EnviroTest 🖾 Laboratories Inc.

ANALYTICAL REPORT

Job Number: 420-43563-1

Job Description: Balchem Corporation

For: Balchem Corporation 52 Sunrise Park Road New Hampton, NY 10958-4703

Attention: Mr. Bill A. Sweet

and the

Debra Bayer Customer Service Manager dbayer@envirotestlaboratories.com 06/02/2011

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NELAP Accredited, NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554, EPA NY00049.

Envirotest Laboratories, Inc. 315 Fullerton Avenue, Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841 www.envirotestlaboratories.com

Job Narrative 420-J43563-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA The following sample was diluted due to compounds over the linear calibration range. PZ-7DL (420-43563-2DL)

Metals

No analytical or quality issues were noted.

VOA Prep No analytical or quality issues were noted.

SAMPLE SUMMARY

Client: Balchem Corporation

.

Job Number: 420-43563-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-43563-1	PZ-6	Water	05/09/2011 1300	05/09/2011 1440
420-43563-2	PZ-7	Water	05/09/2011 1230	05/09/2011 1440
420-43563-3	MW4S	Water	05/09/2011 1130	05/09/2011 1440
420-43563-4	SUMP	Water	05/09/2011 1330	05/09/2011 1440
420-43563-5	Trip Blank	Water	05/09/2011 0000	05/09/2011 1440

EnviroTest Laboratories, Inc.

	wed by	Reverwed by		CL2	말			1 10	ARKS:			Cloc	1	10'8		NO NO	1440	59/4	4j	5	(SIGNTURE)
						1 1	Land		-						1		rt; ED	B	NS/MSD; C	Ple for N	* Extra sample for MS/MS
TIME	DATE		COMPANY	COM				RE)	RECEIVED BY: (SIGNATURE	3Y: (SIC	IVÊD E	RECE		ñ	TIME	DATE		COMPANY	ATURE)		אברוזאמטואחבט פז (אושועהן טאב
TIME	DATE		COMPANY	COM				l n	RECEIVED BY: (SIGNATURE)	3Y: (SIG	IVEDE	RECE	C	and the second		2/9/11		oug	2	liam	
TIME	DATE		COMPANY	COM				E)	RECEIVED BY: (SIGNATURE)	3Y: (SIG	NED E	RECE	0	14: YO	TIME	5/9/11	+ Bsc.	Macong	A LONE		
													-			\					
	NOV 8308						-+			1	4	4						Hank	-Field Blank		
	VOA 8260B			-							Ν	N			र			Blank	1 rip B	14	1144
						-	-	-									•	-	18	Dh	ab h
ad 6010	VOA 8260B, Lead 6010	_					<u> </u>				ω	4			<) Sump	R	2/9/4
ad 6010	VOA 8260B, Lead 6010		+			+	<u>.</u>	_			ď	Z	_						1		1.11 #
			+		+	+		-			>	3			+			* (see note)	MW2 MW4S	DM	4011.
ad 6010	VOA 8260B, Lead 6010					-	-	-			ω	4	-		<				APZ-7	1/11	11/6/
													\square		-						
ad 6010	VOA 8260B, Lead 6010		_	_			-				ω	4			5			-	B PZ-6	ma	2/9/11
REMARKS	RE			TED	SUBMITTED	ERS S	NTAIN	OF CO	NUMBER OF CONTAINERS	N			SOLID	AQUE	сомр	Ň	IDENTIFICATION	SAMPLE			PATE
	#OF COOLERS								5				OR SEM	OUS (WA		•			RK (if applicable):	TING THIS WO	COMPANY CONTRACTING THIS WORK (If applicable)
	VERBAL		-		2500	2501	-					То		TER)	OR GR		10958	cuenr Address 52 Sunrise Park Road, New Hampton, New York	New Hamp	ark Road,	52 Sunrise P
RÉPORT: Category B, EDD	REPORT:				ni Plas	n Plas			250m			tal # c			AB (G) IN	ncorp.com	<u>bsweet@balchemcorp.com</u>	bsw	poration	Iem Corp	Balchem Corporation
×	NORMAL								Ambe	lter Ar	40ml \	of Con		ater) Indica	7	845-355-599	355-5397/664-0420	355-5397	veet	William Sweet	
TURNAROUND TIME	TURNA	n plastic Other		ic Sterile	ium Hyd.	uric Acid	itric Acid	er Ambe	r Sulfurio	nber HCI	ials HCI	tainers		de .	·	CLIENT FAX		CLIENT PHONE	Bayer	Debra Ba	CLIENT (SITE) PM
1 1	PAGE 1 of				-	VALYS	Ö	REQUI			-		- m RX	TYPE	+	TOWN		P.O. NUMBER		CT MANAGER	ENVIROTEST PROJECT MANAGER
5901	4		•	90	62-08	845-5	12550	York	EnviroTest Laboratories 315 Fullerton Avegue, Newburgh, New York 12550 845-562-0890	wburg	ories 10, Net	EnviroTest Laboratories 315 Fullerton Aveque, N	est La	nviroT 5 Full		Lab Name Address & Phone		_	orles,	ומנכ	Lapor
REPORT# (Lab Use Only)	REPORT# (I					2			ΥC	Ö	IST	CU	¥	2	CHAIN OF CUSTODY	CH		8	st	ole	EnviroTest

METHOD SUMMARY

Client: Balchem Corporation

Job Number: 420-43563-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Inductively Coupled Plasma - Atomic Emission Spectrometry Acid Digestion of Aqueous Samples and Extracts for	EnvTest EnvTest	SW846 6010B	SW846 3010A
Volatile Organic Compounds by GC/MS Purge-and-Trap	EnvTest EnvTest	SW846 8260B	SW846 5030B
Lab References:			

EnvTest = EnviroTest

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

EnviroTest Laboratories, Inc.

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Balchem Corporation

Job Number: 420-43563-1

Login Number: 43563

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

DATA REPORTING QUALIFIERS

Client: Balchem Corporation

Job Number: 420-43563-1

Lab Section	Qualifier	Description
GC/MS VOA		
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	E U	Result exceeded calibration range, secondary dilution required. The analyte was analyzed for but not detected at or above the stated limit.
Metals		
	U	The analyte was analyzed for but not detected at or above the stated limit.

EnviroTest Laboratories, Inc.

•

Volatile Data QC Summary

· .

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	Envirotes	t Laboratories	Contract:	####	
Lab Code:	10142	Case No.: ####	SAS No).: #####	SDG No.: 43563

	EPA	SMC1	SMC2	SMC3	ТОТ
	SAMPLE NO.	(DCE) #	(TOL) #	(BFB) #	OUT
01	LCS	116	114	108	0
02	MB	113	114	102	0
03	PZ-6	104	114	104	0
04	PZ-7	102	111	100	0
05	MW4S	110	112	101	0
06	SUMP	113	113	104	0
07	TRIP BLANK	111	112	102	0
08	PZ-7DL	114	115	105	0
09	MW4SMS	114	115	107	0
10	MW4SMSD	116	117	109	0

				QC LIMITS
SMC1	(DCE)	=	1,2-Dichloroethane-d4	(79-117)
SMC2	(TOL)	=	Toluene-d8	(77-128)
SMC3	(BFB)	=	Bromofluorobenzene	(75-119)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

FORM II VOA-1

OLM03.0

3 Lab Control Spike Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix: Water

Level: Low

Lab Sample ID: LCS 420-46954/1

	SPIKE ADDED	LCS CONCENTRATION	LCS	QC LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	REC
1,1,1-Trichloroethane	20.0	19.0	95	70-130
1,1,2,2-Tetrachloroethane	20.0	21.5	108	70-130
1,1,2-Trichloro-1,2,2-trifluoroet	20.0	17.5	87	70-130
1,1,2-Trichloroethane	20.0	20.1	101	70-130
1,1-Dichloroethane	20.0	20.1	101	70-130
1,1-Dichloroethene	20.0	19.3	96	70-130
1,2,4-Trichlorobenzene	20.0	20.7	104	70-130
1,2-Dibromo-3-Chloropropane	20.0	20.8	104	70-130
1,2-Dichlorobenzene	20.0	20.2	104	70-130
1,2-Dichloroethane	20.0	19.8	99	70-130
1,2-Dichloropropane	20.0	20.2	101	70-130
1,3-Dichlorobenzene	20.0	19.6	98	70-130
1,4-Dichlorobenzene	20.0	19.7	98	70-130
2-Hexanone	20.0	22.3	111	70-130
Acetone	20.0	23.7	118	70-130
Benzene	20.0	19.7	99	70-130
Bromoform	20.0	19.6	98	70-130
Bromomethane	20.0	24.5	123	70-130
Carbon disulfide	20.0	16.5	83	70-130
Carbon tetrachloride	20.0	18.7	93	70-130
Chlorobenzene	. 20.0	19.6	98	70-130
Dibromochloromethane	20.0	20.8	104	70-130
Chloroethane	20.0	20.4	104	70-130
Chloroform	20.0	19.7	99	70-130
Chloromethane	20.0	18.1	91	70-130
cis-1,2-Dichloroethene	20.0	19.7	99	70-130
cis-1,3-Dichloropropene	20.0	20.6	103	70-130
Bromodichloromethane	20.0	20.0	103	70-130
Dichlorodifluoromethane	20.0	15.4	77	70-130
Ethylbenzene	20.0	19.5	97	70-130
Isopropylbenzene	20.0	18.9	94	70-130
m-Xylene & p-Xylene	40.0	39.3	98	70-130
2-Butanone (MEK)	20.0		118	70-130
4-Methyl-2-pentanone (MIBK)	20.0		120	70-130
Methyl tert-butyl ether	20.0		102	70-130
Methylene Chloride	20.0	19.6	98	70-130
o-Xylene	20.0	19.7	98	70-130
Styrene	20.0		100	70-130
Vinyl chloride	20.0	18.6	93	70-130
Trichlorofluoromethane	20.0	18.5	93	70-130

FORM III 8260B

3 Lab Control Spike Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix: Water

Level: Low

Lab Sample ID: LCS 420-46954/1

	SPIKE ADDED	LCS CONCENTRATION	LCS	QC LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	REC
Trichloroethene	20.0	19.9	100	70-130
trans-1,3-Dichloropropene	20.0	20.9	104	70-130
trans-1,2-Dichloroethene	20.0	20.2	101	70-130
Toluene	20.0	19.6	98	70-130
Tetrachloroethene	20.0	18.7	93	70-130
1,2-Dibromoethane	20.0	20.3	101	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

3 Matrix Spike Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix:Water

Level: Low

Matrix Spike-Client Sample ID:MW4S

	SPIKE	SAMPLE		MS	MS	OC
	ADDED	CONCENTRAT	FION	CONCENTRATION	00	LIMITS
COMPOUND	(ug/L)	(ug/L)		(ug/L)	REC #	REC
1,1,1-Trichloroethane	20.0	1.0	U	19.6	98	70-130
1,1,2,2-Tetrachloroethane	20.0	1.0	U	19.9	99	70-130
1,1,2-Trichloro-1,2,2-trifluoroet	20.0	1.0	U	24.4	122	70-130
1,1,2-Trichloroethane	20.0	1.0	U	19.0	95	70-130
1,1-Dichloroethane	20.0	1.0	U	20.1	101	70-130
1,1-Dichloroethene	20.0	1.0	U	21.0	105	70-130
1,2,4-Trichlorobenzene	20.0	1.0	U	19.4	97	70-130
1,2-Dibromo-3-Chloropropane	20.0	5.0	U	19.2	96	70-130
1,2-Dichlorobenzene	20.0	1.0	U	19.2	96	70-130
1,2-Dichloroethane	20.0	1.0	U	18.5	93	70-130
1,2-Dichloropropane	20.0	1.0	U	19.4	97	70-130
1,3-Dichlorobenzene	20.0	1.0	U	19.6	98	70-130
1,4-Dichlorobenzene	20.0	1.0	U	19.4	97	70-130
2-Hexanone	20.0	1.0	U	20.6	103	70-130
Acetone	20.0	1.0	U	20.5	103	70-130
Benzene	20.0	1.0	U	18.9	95	70-130
Bromoform	20.0	1.0	U	18.5	93	70-130
Bromomethane	20.0	1.0	U	25.4	127	70-130
Carbon disulfide	20.0	1.0	U	17.4	87	70-130
Carbon tetrachloride	20.0	1.0	U	19.8	99	70-130
Chlorobenzene	20.0	1.0	U	19.2	96	70-130
Dibromochloromethane	20.0	1.0	U	19.7	99	70-130
Chloroethane	20.0	1.0	U	18.3	91	70-130
Chloroform	20.0	1.0	U	19.2	96	70-130
Chloromethane	20.0	1.0	U	20.1	100	70-130
cis-1,2-Dichloroethene	20.0	3.2		22.1	95	70-130
cis-1,3-Dichloropropene	20.0	1.0	U	19.3	97	70-130
Bromodichloromethane	20.0	1.0	U	20.4	102	70-130
Dichlorodifluoromethane	20.0	1.0	U	16.3	82	70-130
Ethylbenzene	20.0	1.0	U	19.9	100	70-130
Isopropylbenzene	20.0	1.0	U	19.6	98	70-130
m-Xylene & p-Xylene	40.0	1.0	U	40.0	100	70-130
2-Butanone (MEK)	20.0	1.0	U	22.6	113	70-130
4-Methyl-2-pentanone (MIBK)	20.0	1.0	U	22.1	110	70-130
Methyl tert-butyl ether	20.0	1.0	U	19.4	97	70-130
Methylene Chloride	20.0	1.0	U	19.7	98	70-130
o-Xylene	20.0	1.0	U	19.5	98	70-130
Styrene	20.0	1.0	U	19.5	97	70-130
Vinyl chloride	20.0	1.0	U	19.3	97	70-130
Trichlorofluoromethane	20.0	1.0	U	19.5	98	70-130

3 Matrix Spike Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix:Water

Level: Low

Matrix Spike-Client Sample ID:MW4S

COMPOUND	SPIKE ADDED (ug/L)	SAMPLI CONCENTRA (ug/L	TION	MS CONCENTRATION (ug/L)	MS % REC #	QC LIMITS REC
Trichloroethene	20.0	1.0	U	19.3	97	70-130
trans-1,3-Dichloropropene	20.0	1.0	U	19.5	98	70-130
trans-1,2-Dichloroethene	20.0	1.0	U	20.6	103	70-130
Toluene	20.0	1.0	U	19.6	98	70-130
Tetrachloroethene	20.0	1.0	U	17.6	88	70-130
1,2-Dibromoethane	20.0	1.0	U	19.1	96	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

3

Matrix Spike Duplicate Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix: Water

Level: Low

Matrix Spike Duplicate-Client Sample ID: MW4S

	SPIKE	MSD	MSD		QC L	IMITS
COMPOUND	ADDED	CONCENTRATION	00	00		1
	(ug/L)	(ug/L)	REC #	RPD	RPD	REC
1,1,1-Trichloroethane	20.0	19.3	96	2	20	70-130
1,1,2,2-Tetrachloroethane	20.0	20.1	100	1	20	70-130
1,1,2-Trichloro-1,2,2-trifluoroet	20.0	20.0	100	20	20	70-130
1,1,2-Trichloroethane	20.0	19.0	95	0	20	70-130
1,1-Dichloroethane	20.0	20.3	102	1	20	70-130
1,1-Dichloroethene	20.0	19.4	97	8	20	70-130
1,2,4-Trichlorobenzene	20.0	21.2	106	9	20	70-130
1,2-Dibromo-3-Chloropropane	20.0	19.8	99	3	20	70-130
1,2-Dichlorobenzene	20.0	20.0	100	4	20	70-130
1,2-Dichloroethane	20.0	18.9	95	2	20	70-130
1,2-Dichloropropane	20.0	19.5	97	0	20	70-130
1,3-Dichlorobenzene	20.0	20.0	100	2	20	70-130
1,4-Dichlorobenzene	20.0	20.6	103	6	20	70-130
2-Hexanone	20.0	20.5	103	0	20	70-130
Acetone	20.0	18.0	90	13	20	70-130
Benzene	20.0	19.5	98	3	20	70-130
Bromoform	20.0	17.8	89	4	20	70-130
Bromomethane	20.0	23.5	118	8	20	70-130
Carbon disulfide	20.0	15.9	80	9	20	70-130
Carbon tetrachloride	20.0	19.2	96	3	20	70-130
Chlorobenzene	20.0	19.7	99	3	20	70-130
Dibromochloromethane	20.0	19.2	96	3	20	70-130
Chloroethane	20.0	17.1	86	7	20	70-130
Chloroform	20.0	18.9	94	2	20	70-130
Chloromethane	20.0	23.2	116	14	20	70-130
cis-1,2-Dichloroethene	20.0	21.7	93	2	20	70-130
cis-1,3-Dichloropropene	20.0	19.3	97	0	20	70-130
Bromodichloromethane	20.0	20.2	101	1	20	70-130
Dichlorodifluoromethane	20.0	16.8	84	3	20	70-130
Ethylbenzene	20.0	19.8	99	1	20	70-130
Isopropylbenzene	20.0	19.8	99	1	20	70-130
m-Xylene & p-Xylene	40.0	39.6	99	1	20	70-130
2-Butanone (MEK)	20.0	20.4	102	10	20	70-130
4-Methyl-2-pentanone (MIBK)	20.0	20.6	103	7	20	70-130
Methyl tert-butyl ether	20.0	18.7	94	3	20	70-130
Methylene Chloride	20.0	19.8	99	1	20	70-130
o-Xylene	20.0	19.7	98	1	20	70-130
Styrene	20.0	19.9	99	2	20	70-130
Vinyl chloride	20.0	18.7	94	3	20	70-130
Trichlorofluoromethane	20.0	18.0	90	8	20	70-130

3 Matrix Spike Duplicate Volatile Organic Compounds by GC/MS

Lab Name: EnviroTest Laboratories,

Job No.:420-43563-1

SDG No.:

Matrix: Water

Level: Low

Matrix Spike Duplicate-Client Sample ID: MW4S

	SPIKE	MSD	MSD		QC L	IMITS
COMPOUND	ADDED	CONCENTRATION	8	olo		1
	(ug/L)	(ug/L)	REC #	RPD	RPD	REC
Trichloroethene	20.0	18.9	95	2	20	70-130
trans-1,3-Dichloropropene	20.0	19.5	98	0	20	70-130
trans-1,2-Dichloroethene	20.0	19.8	99	4	20	70-130
Toluene	20.0	19.5	97	1	20	70-130
Tetrachloroethene	20.0	17.8	89	1	20	70-130
1,2-Dibromoethane	20.0	18.5	93	3	20	70-130

Calculations are performed before rounding

Column to be used to flag recovery and RPD values

		4A		EPA SAMPLE NO.
	VOI	LATILE METHOD BL	ANK SUMMARY	МВ
Lab Name:	Envirotest Labo	oratories	Contract: #####	
Lab Code:	10142	Case No.: ####	SAS No.: ##### \$D	G No.: 43563
Lab File ID:	V051205.D		Lab Sample ID:	ИB
Date Analyze	ed: 5/12/2011		Time Analyzed:	12:09
GC Column:	DB-624 ID:	0.18 (mm)	Heated Purge: (Y	(/N) N
Instrument ID	: MSD			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	Les	LCS	V051203.D	10:57
02	PZ-6	43563-A-1	V051206.D	12:45
03	PZ-7	43563-A-2	V051207.D	13:36
04	MW4S	43563-A-3	V051208.D	14:12
05	SUMP	43563-A-4	V051209.D	14:48
06	TRIP BLANK	43563-A-5	V051210.D	15:24
07	PZ-7DL	43563-A-2	V051211.D	16:00
08	MW4SMS	43563-A-3MS	V051212.D	16:37
09	MW4SMSD	43563-A-3MSD	V051213.D	17:13

COMMENTS:

FORM IV VOA

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	Envirotest Laboratorie	S	Contract: ####		
Lab Code:	10142 Case	No.: ####	SAS No.: ##### SDG N	No.: 43563	
Lab File ID:	V041401.D		BFB Injection Date:	4/14/2011	
Instrument II	D: MSD	-	BFB Injection Time:	11:12	
GC Column:	DB-624 ID: 0.1	8 (mm)	Heated Purge: (Y/N)	N	

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	15.3
75	30.0 - 66.0% of mass 95	42.9
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.3
173	Less than 2.0% of mass 174	0.6 (0.7)1
174	50.0 - 120.0% of mass 95	83.9
175	4.0 - 9.0% of mass 174	6.7 (8.0)1
176	93.0 - 101.0% of mass 174	83.0 (99.0)1
177	5.0 - 9.0% of mass 176	5.6 (6.7)2
		9/ maga 176

1-Value is % mass 174

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ſ	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD001	VSTD001	V041402.D	4/14/2011	11:48
02	VSTD010	VSTD010	V041403.D	4/14/2011	12:24
03	VSTD020	VSTD020	V041404.D	4/14/2011	12:59
04	VSTD050	VSTD050	V041405.D	4/14/2011	13:35
05	VSTD100	VSTD100	V041406.D	4/14/2011	14:11

²⁻Value is % mass 176

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	Envirotest Lab	oratories	Contract: ####		
Lab Code:	10142	Case No.: ####	SAS No.: ##### SDG No.: 43563		
Lab File ID:	V051201.D		BFB Injection Date: 5/12/2011		
Instrument II	D: MSD		BFB Injection Time: 9:46		
GC Column:	DB-624 II	D: 0.18 (mm)	Heated Purge: (Y/N) N		

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	15.8
75	30.0 - 66.0% of mass 95	43.0
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.6 (0.7)1
174	50.0 - 120.0% of mass 95	77.0
175	4.0 - 9.0% of mass 174	6.1 (7.9)1
176	93.0 - 101.0% of mass 174	75.1 (97.5)1
177	5.0 - 9.0% of mass 176	5.1 (6.8)2
	1-Value is % mass 174 2. Value is	% mass 176

1-Value is % mass 174

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

[EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD020	CCV	V051202.D	5/12/2011	10:21
02	LCS	LCS	V051203.D	5/12/2011	10:57
03	MB	MB	V051205.D	5/12/2011	12:09
04	PZ-6	43563-A-1	V051206.D	5/12/2011	12:45
05	PZ-7	43563-A-2	V051207.D	5/12/2011	13:36
06	MW4S	43563-A-3	V051208.D	5/12/2011	14:12
07	SUMP	43563-A-4	V051209.D	5/12/2011	14:48
08	TRIP BLANK	43563-A-5	V051210.D	5/12/2011	15:24
09	PZ-7DL	43563-A-2	V051211.D	5/12/2011	16:00
10	MW4SMS	43563-A-3MS	V051212.D	5/12/2011	16:37
11	MW4SMSD	43563-A-3MSD	V051213.D	5/12/2011	17:13

²⁻Value is % mass 176

8A

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

L	ab Name: Env	irotest Laborato	ries	Contract:	####		
L	ab Code: 1014	42 Cas	e No.: ####	SAS N	o.: #####	SDG No.: 435	63
L	ab File ID (Stand	ard): V05120	2.D		Date Ana	alyzed: 5/12/20	11
Ir	strument ID: M	SD			Time Ana	alyzed: 10:21	
G	C Column: DB-	-624 ID: (D.18 (mm)			Purge: (Y/N)	N
		IS1 (FBZ)		IS2(CBZ)			
		AREA #	0 ³ ⊮™ RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	4315876	11.74	3416425	17.81		
	UPPER LIMIT	8631752	12.24	6832850	18.31		
	LOWER LIMIT	2157938	11.24	1708213	17.31		
	EPA SAMPLE						
	NO.						
01		4402723	11.74	3538081	17.81		
02	MB	4275963	11.76	3364631	17.81		
03	PZ-6	4036981	11.75	3182519	17.82		
04	PZ-7	4147031	11.76	3309701	17.82		
05	MW4S	4108148	11.75	3337381	17.82		
06	SUMP	3968130	11.76	3194601	17.82		
07	TRIP BLANK	4049230	11.77	3208709	17.82		
08	PZ-7DL	3933614	11.77	3160288	17.82		
09	MW4SMS	3935889	11.75	3185477	17.81		
10	MW4SMSD	4186773	11.75	3291991	17.81		

IS1 (FBZ) = Fluorobenzene

IS2 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

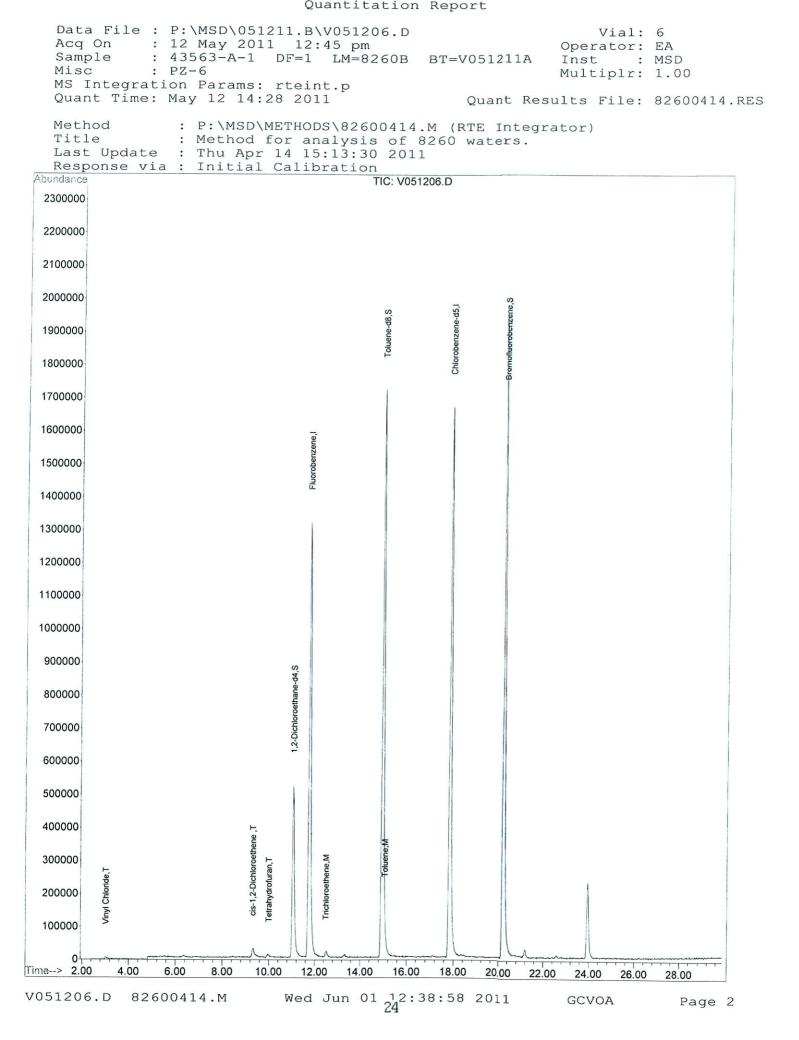
page 1 of 1

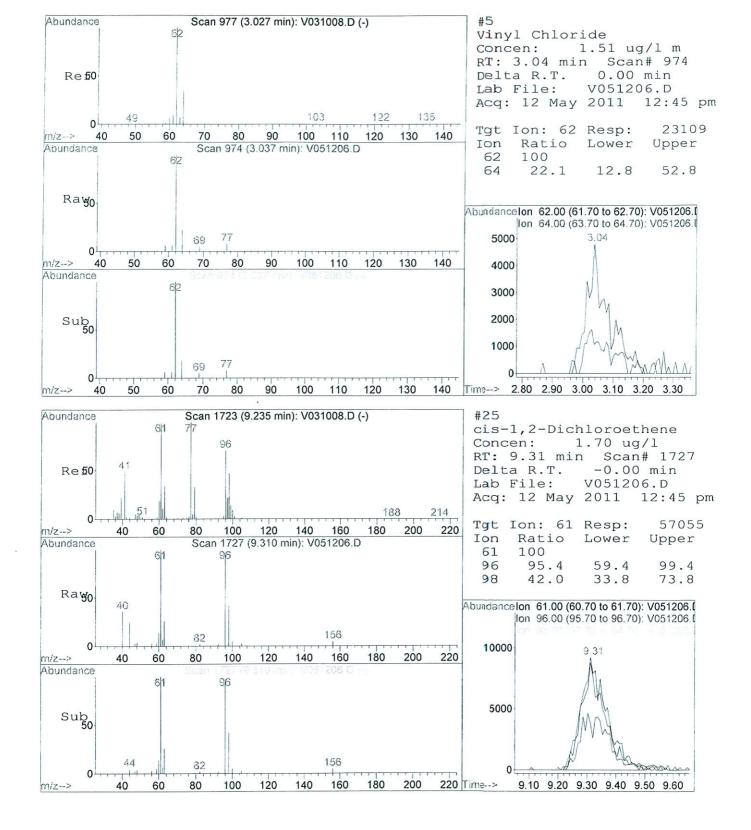
FORM VIII VOA

Volatile Data Sample Data

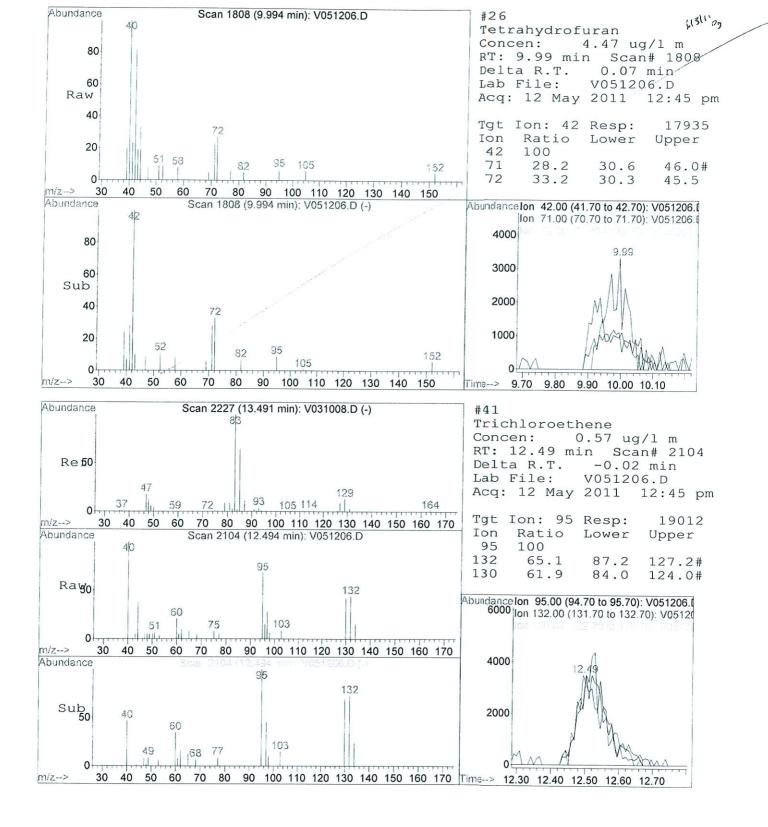
1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-6	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-1
Analysis Method:	8260B	Lab File ID:	V051206.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

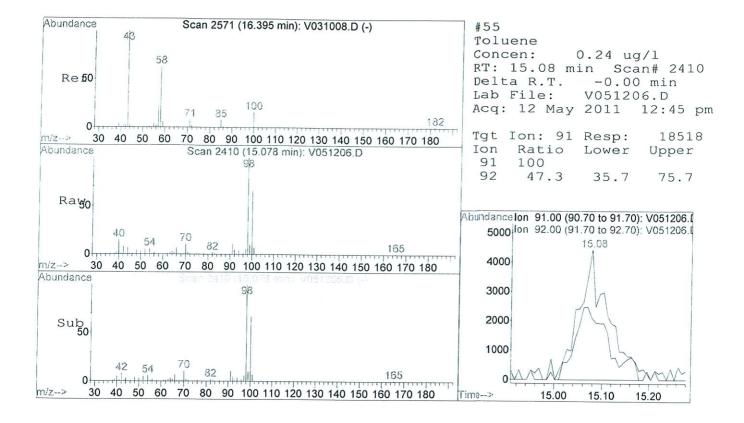

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	U	1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	U	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.7		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070


1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-6	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-1		
Analysis Method:	8260B	Lab File ID:	V051206.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45		
<pre>% Moisture:</pre>		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				


CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.5		1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	0.57	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.24	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

(Quantitation Repor	t (QT Reviewed)
Data File : P:\MSD\051211.B\V0 Acq On : 12 May 2011 12:49 Sample : 43563-A-1 DF=1 1 Misc : PZ-6 MS Integration Params: rteint Quant Time: May 12 14:28 2015	5 pm LM=8260B BT=V0512 .p	Multiplr: 1.00
Quant Method : X:\MSD\METHODS Title : Method for anal Last Update : Thu Apr 14 15:1 Response via : Initial Calibra DataAcq Meth : 82600414	lysis of 8260 wate: 13:30 2011 ation	rs. 6/1/n
Internal Standards	R.T. QION Re	esponse Conc Units Dev(Min)
1) Fluorobenzene 49) Chlorobenzene-d5	11.75 96 40	
54) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	Range 86 - 117 14.95 98 38 Range 93 - 107 20.20 95 24	089896 52.15 ug/l 0.02 Recovery = 104.30% 387472 56.91 ug/l 0.00 Recovery = 113.82%# 469366 51.82 ug/l 0.00 Recovery = 103.64%
Target Compounds 5) Vinyl Chloride 25) cis-1,2-Dichloroethene 26) Tetrahydrofuran 41) Trichloroethene 55) Toluene	9.31 61 9.99 42	Qvalue 23109m/l 1.51 ug/l 57055 1.70 ug/l 82 17935m/ 4.47 ug/l 19012m/l 0.57 ug/l 18518 0.24 ug/l 88

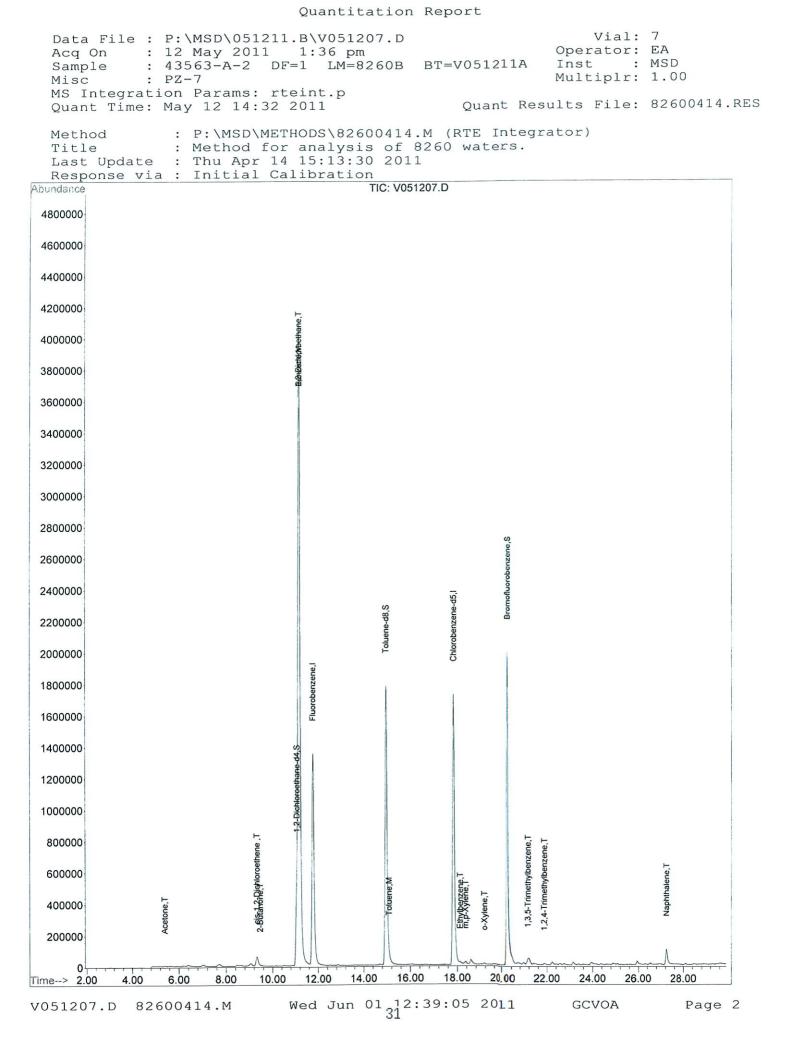


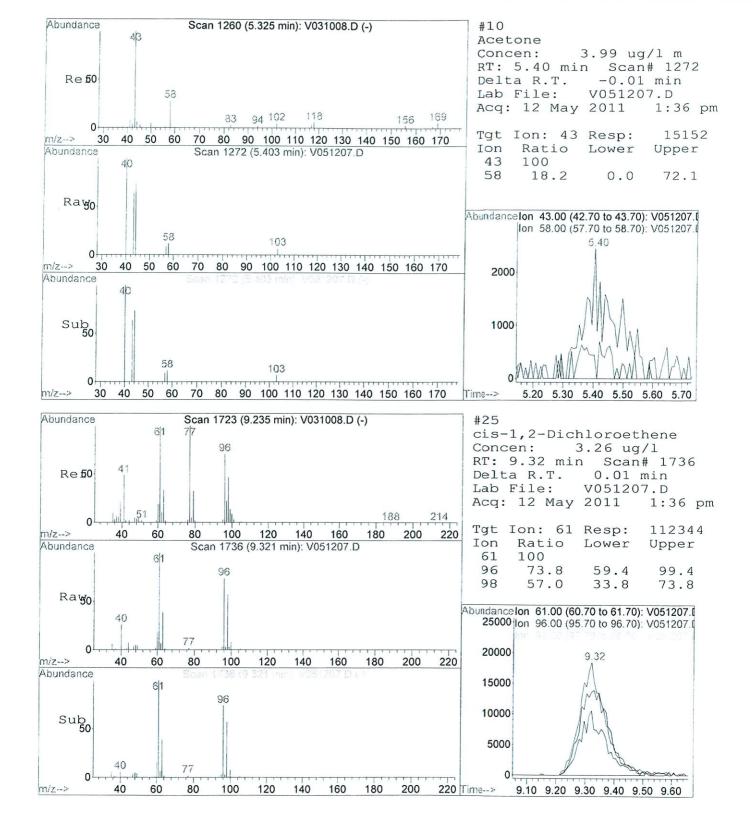
GCVOA

V051206.D 82600414.M

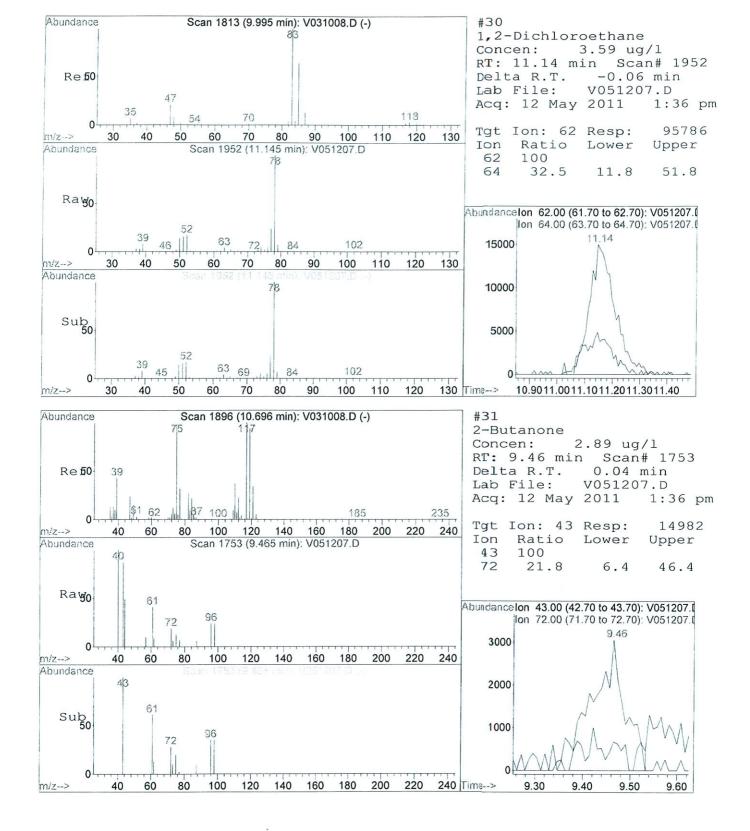
1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-2		
Analysis Method:	8260B	Lab File ID:	V051207.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				

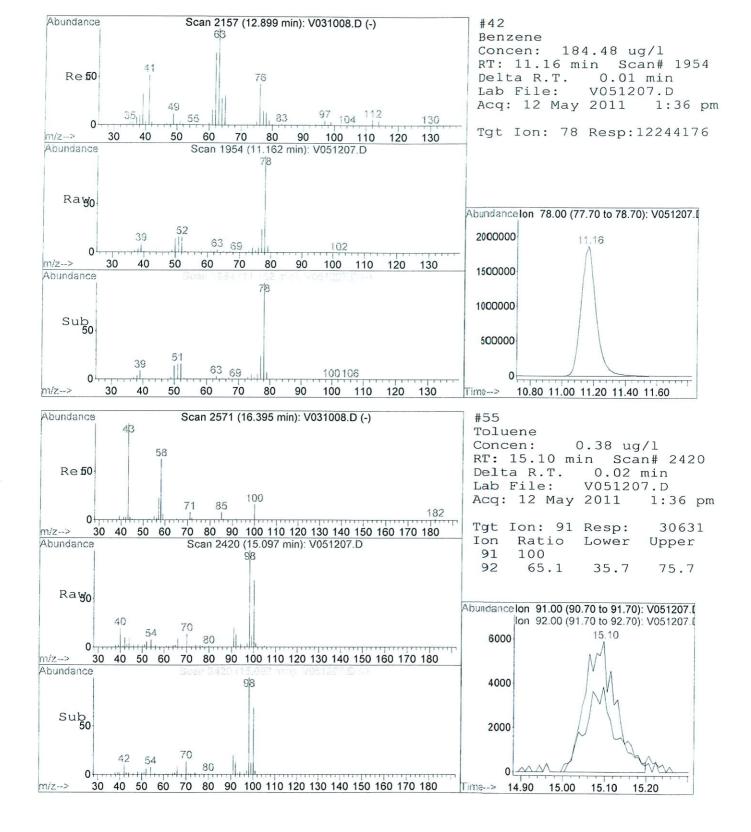

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	3.6		1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	4.0		1.0	0.27
71-43-2	Benzene	180	E	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	U	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.3		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	0.18	J	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	2.9		1.0	0.070

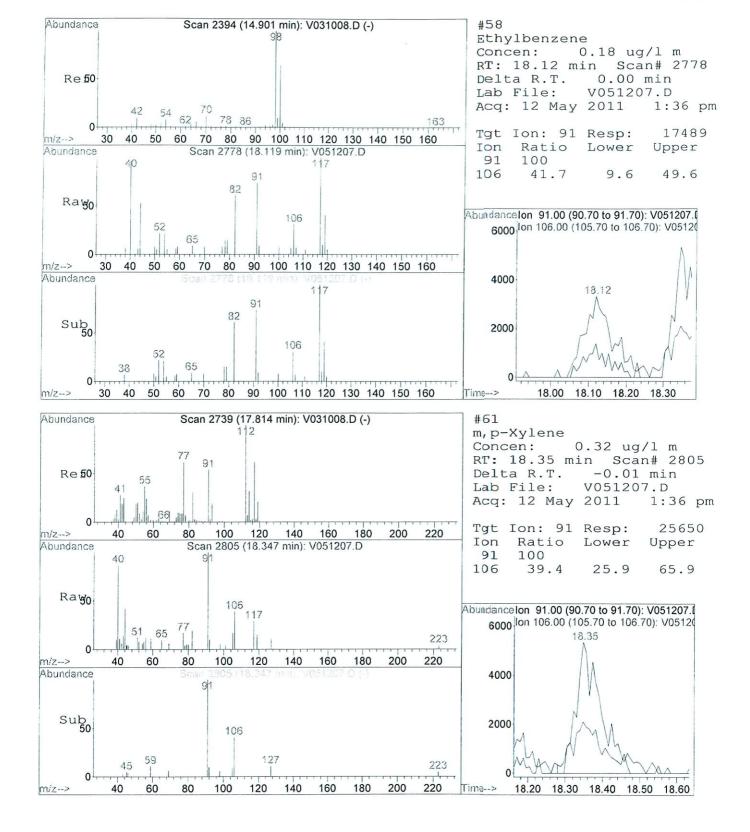

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

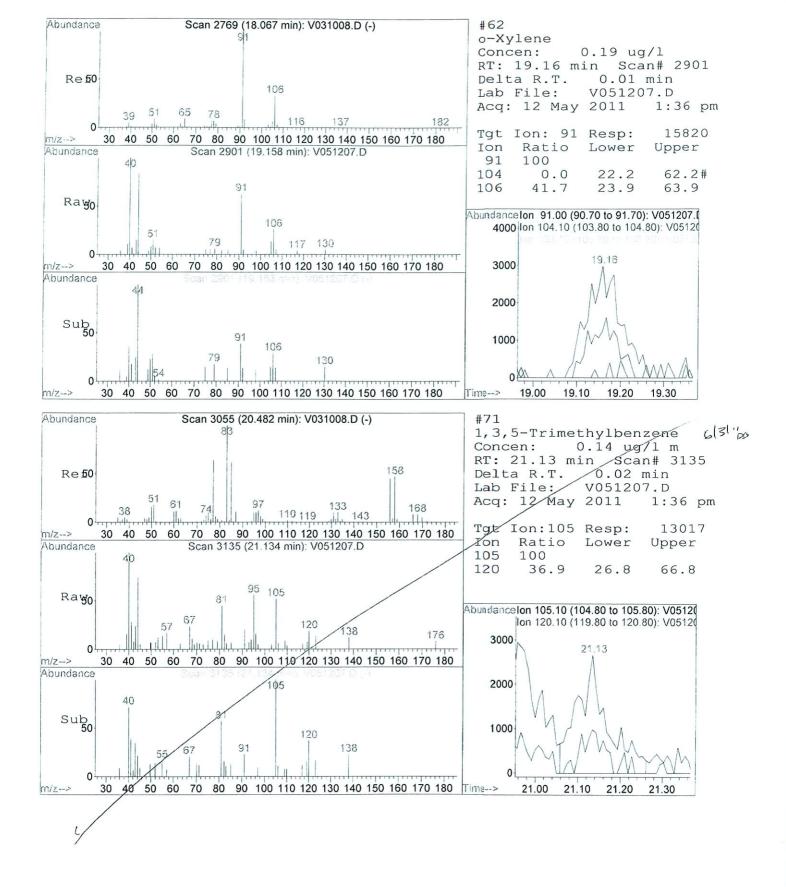
Client Sample ID:	PZ-7	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-2		
Analysis Method:	8260B	Lab File ID:	V051207.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analv. Batch No.:	46954				


CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	0.51	J	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.38	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

Quantitation Report (QT Reviewed)
Data File : P:\MSD\051211.B\V051207.D Vial: 7 Acq On : 12 May 2011 1:36 pm Operator: EA Sample : 43563-A-2 DF=1 LM=8260B BT=V051211A Inst : MSD Misc : PZ-7 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 14:32 2011 Quant Results File: 82600414.RES
Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414
Internal Standards R.T. QIon Response Conc Units Dev(Min)
1) Fluorobenzene11.7696414703150.00 ug/l0.0049) Chlorobenzene-d517.82117330970150.00 ug/l0.00
System Monitoring Compounds29) 1,2-Dichloroethane-d411.0565109318950.92ug/l0.00Spiked Amount50.000Range86-117Recovery=101.84%54) Toluene-d814.9698394361255.52ug/l0.00Spiked Amount50.000Range93-107Recovery=111.04%#59) Bromofluorobenzene20.2195248786650.20ug/l0.00Spiked Amount50.000Range89-105Recovery=100.40%
Target CompoundsQvalue10) Acetone5.404315152m//~ 3.99ug/l25) cis-1,2-Dichloroethene9.32611123443.26ug/l9430) 1,2-Dichloroethane11.1462957863.59ug/l9931) 2-Butanone9.4643149822.89ug/l9142) Benzene11.167812244176184.48ug/l10055) Toluene15.1091306310.38ug/l8761) m,p-Xylene18.129117489m//0.18ug/l8762) o-Xylene19.1691158200.19ug/l6671) 1,3,5-Trimethylbenzene21.1310513017m//0.14ug/l73) 1,2,4-Trimethylbenzene21.8810517746m//0.20ug/l84) Naphthalene27.241282797446.53ug/l100

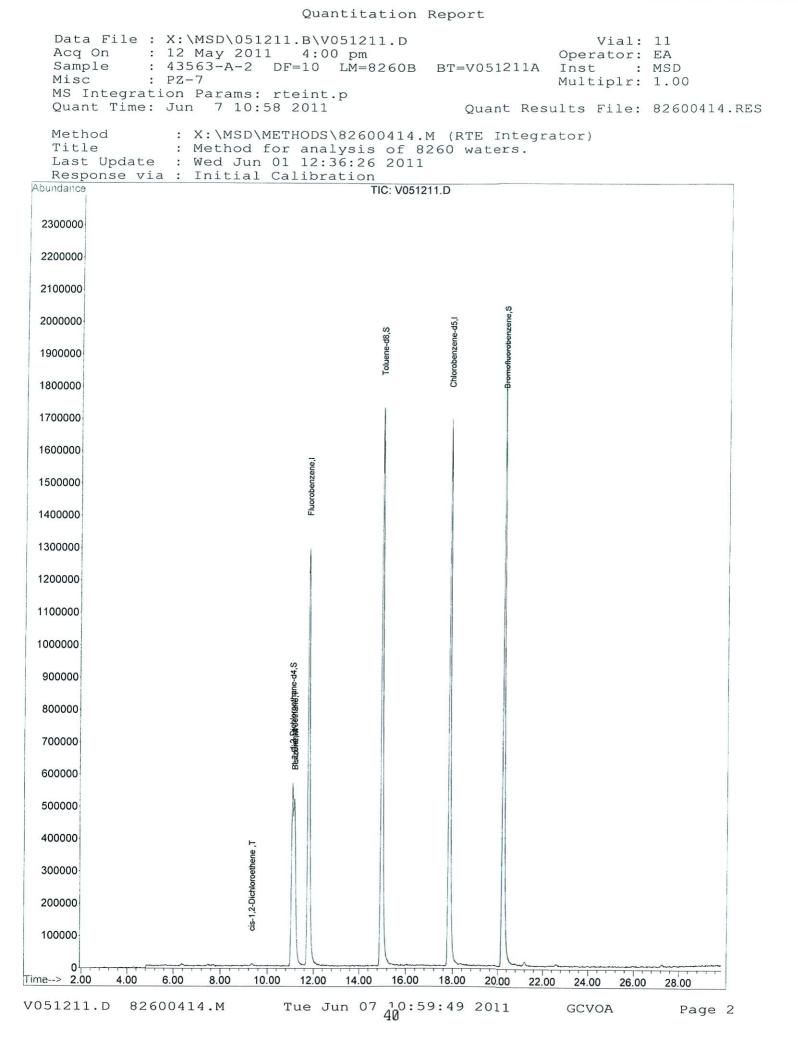


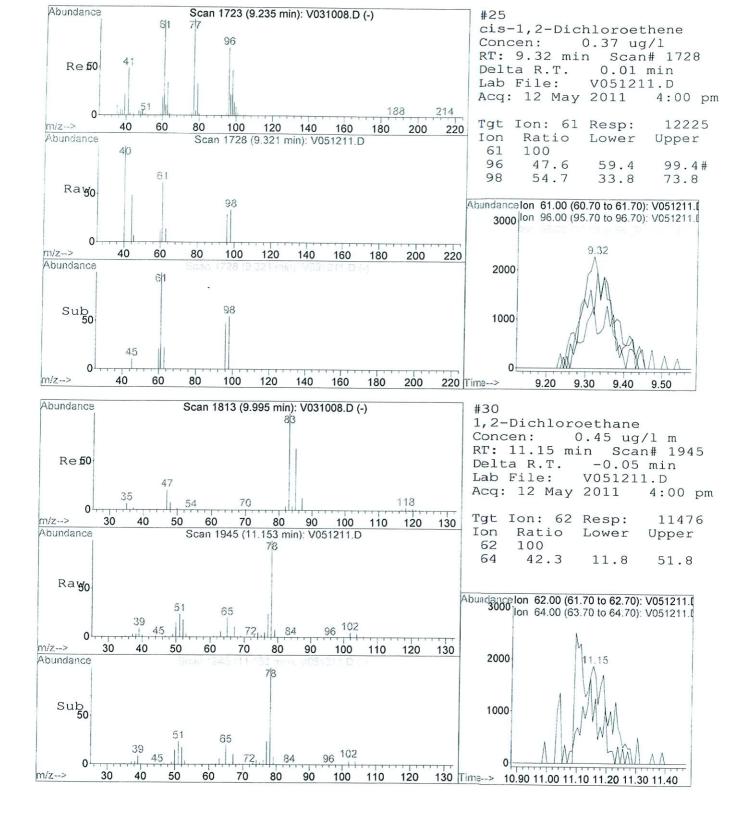


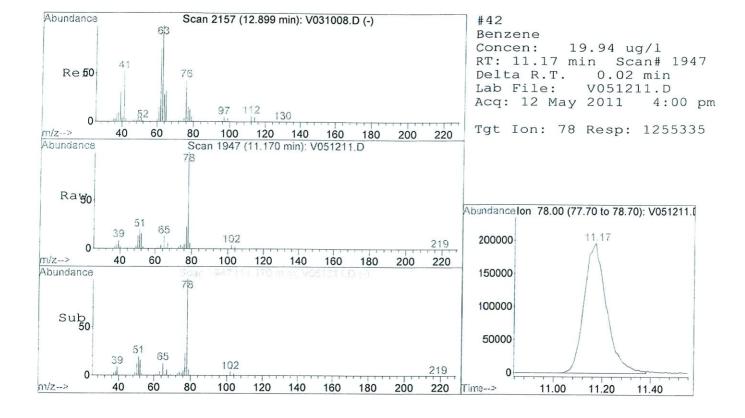

GCVOA

GCVOA

Client Sample ID:	PZ-7 OL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

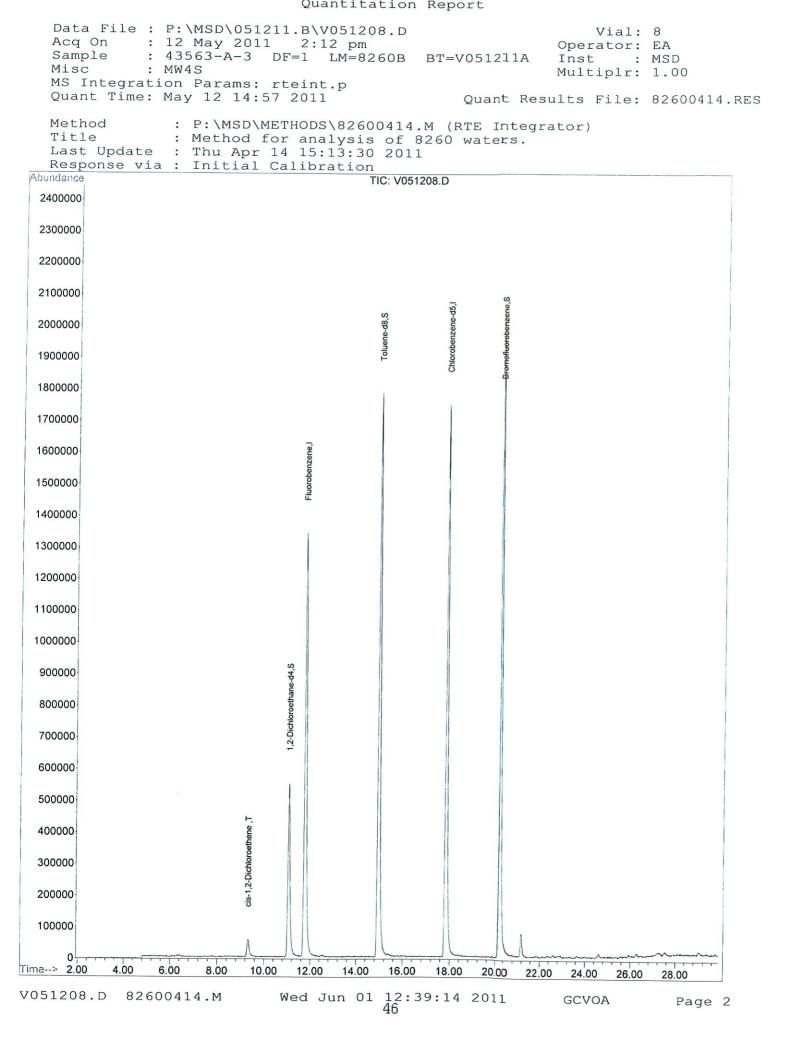

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	10	U	10	1.9
79-34-5	1,1,2,2-Tetrachloroethane	10	U	10	1.8
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U	10	1.9
79-00-5	1,1,2-Trichloroethane	10	U	10	2.2
75-34-3	1,1-Dichloroethane	10	U	10	1.1
75-35-4	1,1-Dichloroethene	10	U	10	1.2
120-82-1	1,2,4-Trichlorobenzene	10	U	10	1.7
96-12-8	1,2-Dibromo-3-Chloropropane	50	U	50	1.8
95-50-1	1,2-Dichlorobenzene	10	U	10	1.8
107-06-2	1,2-Dichloroethane	4.5	JD	10	1.0
78-87-5	1,2-Dichloropropane	10	U	10	1.7
541-73-1	1,3-Dichlorobenzene	10	U	10	1.5
106-46-7	1,4-Dichlorobenzene	10	U	10	1.7
591-78-6	2-Hexanone	10	U	10	1.8
67-64-1	Acetone	10	Ü	10	2.7
71-43-2	Benzene	200	D	10	1.2
75-25-2	Bromoform	10	U	10	1.7
74-83-9	Bromomethane	10	U	10	1.0
75-15-0	Carbon disulfide	10	U	10	1.4
56-23-5	Carbon tetrachloride	10	U	10	1.5
108-90-7	Chlorobenzene	10	U	10	1.6
124-48-1	Dibromochloromethane	10	U	10	0.80
75-00-3	Chloroethane	10	U	10	2.1
67-66-3	Chloroform	10	U	10	1.4
74-87-3	Chloromethane	10	U	10	1.4
156-59-2	cis-1,2-Dichloroethene	3.7	JD	10	1.4
10061-01-5	cis-1,3-Dichloropropene	10	U	10	1.0
75-27-4	Bromodichloromethane	10	U	10	1.6
75-71-8	Dichlorodifluoromethane	10	U	10	1.6
100-41-4	Ethylbenzene	10	U	10	1.3
98-82-8	Isopropylbenzene	10	U	10	1.0
78-93-3	2-Butanone (MEK)	10	U	10	0.70

