	200	24,96	0,001	6,5	77.39	0.0	45		P-10
17:25	13.25	200	24,97	0,002	615	17,31	6.7	47	Name of	
Misa	M.							-		
17:30	13,27	200	29,99	0.003	6.5	7.30	1.2	40	1//	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	70	V	
									1	
					 	1			-	
						1			-	
	FI	NAI STARII IZ	ED EIEI D DADA	METERS (to appr	opriata via	nificant figures SE	L		TEMP: nearest degree	
		- STABILIZ						1.1	pH: nearest teath (ex. 5 DO: nearest teath (ex. 5	3.51 = 3.5)
FOLIPMENT	DOCUMENTATIO	N.	27.09	0,003	6.5	1 1,30	1.2	40	ORP: 2 SF (44.1 = 44,	est tenth (6.19 = 6.2, 101 = 101) 191 = 190)
/ I	TYPE OF PUMP	>\0	ECON FLUIDS USED			PUMP/BLADDER MAT				DUIPMENT USED
SUBM	TALTIC ERSIBLE	Z'	IQUINOX DEIONIZED WATER	SILICON T TEFLON T	UBING	PVCP	EL PUMP MATERIAL UMP MATERIAL	•	WL METE	
BLADO			OTABLE WATER ITRIC ACID	HDPE TUB		TEFLO	NOBE SCREEN IN BLADDER		WQ METE TURB. ME	
OTHER	R		IEXANE AETHANOL	OTHER	ING	OTHER	}		PUMP OTHER	
ANALYTIC	AL PARAMETER	AND DESCRIPTION OF THE PARTY OF	THER	OTHER		OTHER			FILTERS	NO. TYPE
	PARAME	TER	METHOD NUMBER	FIELD				MPLE LECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
X .	See Chain of Custod	у			-					
H.										
Н.		-								
H .					-					
PURGE OB:	SERVATIONS		***************************************		- T	SKETCH/NOTES				
PURGE WAT		NO	NUMBER OF GALLO GENERATED	ONS		A C		1. //	10	+ 6
NO-PURGE			If yes, purged approximat	tely I standing volume prior		7 20	mx B	NOV	CNG	04/ 01
UTILIZED	1/	2/		_mL for this sample locati		FIRST	+ ph/	ge.		
Sampler Sign	nature:		Print Name	or Refull		1	Morr	MS	DALL	out of
Checked By:	***************************************		Date.	127/12			·	1-0	1100	

LOW FLOW GROUNDWATER SAMPLING RECORD	
PROJECT NAME PROJECT NUMBER START TIME STAR	
WELL DIAMETER (INCHES) 1 2 4 6 8 OTHER YES NO N/A	
TUBING ID (INCHES) 1/8 3/8 1/2 5/8 OTHER CASING LOCKED LOCKED	
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR	_
INITIAL DTW 19, 14 FT FINAL DTW 18,07 FT PROT. CASING STICKUP (AGS) 1,5 FT DIFFERENCE F	T o
(BMP) 73, 23 FT LENGTH 20 FT AMBIENT AIR 0. PPM SETTING SE	c
WATER COLUMN DRAWDOWN GAL PID WELL O PPM DISCHARGE SECTING SECTION SEC	:C
(final DTW - initial DTW X well diam. squared X 0.041) TOTAL VOL. PURGED (column X well diameter squared X 0.041) TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 gal/mL) (mL per minute X total minutes X 0.00026 gal/mL)	SI
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP) TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (units) DISS. O2 (mg/L) TURBIDITY (ntu) REDOX (mv) PUMP	
11ME 0.0-0.33 ft On-20.33 ft Drawdown (mL/min) (+/- 3 degrees) (mS/cm) (+/- 0.1 units) (+/- 0.0 units) (+/- 10% <10 tutu) (+/- 10 mv) DEPTH (ft) COMMENTS	
BEGIN PURGING 41	
1425 14.15 200 24.47 0.147 7.96 1.30 10,7 159 28	
14:30 14.25 200 13.50 0.185 7.76 1.68 14.3 166	
14:35 17.31 200 12.18 0,193 7.64 1.66 9.5 172	
19:40 17.61 156 11.92 01 189 7.44 1.53 5,2 186	
14:45 17.93 100 11.82 0.1887.39 1.49 3.7 192	
14:50 13.01 100 12.03 0.179 7.29 1.47 2.5 207	
14:35 18:05 100 12:07 0:1777.281,47 1,9 209	
15:00 18.67 100 17,09 0. 177 7,221,46 0.8 211	
TEMP: tearest degree (ec. 10.1 = 10)	
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) COND: 3 NF max (ex. 3332 = 3330, 6.696 = 0.696) PRO Indicate that (ex. 5.53 = 5.5) DO Indicate that (ex. 5.53 = 5.5)	
17,09 0,177 7,22 1, 46 6, 8 211 TURB: 3 SF max, marked tenth (6,19 = 6.2, 101 = 101) ORP. 2 SF (44.1 = 44, 191 = 190)	
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON FLUIDS USED LIQUINOX SUBJECT TUBING PUMP BLADDER MATERIALS PERISTALTIC LIQUINOX SUBJECT TUBING STATE AND THE PLOT TUBING STATE AND THE PUMP AND THE PU	
ANALYTICAL PARAMETERS METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID)
PARAMETER NUMBER FILTERED METHOD REQUIRED COLLECTED NUMBERS X See Chain of Custody	
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO NUMBER OF GALLONS GENERATED GENERATED GENERATED UTILIZED SKETCH/NOTES SKETCH/NOTES SKETCH/NOTES SKETCH/NOTES - S/GHT B/JOCK/GGPC / IN WP/J UTILIZED SKETCH/NOTES - S/GHT B/JOCK/GGPC / IN WP/J W/GENERATED TO SAMPLING OF MICH. OF this sample location.	
PURGE WATER CONTAINERIZED SON NUMBER OF GALLONS GENERATED SET OF STANDING OF Signature. NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or	

LOW FLOW GROUNDWATER SAMPLING RECORD
PROJECT NAME PROJECT NAME PROJECT NUMBER YOU GATE 127 22 STARTIME STARTIME SITE NAME NUMBER WAS MINIMALE TIME SITE NAME NUMBER 336035 OF
WELL DIAMETER (INCHES) 1 4 6 8 OTHER YES NO N/A
TUBING ID (INCHES) 1/8 3/8 1/2 5/8 OTHER CAP CASING CASING CAP CASING CASING CAP CASING CAP CASING CASING CAP CASING C
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR
INITIAL DTW 7.54 FT FINAL DTW PROT. CASING STICKUP (AGS) 2.0 FT TOC/TOR DIFFERENCE FT
WELL DEPTH 24, 50 FT SCREEN 15 FT AMBIENT AIR 010 PPM SETTING SEC
WATER COLUMN GAL PID WELL OI O PPM DISCHARGE SEC
CALCULATED GAL GAL/VOL GAL (column X well diameter squared X 0 041) (column X well diameter squared X 0 041) (mL per minute X total minutes X 0.00026 gal/mL) Final DTW - initial DTW X well diam, squared X 0 041) DRAWDOWN/ PRESSURE TO PUMP PSI
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)
TIME 3-5 Minutes Drawdown Draw
BEGIN PURGING
11:00 90,7.53 200 20,73 1,3957,13 0.56 0,0 177 20
11:05 7,54 200 20.08 0.3937,12 0,41 0,0 178
11:10 7,60 200 18.70 0,399 6,99 0,25 0,0 199
11:15 7.61 200 18.030, 402 6.890, 20 0,0 100
11:20 7, 65 200 18.940. 402 6.91 0, 18 010 187
11:25 2.62 200 19.01 0, 208 6,98 0, 17 0,0 18/
11:30 7-70 300 19.10 0.377 7.11 0.18 000 128
11:30 1:10 00 11:10 0, 5 1 1 1/01 0118 040 120
TEMP: nearest degree (cv. 10.1 = 10)
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) COND. 3 SF max (ex. 3333 = 3330, 0.666 = 0.696) pH nearest tenth (ex. 5.53 = 5.5)
19, 10 0137 1101 0119 010 178 TURB: 3 SF max, masterit (6.19 = 6.2, 101 = 101) ORP 2 SF (41.1 = 44, 191 = 190)
TUBING PUMP, BLADDER MATERIALS PERSTALTIC SUBMERSIBLE BLADDER VATTERA OTHER OTHER OTHER OTHER DECON FLUIDS USED LIQUINOX SILICON TUBING SILICON TUBING SILICON TUBING SILICON TUBING PVC PUMP MATERIAL PID WW MATERIAL PID WW METER TEFLON LINED TUBING TEFLON RED TUBING TOTHER OTHER OTHER OTHER OTHER OTHER OTHER DECON FLUIDS USED TUBING OF PVC PUMP MATERIAL PID WW METER TUBING OTHER
ANALYTICAL PARAMETERS PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE, QC SAMPLE BOTTLE ID NUMBER FILTERED METHOD REQUIRED COLLECTED NUMBERS
NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBERS X See Chain of Custody
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO NUMBER OF GALLONS GENERATED SKETCH/NOTES
NC-PURGE METHOD YES NO tfyes, purged approximately 1 standing volume prior UTILIZED
Sampler Signature: Print Name RIL DIPUD
Checked By: Date: 7 [7/]

LOW FLOW GROUNDWATER SAMPLING RECORD	
PROJECT NAME Nayer LF LOCATION ID ML-MW-4DR DATE 7/26/22	
PROJECT NUMBER START TIME START TIME END TIME	
SAMPLE ID SAMPLE TIME SITE NAME/NUMBER PAGE	
MAN MW-4DK 15:25 336 (35) OF 1	
WELL DIAMETER (INCHES) 1 2 4 6 8 OTHER WELL INTEGRITY VES NO N/A	
TUBING 10 (INCHES) 1/8 1/4 3/8 1/2 5/8 OTHER CASING CAP CASING C	
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER LOCKED COLLAR	
INITIAL DTW 21.91 FT (BMP) 29.16 FT PROT. CASING 1.5 FT TOC/TOR DIFFERENCE FT	
WELL DEPTH (BMP) SCREEN 20 FT AMBIENT AIR O, PM SETTING SEC	
WATER COLUMN GAL PID WELL DAS PPM TIMER SETTING SEC	
CALCULATED 762 CITIZEN TOTAL VOL. 725 DRAWDOWN/ PRESSURE	
GAL/VOL GAL PURGED GAL TOTAL PURGED TO PUMP PSI (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONQUETANCE PH (units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) PUMP	
3-5 Minutes Drawdown (mL/min) (+/- 3 degrees) (mS/cm) (+/- 0.1 uruts) (+/- 10%) (+/- 10% <10 ntu) (+/- 10 mv) INTAKE COMMENTS (+/- 3%) (+/- 10%)	
BEGIN PURGING	
14.50 21.62 200 21175 0.309 8.19 8.71 0.0 62 901	
(4:55 27.71 200 16.26 0.317 7.16 9.21 0.0 124)	
15:00 29.01 200 14.29 0.3157.95 9.01 0.0 115	
15:05 29,10 200 14.07 0.313 1.96 8.95 0.0 121	
15.10 29,12 200 14,03 0,310 7.88 8.91 0,0 120	
15:15:29:14 200 14:01 0.3/1 7.86 8.3/ 0.0 119	
15:20 29, 16 200 13, 91 0, 305 7.75 7, 80 0,0 117 4	* 10
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) TEMP: incircut degree (ec. 10.1 = 10) (COND: 3.8F max (ex. 3333 = 3330, 0.696 = 0.696)	7
pH nearest teath (ex. 5.53 = 5.5) DO nearest teath (ex. 3.51 = 3.5)	
13.91 6.305 7.15 8.70 0.0 117 TURB: 3.57 mmx, marrest tenth (6.19 = 6.2, 101 = 101) ORP 25C (41.1 = 44, 191 = 190)	_
TYPE OF PUMP DECON FLUIDS USED TUBING PUMP BLADDER MATERIALS EQUIPMENT USED PERISTALTIC LIQUINOX SILICON TUBING S. STEEL PUMP MATERIAL WL METER	
SUBMERSIBLE DEIONIZED WATER TEFLON TUBING PVC PUMP MATERIAL PID BLADDER POTABLE WATER TEFLON LINED TUBING GEOPROBE SCREEN WO METER	-
WATTERA NITRIC ACID HDPE TUBING TEFLON BLADDER TURB. METER WATTERA LDPE TUBING OTHER PUMP	-
OTHER METHANOL OTHER	-
ANALYTICAL PARAMETERS PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID	-
NUMBER FILTERED METHOD REQUIRED COLLECTED NUMBERS X See Chain of Custody	
	-
	-
	-
	-
	-
PURGE OBSERVATIONS SKETCH/NOTES PURGE WATER YES NO NUMBER OF GALLONS () () () () () () () () () (
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior	
UTH LIZED to sampling or in L. for this sample location.	
Sampler Signature: Print Name Rich PSPOX Checked By: Date: 7/26/22	
Checked By: Date: 7/26/22	
	-

