

January 29, 2019

Wayne Mizerak
Project Manager
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014

RE: PERIODIC REVIEW REPORT FOR BALCHEM PLANT SITE (SITE CODE: 336032), ROUTE 284, WAWAYANDA, NEW YORK (HRP PROJECT #BAL6021.P2)

Dear Mr. Mizerak,

In accordance with your request, outlined in your November 11, 2018 letter to Balchem Corporation, HRP Associates, Inc. dba HRP Engineering, P.C. (HRP) is pleased to submit this Periodic Review Report (PRR) on the status of the remedial activities at the Balchem Site (DEC Site # 336032) conducted during 2018.

Executive Summary and Site Overview:

Site description and History

According to the information available in the Record of Decision, and the NYSDEC site remediation database, The Balchem site (the Site) is included in the New York State Registry of Inactive Hazardous Waste Disposal Sites, with a Classification of 04. The Site is located at 2007 Route 284, in the Town of Wawayanda, Orange County, New York. The site is approximately three acres in size and is located on Route 284 near its intersection with County Road 6. The property is bounded on the northwest by the Middletown and New Jersey Railroad, on the southeast by Route 284, and residential properties on the remaining sides. The property is presently owned and operated by the Balchem Corporation for the production of food additives and the repackaging of ethylene oxide.

Contamination at the site was discovered in 1982 during an excavation for a proposed addition to the site, during the subsequent investigation waste containing drums were removed from the site and soil cleanup objective were met. The Site Record describes onsite geology as:

Regionally, the geology is typically a folded shale or sandstone bedrock overlain by till. The till ranges in depth from 20ft on the ridges to over 150ft in the valleys. Joe Creek, a tributary to the Catlin Creek system, runs along the northwest boundary. In the vicinity of the drum removal, there are three distinct groundwater units: a seasonal perched water table, a weathered till (upper glacial) aquifer, and a fractured bedrock aquifer.

Volatile organic compound (VOC) contamination was discovered in two of the aquifers on site, the seasonal perched water table and the weathered till (upper glacial) aquifer. Under a Site Management Plan, the area is monitored to confirm continued low levels of VOCs.

Compliance with the Site Management Plan (SMP)

The "Groundwater Monitoring Plan, Balchem Corporation, Slate Hill, New York" prepared by Remediation Technologies, Inc., dated November 1996 acts as the SMP for the site. There is only one area of non-compliance with the SMP. The SMP requires that a deed restriction to insure that the property remains an industrial property be in place. An environmental covenant was filed with the Office of the County Clerk, Orange County, New York on April 5, 2017 that restricts the use of the property to commercial or industrial use, prohibits the use of groundwater at the site as a source of drinking water and requires the property owner, and future owners to implement the SMP.

The current deed restriction at the site is not in compliance with the SMP because NYSDEC regulations require review and approval by the NYSDEC prior to the execution of a deed restriction. The current deed restriction was not reviewed or approved by the NYSDEC prior to its execution. Balchem is working with HRP Associates and the NYSDEC to resolve this issue and re-submit the deed restriction. It is anticipated that this will be remedied in 2019.

Recommended changes to the SMP

No changes to the SMP are required or recommended at this time.

Evaluation of Remedy Performance, Effectiveness, and Protectiveness:

The objectives of the selected and implemented remedy at the Site is to protect human health and the environment by eliminating potential exposure by humans or animals to contaminated surface soil, preventing contaminated runoff from entering surface water and monitoring groundwater to ensure that the contaminated groundwater on site does not spread to potential human receptors. These performance, effectiveness and protectiveness goals are being met by the implementation of the SMP.

Engineering controls remain in place to control the direct exposure and surface soil pathways. Groundwater is sampled for contaminants of concern at the site every three years. There was no routine groundwater sampling event during 2018. At the request of the NYSDEC select groundwater monitoring wells were sampled for "Emerging Contaminants". These are chemicals of emerging concern to the NYSDEC and NYSDOH. A report summarizing this sampling event is attached. Additionally, data generated during this sampling event will be uploaded to the NYSDEC Equis Database system.

Overall PRR Conclusions and Recommendations:

Compliance with the SMP

The SMP stipulates that two institutional controls be implemented at the site. The first institutional control is that a sampling plan for groundwater be in place for the Site. Groundwater monitoring is conducted every three years and was not completed during 2018. This is in compliance with the SMP.

The second institutional control is that a deed restriction to insure that the property remains an industrial property be in place. An environmental covenant was filed with the Office of the County Clerk, Orange County, New York on April 5, 2017 that restricts the use of the property to commercial or industrial use, prohibits the use of groundwater at the site as a source of drinking water and requires the property owner, and future owners to implement the SMP. The current deed restriction at the site is not in compliance with the SMP because NYSDEC regulations require review and approval by the NYSDEC prior to the execution of a deed restriction. The current deed restriction was not reviewed or approved by the NYSDEC prior to its execution. Balchem is working with HRP Associates and the NYSDEC to resolve this issue and re-submit the deed restriction. It is anticipated that this will be remedied in 2019.

One Engineering control is stipulated by the SMP; engineering controls at the site consists of the IRM groundwater interceptor trench installed to control a seasonal seep from the perched water table in the drum disposal area. This control remains in place and is functioning as intended.

Performance and Effectiveness of the Remedy

The objectives of the selected and implemented remedy at the Site is to protect human health and the environment by eliminating potential exposure by humans or animals to contaminated surface soil, preventing contaminated runoff from entering surface water and monitoring groundwater to ensure that the contaminated groundwater on site does not spread to potential human receptors.

These performance, effectiveness and protectiveness goals are being met by the implementation of the SMP. Engineering controls remain in place to control the direct exposure and surface soil pathways. Groundwater is sampled for contaminants of concern at the site every three years. It should be noted that, there was no routine groundwater sampling event required during 2018.

Future PRR Submittals

The schedule of PRR submittals should continue unchanged. It should be noted that Balchem is currently evaluating additional remedial measures to address the low levels of groundwater VOC contamination present in the perched aquifer onsite and the potential remaining lead contaminated soil.

If you have any questions or require additional information, please feel free to contact HRP at (518) 877-7101.