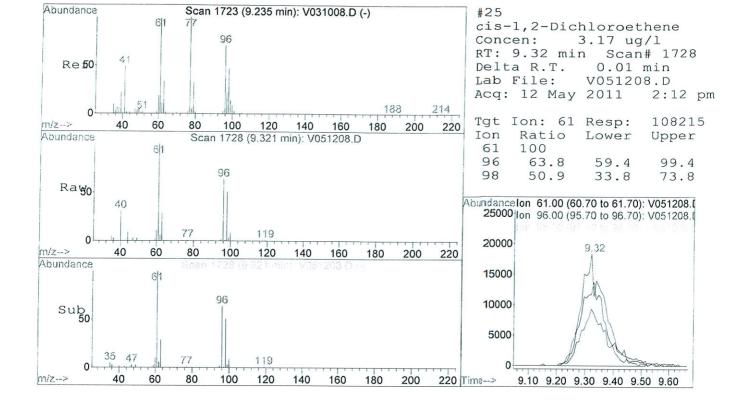

FORM I 8260B


Client Sample ID:	PZ-7 DL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analv. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	1.5
1634-04-4	Methyl tert-butyl ether	10	U	10	0.80
75-09-2	Methylene Chloride	10	U	10	1.1
100-42-5	Styrene	10	U	10	1.2
1330-20-7	Xylenes, Total	10	U	10	3.4
75-01-4	Vinyl chloride	10	U	10	1.5
75-69-4	Trichlorofluoromethane	10	U	10	1.3
79-01-6	Trichloroethene	10	U	10	0.90
10061-02-6	trans-1, 3-Dichloropropene	10	U	10	0.70
156-60-5	trans-1,2-Dichloroethene	10	U	10	1.4
108-88-3	Toluene	10	U	10	1.2
127-18-4	Tetrachloroethene	10	U	10	2.4
106-93-4	1,2-Dibromoethane	10	U	10	1.7

Quantitation Report (QT Reviewed) Data File : X:\MSD\051211.B\V051211.D Vial: 11 Acq On : 12 May 2011 4:00 pm Operator: EA Sample : 43563-A-2 DF=10 LM=8260B BT=V051211A Inst : MSD Misc : PZ-7 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: Jun 7 10:58 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration BA 1/1/1 DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Fluorobenzene 11.77 96 3933614 50.00 ug/l 0.00 17.82 117 3160288 50.00 ug/l 0.00 49) Chlorobenzene-d5 System Monitoring Compounds 11.07 65 1163908 57.15 ug/l 0.03 Range 86 - 117 Recovery = 114.30% 14.95 98 3887079 57.31 ug/l 0.00 Range 93 - 107 Recovery = 114.62%# 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 54) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene 20.21 95 2487297 52.56 ug/l 0.00 Spiked Amount 50.000 Range 89 - 105 Recovery = 105.12%# Target Compounds Ovalue 25) cis-1,2-Dichloroethene 9.32 61 11.15 62 78 30) 1,2-Dichloroethane 11.17 78 1255335 19.94 ug/lp 100 42) Benzene


Client Sample ID:	MW4S	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3
Analysis Method:	8260B	Lab File ID:	V051208.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		


CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	U	1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	U	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.2		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

Client Sample ID:	MW4S	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3
Analysis Method:	8260B	Lab File ID:	V051208.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

(QT Reviewed) Quantitation Report Data File : P:\MSD\051211.B\V051208.D Vial: 8 Acq On : 12 May 2011 2:12 pm Operator: EA : 43563-A-3 DF=1 LM=8260B BT=V051211A Inst : MSD Sample Misc : MW4S Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 14:57 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 R.T. QIon Response Conc Units Dev(Min) Internal Standards ------_____ 11.7596410814850.00 ug/l0.0017.82117333738150.00 ug/l0.00 1) Fluorobenzene 49) Chlorobenzene-d5 System Monitoring Compounds 11.05 65 1173972 55.20 ug/l 0.00 Range 86 - 117 Recovery = 110.40% 14.95 98 4026388 56.21 ug/l 0.00 Range 93 - 107 Recovery = 112.42%# 29) 1,2-Dichloroethane-d4 Spiked Amount 50.000 54) Toluene-d8 Spiked Amount 50.000 20.20 95 2535078 50.73 ug/l 0.00 59) Bromofluorobenzene Spiked Amount 50.000 Range 89 - 105 Recovery = 101.46% Target Compounds Ovalue 25) cis-1,2-Dichloroethene 9.32 61 108215 3.17 ug/l 88

Client Sample ID:	SUMP	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-4
Analysis Method:	8260B	Lab File ID:	V051209.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	2.2		1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	U	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

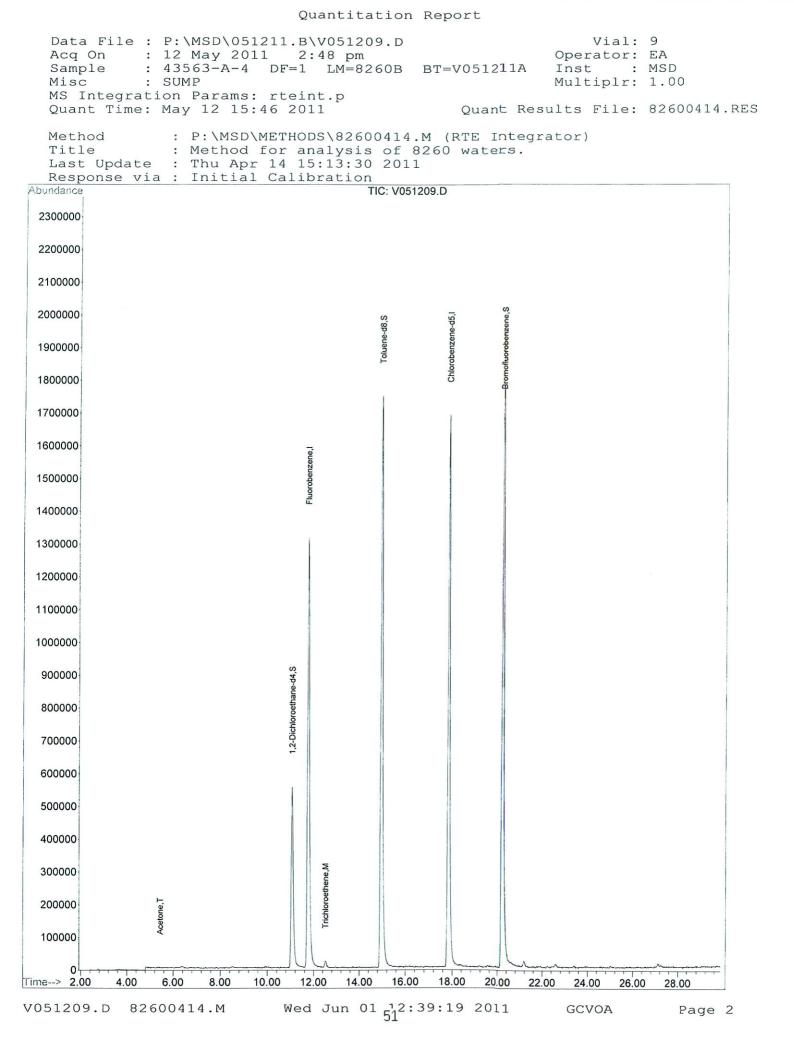
FORM I 8260B

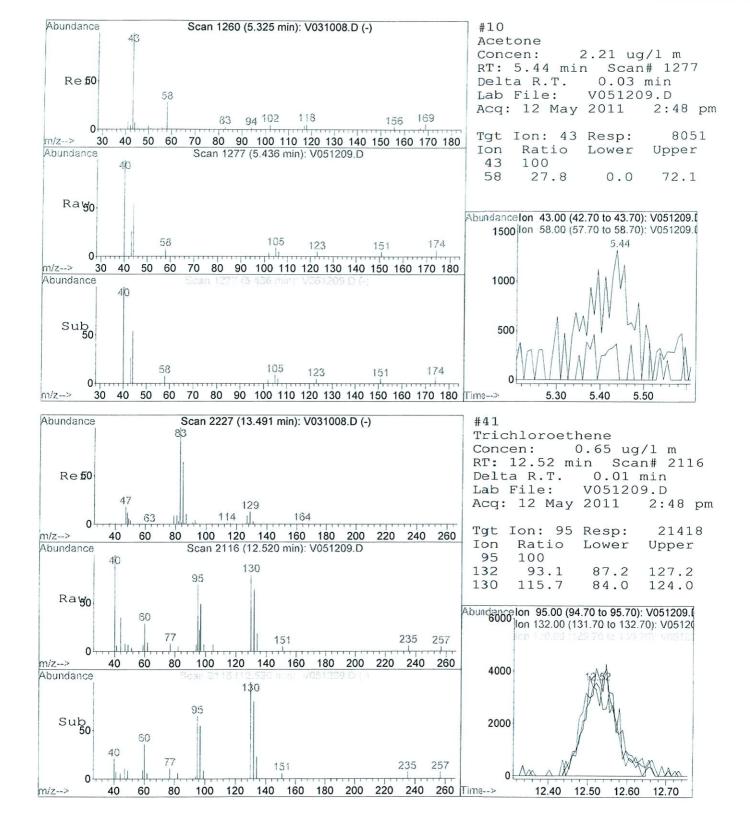
Client Sample ID:	SUMP	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-4
Analysis Method:	8260B	Lab File ID:	V051209.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	0.65	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

Quantitation Report (OI VENTEMED) Data File : P:\MSD\051211.B\V051209.D Acq On : 12 May 2011 2:48 pm Sample : 43563-A-4 DF=1 LM=8260B BT=V051211A Misc : SUMP Vial: 9 Operator: EA Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 15:46 2011 Ouant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QION Response Conc Units Dev(Min) 11.76 96 3968130 50.00 ug/l 0.00 1) Fluorobenzene 49) Chlorobenzene-d5 17.82 117 3194601 50.00 ug/l 0.00 System Monitoring Compounds 29) 1,2-Dichloroethane-d4 11.07 65 1162644 56.59 ug/l 0.03

 Range
 86 - 117
 Recovery
 = 113.18%


 14.95
 98
 3869391
 56.43
 ug/l
 0.00


 Range
 93 - 107
 Recovery
 = 112.86%#

 20.21
 95
 2496329
 52.19
 ug/l
 0.00

 Range
 89 - 105
 Recovery
 = 104.38%

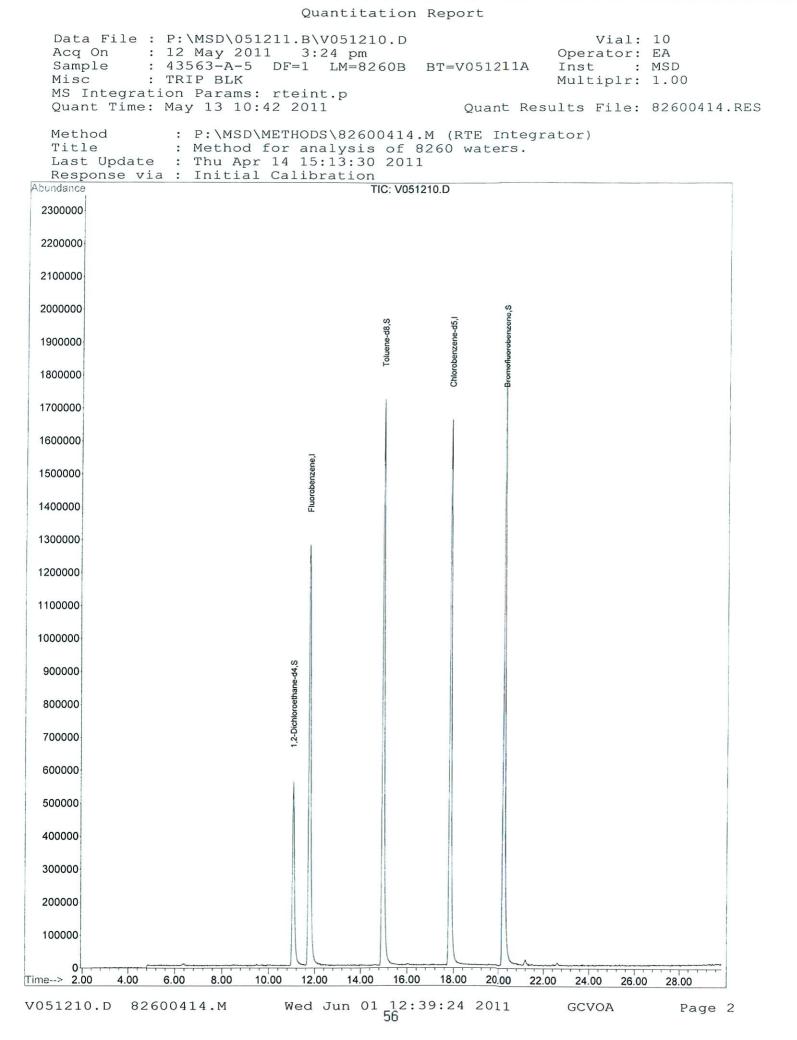
 Spiked Amount 50.000 54) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000 Target Compounds Qvalue 8051m 3 2.21 ug/l 5.44 43 10) Acetone 21418mBL 41) Trichloroethene 0.65 ug/l 12.52 95

GCVOA

Client Sample ID:	Trip Blank	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-5
Analysis Method:	8260B	Lab File ID:	V051210.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 15:24
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
591-78-6	2-Hexanone	1.0	U	1.0	1.0
67-64-1	Acetone	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0

FORM I 8260B


Client Sample ID: Trip Blank		Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-5		
Analysis Method:	8260B	Lab File ID:	V051210.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 15:24		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				

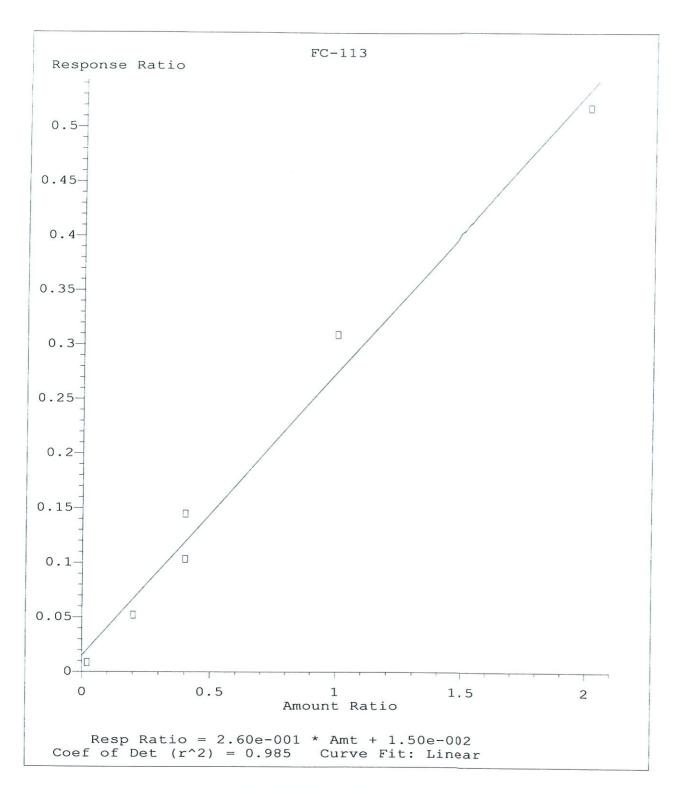
108-10-1			Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
56-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
08-88-3	Toluene	1.0	U	1.0	1.0
27-18-4	Tetrachloroethene	1.0	U	1.0	1.0
06-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0

Quantitation Report (QT Reviewed) Data File : P:\MSD\051211.B\V051210.D Vial: 10 Acq On : 12 May 2011 3:24 pm Sample : 43563-A-5 DF=1 LM=8260B BT=V051211A Misc : TRIP BLK Operator: EA Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 13 10:42 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Fluorobenzene 11.77 96 4049230 50.00 ug/l 0.00 17.82 117 3208709 50.00 ug/l 0.00 49) Chlorobenzene-d5 System Monitoring Compounds 29) 1,2-Dichloroethane-d4 11.06 65 1160079 55.34 ug/l 0.02 Spiked Amount 50.000 Range 86 - 117 Recovery = 110.68% 54) Toluene-d8 Spiked Amount 50.000 14.96 98 3854853 55.98 ug/1 0.00 Range 93 - 107 Recovery = 111.96%# 20.21 95 2453436 51.06 ug/l 0.00 59) Bromofluorobenzene Spiked Amount 50.000 Range 89 - 105 Recovery = 102.12%

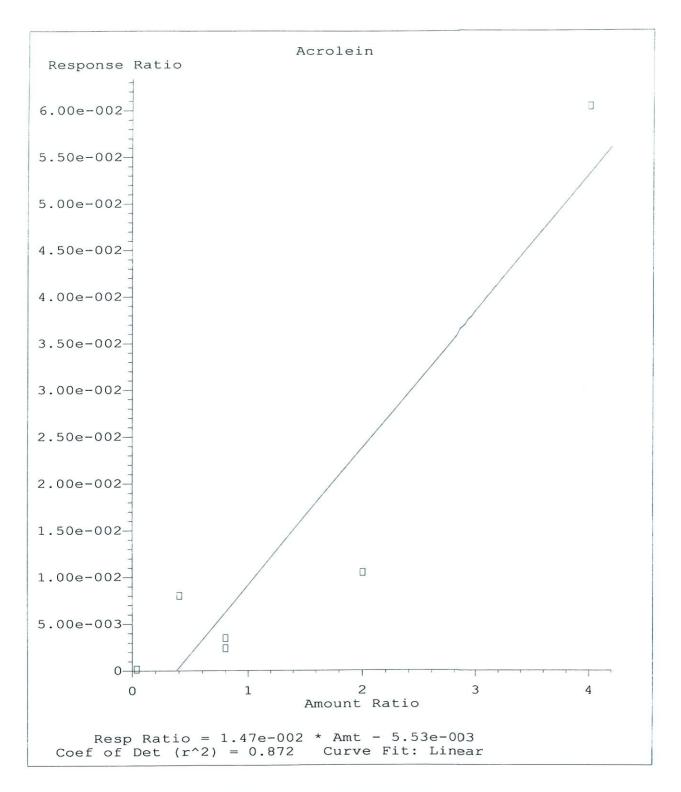
Target Compounds

Qvalue

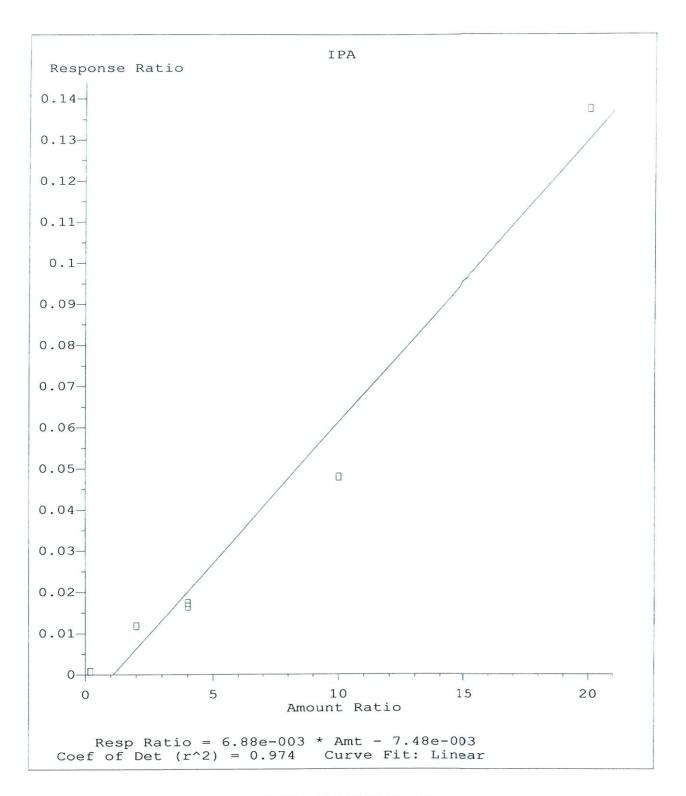
Volatile Data Standards Data

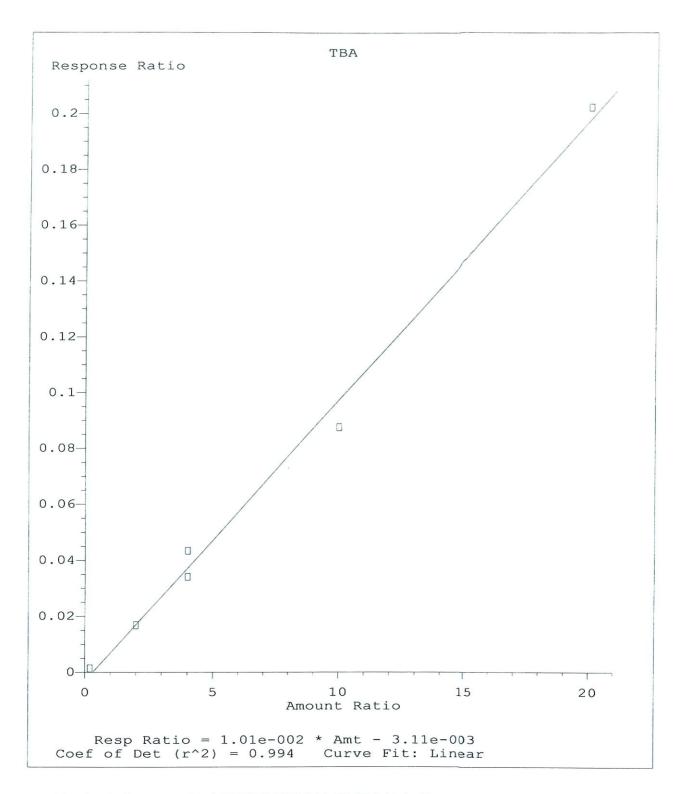

Ti La	Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Jun 01 12:36:26 2011 Response via : Initial Calibration								
Ca. 1 50	libration Files =V041402.D 10 =V041405.D 100	=V0 =V0	41403.[41406.[D 20) =	=V0414C	04.D	Fh.	
	Compound	1	10	20	50	100	Avg	*RSD	
1) ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Trichlorofluoromethan Freon 123A FC-113 Acetone Acrolein Iodomethane Carbon Disulfide Acetonitrile Methylene Chloride IPA TBA Acrylonitrile MTBE 1,1-Dichloroethene 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane trans-1,2-Dichloroethen Tetrahydrofuran Chloroform 1,1-Dichloropropene 1,2-Dichloroethane 2-Butanone Bromochloromethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropane 2-Butanone Bromodichloromethane 1,2-Dichloropropane 2-Chloroethylvinyleth cis-1,3-Dichloroprope Trichloroethene Benzene 1,3-Dichloropropane 1,2-Trichloroethane trans-1,3-Dichloropro Trichloroethene Benzene 1,2-Dibromoethane Chlorobenzene-d5 4-Methyl-2-Pentanone	 a 0.319 b 0.039 c 0.329 c 0.209 c 0.521 c 429 c 449 c 468 c 378 c 431 c 550 c 306 c 531 c 550 c 306 c 531 c 550 c 306 c 531 c 551 c 306 c 531 c 556 c 348 c 427 c 451 c 423 c 423 c 423 	<pre>0.032 0.045 0.178 0.114 0.463 0.387 0.261 0.037 0.200 0.725 0.586 0.322 0.254 0.006 0.008 0.041 0.551 0.464 0.432 0.370 0.355 0.413 0.046 0.580 0.413 0.046 0.580 0.413 0.244 0.375 0.413 0.046 0.580 0.244 0.366 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.366 0.003 0.566 0.309 0.157 0.463 0.581 0.467 0.581 0.467 0.581 0.467 0.581 0.467 0.581 0.467 0.581 0.467 0.324 0.325 0.413 0.325 0.4284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.284 0.328 0.417 0.463 0.324 0.324 0.467 0.324 0.324 0.324 0.467 0.324</pre>	0.362 0.036 0.048 0.195 0.117 0.501 0.395 0.258 0.053 0.003 0.694 0.615 0.338 0.263 0.004 0.6261 0.341 0.3661 0.367 0.467 0.3661 0.367 0.467 0.3661 0.367 0.467 0.260 0.320 0.051 0.260 0.320 0.051 0.260 0.320 0.0595 0.495 0.260 0.320 0.0595 0.495 0.320 0.0595 0.495 0.3260 0.320 0.317 0.464 0.407 0.464 0.501 0.499 15 0.090	0.347 0.034 0.047 0.178 0.110 0.493 0.431 0.309 0.051 0.005 0.677 0.625 0.327 0.249 0.005 0.009 0.044 0.536 0.361 0.464 0.382 0.402 0.373 0.415 0.053 0.581 0.413 0.262 0.314 0.067 0.286 0.520 0.5581 0.413 0.262 0.314 0.067 0.286 0.520 0.5573 0.581 0.403 0.573 0.5581 0.403 0.573 0.573 0.308 0.573 0.308 0.573 0.308 0.573 0.308 0.403 0.573 0.308 0.3581 0.403 0.573 0.308 0.403 0.573 0.308 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.308 0.403 0.573 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.308 0.403 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.573 0.581 0.403 0.403 0.413 0.581 0.403 0.413 0.581 0.403 0.413 0.581 0.403 0.403 0.413 0.403 0.413 0.403	0.358 0.044 0.040 0.190 0.107 0.466 0.259 0.040 0.259 0.040 0.015 0.689 0.246 0.323 0.246 0.007 0.010 0.048 0.323 0.246 0.323 0.246 0.323 0.246 0.323 0.246 0.353 0.363 0.363 0.353 0.363 0.363 0.266 0.307 0.071 0.279 0.496 0.352 0.5698 0.266 0.307 0.071 0.279 0.496 0.353 0.567 0.353 0.567 0.353 0.567 0.353 0.567 0.353 0.567 0.353 0.567 0.305 0.160 0.465 0.386 0.768 0.424 0.293 0.472 0.472	0.341 0.037 0.044 0.189 0.115 0.489 0.408 0.302 0.046 0.010 0.689 0.606 0.325 0.257 0.005 0.009 0.642 0.543 0.341 0.468 0.303 0.392 0.367 0.416 0.055 0.586 0.412 0.259 0.321 0.063 0.2508 0.325 0.367 0.416 0.055 0.586 0.412 0.508 0.413 0.458 0.4457 0.582 0.315 0.488 0.468	6.06 12.39 8.59 6.16 6.92 5.02 4.92 23.80 15.32 79.82 3.51 3.04 2.62 4.23 24.25 12.59 13.17 10.18 3.95 1.35 44.68 11.81 2.42 2.30 19.51 2.33 3.65 3.23 4.82 14.80 3.71 3.15 4.78 3.83 30.46 2.71 1.80 4.81 3.87 5.90 5.29 5.27 2.67 7.41 5.02 2.65 5.85	
51) T 52) T 53) T 54) S	2-Hexanone Tetrachloroethene 1,1,1,2-Tetrachloroet Toluene-d8	0.049 0.880 0.530	0.089	0.073 (0.812 (0.567 (0.104 (0.789 (0.546 (0.107 (0.707 (0.535 (0.084 0.807	15.82 28.25 8.10 2.67 5.75	

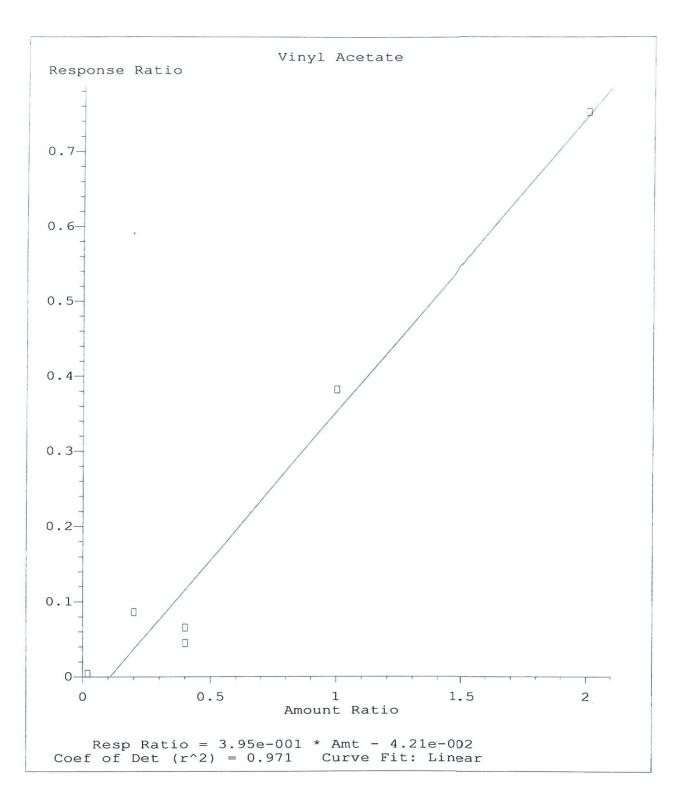
(#) = Out of Range 82600414.M

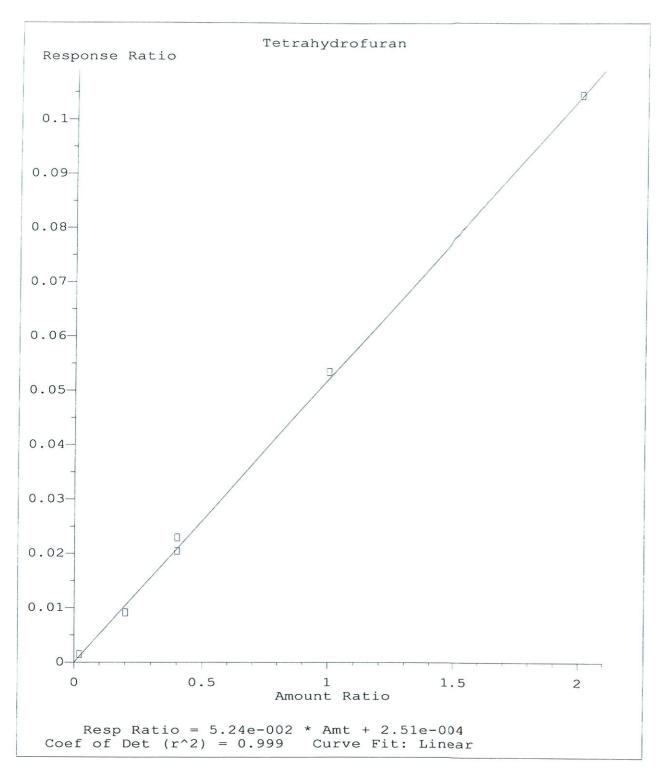

Method	:	X:\MSD\METHODS\82600414.M (RTE Integrator)
Title	:	Method for analysis of 8260 waters.
Last Update	:	Wed Jun 01 12:36:26 2011
Response via	:	Initial Calibration

Cali	bration Files					
1	=V041402.D	10	=V041403.D	20	=V041404.D	
50	=V041405.D	100	=V041406.D			

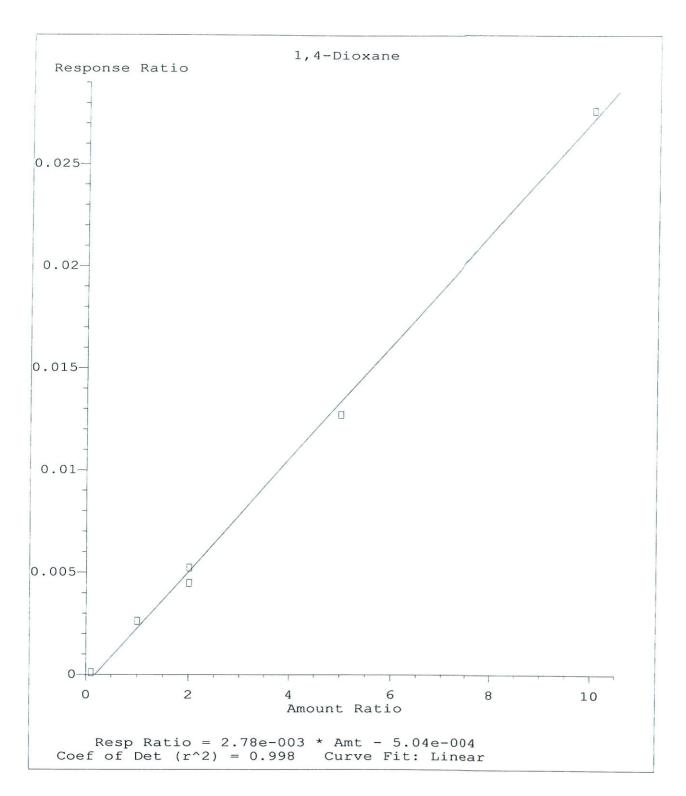

	Compound	1	10	20	50	100	Avg	%RSD
55) M	Toluene	1.229	1.211	1.228	1.240	1.214	1.224	0.98
56) M	Chlorobenzene	1.000				0.932	0.961	2.63
57) T	1-Chlorohexane	0.163	0.165	0.166	0.174	0.173	0.168	2.90
58) T	Ethylbenzene	1.491	1.495	1.482	1.476	1.423	1.473	1.97
59) S	Bromofluorobenzene	0.875	0.724	0.749	0.701	0.695	0.749	9.83
60) T	Styrene	0.896	0.950	0.976	0.944	0.923	0.938	3.21
61) T	m,p-Xylene	1.187	1.190	1.241	1.200	1.183	1.200	1.97
62) T	o-Xylene	1.301	1.277	1.301	1.273	1.241	1.279	1.94
63) T	1,2,3-Trichloropropan	0.404	0.530	0.567	0.545	0.540	0.517	12.52
64) T	Isopropylbenzene	1.790	1.675	1.721	1.728	1.702	1.723	2.47
65) T	Bromobenzene	0.990	1.055	1.085	1.056	1.045	1.046	3.31
66) T	trans-1,4-Dichloro-2-	0.051	0.045	0.058	0.063	0.070	0.057	17.21
67) T	n-Propylbenzene	1.913	1.806	1.905	1.923	1.867	1.883	2.56
68) T	1,1,2,2-Tetrachloroet	0.566	0.582	0.598	0.591	0.573	0.582	2.17
69) T	2-Chlorotoluene	1.466	1.353	1.366	1.346	1.286	1.363	4.77
70) T	4-Chlorotoluene	1.493	1.419	1.486	1.437	1.375	1.442	3.40
71) T	1,3,5-Trimethylbenzen	1.467	1.387	1.410	1.397	1.343	1.401	3.20
72) Т	tert-Butylbenzene	1.799	1.723	1.758	1.767	1.716	1.753	1.92
73) т	1,2,4-Trimethylbenzen	1.375	1.384	1.416	1.377	1.308	1.372	2.87
74) T	sec-Butylbenzene	1.994	1.921	2.001	2.028	1.979	1.985	2.01
75) T	1,3-Dichlorobenzene	0.938	0.946	0.942	0.931	0.903	0.932	1.81
76) T	4-Isopropyltoluene	1.583	1.566	1.637	1.638	1.552	1.595	2.54
77) T	1,4-Dichlorobenzene	1.012	0.953	1.001	0.992	0.919	0.975	3.99
78) T	1,2-Dichlorobenzene	0.904	0.890	0.913	0.896	0.853	0.891	2.60
79) t	Benzyl chloride	0.464	0.611	0.676	0.710	0.737	0.640	17.02
80) T	n-Butylbenzene	1.314	1.339	1.419	1.516	1.472	1.412	6.07
81) T	1,2-Dibromo-3-chlorop	0.113	0.108	0.129	0.132	0.137	0.124	10.10
82) T	Hexachlorobutadiene	0.552	0.553	0.574	0.612	0.594	0.577	4.54
83) T	1,2,4-Trichlorobenzen	0.459	0.701	0.737	0.772	0.783	0.690	19.28
84) T	Naphthalene	0.401	0.752	0.871	0.954	1.028	0.801	30.73
85) T	1,2,3-Trichlorobenzen	0.404	0.586	0.623			0.582	17.80
, -	-, -,				1.000	5.505	0.002	1,.00


Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011

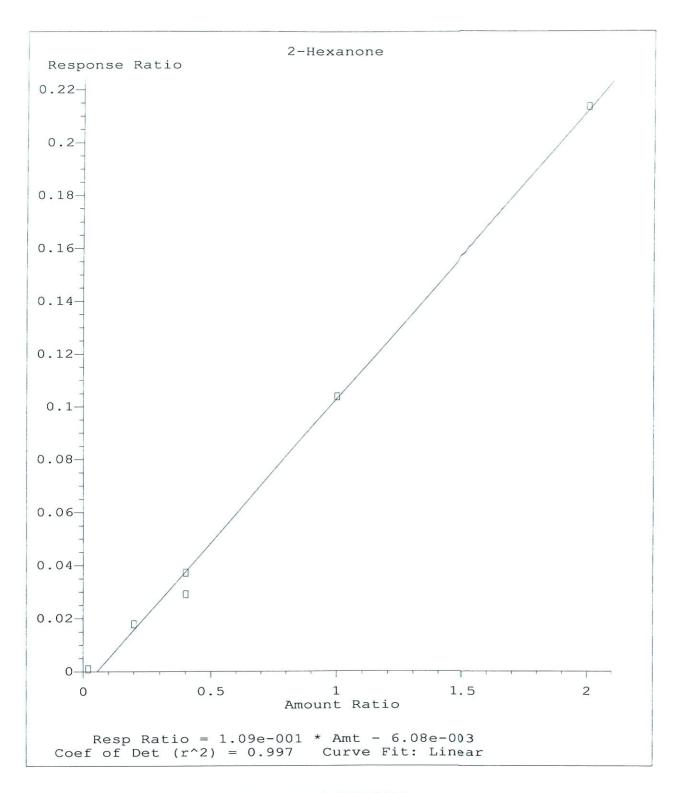

Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011


Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011

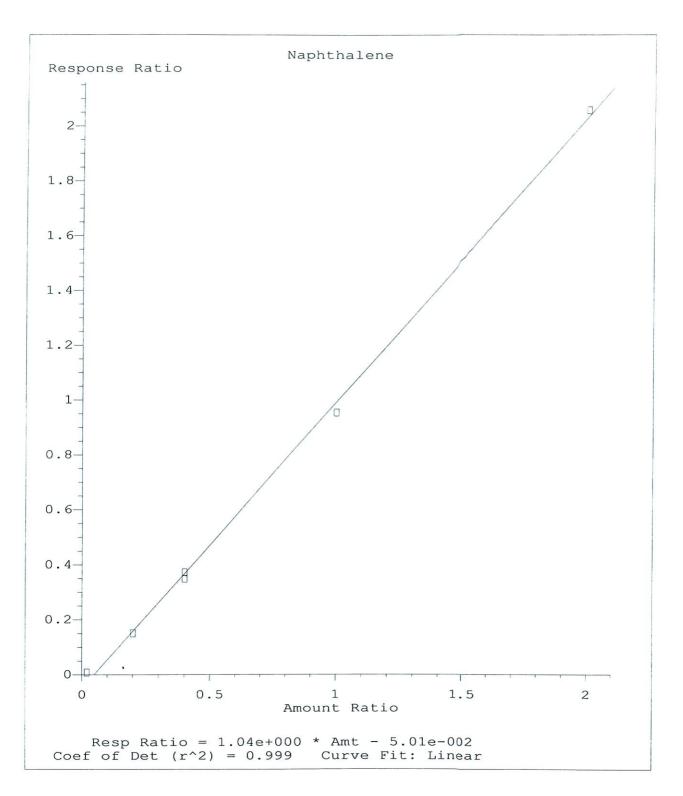
Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011



Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011



Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011


4

Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011

Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011

Method Name: X:\MSD\METHODS\82600414.M Calibration Table Last Updated: Wed Jun 01 12:36:26 2011

Quantitation Report (QT Reviewed) Data File : X:\MSD\041411.B\V041402.D Vial: 2 Acq On : 14 Apr 2011 11:48 am Sample : VSTD001 Misc : VSTD001 MW041211 Operator: EA Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: Apr 14 12:29 2011 Quant Time: Apr 14 12:29 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Fluorobenzene11.7696414447550.00 ug/l0.0649) Chlorobenzene-d517.81117341386450.00 ug/l0.05 System Monitoring Compounds
29) 1,2-Dichloroethane-d411.0765217010.82ug/l0.07Spiked Amount50.000Range86-117Recovery=1.64%#54) Toluene-d814.9698806520.96ug/l0.07Spiked Amount50.000Range93-107Recovery=1.92%#59) Bromofluorobenzene20.2095597241.02ug/l0.04Spiked Amount50.000Range89-105Recovery=2.04%#

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 2.04%#

 Target Compounds
 Qval

 2) Dichlorodifluoromethane
 2.89
 50
 3212m
 V
 0.73
 ug/l

 3) Chloromethane
 3.56
 94
 335m
 0.96
 ug/l

 4) Bromomethane
 3.56
 94
 335m
 0.96
 ug/l

 5) Vinyl Chloride
 3.06
 62
 17009m
 1.09
 ug/l

 6) Chloroethane
 3.76
 64
 1055m
 1.09
 ug/l

 7) Trichlorofluoromethane
 4.23
 101
 Ascolein
 1.03
 ug/l

 10) Acetone
 5.38
 43
 4036m
 1.34
 ug/l

 11) Accolein
 5.00
 142
 54692
 0.80
 ug/l

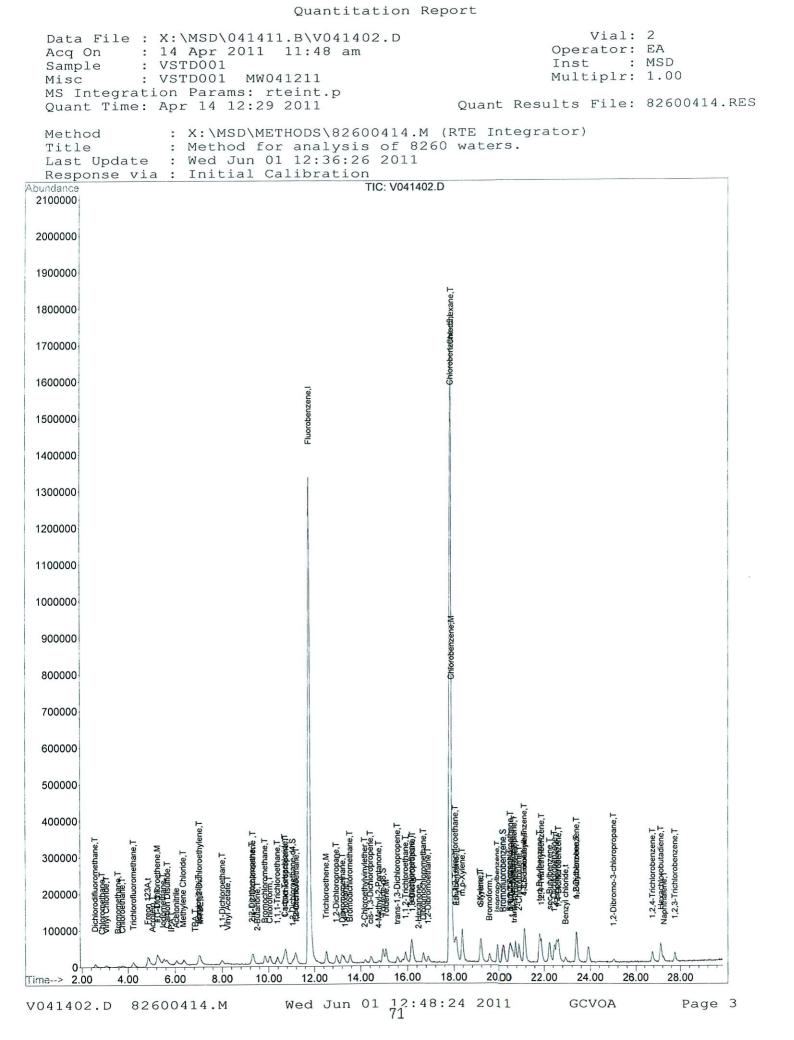
 12) Iodomethane
 5.00
 142
 54692
 0.80
 ug/l

 13) Carbon Disulfide
 5.67
 76
 51180
 0.87
 ug/l

 14) Acetonitrile
 6.85
 59
 586m
 3.37
 ug/l

 15) Methylene Chloride
 8.24
 3375m
 0.95 Qvalue 89 99 100 78 85 89 92 93 90 77 81 81 91 99

(#) = qualifier out of range (m) = manual integration V041402.D 82600414.M Wed Jun 01 12:48:22 2011 GCVOA Page 1 69


Quantitation Report (QT Reviewed) Data File : X:\MSD\041411.B\V041402.D Vial: 2 Acq On : 14 Apr 2011 11:48 am Sample : VSTD001 Operator: EA Inst : MSD Multiplr: 1.00 Misc : VSTD001 MW041211 MS Integration Params: rteint.p Quant Time: Apr 14 12:29 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.58	75	28879m P	L 0.79 ug/1	
46)	1,1,2-Trichloroethane	15.91	97	27715	0.98 ug/l	84
47)	1,2-Dibromoethane	16.89	107	39101	0.87 ug/1	99
48)	Bromoform	19.54	173	35084	0.80 ug/l	93
50)	4-Methyl-2-Pentanone	14.77	58	5252m	0.79 ug/l	
51)	2-Hexanone	16.48	58	3359m	3.91 ug/l	
52)	Tetrachloroethene	16.16	166	60109	1.17 ug/l	88
53)	1,1,1,2-Tetrachloroethane	18.06	131	36202	0.93 ug/l	
55)	Toluene	15.10	91	83909	0.98 ug/l	92
56)	Chlorobenzene	17.88	112	68290	1.02 ug/l	96
57)	1-Chlorohexane	17.84	93	11132m	0.89 ug/l	
58)	Ethylbenzene	18.11	91	101796	0.98 ug/l	87
60)	Styrene	19.17	104	61181	0.93 ug/1	88
61)	m,p-Xylene	18.35	91	162082	1.89 ug/l	100
62)	o-Xylene	19.14	91	88859	1.00 ug/l	78
63)	1,2,3-Trichloropropane	20.61	75	27586	0.69 ug/1	86
64)	Isopropylbenzene	19.91	105	122211	1.02 ug/l	95
65)	Bromobenzene	20.50	77	67610	0.88 ug/l	96
66)	trans-1,4-Dichloro-2-Buten	20.68	89	3463m	0.81 ug/l	
67)	n-Propylbenzene	20.74	91	130648	0.99 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.53	83	38678	0.90 ug/l	92
69)	2-Chlorotoluene	20.90	91	100091	1.07 ug/l	94
70)	4-Chlorotoluene	21.13	91	101965	1.03 ug/l	98
71)	1,3,5-Trimethylbenzene	21.12	105	100159	1.02 ug/l	97
72)	tert-Butylbenzene	21.78	119	122826	0.99 ug/l	99
73)	1,2,4-Trimethylbenzene	21.88	105	93865	0.97 ug/l	98
74)	sec-Butylbenzene	22.24	105	136141	0.99 ug/l	93
75)	1,3-Dichlorobenzene	22.44	146	64064	0.99 ug/l	85
76)	4-Isopropyltoluene	22.54	119	108089	0.96 ug/l	95
77)	1,4-Dichlorobenzene	22.64	146	69110m	1.00 ug/l	
78)	1,2-Dichlorobenzene	23.39	146	61732	0.98 ug/1	90
79)	Benzyl chloride	22.91	91	31657	0.63 ug/1	89
80)	n-Butylbenzene	23.40	91	89700	0.90 ug/l	86
81)	1,2-Dibromo-3-chloropropan	25.00	75	7738m 🌱	0.78 ug/1	
82)	Hexachlorobutadiene	27.12	225	37692	0.90 ug/l	93
83)	1,2,4-Trichlorobenzene	26.75	180	31355	0.63 ug/1	94
84)	Naphthalene	27.25	128	27367	0.42 ug/1	78
85)	1,2,3-Trichlorobenzene	27.74	180	27551	0.65 ug/l	99

(#) = qualifier out of range (m) = manual integration

V041402.D 82600414.M Wed Jun 01 12:48:23 2011 GCVOA Page 2

Data File : X:\MSD\041411.B\V041403.D Acq On : 14 Apr 2011 12:24 pm Vial: 3 Operator: EA Sample : VSTD010 Misc : VSTD010 MW041211 Inst : MSD Misc : VSTD010 MW041211 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: Apr 14 13:15 2011 Quant Results File: 82600414.RES Multiplr: 1.00 Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414 R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Fluorobenzene11.7596424323050.00 ug/l0.0549) Chlorobenzene-d517.82117346984050.00 ug/l0.06

 System Monitoring Compounds
 11.04
 65
 207379
 7.62 ug/l
 0.04

 29) 1,2-Dichloroethane-d4
 11.04
 65
 207379
 7.62 ug/l
 0.04

 Spiked Amount
 50.000
 Range
 86 - 117
 Recovery
 =
 15.24%#

 54) Toluene-d8
 14.94
 98
 725626
 8.48 ug/l
 0.04

 Spiked Amount
 50.000
 Range
 93 - 107
 Recovery
 =
 16.96%#

 59) Bromofluorobenzene
 20.20
 95
 502350
 8.44 ug/l
 0.04

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 16.88%#

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 16.88%

 Target Compounds
 Qualue

 2) Dichlorodifluoromethane
 2.57
 85
 275154
 8.49
 ug/l
 100

 3) Chloromethane
 2.91
 50
 27527
 6.08
 ug/l
 100

 4) Bromomethane
 3.59
 94
 38159m
 4.10.66
 ug/l
 99

 6) Chloroethane
 3.75
 64
 96568
 9.25
 ug/l
 99

 7) Trichlorofluoromethane
 4.22
 101
 32654
 8.54
 ug/l
 89

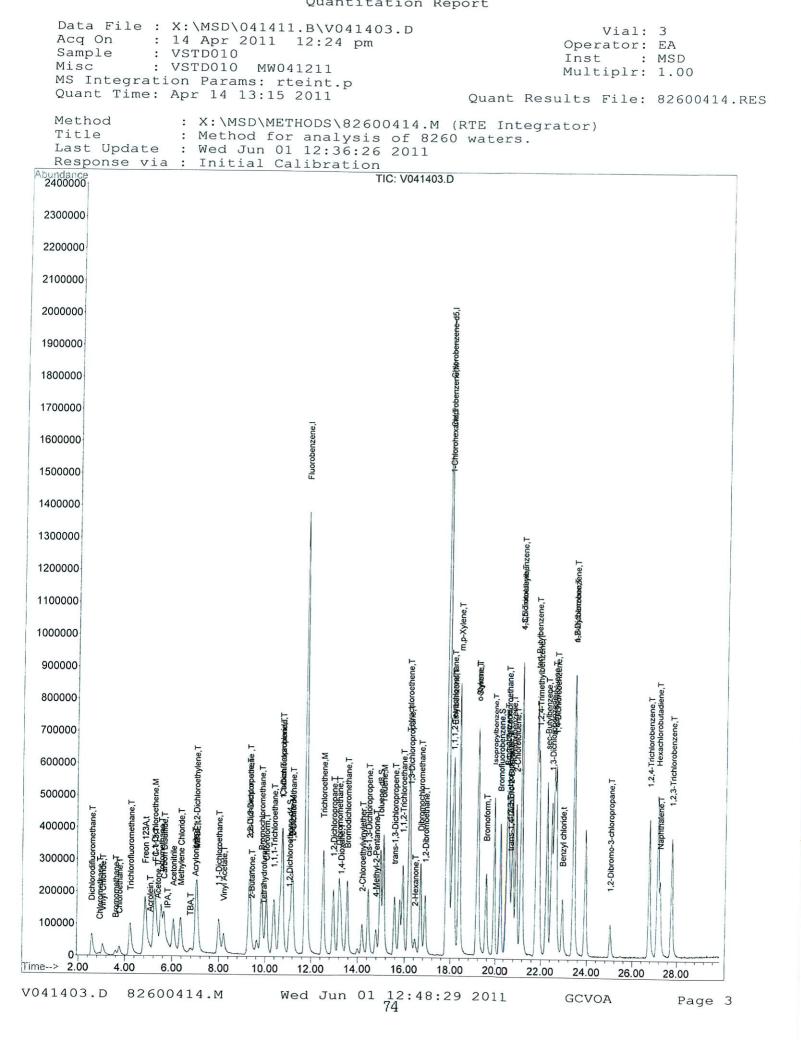
 8) Freon 123A
 5.28
 102
 21297
 8.23
 ug/l
 89

 10) Acetone
 5.39
 43
 31329m
 4.20
 ug/l
 100

 13) Catome bhane
 5.65
 7497510
 8.75
 ug/l
 100

 14) Acetonitrile
 6.04
 41
 273224
 8.66
 ug/l
 9

 15) Methylene Chloride
 6.37
 84
 215475
 9.01</t Target Compounds _____ (#) = qualifier out of range (m) = manual integration V041403.D 82600414.M Wed Jun 01 12:48:27 2011 GCVOA Page 1 72


guancitation Report

(DI VENTEMED)