			LOW	FLOW GRO	UNDWA	TER SAMP	LING REC	ORD		
1	PROJECT NAME	Mayer	1 . 10.		LOC	CATION ID) P	ATE 1-7	7-72	
i	PROJECT NUMB	ER	<u>Landfi</u> 0744.04	11	STA	RT TIME 1		NO TIME	810	7 - St. 4
1	SAMPLE ID	Mw-2		PLETIMES	SIT	E NAME/NUMBE		AGE OF		
WELL DIAM	ETER (INCHES)		2 4]8	OTHER	V 17 10	7 12		WELL INTEGRITY YES NO N/A
TUBING ID (] 5/8	OTHER			CAP CASING	¾ − −
	ENT POINT (MP)	TOP OF		TOP OF CASING		OTHER			LOCKED COLLAR	<u> </u>
INITIAL D (BMP)	U.	, O _{FT}	FINAL DTW (BMP)			T. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
WELL DE (BMP)	ртн 68	.95 FT	SCREEN LENGTH		FT AMI	BIENT AIR	0.0	PPM	REFILL TIME SETTING	SEC
WATER COLUMN	64	.35 FT	DRAWDOWN VOLUME		GAL MOI	WELL UTH	0.4	PPM	DISCHARGE TIMER SETT	
CALCULA GAL/VOL	جلاا	GAL	TOTAL VOL. PURGED		GAL TOT	WDOWN/ 'AL PURGED			PRESSURE TO PUMP	PSI
	well diameter square			minutes X 0.00026 gal RIA (AS LISTED IN						79.5
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt. (+/- 10% <10 nt.		PUMP INTAKE DEPTH (ft)	COMMENTS
12710	BEGIN PUR	GING		(17-370)	- 1	1		3 1	1 142	
1720	5.66	256	18.45	() 253	8,15	12.49	0,0	176	40	
1725	5 73	250	14.88	0 259	8.18	13.62	0,0	178	40	
1730	577	350	14,79	0.359	8,11	13.39	0.0	185	40	
1735	5.80	250	14.40	N 258	8.12	13.27	0.0	187	40	
1740	5,80	250	19 12	0759	8,08	13.28	m n	186	40	
, , ,	3, 80	200	11.60	0, 201	0,00	15,00	0,0	1100		
								1		
	F	NAL COLUMN	LED FIELD DAD	METERS		Garat Garranic E	1)	L	TEMP : nearest degr	rec (ex. 10 1 = 10) ex. 3333 = 3330, 0.696 = 0.696)
	FI	NAL STABILIZ		METERS (to appr				1001	pH nearest tenth (ex DO nearest tenth (ex	c 5.53 = 5.5) c 3.51 = 3.5)
FOLUMENT	DOGUMENTA TIO		15	0.259	8.1	13.3	0.0	190	ORP 2 SF (44 1 = 4	arest tenth (6.19 = 6.2, 101 = 101) 4, 191 = 190)
1	DOCUMENTATION YPE OF PUMP	<u>D</u>	ECON FLUIDS USED			MP/BLADDER MATE		-		QUIPMENT USED
SUBM	TALTIC ERSIBLE		LIQUINOX DEIONIZED WATER	SILICON T TEFLON T	JBING	PVC PU	EL PUMP MATERIA JMP MATERIAL	ν ι .	WL MET PID	
BLADI		_ 🗆 :	OTABLE WATER	HDPE TUB			OBE SCREEN N BLADDER		WQ MET TURB. M PUMP	
WATT	R	□ ,	HEXANE METHANOL OTHER	OTHER OTHER	NG	OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC	AL PARAMETER									
	PARAME	ETER	METHOD NUMBER	FIFLD FOLTERED	PRESERV METI			SAMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
<u>x</u> .	See Chain of Custod	ly								
l H :										
	27)									
Ы.		<u> </u>								
- -	-									
PURGE OBS	SERVATIONS				SI	KETCH/NOTES				
PURGE WAT		NO NO	NUMBER OF GALLO GENERATED	ONS						
NO-PURGE	000	NO	If yes, purged approximat to sampling or	ely I standing volume prior _mL for this sample locat	on.					-6
UILLED										
Sampler Signa	ature:		Print Name TA	ylar Shar	1167					
Checked By:			Date:		1					
_										

*>TRC

LOW FLOW GROUNDWATER SAMPLING RECORD 10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

	LOV	V FLOW GRO	UNDWA	TER SAMP	LING RECO	ORD		
PROJECT NAME	Landfi)		LO	CATION ID		TEコーフ	277	
	170744.0		STA	ART TIME O		D TIME	3-22	-
SAMPLE ID		APLE TIME	SIT	E NAME/NUMBEI	790	GE 1	0830	
MW	5	0800	Ľ.	ENAMEMONIBE	r A	0	P	7 7 7
WELL DIAMETER (INCHES)	∑ 12 □ 4	□ 6 □]8 _	OTHER			-	WELL INTEGRITY YES NO N/A
	1/4	1/2] 5/8	OTHER			CAP CASING	蒸 二 一
	OF RISER (TOR)	TOP OF CASING	(100)	OTHER			LOCKED	
(BMP) 10.52 FT	FINAL DTW (BMP)		FT PRO	OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
(BMP) 330 FT	SCREEN LENGTH		FT AM	BIENT AIR	0.0	РРМ	REFILL TIM	ER SEC
WATER COLUMN 2. 78 FT	DRAWDOWN VOLUME			WELL OUTH	0.0	PPM	DISCHARGE TIMER SETT	
CALCULATED DUG		TW X well diam. square	1 X 0.041)	AWDOWN/	0,0	<u></u>	PRESSURE	TING SEC
(column X well diameter squared X 0.041)		al minutes X 0.00026 gal	GAL TO	TAL PURGED			TO PUMP	PSI
TIME DTW (FT) DUDGE BAS		ERIA (AS LISTED IN T					PUMP	
3-5 Minutes 0.0-0.33 ft (mL/min)	E TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)		INTAKE	COMMENTS
0740 BEGIN PURGING								
0750 11.72 200	18.56	0.320	7.27	14.24	82.5	107	10	Pump as low as
0759 12.45 200	16.23	0.330	7.27	3.82	84.1	109	10	we can get it.
0800 12,79 175	15.72	0.330	7.26	2.92	83.1	110	10	well dry-Sample
				,				
						1		
FINAL STARI	IZED FIELD BAD	AMETERS (to appr		f(f(f-F			TEMP. nearest deg	
PHALSTADI						11.2	pH nearest tenth (e) DO nearest tenth (e)	x 351 = 35)
EQUIPMENT DOCUMENTATION	16	0.330	7,3	3.0	83.1	110	ORP 2 SF (44.1 = 4	earest tenth (6 19 = 6.2, 101 = 101) 44, 191 = 190)
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX	SILICON T		JMP/BLADDER MATE	<u>RIALS</u> EL PUMP MATERIAL		WL MET	EQUIPMENT USED TER
SUBMERSIBLE BLADDER	DEIONIZED WATER POTABLE WATER		NED TUBING	GEOPR	JMP MATERIAL OBE SCREEN		PID WQ ME	TER
WATTERA OTHER	NITRIC ACID HEXANE METHANOL	LDPE TUBI OTHER		OTHER			TURB. N	
OTHER ANALYTICAL PARAMETERS	OTHER	OTHER		OTHER			OTHER FILTERS	
PARAMETER PARAMETER	METHOD NUMBER		PRESER MET			MPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X See Chain of Custody								
	-							
PURGE OBSERVATIONS	MIMBER OF CO.	ONE	S	KETCHNOTES	_		-	
PURGE WATER YES NO CONTAINERIZED	NUMBER OF GALL GENERATED			0	nly ev	wyh	water	4 811
NO-PURGE METHOD YES NO UTILIZED	If yes, purged approximate to sampling or	ately I standing volume prior mL for this sample locati		YUA	vials, P	FAS,	and me	tals
Sampler Signature:	Print Name	.Shanley		Ь	offlewar	٠		to RII
Checked By:	Date:							