Sincerely,

Mark Wright, PG, CHMM Senior Project Geologist

Jesse Zahn, CHMM, PG Regional Office Manager

Attachments

FIGURE

DATE: 5/01/08

DRWN: MAW/BIL

FIGURE 1

ATTACHMENT 1

Emerging Contaminants Sampling Report

December 19, 2018

Wayne D. Mizerak Remedial Bureau C Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7014

RE: REPORT FOR SAMPLING EMERGING CONTAMINANTS AT BALCHEM FACILITY, 2007 ROUTE 284, SLATE HILL, NEW YORK (DEC SITE # 336032) (HRP #BAL6019.P2)

Dear Mr. Mizerak,

In accordance with your request, outlined in your June 7, 2018 letter to Balchem Corporation, HRP Associates, Inc. dba HRP Engineering, P.C. (HRP) is pleased to submit this letter report on the groundwater sampling event, conducted on October 31, 2018 for 1,4-dioxane and per- and polyfluoroalky substances (PFAS) at the Balchem Site (DEC Site # 336032). The sampling event was conducted in accordance with the Letter Work Plan for Sampling Emerging Contaminants for the site, dated August 1, 2018. The remainder of this letter report consists of site background, field activities, and data analysis/compulsions.

Background

The Balchem site is included in the New York State Registry of Inactive Hazardous Waste Disposal Sites, with a Classification of 04. According to the NYSDEC Site Record, Contamination at the site was discovered in 1982 during an excavation for a proposed addition to the site, during the subsequent investigation waste containing drums were removed from the site and soil cleanup objective were met. The Site Record describes onsite geology as:

Regionally, the geology is typically a folded shale or sandstone bedrock overlain by till. The till ranges in depth from 20ft on the ridges to over 150ft in the valleys. Joe Creek, a tributary to the Catlin Creek system, runs along the northwest boundary. In the vicinity of the drum removal, there are three distinct groundwater units: a seasonal perched water table, a weathered till (upper glacial) aquifer, and a fractured bedrock aquifer.

Volatile organic compound (VOC) contamination was discovered in two of the aquifers on site, the seasonal perched water table and the weathered till (upper glacial) aquifer. Under a Site Management Plan, the area is monitored to confirm continued low levels of VOCs.

Based on the sites listing on the New York State Registry of Inactive Hazardous Waste Disposal Sites the DEC requested that sampling for emerging contaminates (1,4-dioxane and PFAS) be completed on a representative group of wells at the site. At the request of Balchem HRP developed a Letter Work Plan for Sampling Emerging Contaminants, dated August 1, 2018. This plan was submitted to the NYSDEC and was approved on September 12, 2018.

Field Activities

To evaluate if 1,4-dioxane and PFAS are present in the onsite groundwater, groundwater was collected from four onsite wells. One upgradient well, one downgradient well set in the seasonal perched water table, one well set in the weathered till aquifer, and a piezometer set in the former drum disposal area. The well IDs and sampling rationale are tabulated below:

Well ID	Aquifer	Sampling Rationale
MW-5D	Weathered till	Well location is upgradient of impacted area onsite,
		serves as a background sample.
MW-6D	Weathered till	Well location is downgradient of impacted area onsite,
		this sample evaluates if 1,4-dioxane and PFAS are
		present in groundwater leaving the site
MW-2	Seasonal perched water	Well location is downgradient of impacted area onsite,
	table	this sample evaluates if 1,4-dioxane and PFAS are
		present in groundwater leaving the site
PZ-7	Seasonal perched water	Well location is downgradient of impacted area onsite,
	table	this sample evaluates if 1,4-dioxane and PFAS are
		present in groundwater onsite

A map showing sample locations is attached as Figure 1.

Sample Collection and Analysis

The four onsite monitoring wells were sampled using USEPA low-flow techniques. During sampling the groundwater was monitored every three minutes for pH, temperature, conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential. These readings were recorded on field sampling sheets which are included as Attachment #1. Once the readings of these parameters remained stable over three consecutive measurements groundwater samples were collected into laboratory-provided containers, labeled, and placed in an iced cooler for shipment to a New York State certified laboratory (Con-Test Laboratory located in Ease Meadow, MA) for analysis.

Due to the low detection limits required and the pervasiveness of PFAS in industrial materials, special precautions were implemented during sampling to prevent false positive results. These precautions included but are not limited to the following:

- Tubing used during sample collection was high density polyethylene (HDPE) and silicone;
- Sampling personnel did not wear GORE-TEX or other waterproofed clothing;
- All clothing worn by sampling personnel was laundered multiple times;
- Nitrile gloves were used during sample collection;
- Samples were collected into pre-cleaned sample bottles that do not use a PFTE or Teflon bottle cap liner or seal.

To ensure data quality, one equipment blank, one field duplicate and one MS/MSD sample were collected. All samples were collected in accordance with the sampling guidance provided by the NYSDEC, as attached to the June 7, 2018 letter and communicated by NYSDEC personnel onsite during the sampling event.

Samples for PFAS were analyzed for the full PFAS target analyte list by Modified EPA Method 537. Samples for 1,4-dioxane were analyzed by EPA method 8270 SIM.

Findings

Groundwater Sampling Observations

HRP did not observe non-aqueous phase liquid (NAPL) or a sheen on any of the groundwater samples collected at the site.

Analytical Results

The groundwater samples were analyzed for PFAS and 1,4-dioxane. The results are discussed below and presented on Table 1. The laboratory report forms are included in Attachment #2.

PFAS

As detailed on Table 1, one or more PFAS compound was detected at concentrations exceeding laboratory detection limits (2 parts per trillion) in each of the groundwater samples collected at the site. Total PFAS concentrations ranged for 2.4 parts per trillion in MW-5D to 58.7 parts per trillion in MW-7. PFAS were not detected in the field blank.

1,4-Dioxane

As detailed on Table 1, 1,4-dioxane was detected at concentrations exceeding laboratory detection limits (0.21 parts per billion) in three of the four groundwater samples collected at the site. Detected concentrations ranged from 0.27 parts per billion in MW-5D to 1.2 parts per billion in MW-2. 1,4-dioxane was not detected in the field blank.

Conclusions

Based upon the data collected to date, HRP has the following conclusions:

- PFAS were detected at concentrations exceeding laboratory detection limits in both the weathered till and the seasonal perched aquifers. Additionally, PFAS were detected in both the upgradient and downgradient wells. Based on the low concentrations and presence in the upgradient groundwater it is likely that the drum disposal area is not a source for PFAS in the groundwater onsite.
- 1,4-dioxane was detected at concentrations exceeding laboratory detection limits in both the weathered till and the seasonal perched aquifers. Additionally, 1,4-dioxane were detected in both the upgradient and downgradient groundwater. Based on the

Mr. Wayne Mizerak December 19, 2018 Page 4 of 4

low concentrations and presence in the upgradient groundwater it is likely that the drum disposal area is not a source for 1,4-dioxane in the groundwater onsite.

Closing

If you have any questions or require additional information, please feel free to contact HRP at (518) 877-7101.