Quantitation Report (QT Reviewed) Data File : X:\MSD\041411.B\V041403.D Vial: 3 Acq On : 14 Apr 2011 12:24 pm Operator: EA Sample : VSTD010 Misc : VSTD010 MW041211 Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Results File: 82600414.RES Quant Time: Apr 14 13:15 2011 Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Ur	nit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	339658	9.13	ug/l	83
46)	1,1,2-Trichloroethane	15.91	97	275091	9.47	ug/l	99
47)	1,2-Dibromoethane	16.87	107	424482	9.19	ug/l	89
48)	Bromoform	19.55	173	399133	8.91	ug/l	96
50)	4-Methyl-2-Pentanone	14.78	58	75720	11.24	ug/l	91
51)	2-Hexanone	16.45	58	62042	11.48	ug/l	92
52)	Tetrachloroethene	16.16	166	586101		ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.06	131	383110	9.71	ug/l	95
55)	Toluene	15.08	91	840139	9.69	ug/l	99
56)	Chlorobenzene	17.87	112	663412	9.77	ug/l	91
57)	1-Chlorohexane	17.87	93	114689	9.07	ug/l	96
58)	Ethylbenzene	18.11	91	1037558	9.84	ug/l	94
60)	Styrene	19.17	104	659233	9.89	ug/l	98
61)	m,p-Xylene	18.35	91	1651077	18.93	ug/l	98
62)	o-Xylene	19.15	91	886007	9.77	ug/l	100
63)	1,2,3-Trichloropropane	20.61	75	367738	9.10	ug/l	97
64)	Isopropylbenzene	19.90	105	1162526	9.53	ug/l	100
65)	Bromobenzene	20.49	77	731804	9.40	ug/l	93
66)	trans-1,4-Dichloro-2-Buten	20.65	89	31226	7.21	ug/l	100
67)	n-Propylbenzene	20.75	91	1253031	9.36	ug/l	97
68)	1,1,2,2-Tetrachloroethane	20.53	83	403754	9.22		96
69)	2-Chlorotoluene	20.90	91	938918	9.91	ug/l	94
70)	4-Chlorotoluene	21.13	91	984502	9.78	ug/l	97
71)	1,3,5-Trimethylbenzene	21.12	105	962554	9.64	ug/l	95
72)	tert-Butylbenzene	21.78	119	1196042	9.53	ug/l	96
73)	1,2,4-Trimethylbenzene	21.89	105	960328	9.78	ug/l	98
74)	sec-Butylbenzene	22.23	105	1332994	9.57	ug/l	99
75)	1,3-Dichlorobenzene	22.44	146	656394	9.95	ug/l	97
76)	4-Isopropyltoluene	22.54	119	1086502	9.50	ug/l	99
77)	1,4-Dichlorobenzene	22.62	146	661203	9.37	ug/l	95
78)	1,2-Dichlorobenzene	23.39	146	617485	9.64	ug/l	91
79)	Benzyl chloride	22.92	91	424337	8.25	ug/l	98
80)	n-Butylbenzene	23.40	91	929336	9.18	ug/l	99
81)	1,2-Dibromo-3-chloropropan	25.00	75	74886	7.44		92
82)	Hexachlorobutadiene	27.13	225	383572	9.00	ug/l	94
83)	1,2,4-Trichlorobenzene	26.73	180	486460	9.65	ug/l	93
84)	Naphthalene	27.23	128	522047		ug/l	97
85)	1,2,3-Trichlorobenzene	27.75	180	406602	9.38	ug/l	96

(#) = qualifier out of range (m) = manual integration Wed Jun 01 12:48:28 2011 GCVOA Page 2 73 V041403.D 82600414.M

(QT Reviewed) Quantitation Report Data File : X:\MSD\041411.B\V041404.D Vial: 4 Acq On : 14 Apr 2011 12:59 pm Operator: EA Sample : VSTD020 Misc : VSTD020 MW041211 Inst : MSD S Integration Params: rteint.p Quant Time: Apr 14 15:11 2011 Multiplr: 1.00 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Fluorobenzene11.7696426601150.00 ug/l0.0649) Chlorobenzene-d517.81117339178350.00 ug/l0.05 System Monitoring Compounds

 29) 1,2-Dichloroethane-d4
 11.04
 65
 444277
 16.24 ug/l
 0.04

 Spiked Amount
 50.000
 Range
 86 - 117
 Recovery
 =
 32.48%#

 54) Toluene-d8
 14.95
 98
 1444801
 17.27 ug/l
 0.06

 Spiked Amount
 50.000
 Range
 93 - 107
 Recovery
 =
 34.54%#

 59) Bromofluorobenzene
 20.20
 95
 1015707
 17.46 ug/l
 0.04

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 34.92%#

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 34.92%#

 Target Compounds
 Qvalue

 2) Dichlorodifluoromethane
 2.57
 85
 617505
 18.95
 ug/1
 97

 3) Choromethane
 2.92
 50
 61279m/L
 13.46
 ug/1
 95

 5) Vinyl Chloride
 3.04
 62
 32060
 22.67
 ug/1
 85

 6) Choroethane
 3.76
 64
 200488
 19.10
 ug/1
 98

 7) Trichlorofluoromethane
 4.24
 101
 855105
 18.55
 ug/1
 91

 9) FC-113
 5.28
 101
 40571m
 16.59
 ug/1
 101

 10 Acetone
 5.41
 43
 90186m
 25.54
 ug/1
 100

 13) Catomothane
 5.66
 70
 1049644
 18.31
 ug/1
 100

 14
 Acetonitrile
 6.36
 84
 48026
 18.64
 ug/1
 93

 10
 Acetonitrile
 6.37
 Target Compounds _____ (#) = qualifier out of range (m) = manual integration V041404.D 82600414.M Wed Jun 01 12:48:32 2011 GCVOA Page 1 75

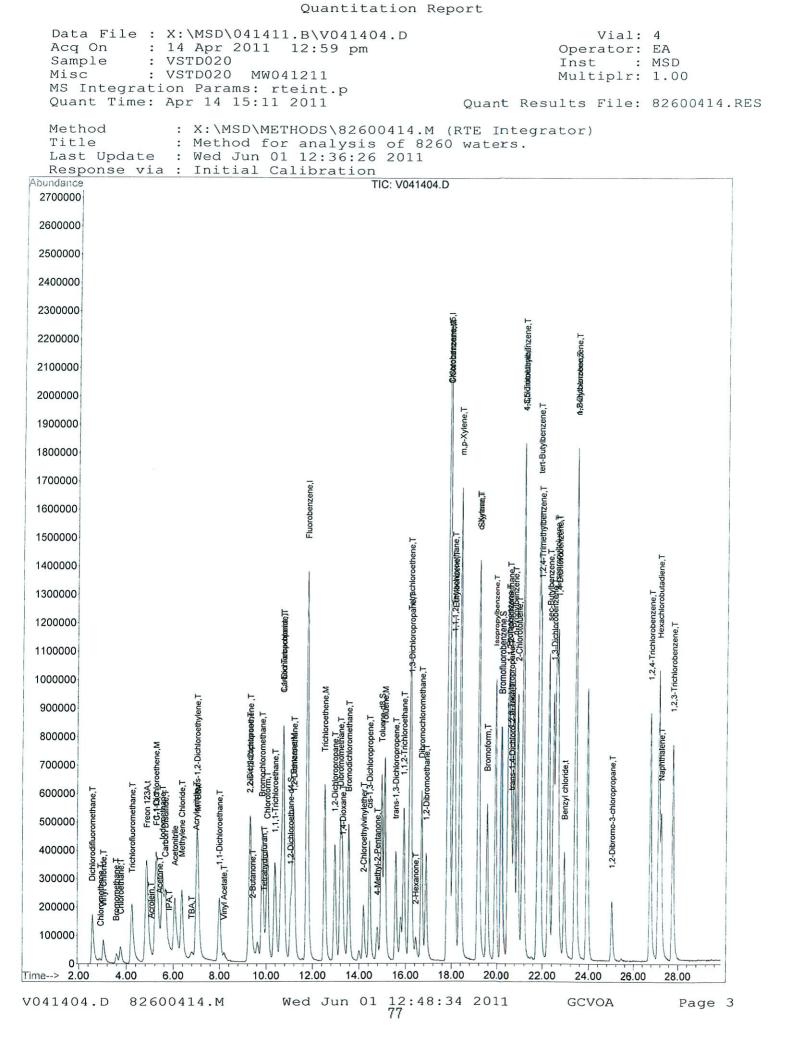
Quantitation Report (QT Reviewed)

Vial: 4 Operator: EA Inst : MSD Multiplr: 1.00

Quant Results File: 82600414.RES

Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414

Data File : X:\MSD\041411.B\V041404.D Acq On : 14 Apr 2011 12:59 pm Sample : VSTD020 Misc : VSTD020 MW041211


MS Integration Params: rteint.p Quant Time: Apr 14 15:11 2011

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	723951	19.35 ug/l	99
46)		15.91	97	542933	18.60 ug/l	96
47)	1,2-Dibromoethane	16.87	107	854917	18.42 ug/l	99
48)	Bromoform	19.55	173	850660	18.89 ug/l	100
50)	4-Methyl-2-Pentanone	14.78	58	122303m		
51)	2-Hexanone	16.42	58	98702m	16.50 ug/l	
52)	Tetrachloroethene	16.16	166	1101609	21.57 ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.06	131	769714	19.96 ug/l	97
55)	Toluene	15.08	91	1666014	19.66 ug/l	99
56)	Chlorobenzene	17.87	112	1313672	19.79 ug/l	100
57)	1-Chlorohexane	17.86	93	225404	18.23 ug/l	100
58)	Ethylbenzene	18.12	91	2010758	19.51 ug/l	94
60)	Styrene	19.17	104	1324658	20.33 ug/l	96
61)	m,p-Xylene	18.36	91	3366785	39.49 ug/l	99
62)	o-Xylene	19.15	91	1764893	19.92 ug/l	95
63)	1,2,3-Trichloropropane	20.60	75	769577	19.48 ug/l	94
	Isopropylbenzene	19.90	105	2334838	19.57 ug/l	98
	Bromobenzene	20.49	77	1471757	19.34 ug/l	93
66)	trans-1,4-Dichloro-2-Buten	20.65	89	78505	18.53 ug/l	100
67)	n-Propylbenzene	20.74	91	2585152	19.76 ug/l	99
68)	1,1,2,2-Tetrachloroethane	20.54	83	810799	18.94 ug/l	98
69)	2-Chlorotoluene	20.91	91	1853119	20.02 ug/l	97
70)	4-Chlorotoluene	21.12	91	2015735	20.49 ug/l	98
71)	1,3,5-Trimethylbenzene	21.12	105	1913269	19.61 ug/l	96
72)	tert-Butylbenzene	21.79	119	2384906	19.44 ug/l	98
73)	1,2,4-Trimethylbenzene	21.88	105	1921494	20.01 ug/l	92
74)	sec-Butylbenzene	22.24	105	2715069	19.95 ug/l	100
75)	1,3-Dichlorobenzene	22.43	146	1277434	19.80 ug/l	100
76)	4-Isopropyltoluene	22.54	119	2221341	19.86 ug/l	96
77)	1,4-Dichlorobenzene	22.63	146	1358598	19.70 ug/l	96
78)	1,2-Dichlorobenzene	23.38	146	1239140	19.78 ug/l	93
79)	Benzyl chloride	22.92	91	917478	18.25 ug/l	99
80)	n-Butylbenzene	23.39	91	1925060	19.44 ug/l	98
81)	1,2-Dibromo-3-chloropropan	25.00	75	174994	17.78 ug/l	# 83
82)	Hexachlorobutadiene	27.13	225	779023	18.70 ug/l	97
83)	1,2,4-Trichlorobenzene	26.73	180	1000571	20.30 ug/l	98
84)	Naphthalene	27.24	128	1181679	18.45 ug/l	98
85)	1,2,3-Trichlorobenzene	27.75	180	845688	19.95 ug/l	95

(#) = qualifier out of range (m) = manual integration

V041404.D 82600414.M Wed Jun 01 12:48:33 2011 GCVOA Page 2

Quantitation Report (QT Reviewed) Data File : X:\MSD\041411.B\V041405.D Acq On : 14 Apr 2011 1:35 pm Sample : VSTD050 Misc : VSTD050 MW041211 Vial: 5 Operator: EA Inst : MSD Misc : VSTD050 MW041211 MS Integration Params: rteint.p Multiplr: 1.00 Quant Time: Apr 14 15:12 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414 R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Fluorobenzene11.7696409854450.00 ug/l0.0649) Chlorobenzene-d517.82117322730950.00 ug/l0.06 System Monitoring Compounds
29) 1,2-Dichloroethane-d411.0565107378540.85ug/l0.05Spiked Amount50.000Range86-117Recovery=81.70%#54) Toluene-d814.9598336649442.30ug/l0.06Spiked Amount50.000Range93-107Recovery=84.60%#59) Bromofluorobenzene20.2095226369640.90ug/l0.04Spiked Amount50.000Range89-105Recovery=81.80%#

(#) = qualifier out of range (m) = manual integration V041405.D 82600414.M Wed Jun 01 12:48:37 2011 GCVOA Page 1

78

Quantitation Report (QT Reviewed)

Vial: 5 Operator: EA Inst : MSD Multiplr: 1.00

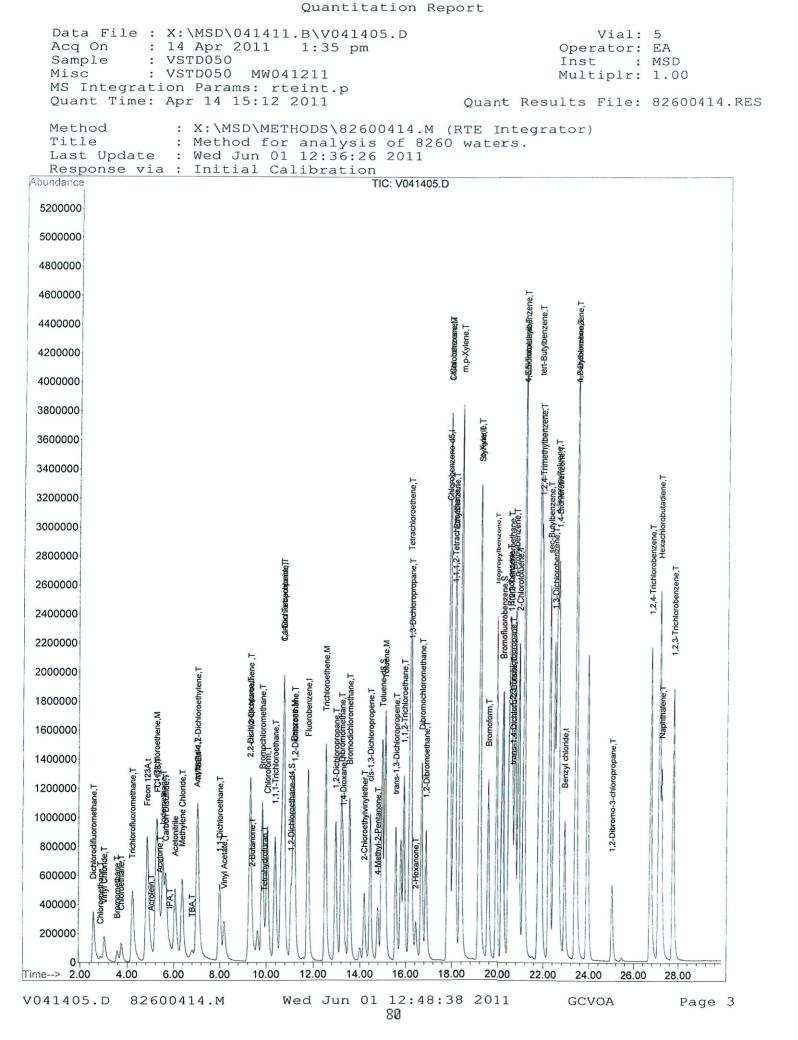
 Acq On
 : 14 Apr 2011
 1:35 pm

 Sample
 : VSTD050

 Misc
 : VSTD050

 MS Integration Params: rteint.p Quant Time: Apr 14 15:12 2011

Data File : X:\MSD\041411.B\V041405.D


Quant Results File: 82600414.RES

Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	1668916	46.42 ug/l	97
46)	1,1,2-Trichloroethane	15.91	97	1260409	44.94 ug/l	94
47)	1,2-Dibromoethane	16.88	107	2005122	44.96 ug/l	97
48)	Bromoform	19.54	173	1943819	44.94 ug/l	94
50)	4-Methyl-2-Pentanone	14.77	58	357290	57.02 ug/l	98
51)	2-Hexanone	16.44	58	334839	49.93 ug/l	
52)	Tetrachloroethene	16.17	166	2547457	52.43 ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.06	131	1763138	48.06 ug/l	99
55)	Toluene	15.08	91	4002239	49.64 ug/l	100
56)	Chlorobenzene	17.87	112	3065105	48.54 ug/l	96
57)	1-Chlorohexane	17.86	93	560688	47.66 ug/l	94
58)	Ethylbenzene	18.11	91	4763847	48.57 ug/l	92
60)	Styrene	19.18	104	3045433	49.12 ug/l	98
61)	m,p-Xylene	18.36	91	7743263	95.45 ug/l	98
62)	o-Xylene	19.15	91	4108782	48.73 ug/l	92
63)	1,2,3-Trichloropropane	20.61	75	1759501	46.82 ug/l	96
64)	Isopropylbenzene	19.91	105	5575835	49.13 ug/l	99
65)	Bromobenzene	20.48	77	3408827	47.08 ug/l	98
66)	trans-1,4-Dichloro-2-Buten	20.65	89	203256	50.43 ug/l	100
67)	n-Propylbenzene	20.74	91	6207037	49.86 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.54	83	1906992	46.82 ug/l	98
69)	2-Chlorotoluene	20.90	91	4344243	49.31 ug/l	100
70)	4-Chlorotoluene	21.12	91	4636555	49.53 ug/l	96
71)	1,3,5-Trimethylbenzene	21.12	105	4507113	48.54 ug/l	94
72)	tert-Butylbenzene	21.78	119	5701867	48.85 ug/l	96
73)	1,2,4-Trimethylbenzene	21.88	105	4443768	48.65 ug/l	97
74)	sec-Butylbenzene	22.23	105	6545990	50.54 ug/l	97
75)	1,3-Dichlorobenzene	22.44	146	3005988	48.97 ug/l	98
76)	4-Isopropyltoluene	22.55	119	5287901	49.69 ug/l	97
77)	1,4-Dichlorobenzene	22.63	146	3202698	48.80 ug/l	97
78)	1,2-Dichlorobenzene	23.39	146	2890448	48.49 ug/l	94
79)	Benzyl chloride	22.91	91	2289845	47.87 ug/l	99
80)	n-Butylbenzene	23.39	91	4891720	51.93 ug/l	98
81)	1,2-Dibromo-3-chloropropan	25.01	75	425876	45.49 ug/l	93
82)	Hexachlorobutadiene	27.12	225	1975217	49.84 ug/l	97
83)	1,2,4-Trichlorobenzene	26.73	180	2490600	53.12 ug/l	98
84)	Naphthalene	27.24	128	3077881	50.51 ug/l	97
85)	1,2,3-Trichlorobenzene	27.75	180	2048186	50.79 ug/l	97

_______ (#) = qualifier out of range (m) = manual integration

V041405.D 82600414.M Wed Jun 01 12:48:37 2011 GCVOA Page 2

Quantitation Report (QT Reviewed) Data File : X:\MSD\041411.B\V041406.D Vial: 6 Acq On : 14 Apr 2011 2:11 pm Operator: EA Sample : VSTD100 Inst : MSD Sample<th::</th>STD100StructureStructureMisc:VSTD100MW041211Multiplr: 1.00MS Integration Params: rteint.p
Quant Time: Apr 14 14:48 2011Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Fluorobenzene11.7496429507750.00 ug/l0.0449) Chlorobenzene-d517.82117335612050.00 ug/l0.05 System Monitoring Compounds ApplicationCompounds29) 1,2-Dichloroethane-d411.0565228344582.89 ug/l0.05Spiked Amount50.000Range86 - 117Recovery = 165.78%#54) Toluene-d814.9598691842683.60 ug/l0.06Spiked Amount50.000Range93 - 107Recovery = 167.20%#59) Bromofluorobenzene20.2195466319681.02 ug/l0.05Spiked Amount50.000Range89 - 105Recovery = 162.04%#
 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 162.04##

 Target Compounds
 Qvalue
 Qvalue
 Qvalue
 Qvalue

 2: Dichlorodifluoromethane
 2.57
 85
 3075137
 93.73
 ug/1
 89

 3: Chloromethane
 2.90
 50
 377413
 82.32
 ug/1
 89

 6: Chloroethane
 3.04
 62
 1632072
 100.70
 ug/1
 99

 6: Chloroethane
 3.74
 64
 918925
 86.16
 ug/1
 95

 7) Trichlorofluoromethane
 4.20
 101
 4000144
 86.16
 ug/1
 95

 9) FC-113
 5.28
 101
 224277
 81.73
 ug/1
 97

 13) Cacbon Disulfide
 5.65
 76
 503414
 87.22
 ug/1
 90

 14) Acetonitrile
 6.04
 41
 2775478
 88.90
 ug/1
 90

 15) Methylene Chloride
 6.35
 53
 412129
 105.77
 ug/1
 92

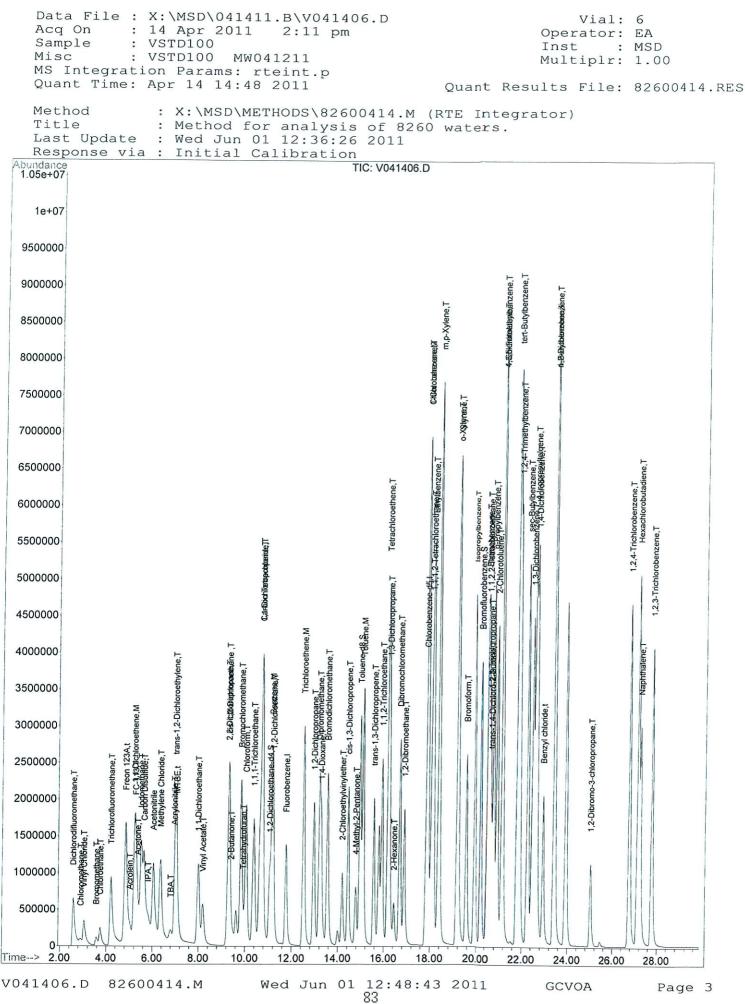
 Target Compounds (#) = qualifier out of range (m) = manual integration V041406.D 82600414.M Wed Jun 01 12:48:41 2011 GCVOA Page 1

81

Quantitation Report (QT Reviewed)

Vial: 6 Operator: EA Inst : MSD Multiplr: 1.00

Data File : X:\MSD\041411.B\V041406.D Acq On : 14 Apr 2011 2:11 pm Sample : VSTD100 Misc : VSTD100 MW041211 MS Integration Params: rteint.p Quant Time: Apr 14 14:48 2011


Quant Results File: 82600414.RES

Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Mar 16 15:12:09 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	3557972	94.44 ug/l	96
46)	1,1,2-Trichloroethane	15.91	97	2517751	85.65 ug/l	95
47)	1,2-Dibromoethane	16.88	107	4112163	87.98 ug/l	96
48)	Bromoform	19.54	173	4057874	89.52 ug/l	100
50)	4-Methyl-2-Pentanone	14.77	58	759638	116.58 ug/l	93
51)	2-Hexanone	16.44	58	716292	99.04 ug/l	# 78
52)	Tetrachloroethene	16.18	166	4747562	93.96 ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.05	131	3594285	94.21 ug/l	99
55)	Toluene	15.08	91	8149180	97.19 ug/l	97
56)	Chlorobenzene	17.87	112	6257658	95.29 ug/l	98
57)	1-Chlorohexane	17.87	93	1162701	95.05 ug/l	100
58)	Ethylbenzene	18.12	91	9552704	93.66 ug/1	98
60)	Styrene	19.18	104	6195085	96.09 ug/l	99
61)	m,p-Xylene	18.36	91	15880643	188.24 ug/l	100
62)	o-Xylene	19.15	91	8330468	95.00 ug/l	92
63)	1,2,3-Trichloropropane	20.61	75	3626402	92.79 ug/l	94
64)	Isopropylbenzene	19.90	105	11424332	96.79 ug/l	100
65)	Bromobenzene	20.49	77	7016762	93.19 ug/l	97
66)	trans-1,4-Dichloro-2-Buten	20.66	89	470080	112.15 ug/l	100
67)	n-Propylbenzene	20.75	91	12531120	96.79 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.54	83	3848055	90.84 ug/l	99
69)	2-Chlorotoluene	20.91	91	8633381	94.24 ug/l	100
70)	4-Chlorotoluene	21.13	91	9230930	94.82 ug/l	100
71)	1,3,5-Trimethylbenzene	21.13	105	9012572	93.34 ug/l	96
72)	tert-Butylbenzene	21.78	119	11520359	94.91 ug/l	95
73)	1,2,4-Trimethylbenzene	21.89	105	8781168	92.44 ug/l	98
74)	sec-Butylbenzene	22.24	105	13281181	98.60 ug/l	99
75)	1,3-Dichlorobenzene	22.45	146	6064044	95.00 ug/l	99
76)	4-Isopropyltoluene	22.55	119	10415447	94.12 ug/l	98
77)	1,4-Dichlorobenzene	22.64	146	6165389	90.33 ug/l	98
78)	1,2-Dichlorobenzene	23.39	146	5724236	92.35 ug/l	94
79)	Benzyl chloride	22.92	91	4945067	99.40 ug/l	99
80)	n-Butylbenzene	23.40	91	9882292	100.88 ug/l	97
81)	1,2-Dibromo-3-chloropropan	25.01	75	918571	94.35 ug/l	91
82)	Hexachlorobutadiene	27.12	225	3988542	96.78 ug/l	97
83)	1,2,4-Trichlorobenzene	26.74	180	5252446	107.72 ug/l	98
84)	Naphthalene	27.24	128	6903475	108.94 ug/l	100
85)	1,2,3-Trichlorobenzene	27.75	180	4450839	106.13 ug/l	97

_____ (#) = qualifier out of range (m) = manual integration

V041406.D 82600414.M Wed Jun 01 12:48:41 2011 GCVOA Page 2

guancitation Report

concernaring caribration Report

 Data File : X:\MSD\051211.B\V051202.D
 Vial: 2

 Acq On : 12 May 2011 10:21 am
 Operator: EA

 Inst : MSD
 MSD

 Sample : CCV Misc : VSTD020 MW041211 Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%
 Max. Ref. Prov.: 208
 Max. Ref. Area : 1004

 Compound
 AvgRF
 CCRF
 %Dev Area% Dev (minimation of the second se AvgRF CCRF %Dev Area% Dev(min) Compound _____ 49 IChlorobenzene-d51.0001.0000.01010.0050 T4-Methyl-2-Pentanone0.1000.110-10.01230.0051 T2-Hexanone0.0840.093-10.71290.0052 TTetrachloroethene0.8070.7428.1920.00 (#) = Out of Range V051202.D 82600414.M Wed Jun 01 12:36:19 2011 GCVOA Page 1

84

	Report
Data File : X:\MSD\051211.B\V051202.D Acq On : 12 May 2011 10:21 am Sample : CCV Misc : VSTD020 MW041211 MS Integration Params: rteint.p	Vial: 2 Operator: EA Inst : MSD Multiplr: 1.00
Method : X:\MSD\METHODS\82600414.M (RTE Int Title : Method for analysis of 8260 waters Last Update : Thu Apr 14 15:13:30 2011 Response via : Multiple Level Calibration	tegrator) s.
Min. RRF : 0.000 Min. Rel. Area : 50% Ma Max. RRF Dev : 20% Max. Rel. Area : 150%	ax. R.T. Dev 0.50min
Compound AvgRF CCRF	%Dev Area% Dev(min)
53 T $1,1,1,2$ -Tetrachloroethane 0.546 0.561 54 SToluene-d8 1.073 3.031 55 MToluene 1.224 1.245 56 MChlorobenzene 0.961 0.977 57 T 1 -Chlorohexane 0.168 0.178 58 TEthylbenzene 1.473 1.507 59 SBromofluorobenzene 0.749 1.989 60 TStyrene 0.938 0.960 61 T m, p -Xylene 1.200 1.212 62 T o -Xylene 1.279 1.279 63 T $1,2,3$ -Trichloropropane 0.517 0.594 64 TIsopropylbenzene 1.046 1.111 65 TBromobenzene 1.046 1.111 66 Ttrans- $1,4$ -Dichloro- 2 -Butene 0.582 0.638 69 T 2 -Chlorotoluene 1.363 1.381 70 T 4 -Chlorotoluene 1.442 1.440 71 T $1,3,5$ -Trimethylbenzene 1.372 1.400 74 Tsec-Butylbenzene 1.985 1.900 75 T $1,3$ -Dichlorobenzene 0.932 0.928 76 T 4 -Isopropyltoluene 1.595 1.563 77 T $1,4$ -Dichlorobenzene 0.891 0.914 79 tBenzyl chloride 0.640 0.795 80 T n -Butylbenzene 1.412 1.412 81 T $1,2,4$ -Trichlorobenzene 0.690 0.719 84 TNaphthalene 0.801 0.931	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

_____.

_____. (#) = Out of Range SPCC's out = 0 CCC's out = 0 V051202.D 82600414.M Wed Jun 01 12:36:20 2011 GCVOA Page 2 85 ______

Method	:	X:\MSD\METHODS\82600414.M (RTE Integrator)
		Method for analysis of 8260 waters.
Last Update	:	Wed Jun 01 12:36:26 2011
Response via	:	Initial Calibration

Continuing Calibration File: V051202.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area%
1 I	Fluorobenzene	1.000	1.000	0.0 101
2 Т	Dichlorodifluoromethane	0.341	0.256	25.1# 72
З Т	Chloromethane	0.037	0.033	10.6 93
4 T	Bromomethane	0.044	0.040	10.0 83
5 T	Vinyl Chloride	0.189	0.171	9.4 89
6 Т	Chloroethane	0.115	0.122	-5.9 105
7 T	Trichlorofluoromethane	0.489	0.519	-6.2 105
8 t 9 T	Freon 123A	0.408	0.445	-9.0 114
10 T	FC-113 Acetone	0.302	0.362	-19.6 142
10 I 11 T	Acrolein	0.046 0.010	0.051	-10.7 97
12 T	Iodomethane	0.689	0.004 0.602	54.5# 147
13 T	Carbon Disulfide	0.606	0.524	12.6 88 13.5 86
14	Acetonitrile	0.325	0.360	-10.8 108
15 T	Methylene Chloride	0.257	0.269	-4.9 104
16 T	IPA	0.005	0.004	15.2 107
17 T	ТВА	0.009	0.011	-26.4# 129
18 T	Acrylonitrile	0.042	0.054	-29.6# 125
19 t	MTBE	0.543	0.638	-17.3 115
20 M	1,1-Dichloroethene	0.341	0.342	-0.5 102
21 T	1,1-Dichloroethane	0.468	0.483	-3.2 105
22 Т	Vinyl Acetate	0.303	0.164	45.9# 148
23 т	2,2-Dichloropropane	0.392	0.391	0.2 108
24 T	trans-1,2-Dichloroethylene	0.367	0.372	-1.2 102
25 T	cis-1,2-Dichloroethene	0.416	0.425	-2.2 103
26 T	Tetrahydrofuran	0.055	0.057	-3.7 113
27 Т 28 Т	Chloroform	0.586	0.592	-1.1 101
29 S	1,1-Dichloropropene 1,2-Dichloroethane-d4	0.412 0.259	0.413	-0.1 103
30 T	1,2-Dichloroethane	0.259	0.295 0.326	-14.0 287#
31 T	2-Butanone	0.063	0.054	-1.4 103 13.2 109
32 T	Bromochloromethane	0.290	0.298	-2.9 109
33 т	1,1,1-Trichloroethane	0.508	0.515	-1.4 105
34 т	Carbon Tetrachloride	0.508	0.487	4.1 100
35 Т	Dibromomethane	0.366	0.367	-0.5 102
36 T	1,4-Dioxane	0.002	0.003	-16.1 118
37 т	Bromodichloromethane	0.569	0.628	-10.3 108
38 T	1,2-Dichloropropane	0.311	0.319	-2.4 102
39 Т	2-Chloroethylvinylether	0.156	0.186	-19.2 116
40 T	cis-1,3-Dichloropropene	0.458	0.482	-5.3 103
41 M	Trichloroethene	0.413	0.406	1.6 101
42 M	Benzene	0.800	0.803	-0.3 102
43 T	1,3-Dichloropropane	0.457	0.486	-6.4 106
44 T 45 T	Dibromochloromethane	0.582	0.622	-6.9 104
45 T 46 T	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	0.399	0.428	-7.3 102
40 T 47 T	1,2-Dibromoethane	0.315 0.488	0.331 0.511	-4.9 105
48 T	Bromoform	0.468	0.482	-4.7 103 -3.0 98
49 I	Chlorobenzene-d5	1.000	1.000	0.0 101
50 T	4-Methyl-2-Pentanone	0.100	0.110	-10.1 123
51 T	2-Hexanone	0.084	0.093	-10.3 129
52 T	Tetrachloroethene	0.807	0.742	8.1 92
53 T	1,1,1,2-Tetrachloroethane	0.546	0.561	-2.7 100
54 S	Toluene-d8	1.073	1.212	-13.0 287#
(#) = 011				

(#) = Out of Range V051202.D 82600414.M Wed Jun 01 12:36:31 2011 GCVOA Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Wed Jun 01 12:36:26 2011 Response via : Initial Calibration

Continuing Calibration File: V051202.D

Min. RRF : 0.000 Min. Rel. Area : 50% Max. RRF Dev : 20% Max. Rel. Area : 150%

_		Compound	AvgRF	CCRF	%Dev	Area%
55	М	Toluene	1.224	1.245	-1.7	102
56	M	Chlorobenzene	0.961	0.977	-1.7	102
57	\mathbf{T}	1-Chlorohexane	0.168	0.178	-5.5	108
58	т	Ethylbenzene	1.473	1.507	-2.3	102
59	S	Bromofluorobenzene	0.749	0.795	-6.2	268#
60	т	Styrene	0.938	0.960	-2.4	99
61	т	m,p-Xylene	1.200	1.212	-1.0	98
62	Т	o-Xylene	1.279	1.270	0.7	98
63	т	1,2,3-Trichloropropane	0.517	0.594	-14.9	106
64	т	Isopropylbenzene	1.723	1.681	2.4	98
65	т	Bromobenzene	1.046	1.111	-6.2	103
66	т	trans-1,4-Dichloro-2-Butene	0.057	0.069	-19.5	119
67	Т	n-Propylbenzene	1.883	1.862	1.1	98
68	т	1,1,2,2-Tetrachloroethane	0.582	0.638	-9.6	107
69	Т	2-Chlorotoluene	1.363	1.381	-1.3	102
	Т	4-Chlorotoluene	1.442	1.440	0.2	98
71	Т	1,3,5-Trimethylbenzene	1.401	1.399	0.1	100
		tert-Butylbenzene	1.753	1.726	1.6	99
	Т	1,2,4-Trimethylbenzene	1.372	1.400	-2.0	100
74	т	sec-Butylbenzene	1.985	1.900	4.3	96
75	Т	1,3-Dichlorobenzene	0.932	0.928	0.4	99
	Т	4-Isopropyltoluene	1.595	1.563	2.0	96
	Т	1,4-Dichlorobenzene	0.975	1.001	-2.7	101
	Т	1,2-Dichlorobenzene	0.891	0.914	-2.6	101
	t	Benzyl chloride	0.640	0.795	-24.3#	118
	Т	n-Butylbenzene	1.412	1.412	0.0	100
	Т	1,2-Dibromo-3-chloropropane	0.124	0.134	-8.4	105
	Т	Hexachlorobutadiene	0.577	0.549	4.9	96
	Т	1,2,4-Trichlorobenzene	0.690	0.719	-4.1	98
	Т	Naphthalene	0.801	0.931	-16.2	108
85	Т	1,2,3-Trichlorobenzene	0.582	0.612	-5.2	99

Quantitation Report (QT Reviewed) Data File : X:\MSD\051211.B\V051202.D Acq On : 12 May 2011 10:21 am Vial: 2

 Acq On
 : 12 May 2011 10:21 am

 Sample
 : CCV

 Misc
 : VSTD020 MW041211

 Operator: EA Inst : MSD Misc : VSTD020 MW041211 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 12:23 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Fluorobenzene
 11.74
 96
 4315876
 50.00 ug/l
 -0.02

 49) Chlorobenzene-d5
 17.81
 117
 3416425
 50.00 ug/l
 0.00

 System Monitoring Compounds
29) 1,2-Dichloroethane-d411.0465127415357.02ug/l0.00Spiked Amount50.000Range86-117Recovery=114.04%54) Toluene-d814.9498414190456.49ug/l0.00Spiked Amount50.000Range93-107Recovery=112.98%#59) Bromofluorobenzene20.2095271754153.12ug/l0.00Spiked Amount50.000Range89-105Recovery=106.24%#

 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 166.24%#

 Target Compounds
 Qvalue

 2) Dichlorodifluoromethane
 2.85
 50
 57021m
 17.88 ug/l

 3) Chloromethane
 3.56
 94
 68226
 17.99 ug/l
 82

 5) Vinyl Chloride
 3.04
 62
 295820
 18.12 ug/l
 90

 6) Chloroethane
 3.75
 64
 210343
 21.18 ug/l
 92

 7) Trichlorofluoromethane
 4.22
 1086112
 21.24 ug/l
 98

 8) Freon 123A
 5.28
 10
 624544m
 26.04 ug/l
 100

 10) Acetone
 5.37
 43
 87515m
 22.14 ug/l
 99

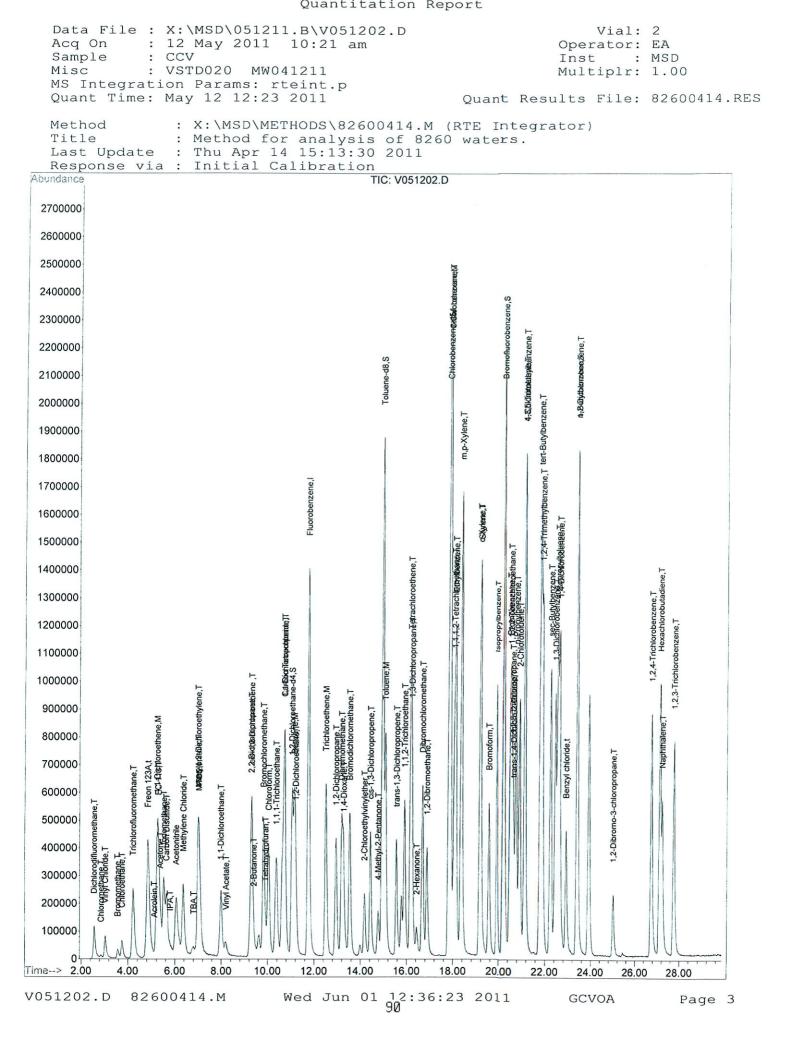
 11) Acrolein
 5.10
 14257m
 22.15 ug/l
 90

 12) Iodomethane
 5.64
 704381
 17.29 ug/l
 100

 13) Carbon Disulfide
 5.64
 704073
 100877m
 238.26 ug/l
 90

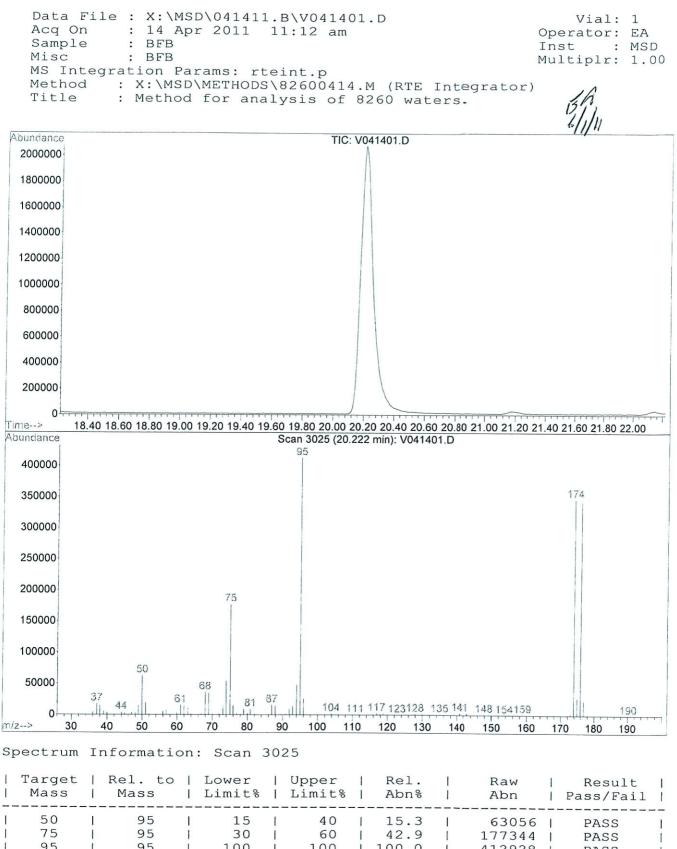
 13) Carbon Disulfide
 5.64
 704
 73
 100877m
 238.26 ug/l
 91

 14) MTBE
 7.04
 73
 100867
 2 (#) = qualifier out of range (m) = manual integration V051202.D 82600414.M Wed Jun 01 12:36:22 2011 GCVOA Page 1 88


Quantitation Report (QT Reviewed)

Data File : X:\MSD\051211.B\V051202.D Acq On : 12 May 2011 10:21 am Sample : CCV Misc : VSTD020 MW041211 Vial: 2 Operator: EA Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 12:23 2011 Quant Results File: 82600414.RES

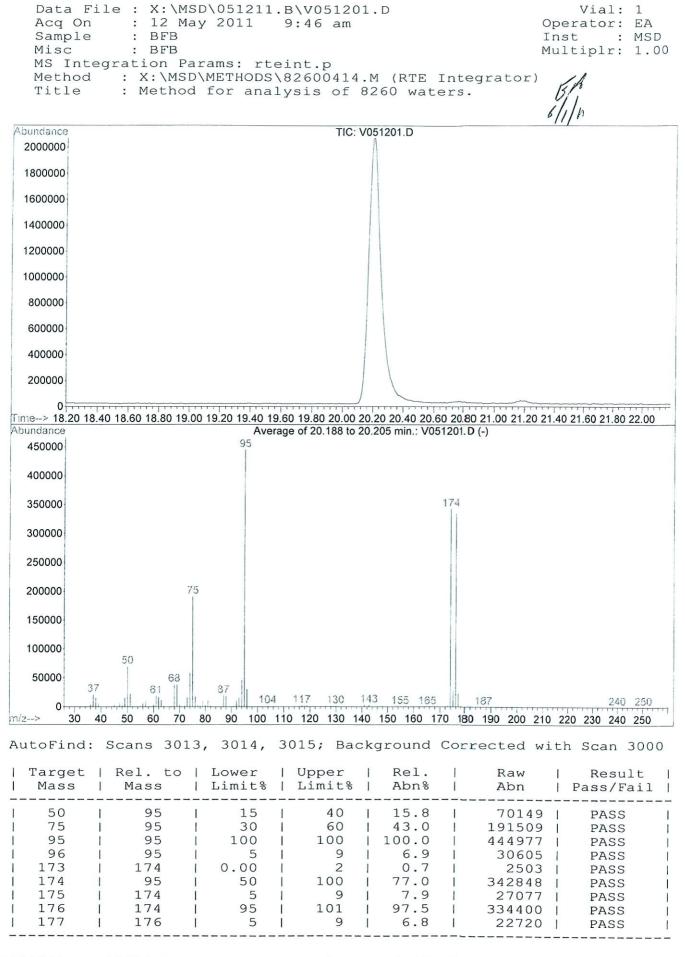
Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414


	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	739027	21.47 ug/l	99
46)	[1] [2] 2017 - 전문 2017 [2] [2] 2017 - 10 2017 (2017) 2018 (2017) 2017 [2017] 2017 [2017] 2017 [2017] 2017 [2017] 2017	15.91	97	571078	20.97 ug/l	96
47)	1,2-Dibromoethane	16.87	107	882551	20.94 ug/l	96
48)		19.54	173	831554	20.60 ug/l	98
50)	4-Methyl-2-Pentanone	14.77	58	150457	22.02 ug/l	# 82
51)	2-Hexanone	16.42	58	127111	19.79 ug/l	94
52)	Tetrachloroethene	16.16	166	1013490	18.39 ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.04	131	766321	20.53 ug/l	99
55)	Toluene	15.06	91	1701554	20.34 ug/l	99
56)	Chlorobenzene	17.87	112	1335519	20.33 ug/l	97
57)	1-Chlorohexane	17.87	93	242721	21.11 ug/l	97
58)	Ethylbenzene	18.10	91	2059609	20.46 ug/l	99
60)	Styrene	19.17	104	1312192	20.48 ug/l	94
61)	m,p-Xylene	18.35	91	3313321	40.41 ug/l	99
62)	o-Xylene	19.14	91	1735312	19.86 ug/l	98
63)	1,2,3-Trichloropropane	20.61	75	812254	22.98 ug/l	94
64)	Isopropylbenzene	19.90	105	2297425	19.51 ug/l	96
65)	Bromobenzene	20.49	77	1517825	21.23 ug/l	95
66)	trans-1,4-Dichloro-2-Buten	20.64	89	93616	23.90 ug/l	100
67)	n-Propylbenzene	20.74	91	2544389	19.78 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.52	83	871565	21.92 ug/l	96
69)	2-Chlorotoluene	20.90	91	1886860	20.25 ug/l	97
70)	4-Chlorotoluene	21.12	91	1967538	19.97 ug/l	97
71)	1,3,5-Trimethylbenzene	21.11	105	1911706	19.97 ug/l	98
72)	tert-Butylbenzene	21.78	119	2358020	19.69 ug/l	99
73)	1,2,4-Trimethylbenzene	21.87	105	1912627	20.40 ug/l	95
74)	sec-Butylbenzene	22.23	105	2596648	19.15 ug/l	99
75)	1,3-Dichlorobenzene	22.43	146	1268657	19.92 ug/l	98
76)	4-Isopropyltoluene	22.54	119	2136410	19.60 ug/l	98
77)	1,4-Dichlorobenzene	22.62	146	1368387	20.53 ug/l	98
78)	1,2-Dichlorobenzene	23.38	146	1249441	20.52 ug/l	98
79)	Benzyl chloride	22.91	91	1086338	24.86 ug/l	99
80)	n-Butylbenzene	23.38	91	1929272	20.00 ug/l	94
81)	1,2-Dibromo-3-chloropropan	25.00	75	183324	21.67 ug/l	84
82)	Hexachlorobutadiene	27.11	225	749708	19.01 ug/l	97
83)	1,2,4-Trichlorobenzene	26.73	180	982164	20.82 ug/l	98
84)	Naphthalene	27.23	128	1271892	20.32 ug/l	99
85)	1,2,3-Trichlorobenzene	27.74	180	836692	21.04 ug/l	96

______ -------(#) = qualifier out of range (m) = manual integration V051202.D 82600414.M Wed Jun 01 12:36:22 2011 GCVOA Page 2

Volatile Data Raw QC Data

CLPBFB



											00000		LUOD	
1	75	1	95	1	30	1	60	1	42.9	I	177344	i.	PASS	1
1	95	1	95	1	100	1	100	1	100.0	1	412928	i	PASS	i
1	96	1	95	1	5	1	9	1	6.3	L	25848	i	PASS	i
1	173	1	174	1	0.00	1	2	1	0.7	1	2535	î.	PASS	i
1	174	1	95	1	50	1	100	1	83.9	1	346368	i	PASS	i
I.	175	1	174	1	5	1	9	1	8.0	1	27608	i i	PASS	i
1	176	1	174	1	95	1	101	1	99.0	1	342912	i	PASS	i
	177	1	176	1	5	1	9	1	6.7	1	23088	i -	PASS	i

V041401.D 82600414.M

Wed Jun 01 12:47:38 2011 GCVOA 92

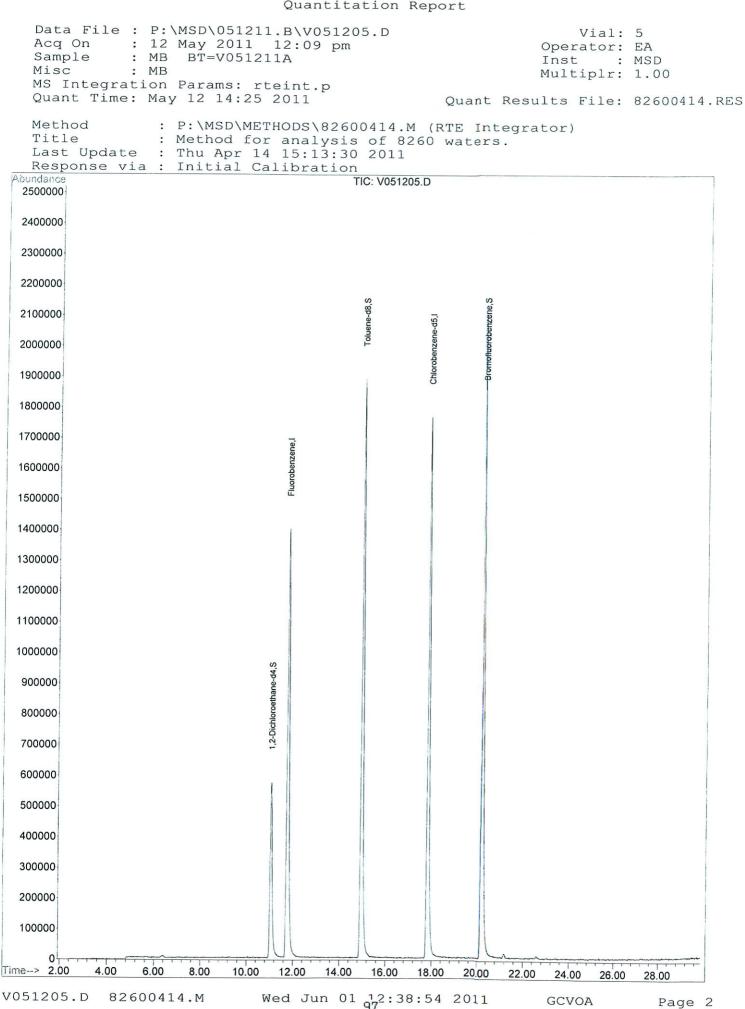
CLPBFB

V051201.D 82600414.M

Wed Jun 01 12:36:06 2011 GCVOA 93

Client Sample ID:	MB 420-46954/2	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	MB 420-46954/2
Analysis Method:	8260B	Lab File ID:	V051205.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:09
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
591-78-6	2-Hexanone	1.0	U	1.0	1.0
67-64-1	Acetone	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	1.0	U	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	U	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0


FORM I 8260B

Client Sample ID:	MB 420-46954/2	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	MB 420-46954/2
Analysis Method:	8260B	Lab File ID:	V051205.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:09
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0

Quantitation Report (QT Reviewed) Data File : P:\MSD\051211.B\V051205.D Acq On : 12 May 2011 12:09 pm Sample : MB BT=V051211A Misc : MB Vial: 5 Operator: EA Inst : MSD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 12 14:25 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Fluorobenzene 11.76 96 4275963 50.00 ug/l 0.00 17.81 117 3364631 50.00 ug/l 0.00 49) Chlorobenzene-d5 System Monitoring Compounds 29) 1,2-Dichloroethane-d4 11.06 65 1251583 56.53 ug/l 0.02 Spiked Amount 50.000 Range 86 - 117 Recovery = 113.06% 54) Toluene-d8 14.94 98 4118565 57.03 ug/l 0.00 Spiked Amount 50.000 Range 93 - 107 Recovery = 114.06%# 20.20 95 2574920 51.11 ug/l 0.00 59) Bromofluorobenzene Spiked Amount 50.000 Range 89 - 105 Recovery = 102.22% Target Compounds