◆
TRC

LOW FLOW GROU	JNDW	ATER SAMPI	ING RECO	ORD		
PROJECT NAME SMPA Mayer LF	[I	OCATION ID	DA	7-26	-22	
PROJECT NUMBER	S	TART TIME	EN	- man 45°	The second of the second of	
SAMPLE ID SAMPLE TIME		U) ITE NAME/NUMBER	:00 PA		0:50	
MW-6 16:10	ľ	TE NAME TO ME		OF		WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2 4 6	8	OTHER			CAP	YES NO N/A
TUBING ID (INCHES) 1/8 🔎 1/4 1/4 1/2 1/2	5/8	OTHER			CASING LOCKED	菱 三 三
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING	(тос)	OTHER			COLLAR	- -
INITIAL DTW (BMP) FT (BMP)		ROT, CASING TICKUP (AGS)		FT	TOC/TOR DIFFERENCE	
WELL DEPTH (BMP) SCREEN LENGTH		ID MBIENT AIR	0.0	РРМ	REFILL TIME SETTING	SEC
	BAL N	ID WELL IOUTH	0.1	PPM	DISCHARGE TIMER SETT	
	DAL T	RAWDOWN/ OTAL PURGED	100		PRESSURE TO PUMP	PSI
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal in FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN T		50 E4674			PUMP	
TIME DTW (FT) PURGE RATE TEMP. (*C) SP. CONDUCTANCE (mS/cm)	pH (units (+/- 0.1 uni	DISS. O ₂ (mg/L)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv (+/- 10 mv)	INTAKE	COMMENTS
Drawdown (mL min) (7/- 3 degrees) (+/- 3%) SEGIN PURGING						
15-10-12						,
15:00 Begin promy						
15:15 12.59 250 30.96 0.350	7.90	2.80	54.3	50	18	
15 20 12.96 250 27.57 0.336	7.37	1.95	198	82	18	
15:25 Pump bartery died						
1000	batte		-			
1545 13.34 250 18.68 0.371	6,73		56.8	108	18	
15:50 13.42 250 20.08 0.356	6.7		61.3	107	18	
15:55 13.66 250 19.77 0.362	6.69	1,71	63.0	107	18	
16:00 13.30 250 19.54 ().365	6.7	5 1.68	62.7	106	18	
16:05 13.72 250 19.67 0.365	6.70) 1. +1	56.4	105	TEMP nearest dep	gee (ex 10 1 = 10) ex 3333 = 3330, 0.696 = 0.696)
FINAL STABILIZED FIELD PARAMETERS (to appro	priate sig	P 25000 1000 1	56.4	Ι	pH nearest tenth (ex DO nearest tenth (ex	x 5.53 = 5.5) x 3.51 = 3.5)
I 9, 7 0.365	6.4	1.7	56.9	110	ORP 2 SF (44 1 = 4	carest tenth (6 19 = 6.2, 101 = 101) 44, 191 = 190)
TYPE OF PUMP DECON FLUIDS USED		PUMP/BLADDER MATE	<u>ERIALS</u> EL PUMP MATERIAI		WL MET	EQUIPMENT USED TER
PERISTALTIC SUBMERSIBLE BLADDER BLADDE	BING	PVC PU	JMP MATERIAL OBE SCREEN		M PID W WQ ME	TER
WATTERA NITRIC ACID HEXANE LDPE TUBR		OTHER			TURB. N	METER
OTHER METHANOL OTHER OTHER OTHER OTHER		OTHER OTHER			OTHER FILTERS	S NO TYPE
ANALYTICAL PARAMETERS METHOD FIELD PARAMETER NUMBER ENTERPRIS				AMPLE	QC	SAMPLE BOTTLE ID
X See Chain of Custody	М	ETHOD REC	QUIRED COL	LECTED	COLLECTED	NUMBERS
						-
PURGE OBSERVATIONS		SKETCH/NOTES				
PURGE WATER YES NO NUMBER OF GALLONS						
NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior						
UTILIZED to sampling orml. for this sample locate						
Sampler Signature: Print Name T. 5 han ley						
Checked By: Date:						
A TOC						

TRC

	LOW FLOW GRO	OUNDWATER SAMPLING RECORD
PROJECT NAME	1 1011	LOCATION ID DATE 1-77-7.7
PROJECT NUMBER	Landf11 470744-04	START TIME 1050 END TIME 1205
SAMPLE ID	SAMPLE TIME	SITE NAME/NUMBER PAGE
MW-7	1135	OF WELL INTEGRITY
WELL DIAMETER (INCHES)		8 OTHER CAP YES NO N/A
TUBING ID (INCHES) 1/8	Ď 1/4 ☐ 3/8 ☐ 1/2 ☐	S8 OTHER CASING LOCKED COLLAR
MEASUREMENT POINT (MP)	P OF RISER (TOR) TOP OF CASIN	TOCKER
INITIAL DTW (BMP) 2.92 FT	FINAL DTW (BMP)	FT STICKUP (AGS) FT DIFFERENCE FT
(BMP) (BMP) FT	SCREEN LENGTH	FT AMBIENT AIR O O PPM SETTING SEC
WATER COLUMN 13.79 FT	DRAWDOWN VOLUME (final DTW - initial DTW X well diam. squar	GAL MOUTH O. O PPM TIMER SETTING SEC
CALCULATED 2.25 GAL (column X well diameter squared X 0.041)		GAL TOTAL PURGED TO PUMP PSI
FIELD PARAMETERS WITH PROGRAM	STABILIZATION CRITERIA (AS LISTED IN	N THE QAPP)
TIME 0.0-0.33 ft 0		PH (units)
1050 BEGIN PURGING		
1100 3.26 250	23,25 0,433	7.16 1.82 41.0 111 15
1105 326 250	19.69 0.431	7.00 1.14 59.9 118 15
1110 3.30 250	18.34 0,440	0 6.92 1.09 78.3 113 15
1115 3.32 250	17.72 0.447	16,01 0.40 10.8 100 13
1120 3.51 25	0 17.55 0.499	9 6.75 0.92 93.1 1.05 15
1125 3,32 25	0 16.42 0.455	
1130 3,32 25	0 16,4 7 0,459	6.66 0.87 90.4 101 15
	 	
FINAL STAB	LIZED FIELD PARAMETERS (to app	TEMP nearest degree (ex. 10 1 = 10)
	17 0.459	DO nearest tenth (ex. 3.5) = 3.5)
EQUIPMENT DOCUMENTATION		W I I I I I I I I I I I I I I I I I I I
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX DEIONIZED WATER DECON FLUIDS USED SILICON TEFLON	
SUBMERSIBLE BLADDER		LINED TUBING GEOPROBE SCREEN WQ METER
WATTERA OTHER	HEXANE LDPE TUE METHANOL OTHER	OTHER OTHER
OTHER ANALYTICAL PARAMETERS	OTHER OTHER	OTHER FILTERS NO. TYPE
PARAMETER	METHOD FIELD NUMBER FILTERED	PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID METHOD REQUIRED COLLECTED COLLECTED NUMBERS
X See Chain of Custody		
PURGE OBSERVATIONS PURGE WATER YES NO	NUMBER OF GALLONS	SKETCHNOTES
CONTAINERIZED	GENERATED If yes, purged approximately 1 standing volume pro-	
UTILIZED	to sampling ormL for this sample loca	
Sampler Signature:	Print Name T. Shanley	
Checked By:	Date:	

CONTRACTOR OF THE PROPERTY OF

♦ TRC

Innove	LOW FLOW GROU	UNDWATER SAMPI	LING RECORD	
PROJECT NAME	in 1 ('1)	LOCATION ID	DATE	
PROJECT NUMBER 1270		START TIME	FND TIME	.22
SAMPLE ID	SAMPLE TIME		146 17	26
MW-1	1455	SITE NAME/NUMBER	7 PAGE \ OF	
WELL DIAMETER (INCHES) 1 2	4 6	8 OTHER		WELL INTEGRITY YES NO N/A CAP
TUBING ID (INCHES) 1/8 1/4	3/8 1/2	5/8 OTHER		CASING F = =
MEASUREMENT POINT (MP) TOP OF RISER	R (TOR) TOP OF CASING ((TOC) OTHER		COLLAR 💆 🚃
(BMP) (BMP) (BMP)	L DTW	PROT. CASING STICKUP (AGS)		TOC/TOR DIFFERENCE FT
(BMP) 21.72 FT LENG		PID FT AMBIENT AIR		REFILL TIMER SETTING SEC
COLUMN [1.56 FT] VOLU	WDOWN UME G DTW - initial DTW X well diam. squared	PID WELL MOUTH		DISCHARGE TIMER SETTING SEC
GALVOL 1.46 GAL PURG	L VOL. 2 CA	GAL DRAWDOWN/ TOTAL PURGED		PRESSURE TO PUMP PSI
FIELD PARAMETERS WITH PROGRAM STABILIZ	ATION CRITERIA (AS LISTED IN T	ГНЕ QAPP)		DIAM.
TIME DTW (FT) PURGE RATE T	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) DISS. O ₂ (mg/L) (+/- 0.1 units) (+/- 10%)	TURBIDITY (ntu) (+/- 10% < 10 ntu) REDOX (mv) (+/- 10 mv)	PUMP INTAKE COMMENTS DEPTH (ft)
1415 BEGIN PURGING				
1425 11.12 250 2	3.61 0.049	6.74 2.51	35,7 152	20
	0.96 0.052	6.01 2.31	45.9 161	20
	9.46 0.052	5.76 2.49	69.7 170	20
1440 11.58 250 19	9.58 0.048	5.63 2.27	77.8 176	20
1110 11.00	9.80 0.047	5.57 2.29	77.0 183	20
H50 11.72 250 1	8.66 0.048	5.51 2.42	75.2 186	20
÷,				
FINAL STABILIZED I	FIELD PARAMETERS (to appro	ropriate significant figures[Sl	FJ)	TEMP : nearest degree (ex. 10 1 = 10) COND : 3 SF max (ex. 3333 = 3330, 0.696 = 0.696) pH nearest tenth (ex. 5.53 = 5.5)
	19 0.048	5.5 2.4	25 2 191	DO: nearest tenth (ex. 3.51 = 3.5) TURB 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101) ORP 2 SF (44.1 = 44, 191 = 190)
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON	FLUIDS USED	TUBING/PUMP/BLADDER MAT		
PERISTALTIC PERISTALTIC PERISTALTIC		TUBING S. STE	EL PUMP MATERIAL PUMP MATERIAL	WI METER Storing W Aich
	LE WATER TEFLON LI	INED TUBING GEOP	ROBE SCREEN ON BLADDER	WQ METER TURB. METER
WATTERA HEXAN OTHER METHA	ANOL OTHER		R	PUMP OTHER
ANALYTICAL PARAMETERS OTHER	OTHER	ОТНЕ	R	FILTERS NO TYPE
PARAMETER	METHOD FIELD NUMBER FILTERED		OLUME SAMPLE QUIRED COLLECTED	QC SAMPLE BOTTLE ID COLLECTED NUMBERS
X See Chain of Custody				
-				
-				
PURGE OBSERVATIONS		SKETCH/NOTES		
	IBER OF GALLONS ERATED			
NO-PURGE METHOD YES NO If yes,	purged approximately 1 standing volume prior			
Sampler Signature: P	Print Name T. Shan Jey			
Checked By:	Date:			
A TOC				