Sincerely,


Mark Wright, CHMM, PG Senior Project Geologist Thomas Seguljic, PG, PE Vice President

Than SS

Figure

Table

Table 1 Balchem Facility-DEC Site # 336032 2007 Route 284

Slate Hill, New York

Samples Collected on October 31, 2018

Groundwater - Analyzed for polyfluoroalky substances (PFAS) and 1,4-dioxane

G A G II		Duplicate	1001.0) av 50) and c	DG 5	E' 11 D1 1
CAS#	Analyte Name	(MW-2) PA Method 537	MW-2	MW-5D	MW-6	PZ-7	Field Blank
	1	ND<2	4.0	ND<2	ND<2	39	ND 42
	6:2 Fluorotelomersulfonate (6:2 FTS)	+		+			ND<2
	8:2 Fluorotelomersulfonate (8:2 FTS)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
	NEtFOSAA	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
	NMeFOSAA	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND<2	3.0	ND<2	ND<2	ND<2	ND<2
375-22-4	Perfluorobutanoic acid (PFBA)	2.8	2.8	ND<2	ND<2	ND<2	ND<2
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
335-76-2	Perfluorodecanoic acid (PFDA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
307-55-1	Perfluorododecanoic acid (PFDoA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
375-92-8	Perfluoroheptanesulfonic acid (PFHpS)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
307-24-4	Perfluorohexanoic acid (PFHxA)	3.6	3.8	ND<2	2.2	2.5	ND<2
375-95-1	Perfluorononanoic acid (PFNA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
75491-6	Perfluorooctanesulfonamide (FOSA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	4.4	3.8	ND<2	ND<2	3.2	ND<2
335-67-1	Perfluorooctanoic acid (PFOA)	8.2	8.9	ND<2	4.0	14	ND<2
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND<2	2.6	2.4	ND<2	ND<2	ND<2
376-06-7	Perfluorotetradecanoic acid (PFTA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
72629-94-8	Perfluorotridecanoic acid (PFTrDA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2
	Total PFAS	19	28.9	2.4	6.2	58.7	ND<2
	1,4-Dioxane l	y EPA Method	8270 SIM	(μg/L)			
123-91-1	1,4-Dioxane	1.2	1.2	0.27	ND<0.21	0.76	ND<0.20

ND<2 Not Detected less than the detection limit of 2

 $\begin{array}{ll} ng/L & nanograms \ per \ liter \\ \mu g/L & micrograms \ per \ liter \end{array}$

ATTACHMENT 1 Field Sampling Forms

	HRP	ASSOCIAT	ES, INC	· · · · · · · · · · · · · · · · · · ·	PAGE _ i OF _					
	LOW-	FLOW SAM	IPLING	LOG	SAMPLE DATE: 10/31/14 TOTAL # WELLS:					
Client Nam					Sample Pump:	Per	-			
Project Lo	cation: 5)4	te HIII			Tubing Type:		PE			
Sampler(s)): M.W	MAN			Monitoring Equ		How			
Well I.D.					Screen Setting		to			
		2			Tubing Intake (25			
Total Dept	h (ft btoc):				Comments:		•			
Depth to W	/ater (ft btoc):	14,419			_					
Well Condition:										
Time Depth to Evacuation Water Quality Monitoring Parameters										
	Water	Rate	рН	Conductivity		Dissolved		ORP		
(hours)		(ml/min)		μs/cm	(NIU)	oxygen (mg/l)	(°C)	(mv)		
900			7.12	668	1613	16.12	Sol	(00)		
A COL			Vix	73	18.3	13.02	5.29	G		
918			7745	667	20, 7	435	5.71	83		
921			9,43	706	17.7	SR	ファブ	40		
924	-		7,33	723	122	8,54	4.54	64		
927			@,3¢	496	2,1	7.94	6,63	69		
430		-	9.31	696	2,0	7.96	6,64	. "		
933		-	9,72	699	2.0	7.81	5.64			
							,			
*										
^										
2	Stabilizatio	n of Paramete	rs (stabiliz	ation achieve	d for three cons	acutive mea	euromonto)			
Time	Depth to	Evacuation	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
FROM 1	Water (ft btoc)	Rate		(·····	A	oxygen				
	(it bloc)	(ml/min)		(ms/cm)	(NTU)	(mg/l)	(°C)	(mv)		
							-			
Recommend		100-500	+/- 0.2	1/ 00/	.1.400/1.45					
Stabilizatio Stabilizatio		100-300	+ /- 0.2	+/- 3%	+/- 10%/<10	+/- 10%	+/- 5	+/- 20		
(Yes/No)										
Sample Time	e: <u>43</u>	5			Reviewed by:	MW				
ft btoc	feet below top			Nephelometric Turb	idity Units	°C	degrees Celsius			
ml/min μs/cm	milliliters per microseimons	minute s per centimeter	mg/l	milligrams per liter		mv	millivolts			

	HRP A	SSOCIAT	es, Inc	•	PAGE OF					
2					SAMPLE DATE:10/31/25					
	LOW-F	LOW SAM	IPLING	LOG	тот	TAL # WELLS:	4			
							`			
Client Name:	110				Sample Pump:	Pen				
Project Locat		The second secon			Tubing Type:	LDPE /	DPSP			
Sampler(s):	M. a	ungw			Monitoring Equ	ipment:				
Well I.D	MW-1	2			Screen Setting	(ft btoc):	to			
Well Diamete					Tubing Intake (ft btoc): _				
Total Depth (-				Comments: <u>(</u>	202 Pu	linea			
Depth to Wat	er (ft btoc):	24132								
Well Condition:										
Time	Depth to	MA AGE		Wa	ater Quality Mon	itoring Para	meters			
	Water	Rate	рН	Conductivity	Turbidity		Temperature	ORP		
(hours)	(ft btoc)	(ml/min)		μs/cm	(NIU)	oxygen (mg/l)	(°C)	(mv)		
1206			6.44	17730	1915	22	15.86	87		
1209			8.49	1770	(4.7	1/31	(6.30)	87		
1212			8.62	1779	12,0	0	16,66	85		
1215			8,01	1803	11.9	Ò	17:00	77		
1219			9.71	1790	10,3	0	17,30	74		
(22)	25.3		674	1780	95	\bigcirc	17,77	713		
1224	25,03		876	1770	9,2	0 -	18:11	72		
							ν.			
*										
- y	Stabilization	n of Paramete	re (etabiliz	ration achieve	d for three cons	Courtive mea				
Time	Depth to	Evacuation	pH	Conductivity	Turbidity	Dissolved	Temperature	ORP		
FROM TO	Water	Rate				oxygen	remperature	Orti		
7110111 10	(ft btoc)	(ml/min)		(ms/cm)	(NTU)	(mg/l)	(°C)	(mv)		
Recommended		100-500	+/- 0.2	+/- 3%	1/ 100//-10	./ 400/	. /	1/ 00		
Stabilization Stabilization:		100-000	17- 0.2	T/- 370	+/- 10%/<10	+/- 10%	+/- 5	+/- 20		
(Yes/No)		175.4-2					/			
Sample Time:		125			Reviewed by: —	MW				
ft btoc	feet below top			Nephelometric Turl	oidity Units	°C	degrees Celsius			
ml/min μs/cm	milliliters per m microseimons		mg/l	milligrams per liter		mv	millivolts			