Qvalue

Client Sample ID:	LCS 420-46954/1	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	LCS 420-46954/1
Analysis Method:	8260B	Lab File ID:	V051203.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	05/12/2011 10:57
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	19.0		1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	21.5		1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	17.5		1.0	1.0
79-00-5	1,1,2-Trichloroethane	20.1		1.0	1.0
75-34-3	1,1-Dichloroethane	20.5		1.0	1.0
75-35-4	1,1-Dichloroethene	19.3		1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	20.7		1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	20.8		5.0	5.0
95-50-1	1,2-Dichlorobenzene	20.2		1.0	1.0
107-06-2	1,2-Dichloroethane	19.8		1.0	1.0
78-87-5	1,2-Dichloropropane	20.2		1.0	1.0
541-73-1	1,3-Dichlorobenzene	19.6		1.0	1.0
106-46-7	1,4-Dichlorobenzene	19.7		1.0	1.0
591-78-6	2-Hexanone	22.3		1.0	1.0
67-64-1	Acetone	23.7		1.0	1.0
71-43-2	Benzene	19.7		1.0	1.0
75-25-2	Bromoform	19.6		1.0	1.0
74-83-9	Bromomethane	24.5		1.0	1.0
75-15-0	Carbon disulfide	16.5		1.0	1.0
56-23-5	Carbon tetrachloride	18.7		1.0	1.0
108-90-7	Chlorobenzene	19.6		1.0	1.0
124-48-1	Dibromochloromethane	20.8		1.0	1.0
75-00-3	Chloroethane	20.4		1.0	1.0
67-66-3	Chloroform	19.7		1.0	1.0
74-87-3	Chloromethane	18.1		1.0	1.0
156-59-2	cis-1,2-Dichloroethene	19.7		1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	20.6		1.0	1.0
75-27-4	Bromodichloromethane	21.4		1.0	1.0
75-71-8	Dichlorodifluoromethane	15.4		1.0	1.0
100-41-4	Ethylbenzene	19.5		1.0	1.0
98-82-8	Isopropylbenzene	18.9		1.0	1.0
78-93-3	2-Butanone (MEK)	23.7		1.0	1.0

FORM I 8260B

Client Sample ID:	LCS 420-46954/1	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	LCS 420-46954/1
Analysis Method:	8260B	Lab File ID:	V051203.D
Sample wt/vol:	5 (mL)	Date Received:	
Level: (low/med)	Low	Date Analyzed:	05/12/2011 10:57
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	23.9		1.0	1.0
1634-04-4	Methyl tert-butyl ether	20.4		1.0	1.0
75-09-2	Methylene Chloride	19.6		1.0	1.0
100-42-5	Styrene	20.0		1.0	1.0
75-01-4	Vinyl chloride	18.6		1.0	1.0
75-69-4	Trichlorofluoromethane	18.5		1.0	1.0
79-01-6	Trichloroethene	19.9		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	20.9		1.0	1.0
156-60-5	trans-1,2-Dichloroethene	20.2		1.0	1.0
108-88-3	Toluene	19.6		1.0	1.0
127-18-4	Tetrachloroethene	18.7		1.0	1.0
106-93-4	1,2-Dibromoethane	20.3		1.0	1.0

Quantitation Report (QT Reviewed) Data File : X:\MSD\051211.B\V051203.D Acq On : 12 May 2011 10:57 am Sample : LCS BT=V051211A Misc : VSTD020 MW041211 MS Integration Params: rteint.p Quant Time: May 12 12:22 2011 Vial: 3 Operator: EA Inst : MSD Multiplr: 1.00 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Fluorobenzene
 11.74
 96
 4402723
 50.00 ug/l
 -0.02

 49) Chlorobenzene-d5
 17.81
 117
 3538081
 50.00 ug/l
 0.00

 System Monitoring Compounds

 29) 1,2-Dichloroethane-d4
 11.05
 65
 1321853
 57.99
 ug/l
 0.00

 Spiked Amount
 50.000
 Range
 86
 117
 Recovery
 =
 115.98%

 54) Toluene-d8
 14.94
 98
 4325501
 56.96
 ug/l
 0.00

 Spiked Amount
 50.000
 Range
 93
 107
 Recovery
 =
 113.92%#

 59) Bromofluorobenzene
 20.20
 95
 2851321
 53.82
 ug/l
 0.00

 Spiked Amount
 50.000
 Range
 89
 105
 Recovery
 =
 107.64%#

 Spiked Amount
 50.000
 Range
 B9 - 105
 Recovery
 = 107.64%#

 Target Compounds
 Qvalue

 2) Dichlorodifluoromethane
 2.56
 85
 461773m
 (15.36 ug/1)

 3) Ghloromethane
 3.03
 62
 310261
 18.14 ug/1

 4) Bromomethane
 3.03
 62
 310261
 18.14 ug/1

 5) Vinyl Chloride
 3.03
 62
 310261
 18.53 ug/1
 89

 6) Chloroethane
 3.04
 64
 206755
 20.41 ug/1
 90

 7) Trichlorofluoromethane
 4.21
 101
 77537
 18.53 ug/1
 89

 9) FC-113
 5.28
 101
 43861
 17.48 ug/1
 90

 10) Acetone
 5.38
 43
 95405m
 23.66 ug/1
 100

 11) Acrolein
 5.03
 56
 1405
 48.70 ug/1
 90

 12) Iodomethane
 7.62
 68
 44335
 19.61 ug/1
 86

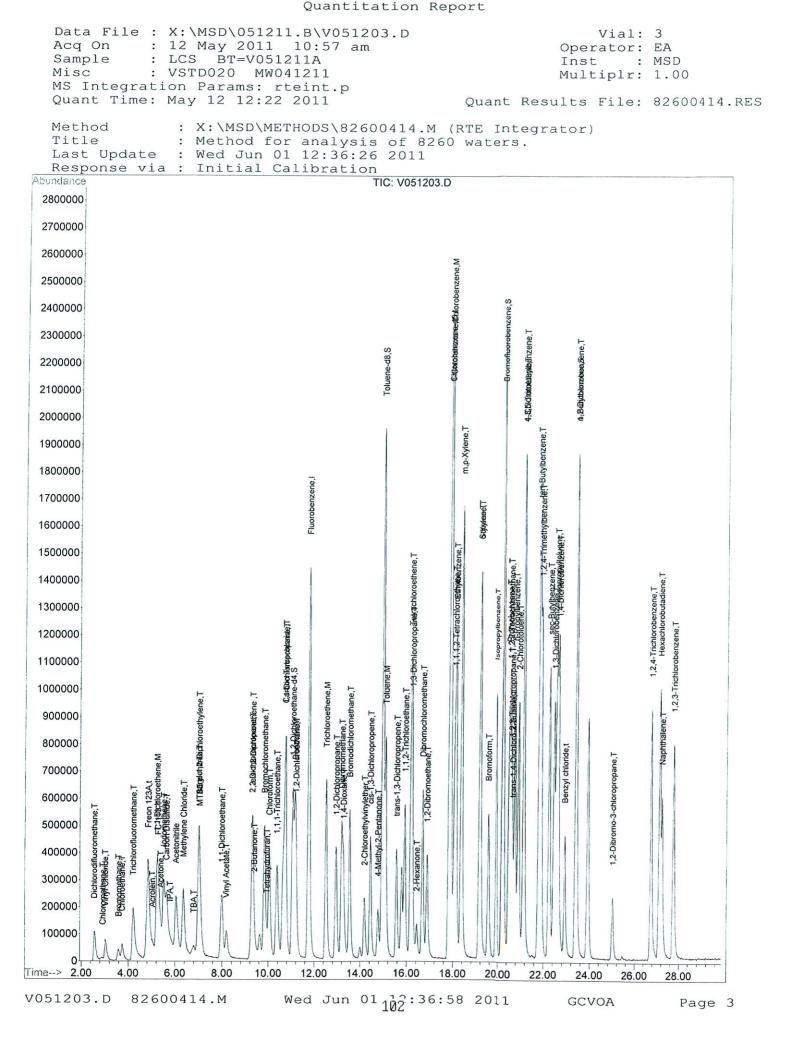
 13) Carbon Disulfide
 5.63
 76
 86986m
 221.59 ug/1
 100

 14) Acetonitrile
 7.00
 53
 86986m
 23.55 ug/1
 Target Compounds

Quantitation Report (QT Reviewed)

Vial: 3 Operator: EA Inst : MSD Multiplr: 1.00

Acq On : 12 May 2011 10:57 am Sample : LCS BT=V051211A Misc : VSTD020 MW041211 MS Integration Params: rteint.p Quant Time: May 12 12:22 2011


Data File : X:\MSD\051211.B\V051203.D

Quant Results File: 82600414.RES

Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	trans-1,3-Dichloropropene	15.55	75	733827	20.89 ug/l	
46)	1,1,2-Trichloroethane	15.90	97	558418	20.10 ug/l	95 99
47)		16.88	107	872288	20.29 ug/1	. 99
48)		19.53	173	807417	19.60 ug/l	
50)	4-Methyl-2-Pentanone	14.77	58	169368	23.93 ug/1	94 93
51)	2-Hexanone	16.44	58	150778	22.26 ug/1	
52)	Tetrachloroethene	16.16	166	1066826	18.69 ug/l	# 70 98
53)	1,1,1,2-Tetrachloroethane	18.04	131	748040	19.35 ug/l	98
55)	Toluene	15.07	91	1694907	19.55 ug/1	90
56)	Chlorobenzene	17.86	112	1335938	19.64 ug/1	94
57)	1-Chlorohexane	17.86	93	253401	21.28 ug/1	96
58)	Ethylbenzene	18.10	91	2031660	19.49 ug/l	98
60)	Styrene	19.17	104	1324744	19.96 ug/l	99
61)	m,p-Xylene	18.35	91	3340459	39.34 ug/1	98
62)	o-Xylene	19.15	91	1781278	19.69 ug/l	92
63)	1,2,3-Trichloropropane	20.60	75	767944	20.98 ug/1	96
64)	Isopropylbenzene	19.89	105	2304217	18.90 ug/l	97
65)	Bromobenzene	20.48	77	1504545	20.32 ug/1	96
66)	trans-1,4-Dichloro-2-Buten	20.65	89	81236	20.03 ug/1	100
67)	n-Propylbenzene	20.74	91	2617523	19.65 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.53	83	886706	21.53 ug/1	99
69)	2-Chlorotoluene	20.89	91	1885835	19.55 ug/l	94
70)	4-Chlorotoluene	21.12	91	1978251	19.39 ug/l	98
71)	1,3,5-Trimethylbenzene	21.12	105	1934601	19.52 ug/l	98
	tert-Butylbenzene	21.77	119	2400546	19.36 ug/1	97
73)	1,2,4-Trimethylbenzene	21.88	105	1911646	19.69 ug/l	100
74)	sec-Butylbenzene	22.22	105	2686875	19.13 ug/1	100
75)	1,3-Dichlorobenzene	22.43	146	1296008	19.65 ug/l	98
76)	4-Isopropyltoluene	22.54	119	2206627	19.55 ug/l	99
77)	1,4-Dichlorobenzene	22.63	146	1357833	19.67 ug/l	92
78)	1,2-Dichlorobenzene	23.38	146	1270793	20.15 ug/l	99
79)	Benzyl chloride	22.91	91	1073674	23.73 ug/l	100
80)	n-Butylbenzene	23.39	91	1955705	19.57 ug/l	96
81)	1,2-Dibromo-3-chloropropan	25.00	75	182162	20.79 ug/l	90
82)	Hexachlorobutadiene	27.12	225	749528	18.36 ug/l	96
83)	1,2,4-Trichlorobenzene	26.73	180	1013438	20.74 ug/l	94
84)	Naphthalene	27.22	128	1381700	21.20 ug/l	96
85)	1,2,3-Trichlorobenzene	27.74	180	866905	21.05 ug/l	97

_____ (#) = qualifier out of range (m) = manual integrationV051203.D 82600414.M Wed Jun 01 12:36:56 2011 GCVOA Page 2

Client Sample ID:	MW4S MS	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3 MS
Analysis Method:	8260B	Lab File ID:	V051212.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:37
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	19.6		1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	19.9	1	1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	24.4		1.0	1.0
79-00-5	1,1,2-Trichloroethane	19.0		1.0	1.0
75-34-3	1,1-Dichloroethane	20.1		1.0	1.0
75-35-4	1,1-Dichloroethene	21.0		1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	19.4		1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	19.2		5.0	5.0
95-50-1	1,2-Dichlorobenzene	19.2		1.0	1.0
107-06-2	1,2-Dichloroethane	18.5		1.0	1.0
78-87-5	1,2-Dichloropropane	19.4		1.0	1.0
541-73-1	1,3-Dichlorobenzene	19.6		1.0	1.0
106-46-7	1,4-Dichlorobenzene	19.4		1.0	1.0
591-78-6	2-Hexanone	20.6		1.0	1.0
67-64-1	Acetone	20.5		1.0	1.0
71-43-2	Benzene	18.9		1.0	1.0
75-25-2	Bromoform	18.5		1.0	1.0
74-83-9	Bromomethane	25.4		1.0	1.0
75-15-0	Carbon disulfide	17.4		1.0	1.0
56-23-5	Carbon tetrachloride	19.8		1.0	1.0
108-90-7	Chlorobenzene	19.2		1.0	1.0
124-48-1	Dibromochloromethane	19.7		1.0	1.0
75-00-3	Chloroethane	18.3		1.0	1.0
67-66-3	Chloroform	19.2		1.0	1.0
74-87-3	Chloromethane	20.1		1.0	1.0
156-59-2	cis-1,2-Dichloroethene	22.1		1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	19.3		1.0	1.0
75-27-4	Bromodichloromethane	20.4		1.0	1.0
75-71-8	Dichlorodifluoromethane	16.3		1.0	1.0
100-41-4	Ethylbenzene	19.9		1.0	1.0
98-82-8	Isopropylbenzene	19.6		1.0	1.0
78-93-3	2-Butanone (MEK)	22.6		1.0	1.0

FORM I 8260B

Client Sample ID:	MW4S MS	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3 MS
Analysis Method:	8260B	Lab File ID:	V051212.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:37
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	22.1		1.0	1.0
1634-04-4	Methyl tert-butyl ether	19.4		1.0	1.0
75-09-2	Methylene Chloride	19.7		1.0	1.0
100-42-5	Styrene	19.5		1.0	1.0
75-01-4	Vinyl chloride	19.3		1.0	1.0
75-69-4	Trichlorofluoromethane	19.5		1.0	1.0
79-01-6	Trichloroethene	19.3		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	19.5		1.0	1.0
156-60-5	trans-1,2-Dichloroethene	20.6		1.0	1.0
108-88-3	Toluene	19.6		1.0	1.0
127-18-4	Tetrachloroethene	17.6		1.0	1.0
106-93-4	1,2-Dibromoethane	19.1		1.0	1.0

Quantitation Report (QT Reviewed) Data File : P:\MSD\051211.B\V051212.D Vial: 12 Acq On : 12 May 2011 4:37 pm Operator: EA Sample : 43563-A-3MS DF=1 LM=8260B BT=V051211A Inst : MSD Misc : MW4S Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 13 11:23 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Fluorobenzene11.7596393588950.00 ug/l0.0049) Chlorobenzene-d517.81117318547750.00 ug/l0.00 System Monitoring Compounds 29) 1,2-Dichloroethane-d411.0665116387757.12ug/l0.02Spiked Amount50.000Range86117Recovery=114.24%54) Toluene-d814.9598392955457.48ug/l0.00Spiked Amount50.000Range93107Recovery=114.96%#59) Bromofluorobenzene20.2195255847653.64ug/l0.00Spiked Amount50.000Range89105Recovery=107.28%#
 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 107.28#

 Target Compounds
 Qualue

 2) Dichlorodifluoromethane
 2.56
 85
 439065
 16.31 ug/l
 91

 3) Chloromethane
 2.88
 50
 58395
 20.08 ug/l
 98

 4) Bromomethane
 3.03
 62
 287366
 10.31 ug/l
 94

 6) Chloroethane
 4.20
 101
 752103
 19.55 ug/l
 98

 6) Choroethane
 4.20
 101
 752103
 24.39 ug/l
 91

 7) Trichlorofluoromethane
 4.20
 101
 752103
 20.55 ug/l
 89

 8) Freon 123A
 5.26
 101
 535245
 24.39 ug/l
 91

 10) Acetone
 5.52
 142
 966599
 18.37 ug/l
 96

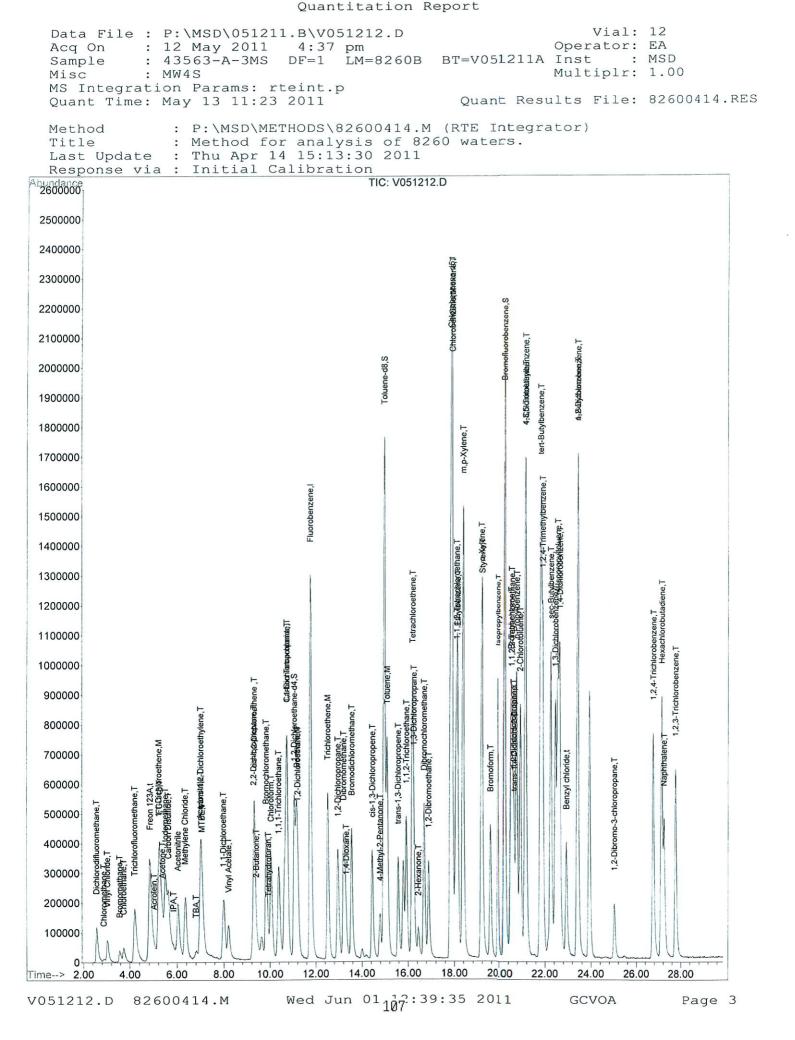
 12) Iodomethane
 5.65
 15
 16279
 21.22 ug/l
 90

 13) Carbon Disulfide
 6.65
 4
 39792
 13.26 ug/l
 90

 14) Acetonitrile
 6.81
 59
 Target Compounds (#) = qualifier out of range (m) = manual integration V051212.D 82600414.M Wed Jun $01_{105}^{12}:39:33$ 2011 GCVOA Page 1

Quantitation Report (QT Reviewed) Data File : P:\MSD\051211.B\V051212.D Vial: 12

 Acq On
 : 12 May 2011
 4:37 pm
 Operator: EA


 Sample
 : 43563-A-3MS
 DF=1
 LM=8260B
 BT=V051211A
 Inst
 : MSD

 Misc : MW4S Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 13 11:23 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	1,1,2-Trichloroethane	15.91	97	471551	18.99 ug/l	98
47)	1,2-Dibromoethane	16.89	107	735396	19.14 ug/l	97
48)	Bromoform	19.55	173	681407	18.51 ug/l	95
50)	4-Methyl-2-Pentanone	14.77	58	140694	22.08 ug/1	
51)	2-Hexanone	16.45	58	123988	20.57 ug/l	87
52)	Tetrachloroethene	16.18	166	906174	17.63 ug/l	96
53)	1,1,1,2-Tetrachloroethane	18.07	131	653084	18.76 ug/l	95
55)	Toluene	15.08	91	1527362	19.58 ug/l	98
56)	Chlorobenzene	17.88	112	1175382	19.19 ug/l	93
57)	1-Chlorohexane	17.87	93	226935	21.17 ug/l	83
58)	Ethylbenzene	18.13	91	1870031	19.92 ug/l	97
60)	Styrene	19.19	104	1164826	19.50 ug/l	94
61)	m,p-Xylene	18.35	91	3056452	39.98 ug/1	99
62)	o-Xylene	19.15	91	1589567	19.51 ug/l	96
63)	1,2,3-Trichloropropane	20.63	75	677353	20.55 ug/l	88
64)	Isopropylbenzene	19.92	105	2154730	19.63 ug/l	99
65)	Bromobenzene	20.50	77	1324271	19.87 ug/l	96
66)	trans-1,4-Dichloro-2-Buten	20.65	89	86990	23.82 ug/l	100
67)	n-Propylbenzene	20.75	91	2394624	19.96 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.54	83	736364	19.86 ug/l	96
69)	2-Chlorotoluene	20.90	91	1709718	19.68 ug/l	95
70)	4-Chlorotoluene	21.12	91	1778637	19.36 ug/l	98
71)	1,3,5-Trimethylbenzene	21.12	105	1731438	19.40 ug/l	98
72)	tert-Butylbenzene	21.79	119	2255477	20.20 ug/l	98
73)	1,2,4-Trimethylbenzene	21.88	105	1744595	19.96 ug/l	94
74)	sec-Butylbenzene	22.24	105	2528352	20.00 ug/l	100
75)	1,3-Dichlorobenzene	22.44	146	1166635	19.65 ug/l	96
76)	4-Isopropyltoluene	22.55	119	2078480	20.45 ug/l	97
77)	1,4-Dichlorobenzene	22.63	146	1202878	19.36 ug/l	98
78)	1,2-Dichlorobenzene	23.39	146	1089929	19.20 ug/1	98
79)	Benzyl chloride	22.92	91	912853	22.40 ug/1	97
80)	n-Butylbenzene	23.39	91	1874936	20.84 ug/l	98
81)	1,2-Dibromo-3-chloropropan	25.01	75	151476	19.20 ug/l	97
82)	Hexachlorobutadiene	27.12	225	657314	17.88 ug/l	95
83)	1,2,4-Trichlorobenzene	26.74	180	854887	19.44 ug/l	99
84)	Naphthalene	27.23	128	1065561	18.51 ug/l	100
85)	1,2,3-Trichlorobenzene	27.75	180	694319	18.72 ug/l	95

(#) = qualifier out of range (m) = manual integration V051212.D 82600414.M Wed Jun 01_{106} : 39: 34 2011 GCVOA

Page 2

Client Sample ID:	MW4S MSD	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-3 MSD		
Analysis Method:	8260B	Lab File ID:	V051213.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 17:13		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	19.3		1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	20.1		1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		1.0	1.0
79-00-5	1,1,2-Trichloroethane	19.0		1.0	1.0
75-34-3	1,1-Dichloroethane	20.3		1.0	1.0
75-35-4	1,1-Dichloroethene	19.4		1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	21.2		1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	19.8		5.0	5.0
95-50-1	1,2-Dichlorobenzene	20.0		1.0	1.0
107-06-2	1,2-Dichloroethane	18.9		1.0	1.0
78-87-5	1,2-Dichloropropane	19.5		1.0	1.0
541-73-1	1,3-Dichlorobenzene	20.0		1.0	1.0
106-46-7	1,4-Dichlorobenzene	20.6		1.0	1.0
591-78-6	2-Hexanone	20.5		1.0	1.0
67-64-1	Acetone	18.0		1.0	1.0
71-43-2	Benzene	19.5		1.0	1.0
75-25-2	Bromoform	17.8		1.0	1.0
74-83-9	Bromomethane	23.5		1.0	1.0
75-15-0	Carbon disulfide	15.9		1.0	1.0
56-23-5	Carbon tetrachloride	19.2		1.0	1.0
108-90-7	Chlorobenzene	19.7		1.0	1.0
124-48-1	Dibromochloromethane	19.2		1.0	1.0
75-00-3	Chloroethane	17.1		1.0	1.0
67-66-3	Chloroform	18.9		1.0	1.0
74-87-3	Chloromethane	23.2		1.0	1.0
156-59-2	cis-1,2-Dichloroethene	21.7		1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	19.3		1.0	1.0
75-27-4	Bromodichloromethane	20.2		1.0	1.0
75-71-8	Dichlorodifluoromethane	16.8		1.0	1.0
100-41-4	Ethylbenzene	19.8		1.0	1.0
98-82-8	Isopropylbenzene	19.8		1.0	1.0
78-93-3	2-Butanone (MEK)	20.4		1.0	1.0

FORM I 8260B

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	MW4S MSD	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3 MSD
Analysis Method:	8260B	Lab File ID:	V051213.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 17:13
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	20.6		1.0	1.0
1634-04-4	Methyl tert-butyl ether	18.7		1.0	1.0
75-09-2	Methylene Chloride	19.8		1.0	1.0
100-42-5	Styrene	19.9		1.0	1.0
75-01-4	Vinyl chloride	18.7		1.0	1.0
75-69-4	Trichlorofluoromethane	18.0		1.0	1.0
79-01-6	Trichloroethene	18.9		1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	19.5		1.0	1.0
156-60-5	trans-1,2-Dichloroethene	19.8		1.0	1.0
108-88-3	Toluene	19.5		1.0	1.0
127-18-4	Tetrachloroethene	17.8		1.0	1.0
106-93-4	1,2-Dibromoethane	18.5		1.0	1.0

Quantitation Report (QT Reviewed)

 Data File : P:\MSD\051211.B\V051213.D
 Vial: 13

 Acq On : 12 May 2011 5:13 pm
 Operator: EA

 Sample : 43563-A-3MSD DF=1 LM=8260B BT=V051211 Inst : MSD
 Multiplr: 1.0

 Misc : MW4S
 Multiplr: 1.0

 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 13 11:24 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414 R.T. QION Response Conc Units Dev(Min) Internal Standards

 1) Fluorobenzene
 11.75
 96
 4186773
 50.00 ug/l
 0.00

 49) Chlorobenzene-d5
 17.81
 117
 3291991
 50.00 ug/l
 0.00

 System Monitoring Compounds System Monitoring Compounds29) 1,2-Dichloroethane-d411.0465125273257.79ug/l0.00Spiked Amount50.000Range86-117Recovery=115.58%54) Toluene-d814.9598413025758.46ug/l0.00Spiked Amount50.000Range93-107Recovery=116.92%#59) Bromofluorobenzene20.2195268465254.46ug/l0.00Spiked Amount50.000Range89-105Recovery=108.92%#
 Spiked Amount
 50.000
 Range
 89 - 105
 Recovery
 =
 108.92%#

 Target Compounds
 Qvalue

 2) Dichlorodifluoromethane
 2.56
 85
 479610
 16.78
 ug/1

 3) Broomethane
 3.56
 94
 86682
 23.54
 ug/1
 100

 5) Vinyl Chloride
 3.02
 62
 296179
 18.70
 ug/1
 91

 6) Chloroethane
 3.75
 64
 16482
 17.12
 ug/1
 99

 7) Trichlorofluoromethane
 4.19
 101
 736505
 18.00
 ug/1
 94

 10) Acetone
 5.37
 43
 69198
 18.04
 ug/1
 94

 11) Acrolein
 5.04
 2113553
 19.68
 ug/1
 99

 13) Carbon Disulfide
 5.63
 76
 80980
 15.95
 ug/1
 94

 16) IPA
 6.82
 45
 110477m
 241.65
 ug/1
 94

 16) IPA
 6.82
 158761m
 21.42
 ug/1
 94
 </t Qvalue Target Compounds _____ (#) = qualifier out of range (m) = manual integration V051213.D 82600414.M Wed Jun $01_{110}^{2:40:07}$ 2011 GCVOA Page 1

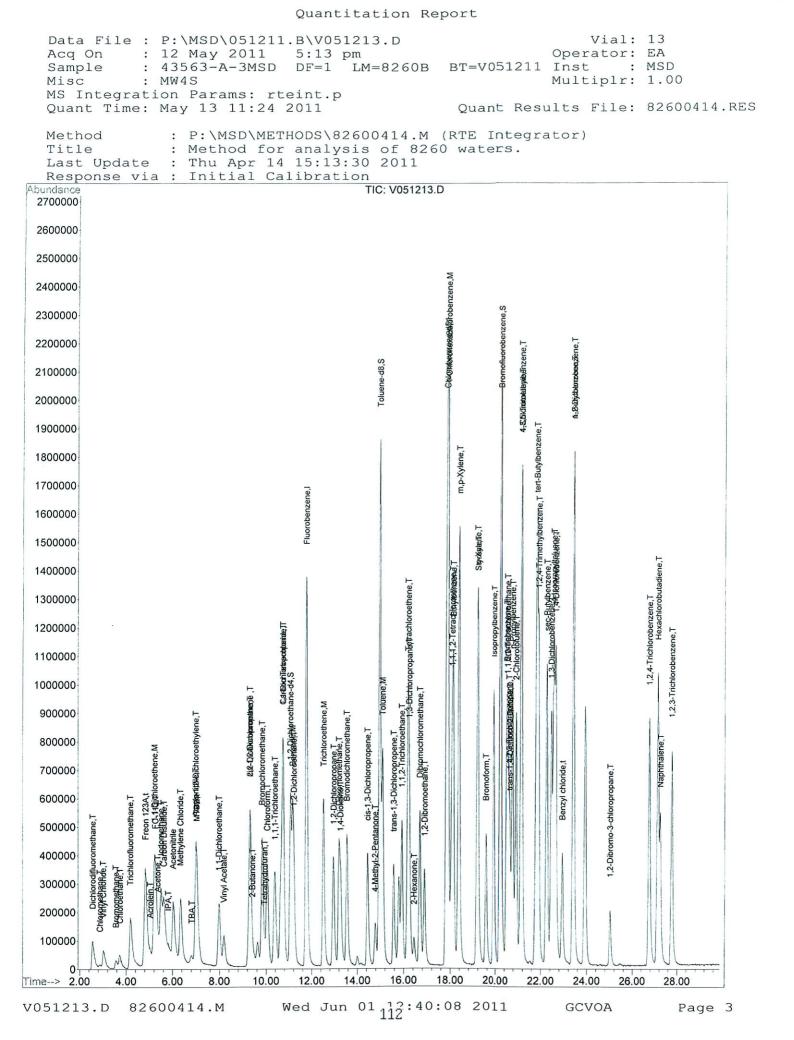
Quantitation Report (QT Reviewed) Data File : P:\MSD\051211.B\V051213.D Vial: 13

 Acq On
 : 12 May 2011
 5:13 pm
 Operator: EA

 Sample
 : 43563-A-3MSD
 DF=1
 LM=8260B
 BT=V051211
 Inst
 : MSD

 Misc
 : MW4S
 Multiplr: 1.0

 Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: May 13 11:24 2011 Quant Results File: 82600414.RES Quant Method : X:\MSD\METHODS\82600414.M (RTE Integrator) Title : Method for analysis of 8260 waters. Last Update : Thu Apr 14 15:13:30 2011 Response via : Initial Calibration DataAcq Meth : 82600414


	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	1,1,2-Trichloroethane	15.91	97	502633	19.03 ug/l	95
47)	1,2-Dibromoethane	16.88	107	756246	18.50 ug/l	94
48)	Bromoform	19.54	173	695886	17.77 ug/l	93
50)	4-Methyl-2-Pentanone	14.76	58	135383	20.56 ug/l	98
51)	2-Hexanone	16.44	58	127972	20.55 ug/l	90
52)	Tetrachloroethene	16.18	166	945976	17.81 ug/l	97
53)	1,1,1,2-Tetrachloroethane	18.06	131	668295	18.58 ug/l	92
55)	Toluene	15.08	91	1569589	19.47 ug/l	95
56)	Chlorobenzene	17.87	112	1247688	19.71 ug/l	95
57)	1-Chlorohexane	17.88	93	244238	22.04 ug/l	98
58)	Ethylbenzene	18.11	91	1921716	19.81 ug/l	95
60)	Styrene	19.18	104	1227059	19.87 ug/l	90
61)	m,p-Xylene	18.35	91	3129242	39.61 ug/l	100
62)	o-Xylene	19.15	91	1658462	19.70 ug/l	99
63)	1,2,3-Trichloropropane	20.61	75	665204	19.53 ug/l	96
64)	Isopropylbenzene	19.91	105	2242988	19.77 ug/l	94
65)	Bromobenzene	20.49	77	1364695	19.81 ug/l	92
66)	trans-1,4-Dichloro-2-Buten	20.64	89	80791	21.41 ug/l	100
67)	n-Propylbenzene	20.74	91	2520483	20.33 ug/l	98
68)	1,1,2,2-Tetrachloroethane	20.53	83	769406	20.08.ug/l	98
69)	2-Chlorotoluene	20.91	91	1752300	19.52 ug/l	96
70)	4-Chlorotoluene	21.12	91	1825580	19.23 ug/l	98
71)	1,3,5-Trimethylbenzene	21.12	105	1806400	19.59 ug/l	98
72)	tert-Butylbenzene	21.78	119	2346334	20.33 ug/l	99
73)	1,2,4-Trimethylbenzene	21.88	105	1799542	19.92 ug/l	93
74)	sec-Butylbenzene	22.25	105	2652390	20.30 ug/l	98
75)	1,3-Dichlorobenzene	22.44	146	1227610	20.00 ug/l	98
76)	4-Isopropyltoluene	22.54	119	2164524	20.61 ug/l	98
77)	1,4-Dichlorobenzene	22.63	146	1323842	20.61 ug/l	98
78)	1,2-Dichlorobenzene	23.39	146	1175454	20.03 ug/l	97
79)	Benzyl chloride	22.92	91	933098	22.16 ug/l	98
80)	n-Butylbenzene	23.40	91	1980305	21.30 ug/l	96
81)	1,2-Dibromo-3-chloropropan	25.01	75	161350	19.79 ug/l	94
82)	Hexachlorobutadiene	27.13	225	785940	20.69 ug/l	97
83)	1,2,4-Trichlorobenzene	26.74	180	963412	21.19 ug/l	94
84)	Naphthalene	27.25	128	1235039	20.46 ug/l	98
85)	1,2,3-Trichlorobenzene	27.74	180	835917	21.81 ug/l	95

(#) = qualifier out of range (m) = manual integration V051213.D 82600414.M Wed Jun 01 12:40:07 2011

GCVOA

Page 2

Inorganic Data Sample Data

Client Sample ID	: PZ-6	Lab Sample ID:		: 420-	420-43563-1						
Lab Name:	EnviroTest Labo	pratories, Inc.		Job No.:	420-43563-1						
SDG ID.:											
Matrix:	Water			Date Sampled:	05/0	05/09/2011 13:00					
Reporting Basis:	WET			Date Received	: 05/0	9/2011	14:40				
<pre>% Solids:</pre>											
CAS No.	Analyte	Conc.	RL		Units	С	Q	DIL	Method		
7439-92-1	Pb	21	5.0		ug/L			1	6010B		

Client Sample	ID: 22-7		Lab Sample ID	420-43563-2								
Lab Name:	EnviroTest Labo	pratories, Inc.		Job No.:	420-	420-43563-1						
SDG ID.:												
Matrix:	Water	Date Sampled: 05/09/2011 12:30										
Reporting Basis	s: WET	Date Received	: 05/0	09/2011	14:40							
<pre>% Solids:</pre>												
CAS No.	Analyte	Conc.	RL		Units	с	Q	DIL	Method			
7439-92-1	Рb	52	5.0		ug/L			1	6010B			

Client Sample ID:	MW43	Lab Sample ID:	420-	420-43563-3						
Lab Name: EnviroTest Laboratories, Inc.				Job No.:	420-43563-1					
SDG ID.:										
Matrix:	Water			Date Sampled:	05/0	9/2011	11:30			
Reporting Basis:	WET		Date Received:	05/0	9/2011	14:40				
<pre>% Solids:</pre>										
CAS NO	Appl://p	Conc	PT.		Inits	с	0	DIL	Method	

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Meth
7439-92-1	Ър	14	5.0	ug/L			1	6010B

Client Sample ID:	SUMP	SUMP				420-43563-4					
Lab Name:	EnviroTest Laborat	ories, Inc.		Job No.:	420	420-43563-1					
SDG ID.:											
Matrix:	Water		Date Sampled:	: 05/	05/09/2011 13:30						
Reporting Basis:	WET		Date Received	d: 05/	09/2011	14:40					
<pre>% Solids:</pre>											
			1								
CAS No.	Analyte	Conc.	RL		Units	C	Q	DIL	Method		

5.0

5.0

IJ

ug/L

6010B

1

7439-92-1

Pb

Inorganic Data QC Data

2A-IN CALIBRATION VERIFICATIONS METALS

Lab	Name:	Enviro	stest	Laborate	vies Jok	No.: 420-	43563-1	
SDG	No.:							
Cond	entrat	tion Units:	ug/L					

INITIAL CALIBRATION VERIFICATIONS

Initial Calibration Verification Source: ICPICV+Ag_00003

	ICV 420-47055	/11									
Analyte	Found	Spike Amt.	%R	Found	с	Spike Amt.	₹R	Found	С	Spike Amt.	%R
Pb	770	750	103								

CONTINUING CALIBRATION VERIFICATIONS

Continuing Calibration Verification Source: ICP3CCV+Ag_00004

	CCV 420-47055	5/17		CCV 420-47055/29							
Analyte	Found	Spike Amt.	۶R	Found	С	Spike Amt.	₹R	Found	с	Spike Amt.	%R
Pb	1000	1000	103	1000		1000	102				

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

3A-IN INSTRUMENT BLANKS METALS

Lab Name: Trviro	Test Labratories Job No .:	420-43563-1
SDG No.:		
Concentration Units:	ug/L	

INITIAL CALIBRATION BLANK

	_	ICB 420-470	55/12						
Analyte	Reporting Limit	Found	С	Found	С	Found	С	Found	С
Pb	5.0	5.0	U						

CONTINUING CALIBRATION BLANKS

		CCB 420-47055/18		CCB 420-47055/30					
Analyte	Reporting Limit	Found	С	Found	С	Found	С	Found	С
Pb	5.0	5.0	U	5.0	U				

Italicized analytes were not requested for this sequence.

3-IN

Method Blank

Lab Name: Env	viroTest	Laboratories,	Inc.	Job	No.:	420-43	563	-1	
SDG No.:									
Concentration	Units:	ug/L		Lab	Sample	e ID:	MB	420-46984/1-A	
Instrument Cod	de: <u>MET</u> -	ICP-3300		Batc	h No.:	4698	4		

CAS No.	Analyte	Concentration	С	Q	Method
7439-92-1	Pb	5.0	U		6010B

.

Lab	Name:	Envir	roTest	Laboratories,	Inc.	Job No.: 4	20-43	3563-1	
SDG	No.:								
Lab	Sample	ID:	ICSA	420-47055/15		Instrument	ID:	MET-ICP-3300	
Lab	File I	D:				ICS Source:	MET	ricsa_00007	
Cond	centrat.	ion Ur	nits:	ug/L					

Found True Percent Recovery Solution A Solution A Analyte 103 500000 513248 Al 456900 91 500000 Ca 90 180710 200000 Fe 99 500000 496594 Mg

Lab	Name:	Envir	oTest	Laboratories, Inc.	Job No.: 420-4	3563-1
SDG	No.:					
Lab	Sample	ID:	ICSAB	420-47055/16	Instrument ID:	MET-ICP-3300
Lab	File II	D:			ICS Source: ME	TICSB_00011
Cond	rentrat	ion Ur	nits:	ug/L		

	True	Found		
Analyte	Solution AB	Solution AB	Percent Recovery	
Al	500000	509365	102	
Ca	500000	451581	90	
Fe	200000	178854	89	
Mg	500000	489827	98	
Pb	50.0	58.4	117	

Lab	Name:	Envir	oTest	Laboratories,	Inc.	Job No.:	420-43	3563-1
SDG	No.:				40			
Lab	Sample	ID:	ICSA	420-47055/36		Instrumen	ID:	MET-ICP-3300
Lab	File II	D:				CS Source	e: ME'	TICSA_00007

Concentration Units: ug/L

	True	Found		
Analyte	Solution A	Solution A	Percent Recovery	
Al	500000	512802	103	
Ca	500000	454046	91	
Fe	200000	179812	90	
Mg	500000	493569	99	

Lab Name:	EnviroTest Laboratories, Inc.	Job No.: 420-43563-1			
SDG No.:					
Lab Sample	ID: ICSAB 420-47055/37	Instrument ID: MET-ICP-3300			
Lab File I	D:	ICS Source: METICSB_00011			
Concentrat	ion Units: ug/L				

Found True Percent Recovery Solution AB Analyte Solution AB 500000 509563 102 Al 500000 90 Ca 451112 200000 178873 89 Fe 500000 489458 98 Mg 50.0 58.2 116 Pb

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client Id:	MW4S MS							
Lab Name:	EnviroTest Labo	ratories, Inc.	Job	No.: 4	420-43563-1			
SDG No.:								
Matrix:	Water	₃ So	% Solids:					
Concentrati	on Units: ug/L							
Analyte	SSR	Sample Result (SR)	Spike Added (SA)	₹R	Control Limit %R	Q	Method	

С

500

90

75-125

6010B

SSR = Spiked Sample Result

464

Pb

C

14

6-IN DUPLICATES

Client Smp ID: MW4S DU	Lab Smp ID: 420-43563-3				
Lab Name: EnviroTest Laboratories, Inc.	Job No.: 420-43563-1				
SDG No.:					
<pre>% Solids for Sample:</pre>	<pre>% Solids for Duplicate:</pre>				
Matrix: Water	Concentration Units: ug/L				

Analyte	Control Limit	Sample (S) C	Duplicate (D) C	RPD	Q	Method
Pb	5.0	14	12.7	7		6010B

7A-IN LAB CONTROL SPIKE METALS

Lab ID: LCS 420-46984/2-A

 Lab Name:
 EnviroTest Laboratories, Inc.
 Job No.: 420-43563-1

 Sample Matrix:
 Water
 LCS Source: METCCV1A_00001

Analyte				Wat	cer(ug/L)			
	True	Found	С	₹R		Limits	Q	Method
Pb	2000	2050		102	80	120		6010B

Inorganic Data Instrument Parameters

8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 420-43563-3

SDG No:							
Lab Name:	Enviro	fest Laboratories, In	nc.	Job	No: 420-43563-1		
Matrix: M	later			Cond	centration Units:	ug/L	
Ana	lyte	Initial Sample Result (I) C	Serial Dilution Result (S)	С	3 Difference	Q	Method
Pb		14	25	U	NC		6010B

9-IN DETECTION LIMITS METALS

Lab Name: EnviroTest Laboratorie	s, Inc. Job	Job Number: 420-43563-1					
SDG Number:							
Matrix: Water	Inst	trument ID: MET-ICP-3300					
Analysis Method: 6010B	RL D	Date: 12/01/2009 09:32					
Prep Method: 3010A							
Leach Method:							
Analyte	Wavelength/ Mass	RL (ug/L)					
РЬ	220.353	5					
		RL					

IEC File Last Saved: 11/16/2010 1:24:57 PM Printed On: 11/16/2010 1:25:00 PM

3

s.

A.

			Interfering Ana	alytes	
	Analytes	AI 308.215	Ca 315.887	Co 228.616	Fe 273.955
1	Ag 338.289	0	0.045	0	0
2	AI 308.215	n/a	0	-4.32782	0
3	As 188.979	0	-0.03	-0.348935	0
4	B 249.677	0	0	4	0
9	Cd 226.502	0	0	-0.110451	0.2
10	Co 228.616	0	0	n/a	0
13	Fe 273.955	0	0	0	n/a
16	Mn 257.610	0	0	0	0
21	Pb 220.353	-0.14	-0.0147015	-0.55	0
22	Sb 206.836	0	0	0	0
24	Se 196.026	0.045	0.0139213	0	-0.15
25	TI 190.801	0	-0.04	4.55	0
26	V 292.402	0	0	0	-0.09
-27	Y 360.073	0.00151428	0	0	0
28	Zn 206.200	0	0	0	0

IEC File Last Saved: 11/16/2010 1:24:57 PM Printed On: 11/16/2010 1:25:00 PM

-

IOB

	Analytes	Mg 279.077	Mn 257.610	Mo 202.031	V 292.402	
1 A	Ag 338.289	0	0	0	-1.2773	
2 A	1 308.215	0	0	15	-59.3811	
3 A	s 188.979	0	0	0.5	0	
4 B	B 249.677 0		0	0	0	
9 C	Cd 226.502 0		0	0	0	
10 C	o 228.616	0	0	-2.33726	0	
13 F	e 273.955	0	0	0	22	
16 M	In 257.610	0.019	n/a	0	0	
21 P	b 220.353	0	0	-1	0	
22 S	b 206.836	0	0	0	-1	
24 S	e 196.026	0	1	-0.446989	0.441125	
25 TI	190.801	0	0.5	-0.7	-2.03906	
26 V	292.402	0	0	-5	n/a	
	360.073	0	0	0	0	
28 Zr	n 206.200	0.02	0	0	0	

•

11-IN ICP-AES AND ICP-MS LINEAR RANGES METALS

EnviroTest Labora tories Job No: 420-43563-1 Lab Name:

SDG No.:

Instrument ID: MET-ICP-3300

Date:

03/08/2011 11:43

AnalyteInteg.
Time
(Sec.)Concentration
(ug/L)MethodPb20250006010B

13-IN ANALYSIS RUN LOG METALS

Instrument ID: M	ET-ICP	-330	0		Method: 6010B										
Start Date: 05/1	7/2011	2011 16:24			End	End Date: 05/17/2011 20:52									
									Anal	vtes				 	
			Y	P					1 1	-					
	5.00			b											
Lab Sample	D /	T													
ID	F	p													
		e	Time												
ZZZZZZ			16:24								-			+	+
222222			16:31												-
222222			16:36												+
222222			16:42												+
222222			16:48												+
ZZZZZZ			16:54												+
ZZZZZZ			16:59												+
222222			17:05												+
ZZZZZZ			17:12												+
222222			17:17												+
ICV 420-47055/11	1		17:23	Х											1
ICB 420-47055/12	1		17:30	Х											
CRI 420-47055/13	1		17:36	Х											
222222			17:43												1
ICSA 420-47055/15	1		17:50	Х											
ICSAB 420-47055/16	1		18:01	X											1
CCV 420-47055/17	1		18:12	X											+
CCB 420-47055/18	1		18:19	X											+
MB 420-46984/1-A	1	Т	18:26	X											
LCS 420-46984/2-A	1	T	18:32	X											+
420-43563-1	1	Т	18:39	X											+
420-43563-2	1	T	18:46	X										-	+
420-43563-3	1	Т	18:54	Х											+
420-43563-3 DU	1	Т	19:01	X											+
420-43563-3 MS	1	Т	19:07	X										 -	+
420-43563-3 SD	5	T	19:14	X											+
420-43563-4	1	Т	19:21	X										 	1
222222			19:28												1
CCV 420-47055/29	1		19:35	X											+
CCB 420-47055/30	1		19:42	X											+
222222			19:48												+
222222	-		19:55												+
222222			20:02											-	+
CRI 420-47055/34	1		20:09	X											+
222222			20:16									_			+
ICSA 420-47055/36	1		20:23	X										-	+
ICSAB 420-47055/37	1		20:34	X										 -	+
CCV 420-47055/38			20:45				+ +						+ +	 -	+
CCB 420-47055/39			20:52			1							-	 	_

Prep Types

T = Total/NA

Inorganic Data Raw Data

Sample Information Detail Report Document Name: 051711a

File Description Default Sample Information File

Parameters Common to All Samples

Batch ID	
Volume Units	mL
Weight Units	g

Parameters That Vary By Sample

Sctup = 6 P S/17/11 Paperwork mwa/mp 5219/11

B4+10+++ 47055

Sample No 1 2 3 4 5 6 7 8 9 10 11 12 13	A/S Location 24 25 26 27 28 29 30 31 32 33 34 35 36	Sample ID mb 46984-1 lcs 46984-2 43563-1 43563-2 43563-3 du 43563-3 ms 43563-3 sd 43563-3 43563-4 43676-2 du 43676-2 ms 43676-2 sd 43676-2	Aliquot Volume 1
Sample No 1 2 3 4 5 6 7 8 9 10 11 12 13	Diluted To Vol. 5 5	Analyze QCs Before 1,4,5,6,7,8,9,12 9,12	Sample Units * ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

Valate.