TRC

LOW FLOW GROUNDWATER SAMPLING RECORD

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

	LOW	FLOW GROUND	VATER SAMPI	ING RECOR	RD		
PROJECT NAME			LOCATION ID	-13 DATE	-27-	-77	
PROJECT NUMBER	Wer Landfill 470744.	14	START TIME	5 END 1		900	
SAMPLE ID		ELETIME 870	SITE NAME/NUMBER			1	
WELL DIAMETER (INCHES)							WELL INTEGRITY YES NO N/A
TUBING ID (INCHES)	□□□ 4 8 □□ 1/4 □ 3/8	6 58	OTHER	y the section		CAP	YES NO N/A
	78 24 1/4 3/8 TOP OF RISER (TOR)	TOP OF CASING (TOC)	OTHER		Table 180	LOCKED	* = =
INITIAL DTW (BMP)	FINAL DTW	FT	PROT. CASING STICKUP (AGS)	- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18		TOC/TOR DIFFERENCE	FT
WELL DEPTH 18.25	ECDEPN	FT	PID AMBIENT AIR	- 0	_	REFILL TIME SETTING	
WATER COLUMN 6.55	DRAWDOWN	GAL	PID WELL MOUTH	0.1	_	DISCHARGE TIMER SETTI	
CALCULATED 161	(final DTW - initial D TOTAL VOL.	TW X well diam. squared X 0.041	DRAWDOWN/		<u> </u>	PRESSURE	
GAL/YOL (column X well diameter squared X 0.0-		l minutes X 0.00026 gal/mL)	TOTAL PURGED			TO PUMP	PSI
3-5 Minutes 0.0-0.33 ft	GE RATE TEMP. (°C)	SP. CONDUCTANCE pH (u	nits) DISS. O ₂ (mg/L)	TURBIDITY (ntu) F		PUMP INTAKE	COMMENTS
OPIS BEGIN PURGING	nL/min) (+/- 3 degrees)	(+/- 3%)	(47- 1076)	(10 / To ma)	, ,,	DEPTH (ft)	
200	50 12.17	0.192 7.3	18 5.58	61,2	108	17	
00 20 10 110 0	50 11.87	0.154 6.9	_	52.8	127	17	
3000	50 11.87		37 2.44	46.3	123	17	
	150 11,90	0.1	34 1.92	44.6	115	17	
27.6	50 11.86		32 1.68	44 1	106	12	F
0750 13.72 29	2 -	0.248 6.3	30 1.51	44.3	97	17	
0755 13.84 2	50 11.61	01.	2 1.60	44.7	97	17	
0800 14.00 2	150 11.64		36 1.30	44.2	89	17	
0805 14.14 2	50 11.66	- 1	36 1.21	44.8	83	17	
	50 11.59		1.13	45.9	76	17	
10116	G () () ()		39 1.09	45.8	73	17	
	Y O 11. G O STABILIZED FIELD PAR				1 5	TEMP . nearest degre	ce (ex. 10 1 = 10) x. 3333 = 3330, 0.696 = 0.696)
	113	62101	ul i i	116 8	77	oll nearest tenth (ex. OO nearest tenth (ex. ILRR 3 SF max, near	5 53 = 5 5) 3 51 = 3 5) arest tenth (6 19 = 6 2, 101 = 101)
EQUIPMENT DOCUMENTATION	14	0.511 4	11 1.1	43.0	イン	ORP 2 SF (44 1 = 44	1, 191 = 190)
TYPE OF PUMP PERISTALTIC	DECON FLUIDS USED LIQUINOX	TUB SILICON TUBING	NG/PUMP/BLADDER MAT	ERIALS EL PUMP MATERIAL	Б	WL METI	QUIPMENT USED ER
SUBMERSIBLE BLADDER	DEIONIZED WATER POTABLE WATER	TEFLON TUBING TEFLON LINED TU		UMP MATERIAL ROBE SCREEN	<u> </u>	PID WQ MET	
WATTERA	NITRIC ACID HEXANE	HDPE TUBING LDPE TUBING	OTHE			TURB. M PUMP	ETER
OTHER OTHER	METHANOL OTHER	OTHER OTHER	OTHE			OTHER FILTERS	NO TYPE
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER				IPLE ECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X See Chain of Custody							
H							
PURGE OBSERVATIONS PURGE WATER YES N	O NUMBER OF GAL	ons 2 ()	SKETCE/NOTES				
CONTAINERIZED CONTAINERIZED	GENERATED	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					
		ately I standing volume prior mL for this sample location.	-				
Sampler Signature:	Print Name	Shanley					
Checked By:	Date:						
·> TRC					LOW FLO		DWATER SAMPLING RECORI

		100	LOW	FLOW GROU	UNDWA	TER SAMPI	ING REC	CORD		
PROJ	ECT NAME	44	1		LO	CATION ID 72	0 2 1	DATE 2.72	22	
PROJECT NUMBER 112 - 2 - 1					ST	START TIME (1916) END TIME				
470744.04					-	0915 1010				
SAMPLE ID BR-3 SAMPLE TIME 0945						SITE NAME/NUMBER PAGE OF				
WELL INTEGRITY YES NO N/A										
70 10 10 10 10 10 10 10 10 10 10 10 10 10			<u> </u>] 5/8	CAI				$\frac{\lambda}{\lambda}$ - =
TUBING ID (INCH		0-0-0		TOP OF CASING	OTHER CASING LOCKED OTHER COLLAR				* = = = = = = = = = = = = = = = = = = =	
7						OT. CASING			TOC/TOR	
INITIAL DTW MENT			(BMP)	FT		ICKUP (AGS)	FT		DIFFERENCE REFILL TIME	a first the second second
(BMP) 62.06 FT			SCREEN LENGTH		FT AM	BIENT AIR	0.0	PPM	SETTING	SEC
WATER COLUMN 47.6 FT			DRAWDOWN VOLUME		GAL MC	O WELL OUTH	0.0	PPM	DISCHARGE TIMER SETT	
CALCULATED GALAYOL	7.	8 GAL	TOTAL VOL.	GAL		AWDOWN/ TAL PURGED			PRESSURE TO PUMP	PSI
(column X well diameter squared X 0 041) (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)										
TIME 0	DTW (FT) 0.0-0.33 ft	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)		ntu) REDOX (mv) ntu) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
2016	Prawdown EGIN PURO		((+/- 370)		P 200				
0925 10	5.82	300	10.72	0.428	7.69	3.35	0.0	177	35	
0930 1	5.78	275	10.85	0.426	7.65	2.92	0.0	181	35	
0935 1	5.87	275	11 02	0,426		2.70	0,0	187	35	
	5.96	275	10.92	0.425	7.60	2.65	0.0	191	35	
01101	2.10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	10.1~	0.723	. 00	2.07				
									7	
				9						
	FI	NAL STABIL	IZED FIELD PARA	METERS (to appr	opriate sign	ificant figures[SF	 TD			ex 3333 = 3330, 0.696 = 0.696)
		TAL STABLE	T	0.425				100	pH nearest tenth (c) DO nearest tenth (c) TURB 1 SF max no	2. 5 53 = 5 5) 2. 3 51 = 3 5) earest tenth (6 19 = 6.2, 101 = 101)
EQUIPMENT DOC	UMENTATIO	ON .		0.725	7,0	1.7	0	1170	ORP 2 SF (44 1 = 4	4, 191 = 190)
	OF PUMP		DECON FLUIDS USED LIQUINOX	SILICON T		UMP/BLADDER MATI	ERIALS EL PUMP MATER	IAL	▼ WLMET	EQUIPMENT USED TER
SUBMERSIBLE BLADDER			DEIONIZED WATER TEFLON TUBING POTABLE WATER TEFLON LINED TUB				UMP MATERIAL ROBE SCREEN		X PID X WQ ME	TER
WATTERA			NITRIC ACID HEXANE	HDPE TUB		OTHER	N BLADDER R		TURB N PUMP	IETER
OTHER OTHER		$- \Box$	METHANOL OTHER	OTHER OTHER		OTHE			OTHER FILTERS	NO TYPE
ANALYTICAL F			метнор	FIELD	PRESE	EVATION VO	DLUME	SAMPLE	QC QC	SAMPLE BOTTLE ID
X See C	PARAME Chain of Custod		NUMBER	FILTERED	MET	THOD REG	QUIRED C	OLLECTED	COLLECTED	NUMBERS
i H	Tialli or Custoo			A SECTION ASSESSMENT TO SECTION ASSESSMENT						
l H -			energy on the same							
			Company of the second							
			and the transfer of the second							
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS SKETCH/NOTES										
CONTAINERIZED GENERATED										
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED										
7 Showles										
Sampler Signature:			Print Name 7. Shon Key							
Checked By: Date:										

↑
TRC

		LOW	FLOW GRO	UNDWAT	ER SAMPI	ING RECO	RD			
PROJECT NAME	May	f:11	and the second	LOCATION ID BR-5 DATE 3.28.22						
PROJECT NUMBI		START TIME START TIME START TIME								
SAMPLE ID BUS SAMPLE TIME					SITE NAME/NUMBER PAGE					
OF WELL INTEGRITY										
WELL DIAMETER (INCHES)		9.0	_]s 🗀	OTHERCAP				YES NO NA	
TUBING ID (INCHES) 18 14 138 12 58 OTHER CASING 10 CASIN										
MEASUREMENT POINT (MP) 10 TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR 22										
(BMP) FT (BMP) FT STICKUP (AGS) FT DIFFERENCE										
WELL DEPTH (BMP) SCREEN LENGTH FT AMBIENT AIR O.Oppm REFILL TIMER SETTING							, i.e.			
WATER COLUMN 37	1. 7 FT	DRAWDOWN VOLUME	DW V well diese	GAT MOI	WELL JTH	0.0	РРМ	DISCHARGE TIMER SETT	ING SEC	
CALCULATED GALVOL	26 GAL	TOTAL VOL. PURGED	W X well diam, square	DRA	WDOWN/			PRESSURE TO PUMP	PSI	
(column X well diameter square	d X 0.041)	(mL per minute X tota	d minutes X 0.00026 gal	/mL)	AL PURGED					
TIME DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
3-5 Minutes Drawdown () () BEGIN PUR	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (fi)		
1050	50	13.34	0.296	41.00	11.33	75.5	68	70	WL meter	
10.55	50		0.293	10.93		76.6	40	70	caught a	
1000	3	US. X)	0.215	10. 5	_0,50	76.0	10	10	tubing.	
1100		12.04	0.298	10.92	4.93	77.4	42	70	J	
1105		11.96	0.298	10.88	4.29	76.6	46	70		
1110	T	12.01	0,296	10.69	4.02	86.4	40	70		
1115 51.20										
	3									
FI	NAL STADUL	ZED EIEL D BAD	AMETERS (to app	rongiata signi	Scant Gaures SE	<u> </u>	L	TEMP nearest deg	ree (ex. 10 1 = 10) ex. 3333 = 3330, 0 696 = 0 696)	
	NAL STABILI	ZED FIELD FAR	CONTETERS (to appr	Topriate signi	ncant ngures(3)	<i>"</i>		pH nearest tenth (en DO nearest tenth (en	x 5 53 = 5 5)	
EQUIPMENT DOCUMENTATION	ON						100	ORP 2 SF (44.1 = 4	14. 191 = 190)	
TYPE OF PUMP PERISTALTIC	70	ECON FLUIDS USED LIQUINOX	SILICON	TUBING		EL PUMP MATERIA	L	10 WL ME	TER	
SUBMERSIBLE DEIONIZED WATER TEFLON TUBING POTABLE WATER TEFLON TUBING INTERIOR CLID TO HOPE TUBING					BING PVC PUMP MATERIAL GEOPROBE SCREEN TEFLON BLADDER				WQ METER TURB. METER	
WATTERA OTHER		HEXANE METHANOL	LDPE TUE		OTHE	R		PUMP OTHER		
OTHER ANALYTICAL PARAMETER		OTHER	OTHER		ОТНЕ			FILTER		
PARAME	ETER	METHOD NUMBER	FIELD FILTERED	PRESER MET			AMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS	
X See Chain of Custoo	ly									
									-	
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
DUDGE OPERAL TROVE					KETCHNOTES					
PURGE WATER YES NO NUMBER OF GALLONS										
CONTAINERIZED STATED NO-PURGE METHOD YES NO figes, purged approximately 1 standing volume prior to sampling or mL for this sample location.										
Sampler Signature: Print Name T.Shanlay										
Checked By:		Date:								