		HRP A	SSOCIATI	ES, INC			PAGE		
						SA	AMPLE DATE:	(0/31/15	
		LOW-F	LOW SAM	IPLING	LOG				
		Ball				Sample Pump:	Port		
		n: <u>5103-e</u>				Tubing Type:	LDPE HO	Ph	
Sample	r(s):	M. Wrigh	31			Monitoring Equ	ipment:	07/2	
Well I.D		7				Screen Setting	(ft btoc):	to	
Well Dia	ameter ((inches): _				Tubing Intake (ft btoc): _		
			15			Comments: _			
Depth to	Water د	(ft btoc):	6,69				_		
Well Condition:									
Tin	ne	Depth to		- 5	Wa	ater Quality Mon	itoring Para	meters	
		Water	Rate	рН	Conductivity	Turbidity	1	Temperature	ORP
(hou	urs)	(ft btoc)	(ml/min)		μs/cm	(NIU)	oxygen (mg/l)	(°C)	(mv)
111				6.42	()	173	149	14, [14]	76
114		135				Rechur, me	1 Stuars	14. '	ĮV.
				00	10 10	KE CAIDA , ice	N WINT		
								7	
	5					d for three conse			
Tim		Depth to Water	Evacuation Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP
FROM	ТО	(ft btoc)	(ml/min)		(ms/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)
					,	, , , , , , , , , , , , , , , , , , , ,	(5)	()	(1117)

									61
Recomm Stabiliz		L	100-500	+/- 0.2	+/- 3%	+/- 10%/<10	+/- 10%	+/- 5	+/- 20
Stabiliza	ation:					2 000			
(Yes/I		1300					Alsta		
Sample 1						Reviewed by: —	dyn		
ft btoc ml/min		feet below top of milliliters per mi			Nephelometric Turb milligrams per liter	oidity Units		degrees Celsius	
μs/cm		microseimons p		mg/i	miligrams per liter		mv	millivolts	

		HRP A	SSOCIATE	es, Inc	•	PAGE OF SAMPLE DATE: 10/3//4					
		LOW-F	LOW SAM	PLING	LOG	TOTAL # WELLS:					
Client Nan	ne:	Balch	eM			Sample Pump: Perl					
Project Lo	cation	:	-0			Tubing Type:	LDPE HO	PE/5140			
Sampler(s	s):					Monitoring Equi		Hora			
Well I.D.						Screen Setting	(ft btoc):	to			
Well Diam	eter (i	nches): 2				Tubing Intake (f	ft btoc):	4			
Total Dept			5			Comments:					
Depth to V	Vater	(ft btoc):	3.4								
Well Condition:											
Time		Depth to	Evacuation		Wa	ater Quality Moni	itoring Para	meters			
		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
(hours	s)	(ft btoc)	(ml/min)		μs/cm	(NIU)	oxygen (mg/l)	(°C)	(mv)		
1029		DUMPC) \(7,00	1,330	230	214	10.66	-ejcT		
103	3			7.66	1,336	576	2.41	10,60	-74		
1039	0			7.44	1,336	303	0	12.88	-89		
1634		260		7,41	1,3%	317	0	12.45	-88		
1042		352	•	137	1,320	292	6	12.43	\$		
									2 /		
						 					
									-		
		r					-				
	S	tabilization	n of Paramete	rs (stabiliz	ation achieve	d for three cons	ecutive mea	usurements)			
Time		Depth to	Evacuation	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
FROM	ТО	Water (ft btoc)	Rate (ml/min)		(ms/cm)	(NTU)	oxygen	(%C)	(may 1)		
		(It bloc)	(1111/111111)		(IIIS/CIII)	(N10)	(mg/l)	(°C)	(mv)		
					q						
					1						
								<u> </u>			
Recommer Stabilizati			100-500	+/- 0.2	+/- 3%	+/- 10%/<10	+/- 10%	+/- 5	+/- 20		
Stabilizati (Yes/No	on:										
Sample Tin		Cock				Reviewed by: —	M				
ft btoc feet below top of casing NTU Nephelometric To			Nephelometric Tur		°C	degrees Celsius					
ml/min μs/cm		milliliters per m microseimons		mg/l	milligrams per liter		mv	millivolts			

ATTACHMENT 2 Laboratory Report Forms

November 16, 2018

Mark Wright HRP Associates - NY 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project Location: Slate Hill, NY

Client Job Number:

Project Number: BAL6019P2

Laboratory Work Order Number: 18K0081

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on November 2, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
18K0081-01	6
18K0081-02	8
18K0081-03	10
18K0081-04	12
18K0081-05	14
18K0081-06	16
Sample Preparation Information	17
QC Data	18
1,4-Dioxane by isotope dilution GC/MS	18
B216438	18
Semivolatile Organic Compounds by - GC/MS-MS	19
B216958	19
Flag/Qualifier Summary	21
Certifications	22
Chain of Custody/Sample Receipt	23

HRP Associates - NY 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 ATTN: Mark Wright

REPORT DATE: 11/16/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: BAL6019P2

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18K0081

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Slate Hill, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-5D	18K0081-01	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
MW-2	18K0081-02	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
PZ-7	18K0081-03	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
MW-6	18K0081-04	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
Duplicate	18K0081-05	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
Field Blank	18K0081-06	Field Blank		SOP 434-PFAAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

MS-12

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonate (6:2 FT

B216958-MS1, B216958-MSD1 8:2 Fluorotelomersulfonate (8:2 FT

B216958-MS1, B216958-MSD1

Perfluorobutanesulfonic acid (PFB

B216958-MS1, B216958-MSD1

Perfluorodecanesulfonic acid (PFD

B216958-MS1, B216958-MSD1

Perfluoroheptanesulfonic acid (PFI

B216958-MS1, B216958-MSD1

Perfluorohexanesulfonic acid (PFH

B216958-MS1, B216958-MSD1

Perfluorononanoic acid (PFNA)

B216958-MS1, B216958-MSD1

MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

Analyte & Samples(s) Qualified:

NEtFOSAA

B216958-MSD1

Perfluoroheptanoic acid (PFHpA)

B216958-MSD1

Perfluorooctanesulfonic acid (PFO

B216958-MSD1

Perfluorooctanoic acid (PFOA)

B216958-MSD1

S-26

Surrogate outside of control limits.