Analysis Begun				
Start Time: 5/17 Logged In Analys	/2011 4:24:29 PM t: pistolem el: Optima 3300 XL,		Tech	na On Time: 5/17/2011 8:04:08 AM nique: ICP Continuous osampler Model: AS-91
Sample Informati Batch ID: Results Data Set		nistrator\	Sample Ind	formation\051711a.sif
Results Library:	C:\pe\Administrato	r\Results\	Results.mo	db
Method Loaded				
Method Name: CLP IEC File: IEC 11			Metho MSF H	od Last Saved: 5/17/2011 10:29:21 AM
Method Descripti			HOP 1	
Sequence No.: 1				sampler Location: 1
Sample ID: Calib	Blank 1			Collected: 5/17/2011 4:24:29 PM
Analyst:				Type: Original ial Sample Vol:
Initial Sample W Dilution:	τ:			Le Prep Vol:
			_	
Mean Data: Calib				
neun bucu. ouris	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
Y 360.073	49711.2 269076.7	506.53 4046.88	1.02%	1.00 ug/L 1.00 ug/L
Sc 361.383 Al 308.215†	3315.4		1.47%	
Sb 206.836†	14.6	2.08	14.32%	[0.00] ug/L
As 188.979†	-12.7			[0.00] ug/L
Ba 233.527†	133.2		3.48%	[0.00] ug/L [0.00] ug/L
Be 313.107† Cd 226.502†	-1026.9 -47.7		2.13% 6.46%	[0.00] ug/L
Ca 315.887†	-6450.5		1.90%	[0.00] ug/L
Cr 205.560†	-18.6		14.65%	[0.00] ug/L
Co 228.616†	-53.0		7.49%	[0.00] ug/L
Cu 324.752† Fe 273.955†	1904.8 20.1		0.86% 61.44%	[0.00] ug/L [0.00] ug/L
Pb 220.353†	-87.3		5.13%	[0.00] ug/L
Mg 279.077†	-277.4		9.53%	[0.00] ug/L
Mn 257.610†	302.1		1.77%	[0.00] ug/L
Ni 231.604†	-46.2		18.96% 2.09%	[0.00] ug/L [0.00] ug/L
K 766.490† Se 196.026†	1364.9 9.3	28.48 1.17	12.62%	[0.00] ug/L
Ag 338.289†	-186.0		16.79%	[0.00] ug/L
Na 330.237†	330.6		5.59%	[0.00] ug/L
Na 589.592†	1689.4		3.23%	[0.00] ug/L [0.00] ug/L
Tl 190.801† V 292.402†	-38.1 -56.0		4.09% 7.27%	[0.00] ug/L
Zn 206.200†	33.3		6.48%	[0.00] ug/L
B 249.677†	39.0		6.77%	[0.00] ug/L
Mo 202.031†	-3.1		70.69%	[0.00] ug/L
Ce 413.764 Ti 334.940	484.3 -118.5		4.13% 19.08%	[0.00] ug/L [0.00] mg/L
Sn 189.927	-5.6		31.44%	[0.00] mg/L
Sequence No.: 2				sampler Location: 15
Sample ID: CAL-1	A			Collected: 5/17/2011 4:31:00 PM
Analyst:				Type: Original
Initial Sample W Dilution:	it:			ial Sample Vol: Le Prep Vol:
			-	Inter the Sector
Mean Data: CAL-1				
	Mean Corrected	04.1	DOD	Calib Cong Units
Analyte	Intensity	Std.Dev.	RSD	Conc. Units

Wa TT:65:6	ampler Location: 19 2011ected: 5/17/2011 7ype: Original 2011ected: 5/17/2011 2011ected: 5/17/2011 2011ected: 5/17/2011	seotuñ 9 stsC 7 stsC 5 tituI			Sequence No.: 6 Sample ID: SB Analyst: Initial Sample Wt: Dilution:
	Calib Conc. Units 0.976 ug/L [10000] ug/L [10000] ug/L [10000] ug/L	CSA 812.0 812.0 851.0 801.0 801.0	.vəd.b32 1430,00 1430,00 24.54 51,52 75,55 75 75 75 75 75 75 75 75 75 75 75 75 7	Mean Corrected Intensity 47706.0 262563.5 3472.8 3472.8	Mean Data: K Mean Data: K Na 330,237† K 766,490† K 766,490† Ma 589,592†
4:48:13 EM	ampler Location: 18 Collected: 5/17/2011 Type: Original al Sample Vol: Prep Vol:	барий Эзб Гајб Бајб Сајб			=====================================
	Calib Conc. Units 0.966 ug/L 1.01 ug/L [2000] ug/L [2000] ug/L [2000] ug/L	RSD 8.17% 2.83% 2.88% 88% 2.88%	544.Dev . 82.43 7364.77 2005.27 2005.29	Mean Corrected Intensity 47998.5 271648.3 70821.9 21128.2 6042.4	Mean Data: CAL-3 Mean Data: CAL-3 Ph 220.353† Cd 226.502† T1 190.801† T1 190.801†
M:42:26 PM	ampler Location: 17 Collected: 5/17/2011 Type: Original al Sample Vol: Prep Vol:	εεούμΑ 9 θύε 7 εύε 6 έύτι 1 μύτι			Sequence No.: 4 Sample ID: CAL-3 Analyst: Initial Sample Wt: Dilution:
	J\pu [002] J\pu [002]	816.1 840.1	09.695	7.52182	†882.855 pA
	Calib Conc. Units Conc. Usits	ДЗЯ 822.0 811 Г	. vəd.bə2 97.722 994.49	Mean Corrected Intensity 49484.1 276338.7	Эб :БЭБ Паба: Аб Улбий 27 360.070 285.1383 282 363
	<pre>mpler Location: 16 Collected: 5/17/2011 Pype: Original al Sample Vol: Conc. Units Conc. Units</pre>	seofu 9 efs 1 sfs 1 ini 1 i i i i	.257.76	Mean Corrected Mean Corrected Y.18191	Sequence No.: 3 Sample ID: AG Analyst: Initial Sample Wt: Mean Data: AG Maalyte Y 360.073 Y 360.073
	0.924 ug/L 0.943 ug/L 0.943 ug/L (2000) ug/L (2000) ug/L (5000) ug	0.52% RSD 0.52% RSD 0.95% 1.03% 1.	.257.76	Mean Corrected Mean Corrected Y.18191	Sequence No.: 3 Sample ID: AG Analyst: Initial Sample Wt: Mean Data: AG Maalyte Y 360.073 Y 360.073

Method: CLP4

Page 3

Date: 5/17/2011 5:19:24 PM

Mean Data: SB							
Mean Data. DD	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc	Units		
Y 360.073	49145.9	172.25		0.989			
Sc 361.383	276172.5	8492.03		1.03			
Sb 206.836†	8935.9	393.63	4.41%	[2500]			
Somiongo No : 7							
Sequence No.: 7 Sample ID: 3-3				Sampler Lo		L 4:59:59 P	4
Analyst:				Type: Orig			•
Initial Sample Wt:				ial Sample			
Dilution:				le Prep Vo			
Mean Data: 3-3	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units		
Y 360.073	50382.3	219.07	0.43%	1.01	ug/L		
Sc 361.383	276600.7	4761.46		1.03			
B 249.677†	50827.0	1247.19	2.45%	[2500]	ug/L		
Mo 202.031†	65232.5	1390.13	2.13%	[6500]	ug/L		
Sequence No.: 8				sampler Loc		E. 05.01 -	
Sample ID: AS/SE					10 NO	. 5:05:34 PM	1
Analyst:				Type: Orig			
Initial Sample Wt:				ial Sample			
Dilution:			Samp.	le Prep Vol	.:		
Mean Data: AS/SE							
,	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units		
Y 360.073	49370.1	354.59	0.72%	0.993	ug/L		
Sc 361.383	273870.7	9072.69		1.02			
As 188.979†	1795.8	64.36		[750]	ug/L		
Se 196.026†	1094.9	41.79	3.82%	[750]	ug/L		
Sequence No.: 9				sampler Loc		E.10.00 DV	
Sample ID: NA						5:12:08 PM	
Analyst:				Type: Orig			
Initial Sample Wt:				ial Sample			
Dilution:			Samp	le Prep V₀1	•		
 Mean Data: NA							
	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units		
Y 360.073	49209.9	254.78		0.990			
Sc 361.383	273162.6	3234.11	1.18%	1.02			
Na 330.237†	1708.0	26.04	1.52%	[5000]			
Sequence No.: 10				sampler Loc			
Sample ID: BA						5:17:42 PM	
Analyst:				Type: Orig			
Initial Sample Wt:				al Sample			
Dilution:			Sampl	le Prep Vol	•		
Mean Data: BA							
mean Data: BA	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.	RSD	Conc.			
Y 360.073	49267.5	258.03		0.991			
Sc 361.383	271358.2	752.09	0.28%	1.01	ug/L		
Ba 233.527†	1895279.9	7997.45	0.42%	[10000]	ug/L		

Calibration Summary

Analyte Al 308.215 Sb 206.836 As 188.979 Ba 233.527 Be 313.107 Cd 226.502 Ca 315.887 Cr 205.560 Co 228.616 Cu 324.752 Fe 273.955 Pb 220.353 Mg 279.077 Mn 257.610 Ni 231.604 K 766.490 Se 196.026 Ag 338.289 Na 330.237 Na 589.592 Tl 190.801 V 292.402 Zn 206.200 B 249.677 Mo 202.031	1	Lin, Calc Lin, Calc	Int Int Int Int Int Int Int Int Int Int		17.64 3.574 2.394 189.5 804.7 70.82 46.48 28.94 33.64 192.9 18.99 10.56 14.43 409.7 19.00 154.2 1.460 56.31 0.4020 320.3 3.021 27.16 56.16 20.33 10.04		Corr. Coef. 1.0000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.0000000000	Reslope
Sequence No.: 1 Sample ID: ICV Analyst: Initial Sample M Dilution:	Wt:			ו ו נ נ	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	5/17/2011 5 inal Vol: :	:23:35 PM	
Mean Data: ICV		an Correcte		Calib.				
						Sam		
Analyte X 360 073		A7368 7		c. Units	Std.Dev.	Sam Conc. Uni		
Y 360.073 Sc 361.383		47368.7 259587.1	Cond 0.95 0.95	c. Units 53 ug/L 65 ug/L	0.0021 0.0073	Conc. Uni	ts Std.Dev.	RSD 0.22% 0.75%
Y 360.073 Sc 361.383 Al 308.215†		47368.7 259587.1 130930.6	Cond 0.99 0.90 7532.3	c. Units 53 ug/L 65 ug/L 31 ug/L	0.0021 0.0073 60.030		ts Std.Dev.	0.22%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836†	nin li	47368.7 259587.1 130930.6 mits for Al 1491.6	Cond 0.99 0.90 7532.3 308.215 419.19	c. Units 53 ug/L 65 ug/L 31 ug/L Recovery 97 ug/L	0.0021 0.0073 60.030 = 100.43% 0.8830	Conc. Uni 7532.31 ug/ 419.197 ug/	ts Std.Dev. L 60.030	0.22% 0.75%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea	nin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp	Cond 0.99 7532.3 308.215 419.19 er limit	c. Units 53 ug/L 65 ug/L 31 ug/L Recovery 97 ug/L for Sb 206	0.0021 0.0073 60.030 = 100.43% 0.8830 6.836 Recovery	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79%	ts Std.Dev. L 60.030 L 0.8830	0.22% 0.75% 0.80% 0.21%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† OC value grea	hin li ater t ater t	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit	<pre>c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188</pre>	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17%	ts Std.Dev. L 60.030 L 0.8830 L 5.8717	0.22% 0.75% 0.80% 0.21% 0.72%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527†	nin li ater t ater t	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.3	<pre>c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L</pre>	0.0021 0.0073 60.030 = 100.43% 0.8830 6.836 Recovery 5.8717 3.979 Recovery 89.863	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17%	ts Std.Dev. L 60.030 L 0.8830	0.22% 0.75% 0.80% 0.21%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527† QC value with Be 313.107†	hin li ater't ater t hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8 mits for Ba 152690.5	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.7 233.527 189.75	<pre>c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L</pre>	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717	0.22% 0.75% 0.80% 0.21% 0.72%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with	hin li ater't ater t hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8 mits for Ba 152690.5 mits for Be	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.7 233.527 189.75 313.107	c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249 = 101.20%	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with	nin li ater't ater t nin li nin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppo 1958.4 han the uppo 1465004.8 mits for Ba 152690.5 mits for Be 27880.7 mits for Cd	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.5 233.527 189.75 313.107 393.12 226.502	c. Units 53 ug/L 55 ug/L 55 ug/L 75 ug/L 50 r Sb 206 58 ug/L 50 r As 188 75 ug/L Recovery 50 ug/L Recovery 20 ug/L Recovery	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249 = 101.20% 3.1470 = 104.83%	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887†	nin li ater t nin li nin li nin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8 mits for Ba 152690.5 mits for Be 27880.7 mits for Cd 891800.6	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.5 233.527 189.75 313.107 393.12 226.502 19187.	c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 20 ug/L Recovery 4 ug/L	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249 = 101.20% 3.1470 = 104.83% 221.33	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Ca 315.887† QC value with Ca 205.560†	hin li ater t hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8 mits for Ba 152690.5 mits for Be 27880.7 mits for Cd 891800.6 mits for Ca 22069.6	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.5 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55	c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 20 ug/L Recovery 4 ug/L	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249 = 101.20% 3.1470 = 104.83% 221.33 = 102.33% 6.1630	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with	hin li ater t hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp 1958.4 han the upp 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Ca 22069.6 mits for Cr	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.5 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560	c. Units 53 ug/L 55 ug/L 65 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 20 ug/L Recovery 4 ug/L Recovery	0.0021 0.0073 60.030 = 100.43% 0.8830 5.836 Recovery 5.8717 3.979 Recovery 89.863 = 103.06% 2.3249 = 101.20% 3.1470 = 104.83% 221.33 = 102.33% 6.1630	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 762.574 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with	hin li ater t hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppo 1958.4 han the uppo 1465004.8 mits for Ba 152690.5 mits for Be 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Cr 65588.6 mits for Co	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.5 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616	c. Units 53 ug/L 55 ug/L 65 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 4 ug/L Recovery 74 ug/L Recovery 57 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery	$\begin{array}{r} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\$\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\$\\ 2.3249\\ = 101.20\$\\ 3.1470\\ = 104.83\$\\ 221.33\\ = 102.33\$\\ 6.1630\\ = 101.68\$\\ 15.043\\ = 104.08\$\end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 762.574 ug/ 1951.57 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 15.043	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Ca 315.867† QC value with Cr 205.560† QC value with Co 228.616† QC value with Cu 324.752†	hin li ater't hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp- 1958.4 han the upp- 1465004.8 mits for Ba 152690.5 mits for Be 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Cr 65588.6 mits for Co 177564.6	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.7 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616 920.59	c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 20 ug/L Recovery 20 ug/L Recovery 24 ug/L Recovery 24 ug/L Recovery 25 ug/L Recovery 26 ug/L Recovery 27 ug/L Recovery 27 ug/L Recovery 29 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\$\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\$\\ 2.3249\\ = 101.20\$\\ 3.1470\\ = 104.83\$\\ 221.33\\ = 102.33\$\\ 6.1630\\ = 101.68\$\\ 15.043\\ = 104.08\$\\ 6.3030\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 762.574 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 15.043	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Cr 228.616† QC value with Cu 324.752† QC value with Fe 273.955†	hin li ater't ater t hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp- 1958.4 han the upp- 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Cr 65588.6 mits for Co 177564.6 mits for Cu 73055.1	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.7 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.57 205.560 1951.5 228.616 920.59 324.752 3804.8	c. Units 53 ug/L 55 ug/L 31 ug/L Recovery 97 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 74 ug/L Recovery 57 ug/L Recovery 57 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\$\\ 0.8830\\ 6.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\$\\ 2.3249\\ = 101.20\$\\ 3.1470\\ = 104.83\$\\ 221.33\\ = 102.33\$\\ 6.1630\\ = 101.68\$\\ 15.043\\ = 104.08\$\\ 6.3030\\ = 98.20\$\\ 32.594\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 762.574 ug/ 1951.57 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 15.043 L 6.3030	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with Cu 324.752† QC value with	hin li ater't ater t hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the upp- 1958.4 han the upp- 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Cr 65588.6 mits for Co 177564.6 mits for Cu 73055.1	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 er limit 7729.7 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.57 205.560 1951.5 228.616 920.59 324.752 3804.8 273.955	c. Units 53 ug/L 55 ug/L 55 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 74 ug/L Recovery 57 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery 50 ug/L Recovery	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\$\\ 0.8830\\ 6.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\$\\ 2.3249\\ = 101.20\$\\ 3.1470\\ = 104.83\$\\ 221.33\\ = 102.33\$\\ 6.1630\\ = 101.68\$\\ 15.043\\ = 104.08\$\\ 6.3030\\ = 98.20\$\\ 32.594\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 19187.4 ug/ 1951.57 ug/ 920.593 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 15.043 L 32.594	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81% 0.77% 0.68% 0.86%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with Cu 324.752† QC value with Fe 273.955† QC value with Pb 220.353† QC value with	hin li ater t ater t hin li hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppo 1958.4 han the uppo 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Co 177564.6 mits for Cu 73055.1 mits for Fe 8096.6 mits for Pb	Cond 0.99 7532.3 308.215 419.12 er limit 818.75 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616 920.55 324.752 3804.8 273.955 769.62 220.353	c. Units 53 ug/L 55 ug/L 55 ug/L 55 ug/L 75 ug/L 58 ug/L 58 ug/L 50 ug/L 50 ug/L 75 ug/L 75 ug/L 76 ug/L 76 ug/L 70 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\%\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\%\\ 2.3249\\ = 101.20\%\\ 3.1470\\ = 104.83\%\\ 221.33\\ = 102.33\%\\ 6.1630\\ = 101.68\%\\ 15.043\\ = 104.08\%\\ 6.3030\\ = 98.20\%\\ 32.594\\ = 101.46\%\\ 6.3132\\ = 102.62\%\end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/? = 109.17% 7729.75 ug/? 189.750 ug/? 393.120 ug/? 19187.4 ug/? 1951.57 ug/? 920.593 ug/? 3804.80 ug/?	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 15.043 L 32.594 L 3.132	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81% 0.77% 0.68% 0.86% 0.86%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value grea As 188.979† QC value grea Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with Fe 273.955† QC value with Fe 273.955† QC value with Pb 220.353†	hin li ater t ater t hin li hin li hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppo 1958.4 han the uppo 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Co 177564.6 mits for Cu 73055.1 mits for Fe 8096.6 mits for Pb 275388.8 mits for Mg	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.57 205.560 1951.5 228.616 920.59 324.752 3804.8 273.955 769.62 220.353 19087. 279.077	c. Units 53 ug/L 55 ug/L 55 ug/L 57 ug/L 50 r Sb 206 58 ug/L 50 r Sb 206 58 ug/L 50 r Sb 206 50 r S	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\%\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\%\\ 2.3249\\ = 101.20\%\\ 3.1470\\ = 104.83\%\\ 221.33\\ = 102.33\%\\ 6.1630\\ = 101.68\%\\ 15.043\\ = 104.08\%\\ 6.3030\\ = 98.20\%\\ 32.594\\ = 101.46\%\\ 6.3132\\ = 102.62\%\\ 142.79\end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 1951.57 ug/ 920.593 ug/ 3804.80 ug/ 769.627 ug/ 19087.7 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 5.043 L 6.3030 L 32.594 L 142.79	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81% 0.77% 0.68% 0.86%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with Fe 273.955† QC value with Pb 220.353† QC value with Mg 279.077† QC value with Mn 257.610†	hin li ater t ater t hin li hin li hin li hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppo 1958.4 han the uppo 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Co 177564.6 mits for Cu 73055.1 mits for Fe 8096.6 mits for Pb 275388.8 mits for Mg 791489.8	Cond 0.99 0.96 7532.3 308.215 419.19 er limit 818.75 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616 920.59 324.752 3804.8 273.955 769.62 220.353 19087. 279.077 1931.6	c. Units 53 ug/L 55 ug/L 55 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 74 ug/L Recovery 74 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 74 ug/L Recovery 75 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\%\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\%\\ 2.3249\\ = 101.20\%\\ 3.1470\\ = 104.83\%\\ 221.33\\ = 102.33\%\\ 6.1630\\ = 101.68\%\\ 15.043\\ = 104.08\%\\ 6.3030\\ = 98.20\%\\ 32.594\\ = 101.46\%\\ 6.3132\\ = 102.62\%\\ 142.79\\ = 101.80\%\\ 21.520\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/? = 109.17% 7729.75 ug/? 189.750 ug/? 393.120 ug/? 19187.4 ug/? 1951.57 ug/? 920.593 ug/? 3804.80 ug/?	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 5.043 L 6.3030 L 32.594 L 142.79	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81% 0.77% 0.68% 0.86% 0.86%
Y 360.073 Sc 361.383 Al 308.215† QC value with Sb 206.836† QC value great As 188.979† QC value great Ba 233.527† QC value with Be 313.107† QC value with Cd 226.502† QC value with Ca 315.887† QC value with Ca 315.887† QC value with Cr 205.560† QC value with Co 228.616† QC value with Fe 273.955† QC value with Fb 220.353† QC value with Mg 279.077† QC value with Mn 257.610† QC value with Ni 231.604†	hin li ater t ater t hin li hin li hin li hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppu 1958.4 han the uppu 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Co 177564.6 mits for Cu 73055.1 mits for Fe 8096.6 mits for Mg 791489.8 mits for Mn 36557.6	Cond 0.99 0.96 7532.3 308.215 419.19 er limit 818.75 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616 920.59 324.752 3804.8 273.955 769.62 220.353 19087. 279.077 1931.6 257.610 1924.0	c. Units 53 ug/L 55 ug/L 55 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 74 ug/L Recovery 74 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 70 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\%\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\%\\ 2.3249\\ = 101.20\%\\ 3.1470\\ = 104.83\%\\ 221.33\\ = 102.33\%\\ 6.1630\\ = 101.68\%\\ 15.043\\ = 104.08\%\\ 6.3030\\ = 98.20\%\\ 32.594\\ = 101.46\%\\ 6.3132\\ = 102.62\%\\ 142.79\\ = 101.80\%\\ 21.520\\ = 103.02\%\\ 15.201\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 1951.57 ug/ 920.593 ug/ 3804.80 ug/ 769.627 ug/ 19087.7 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 15.043 L 6.3030 L 32.594 L 142.79 L 21.520	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.77% 0.68% 0.86% 0.86% 0.82% 0.75%
Y 360.073 Sc 361.383 Al 308.2151 QC value with Sb 206.8361 QC value great As 188.9791 QC value great Ba 233.5271 QC value with Be 313.1071 QC value with Cd 226.5021 QC value with Ca 315.8871 QC value with Cr 205.5601 QC value with Cr 2028.6161 QC value with Fe 273.9551 QC value with Fe 273.9551 QC value with Pb 220.3531 QC value with Mg 279.0771 QC value with Mn 257.6101 QC value with	hin li ater t ater t hin li hin li hin li hin li hin li hin li hin li hin li hin li	47368.7 259587.1 130930.6 mits for Al 1491.6 han the uppu 1958.4 han the uppu 1465004.8 mits for Ba 152690.5 mits for Ca 27880.7 mits for Cd 891800.6 mits for Ca 22069.6 mits for Ca 22069.6 mits for Cu 73055.1 mits for Cu 73055.1 mits for Fe 8096.6 mits for Mg 791489.8 mits for Mn 36557.6 mits for Ni	Cond 0.99 7532.3 308.215 419.19 er limit 818.75 233.527 189.75 313.107 393.12 226.502 19187. 315.887 762.55 205.560 1951.5 228.616 920.59 324.752 3804.8 273.955 769.62 220.353 19087. 279.077 1931.6 257.610 1924.0 231.604	c. Units 53 ug/L 55 ug/L 55 ug/L 7 ug/L for Sb 206 58 ug/L for As 188 75 ug/L Recovery 50 ug/L Recovery 74 ug/L Recovery 74 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 73 ug/L Recovery 70 ug/L	$\begin{array}{c} 0.0021\\ 0.0073\\ 60.030\\ = 100.43\%\\ 0.8830\\ 5.836 \ \text{Recovery}\\ 5.8717\\ 3.979 \ \text{Recovery}\\ 89.863\\ = 103.06\%\\ 2.3249\\ = 101.20\%\\ 3.1470\\ = 104.83\%\\ 221.33\\ = 102.33\%\\ 6.1630\\ = 101.68\%\\ 15.043\\ = 104.08\%\\ 6.3030\\ = 98.20\%\\ 32.594\\ = 101.46\%\\ 6.3132\\ = 102.62\%\\ 142.79\\ = 101.80\%\\ 21.520\\ = 103.02\%\\ 15.201\\ = 102.62\%\\ \end{array}$	Conc. Uni 7532.31 ug/ 419.197 ug/ = 111.79% 818.758 ug/ = 109.17% 7729.75 ug/ 189.750 ug/ 393.120 ug/ 19187.4 ug/ 1951.57 ug/ 1951.57 ug/ 3804.80 ug/ 19087.7 ug/ 1931.64 ug/	ts Std.Dev. L 60.030 L 0.8830 L 5.8717 L 89.863 L 2.3249 L 3.1470 L 221.33 L 6.1630 L 5.8717 L 3.1470 L 2.3249 J.1470 221.33 L 6.1630 L 5.043 L 6.3030 L 32.594 L 142.79 L 15.201	0.22% 0.75% 0.80% 0.21% 0.72% 1.16% 1.23% 0.80% 1.15% 0.81% 0.81% 0.77% 0.68% 0.86% 0.86% 0.82% 0.75% 1.11%

OC value greate	er than the upp	er limit for K 76	6.490 Recove	ry = 114.93	00		
			7.3823		ug/L	7.3823	0.90%
QC value greate	er than the uppe	er limit for Se 1	96.026 Recov	ery = 109.0	48		
Ag 338.289†	13228.3	236.496 ug/L	1.8483		ug/L	1.8483	0.78%
QC value within	limits for Ag	338.289 Recover	y = 105.11%	12505 2	1-	102.02	0 5 0 %
Na 330.237†	6786.2	17535.7 ug/L	103.02	17535.7	ug/L	103.02	0.59%
		limit for Na 330.	237 Recovery	= 93.52%			
Na 589.592†	Saturated2						
Unable to evalu		776 502	5 6122	776.583	ng/T	5.6423	0.73%
Tl 190.801†	ZJOU.Z	776.583 ug/L 190.801 Recover	1035425	110.303	ug/ 1	0.0120	
V 292.402†	51654 5	1906.06 ug/L	y = 103.548 15.120	1906.06	ug/L	15.120	0.79%
OC value within	limits for V	292.402 Recovery	= 101.66%	2700000			
Zn 206.200†		1914.58 ug/L	14.784	1914.58	ug/L	14.784	0.77%
OC value within	limits for Zn	206.200 Recover	v = 102.11%		-		
B 249.677†	16449.2	801.281 ug/L	16.5077	801.281	ug/L	16.5077	2.06%
QC value greate	r than the uppe	er limit for B 24	9.677 Recove	ry = 106.84	010		
Mo 202.031†	8048.6	801.989 ug/L	9.1750	801.989	ug/L	9.1750	1.14%
QC value greate		er limit for Mo 2	02.031 Recov	ery = 106.93	38	00.71	101 110
Ce 413.764	-7.0						424.11%
	291.8					9.90	
Sn 189.927		nacio				1.01	1.099
QC Failed. Contin	ue with analys:	LS.					
						===============================	
			Autosampler 1				
Sequence No.: 12 Sample ID: ICB			Date Collect	ed: 5/17/20	11 5:30	:28 PM	
Analyst:			Data Type: O:				
Initial Sample Wt:			Initial Samp				
Dilution:			Sample Prep	Vol:			
Mean Data: ICB	N. C	a Calib			Sample		
	Mean Corrected		Std.Dev.	Conc		Std.Dev.	. RSD
Analyte Y 360.073	Intensity 49319.8	0.992 ug/L	0.0069	001101	0.1.2.00	bourbor	0.70%
2 361 393	267305 5	0.993 ug/L	0.0148				1.49%
Sc 361.383	267305.5	0.993 ug/L	0.0148	1.47792	uq/L	4.179611	1.49%
Sc 361.383 Al 308.215†	267305.5 25.7	0.993 ug/L 1.47792 ug/L	0.0148 4.179611		ug/L	4.179611	1.49% 282.80%
Sc 361.383 Al 308.215† QC value within	267305.5 25.7 limits for Al	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L	0.0148 4.179611 y = Not calcul 1.137392			1.137392	1.49% 282.80% 101.42%
Sc 361.383 Al 308.215†	267305.5 25.7 1 limits for Al 4.0 1.2	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L	0.0148 4.179611 y = Not calcui	lated 1.12143 0.520073	ug/L ug/L	1.137392 1.5853600	1.49% 282.80% 101.42% 304.83%
Sc 361.383 Al 308.215† QC value within Sb 206.836†	267305.5 25.7 1 limits for Al 4.0 1.2	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168	lated 1.12143 0.520073 1.82070	ug/L ug/L ug/L	1.137392 1.5853600 0.290168	1.49% 282.80% 101.42% 304.83% 15.94%
<pre>Sc 361.383 Al 308.215t QC value within Sb 206.836t As 188.979t Ba 233.527t Bc 313 107t</pre>	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42 3	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168 0.04091513	lated 1.12143 0.520073 1.82070 0.0525748	ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513	1.49% 282.80% 101.42% 304.83% 15.94% 77.82%
<pre>Sc 361.383 Al 308.215t QC value within Sb 206.836t As 188.979t Ba 233.527t Bc 313 107t</pre>	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L	$\begin{array}{r} 0.0148 \\ 4.179611 \\ y = Not calcu \\ 1.137392 \\ 1.5853600 \\ 0.290168 \\ 0.04091513 \\ 0.0600237 \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159	ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L -1.67496 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496	ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L -1.67496 ug/L 0.306647 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L -1.67496 ug/L 0.306647 ug/L 0.560066 ug/L	0.0148 4.179611 y = Not calcul 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L -1.67496 ug/L 0.306647 ug/L 0.560066 ug/L 0.459857 ug/L	0.0148 4.179611 y = Not calcul 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.560066 ug/L 0.459857 ug/L 0.394945 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.560066 ug/L 0.459857 ug/L 0.394945 ug/L 0.704036 ug/L	0.0148 4.179611 y = Not calcu 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ \end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.560066 ug/L 0.459857 ug/L 0.394945 ug/L 0.704036 ug/L 0.457965 ug/L	0.0148 4.179611 y = Not calcu 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.704036 ug/L 0.457965 ug/L 0.494615 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ \end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.360066 ug/L 0.459857 ug/L 0.394945 ug/L 0.704036 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L	0.0148 4.179611 y = Not calcu 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.704036 ug/L 0.457965 ug/L 0.494615 ug/L	$\begin{array}{r} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394 \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L	$\begin{array}{r} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394 0.592717 4.0538834 0.1826931	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.360066 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.454615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L	$\begin{array}{r} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 16.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.456102 ug/L 1.68335 ug/L 0.637770 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L 0.0955389 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 1.68335 ug/L 0.536102 ug/L 1.68335 ug/L 0.506791 ug/L 680.013 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ \end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.506791 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394 0.592717 4.0538834 0.1826931 22.4303 0.685505 0.19515145 0.1956312 0.0904309	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 10.12% 33.29% 16.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402†	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.60791 ug/L 686.013 ug/L 2.66929 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 10.12% 33.29% 10.12% 33.29% 10.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40% 4.97%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† T1 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031†	267305.5 25.7 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.506791 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 36.05% 3.27% 25.68% 37.7% 25.68% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 25.68% 37.7% 37.6% 37.7%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† T1 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.60791 ug/L 686.013 ug/L 2.66929 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 20.5% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 3.27% 25.68
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940	267305.5 25.7 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.60791 ug/L 686.013 ug/L 2.66929 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 20.56% 3.27% 25.68%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	267305.5 25.7 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.60791 ug/L 686.013 ug/L 2.66929 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 25.68% 20.5% 3.27% 25.68% 25.68% 36.05% 3.27% 25.68% 3.27% 25.68
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940	267305.5 25.7 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.306647 ug/L 0.459857 ug/L 0.394945 ug/L 0.457965 ug/L 0.457965 ug/L 0.494615 ug/L 0.536102 ug/L 1.68335 ug/L 0.637770 ug/L 0.60791 ug/L 686.013 ug/L 2.66929 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L	$\begin{array}{c} 0.0148\\ 4.179611\\ y = Not calcul\\ 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 20.56% 3.27% 25.68%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927 All analyte(s) pas	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1 ssed QC.	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.536102 ug/L 1.68335 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L 0.912585 ug/L	$\begin{array}{l} 0.0148\\ 4.179611\\ y = Not calcul1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ \end{array}$	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.560066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299 0.912585	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\\ 0.66\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40% 4.97% 16.57% 67.59% 695.16% 31.04%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1 ssed QC.	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.536102 ug/L 1.68335 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L 0.912585 ug/L	0.0148 4.179611 y = Not calcul 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394 0.592717 4.0538834 0.1826931 22.4303 0.685505 0.19515145 0.1956312 0.0904309 0.405322 0.1512546	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.56066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299 0.912585	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\\ 0.66\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40% 4.97% 16.57% 67.59% 695.16% 31.04%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927 All analyte(s) pas	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1 ssed QC.	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.536102 ug/L 1.68335 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L 0.912585 ug/L	0.0148 4.179611 y = Not calcul 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394 0.592717 4.0538834 0.1826931 22.4303 0.685505 0.19515145 0.1956312 0.0904309 0.405322 0.1512546 Autosampler 3 Date Collect	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.56066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299 0.912585 Location: 12 ed: 5/17/203	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\\ 0.66\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40% 4.97% 16.57% 67.59% 695.16% 31.04%
Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927 All analyte(s) pas	267305.5 25.7 1 limits for Al 4.0 1.2 345.1 42.3 11.4 -77.8 8.9 18.8 88.7 7.7 7.4 6.6 202.6 10.2 259.6 0.9 28.5 13.1 854.9 0.3 13.7 27.6 165.8 9.2 20.9 1.7 2.1 ssed QC.	0.993 ug/L 1.47792 ug/L 308.215 Recover 1.12143 ug/L 0.520073 ug/L 1.82070 ug/L 0.0525748 ug/L 0.161159 ug/L 0.161159 ug/L 0.306647 ug/L 0.306647 ug/L 0.394945 ug/L 0.394945 ug/L 0.459857 ug/L 0.457965 ug/L 0.457965 ug/L 0.457965 ug/L 0.536102 ug/L 1.68335 ug/L 0.506791 ug/L 686.013 ug/L 2.66929 ug/L 0.0955389 ug/L 0.509097 ug/L 0.491351 ug/L 8.15299 ug/L 0.912585 ug/L	0.0148 4.179611 y = Not calcul 1.137392 1.5853600 0.290168 0.04091513 0.0600237 2.714204 0.1042189 0.0566996 0.1530835 0.6593725 0.6236774 1.0335315 0.0978596 0.0583394 0.592717 4.0538834 0.1826931 22.4303 0.685505 0.19515145 0.1956312 0.0904309 0.405322 0.1512546	lated 1.12143 0.520073 1.82070 0.0525748 0.161159 -1.67496 0.306647 0.56066 0.459857 0.394945 0.704036 0.457965 0.494615 0.536102 1.68335 0.637770 0.506791 686.013 2.66929 0.0955389 0.509097 0.491351 8.15299 0.912585 Location: 12 ed: 5/17/203	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.137392\\ 1.5853600\\ 0.290168\\ 0.04091513\\ 0.0600237\\ 2.714204\\ 0.1042189\\ 0.0566996\\ 0.1530835\\ 0.6593725\\ 0.6236774\\ 1.0335315\\ 0.0978596\\ 0.0583394\\ 0.592717\\ 4.0538834\\ 0.1826931\\ 22.4303\\ 0.685505\\ 0.19515145\\ 0.1956312\\ 0.0904309\\ 0.405322\\ 0.1512546\\ 14.15\\ 12.04\\ 0.66\end{array}$	1.49% 282.80% 101.42% 304.83% 15.94% 77.82% 37.24% 162.05% 33.99% 10.12% 33.29% 166.95% 88.59% 225.68% 19.79% 10.88% 35.21% 635.63% 36.05% 3.27% 25.68% 204.26% 38.43% 18.40% 4.97% 16.57% 67.59% 695.16% 31.04%

Page 6

Initial Sample Wt: . Dilution:

Initial Sample Vol: Sample Prep Vol:

Mean Data: CRI								
Analyte Y 360.073 Sc 361.383 Al 308.215†	Mean Corrected	đ	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 360.073	49581.6	0.997	ug/L	0.0010				0.11%
Sc 361.383	270256.2	1.00	ug/L	0.004	101 611	1.7	1 0757	0.44%
Al 308.215†	3376.0	194.644	ug/L	1.0757	194.644	ug/L	1.0757	0.55%
QC value within		308.215 H	Recover	y = 97.32%	61 7611	ng/T	0.85271	1.38%
Sb 206.836† QC value within	220.6			0.85271	01./011	ug/L	0.05271	1.000
	25.9				10 9968	ug/L	1.09873	9.99%
As 188.979† QC value within					10.9900	ug/ D	1.050,0	
Ba 233.527†	39604.9	208.966	ua/L	0.8235	208.966	uq/L	0.8235	0.39%
QC value within	limits for Ba	233.527 H	Recovery					
Be 313.107†	3999.9	4.97074	ug/L	0.024212	4.97074	ug/L	0.024212	0.49%
QC value within	limits for Be	313.107 F	Recovery	y = 99.41%				
Cd 226.502†	382.2	5.38182	ug/L	0.048744	5.38182	ug/L	0.048744	0.91%
QC value within								0 5 6 0
Ca 315.887†				28.365	5092.20	ug/L	28.365	0.56%
QC value within		315.887 F	Recovery	y = 101.84%	10 5000	17	0 00110	0.86%
Cr 205.560†	306.6	10.5932	ug/L	0.09116	10.5932	ug/L	0.09116	0.000
QC value within					51.7829	ng/T	0.21934	0.42%
Co 228.616†	1741.9	51.7829 229 616 T	ug/L	0.21934	51.7029	ug/L	0.21934	0.420
QC value within	4728.4	228.010 1	va/T	$\gamma = 103.37$ 0.34557	24.5148	ug/L	0.34557	1.41%
Cu 324.752† QC value within	4/20.4 limits for Cu	324.5140	uy/L Recovers	v = 98.06%	24.5140	ug/ L	0.54557	1.110
Fo 273 955+	1911 9	99 7040	ug/L	0.82115	99.7040	ug/L	0.82115	0.82%
Fe 273.955† Pb 220.353†	52 2	5.07471	ug/L	0.232109	5.07471	ug/L	0.82115 0.232109	4.57%
QC value within	limits for Pb	220.353 F	Recovery	v = 101.49%				
Mg 279.077†	72364.3	5015.70	ug/L	27.507	5015.70	ug/L	27.507	0.55%
OC value within	limits for Mg	279.077 F	Recovery	y = 100.31%				
Mn 257.610† Ni 231.604†	6539.7	15.8679	ug/L	0.07977	15.8679	ug/L	0.07977 0.24921	0.50%
Ni 231.604†	783.1	41.2160	ug/L	0.24921	41.2160	ug/L	0.24921	0.60%
QC value within	limits for Ni	231.604 F	Recovery	y = 103.04%				0 (10
к 766.490†	701356.7	4548.24	ug/L	27.829	4548.24	ug/L	27.829	0.61%
QC value within	limits for K	766.490 Re	ecovery	= 90.96%	4 26005	11 m / T	2 201502	55.79%
Se 196.026† Ag 338.289†	6.4	4.26885	ug/L	2.381592	4.20885	ug/L	2.381592 0.31206	2.95%
Ag 338.289† QC value within	604.1 limita fan Da	10.3040	ug/L	1051200	10.3040	ug/L	0.51200	2.550
Na 330.237†	1647.7	1752 54	ug/I	$\gamma = 103.03\%$	4752 54	ng/T.	22.248	0.47%
QC value within	limits for Na	330 237 F	Recovery	v = 95.05%		ug/ 1		
Na 589.592†	1429214.0	4462.58	ug/L	20.692	4462.58	ug/L	20.692	0.46%
Tl 190.801†	30.4	10.1374	ug/L	0.78172	10.1374	ug/L	20.692 0.78172	7.71%
QC value within	limits for Tl	190.801 F	Recovery	y = 101.37%				
V 292.402t	1386.8	51.0707	ug/L	0.45225	51.0707	ug/L	0.45225	0.89%
QC value within	limits for V 2	292.402 Re	ecovery	= 102.14%				
Zn 206,200†	1270.1	22.5169	ug/L	0.12671		ug/L	0.12671	0.56%
QC value within	limits for Zn	206.200 F	Recovery	$\gamma = 112.58\%$				0.000
B 249.677†	93.0	4.36784		0.038972	4.36784	-	0.038972	0.89%
Mo 202.031†	9.0	0.894178	ug/L	0.1349367	0.894178	ug/L	0.1349367	15.09%
Ce 413.764	43.1							75.35%
Ti 334.940	73.8						2.08	6.26%
Sn 189.927	33.1						2.00	0.200
All analyte(s) pas	sea QC.							
Sequence No.: 14				Autosampler :				
Sample ID: CRI2				Date Collect	ed: 5/17/201	11 5:43:	53 PM	
Analyst:				Data Type: 0	riginal			
Initial Sample Wt:				Initial Samp				
Dilution:				Sample Prep	Vol:			
Mean Data: CRI2								
	Mean Corrected		Calib.	52		Sample	1000 Mar 100	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 360.073	48856.9	0.983		0.0081				0.83%
Sc 361.383	268776.3	0.999		0.0313	0 30051		4 (500000	3.13%
Al 308.215†	13.8	0.788514	ug/L	4.6523882	0.788514	ug/L	4.6523882	590.028

Method: CLP4		Pa	ige 7		Date:	5/17/2011 5	:53:49 PM
Sb 206.836†	4.0	1.11761 ug/L	0.471172	1.11761	ng/L	0.471172	42,16%
As 188.979†	0.0	0.0154833 ug/L	0.72317779	0.0154833	-	0.72317779	
Ba 233.527†	85.3	0.450070 ug/L	0.0732697	0.450070		0.0732697	
Be 313.107†	8.1	0.0100105 ug/L	0.03772726	0.0100105	-	0.03772726	
Cd 226.502†	3.5	0.0373045 ug/L	0.06219046	0.0373045	-	0.06219046	166.71%
Ca 315.887†	1847.3	39.7460 ug/L	2.29196	39.7460	ug/L	2.29196	5.77%
Cr 205.560†	2.9	0.100333 ug/L	0.3798571	0.100333	ug/L	0.3798571	378.60%
Co 228.616†	4.2	0.124456 ug/L	0.1423946	0.124456		0.1423946	
Cu 324.752†	39.6	0.205135 ug/L	0.1886527	0.205135		0.1886527	
Fe 273.955†	1124.6	59.2112 ug/L	2.08853	59.2112	ug/L	2.08853	3.53%
		273.955 Recovery		1 05100	1-	0 1005 60	17 170
Pb 220.353†	-11.1	-1.05132 ug/L	0.180563	-1.05132		0.180563	
Mg 279.077† Mn 257.610†	46.4 4386.0	3.21716 ug/L 10.7060 ug/L	1.361065 0.41820	3.21716 10.7060		1.361065 0.41820	3.91%
		257.610 Recovery		10.7000	ug/ L	0.41020	3.710
Ni 231.604†		-0.0227750 ug/L	0.21603642	-0.0227750	ug/L	0.21603642	948.57%
K 766.490†	421.4	2.73293 ug/L	0.926750	2.73293		0.926750	33.91%
Se 196.026†	14.3	9.80853 ug/L	1.734151	9.80853	-	1.734151	17.68%
	limits for Se	196.026 Recovery			2		
Ag 338.289†	23.1	0.409285 ug/L	0.2719473	0.409285	ug/L	0.2719473	66.44%
Na 330.237†	103.3	910.373 ug/L	38.4946	910.373	ug/L	38.4946	4.23%
Na 589.592†	51140.1	159.680 ug/L	5.7095	159.680	ug/L	5.7095	3.58%
		589.592 Recovery					
Tl 190.801†	-2.7	-0.906835 ug/L	0.9334969	-0.906835	-	0.9334969	
V 292.402†	3.3	0.129797 ug/L	0.0510940	0.129797		0.0510940	
Zn 206.200†		1.27847 ug/L	0.236284	1.27847		0.236284	18.48%
B 249.677†	91.6	4.50524 ug/L	0.186691	4.50524	-	0.186691 0.2065405	4.14%
Mo 202.031†	2.7 49.4	0.265068 ug/L	0.2065405	0.265068	ug/L		15.56%
Ce 413.764 Ti 334.940	49.4						>999.9%
Sn 189.927	2.2						113.68%
All analyte(s) pas						2.15	110.000
	2						
Sequence No.: 15		i i	Autosampler	Location: 5			
Sequence No.: 15 Sample ID: ICSA		1	Autosampler : Date Collect	Location: 5 ed: 5/17/203			
Sequence No.: 15 Sample ID: ICSA Analyst:		1	Autosampler Date Collect Data Type: O	Location: 5 ed: 5/17/20: riginal			
Sequence No.: 15 Sample ID: ICSA		1	Autosampler : Date Collect	Location: 5 ed: 5/17/20: riginal le Vol:			
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt:		1	Autosampler : Date Collecto Data Type: O Initial Samp	Location: 5 ed: 5/17/20: riginal le Vol:			
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt:		1	Autosampler : Date Collecto Data Type: O Initial Samp	Location: 5 ed: 5/17/20: riginal le Vol:	11 5:50		
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA	Mean Corrected	l Calib.	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep '	Location: 5 ed: 5/17/20 riginal le Vol: Vol:	11 5:50 Sample	:26 PM	
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte	Mean Corrected Intensity	l Calib. Conc. Units	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep Std.Dev.	Location: 5 ed: 5/17/20: riginal le Vol:	11 5:50 Sample		RSD
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073	Mean Corrected Intensity 42893.5	L Calib. Conc. Units 0.863 ug/L	Autosampler : Date Collect Data Type: O: Initial Samp Sample Prep Std.Dev. 0.0034	Location: 5 ed: 5/17/20 riginal le Vol: Vol:	11 5:50 Sample	:26 PM	RSD 0.40%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383	Mean Corrected Intensity 42893.5 234537.6	L Calib. Conc. Units 0.863 ug/L 0.872 ug/L	Autosampler : Date Collect Data Type: 0: Initial Samp Sample Prep Std.Dev. 0.0034 0.0107	Location: 5 ed: 5/17/20 riginal le Vol: Vol: Conc.	11 5:50 Sample Units	:26 PM Std.Dev.	RSD 0.40% 1.23%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215†	Mean Corrected Intensity 42893.5 234537.6 9052974.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L	Autosampler : Date Collect Data Type: O: Initial Samp Sample Prep Std.Dev. 0.0034 0.0107 7386.7	Location: 5 ed: 5/17/20 riginal le Vol: Vol:	11 5:50 Sample Units	:26 PM	RSD 0.40%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery	Autosampler : Date Collect Data Type: O: Initial Samp Sample Prep Std.Dev. 0.0034 0.0107 7386.7 = 102.65%	Location: 5 ed: 5/17/20 riginal le Vol: Vol: Conc. 513248	11 5:50 Sample Units ug/L	:26 ₽M Std.Dev. 7386.7	RSD 0.40% 1.23% 1.44%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L	Autosampler : Date Collect Data Type: 0: Initial Samp Sample Prep 7 	Location: 5 ed: 5/17/20 riginal le Vol: Vol: Conc. 513248 16.5597	11 5:50 Sample Units ug/L ug/L	:26 PM Std.Dev. 7386.7 1.17916	RSD 0.40% 1.23% 1.44% 7.12%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery	Autosampler : Date Collect Data Type: O: Initial Samp Sample Prep Std.Dev. 0.0034 0.0107 7386.7 = 102.65%	Location: 5 ed: 5/17/20 riginal le Vol: Vol: Conc. 513248	Sample Units ug/L ug/L ug/L	:26 ₽M Std.Dev. 7386.7	RSD 0.40% 1.23% 1.44% 7.12%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L	Autosampler : Date Collect Data Type: O: Initial Samp Sample Prep 	Location: 5 ed: 5/17/20 riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220	Sample Units ug/L ug/L ug/L ug/L ug/L	Std.Dev . 7386.7 1.17916 1.573039	RSD 0.40% 1.23% 1.44% 7.12% 114.64%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . 7386.7 1.17916 1.573039 0.119960 0.0213769	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/203 riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . Std.Dev . 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6	 Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -0.198090 ug/L -0.198090 ug/L -15.2421 ug/L -456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 7 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . Std.Dev . 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -1.37220 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/203 riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -1.37220 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54% 25.55%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/203 riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep S 	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54% 25.55% 1.51%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Mn 257.610†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 1.54% 25.55% 1.51% 1.68%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Mn 257.610† Ni 231.604†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54% 25.55% 1.51%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Mn 257.610†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L -0.502130 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 1.51% 1.51% 1.51% 1.68% 68.32%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Mn 257.610† Ni 231.604† K 766.490†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5 2991.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L -0.502130 ug/L 19.3982 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130 19.3982	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545 0.53400	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.54% 25.55% 1.51% 1.68% 68.32% 2.75%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: 	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5 2991.3 0.6 87.7 -708.8	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L 5.44295 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L -0.502130 ug/L 19.3982 ug/L -1.95119 ug/L -19.0302 ug/L -1109.81 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130 19.3982 -1.95119 -19.0302 -1109.81	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545 0.53400 1.528903 0.28659 28.386	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 25.55% 1.51% 25.55% 1.51% 1.68% 68.32% 2.75% 78.36% 1.51% 2.56%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: 	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5 2991.3 0.6 87.7 -708.8 19045.9	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -1.37220 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L -0.502130 ug/L -1.95119 ug/L -1.95119 ug/L -19.0302 ug/L -109.81 ug/L 59.4690 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130 19.3982 -1.95119 -19.0302 -1109.81 59.4690	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545 0.53400 1.528903 0.28659 28.386 0.40539	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 25.55% 1.51% 25.55% 1.51% 1.68% 68.32% 2.75% 78.36% 1.51% 2.56% 0.68%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5 2991.3 0.6 87.7 -708.8 19045.9 -42.3	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -1.37220 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L 19.3982 ug/L -1.95119 ug/L -19.0302 ug/L -19.0302 ug/L -109.81 ug/L 59.4690 ug/L 4.19362 ug/L	Autosampler : Date Collect Data Type: O Initial Sample Sample Prep Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130 19.3982 -1.95119 -19.0302 -1109.81 59.4690 4.19362	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545 0.53400 1.528903 0.28659 28.386 0.40539 1.609690	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 1.55% 1.51% 1.68% 68.32% 2.75% 78.36% 1.51% 2.56% 0.68% 38.38%
Sequence No.: 15 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Mean Data: ICSA Analyte Y 360.073 Sc 361.383 Al 308.215† QC value within Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† QC value within Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† QC value within Pb 220.353† Mg 279.077† QC value within Pb 220.353† Mg 279.077† Se 196.026† Ag 338.289† Na 330.237† Na 589.592†	Mean Corrected Intensity 42893.5 234537.6 9052974.3 limits for Al 59.3 -36.1 1031.6 -159.4 1480.1 21236021.8 limits for Ca -48.5 170.0 -2361.9 3432033.6 limits for Fe -710.7 7164629.9 limits for Mg 2242.3 -9.5 2991.3 0.6 87.7 -708.8 19045.9	Calib. Conc. Units 0.863 ug/L 0.872 ug/L 513248 ug/L 308.215 Recovery 16.5597 ug/L -1.37220 ug/L -1.37220 ug/L -0.198090 ug/L -15.2421 ug/L 456900 ug/L 315.887 Recovery -1.67487 ug/L 5.05113 ug/L -12.2454 ug/L 180710 ug/L 273.955 Recovery 11.2977 ug/L 496594 ug/L 279.077 Recovery -3.96200 ug/L -0.502130 ug/L -1.95119 ug/L -1.95119 ug/L -19.0302 ug/L -109.81 ug/L 59.4690 ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep Sample Prep	Location: 5 ed: 5/17/20: riginal le Vol: Vol: Conc. 513248 16.5597 -1.37220 5.44295 -0.198090 -15.2421 456900 -1.67487 5.05113 -12.2454 180710 11.2977 496594 -3.96200 -0.502130 19.3982 -1.95119 -19.0302 -1109.81 59.4690	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 PM Std.Dev. 7386.7 1.17916 1.573039 0.119960 0.0213769 0.56587 7090.6 0.652478 0.165242 0.03906 2788.2 2.88627 7507.0 0.066507 0.3430545 0.53400 1.528903 0.28659 28.386 0.40539	RSD 0.40% 1.23% 1.44% 7.12% 114.64% 2.20% 10.79% 3.71% 1.55% 38.96% 3.27% 0.32% 1.55% 25.55% 1.51% 25.55% 1.51% 1.68% 68.32% 2.75% 78.36% 1.51% 2.56% 0.68%

Me	thod	:	CLP4

Page 8

Method: CLP4		P	age 8		Date:	5/17/2011 6:	12:21
	054.0	5 10016 /5	0 001010	5 10010		0 201010	c c'
	254.0	-5.40846 ug/L				0.301219	
B 249.677†	-116.5	-5.75106 ug/L -1.00717 ug/L	0.452926	-5.75106	ug/L	0.452926	1.00
Mo 202.031†	-10.1	-1.00717 ug/L	0.518167	-1.00717	ug/L		51.43
Ce 413.764	-791.7					39.52	4.99
Ti 334.940	43.0					26.71	
Sn 189.927	. 224.1					0.78	0.35
All analyte(s) pass	sed QC.						
Sequence No.: 16			Autosampler 1				
Sample ID: ICSAB			Date Collecte	ed: 5/17/20		29 PM	
Analyst:			Data Type: Or				
Initial Sample Wt:			Initial Samp				
Dilution:			Sample Prep V	701:			
Mean Data: ICSAB							
	Mean Corrected	d Calib.			Sample		
Analyte Y 360.073 Sc 361.383	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 360.073	43114.4	0.867 ug/L	0.0041				0.48
5c 361.383	234555.7	0.872 ug/L	0.0074				0.85
41 300.2131	0903909.3	309365 ug/L	4230.5	509365	ug/L	4238.5	0.83
		308.215 Recovery					
Sb 206.836†				672.466	ug/L	12.9496	1.93
QC value within	limits for Sb	206.836 Recovery					
As 188.979†	231.0		2.0887	110.188	ug/L	2.0887	1.90
QC value within	limits for As	188.979 Recovery	y = 110.19%				
3a 233.527†	97883.8	516.461 ug/L	4.6906	516.461	ug/L	4.6906	0.91
QC value within	limits for Ba	233.527 Recovery	/ = 103.29%				
Be 313.107†		500.240 ug/L		500.240	ug/L	4.4609	0.89
OC value within	limits for Be	313.107 Recovery					
d 226.502†		985.165 ug/L		985.165	ug/L	10.4928	1.0
		226.502 Recovery					
a 315.887†				451581	ug/L	4061.2	0.90
		315.887 Recovery		101001	ug/1	100112	0.5.
205.560†	14055.2	485.651 ug/L	5 0753	485 651	ug/L	5.0753	1.05
		205.560 Recovery	, - 07 139	405.051	ug/ D	5.0755	1.00
		483.631 ug/L	5.1117	103 631	ug/L	5.1117	1.06
o 228.616†		485.851 ug/L	J.1117	402.021	ug/L	5.1117	1.00
QC value within	limits for Co	228.616 Recovery	/ = 90.735	E20 11C		4 0500	0 70
Cu 324.752†	103/92.2	538.116 ug/L	4.2582	538.110	ug/L	4.2582	0.79
		324.752 Recovery		120051	1-	1 6 4 1 0	0 00
°e 273.955†		178854 ug/L		178854	ug/L	1641.2	0.92
QC value within	limits for Fe	273.955 Recovery	y = 89.43%				
b 220.353†	-209.8	58.3510 ug/L	1.05065	58.3510	ug/L	1.05065	1.80
QC value within	limits for Pb	220.353 Recovery	1 = 116.70%				
lg 279.077†	7066995.6	489827 ug/L	4666.3	489827	ug/L	4666.3	0.95
OC value within	limits for Mg	279.077 Recovery	1 = 97.97%				
n 257.610†	208281.2	499.101 ug/L	4.5292	499.101	ug/L	4.5292	0.91
OC value within	limits for Mn	257.610 Recovery			- 97 -		
i 231.604†	18173.5	956.480 ug/L	11.6298	956,480	ug/L	11.6298	1.22
OC walve within		231.604 Recovery		5001100	49/1	11.0290	1100
		23.4632 ug/L	3.60281	23 1632	ug/L	3.60281	15.36
766.490†						1.97536	
e 196.026†	76.0	48.9802 ug/L	1.97536	40.9002	ug/L	1.97530	4.03
		196.026 Recovery		001 175	/ -	0 4000	1 00
g 338.289†	14126.1	231.175 ug/L	2.4933	231.175	ug/L	2.4933	1.08
		338.289 Recovery			4-		
a 330.237†		-1108.72 ug/L		-1108.72	ug/L	7.177	0.65
a 589.592†		65.4848 ug/L			ug/L		4.88
1 190.801†	250.5	99.5020 ug/L	0.98433	99.5020	ug/L	0.98433	0.99
QC value within		190.801 Recovery					
292.4021	13223.0	502.909 ug/L	5.3349	502.909	ug/L	5.3349	1.06
QC value within		292.402 Recovery	= 100.58%				
n 206.200†	53971.1	951.302 ug/L	12.8265	951.302	ug/L	12.8265	1.35
OC value within	limits for Zn	206.200 Recovery			1000 - 100 - 100 T	1000000 - 505707670	000000000
249.677†	-108.1	-7.25028 ug/L	0.744700	-7.25028	ug/L	0.744700	10.27
				-1.09050		0.489357	44.87
a 202 031+	-788.3	1.00000 49/1	0.100007	1.00000	су/ <u>п</u>	12.79	1.62
- 112 761						12.19	
io 202.031† e 413.764						26 17	16 22
e 413.764 i 334.940	78.7					36.47	46.32
	78.7 229.1					36.47 3.66	46.32

Sequence No.: 17 Sample ID: CCV Analyst: Initial Sample Wt: Dilution:

Mean Data: CCV

Analyte

Y 360.073

Autosampler Location: 3 Date Collected: 5/17/2011 6:12:31 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Sample

Conc. Units

9

Page

Date: 5/17/2011 6:19:31 PM

Std.Dev.