◆ TRC

	LOW	FLOW GRO	UNDWAT	ER SAMPI	ING RECO	RD		
PROJECT NAME	.) 0		LOC	ATION ID BR	- (a DAT	5.29	8-22	
PROJECT NUMBER	THE RESERVE	11 011	STA	RTTIME		TIME		
SAMPLE ID	470744	1.09	SITI	O Y	20 PAG		030	+
BR-6		000				OF	,]
WELL DIAMETER (INCHES)	02 🔲 4	_ · _]s 🗀	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID (INCHES)		□12 □	5/8	OTHER			CAP CASING	$\ddot{x} = =$
MEASUREMENT POINT (MP) TOP OF		TOP OF CASING	(100)	OTHER			COLLAR	
INITIAL DTW 48.65 FT	FINAL DTW (BMP)	52.17		T. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENC	E FT
	SCREEN LENGTH		FT AMI	BIENT AIR	0.0	РРМ	REFILL TIM SETTING	SEC SEC
	DRAWDOWN VOLUME		GAL MOI	WELL JTH	0.0	PPM	DISCHARGE TIMER SETT	
	TOTAL VOL.	W X well diam, squared	DRA	WDOWN/			PRESSURE	PSI
GRETOL GRE	PURGED (mL per minute X tota	minutes X 0.00026 gal		AL PURGED			TO PUMP	131
FIELD PARAMETERS WITH PROGRAM STAI		SP. CONDUCTANCE (mS/cm)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)			COMMENTS
Drawdown Drawdown BEGIN PURGING		(+/- 3%)					DEI III (III)	
0930 51.0 40	13.49	1.44	11.95	2.22	53.0	155	65	
0935 40	14.71	1.39	11.93	1.72	48.6	168	65	WL meter caught
0940 40	15.23	1.42	11.96	1.82	49.9	172	65	on tubing.
0945 40	16.17	1.43	11.91	2.03	54.3	167	65	J
0950 40	16.91	1.42	11.86	2.18	54.9	164	65	
0955 52.17 40	17.61	1.42	11.85	2.38	53.0	161	65	
8								
								7.7
							TEMP nearest de	gree (ex. 10 1 = 10)
FINAL STABILIZ			opriate signi	ficant figures[SF	T)			(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5)
	18	1.42	11.9	2.3	53.0	160	TURB 3 SF max, r ORP 2 SF (44 1 =	nearest tenth (6 19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION TYPE OF PUMP D	ECON FLUIDS USED			MP/BLADDER MATE				EQUIPMENT USED
SUBMERSIBLE COPO I	LIQUINOX DEIONIZED WATER	SILICON T TEFLON T	UBING	PVC PI	EL PUMP MATERIAL UMP MATERIAL OBE SCREEN		WL ME PID WQ ME	
1.75 bladder = 1	POTABLE WATER NITRIC ACID HEXANE	HDPE TUB		_	N BLADDER			METER
OTHER 1	METHANOL OTHER	OTHER OTHER		OTHER	R		OTHER FILTER	
ANALYTICAL PARAMETERS	метнор	FIELD	PRESER			MPLE	QC	SAMPLE BOTTLE ID
PARAMETER X See Chain of Custody	NUMBER	FILTERED	METI	HOD REC	QUIRED COL	LECTED	COLLECTED	NUMBERS
								•
	-							
PURGE OBSERVATIONS			1 8	KETCENOTES				·
PURGE WATER YES NO	NUMBER OF GALL	ONS	1					
NO-PURGE METHOD YES NO	If yes, purged approxima	tely I standing volume prio mL for this sample locat						
UTILIZED	to sampling or	ail. for this sample local	IVII.					
Sampler Signature:	Print Name	. Shantay						
Checked By:	Date:							

₹
TRC

Mayer Landfill Site, Blooming Grove, New York 10915

APPENDIX F

TRC ENGINEERS, INC.

JUNE 2025

Data Usability Summary Report

Site: Mayer Landfill

Laboratory: Eurofins TestAmerica Buffalo – Amherst, NY and Burlington, VT

SDG No.: 480-172890-1

Parameters: Per- and Poly-fluoroalkyl Substances (PFAS), 1,4-Dioxane

Data Reviewer:Kristen Morin/TRCPeer Reviewer:Elizabeth Denly/TRCDate:August 17, 2020

Samples Reviewed and Evaluation Summary

12 Residential Well Samples: ML-WP-RES-1, ML-WP-RES-2, ML-WP-RES-3, ML-WP-RES-4,

ML-WP-RES-5, ML-WP-RES-6, ML-WP-RES-7, ML-WP-RES-8,

ML-WP-RES-9, ML-WP-RES-10, ML-WP-RES-11,

ML-WP-RES-12

The above-listed residential well samples were collected on July 20 and 21, 2020 and were analyzed for the following parameters:

1,4-Dioxane by SW-846 8270D with Selective Ion Monitoring (SIM)

 PFAS (21 target analytes) based on EPA Method 537.1 (modified) using Test America – Burlington, VT standard operating procedure (SOP) BR-LC-009, revision 4.0, effective date 04/12/19.

The samples were analyzed for 1,4-dioxane by TestAmerica – Buffalo, NY and for PFAS by TestAmerica – Burlington, VT. The data validation was performed in accordance with the following guidance, modified for the methodologies utilized:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-2017-002), January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA-542-B-16-001), April 2016
- USEPA Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537 (EPA 910-R-18-001), November 2018
- New York State Department of Environmental Conservation Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids, January 2020

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- GC/MS Tunes (1,4-Dioxane only)
- Initial and Continuing Calibrations
 - Blanks
- Surrogate Recoveries (1,4-Dioxane only)
- Isotopically Labeled Surrogate Results (PFAS only)
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results

Internal Standards

NA • Field Duplicate Results

- Sample Results and Reported Quantitation Limits (QLs)
- Target Compound Identification

* - All criteria were met.

NA - Field duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data because of sampling error. Qualifications applied to the data because of analytical error are discussed below.

- Potential uncertainty exists for select PFAS results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples.
 These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for PFPeA in samples ML-WP-RES-1, ML-WP-RES-4, ML-WP-RES-5, ML-WP-RES-6, and ML-WP-RES-7, and PFNA in samples ML-WP-RES-10 and ML-WP-RES-12 were qualified as nondetect (U) at the QL due to method blank contamination. These results can be used as nondetect results, which may have a minor impact on the data usability.
- The positive results for PFPeA in samples ML-WP-RES-2, ML-WP-RES-3, ML-WP-RES-10, and ML-WP-RES-12 were qualified as estimated (J+) with a potential high bias due to method blank contamination. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for PFBS in sample ML-WP-RES-1 was qualified as estimated (J) due
 to the ratio between the two precursor/product ion transitions being outside the
 acceptance limits and detection below the QL. This result can be used for project
 objectives as an estimated value, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable with the following exception.

 A discrepancy was noted with the surrogate concentration for 1,4-dioxane-d8 and result for 1,4-dioxane in sample ML-WP-RES-1. The laboratory was contacted during validation and provided a revised report on August 17, 2020 to correct this issue.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met. Samples were collected on July 20 and 21, 2020 but were not shipped to the laboratory until July 24, 2020. The field sampler indicated during data validation that samples were stored in coolers on ice from collection to shipment; no validation actions were taken on this basis since the samples were kept on ice and since the cooler temperature was acceptable upon laboratory receipt.

GC/MS Tunes (1,4-Dioxane only)

All criteria were met in the 1,4-dioxane analyses.

Initial and Continuing Calibrations

1,4-Dioxane and PFAS

The percent relative standard deviations (%RSDs) were within the method acceptance criteria in the initial calibrations. The percent differences met the method acceptance criteria in the continuing calibration standards associated with the samples in this data set.

Blanks

1,4-Dioxane was not detected in the associated method blank.

The following table summarizes the PFAS compounds found in the laboratory method blank, the concentration detected, and the resulting validation actions.

Blank ID	Compound	Result (ng/L)	Validation Action
			The positive results for PFPeA in samples ML-WP-RES-2, ML-WP-RES-3, ML-WP-RES-10, and ML-WP-RES-12 were qualified as estimated (J+) with a potential high bias.
MB 200-	PFPeA	0.827 J	The positive results for PFPeA in samples ML-WP-RES-1, ML-WP-RES-4, ML-WP-RES-5, ML-WP-RES-6, and ML-WP-RES-7 were qualified as nondetect (U) at the QL.
157306/1-A			Qualification was not required for the remaining associated samples since PFPeA was not detected.
	PFNA	0.399 J	The positive results for PFNA in samples ML-WP-RES-10 and ML-WP-RES-12 were qualified as nondetect (U) at the QL.
	TTIVA	0.000	Qualification was not required for the remaining associated samples since PFNA was not detected.

Associated samples: All samples in this data set

Criteria:

- If concentration in sample <QL, replace result with QL flagged with "U"
- If concentration in sample ≥QL and <10x blank concentration, qualify result as estimated, biased high (J+)
- If concentration in sample ≥QL and ≥10x blank concentration, no qualification

Surrogate Recoveries (1,4-Dioxane only)

The surrogate percent recoveries (%Rs) met the laboratory acceptance criteria.

<u>Isotopically Labeled Surrogate Results (PFAS only)</u>

Eighteen isotopically labeled surrogate were spiked into the samples prior to extraction for isotope dilution quantitation. The %Rs were within the acceptance criteria.

MS/MSD Results

MS/MSD analyses were performed on sample ML-WP-RES-1 for 1,4-dioxane and PFAS. The %Rs and relative percent differences (RPDs) met the laboratory acceptance criteria for 1,4-dioxane and PFAS with one exception. The RPD for NMeFOSAA (24%) was above the laboratory's acceptance criteria (20%). Qualification was not required since NMeFOSAA was not detected in sample ML-WP-RES-1.

LCS Results

1,4-Dioxane

The LCS %Rs were within the laboratory acceptance criteria for the 1,4-dioxane analyses.

PFAS

The %R for PFTriA (134%) in the PFAS LCS analysis associated with all samples in this data set, LCS 200-157306/2-A, was above the laboratory's acceptance criteria (70-130%). Qualification was not required since PFTriA was not detected in the associated samples.

Internal Standards

1,4-Dioxane

The %Rs for the internal standard 1,4-dichlorobenzene-d₄ met the laboratory limits of 50-150% in the 1,4-dioxane analyses.

PFAS

The isotopically labeled internal standard 13C2-PFOA was added to each sample prior to injection to monitor for ion suppression/enhancement at the instrument level. The %Rs met the laboratory limits of 50-150% in the PFAS analyses.

Field Duplicate Results

There were no field duplicates associated with this data set.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. The results for select PFAS in several samples were detected below the lowest calibration standard and QL. These results were qualified as estimated (J) by the laboratory.

There were no dilutions performed on samples in this data set.

The result for 1,4-dioxane in sample ML-WP-RES-2 was flagged with an "E" by the laboratory due to a calibration range exceedance after the raw result was corrected for the recovery of the 1,4-dioxane-d8 isotope. Since the actual response for 1,4-dioxane in this sample was not above the calibration range prior to correction based on the recovery of the 1,4-dioxane-d8 isotope, no validation action was required.

Target Compound Identification

1,4-Dioxane

All criteria were met for 1,4-dioxane.

PFAS

Extracted ion chromatograms were reviewed to verify the target compound identifications. The laboratory manually integrated several peaks to ensure the inclusion of linear and branched isomers for PFOA, PFOS, NEtFOSAA, NMeFOSAA, and/or PFHxS; and/or to ensure proper integration of all PFAS.

Two precursor/product ion transitions were used for identification for all compounds except for PFBA, PFPeA, PFOSA, NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS which only used one precursor/product ion transition for identification.

The following table summarizes the ratio between the two precursor/product ion transitions that did not meet the laboratory acceptance criteria and the validation actions.

Sample ID	Compound	Ratio	Ratio QC Limits	Validation Actions
ML-WP-RES-1	PFBS	4.04	1.00-3.01	The positive result for PFBS in sample ML-WP-RES-1 was already qualified as estimated (J) by the laboratory due to detection below the lowest calibration standard; thus no further qualification was required.