Analyte & Samples(s) Qualified:

13C-PFDA

B216958-MSD1

d5-NEtFOSAA

B216958-MSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result

was "not detected" for this compound. Analyte & Samples(s) Qualified:

Perfluoroheptanesulfonic acid (PFI

S029451-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018
Field Sample #: MW-5D

Sampled: 10/31/2018 09:35

Sample ID: 18K0081-01
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	0.27	0.24	μg/L	1		SW-846 8270D	11/5/18	11/14/18 15:20	IMR
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1.4 Diovana d8		25.8	15 110					11/14/18 15:20	

Sample Description: Work Order: 18K0081

Project Location: Slate Hill, NY
Date Received: 11/2/2018
Field Sample #: MW-5D

Sampled: 10/31/2018 09:35

Sample ID: 18K0081-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluoropentanoic acid (PFPeA)	2.4	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:45	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	106	70-130		11/15/18 22:45
13C-PFDA	101	70-130		11/15/18 22:45
d5-NEtFOSAA	98.8	70-130		11/15/18 22:45

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018
Field Sample #: MW-2

Sampled: 10/31/2018 10:45

Sample ID: 18K0081-02
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	1.2	0.20	μg/L	1		SW-846 8270D	11/5/18	11/14/18 15:39	IMR
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1.4 D: 10		22.2	15 110					11/14/10 15 20	

1,4-Dioxane-d8 23.2 15-110 11/14/18 15:39

Work Order: 18K0081

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Slate Hill, NY Sample Description:

Date Received: 11/2/2018
Field Sample #: MW-2

Sampled: 10/31/2018 10:45

Sample ID: 18K0081-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	3.0	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorohexanoic acid (PFHxA)	3.8	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorobutanoic acid (PFBA)	2.8	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluoropentanoic acid (PFPeA)	2.6	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	4.0	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorooctanoic acid (PFOA)	8.9	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorooctanesulfonic acid (PFOS)	3.8	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 22:58	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	99.1	70-130		11/15/18 22:58
13C-PFDA	92.6	70-130		11/15/18 22:58
d5-NEtFOSAA	94.8	70-130		11/15/18 22:58

Project Location: Slate Hill, NY Sample Description:

Date Received: 11/2/2018 Field Sample #: PZ-7

Sampled: 10/31/2018 13:00

Sample ID: 18K0081-03 Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		0.76	0.20	μg/L	1		SW-846 8270D	11/5/18	11/14/18 15:59	IMR
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			23.6	15-110					11/14/18 15:59	

Work Order: 18K0081

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018
Field Sample #: PZ-7

Sampled: 10/31/2018 13:00

Sample ID: 18K0081-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorohexanoic acid (PFHxA)	2.5	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	39	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorooctanoic acid (PFOA)	14	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorooctanesulfonic acid (PFOS)	3.2	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:49	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	90.2	70-130		11/15/18 23:49
13C-PFDA	84.0	70-130		11/15/18 23:49
d5-NEtFOSAA	114	70-130		11/15/18 23:49

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018
Field Sample #: MW-6

Sampled: 10/31/2018 12:25

Sample ID: 18K0081-04
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.21	μg/L	1		SW-846 8270D	11/5/18	11/14/18 16:18	IMR
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,4-Dioxane-d8		24.5	15-110					11/14/18 16:18	

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018
Field Sample #: MW-6

Sampled: 10/31/2018 12:25

Sample ID: 18K0081-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorohexanoic acid (PFHxA)	2.2	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorooctanoic acid (PFOA)	4.0	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:11	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	108	70-130		11/15/18 23:11
13C-PFDA	101	70-130		11/15/18 23:11
d5-NEtFOSAA	109	70-130		11/15/18 23:11

Project Location: Slate Hill, NY Work Order: 18K0081 Sample Description:

Date Received: 11/2/2018 Field Sample #: Duplicate

Sampled: 10/31/2018 00:00

Sample ID: 18K0081-05 Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		1.2	0.21	μg/L	1		SW-846 8270D	11/5/18	11/14/18 16:37	IMR
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			23.6	15-110					11/14/18 16:37	

Page 14 of 24

Project Location: Slate Hill, NY Sample Description: Work Order: 18K0081

Date Received: 11/2/2018

Field Sample #: Duplicate

Sampled: 10/31/2018 00:00

Sample ID: 18K0081-05
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorohexanoic acid (PFHxA)	3.6	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorobutanoic acid (PFBA)	2.8	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorooctanoic acid (PFOA)	8.2	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorooctanesulfonic acid (PFOS)	4.4	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:24	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	101	70-130		11/15/18 23:24
13C-PFDA	99.2	70-130		11/15/18 23:24
d5-NEtFOSAA	93.6	70-130		11/15/18 23:24

Work Order: 18K0081

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Slate Hill, NY Sample Description:

Date Received: 11/2/2018

Field Sample #: Field Blank

Sampled: 10/31/2018 00:00

Sample ID: 18K0081-06

Sample Matrix: Field Blank

Semivolatile Organic Compounds by - GC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/12/18	11/15/18 23:36	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	102	70-130		11/15/18 23:36
13C-PFDA	86.4	70-130		11/15/18 23:36
d5-NEtFOSAA	94.9	70-130		11/15/18 23:36

Sample Extraction Data

Prep Method: EPA 537-SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0081-01 [MW-5D]	B216958	250	1.00	11/12/18	
18K0081-02 [MW-2]	B216958	250	1.00	11/12/18	
18K0081-03 [PZ-7]	B216958	250	1.00	11/12/18	
18K0081-04 [MW-6]	B216958	250	1.00	11/12/18	
18K0081-05 [Duplicate]	B216958	250	1.00	11/12/18	
18K0081-06 [Field Blank]	B216958	250	1.00	11/12/18	

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0081-01 [MW-5D]	B216438	830	1.00	11/05/18	
18K0081-02 [MW-2]	B216438	1000	1.00	11/05/18	
18K0081-03 [PZ-7]	B216438	1000	1.00	11/05/18	
18K0081-04 [MW-6]	B216438	950	1.00	11/05/18	
18K0081-05 [Duplicate]	B216438	940	1.00	11/05/18	