RSD

0.38%

Mean Corrected Calib. Intensity Conc. Units Std.Dev. 47726.8 0.960 ug/L 0.0037 260692.5 0.969 ug/L 0.0023 176866.6 10173.9 ug/L 23.05 0.24% Sc 361.383 Al 308.215† 23.05 0.23% 10173.9 ug/L QC value within limits for Al 308.215 Recovery = 101.74% Sb 206.836† 1986.0 558.175 ug/L 2.2874 558.175 ug/L 2.2874 0.41% QC value greater than the upper limit for Sb 206.836 Recovery = 111.64% 4.212 0.39% As 188.979† 2610.6 1091.45 ug/L 4.212 1091.45 ug/L QC value within limits for As 188.979 Recovery = 109.15% 0.16% 1949395.2 10285.5 ug/L 16.77 10285.5 ug/L 16.77 Ba 233.527† QC value within limits for Ba 233.527 Recovery = 102.86% 0.7995 0.31% 205017.0 254.776 ug/L 0.7995 254.776 ug/L Be 313.107† QC value within limits for Be 313.107 Recovery = 101.91% 1.1343 0.22% Cd 226.502† 37295.2 525.863 ug/L 1.1343 525.863 ug/L QC value within limits for Cd 226.502 Recovery = 105.17% Ca 315.887† 1194629.9 25702.9 ug/L 34.90 0.14% 25702.9 ug/L 34.90 QC value within limits for Ca 315.887 Recovery = 102.81% 29437.1 1017.14 ug/L 1.608 0.16% 1.608 1017.14 ug/L Cr 205.560† QC value within limits for Cr 205.560 Recovery = 101.71% 0.16% 87277.4 2596.91 ug/L 4.217 4.217 2596.91 ug/L Co 228.616† QC value within limits for Co 228.616 Recovery = 103.88% 0.60% 241633.4 1252.76 ug/L 7.559 1252.76 ug/L 7.559 Cu 324.752† QC value within limits for Cu 324.752 Recovery = 100.22% Fe 273.955† 97813.5 5094.17 ug/L 5.627 0.11% 5094.17 ug/L 5.627 QC value within limits for Fe 273.955 Recovery = 101.88% 0.20% Pb 220.353† 10846.0 1030.96 ug/L 2.099 2.099 1030.96 ug/L QC value within limits for Pb 220.353 Recovery = 103.10% 369837.4 25634.1 ug/L 44.64 44.64 0.17% 25634.1 ug/L Mg 279.077† QC value within limits for Mg 279.077 Recovery = 102.54% 6.273 0.24% Mn 257.610† 1057368.0 2580.52 ug/L 6.273 2580.52 ug/L QC value within limits for Mn 257.610 Recovery = 103.22% 48754.5 2565.98 ug/L 6.292 0.25% 2565.98 ug/L 6.292 Ni 231.604† QC value within limits for Ni 231.604 Recovery = 102.64% K 766.490† 1134072.2 7354.37 ug/L 33.415 7354.37 ug/L 33.415 0.45% QC value greater than the upper limit for K 766.490 Recovery = 122.57% 0.76% 1603.5 1095.13 ug/L 8.315 1095.13 ug/L 8.315 Se 196.026† QC value within limits for Se 196.026 Recovery = 109.51% Ag 338.289† 17878.2 319.610 ug/L 2.4543 0.77% 319.610 ug/L 2.4543 QC value within limits for Ag 338.289 Recovery = 106.54% Na 330.237† 9319.4 23837.7 ug/L 90.32 0.38% 23837.7 ug/L 90.32 QC value within limits for Na 330.237 Recovery = 95.35% Na 589.592† Saturated2 Unable to evaluate QC. 3139.9 1033.18 ug/L 3.012 0.29% 1033.18 ug/L 3.012 Tl 190.801† QC value within limits for Tl 190.801 Recovery = 103.32% 0.20% 69249.7 2555.29 ug/L 5.198 5.198 2555.29 ug/L V 292.402† QC value within limits for V 292.402 Recovery = 102.21% Zn 206.200† 143095.1 2547.67 ug/L 5.215 5.215 0.20% 2547.67 ug/L QC value within limits for Zn 206.200 Recovery = 101.91% 1.97% 22063.9 1074.87 ug/L 21.153 21.153 1074.87 ug/L B 249.677† QC value within limits for B 249.677 Recovery = 107.49% Mo 202.031† 10704.8 1066.66 ug/L 7.515 0.70% 1066.66 ug/L 7.515 QC value within limits for Mo 202.031 Recovery = 106.67% 89.64% 23.69 -26.4 Ce 413.764 8.71 2.39% 364.1 Ti 334.940 0.84 0.73% Sn 189.927 114.7 QC Failed. Continue with analysis. ______

Sequence No.: 18 Sample ID: CCB Analyst: Initial Sample Wt: Autosampler Location: 1 Date Collected: 5/17/2011 6:19:31 PM Data Type: Original Initial Sample Vol:

Dilution:

Sample Prep Vol:

Mean Data: CCB								
	Mean Corrected		Calib.	and Deer	Cong	Sample Units	Std.Dev. RSD)
Analyte	Intensity 50636.0	Conc. 1.02	Units	Std.Dev . 0.005	cone.	UNILS	0.50	
Y 360.073 Sc 361.383	273378.7	1.02	-	0.005			0.53	38
Al 308.215†		23.7517		0.50940	23.7517	ug/L	0.50940 2.14	00
QC value within	limits for Al	308.215	Recovery	= Not calcu	lated			
Sb 206.836†	1.8	0.501639		0.2373777	0.501639		0.2373777 47.32	
As 188.979†	2.3	0.947581	-	1.2066199	0.947581		1.2066199 127.34 0.099129 6.34	
Ba 233.527†	296.2	1.56303	-	0.099129	1.56303 0.100330	-	0.099129 6.34 0.0218835 21.81	
Be 313.107†	80.7	0.1003300.209102	-	0.0218835 0.1684320	0.209102		0.1684320 80.55	
Cd 226.502†	$15.0 \\ 1417.9$	30.5071	-	2.81314	30.5071	-	2.81314 9.22	
Ca 315.887† Cr 205.560†	5.5	0.190153		0.1540505	0.190153	-	0.1540505 81.01	00
Co 228.616†	18.4	0.548032	-	0.1081054	0.548032	ug/L	0.1081054 19.73	
Cu 324.752†	16.5	0.0852981	-	0.15624869	0.0852981	ug/L	0.15624869 183.18	
Fe 273.955†	211.6	11.1295	ug/L	0.22563	11.1295	-	0.22563 2.03	
Pb 220.353†	-2.9	-0.265880	-	0.9523121	-0.265880	-	0.9523121 358.17 1.97412 6.71	0
Mg 279.077†	424.5	29.4203	-	1.97412	29.4203 0.421527		1.97412 6.71 0.0280989 6.67	
Mn 257.610†	172.9	0.421527		0.0280989 0.1320737	0.508317		0.1320737 25.98	
Ni 231.604†	9.7 136.1	0.508317		0.2278768	0.882442		0.2278768 25.82	
K 766.490† Se 196.026†	-1.6	-1.06337	-	0.946200	-1.06337	-	0.946200 88.98	38
Ag 338.289†	32.2	0.571527	-	0.3797515	0.571527	ug/L	0.3797515 66.45	
Na 330.237†	0.3	654.340		42.7868	654.340		42.7868 6.54	
Na 589.592†	782.9	2.44448	-	0.224061	2.44448	-	0.224061 9.17	
Tl 190.801†	1.1	0.380132		0.5355742	0.380132		0.5355742 140.89	
V 292.402†	12.6	0.470920		0.3018312	0.470920 0.472356		0.3018312 64.09	
Zn 206.200†	26.6	0.472356 7.52796		0.0730207 0.512559	7.52796	-	0.512559 6.81	
B 249.677†	153.1 9.2	0.915086		0.1452165	0.915086		0.1452165 15.87	
Mo 202.031† Ce 413.764	7.1	0.913000	ug/ b	0.1100000			9.67 136.98	
Ti 334.940	-14.7						23.58 160.53	
Sn 189.927	1.1						1.36 120.52	28
All analyte(s) pas	sed OC.							
	ood Ee.							
								==
								==
Sequence No.: 19				Autosampler :	Location: 24	4		
Sequence No.: 19 Sample ID: mb 4698				Autosampler : Date Collect Data Type: O	Location: 2 ed: 5/17/20 riginal	4		
Sequence No.: 19				Autosampler Date Collect Data Type: O Initial Samp	Location: 2 ed: 5/17/20 riginal le Vol:	4		
Sequence No.: 19 Sample ID: mb 4698 Analyst:				Autosampler : Date Collect Data Type: O	Location: 2 ed: 5/17/20 riginal le Vol:	4		
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt:				Autosampler Date Collect Data Type: O Initial Samp	Location: 2 ed: 5/17/20 riginal le Vol:	4		
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution:	4-1 			Autosampler Date Collect Data Type: O Initial Samp	Location: 2 ed: 5/17/20 riginal le Vol:	4 11 6:26:		
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt:	4-1 4-1 4-1 Mean Corrected	 1	Calib.	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep :	Location: 2 ed: 5/17/20 riginal le Vol: Vol:	4 11 6:26: Sample	02 PM	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte	4-1 4-1 4-1 Mean Corrected Intensity	i Conc.	Calib. Units	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep : Std.Dev.	Location: 2 ed: 5/17/20 riginal le Vol: Vol:	4 11 6:26:	02 PM Std.Dev. RSE	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073	4-1 4-1 Mean Corrected Intensity 50980.2	i Conc. 1.03	Calib. Units ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep ' Std.Dev. 0.011	Location: 2 ed: 5/17/20 riginal le Vol: Vol:	4 11 6:26: Sample	02 PM)%
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383	4-1 4-1 Mean Corrected Intensity 50980.2 281650.2	i Conc. 1.03 1.05	Calib. Units ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep ? Std.Dev. 0.011 0.008	Location: 2 ed: 5/17/20 riginal le Vol: Vol: Conc.	4 11 6:26: Sample Units	02 PM Std.Dev. RSE 1.10 0.77)) % 7 %
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0	d Conc. 1.03 1.05 18.2137	Calib. Units ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep ? Std.Dev. 0.011 0.008 2.11206	Location: 2 ed: 5/17/20 riginal le Vol: Vol:	4 11 6:26: Sample Units ug/L	02 PM Std.Dev. RSD 1.10 0.77 2.11206 11.60)) %) %
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4	d Conc. 1.03 1.05 18.2137 -0.391001	Calib. Units ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep ? Std.Dev. 0.011 0.008	Location: 2 ed: 5/17/20 riginal le Vol: Vol: Conc. 18.2137	4 11 6:26: Sample Units ug/L ug/L	02 PM Std.Dev. RSD 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52)))))))))))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7	d Conc. 1.03 1.05 18.2137	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep ? 	Location: 24 ed: 5/17/20 riginal le Vol: Vol: Conc. 18.2137 -0.391001 0.293562 0.914985	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSD 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979† Ba 233.527†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4	1 Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/202 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSD 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9	1 Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/202 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSE 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23)))))))))))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: 	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSE 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43)))))))))))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/203 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RST 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74	 D)))))))))))))
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/203 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSE 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep Sample Prep Sample 2011 0.001 0.001 0.001 0.001 0.001 0.128086 0.9291710 0.1302357 0.0174673 0.1053469 1.20743 0.0386712 0.0130004 0.0808429	Location: 24 ed: 5/17/203 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.98	 D D B B B B B B B B
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 24 ed: 5/17/203 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.39 0.0808429 39.21 0.635758 6.98 0.5593509 444.75	 D)7)5233349133491335 523033491335
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8	e Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.98 0.5593509 444.75 1.72318 7.26	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.96 0.5593509 444.75 1.72318 7.26 0.0242382 8.34	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4 342.5 119.2 4.0	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460 0.209738	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.96 0.5593509 444.75 1.72318 7.26 0.0242382 8.34 0.2146771 102.35	
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4 342.5 119.2 4.0 259.8	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460 0.209738 1.68469	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	Std.Dev. RSE 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.96 0.5593509 444.75 1.72318 7.26 0.0242382 8.34 0.2146771 102.35 0.601139 35.68	-) 7 7 7 5 2 3 3 3 4 9 1 3 5 6 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4 342.5 119.2 4.0 259.8 -2.3	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460 0.209738 1.68469 -1.60959	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.96 0.5593509 444.75 1.72318 7.26 0.0242382 8.34 0.2146771 102.35 0.601139 35.66 0.930205 57.75	-) 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 9 -) 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 -) 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 -) 2 7 2 5 2 3 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 -) 2 7 2 5 2 3 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 -) 2 7 2 5 2 3 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 8 9 -) 2 7 2 5 2 3 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 8 9 -) 2 7 2 5 2 3 2 3 2 3 3 4 9 1 3 5 6 4 5 8 8 9 8 9 8 9 -) 2 7 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 A1 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4 342.5 119.2 4.0 259.8 -2.3 33.3	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460 0.209738 1.68469 -1.60959 0.590248	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	Std.Dev. RSE 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.96 0.5593509 444.75 1.72318 7.26 0.0242382 8.34 0.2146771 102.35 0.601139 35.68	-) 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Sequence No.: 19 Sample ID: mb 4698 Analyst: Initial Sample Wt: Dilution: Mean Data: mb 4698 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026†	4-1 Mean Corrected Intensity 50980.2 281650.2 321.0 -1.4 0.7 173.4 102.6 7.9 1636.3 6.7 12.9 -39.8 173.2 -1.4 342.5 119.2 4.0 259.8 -2.3	d Conc. 1.03 1.05 18.2137 -0.391001 0.293562 0.914985 0.127497 0.109470 35.2047 0.231041 0.383396 -0.206196 9.11276 -0.125767 23.7399 0.290460 0.209738 1.68469 -1.60959	Calib. Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Autosampler : Date Collect Data Type: O Initial Samp Sample Prep 	Location: 2: ed: 5/17/20 riginal le Vol: Vol: 	4 11 6:26: Sample Units ug/L	02 PM Std.Dev. RSL 1.10 0.77 2.11206 11.60 0.9128086 233.45 0.9291710 316.52 0.1302357 14.23 0.0174673 13.70 0.1053469 96.23 1.20743 3.43 0.0386712 16.74 0.0130004 3.35 0.0808429 39.21 0.635758 6.98 0.5593509 444.75 1.72318 7.26 0.0242382 8.34 0.2146771 102.35 0.601139 35.68 0.930205 57.75 0.6714676 113.76	-) 2 7 2 5 2 3 2 3 3 4 9 1 3 5 6 4 5 8 9 6 3 -) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Method: CLP4			P	age 11		Date:	5/17/2011 6:	42:51 PM
Tl 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764	8.2 31.3 95.8	0.577059 0.304711 0.556111 4.71072 0.153756	ug/L ug/L ug/L	0.8559207 0.2252711 0.0329897 0.194471 0.0423281	-0.577059 0.304711 0.556111 4.71072 0.153756	ug/L ug/L ug/L	0.8559207 0.2252711 0.0329897 0.194471 0.0423281 19.83	73.93% 5.93% 4.13% 27.53% 53.95%
Ti 334.940 Sn 189.927	22.3 1.0							51.89% 107.69%
			======					
Sequence No.: 20 Sample ID: lcs 4698 Analyst: Initial Sample Wt: Dilution:	4-2			Autosampler I Date Collecte Data Type: Or Initial Sampl Sample Prep V	ed: 5/17/20 riginal .e Vol: Vol:	11 6:32:		
Mean Data: 1cs 4698	 4-2							
	Mean Corrected		Calib.	Std Dorr	Conc	Sample Units	Std.Dev.	RSD
Analyte	Intensity 49162.8	Conc. 0.989		Std.Dev. 0.0277	cone.	UNITES	Blu.Bev.	2.80%
Y 360.073 Sc 361.383	268216.4	0.989		0.0285				2.86%
Al 308.215†	35507.0	2045.35		76.769	2045.35	-	76.769	3.75%
sb 206.836†	2021.4	566.516		14.4580	566.516		14.4580	2.55%
As 188.979†	5084.9	2123.04		62.174	2123.04		62.174	2.93% 3.58%
Ba 233.527†	196585.2	1037.24	-	37.099	1037.24		37.099 28.1406	2.84%
Be 313.107†	796521.0	989.843	-	28.1406	989.843 1020.53		36.657	3.59%
Cd 226.502†	72296.6	1020.53 2051.00		36.657 65.966	2051.00	-	65.966	3.22%
Ca 315.887†	95327.4 14523.3	501.826	-	16.2935	501.826		16.2935	3.25%
Cr 205.560† Co 228.616†	34932.5	1043.29	-	37.697	1043.29		37.697	3.61%
Cu 324.752†	394724.7	2046.47		57.862	2046.47	ug/L	57.862	2.83%
Fe 273.955†	39031.0	2033.21	ug/L	71.990	2033.21	-	71.990	3.54%
Pb 220.353†	21575.3	2045.30	-	67.077	2045.30	-	67.077	3.28% 3.49%
Mg 279.077†	29229.9	2025.98	-	70.608	2025.98		70.608 30.744	2.95%
Mn 257.610†	426507.3	1041.05		$30.744 \\ 74.409$	1041.05 2081.70	-	74.409	3.57%
Ni 231.604†	39553.2	2081.70 5168.09	-	120.337	5168.09	-	120.337	2.33%
K 766.490†	796939.6 3056.5	2093.35		53.870	2093.35		53.870	2.57%
Se 196.026† Ag 338.289†	2937.3	53.3469	-	1.32283	53.3469	ug/L	1.32283	2.48%
Na 330.237†	2953.0	7999.63		280.855	7999.63		280.855	3.51%
Na 589.592†	2647475.9	8266.48	ug/L	247.115	8266.48	-	247.115	2.99%
Tl 190.801†	6131.4	2027.80		58.375	2027.80		58.375 35.021	2.88% 3.48%
V 292.402†	27068.9	1007.20		35.021	1007.20 999.242	-	35.1193	3.51%
Zn 206.200†	56115.3	999.242		35.1193 47.748	2082.82	-	47.748	2.29%
B 249.677†	42429.8 20974.9	2082.82 2090.01		66.977	2090.01		66.977	3.20%
Mo 202.031† Ce 413.764	8.6	2000.01	ug/ L				29.88	347.10%
Ti 334.940	264.6						18.66	7.05%
Sn 189.927	15.2							
				Autosampler 1	contion: 2	;		
Sequence No.: 21 Sample ID: 43563-1 Analyst: Initial Sample Wt: Dilution:				Date Collecte Data Type: On Initial Sampl Sample Prep	ed: 5/17/20 riginal le Vol:		:46 PM	
Mean Data: 43563-1			Calib.			Sample		
	Mean Corrected Intensity	Conc	Units	Std.Dev.	Conc.	Units	Std.Dev	
Analyte Y 360.073	48841.1	0.982		0.0074				0.75%
Sc 361.383	264540.0	0.983		0.0099		and a standard and		1.01%
Al 308.215†	12018.0	681.343	ug/L	18.7069	681.343		18.7069	2.75%
Sb 206.836†	22.1	6.18153		0.953427	6.18153	-	0.953427	
As 188.979†	-2.3	4.68507		0.641521	4.68507		0.641521	13.69% 1.22%
Ba 233.527†	23848.8	125.833		1.5352 0.0335815	125.833 0.249184	-	1.5352 0.0335815	
Be 313.107†	200.5	0.249184		0.0335815	1.78363	-	0.089125	5.00%
Cd 226.502†	142.4 8756769.9	1.78363 188405		3032.9	188405		3032.9	
Ca 315.887† Cr 205.560†	. 74.9	2.58736		0.111566	2.58736		0.111566	4.31%
CI 203.3001	. 1. 5					21/22		

Method: CLP4	÷		Page 12	Da	ate: 5/17/2011 6	:56:57
Co 228.616†	60.6	1.81887 ug/L	0.063660	1.81887 ug/	L 0.063660	3.5
Cu 324.752†	3015.9	15.6359 ug/L	0.35141	15.6359 ug/		
Fe 273.955†	21634.1	1139.09 ug/L		1139.09 ug/		
Pb 220.353†				-		
	196.2	21.4432 ug/L	1.16790	21.4432 ug/		
Mg 279.077†	183005.5	12684.5 ug/L	143.30	12684.5 ug/		
Mn 257.610†	50358.8	122.683 ug/L		122.683 ug/		
Ni 231.604†	22.1	1.16230 ug/L	0.091049	1.16230 ug/		
K 766.490†	1099049.4	7127.25 ug/L	69.276	7127.25 ug/	'L 69.276	0.9
Se 196.026†	-1.0	-3.31637 ug/L	1.165800	-3.31637 ug/	L 1.165800	35.1
Ag 338.289†	125.6	-6.24496 ug/L	0.099242	-6.24496 ug/	L 0.099242	1.5
Na 330.237†	2235.2	6214.03 ug/L	101.657	6214.03 ug/	L 101.657	1.6
Na 589.592†	2663428.9	8316.29 ug/L	120.401	8316.29 ug/		
rl 190.801†	-13.2	3.10035 ug/L	1.041326	3.10035 ug/		
V 292.402†	42.0	1.68507 ug/L	0.161218	1.68507 ug/		
Zn 206.200†	3170.6	56.2076 ug/L	0.61816	56.2076 ug/		
B 249.677†	2318.0	114.008 ug/L	1.7282	114.008 ug/		
40 202.031†	71.0	7.07354 ug/L		7.07354 ug/		
Ce 413.764		7.07354 UG/L	0.169426	7.07354 ug/		
	80.3				16.92	
ri 334.940	1896.2				24.36	
Sn 189.927	66.1				3.03	4.58
equence No.: 22 ample ID: 43563-2			Autosampler			
analyst:			Data Type: 0		e	
Initial Sample Wt:			Initial Samp			
ilution:			Sample Prep			
ean Data: 43563-2	Mean Correcte	d Calib		Sam	ple	
nalyte	Intensity	Conc. Units	Std.Dev.	Conc. Uni	ts Std.Dev.	RSI
360.073	48368.8	0.973 ug/L	0.0012			0.12
c 361.383	264133.9	0.982 ug/L	0.0042			0.43
1 308.215†	6503.7	368.517 ug/L	5.6306	368.517 ug/1	L 5.6306	1.53
b 206.836†	12.9	3.59325 ug/L	0.186251	3.59325 ug/1	L 0.186251	5.18
s 188.979†	7.2	7.87925 ug/L	0.380422	7.87925 ug/1		4.83
a 233.527†	27181.6	143.417 ug/L	0.8444	143.417 ug/1		0.59
e 313.107†	16.1	0.0199748 ug/L	0.01535312	0.0199748 ug/1		76.86
d 226.502†	295.4	-1.69522 ug/L	0.135852	-1.69522 ug/1		8.01
a 315.887†	7580965.5	163107 ug/L	1229.3	163107 ug/1		0.75
r 205.560†	31.2	1.07827 ug/L	0.306753	1.07827 ug/l		28.45
0 228.616†	151.3					
		4.50785 ug/L	0.110821	4.50785 ug/1		2.46
u 324.752†	15726.0	81.5324 ug/L	0.56979	81.5324 ug/I		0.70
e 273.955†	557116.8	29334.4 ug/L	218.51	29334.4 ug/I		0.74
b 220.353†	526.4	52.2867 ug/L	0.69557	52.2867 ug/I	0.69557	1.33
g 279.077†	179749.3	12458.8 ug/L	58.76	12458.8 ug/I		0.47
n 257.610†	2115166.3	5162.82 ug/L	38.554	5162.82 ug/I		0.75
i 231.604†	48.4	2.54811 ug/L	0.029529	2.54811 ug/I		1.16
766.490†	1608631.1	10431.9 ug/L	90.14	10431.9 ug/I		0.86
e 196.026†	0.5	-2.70294 ug/L	0.433116	-2.70294 ug/I		16.02
g 338.289†	84.1	-5.84984 ug/L	0.223255	-5.84984 ug/I		3.82
a 330.237†	12884.1	32705.5 ug/L	149.38	32705.5 ug/I		
a 589.592†		J2/03.5 ug/L	149.30	52705.5 ug/1	149.38	0.46
	Saturated2	2 00566	1 040466	2 00555	1 010100	C1 05
1 190.801†	-2.8	3.00566 ug/L	1.949466	3.00566 ug/I		64.86
292.402†	-67.6	0.174073 ug/L	0.0624107	0.174073 ug/I		35.85
n 206.200†	12772.3	227.195 ug/L	1.1747	227.195 ug/I		0.52
249.677†	3653.9	179.705 ug/L	3.3457	179.705 ug/I		1.86
0 202.031†	48.5	4.83594 ug/L	0.193338	4.83594 ug/I	0.193338	4.00
e 413.764	-117.5				14.74	12.54
i 334.940	1022.1				32.08	3.14
189.927	70.1				3.22	4.59
			Autosampler I Date Collecte	ocation: 28 ed: 5/17/2011 6:		
equence No.: 23 ample ID: 43563-3 nalyst: nitial Sample Wt:			Data Type: Or Initial Sampl			

	Mean Correcte	od	Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 360.073	49681.2	0.999		0.0169				1.69%
Sc 361.383	268818.5	0.999	ug/L	0.0191				1.92%
Al 308.215†	1143.6	64.7948	2	3.78706	64.7948		3.78706	5.84%
Sb 206.836†	9.9	2.75640	-	0.704464	2.75640		0.704464	25.56%
As 188.979†	4.2	3.27048		0.975651	3.27048		0.975651 0.63927	29.83% 2.18%
Ba 233.527†	5566.3 26.3	29.3693	-	0.63927 0.03184212	29.3693 0.0326667		0.03184212	97.48%
Be 313.107† Cd 226.502†	77.3	0.0326667 0.897543	2	0.03184212	0.897543	-	0.0141249	1.57%
Ca 315.887†	2368508.4	50959.3		1017.01	50959.3	-	1017.01	2.00%
Cr 205.560†	21.0	0.725622		0.1618806	0.725622	ug/L	0.1618806	22.31%
Co 228.616†	32.0	0.958534	ug/L	0.0580450	0.958534	ug/L	0.0580450	6.06%
Cu 324.752†	805.1	4.17388		0.239798	4.17388		0.239798	5.75%
Fe 273.955†	18390.3	968.320		22.0692	968.320	-	22.0692	2.28%
Pb 220.353†	136.1	13.6470	-	0.25445	$13.6470 \\ 6697.14$		$0.25445 \\ 160.048$	1.86% 2.39%
Mg 279.077†	96623.2 424171.6	6697.14 1035.26		160.048 20.745	1035.26		20.745	2.00%
Mn 257.610† Ni 231.604†	21.3	1.12250	-	0.032354	1.12250	-	0.032354	2.88%
K 766.490†	512508.3	3323.58		66.623	3323.58		66.623	2.00%
Se 196.026†	-0.5	-1.95372		1.665271	-1.95372	ug/L	1.665271	85.24%
Ag 338.289†	40.5	-1.57305	ug/L	0.190756	-1.57305		0.190756	12.13%
Na 330.237†	9779.1	24981.3	ug/L	451.47	24981.3	ug/L	451.47	1.81%
Na 589.592†	Saturated2		1-	1 0001540	0 5 6 0 0 0 5	17	1 2201540	220 748
Tl 190.801†	-6.3	-0.560925		1.3391540	-0.560925 0.251303	-	1.3391540 0.0384224	15.29%
V 292.402†	4.0 1251.8	0.251303 22.1573		0.0384224 0.56208	22.1573		0.56208	2.54%
Zn 206.200† B 249.677†	1320.1	64.9276	2	1.70199	64.9276	-	1.70199	2.62%
Mo 202.031†	34.9	3.47899		0.398291	3.47899		0.398291	11.45%
Ce 413.764	47.8						7.37	15.42%
Ti 334.940	206.5						10.60	5.13%
Sn 189.927	45.1						1.41	3.13%
Sequence No.: 24				Autosampler I				
Sample ID: du 4356	3-3			Date Collecte	ed: 5/17/20	11 7:01:	05 PM	
Analyst:				Data Type: Or	iginal			
Initial Sample Wt:				Data Type: Or Initial Sampl	iginal e Vol:			
				Data Type: Or	iginal e Vol:			
Initial Sample Wt: Dilution:				Data Type: Or Initial Sampl	iginal e Vol:			
Initial Sample Wt:	3-3		Calib	Data Type: Or Initial Sampl Sample Prep V	iginal e Vol:			
Initial Sample Wt: Dilution: Mean Data: du 4356	3-3 Mean Correcte		Calib. Units	Data Type: Or Initial Sampl Sample Prep V	riginal .e Vol: 70l:	Sample	Std.Dev.	RSD
Initial Sample Wt: Dilution:	3-3		Units	Data Type: Or Initial Sampl Sample Prep V	riginal .e Vol: 70l:			0.64%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073	3-3 Mean Correcte Intensity	Conc.	Units ug/L	Data Type: Or Initial Sampl Sample Prep V Std.Dev.	riginal Le Vol: Vol: Conc.	Sample Units	Std.Dev.	0.64% 1.39%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4	Conc. 0.994 0.995 56.7768	Units ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0064 0.0139 3.89363	ciginal vol: Conc. 56.7768	Sample Units ug/L	Std.Dev . 3.89363	0.64% 1.39% 6.86%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2	Conc. 0.994 0.995 56.7768 2.84948	Units ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	conc. 56.7768 2.84948	Sample Units ug/L ug/L	Std.Dev. 3.89363 0.389231	0.64% 1.39% 6.86% 13.66%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2	Conc. 0.994 0.995 56.7768 2.84948 4.54140	Units ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	conc. 56.7768 2.84948 4.54140	Sample Units ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844	0.64% 1.39% 6.86% 13.66% 23.27%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567	Units ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	ciginal c Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567	Sample Units ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267	0.64% 1.39% 6.86% 13.66% 23.27% 1.61%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	ciginal c Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093	Sample Units ug/L ug/L ug/L ug/L ug/L	Std.Dev . 3.89363 0.389231 1.056844 0.47267 0.04527046	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	ciginal c Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267	0.64% 1.39% 6.86% 13.66% 23.27% 1.61%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	ciginal c Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev . 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670	conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03%
Initial Sample Wt: Dilution: Mean Data: du 43563 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Tol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89	Sample Units Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058	Sample Units Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27%
Initial Sample Wt: Dilution: Mean Data: du 43563 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 1.73% 48.29% 4.03% 2.16% 1.27% 1.27% 1.52% 1.70% 1.27% 1.52% 1.70% 1.96% 46.69%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Yol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.52% 1.52% 1.70% 17.40% 1.96% 46.69% 13.86%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 	riginal Le Vol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 1.73% 48.29% 4.03% 2.16% 1.27% 1.27% 1.52% 1.70% 1.27% 1.52% 1.70% 1.96% 46.69%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2	$\begin{array}{c} \text{Conc.} \\ 0.994 \\ 0.995 \\ 56.7768 \\ 2.84948 \\ 4.54140 \\ 29.3567 \\ 0.0138093 \\ 0.979593 \\ 51032.7 \\ 0.522927 \\ 0.871688 \\ 3.87209 \\ 949.042 \\ 12.7058 \\ 6713.89 \\ 1029.63 \\ 1.27533 \\ 3316.24 \\ -1.95285 \\ -1.53911 \\ 24949.8 \end{array}$	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Sample Prep V 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79	riginal e Vol: Yol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.52% 1.70% 1.52% 1.70% 1.96% 46.69% 13.86% 1.62%
Initial Sample Wt: Dilution: Mean Data: du 43563 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2 -5.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137	riginal e Vol: Yol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70% 1.52% 1.96% 46.69% 13.86% 1.62% 86.50%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2 -5.9 -2.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 3.1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Sample Prep V Sample Prep V Sample Prep V Std.Dev. 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137 0.19486215	riginal e Vol: Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137 0.19486215	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70% 1.52% 1.96% 46.69% 13.86% 1.62% 86.50%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2 -5.9 -2.9 1225.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491 21.6969	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137	riginal e Vol: Yol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70% 1.52% 1.96% 46.69% 13.86% 1.62% 86.50% >999.9%
Initial Sample Wt: Dilution: Mean Data: du 43563 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200† B 249.677†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2 -5.9 -2.9	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 3.1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V Sample Prep V 	riginal e Vol: Yol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491 21.6969	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137 0.19486215 0.21832	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70% 1.96% 46.69% 13.86% 1.62% 86.50% >999.9% 1.01%
Initial Sample Wt: Dilution: Mean Data: du 4356 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† Tl 190.801† V 292.402† Zn 206.200†	3-3 Mean Correcte Intensity 49435.3 267681.1 1002.4 10.2 7.2 5563.9 11.1 82.8 2371918.7 15.1 29.1 746.9 18024.1 126.2 96864.9 421863.6 24.2 511376.3 -0.5 42.7 9766.5 Saturated2 -5.9 -2.9 1225.9 1288.0	Conc. 0.994 0.995 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491 21.6969 63.3504	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Data Type: Or Initial Sampl Sample Prep V 0.0064 0.0139 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137 0.19486215 0.21832 1.59410	riginal e Vol: Vol: Vol: Conc. 56.7768 2.84948 4.54140 29.3567 0.0138093 0.979593 51032.7 0.522927 0.871688 3.87209 949.042 12.7058 6713.89 1029.63 1.27533 3316.24 -1.95285 -1.53911 24949.8 -0.431339 -0.0044491 21.6969 63.3504	Sample Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 3.89363 0.389231 1.056844 0.47267 0.04527046 0.0374967 883.36 0.2525168 0.0351670 0.083606 12.3631 0.16125 101.851 17.539 0.221951 64.992 0.911788 0.213396 404.79 0.3731137 0.19486215 0.21832 1.59410	0.64% 1.39% 6.86% 13.66% 23.27% 1.61% 327.83% 3.83% 1.73% 48.29% 4.03% 2.16% 1.30% 1.27% 1.52% 1.70% 1.52% 1.96% 46.69% 13.86% 1.62% 86.50% >999.9% 1.01% 2.52%

Method: CLP4			P	age 14		Date: 5	5/17/2011 7:3	L7:28 P
Ti 334.940 Sn 189.927	221.4 44.3						13.67 1.85	6.17% 4.18%
Sequence No.: 25 Sample ID: ms 43 Analyst: Initial Sample W Dilution:	563-3			Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	ocation: 30 1: 5/17/20 iginal 2 Vol:)		
Mean Data: ms 43	563-3 Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 360.073	49725.5	1.00		0.001				0.11
Sc 361.383	274701.0	1.02		0.022				2.12
Al 308.215†	32814.0	1874.76		60.914	1874.76		60.914	3.25
Sb 206.836†	1723.7	482.690		13.6711	482.690		13.6711	2.83
As 188.979†	4712.2	1969.15		49.722	1969.15		49.722	2.53
Ba 233.527†	354179.8	1868.75	-	47.519	1868.75		47.519	2.54
Be 313.107†	35139.1	43.6677	-	1.04871	43.6677		1.04871	2.40
Cd 226.502†	3346.7	46.9316		1.14833	46.9316	ug/L	1.14833	2.45
Ca 315.887†	2238176.8	48155.2		1146.18	48155.2	ug/L	1146.18	2.38
Cr 205.560†	5879.0	203.139		4.3198	203.139	ug/L	4.3198	2.13
Co 228.616†	15686.0	468.519		11.1229	468.519	ug/L	11.1229	2.37
Cu 324.752†	44698.4	231.741	-	7.6657	231.741	ug/L	7.6657	3.31
Fe 273.955†	35591.9	1864.15	-	49.647	1864.15		49.647	2.66
Pb 220.353†	4880.8	464.202	-	9.8702	464.202		9.8702	2.13
	91186.5	6320.31		146.097	6320.31		146.097	2.31
Mg 279.077† Mn 257.610†	579448.8	1414.30		36.028	1414.30		36.028	2.55
Ni 231.604†	9047.1	476.154		11.0929	476.154		11.0929	2.33
K 766.490†	494083.8	3204.10		86.456	3204.10		86.456	2.70
	2879.2	1970.58		52.914	1970.58		52.914	2.69
Se 196.026†	-38.9	-2.28273		0.456478	-2.28273		0.456478	20.00
Ag 338.289† Na 330.237†		23491.8		461.38	23491.8	ug/L	461.38	1.96
Na 330.23/1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0210						

1808.75 ug/L 455.059 ug/L

484.869 ug/L

1025.90 ug/L

955.907 ug/L

Sequence No.: 26 Sample ID: sd 43563-3 Analyst: Initial Sample Wt: Dilution: 5X

Na 589.592†

Tl 190.801†

V 292.402†

Zn 206.200†

B 249.677†

Mo 202.031†

Ce 413.764

Ti 334.940

Sn 189.927

Saturated2

5462.5

12226.0

9593.3

-5.5

27235.2 20895.2

386237.4

3943.7

_____ Autosampler Location: 31 Date Collected: 5/17/2011 7:14:41 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

38.6031808.75 ug/L9.7351455.059 ug/L12.2241484.869 ug/L42.2361025.90 ug/L24.0145955.907 ug/L

38.603 2.13% 9.7351 2.14%

42.236 4.12%

24.0145 2.51%

3381.39 0.88%

14.39 263.80%

24.29 0.62%

2.52%

9.7351 12.2241

Mean Corrected Callb. Intensity Conc. Units 49583.9 0.997 ug/L 272130.0 1.01 ug/L Mean Data: sd 43563-3 Sample Std.Dev. RSD Conc. Units Std.Dev. Analyte 0.32% 1.01 ug/L 0.017 188.6 10.6665 ug/L 3.26783 53.3326 ug/L 16.33913 30.64% 7.5 2.09155 ug/L 1.716614 10.4578 ug/L 8.58307 82.07% 4.0 1.98122 ug/L 0.660642 9.90609 ug/L 3.303208 33.35% 1122.0 5.91987 ug/L 0.100589 29.5993 ug/L 0.50295 1.70% 10.1 0.0125047 ug/L 0.01670881 0.0625233 ug/L 0.08354405 133.62% 25.4 0.320081 ug/L 0.0552210 1.60040 ug/L 0.276105 17.25% 50665.4 9911.38 ug/L 0.705512 1.60040 ug/L 0.276105 17.25% 0.0032 0.32% Y 360.073 Sc 361.383 188.6 10.6665 ug/L Al 308.215† Sb 206.836† As 188.979† 1122.0 Ba 233.527† 10.1 25.4 Be 313.107† Cd 226.502† 9911.38 ug/L 460665.4 1.47341 ug/L Ca 315.887† 0.482604 32.75% 0.294681 ug/L 0.0965208 8.5 7.3 Cr 205.560† 0.866375 78.41% 0.220992 ug/L 0.1732750 0.866278 ug/L 0.3579391 1.10496 ug/L 4.33139 ug/L Co 228.616† 1.789695 41.32% 167.1 16.3888 1.71% Cu 324.752† 3.2778 955.896 ug/L 191.179 ug/L 3630.9 0.718023 Fe 273.955† 3.59011 28.69% 12.5149 ug/L 2.50298 ug/L 24.9 131.315 Pb 220.353† 1.98% 2.07% 26.263 1326.54 ug/L 6632.70 ug/L 19138.7 Mg 279.077† 4.2318 1023.60 ug/L 21.159 204.720 ug/L 83878.8 Mn 257.610†

Matheda OT DA			F	age 15		Date	5/17/2011 7:	30:57 PM
Method: CLP4			P	age 15		Date.	5/1//2012 !!	
Ni 231.604†	84.1	4.42416	ug/L	0.149569	22.1208		0.74785	3.38%
K 766.490†	75731.1	491.110		13.3824	2455.55	-	66.912	2.72%
Se 196.026†		-0.0545461	-	1.80657879	-0.272731	-	9.0328939 1.310409	
Ag 338.289†	37.9	0.226900	-	0.2620819	1.13450 24552.7	-	539.90	2.20%
Na 330.237† Na 589.592†	1711.2 1459501.5	4910.54 4557.15		107.981 115.507	22785.7		577.53	2.53%
Tl 190.801†		-0.0226219		1.11239063	-0.113109		5.5619532	
V 292.402†	0.2	0.0324794	-	0.08706260	0.162397		0.4353130	
Zn 206.200†	384.1	6.81289		0.194635	34.0645		0.97318	2.86%
B 249.677†	402.0	19.7734	ug/L	0.09380	98.8671	-	0.46901	0.47%
Mo 202.031†	17.9	1.78021	ug/L	0.177379	8.90105	ug/L	0.886896	9.96%
Ce 413.764	46.0							35.70%
Ti 334.940	205.5						35.64	17.34% 21.77%
Sn 189.927	14.9							
Sequence No.: 27 Sample ID: 43563-4 Analyst: Initial Sample Wt: Dilution:				Autosampler 1 Date Collecte Data Type: Or Initial Samp Sample Prep V	Location: 3 ed: 5/17/20 riginal le Vol:	2		
 Mean Data: 43563-4								
	Mean Corrected		Calib.			Sample	a. 1 -	DOD
Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	RSD 0.94%
Y 360.073	129814.2	2.61 2.62	-	0.025 0.037				1.40%
Sc 361.383 Al 308.215†	705074.1 -2426.1	-137.465		1.4971	-137.465	ug/L	1.4971	1.09%
Sb 206.836†	-4.3	-1.18808	-	0.280257	-1.18808		0.280257	23.59%
As 188.979†	7.5	3.15402		0.405426	3.15402	ug/L	0.405426	12.85%
Ba 233.527†	-91.9	-0.484655	ug/L	0.0259627	-0.484655	-	0.0259627	5.36%
Be 313.107†	740.1	0.919680	-	0.0123427	0.919680	-	0.0123427	1.34%
Cd 226.502†	38.3	0.539708	-	0.0090064	0.539708	-	0.0090064	1.67% 0.81%
Ca 315.887†	5020.3	108.013	-	0.8724 0.0489748	108.013 0.511337		0.8724 0.0489748	9.58%
Cr 205.560†	14.8 29.2	0.511337 0.867389		0.0489748	0.867389	-	0.0836701	9.65%
Co 228.616† Cu 324.752†	-1189.2	-6.16538		0.096458	-6.16538		0.096458	1.56%
Fe 273.955†	72.4	3.78445		0.175149	3.78445	-	0.175149	4.63%
Pb 220.353†	38.0	3.58248		0.527866	3.58248	ug/L	0.527866	14.73%
Mg 279.077†	86.9	6.02477		0.838753	6.02477	-	0.838753	13.92%
Mn 257.610†	-145.0	-0.354000		0.0205125	-0.354000	-	0.0205125	5.79%
Ni 231.604†	23.9	1.26001		0.087559	1.26001 -2.99184		0.087559 0.257980	6.95% 8.62%
K 766.490†	-461.4	-2.99184 -3.68600		0.257980 1.147033	-3.68600			31.12%
Se 196.026† Ag 338.289†	-5.4 92.4	1.63730		0.211660	1.63730		0.211660	
Na 330.237†	-121.2	351.869	-	7.7273	351.869	-	7.7273	2.20%
Na 589.592†	210.4	0.656854	-	0.7620644	0.656854	-	0.7620644	116.02%
T1 190.801†	25.5	8.44827	-	1.345418	8.44827		1.345418	15.93%
V 292.402†	35.7	1.31439		0.024060	1.31439		0.024060	1.83%
Zn 206.200†	5.0	0.0887442	-	0.07632881	0.0887442	-	0.07632881	
B 249.677†	35.2	1.72821	-	0.122521	1.72821		0.122521 0.1687299	7.09%
Mo 202.031†	3.1	0.306299	ug/L	0.1687299	0.306299	ug/L	0.1687299	1.51%
Ce 413.764	524.4 94.5						23.98	25.37%
Ti 334.940 Sn 189.927	6.4						0.34	5.29%
				 Autosampler I				
Sequence No.: 28 Sample ID: 43676-2 Analyst:				Date Collecte Data Type: On	ed: 5/17/20: riginal		:12 PM	
Initial Sample Wt: Dilution:				Initial Sampl Sample Prep V	Vol:			
 Mean Data: 43676-2								
	Mean Corrected		Calib.		Cong	Sample Units	Std.Dev.	RSD
Analyte	Intensity	Conc. 1.02	Units	Std.Dev . 0.012	cond.	UNICS	sta.Dev.	1.19%
Y 360.073 Sc 361.383	50477.5 272009.0		ug/L ug/L	0.005				0.50%
Al 308.215†	135.3	7.63515		2.267689	7.63515	ug/L	2.267689	
Sb 206.836†	3.6	1.01632		0.886720	1.01632	ug/L	0.886720	87.25%

Method: CLP4			Page 16		Date:	5/17/2011 7:37:52 P	M
Method: CLP4 As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† T1 190.801† V 292.402† Zn 206.200†	$\begin{array}{c} 0.6\\ 2872.7\\ -48.5\\ 62.5\\ 2001501.9\\ 41.8\\ 27.2\\ 1177.1\\ 535.3\\ -4.7\\ 171513.7\\ 1167.8\\ 23.6\\ 1674297.1\\ 0.3\\ 50.7\\ 35393.5\\ \text{Saturated3}\\ -2.7\\ 5.0\\ 1784.3 \end{array}$	1.53297 ug/L 15.1572 ug/L -0.0602564 ug/L 0.877286 ug/L 43063.0 ug/L 1.44497 ug/L 0.816045 ug/L 6.10283 ug/L 28.1835 ug/L 0.188955 ug/L 11887.9 ug/L 2.62476 ug/L 1.23990 ug/L 10857.7 ug/L -0.410961 ug/L -1.03781 ug/L 88702.8 ug/L 0.810755 ug/L 0.200822 ug/L 31.5357 ug/L	Page 16 0.445406 0.06395 0.00603583 0.0784944 109.90 0.118603 0.0318342 0.191546 0.62690 0.5119710 39.55 0.013855 0.168201 66.25 1.3178313 0.106851 275.22 0.9742752 0.1128893 0.11792	1.53297 15.1572 -0.0602564 0.877286 43063.0 1.44497 0.816045 6.10283 28.1835 0.188955 11887.9 2.62476 1.23990 10857.7 -0.410961 -1.03781 88702.8 0.810755 0.200822 31.5357	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{cccccccc} 0.445406 & 29.06\%\\ 0.06395 & 0.42\%\\ 0.00603583 & 10.02\%\\ 0.0784944 & 8.95\%\\ 109.90 & 0.26\%\\ 0.118603 & 8.21\%\\ 0.0318342 & 3.90\%\\ 0.191546 & 3.14\%\\ 0.62690 & 2.22\%\\ 0.5119710 & 270.95\%\\ 39.55 & 0.33\%\\ 0.013855 & 0.53\%\\ 0.168201 & 13.57\%\\ 66.25 & 0.61\%\\ 1.3178313 & 320.67\%\\ 0.106851 & 10.30\%\\ 275.22 & 0.31\%\\ 0.9742752 & 120.17\%\\ 0.1128893 & 56.21\%\\ 0.11792 & 0.37\%\\ \end{array}$	
B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	2041.5 32.0 -54.4 86.1 220.7	100.410 ug/L 3.18898 ug/L	1.1098 0.033283	100.410 3.18898	ug/L ug/L	1.10981.11%0.0332831.04%21.7639.99%10.8612.61%2.201.00%	
Sequence No.: 29 Sample ID: CCV Analyst: Initial Sample Wt: Dilution:			Autosampler D Date Collecto Data Type: O Initial Samp Sample Prep V	Location: 3 ed: 5/17/201 riginal le Vol:		:06 PM	3
Mean Data: CCV	Mean Correcte	d Calik Conc. Units		Conc.	Sample	Std.Dev. RSD	
Analyte Y 360.073 Sc 361.383	Intensity 47968.4 262057.6	0.965 ug/L 0.974 ug/L	0.0067 0.0117 98.19	10037.1		0.69% 1.20% 98.19 0.98%	;
Al 308.215† QC value within Sb 206.836†	1981.4	556.874 ug/L	ery = 100.37% 7.1959	556.874	ug/L	7.1959 1.29%	
QC value greater As 188.979†	r than the upp 2610.2	er limit for Sb 1091.25 ug/L	16.481	ery = 111.37 1091.25	7% [¯] ug∕L	16.481 1.51%	i
QC value within Ba 233 527t	1911646.5	10086.4 ug/L	148.88	10086.4	ug/L	148.88 1.48%	l
QC value within Be 313.107†	202870.7	252.109 ug/L	3.8880	252.109	ug/L	3.8880 1.54%	
QC value within Cd 226.502† QC value within	37031.9	522.157 ug/L	7.2235	522.157	ug/L	7.2235 1.38%	;
QC value within Ca 315.887† QC value within	1169369.3	25159.4 ug/L	392.71	25159.4	ug/L	392.71 1.56%	i.
Cr 205.560† QC value within	29170.5	1007.93 ug/L	12.037	1007.93	ug/L	12.037 1.19%	i.
Co 228.616† QC value within	86625.7	2577.52 ug/L	32.595	2577.52	ug/L	32.595 1.26%	į
Cu 324.752† QC value within	243653.5	1263.23 ug/L	7.861	1263.23	ug/L	7.861 0.62%	ŝ
Fe 273.955† QC value within	96391.3	5019.77 ug/L	65.542	5019.77	ug/L	65.542 1.31%	(
Pb 220.353† QC value within	10761.5	1022.92 ug/L	12.375	1022.92	ug/L	12.375 1.21%	l
Mg 279.077† QC value within	364474.7	25262.4 ug/L	354.58	25262.4	ug/L	354.58 1.40%	ĺ
Mn 257.610† QC value within	1045158.6	2550.72 ug/L	39.785	2550.72	ug/L	39.785 1.56%	1
QC value within Ni 231.604† QC value within	48384.1	2546.48 ug/L	37.070	2546.48	ug/L	37.070 1.46%	
QC value within K 766.490† QC value greate	1149877 7	7456.87 ug/L	90.049	7456.87 ry = 124.289	ug/L	90.049 1.21%	1

Method: CLP4		1	Page 17	Date:	5/17/2011 7	:48:31 PM
Se 196.026†	1610.6	1100.01 ug/L	16.708	1100.01 ug/L	16.708	1.52%
Ag 338.289†	17938.9	er limit for Se 1 320.686 ug/L 338.289 Recover	3.2348	320.686 ug/L	3.2348	1.01%
Na 330.237†	9348.4	23909.8 ug/L 330.237 Recover	170.68	23909.8 ug/L	170.68	0.71%
Na 589.592†	Saturated2	330.237 Recover	Ly - 93.04%			
Unable to evalu Tl 190.801†	3125.6	1028.48 ug/L 190.801 Recover	12.426	1028.48 ug/L	12.426	1.21%
V 292.402†	68659.0	2533.48 ug/L 292.402 Recovery	29.370	2533.48 ug/L	29.370	1.16%
Zn 206.200†	141803.8		39.306	2524.69 ug/L	39.306	1.56%
B 249.677†	22180.3	1080.67 ug/L 249.677 Recovery	25.872	1080.67 ug/L	25.872	2.39%
Mo 202.031†	10608.1	1057.03 ug/L 202.031 Recover	19.176	1057.03 ug/L	19.176	1.81%
Ce 413.764	-28.8		.,			96.03%
Ti 334.940	381.0				5.53	
Sn 189.927 OC Failed. Contin	112.9	e			2.16	1.92%
QC railed. Contin	de with analys.					
Sequence No.: 30 Sample ID: CCB			Autosampler I Date Collecte	Location: 1 ed: 5/17/2011 7:42		
Analyst:			Data Type: Or			
Initial Sample Wt:			Initial Sampl Sample Prep V			
Dilution:			Sampre Freb v			
Mean Data: CCB	Mean Corrected	d Calib.		Sample		
Analvte			Std.Dev.	Conc. Units	Std.Dev.	RSD
Analyte Y 360.073	50307.4	Conc. Units 1.01 ug/L 1.01 ug/L 1.12842 ug/L	0.016			1.54%
Sc 361.383	272047.7	1.01 ug/L	0.021	1 10040 /7	1 000043	2.08%
Al 308.215†	19.6	1.12842 ug/L	1.929243	1.12842 ug/L	1.929243	1/0.9/8
	limits for Al	308.215 Recover		0.528459 ug/L	0.3696006	69 918
Sb 206.836†	1.9 0.8		0.3696006	0.337079 ug/L	0.4050583	
As 188.979†		0.337079 ug/L	0.4050585	1.58474 ug/L	0.159929	
Ba 233.527†		1.58474 ug/L 0.0769407 ug/L	0.04278822	0.0769407 ug/L	0.04278822	
Be 313.107† Cd 226.502†	10.2	0.144012 ug/L	0.0963266	0.144012 ug/L	0.0963266	
Ca 315.887†	399.1	8.58665 ug/L		8.58665 ug/L	3.595828	
Cr 205.560†	9.5	0.329096 ug/L	0.0988652	0.329096 ug/L	0.0988652	30.04%
Co 228.616†	16.6	0.496164 ug/L	0.0253081	0.496164 ug/L	0.0253081	5.10%
Cu 324.752†	21.9	0.113487 ug/L	0.1780518	0.113487 ug/L	0.1780518	156.89%
Fe 273.955†	14.6	0.755517 ug/L	0.2099340	0.755517 ug/L	0.2099340	27.79%
Pb 220.353†	4.7	0.443086 ug/L	0.5678903	0.443086 ug/L	0.5678903	
Mg 279.077†	25.8	1.78900 ug/L	0.245756	1.78900 ug/L	0.245756	13.74%
Mn 257.610†	193.8	0.473061 ug/L	0.0400342	0.473061 ug/L	0.0400342	8.46%
Ni 231.604†	11.5	0.607768 ug/L	0.2294820	0.607768 ug/L	0.2294820	37.76% 55.65%
K 766.490†	110.3	0.715128 ug/L	0.3979488 2.0779489	0.715128 ug/L -0.762191 ug/L	0.3979488 2.0779489	
Se 196.026†	-1.1 32.9	-0.762191 ug/L 0.584074 ug/L	0.4100023	0.584074 ug/L	0.4100023	70.20%
Ag 338.289† Na 330.237†	-8.2	633.203 ug/L	32.7511	633.203 ug/L	32.7511	5.17%
Na 589.592†	2333.6	7.28651 ug/L	0.329624	7.28651 ug/L	0.329624	4.52%
Tl 190.801†	2353.0	0.0133447 ug/L	0.22291624	0.0133447 ug/L	0.22291624	
V 292.402†	14.9	0.555000 ug/L	0.0887893	0.555000 ug/L	0.0887893	16.00%
Zn 206.200†	19.2	0.341173 ug/L	0.1050194	0.341173 ug/L	0.1050194	30.78%
B 249.677†	184.2	9.05804 ug/L	0.507463	9.05804 ug/L	0.507463	5.60%
Mo 202.031†	9.9	0.987906 ug/L	0.0962749	0.987906 ug/L	0.0962749	9.75%
Ce 413.764	40.3				9.44	23.44%
	10.0					
Ti 334.940	-10.6				13.60	
Sn 189.927	-10.6 2.8					17.26%
	-10.6 2.8					
Sn 189.927 All analyte(s) pas	-10.6 2.8 sed QC.				0.48	17.26%

Sequence No.: 31 Sample ID: du 43676-2 Analyst: Initial Sample Wt:

Autosampler Location: 34 Date Collected: 5/17/2011 7:48:31 PM Data Type: Original Initial Sample Vol:

1

Dilution:

Sample Prep Vol:

Mean Data: du	43676-2							
	Mean Correcte	ad	Calib.			Sample		202
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD 0.74%
Y 360.073	50163.8		ug/L	0.007				0.57%
Sc 361.383	270364.7	1.00		0.006	10 0070	1-	2 22771	30.37%
Al 308.215†	188.1	10.6278	ug/L	3.22771	10.6278		3.22771	37.84%
Sb 206.836†	5.1	1.41562	ug/L	0.535704	1.41562		0.535704	
As 188.979†	-0.1	1.31161	ug/L	1.397469	1.31161	<u> </u>	1.397469	
Ba 233.527†	3137.1	16.5521	ug/L	0.17378	16.5521	-	0.17378	1.05%
Be 313.107†	-44.9	-0.0557814	ug/L	0.01455688	-0.0557814		0.01455688	26.10%
Cd 226.502†	62.8	0.880860	ug/L	0.0460597	0.880860		0.0460597	5.23%
Ca 315.887†	2074152.7	44626.1	ug/L	817.16	44626.1		817.16	1.83%
Cr 205.560†	53.2	1.83968	ug/L	0.298828	1.83968		0.298828	16.24%
Co 228.616†	32.7	0.981133	ug/L	0.0809102	0.981133	-	0.0809102	8.25%
Cu 324.752†	1360.6	7.05394	ug/L	0.202316	7.05394		0.202316	2.87%
Fe 273.955†	588.3	30.9691	ug/L	1.04030	30.9691		1.04030	3.36%
Pb 220.353†	2.3	0.878765	ug/L	0.4221927	0.878765	-	0.4221927	48.04%
Mg 279.077†	175527.3	12166.1	ug/L	114.04	12166.1	ug/L	114.04	0.94%
Mn 257.610†	1347.0	3.05673	ug/L	0.041004	3.05673	ug/L	0.041004	1.34%
Ni 231.604†	29.2	1.53526		0.270956	1.53526	ug/L	0.270956	17.65%
K 766.490†	1770063.4	11478.7	-	180.73	11478.7	ug/L	180.73	1.57%
Se 196.026†	-1.0	-1.29822	-	0.470466	-1.29822	ug/L	0.470466	36.24%
Ag 338.289†	55.0	-1.03021		0.701696	-1.03021	ug/L	0.701696	68.11%
Na 330.237†	36475.3	91394.1		660.33	91394.1	ug/L	660.33	0.72%
Na 589.592†	Saturated3							
Tl 190.801†	-7.1	-0.554487	ug/L	0.8157030	-0.554487	ug/L	0.8157030	
V 292.402†	6.5	0.262214	-	0.1138371	0.262214	ug/L	0.1138371	43.41%
Zn 206.200†	1874.3	33.1344		0.24299	33.1344	ug/L	0.24299	0.73%
B 249.677†	2062.7	101.452	-	0.6925	101.452	ug/L	0.6925	0.68%
Mo 202.031†	37.0	3.69175	-	0.270819	3.69175	ug/L	0.270819	7.34%
Ce 413.764	-58.4						20.58	35.22%
Ti 334.940	93.3						18.88	20.24%
Sn 189.927	221.1						2.64	1.19%
			======					
Sequence No.:				Autosampler	Location: 3	5		
Sample ID: ms	43676-2			Date Collect		11 7:55:	26 PM	
Analyst:				Data Type: O	riginal			
Initial Sample	Wt:			Initial Samp	le Vol:			
Dilution:				Sample Prep	Vol:			
DITUCION.								
Mean Data: ms	43676-2					Gammle		
	Mean Correcte		Calib.		0.000	Sample	Std.Dev	RSD
Analyte	Intensity		Units	Std.Dev.	conc.	Units	sta.Dev	0.56%
Y 360.073	50509.4		ug/L	0.006				0.85%
Sc 361.383	275824.4		ug/L	0.009	1010 10	1.	10 154	0.62%
Al 308.215†	34064.4	1946.15		12.154	1946.15	-	12.154	
ch 206 936+	1798.8	503.720	ug/L	10.1290	503.720	ug/L	10.1290	2.01%

Y 360.073	50509.4	1.02 ug/L	0.006			0.500
Sc 361.383	275824.4	1.03 ug/L	0.009			0.85%
Al 308.215†	34064.4	1946.15 ug/L	12.154	1946.15 ug/L	12.154	0.62%
Sb 206.836†	1798.8	503.720 ug/L	10.1290	503.720 ug/L	10.1290	2.01%
As 188.979†	4966.8	2075.31 ug/L	17.756	2075.31 ug/L	17.756	0.86%
	351082.8	1852.41 ug/L	6.167	1852.41 ug/L	6.167	0.33%
Ba 233.527†	36705.4	45.6141 ug/L	0.23174	45.6141 ug/L	0.23174	0.51%
Be 313.107†	3354.3	47.2020 ug/L	0.16456	47.2020 ug/L	0.16456	0.35%
Cd 226.502†	1954034.5	42041.7 ug/L	160.26	42041.7 ug/L	160.26	0.38%
Ca 315.887†	6280.9	217.025 ug/L	1.1283	217.025 ug/L	1.1283	0.52%
Cr 205.560†	15830.5	472.826 ug/L	3.2289	472.826 ug/L	3.2289	0.68%
Co 228.616†	48110.4	249.431 ug/L	1.4545	249.431 ug/L	1.4545	0.58%
Cu 324.752†	20155.5	1051.15 ug/L	8.296	1051.15 ug/L	8.296	0.79%
Fe 273.955†	4738.1	450.620 ug/L	4.0052	450.620 ug/L	4.0052	0.89%
Pb 220.353†	167712.1	11624.4 ug/L	43.21	11624.4 ug/L	43.21	0.37%
Mg 279.077†	195819.5	477.769 ug/L	1.9590	477.769 ug/L	1.9590	0.41%
Mn 257.610†	9225.1	485.522 ug/L	3.0644	485.522 ug/L	3.0644	0.63%
Ni 231.604†		10641.8 ug/L	30.51	10641.8 ug/L	30.51	0.29%
K 766.490†	1640999.3	2164.25 ug/L	28.395	2164.25 ug/L	28.395	1.31%
Se 196.026†	3160.6	-3.23429 ug/L	0.248130	-3.23429 ug/L	0.248130	7.67%
Ag 338.289†	-108.6	86098.1 ug/L	478.72	86098.1 ug/L	478.72	0.56%
Na 330.237†	34346.5	88098.1 ug/1	170172	0000011 4972		
Na 589.592†	Saturated3	1810.45 ug/L	11.506	1810.45 ug/L	11.506	0.64%
Tl 190.801†	5467.0	464.572 ug/L	3.1654	464.572 ug/L	3.1654	0.68%
V 292.402†	12485.6	404.572 ug/h	5.1051	10110.2 49/2		