QUALIFIED FORM 1s

 Lab Name: Eurofins TestAmerica, Buffalo
 Job No.: 480-172890-1

 SDG No.:
 Client Sample ID: ML-WP-RES-1
 Lab Sample ID: 480-172890-1

 Matrix: Water
 Lab File ID: Z001644.D

 Analysis Method: 8270D SIM ID
 Date Collected: 07/20/2020 11:15

 Extract. Method: 3510C
 Date Extracted: 07/27/2020 08:41

 Sample wt/vol: 1020(mL)
 Date Analyzed: 07/29/2020 22:17

Con. Extract Vol.: 1 (mL) Dilution Factor: 1

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 542744 Units: ug/L

Injection Volume: 1(uL)

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	1.1		0.20	0.098

Level: (low/med) Low

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	29		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-2 Lab Sample ID: 480-172890-2

Matrix: Water Lab File ID: Z001649.D

Analysis Method: 8270D SIM ID Date Collected: 07/20/2020 12:35

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 00:10

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	3.7	-E	0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-3 Lab Sample ID: 480-172890-3

Matrix: Water Lab File ID: Z001650.D

Analysis Method: 8270D SIM ID Date Collected: 07/20/2020 12:55

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 00:33

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.38		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	31		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-4 Lab Sample ID: 480-172890-4

Matrix: Water Lab File ID: Z001651.D

Analysis Method: 8270D SIM ID Date Collected: 07/20/2020 14:15

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 00:55

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-5 Lab Sample ID: 480-172890-5

Matrix: Water Lab File ID: Z001652.D

Analysis Method: 8270D SIM ID Date Collected: 07/20/2020 14:25

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 01:18

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.32		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-6 Lab Sample ID: 480-172890-6

Matrix: Water Lab File ID: Z001656.D

Analysis Method: 8270D SIM ID Date Collected: 07/20/2020 15:00

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1040(mL) Date Analyzed: 07/30/2020 02:53

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: $\underline{1(uL)}$ Level: $\underline{(low/med)}$ Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.64		0.19	0.096

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	31		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-7 Lab Sample ID: 480-172890-7

Matrix: Water Lab File ID: Z001657.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 09:30

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 03:16

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: $\underline{1(uL)}$ Level: $\underline{(low/med)}$ Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	28		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-8 Lab Sample ID: 480-172890-8

Matrix: Water Lab File ID: Z001658.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 10:05

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1000(mL) Date Analyzed: 07/30/2020 03:39

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: $\underline{1(uL)}$ Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.20	0.10

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	31		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-9 Lab Sample ID: 480-172890-9

Matrix: Water Lab File ID: Z001659.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 10:55

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 04:02

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	31		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-10 Lab Sample ID: 480-172890-10

Matrix: Water Lab File ID: Z001660.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 11:20

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 04:24

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-11 Lab Sample ID: 480-172890-11

Matrix: Water Lab File ID: Z001661.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 13:00

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1030(mL) Date Analyzed: 07/30/2020 04:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.25		0.19	0.097

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-12 Lab Sample ID: 480-172890-12

Matrix: Water Lab File ID: Z001662.D

Analysis Method: 8270D SIM ID Date Collected: 07/21/2020 13:20

Extract. Method: 3510C Date Extracted: 07/27/2020 08:41

Sample wt/vol: 1050(mL) Date Analyzed: 07/30/2020 05:10

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	29		15-110

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-1 Lab Sample ID: 480-172890-1

Matrix: Water Lab File ID: PA200728B12.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 11:15

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 273.9(mL) Date Analyzed: 07/28/2020 22:20

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.2		1.8	0.91
2706-90-3	Perfluoropentanoic acid (PFPeA) NI)/1.8 U ±-2-	-J-B	1.8	0.58
307-24-4	Perfluorohexanoic acid (PFHxA)	1.8		1.8	0.69
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.83
335-67-1	Perfluorooctanoic acid (PFOA)	1.2	J	1.8	0.74
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.8	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.70
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.71
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.54
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	*-	1.8	0.55
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.84
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.8	0.45
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.73
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.87
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.82
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		9.1	9.1
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND	F2	18	1.6
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.4
27619-97-2	1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2)	ND		18	5.0
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.6

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-2 Lab Sample ID: 480-172890-2

Matrix: Water Lab File ID: PA200728B15.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 12:35

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 288.1(mL) Date Analyzed: 07/28/2020 22:45

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	6.6		1.7	0.87
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.1	B J+	1.7	0.55
307-24-4	Perfluorohexanoic acid (PFHxA)	1.7		1.7	0.66
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.79
335-67-1	Perfluorooctanoic acid (PFOA)	0.77	J	1.7	0.70
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.67
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.68
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.51
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	*	1.7	0.52
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.80
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.81	J	1.7	0.43
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.69
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.82
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.78
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.7	8.7
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.8
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-3 Lab Sample ID: 480-172890-3

Matrix: Water Lab File ID: PA200728B17.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 12:55

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 300.8(mL) Date Analyzed: 07/28/2020 23:02

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	0	RL	MDL
CAS NO.	COMI OUND MAME	KESOHI	¥	1/11	ноп
375-22-4	Perfluorobutanoic acid (PFBA)	2.9		1.7	0.83
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.8	B J+	1.7	0.52
307-24-4	Perfluorohexanoic acid (PFHxA)	0.99	J	1.7	0.63
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.76
335-67-1	Perfluorooctanoic acid (PFOA)	0.68	J	1.7	0.67
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.22
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.64
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.65
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	_*_	1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.76
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.0	J	1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.66
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.79
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.3	8.3
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.2
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.6
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-4 Lab Sample ID: 480-172890-4

Matrix: Water Lab File ID: PA200728B18.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 14:15

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 298.2(mL) Date Analyzed: 07/28/2020 23:10

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

		_			
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.84
2706-90-3	Perfluoropentanoic acid (PFPeA) ND	/1.7 U -054	-J-B-	1.7	0.53
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.76
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.7	0.68
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.65
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.65
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	_*_	1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.77
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.67
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.80
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.4	8.4
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.6
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-5 Lab Sample ID: 480-172890-5

Matrix: Water Lab File ID: PA200728B19.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 14:25

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 308.4(mL) Date Analyzed: 07/28/2020 23:18

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.4	J	1.6	0.81
2706-90-3	Perfluoropentanoic acid (PFPeA) ND	/1.6 U 0 .6 0-	-J-B	1.6	0.51
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.6	0.62
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.6	0.74
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.6	0.66
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.6	0.22
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.6	0.62
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.63
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.6	0.48
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	- *-	1.6	0.49
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.75
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.6	0.40
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.6	0.65
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.6	0.77
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.6	0.49
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.73
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.1	8.1
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		16	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		16	1.2
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		16	4.5
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		16	2.4

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-6 Lab Sample ID: 480-172890-6

Matrix: Water Lab File ID: PA200728B20.d

Analysis Method: 537 (modified) Date Collected: 07/20/2020 15:00

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 276.6(mL) Date Analyzed: 07/28/2020 23:26

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.1		1.8	0.90
2706-90-3	Perfluoropentanoic acid (PFPeA) ND/	1.8 U -0-76-	-J-B	1.8	0.57
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.8	0.69
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.82
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.8	0.73
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.70
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.70
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.53
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	* -	1.8	0.54
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.83
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.44
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.72
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.86
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.81
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		9.0	9.0
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		18	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.4
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		18	5.0
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.6

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-7 Lab Sample ID: 480-172890-7

Matrix: Water Lab File ID: PA200728B21.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 09:30

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 301.7(mL) Date Analyzed: 07/28/2020 23:35

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.83
2706-90-3	Perfluoropentanoic acid (PFPeA) ND	/1.7 U -055-	-J-B	1.7	0.52
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.63
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.75
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.7	0.67
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.22
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.64
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.65
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	_*_	1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.76
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.66
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.79
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.3	8.3
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.2
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.6
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-8 Lab Sample ID: 480-172890-8

Matrix: Water Lab File ID: PA200728B22.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 10:05

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 289.2(mL) Date Analyzed: 07/28/2020 23:43

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.86
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.7	0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.66
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.79
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.7	0.70
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.67
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.67
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.51
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	*	1.7	0.52
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.80
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.42
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.69
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.82
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.78
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.6	8.6
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.8
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-9 Lab Sample ID: 480-172890-9

Matrix: Water Lab File ID: PA200728B23.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 10:55

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 280.3(mL) Date Analyzed: 07/28/2020 23:51

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.8	0.89
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.8	0.56
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.8	0.68
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.81
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.8	0.72
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.69
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.70
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.53
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	-×	1.8	0.54
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.82
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.44
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.71
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.85
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.80
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.9	8.9
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		18	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		18	4.9
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.6

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-10 Lab Sample ID: 480-172890-10

Matrix: Water Lab File ID: PA200728B24.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 11:20

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 289.8(mL) Date Analyzed: 07/29/2020 00:00

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.7		1.7	0.86
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.2	-B - J+	1.7	0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	3.4		1.7	0.66
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.9		1.7	0.79
335-67-1	Perfluorooctanoic acid (PFOA)	7.0		1.7	0.70
375-95-1	Perfluorononanoic acid (PFNA) ND	/1.7 U - 03-7	-J-B-	1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.66
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.67
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.51
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	-*	1.7	0.52
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.79
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.8		1.7	0.42
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.7	0.69
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.82
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	4.3		1.7	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.78
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.6	8.6
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.7
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-11 Lab Sample ID: 480-172890-11

Matrix: Water Lab File ID: PA200728B25.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 13:00

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 273.2(mL) Date Analyzed: 07/29/2020 00:08

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.3	J	1.8	0.92
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.8	0.58
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.8	0.70
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.83
335-67-1	Perfluorooctanoic acid (PFOA)	ND		1.8	0.74
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.8	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.70
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.71
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.54
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	*	1.8	0.55
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.84
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.45
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.73
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.87
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.82
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		9.2	9.2
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		18	1.6
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.4
27619-97-2	1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2)	ND		18	5.0
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.7

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-172890-1

SDG No.:

Client Sample ID: ML-WP-RES-12 Lab Sample ID: 480-172890-12

Matrix: Water Lab File ID: PA200728B26.d

Analysis Method: 537 (modified) Date Collected: 07/21/2020 13:20

Extraction Method: 3535 Date Extracted: 07/28/2020 11:27

Sample wt/vol: 300.2(mL) Date Analyzed: 07/29/2020 00:16

Con. Extract Vol.: 10 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	2.8		1.7	0.83
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.7	-B- J+	1.7	0.52
307-24-4	Perfluorohexanoic acid (PFHxA)	4.0		1.7	0.63
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.8		1.7	0.76
335-67-1	Perfluorooctanoic acid (PFOA)	6.2		1.7	0.67
375-95-1	Perfluorononanoic acid (PFNA) ND	/1.7 U 0.55 -	J-B	1.7	0.22
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.64
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.65
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND	*-	1.7	0.50
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.77
375-73-5	Perfluorobutanesulfonic acid (PFBS)	5.8		1.7	0.41
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.7	0.67
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.79
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	4.7		1.7	0.51
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.75
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.3	8.3
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.2
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		17	4.6
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.4