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

	D	Reporting		Spike	Source	0/855	%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		
Batch B216438 - SW-846 3510C												
Blank (B216438-BLK1)	Prepared: 11/05/18 Analyzed: 11/06/18											
1,4-Dioxane	ND	0.20	μg/L									
Surrogate: 1,4-Dioxane-d8	4.06		$\mu g/L$	10.0		40.6	15-110					
LCS (B216438-BS1)	Prepared: 11/05/18 Analyzed: 11/06/18											
1,4-Dioxane	10.1	0.20	μg/L	10.0		101	40-140					
Surrogate: 1,4-Dioxane-d8	3.79		μg/L	10.0		37.9	15-110					
LCS Dup (B216438-BSD1)				Prepared: 11	/05/18 Analy	zed: 11/06/1	18					
1,4-Dioxane	10.3	0.20	μg/L	10.0		103	40-140	2.02	30			
Surrogate: 1,4-Dioxane-d8	3.69		μg/L	10.0		36.9	15-110					
Matrix Spike (B216438-MS1)	Sou	rce: 18K0081-	02	Prepared: 11	/05/18 Analy	zed: 11/14/1	18					
1,4-Dioxane	12.2	0.21	μg/L	10.4	1.19	106	40-140					
Surrogate: 1,4-Dioxane-d8	2.72		μg/L	10.4		26.1	15-110					
Matrix Spike Dup (B216438-MSD1)	Sou	rce: 18K0081-	02	Prepared: 11	/05/18 Analy	zed: 11/14/1	18					
1,4-Dioxane	12.2	0.21	μg/L	10.4	1.19	105	40-140	0.538	20			
Surrogate: 1,4-Dioxane-d8	2.55		μg/L	10.4		24.5	15-110					

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216958 - EPA 537										
Blank (B216958-BLK1)				Prepared: 11	/12/18 Analy	yzed: 11/15/1	18			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	2.0	ng/L							
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
NMeFOSAA	ND	2.0	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
NEtFOSAA	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Surrogate: 13C-PFHxA	43.6		ng/L	40.0		109	70-130			
Surrogate: 13C-PFDA	42.5		ng/L	40.0		106	70-130			
Surrogate: d5-NEtFOSAA	143		ng/L	160		89.2	70-130			
LCS (B216958-BS1)				Prepared: 11	/12/18 Analy	yzed: 11/15/1	18			
Perfluorobutanesulfonic acid (PFBS)	19.5	2.0	ng/L	17.7		110	70-130			
Perfluorohexanoic acid (PFHxA)	22.0	2.0	ng/L	20.0		110	70-130			
Perfluoroheptanoic acid (PFHpA)	22.2	2.0	ng/L	20.0		111	70-130			
Perfluorobutanoic acid (PFBA)	11.4	2.0	ng/L	20.0		57.1	30-110			
Perfluorodecanesulfonic acid (PFDS)	20.6	2.0	ng/L	19.3		107	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	23.4	2.0	ng/L	19.0		123	70-130			
Perfluorooctanesulfonamide (FOSA)	9.99	2.0	ng/L	20.0		49.9	30-110			
Perfluoropentanoic acid (PFPeA)	24.8	2.0	ng/L	20.0		124	70-130			
6:2 Fluorotelomersulfonate (6:2 FTS)	24.3	2.0	ng/L	19.0		128	70-130			
8:2 Fluorotelomersulfonate (8:2 FTS)	24.4	2.0	ng/L	19.2		127	70-130			
Perfluorohexanesulfonic acid (PFHxS)	23.2	2.0	ng/L	18.2		128	70-130			
Perfluorooctanoic acid (PFOA)	23.2	2.0	ng/L	20.0		116	70-130			
Perfluorooctanesulfonic acid (PFOS)	20.1	2.0	ng/L	18.5		109	70-130			
Perfluorononanoic acid (PFNA)	24.4	2.0	ng/L	20.0		122	70-130			
Perfluorodecanoic acid (PFDA)	24.1	2.0	ng/L	20.0		120	70-130			
NMeFOSAA	20.7	2.0	ng/L	20.0		103	70-130			
Perfluoroundecanoic acid (PFUnA)	22.3	2.0	ng/L	20.0		111	70-130			
NEtFOSAA	20.8	2.0	ng/L	20.0		104	70-130			
Perfluorododecanoic acid (PFDoA)	21.2	2.0	ng/L	20.0		106	70-130			
Perfluorotridecanoic acid (PFTrDA)	19.9	2.0	ng/L	20.0		99.6	70-130			
Perfluorotetradecanoic acid (PFTA)	23.8	2.0	ng/L	20.0		119	70-130			
Surrogate: 13C-PFHxA	40.6		ng/L	40.0		101	70-130			
Surrogate: 13C-PFDA	36.5		ng/L	40.0		91.4	70-130			
Surrogate: d5-NEtFOSAA	136		ng/L	160		84.8	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC		%REC Limits	RPD	RPD Limit	Notes
Batch B216958 - EPA 537								<u> </u>			<u> </u>
Aatrix Spike (B216958-MS1)	Sou	rce: 18K0081-	02	Prepared: 11	/12/18 Analyz	zed: 11/15	5/18				
erfluorobutanesulfonic acid (PFBS)	28.8	2.0	ng/L	17.7	3.05	145	*	70-130			MS-12
erfluorohexanoic acid (PFHxA)	25.4	2.0	ng/L	20.0	3.82	108		70-130			
erfluoroheptanoic acid (PFHpA)	23.3	2.0	ng/L	20.0	ND	117		70-130			
erfluorobutanoic acid (PFBA)	12.0	2.0	ng/L	20.0	2.82	46.0		30-110			
erfluorodecanesulfonic acid (PFDS)	25.9	2.0	ng/L	19.3	ND	134	*	70-130			MS-12
erfluoroheptanesulfonic acid (PFHpS)	29.3	2.0	ng/L	19.0	ND	154	*	70-130			MS-12
erfluorooctanesulfonamide (FOSA)	11.1	2.0	ng/L	20.0	ND	55.3		30-110			
erfluoropentanoic acid (PFPeA)	24.7	2.0	ng/L	20.0	2.60	110		70-130			
:2 Fluorotelomersulfonate (6:2 FTS)	41.7	2.0	ng/L	19.0	4.03	198	*	70-130			MS-12
:2 Fluorotelomersulfonate (8:2 FTS)	40.1	2.0	ng/L	19.2	ND	209	*	70-130			MS-12
erfluorohexanesulfonic acid (PFHxS)	26.0	2.0	ng/L	18.2	ND	143	*	70-130			MS-12
erfluorooctanoic acid (PFOA)	32.5	2.0	ng/L	20.0	8.85	118		70-130			
erfluorooctanesulfonic acid (PFOS)	25.8	2.0	ng/L	18.5	3.83	119		70-130			
erfluorononanoic acid (PFNA)	28.0	2.0	ng/L	20.0	ND	140	*	70-130			MS-12
erfluorodecanoic acid (PFDA)	24.7	2.0	ng/L	20.0	ND	123		70-130			
MeFOSAA	23.1	2.0	ng/L	20.0	ND	116		70-130			
erfluoroundecanoic acid (PFUnA)	24.4	2.0	ng/L	20.0	ND	122		70-130			
EtFOSAA	21.8	2.0	ng/L	20.0	ND	109		70-130			
erfluorododecanoic acid (PFDoA)	23.3	2.0	ng/L	20.0	ND	117		70-130			
erfluorotridecanoic acid (PFTrDA)	21.4	2.0	ng/L	20.0	ND	107		70-130			
erfluorotetradecanoic acid (PFTA)	21.8	2.0	ng/L	20.0	ND	109		70-130			
urrogate: 13C-PFHxA	39.4		ng/L	40.0		98.4		70-130			
urrogate: 13C-PFDA	38.3		ng/L	40.0		95.6		70-130			
urrogate: d5-NEtFOSAA	161		ng/L	160		100		70-130			
1atrix Spike Dup (B216958-MSD1)	Sou	rce: 18K0081-	02	Prepared: 11	/12/18 Analyz	zed: 11/15	5/18				
erfluorobutanesulfonic acid (PFBS)	28.1	2.0	ng/L	17.7	3.05	142	*	70-130	2.35	30	MS-12
erfluorohexanoic acid (PFHxA)	28.2	2.0	ng/L	20.0	3.82	122		70-130	10.6	30	
erfluoroheptanoic acid (PFHpA)	27.0	2.0	ng/L	20.0	ND	135	*	70-130	14.6	30	MS-22
erfluorobutanoic acid (PFBA)	14.0	2.0	ng/L	20.0	2.82	55.9		30-110	15.2	30	
erfluorodecanesulfonic acid (PFDS)	25.2	2.0	ng/L	19.3	ND	131	*	70-130	2.81	30	MS-12
erfluoroheptanesulfonic acid (PFHpS)	29.7	2.0	ng/L	19.0	ND	156	*	70-130	1.32	30	MS-12
erfluorooctanesulfonamide (FOSA)	14.7	2.0	ng/L	20.0	ND	73.7		30-110	28.5	30	
erfluoropentanoic acid (PFPeA)	27.7	2.0	ng/L	20.0	2.60	125		70-130	11.5	30	
2 Fluorotelomersulfonate (6:2 FTS)	40.5	2.0	ng/L	19.0	4.03	192	*	70-130	3.00	30	MS-12
2 Fluorotelomersulfonate (8:2 FTS)	34.4	2.0	ng/L	19.2	ND	179	*	70-130	15.2	30	MS-12
erfluorohexanesulfonic acid (PFHxS)	30.3	2.0	ng/L	18.2	ND	166	*	70-130	15.2	30	MS-12
erfluorooctanoic acid (PFOA)	35.4	2.0	ng/L	20.0	8.85	133	*	70-130	8.62	30	MS-22
erfluorooctanesulfonic acid (PFOS)	28.6	2.0	ng/L	18.5	3.83	134	*	70-130	10.3	30	MS-22
erfluorononanoic acid (PFNA)	32.0	2.0	ng/L	20.0	ND	160	*	70-130	13.3	30	MS-12
erfluorodecanoic acid (PFDA)	23.8	2.0	ng/L	20.0	ND	119		70-130	3.67	30	
MeFOSAA	25.2	2.0	ng/L	20.0	ND	126		70-130	8.64	30	
erfluoroundecanoic acid (PFUnA)	25.9	2.0	ng/L	20.0	ND	129		70-130	5.84	30	
EtFOSAA	27.7	2.0	ng/L	20.0	ND	139	*	70-130	24.1	30	MS-22
erfluorododecanoic acid (PFDoA)	24.9	2.0	ng/L	20.0	ND	124		70-130	6.40	30	
erfluorotridecanoic acid (PFTrDA)	23.8	2.0	ng/L	20.0	ND	119		70-130	10.6	30	
erfluorotetradecanoic acid (PFTA)	24.1	2.0	ng/L	20.0	ND	120		70-130	9.73	30	
urrogate: 13C-PFHxA	28.6		ng/L	40.0		71.6		70-130			
urrogate: 13C-PFDA	20.6		ng/L	40.0			*	70-130			S-26
urrogate: d5-NEtFOSAA	109		ng/L	160			*	70-130			S-26