Method: CLP4			Pa	age 19		Date:	5/17/2011 8:	12:31 PM
Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	28355.3 23615.5 9651.6 -17.8 393394.2 4080.9	504.709 1159.68 961.720	ug/L ug/L	2.6973 20.045 13.5938	504.709 1159.68 961.720	ug/L ug/L	363.71 4.53	0.53% 1.73% 1.41% 163.07% 0.09% 0.11%
Sequence No.: 33 Sample ID: sd 43676 Analyst: Initial Sample Wt: Dilution: 5X				Autosampler Date Collect Data Type: C Initial Samp Sample Prep	Location: 3 ed: 5/17/20 priginal ole Vol:	6		
Mean Data: sd 43676 Analyte Y 360.073 Sc 361.383 Al 308.215† Sb 206.836† As 188.979† Ba 233.527† Be 313.107† Cd 226.502† Ca 315.887† Cr 205.560† Co 228.616† Cu 324.752† Fe 273.955† Pb 220.353† Mg 279.077† Mn 257.610† Ni 231.604† K 766.490† Se 196.026† Ag 338.289† Na 330.237† Na 589.592† T1 190.801† V 292.402† Zn 206.200† B 249.677† Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	Mean Corrected Intensity 49851.7 275955.7 -56.9 5.4 3.2 581.0 4.5 21.2 394917.9 6.7 8.5 207.1 100.1 -9.1 33972.5 222.8 89.6 220515.4		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{r} \textbf{Std.Dev.}\\ 0.006\\ 0.008\\ 2.850347\\ 0.939419\\ 0.920275\\ 0.008170\\ 0.02390221\\ 0.0258288\\ 125.656\\ 0.1363087\\ 0.0948733\\ 0.192921\\ 0.350325\\ 0.4841580\\ 34.090\\ 0.0152685\\ 0.242937\\ 19.788\\ 1.04292861\\ 0.3313643\\ 258.51\\ 358.15\\ 0.5689706\\ 0.0878084\\ 0.077662\\ 0.67873\\ 0.351568\\ \end{array}$	$\begin{array}{c} -16.2392\\ 7.51060\\ 7.92342\\ 15.3269\\ 0.0282007\\ 1.48822\\ 42484.0\\ 0.1.15366\\ 1.28942\\ 5.36877\\ 26.3362\\ -3.69153\\ 11773.5\\ 2.49499\\ 23.5719\\ 7150.13\\ -0.359026\\ 3.47487\\ 74507.5\\ 78374.1\\ 2.54156\\ 1.04477\\ 13.9987\\ 141.777\\ 10.9097\\ \end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Std.Dev. 14.25173 4.697094 4.601376 0.04085 0.11951104 0.129144 628.28 0.681543 0.474366 0.964603 1.75162 2.420790 170.45 0.076343 1.21469 98.942 5.2146431 1.656822 1292.55 1790.75 2.844853 0.439042 0.38831 3.3936 1.75784	0.59% 0.77% 87.76% 62.54% 58.07% 0.27% 423.79% 8.68% 1.48% 59.08% 36.79% 1.45% 3.06% 5.15% 1.38% >999.9% 47.68% 1.73% 2.28% 11.93% 42.02% 0.88% 2.39% 16.11% 84.13% 12.92%
Sequence No.: 34 Sample ID: CRI Analyst: Initial Sample Wt: Dilution:				Autosampler Date Collect Data Type: C Initial Samp Sample Prep	Location: 1 ced: 5/17/20 Driginal ble Vol: Vol:	2 11 8:09	:46 PM	
Mean Data: CRI	Mean Corrected		Calib.			Sample		
Analyte Y 360.073 Sc 361.383	Intensity 49085.2 268917.9	Conc . 0.987 0.999	Units ug/L ug/L	Std.Dev. 0.0033 0.0104		Units	Std.Dev.	0.33% 1.04%
Al 308.215† QC value within	3384.5 limits for Al	195.125 308.215	Recover	3.1046 y = 97.56%	195.125			
Sb 206.836† QC value within	225.0 limits for Sb	62.9910 206.836	ug/L Recover	y = 104.99%	62.9910	-		2.59%
As 188.979† QC value within	26.7	11.3246 188.979	ug/L Recover	2.12836	11.3246		100.1	18.79%
Ba 233.527† QC value within	39689.4	209.412 233.527	ug/L	y = 104.71%	209.412 4.96634		3.1310 0.028900	1.50%
Be 313.107† QC value within	limits for Be	313.107	Recover					

Cd 226.502† 378.2 5.32487 ug/L 0.107628 5.32487 ug/L QC value within limits for Cd 226.502 Recovery = 106.50% 106.50% 5161.85 ug/L 77.877 QC value within limits for Ca 315.887 Recovery = 103.24% 77.877 5161.85 ug/L 10.3572 ug/L QC value within limits for Ca 315.887 Recovery = 103.24% 0.11664 10.3572 ug/L QC value within limits for Cr 205.560 Recovery = 103.57% 52.1162 ug/L 52.1162 ug/L Co 228.616† 1753.1 52.1162 ug/L 0.58310 QC value within limits for Co 228.616 Recovery = 104.23% 52.1162 ug/L 25.1044 ug/L QC value within limits for Cu 324.752 25.1044 ug/L 0.18727 25.1044 ug/L	0.107628 2.0	1 PM
Ca 315.887† 239914.5 5161.85 ug/L 77.877 5161.85 ug/L QC value within limits for Ca 315.887 Recovery = 103.24% 10.3572 ug/L 0.11664 10.3572 ug/L QC value within limits for Cr 205.560 Recovery = 103.57% 52.1162 ug/L 0.58310 52.1162 ug/L QC value within limits for Co 228.616 Recovery = 104.23% 52.1044 ug/L 0.18727 25.1044 ug/L)2%
Cr 205.560† 299.7 10.3572 ug/L 0.11664 10.3572 ug/L QC value within limits for Cr 205.560 Recovery = 103.57% 52.1162 ug/L 52.1162 ug/L QC value within limits for Co 228.616 Recovery = 104.23% 52.1044 ug/L 52.1044 ug/L	77.877 1.5	51%
Co 228.616† 1753.1 52.1162 ug/L 0.58310 52.1162 ug/L QC value within limits for Co 228.616 Recovery = 104.23% 25.1044 ug/L 0.18727 25.1044 ug/L	0.11664 1.1	138
Cu 324.752† 4842.2 25.1044 ug/L 0.18727 25.1044 ug/L	0.58310 1.1	28
20 value within fimites for ou selling mecovery for the	0.18727 0.7	158
Fe 273.955† 1935.2 100.769 ug/L 0.9695 100.769 ug/L Pb 220.353† 47.6 4.63709 ug/L 0.865224 4.63709 ug/L QC value within limits for Pb 220.353 Recovery = 92.74% 92.74%	0.9695 0.9 0.865224 18.6	
Mg 279.077t 73088.2 5065.88 ug/L 76.464 5065.88 ug/L QC value within limits for Mg 279.077 Recovery = 101.32%	76.464 1.5	518
Mn 257.610† 6560.4 15.9176 ug/L 0.28001 15.9176 ug/L Ni 231.604† 782.8 41.1968 ug/L 0.52426 41.1968 ug/L	0.28001 1.7 0.52426 1.2	
QC value within limits for Ni 231.604 Recovery = 102.99% X 766.490† 720133.5 4670.01 ug/L 90.715 4670.01 ug/L	90.715 1.9	48
QC value within limits for K 766.490 Recovery = 93.40% Se 196.026t 8.8 5.89043 ug/L 2.070006 5.89043 ug/L	2 070006 25 1	19
Ag 338.289† 593.1 10.3668 ug/L 0.32797 10.3668 ug/L	2.070006 35.1 0.32797 3.1	40
QC value within limits for Ag 338.289 Recovery = 103.67% Na 330.237† 1698.6 4879.15 ug/L 52.348 4879.15 ug/L	52.348 1.0	178
QC value within limits for Na 330.237 Recovery = 97.58%	77 665 1 7	2.9
Ja 589.592† 1443517.8 4507.24 ug/L 77.665 4507.24 ug/L '1 190.801† 27.6 9.21217 ug/L 0.838322 9.21217 ug/L	77.665 1.7 0.838322 9.1	
QC value within limits for Tl 190.801 Recovery = 92.12% 292.402† 1388.4 51.1281 ug/L 0.67300 51.1281 ug/L QC value within limits for V 292.402 Recovery = 102.26%	0.67300 1.3	28
QC value within limits for V 292.402 Recovery = 102.200 n 206.200† 1281.8 22.7253 ug/L 0.19693 22.7253 ug/L QC value within limits for Zn 206.200 Recovery = 113.63%	0.19693 0.8	7%
249.677†138.96.62256 ug/L0.1085466.62256 ug/Llo 202.031†9.40.934721 ug/L0.18025160.934721 ug/L	0.108546 1.6 0.1802516 19.23	
ce 413.764 61.6	22.66 36.7	
i 334.940 116.6 n 189.927 36.1 ll analyte(s) passed QC.	4.26 3.60 1.85 5.12	
Sequence No.: 35 Autosampler Location: 14		==
Gample ID: CRI2Date Collected: 5/17/2011 8:16Analyst:Data Type: OriginalCnitial Sample Wt:Initial Sample Vol:	:40 PM	
Dilution: Sample Prep Vol:		
	Std.Dev. RSI	1%
Mean CorrectedCalib.SamplenalyteIntensityConc. UnitsStd.Dev.Conc. Units360.07349412.40.994 ug/L0.01000.0100	2 0/	
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 Conc. Units Conc. Units	3.00 4 965739 188 65	
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 Conc. Units Conc. Units 1 308.215† 46.5 2.63223 ug/L 4.965739 2.63223 ug/L	3.00 4.965739 188.65 1.52584644 >999.9	
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 Units Std.Std.Dev. Conc. Units 1 308.215† 46.5 2.63223 ug/L 4.965739 2.63223 ug/L b 206.836† -0.2 -0.0659704 ug/L 1.52584644 -0.0659704 ug/L s 188.979† -0.5 -0.189746 ug/L 1.7779102 -0.189746 ug/L	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99	98 98
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 0.030 0.030 0.030 0.030 0.04563739 2.63223 ug/L 0.0659704 ug/L 0.0779102 -0.189746 ug/L 0.0456372 0.278004 ug/L <td< td=""><td>4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42</td><td>9왕 9왕 2왕</td></td<>	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42	9왕 9왕 2왕
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 Units Conc. Units Conc. Units Unit	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64	98 98 28 48
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Concc	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42	98 98 28 48 28
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Conc. Cons. Units Conc. Units Conc. Units Conc. Cons. Conc. Units Conc. Units Conc. Units Conc. Cons Conco	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86	988888888888888888
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Conc. Cons. Conc. Units Conc. Cons. Conc. Units Conc. Cons. Conc. Cons. Units Conc. Cons. Conc. Cons. Cons. Cons.	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.58	9% 9% 2% 4% 2% 7% 8% 8%
Mean Corrected Calib. Sample inalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Std.Dev. Conc. Units c 361.383 271787.7 1.01 ug/L 0.030 Units Conc. Units Conc. Units Units Units Units Units Units Conc. Units Un	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86	9% 9% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units Conc. Units Conc. Units Conc. Units Std.Dev. Conc. Units Conc. Units Std.Dev. Conc. Units C	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.56 0.3267599 153.01 1.32850 2.24	9% 9% 2% 2% 2% 2% 2% 2% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8%
Mean Corrected Calib. Sample nalyte Intensity Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 Conc. Units Conc. </td <td>4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.56 0.3267599 153.01 1.32850 2.24</td> <td>9% 9% 2% 2% 2% 2% 2% 2% 8% 8% 8% 8% 8% 8%</td>	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.56 0.3267599 153.01 1.32850 2.24	9% 9% 2% 2% 2% 2% 2% 2% 8% 8% 8% 8% 8% 8%
Mean CorrectedCalib.SampleinalyteIntensityConc.UnitsStd.Dev.Conc.Units360.07349412.40.994ug/L0.0100Conc.Unitsic 361.383271787.71.01ug/L0.030Image: Conce of the conce	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.56 0.3267599 153.01 1.32850 2.24 0.326562 23.38	9% 9% 2% 2% 2% 2% 8% 8% 8% 8%
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units Conc. Units Conc. Units Conc. Units Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 0.030 Conc. Units Conc. Conc. Conc. Units Conc. Units <td< td=""><td>$\begin{array}{c} 4.965739 & 188.65\\ 1.52584644 & >999.9\\ 1.7779102 & 936.99\\ 0.0456372 & 16.42\\ 0.03265529 & 122.64\\ 0.00647309 & 15.92\\ 3.52813 & 6.67\\ 0.3241496 & 216.86\\ 0.15292465 & 193.56\\ 0.3267599 & 153.01\\ 1.32850 & 2.24\\ 0.326562 & 23.36\\ 1.382553 & 34.46\\ 0.33204 & 3.12\\ \end{array}$</td><td>9% 924276% 814 8888 8888</td></td<>	$\begin{array}{c} 4.965739 & 188.65\\ 1.52584644 & >999.9\\ 1.7779102 & 936.99\\ 0.0456372 & 16.42\\ 0.03265529 & 122.64\\ 0.00647309 & 15.92\\ 3.52813 & 6.67\\ 0.3241496 & 216.86\\ 0.15292465 & 193.56\\ 0.3267599 & 153.01\\ 1.32850 & 2.24\\ 0.326562 & 23.36\\ 1.382553 & 34.46\\ 0.33204 & 3.12\\ \end{array}$	9% 924276% 814 8888 8888
AnalyteIntensityConc. UnitsStd.Dev.Conc. Units360.07349412.40.994 ug/L0.010036: 361.383271787.71.01 ug/L0.030A1 308.215†46.52.63223 ug/L4.9657392.63223 ug/L36: 206.836†-0.2-0.0659704 ug/L1.52584644-0.0659704 ug/L36: 318.979†-0.5-0.189746 ug/L1.7779102-0.189746 ug/L36: 313.107†21.40.0266267 ug/L0.032655290.0266267 ug/L36: 313.107†21.40.0266267 ug/L0.032655290.0266267 ug/L32: 45.887†2458.952.9032 ug/L3.5281352.9032 ug/L32: 45.887†2458.952.9032 ug/L0.32214960.149476 ug/L32: 47.52†41.20.213555 ug/L0.32675990.213555 ug/L32: 47.52†41.20.213555 ug/L0.32675990.213555 ug/L32: 47.52†41.20.213555 ug/L0.326562-1.39701 ug/L32: 47.52†1128.959.4402 ug/L1.3285059.4402 ug/L32: 77: 610†4360.110.6429 ug/L0.3320410.6429 ug/L32: 77: 610†4360.110.6429 ug/L0.3320410.6429 ug/L32: 604†1.40.0741113 ug/L0.156677510.0741113 ug/L	4.965739 188.65 1.52584644 >999.9 1.7779102 936.99 0.0456372 16.42 0.03265529 122.64 0.00647309 15.92 3.52813 6.67 0.3241496 216.86 0.15292465 193.56 0.3267599 153.01 1.32850 2.24 0.326562 23.36 1.382553 34.46 0.33204 3.12 0.15667751 211.41	9% 9% 24276 8% 8% 8% 8% 8% 8% 8% 8% 1%
Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units Conc. Units Conc. Units Conc. Units Conc. Units Std.Dev. Conc. Units 360.073 49412.4 0.994 ug/L 0.0100 0.030 Conc. Units Conc. Conc. Conc. Units Conc. Units <td< td=""><td>$\begin{array}{c} 4.965739 & 188.65\\ 1.52584644 & >999.9\\ 1.7779102 & 936.99\\ 0.0456372 & 16.42\\ 0.03265529 & 122.64\\ 0.00647309 & 15.92\\ 3.52813 & 6.67\\ 0.3241496 & 216.86\\ 0.15292465 & 193.56\\ 0.3267599 & 153.01\\ 1.32850 & 2.24\\ 0.326562 & 23.36\\ 1.382553 & 34.46\\ 0.33204 & 3.12\\ \end{array}$</td><td>9% 9242768% 882 14 882 18 18</td></td<>	$\begin{array}{c} 4.965739 & 188.65\\ 1.52584644 & >999.9\\ 1.7779102 & 936.99\\ 0.0456372 & 16.42\\ 0.03265529 & 122.64\\ 0.00647309 & 15.92\\ 3.52813 & 6.67\\ 0.3241496 & 216.86\\ 0.15292465 & 193.56\\ 0.3267599 & 153.01\\ 1.32850 & 2.24\\ 0.326562 & 23.36\\ 1.382553 & 34.46\\ 0.33204 & 3.12\\ \end{array}$	9% 9242768% 882 14 882 18 18

Method: CLP4			Page 21		Date	: 5/17/2011 8	:37:32
Ag 338.289†		0.691532 ug/L	0.4788311			0.4788311	69.24
Na 330.237†		852.350 ug/L	37.1157	852.350	ug/L	37.1157	
Na 589.592†	51876.2	161.978 ug/L	4.5108	161.978	ug/L	4.5108	2.78
QC value within	limits for Na	589.592 Recove	ry = 80.99%				
Tl 190.801†	1.8	0.587845 ug/L -0.0027931 ug/L	0.6508140		ug/L	0.6508140	
V 292.402† Zn 206.200†	100 6	-0.002/931 ug/L	0.10992079		ug/L	0.10992079	>999.9
B 249.677†	123.8	2.20152 ug/L 5.79898 ug/L	0.075027	2.20152 5.79898	ug/L	0.075027	3.41
Mo 202.031†	1.1	5.79898 ug/L 0.105425 ug/L	0.1368929	0 105425	ug/L	0 1368929	129 859
Ce 413.764	60.7	0.100420 dg/b	0.1500525	0.103425	ug/ L		49.038
Ti 334.940	27.6						30.698
Sn 189.927 All analyte(s) pas	2.0 sed QC.					0.75	38.458
Sequence No.: 36			Autosampler				
Sample ID: ICSA			Date Collect		.1 8:23	3:13 PM	
Analyst: Initial Sample Wt:			Data Type: O				
Dilution:			Initial Samp Sample Prep				
Mean Data: ICSA	Mean Corrected						
Analyte	Intensity	Conc. Units		Conc.	Sample Units	Std.Dev.	RSD
Analyte Y 360.073 Sc 361.383	43015.8	0.865 ug/L	0.0064				0.74%
	234893.6	0.873 ug/L					1.528
Al 308.215†	9045117.2	512802 ug/L	7329.6	512802	ug/L	7329.6	1.438
QC value within		308.215 Recove	ry = 102.56%	10 0000	1+	0 11000	0 000
Sb 206.836†	60.5	16.8966 ug/L	0.11682 1.6155114	16.8966		0.11682	0.698
As 188.979† Ba 233 527+			1.6155114			1.6155114	
Ba 233.527† Be 313.107†		5.34717 ug/L -0.193983 ug/L	0.170157 0.0258112	5.34717 -0.193983	ug/L	0.170157 0.0258112	3.188
Cd 226.502†	1485.1	-14.9928 ug/L	0.0258112 0.38447	-0.193983 -14.9928	ug/L	0.38447	
		454046 ug/L	7781.3	454046			1.71%
QC value within	limits for Ca	315.887 Recove:	rv = 90.81%				
	-54.1	-1.86988 ug/L	0.181202	-1.86988	ug/L	0.181202	9.69%
Co 228.616†	162.2	4.81922 ug/L -12.2592 ug/L	0.052281 0.16914	4.81922	ug/L	0.052281	1.08%
Cu 324.752†	-2364.6	-12.2592 ug/L		-12.2592			
			3205.9	179812	ug/L	3205.9	1.78%
QC value within	limits for Fe			10 5570	1-	0 01615	
Pb 220.353†		10.5578 ug/L		10.5578		2.34615	
Mg 279.077†	/120993.2	493569 ug/L	9307.2	493569	ug/L	9307.2	1.89%
QC value within Mn 257.610†	2244.9	-3.89799 ug/L	0.032791	-3.89799		0.032791	0.84%
Ni 231.604†		-0.250358 ug/L	0.2596707	-0.250358	-	0.2596707	
X 766.490†		20.1771 ug/L	0.75415	20.1771		0.75415	3.74%
Se 196.026†	-4.6	-5.60485 ug/L	7.072984	-5.60485	-	7.072984	
Ag 338.289†	94.5	-18.7820 ug/L	0.35503	-18.7820		0.35503	1.89%
Na 330.237†	-710.6	-1114.23 ug/L	20.308	-1114.23		20.308	1.82%
Na 589.592†	21068.6	65.7848 ug/L	2.64488	65.7848	ug/L	2.64488	4.02%
rl 190.801†		3.83619 ug/L	1.934390	3.83619	J .	1.934390	
/ 292.402†		-5.81251 ug/L	0.415934	-5.81251		0.415934	7.16%
In 206.200†		-5.37293 ug/L	0.188133	-5.37293		0.188133	3.50%
3 249.677†		-4.03805 ug/L	0.546000	-4.03805	J .	0.546000	13.52%
40 202.031†		-0.677963 ug/L	0.5254960	-0.677963	ug/L	0.5254960	77.51%
Ce 413.764 Fi 334.940	-807.3 55.5					38.85	4.81%
Sn 189.927	227.4					7.37	
All analyte(s) pass							5.210
Sequence No.: 37 Sample ID: ICSAB			Autosampler I Date Collecte		1 8:34	:10 PM	
Analyst:			Data Type: Or				
Initial Sample Wt:			Initial Sampl				
Dilution:			Sample Prep V				
Mean Data: ICSAB							
Analyte	Mean Corrected Intensity	Calib. Conc. Units	Std.Dev.	Conc.	Sample	Std.Dev.	RSD
and I of	Incensicy		25412671	501101		Stu.Dev.	1.00

Method:	CLP4
---------	------

(233.527 Recover				1 550
			255.150 ug/L		255.150 ug/L	3.9554	1.55%
(QC value within	limits for Be	313.107 Recover	y = 102.06%			
				5.3920	531.089 ug/L	5.3920	1.02%
(QC value within	limits for Cd	226.502 Recover	y = 106.22%			
Ca	315.887†	1197440.2	25763.3 ug/L	365.28	25763.3 ug/L	365.28	1.42%
(OC value within	limits for Ca	315.887 Recover	y = 103.05%			
	205.560†		1026.66 ug/L	9.958	1026.66 ug/L	9.958	0.97%
(OC value within	limits for Cr	205.560 Recover	v = 102.67%			
	228.616†	87974.9	2617.66 ug/L	25.007	2617.66 ug/L	25.007	0.96%
(C value within	limits for Co	228.616 Recover	v = 104.718	_		
CII	324 752+	246000.1	1275.40 ug/L	18.240	1275.40 ug/L	18.240	1.43%
cu c	OC value within	limits for Cu	324.752 Recover	v = 102.03	-		
				52.864	5124.15 ug/L	52.864	1.03%
	C value within	limits for Fe	273.955 Recover:		•==••=••;•=		
Dh	20 Varue wrenin	10042 8	1040.15 ug/L	10 387	1040.15 ug/L	10.387	1.00%
			220.353 Recovery		1010110 (19,1		
-		271460 0		248.72	25746.6 ug/L	248.72	0.97%
	279.077†		279.077 Recover		23/10:0 49/1	210.72	0.070
		1064505 6		37.191	2598.16 ug/L	37.191	1.43%
Mn 2	257.610†	1064595.6	257.610 Recovery	-10202	2000.10 ug/1	57.151	1.100
	2C value within	limits for Mn	257.610 Recovery	$\gamma = 103.938$	2570.56 ug/L	22 113	0.87%
N1 2	231.604†	48841.6	2570.56 ug/L	22.443	2370.30 ug/L	22.445	0.078
		limits for Ni	231.604 Recovery	y = 102.823	7473.82 ug/L	00 103	1.07%
K 76	56.490†	1152491.2	7473.82 ug/L	80.103		00.105	1.078
ç	<u>)</u> C value greate	r than the uppe	er limit for K 76	6.490 Recovery	= 124.50% 1109.59 ug/L	14 051	1.27%
Se 1	.96.026†	1624.6	1109.59 ug/L	14.051	1109.59 ug/L	14.051	1.210
		r than the uppe	er limit for Se 1	96.026 Recovery	= 110.96% 323.019 ug/L	4 25.02	1 250
Ag 3	338.289†	18070.1	323.019 ug/L	4.3593	323.019 ug/L	4.3593	1.35%
	<u>)</u> C value within	limits for Ag	338.289 Recover	y = 107.67%	04117 0 /7	000 07	1 170
Na 3	330.237†	9431.8	24117.2 ug/L		24117.2 ug/L	283.07	1.17%
Ç	<u>)</u> C value within	limits for Na	330.237 Recover	y = 96.478			
		Saturated2					
U	Inable to evalua	ate QC.			1	10 000	1 050
Tl 1	.90.801†	3175.6	1044.89 ug/L	10.960	1044.89 ug/L	10.960	1.05%
ç	QC value within	limits for Tl	190.801 Recovery	y = 104.49%		05 060	0.000
V 29	92.402†	69325.4	2558.10 ug/L	25.368	2558.10 ug/L	25.368	0.99%
ç	QC value within	limits for V 2	292.402 Recovery	= 102.32%			
Zn 2	206.2001	144855.2	2579.01 ug/L	25.134	2579.01 ug/L	25.134	0.97%
C	C value within	limits for Zn	206.200 Recovery	y = 103.16%		1 _ DELAN - KARABANA	
B 24	9.6771	22300.4	1086.41 ug/L	28.551	1086.41 ug/L	28.551	2.63%
C	C value within	limits for B 2	249.677 Recovery	= 108.64%			
Mo 2	202.031†	10746.1	1070.79 ug/L	15.696	1070.79 ug/L	15.696	1.47%
0	C value within	limits for Mo	202.031 Recovery	y = 107.08%			
Ce 4	13.764	-5.5	nagosa menetakan di ka			30.12 \$	543.84%
Tia	334.940	380.3				11.98	3.15%
	.89.927	114.4				1.86	1.63%
	Failed. Contin		s.				
20 E	arrea, contrin	ac mich analys.					
	ence No.: 39			Autosampler Loc			
-	ole ID: CCB				5/17/2011 8:52:	12 PM	
-				Data Type: Orig			
	yst: tial Sample Wt:			Initial Sample			
	ition:			Sample Prep Vol			
DIIU	ICTON.				.50		
	Data: CCB						

Mean Data: CCB							
	Mean Corrected	d Calib.			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 360.073	50182.0	1.01 ug/L	0.023				2.29%
Sc 361.383	272243.0	1.01 ug/L	0.032				3.21%
Al 308.215†	517.1	29.3253 ug/L	5.24228	29.3253	ug/L	5.24228	17.88%
QC value within	limits for Al	308.215 Recovery	= Not calcu	lated			
Sb 206.836†	-1.5	-0.430872 ug/L	0.9458177	-0.430872	ug/L	0.9458177	
As 188.979†	2.0	0.840455 ug/L	1.7195322	0.840455	ug/L	1.7195322	204.60%
Ba 233.527†	268.2	1.41487 ug/L	0.118063	1.41487	ug/L	0.118063	8.34%
Be 313.107†	54.9	0.0682078 ug/L	0.04538235	0.0682078	ug/L	0.04538235	66.54%
Cd 226.502†	11.8	0.164337 ug/L	0.1498460	0.164337	ug/L	0.1498460	91.18%
Ca 315.887†	1579.8	33.9899 ug/L	8.37820	33.9899	ug/L	8.37820	24.65%
Cr 205.560†	6.6	0.229268 ug/L	0.2634956	0.229268	ug/L	0.2634956	114.93%
Co 228.616†	15.8	0.470424 ug/L	0.0692692	0.470424	ug/L	0.0692692	14.72%
Cu 324.752†	53.8	0.278764 ug/L	0.1422760	0.278764	ug/L	0.1422760	51.04%

Method: CLP4			Page 24	Date:	5/17/2011 8	3:54:43 PM
Fe 273.955† Pb 220.353† Mg 279.077†	217.6 -9.7 438.3	11.4506 ug/L -0.911526 ug/L 30.3817 ug/L	0.62880 0.3840407 1.66244	11.4506 ug/L -0.911526 ug/L 30.3817 ug/L	0.62880 0.3840407 1.66244) 5.49% 42.13%
Mn 257.610† Ni 231.604† K 766.490†	163.8 12.1 80.9	0.399373 ug/L 0.635052 ug/L 0.524510 ug/L	0.0303651 0.1352555 0.3053912	0.399373 ug/L 0.635052 ug/L 0.524510 ug/L 0.359356 ug/L	0.0303651 0.1352555 0.3053912 2.5220542	7.60% 21.30% 258.22%
Se 196.026† Ag 338.289† Na 330.237† Na 589.592†	0.5 33.1 7.4 1066.7	0.359356 ug/L 0.587186 ug/L 671.850 ug/L 3.33066 ug/L	2.5220542 0.4045150 17.4918 0.635793	0.587186 ug/L 671.850 ug/L 3.33066 ug/L	0.4045150 17.4918 0.635793) 68.89% 3 2.60% 3 19.09%
Tl 190.801† V 292.402† Zn 206.200† B 249.677†	-1.0 10.3 24.3 153.1	-0.322604 ug/L 0.384359 ug/L 0.432672 ug/L 7.52896 ug/L	0.6396945 0.2159733 0.0337356 0.146366	-0.322604 ug/L 0.384359 ug/L 0.432672 ug/L 7.52896 ug/L	0.6396945 0.2159733 0.0337356 0.146366	56.19% 7.80%
Mo 202.031† Ce 413.764 Ti 334.940 Sn 189.927	9.3 30.7 -2.2 4.5	0.924795 ug/L	0.0032736	0.924795 ug/L	0.0032736 1.59 16.58 1.30	5.18% 753.36%
All analyte(s)	passed QC.					

Inorganic Data Digestion Distillation Log

12-IN PREPARATION LOG METALS

Lab Name: EnviroTest Laboratories, Inc. Job No.: 420-43563-1

SDG No.:

Preparation Method: 3010A

Lab Sample ID	Preparation Date	Prep Batch	Weight (gram)	Volume (mL)
MB 420-46984/1-A	05/16/2011 11:02	46984		50
LCS 420-46984/2-A	05/16/2011 11:02	46984		50
420-43563-1	05/16/2011 11:02	46984		50
420-43563-2	05/16/2011 11:02	46984		50
420-43563-3	05/16/2011 11:02	46984		50
420-43563-3 DU	05/16/2011 11:02	46984		- 50
420-43563-3 MS	05/16/2011 11:02	46984		50
420-43563-3 SD	05/16/2011 11:02	46984		50
420-43563-4	05/16/2011 11:02	46984		50

William L. Going & Associates, Inc. Environmental Site Investigation-Remediation

5 Stella Drive Gardiner, New York 12525 Tel. 845-895-1744 Fax. 845-895-1722 E-mail: <u>budgoing@frontier.com</u>

September 6, 2011

Mr. William A. Sweet Safety & Environmental Manager Balchem Corporation 52 Sunrise Park Road New Hampton, New York 10958

RE: Groundwater Monitoring Report for May 9, 2011 Sampling Event Balchem Corporation, Facility at 2007 Route 284, Slate Hill, NY 10973 Town of Wawayanda, Orange County, NY, NYSDEC Site Number 3-36-032

Dear Mr. Sweet:

William L. Going & Associates, Inc. is pleased to submit this report documenting the above referenced sampling event. This event is the tenth of similar sampling procedures beginning in 1996.

The objective of the May 2011 sampling event was to sample selected monitoring wells, piezometers, and a sump for volatile organic compounds and lead to assess the effectiveness of the remedial work performed in the former drum disposal area on the site. The sump was installed as an interim remedial measure. The field procedures and laboratory results are provided and discussed below.

Attachments and enclosures include the following:

- Table 1 Goundwater Monitoring Results, May 9, 2011
- Table 2 Cumulative Groundwater Monitoring Summary,July 1996 to May 2011
- Table 3 Groundwater Quality Parameters Measured in Purge Water

 During Low Flow Sampling Procedure
- Table 4ASummary of Measured and Estimated ConcentrationsIn Groundwater from Table 1
- Table 4BComments Relative to Laboratory Analyses Report
Above in Table 4A
- Appendix A Form 1 Chain of Custody (Analytical Results in Appendix C)

Appendix BNYSDEC Category B Package (CD-ROM)Appendix CData Usability Summary Report,
By ChemWorld Environmental, Rockville, MD, July 22, 2011

Groundwater Sampling

At the request of NYSDEC, monitoring well MW-4S, piezometers PZ-6 and PZ-7, and the IRM sump were sampled on May 9, 2011. As required by NYSDEC, the specific low flow sampling technique was followed as described as the "Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells" (US Environmental Protection Agency, Region 1, Low Stress SOP, Revision 3, Revised January 19, 2010). The advantage of this technique is that a limited volume of purge water is obtained for each sample. The method requires use of a pump, which can control the volume of discharge from the well at a low rate (100-400 ml/min). In this case, a peristaltic pump was used because each of the sampling points is less than 28 feet below the pump level (the vertical extent of peristaltic applications). A series of water quality parameters (pH, specific electrical conductance, turbidity, dissolved oxygen, temperature, salinity, total dissolved solids, and oxidation-reduction potential) are measured during the purge period (usually 20 minutes or less). When three consecutive measurements show stabilization, the water quality is considered at equilibrium and the sample is taken.

To be more specific, the low flow method requires pumping on the order of 0.1 to 0.4 liters per minute. During the purging process, stabilization of field indicator parameters includes less than the following percentage change over three sets of successive measurements made with the Horiba (water quality meter):

Turbidity 10% Dissolved Oxygen 10% Specific Conductance 3% Temperature 3% PH + / - 0.1 units ORP / Eh +/- 10 millivolts.

The peristaltic pump uses clear tubing so the water can be observed, but the pump does not touch the water because it is contained in the tubing. Therefore, there is no pump cleanup, just storage of dedicated tubing or disposal of tubing. During the low flow purge pumping, the water is accumulated in a graduated cylinder, notes are taken to record the volume of discharge, the time that the 1000 ml cylinder is full and emptied, and the pumping rate is calculated. Also the depth to water during pumping is measured if conditions permit to be certain that the well does not go dry during the low flow purge. The sump was sampled with the peristaltic pump, but measurement of water quality parameters was unnecessary. The water quality measurements and purge volumes are listed in Table 3.

Each sampling location was found with no difficulty by review of the map provided in the May 5, 2008 report prepared by ENSR|AECOM. MW-4S is located on the level driveway parallel to the railroad tracks on the west side of the site. PZ-7 lies on the south side of the sidewalk leading from the back driveway up to the backdoor of the main building facing NY Route 284. The top of PVC casing for PZ-7 is located about 4 to 5 feet above the ground surface and the well is on a sloping lawn surface. PZ-7 was pumped dry while purging, the well was allowed to recover while PZ-6 was sampled, and stabilization was achieved in three water quality measurements, and a sample was collected. PZ-6 is located on a grassy slope, downhill and west of PZ-7 near the south end of the subsurface drainage conduit to the IRM sump. The conduit collects groundwater at the base of the hill and moves it northward to the sump, located by a loading dock. The driveway, traffic, and parked semi-tractor trailers are hazards to plan for when sampling MW-4S and the sump. The grassy slope also requires care when sampling the two piezometers. Also sampling in winter is not recommended due to snow and ice accumulation on the hillside.

As collected, the samples were placed in a cooler with ice. Immediately after sampling, the chain of custody and cooler were transported directly to EnviroTest Laboratories in Newburgh, NY. The chain-of-custody specified laboratory analysis for Volatile Organic Compounds by US EPA method SW846 8260B and Lead by US EPA method SW846 6010B. EnviroTest is certified by NYSDOH in the Environmental Laboratory Approval Program (ELAP). From MW-4S, in addition to the regular VOC sample, additional samples were collected for Matrix Spike and Matrix Spike Duplicate. A trip blank was also submitted to the laboratory. All of the VOC samples were carefully poured down the inside of three clear glass 40 ml vials creating a convex upward meniscus before placing the top on the vial. The samples for lead analysis were placed in brown glass jars.

Laboratory Analysis and Results

The Form 1 laboratory reports and the chain of custody record are provided in Appendix A. The full NYSDEC Category B data package provided by the laboratory is included in Appendix B (CD-ROM). The analytical results for the samples for this event have been summarized in Table 1. The results have been compared to the standards (or guidance values) provided in the document entitled "*Ambient Water Quality Standards and Guidance Values - New York State Division of Water - Technical and Operational Guidance Series (1.1.1)*" (revised June 1998). Where a specific result is greater than the standard or guidance value, concentrations exceeding the standards are shown in **bold** on Table 1. Table 2 provides summary information for the laboratory analyses for groundwater sampling events performed from July 1996 to May 2011 for compounds cis-1,2-dichloroethene (c-1,2-DCE), methyl tertbutyl ether (MTBE), benzene, acetone, tricholorethene (TCE), carbon disulfide, chloroform, 2-butanone, and lead.

Volatile Organic Compounds and Lead

To simplify, the concentrations detected for VOCs and Lead are summarized in Table 4A for the May 2011 sampling event (condensation of Table 1 by omission of non-detect analytes). Comments regarding the significance of data listed in Table 4A are listed in Table 4B.

In VOC analyses, only two groundwater quality standards were exceeded. In PZ-7, Benzene exceeded the standard of 1 ug/L at 200 ug/L. In PZ-7, Lead exceeded the groundwater quality standard of 25 ug/L at 52 ug/L.

All other measured and estimated VOC concentrations are below the standard water quality values (see comments in Table 4B). Apparently, natural reductive dehalogenation of chlorinated ethenes has been occurring in the groundwater because Trichloroethene (TCE) and breakdown products cis-1,2-Dichloroethene (c12DCE) and Vinyl Chloride (VC) are found in the groundwater.

Lead was detected in PZ-6, PZ-7, and MW-4S, but not in the Sump. The lead standard of 25 ug/L was exceeded in PZ-7, with a concentration of 52 ug/L representing a reduction by two orders of magnitude from the maximum reading of 2900 ug/L measured in May of 1999. Since 1996, exceedances have been reported in 5 out of 6 detections in PZ-7.

In PZ-6, a random occurrence of 21 ug/L lead appeared in the sample; likewise a detection occurred in MW-4S at 14 ug/L lead. Lead has not been reported in PZ-6 or in MW-4S in laboratory analysis from any other sampling event.

Data Validation

ChemWorld Environmental, Inc. of Rockville, MS was provided with the required NYSDEC QA/QC data summary package B by EnviroTest Labatories, Inc. The Data Usability Summary Report (July 22,2011) prepared by ChemWorld is provided in Appendix C to this report.

The DUSR review items include the following, as method appropriate:

- Completeness of Data Package
- Chain-of-Custody Review
- Holding Times from Verified Time of Sample Receipt (VTSR)
- Surrogate Recovery
- GC/MS Instrument Performance Check
- Initial and Continuing Calibration
- Matrix Spike / Matrix Spike Duplicates (MS/MSD)
- Matrix Spike Blanks (MSB)
- Internal Standards
- Method and Field Blanks
- Contract Required Detection Limit (CRDL) Standards for ICP
- Laboratory Duplicate Samples
- Laboratory Control Samples (LCS)
- ICP Interference Check
- ICP Serial Dilution

As a result of finding that the Average Response Factors on Initial Calibration and the Relative Response Factors on Continuing Calibration, the non-detect values for two analytes, Chloromethane and Bromomethane, were deemed estimated. The qualifiers for those two analytes, which have never been detected at the site, changed from "U" to "UJ". With the exception of Chloromethane and Bromomethane, which are not chemicals of concern, the report concludes that: "All results on the Forms [Laboratory Reports] are considered usable based upon the DUSR review."

Depth to Water and Groundwater Flow

With only three depths to water measured in the two piezometers and one monitoring well (shown in Table 3 at the beginning Low Flow purging (Table 3) and no table of elevations, there is insufficient data to draw contour maps of the shallow and deep potentiometric surfaces. The depths to water are in agreement with earlier maps prepared from the previous sampling (2008) indicating that groundwater flow is slightly west of true north.

Conclusions

Evidence from depth to water measurements in the two piezometers and one monitoring well support previous maps showing groundwater flow direction to the north.

The vast majority of Volatile Organic Compounds (VOCs) were not detected in the samples. Benzene was detected at 200 ug/L in piezometer PZ-7, which exceeded the standard of 1 ug/L. That result was slightly below the average of 210 ug/L for the previous 6 detections of benzene in PZ-7.

Concentrations below the standards were reported for 14 individual compounds reported in the 4 samples. The historical analytical results indicate that natural reductive dehalogenation of chlorinated ethenes has been occurring in the groundwater because breakdown products have been detected.

In PZ-7, lead was detected at 52 ug/l, which exceeds the standard of 25 ug/L but represents a reduction by two orders of magnitude from the maximum reading of 2900 ug/L measured in May of 1999. Lead concentrations below the standard were measured in PZ-6 and MW-4S.

It appears that the remedial work performed in the former drum disposal area on the site has been effective.

If you have questions or comments regarding the information in this report, please do not hesitate to contact the undersigned.

Sincerely,

William L. Joing

William L. Going, Principal

Katherine Beinkapper

Katherine J. Beinkafner, Ph.D. Certified Professional Geologist 6611

Cc: R. Bayer

Preliminary Data Transmittal - Table 1 Groundwater Monitoring Results Volatile Organic Compounds and Lead Balchem Corporation Site May 2011

	New York State		_	Balo	chem S	Site Wells				Trip Bla	nk
Parameter	Ambient Water	PZ-6		PZ-7		MW4S		SUMP		Trip Bla	alı
Sample Date	Quality Standards and	5/9/2011		5/9/2011		5/9/2011		5/9/201		5/9/201	
Laboratory ID No.	Guidance Values* (ug/L)	420-43563	1	420-43563		420-43563		420-4356		420-4356	
Description	(ug/c/	Site Well		Site We		Site Wel		420-4356. Site We		420-4356 QA/QC Sa	
Volatile Organic Compounds (ug/L)		One men		One we	•	Sile Wei		Sile vve		UAVQC Sa	mpie
1,1,1-Trichloroethane	5 s	1.0	Tul	1.0	lul	1.0	U	1.0	lu	1.0	lu
1,1,2,2-Tetrachloroethane	5 s	1.0	U	1.0	u	1.0	U	1.0	U	1.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5 s	1.0	U	1.0	- U	1.0	U	1.0	U	1.0	- U
1,1,2-Trichloroethane	1 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	5 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	5 s	1.0	U	1.0	Ū	1.0	U	1.0	U	1.0	U
1,2,4-Trichlorobenzene	5 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	0.04 s	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-Dibromoethane	NL	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	3 s	1.0	U	1.0	- u	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	5 s	1.0	U	3.6		1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	3 s	1.0	U	1.0	U	1.0	-lu	1.0	U	1.0	U
1,4-Dichlorobenzene	3 s	1.0	U	1.0	- U	1.0	U	1.0	U	1.0	U
2-Butanone	50 g	1.0	U	2.9	1	1.0	U	1.0	U	1.0	- U
2-Hexanone	50 g	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
4-Methyl-2-pentanone	NL	1.0	1U	1.0	U	1.0	U	1.0	U	1.0	0
Acetone	50 g	1.0	U	4.0		1.0	U	2.2	- 0	1.0	0
Benzene	1 s	1.0	U	200.0	D	1.0	U	1.0	U	1.0	U
Bromodichloromethane	50 g	1.0	U	1.0		1.0	U	1.0	U	1.0	U
Bromoform	50 g	1.0	U	1.0	U	1.0	U	1.0	U	1.0	0
Bromomethane	5 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	0
Carbon disulfide	60 g	1.0	ŭ	1.0	u	1.0	U	1.0	U	1.0	
Carbon tetrachloride	5 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	5 s	1.0	U	1.0	U	1.0	- U	1.0	- u	1.0	U
Chloroethane	5 s	1.0	U	1.0	U	1.0	-u	1.0			U
Chloroform	7 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	5 s	1.0	1 U	1.0	-u	1.0	U			1.0	U
cis-1,2-Dichloroethene	5 5	1.7	14	3.3	10	3.2		1.0	U	1.0	U
cis-1,3-Dichloropropene	0.4 s	1.0	u	1.0	u	1.0	U	1.0	U	1.0	U
Cyclohexane	NL	NA		NA	10	NA	10	1.0	U	1.0	U
Dibromochloromethane	5 s	1.0	U	1.0	-u	1.0	11	NA	-	NA	-
Dichlorodifluoromethane	5 s	1.0	U	1.0	U			1.0	U	1.0	U
Ethylbenzene	5 s	1.0	U	0.18		1.0	U	1.0	U	1.0	U
Isopropylbenzene	55	1.0	U	1.0	J	1.0	U	1.0	U	1.0	U
Methyl acetate	NL	NA	10	NA	10	1.0	U	1.0	U	1.0	U
Methyl tert-butyl ether	10 g	1.0	U	1.0	u	NA 1.0		NA	-	NA	_
Methylcyclohexane	NL	NA	10	NA	10	1.0 NA	U	1.0	U	1.0	U
Methylene chloride	55	1.0	U	1.0	U	1.0	tu	NA	+	NA	
Styrene	5 s	1.0	1U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethene	5 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	5 5	0.24	J	0.38	J	1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	5 5	1.0	1	1.0	U U	1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	0.4 s	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	5 s	0.57	J	1.0	U	1.0	U	0.65	J	1.0	U
Trichlorofluoromethane	5 s	1.0	U	1.0		1.0				1.0	U
Vinyl chloride	2 \$	1.5		1.0	U	1.0	-U	1.0	U	1.0	U
Xylenes (total)	55	1.0	U	0.51	J	1.0	-U	1.0	U	1.0	U
Metals (ug/L)		1.0	191	0.51	11	1.0	101	1.0	U	1.0	U
Lead						CONTRACTOR OF CONTRACTOR OF CONTRACTOR					

Notes:

(s) - Standard Value

(g) - Guidance Value

* Values compiled from the NYSDEC Division of Water - Technical and Operational Guidance Series (TOGS) 1.1.1 - 6 NYCRR 703.5 [Revised June, 1998] Bold values indicate that the analyte was detected in a concentration greater than or the instrument detection limit.

Shaded values indicate that the concentrations exceed New York State Ambient Water Quality Standards or Guidance Values.

NA - not analyzed for

NL -not listed

U - not detected in a concentration greater than the laboratory method reporting limit

J - estimated value

Preliminary Data Transmittal - Table 2 Balchem Site Cumulative Groundwater Sample Results (ug/L) Preliminary Data Transmittal - Table 2 Balchem Site Cumulative Groundwater Sample Results (uo/i)

Table 2, page 1

			0	unuauve	Groundwate	r Sample R	lesuits (ug/	L)					
PARAMETER	SAMPLE						T					1	
CIS-1,2-DICHLOROETHENE	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	7/31/1996	ND	3.5	ND	1.2	ND	ND	ND	ND	ND	25.7	19.3	ND
	3/5/1997	ND	3.2	ND	9.8	ND	ND	ND	Note 1	ND	94.8	4.1	ND
	9/12/1997	ND	3.7	ND	16	ND	ND	ND	Note 1	ND	9.6	31.5	ND
	3/3/1998	-	ND	ND	ND	11		-	Note 1		-	01.0	ND
	5/19/1999	ND	1.5	ND	15	ND	ND	ND	Note 1	ND		10	ND
	6/11/2003		0.54	ND	6.7	ND			Note 1				
	9/9/2004	ND	0.83 J	ND	10	ND	ND	ND	Note 1	ND	4.2		
	3/20/2008	ND	0.3 J	ND	3.5	ND	ND	ND	Note 1	ND	082 J	4.6	ND
	5/9/2011	NA	NA	NA	3.2	NA	NA	NA	NA	NA	1.7	3.3	ND
					0.12	1.171	1 103	110	11/3	1 110	1.7	0.0	
MTBE	SAMPLE						1					1	1
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/5/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	ND	90.9
	9/12/1997	ND	20	1.9	ND	ND	ND	ND	Note 1	ND	ND	ND	90.9 ND
	3/3/1998		9.4	1.1	ND				Note 1			- 140	ND
	5/19/1999	ND	3.1	1.0	ND	ND	ND	ND	Note 1	ND		ND	ND
	6/11/2003		0.87	ND	ND	ND			Note 1	-		-	-
	9/9/2004	ND	0.53 J	ND	ND	ND	ND	ND	Note 1	ND	ND		
	3/20/2008	ND	ND	0.81 J	ND	ND	ND	0.18 J	Note 1	ND	ND	ND	ND
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND
					1.10	11/3	114	110	100	110	ND		NU
BENZENE	SAMPLE	6											
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	164	1.1	ND	109	1
	3/5/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	372	2.5
	9/12/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	172	ND
	3/3/1998		ND	ND	ND				Note 1			1/2	ND
	5/19/1999	ND	ND	ND	ND	ND	ND	ND	Note 1	ND		410	ND
	9/24/1999								Note 1			160	
	6/11/2003	-	0.24	ND	ND	ND	1000		Note 1			-	
	9/9/2004	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND		
	3/20/2008	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	38	ND
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	200 D	ND
						10.1	10.1	116	114	110	ND	2000	ND
ACETONE	SAMPLE												
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	159
	3/5/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	ND	159 ND
	9/12/1997	ND	ND	6.9	ND	ND	ND	ND	Note 1	ND	ND	ND 5.9	ND ND
	3/3/1998	-	ND	ND	ND	-	-	-	Note 1	- 10		5.9	
	5/19/1999			ND	ND	ND	ND	ND	Note 1	ND	-	6.7	ND
	6/11/2003		0.24	ND	ND	ND	ND -	- 10	Note 1	ND		5.7	31
	9/9/2004	ND	3 J	ND	ND	ND	ND		Note 1		-		•
	3/20/2008	ND	ND	ND	ND	ND	ND	ND ND		4 J	ND		-
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	Note 1 NA	8.6	ND	ND	ND
	0.0.2011	11/2	19A	INA	NU	NA	NA	NA	NA	NA	ND	4.0	2.2

Table 2, page 2

									1 a	DIC 4	', pae	50 2	
TRICHLOROETHENE	SAMPLE												
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2	ND	ND
	3/5/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	18.8	ND	ND
	9/12/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	3.4	ND	ND
	3/3/1998	-	ND	ND	ND	-			Note 1	-	-		ND
	5/19/1999	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	-	ND	ND
	6/11/2003		ND	ND	ND	ND	-		Note 1				-
	9/9/2004	ND	ND	ND	0.23 J	ND	ND	ND	Note 1	ND	1		
	3/20/2008	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	0.45 J	ND	ND
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	NA	NA	0.57 J	ND	0.65 J
CARBON DISULFIDE	SAMPLE					1							~
CARDON DIGOLI IDE	DATE	MW-1	MW-2	MW-3	MW-4S								
	7/31/1996	ND				MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	3/5/1997		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	2	Note 1	ND	ND	ND	ND
	9/12/1997	ND	ND	ND	ND	ND	ND	2.5	Note 1	ND	ND	ND	ND
	3/3/1998	-	ND	ND	ND		-	-	Note 1	-	-	-	ND
	5/19/1999	ND	ND	ND	ND	59	ND	ND	Note 1	1.4	-	ND	ND
	6/11/2003	-	ND	ND	ND	ND			Note 1	-			
	9/9/2004	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	-	
	3/20/2008	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND	ND	ND
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND
CHLOROFORM	SAMPLE				1				-				
oneonor on m	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D					
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	MW-6S	MW-6D	PZ-6	PZ-7	SUMP
	3/5/1997	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	9/12/1997	ND	ND	ND	ND	ND		ND	Note 1	ND	ND	ND	ND
	3/3/1998	-	ND	ND	ND	NU	ND	ND	Note 1	ND	ND	ND	ND
	5/19/1999	ND	ND	ND			- ND		Note 1	-	•	-	ND
	6/11/2003	-	ND	ND	ND ND	ND ND		ND	Note 1	ND	-	ND	ND
	9/9/2004	ND	ND	ND	ND		-	-	Note 1	-			•
	3/20/2008	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND		
	5/9/2011	NA	NA	NA	ND	ND	ND	ND	Note 1	ND	ND	ND	ND
	5/5/2011	INA	INA	INA	NU	NA	NA	NA	NA	NA	ND	ND	ND
2-BUTANONE	SAMPLE												
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	1000			
	7/31/1996	ND	ND	ND	ND	ND	ND	ND	ND	MW-6D	PZ-6	PZ-7	SUMP
	3/5/1997	ND	ND	ND	ND	ND	ND	ND	Note 1	ND ND	ND	ND	75.1
	9/12/1997	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND
	3/3/1998		ND	ND	ND	-	-	-	Note 1	ND	ND	ND	ND
	5/19/1999	ND	ND	ND	ND	ND	ND	ND	Note 1 Note 1	- ND		-	ND
	6/11/2003	110	ND	ND	ND	ND	-	-	Note 1		•	ND	ND
	9/9/2004	ND	ND	ND	ND	ND	ND	- ND		-			•
	3/20/2008	ND	ND	ND	ND	ND	ND	ND	Note 1	ND	ND		
	5/9/2011	NA	NA	NA	ND	NA	NA	NA	Note 1	1.3 J	ND	ND	ND
	0/0/2011	INA	11/1	11/4	ND	INA	INA	INA	NA	NA	ND	2.9	ND
EAD	SAMPLE												
	DATE	MW-1	MW-2	MW-3	MW-4S	MW-4D	MW-5S	MW-5D	MW-6S	MW-6D	PZ-6	PZ-7	CLINID
	7/31/1996	ND	215	ND	ND	ND	ND	ND	ND	ND	ND	ND	SUMP ND
	3/5/1997	ND	ND	ND	ND	ND	ND	115		ND	ND	962	ND ND
	9/12/1997	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	265	ND
	3/3/1998		ND	ND	ND		-	-	Note 1	-	NU .		
	5/19/1999	ND	16.3	ND	ND	ND	ND	5.8	Note 1	ND		- 2900	ND
	9/24/1999	-	12.7		-		-	ND	Note 1	-			ND
	6/11/2003	-	3.6	ND	ND	ND		-	Note 1			173	•
	9/9/2004	6.2	8.8	12	ND	5.1	ND .	28		100	-		
	3/20/2008	4.3	3	7.5	ND	5.6	ND	ND	Note 1	1.9 B	ND		
	5/9/2011	NA	NA	NA NA	14	 NA	NA	NA	Note 1	8.1	ND	15.1	6.9
lotes:	0/0/2011	11/1	INA	INA	14	NA	DIA .	NA I	NA	NA	21	52	ND

Notes: NA - Not analyzed for. ND - Not detected in a concentration greater than the laboratory method detection limit. J - Estimated oraganic compound concentration B - Estimated metal concentration.