QC NONCONFORMANCE DOCUMENTATION

Lab Name: Eurolins TestAmerica, Burlington	JOD NO.: 480-1/2890-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 200-157306/1-A					
Matrix: Water	Lab File ID: PA200728B02.d					
Analysis Method: 537 (modified)	Date Collected:					
Extraction Method: 3535	Date Extracted: 07/28/2020 11:27					
Sample wt/vol: 250(mL)	Date Analyzed: 07/28/2020 20:57					
Con. Extract Vol.: 10 (mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: C-18	ID: 4.6 (mm)				
% Moisture:	GPC Cleanup: (Y/N) N					
Analysis Batch No · 157325	IInits: na/I.					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		2.0	1.0
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.827	J	2.0	0.63
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.76
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.91
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.81
375-95-1	Perfluorononanoic acid (PFNA)	0.399	J	2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.77
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.78
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.59
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.60
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.92
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.80
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.95
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.61
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.90
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		10	10
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	1.7
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.5
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		20	5.5
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		20	2.9

FORM III LCMS MATRIX SPIKE DUPLICATE RECOVERY

0 - 1
(

SDG No.: ____

Matrix: Water Level: Low Lab File ID: PA200728B14.d

Lab ID: 480-172890-1 MSD Client ID: ML-WP-RES-1 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	0/0	QC LI	MITS	#
COMPOUND	(ng/L)	(ng/L)	REC	RPD	RPD	REC	#
Perfluorobutanoic acid (PFBA)	35.0	40.8	110	3	30	40-160	
Perfluoropentanoic acid (PFPeA)	35.0	41.6	115	6	30	40-160	
Perfluorohexanoic acid (PFHxA)	35.0	39.4	107	10	20	40-160	
Perfluoroheptanoic acid (PFHpA)	35.0	39.0	111	6	20	40-160	
Perfluorooctanoic acid (PFOA)	35.0	41.9	116	7	20	40-160	
Perfluorononanoic acid (PFNA)	35.0	37.7	108	8	20	40-160	
Perfluorodecanoic acid (PFDA)	35.0	38.9	111	1	20	40-160	
Perfluoroundecanoic acid (PFUnA)	35.0	39.2	112	7	20	40-160	
Perfluorododecanoic acid (PFDoA)	35.0	37.6	107	10	20	40-160	
Perfluorotridecanoic acid (PFTriA)	35.0	37.4	107	5	20	40-160	
Perfluorotetradecanoic acid (PFTeA)	35.0	41.9	120	10	20	40-160	
Perfluorobutanesulfonic acid (PFBS)	31.0	40.5	127	6	20	40-160	
Perfluorohexanesulfonic acid (PFHxS)	31.9	36.0	113	3	20	40-160	
Perfluoroheptanesulfonic Acid (PFHpS)	33.3	43.9	132	1	30	40-160	
Perfluorooctanesulfonic acid (PFOS)	32.5	42.0	129	4	20	40-160	
Perfluorodecanesulfonic acid (PFDS)	33.8	37.0	110	6	30	40-160	
Perfluorooctanesulfonamide (PFOSA)	35.0	37.4	107	8	30	40-160	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	35.0	38.4	110	24	20	40-160	F2
N-ethylperfluorooctanesulfonam idoacetic acid (NEtFOSAA)	35.0	37.5	107	20	20	40-160	
1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	33.2	36.0	108	5	30	40-160	
1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	33.5	40.1	120	7	30	40-160	
1802 PFHxS	41.4	37.5	91			50-150	
13C4 PFHpA	43.8	42.4	97			50-150	
13C4 PFOA	43.8	42.6	97			50-150	
13C4 PFOS	41.8	35.1	84			50-150	
13C5 PFNA	43.8	40.9	93			50-150	
13C4 PFBA	43.8	44.7	102			25-150	
13C2 PFHxA	43.8	46.8	107			50-150	
13C2 PFDA	43.8	41.4	95			50-150	
13C2 PFUnA	43.8	35.8	82			50-150	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

FORM III 537 (modified)

FORM III LCMS LAB CONTROL SAMPLE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Burlington	Job No.:	480-172890-1
SDG	No.:					
	_					

Matrix: Water Level: Low Lab File ID: PA200728B03.d

Lab ID: LCS 200-157306/2-A Client ID:

	_				
	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ng/L)	(ng/L)	REC	REC	
Perfluorobutanoic acid (PFBA)	40.0	45.2	113		
Perfluoropentanoic acid (PFPeA)	40.0	46.8	117	50-150	
Perfluorohexanoic acid (PFHxA)	40.0	45.6	114	70-130	
Perfluoroheptanoic acid	40.0	45.3	113	70-130	
(PFHpA)					
Perfluorooctanoic acid (PFOA)	40.0	44.9	112		
Perfluorononanoic acid (PFNA)	40.0	42.7	107		
Perfluorodecanoic acid (PFDA)	40.0	49.5	124		
Perfluoroundecanoic acid (PFUnA)	40.0	40.7	102	70-130	
Perfluorododecanoic acid (PFDoA)	40.0	49.9	125	70-130	
Perfluorotridecanoic acid (PFTriA)	40.0	53.6	134	70-130	*
Perfluorotetradecanoic acid (PFTeA)	40.0	47.1	118	70-130	
Perfluorobutanesulfonic acid (PFBS)	35.4	41.6	118	70-130	
Perfluorohexanesulfonic acid (PFHxS)	36.4	39.1	107	70-130	
Perfluoroheptanesulfonic Acid	38.1	46.0	121	50-150	
(PFHpS) Perfluorooctanesulfonic acid	37.1	43.8	118	70-130	
(PFOS) Perfluorodecanesulfonic acid	38.6	36.7	95	50-150	
(PFDS)					
Perfluorooctanesulfonamide (PFOSA)	40.0	48.2	121	50-150	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	43.9	110	70-130	
N-ethylperfluorooctanesulfonam idoacetic acid (NEtFOSAA)	40.0	41.9	105	70-130	
1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	37.9	43.0	113	50-150	
1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	38.3	39.1	102	50-150	
1802 PFHxS	47.3	47.6	101	50-150	
13C4 PFHpA	50.0	49.2	98		
13C4 PFOA	50.0	50.1	100	50-150	
13C4 PFOS	47.8	46.6	98	50-150	
13C5 PFNA	50.0	52.5	105	50-150	
13C4 PFBA	50.0	54.4	109	25-150	
13C2 PFHXA	50.0	51.7	103	50-150	
13C2 PFDA	50.0	47.9	96	50-150	
13C2 PFUnA	50.0	49.7	99	50-150	
1002 II OHA	50.0	49.7	1 55	20-130	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Report Date: 29-Jul-2020 13:25:34 Chrom Revision: 2.3 30-Jun-2020 12:05:54

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File: \\chromfs\Burlington\ChromData\LC812\20200728-42173.b\PA200728B12.d

Lims ID: 480-172890-C-1-A Client ID: ML-WP-RES-1

Sample Type: Client

Inject. Date: 28-Jul-2020 22:20:39 ALS Bottle#: 12 Worklist Smp#: 12

Injection Vol: 20.0 ul Dil. Factor: 1.0000

Sample Info: 480-172890-C-1-A

Misc. Info.: 200-0042173-012 Plate: 1 Rack: 2

Operator ID: lc812tech Instrument ID: LC812

Method: \\chromfs\Burlington\ChromData\LC812\20200728-42173.b\PFC_LC812.m

Limit Group: LC_PFC_ICAL

Last Update: 29-Jul-2020 13:25:02 Calib Date: 16-Jul-2020 14:39:30

Integrator: Picker

Quant Method: Isotopic Dilution Quant By: Initial Calibration

Last ICal File: \\chromfs\Burlington\ChromData\LC812\20200716-42004.b\PA200716ICAL12.d

Column 1 : C-18 (4.60 mm) Det: EXP1

Process Host: CTX1055

First Level Reviewer: manopan Date: 29-Jul-2020 11:07:01

Ratio Calibration: Initial Calibration Level: 4

Ratio Calibration: I	nitiai Ca	libration	1 Levei:	4						
Signal	RT	EXP RT	DLT RT	REL RT	Response	Amount ng/ml	Ratio(Limits)	%Rec	S/N	Flags
D 1 13C4 PFBA										
217.00 > 172.00	1.991	1.998	-0.007	0.576	1121239	1.26		101	13716	
2 Perfluorobutar	oic acid									M
212.90 > 169.00	1.991	1.998	-0.007	1.000	42327	0.0590			7.2	M
D 3 13C5 PFPeA										
267.90 > 223.00			-0.010	0.673	809804	1.24		99.4	3437	
4 Perfluoropenta			0.010	1 000	17617	0.0225			1.0	M
262.90 > 219.00	2.328	2.338	-0.010	1.000	17617	0.0325			1.0	M
D 47 13C3 PFBS 301.90 > 80.00	2 349	2 360	-0.011	0 679	972808	1.15		99.2	61558	M M
5 Perfluorobutar			0.011	0.070	072000	1.10		00.2	01000	RM
298.90 > 80.00		2.360	0.0	1.005	26290	0.0372	Target=2.01		14.1	R
298.90 > 99.00	2.349	2.360	-0.011	1.000	6509		4.04(1.00-3.01)		5.7	M
D 60 M2-4:2 FTS										M
329.00 > 81.00	2.665	2.675	-0.010	0.771	79063	1.27		109	120	M
61 1H,1H,2H,2H										M
327.00 > 307.00		2.675	-0.020	0.996	99	0.000954			4.1	M
D 7 13C2 PFHxA 315.00 > 270.00		2 714	-0.010	0.792	791921	1.21		96.8	3913	
6 Perfluorohexa			-0.010	0.762	791921	1.21		90.0	3913	M
313.00 > 269.00			-0.010	1.000	25780	0.0499	Target=11.67		6.9	M
313.00 > 119.00			-0.010	1.000	2182	0.0100	11.81(5.83-17.50)		5.1	M
70 Perfluoropent	anesulfo	nic acio	d				,			M
349.00 > 80.00	2.714	2.714	0.0	0.879	1920	0.003277	Target=3.48		4.4	M
349.00 > 99.00	2.714	2.714	0.0	0.879	823		2.33(1.74-5.22)		3.4	M
D 64 13C3 HFPO-										
332.10 > 287.00	2.822	2.822	0.0	0.816	82509	1.74		140	930	

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

Mayer Landfill
Pace/Con-test SDG#23B1178
March 22, 2023
Sampling date: 2/9/2023

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for TRC Engineers, Inc., project located at Mayer Landfill, Pace/Con-test SDG#23B1178 submitted to Vali-Data of WNY, LLC on March 21, 2023. This DUSR has been prepared in general compliance USEPA National Functional Guidelines(NFG), NYSDEC; 'Guidelines for Sampling and Analysis of PFAS'(6/2021) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Perfluorinated Hydrocarbons (537 modified).

ID	Sample ID	Laboratory ID
1	Residence 14	23B1178-01

PFAA

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain of Custody and Traffic Reports
- Holding Times
- Internal Standard (IS)
- Surrogate Spike Recoveries
- Blanks
- Field Duplicate Sample Precision
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Mayer Landfill SDG# 23B1178

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All the criteria were met.

BLANKS

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All the criteria were met.

COMPOUND QUANTITATION

All the criteria were met.

INITIAL CALIBRATION

All criteria were met.

Alternate forms of regression were used on all of the target analytes, with acceptable results.

CONTINUING CALIBRATION

All criteria were met.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED 3/21/23: Sample ID revised, per client request.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan E. Kelley Reporting Specialist

Meghan S. Kelley

Raymond McCarthy

From: Hoskins, Matthew <MHoskins@trccompanies.com>

Sent:Monday, February 20, 2023 2:15 PMTo:Raymond McCarthy; Schappert, MatthewSubject:RE: [EXTERNAL] 23B1178 - SMPA0001

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

RJ,

Please run this by method 537.1, and only report the UCMR 6 PFAS compounds.