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
MS-12	Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.
MS-22	Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.
S-26	Surrogate outside of control limits.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SOP 434-PFAAS in Water		
Perfluorobutanesulfonic acid (PFBS)	NH-P	
Perfluorohexanoic acid (PFHxA)	NH-P	
Perfluoroheptanoic acid (PFHpA)	NH-P	
Perfluorobutanoic acid (PFBA)	NH-P	
Perfluoropentanoic acid (PFPeA)	NH-P	
6:2 Fluorotelomersulfonate (6:2 FTS)	NH-P	
8:2 Fluorotelomersulfonate (8:2 FTS)	NH-P	
Perfluorohexanesulfonic acid (PFHxS)	NH-P	
Perfluorooctanoic acid (PFOA)	NH-P	
Perfluorooctanesulfonic acid (PFOS)	NH-P	
Perfluorononanoic acid (PFNA)	NH-P	
Perfluorodecanoic acid (PFDA)	NH-P	
NMeFOSAA	NH-P	
Perfluoroundecanoic acid (PFUnA)	NH-P	
NEtFOSAA	NH-P	
Perfluorododecanoic acid (PFDoA)	NH-P	
Perfluorotridecanoic acid (PFTrDA)	NH-P	
Perfluorotetradecanoic acid (PFTA)	NH-P	
SW-846 8270D in Water		
1,4-Dioxane	NY	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	Page of	# of Containers	2 Preservation Code	3 Container Code		Field Filtered	Lab to Filter			Field Filtered	Lab to Filter		1 Matrix Codes:		A - At-	SL = Studge	O = Other (plesse		2 Preservation Codes:	7.5. H = HCT		S = Sulfuric Acid B = Sodium Bisulfate	X = Sodium Hydroxide T = Sodium	Thiosulfate 0 = Other (please	define)	³ Container Codes:	₹ છ ≀	. w :	V = Vial S = Summa Canister	T = Tedlar Bag O = Other (please	define)		Soxhlet	Non Soxhlet S
39 Spruce Street	East Longmeadow, MA 01028				ANALYSIS REQUESTED																			Please itse the following codes to indicate presiding sounds access	within the Conc Code column above:	; L - Low; C - Clean; U - Unknown		Enhanced Data Package		NY Regulatory EDD NY Reas Hits-Only EDD	Original	MELAU and AIRA-LAP, LLC Accredited	WRTA Other	AIHA-LAP,ILC
<u> </u>		1216		Q (W	/ t	5	(4.9 74.8	(N)	187 5 i	(Z) m\	J?	ללכ ס"מ	Code Code	×	×	У У	シジ	×	>					a the following code	within the C	H - High; M - Medium; L - Low;								MBTA MBTA
CHAIN OF CUSTODY RECORD (New York)		10-Day 🔽]		3-Day		Andrew Williams	PDF N EXCEL		Data Pkg Required:			Composite Grab Matrix	30 ×	03 X	X QW	V QW	MJ X	Ta y					Please Please		Ξ		NYC Sewer Discharge NY CP-51] , ∰	NY Restricted Use NY Unrestricted Use	75		nt Municipality	Brownfield
CHAIN		7-Day	Due Date:	1X 1.10 /	1-Day	2-Day		Format:	Other:	CLP Like D	Email To:	Fax To #:	Beginning Ending Date/Time Date/Time	1031/16	2/1801 1/1801	7 (610) 3(8)	10/5/1/6	1/16/01	WEO!					But my/mo)			BALLA HELDE][rigect Entity Government	City
18K0081	Fax: 413-525-6405	Email: info@contestlabs.com		1 SUME 110, CLIPPULPAIN,		Balchin	(, <i>Ο</i> Ψ	32		-20180110		(Cilent Sample ID / Description	MW-5D	MW-2+M905	P2-7	9-MW	DOPHESE	Field Blunk		- Control of the Cont			wers conacted Mw-2		11-2-18 2.0,2.6	Date/Time: / infaille //i.oo		_^ !	11/2/19 9/20	Date/Time: 920 // 201/	A Mate/Time	Date/Time: 5 1	
Con-test	ANALYTICAL LABORATORY	7	STROBERS HERE	ddress: Fairchly S	hone: 518 4777/01			roject Number: BAL 6019	roject Manager: MARK W	on-Test Quote Name/Number: <	voice Recipient: 円化く	ampled By: MAR IL WICK AT	Con-Test Work Order#											omments: DOP, Tollal Causaluty Colordia		7 x R i	slinguished by (signature)	scelved by: (signature)	1-spe / alim	Mi Pa	(e) friends (e)	Sline Cedeby: (signative)	of 24	