Note 1 - MW-6S was removed during a building expansion

0.14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) Rate 10:43 5.45 0 76 8.58 20 0 0 170 4.01 1	
Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Sampling (US EPA, 2010) Balchem Corporation Facility at 2007 Route 284, Slate Hill, NY 10973 Groundwater Sampling Event: May 9, 2011 Barbing Location: MW-4S Time PH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Water Cumulative (mt) Purg Rate 10:43 5.45 0 76 8.58 20 0 0 172 4.01 1 1 10:43 5.45 0 76 8.58 20 0 0 172 4.01 1 1 10:43 5.45 0 76 8.58 20 0 0 172 4.01 1 1 10:48 5.63 0 81.7 9.58 17.79 0 0 1331 2000 2 10:55 5.33 0 81.7 10.84 13.4 0 0 1339 2 2 10:56 5.33 0 <td></td>	
Balchem Corporation Facility at 2007 Route 284, State Hill, NY 10973 Groundwater Sampling Event: May 9, 2011 Prepared by William L. Going & Associates, Inc. in August 2011 Report Sampling Location: MW-4S Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Water Cumulative Purge (ml) Purge 10:43 5.45 0 76 8.58 20 0 0 170 4.01 1 10:46 5.34 0 76.6 9.12 19.39 0 0 172 4.01 2 10:48 5.63 0 81.7 9.58 17.79 0 131 2000 2 10:50 5.37 0 8.27 10.78 14.48 0 0 133 2000 2 10:55 5.33 0 81.7 10.84 13.24 0 0 139 3000 2 10:56 5.331 0 82.4 10.88 13.08 0 <t< td=""><td></td></t<>	
Groundwater Šampling Event: May 9, 2011 Prepared by William L. Going & Associates, Inc. in August 2011 Report Sampling Location: MW-4S Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Petential Depth of Water Currulative Purge (ml) Rate. 10:43 5.45 0 76 8.58 20 0 0 170 4.01 1 1 10:43 5.45 0 76 8.58 20 0 0 170 4.01 1 1 10:48 5.63 0 81.7 9.58 17.79 0 0 131 1 1000 2 10:52 5.46 0 8.27 10.78 14.88 0 133 2000 2 10:55 5.33 0 82.2 10.84 13.24 0 0 137 3000 2 10:55 5.31 0 82.4 10.84 13.24 0	
Prepared by William L. Going & Associates, Inc. in August 2011 Report Sampling Location: MW-4S Time pH Conductivity Turbidity Dissolved Oxygen Temperature Oxygen Salinity Total Diss Solids Redox Potential Depth of Water Cumulative Purge (ml) Rate Retor 10:43 5.45 0 76 8.58 20 0 0 170 4.01 ////// 22 10:46 5.34 0 76 9.12 19.39 0 0 172 22 22 10:46 5.34 0 81.7 9.58 17.79 0 0 131 2000 2 10:50 5.37 0 8.27 10.24 16.17 0 133 2000 2 10:55 5.33 0 81.7 10.84 13.24 0 0 137 4.73 4000 2 10:55 5.31 0 82.4 10.84 13.08 0 137 4.73 <td></td>	
Sampling Location: MW-4S Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Purge (ml) Rate 10:43 5.45 0 76 8.58 20 0 0 170 4.01 1 14 ms/cm MTU mg/L °C 0-4% g/L mv (feet) Purge (ml) Rate 10:43 5.45 0 76 8.58 20 0 0 177 4.01 1 12 10:48 5.63 0 81.7 9.58 17.79 0 0 154 4.58 1000 2 10:52 5.46 0 8.27 10.78 14.88 0 0 130 2000 2 10:55 5.33 0 82.2 10.84 13.24 0 0 139 4.73 4000 2 10:55 5.31 0	
Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Purge (m) Rate 10:43 5.45 0 76 8.58 20 0 0 170 4.01 (feet) (m)	
Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Purge (m) Rate 10:43 5.45 0 76 8.58 20 0 0 170 4.01 (feet) (m)	
0-14 mS/cm NTU mg/L °C 0-4% g/L mv reference multication multication <t< td=""><td>umping</td></t<>	umping
0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (m	(ml/min)
10:43 5.45 0 76 8.58 20 0 0 170 4.01 2 1 10:46 5.34 0 79.6 9.12 19.39 0 0 172 1 2 2 10:46 5.63 0 81.7 9.58 17.79 0 0 154 4.58 1000 2 10:50 5.37 0 8.27 10.78 14.88 0 0 131 2000 2 10:52 5.46 0 8.27 10.84 13.77 0 0 139 3000 2 10:55 5.33 0 82.2 10.84 13.24 0 0 139 3000 2 10:55 5.31 0 82.4 10.88 13.08 0 0 139 3000 2 10:55 5.31 0 82.4 10.88 13.08 0 0 139 102 0 <td>nl/min)</td>	nl/min)
10:48 5.63 0 81.7 9.58 17.79 0 0 154 4.58 1000 2 10:50 5.37 0 8.27 10.24 16.17 0 0 131 1<	100
10:50 5.37 0 8.27 10.24 16.17 0 0 131 2000 22 10:52 5.46 0 8.27 10.78 14.88 0 0 130 2000 2 10:53 5.42 0 80.7 10.88 13.77 0 0 139 3000 2 10:55 5.33 0 81.7 10.84 13.4 0 0 139 3000 2 10:56 5.33 0 82.2 10.84 13.24 0 0 139 3000 2 10:57 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 2 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 0 139 1 10 500 2 2 2 2 2 2 2 139 1 17.78 2 2 2 2 2 2 </td <td>233</td>	233
10:52 5.46 0 8.27 10.78 14.88 0 0 130 2000 22 10:53 5.42 0 80.7 10.88 13.77 0 0 139 3000 22 10:55 5.33 0 81.7 10.84 13.24 0 0 139 3000 22 10:56 5.33 0 82.2 10.84 13.24 0 0 139 3000 22 10:58 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 2 10:58 5.31 0 84.4 10.74 12.73 0 0 139 4.73 4000 2 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 7 5000 2 5000 2 Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Mater	225
10:53 5.42 0 80.7 10.88 13.77 0 0 139 3000 2 10:55 5.33 0 81.7 10.84 13.4 0 0 137 3000 2 10:56 5.33 0 82.2 10.84 13.24 0 0 139 4.73 4000 2 10:58 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 2 10:58 5.31 0 84.4 10.74 12.73 0 0 139 4.73 4000 2 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 0 139 1 10.78 7 0 0 139 4.73 4000 2 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 0 139 1 10.78 8 10.78 10.88 13.07 10 12.07 6.31 0 81.8 8.95 20.77 0 4 49 12.55 300 1 1	
10:55 5.33 0 81.7 10.84 13.4 0 0 137 3000 22 10:56 5.33 0 82.2 10.84 13.24 0 0 139 4.73 4000 2 10:57 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 2 10:58 5.31 0 84.4 10.74 12.73 0 0 139 4.73 4000 2 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 2 5000 2 Sampling Location: PZ-7 Turbidity Dissolved Oxygen Temperature Oxygen Salinity Total Diss Solids Redox Potential Depth of Water Cumulative Purge (m) Purge (m) (ml) Rate 12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 300 1 12:06 6.33 0 2	200
10:56 5.33 0 82.2 10.84 13.24 0 0 139 4.73 4000 22 10:57 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 22 10:58 5.31 0 84.4 10.74 12.73 0 0 139 4.73 4000 22 Sampling Location: PZ-7 Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Water Cumulative Pur 0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (ml) (ml) mt 12:06 6.35 0 118 9.51 19.56 0 0 59 300 1 12:06 6.33 0 23.9 9.97 18.46 0 0 67 600 1 12	
10:57 5.31 0 82.4 10.88 13.08 0 0 137 4.73 4000 22 10:58 5.31 0 84.4 10.74 12.73 0 0 139 4.73 4000 22 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 2 5000 2 Sampling Location: PZ-7 Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Pure 0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (ml) Rate 12:06 6.32 0 81.8 8.95 20.77 0 4 49 12.55 300 1 12:06 6.33 0 218 9.75 19.03 0 0 48 600 1 1 1 1 1 1 1	250
10:58 5.31 0 84.4 10.74 12.73 0 0 139 11:02 Collect sample: 9 VOC vials, 3 bottles 5000 2 Sampling Location: PZ-7 Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Water Cumulative Purge (ml) 0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (ml) 12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 300 1 12:06 6.35 0 118 9.51 19.56 0 0 48 0 0 1 1 1 0 1 1 0 218 9.75 19.03 0 0 48 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0	
11:02 Collect sample: 9 VOC vials, 3 bottles 5000 2 Sampling Location: PZ-7 Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Purge (ml) Rate 0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) Water Purge (ml) Rate 12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 12:06 6.35 0 118 9.51 19.56 0 0 59 300 1 12:07 6.31 0 2.18 9.75 19.03 0 0 48 600 1 12:09 6.13 0 2.8 10.26 17.85 0 0 80 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.34 0 2	285
Sampling Location: PZ-7 Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Water Purge (ml) Rate 0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (ml) <t< td=""><td></td></t<>	
Time pH Conductivity Turbidity Dissolved Temperature Salinity Total Diss Redox Depth of Cumulative Purge (m) 12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 300 1 12:06 6.35 0 118 9.51 19.56 0 0 59 300 1 12:07 6.31 0 218 9.75 19.03 0 0 48 600 1 600 1 12:09 6.13 0 2.8 10.26 17.85 0 0 80 1 600 1 1 16.55 900 1 1 16.55 900 1 <td< td=""><td>263</td></td<>	263
0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) Rate 12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 (ml)	
0-14 mS/cm NTU mg/L °C 0-4% g/L mv (feet) (ml) (m	umping
12:05 6.32 0 81.8 8.95 20.77 0 4 49 12.55 300 1 12:06 6.35 0 118 9.51 19.56 0 0 59 300 1 12:07 6.31 0 218 9.75 19.03 0 0 48 600 1 12:08 6.33 0 33.9 9.97 18.46 0 0 67 600 1 12:09 6.13 0 2.8 10.26 17.85 0 0 80 1 6.55 900 1 12:10 6.05 0 0.6 10.5 17.11 NA NA NA 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1 12.2PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0	(ml/min)
12:06 6.35 0 118 9.51 19.56 0 0 59 300 1 12:07 6.31 0 218 9.75 19.03 0 0 48 1 1 12:08 6.33 0 33.9 9.97 18.46 0 0 67 600 1 12:09 6.13 0 2.8 10.26 17.85 0 0 80 1 16.55 900 1 12:10 6.05 0 0.6 10.5 17.11 NA NA NA 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6<	nl/min)
12:07 6.31 0 218 9.75 19.03 0 0 48 600 11 12:08 6.33 0 33.9 9.97 18.46 0 0 67 600 11 12:09 6.13 0 2.8 10.26 17.85 0 0 80 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 11 1:22PM 6.34 0 24.1 8.92 16.7 0 0 12 200 11 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	
12:08 6.33 0 33.9 9.97 18.46 0 0 67 600 1 12:09 6.13 0 2.8 10.26 17.85 0 0 80 16.55 900 1 12:10 6.05 0 0.6 10.5 17.11 NA NA NA 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	150
12:09 6.13 0 2.8 10.26 17.85 0 0 80 16.55 900 1 12:10 6.05 0 0.6 10.5 17.11 NA NA NA 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	
12:10 6.05 0 0.6 10.5 17.11 NA NA NA 16.55 900 1 After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	150
After recovery, resume measurements, after three sets of measurements, take sample DRY 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	450
After recovery, resume measurements, after three sets of measurements, take sample 1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	150
1:22PM 6.35 0 24.8 8.73 17.17 0 0 11 13.08 100 1 1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	
1:23PM 6.34 0 24.1 8.92 16.7 0 0 12 200 1 1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	100
1:24PM 6.33 0 24.6 9.09 16.38 0 0 13 300 1	100
	100
1:25PM Collect sample: 3 VOC vials, 1 bottle	100
Sampling Location: PZ-6	
	Imping
	(ml/min)
	nl/min)
12:45PM 6.62 0 0.8 8.66 18.76 0 0 -4 7.73	,
12:46PM 6.58 0 2.2 8.83 18.43 0 0 -1	
12:47PM 6.59 0 1.3 9.02 17.75 0 0 -1	
12:48PM 6.61 0 0.3 9.11 17.5 0 0 -1	
	200
12:51PM Collect sample: 3 VOC vials, 1 bottle	
Note: Condutivity sensor was not working on rental Horiba water quality meter.	

Table 4A

Summary of Measured and Estimated Concentrations in Groundwater Samples from Table 1 Laboaratory Analyses Provuded by Envirotest Laboratories, Newburgh, NY Balchem Corporation Facility at 2007 Route 284, Slate Hill, NY 10973 Groundwater Sampling Event: May 9, 2011 Prepared by William L. Going & Associates, Inc. in August 2011 Report

NYS Ambient ▼Analyte/ Parameter Water Quality Sampling Point ► Standards (s) and PZ-6 PZ-7 MW-4S Sump Trip Blank Sampling Date ► Guidance Values (g) 5/9/11 5/9/11 5/9/11 5/9/11 5/9/11 Laboratory ID No ► 420-43563-1 420-43563-2 420-43563-3 420-43563-4 420-43563-5 ug/L VOCs 1,2 Dichloroethane 5 s ND ND ND 3.6 J ND ND ND 2-Butanone 50 g ND 2.9 ND Acetone 50 g ND 4 ND 2.2 ND ND 200 ND ND ND Benzene 1 s 1.7 3.3 3.2 ND ND cis-1,2 Dichloroethene 5 s ND Ethylbenzene 5 s ND 0.18 J ND ND Toluene 5 s 0.24 J 0.38 J ND ND ND Trichloroethene 0.57 J ND ND 5 s ND 0.65 J Vinyl Chloride ND ND ND ND 2 s 1.5 Xylenes (total) ND 0.51 J ND ND 5 s ND Metal Lead 25 s 21 52 14 ND NA Notes: J = estimated values, ND = not detected at method detection limit, NA = not analyzed,

Trip Blank is analyzed only for VOCs.

Table 4B

Comments Relative to Laboratory Analyses Report listed above in Table 4A All units of measurements for analytes and standarda are measured in ug/L. Balchem Corporation Facility at 2007 Route 284, Slate Hill, NY 10973 Groundwater Sampling Event: May 9, 2011 Prepared by William L. Going & Associates, Inc. in August 2011 Report

VOCs										
Benzene	In PZ-7, benzene detected at 200 exceeding standard of 1.									
	Slightly below the average of 210 for the previous 6 detections in PZ-7.									
1,2 Dichloroethane	Not in the original analyte list of 9 chemicals of concern.									
	In PZ-7 estimated detection at 3.6 J below the standard of 5.									
2-Butanone										
Ethylbenzene	Only detected in PZ-7, all 3 analytes are estimated at least one order of magnitude below standards									
Xylenes (total)										
Acetone	In PZ-7 & Sump, detected at one order of magnitude below standard.									
cis-1,2 Dichloroethene	In PZ-6, PZ-7, MW-4S; detections below standard.									
Toluene	In PZ-6 and PZ-7, estimated detections at one order of magnitude below standard.									
Trichloroethene	In PZ-6 & Sump, estimated detections at one order of magnitude below standard.									
Vinyl Chloride	Not in the original analyte list of 9 chemicals of concern.									
	In PZ-6, detected below standard.									
Metal										
Lead	In PZ-7, lead detected at 52 exceeding standard of 25.									
	In PZ-6, MW-4S, detections below standard. Not detected previously in the Sump.									

	1/1/untuen an 1/440 100 1018	TIME CUSTODY INTACT Cooler Temp: LABORATORY REMARKS: ICE (YX N) pH CL2	* Extra sample for MS/MSD; Category B Report; EDD		Horney 5/9/11 132	Mun Mangerberg. 5/9/11 1/4: 20 RECEIVED BY: (SIGNATURE)	-Field Blank	Y 7/// r/r Inp Blank Y 2 2 Image: State of the state of	S/7/4 (M, Sump V 4 3 1 1 1	5/9/1/ 12 9 3	5/9/11 (M/3PZ-7 V 4 3 1 1	$\frac{5}{9}/ii$ /M ₂₃ PZ-6 / 4 3 1 1	TIME SAMPLE IDENTIFICATION	ous (w	C) OR C C) OR C MICEN OF MICENCIAL STREET	250ml 250ml F Dml Pla	valer) // of C/ 40r Liter Plastic stic S stic S	ontain Ambe ber Su Liter A Liter P Liter P odium astic S	Debra Bayer MRO-REG-12 INNO Inters s HCL Infuric Acid Instic			Inc. Lab Name	EnviroTest
REPORT# (Lab Us TURNAROUND TURNAROUND NORMAL REPORT: Categor VERBAL VERBAL VERBAL VOA 8260B, Lead 6010 VOA 8260B Lead 6010 TOA 8260B TIME TIME TIME		말		COMPANY DATE	COMPANY	COMPANY DATE			VOA 8260B, Lead 6010	VOA 8260B, Lead 6010			JBMITTED		_	imi Pla	stic S ml Pl	Liter P odium astic S plain p	lastic Hyd. sterile	NALYSES	845-562-0890		

4

Appendix A

Form 1: Chain of Custody

ChemWorld Environmental, Inc.

14 Orchard Way North, Rockville, MD 20854 301-294-6144 Phone and Fax

July 22, 2011

Ms. Debra Bayer Customer Service Manager EnviroTest Laboratories, Inc. 315 Fullerton Avenue Newburgh, New York 12550

RE: Data Usability Summary Report (DUSR) Balchem Project Laboratory: EnviroTest Laboratories, Inc., Newburgh, New York Lab Job No. 420-43563-1 Water Samples Analyses for Volatile Organics and Inorganics (Lead, only)

Dear Ms. Bayer:

Data Usability Summary Report (DUSR) technical services were performed by ChemWorld Environmental, Inc. for the Balchem Project for the water sampling event of May 9, 2011. The DUSR review was performed in accordance with United States Environmental Protection Agency (USEPA) Region II data validation guidelines and New York State Department of Environmental Conservation (NYSDEC) Analytical Service Protocols (ASP) requirements, where applicable.

The analytical data from Lab Job No. 420-43563-1 was reviewed (screened) for the parameters noted. The data screening consisted of a review of the Quality Control (QC) Summary Forms and a brief review of various chromatograms and quantitation reports. The QC Forms were reviewed to determine whether any data required qualification based upon QC deviations noted on the Forms. The associated Analytical Data Result Forms are included as Attachment A. These Forms include data qualifiers as described within this letter report. Unless otherwise noted, all results included on the Forms are considered usable, based upon the DUSR review items noted below. Attachment B includes copies of the associated Case Narratives and the Chain-of-Custody forms.

The DUSR review items include the following, as method appropriate:

- Completeness of Data Package
- Chain-of-Custody Review
- Holding Times from Verified Time of Sample Receipt (VTSR)
- Surrogate Recovery
- GC/MS Instrument Performance Check
- Initial and Continuing Calibration
- Matrix Spike / Matrix Spike Duplicates (MS/MSD)
- Matrix Spike Blanks (MSB)
- Internal Standards
- Method and Field Blanks
- Contract Required Detection Limit (CRDL) Standards for ICP
- Laboratory Duplicate Samples
- Laboratory Control Samples (LCS)
- ICP Interference Check
- ICP Serial Dilution

The QC Summary Forms included various deviations based upon the acceptable limits for quality control. The following should be noted regarding qualification of the data set for the review items above.

Volatiles - Water, Lab Job No. 420-43563-1

Initial Calibration: One initial calibration analyzed on 04/14/2011 generated Average Response Factors (AvgRF) for Chloromethane and Bromomethane at less than the 0.05 limit. The AvgRF's were generated at 0.037 and 0.044, respectively. The associated samples were qualified as 'UJ', estimated, for the non-detectable results for these compounds. Positive results were not detected for either Volatile compound affected..

Continuing Calibration: The continuing calibration analyzed on 05/12/2011 at 10:21 generated Relative Response Factors (RRFs) at less than the 0.05 limit for Chloromethane and Bromomethane. The RRFs were generated at 0.033 and 0.040, respectively. The associated samples were previously qualified as 'UJ', estimated, through the Initial Calibration above. Additional qualification is not required for these compounds.

Inorganics (Lead, only) - Water, Lab Job No. 420-43563-1

Qualification of the data set for Lead, only, was not required. The associated quality control information was found to be generated within acceptable limits.

Please contact me by telephone or Fax at 301-294-6144, or email should you require additional information or clarification regarding this Letter Report.

Sincerely,

andre P. Schnessler

Andrea P. Schuessler, CHMM

c: ET-2011.1

ORGANIC DATA QUALIFIERS

- Indicates that the compound was analyzed for, but not detected at or above the Contract Required **U** -Quantitation Limit (CRQL), or the compound is not detected due to qualification through the method or field blank.
- The associated numerical value is an estimated quantity. J -
- JN Tentatively identified with approximated concentrations (Volatile and Semi-Volatile Organics). Presumptively present at an approximated quantity (Pesticides/PCBs).
- UJ The compound was analyzed for, but not detected. The sample quantitation limit is an estimated quantity due to variance from quality control limits.
- Applies to Pesticide results where the identification has been confirmed by GC/MS. С-
- Reported value is estimated due to quantitation above the calibration range. E -
- Reported result taken from diluted sample analysis. **D** -
- A -Aldol condensation product.
- Reported value is unusable and rejected due to variance from quality control limits. R -
- NA Not Analyzed.

ChemWorld Environmental, Inc. 14 Orchard Way North, Rockville MD 20854

Tel & Fax 301-294-6144

INORGANIC DATA QUALIFIERS

- Indicates analyte not detected at or above the Contract Required Detection Limit (CRDL), or the **U** compound is not detected due to qualification through the method or field blank.
- Indicates analyte result is between Instrument Detection Limit (IDL) and CRDL. В-
- The reported value is estimated due to variance from quality control limits. J -
- UJ The element was analyzed for, but not detected. The sample quantitation limit is an estimate due to variance from quality control limits.
- Reported value is estimated because of the presence of interference. E -
- Reported value is unusable and rejected due to variance from quality control limits. **R** -

NA - Not analyzed.

ChemWorld Environmental, Inc. 14 Orchard Way North, Rockville MD 20854 Tel & Fax 301-294-6144

ATTACHMENT A

ς.

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-6	Project:	Balchem Corporation				
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1				
SDG No.:							
Matrix:	Water	Lab Sample ID:	420-43563-1				
Analysis Method:	8260B	Lab File ID:	V051206.D				
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40				
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45				
% Moisture:		Dilution Factor:	1				
GC Column/ID:		Soil Aliquot:					
Soil Extract Vol.:		Units:	ug/L				
Analy. Batch No.:	46954						

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	Ū.	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	U	1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UJ	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	UJ	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.7		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	Ū	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

FORM I 8260B

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-6	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:	·		
Matrix:	Water	Lab Sample ID:	420-43563-1
Analysis Method:	8260B	Lab File ID:	V051206.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	Ū	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.5		1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	0.57	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.24	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051207.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	3.6		1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	4.0		1.0	0.27
71-43-2	Benzene	180	Е	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	17	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	UT	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.3		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	υ	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	0.18	J	1.0	0,13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	2.9		1.0	0.070

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051207.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy, Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	0.51	J	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.38	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7 DL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	10	U	10	1.9
79-34-5	1,1,2,2-Tetrachloroethane	10	υ	10	1.8
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U	10	1.9
79-00-5	1,1,2-Trichloroethane	10	U	10	2.2
75-34-3	1,1-Dichloroethane	10	U	10	1.1
75-35-4	1,1-Dichloroethene	10	U	10	1.2
120-82-1	1,2,4-Trichlorobenzene	10	U	10	1.7
96-12-8	1,2-Dibromo-3-Chloropropane	50	U	50	1.8
95-50-1	1,2-Dichlorobenzene	10	Ũ	10	1.8
107-06-2	1,2-Dichloroethane	4.5	JD	10	1.0
78-87-5	1,2-Dichloropropane	10	U	10	1.7
541-73-1	1,3-Dichlorobenzene	10	U	10	1.5
106-46-7	1,4-Dichlorobenzene	10	Ŭ	10	1.7
591-78-6	2-Hexanone	10	U	10	1.8
67-64-1	Acetone	10	Ŭ	10	2.7
71-43-2	Benzene	200	D) 10	1.2
75-25-2	Bromoform	10	Ũ	10	1.7
74-83-9	Bromomethane	10	ŬΤ	10	1.0
75-15-0	Carbon disulfide	10	U	10	1.4
56-23-5	Carbon tetrachloride	10	U	10	1.5
108-90-7	Chlorobenzene	10	U	10	1.6
124-48-1	Dibromochloromethane	10	U	10	0.80
75-00-3	Chloroethane	10	U	10	2.1
67-66-3	Chloroform	10	U	10	1.4
74-87-3	Chloromethane	10	UJ	10	1.4
156-59-2	cis-1,2-Dichloroethene	3.7	JD	10	1.4
10061-01-5	cis-1,3-Dichloropropene	10	U	10	1.0
75-27-4	Bromodichloromethane	10	U	10	1.6
75-71-8	Dichlorodifluoromethane	10	υ	10	1.6
100-41-4	Ethylbenzene	10	U	10	1.3
98-82-8	Isopropylbenzene	10	U	10	1.0

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7 DL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	••••••••••••••••••••••••••••••••••••••
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	10	σ	10	1.5
1634-04-4	Methyl tert-butyl ether	10	U	10	0.80
75-09-2	Methylene Chloride	10	U	10	1.1
100-42-5	Styrene	10	U	10	1.2
1330-20-7	Xylenes, Total	10	U	10	3.4
75-01-4	Vinyl chloride	10	υ	10	1.5
75-69-4	Trichlorofluoromethane	10	U	10	1.3
79-01-6	Trichloroethene	10	U	10	0.90
10061-02-6	trans-1, 3-Dichloropropene	10	υ	10	0.70
156-60-5	trans-1,2-Dichloroethene	10	ΰ	10	1.4
108-88-3	Toluene	10	U	10	1.2
127-18-4	Tetrachloroethene	10	υ	10	2.4
106-93-4	1,2-Dibromoethane	10	U	10	1.7

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	MW4S	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3
Analysis Method:	8260B	Lab File ID:	V051208.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12
8 Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	Ū	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	Ū	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	Ū	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	U	1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UT	1.0	0.10
75-15-0	Carbon disulfide	1.0	UU	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0,15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	υJ	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.2		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0,16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0,16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

FORM I 8260B

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	MW4S	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-3		
Analysis Method:	8260B	Lab File ID:	V051208.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:	••••••••••••••••••••••••••••••••••••••	Units:	ug/L		
Analy. Batch No.:	46954				

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	Ū	1.0	0.12
1330-20-7	Xylenes, Total	1.0	υ	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	σ	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1, 3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

,

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	SUMP	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-4		
Analysis Method:	8260B	Lab File ID:	V051209.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48		
% Moisture:		Dilution Factor:	1		
GC Column/ID:		Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ŭ	1.0	0,18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	Û,	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	σ	1.0	0.18
67-64-1	Acetone	2.2		1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UJ	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	Ū	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	\mathcal{I}^{U}	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane .	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	Ŭ	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

.

Client Sample ID:	SUMP	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-4
Analysis Method:	8260B	Lab File ID:	V051209.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	υ	1.0	0,080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	0.65	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Trip Blank	Project:	Balchem Corporation
EnviroTest Laboratories,	Job No.:	420-43563-1
		n - Paral Reinwyn yn dd a hynn y far yn yn d
Water	Lab Sample ID:	420-43563-5
8260B	Lab File ID:	V051210.D
5 (mL)	Date Received:	05/09/2011 14:40
Low	Date Analyzed:	05/12/2011 15:24
	Dilution Factor:	1
	Soil Aliquot:	
	Units:	ug/L
46954		
	EnviroTest Laboratories, Water 8260B 5 (mL) Low	EnviroTest Laboratories, Job No.: Water Lab Sample ID: 8260B Lab File ID: 5 (mL) Date Received: Low Date Analyzed: Dilution Factor: Soil Aliquot: Units:

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene .	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
591-78-6	2-Hexanone	1.0	U	1.0	1.0
67-64-1	Acetone	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	υ	1.0	1.0
74-83-9	Bromomethane	1.0	υJ	1.0	1.0
75-15-0	Carbon disulfide	1.0	<u> </u>	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	UT	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	υ	1.0	1.0
75-27-4	Bromodichloromethane	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1,0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0	U	1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	0	1.0	1.0

1 ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	Trip Blank	Project:	Balchem Corporation		
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1		
SDG No.:					
Matrix:	Water	Lab Sample ID:	420-43563-5		
Analysis Method:	8260B	Lab File ID:	V051210.D		
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40		
Level: (low/med)	Low	Date Analyzed:	05/12/2011 15:24		
<pre>% Moisture:</pre>		Dilution Factor:	1		
GC Column/ID:	4	Soil Aliquot:			
Soil Extract Vol.:		Units:	ug/L		
Analy. Batch No.:	46954				

CAS No. Compound Name		Result	Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0

FORM I 8260B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID;	P2-6			Lab Sample II	420-	43563-1			
Lab Name:	Envirolest Laborat	tories, Inc.		Job No.:	420-	43563-1			
SDG ID.;									
Matrix:	Water			Date Sampled:	05/0	9/2011	13:00		
Reporting Basis:	WET			Date Received	i: 05/0	9/2011	14:40		
<pre>% Solids:</pre>									
CAS No.	Analyte	Conc.	RL		Units	c	Q	DIL	Method

ug/L

5.0

.

21

6010B

| 1

7439-92-1

Pb

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID:	?7-7	Lab Sample ID:	420-43563-2
Lab Name:	EnviroTest Laboratories, Inc.	Job No.:	420-43563-1
50G 12.:			
Matrix:	Water	Date Sampled:	05/09/2011 12:30
Reporting Basis:	WET .	Date Received:	05/09/2011 14:40
* Solids:			

CAS NO.	Anal <u>yte</u>	Conc.	RL	Units	c	Q	DIL	Method
7439-92-1	₽b	52	5.0	 ug/L			1	6010B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample 3D:	MW43	Lab Sample ID:	420-43563-3				
Lab Name:	EnviroTest Laboratories, Inc.	Job No.:	420-43563-1				
3DG ID.:							
Matrix:	Water	Date Sampled:	05/39/2011 11:30				
Reporting Basis:	WET	Date Received:	05/09/2011 14:40				
<pre>% Solids:</pre>							
	······································		Inita C O DIL Method				

.

.

.

CAS No.	Analyte	Cond.	RL	 Units	¢	Q	DIL	Method
7439-92-1	Pb	14	5.0	1975 ag/5			1	6010B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID:	SUMP	Lab Sampla ID:	420-43563-4
Lab Name:	EnviroTest Laboratories, Inc.	Job No.:	420-43562-1
SDG ID.:			
Matrix:	Nates	Date Sampled:	05/09/2011 13:30
Reporting Basis:	WED	Date Received:	
<pre>§ Solids:</pre>			

CAS No.	Analyte	Conc.	- RL	Units	C	0	DIL	Method
7439-92-1		5.0	5.0		IJ		1	6010B

ATTACHMENT B

Job Narrative 420-J43563-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOA

The following sample was diluted due to compounds over the linear calibration range. PZ-7DL (420-43563-2DL)

Metals

No analytical or quality issues were noted.

VOA Prep No analytical or quality issues were noted.

SAMPLE SUMMARY

Client: Balchem Corporation

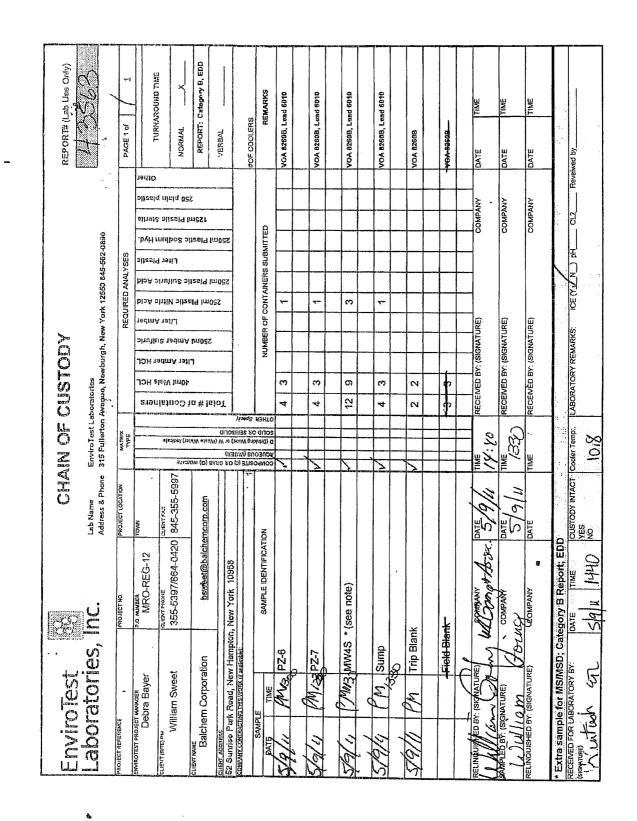
٩.

Job Number: 420-43563-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-43563-1	PZ-6	Water	05/09/2011 1300	05/09/2011 1440
420-43563-2	PZ-7	Water	05/09/2011 1230	05/09/2011 1440
420-43563-3	MW4S	Water	05/09/2011 1130	05/09/2011 1440
420-43563-4	SUMP	Water	05/09/2011 1330	05/09/2011 1440
420-43563-5	Trip Blank	Water	05/09/2011 0000	05/09/2011 1440

EnviroTest Laboratories, Inc.

METHOD SUMMARY


Client: Balchem Corporation

Job Number: 420-43563-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Inductively Coupled Plasma - Atomic Emission Spectrometry	EnvTest	SW846 6010B	
Acid Digestion of Aqueous Samples and Extracts for	EnvTest		SW846 3010A
Volatile Organic Compounds by GC/MS	EnvTest	SW846 8260B	
Purge-and-Trap	EnvTest		SW846 5030B
Lab References:			
EnvTest = EnviroTest			

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And its Updates.

•

Þ

APPENDIX C

July 22, 2011

Ms. Debra Bayer Customer Service Manager EnviroTest Laboratories, Inc. 315 Fullerton Avenue Newburgh, New York 12550

RE: Data Usability Summary Report (DUSR)

Balchem Project Laboratory: EnviroTest Laboratories, Inc., Newburgh, New York Lab Job No. 420-43563-1 Water Samples Analyses for Volatile Organics and Inorganics (Lead, only)

Dear Ms. Bayer:

Data Usability Summary Report (DUSR) technical services were performed by ChemWorld Environmental, Inc. for the Balchem Project for the water sampling event of May 9, 2011. The DUSR review was performed in accordance with United States Environmental Protection Agency (USEPA) Region II data validation guidelines and New York State Department of Environmental Conservation (NYSDEC) Analytical Service Protocols (ASP) requirements, where applicable.

The analytical data from Lab Job No. 420-43563-1 was reviewed (screened) for the parameters noted. The data screening consisted of a review of the Quality Control (QC) Summary Forms and a brief review of various chromatograms and quantitation reports. The QC Forms were reviewed to determine whether any data required qualification based upon QC deviations noted on the Forms. The associated Analytical Data Result Forms are included as Attachment A. These Forms include data qualifiers as described within this letter report. Unless otherwise noted, all results included on the Forms are considered usable, based upon the DUSR review items noted below. Attachment B includes copies of the associated Case Narratives and the Chain-of-Custody forms.

The DUSR review items include the following, as method appropriate:

- Completeness of Data Package
- Chain-of-Custody Review
- Holding Times from Verified Time of Sample Receipt (VTSR)
- Surrogate Recovery
- GC/MS Instrument Performance Check
- Initial and Continuing Calibration
- Matrix Spike / Matrix Spike Duplicates (MS/MSD)
- Matrix Spike Blanks (MSB)
- Internal Standards
- Method and Field Blanks
- Contract Required Detection Limit (CRDL) Standards for ICP
- Laboratory Duplicate Samples
- Laboratory Control Samples (LCS)
- ICP Interference Check
- ICP Serial Dilution

The QC Summary Forms included various deviations based upon the acceptable limits for quality control. The following should be noted regarding qualification of the data set for the review items above.

Volatiles - Water, Lab Job No. 420-43563-1

Initial Calibration: One initial calibration analyzed on 04/14/2011 generated Average Response Factors (AvgRF) for Chloromethane and Bromomethane at less than the 0.05 limit. The AvgRF's were generated at 0.037 and 0.044, respectively. The associated samples were qualified as 'UJ', estimated, for the non-detectable results for these compounds. Positive results were not detected for either Volatile compound affected..

Continuing Calibration: The continuing calibration analyzed on 05/12/2011 at 10:21 generated Relative Response Factors (RRFs) at less than the 0.05 limit for Chloromethane and Bromomethane. The RRFs were generated at 0.033 and 0.040, respectively. The associated samples were previously qualified as 'UJ', estimated, through the Initial Calibration above. Additional qualification is not required for these compounds.

Inorganics (Lead, only) - Water, Lab Job No. 420-43563-1

Qualification of the data set for Lead, only, was not required. The associated quality control information was found to be generated within acceptable limits.

Please contact me by telephone or Fax at 301-294-6144, or email should you require additional information or clarification regarding this Letter Report.

Sincerely,

andread Schnessler

Andrea P. Schuessler, CHMM

c: ET-2011.1

ORGANIC DATA QUALIFIERS

- U Indicates that the compound was analyzed for, but not detected at or above the Contract Required Quantitation Limit (CRQL), or the compound is not detected due to qualification through the method or field blank.
- J The associated numerical value is an estimated quantity.
- JN Tentatively identified with approximated concentrations (Volatile and Semi-Volatile Organics). Presumptively present at an approximated quantity (Pesticides/PCBs).
- UJ The compound was analyzed for, but not detected. The sample quantitation limit is an estimated quantity due to variance from quality control limits.
- C Applies to Pesticide results where the identification has been confirmed by GC/MS.
- **E** Reported value is estimated due to quantitation above the calibration range.
- **D** Reported result taken from diluted sample analysis.
- A Aldol condensation product.
- **R** Reported value is unusable and rejected due to variance from quality control limits.
- NA Not Analyzed.

ChemWorld Environmental, Inc.

14 Orchard Way North, Rockville MD 20854 Tel & Fax 301-294-6144

INORGANIC DATA QUALIFIERS

- **U** Indicates analyte not detected at or above the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- **B** Indicates analyte result is between Instrument Detection Limit (IDL) and CRDL.
- J The reported value is estimated due to variance from quality control limits.
- UJ The element was analyzed for, but not detected. The sample quantitation limit is an estimate due to variance from quality control limits.
- E Reported value is estimated because of the presence of interference.
- **R** Reported value is unusable and rejected due to variance from quality control limits.

NA - Not analyzed.

ChemWorld Environmental, Inc.

ATTACHMENT A

•

Client Sample ID:	PZ-6	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-1
Analysis Method:	8260B	Lab File ID:	V051206.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	Ū,	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	Ū	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	υ	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	υ	1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UJ	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	UT	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.7		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

Client Sample ID:	PZ-6	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:	-		
Matrix:	Water	Lab Sample ID:	420-43563-1
Analysis Method:	8260B	Lab File ID:	V051206.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 12:45
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	υ	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1,0	0.11
100-42-5	Styrene	1.0	Ū	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.5		1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	σ	1.0	0.13
79-01-6	Trichloroethene	0.57	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.24	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	υ	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	PZ-7	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051207.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	υ	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0,17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	3.6		1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	4.0		1.0	0.27
71-43-2	Benzene	180	Е	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UJ	1.0	0.10
75-15-0	Carbon disulfide	1.0	U	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	Ü	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	TU	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.3		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	Ū	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	0.18	J	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	2.9	,	1.0	0.070

Client Sample ID:	PZ-7	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.;	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051207.D
Sample wt/vol:	<u>5 (mL)</u>	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 13:36
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:	- The second	Units:	ug/L
Analy, Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	0.51	J	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	0.38	J	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

.

Client Sample ID:	PZ-7 DL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	10	U	10	1.9
79-34-5	1,1,2,2-Tetrachloroethane	10	U	10	1.8
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	U	10	1.9
79-00-5	1,1,2-Trichloroethane	10	U	10	2.2
75-34-3	1,1-Dichloroethane	10	U	10	1.1
75-35-4	1,1-Dichloroethene	10	U	10	1.2
120-82-1	1,2,4-Trichlorobenzene	10	U	10	1.7
96-12-8	1,2-Dibromo-3-Chloropropane	50	U	50	1.8
95-50-1	1,2-Dichlorobenzene	10	Ū	10	1.8
107-06-2	1,2-Dichloroethane	4.5	JD	10	1.0
78-87-5	1,2-Dichloropropane	10	U	10	1.7
541-73-1	1,3-Dichlorobenzene	10	U	10	1.5
106-46-7	1,4-Dichlorobenzene	10	ũ	10	1.7
591-78-6	2-Hexanone	10	U	10	1.8
67-64-1	Acetone	10	Ŭ	10	2.7
71-43-2	Benzene	200	D) 10	1.2
75-25-2	Bromoform	10	U	10	1.7
74-83-9	Bromomethane	10	UΤ	10	1.0
75-15-0	Carbon disulfide	10	U	10	1.4
56-23-5	Carbon tetrachloride	10	U	10	1.5
108-90-7	Chlorobenzene	10	U	10	1.6
124-48-1	Dibromochloromethane	10	U	10	0.80
75-00-3	Chloroethane	10	U	10	2.1
67-66-3	Chloroform	10	U	10	1.4
74-87-3	Chloromethane	10	UJ	10	1.4
156-59-2	cis-1,2-Dichloroethene	3.7	JD	10	1.4
10061-01-5	cis-1,3-Dichloropropene	10	U	10	1.0
75-27-4	Bromodichloromethane	10	υ	10	1.6
75-71-8	Dichlorodifluoromethane	10	U	10	1.6
100-41-4	Ethylbenzene	10	σ	10	1.3
98-82-8	Isopropylbenzene	10	U	10	1.0
78-93-3	2-Butanone (MEK)	10	U	10	0.70

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

.

Client Sample ID:	PZ-7 DL	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-2
Analysis Method:	8260B	Lab File ID:	V051211.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 16:00
% Moisture:		Dilution Factor:	10
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	1.5
1634-04-4	Methyl tert-butyl ether	10	U	10	0.80
75-09-2	Methylene Chloride	10	U	10	1.1
100-42-5	Styrene	10	Ų	10	1.2
1330-20-7	Xylenes, Total	10	U	10	3.4
75-01-4	Vinyl chloride	10	υ	10	1.5
75-69-4	Trichlorofluoromethane	10	U	10	1.3
79-01-6	Trichloroethene	10	U	10	0.90
10061-02-6	trans-1,3-Dichloropropene	10	U	10	0.70
156-60-5	trans-1,2-Dichloroethene	10	U	10	1.4
108-88-3	Toluene	10	U	10	1.2
127-18-4	Tetrachloroethene	10	ΰ	10	2.4
106-93-4	1,2-Dibromoethane	10	U	10	1.7

· ·

Client Sample ID:	MW4S	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.;			
Matrix:	Water	Lab Sample ID:	420-43563-3
Analysis Method:	8260B	Lab File ID:	V051208.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12
8 Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0,18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	0	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	Ū	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	U	1.0	0.18
67-64-1	Acetone	1.0	U	1.0	0.27
71-43-2	Benzene	1.0	Ü	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UT	1.0	0.10
75-15-0	Carbon disulfide	1.0	UU	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	UJ	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	3.2		1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.10
75-27-4	Bromodichloromethane	1.0	Ū	1.0	0,16
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.16
100-41-4	Ethylbenzene	1.0	Ű	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

FORM I 8260B

Client Sample ID:	MW4S	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-3
Analysis Method:	8260B	Lab File ID:	V051208.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:12
% Moisture:	-	Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	σ	1.0	0.12
1330-20-7	Xylenes, Total	1.0	υ	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	1.0	U	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	υ	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

.

Client Sample ID:	SUMP	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			атипнист
Matrix:	Water	Lab Sample ID:	420-43563-4
Analysis Method:	8260B	Lab File ID:	V051209.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.19
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.19
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.22
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.11
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.12
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	0.18
95-50-1	1,2-Dichlorobenzene	1.0	Ū,	1.0	0.18
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.10
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.17
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.17
591-78-6	2-Hexanone	1.0	σ	1.0	0.18
67-64-1	Acetone	2.2		1.0	0.27
71-43-2	Benzene	1.0	U	1.0	0.12
75-25-2	Bromoform	1.0	U	1.0	0.17
74-83-9	Bromomethane	1.0	UJ	1.0	0.10
75-15-0	Carbon disulfide	1.0	Ų	1.0	0.14
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.16
124-48-1	Dibromochloromethane	1.0	U	1.0	0.080
75-00-3	Chloroethane	1.0	U	1.0	0.21
67-66-3	Chloroform	1.0	U	1.0	0.14
74-87-3	Chloromethane	1.0	L n	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.14
10061-01-5	cis-1,3-Dichloropropene	1.0	υ	1.0	0.10
75-27-4	Bromodichloromethane	1.0	U	1.0	0.16
75-71-8	Dichlorodifluoromethane	1.0	υ	1.0	0.16
100-41-4	Ethylbenzene	1.0	U	1.0	0.13
98-82-8	Isopropylbenzene	1.0	U	1.0	0.10
78-93-3	2-Butanone (MEK)	1.0	U	1.0	0.070

.

Client Sample ID:	SUMP	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-4
Analysis Method:	8260B	Lab File ID:	V051209.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 14:48
<pre>% Moisture:</pre>		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	,
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	MDL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	0.15
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.080
75-09-2	Methylene Chloride	1.0	U	1.0	0.11
100-42-5	Styrene	1.0	U	1.0	0.12
1330-20-7	Xylenes, Total	1.0	U	1.0	0.34
75-01-4	Vinyl chloride	1.0	U	1.0	0.15
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.13
79-01-6	Trichloroethene	0.65	J	1.0	0.090
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.070
156-60-5	trans-1,2-Dichloroethene	1,0	U	1.0	0.14
108-88-3	Toluene	1.0	U	1.0	0.12
127-18-4	Tetrachloroethene	1.0	U	1.0	0.24
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.17

Client Sample ID:	Trip Blank	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			. With the design of the desig
Matrix:	Water ,	Lab Sample ID:	420-43563-5
Analysis Method:	8260B	Lab File ID:	V051210.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 15:24
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	Compound Name	Result	Q	RL	RL
71-55-6	1,1,1-Trichloroethane	1.0	υ	1.0	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	1.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	1.0
75-34-3	1,1-Dichloroethane	1.0	U	1.0	1.0
75-35-4	1,1-Dichloroethene	1.0	U	1.0	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	σ	1.0	1.0
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	5.0	5.0
95-50-1	1,2-Dichlorobenzene	1.0	υ	1.0	1.0
107-06-2	1,2-Dichloroethane	1.0	U	1.0	1.0
78-87-5	1,2-Dichloropropane	1.0	U	1.0	1,0
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	1.0
591-78-6	2-Hexanone	1.0	U	1.0	1.0
67-64-1	Acetone	1.0	U	1.0	1.0
71-43-2	Benzene	1.0	U	1.0	1.0
75-25-2	Bromoform	1.0	U	1.0	1.0
74-83-9	Bromomethane	1.0	υŢ	1.0	1.0
75-15-0	Carbon disulfide	1.0	<u> </u>	1.0	1.0
56-23-5	Carbon tetrachloride	1.0	U	1.0	1.0
108-90-7	Chlorobenzene	1.0	U	1.0	1.0
124-48-1	Dibromochloromethane	1.0	U	1.0	1.0
75-00-3	Chloroethane	1.0	U	1.0	1.0
67-66-3	Chloroform	1.0	U	1.0	1.0
74-87-3	Chloromethane	1.0	UJ	1.0	1.0
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	1.0	U	1,0	1.0
100-41-4	Ethylbenzene	1.0	U	1.0	1.0
98-82-8	Isopropylbenzene	1.0		1.0	1.0
78-93-3	2-Butanone (MEK)	1.0	U	1.0	1.0

1

ORGANIC ANALYSIS DATA SHEET VOLATILE ORGANIC COMPOUNDS BY GC/MS

Client Sample ID:	Trip Blank	Project:	Balchem Corporation
Lab Name:	EnviroTest Laboratories,	Job No.:	420-43563-1
SDG No.:			
Matrix:	Water	Lab Sample ID:	420-43563-5
Analysis Method:	8260B	Lab File ID:	V051210.D
Sample wt/vol:	5 (mL)	Date Received:	05/09/2011 14:40
Level: (low/med)	Low	Date Analyzed:	05/12/2011 15:24
% Moisture:		Dilution Factor:	1
GC Column/ID:		Soil Aliquot:	
Soil Extract Vol.:		Units:	ug/L
Analy. Batch No.:	46954		

CAS No.	CAS No. Compound Name		Q	RL	RL
108-10-1	4-Methyl-2-pentanone (MIBK)	1.0	υ	1.0	1.0
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	1.0
75-09-2	Methylene Chloride	1.0	U	1.0	1.0
100-42-5	Styrene	1.0	U	1.0	1.0
1330-20-7	Xylenes, Total	1.0	U	1.0	1.0
75-01-4	Vinyl chloride	1.0	U	1.0	1.0
75-69-4	Trichlorofluoromethane	1.0	U	1.0	1.0
79-01-6	Trichloroethene	1.0	U	1.0	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	1.0
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	1.0
108-88-3	Toluene	1.0	U	1.0	1.0
127-18-4	Tetrachloroethene	1.0	U	1.0	1.0
106-93-4	1,2-Dibromoethane	1.0	U	1.0	1.0
	1	l		1	

lient Sample ID: PZ-6			Lab Sample 10	: 420-	420-43563-1						
Lab Name:	£∩י	Envirolest Laboratories, Inc.			Job No.:	420-	420-43563-1				
SDG ID.:											
Matrix:	Wat	Water WET			Date Sampled:	05/0	05/09/2011 13:00				
Reporting Bas	s: WE				Date Received:	: 05/0	05/09/2011 14:40				
% Solids:											
CAS No.		Analyte	Conc.	RL		Units	c	Q	DIL	Method	
7439-92-1			21	5.0		ug/L	l	[[1	6010B	

.

.

Client Sample ID: 9Z-7 Lab Name: EnviroTest Laboratories, SDG ID.: Matrix: Mater Reporting Basis: WET				Lab Sample ID:		420-43563-2 420-43563-1				
		EnviroTest Laboratories, Inc.			Job No.:					
								· · · · · · · · · · · · · · · · · · ·		
					Date Sampled:	0576	05/09/2011 12:30 			
					Date Received:	0570				
<pre>% Solids:</pre>										
CAS NO.		Analyza	Conc.	RL		Units	c	2	DIL	Method
7439-92-1	 ?b		52	5.0		g/L	<u> </u>	1	1	6010B

.

.

.

Client Sample S	Sample ID: MW4S			Lab Sample ID	: 420-	420-43563-3				
Lab Name:	EnviroTest Lab	EnviroTest Laboratories, Inc.			420-	420-43563-1				
3DG ID.:										
Matrix:	Water	Water 			05/0	05/09/2011 11:30 05/09/2011 14:40				
Reporting Basis	: WET				: 05/0					
š Solids:										
CAS No.	Analyte	Cone.	RL		Units	c	2	DIL	Method	
7439-92-1	Pb	14	5.0		ug75	I	k	1.	6010B	

.

Client Sample	ID: SUMP	SUMP EnviroTest Laboratories; Inc.			: 420	420-43563-4			
Lab Name:	EnviroTea				420	420-43563-1			
SDG ID.:									
Matrix:	Wates	Wates WEC			<u>0</u> 5/	05/09/2011 13:30 			
Reporting Basi	: WET				: 0,57				
<pre>\$ Solids:</pre>	#1174								
CAS NO.	Analyt	e Conc.	· RL		Units	C	Q	DIL	Method
7439-92-1	?b	5.0	5.0		ug/L	ע ו	L	1	6010B

.

ATTACHMENT B

Job Narrative 420-J43563-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

The following sample was diluted due to compounds over the linear calibration range. PZ-7DL (420-43563-2DL)

Metals

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

SAMPLE SUMMARY

Client: Balchem Corporation

٩.

Job Number: 420-43563-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-43563-1	PZ-6	Water	05/09/2011 1300	05/09/2011 1440
420-43563-2	PZ-7	Water	05/09/2011 1230	05/09/2011 1440
420-43563-3	MW4S	Water	05/09/2011 1130	05/09/2011 1440
420-43563-4	SUMP	Water	05/09/2011 1330	05/09/2011 1440
420-43563-5	Trip Blank	Water	05/09/2011 0000	05/09/2011 1440

EnviroTest Laboratories, Inc.

4

METHOD SUMMARY

Client: Balchem Corporation

Job Number: 420-43563-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Inductively Coupled Plasma - Atomic Emission Spectrometry Acid Digestion of Aqueous Samples and Extracts for	EnvTest EnvTest	SW846 6010B	SV/846 3010A
Volatile Organic Compounds by GC/MS Purge-and-Trap	EnvTest EnvTest	SW846 8260B	SW846 5030B
Lab References:			
EnvTest = EnviroTest			

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

EnviroTest Laboratories, Inc.

REPORT: Catogory B, EDD REPORT# (Lab Use Only) 2262 TURNAROUND THE $\overline{\mathbf{v}}$ REMARKS VOA 8260B, Lead 5010 VOA 82508, Land 6010 VOA 82608, Lead 6010 VCA 8250B, Lead 6010 LINE TIME IME #OF COOLERS PAGE 1 of NORMAL VERBAL POA-82505 VOA 5260B Reveiwed by DATE DATE DATE 19/1JO olizeiq niniq Occ COMPANY COMPANY COMPANY 5 eihet? sijzel9 imičst NUMBER OF CONTAINERS SUBMITTED ErviroTest Leboratorios 315 Fullenton Aveguo, Newburgh, New York 12559 845-562-0896 byH mulbog siteel imods ICE (Y. IN DH REQUIRED ANALYSES Direr Plastic bioA ohulius olizai9 imoös bloA olitiki oliteri9 im085 3 ÷. ledinA rest.J RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) LABORATORY REMARKS: CHAIN OF CUSTODY phythe tedniA mods Liter Amber HCL JOH SIGV IMON ŝ ŝ ¢ é N þ þ 2 erenistroo io # leioT 4 d, 4 N IS NEHLC CUSTODY INTACT Cooler Temp.. YES NO 111ME 133 SOLID OR SENISOLID D (Drinking Walk) or W (Neele Weler) Indicele 14:40 MATRIX 10,8 yoneons (myleu) conforte (c) os gung (g) moloste M Lab Name Address & Phone 355-5397/664-0420 845-355-5997 PROJECT LOCATION bsweet@balchemcorp.com б LIENT FAX DATE S ER A NMD DATE SAMPLE IDENTIFICATION Extra sample for MS/MSD; Category B Report; EDD RECEIVED FOR LABORATORY BY: IOATE TTIME IC ある。 P.O. MMBER MRO-REG-12 OHH a 52 Sunrise Park Road, New Hampton, New York 10958 content contractive musicing and added WILDON OF Philds WW4S * (see note) DUNC SUBNT PHONE · COMPANY ROJECT NO aboratories, Inc. 1015 2E9 Field Blank Trip Blank St. Sump 1-20 87/W/ MAS PZ-6 JENT NAME Balchem Corporation URE) RELINDUISHED BY: (SIGNATURE) 5 EnviroTest William Sweet емпотезт Project жимден Debra Bayer d De TIME ED BY: (SIGNATURE) Mad ED BY: (Sig 525 Nutter SAMPLE ROJECT REFERENCE ENT ADDRESS IENT (SITE) PH 2 0 R 10 È Ø

• •

Þ