Thanks, Matt

> Matthew Hoskins, P.G. Senior Project Manager

215 Greenfield Parkway, Suite 102, Liverpool, NY 13088 **T** 315.203.8010 **F** 315.451.7903 | **C** 315.454.7539 LinkedIn | Twitter | Blog | TRCcompanies.com

From: Raymond McCarthy < Raymond. McCarthy@pacelabs.com>

Sent: Monday, February 20, 2023 11:26 AM

To: Schappert, Matthew < MSchappert@trccompanies.com >; Hoskins, Matthew < MHoskins@trccompanies.com >

Subject: [EXTERNAL] 23B1178 - SMPA0001

This is an **EXTERNAL** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

ALWAYS hover over the link to preview the actual URL/site and confirm its legitimacy.

Good Morning,

I am reaching out just to confirm the method needed for the attached COC.

Samples are from SMPA0001 Site Mayer Landfill, and were received noted as drinking water samples preserved with Trizma. The COC requests Isotope Dilution, which is not typically run on drinking water samples and requests unpreserved bottles, so if Isotope is needed we would need to narrate the bottlewate received. PFAS 537.1 requests Trizma preserved bottles and is the predominant method for drinking water samples, however does not report the full 21 compound list, and is typically requested for the UCMR 6 compound list by DEC.

Can you please clarify which method should be reported for these samples?

Thanks,

RJ McCarthy

NYDEC Lead Project Manager

39 Spruce Street, East Longmeadow, MA 01028

Office (direct): 413.486.5067 | Office: 413.525.2332 | contestlabs.com

PLEASE NOTE: All rush requests must be pre-approved by the laboratory. Please contact me before submitting a rush project.

NOTICE-- The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately and delete any copies.

A Please consider the environment before printing this email

02/16/23 13:07

1 - FORM I ANALYSIS DATA SHEET

Residence 14

02/14/23 00:00

Analyzed:

Laboratory: Pace New England Work Order: 23B1178

Prepared:

Client: NYDEC_TRC Environmental Corpo Project: Mayer Landfill DW CAT B - CO SMPA0001

Matrix: Drinking Water Laboratory ID: 23B1178-01 File ID: 23B1178-01.d

Solids: Preparation: EPA 537.1 Dilution: 1

Initial/Final: 265.51 mL / 1 mL

Sampled:

02/09/23 11:10

Batch: B331477 Sequence: S083453 Calibration: 2300154 Instrument: QQQ2

CAS NO.	COMPOUND	CONC. (ng/L)	MDL	RL	Q
375-73-5	Perfluorobutanesulfonic acid (PFBS)		0.72	1.9	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)		0.61	1.9	
375-85-9	Perfluoroheptanoic acid (PFHpA)		0.64	1.9	
335-67-1	Perfluorooctanoic acid (PFOA)		0.89	1.9	
1763-23-1	Perfluorooctanesulfonic acid (PFOS)		0.82	1.9	
375-95-1	Perfluorononanoic acid (PFNA)		0.83	1.9	

1 - FORM I ANALYSIS DATA SHEET

Blank

Laboratory: Pace New England Work Order: 23B1178

Client: NYDEC_TRC Environmental Corporation- Cliff Project: Mayer Landfill DW CAT B - CO SMPA0001

Matrix: Drinking Water Laboratory ID: B331477-BLK1 File ID: B331477-BLK1.d

Sampled: Prepared: 02/14/23 10:18 Analyzed: 02/16/23 10:40

Solids: Preparation: EPA 537.1 Dilution:

Batch: B331477 Sequence: S083453 Calibration: 2300154 Instrument: QQQ2

Column: 1

CAS NO.	COMPOUND	CONC. (ng/L)	MDL	RL	Q
375-73-5	Perfluorobutanesulfonic acid (PFBS)		0.71	1.8	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)		0.60	1.8	
375-85-9	Perfluoroheptanoic acid (PFHpA)		0.63	1.8	
335-67-1	Perfluorooctanoic acid (PFOA)		0.87	1.8	
1763-23-1	Perfluorooctanesulfonic acid (PFOS)		0.80	1.8	
375-95-1	Perfluorononanoic acid (PFNA)		0.82	1.8	

1 - FORM I ANALYSIS DATA SHEET

LCS

Laboratory: Pace New England Work Order: 23B1178

Client: NYDEC_TRC Environmental Corporation- Cliff Project: Mayer Landfill DW CAT B - CO SMPA0001

Matrix: Drinking Water Laboratory ID: B331477-BS1 File ID: B331477-BS1.d

Sampled: Prepared: 02/14/23 10:18 Analyzed: 02/16/23 10:32

Solids: Preparation: EPA 537.1 Dilution:

Batch: B331477 Sequence: S083453 Calibration: 2300154 Instrument: QQQ2

Column: 1

CAS NO.	COMPOUND	CONC. (ng/L)	MDL	RL	Q
375-73-5	Perfluorobutanesulfonic acid (PFBS)	7.26	0.67	1.7	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	8.17	0.57	1.7	
375-85-9	Perfluoroheptanoic acid (PFHpA)	8.49	0.59	1.7	
335-67-1	Perfluorooctanoic acid (PFOA)	8.10	0.82	1.7	
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	7.65	0.76	1.7	
375-95-1	Perfluorononanoic acid (PFNA)	8.65	0.77	1.7	

1 - FORM I ANALYSIS DATA SHEET

Matrix Spike

Laboratory: Pace New England Work Order: 23B1178

Client: NYDEC_TRC Environmental Corporation- Cliff Project: Mayer Landfill DW CAT B - CO SMPA0001

Matrix: Drinking Water Laboratory ID: B331477-MS1 File ID: B331477-MS1.d

Sampled: Prepared: 02/14/23 10:18 Analyzed: 02/16/23 10:47

Solids: Preparation: EPA 537.1 Dilution:

Batch: B331477 Sequence: S083453 Calibration: 2300154 Instrument: QQQ2

Column: 1

CAS NO.	COMPOUND	CONC. (ng/L)	MDL	RL	Q
375-73-5	Perfluorobutanesulfonic acid (PFBS)	9.56	0.73	1.9	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	9.31	0.62	1.9	
375-85-9	Perfluoroheptanoic acid (PFHpA)	10.9	0.64	1.9	
335-67-1	Perfluorooctanoic acid (PFOA)	10.3	0.89	1.9	
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	8.65	0.82	1.9	
375-95-1	Perfluorononanoic acid (PFNA)	9.77	0.84	1.9	

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

Mayer Landfill
Pace/Con-test SDG#23D0302
July 4, 2023
Revised: August 21, 2023
Sampling date: 4/3/2023

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package (revised; August 21, 2023) for TRC Environmental Corporation, project located at Mayer Landfill, Pace/Con-test SDG#23D0302 submitted to Vali-Data of WNY, LLC on July 3, 2023. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Semi-Volatile Organics (EPA 522).

ID	Sample ID	Laboratory #1 ID	Laboratory #2 ID
1	Residence #14	23D0302-01	70251926001
2	DUP-01	23D0302-02	70251926001

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain of Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in MS/MSD.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Mayer Landfill SDG# 23D0302

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the concentration of 1,4-Dioxane exceed the calibration range and is qualified with an 'E'.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

Alternate forms of regression were used on the target analyte with acceptable results, so no further action is required.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watsleugten

575 Br**ofa6** Hollow Road Melville, NY 11747 516-370-6000

PROJECT NARRATIVE

Project: 23D0302 Pace Project No.: 70251926

Method: EPA 522

Description: 522 MSS 1,4 Dioxane (SIM)

Client: Pace Analytical Services - New England

Date: April 17, 2023

General Information:

2 samples were analyzed for EPA 522 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 522 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 300894

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 1524266)

- 1,4-Dioxane (p-Dioxane)
- MSD (Lab ID: 1524267)
 - 1,4-Dioxane (p-Dioxane)

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

575 Brop 7 Hollow Road Melville, NY 11747 516-370-6000

ANALYTICAL RESULTS

Project: 23D0302
Pace Project No.: 70251926

Date: 04/17/2023 01:57 PM

Sample: 23D0302-01	Lab ID:	70251926001	Collecte	d: 04/03/23	3 10:20	Received: 04/	06/23 10:20 M	atrix: Drinking \	Nater
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
522 MSS 1,4 Dioxane (SIM)	,	Method: EPA 5 ytical Services		ation Metho	d: EPA	522			
1,4-Dioxane (p-Dioxane) Surrogates	2.7	ug/L	0.020	0.018	1	04/13/23 07:30	04/13/23 16:49	123-91-1	
1,4-Dioxane-d8 (S)	94	%	70-130			04/13/23 07:30	04/13/23 16:49		

575 Broa Hollow Road Melville, NY 11747 516-370-6000

ANALYTICAL RESULTS

Project: 23D0302
Pace Project No.: 70251926

Date: 04/17/2023 01:57 PM

Sample: 23D0302-02	Lab ID:	70251926002	Collecte	d: 04/03/23	3 12:00	Received: 04/	06/23 10:20 M	atrix: Drinking	Water
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
522 MSS 1,4 Dioxane (SIM)	,	Method: EPA 5 lytical Services	•	ation Metho	d: EPA	522			
1,4-Dioxane (p-Dioxane) Surrogates	2.9	ug/L	0.020	0.0081	1	04/13/23 07:30	04/14/23 16:39	123-91-1	
1,4-Dioxane-d8 (S)	107	%	70-130		1	04/13/23 07:30	04/14/23 16:39		

REPORT OF LABORATORY ANALYSIS

SAMPILTEGNO.

MSSV SIM - FORM I SVOA-1 SEMI-VOLATILE ORGANICS ANALYSIS DATA

ЗАМПЦИВМО.	
MS	

Lab Name: Pace	e Analytical - New York	Contract: 23D0302
Date Received:	04/06/2023 10:20	Matrix: Drinking SDG No.: 70251926
Date Extracted:	04/13/2023 07:30	Lab Sample ID: 1524266
Date Analyzed:	04/13/2023 17:05	Lab File ID: 522U-041323.B\S40304.D
Initial wt/vol: 50	00 mL Final wt/vol: 10 mL Dilution: 1	Instrument: 70MSS4 Percent Moisture:
CAS NO.	COMPOUND	CONCENTRATION UNITS: ug/L Q
123-91-1	1,4-Dioxane (p-Dioxane)	4.6

SAMPILEZNO.

MSSV SIM - FORM I SVOA-1 SEMI-VOLATILE ORGANICS ANALYSIS DATA

SAMITIQ <u>Z</u> NO.		
	MSD	

Lab Name: Pace	e Analytical - New York	Contract: 23D0302	
Date Received:	04/06/2023 10:20	Matrix: Drinking SDG No.: 70251926	
Date Extracted:	04/13/2023 07:30	Lab Sample ID: 1524267	
Date Analyzed: 04/13/2023 17:21		Lab File ID: 522U-041323.B\S40305.D	
Initial wt/vol: 5	00 mL Final wt/vol: 10 mL Dilution: 1	Instrument: 70MSS4 Percent Moisture:	
CAS NO.	COMPOUND	CONCENTRATION UNITS: ug/L Q	
123-91-1	1.4-Dioxane (p-Dioxane)	4.5 F	

Mayer Landfill Site, Blooming Grove, New York 10915

APPENDIX G

TRC ENGINEERS, INC.

JUNE 2025