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client HRP	ment will be blod			and Online	Otate Tra	c or raise		
Received By	LR		Date	11-2-1	7	Time	1300	
How were the samples	In Cooler		No Cooler		On Ice	-	No Ice	
received?	Direct from Samp	oling			Ambient		Melted Ice	
Were samples within		By Gun#	<u> </u>		Actual Tem	p-2.0,		
Temperature? 2-6°C	T	By Blank #			Actual Tem		<u> </u>	darker
Was Custody S	eal Intact?	. Dy Olain, 7	We	re Samole	s Tampered		40	
Was COC Relin					ree With Sa		<u>—————————————————————————————————————</u>	
Are there broken/l				P			·	-
Is COC in ink/ Legible?		•	•	nples recei	ved within h	olding time?	T	
Did COC include all	Client		Analysis			er Name		-
pertinent Information?	Project		ID's	7	Collection	Dates/Times		_
Are Sample labels filled		T						
Are there Lab to Filters?	?	E		Who was	s notified?			
Are there Rushes?		F		Who was	s notified?			_
Are there Short Holds?		F		Who was	s notified?			-
Is there enough Volume								-
Is there Headspace who	• •	N		MS/MSD?	T			
Proper Media/Container				ls splitting	samples red	uired?	F	_
Were trip blanks receive				On COC?				-
Do all samples have the	proper pH?	NA	Acid			Base		_
Vials #	Containers:	#			#			#
Unp- HCL-	1 Liter Amb.	i2	1 Liter I				Amb.	
Meoh-	500 mL Amb. 250 mL Amb.		500 mL			8oz Am		
Bisulfate-	Col./Bacteria		250 mL		<u>ι3</u>	4oz Am		
DI-	Other Plastic	********	Flash Other			2oz Am		
Thiosulfate-	SOC Kit		Plastic			Enc Frozen:	ore	L
Sulfuric-	Perchlorate		Ziplo			1102611.		
			Unused N					
Vials #	Containers:	# 1	Onuseu n	iedia	# 1			#
Unp-	1 Liter Amb.		1 Liter F	Plastic		16 oz	Amb	
HCL-	500 mL Amb.		500 mL			8oz Am		
Meoh-	250 mL Amb.		250 mL	Plastic		4oz Am	****	
Bisulfate-	Col./Bacteria		Flash			2oz Am	b/Clear	
DI-	Other Plastic		Other (Enc	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
	Perchlorate		Ziplo	ck				
Sulfuric-								
Comments:								

ATTACHMENT 2

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	te No. 336032	Site Details	Box 1	•						
Si	te Name Balchem Plant	•								
Cit Co	te Address: Route 284 ty/Town: Wawayanda ounty:Orange te Acreage: 3.000	Zip Code: 10973								
Re	porting Period: May 05, 20	012 to December 30, 2018								
		•	YES	NO						
1.	Is the information above of	correct?	ſΧ							
	If NO, include handwritter	n above or on a separate sheet.								
2.	Has some or all of the site tax map amendment during	e property been sold, subdivided, merged, or undergone ang this Reporting Period?		X						
3.	Has there been any chan (see 6NYCRR 375-1.11(c	ge of use at the site during this Reporting Period i))?		N						
4.	Have any federal, state, a for or at the property durin	and/or local permits (e.g., building, discharge) been issueding this Reporting Period?	ם	X						
	If you answered YES to that documentation has	questions 2 thru 4, include documentation or evidence been previously submitted with this certification form	.							
5.	Is the site currently under	going development?		X						
	•		Box 2	u .						
			YES	NO						
6.	Is the current site use con Commercial and Industria	sistent with the use(s) listed below?	X							
7.	Are all ICs/ECs in place a	nd functioning as designed?		XI.						
	DO NOT COM	O EITHER QUESTION 6 OR 7 IS NO, sign and date below a PLETE THE REST OF THIS FORM. Otherwise continue.		·						
A C	A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
∭ Sig	hature of Owner, Remedial I	Party or Designated Representative Date								